Electrical Engineering An update of the definitive guide to all aspects of battery design and selection # Handbook of Batteries Here is the one and only reference to offer you detailed data and information on the characteristics, properties, performance, and applications of all types of electric batteries. Written by a staff of leading experts in battery technology, this essential working tool covers batteries for everything from small portable consumer items to electric vehicles and military and industrial equipment. The new edition of the Handbook of Batteries shows you how to: - Determine the performance characteristics of batteries under all conditions of use - Establish the conditions and proper operating procedures to achieve optimum use of each battery system - Select the most suitable battery for a given application The Second Edition now features the latest data, tables, and figures covering the vast improvements in battery performance in recent years—and also explores new battery technologies, including lithium and rechargeable batteries. Whether you're an engineer, technician, or product designer, the updated edition of this one-of-a-kind sourcebook enables you to take advantage of the many new advances in the fast-changing field of battery technology. ISBN 0-07-037921-1 90000 90000 1780070379213 Cover Design: Maria Amato Scharf McGraw-Hill, Inc. Serving the Need for Knowledge 1221 Avenue of the Americas New York, NY 10020 # HANDBOOK OF BATTERIES David Linden Editor in Chief **Second Edition** #### McGRAW-HILL, INC. New York San Francisco Washington, D.C. Auckland Bogotá Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto Library of Congress Cataloging-in-Publication Data Handbook of batteries / David Linden, editor in chief. -- 2nd ed. p. cm First ed. published under title: Handbook of batteries and fuel cells. Includes index. ISBN 0-07-037921-1 1. Electric batteries--Handbooks, manuals, etc. I. Linden, David. II. Title: Handbook of batteries. TK2901.H36 1994 621.31'242--dc20 94-29189 CIP Copyright © 1995, 1984 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher. The first edition was published under the title Handbook of Batteries and Fuel Cells. 3 4 5 6 7 8 9 0 DOC/DOC 9 0 9 8 7 ISBN 0-07-037921-1 The sponsoring editor for this book was Harold B. Crawford, the editing supervisor was Frank Kotowski, Jr., and the production supervisor was Suzanne W. B. Rapcavage. It was set in Times Roman by the Universities Press (Belfast) Ltd. Printed and bound by R. R. Donnelley & Sons Company. This book is printed on acid-free paper. Information contained in this work has been obtained by McGraw-Hill, Inc. from sources believed to be reliable. However, neither McGraw-Hill nor its authors guarantees the accuracy or completeness of any information published herein and neither McGraw-Hill nor its authors shall be responsible for any errors, omissions or damages arising out of use of this information. This work is published with the understanding that McGraw-Hill and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought. To my grande Nickel-iron (conven-tional) 1.2 1.37 1.25-1.05 1.0 -10 to 45 27 55 Moderately flat Moderate to low 20-40 8-25 2000-4000 Very rugged, on withstand physical and electrical abuse; long life (cycling or stand) Low power and energy density; high self-discharge- development for EV and mobile traction NOOH KOH Nickel-zinc 1.6 1.73 1.6-1.4 1.2 -20 to 60 60 120 Flat High 10 50-200 High energy density; relatively low cost; good low-temperature performance Poor cycle life Not commercially available Zn NiOOH KOH (aqueous solution) 23.10 #### SECONDARY BATTERIES TABLE 23.3 Characteristics of the Major Secondary Battery Systems | | Lead-acid | | | | Nickel-cadmium | | | |--|--|--|---|---|--|---|---| | Common name | SLI | Traction | Stationary | Portable | Vented
pocket
plate | Vented
sintered
plate | Sealed | | Chemistry:
Anode
Cathode
Electrolyte | Pb PbO ₂ H ₂ SO ₄ (aqueous solution) | Pb
PbO ₂
H ₂ SO ₄
(aqueous
solution) | Pb
PbO ₂
H ₂ SO ₄
(aqueous
solution) | Pb
PbO ₂
H ₂ SO ₄
(aqueous
solution) | Cd
NiOOH
KOH
(aqueous
solution) | Cd
NiOOH
KOH
(aqueous
solution) | Cd
NiOOH
KOH
(aqueous
solution) | | Cell voltage
(typical), V:
Nominal
Open circuit
Operating
End | 2.0
2.1
2.0–1.8
1.75
(lower operating and end voltage during cranking operation) | 2.0
2.1
2.0-1.8
1.75 | 2,0
2,1
2.0-1,8
1.75
(except when on
float service) | 2.0
2.1
2.0-1.8
1.75
(when cycled) | 1.2
1.29
1.25–1.00
1.0 | 1.2
1,29
1.25–1.00
1.0 | 1.2
1.29
1.25–1.00 | | Operating
temperature,
°C | -40 to 55 | -20 to 40 | -10 to 40 ^c | -40 to 60 | -20 to 45 | -40 to 50 | -40 to 45 | | Energy density (at 20°C): Wh/kg Wh/L Discharge profile (relative) | 35
70
Flat | 25
80
Flat | 10–20
50–70
Flat | 30
90
Flat | 20
40
Flat | 37
90
Very flat | 30-35
80-105
Very flat | | Power density | High | Moderately
high | Moderately
high | High | High | High | Moderate
to high | | Self-discharge
rate (at 20°C),
% loss per
month ^b | 20–30
(Sb-Pb)
2–3
(maintenance-
free) | 4–6 | = | 4–8 | 5 | 10 | 15-20 | | Calendar life,
years | 3–6 | 6 | 18-25 | 2-8 | 8-25 | 3–10 | 2-5 | | Cycle life, | 200-700 | 1500 | - | 250~500 | 500-2000 | 500-2000 | 300-700 | | cycles ^c
Advantages | Low cost, ready
availability,
good high-rate,
high- and low-
temperature
operation (good
cranking
service), good
float service,
new
maintenance-free | Lowest cost of
competitive
systems (also
see SLI) | Designed for "float" service, lowest cost of competitive systems (also see SL1) | Maintenance-
free; long life on
float service;
low- and high-
temperature
performance; no
"memory"
effect; operates
in any position | Very rugged,
can withstand
physical and
electrical abuse;
good charge
retention,
storage and
cycle life lowest
cost of alkaline
batteries | Rugged;
excellent
storage; good
specific energy
and high-rate
and low-
temperature
performance | Sealed, no maintenance; good low-temperature and high-rate performance, long life cycle: operates in any position | | Limitations | Relatively low
cycle life:
limited energy
density; poor
charge retention
and storability;
hydrogen
evolution | Low energy
density; less
rugged than
competitive
systems;
hydrogen
evolution | Hydrogen
evolution | Cannot be
stored in
discharged
condition; lower
cycle life than
sealed nickel-
cadmium;
difficult to
manufacture in
very small sizes | Low energy
density | High cost;
"memory"
effect; thermal
runaway | Sealed lead-ace
battery better a
high temperalus
and float server-
memory eded | | Major cell types
available | Prismatic cells:
30–200 Ah at
20-h rate | Based on
positive plate
design: 45–
200 Ah per
positive plate | Based on
positive plate
design: 5-
400 Ah per
positive plate | Sealed
cylindrical cells:
2,5–25 Ah;
prismatic cells:
0.9–35 Ah | Prismatic cells:
5–1300 Ah | Prismatic cells:
10–100 Ah | 0.5 Ab:
eylindrical cells
to 10 Ah | ^a Based on C/LiCoO₂ lithium-ion cell (see Chap. 36) (characteristics vary with battery system and design). ^b Self-discharge rate usually decreases with increasing storage time. ^c Dependent on depth of discharge. ^d Low-rate Zn/AgO cell. ## DOCKET ### Explore Litigation Insights Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things. #### **Real-Time Litigation Alerts** Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend. Our comprehensive service means we can handle Federal, State, and Administrative courts across the country. #### **Advanced Docket Research** With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place. Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase. #### **Analytics At Your Fingertips** Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours. Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips. #### API Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps. #### **LAW FIRMS** Build custom dashboards for your attorneys and clients with live data direct from the court. Automate many repetitive legal tasks like conflict checks, document management, and marketing. #### **FINANCIAL INSTITUTIONS** Litigation and bankruptcy checks for companies and debtors. #### **E-DISCOVERY AND LEGAL VENDORS** Sync your system to PACER to automate legal marketing.