Single-1 SA Heterogeneous M ulti-Core Architectures:
The Potential for Processor Power Reduction

Rakesh Kumar' Keith I. Farkas*,Norman P. J ouppii,Parthasarathy Ranganathani,Dean M. Tullsen’

fDepartment of Computer Science and Engineering
University of California, San Diego
La Jolla, CA 92093-0114

Abstract

This paper proposes and evaluates single-ISA hetero-
geneous multi-core architectures as a mechanism to re-
duce processor power dissipation. Our design incorpo-
rates heterogeneous cores representing different points in
the power/performance design space; during an applica-
tion’s execution, system software dynamically chooses the
most appropriate core to meet specific performance and
power requirements.

Our evaluation of this architecture shows significant en-
ergy benefits. For an objective function that optimizes for
energy efficiency with a tight performance threshold, for 14
SPEC benchmarks, our results indicate a 39% average en-
ergy reduction while only sacrificing 3% in performance.
An objective function that optimizes for energy-delay with
looser performance bounds achieves, on average, nearly a
factor of three improvement in energy-delay product while
sacrificing only 22% in performance. Energy savings are
substantially more than chip-wide voltage/frequency scal-

ing.

1 Introduction

As processors continue to increase in performance and
speed, processor power consumption and heat dissipation
have become key challenges in the design of future high-
performance systems. For example, Pentium-4 class pro-
cessors currently consume well over SOW and processors in
the year 2015 are expected to consume close to 300W [1].
Increased power consumption and heat dissipation typically
leads to higher costs for thermal packaging, fans, electricity,
and even air conditioning. Higher-power systems can also
have a greater incidence of failures.

In this paper, we propose and evaluate a single-I1SA het-
erogeneous multi-core architecture [26, 27] to reduce pro-

‘HP Labs
1501 Page Mill Road
Palo Alto, CA 94304

cessor power dissipation. Prior chip-level multiproces-
sors (CMP) have been proposed using multiple copies of
the same core (i.e., homogeneous), or processors with co-
processors that execute a different instruction set. We pro-
pose that for many applications, core diversity is of higher
value than uniformity, offering much greater ability to adapt
to the demands of the application(s). We present a multi-
core architecture where all cores execute the same instruc-
tion set, but have different capabilities and performance lev-
els. At run time, system software evaluates the resource re-
quirements of an application and chooses the core that can
best meet these requirements while minimizing energy con-
sumption. The goal of this research is to identify and quan-
tify some of the key advantages of this novel architecture in
a particular execution environment.

One of the motivations for this proposal is that differ-
ent applications have different resource requirements dur-
ing their execution. Some applications may have a large
amount of instruction-level parallelism (ILP), which can be
exploited by a core that can issue many instructions per
cycle (i.e., a wide-issue superscalar CPU). The same core,
however, might be wasted on an application with little ILP,
consuming significantly more power than a simpler core
that is better matched to the characteristics of the applica-
tion.

A heterogeneous multi-core architecture could be im-
plemented by designing a series of cores from scratch, by
reusing a series of previously-implemented processor cores
after modifying their interfaces, or a combination of these
two approaches. In this paper, we consider the reuse of ex-
isting cores, which allows previous design effort to be amor-
tized. Given the growth between generations of processors
from the same architectural family, the entire family can
typically be incorporated on a die only slightly larger than
that required by the most advanced core.

In addition, clock frequencies of the older cores would
scale with technology, and would be much closer to that

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)

DOCKET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

of the latest processor technology than their original imple-
mentation clock frequency. Then, the primary criterion for
selecting between different cores would be the performance
of each architecture and the resulting energy dissipation.

In this paper, we model one example of a single-ISA
heterogeneous architecture — it includes four representative
cores (two in-order cores and two out-of-order cores) from
an ordered complexity/performance continuum in the Al-
pha processor roadmap. We show that typical applications
not only place highly varied demands on an execution archi-
tecture, but also that that demand can vary between phases
of the same program. We assume the ability to dynami-
cally switch between cores. This allows the architecture to
adapt to differences between applications, differences be-
tween phases in the same application, or changing priori-
ties of the processor or workload over time. We show re-
ductions in processor energy-delay product as high as 84%
(a six-fold improvement) for individual applications, and
63% overall. Energy-delay? (the product of energy and
the square of the delay) reductions are as high as 75% (a
four-fold improvement), and 50% overall. Chip-wide volt-
age/frequency scaling can do no better than break even on
this metric. We examine oracle-driven core switching, to
understand the limits of this approach, as well as realistic
runtime heuristics for core switching.

The rest of the paper is organized as follows. Section 2
discusses the single-ISA heterogeneous multi-core architec-
ture that we study. Section 3 describes the methodology
used to study performance and power. Section 4 discusses
the results of our evaluation while Section 5 discusses re-
lated work. Section 6 summarizes the work and discusses
ongoing and future research.

2 Architecture

This section gives an overview of a potential heteroge-
neous multi-core architecture and core-switching approach.

The architecture consists of a chip-level multiprocessor
with multiple, diverse processor cores. These cores all ex-
ecute the same instruction set, but include significantly dif-
ferent resources and achieve different performance and en-
ergy efficiency on the same application. During an appli-
cation’s execution, the operating system software tries to
match the application to the different cores, attempting to
meet a defined objective function. For example, it may be
trying to meet a particular performance requirement or goal,
but doing so with maximum energy efficiency.

2.1 Discussion of Core Switching

There are many reasons why the best core for execution
may vary over time. The demands of executing code vary

widely between applications; thus, the best core for one ap-
plication will often not be the best for the next, given a par-
ticular objective function (assumed to be some combination
of energy and performance). In addition, the demands of
a single application can also vary across phases of the pro-
gram.

Even the objective function can change over time, as the
processor changes power conditions (e.g., plugged vs. un-
plugged, full battery vs. low battery, thermal emergencies),
as applications switch (e.g., low priority vs. high priority
job), or even within an application (e.g., a real-time appli-
cation is behind or ahead of schedule).

The experiments in this paper explore only a subset of
these possible changing conditions. Specifically, it exam-
ines adaptation to phase changes in single applications.
However, by simulating multiple applications and several
objective functions, it also indirectly examines the potential
to adapt to changing applications and objective functions.
We believe a real system would see far greater opportuni-
ties to switch cores to adapt to changing execution and en-
vironmental conditions than the narrow set of experiments
exhibited here.

This work examines a diverse set of execution cores. In a
processor where the objective function is static (and perhaps
the workload is well known), some of our results indicate
that a smaller set of cores (often two) will suffice to achieve
very significant gains. However, if the objective function
varies over time or workload, a larger set of cores has even
greater benefit.

2.2 Choiceof cores.

To provide an effective platform for a wide variety of
application execution characteristics and/or system priority
functions, the cores on the heterogeneous multi-core pro-
cessor should cover both a wide and evenly spaced range of
the complexity/performance design space.

In this study, we consider a design that takes a se-
ries of previously implemented processor cores with slight
changes to their interface — this choice reflects one of the
key advantages of the CMP architecture, namely the effec-
tive amortization of design and verification effort. We in-
clude four Alpha cores — EV4 (Alpha 21064), EV5 (Alpha
21164), EV6 (Alpha 21264) and a single-threaded version
of the EVS8 (Alpha 21464), referred to as EV8-. These cores
demonstrate strict gradation in terms of complexity and are
capable of sharing a single executable. We assume the four
cores have private L1 data and instruction caches and share
a common L2 cache, phase-lock loop circuitry, and pins.

We chose the cores of these off-the-shelf processors due
to the availability of real power and area data for these pro-
cessors, except for the EV8 where we use projected num-
bers [10, 12,23, 30]. All these processors have 64-bit archi-

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)

DOCKET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

EV8-

EV5

EV6

Figure 1. Relative sizes of the cores used in
the study

tectures. Note that technology mapping across a few gener-
ations has been shown to be feasible [24].

Figure 1 shows the relative sizes of the cores used in
the study, assuming they are all implemented in a 0.10 mi-
cron technology (the methodology to obtain this figure is
described in the next section). It can be seen that the result-
ing core is only modestly (within 15%) larger than the EV8-
core by itself.

Minor differences in the ISA between processor gener-
ations are handled easily. Either programs are compiled to
the least common denominator (the EV4), or we use soft-
ware traps for the older cores. If extensive use is made of
the software traps, our mechanisms will naturally shy away
from those cores, due to the low performance.

For this research, to simplify the initial analysis of this
new execution paradigm, we assume only one application
runs at a time on only one core. This design point could
either represent an environment targeted at a single applica-
tion at a time, or modeling policies that might be employed
when a multithreaded multi-core configuration lacks thread
parallelism. Because we assume a maximum of one thread
running, the multithreaded features of EV8 are not needed.
Hence, these are subtracted from the model, as discussed in
Section 3. In addition, this assumption means that we do
not need more than one of any core type. Finally, since only
one core is active at a time, we implement cache coherence
by ensuring that dirty data is flushed from the current core’s
L1 data cache before execution is migrated to another core.

This particular choice of architectures also gives a clear
ordering in both power dissipation and expected perfor-
mance. This allows the best coverage of the design space
for a given number of cores and simplifies the design of
core-switching algorithms.

2.3 Switching applications between cores.

Typical programs go through phases with different exe-
cution characteristics [35, 39]. Therefore, the best core dur-
ing one phase may not be best for the next phase. This ob-
servation motivates the ability to dynamically switch cores
in mid execution to take full advantage of our heterogeneous
architecture.

There is a cost to switching cores, so we must restrict the
granularity of switching. One method for doing this would
switch only at operating system timeslice intervals, when
execution is in the operating system, with user state already
saved to memory. If the OS decides a switch is in order, it
powers up the new core, triggers a cache flush to save all
dirty cache data to the shared L2, and signals the new core
to start at a predefined OS entry point. The new core would
then power down the old core and return from the timer in-
terrupt handler. The user state saved by the old core would
be loaded from memory into the new core at that time, as
a normal consequence of returning from the operating sys-
tem. Alternatively, we could switch to different cores at the
granularity of the entire application, possibly chosen stati-
cally. In this study, we consider both these options.

In this work, we assume that unused cores are com-
pletely powered down, rather than left idle. Thus, unused
cores suffer no static leakage or dynamic switching power.
This does, however, introduce a latency for powering a new
core up. We estimate that a given processor core can be
powered up in approximately one thousand cycles of the
2.1GHz clock. This assumption is based on the observa-
tion that when we power down a processor core we do not
power down the phase-lock loop that generates the clock for
the core. Rather, in our multi-core architecture, the same
phase-lock loop generates the clocks for all cores. Conse-
quently, the power-up time of a core is determined by the
time required for the power buses to charge and stabilize.
In addition, to avoid injecting excessive noise on the power
bus bars of the multi-core processor, we assume a staged
power up would be used.

In addition, our experiments confirm that switching
cores at operating-system timer intervals ensures that the
switching overhead has almost no impact on performance,
even with the most pessimistic assumptions about power-up
time, software overhead, and cache cold start effects. How-
ever, these overheads are still modeled in our experiments
in Section 4.4.

3 Methodology

This section discusses the various methodological chal-
lenges of this research, including modeling the power, the
real estate, and the performance of the heterogeneous multi-
core architecture.

Proceedinas of the 36th International Symposium on Microarchitecture (MICRO-36 2003)

DOCKET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

\ Processor | EV4] EV5 | EV6 | EV8-
I ssue-width 2 4 6 (000) 8 (000)
|I-Cache 8KB, DM | 8KB, DM 64KB, 2-way 64KB, 4-way
D-Cache 8KB,DM | 8KB,DM | 64KB, 2-way 64KB, 4-way
Branch Pred. 2KB,1-bit | 2K-gshare | hybrid 2-level | hybrid 2-level (2X EV6 size)
Number of MSHRs 2 4 8 16

Table 1. Configuration of the cores

3.1 Modeling of CPU Cores

The cores we simulate are roughly modeled after cores
of EV4 (Alpha 21064), EV5 (Alpha 21164), EV6 (Alpha
21264) and EV8-. EVS- is a hypothetical single-threaded
version of EV8 (Alpha 21464). The data on the resources
for EV8 was based on predictions made by Joel Emer [12]
and Artur Klauser [23], conversations with people from the
Alpha design team, and other reported data [10, 30]. The
data on the resources of the other cores are based on pub-
lished literature on these processors [2, 3, 4].

The multi-core processor is assumed to be implemented
in a 0.10 micron technology. The cores have private first-
level caches, and share an on-chip 3.5 MB 7-way set-
associative L2 cache. At 0.10 micron, this cache will oc-
cupy an area just under half the die size of the Pentium 4.
All the cores are assumed to run at 2.1GHz. This is the
frequency at which an EV6 core would run if its 600MHz,
0.35 micron implementation was scaled to a 0.10 micron
technology. In the Alpha design, the amount of work per
pipe stage was relatively constant across processor genera-
tions [7, 11, 12, 15]; therefore, it is reasonable to assume
they can all be clocked at the same rate when implemented
in the same technology (if not as designed, processors with
similar characteristics certainly could). The input voltage
for all the cores is assumed to be 1.2V.

Note that while we took care to model real architectures
that have been available in the past, we could consider these
as just sample design points in the continuum of proces-
sor designs that could be integrated into a heterogeneous
multiple-core architecture. These existing designs already
display the diversity of performance and power consump-
tion desired. However, a custom or partially custom design
would have much greater flexibility in ensuring that the per-
formance and power space is covered in the most appropri-
ate manner, but sacrificing the design time and verification
advantages of the approach we follow in this work.

Table 1 summarizes the configurations that were mod-
eled for various cores. All architectures are modeled as ac-
curately as possible, given the parameters in Table 1, on
a highly detailed instruction-level simulator. However, we
did not faithfully model every detail of each architecture;
we were most concerned with modeling the approximate
spaces each core covers in our complexity/performance
continuum.

Specific instances of deviations from exact design pa-
rameters include the following. Associativity of the EV8-
caches is double the associativity of equally-sized EV6
caches. EV8- uses a tournament predictor double the size
of the EV6 branch predictor. All the caches are assumed
to be non-blocking, but the number of MSHRs is assumed
to double with successive cores to adjust to increasing issue
width. All the out-of-order cores are assumed to have big
enough re-order buffers and large enough load/store queues
to ensure no conflicts for these structures.

The various miss penalties and L2 cache access laten-
cies for the simulated cores were determined using CACTI.
CACTI [37] provides an integrated model of cache access
time, cycle time, area, aspect ratio, and power. To calculate
the penalties, we used CACTI to get access times and then
added one cycle each for L1-miss detection, going to L2,
and coming from L2. For calculating the L2 access time,
we assume that the L2 data and tag access are serialized so
that the data memories don’t have to be cycled on a miss and
only the required set is cycled on a hit. Memory latency was
set to be 150ns.

3.2 Modeling Power

Modeling power for this type of study is a challenge. We
need to consider cores designed over the time span of more
than a decade. Power depends not only on the configuration
of a processor, but also on the circuit design style and pro-
cess parameters. Also, actual power dissipation varies with
activity, though the degree of variability again depends on
the technology parameters as well as the gating style used.

No existing architecture-level power modeling frame-
work accounts for all of these factors. Current power mod-
els like Wattch [8] are primarily meant for activity-based
architectural level power analysis and optimizations within
a single processor generation, not as a tool to compare the
absolute power consumption of widely varied architectures.
We integrated Wattch into our architectural simulator and
simulated the configuration of various cores implemented
in their original technologies to get an estimate of the max-
imum power consumption of these cores as well as the typ-
ical power consumption running various applications. We
found that Wattch did not, in general, reproduce published
peak and typical power for the variety of processor config-
urations we are using.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)

DOCKET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Therefore we use a hybrid power model that uses esti-
mates from Wattch, along with additional scaling and off-
set factors to calibrate for technology factors. This model
not only accounts for activity-based dissipation, but also
accounts for the design style and process parameter differ-
ences by relying on measured datapoints from the manufac-
turers.

To solve for the calibration factors, this methodology re-
quires peak and typical power values for the actual proces-
sors and the corresponding values reported by Wattch. This
allows us to establish scaling factors that use the output of
Wattch to estimate the actual power dissipation within the
expected range for each core. To obtain the values for the
processor cores, we derive the values from the literature;
Section 3.2.1 discusses our derivation of peak power, and
Section 3.2.2 discusses our derivation of typical power. For
the corresponding Wattch values, we estimate peak power
for each core given peak activity assumptions for all the
hardware structures, and use the simulator to derive typical
power consumed for SPEC2000 benchmarks.

This methodology then both reproduces published re-
sults and scales reasonably accurately with activity. While
this is not a perfect power model, it will be far more accu-
rate than using Wattch alone, or relying simply on reported
average power.

3.21 Estimating Peak Power

This section details the methodology for estimating peak
power dissipation of the cores. Table 2 shows our power
and area estimates for the cores. We start with the peak
power data of the processors obtained from data sheets and
conference publications [2, 3, 4, 10, 23]. To derive the peak
power dissipation in the core of a processor from the pub-
lished numbers, the power consumed in the L2 caches and at
the output pins of the processor must be subtracted from the
published value. Power consumption in the L2 caches under
peak load was determined using CACTI, starting by finding
the energy consumed per access and dividing by the effec-
tive access time. Details on bitouts, the extent of pipelining
during accesses, etc. were obtained from data sheets (ex-
cept for EV8-). For the EV8 L2, we assume 32 byte (288
bits including ECC) transfers on reads and writes to the L1
cache. We also assume the L2 cache is doubly pumped.

The power dissipation at the output pins is calculated us-
ing the formula: P = (1/2)CV?f.

The values of V (bus voltage), f (effective bus frequency)
and C (load capacitance) were obtained from data sheets.
Effective bus frequency was calculated by dividing the peak
bandwidth of the data bus by the maximum number of data
output pins which are active per cycle. The address bus was
assumed to operate at the same effective frequency. For pro-
cessors like the EV4, the effective frequency of the bus con-

necting to the off-chip cache is different from the effective
frequency of the system bus, so power must be calculated
separately for those buses. We assume the probability that
a bus line changes state is 0.5. For calculating the power
at the output pins of EV8, we used the projected values for
V and f. We assumed that half of the pins are input pins.
Also, we assume that pin capacitance scales as the square
root of the technology scaling factor. Due to reduced re-
sources, we assumed that the EV8- core consumes 80% of
the calculated EV8 core-power. This reduction is primarily
due to smaller issue queues and register files. The power
data was then scaled to the 0.10 micron process. For scal-
ing, we assumed that power dissipation varies directly with
frequency, quadratically with input voltage, and is propor-
tional to feature-size.

The second column in Table 2 summarizes the power
consumed by the cores at 0.10 micron technology. As can
be seen from the table, the EV8- core consumes almost 20
times the peak power and more than 80 times the real estate
of the EV4 core.

CACTI was also used to derive the energy per access of
the shared L2 cache, for use in our simulations. We also es-
timated power dissipation at the output pins of the L2 cache
due to L2 misses. For this, we assume 400 output pins.
We assume a load capacitance of SOpF and a bus voltage of
2.5V. Again, an activity factor of 0.5 for bit-line transitions
is assumed. We also ran some experiments with a detailed
model of off-chip memory access power, but found that the
level of off-chip activity is highly constant across cores, and
did not impact our results.

3.2.2 Estimating Typical Power

Values for typical power are more difficult to obtain, so we
rely on a variety of techniques and sources to arrive at these
values.

Typical power for the EV6 and EV8- assume similar
peak to typical ratios as published data for Intel processors
of the same generation (the 0.13 micron Pentium 4 [5] for
EV8-, and the 0.35 micron late-release Pentium Pro [18, 22]
for the EV6).

EV4 and EVS5 typical power is extrapolated from these
results and available thermal data [2, 3] assuming a approx-
imately linear increase in power variation over time, due to
wider issue processors and increased application of clock
gating.

These typical values are then scaled in similar ways to
the peak values (but using measured typical activity) to de-
rive the power for the cores alone. Table 2 gives the derived
typical power for each of our cores. Also shown, for each
core, is the range in power demand for the actual applica-
tions we run, expressed as a percentage of typical power.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)

DOCKET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

