1540

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11,

NOVEMBER 2008

Energy Efficient Scheduling of Real-Time
Tasks on Multicore Processors

Euiseong Seo, Jinkyu Jeong, Seonyeong Park, and Joonwon Lee

Abstract

Multicore processors deliver a higher throughput at lower power consumption than unicore processors. In the near future,

they will thus be widely used in mobile real-time systems. There have been many research on energy-efficient scheduling of
real-time tasks using DVS. These approaches must be modified for multicore processors, however, since normally all the cores in a
chip must run at the same performance level. Thus, blindly adopting existing DVS algorithms that do not consider the restriction will
result in a waste of energy. This article suggests Dynamic Repartitioning algorithm based on existing partitioning approaches of
multiprocessor systems. The algorithm dynamically balances the task loads of multiple cores to optimize power consumption during
execution. We also suggest Dynamic Core Scaling algorithm, which adjusts the number of active cores to reduce leakage power
consumption under low load conditions. Simulation results show that Dynamic Repartitioning can produce energy savings of about
8 percent even with the best energy-efficient partitioning algorithm. The results also show that Dynamic Core Scaling can reduce
energy consumption by about 26 percent under low load conditions.

Index Terms Real-time systems, real-time scheduling, low-power design, power-aware systems, multicore processors,

multiprocessor systems.

1 INTRODUCTION

MOBILE real-time systems have seen rapidly increasing
use in sensor networks, satellites, and unmanned
vehicles, as well as personal mobile equipment. Thus, the
energy efficiency of them is becoming an important issue.
The processor is one of the most important power
consumers in any computing system. Considering that
state-of-the-art real-time systems are evolving in complexity
and scale, the demand for high-performance processors will
continue to increase. A processor’s performance, however,
is directly related to its power consumption. As a result, the
processor power consumption is becoming more important
issue as their required performance standards increase.
Over the last decade, manufacturers competed to
advance the performance of processors by raising the clock
frequency. However, the dynamic power consumption
Piynamic of a CMOS-based processor, the power required
during execution of instructions, is related to its clock
frequency f and operating voltage Vyq as Piynamic X ded - f
And, the relation Vy o f also holds in these processors. As
a result, the dramatically increased power consumption
caused by high clock frequency has stopped the race, and
they are now concentrating on other ways to improve
performance at relatively low clock frequencies.

e E. Seo is with the Department of Computer Science and Engineering,
Pennsylvania State University, University Park, PA 16803.

E mail: euiseong@gmail.com.

e | Jeong, S. Park, and]. Lee are with the Computer Science Division, Korea
Advanced Institute of Science and Technology, 373 1 Guseongdong,
Yuseonggu, Daejeon 305 701, Korea.

E mail: {jinkyu, parksy}@calab.kaist.ac.kr, joon@kaist.ac.kr.

Manuscript received 29 Oct. 2007; accepted 13 June 2008; published online
17 June 2008.

Recommended for acceptance by 1. Ahmad, K.W. Cameron, and R. Melhem.

For information on obtaining reprints of this article, please send e mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS 2007 10 0397.
Digital Object Identifier no. 10.1109/TPDS.2008.104.

DOCKET

_ ARM

One of the representative results from this effort is
multicore architecture [1], which integrates several proces-
sing units (known as cores) into a single chip. Multicore
processors, which are quickly becoming mainstream, can
achieve higher throughput with the same clock frequency.
Thus, power consumption in them is a linear function of the
throughput. As the demand for concurrent processing and
increased energy efficiency grows, it is expected that
multicore processors will become widely used in real-time
systems.

The problem of scheduling real-time tasks on a multicore
processor is the same as that of scheduling on a multi-
processor system. This is an NP-hard problem [2], and
existing heuristic solutions can be divided into two
categories. Partitioned scheduling algorithms [3], [4], [5]
require every execution of a particular task to take place in
the same processor, while global scheduling algorithms [6],
[7], [8] permit a given task to be executed upon different
processors [6]. Partitioned algorithms are based on a divide-
and-conquer strategy. After all tasks have been assigned to
their respective cores, the tasks in each core can be
scheduled using well-known algorithms such as Earliest
Deadline First (EDF) [9] or Rate Monotonic (RM) [10]. Due to
their simplicity and efficiency, partitioned scheduling
algorithms are generally preferred over global scheduling
algorithms.

In addition to the innovation of multicore architecture,
many up-to-date processors also use dynamic voltage
scaling (DVS). DVS adjusts the clock frequency and
operating voltage on the fly to meet changes in the
performance demand.

Multicore processors can also benefit greatly from DVS
technology. Because all the cores in a chip are in the same
clock domain, however, they must all operate at the same
clock frequency and operating voltage [11], [12]. It seems

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

SEO ET AL.: ENERGY EFFICIENT SCHEDULING OF REAL TIME TASKS ON MULTICORE PROCESSORS

that this limitation will remain in force for some years at
least because the design and production of multicore
processors with independent clock domains is still prohibi-
tively expensive.

There has been much research [13], [14], [15], [16], [17]
on how best to use DVS in a unicore processor for real-
time tasks. In systems consisting of multiple DVS
processors, DVS scheduling is easily accomplished using
those existing algorithms on each processor after partition-
ing [13], [14], [15]. In multicore environments, however,
the benefit of this approach is greatly reduced by the
limitation that all cores must share the same clock. Even
though the performance demands of each core may differ
at a given scheduling point, this limitation forces all cores
to work at the highest frequency scheduled. Compared to
a multiprocessor system, a multicore system will thus
consume more power needlessly if the existing DVS
method is adopted blindly.

This paper suggests a dynamic, power-conscious, real-
time scheduling algorithm to resolve this problem. In
general, multicore processors have some caches that are
shared among their cores. Task migration between cores
thus requires less overhead than migration between fully
independent processors. With an exploitation of this
property, Dynamic Repartitioning, which is the suggested
scheme tries to keep the performance demands of each core
balanced by migrating tasks from the core with the highest
demand to the one with the lowest demand. Similar to
multiprocessor systems, the dynamic performance demand
of each core is given by existing DVS algorithms, and the
migration decisions are made at every scheduling time. This
repartitioning of tasks is expected to reduce the dynamic
power consumption by lowering the maximum perfor-
mance demand of the cores at any given moment.

In addition to dynamic power, there is another source of
power consumption that must be considered. Different
from dynamic power, which is consumed during instruc-
tion execution, leakage power is consumed as long as there
is electric current in the circuits. In general, this energy loss
is proportional to the circuit density and the total number of
circuits in the processor. Leakage power has thus been
taking up an increasing proportion of the total power, up to
44 percent in 50 nm technology for an active cycle of a
uniprocessor [18]. And, it will become even more in a
multicore processor for the vastly increased circuits.

In this paper, we also suggest a method of reducing the
leakage power by adjusting the number of active cores.
Dynamic Core Scaling decides on the optimal number of
cores for the current performance demand and tries to meet
this criterion as far as all deadlines are guaranteed.
Dynamic Core Scaling is expected to save a considerable
amount of leakage power in low load periods, where the
leakage power makes up a large fraction of the total power
consumption.

The suggested Dynamic Repartitioning and Dynamic
Core Scaling methods were evaluated through simulations
by applying them to a well-known processor power model.
The target task sets in the simulations were designed to
demonstrate the behavior of the algorithm under diverse
environments.

DOCKET

_ ARM

1541

TABLE 1
Example Task Set [13]

Utilization cc

Task Period WCET c1 ceo
T1 8 ms 3 ms 0.375 2 1
T2 10 ms 3 ms 0.300 1 1
LF] 14 ms 1 ms 0.071 1 1

The rest of this paper is organized as follows: Section 2
reviews existing research on the use of DVS in real-time
unicore processor systems and on the development of
energy-efficient scheduling algorithms in multiprocessor
and multicore systems. Section 3 defines the problem and
describes the power consumption model used in this paper.
In Section 4, we describe Dynamic Repartitioning algorithm
as a way of efficiently reducing clock frequencies. In
Section 5, we introduce Dynamic Core Scaling algorithm,
which reduces the leakage power by adjusting the number
of activated cores. Section 6 presents simulation results for
the two algorithms, and Section 7 summarizes our
conclusions.

2 RELATED WORK

2.1 DVS on a Unicore Processor

In this paper, the WCET of a task will be taken as the time
required to finish the worst-case execution path at
maximum performance. The actual WCET of a task is the
scaled value of its WCET to the current performance, and it
increases linearly as performance degrades. In this paper,
we will use the term utilization of a task to refer to its WCET
divided by its period. It means the fraction of processor
time dedicated to the task at maximum performance. A
matter of course, the relative utilization of a task which is
based on its actual WCET is also grows as the performance
degrades.

EDF is the optimal algorithm for preemptible periodic
real-time task scheduling. Defining the utilization of a task
as the value of its WCET divided by its period, EDF can
guarantee meeting the deadlines of all task sets for which
the sum of all task utilization is less than one. Based on this
property, Pillai and Shin [13] suggested three DVS schedul-
ing heuristics: Static, Cycle conserving, and Look ahead.

The Static algorithm adjusts the clock frequency so that
the total relative utilization of all tasks is 1.0. For example,
the total relative utilization of the task set in Table 1 is 0.746.
If the execution time of all tasks is inversely proportional to
the clock frequency, then we can achieve the highest
possible energy efficiency while still meeting all deadlines
by scaling the performance down to 0.746 times the
maximum clock frequency.

A given task may be finished earlier than its WCET, and
the actual execution time changes with every period. If the
tasks in Table 1 have actual execution times as given in
columns cc; and cc; during their first and second periods,
respectively, then idle periods will result even executing at
the frequency given by the Static algorithm. This means that
the frequency could be lowered further.

To exploit this phenomenon, the Cycle-conserving
algorithm adopts the notion of dynamic utilization, which

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1542

% 1.00 "E'i'
2 075
0504 ¢, t . . &
T T T >
0 5 10 15 Time
Ult) : 0.375—+0.25
(a)
Z 100
E
£ 075+ V.34 i—
0501 1, | i s
T T >
0 5 10 15 Time
Uity) : 0.375
(b)
g
S
o
2
- 0.496
0.296
1555
(5 10 15 Time
U(t)): 0.375— 0.25 U(ty): 0.375
Ults) : 0.3 — 0.1 U(t2) : 0.3

(c)

Fig. 1. Cycle-conserving algorithm on the example task set [13]. (a) After
finish of executing 7. (b) After finish of executing = and 73. (c) Actual
execution flow for two rounds.

is updated whenever the tasks are scheduled and finished.
On the completion of a task, it updates the utilization based
on the task’s actual execution time. The next time the task
begins executing, however, its utilization is restored to the
original value based on the task’s WCET. In this manner,
the Cycle-conserving algorithm may choose a lower
frequency than the Static algorithm during the period
between a task’s completion and the start of its next period.
It thus saves more energy than the Static algorithm.

Fig. 1 shows an example of the Cycle-conserving
algorithm at work. The actual execution time of 7 is 2 ms
(Fig. 1a). The utilization of 7; is thus updated from 3/8 to
2/8 after its first execution, and the total utilization of the
task set decreases to 0.621. At this point (Fig. 1b), the
processor will be operated at 0.621 times the highest
frequency. The utilization of m drops from 3/10 to 1/10
after completion, and as a result, 73 can be executed at
0.421 times the highest frequency. The actual execution
flow under the Cycle-conserving algorithm for both rounds
is shown in Fig. lc.

Cycle conserving is expected to lead to a higher energy
efficiency than the Static algorithm, because it reduces the
frequency duringidle periods. Asshownin Fig. 1c, at the start
of each new period, it assumes the worst case for the current
task. As a result, the frequency tends to start high and
decrease gradually as tasks are completed. If the actual
execution times of most tasks fall short of their WCET,
however, it is better to start with a low frequency and defer
the use of high-frequency processing as long as all deadlines

DOCKET

_ ARM

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11,

NOVEMBER 2008

can be met. This is the basic concept of the Look-ahead
algorithm. When actual execution times usually fall short of
their corresponding WCETs, the Look-ahead algorithm gives
better results than Cycle-conserving. In cases where the
actual execution times are usually close to their WCETs,
however, Cycle conserving is the better choice.

A variety of DVS algorithms have been proposed in
addition to these. Aydin et al. [14], for example, have
suggested the Generic Dynamic Reclaiming Algorithm
(GDRA) and Aggressive Speed Adjustment (AGR) algo-
rithms. GDRA is in many respects similar to the Cycle-
conserving algorithm; AGR, however, sets the frequency
based on the execution history of the tasks. Gruian [15]
suggested an algorithm that starts at a low frequency and
increases the processing speed gradually based on the
statistics of the actual execution times. Kim et al. [17] also
suggested the method to utilize slack time, which is based
on the expectation of the slack time occurrences. These
alternative approaches are helpful in cases, where trends are
visible in the actual execution times, for example, when the
most recent execution time is related to the previous one.

2.2 Power-Aware Scheduling on Multiprocessors
Besides the problem of deciding which task to execute at a
certain time, multiprocessor real-time systems must also
decide which processor the task will run on. Partitioned
scheduling is the most widely used solution to this NP-hard
problem. In partitioned scheduling, every processor has its
own task queue, and in an initial stage, each task is
partitioned into one of these queues. Each processor’s task
set is scheduled with a single-processor scheduling algo-
rithm such as EDF or RM [3], [5]. The partitioning itself is
one variant of the well-known Knapsack problem, for
which a number of heuristics such as Best Fit, Worst Fit, and
Next Fit are known to work well.

The partitioning approach has the advantage of utilizing
DVS. Any of the many possible DVS algorithms described
in Section 2.1 can be used to adjust the frequency of each
processor and its associated task set. To maximize the
energy efficiency, however, the utilizations of each parti-
tioned set should be well balanced [4]; this is because the
dynamic power consumption increases as the cube of the
utilization.

Aydin and Yang [4] proved that it is also an NP-hard
problem to partition a list of tasks into a given number of
sets that are optimally load balanced, with the guarantee
that each task set can be scheduled on the system. They also
showed that among well-known heuristics, worst fit
decreasing (WFD) generates the most balanced sets. WFD
applies the worst-fit algorithm to the tasks after sorting
them in order of decreasing task utilization.

There are also many scheduling heuristics for the variety
configurations of target environments. Gruian [19] proposed
a simulated annealing approach in multiprocessor energy
efficient scheduling with the considerations of precedence
constraints and predictable execution time for each task.
Chen et al. [20] suggested an approximation algorithm
with different approximation bounds for processors with/
without constraints on processor speeds for the task set with
common periods. Anderson and Baruah [21] suggested the

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

SEO ET AL.: ENERGY EFFICIENT SCHEDULING OF REAL TIME TASKS ON MULTICORE PROCESSORS

Number of Cores Clock Frequency

J—- 100 %

4 5%

2 — - =y Tt 50%
P | I

- - - =4 5w

Clock Frequency

Time
. Period

Fig. 2. Example schedule generated by heuristic algorithm [12] for
DVS-CMP.

trade-off between increasing the number of processor and
increasing the performance of each processor is explored,
and they also suggested algorithms to solve the problem
with static analysis. However, even though the many works
have been done, most of them are based on the static
analysis of the WCETs of tasks and have little consideration
for utilizing slack time.

2.3 Power-Aware Scheduling on Multicores

While much research has examined the problem of energy-
efficient scheduling for single-processor or multiprocessor
systems, little work has been done on multicore processors.

Nikitovic and Brorsson [22] assumed an adaptive chip-
multicore processor (ACMP) architecture, in which the
cores have several operating modes (RUN, STANDBY, and
DORMANT) and can change their state dynamically and
independently according to the performance demand. They
suggested some scheduling heuristics for ACMP systems
and demonstrated that these heuristics save a significant
amount of energy for non-real-time task sets compared to a
high-frequency unicore processor. Although this work
introduced the benefits of processors with multiple cores
that can change their operating mode independently, it
does not take into consideration the demands of real-time
task sets.

The first energy-efficient approach to real-time scheduling
on a multicore processor was suggested by Yang et al. [12],
who assumed a DVS-enabled chip multiprocessor (DVS-
CMP). In DVS-CMP systems, all cores share the same clock
frequency but a core can “sleep” independently if it has no
work to do. Yang et al. proved that the energy efficient
scheduling of periodic real-time tasks on DVS-CMP system is
an NP-hard problem. They thus suggested a heuristic
algorithm for scheduling a framed, periodic, real-time task
model. In this model all tasks have the same period, share a
deadline which is equal to the end of the period, and start at
the same time. As shown in Fig. 2, the suggested algorithm
starts executing tasks at a low performance. As time goes on,
cores with no tasks to run will be set to the sleep state. When
the number of sleeping cores increases, the frequency must
also increase to meet the deadlines of tasks that have not been
finished yet. In this manner the number of cores running in a
high frequency mode is reduced, and a significant amount of
energy will be saved. The applications of this algorithm are
limited, however, because it can be only used for the framed
real-time systems in which all tasks have same dead-lines
and starting points. Moreover it is also a static approach. In
other words, it does not take into account cases where the

DOCKET

_ ARM

1543

actual execution times may be shorter than the WCETs,
which are close to the real world. If this is so, then additional
energy can be saved with a dynamic approach.

3 SysTEM MODEL

3.1 Task Set Model

The assumed target tasks are executed periodically, and
each should be completed before its given deadline. A
completed task rests in sleep state until its next period
begins, at the start of which the task will again be
activated and prepared for execution. The tasks have no
interdependency.

A task set 7 is defined by (1), where 7 is the
ith individual task in 7. Each task has its own predefined
period p; and WCET w;; the latter is defined as the
maximum execution time required to complete 7; at the
highest possible processor frequency. The real worst-case
execution time of 7; thus increases from w; as the clock
frequency decreases. The nearest deadline at the current
time is defined as d;:

T = {Tl(p17w1)7 Tn(pnvw’ﬂ)}' (1)

The utilization w; of task 7; is defined by (2). A
proportion wu; of the total number of cycles of a core will
be dedicated to executing 7;:

u; = w;/p;. (2)

U, the total utilization of 7, is defined as (3):

U= Z Ui (3)

vr,eT

The processor S consists of multiple cores and is defined
in (4). The nth core in S is denoted as C,,. The number of
cores in S is denoted as m. Each core is assumed to have
identical structure and performance. We also assume that
resource sharing between the cores does not introduce any
interference overhead. We have

S={Co,...,Cpn}. 4)

F, the relative performance of S and the scaling factor for
the operating clock frequency, is a number between 0 and 1.
If the performance demand on S is F, then the actual
frequency is the highest possible frequency of S multiplied
by the factor F.

The system follows the partitioned scheduling approach;
any well-known heuristic such as BFD, NFD, etc., may be
adopted. The partitioned state of 7 on S is denoted P, and
the partitioned task set allocated to core C,, is denoted as P,,.
The utilization of P, is defined by (5):

= > u. (5)

V1, €P,

For ease of description and explanation, we further
define the two functions given by (6) and (7). II(7;) gives the
core that 7; was initially partitioned into, and ®(7;) gives the

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1544

core that 7; is currently located in. This distinction is
necessary because we will dynamically migrate tasks
between the cores:

II(7;) = C; in which 7; was initially partitioned, (6)

o(r;) =

Each partitioned task set is scheduled using EDF on its
corresponding core. The performance demand of each core
is decided by running the Cycle-conserving algorithm on
each core individually.

To apply the Cycle-conserving algorithm, we define
some dynamically updated variables. The Cycle-conserving
utilization [; of task 7;, which is initially equal to w;, is
defined by (8). After the execution of a task, [; is updated
using the most recent actual execution time cc; as the
numerator of (2) instead of w;. After the period p; elapses,
the task will be executed again and may now meet the worst
case execution conditions; the utilization of the task will
thus be reset to u;. As a result, /; is updated after every
deadline of 7;:

C; in which 7; is currently partitioned. (7)

if 7; is unfinished
if 7; is finished.

wi/pz

I, =
) {Cci/pi

L,, the dynamic utilization of core C,, is defined by (9).
L, is the current performance demand on C,. Thus, as long
as F' is greater than L,, all the deadlines of tasks in C,, will
be met by the EDF scheduling algorithm. We will also use L
to refer to the Cycle-conserving utilization of a core when
the context is unambiguous. Thus, L of C; also means L;:

(8)

cc; w;
Le Y Sy m
Y finished 1,€P, bi Y un finished 7,€P, Di

3.2 Power Model

The total power consumption of a CMOS-based processor
consists of its dynamic power Pyyn.mic and its leakage power
Pieakage- We construct a processor model to evaluate the
energy efficiency of the proposed algorithms.

Most of Pyamic is the capacitive switching power
consumed during circuit charging and discharging. Gen-
erally, it is the largest part in the processor power during
executing instruction. Pyyemi. can be expressed in terms of
the operating voltage V4, the clock frequency f, and the
switching capacity ¢; as follows [23]:

2
-denumic = Vdd -

The clock frequency f is itself related to several other
factors, as given by (11). The threshold voltage V};, is a
function of the body bias voltage Vi, as seen in (12). Here,
Vin,, €, K1, and K are constants depending on the processor
fabrication technology. Generally, ¢ is between 1 and 2, so
raising Vy; above the threshold voltage enables the
processor to increase the clock frequency. In the assumed
processor model, the change of f is assumed to accompany
with switching Vj, to the lowest allowable point:

(10)

(Vaa — Vin)*
= ad = Vin) 11
f LK (11)
Vin = Vi, — Ky - Vg — Ko - V. (12)

DOCKET

_ ARM

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11,

NOVEMBER 2008

TABLE 2
Constants Based on the 70 nm Technology [24]
Variable Value Variable Value
K, 0.063 I 4.80 x 1010
Ka 0.153 c 4.3 x 10710
K 5.38 x 10~7 Lg 37
Ky 1.83 Lg 4 x 10°
Ks 4.19 € 1.5
Kg 5.26 x 10~12 Fmin 1% 109
Vis -0.7 Fmaz 3 x 109
Vina 0.244

Piegage is caused by leakage current, which flows even
while no instructions are being executed. To calculate the
leakage power consumption, we adopt a processor power
used in existing research [24], [25]. Peqjage mainly consists of
the subthreshold leakage current Iy, and the reverse bias
junction current I;. Piegjqge can be expressed as a function of
these two variables, as in (13).

Iy is defined by (14), where L, is the number of
components in the circuit. K3, K4, and Kj; are constants
determined by the processor fabrication technology:

Plcakagc = Lg (‘/dd Loupn + | Vis | . j)7 (13)

=K, - €K4Vmi . 6K5‘/hs.

Isubn (14)

The processor cores are assumed to consume both Pyynamic
and Pjcqrage While executing instructions, and only Piegkage
during idle periods.

A multicore processor actually has some shared compo-
nents as well, such as processor caches, buses, and so on. In
this paper, we do not count the power Consumption from
these shared components because our goal is to reduce the
power consumption of the cores themselves. The power
consumption of a multicore processor is thus simply
obtained by summing the power consumption of the
individual cores.

The core is assumed to have two operating modes: an
active state, in which it is able to execute instructions and a
sleep state in which it ceases working and rests with
minimized power consuming. In the sleep state, the only
possible operation is a transition into the active state. In this
paper, we assume that the state transition introduces no
additional overhead because this factor can be treated easily
in practical implementations.

In the sleep state, it is assumed that there is no Pyynamic
and that Pygjqge is 3 percent of Pigjqqe at the active state with
current frequency f [26].

To simulate the power consumption model just de-
scribed, we adopt the realistic constants [24] given in Table 2.
These constants have been scaled to 70 nm technology and
are based on the original values [25] of Transmeta’s Crusoe
Processor which uses 180 nm technology.

By adopting the constants in Table 2, we obtain the
power consumption function depicted in Fig. 3. As f
decreases, the ratio of Pearage t0 Piotar increases. Below
1.5 GHz, Pieakage is greater than Puynamic. Piynamic increases
rapidly as f increases, however, and P,y thus rapidly
increases in the high f domain.

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

