
US007.093147B2

(12) United States Patent (10) Patent No.: US 7,093,147 B2
Farkas et al. (45) Date of Patent: Aug. 15, 2006

(54) DYNAMICALLY SELECTING PROCESSOR 6,804,632 B1 * 10/2004 Orenstien et al. TO2,188
CORES FOR OVERALL POWER
EFFICIENCY OTHER PUBLICATIONS

R. Kumar et al., “Processor Power Reduction Via Single
(75) Inventors: Keith Farkas, San Carlos, CA (US); ISA Heterogeneous Multi-core Architectures”. In Computer

Norman P. Jouppi, Palo Alto, CA Architecture Letters, vol. 2, Apr. 2003.*
(US); Robert N. Mayo, Mountain R. Kumar et al., “A Multi-Core Approach to Addressing the
View, CA (US); Parthasarathy Energy-Complexity Problem in Microprocessors”. In Work
Ranganathan, Palo Alto, CA (US) on Complexity-Effective Design, Jun. 2003.*

(73) Assignee: Hewlett-Packard Development * cited by examiner
Company, L.P., Houston, TX (US) Primary Examiner Chun Cao

(*) Notice: Subject to any disclaimer, the term of this Assistant Examiner Albert Wang
patent is extended or adjusted under 35 57 ABSTRACT
U.S.C. 154(b) by 461 days. (57)

21) Appl. No.: 10/423.397 (21) Appl. No 9 A computer system for conserving operating power includes
(22) Filed: Apr. 25, 2003 a number of computer hardware processor cores that differ

amongst themselves in at least in their respective operating
(65) Prior Publication Data power requirements and processing capabilities. A monitor

US 2004/0215987 A1 Oct. 28, 2004 gathers performance metric information from each of the
computer hardware processor cores that is specific to a

(51) Int. Cl. particular run of application Software then executing. A
G06F I/32 (2006.01) workload transfer mechanism transfers the executing appli

(52) U.S. Cl. .. 713/320 cation Software to a second computer hardware processor
(58) Field of Classification Search 713/320 core in a search for reduced operating power. A transfer

See application file for complete search history. delay mechanism is connected to delay a Subsequent transfer
(56) References Cited of the executing application software if the system operating

U.S. PATENT DOCUMENTS

5,913,068 A * 6/1999 Matoba T13,322

106

122

memory

power may be conserved by Such delay.

16 Claims, 2 Drawing Sheets

to

Petitioner Mercedes Ex-1026, 0001f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

U.S. Patent Aug. 15, 2006 Sheet 1 of 2 US 7,093,147 B2

Fi ... 1 100 C Y

106

power switching and
performance monitoring

C
CPU1

108

12 124 2

Petitioner Mercedes Ex-1026, 0002f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

U.S. Patent Aug. 15, 2006

Fig.2 ro
2O5

execute workload,
collect metrics

210
periodic int
or OS call

215
time to

test another
Core?

yes 220

call transfer
process 300

240

execute workload,
collect metrics

245
O periodicint

or OS call

yes
250

previous O
core better

yes 355

cal transfer
process 300

Sheet 2 of 2 US 7,093,147 B2

300 Start Fig. 3 Y

initiate the
other core

SaVe USer State
and flush L1-cache

core ready

y (308
transfer control to
the other core

power down the
previous core

return from call

4. O

312

Petitioner Mercedes Ex-1026, 0003f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

US 7,093,147 B2
1.

DYNAMICALLY SELECTING PROCESSOR
CORES FOR OVERALL POWER

EFFICIENCY

FIELD OF THE INVENTION

The present invention relates to computer systems, and
more specifically to methods and devices for reducing power
use by dispatching processing jobs to the more energy
efficient processor core, in a pool of different-capability
processor cores, that nevertheless provides acceptable per
formance.

BACKGROUND OF THE INVENTION

Computer software application programs do not always
require the high-capability computing hardware resources
that are at their disposal. But if some critical code passage
or whole application program must run at maximum effi
ciency, conventional systems dedicate the necessary com
puting hardware full time. In a few prior art multiprocessor
systems that run applications that can be split and paralleled,
pools of identical processor cores can be added in Sufficient
numbers to get the job done.
Some waste can be involved in the mismatching of

Software with modest resource requirements on high per
formance hardware platforms. When there is only one
processor core available for all processing jobs, the waste of
computing resources and power to operate them is unavoid
able. High performance hardware is usually associated with
large demands on operating power input. If Such high
performance is going to waste much of the time, the mar
ginal operating power needed over more modest equipment
is pure cost with no benefit.

Since their introduction in the 1970s, microprocessors
and microcomputer systems have been providing ever more
increasing levels of performance, reliability, and capability.
Every few years since then has seen the microprocessor
evolve to new, higher levels. Clock speeds got higher,
memory Subsystems, cache memories, and peripherals were
brought in on-chip as semiconductor technology advances
permitted. Complex instruction set computers (CISC) and
reduced instruction set computers (RISC) evolved, and
instruction and data bus widths reached 32-bits, 64-bits, and
even 128-bits.

Device technologies have been changing. The first Intel
microprocessors, e.g., the 4004, used p-channel metal oxide
semiconductor (PMOS) technology. Later processors used
n-channel metal oxide semiconductor (NMOS) technology.
An RCA microprocessor family, the 1802, used low-power
complementary metal oxide semiconductor (CMOS) tech
nology. Some very high performance microprocessors in the
1970s and later used bipolar transistor technology. Today's
MOS technology used in microprocessors has high leakage
currents that require the operating power to actually be
interrupted, or switched off, in order to reduce power con
Sumption completely in inactive circuits.

In general, higher clock speeds and denser functionality
has meant increased power consumption and hence dissipa
tion. Such power dissipation causes undesirable heating and,
in battery-operated portable systems, leads to reduced bat
tery life. Constantly using a processor that uses a lot of
power and that exceeds the needs of the application Software
can lead to significant power waste and costs.

10

15

25

30

35

40

50

55

60

65

2
SUMMARY OF THE INVENTION

An object of the present invention is to provide a method
for reducing average power consumption in computing
devices.

Another object of the present invention is to provide a
computer system with reduced average power consumption.

Briefly, a computer system embodiment of the present
invention comprises a number of processor cores consigned
to a pool. Such processor cores differ in their respective
levels and mix of power consumption, resources, perfor
mance, and other important measures. These processor cores
can be arranged in a linear order according to estimates of
one or more of these measures. An operating system asso
ciated with the processor core pool dispatches the execution
of application programs to various processor cores and runs
empirical tests. In general, the target processor core from the
pool being sought for the job is the one that consumes a
minimum of power and still yields acceptable performance.
Such balance is determined statically for each workload
based on data from prior executions of the workload. Alter
natively, such balance is struck dynamically and empirically
determined at run-time. Metrics are collected on how well an
application runs on a particular processor core in the pool,
for example during a one millisecond test period. If the
current processor core is yielding better results than a
previous processor core, then the job will not be transferred,
and will be allowed to continue executing. If not, the job can
be returned to the previous processor core in the ordered
pool or a next processor core can be tried. The resource
requirements between application programs can vary, as
well as the requirements at different times within a single
application.
An advantage of the present invention is that a system is

provided that can conserve battery power in portable com
puters.

Another advantage of the present invention is that a
method is provided for conserving operating power and
reducing power Supply demands.

These and other objects and advantages of the present
invention will no doubt become obvious to those of ordinary
skill in the art after having read the following detailed
description of the preferred embodiment as illustrated in the
drawing figures.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a functional block diagram of an embodiment of
the present invention comprising multiple processor cores;

FIG. 2 is a flowchart diagram of a process embodiment of
the present invention for transferring software jobs amongst
dissimilar cores in a pool of multiple processor cores; and

FIG.3 is a flowchart diagram of a subroutine that is called
by the process of FIG. 2 and that transfers program control
between processor cores.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

FIG. 1 illustrates a multi-core processor system embodi
ment of the present invention, and is referred to herein by the
general reference numeral 100. Multi-core processor system
100 is a heterogeneous multi-core and core-switching imple
mentation in a chip-level multi-core processor (CMP) with
multiple, diverse processor cores that all execute the same
instruction set. Each processor core includes significantly
different resources and demonstrates significantly different

Petitioner Mercedes Ex-1026, 0004f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

US 7,093,147 B2
3

performance and energy efficiency levels for the same
application software. The operating system software tries to
match the applications to the different cores during an
application’s execution to make the best use of the available
hardware while maximizing energy efficiency at a given
minimum performance level.
The system 100 hosts an operating system and application

Software that can execute single-threaded or multi-threaded.
The operating system dispatches processing jobs to indi
vidual processor cores that differ in their power consump
tion, available resources, relative speeds, and other impor
tant measures. Such dissimilar processor cores are
represented here in FIG. 1 as CPU1 101, CPU2 102, CPU3
103, CPU4 104, and CPU5 105. A minimum of two dis
similar processor cores can yield the benefits of the present
invention if they differ in their respective power consump
tions and one other critical measure, e.g., through-put.
Therefore, showing the five CPU's 101–105 in FIG. 1 is
merely for purposes of discussion here. Such processor
cores can execute more than one process or thread at a time.
The multi-core processor system 100 comprises a pool of

dissimilar processor cores 101-105 that receive their respec
tive power supplies from a power switch and monitor 106.
Such also provides monitoring information reported as met
rics by each of the processor cores 101-105 during their
respective execution of Software programs. The metrics can
include number of cache misses, etc.

Each processor core 101-105 has a corresponding first
level instruction cache (L1i) 108–112, and a corresponding
first level data cache (L1 d) 114–118. These all share a
common second level cache (L2) 120, a main memory 122.
and input/output (I/O) device 124. Operating system and
application software execute from main memory 120 and are
cached up through to the respective second and first level
caches to processor cores 101-105.
A timer is used to periodically interrupt the operating

system, e.g., every one hundred time intervals. This interrupt
invokes a transfer to and a test of one of the different cores,
ordered according to Some metric, for its energy or energy
delay product when running the current application soft
ware. For example, the test can sample the execution of the
application for 1–2 time intervals. If the test of such different
core results in a better energy-delay product metric than the
previous core yielded, then the application Software contin
ues to execute on the new core. Otherwise, the application
Software is migrated back to the previous core, where it
continues its execution from the point it reached before
being migrated back to the previous core.

In order to gauge the impact on the energy-delay product,
data on energy consumption is needed for each of the
processor cores 101-105. A mechanism is needed to deter
mine whether to migrate the program executing workloads
between the processor cores 101-105. The migration or
transfer of the program executing workloads needs to be
accomplished with a minimal impact on any other perfor
mance metrics of interest.

A mechanism identifies the energy consumed by the
different cores as a function of the workloads running on
them. The metrics of interest may either be the total energy
consumed by the system, the energy-delay product of the
system, the peak power of the system, etc. The decision to
migrate the workloads can use the metrics determined by the
energy data, as well as other additional user-defined or
workload-defined metrics. Such migration can be static or
dynamic. The migration of workloads within cores can
involve loss of state in other levels of the system, e.g. cache

10

15

25

30

35

40

45

50

55

60

65

4
hierarchy, or more complicated ways to ensure that any
performance loss is minimized.

FIG. 2 represents a method embodiment of the present
invention for selecting which core to run in multi-core
system 100 in FIG. 1. Such method is referred to herein by
the general reference numeral 200. The method 200 is
preferably implemented as a part of an operating system for
multi-core system 100.
Method 200 begins with a step 205 that collects statistics

or metrics as a workload executes on a given processor core.
The statistics relate to its execution, power consumption,
performance, and other metrics. A step 210 continues this
monitoring process until a periodic interrupt occurs. Inter
rupts can be generated by a timer, an operating system (OS)
call, etc. In a step 215, such periodic interrupt is serviced,
and check is made to see if it is time to evaluate how well
the workload executes on another core. The other core will
differ, e.g., in a greater number of hardware resources, or one
that is more energy efficient.

If it is not time to try another core, then control returns to
continue executing on the present core. If it is time to try
another core, then control passes to a process 300 (FIG. 3).

In a step 240, as a workload executes on a given processor
core, statistics are collected about its execution, power
consumption, performance, and other metrics. A step 245
continues monitoring until a periodic interrupt occurs. A
timer or an operating system (OS) call can be used to
generate these interrupts. In a step 250, the interrupt is
serviced, and an analysis is made to determine if the
performance with the previous core had been better. If not,
and the current core is determined to be better performing,
the workload continues executing where it was, e.g., in steps
205 and 210 until a next interrupt occurs.

If, however, the previous core was better performing
according to the metrics, a step 255 calls to transfer the
workload back to the original processor core, using process
300. Once the transfer is completed, the workload returns to
executing steps 205 and 210, e.g., until a next interrupt is
detected in step 215.

Referring now to FIG. 3, a transfer-workload-to-another
core process 300 begins with a step 302 in which the other
core is powered up. In a step 304, the state of the application
is saved to memory, and the cache of the current processor
core is flushed. In a step 306, a test is made repeatedly in a
loop to determine if the other core is ready to begin
executing instructions. When it is ready, a step 308 transfers
software control to the other core. The other core executes
a special transfer program, e.g., as a part of the operating
system. In a step 310, Such special transfer program powers
down the original, previous, core. In a step 312, program
control returns to the workload which begins executing at
the point it reached when interrupted, e.g., step 215 (FIG. 2).

Single instruction-set architecture (ISA) heterogeneous
multi-core embodiments of the present invention are used to
reduce overall average power consumption in an appliance.
System software includes routines to evaluate the resources
required by a running application for good performance. The
system Software dynamically chooses the one processor core
that can best meet the present requirements while minimiz
ing energy consumption. Alternatively, the system software
dynamically chooses a next processor core that better meets
the present requirements while minimizing energy con
Sumption.
An analysis has shown that Switching between five cores

of varying performance and complexity can save, on an
average, 24% in energy while only sacrificing 2% in per
formance. Switching for energy-delay product results in

Petitioner Mercedes Ex-1026, 0005f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

