

Operating Systems and Asymmetric Single-ISA CMPs: The Potential
for Saving Energy

Jeffrey C. Mogul, Jayaram Mudigonda, Nathan Binkert, Partha Ranganathan, Vanish Talwar
HP Laboratories Palo Alto
HPL-2007-140
August 22, 2007*

CMP, multi-core,
energy savings,
operating systems

CPUs consume too much power. Modern complex cores sometimes waste
power on functions that are not useful for the code they run. In particular,
operating system kernels do not benefit from many power-consuming features
that were intended to improve application performance. We propose using
asymmetric single-ISA CMPs (ASISA-CMPs), multicore CPUs where all cores
execute the same instruction set architecture but have different performance and
power characteristics, to avoid wasting power on operating systems code. We
describe various design choices for both hardware and software, describe Linux
kernel modifications to support ASISA-CMP, and offer some quantified
estimates that support our proposal.

* Internal Accession Date Only
 Approved for External Publication
© Copyright 2007 Hewlett-Packard Development Company, L.P.

I n v t n t

Petitioner Mercedes Ex-1024, 0001f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Operating Systems and Asymmetric Single-ISA CMPs:
The Potential for Saving Energy

Jeffrey C. Mogul Jayaram Mudigonda Nathan Binkert Partha Ranganathan Vanish Talwar
Jeff.Mogul@hp.com, Jayaram.Mudigonda@hp.com, binkert@hp.com, Partha.Ranganathan@hp.com, Vanish.Talwar@hp.com

HP Labs, Palo Alto, CA 94304

Abstract

CPUs consume too much power. Modern complex cores
sometimes waste power on functions that are not useful for
the code they run. In particular, operating system kernels do
not benefit from many power-consuming features that were
intended to improve application performance. We propose
using asymmetric single-ISA CMPs (ASISA-CMPs), mul-
ticore CPUs where all cores execute the same instruction
set architecture but have different performance and power
characteristics, to avoid wasting power on operating systems
code. We describe various design choices for both hardware
and software, describe Linux kernel modifications to support
ASISA-CMP, and offer some quantified estimates that sup-
port our proposal.

1 Introduction

While Moore's Law has delivered exponential increases in
computation over the past few decades, two well-known
trends create problems for computer systems: CPUs con-
sume more and more power, and operating systems do not
speed up as rapidly as most application code does. Many
people have addressed these problems separately; we pro-
pose to address them together.

Until recently, designers of high-end CPU chips tended to
improve single-stream performance as much as possible, by
exploiting instruction-level parallelism and decreasing cycle
times. Both of these techniques are now hard to sustain, so
recent CPU designs exploit shrinking VLSI feature sizes by
using multiple cores, rather than faster clocks. Examples of
theseChip Multi-Processors(CMPs) include the Sun Niagra

processor with eight cores, the quad-core Intel Xeon, and
dual-core systems from several vendors.

All commercially-available general-purpose CMPs, as of
mid-2007, aresymmetrical: each CPU is identical, and typ-
ically, all run at the same clock rate. However, in 2003 Ku-
mar et al. [13] proposed heterogeneous (or asymmetrical)
multi-core processors, as a way of reducing power require-
ments. Their proposal retains thesingle-Instruction-Set-
Architecture(single-ISA) model of symmetrical CMPs: all
cores can execute the same machine code. They observed
that different implementations of the same ISA had order-
of-magnitude differences in power consumption (assuming a
single VLSI process). They further observed that in a multi-
application workload, or even in phases of a single applica-
tion, one does not always need the full power and functional-
ity of the most complex CPU core; if a CMP could switch a
process between cores with different capabilities, one could
maintain throughput while decreasing power consumption.

Since the original study by Kumaret al., several other
studies [3, 8, 14] have highlighted the benefits from het-
erogeneity. (Keynote speakers from some major processor
vendors have also suggested that heterogeneity might be
commercially interesting [2, 22].) However, all these stud-
ies looked only at user-mode execution. But we know that
many workloads spend much or most of their cycles in the
operating system [23]. We also know that operating system
(OS) code differs from application code: it avoids the float-
ing point processor, it branches more often, and it has lower
cache locality (all reasons why OS speedups lag applica-
tion speedups on modern CPUs). Anasymmetric single-ISA
CMP (ASISA-CMP) might therefore save power, without re-
ducing throughput, by executing OS code on a simple, low-
power core, while using more complex, high-power cores for

1

Petitioner Mercedes Ex-1024, 0002f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

application code.
The main contribution of this paper is to propose and

evaluate the ASISA-CMP model, in which (1) a multi-core,
single-ISA CPU includes some “OS-friendly” cores, optim-
ized to execute OS code without wasting energy, and (2) the
OS statically and/or dynamically decides which code to ex-
ecute on which cores, so as to optimize throughput per joule.

To optimally exploit ASISA-CMP, we expect that the OS
and the hardware both must change. This paper explores
the various design considerations for co-evolving the OS and
hardware, and presents experimental results.

2 Related work

Ousterhout [20] may have been the first to point out that “op-
erating system performance does not seem to be improving
at the same rate as the base speed of the underlying hard-
ware.” He speculated that causes include memory latencies
and context-switching overheads.

Nellanset al.[19] measured the fraction of cycles spent in
the OS for a variety of applications, and re-examined how OS
performance scales with CPU performance, suggesting that
interrupt-handling code interferes with caches and branch-
prediction history tables. They found that many applications
execute a large fraction of cycles in the OS, and observed
that “a classic 5 stage pipeline [such as] a 486 is surprisingly
close in performance to a modern Pentium 4 when execut-
ing [OS code].” However, instead of proposing an ASISA-
CMP, they suggest adding a dedicated OS-specific core. (It is
not entirely clear how far their proposal is from a single-ISA
CMP.) They did not evaluate this proposal in detail.

Chakrabortyet al. [11] proposed refactoring software so
that similar “fragments” of code are executed on the same
core of a CMP. Their initial study treated the OS and the
user-mode application as two coarse-grained fragments, and
found speedup in some cases. However, they did not exam-
ine asymmetric CMPs or the question of power reduction.

Sanjay Kumaret al. [15] propose a “sidecore” architec-
ture to support hypervisor operations. In their approach, a
hypervisor is restructured into multiple components, with
some running on specialized cores. Their goal was to avoid
the expensive internal state changes triggered via traps (e.g.,
VMexit in Intel's VT architecture) to perform privileged hy-
pervisor functions. Instead, the sidecore approach transfers
the operation to a remote core “that is already in the appro-

priate state.” This also avoids polluting the guest-core caches
with code and data from hypervisor operations. (The side-
core approach is not specifically targeted at saving energy.)

3 Design overview

Our goal is to address two major challenges for multi-core
systems: how to minimize power consumption while main-
taining good performance, and how to exploit the parallelism
offered by a multi-core CPU. These two issues are closely
linked, but we will try to untangle them somewhat.

3.1 Proportionality in power consumption

We want to maximize the energy efficiency of our computer
systems, which could be expressed as the useful computa-
tional work (throughput) per joule expended. Fanet al. [6]
have observed that the ideal system would consume power
directly proportional to the rate of useful computational work
it completes. We refer to this as the “proportionality rule.”
Such a system would need no additional power management
algorithms, except as might be needed to avoided exceeding
peak power or cooling limits.

Fanet al. argue that “system designers should consider
power efficiency not simply at peak performance levels but
across the activity range.” We believe that the ASISA-CMP
approach, with a careful integration of OS and hardware
design, can help address this goal. Of course, it is prob-
ably impossible to design a system that truly complies with
the proportionality rule, especially since many components
consume considerable power even when the CPU is idle.

There are at least two ways that one might design a sys-
tem to address the proportionality rule. First, one could
design individual components whose power consumption
varies with throughput, such as a CPU that supports voltage
and frequency scaling. Second, one could design a sys-
tem with a mix of both high-power/high-performance and
low-power/low-performance components, with a mechanism
for dynamically varying which components are used (and
powered up) based on system load.

The original ASISA-CMP model, as proposed by Kumar
et al. [13], follows the second approach, without precluding
the first one. In times of light load, activity shifts to low-
power cores; in times of heavy load, low-power cores can
offer additional parallelism without significant increases in

2

Petitioner Mercedes Ex-1024, 0003f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

area or power consumption.
In this paper, we extend the ASISA-CMP model by as-

serting that the ideal low-power core is one that is special-
ized to execute operating system code. (More broadly, we
consider “OS-like code,” which we will define in Sec. 4.3.1.)
This stems from several observations:
� OS code does not proportionately benefit from the

potential speedup of complex, high-frequency cores.
Thus, running OS code on a simpler core is a better use
of power and chip area.� Most computer systems (with certain exceptions, such
as scientific computing) are often idle. If we could
power down complex CPU cores during periods when
they would otherwise be idle, we could improve propor-
tionality.

The designs explored in this paper include:
� Multi-core CPUs with a mix of high-power, high-

complexity application cores, and low-power, low-
complexity OS-friendly cores.� Operating system modifications to dynamically shift
load to the most appropriate core, and (potentially) to
power down idle cores.� Modest hardware changes to improve the efficiency of
core-switching.

Of course, the CPU is not the only power-consuming
component in a system, and ASISA-CMP does not address
the power consumed by memory, busses, and I/O devices,
or the power wasted in power supplies and cooling systems.
Therefore, even if the CPU were perfectly proportional, the
entire system would still fail to meet the proportionality rule.
However, as long as CPUs represent the largest single power
draws in a system (see Sec. 3.3.1), improving their propor-
tionality is worthwhile.

3.2 Core heterogeneity

The promise of ASISA-CMP depends critically on two facts
of CPU core design: (1) for a given process technology, a
complex core consumes much more power and die area than
a simple core, and (2) a complex core does not improve OS
performance nearly as much as it improves application per-
formance.

Table 1 shows the relative power consumption, perform-
ance (in terms of instructions per cycle, or IPC), and sizes
of various generations of Alpha cores, scaled as if all were

Table 1: Power and relative performance of Alpha cores

Alpha Peak Average Normalized vs. EV4
core power power IPC area power
EV4 4.97W 3.73W 1.00 1.00 1.00
EV5 9.83W 6.88W 1.30 1.76 1.84
EV6 17.8W 10.68W 1.87 8.54 2.86
EV8 92.88W 46.44W 2.14 82.2 12.45

All cores scaled to 0.1� m; IPC based on SPEC CPU benchmarks
Based on data from Kumaret al. [13]

implemented in the same process technology. Clearly, the
smallest core delivers significantly more performance per
watt and per mm

�
. In fact, these performance results were

based on the SPEC CPU benchmark suite; since operating
system performance generally scales worse than application
performance [20], we believe the IPC ratios would be even
smaller for OS code.

3.3 Complicating issues

Various issues complicate the question of whether we can
improve throughput/joule by running OS (or OS-like) code
on special a OS-friendly core. We cover many details in sub-
sequent sections of this paper; here, we expose some general
questions. Many of these can only be resolved by exper-
imentation (possibly through simulation); we describe our
experiments later, in Sec. 7.

The two key issues, as mentioned above, are the relative
power consumption levels for various system components,
and the relative performance costs and benefits of switching
cores. In order for ASISA-CMP to pay off, we require that
it does not reduce performance faster than it reduces power
consumption.

3.3.1 How important is CPU power?

Any real system includes multiple components that draw
power, and ASISA-CMP will not significantly change the
energy consumption of components other than the CPU. In
fact, if ASISA-CMP increases the time required to complete
a job (or set of jobs), the resulting increase in energy con-
sumed by other system components may outweight the sav-
ings from the CPU cores.

Component power consumption varies tremendously
across the variety of computer systems in use. In particular,

3

I I I II I I

Petitioner Mercedes Ex-1024, 0004f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Table 2: Example power budgets for two typical systems

Watts
System Tot. CPU (%) Mem Disk PCI Other

Blade servers (all with multiple CPUs; after [16])
Small 248 70 28% 48 10 50 70
Med. 442 170 39% 112 10 50 100
Large 1025 520 51% 320 10 75 100

Laptop (after [17])
Idle 13.1 2.0 15% 0.4 0.6 N.A. 10.1
Busy 25.8 13.4 52% 1 1 N.A. 10.3

laptops and servers have vastly different balances between
components. Table 2 shows a power breakdown for several
typical systems. The blade server results, taken from [16],
show “nameplate” (maximum) power budgets, and all have
either two or (for the “Large” configuration) four CPUs. The
laptop results, taken from [17], show measured results for
an idle system and for one running the PCMark CPU bench-
mark; in both cases, Dynamic Voltage Scaling was disabled
and the screen was at full brightness.

In all cases, except for the idle laptop, CPU power con-
sumption was the largest single component of system power
consumption. For the Large server and the busy laptop, the
CPU (or CPUs) consumed slightly more than half of the total
power. This suggests that techniques, such as ASISA-CMP,
that address CPU power consumption can have meaningful
effects on whole-system power consumption.

3.3.2 How does ASISA-CMP affect performance?

ASISA-CMP can affect performance in several ways:
� Running OS code on a slower CPU: By design,

ASISA-CMP concedes some performance by running
OS code on a slower core. As argued in Sec. 3.2, this
slowdown might be minimal. However, an application
that spends much of its time in the OS could see a sig-
nificant performance decline.� Core switching costs: ASISA-CMP inherently moves
a thread of execution from one core to another for cer-
tain system calls. Core-switching creates longer code
paths for these system calls, and adds state-saving over-
head.� Cache affinity vs. cache interference: We assume
that the cores in a CMP CPU share a single L2 cache
but have private L1 caches. Core-switching could af-

fect cache performance in at least two ways: it could
harm cache affinity, by requiring cache lines (e.g., for
the data buffer of awrite system call) to move between
L1 caches, or it could reduce cache interference, by
keeping some OS code and data out of the application
core's cache.� Available parallelism: Given that the incremental cost
(in power and area) for adding an OS core to a CMP is
much lower than for an application core (see Sec. 3.2),
if there is available parallelism in the workload that ex-
tend to OS processing, an ASISA-CMP CPU could sup-
port more parallelism than a symmetric CMP CPU with
similar power and area. For example, a parallel “make”
command might benefit from having an OS core run I/O
processing while the application core is dedicated to an
optimizing compiler. Not all workloads will have this
kind of parallelism, of course.

3.3.3 Idle time

We have described the example in Figure 1 as if the applic-
ation's system call does useful work. However, it could also
be blocked waiting for some external event, such as disk I/O
or the arrival of a Web request. Numerous studies (e.g.,
[6, 21]) have shown that most computers are idle most of
the time. Therefore, as pointed out by Fanet al. [6], a use-
ful design for meeting the portionality rule must significantly
reduce power consumption during idle periods.

ASISA-CMP offers the option of powering down the
high-power application core(s), while maintaining OS func-
tions on a low-power core. For example, the arrival of a new
Web (HTTP/TCP) connection normally precedes the arrival
of the actual HTTP request by at least one network round-trip
time (typically on the order of milliseconds or more). This
would allow an OS core to handle the initial TCP connection
request and then awaken the application core soon enough to
process the HTTP-level request without any delay.

3.4 Competing approaches

Given that the goal of ASISA-CMP is to improve perform-
ance (in terms of throughput/joule), and it would require
changes to the design of CPU chips, we have to compare
it against possible competing approaches.

Other potential alternatives include:
� Complex-core with dynamic Voltage/Frequency

4

I I I I I

I I I I I I

Petitioner Mercedes Ex-1024, 0005f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

