
8/1/23, 1:07 PM RFC 2748: The COPS (Common Open Policy Service) Protocol

https://www.rfc-editor.org/rfc/rfc2748.html 1/38

Network Working Group D. Durham, Ed.
Request for Comments: 2748 Intel
Category: Standards Track J. Boyle

Level 3
R. Cohen

Cisco
S. Herzog
IPHighway
R. Rajan

AT&T
A. Sastry

Cisco
January 2000

The COPS (Common Open Policy Service) Protocol

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC-2119].

Abstract

 This document describes a simple client/server model for supporting
 policy control over QoS signaling protocols. The model does not make
 any assumptions about the methods of the policy server, but is based
 on the server returning decisions to policy requests. The model is
 designed to be extensible so that other kinds of policy clients may
 be supported in the future. However, this document makes no claims
 that it is the only or the preferred approach for enforcing future
 types of policies.

Durham, et al. Standards Track [Page 1]

1 SAMSUNG 1036f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.docketalarm.com/

8/1/23, 1:07 PM RFC 2748: The COPS (Common Open Policy Service) Protocol

https://www.rfc-editor.org/rfc/rfc2748.html 2/38

RFC 2748 COPS January 2000

Table Of Contents

 1. Introduction..3
 1.1 Basic Model..4
 2. The Protocol..6
 2.1 Common Header..6
 2.2 COPS Specific Object Formats...................................8
 2.2.1 Handle Object (Handle).......................................9
 2.2.2 Context Object (Context).....................................9
 2.2.3 In-Interface Object (IN-Int)................................10
 2.2.4 Out-Interface Object (OUT-Int)..............................11
 2.2.5 Reason Object (Reason)......................................12
 2.2.6 Decision Object (Decision)..................................12
 2.2.7 LPDP Decision Object (LPDPDecision).........................14
 2.2.8 Error Object (Error)..14
 2.2.9 Client Specific Information Object (ClientSI)...............15
 2.2.10 Keep-Alive Timer Object (KATimer)..........................15
 2.2.11 PEP Identification Object (PEPID)..........................16
 2.2.12 Report-Type Object (Report-Type)...........................16
 2.2.13 PDP Redirect Address (PDPRedirAddr)........................16
 2.2.14 Last PDP Address (LastPDPAddr).............................17
 2.2.15 Accounting Timer Object (AcctTimer)........................17
 2.2.16 Message Integrity Object (Integrity).......................18
 2.3 Communication...19
 2.4 Client Handle Usage...21
 2.5 Synchronization Behavior......................................21
 3. Message Content..22
 3.1 Request (REQ) PEP -> PDP.....................................22
 3.2 Decision (DEC) PDP -> PEP....................................24
 3.3 Report State (RPT) PEP -> PDP................................25
 3.4 Delete Request State (DRQ) PEP -> PDP........................25
 3.5 Synchronize State Request (SSQ) PDP -> PEP...................26
 3.6 Client-Open (OPN) PEP -> PDP.................................26
 3.7 Client-Accept (CAT) PDP -> PEP...............................27
 3.8 Client-Close (CC) PEP -> PDP, PDP -> PEP.....................28
 3.9 Keep-Alive (KA) PEP -> PDP, PDP -> PEP.......................28
 3.10 Synchronize State Complete (SSC) PEP -> PDP..................29
 4. Common Operation...29
 4.1 Security and Sequence Number Negotiation......................29
 4.2 Key Maintenance...31
 4.3 PEP Initialization..31
 4.4 Outsourcing Operations..32
 4.5 Configuration Operations......................................32
 4.6 Keep-Alive Operations...33
 4.7 PEP/PDP Close...33
 5. Security Considerations..33
 6. IANA Considerations..34

Durham, et al. Standards Track [Page 2]

2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.rfc-editor.org/rfc/rfc2748
https://www.rfc-editor.org/rfc/rfc2748
https://www.docketalarm.com/

8/1/23, 1:07 PM RFC 2748: The COPS (Common Open Policy Service) Protocol

https://www.rfc-editor.org/rfc/rfc2748.html 3/38

RFC 2748 COPS January 2000

 7. References...35
 8. Author Information and Acknowledgments.........................36
 9. Full Copyright Statement.......................................38

1. Introduction

 This document describes a simple query and response protocol that can
 be used to exchange policy information between a policy server
 (Policy Decision Point or PDP) and its clients (Policy Enforcement
 Points or PEPs). One example of a policy client is an RSVP router
 that must exercise policy-based admission control over RSVP usage
 [RSVP]. We assume that at least one policy server exists in each
 controlled administrative domain. The basic model of interaction
 between a policy server and its clients is compatible with the
 framework document for policy based admission control [WRK].

 A chief objective of this policy control protocol is to begin with a
 simple but extensible design. The main characteristics of the COPS
 protocol include:

 1. The protocol employs a client/server model where the PEP sends
 requests, updates, and deletes to the remote PDP and the PDP
 returns decisions back to the PEP.

 2. The protocol uses TCP as its transport protocol for reliable
 exchange of messages between policy clients and a server.
 Therefore, no additional mechanisms are necessary for reliable
 communication between a server and its clients.

 3. The protocol is extensible in that it is designed to leverage
 off self-identifying objects and can support diverse client
 specific information without requiring modifications to the
 COPS protocol itself. The protocol was created for the general
 administration, configuration, and enforcement of policies.

 4. COPS provides message level security for authentication, replay
 protection, and message integrity. COPS can also reuse existing
 protocols for security such as IPSEC [IPSEC] or TLS to
 authenticate and secure the channel between the PEP and the
 PDP.

 5. The protocol is stateful in two main aspects: (1)
 Request/Decision state is shared between client and server and
 (2) State from various events (Request/Decision pairs) may be
 inter-associated. By (1) we mean that requests from the client
 PEP are installed or remembered by the remote PDP until they
 are explicitly deleted by the PEP. At the same time, Decisions
 from the remote PDP can be generated asynchronously at any time

Durham, et al. Standards Track [Page 3]

3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.rfc-editor.org/rfc/rfc2748
https://www.rfc-editor.org/rfc/rfc2748
https://www.docketalarm.com/

8/1/23, 1:07 PM RFC 2748: The COPS (Common Open Policy Service) Protocol

https://www.rfc-editor.org/rfc/rfc2748.html 4/38

RFC 2748 COPS January 2000

 for a currently installed request state. By (2) we mean that
 the server may respond to new queries differently because of
 previously installed Request/Decision state(s) that are
 related.

 6. Additionally, the protocol is stateful in that it allows the
 server to push configuration information to the client, and
 then allows the server to remove such state from the client
 when it is no longer applicable.

1.1 Basic Model

 +----------------+
 | |
 | Network Node | Policy Server
 | |
 | +-----+ | COPS +-----+
 | | PEP |<-----|-------------->| PDP |
 | +-----+ | +-----+
 | ^ |
 | | |
 | \-->+-----+ |
 | | LPDP| |
 | +-----+ |
 | |
 +----------------+

 Figure 1: A COPS illustration.

 Figure 1 Illustrates the layout of various policy components in a
 typical COPS example (taken from [WRK]). Here, COPS is used to
 communicate policy information between a Policy Enforcement Point
 (PEP) and a remote Policy Decision Point (PDP) within the context of
 a particular type of client. The optional Local Policy Decision Point
 (LPDP) can be used by the device to make local policy decisions in
 the absence of a PDP.

 It is assumed that each participating policy client is functionally
 consistent with a PEP [WRK]. The PEP may communicate with a policy
 server (herein referred to as a remote PDP [WRK]) to obtain policy
 decisions or directives.

 The PEP is responsible for initiating a persistent TCP connection to
 a PDP. The PEP uses this TCP connection to send requests to and
 receive decisions from the remote PDP. Communication between the PEP
 and remote PDP is mainly in the form of a stateful request/decision
 exchange, though the remote PDP may occasionally send unsolicited

Durham, et al. Standards Track [Page 4]

4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.rfc-editor.org/rfc/rfc2748
https://www.rfc-editor.org/rfc/rfc2748
https://www.docketalarm.com/

8/1/23, 1:07 PM RFC 2748: The COPS (Common Open Policy Service) Protocol

https://www.rfc-editor.org/rfc/rfc2748.html 5/38

RFC 2748 COPS January 2000

 decisions to the PEP to force changes in previously approved request
 states. The PEP also has the capacity to report to the remote PDP
 that it has successfully completed performing the PDP's decision
 locally, useful for accounting and monitoring purposes. The PEP is
 responsible for notifying the PDP when a request state has changed on
 the PEP. Finally, the PEP is responsible for the deletion of any
 state that is no longer applicable due to events at the client or
 decisions issued by the server.

 When the PEP sends a configuration request, it expects the PDP to
 continuously send named units of configuration data to the PEP via
 decision messages as applicable for the configuration request. When a
 unit of named configuration data is successfully installed on the
 PEP, the PEP should send a report message to the PDP confirming the
 installation. The server may then update or remove the named
 configuration information via a new decision message. When the PDP
 sends a decision to remove named configuration data from the PEP, the
 PEP will delete the specified configuration and send a report message
 to the PDP as confirmation.

 The policy protocol is designed to communicate self-identifying
 objects which contain the data necessary for identifying request
 states, establishing the context for a request, identifying the type
 of request, referencing previously installed requests, relaying
 policy decisions, reporting errors, providing message integrity, and
 transferring client specific/namespace information.

 To distinguish between different kinds of clients, the type of client
 is identified in each message. Different types of clients may have
 different client specific data and may require different kinds of
 policy decisions. It is expected that each new client-type will have
 a corresponding usage draft specifying the specifics of its
 interaction with this policy protocol.

 The context of each request corresponds to the type of event that
 triggered it. The COPS Context object identifies the type of request
 and message (if applicable) that triggered a policy event via its
 message type and request type fields. COPS identifies three types of
 outsourcing events: (1) the arrival of an incoming message (2)
 allocation of local resources, and (3) the forwarding of an outgoing
 message. Each of these events may require different decisions to be
 made. The content of a COPS request/decision message depends on the
 context. A fourth type of request is useful for types of clients that
 wish to receive configuration information from the PDP. This allows a
 PEP to issue a configuration request for a specific named device or
 module that requires configuration information to be installed.

Durham, et al. Standards Track [Page 5]

5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.rfc-editor.org/rfc/rfc2748
https://www.rfc-editor.org/rfc/rfc2748
https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

