Network Working Group Request for Comments: 2474 Obsoletes: <u>1455</u>, <u>1349</u>

K. Nichols Cisco Systems S. Blake Category: Standards Track Torrent Networking Technologies F. Baker Cisco Systems D. Black EMC Corporation December 1998

Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (1998). All Rights Reserved.

Abstract

Differentiated services enhancements to the Internet protocol are intended to enable scalable service discrimination in the Internet without the need for per-flow state and signaling at every hop. A variety of services may be built from a small, well-defined set of building blocks which are deployed in network nodes. The services may be either end-to-end or intra-domain; they include both those that can satisfy quantitative performance requirements (e.g., peak bandwidth) and those based on relative performance (e.g., "class" differentiation). Services can be constructed by a combination of:

- setting bits in an IP header field at network boundaries (autonomous system boundaries, internal administrative boundaries, or hosts),
- using those bits to determine how packets are forwarded by the nodes inside the network, and
- conditioning the marked packets at network boundaries in accordance with the requirements or rules of each service.

Nichols, et. al. Standards Track

DOCKET

[Page 1]

LARM Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

The requirements or rules of each service must be set through administrative policy mechanisms which are outside the scope of this document. A differentiated services-compliant network node includes a classifier that selects packets based on the value of the DS field, along with buffer management and packet scheduling mechanisms capable of delivering the specific packet forwarding treatment indicated by the DS field value. Setting of the DS field and conditioning of the temporal behavior of marked packets need only be performed at network boundaries and may vary in complexity.

This document defines the IP header field, called the DS (for differentiated services) field. In IPv4, it defines the layout of the TOS octet; in IPv6, the Traffic Class octet. In addition, a base set of packet forwarding treatments, or per-hop behaviors, is defined.

For a more complete understanding of differentiated services, see also the differentiated services architecture [<u>ARCH</u>].

Table of Contents

<u>1</u> . Introduction
2. Terminology Used in This Document <u>5</u>
<u>3</u> . Differentiated Services Field Definition
$\frac{4}{4}$. Historical Codepoint Definitions and PHB Requirements $\frac{9}{2}$
<u>4.1</u> A Default PHB <u>9</u>
4.2 Once and Future IP Precedence Field Use
4.2.1 IP Precedence History and Evolution in Brief 10
4.2.2 Subsuming IP Precedence into Class Selector 11
Codepoints
4.2.2.1 The Class Selector Codepoints
4.2.2.2 The Class Selector PHB Requirements 11
4.2.2.3 Using the Class Selector PHB Requirements 12
for IP Precedence Compatibility
4.2.2.4 Example Mechanisms for Implementing Class 12
Selector Compliant PHB Groups
<u>4.3</u> Summary
<u>5</u> . Per-Hop Behavior Standardization Guidelines
<u>6</u> . IANA Considerations
7. Security Considerations 15
7.1 Theft and Denial of Service
7.2 IPsec and Tunneling Interactions 16
<u>8</u> . Acknowledgments
<u>9</u> . References
Authors' Addresses
Full Copyright Statement <u>20</u>

Nichols, et. al.

DOCKE

Standards Track

[Page 2]

LARM Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

1. Introduction

Differentiated services are intended to provide a framework and building blocks to enable deployment of scalable service discrimination in the Internet. The differentiated services approach aims to speed deployment by separating the architecture into two major components, one of which is fairly well-understood and the other of which is just beginning to be understood. In this, we are quided by the original design of the Internet where the decision was made to separate the forwarding and routing components. Packet forwarding is the relatively simple task that needs to be performed on a per-packet basis as quickly as possible. Forwarding uses the packet header to find an entry in a routing table that determines the packet's output interface. Routing sets the entries in that table and may need to reflect a range of transit and other policies as well as to keep track of route failures. Routing tables are maintained as a background process to the forwarding task. Further, routing is the more complex task and it has continued to evolve over the past 20 years.

Analogously, the differentiated services architecture contains two main components. One is the fairly well-understood behavior in the forwarding path and the other is the more complex and still emerging background policy and allocation component that configures parameters used in the forwarding path. The forwarding path behaviors include the differential treatment an individual packet receives, as implemented by queue service disciplines and/or queue management disciplines. These per-hop behaviors are useful and required in network nodes to deliver differentiated treatment of packets no matter how we construct end-to-end or intra-domain services. Our focus is on the general semantics of the behaviors rather than the specific mechanisms used to implement them since these behaviors will evolve less rapidly than the mechanisms.

Per-hop behaviors and mechanisms to select them on a per-packet basis can be deployed in network nodes today and it is this aspect of the differentiated services architecture that is being addressed first. In addition, the forwarding path may require that some monitoring, policing, and shaping be done on the network traffic designated for "special" treatment in order to enforce requirements associated with the delivery of the special treatment. Mechanisms for this kind of traffic conditioning are also fairly well-understood. The wide deployment of such traffic conditioners is also important to enable the construction of services, though their actual use in constructing services may evolve over time.

Nichols, et. al.

DOCKE

Standards Track

[Page 3]

The configuration of network elements with respect to which packets get special treatment and what kinds of rules are to be applied to the use of resources is much less well-understood. Nevertheless, it is possible to deploy useful differentiated services in networks by using simple policies and static configurations. As described in [ARCH], there are a number of ways to compose per-hop behaviors and traffic conditioners to create services. In the process, additional experience is gained that will guide more complex policies and allocations. The basic behaviors in the forwarding path can remain the same while this component of the architecture evolves. Experiences with the construction of such services will continue for some time, thus we avoid standardizing this construction as it is premature. Further, much of the details of service construction are covered by legal agreements between different business entities and we avoid this as it is very much outside the scope of the IETF.

This document concentrates on the forwarding path component. In the packet forwarding path, differentiated services are realized by mapping the codepoint contained in a field in the IP packet header to a particular forwarding treatment, or per-hop behavior (PHB), at each network node along its path. The codepoints may be chosen from a set of mandatory values defined later in this document, from a set of recommended values to be defined in future documents, or may have purely local meaning. PHBs are expected to be implemented by employing a range of queue service and/or queue management disciplines on a network node's output interface queue: for example weighted round-robin (WRR) queue servicing or drop-preference queue management.

Marking is performed by traffic conditioners at network boundaries, including the edges of the network (first-hop router or source host) and administrative boundaries. Traffic conditioners may include the primitives of marking, metering, policing and shaping (these mechanisms are described in [ARCH]). Services are realized by the use of particular packet classification and traffic conditioning mechanisms at boundaries coupled with the concatenation of per-hop behaviors along the transit path of the traffic. A goal of the differentiated services architecture is to specify these building blocks for future extensibility, both of the number and type of the building blocks and of the services built from them.

Terminology used in this memo is defined in Sec. 2. The differentiated services field definition (DS field) is given in Sec. 3. In Sec. 4, we discuss the desire for partial backwards compatibility with current use of the IPv4 Precedence field. As a solution, we introduce Class Selector Codepoints and Class Selector

Nichols, et. al.

DOCKE

RFC <u>2474</u>

Standards Track

[Page 4]

L A R M Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

Compliant PHBs. Sec. 5 presents quidelines for per-hop behavior standardization. Sec. 6 discusses guidelines for allocation of codepoints. Sec. 7 covers security considerations.

This document is a concise description of the DS field and its uses. It is intended to be read along with the differentiated services architecture [<u>ARCH</u>].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2. Terminology Used in This Document

RFC 2474

Behavior Aggregate: a collection of packets with the same codepoint crossing a link in a particular direction. The terms "aggregate" and "behavior aggregate" are used interchangeably in this document.

Classifier: an entity which selects packets based on the content of packet headers according to defined rules.

Class Selector Codepoint: any of the eight codepoints in the range ' xxx000' (where 'x' may equal '0' or '1'). Class Selector Codepoints are discussed in Sec. 4.2.2.

Class Selector Compliant PHB: a per-hop behavior satisfying the Class Selector PHB Requirements specified in Sec. 4.2.2.2.

Codepoint: a specific value of the DSCP portion of the DS field. Recommended codepoints SHOULD map to specific, standardized PHBs. Multiple codepoints MAY map to the same PHB.

Differentiated Services Boundary: the edge of a DS domain, where classifiers and traffic conditioners are likely to be deployed. A differentiated services boundary can be further sub-divided into ingress and egress nodes, where the ingress/egress nodes are the downstream/upstream nodes of a boundary link in a given traffic direction. A differentiated services boundary typically is found at the ingress to the first-hop differentiated services-compliant router (or network node) that a host's packets traverse, or at the egress of the last-hop differentiated services-compliant router or network node that packets traverse before arriving at a host. This is sometimes referred to as the boundary at a leaf router. A differentiated services boundary may be co-located with a host, subject to local policy. Also DS boundary.

Differentiated Services-Compliant: in compliance with the requirements specified in this document. Also DS-compliant.

Nichols, et. al.

DOCKE

Standards Track

[Page 5]

LARM Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.