
Model-View-Controller
Article03/17/2014

Retired Content

This content is outdated and is no longer being maintained. It is provided as a courtesy for
individuals who are still using these technologies. This page may contain URLs that were valid when
originally published, but now link to sites or pages that no longer exist. Please see the patterns &
practices guidance for the most current information.

Version 1.0.1

GotDotNet community for collaboration on this pattern

Complete List of patterns & practices

The purpose of many computer systems is to retrieve data from a data store and display it
for the user. After the user changes the data, the system stores the updates in the data
store. Because the key flow of information is between the data store and the user interface,
you might be inclined to tie these two pieces together to reduce the amount of coding and
to improve application performance. However, this seemingly natural approach has some
significant problems. One problem is that the user interface tends to change much more
frequently than the data storage system. Another problem with coupling the data and user
interface pieces is that business applications tend to incorporate business logic that goes
far beyond data transmission.

Context

Problem

SAMSUNG 10291f

Find authenticated court documents without watermarks at docketalarm.com.

https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ff921345(v=pandp.10)
https://www.gotdotnet.com/community/workspaces/workspace.aspx?id=27be1508-a94f-4ed4-9089-ac7b5cada9e2
https://msdn.microsoft.com/practices
https://www.docketalarm.com/

How do you modularize the user interface functionality of a Web application so that you
can easily modify the individual parts?

The following forces act on a system within this context and must be reconciled as you
consider a solution to the problem:

User interface logic tends to change more frequently than business logic, especially in
Web-based applications. For example, new user interface pages may be added, or existing
page layouts may be shuffled around. After all, one of the advantages of a Web-based
thin-client application is the fact that you can change the user interface at any time without
having to redistribute the application. If presentation code and business logic are
combined in a single object, you have to modify an object containing business logic every
time you change the user interface. This is likely to introduce errors and require the
retesting of all business logic after every minimal user interface change.

In some cases, the application displays the same data in different ways. For example, when
an analyst prefers a spreadsheet view of data whereas management prefers a pie chart of
the same data. In some rich-client user interfaces, multiple views of the same data are
shown at the same time. If the user changes data in one view, the system must update all
other views of the data automatically.

Designing visually appealing and efficient HTML pages generally requires a different skill
set than does developing complex business logic. Rarely does a person have both skill sets.
Therefore, it is desirable to separate the development effort of these two parts.

User interface activity generally consists of two parts: presentation and update. The
presentation part retrieves data from a data source and formats the data for display. When
the user performs an action based on the data, the update part passes control back to the
business logic to update the data.

In Web applications, a single page request combines the processing of the action
associated with the link that the user selected with the rendering of the target page. In
many cases, the target page may not be directly related to the action. For example,
imagine a simple Web application that shows a list of items. The user returns to the main
list page after either adding an item to the list or deleting an item from the list. Therefore,
the application must render the same page (the list) after executing two quite different
commands (adding or deleting)-all within the same HTTP request.

Forces

2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

User interface code tends to be more device-dependent than business logic. If you want to
migrate the application from a browser-based application to support personal digital
assistants (PDAs) or Web-enabled cell phones, you must replace much of the user interface
code, whereas the business logic may be unaffected. A clean separation of these two parts
accelerates the migration and minimizes the risk of introducing errors into the business
logic.

Creating automated tests for user interfaces is generally more difficult and time-consuming
than for business logic. Therefore, reducing the amount of code that is directly tied to the
user interface enhances the testability of the application.

The Model-View-Controller (MVC) pattern separates the modeling of the domain, the
presentation, and the actions based on user input into three separate classes [Burbeck92]:

Model. The model manages the behavior and data of the application domain, responds to
requests for information about its state (usually from the view), and responds to
instructions to change state (usually from the controller).

View. The view manages the display of information.

Controller. The controller interprets the mouse and keyboard inputs from the user,
informing the model and/or the view to change as appropriate.

Figure 1 depicts the structural relationship between the three objects.

Figure 1: MVC class structure

It is important to note that both the view and the controller depend on the model.
However, the model depends on neither the view nor the controller. This is one the key
benefits of the separation. This separation allows the model to be built and tested
independent of the visual presentation. The separation between view and controller is

Solution

3f

Find authenticated court documents without watermarks at docketalarm.com.

https://learn.microsoft.com/en-us/previous-versions/msp-n-p/images/ff649643.des_mvc_fig01(en-us,pandp.10).gif
https://www.docketalarm.com/

secondary in many rich-client applications, and, in fact, many user interface frameworks
implement the roles as one object. In Web applications, on the other hand, the separation
between view (the browser) and controller (the server-side components handling the HTTP
request) is very well defined.

Model-View-Controller is a fundamental design pattern for the separation of user interface
logic from business logic. Unfortunately, the popularity of the pattern has resulted in a
number of faulty descriptions. In particular, the term "controller" has been used to mean
different things in different contexts. Fortunately, the advent of Web applications has
helped resolve some of the ambiguity because the separation between the view and the
controller is so apparent.

In Application Programming in Smalltalk-80: How to use Model-View-Controller (MVC)
[Burbeck92], Steve Burbeck describes two variations of MVC: a passive model and an active
model.

The passive model is employed when one controller manipulates the model exclusively.
The controller modifies the model and then informs the view that the model has changed
and should be refreshed (see Figure 2). The model in this scenario is completely
independent of the view and the controller, which means that there is no means for the
model to report changes in its state. The HTTP protocol is an example of this. There is no
simple way in the browser to get asynchronous updates from the server. The browser
displays the view and responds to user input, but it does not detect changes in the data on
the server. Only when the user explicitly requests a refresh is the server interrogated for
changes.

Variations

4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Figure 2: Behavior of the passive model

The active model is used when the model changes state without the controller's
involvement. This can happen when other sources are changing the data and the changes
must be reflected in the views. Consider a stock-ticker display. You receive stock data from
an external source and want to update the views (for example, a ticker band and an alert
window) when the stock data changes. Because only the model detects changes to its
internal state when they occur, the model must notify the views to refresh the display.

However, one of the motivations of using the MVC pattern is to make the model
independent from of the views. If the model had to notify the views of changes, you would
reintroduce the dependency you were looking to avoid. Fortunately, the Observer pattern
[Gamma95] provides a mechanism to alert other objects of state changes without
introducing dependencies on them. The individual views implement the Observerinterface
and register with the model. The model tracks the list of all observers that subscribe to
changes. When a model changes, the model iterates through all registered observers and
notifies them of the change. This approach is often called "publish-subscribe." The model
never requires specific information about any views. In fact, in scenarios where the
controller needs to be informed of model changes (for example, to enable or disable menu
options), all the controller has to do is implement the Observer interface and subscribe to
the model changes. In situations where there are many views, it makes sense to define
multiple subjects, each of which describes a specific type of model change. Each view can
then subscribe only to types of changes that are relevant to the view.

Figure 3 shows the structure of the active MVC using Observer and how the observer
isolates the model from referencing views directly.

5f

Find authenticated court documents without watermarks at docketalarm.com.

https://learn.microsoft.com/en-us/previous-versions/msp-n-p/images/ff649643.des_mvc_fig02(en-us,pandp.10).gif
https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ff649896(v=pandp.10)
https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

