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CHAPTERS 

Introduction to Automatic Speech 
Recognition: Template Matching 

8.1 INTRODUCTION 

Much of the early work on automatic speech recognition (ASR), starting in the 
1950s, involved attempting to apply rules based either on acoustic/phonetic 
knowledge or in many cases on simple ad hoc measurements of properties of the 
speech signal for different types of speech sound. The intention was to decode the 
signal directly into a sequence of phoneme-like units. These early methods, 
extensively reviewed by Hyde ( 1972), achieved very little success. The poor results 
were mainly because co-articulation causes the acoustic properties of individual 
phones to vary very widely, and any rule-based hard decisions about phone identity 
will often be wrong if they use only local information. Once wrong decisions have 
been made at an early stage, it is extremely difficult to recover from the errors later. 

An alternative to rule-based methods is to use pattern-matching techniques. 
Primitive pattern-matching approaches were being investigated at around the same 
time as the early rule-based methods, but major improvements in speech recognizer 
performance did not occur until more general pattern-matching techniques were 
invented. This chapter describes typical methods that were developed for spoken 
word recognition during the 1970s. Although these methods were widely used in 
commercial speech recognizers in the 1970s and 1980s, they have now been largely 
superseded by more powerful methods ( to be described in later chapters), which 
can be understood as a generalization of the simpler pattern-matching techniques 
introduced here. A thorough understanding of the principles of the first successful 
pattern-matching methods is thus a valuable introduction to the later techniques. 

8.2 GENERAL PRINCIPLES OF PATTERN MATCHING 

When a person utters a word, as we saw in Chapter 1, the word can be considered 
as a sequence of phonemes ( the linguistic units) and the phonemes will be realized 
as phones. Because of inevitable co-articulation, the acoustic patterns associated 
with individual phones overlap in time, and therefore depend on the identities of 
their neighbours. Even for a word spoken ~ isolation, therefore, the acoustic 
pattern is related in a very complicated way to the word's linguistic structure. 

However, if the same person repeats the same isolated word on separate 
occasions, the pattern is likely to be generally similar, because the same phonetic 
relationships will apply. Of course, there will probably also be differences, arising 
from many causes. For example, the second occurrence might be spoken faster or 
more slowly; there may be differences in vocal effort; the pitch and its variation 
during the word could be different; one example may be spoken more precisely 
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110 Speech Synthesis and Recognition 

than the other, etc. It is obvious that the waveform of separate utterances of the 
same word may be very different. There are likely to be more similarities between 
spectrograms because (assuming that a short time-window is used, see Section 2.6), 
they better illustrate the vocal-tract resonances, which are closely related to the 
positions of the articulators. But even spectrograms will differ in detail due to the 
above types of difference, and timescale differences will be particularly obvious. 

A well-established approach to ASR is to store in the machine example 
acoustic patterns ( called templates) for all the words to be recognized, usually 
spoken by the person who will subsequently use the machine. Any incoming word 
can then be compared in tum with all words in the store, and the one that is most 
similar is assumed to be the correct one. In general none of the templates will match 
perfectly, so to be successful this technique must rely on the correct word being 
more similar to its own template than to any of the alternatives. 

It is obvious that in some sense the sound pattern of the correct word is likely 
to be a better match than a wrong word, because it is made by more similar 
articulatory movements. Exploiting this similarity is, however, critically dependent 
on how the word patterns are compared, i.e. on how the 'distance' between two 
word examples is calculated. For example, it would be useless to compare 
waveforms, because even very similar repetitions of a word will differ appreciably 
in waveform detail from moment to moment, largely due to the difficulty of 
repeating the intonation and timing exactly. 

It is implicit in the above comments that it must also be possible to identify 
the start and end points of words that are to be compared. 

8.3 DISTANCE METRICS 

In this section we will consider the problem of comparing the templates with the 
incoming speech when we know that corresponding points in time will be 
associated with similar articulatory events. In effect, we appear to be assuming that 
the words to be compared are spoken in isolation at exactly the same speed, and 
that their start and end points can be reliably determined. In practice these 
assumptions will very rarely be justified, and methods of dealing with the resultant 
problems will be discussed later in the chapter. 

In calculating a distance between two words it is usual to derive a short-term 
distance that is local to corresponding parts of the words, and to integrate this 
distance over the entire word duration. Parameters representing the acoustic signal 
must be derived over some span of time, during which the properties are assumed 
not to change much. In one such span of time the measurements can be stored as a 
set of numbers, or feature vector, which may be regarded as representing a point 
in multi-dimensional space. The properties of a whole word can then be described 
as a succession of feature vectors ( often referred to as frames), each representing a 
time slice of, say, 10-20 ms. The integral of the distance between the patterns then 
reduces to a sum of distances between corresponding pairs of feature vectors. To be 
useful, the distance must not be sensitive to small differences in intensity between 
otherwise similar words, and it should not give too much weight to differences in 
pitch. Those features of the acoustic signal that are determined by the phonetic 
properties should obviously be given more weight in the distance calculation. 
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Introduction to Automatic Speech Recognition: Template Matching 111 

8.3.l Filter-bank analysis 

The most obvious approach in choosing a distance metric which has some of the 
desirable properties is to use some representation of the short-term power spectrum. 
It has been explained in Chapter 2 how the short-term spectrum can represent the 
effects of moving formants, excitation spectrum, etc. 

Although in tone languages pitch needs to be taken into account, in Western 
languages there is normally only slight correlation between pitch variations and the 
phonetic content of a word. The likely idiosyncratic variations of pitch that will 
occur from occasion to occasion mean that, except for tone languages, it is 
normally safer to ignore pitch in whole-word pattern-matching recognizers. Even 
for tone languages it is probably desirable to analyse pitch variations separately 
from effects due to the vocal tract configuration. It is best, therefore, to make the 
bandwidth of the spectral resolution such that it will not resolve the harmonics of 
the fundamental of voiced speech. Because the excitation periodicity is evident in 
the amplitude variations of the output from a broad-band analysis, it is also 
necessary to apply some time-smoothing to remove it. Such time-smoothing will 
also remove most of the fluctuations that result from randomness in turbulent 
excitation. 

At higher frequencies the precise formant positions become less significant, 
and the resolving power of the ear ( critical bandwidth - see Chapter 3) is such that 
detailed spectral information is not available to human listeners at high frequencies. 
It is therefore permissible to make the spectral analysis less selective, such that the 
effective filter bandwidth is several times the typical harmonic spacing. The desired 
analysis can thus be provided by a set of bandpass filters whose bandwidths and 
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Figure 8.1 Spectrographic dis.plays of a 10-channel filter-bank analysis (with a non-linear 
frequency spacing of the channels), shown for one example of the word "three" and two 
examples of the word "eight". It can be seen that the examples of "eight" are generally similar, 
although the lower one has a shorter gap for the [t] and a longer burst. 
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112 Speech Synthesis and Recognition 

spacings are roughly equal to those of critical bands and whose range of centre 
frequencies covers the frequencies most important for speech perception (say from 
300 Hz up to around 5 kHz). The total number of band-pass filters is therefore not 
likely to be more than about 20, and successful results have been achieved with as 
few as 10. When the necessary time-smoothing is included, the feature vector will 
represent the signal power in the filters averaged over the frame interval. 

The usual name for this type of speech analysis is filter-bank analysis. 
Whether it is provided by a bank of discrete filters, implemented in analogue or 
digital form, or is implemented by sampling the outputs from short-term Fourier 
transforms, is a matter of engineering convenience. Figure 8.1 displays word 
patterns from a typical I 0-channel filter-bank analyser for two examples of one 
word and one example of another. It can be seen from the frequency scales that the 
channels are closer together in the lower-frequency regions. 

A consequence of removing the effect of the fundamental frequency and of 
using filters at least as wide as critical bands is to reduce the amount of information 
needed to describe a word pattern to much less than is needed for the waveform. 
Thus storage and computation in the pattern-matching process are much reduced. 

8.3.2 Level normalization 

Mean speech level normally varies by a few dB over periods of a few seconds, and 
changes in spacing between the microphone and the speaker's mouth can also cause 
changes of several dB. As these changes will be of no phonetic significance, it is 
desirable to minimize their effects on the distance metric. Use of filter-bank power 
directly gives most weight to more intense regions of the spectrum, where a change 
of 2 or 3 dB will represent a very large absolute difference. On the other hand, a 
3 dB difference in one of the weaker formants might be of similar phonetic 
significance, but will cause a very small effect on the power. This difficulty can be 
avoided to a large extent by representing the power logarithmically, so that similar 
power ratios have the same effect on the distance calculation whether they occur in 
intense or weak spectral regions. Most of the phonetically unimportant variations 
discussed above will then have much less weight in the distance calculation than the 
differences in spectrum level that result from formant movements, etc. 

Although comparing levels logarithmically is advantageous, care must be 
exercised in very low-level sounds, such as weak fricatives or during stop­
consonant closures. At these times the logarithm of the level in a channel will 
depend more on the ambient background noise level than on the speech signal. If 
the speaker is in a very quiet environment the logarithmic level may suffer quite 
wide irrelevant variations as a result of breath noise or the rustle of clothing. One 
way of avoiding this difficulty is to add a small constant to the measured level 
before taking logarithms. The value of the constant would be chosen to dominate 
the greatest expected background noise level, but to be small compared with the 
level usually found during speech. 

Differences in vocal effort will mainly have the effect of adding a constant to 
all components of the log spectrum, rather than changing the shape of the spectrum 
cross-section. Such differences can be made to have no effect on the distance 
metric by subtracting the mean of the logarithm of the spectrum level of each frame 
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from all the separate spectrum components for the frame. In practice this amount of 
level compensation is undesirable because extreme level variations are of some 
phonetic significance. For e~ample, . a substa~tial part of the acoustic difference 
between [ f] and any vowel 1s the difference m level, which can be as much as 
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Figure 8.2 Graphical representation of the distance between frames of the spectrogr~ms 
shown in Figure 8.1. The larger the blob the smaller the distance. It can be seen that there 1s a 
continuous path of fairly small distances between the bottom left and top right when the two 
examples of "eight" are compared, but not when "eight" is compared with "three". 
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30 dB. Recognition accuracy might well suffer if level differences of this 
magnitude were ignored. A useful compromise is to compensate only partly for 
level variations, by subtracting some fraction (say in the range 0.7 to 0.9) of the 
mean logarithmic level from each spectral channel. There are also several other 
techniques for achieving a similar effect. 

A suitable distance metric for use with a filter bank is the sum of the squared 
differences between the logarithms of power levels in corresponding channels (i.e. 
the square of the Euclidean distance in the multi-dimensional space). A graphical 
representation of the Euclidean distance between frames for the words used in 
Figure 8.1 is shown in Figure 8.2. 

There are many other spectrally based representations of the signal that are 
more effective than the simple filter bank, and some of these will be described in 
Chapter I 0. The filter-bank method, however, is sufficient to illustrate the pattern­
matching principles explained in this chapter. 

8.4 END-POINT DETECTION FOR ISOLATED WORDS 

The pattern comparison methods described above assume that the beginning and 
end points of words can be found. In the case of words spoken in isolation in a 
quiet environment it is possible to use some simple level threshold to detennine 
start and end points. There are, however, problems with this approach when words 
start or end with a very weak sound, such as [ f1. In such cases the distinction in 
level between the background noise and the start or end of the word may be slight, 
and so the end points will be very unreliably defined. Even when a word begins and 
ends in a strong vowel, it is common for speakers to precede the word with slight 
noises caused by opening the lips, and to follow the word by quite noisy exhalation. 
If these spurious noises are to be excluded the level threshold will certainly have to 
be set high enough to also exclude weak unvoiced fricatives. Some improvement in 
separation of speech from background noise can be obtained if the spectral 
properties of the noise are also taken into account. However, there is no reliable 
way of determining whether low-level sounds that might immediately precede or 
follow a word should be regarded as an essential part of that word without 
simultaneously determining the identity of the word. 

Of course, even when a successful level threshold criterion has been found, it 
is necessary to take account of the fact that some words can have a period of silence 
within them. Any words (such as "containing" and "stop") containing unvoiced stop 
consonants at some point other than the beginning belong to this category. The 
level threshold can still be used in such cases, provided the end-of-word decision is 
delayed by the length of the longest possible stop gap, to make sure that the word 
has really finished. When isolated words with a final unvoiced stop consonant are 
used in pattern matching, a more serious problem, particularly for English, is that 
the stop burst is sometimes, but not always, omitted by the speaker. Even when the 
end points are correctly determined, the patterns being compared for words which 
are nominally the same will then often be inherently different. 

Although approximate end points can be found for most words, it is apparent 
from the above comments that they are often not reliable. 

,. 
>' 

J 
11 

Amazon / Zentian Limited 
Exhibit 1016 

Page 17



~"ucJion to Automatic Speech Recognition: Template Matching /nrrvu 

s.sALLOWING FOR TIMESCALE VARIATIONS 

1/5 

Up to now we have assum~d ~at a~y words to be compared will be of the same 
length, and that correspondmg tlmes m separate utterances of a word will represent 
the same phonetic features. In practice speakers vary their speed of speaking, and 
often do so non-uniformly so that equivalent words of the same total length may 
differ in the middle. This timescale uncertainty is made worse by the unreliability 
of end-point detection. It would not be unusual for two patterns of apparently very 
different length to have the underlying utterances spoken at the same speed, and 
merely to have a final fricative cut short by the end-point detection algorithm in one 
case as a result of a slight difference in level. 

Some early implementations of isolated-word recognizers tried to compensate 
for the timescale variation by a uniform time normalization to ensure that all 
patterns being matched were of the same length. This process is a great 
improvement over methods such as truncating the longer pattern when it is being 
compared with a shorter one, but the performance of such machines was 
undoubtedly limited by differences in timescale. In the 1960s, however, a technique 
was developed which is capable of matching one word on to another in a way 
which applies the optimum non-linear timescale distortion to achieve the best match 
at all points. The mathematical technique used is known as dynamic programming 
(DP), and when applied to simple word matching the process is often referred to as 
dynamic time warping (DTW). DP in some form is now almost universally used 
in speech recognizers. 

8.6 DYNAMIC PROGRAMMING FOR TIME ALIGNMENT 

Assume that an incoming speech pattern and a template pattern are to be compared, 
having n and N frames respectively. Some distance metric can be used to calculate 
the distance, d(i,j), between frame i of the incoming speech and frame j of the 
template. To illustrate the principle, in Figure 8.3 the two sets of feature vectors of 
the words have been represented by letters of the word "pattern". Differences in 
timescale have been indicated by repeating or omitting letters of the word, and the 
fact that feature vectors will not be identical, even for corresponding points of 
equivalent words, is indicated by using different type styles for the letters. It is, of 
course, assumed in this explanation that all styles of the letter "a" will yield a lower 
value of distance between them than, say, the distance between an "a" and any 
example of the letter "p". To fmd the total difference between the two patterns, one 
requires to find the sum of all the distances between the individual pairs of frames 
along whichever path between the bottom-left and top-right comers in Figure 8.3 
that gives the smallest distance. This definition will ensure that corresponding 
frames of similar words are correctly aligned. 

One way of calculating this total distance is to consider all possible paths, and 
add the values of d(i,j) along each one. The distance measure between the patterns 
is then taken to be the lowest value obtained for the cumulative distance. Although 
this method is bound to give the correct answer, the number of valid paths becomes 
so large that the computation is impossible for any practical speech recognition 
machine. Dynamic programming is a mathematical technique which guarantees to 
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Figure 8.3 Illustration of a time-alignment path between two words that 
differ in their timescale. Any point i,j can have three predecessors as shown. 

find the cumulative distance along the optimum path without having to calculate the 
cumulative distance along all possible paths. 

Let us assume that valid paths obey certain common-sense constraints, such 
that portions of words do not match when mutually reversed in time (i.e. the path 
on Figure 8.3 always goes forward with a non-negative slope). Although skipping 
single frames could be reasonable in some circumstances, it simplifies the 
explanation if, for the present, we also assume that we can never omit from the 
comparison process any frame from either pattern. In Figure 8.3, consider a point 
i,j somewhere in the middle of both words. If this point is on the optimum path, 
then the constraints of the path necessitate that the immediately preceding point on 
the path is i- 1,j or i- 1,j- 1 or i,j- 1. These three points are associated with a 
horizontal, diagonal or vertical path step respectively. Let D(i,j) be the cumulative 
distance along the optimum path from the beginning of the word to point i,j, thus: 

i,j 

D(i, j) = L d(x, y) 
x,y=l,I 
along the 
best path 

(8.1) 

As there are only the three possibilities for the point before point i,j it follows that 

D(i, j) = min[D(i -1, }), D(i -1, j -1), D(i, j -1) ]+ d(i, j) . (8.2) 

The best way to get to point i,j is thus to get to one of the immediately 
preceding points by the best way, and then take the appropriate step to i,j. The 
value of D( 1, 1) must be equal to d( 1, 1) as this point is the beginning of all possib~e 
paths. To reach points along the bottom and the left-hand side of Figure 8.3 ther~ 15 

only one possible direction (horizontal or vertical, respectively). Therefore, starn~g 
with the value of D(l, 1), values of D(i, 1) or values of D(l,j) can be calculate~ lll 
tum for increasing values of i or j. Let us assume that we calculate the vertical 
column, D(I,j), using a reduced form of Equation (8.2) that does not have to 
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consider values of D(i-1,j) or D(i- l,j-1). (As the scheme is symmetrical we 
could equally well have chosen the horizontal direction instead.) When the first 
column values for D(l,j) are known, Equation (8.2) can be applied successively to 
calculate D(i,j) for columns 2 to n. The value obtained for D(n, N) is the score for 
the best way of matching the two words. For simple speech recognition 
applications, just the final score is required, and so the only working memory 
needed during the calculation is a one-dimensional array for holding a column ( or 
row) of D(i,j) values. However, there will then be no record at the end of what the 
optimum path was, and if this information is required for any purpose it is also 
necessary to store a two-dimensional array of back-pointers, to indicate which 
direction was chosen at each stage. It is not possible to know until the end has been 
reached whether any particular point will lie on the optimum path, and this 
infonnation can only be found by tracing back from the end. 

8.7 REFINEMENTS TO ISOLATED-WORD DP MATCHING 

The DP algorithm represented by Equation (8.2) is intended to deal with variations 
of timescale between two otherwise similar words. However, if two examples of a 
word have the same length but one is spoken faster at the beginning and slower at 
the end, there will be more horizontal and vertical steps in the optimum path and 
fewer diagonals. As a result there will be a greater number of values of d(i, j) in the 
final score for words with timescale differences than when the timescales are the 
same. Although it may be justified to have some penalty for timescale distortion, on 
the grounds that an utterance with a very different timescale is more likely to be the 
wrong word, it is better to choose values of such penalties explicitly than to have 
them as an incidental consequence of the algorithm. Making the number of 
contributions of d(i,j) to D(n, N) independent of the path can be achieved by 
modifying Equation (8.2) to add twice the value of d(i,j) when the path is diagonal. 
One can then add an explicit penalty to the right-hand side of Equation (8.2) when 
the step is either vertical or horizontal. Equation (8.2) thus changes to: 

D(i,j) = min[D(i -1,j) + d(i,j) + hdp, 
D(i -1,j -1) + 2d(i,j), 
D(i,j -1) + d(i,j) + vdp]. (8.3) 

Suitable values for the horizontal and vertical distortion penalties, hdp and vdp, 
would probably have to be found by experiment in association with the chosen 
distance metric. It is, however, obvious that, all other things being equal, paths with 
appreciable timescale distortion should be given a worse score than diagonal paths, 
and so the values of the penalties should certainly not be zero. 

Even in Equation (8.3) the number of contributions to a cumulative distance 
will depend on the lengths of both the example and the template, and so there will 
be a tendency for total distances to be smaller with short templates and larger with 
long templates. The final best-match decision will as a result favour short words. 
This bias can be avoided by dividing the total distance by the template length. 

The algorithm described above is inherently symmetrical, and so makes no 
distinction between the word in the store of templates and the new word to be 
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identified. DP is, in fact, a much more general technique that can be applied to a 
wide range of applications, and which has been popularized especially by the work 
of Bellman ( 1957). The number of choices at each stage is not restricted to three, as 
in the example given in Figure 8.3. Nor is it necessary in speech recognition 
applications to assume that the best path should include all frames of both patterns. 
If the properties of the speech only change slowly compared with the frame 
interval, it is permissible to skip occasional frames, so achieving timescale 
compression of the pattern. A particularly useful alternative version of the 
algorithm is asymmetrical, in that vertical paths are not permitted. The steps have a 
slope of zero (horizontal), one (diagonal), or two (which skips one frame in the 
template). Each input frame then makes just one contribution to the total distance, 
so it is not appropriate to double the distance contribution for diagonal paths. Many 
other variants of the algorithm have been proposed, including one that allows 
average slopes of 0.5, 1 and 2, in which the 0.5 is achieved by preventing a 
horizontal step if the previous step was horizontal. Provided the details of the 
formula are sensibly chosen, all of these algorithms can work well. In a practical 
implementation computational convenience may be the reason for choosing one in 
preference to another. 

8.8 SCORE PRUNING 

Although DP algorithms provide a great computational saving compared with 
exhaustive search of all possible paths, the remaining computation can be 
substantial, particularly if each incoming word has to be compared with a large 
number of candidates for matching. Any saving in computation that does not affect 
the accuracy of the recognition result is therefore desirable. One possible 
computational saving is to exploit the fact that, in the calculations for any column 
in Figure 8.3, it is very unlikely that the best path for a correctly matching word 
will pass through any points for which the cumulative distance, D(i,j), is much in 
excess of the lowest value in that column. The saving can be achieved by not 
allowing paths from relatively badly scoring points to propagate further. (This 
process is sometimes known as pruning because the growing paths are like 
branches of a tree.) There will then only be a small subset of possible paths 
considered, usually lying on either side of the best path. If this economy is applied 
it can no longer be guaranteed that the DP algorithm will find the best-scoring path. 
However, with a value of score-pruning threshold that reduces the average amount 
of computation by a factor of 5-10 the right path will almost always be obtained if 
the words are fairly similar. The only circumstances where this amount of pruning 
is likely to prevent the optimum path from being obtained will be if the words are 
actually different, when the resultant over-estimate of total distance would not 
cause any error in recognition. 

Figures 8.4(a), 8.5 and 8.6 show DP paths using the symmetrical algorithm 
for the words illustrated in Figures 8.1 and 8.2. Figure 8.4(b) illustrates the 
asymmetrical algorithm for comparison, with slopes of 0, 1 and 2. In Figure 8.4 
there is no time-distortion penalty, and Figure 8.5 with a small distortion penalty 
shows a much more plausible matching of the two timescales. The score pruning 
used in these figures illustrates the fact that there are low differences in cumulative 
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Figure 8.4 (a) DP alignment between two examples of the word "eight", with no 
timescale distortion penalty but with score pruning. The optimum path, obtained by 
tracing back from the top right-hand comer, is shown by the thick line. (b) Match between 
the same words as in (a), but using an asymmetric algorithm with slopes of 0, l and 2. 

1/9 

?istance only along a narrow band around the optimum path. When time alignment 
1s attempted between dissimilar words, as in Figure 8.6, a very irregular path is 
obtained, with a poor score. Score pruning was not used in this illustration, because 
any path to the end of the word would then have been seriously sub-optimal. 
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Figure 8.5 As for Figure 8.4(a), but with a small timescale distortion penalty. 
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Figure 8.6 The result of trying to align two dissimilar words ("three" and "eight") 
within the same DP algorithm as was used for Figure 8.5. The score pruning was 
removed from this illustration, because any path to the end of the word would then have 
been seriously sub-optimal. It can be seen that if the last frame had been removed from 
the template, the path would have been completely different, as marked by blobs. 
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8.9 ALLOWING FOR END-POINT ERRORS 

If an attempt is made to match two intrinsically similar words when one has its 
specified end point significantly in error, the best-matching path ought to align all 
the frames of the two words that really do correspond. Such a path implies that the 
extra frames of the longer word will all be lumped together at one end, as illustrated 
in Figure 8. 7. As this extreme timescale compression is not a result of a genuine 
difference between the words, it may be better not to have any timescale distortion 
penalty for frames at the ends of the patterns, and in some versions of the algorithm 
it may be desirable not to include the values of d(i,j) for the very distorted ends of 
the path. If the chosen DP algorithm disallows either horizontal steps or vertical 
steps, correct matching of words with serious end-point errors will not be possible, 
and so it is probably better to remove the path slope constraints for the end frames. 
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Figure 8.7 An example of the word "one" followed by breath noise, being aligned with a "one" 
template. A timescale distortion penalty was used except for the beginning and end frames. 

8.10 DYNAMIC PROGRAMMING FOR CONNECTED WORDS 

Up to now we have assumed that the words to be matched have been spoken in 
isolation, and that their beginnings and ends have therefore already been identified 
(although perhaps with difficulty). When words are spoken in a normal connected 
fashion, recognition is much more difficult because it is generally not possible to 
determine where one word ends and the next one starts independently of identifying 
what the words are. For example, in the sequence "six teenagers,, it would be 
difficult to be sure that the first word was "six" rather than "sixteen,, until the last 
syllable of the phrase had been spoken, and "sixty,, might also have been possible 
before the [n] occurred. In some cases, such as the "grade A,, example given in 
Chapter 1, a genuine ambiguity may remain, but for most tasks any ambiguities are 
resolved when at most two or three syllables have followed a word boundary. 

There is another problem with connected speech as a result of co-articulation 
between adjacent words. It is not possible even to claim the existence of a clear 
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point where one word stops and the next one starts. However, it is mainly the ends 
of words that are affected and, apart from a likely speeding up of the timescale 
words in a carefully spoken connected sequence do not normally differ greatly fro~ 
their isolated counterparts except near the ends. In matching connected sequences 
of words for which separate templates are already available one might thus defme 
the best-matching word sequence to be given by the sequence of templates which 

' when joined end to end, offers the best match to the input. It is of course assumed 
that the optimum time alignment is used for the sequence, as with DP for isolated 
words. Although this model of connected speech totally ignores co-articulation, it 
has been successfully used in many connected-word speech recognizers. 

As with the isolated-word time-alignment process, there seems to be a 
potentially explosive increase in computation, as every frame must be considered as 
a possible boundary between words. When each frame is considered as an end point 
for one word, all other permitted words in the vocabulary have to be considered as 
possible starters. Once again the solution to the problem is to apply dynamic 
programming, but in this case the algorithm is applied to word sequences as well as 
to frame sequences within words. A few algorithms have been developed to extend 
the isolated-word DP method to work economically across word boundaries. One 
of the most straightforward and widely used is described below. 

In Figure 8.8 consider a point that represents a match between frame i of a 
multi-word input utterance and frame j of template number k. Let the cumulative 
distance from the beginning of the utterance along the best-matching sequence of 
complete templates followed by the first j frames of template k be D(i,j, k). The 
best path through template k can be found by exactly the same process as for 
isolated-word recognition. However, in contrast to the isolated-word case, it is not 
known where on the input utterance the match with template k should finish, and 
for every input frame any valid path that reaches the end of template k could join to 
the beginning of the path through another template, representing the next word. 
Thus, for each input frame i, it is necessary to consider all templates that may have 
just ended in order to find which one has the lowest cumulative score so far. This 
score is then used in the cumulative distance at the start of any new template, m: 

D(i, 1, m) = min [D(i -1, L(k),k)]+ d(i, 1, m), (8.4) 
overk 

where L(k) is the length of template k. The use of i - 1 in Equation (8.4) implies 
that moving from the last frame of one template to the first frame of another always 
involves advancing one frame on the input ( i.e. in effect only allowing diagonal 
paths between templates). This restriction is necessary, because the scores for the 
ends of all other templates may not yet be available for input frame i when the path 
decision has to be made. A horizontal path from within template m could have been 
included in Equation (8.4), but has been omitted merely to simplify the explanation. 
A timescale distortion penalty has not been included for the same reason. 

In the same way as for isolated words, the process can be started off at the 
beginning of an utterance because all values of D(O, L(k), k) will be zero. At the end 
of an utterance the template that gives the lowest cumulative distance is assumed to 
represent the final word of the sequence, but its identity gives no indication of the 
templates that preceded it. These can only be determined by storing pointers to the 
preceding templates of each path as it evolves, and then tracing back when the final 
point is reached. It is also possible to recover the positions in the input sequence 
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Figure 8.8 Diagram indicating the best-matching path from the beginning of an utterance to the j th 

frame of template T3 and the ith frame of the input. ln the example shown i is in the middle of the 
second word of the input, so the best path includes one complete template (T1) and a part of T3. The 
cumulative distance at this point is denoted by D(i,j, 3), or in general by D(i,j, k) for the k th template. 

where the templates of the matching sequence start and finish, so segmenting the 
utterance into separate words. Thus we solve the segmentation problem by delaying 
the decisions until we have seen the whole utterance and decided on the words. 

The process as described so far assumes that any utterance can be modelled 
completely by a sequence of word templates. In practice a speaker may pause 
between words, so giving a period of silence ( or background noise) in the middle of 
an utterance. The same algorithm can still be used for this situation by also storing 
a template for a short period of silence, and allowing this silence template to be 
included between appropriate pairs of valid words. If the silence template is also 
allowed to be chosen at the start or end of the sequence, the problem of end-point 
detection is greatly eased. It is only necessary to choose a threshold that will never 
be exceeded by background noise, and after the utterance has been detected, to 
extend it by several frames at each end to be sure that any low-intensity parts of the 
words are not omitted. Any additional frames before or after the utterance should 
then be well modelled by a sequence of one or more silence templates. 

When a sequence of words is being spoken, unintentional extraneous noises 
(such as grunts, coughs and lip smacks) will also often be included between words. 
In an isolated-word recognizer these noises will not match well to any of the 
templates, and can be rejected on this basis. In a connected-word algorithm there is 
no provision for not matching any part of the sequence. However, the rejection of 
these unintentional insertions can be arranged by having a special template, often 
called a wildcard template, that bypasses the usual distance calculation and is 
deemed to match with any frame of the input to give a standard value of distance. 
This value is chosen to be greater than would be expected for corresponding frames 
of equivalent words, but less than should occur when trying to match quite different 
sounds. The wildcard will then provide the best score when attempting to match 
spurious sounds and words not in the stored template vocabulary, but should not 
normally be chosen in preference to any of the well-matched words in the input. 
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8.11 CONTINUOUS SPEECH RECOGNITION 

In the connected-word algorithm just described, start and finish points of the input 
utterance must at least be approximately determined. However it is not generally 
necessary to wait until the end of an utterance before identifying the early word·s. 
Even before the end, one can trace back along all current paths through the tree that 
represents the candidates for the template sequence. This tree will always involve 
additional branching as time goes forward, but the ends of many of the 'twigs' will 
not represent a low enough cumulative distance to successfully compete with other 
twigs as starting points for further branching, and so paths along these twigs will be 
abandoned. It follows that tracing back from all currently active twigs will normally 
involve coalescence of all paths into a single 'trunk', which therefore represents a 
uniquely defined sequence of templates (see Figure 8.9). The results up to the first 
point of splitting of active paths can therefore be output from the machine, after 
which the back-pointers identifying that part of the path are no longer needed, nor 
are those representing abandoned paths. The memory used for storing them can 
therefore be released for re-use with new parts of the input signal. 

The recognizer described above can evidently operate continuously, with a 
single pass through the input data, outputting its results always a few templates 
behind the current best match. Silence templates are used to match the signal when 
the speaker pauses, and wildcards are used for extraneous noises or inadmissible 
words. The time lag for output is determined entirely by the need to resolve 
ambiguity. When two alternative sequences of connected words both match the 
input well, but with different boundary points ( e.g. "grey day" and "grade A") it is 
necessary to reach the end of the ambiguous sequence before a decision can be 
reached on any part of it. (In the example just given, the decision might even then 

------ Unambiguous paths 
------Currently active paths 

- - - - - - - Abandoned paths 

Current point 
in time 

Figure 8.9 Trace-back through a word decision tree to identify unambiguous paths for a three-word 
vocabulary continuous recognizer. Paths are abandoned when the cumulative distances of all routes 
to the ends of the corresponding templates are greater than for paths to the ends of different template I 
sequences at the same points in the input. Template sequences still being considered are T1-T1-Tr I 
T1, T1-T1-T3-T2and T1-T3-T1-T2. Thus T2 is being scored separately for two preceding sequences. ~ 

I 
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be wrong because of inherent ambiguity in the acoustic signal.) On the other hand, 
if the input matches very badly to all except one of the permitted words, all paths 
not including that word will be abandoned as soon as the word has finished. In fact, 
if score pruning is used to cause poor paths to be abandoned early, the path in such 
a case may be uniquely detennined even at a matching point within the word. There 
is plenty of evidence that human listeners also often decide on the identity of a long 
word before it is complete if its beginning is sufficiently distinctive. 

8.12 SYNTACTIC CONSTRAINTS 

The rules of grammar often prevent certain sequences of words from occurring in 
human language, and these rules apply to particular syntactic classes, such as 
nouns, verbs, etc. In the more artificial circumstances in which speech recognizers 
are often used, the tasks can sometimes be arranged to apply much more severe 
constraints on which words are permitted to follow each other. Although applying 
such constraints requires more care in designing the application of the recognizer, it 
usually offers a substantial gain in recognition accuracy because there are then 
fewer potentially confusable words to be compared. The reduction in the number of 
templates that need to be matched at any point also leads to a computational saving. 

8.13 TRAINING A WHOLE-WORD RECOGNIZER 

In all the algorithms described in this chapter it is assumed that suitable templates 
for the words of the vocabulary are available in the machine. Usually the templates 
are made from speech of the intended user, and thus a training session is needed 
for enrolment of each new user, who is required to speak examples of all the 
vocabulary words. If the same user regularly uses the machine, the templates can be 
stored in some back-up memory and re-loaded prior to each use of the system. For 
isolated-word recognizers the only technical problem with training is end-point 
detection. If the templates are stored with incorrect end points the error will affect 
recognition of every subsequent occurrence of the faulty word. Some systems have 
tried to ensure more reliable templates by time aligning a few examples of each 
word and averaging the measurements in corresponding frames. This technique 
gives some protection against occasional end-point errors, because such words 
would then give a poor match in this alignment process and so could be rejected. 

If a connected-word recognition algorithm is available, each template can be 
segmented from the surrounding silence by means of a special training syntax that 
only allows silence and wildcard templates. The new template candidate will 
obviously not match the silence, so it will be allocated to the wildcard. The 
boundaries of the wildcard match can then be taken as end points of the template. 

In acquiring templates for connected-word recognition, more realistic training 
examples can be obtained if connected words are used for the training. Again the 
recognition algorithm can be used to determine the template end points, but the 
syntax would specify the preceding and following words as existing templates, with 
just the new word to be captured represented by a wildcard between them. Provided 
the surrounding words can be chosen to give clear acoustic boundaries where they 
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join to the new word, the segmentation will then be fairly accurate. This process is 
often called embedded training. More powerful embedded training procedures for 
use with statistical recognizers are discussed in Chapters 9 and 11. 

CHAPTER 8 SUMMARY 

• Most early successful speech recogrution machines worked by pattern 
matching on whole words. Acoustic analysis, for example by a bank of band­
pass filters, describes the speech as a sequence of feature vectors, which can be 
compared with stored templates for all the words in the vocabulary using a 
suitable distance metric. Matching is improved if speech level is coded 
logarithmically and level variations are normalized. 

• Two major problems in isolated-word recognition are end-point detection and 
timescale variation. The timescale problem can be overcome by dynamic 
programming (DP) to find the best way to align the timescales of the incoming 
word and each template (known as dynamic time warping). Performance is 
improved by using penalties for timescale distortion. Score pruning, which 
abandons alignment paths that are scoring badly, can save a lot of computation. 

• DP can be extended to deal with sequences of connected words, which has the 
added advantage of solving the end-point detection problem. DP can also 
operate continuously, outputting words a second or two after they have been 
spoken. A wildcard template can be provided to cope with extraneous noises 
and words that are not in the vocabulary. 

• A syntax is often provided to prevent illegal sequences of words from being 
recognized. This method increases accuracy and reduces the computation . 

CHAPTER 8 EXERCISES 

ES.I Give examples of factors which cause acoustic differences between 
utterances of the same word. Why does simple pattern matching work 
reasonably well in spite of this variability? 

ES.2 What factors influence the choice of bandwidth for filter-bank analysis? 

ES.3 What are the reasons in favour of logarithmic representation of power in 
filter-bank analysis? What difficulties can arise due to the logarithmic scale? 

ES.4 Explain the principles behind dynamic time warping, with a simple diagram. 

E8.5 Describe the special precautions which are necessary when using the 
symmetrical DTW algorithm for isolated-word recognition. 

ES.6 How can a DTW isolated-word recognizer be made more tolerant of end­
point errors? 

E8.7 How can a connected-word recognizer be used to segment a speech signal 
into individual words? 

E8.8 What extra processes are needed to tum a connected-word recognizer into a 
continuous recognizer? 

E8.9 Describe a training technique suitable for connected-word recognizers. 
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CHAPTER9 

Introduction to Stochastic 
Modelling 

9.1 FEATURE VARIABILITY IN PATTERN MATCHING 

The recognition methods described in the previous chapter exploit the fact that 
repeated utterances of the same word normally have more similar acoustic patterns 
than utterances of different words. However, it is to be expected that some parts of 
a pattern may vary more from occurrence to occurrence than do other parts. In the 
case of connected words, the ends of the template representing each word are likely 
to have a very variable degree of match, depending on the amount that the input 
pattern is modified by co-articulation with adjacent words. There is also no reason 
to assume that the individual features of a feature vector representing a particular 
phonetic event are of equal consistency. In fact, it may well occur that the value of 
a feature could be quite critical at a particular position in one word, while being 
very variable and therefore not significant in some part of a different word. 

Timescale variability has already been discussed in Chapter 8. It must always 
be desirable to have some penalty for timescale distortion, as durations of speech 
sounds are not normally wildly different between different occurrences of the same 
word. However, there is no reason to assume that the time distortion penalty should 
be constant for all parts of all words. For example, it is known that long vowels can 
vary in length a lot, whereas most spectral transitions associated with consonants 
change in duration only comparatively slightly. 

From the above discussion it can be seen that the ability of a recognizer to 
distinguish between words is likely to be improved if the variability of the patterns 
can be taken into account. We should not penalize the matching of a particular 
word if the parts that match badly are parts which are known to vary extensively 
from utterance to utterance. To use information about variability properly we need 
to have some way of collecting statistics which represent the variability of the word 
patterns, and a way of using this variability in the pattern-matching process. 

The basic pattern-matching techniques using DTW as described in Chapter 8 
started to be applied to ASR in the late 1960s and became popular during the 
1970s. However, the application of statistical techniques to this problem was also 
starting to be explored during the 1970s, with early publications being made 
independently by Baker (1975) working at Carnegie-Mellon University (CMU) and 
by Jelinek (1976) from IBM. These more powerful techniques for representing 
variability have gradually taken over from simple pattern matching. In the period 
since the early publications by Baker and by Jelinek, there has been considerable 
research to refine the use of statistical methods for speech recognition, and some 
variant of these methods is now almost universally adopted in current systems. 

This chapter provides an introduction to statistical methods for ASR. In order 
to accommodate pattern variability, these methods use a rather different way of 
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defining the degree of fit between a word and some speech data, as an alternative to 
the 'cumulative distance' used in Chapter 8. This measure of degree of fit is based 
on the notion of probability, and the basic theory is explained in this chapter. For 
simplicity in introducing the concepts, the discussion in this chapter will continue 
to concentrate on words as the recognition unit. In practice, the majority of current 
recognition systems represent words as a sequence of sub-word units, but the 
underlying theory is not affected by the choice of unit. The use of sub-word units 
for recognition, together with other developments and elaborations of the basic 
statistical method will be explained in later chapters. In the following explanation, 
some elementary knowledge of statistics and probability theory is assumed, but 
only at a level which could easily be obtained by referring to a good introductory 
textbook ( see Chapter 1 7 for some references). 

9.2 INTRODUCTION TO HIDDEN MARKOV MODELS 

Up to now we have considered choosing the best matching word by finding the 
template which gives the minimum cumulative 'distance' along the optimum 
matching path. An alternative approach is, for each possible word, to postulate 
some device, or model, which can generate patterns of features to represent the 
word. Every time the model for a particular word is activated, it will produce a set 
of feature vectors that represents an example of the word, and if the model is a 
good one, the statistics of a very large number of such sets of feature vectors will be 
similar to the statistics measured for human utterances of the word. The best 
matching word in a recognition task can be defined as the one whose model is most 
likely to produce the observed sequence of feature vectors. What we have to 
calculate for each word is thus not a 'distance' from a template, but the a posteriori 
probability that its model could have produced the observed set of feature vectors. 
We do not actually have to make the model produce the feature vectors, but we use 
the known properties of each model for the probability calculations. We will 
assume for the moment that the words are spoken in an 'isolated' manner, so that 
we know where the start and end of each word are, and the task is simply to identify 
the word. Extensions to sequences of words will be considered in Section 9.11. 

We wish to calculate the a posteriori probability, P(wlY), of a particular 
word, w, having been uttered during the generation of a set of feature observations, 
Y. We can use the model for w to calculate P(Ylw), which is the probability of Y 
conditioned on word w (sometimes referred to as the likelihood of w). To obtain 
P(wlY), however, we must also include the a priori probability of word w having 
been spoken. The relationship between these probabilities is given by Bayes' rule: 

P(wl Y) = P(Y I w)P(w). 
P(Y) 

(9.1) 

This equation states that the probability of the word given the observations is 
equal to the probability of the observations given the word, multiplied by the 
probability of the word (irrespective of the observations), and divided by the 
probability of the observations. The probability, P( Y ), of a particular set of feature 
observations, Y, does not depend on which word is being considered as a possible 
match, and therefore only acts as a scaling factor on the probabilities. Hence, if the 
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goal is to find the word w which maximizes P( wl Y ), the P( Y) term can be ignored, 
because it does not affect the choice of word. If for the particular application all 
pennitted words are equally likely, then the P(w) term can also be ignored, so we 
merely have to choose the word model that maximizes the probability, P(Y lw), of 
producing the observed feature set, Y. In practice for all but the simplest speech 
recognizers the probability of any particular word occurring will depend on many 
factors, and for large vocabularies it will depend on the statistics of word 
occurrence in the language. This aspect will be ignored in the current chapter, but 
will be considered further in Chapter 12. 

The way we have already represented words as sequences of template frames 
gives us a starting point for the form of a possible model. Let the model for any 
word be capable of being in one of a sequence of states, each of which can be 
associated with one or more frames of the input. In general the model moves from 
one state to another at regular intervals of time equal to the frame interval of the 
acoustic analysis. However, we know that words can vary in timescale. In the 
asymmetrical DP algorithm mentioned in Chapter 8 (Figure 8.4(b ), showing slopes 
of 0, 1 and 2) the timescale variability is achieved by repeating or skipping frames 
of the template. In our model this possibility can be represented in the sequence of 
states by allowing the model to stay in the same state for successive frame times, or 
to bypass the next state in the sequence. The form of this simple model is shown in 
Figure 9 .1. In fact, if a word template has a sequence of very similar frames, such 
as might occur in a long vowel, it is permissible to reduce the number of states in 
the model by allowing it to stay in the same state for several successive frames. 

The mathematics associated with a model such as the one shown in Figure 9.1 
can be made more tractable by making certain simplifying assumptions. To be more 
specific, it is assumed that the output of the model is a stochastic process (i.e. its 
operation is governed completely by a set of probabilities), and that the 
probabilities of all its alternative actions at any time t depend only on the state it is 
in at that time, and not on the value oft. The current output of the model therefore 
depends on the identity of the current state, but is otherwise independent of the 
sequence of previous states that it has passed through to reach that state. Hence the 
model's operation is a first-order Markov process, and the sequence of states is a 
first-order Markov chain. Although the model structure shown in Figure 9.1 is 
quite appropriate for describing words that vary in timescale, the equations that 
represent the model's behaviour have exactly the same form in the more general 
case where transitions are allowed between all possible pairs of states. 

At every frame time the model is able to change state, and will do so 
randomly in a way determined by a set of transition probabilities associated with 
the state it is currently in. By definition, the probabilities of all transitions from a 

Figure 9.1. State transitions for a simple word model, from an initial state, I, to a final state, F. 
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state at any frame time must sum to 1, but the sum includes the probability of a 
transition that re-enters the same state. When the model is activated a sequence of 
feature vectors is emitted, in the same form as might be observed when a word is 
spoken. However, in the type of model considered here, observing the feature 
vectors does not completely determine what the state sequence is. In addition to its 
transition probabilities, each state also has associated with it a probability density 
function (p.d.f.) for the feature vectors. Each p.d.f. can be used to calculate the 
probability that any particular set of feature values could be emitted when the 
model is in the associated state. This probability is usually known as the emission 
probability. The actual values of the observed features are, therefore, probabilistic 
functions of the states, and the states themselves are hidden from the observer. For 
this reason this type of model is called a hidden Markov model (HMM). 

The emission p.d.f. for a state may be represented as a discrete distribution, 
with a probability specified separately for each possible feature vector. 
Alternatively, it is possible to use a parameterized continuous distribution, in which 
feature vector probabilities are defined by the parameters of the distribution. 
Although there are significant advantages, which will be explained in Section 9.7, 
in modelling feature probabilities as continuous functions, it will simplify the 
following explanation if we initially consider only discrete probability distributions. 

9.3 PROBABILITY CALCULATIONS IN HIDDEN MARKOV MODELS 

In order to explain the HMM probability calculations, we will need to introduce 
some symbolic notation to represent the different quantities which must be 
calculated. Notation of this type can be found in many publications on the subject 
of HMMs for ASR. Certain symbols have come to be conventionally associated 
with particular quantities, although there is still some variation in the details of the 
notation that is used. In choosing the notation for this book, our aims were to be 
consistent with what appears to be used the most often in the published literature, 
while also being conceptually as simple as possible. 

We will start by assuming that we have already derived good estimates for the 
parameters of all the word models. (Parameter estimation will be discussed later in 
the chapter.) The recognition task is to determine the most probable word, given the 
observations (i.e. the word w for which P(wlY) is maximized). As explained in 
Section 9 .2, we therefore need to calculate the likelihood of each model emitting 
the observed sequence of features (i.e. the value of P(Y lw) for each word w). 

Considering a single model, an output representing a whole word arises from 
the model going through a sequence of states, equal in length to the number of 
observed feature vectors, T, that represents the word. Let the total number of states 
in the model be N, and let s, denote the state that is occupied during frame t of the 
model's output. We will also postulate an initial state, / and a final state, F, which 
are not associated with any emitted feature vector and only have a restricted set of 
possible transitions. The initial state is used to specify transition probabilities from 
the start to all permitted first states of the model, while the final state provides 
transition probabilities from all possible last emitting states to the end of the word. 
The model must start in state I and end in state F, so in total the model will go 
through a sequence of T + 2 states to generate T observations. The use of non-
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emitting initial and final states provides a convenient method for modelling the fact 
that some states are more likely than others to be associated with the first and the 
last frame of the word respectively 1

. These compulsory special states will also be 
useful in later discussions requiring sequences of models. 

The most widely used notation for the probability of a transition from state i 
to state j is ai.i. The emission probability of state j generating an observed feature 
vector y, is usually denoted bj (y,). 

We need to compute the probability of a given model producing the observed 
sequence of feature vectors, Yi to Yr· We know that this sequence of observations 
must have been generated by a state sequence of length T (plus the special initial 
and final states) but, because the model is hidden, we do not know the identities of 
the states. Hence we need to consider all possible state sequences of length T. The 
probability of the model generating the observations can then be obtained by 
finding the joint probability of the observations and any one state sequence, and 
summing this quantity over all possible state sequences of the correct length: 

L P(y1,Y2, .. ,Yr,s1,s2,··,sr) 
over all possible 
state sequences 

of length T 

L P(y1,Y2,··,Yr,l 51,s2,··,sr)P(s1,s2, ... ,sr), (9.2) 
over all possible 
state sequences 

of length T 

where, for notational convenience, in the equations we are omitting the dependence 
of all the probabilities on the identity of the model. 

Now the probability of any particular state sequence is given by the product 
of the transition probabilities: 

(9.3) 

where a is the probability of a transition from the state occupied at frame t to 
s,st+I 

the state at frame t + 1; a, and a F similarly define the transition probabilities 
SI ST 

from the initial state / and to the final state F. If we assume that the feature vectors 
are generated independently for each state, the probability of the observations given 
a particular state sequence of duration T is the product of the individual emission 
probabilities for the specified states: 

T 

P(Y1>Y2,··,Yr I S1>S2,··,Sr) = ITbs, (y,) · 
t=I 

(9.4) 

1 Some published descriptions of HMM theory do not include special initial and final states. Initial 
conditions are sometimes accommodated by a vector of probabilities for starting in each of the states 
(e.g. Levinson et al., I 983), which has the same effect as the special initial state used here. For the last 
frame of the word, approaches include allowing the model to end in any state (e.g. Levinson et al., 
1983) or enforcing special conditions to only allow the model to end in certain states. The treatment of 
the first and last frames does not alter the basic fonn of the probability calculations, but it may affect 
the details of the expressions associated with the start and end of an utterance. 
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Thus the probability of the model emitting the complete observation sequence is: 

P(Yi ,Y2,··,Yr) = L a1s1 [ft b,, (y,)a,,,,.
1 
J bsr (Yr )asrF • (9.5) 

over all possible /=I 
state sequences 

of length T 

Unless the model has a small number of states and Tis small, there will be an 
astronomical number of possible state sequences, and it is completely impractical to 
make the calculations of Equation (9.5) directly for all sequences. One can 

' however, compute the probability indirectly by using a recurrence relationship. We 
will use the symbol a j(t) to be the probabilit/ of the model having produced the 
first t observed feature vectors and being in state j for frame t. The recurrence can 
be computed in terms of the values of a; ( t- 1) for all possible previous states, i. 

a /t) = P(y" Yi,··, Y, , s, = }) (9.6) 

= [ ta;(I-I)aij Jb/y,) for I< I< T (9.7) 

The value of aj ( 1 ), for the first frame, is the product of the transition probability a0 
from the initial state/, and the emission probability bj (y 1). 

a/1) = a/jb/y,) (9.8) 

The value of ai(T), for the last frame in the observation sequence, can be 
computed for any of the emitting states by repeated applications of Equation (9.7), 
starting from the result of Equation (9.8). 

The total probability of the complete set of observations being produced by 
the model must also include the transition probabilities into the final state F. We 
will define this quantity as aF (T ), thus: 

N 

P(y1,Y2,··,Yr) = aF(T) = La;(T)aiF • (9.9) 
i=I 

Equation (9.9) gives the probability of the model generating the observed 
data, taking into account all possible sequences of states. This quantity represents 
the probability of the observations given the word model ( the P( Y lw) term in 
Equation (9.1)). Incorporating the probability of the word, P(w), gives a probability 
that is a scaled version of P( wl Y ), the probability of the word having been spoken. 
Provided that the model is a good representation of its intended word, this 
probability provides a useful measure which can be compared with the probability 
according to alternative word models in order to identify the most probable word. 

' • - In the literature, this probability is almost universally represented by the symbol a. However, there ts 
some variation in the way in which the a symbol is annotated to indicate dependence on state and time. 
In particular, several authors (e.g. Rabiner and Juang (1993)) have used a,(j), whereas we have chosen 
ai(t) (as used by Knill and Young ( I 997) for example). The same variation applies to the quantities P, Y 

and ~. which will be introduced later. The differences are only notational and do not affect the meaning 
of the expressions, but when reading the literature it is important to be aware that such differences exist• 

Amazon / Zentian Limited 
Exhibit 1016 

Page 35



/ntrod11crio11 to Stochastic Modelling /33 

9.4 THE VITERBI ALGORITHM 

The probability of the observations, given the model, is made up of contributions 
from a very large number of alternative state sequences. However, the probability 
distributions associated with the states will be such that the probability of the 
observed feature vectors having been produced by many of the state sequences will 
be microscopically small compared with the probabilities associated with other 
state sequences. One option is to ignore all but the single most probable ~tate 
sequence. Equation (9.2) can be modified accordingly to give the probability, P, of 
the observations for this most probable state sequence: 

P(y1,Y2,···,yr)= max (P(y1,Y2,···,yr,s1,s2,···,sr)). (9.10) 
over all possible 
state sequences 

of length T 

The probability associated with the most probable sequence of states can be 
calculated using the Viterbi algorithm (Viterbi, 1967), which is a dynamic 
programming algorithm applied to probabilities. Let us define a new probability, 
a i (t) as the probability of being in the j th state, after having emitted the first t 
feature vectors and having been through the most probable sequence of t- 1 
preceding states in the process. Again we have a recurrence relation, equivalent to 
the one shown in Equation (9.7): 

a/t)= ma~(a;(t-l)au)b 1 (y,) for l<t~T. (9.11) 
over, 

The conditions for the first state are the same as for the total probability, which was 
given in Equation (9.8): 

a/1) = ai(l) = alibi(y 1). (9.12) 

Successive applications of Equation (9 .11) will eventually yield the values for 
a /T) . Defining a F (T) as the probability of the full set of observations being 
given by the most probable sequence of states, its value is given by: 

(9.13) 

The difference between the total probability and the probability given by the 
Viterbi algorithm depends on the magnitude of the contribution of the 'best' state 
sequence to the total probability summed over all possible sequences. If the feature­
vector p.d.f.s of all states are substantially different from each other, the probability 
of the observations being produced by the best sequence might not be appreciably 
less than the total probability including all possible sequences. The difference 
between the total probability and the probability for the best sequence will, 
however, be larger if the best path includes several consecutive frames shared 
between a group of two or more states which have very similar p.d.f.s for the 
feature vectors. Then the probability of generating the observed feature vectors 
would be almost independent of how the model distributed its time between the 
states in this group. The total probability, which is the sum over all possible 
allocations of frames to states, could then be several times the probability for the 
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best sequence. This point will be considered again in Section 9.14. However, the 
design of models used in current recognizers is such that sequences of states with 
similar emission p.d.f.s generally do not occur. As a consequence, in spite of the 
theoretical disadvantage of ignoring all but the best path, in practice the differences 
in performance between the two methods are usually small. Some variant of the 
Viterbi algorithm is therefore usually adopted for decoding in practical speech 
recognizers, as using only the best path requires less computation. (There can also be 
considerable advantages for implementation, as will be discussed in Section 9.12.) 

9.5 PARAMETER ESTIMATION FOR HIDDEN MARKOV MODELS 

So far, we have considered the probability calculations required for recognition. 
We have assumed that the parameters of the models, i.e. the transition probabilities 
and emission p.d.f.s for all the states, are already set to their optimum values for 
modelling the statistics of a very large number of human utterances of all the words 
that are to be recognized. In the discussion which follows we will consider the 
problem of deriving suitable values for these parameters from a quantity of training 
data. We will assume for the moment that the body of training data is of sufficient 
size to represent the statistics of the population of possible utterances, and that we 
have sufficient computation available to perform the necessary operations. 

The training problem can be formulated as one of determining the values of 
the HMM parameters in order to maximize the probability of the training data 
being generated by the models (P(Y lw) in Equation (9.1)). Because this conditional 
probability of the observations Y given word w is known as the 'likelihood' of the 
word w, the training criterion that maximizes this probability is referred to as 
maximum likelihood ( other training criteria will be considered in Chapter 11 ). If 
we knew which frames of training data corresponded to which model states, then it 
would be straightforward to calculate a maximum-likelihood estimate of the 
probabilities associated with each state. The transition probabilities could be 
calculated from the statistics of the state sequences, and the emission probabilities 
from the statistics of the feature vectors associated with each state. However, the 
'hidden' nature of the HMM states is such that the allocation of frames to states 
cannot be known. Therefore, although various heuristic methods can be formulated 
for analysing the training data to give rough estimates of suitable model parameters, 
there is no method of calculating the optimum values directly. 

If, however, one has a set of rough estimates for all the parameters, it is 
possible to use their values in a procedure to compute new estimates for each 
parameter. This algorithm was developed by Baum and colleagues and published in 
a series of papers in the late 1960s and early 1970s. It has been proved by Baum 
( 1972) that new parameter estimates derived in this way always produce a model 
that is at least as good as the old one in representing the data, and in general the 
new estimates give an improved model. If we iterate these operations a sufficiently 
large number of times the model will converge to a locally optimum solution. 
Unfortunately, it is generally believed that the number of possible local optima is so 
vast that the chance of finding the global optimum is negligible. However, it is 
unlikely that the global optimum would in practice be much better than a good local 
optimum, derived after initialization with suitable starting estimates for the models. 
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Baum's algorithm is an example of a general method which has come to be 
known as the expectation-maximization (EM) algorithm (Dempster et al., 1977). 
The EM algorithm is applicable to a variety of situations in which the task is to 
estimate model parameters when the observable data are 'incomplete', in the sense 
that some information (in this case the state sequence) is missing. 

The detailed mathematical proofs associated with the derivation of the 
re-estimation formulae for HMMs are beyond the scope of this book, although 
Chapter 17 gives some references. In the current chapter, we will describe the re­
estimation calculations and give son1e intuitive explanation. The basic idea is to use 
some existing estimates for the model parameters to calculate the probability of 
being in each state at every frame time, given these current estimates of the model 
parameters and the training data. The probabilities of occupying the states can then 
be taken into account when gathering the statistics of state sequences and of feature 
vectors associated with the states, in order to obtain new estimates for the transition 
probabilities and for the emission probabilities respectively. In the re-estimation 
equations we will use a bar above the symbol to represent a re-estimated value, and 
the same symbol without the bar to indicate its previous value. 

9.5.1 Forward and backward probabilities 

Suppose for the moment that we have just a single example of a word, and that this 
example comprises the sequence of feature vectors y 1 to YT· Also, assume that the 
word has been spoken in isolation and we know that y 1 corresponds to the first 
frame of the word, with YT representing the last frame. In Equation (9. 7) we showed 
how to compute a1 (t), which is the probability of the model having emitted the first 
t observed feature vectors and being in state}. The values of a1 (t) are computed for 
successive frames in order, going forward from the beginning of the utterance. 
When estimating parameters for state}, we will need to know the probability of 
being in the state at time t, while the model is in the process of emitting all the 
feature vectors that make up the word. For this purpose we also need to compute 
/Jj(t), which is defined as the backward probability of emitting the remaining T- t 
observed vectors that are needed to complete the word, given that the j th state was 
occupied for frame t : 

(9.14) 

When calculating the backward probabilities, it is necessary to start applying 
the recurrence from the end of the word and to work backwards through the 
sequence of frames. Each backward probability at time t is therefore derived from 
the backward probabilities at time t + 1. Because the notation convention is to move 
from state i to state}, it is usual to specify the recurrence relationship for the 
backward probabilities with the i th state occupied at time t. Thus the value of /3; (t) 
is computed in tenns of the values of /Ji (t + 1) for all possible following states j : 

N 

P;(t)= Laijbj(Y 1+1)/3j(t+1) 
j=I 

for T > t > 1. (9.15) 
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In contrast to Equation (9.7), it will be noticed that Equation (9.15) does 
inclu~~ the emission probabili~ for frame t. This difference in form between:; 
defirutJ.ons of a; ( t) and /3; ( t) 1s necessary because of the way we will comb· 
these quantities in Equation (9 .17). me 
. The first application of Equation (9 .15) us~s th~ fact that the model must be 
m the final state, F, at the end of the word. At this point all features will have bee 
emitted, so the value of /3; ( 1) is just the probability of a transition from state; 1: 1~ 
state F: 

1
~ 

I 

The probability of the model emitting the full set of T feature vectors and 
being in the j th state for the t th observed frame must be the product of the forward 
and backward probabilities for the given state and frame pair, thus: 

~ 

(9.17) <i 

Although it is not relevant to parameter re-estimation, it is interesting to note 
that, as the probability of generating the full set of feature vectors and being in state 
j for frame t is given by a J (t) /31 (t) , the probability of the observations 
irrespective of which state is occupied in frame t must be the value of this product 
summed over all states. We can write this probability as: 

N 

P(y1,Y2,···,yT)= La;(t)/J;(t) 
i=I 

for any value oft, (9.18) ( 
l.1 

I 

lr.i 
I 

where here we use i as the state index for ease of comparison with Equation (9.9). l~ 

Equation (9 .18) is true for any value of the frame time, t, and Equation (9.9) is thus I 
just a special case for the last frame, where t = T and in consequence /3; (T) = aif, 1~ 

9.5.2 Parameter re-estimation with forward and backward probabilities 

In practice when training a set of models there would be several ( say E) examples 
of each word, so the total number of feature vectors available is the sum of the 
numbers of frames for the individual examples. The re-estimation should use all the 
training examples with equal weight. For this purpose it is necessary to take into 
account that the current model would be expected to fit some examples better than 
others, and we need to prevent these examples from being given more weight in the 
re-estimation process. The simple product a 1 (t)f31 (t) does not allow for these 
differences, as it represents the joint probability of being in state j at time t aorl 
generating a particular set of feature vectors representing one example. In order to 
be able to combine these quantities for different examples, we require tbe 

;--, 

conditional probability of occupying state j given the feature vectors. . fi 
We will define a quantity /J (t), which is the probability of being in state) ir 

frame t, given the feature vectors for one example of the word. This quantity can ul~ 
?erived fr_om a/t)f3 1(_t)_ using Bayes' rule, and it ~~n be seen that the r::ing 
mvolves simply normahzmg a 

1 
(t) /3

1 
(t) by the probab1hty of the model gener • ' 

the observations. \ 
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yj(t)=P(s, =JIY1,Y2,··,yT)= P(y1,Y2,··,yT Is, =J)P(s, =}) 
P(y1 , Y2, ···,YT) 

_ P(y 1,y 2,-··,yr,s, = j) _ a1(t)/3 1(t) 
- -

P(Yi,Y2, .. ,Yr) aF(T) 

137 

(9.19) 

The normalization by aF (T) thus ensures that when there are several examples of 
the word, all frames of all examples will contribute equally to the re-estimation. 

The probability, bj (k), of observing some particular feature vector, k, when 
the model is in state j can be derived as the probability of the model being in state J 
and observing k, divided by the probability of the model being in state j. In order to 
take into account the complete set of training examples of the word, we need to sum 
both the numerator and the denominator over all frames of all examples. Hence, 
assuming E examples of the word, the re-estimate for the emission probability is 
given by: 

(9.20) 

e=I t=l 

In Equation (9.20), quantities for the eth example of the word are denoted by Te for 
the number of frames in the example and Y,e for the feature vector at the t th frame of 
the example, with yj(t, e) being used for the value of Y.J·(t) for the eth example. 

The denominator in Equation (9 .20) is the sum of the individual probabilities 
of being in state j for each frame time, given the complete set of training data, and 
is sometimes referred to as the state occupancy. In some publications, the term 
count is also used when referring to this quantity. Although it is in fact a sum of 
probabilities, because it has been summed over the complete data set it is 
equivalent to the expected number, or count, of frames for which the state is 
occupied (although it will not in general be an integer number of frames). 

In order to re-estimate the transition probabilities, we need to calculate the 
probability of a transition between any pair of states. This calculation is basically 
straightforward, but care needs to be taken to treat the start and end of the word 
correctly3. In the following explanation, transitions from the initial state and to the 
final state will be treated separately from transitions between emitting states. 

Returning for the moment to considering only a single example of the word, 
let us define ~ij (t) to be the probability that there is a transition from state i to state j 
at time t, given that the model generates the whole sequence of feature vectors 
representing the example of the word: 

a;(t)aub1(Yr+i) [J1(t + 1) 
~u(t) = aF(T) for 1 ~ t < T. (9.21) 

3 
The details of the equations given here apply to the use of special initial and final states and there will 

be slight differences if, for example, the model is allowed to end in any state (as in some publications). 
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Equation (9 .21) can be applied to calculate the probability of a transition betwe 
any pair of emitting states at frame times starting from t = 1 up until t = T _ 1 Fen 
the final frame, t = T, there cannot be a transition to another emitting state and ;r 
only possible transition is to the final state, F, with probability 4iF(7), thus: e 

a-(T)a•F 
4iF(T) = ~F(T) • (9.22) 

For the initial state, we need to calculate the probability of a transition to each of 
the emitting states. This transition from the initial state is only possible at the start 
of the word, before any observations have been generated. If we regard this time as 
being t = 0 then, given that the model must start in state I, another special instance 
of Equation (9 .21) can be derived for all transitions out of state /, thus: 

q -(0) = a1jbJ(Y1)/J1(1) 
lJ aF(T) 

(9.23) )· 

The total probability of a transition between any pair of states i and j is obtained by 
summing the values of qi.i ( t) over all frames for which the relevant transition is 
possible. Dividing this quantity by the total probability y; of occupying state i gives 
the re-estimate for the transition probability aiJ. Assuming E examples of the word, 
for a transition between any two emitting states we have: 

E Te-l 

L L4u(t,e) 
- e=l t=I a .. =------

IJ E Te 
&'. t<· "<N 1or _ i, J _ , (9.24) 

LLri(t,e) 
e=I t=I 

where qiJ (t, e) denotes the value of qiJ (t) for the eth training example. Note that the 
summation of qiJ (t, e) over time only includes frames up until time Te - 1. The last 
frame is not included as it cannot involve a transition to another-emitting state, and 
so by definition the value of qiJ ( T, e) is zero for all pairs of emitting states. . 

Transitions from an emitting state to the final state F can only occur at time Te 
and so the transition probability aiF may be re-estimated as: 

E 

L4iF(Te,e) 
e=I aiF = 
E Te 

LLr/t,e) 
e=I t=I 

for 1 < i ~ N. (9.25) 

Transitions from the initial state I can only occur at the start (time 1:::: O), 
when the model must be in state/, so r,(O, e) = 1 for all examples and hence: 

- e=I 
alj =----

E 
for 1 < j < N. 

(9.26) 

- --

I, 

;J 

,· 
J 
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The use of forward and backward probabilities to re-estimate model 
parameters is usually known either as the forward-backward algorithm or as the 
Baum-Welch algorithm. The second name in "Baum-Welch" recognizes the fact 
that Lloyd Welch was working with Baum on this subject in the early 1960s. 

After re-estimation using the Baum-Welch algorithm, the probability of the 
training data given the new set of models is guaranteed to be higher than the 
probability for the previous model set, except at the critical point at which a local 
optimum has been reached and therefore the models (and hence the probability) are 
unchanged. The procedure can thus be repeated in an iterative manner until the 
difference between the new and old probabilities is sufficiently small that the 
training process can be regarded as being close enough to its local optimum. 

It can be seen from the expression of Equations (9 .24 ), (9 .25) and (9 .26) 
using the quantities defined in Equations (9.21), (9.22) and (9.23) that, if any of the 
aij are initially given values of zero, their re-estimated values will also always be 
zero. Setting initial values of some transition probabilities to zero is thus a 
convenient way of constraining the structure of the word model to prevent it from 
producing intrinsically implausible state sequences. For example, it would not seem 
reasonable to allow the model to occupy a state early in the word, and then return to 
it after having been through several succeeding states. The sequence possibilities in 
Figure 9 .1 are very limited, only allowing three non-zero values of aij for any state 
i, yet this structure is very plausible as a word model. Constraining the possible 
state sequences by setting most of the initial values of the transition probabilities to 
zero has the added benefit of greatly reducing the computation required for both 
recognition and training. 

Model initialization issues, including the choice of initial conditions for the 
emission p.d.f.s, will be discussed in more detail later on in this chapter. 

9.5.3 Viterbi training 

It is also possible to re-estimate the model parameters using only the most likely 
path through the states, as given by the Viterbi algorithm. The calculations are 
substantially simplified by just considering a single path. For any frame of input 
data the probability of a state being occupied can only be unity or zero, depending 
on whether that state is on the path. The most likely path can be found by 
calculating the values of a j (t) for all states and frames to the end of the word using 
Equation (9 .11 ), and then tracing back from the final state in the same way as for 
the DTW method described in Chapter 8. In contrast to Baum-Welch 
re-estimation, the backward probabilities are not required. 

Having identified the most likely path, each input frame will have been 
allocated to a single state to provide a state-level segmentation of the training data. 
It will therefore be known which state produced each observed feature vector, and 
also which states preceded and followed each state along the path. For the re­
estimation it is then only necessary, for all examples of each training word, to 
accumulate the statistics of the feature vectors that occur for each occupied state, 
and of the transitions between states along the most likely path. Using the identified 
path, there will need to be counts of the following events, totalled over all E 
examples of the word: 
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1. the number of frames for which each state gives rise to each of the possibl 
feature vectors, with the count for state j and feature vector k being denoted b; 
nj(y, = k); 

ii. the number of frames for which a transition occurs between each pair of states 
which for transitions between states i and j will be denoted by nu; ' 

iii. the number of occasions for which each state is occupied for the first frame of 
each example of the word, which for state j will be denoted by n/J; 

iv. the number of occasions for which each state is occupied for the last frame of 
each example of the word, which for state i will be denoted by niF; 

v. the number of frames for which each state is occupied, which will be denoted by 
n; and nj for states i and} respectively. 

The re-estimation formulae are then simply given by: 

b-(k) = nj(Y, = k) 
J n-

J 

n .. 
a ij = .....!!_ for all pairs of emitting states, 1 < i, j < N , 

n. 
I 

n-F 
a;F = -'- for all i such that 1 :s; i :s; N, 

n; 

nr 
alj = _r.1 for all j such that 1 :s; j :s; N. 

E 

(9.27) 

(9.28) 

(9.29) 

(9.30) 

Note that the above re-estimation equations for Viterbi training are in fact 
equivalent to the corresponding Baum-Welch equations (9.20, 9.24, 9.25, 9.26) 
with the values of all the frame-specific state occupancy probabilities (rj (t, e), etc.) 
set either to one or to zero, depending on whether or not the relevant states are 
occupied at the given frame time. As with the Baum-Welch re-estimation, the 
Viterbi training procedure ( determination of the most likely state sequence 
followed by estimation of the model parameters) can be applied in an iterative 
manner until the increase in the likelihood of the training data is arbitrarily small. 

Because the contribution to the total probability is usually much greater for 
the most likely path than for all other paths, an iterative Viterbi training procedure 
usually gives similar models to those derived using the Baum-Welch recursions. 
However, the Viterbi method requires much less computation and it is therefore 
often (and successfully) adopted as an alternative to full Baum-Welch training. 

9.6 VECTOR QUANTIZATION 

In the discussion above it was assumed that the data used for training the models 
include a large enough number of words for reliable values to be obtained for all 
the parameters. For any statistical estimation to give sensible results it is obvious 
that the total number of data items must be significantly larger than the number of 
separate parameters to be estimated for the distribution. If the number of possible 
feature vectors is very large, as a result of many possible values for each of several 
individual features, many feature vectors will not occur at all in a manageable 
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amount of training data. In consequence all the generation probabilities for these 
feature vectors will be estimated as zero. If such a feature vector then occurred in 
the input during operational use of the recognizer, recognition would be impossible. 

The multi-dimensional feature space for any practical method of speech 
analysis is not uniformly occupied. The types of spectrum cross-section that occur 
in speech signals cause certain regions of the feature space, for example those 
corresponding to the spectra of commonly occurring vowels and fricatives, to be 
highly used, and other regions to be only sparsely occupied. It is possible to make a 
useful approximation to the feature vectors that actually occur by choosing just a 
small subset of vectors, and replacing each measured vector by the one in the subset 
that is 'nearest' according to some suitable distance metric. This process of vector 
quantization (VQ) is also used in systems for efficient speech coding (see 
Section 4.3.5). 

Setting up a vector quantizer usually involves first applying a clustering 
algorithm to group similar vectors together, then choosing a representative 
quantized vector for each cluster. The performance of such a quantizer depends on 
the number of different vectors and how they are chosen, but the details of these 
decisions are outside the scope of this book. It is, however, clear that if a fairly 
small codebook of vectors is chosen to represent the well-occupied parts of the 
feature space, all of these quantized vectors will occur frequently in a training 
database of moderate size. For each model state it will thus be possible to obtain 
good estimates for the probability of all feature vectors that are likely to occur. 

Even after vector quantization, a fully trained model for a particular word will 
often have some feature vectors that are given zero probability for all states of the 
word. For example, the word "one" would not be expected to contain any examples 
of a feature representing the typical spectrum of an [ s] sound. It is, however, 
important not to allow the probabilities to remain exactly at zero. Otherwise there is 
the danger of error on an input word that matches fairly well to the properties of 
one of the models except for just one non-typical frame that is represented by a 
zero-probability feature vector. In such a case the model will yield zero probability 
for that sequence of vectors, and the recognizer will therefore not be able to choose 
the correct word. A simple solution is to replace the zero value by a very small 
number. The model will then yield a low probability of generating the observed 
features, but if the rest of the word is sufficiently distinctive even this low value can 
be expected to be greater than the probability of generating the same set of features 
from any of the competing models. Better estimates for the probability of an unseen 
feature vector can be obtained by using a measure of distance from the vectors that 
are observed for the word, so that the unseen vector is given a higher probability if 
it is similar to those vectors which do occur in the training examples. 

9.7 MUL TI-VARIATE CONTINUOUS DISTRIBUTIONS 

Vector quantization involves an approximation which unavoidably loses some 
infonnation from the original data, and any method for estimating the probability of 
an unseen feature vector will inevitably be somewhat ad hoc. These limitations 
associated with discrete distributions can be overcome by representing the 
distribution of feature vectors by some suitable parametric description. Provided 
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that an appropriate parametric distribution can be found for describing the true 
distribution of the features, a useful estimate can be computed for the probability of 
any feature vector that may occur in the training and recognition processes. 

Many natural processes involve variable quantities which approximate 
reasonably well to the normal ( or Gaussian) distribution. The nonnal distribution 
has only two independently specifiable parameters, the mean, µ, and the standard 
deviation, a: For a quantity x, the probability density, ¢ (x), is given by: 

1 (-(x-µ)2J ¢( x) = ~ exp 2 . 
av21r 2a 

(9.31) 

When quantities are distributed normally, this simple mathematical description of 
the distribution makes it possible to calculate the probability of the quantity lying in 
any range of values provided the mean and standard deviation of the distribution 
are known. To calculate the probability of one particular value (i.e. a measured 
acoustic feature vector) occurring, we need to consider the limiting case in which 
the size of the interval for the range of values is infinitesimally small. 

The definition of the continuous probability density function, ¢ (x), of a 
variate, x, is such that the probability of an observation lying in an infinitesimal 
interval of size dx centred on x is ¢ (x)dx, and is thus infinitesimally small. 
However, if continuous probability density functions are used instead of discrete 
probability distributions in the HMM equations given in Sections 9 .3 to 9 .5, the 
computation will still give the correct relative likelihoods of the different words, as 
the infinitesimal interval, dx, is common to all probability calculations. The 
probability of observing the features, P( Y ), independently of which word is 
spoken, is also affected in the same way by the size of dx. The probability of the 
word given the features is therefore still correctly given by the formula expressed in 
Equation (9. I), even if these probability densities are used instead of actual 
probabilities for P(Y) and P(Y lw). Although their theoretical interpretations are 
different, it is thus equally suitable to use either discrete or continuous probability 
distributions in the calculations of word probability and in parameter re-estimation. 
In the following discussion of continuous distributions, it will be convenient to 
continue to use the term "probability" even where the quantities are, strictly 
speaking, probability densities. 

9.8 USE OF NORMAL DISTRIBUTIONS WITH HMMS 

It is obvious that many naturally occurring quantities are not normally distributed. 
For example, speech intensity measured over successive fixed time intervals of, 
say, 20 ms during continuous speech will certainly not approximate to a normal 
distribution because it clearly has a hard limit of zero during silences, will be low 
for much of the time during weak sounds, but will go up to quite high values during 
more intense vowels. The intensity on a logarithmic scale would have a more 
symmetrical distribution, which might be nearer to normal, but in this case the low­
level end of the distribution will be very dependent on background noise level. 

Normal distributions usually fit best to measurements which can be expected 
to have a preferred value, but where there are various chance factors that may cause 
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deviation either side of that value, with the probability progressively decreasing as 
the distance either side of the preferred value increases. Thus it might be reasonable 
to use a normal distribution to approximate a distribution of speech features which 
are derived from the same specific part of a specific word spoken in the same way 
by the same person. When it is assumed that features are normally distributed for 
each state of an HMM, the distributions are often termed single Gaussian. 

When different speakers are combined in the same distribution the departures 
from normal will be greater, and for different regional accents there is a fairly high 
probability that the distribution will be multi-modal, and therefore much less 
suitable for modelling as a normal distribution. However, when multi-modal 
distributions are likely, as is the case with many current speech recognition systems, 
it is now almost universal to model the distributions with a weighted sum, or 
mixture, of several normal distributions with different means and variances 
(usually referred to as Gaussian mixtures). Provided that there is a sufficient 
number of mixture components, any shape of distribution can be approximated very 
closely. This characteristic of sums of Gaussian distributions, combined with the 
attractive mathematical properties of the Gaussian itself, is largely responsible for 
their widespread and successful use for describing emission probability 
distributions in HMM-based speech recognition systems. 

The theory underlying the use of mixture distributions is a straightforward 
extension of the single-Gaussian case and will be discussed in Section 9. I 0, after 
first introducing the probability calculations and model parameter re-estimation 
equations using single Gaussian distributions. 

9.8.1 Probability calculations 

The features are multi-dimensional and so, in the case of single-Gaussian 
distributions, they will form a multi-variate normal distribution. In general the 
features may not vary independently, and their interdependence is specified by a 
covariance matrix. The entries along the main diagonal of this matrix represent 
the variance of each feature, while the remaining entries indicate the extent to 
which the separate feature distributions are correlated with each other. 

Let us first consider the output probability b1 (y) for the j th state, where y is a 
single feature vector. Assume that the column vector y comprises K features, 
y1,y2, .. ,,YK· Let µ 1 be the column vector of means, µ 11, µ 12, ... , µ 1K, and I 1 be the 
covariance matrix for the distribution of features associated with that state. The 
definition of the multi-variate normal distribution gives the output probability 
compactly in matrix notation: 

(9.32) 

where l~I is the determinant of I.i and (y- µ ) 7 is the transpose of (y- µ j). In the 
special case when the features are uncorrelated, the covariance matrix becomes 
zero except along its main diagonal ( and is therefore often referred to as a diagonal 
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covariance matrix). The probability of a feature vector then reduces to a product 
of probabilities given by the univariate distributions of the separate features: 

[ ( J
2) K I 1 Yk - µjk 

bi(y) = f1 J2; exp - 2 -- , 
k=I CY jk 2tr CY jk 

(9.33) 

where Yk is the k th feature of y, and µik and a-ik are the mean and standard deviation 
of the distribution of the kth feature for state j. 

Equation (9.33) is evidently computationally simpler than Equation (9.32). 
The extent of the computational saving provides a strong motivation for choosing 
methods of speech analysis for which the features are substantially uncorrelated. 
Some of these methods will be described in Chapter 10. Most current speech 
recognition systems adopt such a method and use diagonal covariance matrices. 

Having defined an expression for the emission probability in terms of the 
distribution parameters, recognition can be performed in the same way as when 
using discrete distributions. Thus, in the case of the Viterbi algorithm, the new 
definition of b)(y) is simply used in Equations (9.11) and (9.12). 

9.8.2 Estimating the parameters of a normal distribution 

When modelling emission probabilities with continuous distributions, the training 
task is to optimize the parameters of the feature distribution model, rather than the 
probabilities of particular feature vectors. If we had a set of T feature vectors that 
were known to correspond to state j, then the maximum-likelihood estimates for the 
parameters of a normal distribution are easily calculated. The mean vector µ 1 is 
equal to the averag~ of all the observed vectors (i.e. the sample mean), and the 
covariance matrix Ii is obtained based on the deviation of each of the observed 
vectors from the estimated mean vector (i.e. the sample covariance matrix): 

A I T 
µ1=rLY,, 

/=) 

(9.34) 

(9.35) 

Obviously, in the case of HMMs, the state sequence is not known, but the standard 
methods for estimating mean and covariance given in Equations (9.34) and (9.35) 
can be extended for use in either Baum-Welch or Viterbi re-estimation procedures, 
as explained below. 

9.8.3 Baum-Welch re-estimation 

For the Baum-Welch algorithm, the parameters are re-estimated using 
contributions from all frames of all the E examples of the word in the training data. 

I, 
\ 
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Each contribution is weighted by the probability of being in the state at the relevant 
frame time, as given by Equation (9.19). Therefore the re-estimates of the mean 
vector µj and the covariance matrix Ij associated with state j are given by: 

I-= 
J 

E Te 

LLr 1<t, e)yte 
e=l t=l 

E T 

Lf r1(t,e) (Yte - µJ)(Yte -µj)T 
e=l t=l 

(9.36) 

(9.37) 

where Y,e is the feature vector for the t th frame of the e th example of the word. 
Just as for discrete emission p.d.f.s, it can be shown that iterative application 

of the above formulae leads to a locally optimum solution. Baum's (1972) analysis 
included a proof for univariate normal distributions, which was later generalized by 
Liporace ( 1982) to a wider class of distributions, including multi-variate normal 
distributions. 

Note that Equation (9.37) for re-estimating the covariance matrix is based on 
deviation of observed vectors from the re-estimated mean vector µ 1. In practice, 
when accumulating the contributions for covariance re-estimation it is easier to use 
the current estimateµ j instead of the (yet to be computed) new value µ 1 . It is then 
straightforward to correct for the difference between the old and new mean values 
at the end of the calculation. 

9.8.4 Viterbi training 

For Viterbi re-estimation, the requirement is just to use the state-level segmentation 
obtained from the most likely path according to the current set of models as the 
basis for collecting the statistics needed to apply Equations (9.34) and (9.35) for 
each model state. The statistics for state j are therefore gathered over all examples 
of the word using all frames for which state j is occupied. Using s,e to denote the 
state occupied at frame t of example e, the re-estimation formulae are as follows: 

- 1 £ 
µj = -L ~ Yte, n. L..J 

1 e=I os,e=J 

(9.38) 

I 1 LE L - - T 
j = - (Y,e -µj)(Y,e -µ}) ' 

n. 
1 e=l os,e=J 

(9.39) 

Where, as in Section 9 .5 .3, nj is the number of frames for which state j is occupied. 
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9.9 MODEL INITIALIZATION 

There must be enough states in the model to capture all the acoustically distinct 
regions in the word. For example, a typical word of two or three syllables could 
need around 10-20 states to model the acoustic structure adequately. Because the 
training process only finds a local optimum, the initial estimates for the model 
parameters can have a strong influence on the characteristics of the final set of 
trained models. It is very important to give careful consideration to how the model 
parameters, including both transition and emission probabilities, should be 
initialized before training. The trained model for each word needs to capture the 
spectral and temporal characteristics of all spoken utterances of that word while at 
the same time, in order to minimize recognition errors, it must be a constraining 
model which does not allow inappropriate sequences of states for the word. 

In an HMM, the probability of a path through the model is computed on a 
frame-by-frame basis and therefore cannot take into account any of the previous 
states occupied other than the one at the immediately preceding time frame. Thus, if 
a model allows many different transitions from each state, recognition errors can 
result if a sequence of frames gives a good acoustic match even if the complete 
state sequence is very inappropriate for a genuine example of the word. Even the 
limited degree of flexibility included in the model structure shown in Figure 9.1 can 
cause problems if used throughout a word. 

The dangers associated with allowing flexibility of transitions within a word 
model are such that most current uses of HMMs only allow a very restricted set of 
possible transitions, by initializing most of the transition probabilities to zero. A 
popular HMM structure for speech recognition uses a left-to-right topology with the 
probability of all transitions set to zero except those to the next state or returning to 
the current state (i.e. as for Figure 9.1 but omitting the 'skip' transitions). If this 
model structure is used to represent a word, the word will be modelled as a 
sequence of acoustic regions which can vary in duration but which must always all 
occur and always in the same fixed order. With this strong temporal constraint 
provided by the model structure, re-estimation (using either the Baum-Welch or the 
Viterbi approach) can give a useful local optimum even with a simple initialization 
approach for the emission probabilities. One popular strategy is to start with a 
uniform segmentation of each training example, with the number of segments being 
equal to the number of states in the model. This segmentation can then be used to 
compute the required statistics for each state emission probability, with the allowed 
transition probabilities of all emitting states initialized to identical values. 

In the case of Baum-Welch training, an even simpler initialization strategy 
may be used for the parameters of discrete or normal distributions. For this method, 
sometimes called a flat start (Knill and Young, 1997), all emission p.d.f.s for all 
states are set to average values computed over the entire training set, in addition to 
using identical transition probabilities for a limited set of allowed transitions. Thus 
all permitted paths through the model start with equal probability and the training 
algorithm is left to optimize the parameters from this neutral starting position with 
constraints imposed by the model structure. This approach has been found to work 
well if there are several utterances for each model unit ( e.g. Paul and Martin, 1988). 

An important advantage of the initialization approaches described above is 
that the training process can be carried out completely automatically, without 
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requiring any pre-segmented data. Alternatively, if there are any data available for 
which suitable state boundaries are 'known' (for example, the boundaries could be 
marked by hand for a small subset of the training corpus), this segmentation can be 
used as the basis for initializing some or all of the model parameters. 

If all models use a restricted structure that only allows transitions back to the 
same state or on to the next state, it is implicitly assumed that such a model 
structure is appropriate for representing all words. There are many cases in human 
language where pronunciation varies from occasion to occasion, even for one 
speaker. The variations may be at the phonemic level: for example, in the word 
"seven" many speakers often omit the vowel from the second syllable and terminate 
the word with a syllabic [n]. Allophonic variations can also occur: for example, in 
words ending in a stop consonant, the consonant may or may not be released. If a 
word with alternative pronunciations is represented by a single sequence of states 
with the model structure described above, some states will have to cope with the 
different pronunciations, and so their p.d.f.s will need to be multi-modal to model 
the distributions well. In these cases a normal distribution will not be suitable, and 
Gaussian mixtures will be essential for good modelling of the data. 

A rather different approach is to explicitly model alternative pronunciations 
as alternative state sequences, using either whole-word or sub-word models. 
Initialization then involves choosing a constraining topology separately for each 
word model to take into account the possible phonetic structure of the word and its 
expected variation. It will thus be necessary to decide on the number of states 
required to represent each phonetic event and on the allowed transitions between 
the states, with state skips being allowed only where a particular phonetic event is 
sometimes omitted. For this approach to work it is essential that the emission p.d.f.s 
of the models are initialized with values roughly appropriate for the phonetic events 
expected for each state, because otherwise the training frames may not be allocated 
to the states in the intended way. Such models can be initialized by carefully hand­
labelling a few examples of the training words in terms of state labels, and 
collecting the statistics of these data to initialize the emission p.d.f.s. However, the 
whole method requires a lot of skilled human intervention, and a simpler model 
topology is usually adopted, with any limitations in this approach being addressed 
by using Gaussian mixtures for the p.d.f.s. Methods used for including some simple 
provision for alternative pronunciations will be considered further in Chapter 12. 

9.10 GAUSSIAN MIXTURES 

9.10.1 Calculating emission probabilities 

The expression for the emission probability defined in Equation (9 .32) is easily 
extended to include a weighted sum of normal distributions, where each component 
distribution has a different mean and variance. We will use the notation N(y; µ, I) 
to represent the probability density of the observed vector y given a normal 
distribution with mean vector µ and covariance matrix I. Thus, for an emission 
p.d.f. defined according to a Gaussian mixture distribution, the emission probability 
given by the mt1

1 component for state j is: 

bjm (y) = N(y; µ jm, £ jm) • (9.40) 
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The total emission probability for a distribution with M components is defined as: 

M 

bj(y) = Lcjmbjm(Y), (9.41) 
m=l 

where c1m denotes the weight of the mth mixture component for state j. The mixture 
component weights can only take positive values, c1m > 0, and must sum to I: 

M 

Lcjm =1. (9.42) 
m=l 

In the special case where there is only one mixture component, the emission 
probability specified by Equation (9 .41) is defined in terms of a single Gaussian 
distribution with weight equal to 1 and is therefore equivalent to Equation (9.33). 

Once the parameters of multiple-component mixture distributions have been 
trained, Equation (9 .41) can be used as the basis for the recognition calculations in 
exactly the same way as with the simpler emission p.d.f.s that we have already 
discussed. Parameter estimation for mixture distributions requires more detailed 
consideration, and is discussed in the following sections. Firstly we will assume that 
initial estimates are available and address the re-estimation problem, before 
considering ways of obtaining suitable initial estimates in Section 9.10.4. 

9.10.2 Baum-Welch re-estimation 

Assuming that initial estimates are available for all the parameters of all the M 
components of a Gaussian mixture representing the emission p.d.f. for state j, 
Baum-Welch re-estimation can be used to find new estimates for these parameters, 
c1m, µ Jm and £.im· When using Gaussian mixtures, the contribution from each 
observation y, needs to be weighted by a probability that is specific to the mixture 
component m. By analogy with the quantity y1 (t) which was introduced in 
Section 9.5.2, let us define r1m(t) to be the probability of being in state j at time t 
and using component m to generate y,, given that the model generates the whole 
sequence of T feature vectors representing an example of the word. 

N 

L a;(t - I)aijcJmbJm (y, )/31 (t) 
Yjm(t) = _i=_I ________ _ 

aF(T) 
(9.43) 

Now, if we have E examples of the word, summing the values of n111(t, e) over 
all frames of all examples gives the total probability for the mth component of state j 
generating an observation. Dividing this quantity by the corresponding sum of 
yj(t, e) terms gives the re-estimate for the mixture component weight c1m: 

E Te 
LLrjm(t,e) 

- e=l t=l Cjm = E Te 
LLri(t,e) 
e=l t=l 

(9.44) 
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The re-estimation equations for the mean vector and covariance matrix are the same 
as for the single-Gaussian case given in Equations (9.36) and (9.37), but using the 
component-specific state occupation probabilities Yjm(t,e): 

E Tc 

LL r jm (t, e)yte 

e=l t=l 
µ;•m = T E C 

LLr1m (t,e) 
e=l t=l 

E Te 

' 

L Lr jm (t' e )(y te - µ jm )(y le - µ jm ) T 

e=l t=l I.=---------------;m E Te 

LLr1m(t,e) 
e=l 1=1 

(9.45) 

(9.46) 

Juang (1985) extended Liporace's (1982) analysis to show that iterative 
application of the re-estimation formulae leads to a locally optimum solution when 
emission p.d.f.s are defined in terms of sums of normal distributions. 

9.10.3 Re-estimation using the most likely state sequence 

The use of a Gaussian mixture to represent the HMM emission p.d.f. incorporates 
another 'hidden' element in the model, as it is not known from the observations 
which mixture component generated each observation. The probability calculation 
in Equation (9 .41) uses the total probability taking into account all the mixture 
components that could have produced the observation. As a result the Baum-Welch 
re-estimation formulae in Equations (9.44) to (9.46) use probabilities not only of 
state occupancy but also of mixture components. The formulae can be simplified if 
the state sequence is known, but the situation is more complex than for the single­
Gaussian case because the mixture components are still unknown. Thus the state 
sequence alone does not lead to an analytic solution for these emission p.d.f.s. 

One option is to retain the EM algorithm for estimating the parameters of the 
mixture distribution. Equations (9.44) to (9.46) can be simplified accordingly: the 
summations are now just over those frames for which state j is occupied, and for 
each frame the component-dependent state occupation probability /Jm(t, e) 
simplifies to a component-dependent emission probability Cjmbj,,, (Y,e). (The total 
state occupation probability Y.i (t, e) is replaced by the emission probability bj( Y,e).) 

Alternatively, to estimate the distribution parameters without requiring an EM 
algorithm, each observation must be assigned to a single mixture component. This 
assignment can be achieved by using a clustering procedure to divide the observed 
feature vectors corresponding to any one model state into a number of groups equal 
to the number of mixture components for that state. K-means clustering is a well­
established technique for dividing a set of vectors into a specified number of 
classes in order to locally minimize some within-class distance metric, and was 
originally applied to vector quantization (see Section 9.6). The term segmental 
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K-means is often used to refer to the use of K-means clustering in conjunction with 
a Viterbi alignment procedure to identify the state-level segmentation. 

After clustering, each frame will be labelled, not only with the state that was 
occupied, but also with the mixture component that generated the observation. The 
re-estimation formula for the weight associated with the mth mixture component of 
state j is then given by: 

- njm 
cjm =--, 

nj 
(9.47) 

where njm represents the number of frames for which state j was occupied and 
mixture component m generated an observation. Using s, to denote the state 
occupied and x, to denote the mixture component used at time t, the re-estimation 
formulae for the mean feature vector and covariance matrix are straightforward 
extensions of the single-Gaussian case (Equations (9.38) and (9.39)), as follows: 

- 1 £ 

µjm = -L L Yre, n. 
Jm e=l t 1s =1· x =m , , , 

9.10.4 Initialization of Gaussian mixture distributions 

(9.48) 

(9.49) 

The segmental K-means procedure outlined above uses an initial set of models to 
obtain the state-level segmentation, but does not rely on any existing estimates for 
the mixture components. It therefore provides a convenient method for initializing 
the parameters of HMMs using mixture distributions. If no models are available, 
the process can even be started from a uniform segmentation, as described in 
Section 9.9. Once initial estimates have been obtained for all the mixture 
components, the estimates can be refined using further iterations of the segmental 
K-means procedure. At this point the models could be used for recognition, but 
they can be trained further using full Baum-Welch re-estimation, or even using the 
EM algorithm to update the mixture parameters without changing the segmentation. 

A segmental K-means procedure is often used to initialize mixture models 
prior to Baum-Welch training. However, this approach requires the number of 
mixture components to be decided in advance. An alternative is to start with trained 
single-Gaussian models and to incrementally increase the number of mixture 
components using a method often referred to as mixture splitting. Starting with a 
single Gaussian distribution for the emission p.d.f., a two-component mixture 
model is initialized by duplicating the parameters of the original distribution and 
perturbing the means by a small amount in opposite directions (typically ±0.2 
standard deviations). The variances are left unchanged and the mixture weights are 
set to 0.5 for both components. The means, variances and mixture weights are all 
re-estimated, and the mixture-splitting procedure is then applied to the component 
with the largest weight tsetting the weights of both new components to half the 
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value for the component from which they were derived). The model parameters are 
re-estimated again, and so on until the desired level of complexity is reached. 

For a given number of mixture components, Young and Woodland (1993) 
reported that an iterative mixture-splitting training procedure with Baum- Welch re­
estimation gave similar results to using segmental K-means followed by Baum­
Welch training. However, a useful advantage of the mixture-splitting approach is 
that the number of mixture components can be chosen for each state individually 
according to some objective criterion based on how well the data are modelled. 
Examples of useful criteria for deciding on the number of components are the 
magnitude of the increase in training-data likelihood from adding a new 
component, or the quantity of training data available for the model concerned. This 
flexibility of mixture modelling is particularly beneficial for modelling large 
vocabularies; its use will be discussed further in Chapter 12. 

9.10.5 Tied mixture distributions 

Increasing the number of components used in a Gaussian mixture distribution 
allows for greater flexibility in the shapes of distributions that can be modelled, but 
a larger quantity of training data is required to ensure that the parameters are 
trained robustly. In any practical recognizer there are often only limited data 
available for training each model, which imposes limitations on the number of 
state-specific mixture components that can be included. However, similarities 
between different speech sounds are such that many of the component distributions 
will be similar for several different states. One straightforward way of taking 
advantage of these similarities to provide more data for training the model 
parameters is to use the same Gaussian distributions to represent all the states of all 
the models, with only the mixture weights being state-specific. Thus the distribution 
parameters are tied across the different states, and this type of model is often 
referred to as a tied mixture (Bellegarda and Nahamoo, 1990). The term semi­
continuous HMM has also been used (Huang and Jack, 1989), because the one set 
of continuous distribution parameters for all states can be regarded as an alternative 
to the VQ-generated codebook used with discrete emission probabilities. 

When using tied mixtures, the emission probability bj (y) for any one state j is 
calculated in the same way as for Equation (9 .41 ), but although the mixture weights 
cjm are state-specific, the bjm (y) terms will be the same for all states. 

Using the new definition of the emission probability, re-estimation formulae 
can be derived for the mean µ m and covariance matrix .E III of the mth 

component 
(the re-estimation of the mixture weights cjm is unchanged). For example, tied­
mixture versions of the Baum-Welch formulae in Equations (9.45) and (9.46) are 
as follows: 

E 1'e N 

LLLr1mc1,e)y,e 
- _ e=I t=I J=I 
µm - E Te N 

LL Lr 1,,, u, e) 

(9.50) 

e=I l=I J=I 
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E Te N 

LL L rjm(t, e)(Y,e - µm)(Y,e - µm)T 
e=l t=l j=l 

Im = -------"--E----T--N--------
e 

(9.51) 

LLLrjm(t,e) 
e=l t=l j=l 

Thus the only difference from the original ( untied) mixture-distribution re. 
estimation formulae is that the contributions are now summed over all states as well 
as over all frames of all examples. 

Tied mixtures have been used with some success to address the problems 
associated with training a large number of model parameters from a limited 
quantity of training data. However, although any practical system will have some 
model states which share many similarities, there will obviously be others which are 
quite different, and this characteristic will be reflected in the mixture weights for 
the different states. Thus rather more parameters are being tied together than is 
necessary, and such extensive tying may not be desirable for maximum 
discrimination. It is important to note that tied mixtures are just one example of the 
much more general concept of parameter tying, whereby any parameters of any 
model states can be tied together and the only effect on the re-estimation formulae 
is in the nature of the summations and in the indexing of the model parameters. The 
ability to tie together the parameters of HMM states is a significant factor in the 
success of current large-vocabulary speech recognition systems, and this use of 
tying is explained in Chapter 12. 

9.11 EXTENSION OF STOCHASTIC MODELS TO WORD SEQUENCES 

In the same way as was described for the dynamic programming methods in 
Chapter 8, HMMs extend easily to connected sequences of words. For recognition 
the word sequences can be represented by a higher-level model in which the states 
correspond to whole words, and the transition probabilities are the language-model 
probabilities (recognition using a language model will be discussed in Chapter 12). 

In the case of recognition of isolated words we were not interested in the state 
sequences as such, but only in the likelihood of each word model emitting the 
observed feature vectors. When applying HMMs to connected words, however, w~ 
need to know the most likely sequence of words, so at the word level the Viterbi 
algorithm is necessary. The word boundary procedure is then exactly analogous to 
that described in Section 8.10, making use of the back-pointers to determine the 
word sequences. 

The HMM training algorithms can also be used when the training data are 
spoken as natural connected sequences of words. It is not generally necessary t~ 
segment the data into the individual words prior to training. Instead, an embedde 
training approach can be used, whereby a composite model is obtained for t~e 
whole utterance by concatenating the required sequence of word models. T~is 
concatenation is very easy if special non-emitting initial and final states are use~d t 
the individual models, as it simply involves linking the final state of one " 01 

.. ~ 
the initial state of the next. The parameters of the composite model are traine 
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using the same procedure that would be carried out if this composite model 
represented a single word. _If a state occurs more than once in the composite model 
(i.e. if the utterance contams more than one example of any particular word), all 
occunences of that state will contribute to the parameter re-estimation. Provided 
that each word is spoken in a variety of different contexts, embedded training is 
very successful (at least for a constrained left-to-right model structure), even with 
the simplest 'flat' initialization procedure of setting the parameters of all models to 
the same values. The ability of the HMM training framework to automatically find 
the patterns in the data to associate with individual models is fundamental to the 
successful use of HMMs for substantial recognition tasks. 

9.12 IMPLEMENTING PROBABILITY CALCULATIONS 

The calculation of the forward and backward probabilities for sequences of feature 
vectors involves multiplication of a very large number of probability components, 
the majority of which are much less than 1. The results will in general have very 
low values, and mostly will be smaller than the minimum size of floating point 
number that can be held in any normal computer. 

One solution to the number range problem is to check the probabilities at each 
stage of the recursion, and to multiply them by a scale factor that will bring the 
numbers back into the centre of the available range. However, scale factors must be 
noted and taken into account in estimating the relative likelihoods that each frame 
of feature vectors has been generated by each word model. 

An alternative way of avoiding problems with numerical underflow is to 
represent all probabilities in logarithmic form, so that no explicit scaling is 
necessary. The following sections will discuss the implementation of HMM 
probability calculations using logarithms of probabilities. 

9.12.1 Using the Viterbi algorithm with probabilities in logarithmic form 

Because the logarithmic function is monotonic and increasing, the task of 
maximizing a probability can be achieved by maximizing its logarithm, and the 
main Viterbi probability calculation given in Equation (9 .11) can therefore be 
replaced by: 

af (t) = ma~(af (t-1) +at)+ bf (yt) , (9.52) 
over , 

where af(t)isusedfor log(ai(t)), at forlog(au)and bf(y!) ~or log(bj(y,))._ 
When using discrete enussion p.d.f.s with vector quantization, the calculation 

of Equation (9.52) is very straightforward and can easily be made very efficient: the 
quantities log( au-) and log( bj ( y,)) are fixed for given values of i, j and y" and h~nce 
the logarithms need to be calculated just once and stored ready for use as required. 
The dynamic programming algorithm then only involves summations and 
comparisons, with no multiplications or logarithmic functions. 

If normal distributions are used for the emission p.d.f.s, we must take the 
logarithm of the expression for the emission probability, but this is also 
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straightforward. For example, in the case of uncorrelated normal distributions for 
the individual features, taking logarithms 4 of Equation (9.33) gives: 

K -f 1 {, [ Y kt - µ 'k J
2 

bf(y,)=log(bj(y,))=--log(2.1r)- L..Jlog(crjk)-- L..J 1 (9.53) 
2 k=l 2 k=l a jk 

where we are now taking into account the fact that the observations are time. 
dependent, and are using the symbol Yki to denote the k th feature at the t th frame. 

Comparing Equation (9.53) with (9.33), it can be seen that use of logarithms 
has eliminated the need for the observation-dependent exponential operation, while 
the logarithmic terms are independent of the observed feature values and so can be 
pre-computed. Thus, while the computational load when using normal distributions 
is somewhat greater than for discrete emission p.d.f.s, the use of logarithms leads to 
a considerable computational saving as well as solving the number range problem. 

9.12.2 Adding probabilities when they are in logarithmic form 

When calculating emission probabilities using Gaussian mixture distributions, and 
for all calculations of forward and backward probabilities in Baum-Welch re­
estimation, probabilities must be summed as well as multiplied and so the use of 
logarithms is more complicated. If we consider two probabilities, A and B, the task 
is to compute log(A + B) given log(A) and log(B). In theory, we could exponentiate 
both log(A) and log(B), add them and take the logarithm. However, aside from the 
computational issues, the exponential operation puts the probabilities back onto a 
linear scale and so presents problems for the wide range of probabilities that may 
be encountered. This difficulty can be addressed by first rewriting log(A + B) thus: 

log(A + B) = log(A(l + B/ A))= log(A) + log(l + B/ A). (9.54) 

Assume that we have ordered the probabilities such that A ?.B. The issue is 
now one of evaluating the ratio Bl A, which can be no greater than 1 and therefore 
the calculation will only present problems if this ratio is smaller than the smallest 
number which can be represented in the computer. This situation can only arise if B 
is so much smaller than A that it can safely be ignored by setting 
log(A + B) = log(A). A procedure for finding log(A + B) is therefore as follows: 

1. If log(B) > log(A) then transpose log(A) and log(B). 
2. Find log(B/A) by forming log(B) - log(A). Store this value in C. 
3. If C < a suitable threshold, set C = 0. 
4. Otherwise C = log(l + exp(C)). 
5. Add C to Iog(A). 

The threshold in step 3 is used to prevent underflow when taking the exponential in 
step 4. The smallest value to which this threshold can be set is the logarithm of the 
smallest number that can be represented in the computer. . 

The procedure described above for performing probability calculations in 

logarithmic form is effective and widely used. However, whenever there is the need 

4 
When using normal distributions, the calculations are simplest if natural logarithms are used, and the 

use of natural logarithms has been assumed in Equation (9.53). 
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to add two probabilities, one exponential and one logarithmic operation are usually 
required. These operations can be avoided by using a method which allows the 
numbers to be added while in their logarithmic form5

. Considering step 4 in the 
sequence of calculations described above, both the exponential and the logarithmic 
operation can be avoided by using a pre-computed look-up table to store the values 
oflog(l + BIA) in terms of log(BIA). Thus steps 3 and 4 can be replaced by a single 
table look-up operation, with log(B/A) as input (i.e. the value already stored in Cat 
step 2). The output is log(l + BIA), which can again be stored as the new value of 
C. Moderate accuracy in the value of log(A + B) can be achieved with a small look­
up table. For example, a I% accuracy for A+ B enables values of BIA of less than 
0·01 to be ignored, and the look-up table for the larger values of BIA only needs 
entries for 115 equally spaced values of log(BIA). 

If the above method is implemented using a suitable scale factor for the 
logarithms, it is then even possible to make all the probability calculations for 
recognition and parameter estimation using integer arithmetic on logarithmically 
coded numbers. No multiplications would be required with the VQ method, and no 
exponential functions would be needed when using Gaussian distributions. The I% 
error proposed above should have very little effect on the re-estimation, but the 
error could easily be reduced if necessary by using a larger look-up table. 

9.13 RELATIONSHIP BETWEEN DTW AND A SIMPLE HMM 

It is interesting to compare the Markov probability calculation with the cumulative 
distance formula for a simple asymmetric dynamic programming algorithm in 
which each input frame occurs exactly once in the distance calculation. If the DP 
uses a squared Euclidean distance metric, the recognition process can be regarded 
as a special case of HMM Viterbi decoding, in which the word models have one 
state per template frame, and the features are assumed to be normally distributed 
with unit variance. 

To clarify this relationship, we will return to the Viterbi calculation using 
logarithms of probabilities, given in Equation (9.52). The value of bf (y,) 
according to an uncorrelated normal distribution is given by Equation (9.53), where 
we are now assuming that G)k = I for all states j and for all features k. Hence 

K 

Llog(~jk) = 0, 
k=I 

and recursive calculation of af (t) simplifies to: 

K 2 

af (t) = max(a/ (t-1) +ab)-K log(2n)-_!_ L (Ykt - µ jk) 
over i 2 2 k=l 

(9.55) 

The term K/2 log(2n) is a constant, which will scale the likelihood calculation but 
will not affect the choice of optimal state sequence. Thus the only quantities that 
need be considered at each frame are the logarithms of the transition probabilities 

5 
This method was described by Kingsbury and Rayner (1971) for a completely different application. 
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and the square of the Euclidean distance between the observed features at time 1 
and the means for model state j. 

As maximizing af (t) is equivalent to minimizing - af (t), this recognition 
task can be regarded as one of minimizing a distance comprising - a5 , the negative 
logarithm of the transition probability (which must itself be positive), plus the 

squared Euclidean distance of the features from their model mean values. Thus we 
have a simple DP algorithm in which the - at terms are interpreted as timescale 

distortion penalties. Where only slopes of 0, 1, and 2 are pennitted, as is the case 
for the HMM in Figure 9 .1, the time distortion penalties for other values of slope 
are -log(O), and are therefore infinite. 

9.14 STATE DURATIONAL CHARACTERISTICS OF HMMS 

The probability of a model staying in the same state, i, for successive frames is 
detennined only by the transition probability, aii. The expected number of frames it 
will stay in state i is 1/(1- aii), so a value of a;;= 0·9 would be suitable for using one 
state to model, for example, a steady fricative sound whose expected duration is IO 
frames. Although the expected total duration in state i in this case is 10 frames, the 
most likely duration is only one frame, with a probability of 0· 1. The probabilities 
for longer durations decrease exponentially, as shown in trace (i) of Figure 9.2(b). 
This distribution is often referred to as a geometric distribution because the 
probabilities for successive numbers of frames form a geometric progression. 

For any state representing a particular phonetic event, this type of duration 
distribution is obviously not sensible. For any such event there will be a most 
probable duration, with reducing probability for both shorter and longer durations. 
If many more states are available, the durational characteristics of the model can be 
improved, but only if a long steady region is modelled by a sequence of states with 
very similar feature p.d.f.s and the total likelihood method is used to calculate the 
word probability. For example, consider a group of four identical states with a 
repeat probability of 0-6, as shown in trace (ii) of Figure 9.2. The expected duration 
for the group is 10 frames, as it is for the single state shown in trace (i). However, 
in the case of the group of states, the variation of probability with duration is much 
more appropriate for speech sounds within a word. This more realistic distribution 
arises because, while there is only one possible way of going through the states in 
the minimum number of frames, there are more possible paths for longer frame 
sequences. However, the improved shape of duration distribution given by this 
state-splitting approach relies on using total likelihood probability calculations, 
whereas the Viterbi algorithm is generally used for recognition. 

A simple method which can be used with the Viterbi algorithm involves 
merely imposing a minimum and a maximum duration on state occupancy. Such 
duration constraints can be achieved with an easy modification to the recognition 
algorithm, and can give worthwhile performance benefits. Many other methods 
have been proposed for improving the duration characteristics of HMMs, including 
some that model duration distributions of each state explicitly. These methods 
generally give greater benefits than simple duration constraints, but at the expense 
of more computation and some increase in the number of model parameters. 
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Figure 9.2 (a) Two arrangements of states, each with an expected occupation time of 10 frames. 
(b) Probability of occupancy of groups of states in the model sections shown in (a). 

CHAPTER 9 SUMMARY 

• The performance of pattern-matching speech recognizers is improved by 
representing typical characteristics of speech patterns in a way that also takes 
account of variability, which can be achieved by using a stochastic model of 
each word. Hidden Markov models (HMMs) represent each word as a 
sequence of states, with transition probabilities between each state and its 
permitted successors, and probability distributions defining the expected 
observed features for each state. A recursive formula can be used to calculate 
the probability that each word model will produce the observed data. The 
model with the highest probability is assumed to represent the correct word. 

• Computation can be saved by using the Viterbi dynamic programming 
algorithm to calculate the probability of producing the data from only the most 
likely path through the states. This probability will always be less than the true 
probability, but the effect on recognition performance is usually very small and 
the Viterbi algorithm is generally adopted for HMM recognition. 

• For each word model the transition probabilities and the probability 
distributions of the feature vectors can be found by the Baum-Welch re­
estimation process. This process iteratively refines initial guesses to improve 
the model's representation of a set of training examples of the word, taking 
into account all possible paths through the states of the model. 

• An alternative approach to estimating model parameters is to use a Viterbi 
training procedure, in which the initial guesses are used to find the most likely 
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state-level segmentation of the data and then the model parameters are re. 
estimated for this alignment of data frames to model states. 

• Vector quantization is one method for reducing the set of possible feature 
vectors to a number for which robust training is possible. A parametric model 
such as the normal (Gaussian) distribution or, more generally, a weighted su~ 
(mixture) of Gaussian distributions, can also be used to describe the feature 
statistics. The re-estimation is then applied to the distribution parameters. 

• HMMs can be extended to deal with word sequences, in which each state of 
the model represents one word, and the transition probabilities are determined 
by word sequence statistics of the language. 

• One way of overcoming scaling problems because of very small numbers in the 
probability calculations is to represent all the numbers by their logarithms, and 
to use a special technique for finding the logarithm of the sum of two numbers. 

• The dynamic programming recognition method described in Chapter 8 can be 
shown to be equivalent to using a very simplified form of HMM. 

• The durational characteristic of an HMM state is determined only by the self. 
loop transition probability, and is such that the most likely duration is always 
only one frame and probabilities for longer durations decrease exponentially, 
so forming a geometric progression. 

CHAPTER 9 EXERCISES 

E9.1 What is the significance of the word 'hidden' in hidden Markov models? 

E9.2 Why is it not necessary to explicitly consider all possible state sequences 
when calculating the probability of an HMM generating observed data? 

E9.3 What is the essential difference between the Viterbi algorithm and the total 
likelihood method when calculating the probability of a word model 
generating observed data? What practical advantages can be gained by using 
the Viterbi algorithm for recognition? 

E9.4 How can the form of an HMM be constrained by choice of initial parameters 
provided for re-estimation? 

E9.5 What is the purpose of the 'vector quantization' sometimes used in HMMs? 

E9.6 What are the benefits of using normal distributions to model feature 
statistics for HMMs? What are the limitations of simple normal distributions 
and how can these be overcome? 

E9.7 How do the calculations required for Viterbi training differ from those for 
Baum-Welch re-estimation? 

E9.8 What are the practical difficulties associated with implementing forward and 
backward probability calculations? What solutions are usually adopted? 

E9.9 How can a simple HMM be interpreted as equivalent to a DTW recognizer? 

E9.10 Why are the state durational characteristics of HMMs not very appropriate 
for modelling speech? What are the effects on duration characteristics if a 
single state is replaced by a sequence of several identical states? 
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CHAPTER 10 

Introduction to Fr-ont-end Analysis for 
Automatic Speech Recognition 

10.l INTRODUCTION 

The tenn "front-end analysis" refers to the first stage of ASR, whereby the input 
acoustic signal is converted to a sequence of acoustic feature vectors. As explained 
in Section 8.3, the short-term spectrum provides a convenient way of capturing the 
acoustic consequences of phonetic events. Ideally the method of front-end analysis 
should preserve all the perceptually important information for making phonetic 
distinctions, while not being sensitive to acoustic variations that are irrelevant 
phonetically. As a general policy for ASR, it seems desirable not to use features of 
the acoustic signal that are not used by human listeners, even if they are reliably 
present in human productions, because they may be distorted by the acoustic 
environment or electrical transmission path without causing the perceived speech 
quality to be impaired. Over the years many different front-ends have been tried, 
for use first with DTW recognizers and, more recently, with HMM systems. These 
front-ends vary in the extent to which they incorporate knowledge about human 
auditory perception, but currently the most successful analysis methods include at 
least some of the known properties of perception. These successful methods are, 
however, also characterized by a compatibility with the mathematical techniques 
that are generally used in HMM recognizers (as will be explained later). In this 
chapter we will introduce various aspects of front-end analysis for ASR. 

10.2 PRE-EMPHASIS 

The spectrum of voiced speech is characterized by a downward trend, whereby 
frequencies in the upper part of the spectrum are attenuated at about 6 dB/octave. 
This downward trend is due to a combination of the typical -12 dB/octave slope of 
the glottal source spectrum with the +6 dB/octave lift given by the radiation effect 
due to the lips (see Chapter 2). For the purpose of front-end analysis, it is common 
to compensate by applying a pre-emphasis of 6 dB/octave so that the analysed 
signal has a roughly flat spectral trend. This pre-emphasis is easily applied to the 
speech signal as the first processing stage. Although the above argument for pre­
emphasis only applies to voiced regions, in practice it is usually applied throughout 
without causing any obvious problems for the analysis of voiceless regions. 

10.3 FRAMES AND WINDOWING 

Due to physical constraints, the vocal tract shape generally changes fairly slowly 
with time and tends to be fairly constant over short intervals (around 10-20 ms). A 
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Figure 10.1 Analysis of a speech signal into a sequence of frames. This example shows a 
20 ms Hanning window applied at 10 ms intervals to give a frame rate of 100 frames/s. 

reasonable approximation is therefore to analyse the speech signal into a sequence 
of frames, where each frame is represented by a single feature vector describing 
the average spectrum for a short time interval. 

Prior to any frequency analysis, each section of signal is multiplied by a 
tapered window (usually a Hamming or Hanning window). This type of 
windowing is necessary to reduce any discontinuities at the edges of the selected 
region, which would otherwise cause problems for the subsequent frequency 
analysis by introducing spurious high-frequency components into the spectrum. 
The length of each analysis window must be short enough to give the required time 
resolution, but on the other hand it cannot be too short if it is to provide adequate 
frequency resolution. In addition, because the analysis is normally performed at a 
fixed time interval, during voiced speech the window must be long enough so that 
it is not sensitive to exact position relative to the glottal cycle (i.e. there needs to 
always be at least one complete glottal cycle in the main part of the window). Long 
windows also have the advantage of smoothing out some of the random temporal 
variation that occurs in unvoiced sounds such as fricatives, but at the expense of 
blurring rapid events such as the releases of stop consonants. A common 
compromise is to use a 20-25 ms window applied at 10 ms intervals (giving a 
frame rate of 100 frames/s and an overlap between adjacent windows of about 
50%), as shown in Figure IO.I. 

10.4 FILTER BANKS, FOURIER ANALYSIS AND THE MEL SCALE 

In Section 8.3 we introduced a speech signal representation using a filter bank with 
channels whose bandwidth and spacing increase with frequency (motivated by 
psychophysical studies of the frequency resolving power of the human ear). A 
convenient implementation of filter-bank analysis involves applying a Fourier 
transform The output of the Fourier analysis will usually be at a finer frequency 
resolution than is required, especially at high frequencies. Thus the Fourier 
magnitudes are summed into a smaller number of channels, whose bandwidth and 
spacing conform to a perceptual scale such as the Bark or mel scale ( see 
Section 3.5). Typically no more than 20 such channels are used for speech with a 
4 kHz bandwidth, with a few additional channels being needed for higher­
bandwidth signals. As already explained in Section 8.3, it is advantageous for tl~e 
filter-bank output to represent power logarithmically, which reflects the phonetic 
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Figure 10.2 Triangular filters of the type suggested by Davis and Mermelstein (1980) for 
transforming the output of a Fourier transform onto a mel scale in both bandwidth and spacing. 
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significance of level variations and accords with evidence of a similar compressive 
non-linearity in auditory systems (see Chapter 3). A consequence of the 
logarithmic compression is that, when sampled from representative speech over a 
long period of time, the distribution of the energy in each of the channels tends to 
follow a Gaussian distribution, and is therefore compatible with any Gaussian 
assumptions that are made in the modelling. 

Figure 10.2 shows a set of triangular 'filters' that can be used to compute a 
weighted sum of Fourier spectral components, so that the output of the process 
approximates to a mel scale. Here the centre frequencies of the filters are spaced 
equally (at intervals of 100 Hz) on a linear scale from 100 Hz to 1 kHz, and equally 
on a logarithmic scale above 1 kHz. (Other slightly different spacings are also 
often used.) Each filter's magnitude frequency response is triangular in shape, and 
is equal to unity at the centre frequency and decreases linearly to zero at the centre 
frequencies of the two adjacent filters. This configuration of mel filters, which is 
now very widely used in ASR, was suggested by Davis and Mermelstein (1980). 

One option is to use the output of a filter-bank analysis to provide the 
recognition features directly. However, although filter-bank energies were widely 
used and achieved a fair amount of success as acoustic features in early recognition 
systems, there are substantial advantages to be gained by applying further 
transformations and this approach is the more usual choice nowadays. 

10.5 CEPSTRAL ANALYSIS 

The frequency resolution that is given by Fourier analysis applied to a 20-25 ms 
window of speech is generally sufficient to resolve the individual harmonics of the 
voiced excitation source, as well as showing the spectral shaping that is due to the 
vocal tract. Because the filtering operation of the vocal tract is the most influential 
factor in determining phonetic properties of speech sounds, it is desirable to 
separate out the excitation component from the filter component. The vocoders 
described in Chapter 4 are based on this principle. Cepstral analysis is another 
technique for estimating a separation of the source and filter components. Here the 
starting point is the observation that passing an excitation signal through a vocal-
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tract filter to generate a speech signal can be represented as a process of 
convolution in the time domain, which is equivalent to multiplying the spectral 
magnitudes of the source and filter components. When the spectrum is represented 
logarithmically, these components are additive, because the logarithm of a product 
is equal to the sum of the logarithms ( log(A x B) = log(A) + log(B) ). Once the two 
components are additive, it is relatively straightforward to separate them using 
filtering techniques. 

A typical logarithmic spectrum cross-section shows the rapidly oscillating 
component due to the excitation superimposed on a more gradual trend 
representing the influence of the vocal tract resonances (see Figure 10.3(b )). If we 
now imagine that this combined shape represents a time-domain signal, the rapid 
oscillations would correspond to high-frequency components, while the more 
gradual changes would be due to low-frequency components. If a Fourier 
transform were applied, the two components would therefore appear at opposite 
ends of the resulting spectrum. Thus by starting with the log magnitude spectrum 
and computing a Fourier transform, to obtain the so-called cepstrum (an anagram 
of "spectrum"), the excitation is effectively separated from the vocal-tract filtering, 
as shown in Figure 10.3(c). In fact, because the log magnitude spectrum is a 
symmetric function, the Fourier transform can be conveniently simplified to a 
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(a) Windowed speech waveform (32 ms at 
8 kHz sampling rate). 
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Figure I 0.3 Analysing a section of speech waveform to obtain the cepstrum and then to 
reconstruct a cepstrally smoothed spectrum. 
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discrete cosine transform (DCT). For a spectral representation comprising N 
channels with log magnitudes A 1 to AN, the DCT can be computed as follows: 

cj = Ji t A;co{ tc j(i;O.S)) forO < j < N, (10.1) 

where cj is the j th cepstral coefficient. When}= 0, Equation (10.1) simplifies so 
that c0 is proportional to the mean of the individual log channel signals A I to AN. 
The c1 term reflects the balance between energy at low frequencies and energy at 
high frequencies. As j increases, cj captures increasingly fine spectral detail: first 
overall spectrum shape, then general formant structure, then more detailed spectral 
structure between the formants and, at high values of j, the excitation structure. 
There is no simple relationship between the cj terms and the formants. However, 
for periodic speech the effect of the excitation source tends to be seen as a clear 
'spike' at the pitch period duration (see Figure 10.3(c)). Cepstral analysis is 
therefore one method that can be used to estimate fundamental frequency. For 
example, in Figure 10.3(c) the spike occurs at c73 which, for the sampling 
frequency of 8 kHz (i.e. a sample duration of 0.125 ms), corresponds to a 
fundamental period of 73 x 0. 125 = 9.125 ms. This value can be seen to be roughly 
equal to the interval between the pitch pulses in Figure 10.3(a). 

Although the cosine transformation given by Equation (10.1) ensures that the 
Euclidean distance in transformed space is exactly equal to the distance between 
the sets of untransformed channel signals, the information that is of phonetic 
significance becomes concentrated in the lower-order terms. Filtering the cepstrum 
(a process usually referred to as liftering) can be applied to remove certain 
components or alter the relative influence of the different components. A simple 
lifter is one which simply truncates the cepstral sequence, by giving a weight of 
one to the low coefficients (up to some specified index) and a weight of zero to all 
the higher coefficients. By setting the cut-off point to just below the coefficient 
corresponding to the pitch period, most of the influence of the fundamental period 
is effectively removed from the spectrum. This process is shown in Figure 10.3( d), 
in which the spectrum has been re-constructed (by a Fourier transform) from just 
the low-order cepstral coefficients. The resulting spectrum can be seen to be much 
smoother than the original and show the formant peaks more clearly. The lower the 
cut-off point is set, the more detail will be removed and the smoother the spectrum 
will be. The process of smoothing the spectrum by truncating the sequence of 
cepstral coefficients is often referred to as cepstral smoothing. 

The effectiveness of cepstral analysis for separating out the fundamental­
frequency component of a speech signal depends on the frequency of the 
fundamental relative to the frequencies of the formants. The method generally 
works best for adult male speech (as shown in the example in Figure 10.3). For 
typical female and children's speech both the pitch and formant frequencies are 
higher, but the pitch increases more relative to the formant frequencies and so the 
cepstrum gives a less clear separation of the excitation component. It is therefore 
more difficult to set a cut-off point for cepstral smoothing that removes the pitch 
influence without also removing useful information about the formant structure. 

In addition to the beneficial effect of concentrating on the information that is 
of greatest phonetic significance, discarding the high-order cepstral coefficients 
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reduces the number of features, so less computation is needed for the pattern­
matching process. 

The cepstrum has another desirable property for use in speech recognition. 
For typical speech signals it is found that, in contrast with the original channel 
signals, the variation of the separate coefficients tends to be uncorrelated. As a 
consequence, when using HMMs with continuous-density probability distributions 

) 

full covariance matrices can be replaced by much simpler diagonal covariance 
matrices (see Section 9.8.1) without any great loss in performance. Using diagonal 
covariance matrices substantially reduces both the computational requirements and 
the number of parameters needed to represent each distribution. 

Cepstral coefficients have the property that (ignoring coefficients that are 
associated with pitch) both the variance and average numerical values decrease as 
the coefficient index increases ( see Figure 10. 3 ( c)). A consequence for a DTW 
recognizer using a simple Euclidean distance metric is that the distance calculation 
is affected most by the lowest-order coefficients and the coefficients that are more 
related to formant structure tend to be given insufficient weight. A solution that has 
often been adopted is to apply a lifter with a weighting for each coefficient that acts 
to roughly equalize the variances for the different coefficients. The problem does 
not arise when using probability distributions in HMM systems, because the 
variance is accommodated in the probability calculations. The liftering is often still 
applied, however, because the effect of making the variances of all the features 
cover a similar range makes it easier to study model parameters and to place 
restrictions on variances as part of re-estimation (see Section 11.4.1). 

As explained above, the c0 coefficient is proportional to the mean of the log 
channel signals and therefore provides an indication of overall level for the speech 
frame. Sometimes c0 is included in the feature set, but often it is discarded and 
replaced by a different energy measure that is derived from the true signal energy. 
The energy in each frame will depend on overall speaking level, but for identifying 
sounds the most relevant factor is the relative level for different frames in an 
utterance. Therefore, for those applications for which the whole utterance becomes 
available before recognition needs to start, the measured energy is often normalized 
with respect to the maximum energy found over all frames in the utterance. (See 
Section 8.3.2 for further discussion about measures of speech level.) 

In order to retain the advantages of a perceptually motivated filter-bank 
analysis, for ASR the cosine transform is usuaily applied to the output of non­
linearly spaced filter-bank channels (see Section 10.4 above). A popular choice is 
to use mel-frequency cepstral coefficients (MFCCs), which are obtained by 
applying a DCT to the output of mel filters such as the ones shown in Figure l 0.2. 
An acoustic representation using MFCCs is often simply referred to as a mel 
cepstrum. As explained above, it is generally advantageous to discard the higher­
order coefficients. For example, with 8 kHz bandwidth speech, there might be 24 
mel channels but only the first 12 MFCCs are generally used in the final feature 
set. Although the use of the non-linear filter-bank means that the cosine transform 
no longer gives a simple separation of the excitation from the vocal-tract filtering 
(and much of the excitation effect will usually have already been smoothed out by 
the mel averaging), the truncation of the cepstral sequence has a general spectral 
smoothing effect that is normally desirable because it tends to remove phonetically 
irrelevant detail. 
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t0.6 ANALYSIS BASED ON LINEAR PREDICTION 

An alternative to filter-bank methods for representing the short-term spectrum is to 
derive linear prediction (LP) coefficients (usually called LPC analysis because of 
its origin in linear predictive coding, see Chapter 4 ). In the past, mainly during the 
I 970s, many recognizers were built using LPC-derived features and these systems 
generally gave performance comparable with that obtained from recognizers using 
filter-bank methods. During the 198Os it became more popular to use LPC-derived 
cepstral coefficients rather than the LP coefficients themselves because, as in the 
case of the filter-bank representation, the addition of the cepstral transformation 
was found to improve recognition performance. A convenient method exists for 
computing cepstral coefficients directly from the LP coefficients. LP analysis has 
the advantage that it produces an estimate of the smoothed spectrum, with much of 
the influence of the excitation removed. However, there is less freedom to apply 
non-linear processing to combat noise than there is with a filter-bank front-end. In 
addition, LPC inherently gives uniform weighting to low- and high-frequency 
regions of the spectrum. A non-linear frequency scale can be incorporated, but 
complicates the analysis to a greater extent than when using filter-bank methods. 

Perceptual linear prediction (PLP) (Herrnansky, 1990) is one LP-based 
analysis method that successfully incorporates a non-linear frequency scale and 
other known properties from the psychophysics of hearing. In PLP analysis, a 
Fourier transform is first applied to compute the short-term power spectrum, and 
the perceptual properties are applied while the signal is represented in this filter­
bank form. The spectrum is transformed to a Bark scale, and this spectrum is pre­
emphasized by a function that approximates the sensitivity of human hearing at 
different frequencies (see Figure 3.5). The output is compressed to approximate the 
non-linear relationship between the intensity of a sound and its perceived loudness. 
The all-pole model of LPC is then used to give a smooth, compact approximation 
to the simulated auditory spectrum, and finally the LP parameters are usually 
transformed to cepstral coefficients for use as recognition features. Apart from the 
use of LPC to achieve spectral smoothing, PLP analysis is very similar to MFCC 
analysis, but with perceptual properties incorporated in a way that is more directly 
related to psychophysical results ( see Table 10.1 for a comparison of the two 
methods). In recent years a number of recognition systems have used PLP-based 
cepstral coefficients as acoustic features, and experimental evidence suggests that 
overall they give performance that is comparable with that obtained using MFCCs. 

Table 10.1 Comparison between the properties of PLP cepstral coefficients and typical MFCCs. 

MFCCs 

Cepstrum-based spectral smoothing 

6 dB/octave pre-emphasis applied to 
speech waveform 

triangular mel filters 

logarithmic amplitude compression 

PLP cepstral coefficients 

LPC-based spectral smoothing 

equal-loudness pre-emphasis applied 
to spectrum 

critical-band filters 

cube root amplitude compression 
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10.7 DYNAMIC FEATURES 

In the HMM probability calculations (see Section 9.3), the probability of a given 
acoustic vector corresponding to a given state depends only on the current vector 
and the current state, and is otherwise independent of the sequence of acoustic 
vectors preceding and following the current vector and state. It is thus assumed that 
there is no dependency between the observations, other than through the underlying 
state sequence. In reality, however, an acoustic feature vector representing part of a 
speech signal is highly correlated with its neighbours. In fact, it is often the 
dynamic characteristics of the features that provide most information about 
phonetic properties of speech sounds (related to, for example, formant transitions 
or the closures and releases of stop consonants). These correlations can be captured 
to some extent by augmenting the original set of ('static') acoustic features (such 
as MFCCs) with dynamic features that are a measure of the change in the static 
features. These dynamic features are often referred to as time derivatives or 
deltas. One way of computing the delta features is by simple differencing between 
the feature values for two frames either side of the current frame: 

fl Yr = Yr+D - Yt-D, (10.2) 

where D represents the number of frames to offset either side of the current frame 
and thus controls the width of the window over which the differencing operation is 
carried out. Typically D is set to a value of 1 or 2. 

Although time-difference features have been used successfully in many 
systems, they are sensitive to random fluctuations in the original static features and 
therefore tend to be 'noisy'. A more robust measure of local change is obtained by 
applying linear regression over a sequence of frames: 

D 

L 7 ( y r+r - y ,-r ) 
A r=l u Yr = ___ D ___ _ (10.3) 

2L72 

r=l 

With linear regression, a value of D = 2 is the usual choice for an analysis frame 
rate of 100 frames/s. This regression window of five frames ( 50 ms) is long enough 
to smooth out random fluctuations, yet short enough to capture local dynamics. 

The delta features described above are first-order time derivatives, which can 
in turn be used to calculate second-order time derivatives ( sometimes referred to as 
delta-deltas). Including first-order time derivative features usually gives a large 
gain in recognition performance, and adding second-order derivatives (which 
capture changes in the first-order dynamics) tends to give an additional but smaller 
improvement. The majority of current HMM systems incorporate first-order 
derivative features, most often applied to a basic feature set of MFCCs and an 
energy feature, and many also include second-order derivatives. Most of the benefit 
from derivative features is due to their ability to capture dynamic information. 
However, these features also have the useful property that they are not affected by 
any constant or slowly changing disturbances to the signal (such as linear filtering 
in microphone pre-amplifiers and on telephone channels, for example), provided 
that these distortions are additive in the feature domain (see Section 11.2). 
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10.8 CAPTURING THE PERCEPTUALLY RELEVANT INFORMATION 

Both in Chapter 3 and at the beginning of the current chapter we explained the 
desirability of capturing properties of human phonetic perception in the front-end 
analysis for ASR. Analysis methods such as PLP take into account several known 
facts about the lower levels of human auditory processing. However, there is no 
attempt to model higher-level auditory processing or more specific properties of 
speech perception in any of the analysis methods that have been described above. 

It is now well established that the frequencies of the speech formants, 
particularly the first and second, are vitally important phonetically. Relative 
formant amplitudes are much less important, and the detailed structure of the 
lower-level spectral regions between formants is of almost no consequence. There 
would therefore seem to be potential for better performance in ASR if these factors 
could be taken into account when designing acoustic analysis methods and distance 
metrics. Although auditory models have shown considerable promise for 
incorporating into systems for ASR (see Section 3.7), these types of features have 
not yet replaced more general spectral features such as MFCCs or PLP-cepstra as 
the preferred choice in HMM-based systems. It is possible that substantial changes 
in the design of the recognizers themselves will be required before it will be 
possible to gain the full benefit from incorporating auditory models. We will return 
to this issue in Chapter 16, when we will also discuss the prospects and issues for 
extracting and using formant information more explicitly in ASR. 

10.9 GENERAL FEATURE TRANSFORMATIONS 

The DCT is one orthogonal transformation that reduces the dimensionality of a 
filter-bank output by concentrating the most useful information into a small 
number of features. Other orthogonal transformations for data reduction include 
principal components analysis (PCA) and linear discriminant analysis (LDA). 
PCA performs a linear transformation on an input feature set, to produce a different 
feature set of lower dimensionality in a way that maximizes the proportion of the 
total variance that is accounted for. LDA also applies a linear transformation on the 
input feature set, but here the transformation is chosen to maximize a measure of 
class separability, and hence to improve discrimination. In order to determine the 
transformation, this procedure requires each input feature vector to have first been 
associated with a single class. PCA and LDA are both general data-reduction 
techniques that can usefully be applied to reduce the dimensionality of any diverse 
feature set, including for example static spectral or cepstral features with first- and 
second-order time derivatives, or even the output of auditory models. Both PCA 
and LDA generate new feature sets that are uncorrelated, thus allowing diagonal 
covariance matrices to be used for HMM state emission p.d.f.s. 

10.10 VARIABLE-FRAME-RA TE ANALYSIS 

It has been assumed so far that all the frames in an utterance are of equal 
importance when making a comparison with stored templates or models. However, 
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a slight difference of vowel quality, for example, may not affect the identity of 
~o~d, ~he~eas formant transitions at vowel-consonant boundaries may be crucia~ 
m identifying the consonant. Because, for many consonants, such transitions ar 
very rapid, they do not occupy many frames. Although the addition of time~ 
derivative features increases the importance of matching the transition 
characteristics, still rapid transitions may make only a small contribution to the 
cumulative distance or probability, even when they are matched very badly. The 
vowels and steady-state parts of long consonants can, in contrast, make a large 
contribution overall even when they match fairly well on each frame. 

To overcome this difficulty it is necessary to give more weight to parts of the 
signal that are changing rapidly, and less weight to long steady regions. One way 
that is sometimes used to achieve this effect is to perform the original acoustic 
analysis at a fairly high frame rate ( e.g. 100-200 frames/s ), but then to discard a 
variable proportion of the frames depending on the distance between consecutive 
pairs of frames. Thus all frames are retained in rapid transitions, but perhaps only 
one in five is kept in very steady long vowels. This variable-frame-rate analysis 
method is similar to the scheme described in Section 4.3.5 for efficient speech 
coding. In the case of speech analysis for ASR, not only is there a computational 
saving, but also the overall match of an input utterance to stored templates or 
models shows much greater relative sensitivity to mismatch in transition regions. 

CHAPTERl0SUMMARY 

• When deriving features for speech recognition, input speech is often first pre­
emphasized by 6 dB/octave, so that the signal for subsequent analysis has a 
roughly flat spectral trend. Speech is analysed into a sequence of frames: most 
usually a 20-25 ms tapered window is applied at 10 ms intervals. 

• One popular method of representing the speech spectrum is to use a filter bank 
with triangular filters whose width and spacing follow a mel scale. To obtain 
features for ASR, the output of such a filter bank is often subjected to a cosine 
transform (so deriving mel-frequency cepstral coefficients: MFCCs). An 
alternative is to derive cepstral coefficients from perceptual linear prediction. 

• The cosine transform causes the features to become largely decorrelated so 
that diagonal covariance matrices can be used in the HMMs. In addition, 
information of phonetic significance is concentrated in the lower-order terms, 
so a more efficient representation can be obtained with fewer features. 

• ASR performance is often greatly improved by adding 'delta' (first-order time­
derivative) features, which are usually computed for each frame by applying 
linear regression over a window of five frames centred on the current frame. 

CHAPTER 10 EXERCISES 

El0.1 Why is cepstral analysis a useful tool in speech processing? 

El0.2 Explain the stages that are typically used to analyse a speech signal into 
MFCCs and their first- and second-order time derivatives. 

El0.3 How are properties of auditory perception simulated in front-ends for ASR? 

JI 
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CHAPTER12 

Automatic Speech Recognition for 
Large Vocabularies 

12.l INTRODUCTION 

The previous four chapters have concentrated on introducing underlying theory and 
algorithms for ASR, together with some of the techniques for using the algorithms 
successfully in real situations. The discussion so far has deliberately concentrated 
either specifically on distinguishing between a small number of different words or 
on more general methods irrespective of the particular recognition task. In this 
chapter, we consider issues relevant to systems for recognizing continuously 
spoken utterances using large vocabularies, which may be anywhere from a few 
thousand up to around 100,000 different words. 

12.2 HISTORICAL PERSPECTIVE 

One of the earliest major efforts aimed at large-vocabulary ASR was initiated 
during 1971 in the United States by the Advanced Research Projects Agency 
(ARPA), with funding for a five-year programme of research and development. The 
overall objective was to make significant progress in the field of speech 
understanding by developing several alternative systems. The specific goal was to 
achieve a level of performance that was expressed in terms of semantic errors (less 
than 10%) on a continuous speech recognition task with a total vocabulary size of 
at least 1,000 words but using constrained-language input. 

Although isolated-word recognition using pattern-matching techniques had 
achieved some initial success by the time of this ARP A programme, it was not 
generally obvious then how to extend the approach to accommodate the contextual 
effects that were known to occur in continuous speech. Therefore most systems 
adopted what at that time was the more traditional approach, using two separate 
stages. The first stage began by detecting phonetic features ( e.g. formant 
frequencies, energy in different frequency bands, etc.) that were known to be 
important for distinguishing different speech sounds. Rules were used to convert 
from the measured features to a hypothesized phonetic transcription, which usually 
included some alternatives. The second stage then converted this transcription to a 
recognized word sequence. Inevitably there would be errors in the initial phonetic 
transcription, but the hope was that these errors would be corrected by the higher­
level post-processing. However, in practice the first stage was so error-prone that 
information was lost which could not be recovered later. As a consequence, all the 
systems using this knowledge-based approach gave disappointing performance. In 
fact, the only system to achieve the required level of performance used a 
completely different method, based on a systematic search of a large network of 
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states with strong syntactic constraints, and it was one of the early large-vocabulary 
speech recognition systems using HMMs. The system was developed (somewhat 
separately from the main ARPA projects) at CMU by Lowerre (1976) as a Ph.D. 
project, extending the earlier pioneering work on HMMs by Baker (1975). 

The results of the 197Os ARP A programme, while disappointing in terms of 
achievements for the money invested, provide a convincing demonstration of the 
benefits of data-driven statistical pattern matching over knowledge-based methods. 
In particular, the principle of delayed decision making is crucial, as it allows the 
overall best solution to be found incorporating all constraints, including those on 
construction of individual words and on allowed word sequences. This principle is 
fundamental to the design of all modem large-vocabulary speech recognizers. 

Concurrent with the ARP A projects, research was in progress at IBM on the 
use of statistical methods for ASR. Early work was published by Jelinek (1976), 
independently of the work being carried out at CMU during the same period by 
Baker (1975). Work at IBM continued with an emphasis on applying HMMs to 
large-vocabulary speech recognition, and in the early 198Os the group focused on 
developing a system for dictation of office correspondence. The resulting system, 
"Tangora", as described by Jelinek (1985), was a speaker-dependent, isolated­
word, near-real-time recognizer with a 5,OOO-word vocabulary. Although this 
system required users to leave pauses between words, it established the principles 
underlying the use of HMMs for a large-vocabulary task. Since the mid-1980s, 
further developments in many laboratories have led to significant further progress, 
and systems are now able to recognize fluent, naturally spoken continuous speech 
with very large vocabularies. There are a variety of systems for large-vocabulary 
continuous speech recognition (L VCSR) in existence, both as commercial 
products and as research systems in laboratories. At present, the successful systems 
are all based on HMMs, usually incorporating many of the refinements described in 
Chapter 11, but also with components that are specific to demands imposed by the 
need to cope with large vocabularies. 

12.3 SPEECH TRANSCRIPTION AND SPEECH UNDERSTANDING 

Large-vocabulary speech recognition tasks fall into two quite distinct categories: 

1. Speech transcription: The user wishes to know exactly what the speaker said, in 
the form that it would be transcribed by an audio typist to produce orthographic 
text. Such a system may be used for dictation, and for tasks such as producing 
transcripts of broadcast news programmes. 

2. Speech understanding: The semantic content of the message is required, and 
any recognition errors do not matter provided that the meaning is not changed. 
In fact often the real requirement is for the system to perform the correct action, 
irrespective of what words are recognized. Speech understanding systems may 
involve an interactive dialogue between a person and a machine to retrieve 
information from some computerized database. Other uses include automatic 
information extraction, for example to summarize spoken reports or broadcasts. 

The interactive nature of many speech-understanding tasks, together with the 
fact that the subject area is often restricted, means that the relevant vocabulary at 
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any one point can be much smaller than the total vocabulary that is needed for more 
general transcription _tasks. Howev_er, in order to interpret meaning of u_tterances, 
more detailed syntactic and semantic analyses are necessary than are requrred when 
just tran_scribi~g the words that were spoken. _T~e principles of large~vocabulary 
recognition using HMMs apply both to transcnption and to understandmg, but the 
way in which the recognizer output is used is rather different. The frrst, main part of 
this chapter concentrates on transcription, while the latter part of the chapter briefly 
describes the use of large-vocabulary ASR in speech understanding systems. 

12.4 SPEECH TRANSCRIPTION 

The input speech waveform (typically sampled at 16 kHz) is first analysed into a 
sequence of acoustic feature vectors such as MFCCs (see Chapter 10). A popular 
choice is the frrst 12 cepstral coefficients and an overall energy feature together 
with first and second time derivatives of these features, giving a 39-element vector. 

Once the input speech has been analysed into a sequence of fea~e vectors, 
the recognition task is to find the most probable word sequence W given the 
observed vector sequence Y. Revisiting Bayes' theorem (see Section 9.2), but 
applying it to the task of finding a word sequence, the most probable sequence can 
be derived from the probability P( WI Y) of any one sequence Was follows: 

A P(Y I W)P(W) 
W =argmax P(W I Y) = arg max----= argmaxP(Y I W)P(W). (12.1) 

w w P(Y) w 

Equation (12.1) states that the most likely word sequence is the one which 
maximizes the product of P(Y IW) and P(W). The first term denotes the probability 
of observing vector sequence Y given the word sequence W, and is determined by 
an acoustic model. The second term represents the probability of observing word 
sequence W independently from the acoustic signal, and is determined by a 
language model. Chapter 9 focused on the task of calculating acoustic-model 
probabilities, which is fundamental to any speech recognition system based on 
statistical models. However, for all but the most simple of applications, the 
language-model probability is also a major factor in obtaining good performance: 
restrictions imposed by the language model can greatly reduce the number of 
different alternatives to be distinguished by the acoustic model. As with the 
acoustic model, the language model for LVCSR is usually a statistical model that is 
automatically trained on data. In the case of the language model, these data usually 
take the fonn of text material chosen to be representative of the recognition task. 

Assuming that models have been trained, Figure 12.1 illustrates a framework 
for classifying an unknown utterance by computing P(YIW)P(W). The language 
model postulates a word sequence ("ten pots" in this example 1) and determines its 
probability P( W ). In order to calculate the acoustic-model probability P( YI W ), a 

I 
The phrase "ten pots" will be used in this chapter to illustrate a variety of different points. This phrase 

was chosen to provide a simple example for which the phonetic and orthographic transcriptions are 
very similar. For convenience of notation, we will represent the vowel in "pots" with its orthographic 
transcription /o/ in place of the correct phonetic notation for southern British English /o/. 
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Figure 12.1 Framework for decoding a speech signal by computing the probability of a word 
sequence in terms of language-model and acoustic-model probabilities, shown for recognition of 
the phrase "ten pots". A simple filter-bank analysis is shown here for clarity of illustration, 
although in practice other features such as MFCCs would be used. Due to space limitations, only 
four of the seven models needed to represent the phone sequence in "ten pots" are shown. 

composite model for the word sequence is generated. Rather than having a separate 
HMM for each word, the component models represent phone-size units and a 
pronunciation dictionary is used to specify the sequence of models for each word in 
the vocabulary. For any word sequence, the dictionary is used to look up the 
required sequence of phone models for each word, and these phone models are 
concatenated together to form the model for the word sequence. The probability of 
that model generating the observed acoustic sequence is calculated, and this 
probability is multiplied together with the language-model probability. In principle, 
this process can be repeated for all possible word sequences allowed by the 
language model, with the most likely sequence being selected as the recognizer 
output. In practice, decoding for L VCSR requires a very efficient search strategy 
for evaluating the vast number of different possibilities, as will be explained later. 

12.5 CHALLENGES POSED BY LARGE VOCABULARIES 

Issues for the design of large-vocabulary recognition systems include the following: 

1. In continuous fluent speech, there are many instances when words cannot be 
distinguished based on acoustic information alone and it is necessary to rely on 
a language model for discrimination. Difficulties in making acoustic distinctions 
arise for two main reasons. Firstly, due to co-articulation between adjacent 
words, word boundaries are not usually apparent in the acoustic signal. In so_me 
cases, two utterances may be linguistically different but acoustically very si[l11lar 
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or even identical ( as in the "grey day" versus "grade A" example given in 
Chapter 1 ). Secondly, the pronunciation of many words, particularly function 
words, can be so reduced that there is very little acoustic information at all. 

2. The memory and computation requirements can become excessive. In recent 
years, advances in computer technology have greatly reduced the impact of this 
limitation. However, memory and computation are still influential, especially in 
determining the choice of search mechanism for use in decoding. 

3. As the vocabulary size increases, it becomes increasingly difficult to provide 
enough representative examples of all the words, both as text to train the 
language model and as spoken examples to train the acoustic model. 

Many of the design features of modem L VCSR systems are determined by the need 
to deal with these issues. The design of the acoustic model, the language model and 
the decoding operation are all crucial factors for the success of an L VCSR system. 
The following three sections describe each of these three components in turn. 

12.6 ACOUSTIC MODELLING 

Although some early systems used HMMs with discrete distributions for their 
emission p.d.f.s ( e.g. Lee ( 1989) ), current systems generally use fully continuous 
distributions or tied-mixture distributions, usually with diagonal covariance 
matrices. These latter types will be the focus of the explanation given here, which is 
based mainly on descriptions of the research system developed at Cambridge 
University (e.g. Young (1996)). This system is one of the most successful systems 
to date, but there are many other systems that have fairly similar structure and give 
broadly comparable performance, although they differ in various details. 

The need to make the best use of any available acoustic training data has 
important consequences for the design of the acoustic-model component. With a 
large vocabulary, it is impractical to expect any one person to provide enough 
examples to train models for all the words from scratch, even if the system is 
intended for speaker-dependent operation. Therefore, a speaker-independent model 
set is used, at least to provide a starting point. Speaker-adaptation techniques are 
often used to improve performance for any one individual. Unsupervised adaptation 
may be performed using the recognizer output, as shown by the dotted data path in 
Figure 12.1. In addition, for a system to be used by one known person, that person 
can be required to speak some specific utterances, which can be used for supervised 
model adaptation before the person uses the system to perform any real task. 

Even with several speakers to provide the data, it is not practical to train a 
separate model for each word in a large-vocabulary system. Even if it were 
practical, this approach would not make the best use of the data, as it does not take 
account of the fact that different words can share sub-components. Therefore large­
vocabulary systems are based on sub-word models. The usual method, as shown in 
Figure 12.1, is to use models of phone-size units, with the sequence of phones for 
each word being specified in a pronunciation dictionary. Thus, the requirement for 
the training is to provide sufficient examples of all the phone-size units, and all the 
words in the vocabulary will not necessarily have occurred in the training data. In 
fact, provided suitable models are available, words can be added to the vocabulary 
at any time simply by extending the pronunciation dictionary. 
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12.6.1 Context-dependent phone modelling 

As approximately 44 phonemes are needed to represent all English words, this 
number of models would be the minimum needed to build word models for English. 
However, the effects of co-articulation are such that the acoustic realization of any 
one phoneme can vary greatly with acoustic context. Therefore context-dependent 
HMMs are generally used, with different models for different phonetic contexts. 
Additional variation tends to arise because many speakers will, either consistently 
or occasionally, use word pronunciations that are different from those given in the 
dictionary. Although alternative pronunciations can be included in the dictionary, it 
is difficult to include every possible pronunciation and any that are not covered will 
need somehow to be accommodated in the chosen set of context-dependent HMMs. 

The simplest and most popular approach is to use triphones, whereby every 
phone has a distinct HMM for every unique pair of left and right neighbours. For 
example, consider the word "ten". When spoken in isolation, this word could be 
represented by the sequence s i 1 t e n s i 1, with the s i 1 model being used for 
silence at the start and end. Using triphones, with the notation xY z to denote phone 
y preceded by phone x and followed by phone z, the word would be modelled as 

sil sil te ten ensil sil · 

Now consider the phrase "ten pots", for which the triphone sequence would be 

sil sil te ten enp nPo p 0 t ots t 8 sil sil • 

The two instances of the phone [t] are represented by different models because their 
contexts are different. Note that the triphone contexts span word boundaries, so that 
the first and last triphones used to represent a word depend on the preceding and 
following words respectively. For example, if the phrase were "ten dogs", the last 
triphone used to model "ten" would be ena rather than eilp, This use of cross-word 
triphones enables co-articulation effects across word boundaries to be 
accommodated, but creates complications for the decoding process as the sequence 
of HMMs used to represent any one word will depend on the following word. 

The decoding task can be greatly simplified by using only word-internal 
triphones, whereby 'word boundary' acts as a context and so the sequence of 
HMMs is fixed for each word. Thus, in the above example the triphones enp and 
nPo would be replaced by en_ and _p 0 respectively, with - being used to represent 
a word boundary. Early triphone systems were restricted to word-internal triphones, 
but the inability to model contextual effects across word boundaries is a serious 
disadvantage and current systems generally include cross-word context-dependent 
models. The consequences for decoding are explained in Section 12.8. 

12.6.2 Training issues for context-dependent models 

For a language with 44 different phones, the number of possible triphones is 443 
== 

85,184. In fact, phonotactic constraints are such that not all of these triphones can 
occur. However, an L VCSR system which includes cross-word triphones will still 
typically need around 60,000 triphones. This large number of possible triphones 
poses problems for training the models: 
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• The total number of parameters needed for the models is very large: it is usual 
to use three-state models with somewhere in the region of 10 mixture 
components to represent the output distribution for each state. This number of 
mixture components tends to be needed to represent the wide range of speakers 
(including a range of different accent types) who must be accommodated within 
a single model. Assuming that diagonal covariance matrices are used with 39-
element acoustic feature vectors and 10 mixture components, each state would 
require around 790 parameters (39 x 10 means, 39 x 10 variances, and 10 
mixture weights). Thus 60,000 three-state models would have a total of over 
142 million parameters. Any feasible quantity of training data would not be 
large enough to train this number of parameters adequately. 

• In any given set of training data, many triphones will inevitably not occur at all, 
especially if cross-word trip hones are allowed ( as it is very difficult to include 
all the phone combinations that might occur in all possible sequences of words). 
Thus some effective method is required for generating models for these unseen 
triphones that do not occur in the training data. 

Similar issues have already been mentioned as difficulties with using whole-word 
models for large vocabularies. However, when using smaller model units that are 
meaningful in phonetic terms, it is easier to see how the problems can be reduced. 
The challenge is to balance the need for detail and specificity in the models against 
a requirement to have enough training data to obtain robust parameter estimates. To 
tackle the problem various different smoothing techniques have been used: 

I. Backing off When there are insufficient data to train a context-specific model, 
it is possible to back off and use a less-specific model for which more data are 
available. For example, one approach is to replace a triphone by the relevant 
biphone2, representing the phone dependent on only one adjacent context, 
which may be either to the left or to the right. Given a choice between the left or 
the right biphone context, it is generally better to choose the right context as 
articulation tends to be anticipatory, such that following context has a greater 
influence than preceding context. If there are insufficient examples to train a 
biphone, it is possible to resort to the context-independent phone model, or 
monophone. The backing-off mechanism ensures that every model in the final 
system is adequately trained, but can result in only a relatively small number of 
full triphone models, so that several contexts are not modelled very accurately. 

2. Interpolation: A greater degree of context dependency can be retained by 
interpolating the parameters of a context-specific (triphone) model with those 
of a less-specific model (such as a biphone or monophone), to give model 
parameters which represent some compromise between the two sets. Thus some 
of the context dependency of the original triphone models is preserved, while 
increasing their robustness by taking into account additional (less specific) data. 

3. Parameter sharing: An alternative is to take all the triphones representing any 
one phone, apply some form of clustering procedure to group the individual 

2 
Note that the term biphone is used to refer to a phone that is dependent upon a single context (either 

left or right), and that this unit is different from the diphone unit discussed in Chapter 5, which 
represents the region from the middle of one phone to the middle of the next. 
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models ( or parts of models) into clusters with similar characteristics, and share 
the parameters between them. This sharing of parameters, often referred to as 
parameter tying, allows the data associated with similar states to be pooled to 
improve the robustness of the parameter estimates. This approach can retain a 
higher degree of context specificity than is possible with the first two methods. 

Although both backing off and parameter interpolation have been used with 
some success, the greater power of more general parameter sharing to obtain a 
better compromise between accuracy and robustness is such that this method is now 
widely used in L VCSR. The method is described in more detail below. 

12.6.3 Parameter tying 

The technique of tying provides a general mechanism for sharing parameters 
between models or parts of models. One example is provided by the tied-mixture 
distributions introduced in Chapter 9, where the means and variances of each 
mixture component are tied across all model states. Smoothing the parameters of 
context-dependent models represents another application of tying. Here tying is 
usually applied to all model parameters for a subset of the triphones representing a 
phone. The aim is to tie together those models or states for which any differences in 
the acoustic realizations are not significant for phonetic discrimination. 

Initial developments in parameter sharing between context-dependent models 
concentrated on clustering together triphone models, to give generalized 
triphones. However, this approach assumes that the degree of similarity between 
any two models is the same for all the states in the models. In fact, the different 
effects of left and right context are such that this assumption is rarely justified. For 
example, consider three triphones of /el: ten, tep and ken, The first state of the 
ten and tep triphones can be expected to be very similar, while the last state of the 
ten and ken triphones will be similar. Thus tying at the state level offers much 
more flexibility to make the most effective use of the available data for training a 
set of models. We will now consider two important issues associated with the use 
of state tying: firstly the general procedure used to train the tied-state multiple­
component mixture models ( assuming that it is known which states to tie together), 
and secondly the choice of clustering method used to decide on the state groupings. 
The discussion focuses on state tying, but the principles apply in the same way 
when the tying is applied to complete models. 

12.6.4 Training procedure 

Careful design of the training procedure is essential to maximize the robustness and 
accuracy of the final set of tied-state context-dependent HMMs. When training sub­
word models, it is not usual for the individual speech segments to have been 
identified and labelled in the available training data. In fact it is most likely that the 
data will have been transcribed as a sequence of words but not segmented at all. 
Rather than attempting to segment these data, they can be used directly for 
parameter estimation by adopting the embedded training approach described in 
Section 9 .11. When using sub-word models, it is necessary first to construct a 
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model for each word from the sub-word units, before then constructing a model for 
the whole utterance from the individual words. Similarly to the procedure outlined 
in Section 12.4 for recognition, the pronunciation dictionary is used to look up the 
phone sequence required to represent each training utterance. A composite HMM is 
constructed by concatenating the appropriate sub-word models, and the relevant 
statistics for re-estimation are accumulated over all occurrences of each model. 

Phone sequence constraints across different utterances are such that the 
embedded training method should generally be effective in associating appropriate 
speech frames with each model state, provided that in the early stages of training 
each model is used in a sufficient range of different contexts. For this situation it is 
even adequate to use the very simple 'flat' initialization of all the model parameters 
to identical values (see Section 9.9). It is usual to start with single-Gaussian 
distributions and train simple monophone models. Because there are very many 
examples of each one, these monophones can be trained very robustly, and provide 
a good basis for initializing the more specific context-dependent models. A typical 
procedure for training context-dependent models is illustrated in Figure 12.2, and 
summarized below: 

1. A set of monophone HMMs, using single-Gaussian output distributions with 
diagonal covariance matrices, is created and trained. 

2. All the training utterances are transcribed in terms of the complete set of 
possible triphones. For each triphone, an initial model is created by cloning the 
appropriate monophone. The transition probability matrix is typically not 
cloned, but is tied across all triphones of a phone. The triphone model 
parameters are re-estimated and the state occupancies, which represent the 
expected number of observations used to estimate the parameters of each 
triphone (see Section 9.5.2), are retained for later use. 

3. For the set of triphones representing each phone, similar states are clustered 
together to create tied states (see Sections 12.6.5 and 12.6.6 for more 
explanation). As part of the state tying process, it is important to check that 
there are sufficient data associated with each tied state. This situation can be 
achieved by only allowing clusters for which the total state occupancy (i.e. the 
estimated 'count' of number of frames for which the state is occupied) exceeds 
a suitable threshold value (typically around 100). The parameters of the tied­
state single-Gaussian models can then be re-estimated. The use of tying does 
not alter the form of the re-estimation formulae and can be made transparent to 
the re-estimation process if the data structures used to store the information are 
set up appropriately. Storage can be set up for accumulating the numerator and 
denominator for re-estimating each parameter of each tied state, with individual 
states simply pointing to the relevant storage. 

4. Finally, multiple-component mixture models are trained using the iterative 
mixture splitting procedure explained in Section 9.10.4. 

Delaying the introduction of the multiple-component Gaussians until the final 
stage has a number of advantages: 

' The difficulties associated with training untied triphone mixture distributions 
are avoided, as multiple mixture components are only introduced once the 
model inventory has been set up to ensure adequate training data for each state. 

' The state tying procedure is simplified because, by using single-Gaussian 
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Figure 12.2 Sequence of stages for training tied-state Gaussian-mixture triphones, illustrated 
for a group of trip hones representing the /e/ phoneme. 

distributions, it is much easier to compute a similarity measure and to calculate 
the parameters of the combined states (see Section 12.6.6). 

• By not introducing the mixture distributions at the monophone stage, the 
process avoids potential complications that could arise if the mixture 
components were used to accommodate contextual variation which would at a 
later stage be covered by the context-dependent models. It is generally better to 
accommodate contextual influences explicitly so that the predictable nature of 
these effects can be exploited as far as possible. The multiple mixture 
components are then needed mainly to allow for the fact that any one model 
represents data from a wide variety of different speakers. 

In addition to the benefits in terms of robustness, computation and storage, 
state tying has the potential to lead to models with better discrimination. The 
potential advantages of sub-word over whole-word models in terms of 
discrimination power have already been mentioned. These arguments extend to the 
use of state tying. If the differences between the acoustic realizations associated 
with two different model states are simply a consequence of random variation, it is 
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detrimental for these differences to be included in the models. By combining them 
into a single model state, discrimination will be more focused on those regions of 
words containing the most useful acoustic cues. This benefit is dependent upon 
finding an appropriate method for determining which states to tie together. 

12.6.5 Methods for clustering model parameters 

Clustering methods for grouping together similar states can be divided into two 
general types. These methods can be used to cluster triphone states as follows: 

1. Bottom-up clustering: Starting with a separate model for each individual 
triphone, similar states are merged together to form a single new model state. 
The merging process is continued until some threshold is reached which ensures 
that there are adequate data to train each new clustered state. This data-driven 
approach is often referred to as agglomerative clustering. The method should 
ensure that there are sufficient data to train every state in the final set, while 
keeping the models as context-specific as possible given the available training 
data. However, for any triphones that do not occur at all in the training data, it 
is still necessary to back off to more general models such as hipbones or 
monophones. 

2. Top-down clustering: Initially all triphones for a phoneme are grouped together 
and a hierarchical splitting procedure is used to progressively divide up the 
group according to the answers to binary yes/no questions about either the left 
or the right immediately adjacent phonetic context. The questions are arranged 
as a phonetic decision tree, and the division process starts at the root node of 
the tree and continues until all the leaf nodes have been reached. All the states 
clustered at each leaf node are then tied together. A tree is generated for each 
state of each phone. An example showing the use of a decision tree to cluster 
the centre state of some le/ triphones is shown in Figure 12.3. The context 
questions in the tree may relate to specific phones ( e.g. "Is the phone to the 
right /1/?"), or to broad phonetic classes ( e .. g. "Is the phone to the left a nasal?"). 
Using the tree, the correct tied state to use for any given context can be found 
by tracing the path down the tree until a leaf node is reached (see Figure 12.3). 

The main advantage of the top-down approach to clustering is that a context­
dependent model will be specified for any trip hone context, even if that context did 
not occur in the training data. It is thus possible to build more accurate models for 
unseen triphones than can be achieved with the simple backing-off strategy, 
assuming that the questions in the tree are such that contexts are grouped 
appropriately. Although the tree could be constructed by hand based on phonetic 
knowledge, this approach does not work very well in practice, as it does not take 
into account the acoustic similarity of the triphones in the data. It is, however, 
possible to construct trees automatically by combining the use of phonetic 
questions with tests of acoustic similarity and a test for sufficient data to represent 
any new division. This automatic construction provides generalization to unseen 
contexts while maintaining accuracy and robustness in the acoustic models. A 
popular version of this effective technique for constructing phonetic decision trees 
is explained in more detail in the next section. 
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Figure 12.3 Example illustrating the use of a phonetic decision tree to cluster the centre state for a 
group of triphones of the /e/ phoneme. Each trip hone is moved down the tree until a tenninal 'tear 
node is reached (shown as circles), and a new model state is formed from the members of the 
cluster. The tree shown here is a very simple one intended simply as an illustration of the principles 
of clustering, and in any real application there will be many more questions before a tenninal node 
is reached. The tree can then be used to find the appropriate clustered state for any given context. 
As an example, the route down this simple tree is shown (using double lines round the chosen 
decision boxes and the final leaf node) for the context of a preceding It/ and a following /n/. In this 
context the clustered state e2-2 will be used. 

12.6.6 Constructing phonetic decision trees 

First, linguistic knowledge is used to choose a set of possible context questions that 
might be used to divide the data. This question set will usually include tests for 
each specific phone, tests for phonetic classes ( e.g. stop, vowel), tests for more 
restricted classes ( e.g. voiced stop, front vowel) and tests for more general classes 
( e.g. voiced consonant, continuant). Typically, there will be over I 00 questions for 
the left context and a similar number for the right context. For each state of each 
phone, the aim is to build a tree where the question asked at each node is chosen to 
maximize the likelihood of the training data given the final set of tied states. A 
condition is imposed to ensure that there are sufficient data associated with each 
tied state (i.e. that the total occupancy of the tied state exceeds some threshold). 

It would in principle be possible to build all possible tree architectures (for all 
states), train a set of models for each architecture, and choose the set for which the 
likelihood of the training data is the highest while satisfying the occupancy 
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condition for each of the final tied states. This strategy would, however, be 
computationally intractable. Fortunately, by making the assumption that the 
assignment of acoustic observations to states is unchanged from the assignment for 
the original triphone models, it is possible to build a tree in a computationally 
efficient manner using just the state occupancies and the triphone model 
parameters. When using single-Gaussian distributions, this information is sufficient 
to calculate new model parameters for any putative combination of the individual 
triphone states. 

The tree-building process starts by placing all the states to be clustered 
together at the root node of the tree. The mean and variance vectors are calculated 
assuming that all the states Sare tied. Using these values of the model parameters it 
is then possible to estimate L(S), the likelihood of the data associated with the pool 
of states S. The next step is to find the best question for splitting S into two groups. 
For each question q, the states are divided up according to the answer to the 
question and new model parameters are computed. The likelihoods L(Sy(q)) and 
L(Sn(q)) can then be calculated for the sets of data corresponding to the answers 
"yes" and "no" respectively. For question q the total likelihood of the data 
associated with the pool of states will increase by: 

Mq = L(S y (q)) + L(S n (q))- L(S). (12.2) 

Thus by computing Mq for all possible questions, the question for which this 
quantity is the maximum can be selected. Two new nodes are created and the 
splitting process is then repeated for each of the new nodes, and so on. The splitting 
procedure is terminated when, for all of the current leaf nodes, the total occupancy 
of the new tied state which could be created at that node falls below the designated 
occupancy threshold. An additional termination condition is also used, whereby the 
splitting is halted when the increase in likelihood which would result from a split 
falls below a specified likelihood threshold. This second termination condition 
avoids the unnecessary use of different models for contexts which are acoustically 
similar ( even if sufficient data are available for separate models to be used). 

Once the tree has been constructed, this tree can be used to accomplish the 
state tying required for step 3 of the training process described in Section 12.6.4. 

12.6.7 Extensions beyond triphone modelling 

A useful feature of the phonetic decision tree approach is that it can be extended 
beyond simple triphone contexts. For example, decision trees can be built using 
questions relating to the next-but-one left and right contexts as well as the 
immediately adjacent contexts. The resulting models are often referred to as 
quinphones, as they can incorporate information over a sequence involving up to 
five phones. Questions relating to the presence of word boundaries can also be 
included. When building these complex decision trees with such a large number of 
possible contexts, it is not usually practical to start by training a fully context­
dependent system because such a system would typically require a vast number of 
models and state occupancies to be stored. It is preferable to begin with some more 
manageable model set and use Viterbi alignment to provide a state-level 
segmentation of the data. If a tied-state triphone system has been built first, this 
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system can be used to provide a good alignment upon which to base the derivation 
of a decision tree for a word-boundary-dependent quinphone system. 

As well as incorporating context dependency in the acoustic models, it can be 
beneficial to deal with male and female speech separately, because the differences 
between male and female speech tend to be much greater than the differences 
between talkers of the same sex. Models built in this way are commonly described 
as gender dependent. One way of training gender-dependent models robustly is to 
introduce gender dependency at the final training stage by cloning the trained 
multiple-component mixture models and then re-estimating the state means and 
mixture weights for each model set using the data for the male and female speech 
separately. State variances are usually kept gender independent in order to avoid 
the robustness issues that would otherwise arise due to the more limited data 
available to train variances for each gender separately. Once the gender-dependent 
models have been trained, a straightforward method for using them in recognition is 
to run two recognizers in parallel, one using the 'male' models and the other using 
the 'female' models. The system output is then taken from the recognizer which 
gives the highest probability for an utterance ( where the utterance represents a 
sequence of words known to have been spoken by the same person). 

12.7 LANGUAGE MODELLING 

In any language, there are syntactic, semantic and pragmatic constraints that have 
the effect of making some sequences of words more likely than others. For an ASR 
system that is intended for a particular application domain, the language that the 
system can recognize may be quite limited, in terms both of vocabulary size and of 
utterance syntax. However, for more general recognition of large vocabularies, any 
word sequence must be allowed, but different probabilities need to be assigned to 
different sequences. The purpose of the language model is to make effective use of 
linguistic constraints when computing the probability of the different possible word 
sequences. Assuming a sequence of K words, W= w1, w2, ... , wK, the sequence 
probability P( W) can be expanded in terms of conditional probabilities as follows: 

K 

P(W) = P(wp w2, ... , wK) = [I P(wk I wJ> ... , wk_1). (12.3) 
k=I 

This expression simply states that the probability of the word sequence can be 
decomposed into the probability of the first word, multiplied by the probability of 
the second word given the first word, multiplied by the probability of the third 
word given the first and the second words, and so on for all the words in the 
sequence. Initially, the probabilities of the words will be· influenced mostly by 
general constraints on the types of words that are most likely to start utterances. As 
the utterance continues, an increasing number of words will have already been 
spoken and so it becomes easier to predict the next word. 

For any natural language, there is of course a vast number of possible word 
combinations and hence a huge number of conditional probabilities that might be 
required. It is not feasible to specify all of these probabilities individually, and so 
some modelling assumptions are needed to make the task of specifying the 
conditional probabilities more manageable. 
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12.7.l N-grams 

A simple solution to the problem of estimating word-sequence probabilities is to 
use N-grams (where N is a small number). Here it is assumed that the probability 
of observing any word wk depends only on the identity of the previous N - I words 
(so that each conditional probability depends on a total of N words, including the 
current word). Using N-grams Equation (12.3) can be approximated as follows: 

K K 

P(W) = TT P( wk I Wi, ... , wk-I) ~ TT P( wk I wk-N+1' ... , wk-I). (12.4) 
k=l k=l 

If N = 1 the model is a unigram and just represents the probability of the word. A 
bigram (N = 2) models the probability of a word given the immediately preceding 
word, while a trigram (N = 3) takes into account the previous two words. 

To illustrate the use of N-grams to estimate word-sequence probabilities, 
consider the phrase "ten pots fell over". For a unigram model, the probability of the 
sequence is obtained simply by multiplying together the word probabilities: 

P(ten pots fell over)~ P(ten) P(pots) P(fell) P( over). (12.5) 

In the case of a bigram model the probability of the sequence is estimated as: 

P(ten pots fell over):::::: P(ten I START) P(pots I ten) 
P( fell I pots) P( over I fell), (12.6) 

where START is used to indicate the beginning of the sequence. For a trigram 
model, the probability estimate becomes: 

P(ten pots fell over):::::: P(ten I START) P(pots I START ten) 
P( fell I ten pots) P( over I pots fell). (12.7) 

In principle, N-grams can be estimated using simple frequency counts from 
training data to obtain maximum-likelihood estimates for the required probabilities. 
Considering the bigram (wk_ 1, wk) and the trigram (wk_ 2, wk_ 1, wk), the conditional 
probabilities P( wk I wk_ 1) and P( wk I wk_ 2, wk_ 1) could be estimated thus: 

P(w lw )= C(wk-1,wk) P(w lw w )= C(wk-2,wk-l'wk) (12.8) 
k k-1 C ( ) ' k k-2 ' k-1 C ( ) ' 

wk-I wk-2' wk-I 

where the notation C(x) is used to represent the count of number of examples of x. 
For the examples of the bi gram ( fell over) and the trigram (pots fell over) we have: 

P .. ( I~ ll) C (fell over) p ... ( I c. ll) C (pots fell over) over 1e = -----, over pots 1e = 
C (fell) C (fell over) 

(12.9) 

12.7.2 Perplexity and evaluating language models 

The task of the language model can be viewed as one of predicting words in a 
sequence, and a good language model will be one that provides a good predictor of 

Amazon / Zentian Limited 
Exhibit 1016 

Page 86



198 Speech Synthesis and Recognition 

the word in any position based on the words observed so far. Given a particular 
sequence of K words in some test database, the value of P( W) for that sequence 
provides a measure of how well the language model can predict the sequence: the 
higher the value of P(W), the better the language model is at predicting the word 
sequence. Word sequences differ in length, and an average measure of the 
probability per word is obtained by taking the K th root of the probability of the 
sequence. The inverse of this probability defines the perplexity, PP( W), thus: 

[ ]
-½ 

PP(W) = [P(w" w2, ... , wK )]-½: = fl P( wk I wt>···, wk_1) K 
k=I 

(12.10) 

For any given language model, it is possible to calculate the perplexity of 
some corpus to be recognized. For artificially constrained tasks with a rigid syntax, 
perplexity can be interpreted as being equivalent to the average number of different 
words that would need to be distinguished at any point in the word sequence, if all 
words at any particular point were equiprobable. Perplexity is therefore sometimes 
referred to as representing an average branching factor. The lower the value of 
perplexity, the fewer the number of alternatives that must be considered. The 
lowest possible value of perplexity is 1, but this value would only be obtained if all 
the individual word probabilities were equal to 1, such that only one word sequence 
could be recognized by the system. At the other extreme, if any word in a sequence 
is assigned a probability of zero by the language model, then the probability of the 
complete sequence will be equal to zero and the perplexity will be infinitely large. 

As we have already seen, a major challenge for any model of natural language 
is to avoid probabilities of zero by not excluding any of the vocabulary words, 
while making the prediction of the next word as good as possible by having only a 
few high-probability alternatives at any one point. A good language model should 
give a low value of perplexity on a large corpus of representative text material 
(with no part of that material having previously been used to train the model). 

The perplexity measure provides a means for evaluating alternative possible 
language models on some test corpus without needing to run a complete 
recognition experiment. A perplexity evaluation allows the language-model 
component to be assessed independently from the acoustic-model component, but it 
cannot take into account any interactions between the two models: good 
discrimination by the language model may not have much effect on recognition 
performance if the words concerned are acoustically very distinct, but could have a 
large effect for acoustically confusable words. Furthermore, any effects of the 
search algorithm cannot be allowed for in the perplexity calculation. Thus 
perplexity on a test data set is helpful for comparing alternative language models 
and also provides a useful indicator of the difficulty of the recognition task to be 
performed by the acoustic models, but the final test must be in terms of the 
recognition accuracy of the complete system. 

12.7.3 Data sparsity in language modelling 

Maximum-likelihood estimates obtained from frequency counts using expressions 
such as those in Equation (12.8) are a good approximation to the true probabilities, 
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provided that the sample size is large in relation to the number of possible 
outcomes. Unfortunately, in the case of N-gram modelling there are a vast number 
of possible outcomes. A vocabulary of V words provides V 2 potential bigrams and 
v3 potential trigrams. For a 20,000-word vocabulary there are thus 400 million 
possible word bigrams and eight million million possible trigrams! It would be 
completely impracticable to provide sufficient speech data to determine the 
language-model probabilities, and instead very large text corpora are used. Even 
so, while typical text corpora may contain over 100 million words, most of the 
possible bigrams and the vast majority of possible trigrams will not occur at all in 
the training data and many others will only appear once or twice. 

Data sparsity is a much greater problem for the language model than for the 
acoustic model, due to the much larger size of the inventory of basic units (words 
rather than phones). As a consequence of this severe data-sparsity problem, it is not 
possible to rely only on simple frequency counts for estimating language-model 
probabilities, as many of the bigram and trigram probabilities would be set to zero 
(so that it would then be impossible to recognize any word sequence containing one 
of these combinations) and many other probabilities would be poorly estimated. 
The successful use of N-grarns for L VCSR is dependent upon the use of smoothing 
techniques for obtaining accurate, robust (non-zero) probability estimates for all 
the possible N-grams that can occur for a given vocabulary. Zero probabilities and 
low non-zero probabilities are adjusted upwards, and high probabilities are 
reduced. Thus the overall effect is to make the probability distributions more 
uniform, and hence 'smoother'. Some different aspects of smoothing algorithms are 
described briefly in the following sections. 

12.7.4 Discounting 

For any set of possible 'events', such as bigrams or trigrams, the sum of the 
probabilities for all the possibilities must be equal to one. When only a subset of 
the possible events occurs in the training data, the sum of the probabilities of all the 
observed events must therefore be less than one. This effect can be achieved by 
reducing the observed frequency counts. The process is generally known as 
discounting, and is often described in terms of 'freeing' probability mass from the 
observed events which can then be redistributed among the unseen events. 

Several different methods have been used to achieve discounting, and these 
methods differ in the way in which the reduced probabilities are calculated. Full 
coverage of discounting methods is outside the scope of this book but, for example, 
one simple but effective technique is absolute discounting. Here some small fixed 
amount (between zero and one) is subtracted from each frequency count ( the 
numerators in Equation (12.8) or in the examples shown in Equation (12.9)). Thus 
the probability of every observed event is reduced, but the effect decreases as the 
observed frequency count increases (when the maximum-likelihood estimate should 
be more reliable). However, the same discount value may not be optimum for the 
full range of frequency counts. In particular, there is some evidence that absolute 
discounting imposes too great a reduction in the probability of events that occur 
only once or twice. A variant of the technique overcomes this problem by having 
separate discount values for these rare events. 
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12.7.5 Backing off in language modelling 

Probability mass which has been made available as a result of discounting can be 
allocated to the unseen events. In estimating the probabilities of the unseen events, 
it is desirable to make use of any information that is available about the relative 
probabilities of the different events. In the case of N-grams, useful information may 
be available in the form of the probability according to a more general distribution. 
Thus it is possible to formulate a recursive procedure of 'backing off': if a trigram 
is not observed, the model backs off to the relevant bigram probability, and if the 
bigram is not available, it backs off further to the unigram probability. For any 
words which do not occur in the training texts at all, it is possible to back off to a 
uniform distribution whereby all words are assumed to be equally likely. 

Backing off can be illustrated by considering the task of estimating the 
conditional trigram probabilities P( wk I wk_ 2 , wk_ 1) for word wk in the context of 
the sequence of preceding words (wk_ 2 , wk_ 1). We will assume that some 
appropriate discounting method has been used to assign probabilities to all 
observed trigrams, and these probability estimates will be denoted 
P(wk I wk_ 

2

, wk_ 1). Thus, using Ps(wk I wk-
2

, wk-
1

) to denote an estimate for the 
probability of word wk given the sequence of preceding words (wk-2, wk_,), a 
backing-off scheme for obtaining this probability estimate is as follows: 

p ( I ) = {P(wk I wk_2, wk_1) if C(wk_2 , wk_1, wk)> 0 
s wk wk_z,wk-l B(wk_

2
,wk_

1
)P

5
(wklwk_

1
) otherwise. (12.11) 

Ps(wk I wk- 1) is the estimated bigram probability of wk given preceding word wk-I· 

B( wk- 2, wk- 1) is a normalizing constant for trigram context ( wk- 2, wk- 1), and scales 
the bigram probabilities so that the sum of the Ps( wk I wk_ 2, wk- 1) terms is equal to 
I when computed over all possible words wk. The sum of all the probabilities that 
are calculated by backing off must be equal to the total probability mass that has 
been freed from discounting the relevant trigram context. The normalizing constant 
is therefore chosen to be equal to the appropriate fraction of this freed probability. 

Backing off from bigram to unigram and from unigram to unifonn 
distributions can be accomplished in an analogous manner. 

By setting the count threshold to zero, backing off only occurs for N-grams 
with no examples at all. However, as observing just one or two examples is unlikely 
to provide a reliable probability estimate, it can be beneficial to apply a higher 
threshold and so disregard those N-grams that occur just a few times in the training 
data. In this way only robustly estimated N-grams should be retained, which has the 
added benefit of a substantial saving in the memory needed for the language model. 

12.7.6 Interpolation of language models 

Backing off involves choosing between a specific and a more general distribution. 
An alternative is to compute a weighted average of different probability estimates, 
obtained for contexts that can range from very specific to very general. The idea is 
to improve the accuracy and robustness of a context-specific probability estimate 
by combining it with more general estimates for which more data are available. One 
option involves taking a linear combination of different probability estimates. For 
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example, a trigram probability could be estimated by linear interpolation between 
relative frequencies of the relevant trigrams, bigrams and unigrams, thus: 

I ) =A C(wk-2,wk-t,Wk) A C(wk-1,wk) A C(wk) (1212 ) 
Ps (wk Wk-2, Wk-I 3 C( ) + 2 C( ) + I K , • 

Wk-2, Wk-1 Wk-I 

where K is the number of different words, and the sum of the non-negative weights 
A.t + J2 + ,.1,3 = 1 . The values for the weights need to be chosen to make the best 
compromise between specificity and ability to generalize to new data. The training 
data are therefore divided into two parts. The first (larger) part of the data is used to 
derive the frequency counts, which are then used when finding the optimum values 
of the weights in order to maximize the probability for the second part of the data. 
Because the parameters that are estimated will tend to depend on how the data are 
partitioned, often alternative sets of parameters are estimated for several different 
ways of splitting the data, and then the individual estimates are combined. This 
smoothing method is often called deleted interpolation. 

For simplicity, interpolation has been introduced using probability estimates 
obtained from simple frequency counts. However, smoothing by interpolation can 
also be applied to other probability estimates, including N-gram probabilities that 
have been obtained by, for example, the absolute discounting technique mentioned 
in Section 12.7.4. Interpolation schemes can also be used with probabilities from 
other types of language model, such as those discussed in Section 12. 7. 8 below. 

12.7.7 Choice of more general distribution for smoothing 

In the previous sections we have described ways of smoothing N-grams using 
lower-order N-grams. The lower-order distribution is usually defined in a way 
which is exactly analagous to the definition for the higher-order distribution that is 
being smoothed. There is however an alternative method which may give more 
reliable estimates of the lower-order probabilities. This method is best explained by 
describing an example. Consider a word, such as "Francisco", that almost always 
occurs following just one other word ("San"). If the training text contains several 
examples of "San Francisco", both the bigram probability P(Francisco!San) and the 
unigram probability P(Francisco) will be high. Thus if we then use a discounting 
method such as absolute discounting to derive the probability of "Francisco" 
occurring after some other bigram history, this probability will also tend to be fairly 
high. However, intuitively it seems more plausible that, if the only information we 
have implies that "Francisco" always follows "San", the probability of "Francisco" 
following any other word should be low. 

It is possible to define the unigram probability used for smoothing not in 
terms of number of examples of a word but rather in terms of the number of 
different contexts in which the word occurs. Chen and Goodman ( 1999) have 
~roposed using this approach together with smoothing by interpolation, and 
mcorporating a variant of absolute discounting that uses three separate discounts 
(one for N-grams occurring just once, one for N-grams occurring twice, and a third 
fo~ all other N-gram counts). In comparative experiments, they demonstrated that 
this method performed consistently better (in terms of both perplexity and 
recognition performance) than a wide range of other smoothing techniques. 
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12.7.8 Improving on simple N-grams 

N-grams have proved to be a very popular approach to language modelling. 
Bigrams and trigrams are the most widely used but 4-grams and even 5-grams are 
sometimes also included. N-grams provide a simple representation of language 
structure by focusing on local dependencies based only on word identity. Effects 
due to syntax, semantics and pragmatics are captured simultaneously but with no 
distinction between them. Although the method is really very crude, in practice it is 
very effective for languages such as English for which word order is important and 
the strongest contextual effects tend to be from immediately adjacent words. 

While N-grams are good at modelling local context, an obvious deficiency is 
their inability to capture longer-term effects: syntactic constraints ( e.g. subject-verb 
agreement) and semantic influences ( certain words tending to occur together) may 
both operate over a span of several words. Various methods have been suggested to 
incorporate these effects, usually to provide additional information that can be 
interpolated with N-gram probabilities. A few of the developments are briefly 
mentioned in the following paragraphs. 

N-grams are simple to compute directly from text data, without any need for 
explicit linguistic knowledge about the individual words. However, if information 
about syntactic classes ( or other word groupings) is available, it is possible to 
estimate class-based N-gram probabilities and to back off or interpolate using these 
rather than needing to go to a shorter context ( e.g. using a class-based trigram 
rather than resorting to a bigram). Taking this idea further, decision-tree methods 
can be applied to language models to find the best way of partitioning the data into 
different clusters based on questions about syntactic and/or semantic context. Other 
methods have involved attempting some grammatical analysis to determine the 
syntactic structure of the hypothesized sentence so far. 

For generality, a language model needs to be trained on a large body of text 
from diverse sources. However, language is actually very dynamic in character, 
with the probability of many words being very different depending on the subject 
matter. One way of taking account of short-term patterns of word usage is to 
introduce a cache component (by analogy with "cache memory" in hardware 
terminology). The cache is simply a buffer which stores the frequency of 
occurrence of some number of the most recent words (typically around 200 
different words). Word probabilities can be estimated by interpolating conventional 
N-gram probabilities with the probabilities as given by frequency of occurrence in 
the cache. A related concept is the idea of word 'triggers', whereby certain words 
tend to be very strong indicators, or triggers, for other words to occur in the general 
vicinity, but not necessarily within the span covered by a trigram. Triggers may be 
related to subject matter ( e.g. "airline" associated with "flights") or to linguistic 
constructs ( e.g. "neither" tends to be followed fairly soon afterwards by "nor"). 
Trigger models are used in conjunction with a cache component to keep a record of 
the recent words from which to adjust the probabilities for likely 'triggered' words. 

The use of a cache and the incorporation of triggers are two ways of capturing 
dynamics in language usage. It is also possible to apply language-model adaptation 
techniques (analogous to the acoustic-model adaptation methods described in 
Chapter 11) to adapt N-gram probabilities based on adaptation data, which might 
for example relate to a new topic or reflect talker-specific language patterns. 
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12,8 DECODING 

The recognition task is to find the most probable sequence of words W, as given by 
Equation ( 12.1 ). As the vocabulary size becomes larger, the number of different 
possible word sequences soon becomes prohibitive and any practical system needs 
an efficient means of searching to find the most probable sequence. The component 
of the system that performs this search operation is often referred to as the decoder. 

Although recognition using whole-word HMMs is not practicable with a large 
vocabulary, the same principles can be applied to units of any size. In the previous 
sections we have explained how statistical models can be used at different levels. 
One level captures the relationship between phone-size units and their acoustic 
realization, then there are the different phone sequences that can make up a word, 
and finally there are the probabilities of different word sequences. Thus a language 
can be modelled as a network of states representing linguistic structure at many 
levels. At the lowest level a small network of states represents a triphone or similar 
unit. At the next level a network of triphones fonns a state to represent a word. A 
complete sentence can then be generated by a network of word states, where the 
connections between the states correspond to the language-model probabilities. The 
decoding task is to find the best path through this multiple-level network, and the 
recognized word sequence is given by the best path at the highest level. 

In order to apply the principles of DP using the Viterbi algorithm to a 
multiple-level network, probabilities need to be evaluated for all valid partial paths 
at all levels, with no decisions being reached until all earlier parts of a path enter 
the same highest-level state at the same time, thus delaying decisions until all 
relevant evidence has been used. The use of delayed decisions is a fundamental 
principle of this HMM approach, as it enables the knowledge and constraints at all 
levels to be employed simultaneously to find the best explanation of the data. In 
practice, even at any one point in time, in a large-vocabulary system there are so 
many possibilities (both at the word and at the sub-word level) that it is impossible 
to evaluate all of them. However, the language model provides strong constraints 
that act to make many of the possibilities extremely unlikely, and it is necessary to 
find an efficient way of applying these constraints within the decoding. 

In a first-order HMM the probability of a transition from any one state to any 
other state depends only on the identities of the source and destination states. This 
model cannot accommodate a trigram ( or higher-order) language model, because 
here the word transition probability depends on more than just the immediately 
preceding state. In order to use such a language model, some way of dealing with 
the higher-order dependencies needs to be found. An additional complication arises 
when using cross-word triphones because the identity of a word-final triphone, and 
hence the word probability, depends on the identity of the following word. 

The issues associated with large-vocabulary decoding have been addressed in 
various different ways. Three main types of method are briefly described below. 

12.8.1 Efficient one-pass Viterbi decoding for large vocabularies 

In_ order to accommodate cross-word triphone models, the state network for a 
Viterbi search needs to include multiple entries for each word to cover all possible 
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Figure 12.4 A very small fragment of a network for decoding using cross-word triphone 
models. This fragment shows the sequence "ten pots" and a few possible alternatives that 
branch at different positions in the network. Note that the word "ten" is represented by different 
nodes in the network, depending on whether the following word is "pots" or "dogs". 

different triphones that may end any one word. Similarly, a trigram language model 
can be used by expanding the network to keep multiple copies of each word so that 
each transition between words has a unique two-word history. To make the network 
manageable, it is usually represented as a tree structure, as shown in Figure 12.4. In 
the tree, different hypotheses that start with the same sequence of sub-word models 
share those models. This tree network is built dynamically as required. 

In Section 8.8 we introduced the concept of score pruning to reduce the 
number of hypotheses to be evaluated in a DP search. Efficient pruning is essential 
for L VCSR systems. The usual scheme employs a beam search, whereby at each 
time frame all paths whose likelihood score is not within some specified threshold 
of the best-scoring path are pruned out. In practice, it is generally the case that the 
likelihoods for all except just the few most likely states tend to be very small, so it 
is possible to concentrate the search on a narrow beam of possible alternatives. 

Language constraints act to restrict the set of words that are likely at any 
given point in an utterance. It is therefore advantageous to use the language model 
to prune out unlikely possibilities as soon as possible when decoding an utterance, 
but in conventional Viterbi decoding the language-model probability is not known 
until the end of a word is reached. However, if a record is kept of the current 
possible words associated with each sub-word model, it is possible to use the 
language-model probabilities to prune out unlikely hypotheses at an earlier stage. 

12.8.2 Multiple-pass Viterbi decoding 

An alternative to attempting complete and accurate recognition in a single pass is to 
use a multiple-pass approach. The idea here is to start by using a simple recognition 
system to identify a small number of likely hypotheses, and then to use a more 
elaborate system to choose between these possibilities. For example, the first 
recognition pass could use only word-internal triphones and a bigram language 
model. A second recognition pass might then incorporate cross-word triphones and 
other more specific acoustic models as well as trigram and cache language models. 

The output of the first recognition pass is usually expressed either as a rank­
ordered N-best list of possible word sequences, or as a word graph or lattice 

Amazon / Zentian Limited 
Exhibit 1016 

Page 93



Automatic Speech Recognition for Large Vocabularies 

1 
2 
3 
4 
5 
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ten pots 
tell pots 
template 
at ten past 
ten past 
tell past 

(a) N-best list of hypotheses. 

ten pots 

(b) Lattice representation of the alternatives shown in (a). 

Figure 12.5 Possible alternative utterances that might be generated for a short utterance. 
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describing the possibilities as a network. Figure 12.5 shows an example of an N­
best list and a word lattice that could be generated for an utterance of "ten pots". In 
order to output more than one possible sequence, the first-pass DP search needs to 
be extended to retain several hypotheses at each stage. 

12.8.3 Depth-first decoding 

The Viterbi approach is known as a breadth-first search, because all possibilities 
are considered in parallel, with all paths to time t being evaluated before proceeding 
to time t + 1. An alternative is to adopt a depth-first search, for which the principle 
is to pursue the most promising hypothesis until the end of the utterance. This 
strategy is often referred to as stack decoding: the idea is to keep an ordered 
'stack' of possible hypotheses and to iteratively take the best hypothesis from the 
stack, choose the most likely next word and then add this hypothesis as a new entry 
to the stack, reordering the hypotheses as necessary. Once the end of the utterance 
is reached, the best-scoring hypothesis is output as the recognized word sequence. 
At any point in the search it may be necessary to compare hypotheses of different 
lengths. Because the score for any one path is a product of probabilities, it 
decreases with time and so a simple comparison of different scores will be biased 
towards shorter hypotheses. This problem can be overcome by normalizing the 
score for each path based on the number of frames that it accounts for. 

With depth-first decoding a new hypothesis is generated each time a word is 
added to one of the existing hypotheses, so it is possible to evaluate the different 
options that are required for long-range language models. The method can, 
however, be expensive in terms of both memory and processing requirements. 

12.9 EVALUATING LVCSR PERFORMANCE 

12.9.1 Measuring errors 

When recognizing connected speech, there are three types of recognition error: 
~ubstitution (the wrong word is recognized), deletion (a word is omitted) and 
insertion (an extra word is recognized). The word error rate (WER) is given by: 

WER = lOOx C(substitutions) + C(deletions) + C(insertions) 0/o, 
N 

(12.13) 
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where N is the total number of words in the test speech and C(x) is the count of 
errors of type x. Because there will not in general be a one-to-one correspondence 
between the recognized and actual word sequences, a DP alignment process is used 
to find the best way of aligning the two before the WER can be calculated. 

The percentage word accuracy is equal to 100 - WER. Sometimes the 
percentage of words correctly recognized is quoted, but this measure may not be 
such a good indicator of true performance as it does not include insertion errors. 

12.9.2 Controlling word insertion errors 

The probability that is assigned to any word sequence will depend on the relative 
contributions from the language and acoustic models. However, both models 
involve approximations and assumptions, and hence only provide estimates of the 
relevant probabilities. In particular, the probability given by the acoustic model will 
depend on the number and choice of acoustic features that are used and typically 
has a disproportionately large influence relative to the language-model probability. 
When the language model is given insufficient weight, the consequence is often a 
large number of errors due to insertion of many short function words. The short 
duration and high variability that are typical of these words mean that a sequence of 
their models may provide the best acoustic match to short regions of speech, even 
though the word sequence is given a low probability by the language model. 

There are two practical solutions that are often adopted to .tackle the problem 
of word insertion errors. One approach is to impose a word insertion penalty, 
whereby the probability of making a transition from one word to another is 
explicitly penalized by multiplying the word probability by some number less than 
1. Alternatively or in addition, the influence of the language model on the 
combined probability can be increased by raising its probability to some power 
greater than 1. Values, both for this power and for any word insertion penalty, are 
usually chosen experimentally to maximize performance on some evaluation data. 

12.9.3 Performance evaluations 

By the mid-1980s HMMs were showing promise for practical application to large­
vocabulary recognition tasks. It was, however, difficult to compare competing 
systems from different laboratories because individual systems tended to be trained 
and tested on different sets of data, due to the absence of any common databases 
for training or for testing. This widely recognized problem was addressed when 
ARPA (also known as DARPA, the Defense Advanced Research Projects Agency) 
began funding a second major research programme in the area of ASR. As part of 
this programme, a recognition task was defined and speech data were recorded and 
made publicly available. The data were divided into a training set for training a set 
of models, a development test set for testing a recognition system during its 
development, and an evaluation test set on which the final system could be tested 
and scored just once. The advent of this type of database enabled direct 
comparisons to be made between different algorithms and systems, with controlled 
assessments of performance that could also be used to measure progress over time. 
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In 1989 the first formal competitive evaluation to measure the performance of 
different systems was organized. This evaluation marked the start of a series of 
tests that is still continuing today. Any organization participating in an evaluation 
has to test its recognition system on the designated evaluation test data (following 
the pre-specified rules of the evaluation) and then submit the recognition results for 
scoring by the National Institute of Standards and Technology (NIST), a U.S. 
government organization. This scoring of the results by an independent body helps 
to ensure the applicability of direct and fair comparisons between different systems. 

All the recognition tasks that have been chosen by ARP A have involved 
speaker-independent recognition, but over the years the tasks have progressively 
become more challenging both by increasing the vocabulary size and by changing 
the nature of the speech material. The first recognition task was called Resource 
Management (RM). The data for this task consisted of read queries on the status of 
U.S. naval resources, using a vocabulary of about 1,000 words and a fairly 
constrained syntax (giving a test-set perplexity of about 60). Recognition tests were 
first carried out on this task in 1987. Formal evaluations began in 1989 and ended 
in 1992. New testing data were provided for each of the evaluations, and each year 
the recognition performance improved as shown in Figure 12.6. 

The next ARP A evaluations focused on recognition of spoken newspaper 
texts. This application allowed much larger-vocabulary tasks to be studied and also 
ensured that there was easy availability of large quantities of text data for training 
statistical language models. Initially the texts were all obtained from the Wall Street 
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Figure 12.6 Graph showing recognition performance (in terms of word error rate, plotted on a 
logarithmic scale) for various transcription tasks used in ARP A evaluations. Each data point 
has been taken from published results for the relevant evaluation, with the aim of showing the 
performance of the system that was the best on that particular test. Note that, even within any 
one task, different evaluation data have been used each year, and in some cases there were 
differences in the task details. Thus, while the lines in the graph give an indication of general 
trends in performance, strict comparisons of performance in successive years are more difficult. 
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Journal (WSJ), and included both a 5,000-word recognition test and a 20,000-word 
test. More recently, the test set was expanded to include a range of North American 
business (NAB) news and restrictions on training for the acoustic and language 
models were removed. The recognition vocabulary became essentially unlimited 
and performance was generally evaluated using systems designed for recognizing 
about 64,000 words. WSJ and NAB evaluations were conducted in the period 
between 1992 and 1995. Over the years the complexity and variety of the tests 
increased, but recognition performance still improved each year (see Figure 12.6). 

Later ARP A evaluations moved away from read speech, and concentrated on 
transcribing 'found' speech from broadcast news (BN) shows on radio and 
television. Such data provided a lot of variation in speech quality, microphones and 
background noise, as well as non-native speech and periods containing only non­
speech data such as sound effects and music. For the first BN evaluation in 1996, 
performance dropped considerably from that which had been obtained in the 
previous evaluations using read speech. However, researchers soon found ways of 
coping with the greater variety of material, and by the final BN evaluations in 1998 
and 1999 typical error rates had roughly halved from those obtained in 1996. 

ARP A have also sponsored a research programme on the recognition of 
conversational speech, including the collection of two different corpora. Data for 
one corpus, known as Switchboard (SWB), first became available in 1992. The 
data comprised telephone conversations between two strangers about some topic 
that had been specified in advance. A few years later, in 1995, collection of the 
Callhome (CH) corpus was initiated to provide more natural conversational speech 
by recording telephone conversations between family members. The CH set 
includes a number of different languages. Conversational speech is rather different 
in nature to either read speech or television and radio broadcasts. Conversations 
tend to include many disfluencies, false starts and so on, as well as a lot of 
phonological reduction and special use of prosody. There is also tum-taking 
behaviour and reliance on shared knowledge to assist in the communication, 
especially when the participants know each other very well ( as in the CH data). As 
a result, errors are much higher than for the other tasks (see Figure 12.6), but again 
substantial progress has been made in improving performance on the conversational 
recognition tasks. As of 2001, these evaluations are still continuing. 

The ARP A initiative has been very influential in the development of large­
vocabulary recognizers, both by providing a focus for refining the techniques to 
cope with increasingly difficult problems and also by making available huge 
quantities of speech data for training. Over the years, the result has been a 
progressive improvement in performance on increasingly difficult tasks, as can be 
seen in Figure 12.6. There are now several research systems which give impressive 
performance on substantial transcription tasks. However, to perform at their best 
these systems generally require both a lot of memory ( with typically several million 
parameters in both the acoustic and language models), and a lot of processing 
power ( often operating at a few hundred times real time). In the last two BN 
evaluations, the effect of processing demands was tested by introducing a category 
for systems that operated at no slower than 10 times real time (shown as BN(IOx) 
in Figure 12.6). Enforcing this constraint led to around 15% more errors than if 
there were no processing restrictions. We will consider performance in relation to 
the requirements of different applications in Chapter 15. 
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12.10 SPEECH UNDERSTANDING 

In order to understand spoken language, it is necessary not only to recognize the 
words, but also to determine the linguistic structure, including both syntactic and 
semantic aspects. Given a word sequence, the field of computational linguistics 
provides techniques for deriving a representation of the linguistic structure. 
Traditionally these techniques involve a complex linguistic analysis based on 
qualitative models that are usually stated in the form of a grammar that is specified 
manually by human experts, although in recent years data-driven statistical methods 
have also been used. Even so, any detailed linguistic analysis will involve 
modelling long-range effects that may operate over the entire span of an utterance. 
It is very difficult to incorporate such a model into a speech recognition search. 

Due to the difficulties involved in attempting to incorporate detailed linguistic 
analysis into the recognition search, speech understanding systems generally treat 
these tasks as separate components: an ASR system of the type described earlier in 
this chapter, and a second component that uses artificial-intelligence techniques to 
perform linguistic analysis in order to 'understand' the recognizer output. To 
reduce the problems caused by errors made at the recognition stage, the output of 
the recognizer should include alternatives, which can be provided in the form of a 
word lattice or an N-best list. The final recognized output is typically taken to be 
the highest-scoring alternative that is also allowed by the linguistic model. 

The process of determining the linguistic structure of a sentence is known as 
parsing. Syntactic structure is usually expressed in terms of a formal grammar, and 
there are a variety of grammar formalisms and associated methods for syntactic 
parsing. However, traditional parsers aim to recover complete, exact parses. This 
goal will often not be achievable for spoken language, which tends to contain 
grammatical errors as well as hesitations, false starts and so on. The problem is 
made even worse when dealing with the output of a speech recognizer, which may 
misrecognize short function words even when overall recognition performance is 
very good. It can therefore be useful to adopt partial parsing techniques, whereby 
only segments of a complete word sequence are parsed (for example, noun phrases 
might be identified). Other useful tools include part-of-speech taggers, which aim 
to disambiguate parts of speech ( e.g. the word "green" acts as an adjective in the 
phrase "green coat" but as a noun in "village green"), but without performing a 
parsing operation. Some taggers are rule-based, but there are also some very 
successful taggers that are based on HMMs, with the HMM states representing tags 
(or sequences of tags). Transition probabilities are probabilities of tag(s) given 
previous tag(s) and emission probabilities are probabilities of words given tags. 
Partial parsing and part-of-speech tagging enable useful linguistic information to be 
extracted from spoken input without requiring a comprehensive linguistic analysis. 

General semantic analysis for the derivation of meaning representations is a 
complex aspect of computational linguistics. However, many speech-understanding 
systems have used a simpler approach that is more application dependent. A 
popular technique uses templates, or 'frames', where each frame is associated with 
an action to be taken by the system. A frame has 'slots' for different items of 
relevant infonnation. In a flight enquiry system for example, one frame could 
represent a request for flight information. This frame could include slots for the 
type of infonnation ( e.g. flights, fares) and for any constraints ( e.g. date, price). 
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The task is to find the frame that gives the best match to the input, and to obtain 
values for the slots in that frame. Once a frame has been recognized and its slots 
have been filled, the system's response can be determined. 

Many applications of speech understanding involve the user asking questions 
in order to access information from a computer system. Often a query may be 
insufficiently specified or ambiguous. However, by entering into an interactive 
dialogue with the user, the system should be able to obtain the additional 
information or resolve any ambiguities. A dialogue manager can greatly assist in 
the usability of these spoken dialogue systems, by keeping track of the interaction, 
guiding the user and asking questions where necessary. 

12.10.1 Measuring and evaluating speech understanding performance 

When evaluating speech understanding systems, word and sentence recognition 
errors are obviously of interest. However, some measure of a system's ability to 
recognize meaning is also required. This measure is usually the percentage of 
utterances for which the complete system gives an acceptable output, as judged by 
a trained human operator. For a spoken dialogue system that is intended for a 
particular application, it may be most informative to evaluate performance using 
task-based measures such as the percentage of tasks successfully completed and 
time taken to accomplish the tasks, together with measures of user satisfaction. 

In parallel with its speech transcription evaluations, ARP A has also been 
conducting a series of evaluations of spoken language understanding systems. In 
the late 1980s, work began on an Air Travel Information System (A TIS) task, and 
formal evaluations were carried out in the period between 1990 and 1994. The 
ATIS task involved recognizing and responding to spontaneous queries about 
airline reservations ( e.g. "List the flights from Boston to Dallas." or "Is lunch 
served on that flight?"), using a vocabulary of about 2,500 words. In 1994, the best 
speech recognition performance was a word error rate of 2.3% (Moore et al., 
1995), which improved to 1.9% when the output of the speech recognizer was 
subjected to post-processing by a natural-language system that was tuned to the 
application domain. Although this task involves spontaneous speech, the 
constraints of the task domain enable high recognition accuracy to be achieved. The 
best understanding performance, taken over all the answerable spoken queries, was 
an error rate of 8.6% (Pallett et al., 1995). Although there were more understanding 
errors than word recognition errors, this level of performance is probably adequate 
for many database query applications. However, achieving such performance 
requires the system to be tuned to its particular application domain, with a lot of 
'knowledge' that is specific to the one domain ( flights in the case of the A TIS task). 

More recent ARP A evaluations have focused on other types of tasks, which 
involve processing large quantities of speech material in a way that requires some 
understanding capability. Past and ongoing tasks include retrieval of spoken 
documents, detection and tracking of topics in broadcasts, and extraction of the 
content (meaning) from transcripts of spoken news material. Automatic speech 
understanding is a pre-requisite for all of the most advanced applications of spoken 
language processing, of which one of the hardest is automatic speech translation 
(see Chapters 15 and 16 for further discussion). 
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CHAPTER 12 SUMMARY 

• Some large-vocabulary recognition tasks may require accurate transcription of 
the words that have been said, while others will need understanding of the 
semantic content (but not necessarily accurate recognition of every word). 

• For speech transcription the task is to find the most likely sequence of words, 
where the probability for any one sequence is given by the product of acoustic­
model and language-model probabilities. 

• The principles of continuous speech recognition using HMMs can be applied 
to large vocabularies, but with special techniques to deal with the large number 
of different words that need to be recognized. 

• It is not practical or useful to train a separate model for every word, and 
instead sub-word models are used. Typically phone-size units are chosen, with 
the pronunciation of each word being provided by a dictionary. 

• Triphone models represent each phone in the context of its left and right 
neighbours. The large number of possible triphones is such that many will not 
occur in any given set of training data. Probabilities for these triphones can be 
estimated by 'backing of~ or interpolating with biphones ( dependent on only 
the left or the right context) or even context-independent monophones. 

• Another option, which allows greater context specificity to be achieved, is to 
group ('cluster') similar triphones together and share ('tie') their parameters. A 
phonetic decision tree can be used to find the best way to cluster the triphones 
based on questions about phonetic context. The idea is to optimize the fit to the 
data while also having sufficient data available to train each tied state. 

• An embedded training procedure is used, typically starting by estimating 
parameters for very general monophone models for which a lot of data are 
available. These models are used to initialize triphone models. The triphones 
are trained and similar states are then tied together. Multiple-component 
mixture distributions are introduced at the final stage. 

• The purpose of the language model is to incorporate language constraints, 
expressed as probabilities for different word sequences. The perplexity, or 
average branching factor, provides a measure of how good the language model 
is at predicting the next word given the words that have been seen so far. 

• N-grams model the probability of a word depending on just the immediately 
preceding N- 1 words, where typically N = 2 ('bigrams') or N = 3 ('trigrams'). 

• The large number of different possible words is such that data sparsity is a 
massive problem for language modelling, and special techniques are needed to 
estimate probabilities for N-grams that do not occur in the training data. 

• Probabilities for N-grams that occur in the training text can be estimated from 
frequency counts, but some probability must be 'freed' and made available for 
those N-grams that do not occur. Probabilities for these unseen N-grams can 
then be estimated by backing off or interpolating with more general models. 

• The principles of HMM recognition extend to large vocabularies, with a 
multiple-level structure in which phones are represented as networks of states, 
words as networks of phones, and sentences as networks of words. In practice 
the decoding task is not straightforward due to the very large size of the search 
space, especially if cross-word triphones are used. Special treatment is also 
required for language models whose probabilities depend on more than the 
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immediately preceding word (i.e. for models more complex than bigrams). The 
one-pass Viterbi search can be extended to operate with cross-word triphones 
and with trigram language models, but the search space becomes very large 
and is usually organized as a tree. Efficient pruning is essential. 

• An alternative search strategy uses multiple passes. The first pass identifies a 
restricted set of possibilities, which are typically organized as an N-best list, a 
word lattice or a word graph. Later passes select between these possibilities. 
Another option is to use a depth-first search. 

• Automatic speech understanding needs further processing of the speech 
recognizer output to analyse the meaning, which may involve syntactic and 
semantic analysis. To reduce the impact of recognition errors, it is usual to 
start with an N-best list or word lattice. Partial parsing techniques can be used 
for syntactic analysis to deal with the fact that the spoken input may be 
impossible to parse completely because parts do not fit the grammar, due to 
grammatical errors, hesitations and so on. 

• Meaning is often represented using templates, which will be specific to the 
application and have 'slots' that are filled by means of a linguistic analysis. 

• In spoken dialogue systems, a dialogue manager is used to control the 
interaction with the user and ensure that all necessary information is obtained. 

• ARP A has been influential in promoting progress in large vocabulary 
recognition and understanding, by sponsoring the collection of large databases 
and running series of competitive evaluations. Error rates of less than 10% 
have been achieved for transcribing unlimited-vocabulary read speech and for 
understanding spoken dialogue queries. Recognition of more casually spoken 
spontaneous speech is still problematic. 

CHAPTER 12 EXERCISES 

E12.1 Explain the different requirements and problems in speech transcription and 
speech understanding. 

E12.2 What are the special issues for the design of the acoustic model, the 
language model and the search component when a recognizer needs to cope 
with a large vocabulary size? 

E12.3 Give examples of how acoustic/phonetic knowledge can be used when 
choosing an acoustic model set for a large-vocabulary recognition system. 

El 2.4 When estimating trigram language-model probabilities based on counts in 
some training text, explain how probabilities can be estimated for trigrams 
that do not occur in the training data. How does this operation affect the 
probabilities that need to be assigned to trigrams that do occur? 

El2.5 What are the similarities and differences between the concept of 'backing 
off in language modelling and in acoustic modelling? 

El2.6 Explain the relative merits of performing large-vocabulary recognition using 
a one-pass Viterbi search versus using a multiple-pass search strategy. 

El2.7 What measures are required to evaluate the performance of a speech 
understanding system? 
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