
Chapter 8 

LARGE VOCABULARY 
CONTINUOUS SPEECH 

RECOGNITION 

8.1 INTRODUCTION 

Throughout this book we have developed a wide range of tools, techniques, and algorithms 
for attacking several fundamental problems in speech recognition. In the previous chapter 
we saw how the different techniques came together to solve the connected word recognition 
problem. In this chapter we extend the concepts to include issues needed to solve the large 
vocabulary, continuous speech recognition problem. We will see that the fundamental ideas 
need modification because of the use of subword speech units; however, a great deal of the 
formalism for recognition, based on word units, is still preserved. 

The standard approach to large vocabulary continuous speech recognition is to assume 
a simple probabilistic model of speech production whereby a specified word sequence, W, 
produces an acoustic observation sequence Y, with probability P(W, Y). The goal is then 
to decode the word string, based on the acoustic observation sequence, so that the decoded 
string has the maximum a posteriori (MAP) probability, i.e., 

W 3 P(WIY) = maxP(WIY). 
w 

(8.1) 

Using Bayes' Rule, Equation (8.1) can be written as 

P(WIY) = P(YIW)P(W) 
P(Y) • 

(8.2) 
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sec. 8.2 Subword Speech Units 

Since P(Y) is independent of W, the MAP decoding rule of Eq. (8.1) is 

W = arg max P(YIW)P(W). 
w 

435 

(8.3) 

The first term in Eq. (8.3), P(YIW), is generally called the acoustic model, as it estimates the 
probability of a sequence of acoustic observations, conditioned on the word string. The way 
in which we compute P(YIW), for large vocabulary speech recognition, is to build statistical 
models for subword speech units, build up word models from these subword speech 
unit models (using a lexicon to describe the composition of words), and then postulate 
word sequences and evaluate the acoustic model probabilities via standard concatenation 
methods. Such methods are discussed in Sections 8.2-8.4 of this chapter. 

The second term in Eq. (8.3), P(W), is generally called the language model, as it 
describes the probability associated with a postulated sequence of words. Such language 
models can incorporate both syntactic and semantic constraints of the language and the 
recognition task. Often, when only syntactic constraints are used, the language model 
is called a grammar and may be of the form of a formal parser and syntax analyzer, an 
N-gram word model (N = 2, 3, ... ), or a word pair grammar of some type. Generally 
such language models are represented in a finite state network so as to be integrated into 
the acoustic model in a straightforward manner. We discuss language models further in 
Section 8.5 of this chapter. 

We begin the chapter with a discussion of subword speech units. We formally define 
subword units and discuss their relative advantages (and disadvantages) as compared to 
whole-word models. We next show how we use standard statistical modeling techniques 
(i.e., hidden Markov models) to model subword units based on either discrete or continuous 
densities. We then show how such units can be trained automatically from continuous 
speech, without the need for a bootstrap model of each of the subword units. Next we 
discuss the problem of creating and implementing word lexicons (dictionaries) for use in 
both training and recognition phases. To evaluate the ideas discussed in this chapter we 
use a specified database access task, called the DARPA Resource Management (RM) task, 
in which there is a word vocabulary of 991 words (plus a silence or background word), and 
any one of several word grammars can be used. Using such a system, we show how a basic 
set of subword units performs on this task. Several directions for creating subword units 
which are more specialized are described, and several of these techniques are evaluated on 
the RM task. Finally we conclude the chapter with a discussion of how task semantics can 
be applied to further constrain the recognizer and improve overall performance. 

8.2 SUBWORD SPEEGH UNITS 

We began Chapter 2 with a discussion of the basic phonetic units of language and discussed 
the acoustic properties of the phonemes in different speech contexts. We then argued 
that the acoustic variability of the phonemes due to context was sufficiently large and not 
well understood, that such units would not be useful as the basis for speech models for 
recognition. Instead, we have used whole-word models as the basic speech unit, both for 
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436 Chap. 8 Large Vocabulary Continuous Speech Recognition 

isolated word recognition systems and for connected word recognition systems, because 
whole words have the property that their acoustic representation is well defined, and the 
acoustic variability occurs mainly in the region of the beginning and the end of the word. 
Another advantage of using whole-word speech models is that it obviates the need for a 
word lexicon, there~y making the recognition structure inherently simple. 

The disadvantages of using whole-word speech models for continuous speech recog­
nition are twofold. First, to obtain reliable whole-word models, the number of word 
utterances in the training set needs to be sufficiently large, i.e., each word in the vocab­
ulary should appear in each possible phonetic context several times in the training set. 
In this way the acoustic variability at the beginning and at the end of each word can be 
modeled appropriately. For word vocabularies like the digits, we know that each digit 
can be preceded and followed by every other digit; hence for an I I-digit vocabulary (zero 
to nine plus oh), there are exactly 121 phonetic contexts (some of which are essentially 
identical). Thus with a training set of several thousand digit strings, it is both realistic 
and practical to see every digit in every phonetic context several times. Now consider a 
vocabulary of l()(X) words with an average of 100 phonetic contexts for both the beginning 
and end of each word. To see each word in each phonetic context exactly once requires 
I 00 x I 000 x 100 = 10 million carefully designed sentences. To see each combination 10 
times requires 100 million such sentences. Clearly, the recording and processing of such 
homogeneous amounts of speech data is both impractical and unthinkable. Second, with 
a large vocabulary the phonetic content of the individual words will inevitably overlap. 
Thus storing and comparing whole-word patterns would be unduly redundant because the 
constituent sounds of individual words are treated independently, regardless of their iden­
tifiable similarities. Hence some more efficient speech representation is required for such 
large vocabulary systems. This is essentially the reason we use subword speech units. 

There are several possible choices for subword units that can be used to model speech. 
These include the following: 

• Phonelike units (PLUs) in which we use the basic phoneme set (or some appropri­
ately modified set) of sounds but recognize that the acoustic properties of these units 
could be considerably different than the acoustic properties of the "basic" phonemes 
[1-7]. This is because we define the units based on linguistic similarity but model 
the unit based on acoustic similarity. In cases in which the acoustic and phonetic 
similarities are roughly the same (e.g., stressed vowels) then the phoneme and the 
PLU will be essentially identical. In other cases there can be large differences and a 
simple one-to-one correspondence may be inadequate in terms of modeling accuracy. 
Typically there are about 50 PLUs for English. 

• Syllable-like units in which we again use the linguistic definition of a syllable 
(namely a vowel nucleus plus the optional initial and final consonants or consonant 
clusters) to initially define these units, and then model the unit based on acoustic 
similarity. In English there are approximately 10,000 syllables. 

• Dyad or demisyllable-like units consisting of either the initial (optional) consonant 
cluster and some part of the vowel nucleus, or the remaining part of the vowel nucleus 
and the final (optional) consonant cluster [8]. For English there is something on the 
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Sec. 8.2 Subword Speech Units 437 

order of 2000 demisyllable-like units. 

• Acoustic units, which are defined on the basis of clustering speech segments from 
a segmentation of fluent, unlabeled speech using a specified objective criterion (e.g., 
maximum likelihood) [9]. Literally a codebook of speech units is created whose 
interpretation, in tenns of classical linguistic units, is at best vague and at worst totaJly 
nonexistent. It has been shown that a set of 256-512 acoustic units is appropriate for 
modeling a wide range of speech vocabularies. 

Consider the English word segmentation. Its representation according to each of the above 
subword unit sets is 

• PL Us: /s/ /€/ /g/ /m/ /a/ /n/ /t/ /eY / /sh/ /a/ /n/ ( 11 units) 

• syllables: /seg/ /men/ /ta/ /tion/ (4 syllables) 

• demisyllables: /sc./ /r.g/ /ma/ /an/ /teY / /eYsh/ /sha/ /an/ (8 demisyllables) 
• acoustic units: 17 111 37 3 241 121 99 171 37 (9 acoustic units). 

We see, from the above example, that the number of subword units for this word can be as 
small as 4 (from a set of I 0,000 units) or as large as 11 (from a set of 50 units). 

Since each of the above subword unit sets is capable of representing any word in the 
English language, the issues in the choice of subword unit sets are the context sensitivity 
and the ease of training the unit from fluent speech. (In addition, for acoustic units, an 
issue is the creation of a word lexicon since the units themselves have no inherent linguistic 
interpretation.) It should be clear that there is no ideal (perfect) set of subword units. 
The PLU set is extremely context sensitive because each unit is potentially affected by its 
predecessors ( one or more) and its followers. However, there is only a small number of 
PLUs and they are relatively easy to train. On the other extreme are the syllables which 
are longest units and are the least context sensitive. However, there are so many of them 
that they are almost as difficult to train as whole-word models. 

For simplicity we will initially assume that we use PLUs as the basic speech units. 
In particular we use the set of 47 PLUs shown in Table 8.1 (which includes an explicit 
symbol for silence -h#). For each PLU we show an orthographic symbol (e.g., aa) and a 
word associated with the symbol (e.g., father). (These symbols are essentially identical to 
the ARPAPET alphabet of Table 2.1; lowercase symbols are used throughout this chapter 
for consistency with the DARPA community.) Table 8.2 shows typical pronunciations 
for several words from the DARPA RM task in terms of the PLUs in Table 8.1. A strong 
advantage of using PLU s is the ease of creating word lexicons of the type shown in Table 8.2 
from standard (electronic) dictionaries. We will see later in this chapter how we exploit the 
advantages of PLU s, while reducing the context dependencies, by going to more specialized 
PLUs which take into consideration either the left or right (or both) contexts in which the 
PLU appears. 

One problem with word lexicons of the type shown in Table 8.2 is that they don't easily 
account for variations in word pronunciation across different dialects and in the context of 
a sentence. Hence a simple word like "a" is often pronounced as /ey/ in isolation (e.g., the 

Amazon / Zentian Limited 
Exhibit 1013 

Page 288



438 Chap. 8 Large Vocabulary Continuous Speech Recognition 

TABLE 8.1. Set of basic PLUs for speech. 

Number Sl:'.mbol Word Number Sl:'.mbol Word 

1 h# silence 26 k kick 

2 aa father 27 led 

3 ae bat 28 m mom 

4 ah butt 29 n no 

5 ao bought 30 ng sing 

6 aw bough 31 ow boat 

7 ax again 32 oy boy 

8 axr diner 33 p pop 

9 ay bite 34 r red 

10 b bob 35 s sis 

11 ch church 36 sh shoe 

12 d dad 37 t tot 

13 dh they 38 th thief 

14 eh bet 49 uh book 

15 el bottle 40 uw boot 

16 en button 41 V very 

17 er bird 42 w wet 

18 ey bait 43 y yet 

19 f fief 44 z zoo 

20 g gag 45 zh measure 

21 hh hag 46 dx butter 
22 ih bit 47 nx center 
23 ix roses 
24 iy beat 
25 jh judge 

TABLE 8.2. Typical word pronunciations (word lex-
icon) based on context-independent 
PLUs. 

Word 
Number of 

2hones 
Transcription 

a ax 
above 4 ax b ah V 

bad 3 b ae d 
carry 4 k ae r iy 
define 5 d iy f ay n 
end 3 eh n d 
gone 3 g ao n 
hours 4 aw w axr z 
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WORD MODEL 

SUB-WORD UNIT 

B M 

(a) 

(b) 
---+ 

Figure 8.1 HMM representations of a word (a) and a subword 
unit (b). 
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letter A), but is pronounced as /ax/ in context. Another example is a word like "data," which 
can be pronounced as /d ey tax/ or /d ae tax/ depending on the speaker's dialect. Finally 
words like "you" are normally pronounced as /y uw/ but in context often are pronounced as 
/jh ax/ or /jh uh/. There are several ways of accounting for word pronunciation variability, 
including multiple entries in the word lexicon, use of phonological rules in the recognition 
grammar, and use of context dependent PLUs. We will discuss these options later in this 
chapter. 

8.3 SUBWORD UNIT MODELS BASED ON HMMS 

As we have shown several times in this book, the most popular way in which speech is 
modeled is as a left-to-right hidden Markov model. As shown in Figure 8. la, a whole-word 
model typically uses a left-to-right HMM with N states, where N can be a fixed value (e.g., 
5-10 for each word), or can be variable with the number of sounds (phonemes) in the 
word, or can be set equal to the average number of frames in the word. For subword units, 
typically, the number of states in the HMM is set to a fixed value, as shown in Figure 8.1 b 
where a three-state model is used. This means that the shortest tokens of each subword 
unit must last at least three frames, a restriction that seems reasonable in practice. (Models 
that use jumps to eliminate this restriction have been studied [2].) 

To represent the spectral density associated with the states of each subword unit, 
one of three approaches can be used. These approaches are illustrated in Figure 8.2. 
Perhaps the simplest approach is to design a VQ-based codebook for all speech sounds (as 
shown in part a of the figure). For this approach the probability density of the observed 
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ACOUSTIC SPACE 
(COVERED BY VO CELLS) 

MODEL 1 

ACOUSTIC SPACE 
(COVERED BY MIXTURES OF 
CONTINUOUS DENSITIES) 

ACOUSTIC SPACE 
(COVERED BY CONTINUOUS 

DENSITIES) 

( 0) 

DISCRETE DENSITY 
VO CODEBOOK 

x = CENTROID 

(bl 

CONTINUOUS DENSITY 
MIXTURE CASE 

(Cl 

CONTINUOUS DENSITY 
CODEBOOK 

Figure 8.2 Representations of the acoustic space of speech by (a) parti­
tioned VQ cells, (b) sets of continuous mixture Gaussian densities, and (c) 
a continuous-density codebook (after Lee et al. [7]). 

spectral sequence within each state of each PLU is simply a discrete density defined over 
the codebook vectors. The interpretation of the discrete density within a state is that of 
implicitly isolating the part of the acoustic space in which the spectral vectors occur and 
assigning the appropriate codebook vector ( over that part of the space) a fixed probability for 
spectral vectors within each isolated region regardless of its proximity to the corresponding 
codebook vector. A ~econd alternative, illustrated in part b of Figure 8.2, is to represent 
the continuous probability density in each subword unit state by a mixture density that 
explicitly defines the part of the acoustic space in which the spectral vectors occur. Each 
mixture component has a spectral mean and variance that is highly dependent on the spectral 
characteristics of the subword unit (i.e., highly localized in the acoustic space). Hence the 
models for different subword units usually do not have substantial overlap in the acoustic 
space. Finally, a third alternative is to design a type of continuous density codebook over 
the entire acoustic space, as illustrated in part c of Figure 8.2. Basically the entire acoustic 
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space is covered by a set of independent Gaussian densities, derived in much the same 
way as the discrete VQ codebook, with the resulting set of means and covariances stored 
in a codebook. This alternative is a compromise between the previous two possibilities. It 
differs from the discrete density case in the way the probability of an observation vector is 
computed; instead of assigning a fixed probability to any observation vector that falls withjn 
an isolated region, it actually determines the probability according to the closeness of the 
observation vector to the codebook vector (i.e., it calculates the exponents of the Gaussian 
distributions). For each state of each subword unit, the density is assumed to be a mixture of 
the fixed codebook densities. Hence, even though each state is characterized by a continuous 
mixture density, one need only estimate the set of mixture gains to specify the continuous 
density completely. Furthermore, since the codebook set of Gaussian densities is common 
for all states of all subword models, one can precompute the likelihoods associated with 
an input spectral vector for each of the codebook vectors, and ultimately determine state 
likelihoods using only a simple dot product with the state mixture gains. This represents 
a significant computational reduction over the full mixture continuous density case. This 
mixed density method has been called the tied mixture approach [ 10, 28] as well as the 
semicontinuous modeling method [ 11] and has been applied to the entire acoustic space 
as well as to pieces of the acoustic space for detailed PLU modeling. This method can be 
further extended to the case in which a set of continuous density codebooks is designed, 
one for each state of each basic (context independent) speech unit. One can then estimate 
sets of mixture gains appropriate to context dependent versions of each basic speech unit 
and use them appropriately for recognition. We will return to this issue later in this chapter. 

8.4 TRAINING OF SUBWORD UNITS 

Implicitly it would seem that training of the models for subword units would be extremely 
difficult, because there is no simple way to create a bootstrap model of such short, im­
precisely defined, speech sounds. Fortunately, this is not the case. The reason for this is 
because of the inherent tying of subword units across words and sentences-that is, every 
subword unit occurs a large number of times in any reasonable size training set. Hence 
estimation algorithms like the forward-backward procedure, or the segmental k-means al­
gorithm, can start with a uniform segmentation (flat or random initial models) and rapidly 
converge to the best model estimates in just a few iterations. 

To illustrate how models of subword units are estimated, assume we have a labeled 
training set of speech sentences, where each sentence consists of the speech waveform and 
its transcription into words. (We assume that waveform segmentation into words is not 
available.) We further assume a word lexicon is available that provides a transcription of 
every word in the training set strings in terms of the set of subword units being trained. We 
assume that silence can (but needn't) precede or follow any word within a sentence (i.e., 
we allow pauses in speaking), with silence at the beginning and end of each sentence the 
most likely situation. Based on the above assumptions, a typical sentence in the training 
set can be transcribed as 
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SENTENCE (Sw): 

4> 

Large Vocabulary Continuous Speech Recognition 

4> 
-►, ......... W ............ W2 ,, ', 1 , ', 

c5 • b>---4•--6 • b • 

w, ,... ', 
o • • • 01--------.cf • b 

silence silence silence 

WORD (W1): 

U1(W2) U2(W1) UL(W1)(W1) 
o---o 0 • • • 0 • 0 

SUB-WORD UNIT (PLU): 

_______ Q_ . Q ' _Q ______ _ 

Figure 8.3 Representation of a sentence, word, and subword unit in 
terms of FSNs. 

in which each W· 1 < i < I is a word in the lexicon. Hence the sentence "show all alerts" ,, - - , 
is a three-word sentence with W1 = show, W2 = all, and W3 = alerts. Each word can 
be looked up in the lexicon to find its transcription in terms of subword units. Hence the 
sentence Scan be written in terms of subword units as 

Su: U1(Wi)U2(W1) ... UL(Wi)(W,) EB U1(W2)U2(W2) · · · ul(W2)(W2) ffi 
U1(W3)U2(W3) ... ul(W3)(W3) EB··· EB U1(W1)U2(W1) • · · ul(W1)(W1), 

where l(W 1) is the length (in units) of word W1, etc. Finally we replace each subword unit 
by its HMM (the three-state models shown in Figure 8.1) and incorporate the assumptions 
about silence between words to give an extended HMM for each sentence. 

The above process is illustrated (in general) in Figure 8.3. We see that a sentence 
is represented as a finite-state network (FSN) where the arcs are either words or silence 
or null arcs (where a null (¢) transition is required to skip the alternative silence). Each 
word is represented as an FSN of subword units and each subword unit is represented as a 
three-state HMM. 

Figure 8.4 shows the process of creating the composite FSN for the sentence "Show all 
alerts," based on a single-word pronunciation lexicon. One feature of this implementation 
is the use of a single-state HMM for the silence word. This is used (rather than the three­
state HMMs used for each PLU), since silence is generally stationary and has no temporal 
structure to exploit. 

When there are multiple representations of words in the lexicon ( e.g., for two or more 
distinct pronunciations) it is easy to modify the FSN of Figures 8.3 and 8.4 to add parallel 
paths for the word arcs. (We will see that only one path is chosen in training, namely the 
best representation of the actual word pronunciation in the context of the spoken sentence.) 
Furthermore, multiple models of each subword unit can be used by introducing parallel 
paths in the word FSNs and then choosing the best version of each subword unit in the 
decoding process. 
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SENTENCE (Sw): SHOW ALL ALERTS 

4> 
_,-►,, ,__.., 

,, ' ,, '\ 
o • b• o b• 

silence show silence all 

WORDS: 

sh ow 
SHOW: 0 • 0 I 0 

ax i 
ALL: 0 I 0 0 

ax i er 
ALERTS: 

SILENCE· 
Q 

COMPOSITE FSN: 

silence alerts silence 

s 

~-o--o+---o-+,-~~~! 0 
s : /sil 

ending states 

Figure 8.4 Creation of composite FSN for sentence "Show all alens." 
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Once a composite sentence FSN is created for each sentence in the training set, the 
training problem becomes one of estimating the subword unit model parameters which 
maximize the likelihood of the models for all the given training data. The maximum 
likelihood parameters can be solved for using either the forward-backward procedure (see 
Ref. [2] for example) or the segmental k-means training algorithm. The way in which 
we use the segmental k-means training procedure to estimate the set of model parameters 
(based on using a mixture density with M mixtures/state) is as follows: 

1. Initialization: Linearly segment each training utterance into units and HMM states 
assuming no silence between words (i.e., silence only at the beginning and end of 
each sentence), a single lexical pronunciation of each word, and a single model for 
each subword unit. Figure 8.5, iteration 0, illustrates this step for the first few units 
of one training sentence. Literally we assume every unit is of equal duration initially. 

2. Clustering: All feature vectors from all segments corresponding to a given state (i) 
of a given subword unit are partitioned into M clusters using the k-means algorithm. 
(This step is iterated for all states of all subword units.) 

3. Estimation: The mean vectors, µ;k, the (diagonal) covariance matrices, U;k, and the 
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ITERATION 0 
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Figure 8.5 Segmentations of a training utterance resulting from the segmental 
k-means training for the first several iterations (after Lee et al. [7]). 

mixture weights, c;k, are estimated for each cluster k in state i. (This step is iterated 
for all states of all subword units.) 

4. Segmentatim1: The updated set of subword unit models (based on the estimation of 
step 3) is used to resegment each training utterance into units and states (via Viterbi 
decoding). At this point multiple lexical entries can be used for any word in the 
vocabulary. Figure 8.5 shows the result of this resegmentation step for iterations 1-4 
and 10 for one training utterance. It can be seen that by iteration 2 the segmentation 
into subword units is remarkably stable. 

5. Iteration: Steps 2-4 are iterated until convergence (i.e., until the overall likelihoods 
stop increasing). 

Figure 8.6 illustrates the resulting segmentation of the first few units of the utterance 
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Segmentation of an utterance into PLUs (after Lee et al. (7)). 
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"What is the constellation .... " Shown in this figure are the power contour in dB (upper 
panel), the running LPC spectral slices (the middle panel), and the likelihood scores and 
delta-cepstral values (lower panel) for the first second of the sentence. The resulting 
segmentations are generally remarkably consistent with those one might manually choose 
based on acoustic-phonetic criteria. Since we use an acoustic criterion for choice of 
segmentation points, the closeness of PLU units to true phonetic units is often remarkable, 
especially in light of the phonetic variability in word pronunciation discussed previously. 

In summary we have shown how one can use a. training set of speech sentences 
that have only word transcriptions associated with each sentence and optimally determine 
the parameters of a set of subword unit HMMs. The resulting parameter estimates are 
extremely robust to the training material as well as to details of word pronunciation as 
obtained from the word lexicon. The reason for this is that a common word lexicon (with 
associated word pronunciation errors) is used for ~oth training and recognition; hence 
errors in associating proper subword units to words are consistent throughout the process 
and are less harmful than they would be in alternative methods of estimating parameters of 
subword models. 

The results of applying the segmental k-means training procedure to a set of 3990 • 
training sentences from 109 different talkers, in terms of PLU counts and PLU likelihood 
scores are shown in Table 8.3. A total of 155,000 PLUs occurred in the 3990 sentences 
with silence (h#) having the most occurrences (10,638 or 6.9% of the total) and nx (flapped 
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TABLE 8.3. PLU statistics on count and average likelihood score. 

PLU Count % 
Average 

(Rank) 
likelihood 

h# 10638 6.9 18.5 (I) 

r 8997 5.8 8.4 (45) 
t 8777 5.7 9.7 (37) 
ax 8715 5.6 7 .1 (47) 
s 8625 5.6 15.4 (3) 

n 8478 5.5 8.3 (46) 
ih 6542 4.2 9.9 (35) 
iy 5816 3.7 12.0 (17) 
d 5391 3.5 8.5 (44) 

ae 4873 3.1 13.3 (10) 
e 4857 3.1 8.9 (41) 
z 4733 3.0 12.4 ( 14) 
eh 4604 3.0 11.2 (21) 
k 4286 2.8 10.6 (27) 
p 3793 2.4 14.3 (6) 
m 3625 2.3 8.5 (43) 
ao 3489 2.2 10.4 (32) 
f 3276 2.1 17.7 (2) 
ey 3271 2.1 14.5 (5) 
w 3188 2.1 10.2 (34) 
ix 3079 2.0 8.7 (42) 
dh 2984 1.9 11.8 (18) 
V 2979 1.9 12.0 (16) 
aa 2738 1.8 10.3 (33) 
b 2138 1.4 10.7 (25) 
y 2137 1.4 13. l ( 11) 
uw 2032 1.3 10.6 (26) 
sh 1875 1.2 13. l (12) 
ow 1875 1.2 10.9 (24) 
axr 1825 1.2 9.5 (38) 
ah 1566 1.0 11.3 (20) 
dx 1548 1.0 10.4 (31) 
ay 1527 1.0 13.9 (8) 
en 1478 0.9 9.1 (40) 
g 1416 0.9 9.8 (36) 
hh 1276 0.8 11.4 (19) 
th 924 0.6 14.1 (7) 
ng 903 0.6 9.1 (39) 
ch 885 0.6 12.5 (13) 
el 863 0.6 11.0 (23) 
er 852 0.5 10.6 (29) 
jh 816 0.5 10.6 (28) 
aw 682 0.4 13.6 (9) 
uh 242 0.2 11.0 (22) 
zh 198 0.1 12.2 (15) 
oy 130 0.1 15.3 (4) 
nx 57 0.04 10.4 (30) 
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n) having the fewest occurrences (5 or 0.04% of the total). In tenns of average likelihood 
scores, silence (h#) had the highest score (18.5) followed by f (17.7) ands (15.4), while 
ax had the lowest score (7.1 ), followed by n (8.3) and r (8.4). (Note that, in this case, a 
higher average likelihood implies less variation among different renditions of the particular 
sound.) It is interesting to note that the PLUs with the three lowest average likelihood 
scores (ax, n, and r) were among the most frequently occurring sounds (r was second, 
n sixth, and ax fourth in frequency of occurrence). Similarly, some of the sounds with 
the highest likelihood scores were among the least occurring sounds (e.g., oy was fourth 
according to likelihood score but 21st according to frequency of occurrence). 

5 LANGUAGE MODELS FOR LARGE VOCABULARY SPEECH RECOGNITION s. 

Small vocabulary speech-recognition systems are used primarily for command-and-control 
applications where the vocabulary words are essentially acoustic control signals that the 
system has to respond to. (See Chapter 9 for a discussion of command-and-control appli­
cations of speech recognition.) As such, these systems generally do not rely heavily on 
language models to accomplish their selected tasks. A large vocabulary speech-recognition 
system, however, is generally critically dependent on linguistic knowledge embedded in 
the input speech. Therefore, for large vocabulary speech recognition, incorporation of 
knowledge of the language, in the form of a "language" model, is essential. In this section 
we discuss a statistically motivated framework for language modeling. 

The goal of the (statistical) language model is to provide an estimate of the probability 
of a word sequence W for the given recognition task. If we assume that Wis a specified 
sequence of words, i.e., 

W = W1W2 .. ,WQ, (8.4) 

then it would seem reasonable that P(W) can be computed as 

P(W) = P(w1w2 ... WQ) = P(w1)P(w2lw1)P(w3lw1w2) ... 

P(wQlw1w2 ... WQ-1). (8.5) 

Unfortunately, it is essentially impossible to reliably estimate the conditional word prob­
abilities, P(wjlw 1 ... Wj-d for all words and all sequence lengths in a given language. 
Hence, in practice, it is convenient to use an N-gram word model, where we approximate 
the term P(wjlw1 ... Wj-1) as 

(8.6) 

i.e., based only on the preceding N - 1 words. Even N-gram probabilities are difficult to 
estimate reliably for all but N = 2 or possibly 3. Hence, in practice, it is often convenient 
to use a word pair model that specifies which word pairs are valid in the language through 
the use of a binary indicator function, i.e., 

I { 
1 if wkwj is valid 

P(w· Wk)= 1 0 otherwise 
(8.7) 
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Another simple language model, often called the no-grammar model, assumes P(wilwk) = 1 
for all j and k, so that every word is assumed capable of being followed by every other 
word in the language. In the next section we show how the word pair and the no-grammar 
models can be implemented as finite state networks so as to be integrated simply into a 
recognition decoding algorithm. 

Alternative language models include formal grammars (e.g., context free or context 
dependent grammar), N-grams of word classes (rather than words) etc. These types of 
grammars provide more realistic models for natural language input to machines than the 
artificial N-grams or words, or the word pair grammars. However, they are somewhat more 
difficult to integrate with the acoustic decoding and hence will not be discussed here. 

8.6 STATISTICAL LANGUAGE MODELING 

In large vocabulary speech recognition, in which word sequences W are uttered to convey 
some message, the language model P(W) is of critical importance to the recognition 
accuracy as shown in Eq. (8.3). In most cases, the language model P(W) has to be 
estimated from a given (large) text corpus. In this section we discuss how to construct such 
a statistical language model from a (textual) training corpus. 

For practical reasons, the word sequence probability P(W) is approximated by 

Q 

PN(W) = ITP(w;lw;-1,w;-2, ... ,w;-N+1), 
i=l 

(8.8) 

which is called an N-gram language model. The conditional probabilities P(w;lw;_ 1, 

... , Wi-N+ 1) can be estimated by the simple relative frequency approach, 

PA( I ) F(w;,w;-1, .•. ,w;-N+1) 
W; W;-1, ... , Wi-N+I = --------, 

F(w;-1, ... , w;-N+1) 
(8.9) 

in which Fis the number of occurrences of the string in its argument in the given training cor­
pus. Obviously, in order for the estimate in Eq. (8.9) to be reliable, F(w;, w;_ 1, ... , w;-N+i) 
has to be substantial in the given corpus. The implications of this are that the size of the 
training corpus may be prohibitively large and that F(w;, w;_ 1, ... , w;-N+i) = 0 for many 
possible word strings, w;, w;-1, ... , w;-N+ 1, due to the limited size of the corpus. 

One way to circumvent this problem is to smooth the N-gram frequencies as suggested 
by Jelinek et al. [12). Consider N = 3, the trigram model. The smoothing is done by 
interpolating trigram, bigram and unigram relative frequencies 

P(w lw w ) _ F(w1, w2, W3) F(w1, w2) F(wi) 
3 I, 2 - Pl F( ) + P2 F( ) + p3 ~ , w1, w2 w1 L.J F(w;) 

(8.10) 

in which the nonnegative weights satisfy p 1 + p2 + p3 = 1 and L F(w;) is the size of the 
corpus. The weights depend on the values of F(w 1, w2) and F(w 1) and can be obtained by 
applying the principle of cross-validation [ 12). 
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Having constructed a language model from a training corpus, one may ask how well the 
language model will perform in the context of speech recognition. This can be answered 
based on the concept of source of information in information theory. To provide such 
a measure of performance, we must first discuss several concepts, including entropy, 
estimated entropy, and perplexity. 

Consider an information source that puts out sequences of words (symbols) w1, w2, 
... , WQ, each of which is chosen from a vocabulary V with size WI, according to some 
stochastic law. The entropy of the source can be defined as 

H = -
0
1~m00 (~) { LP<w,, w2, ••• , w0)Jog P(w 1, w2, ... , w0) }, (8.11) 

in which P( ) is the probability of the argument string the source will put out according to 
the stochastic law and the summation is over all string sequences w1, w2, ... , w0. If the 
words in the string sequence are generated by the source in an independent manner 

(8.12) 

then 
H = - ~ P(w) log P(w), (8.13) 

wEV 

which is sometimes referred to as the first-order entropy of the source ( even if Eq. (8.12) is 
not true). 

The quantity Hof Eq. (8.11) can be considered as the average information of the 
source when it puts out a word w. Equivalently, a source of entropy His one that has as 
much information content as a source which puts out words equiprobably from a vocabulary 
of size 2H. 

If the source is ergodic (meaning its statistical properties can be completely charac­
terized in a sufficiently long sequence that the source puts out), the entropy of Eq. (8.11) is 
equivalent to 

H = - lim (_!_) log P(w1, w2, ... , wo). 
Q➔oo Q 

(8.14) 

In other words, we can compute the entropy from a "typical" (long) sequence of words 
generated by the source. The length of this typical sequence (i.e., the corpus) has to 
approach infinity, which is of course unattainable. We often compute H based on a finite 
but sufficiently large Q; i.e., 

H = - ( ~) log P(w1, wi, ... , w0). (8.15) 

An interesting interpretation of H from the perspective of speech recognition is that 
it is the degree of difficulty that the recognizer encounters, on average, when it is to 
determine a word from the same source. This difficulty, or uncertainty, is based on the 
actual probability P(w 1, w2, ... , wQ) which, for natural languages, is usually not known 
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beforehand and thus has to be estimated. (We do not include acoustic uncertainty in the 
present context of language modeling.) 

One way to estimate His to use P(W) = P(w 1, w2, ... , wo) from the language model. 
For example, if the N-gram language model PN(W) (Eq. (8.8)) is used, an estimate of Hof 
Eq. (8.15) is thus 

(8.16) 

In general, 
1 . 

Hp= - Q log P(w 1, w2, ... , wo), (8.17) 

where P(w 1, w2, ... , w0 ) is an estimate of P(w 1, w2, ... , wo). The quantity Hp is an 
estimated entropy as calculated from a sufficiently long sequence based on a language 
model. If the source is ergodic and Q ➔ oo, Hp 2: H. Intuitively, this can be easily verified 
by the fact that knowledge of the true probability P(w1, w2, ... , wo) is the best a recognizer 
can use and any other probability estimate or language model can never make the task easier 
for the recognizer. Since Hp is an indication of the recognition difficulty lower-bounded 
by H, a language model that achieves a lower Hp (i.e., closer to H) is therefore considered 
a better model than another language model which leads to a higher Hp. 

Associated with Hp is a quantity called perplexity (often called the average word 
branching factor of the language model) defined as 

B _ 2Hp _ p"( )-1/Q - - w1,w 2, .•• ,w0 . (8.18) 

Note that Hp is the average difficulty or uncertainty in each word based on the language 
model. When the recognizer uses this language model for the task, the difficulty it faces 
is equivalent to that of recognizing a text generated by a source that chooses words from a 
vocabulary size of B independently of each other and with equal probability. Another way 
to view perplexity is to consider it as the average number of possible words following any 
string of (N - 1) words in a large corpus based on an N-gram language model. Perplexity 
is an important parameter in specifying the degree of sophistication in a recognition task, 
from the source uncertainty to the quality of the language model. 

8.8 OVERALL; RECOGNITION SYSTEM BASED ON SUBWORD UNITS 

A block diagram of the overall continuous speech-recognition system based on subword 
speech units is shown in Figure 8.7. The first step in the processing is spectral analysis to 
derive the feature vector used to characterize the spectral properties of the speech input. 
For the most part, we will consider spectral vectors with 38 components consisting of 12 
cepstral components, 12 delta cepstral components, 12 delta-delta cepstral components, 
delta log energy, and delta-delta log energy. (Systems with the first 12 and the first 24 
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Figure 8.7 Overall block diagram of subword unit based continuous speech recognizer. 

features were also studied, but results on such systems will not be presented here.) 
The second step in the recognizer is a combined word-level/sentence-level match. 

The way this is accomplished is as follows. Using the set of subword HMMs and the word 
lexicon, a set of word models (HMMs) is created by concatenating each of the subword 
unit HMMs as specified in the word lexicon. At this point, the system is very similar to 
the connected word recognizers of Chapter 7. The way in which the sentence-level match 
is done is via an FSN realization of the word grammar (the syntax of the system) and the 
semantics as expressed in a composite FSN language model. The implementation of the 
combined word-level match/sentence-level match is via any of the structures described 
in Chapter 7. In particular, most systems use structures similar to the frame synchronous 
level-building method (usually with some type of beam search to restrict the range of paths) 
to solve for the "best" recognition sentence. 

Consider using the recognizer of Figure 8. 7 for a database management task called the 
Naval Resource (Battleship) Management Task-as popularly defined within the DARPA 
community [13]. This task, which has a 991-word vocabulary (plus a separate silence 
word), can be used to query a database as to locations, attributes, constraints, history, and 
other information about ships within the database. Typical examples of sentences used to 
query the database include 

• what is mishawaka's percent fuel 

• total the ships that will arrive in diego-garcia by next month 
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...... ....,stop 
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Figure 8.8 FSN for the NG syntax. 

• do any vessels that are in gulf of tonkin have asw mission area of m4 

• show the names of any submarines in yellow sea on twenty eight october 

• list all the alerts 

• what's jason 's m-rating on mob 

• give t-lam vessels that weren't deployed in november. 

The vocabulary thus includes many jargon words, such as m4, m-rating, mob, and t-lam, 
and several long-content words, such as mishawaka 's, diego-garcia, submarines, november, 
etc., and many short-function words, such as is, the, by, do, in, of, and on. 

A wide range of sentences can be constructed from the 991-word vocabulary to 
query this database. It is possible to construct a finite-state network representation of the 
full grammar associated with all such sentences. The perplexity (average word branching 
factor) (see Section 8.7) of the full grammar network is computed to be about 9. However, 
such a network is rather large (because of the high degree of constraint among words within 
the vocabulary which form syntactically valid and semantically meaningful sentences) with 
upward of 50,000 arcs and 20,000 nodes, aqd cannot easily be implemented as a practical 
system. Instead, several types of FSN approximations to the full grammar have been 
constructed. 

Perhaps the least constraining grammar (and the simplest to implement) is the no 
grammar (NG) case, in which any word in the vocabulary is allowed to follow any word in 
the vocabulary. Such an FSN has the property that, although its coverage of valid sentences 
is perfect, its overcoverage of the language (i.e., the ratio of sentences generated by the 
grammar to valid sentences within the task language) is extremely large. The perplexity of 
the FSN for the NG case is 991, since each word can follow every word in the grammar 
(assuming all words are essentially equiprobable). The FSN for the NG case is shown in 
Figure 8.8. (Note that the FSN of Figure 8.8 allows arbitrary phrasing, i.e., groups of words 
spoken together followed by a pause, because of the silence model and the null arcs.) 

A second FSN form of the task syntax is to create a word pair (WP) grammar that 
specifies explicitly which words can follow each of the 991 words in the vocabulary. The 
perplexity of this grammar is about 60, and the overcoverage, while significantly below 
that of the NG case, is still very high. Although the network of Figure 8.8 could be used for 
the WP grammar (by explicitly including the word pair information at node 2), a somewhat 
more efficient structure exploits the fact that only a subset of the vocabulary occurs as the 
first word in a sentence (B or beginning words), and only a subset of the vocabulary occurs 
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Figure 8.9 FSN of the WP syntax. 

as the last word in a sentence(£ or ending words); hence we can partition the vocabulary 
into four nonoverlapping sets of words, namely 

{ BE}=set of words that can either begin or end a sentence, IBEI = 117 
{~£}=set of words that can begin a sentence but cannot end a sentence, IBEj == 64 
{ BE}=set of words that cannot begin a sentence but can end a sentence, jBE/ == 488 
{ BE}=set of words that cannot begin or end a sentence, jBE j = 322. 

The resulting FSN, based on this partitioning scheme, is shown in Figure 8.9. This 
network has 995 real arcs and 18 null arcs. To account for silence between words (which 
is optional), each word arc bundle (e.g., nodes 1 to 4) is expanded to individual words 
followed by optional silence, as shown at the bottom of Figure 8.9. Hence the overall FSN 
allows recognition of sentences of the form 

S: (silence) - {BE,BE} - (silence) - ({W}) ... ({W})- (silence) - {BE,BE}- (silence). 

Finally, one could construct a task syntax based on statistical word bigram (or even 
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trigram) probabilities-that is, we assign a probabilitY,PiJ, to each word pair (Wi, W1) where 
PiJ is the probability that W; is followed immediately by W1, That is, if Wn is the nth word 
in a string of words, then PiJ = P(Wn = W11Wn-l = Wi) is the language model according 
to Eq. (8.6). The advantage of the word bigram (WB) approach is that the perplexity 
is reduced considerably (to 20) for the Resource Management task, with essentially no 
increase in complexity of the implementation. 

8.8.1 Control of Word Insertion/Word Deletion Rate 

Using a structure of the type shown in Figure 8.9, there is no control on the sentence length. 
That is, it is possible to generate sentences that are arbitrarily long by inserting a large 
number of short-function words. To prevent this from occurring, it is a simple matter to 
incorporate a word insertion penalty into the Viterbi decoding, such that a fixed negative 
quantity is added to the likelihood score at the end of each word arc (i.e., at nodes 5-8 in 
Figure 8.9). By adjusting the word penalty, we can control the rate of word insertion and 
word deletion; a very large word penalty will reduce the word insertion rate and increase 
the word deletion rate, and a very small penalty will have the opposite effect. A value for 
word penalty is usually experimentally detennined to balance these adverse effects. 

8.8.2 Task Semantics 

We have discussed how task syntax can be incorporated into the overall recognition struc­
ture. At the end of this chapter we will briefly describe a general procedure for integrating 
a semantic component into the recognizer. 

8.8.3 System Performance on the Resource Management Task 

Using the segmental k-means training algorithm, the set of 47 PLUs of Table 8.1 were trained 
using a set of 4360 sentences from I 09 talkers. The likelihood scores were essentially 
unchanged after two iterations of the k-means loop. The number of mixtures per state was 
varied from 1 to 256 in multiples of 2 to investigate the effects of higher acoustic resolution 
on performance. 

To evaluate the recognizer performance, five different sets of test data were used, 
including: 

train 109 A randomly selected set of 2 sentences from each of the I 09 training talkers; this set 
was used to evaluate the ability of the algorithm to recognize the training material 

feb 89 A set of 30 sentences from each of 10 talkers, none of whom was in the training set; 
this set was distributed by DARPA in February of 1989 to evaluate performance 

oct 89 A second set of 30 sentences from each of IO additional talkers, none of whom was 
in the training set; this set was distributed by DARPA in October of 1989 

jun 90 A set of 120 sentences from each of 4 new talkers, none of whom was in the training 
set (distributed by DARPA in June of I 990) 

feb 91 A set of 30 sentences from each of IO new talkers, none of whom was in the training 
set (distributed by DARPA in February of 199 I). 
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Figure 8.10 Word and sentence accuracies versus number of mixtures 
per state for the training subset using the WP syntax. 

455 

The recognizer performance was evaluated for each of the test sets, using both WP 
and NG syntax, and with different word penalties. For all cases, evaluations were made 
using models with from 1 to 256 mixtures per state for each PLU. 

The recognition results are presented in terms of word accuracy (percentage words 
correct minus percentage word insertions) and sentence accuracy as a function of the number 
of mixtures per state for each PLU model. The alignment of the text of the recognized 
string with the text of the spoken string was performed using a dynamic programming 
alignment method as specified by DARPA. 

The recognition results on the training subset (train 109) are given in Figures 8.10 (for 
the WP syntax) and 8.11 (for the NG syntax). The upper curves show word accuracy (in 
percentage) versus number of mixtures per state (on a logarithmic scale) for two different 
values of the word penalty, and the lower curves show sentence accuracy for the same 
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Figure 8.11 Word and sentence accuracies versus number of mix­
tures per state for the training subset using the NG syntax. 

parameters. A sharp and steady increase in accuracy is obtained as the number of mixtures 
per state increases, going from about 43.6% word accuracy (10.6% sentence accuracy) for 
I mixture per state to 97.3% word accuracy (83% sentence accuracy) for 256 mixtures 
per state for the WP syntax using a word penalty of 2.5. For the NG syntax (using a 
word penalty of 6.0), the comparable results were 24% word accuracy (0.9% sentence 
accuracy) for I mixture per state and 84.2% word accuracy (34.9% sentence accuracy) for 
256 mixtures per state. 

The recognition results on the independent test sets are given in Figures 8.12 (for 
the WP syntax) and 8.13 (for the NG syntax). Although there are detailed differences in 
performance among the different test sets (especially for small numbers of mixtures per 
state), the performance trends are essentially the same for all the test sets. In particular we 
see that for the WP syntax, the range of word accuracies for l mixture per state is 42.9% 
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Figure 8.12 Word and sentence accuracies versus number of mix­
tures per state for the four test sets using the WP syntax. 
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(for feb 89) to 56.0% (for jun 90), whereas for 256 mixtures per state the range is 90.9% 
(for feb 89) to 93.0% (for jun 90). For the NG syntax, the range of word accuracies for 1 
mixture per state is 20.1 % (for feb 91) to 28.5% (for jun 90) and for 256 mixtures per state 
it is 68.5% (for oct 89) to 70.0% (for feb 91). 

Perhaps the most significant aspect of the perfonnance is the difference in accuracies 
between the test sets and the training subset. Thus there is a gap of 4--7% in word 
accuracy for the WP syntax at 256 mixtures per state, and a gap of 14.2-15.7% for the 
NG syntax at 256 mixtures per state. Such gaps are indicative of the ability of the training 
procedure to overtrain (learn details) on the training set, thereby achieving significantly 
higher recognition accuracy on this set than on any other representative test set. 

The results presented in this section show that a simple set of context-independent 
PLUs can be trained for a continuous speech large vocabulary recognition task, using 
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Figure 8.13 Word and sentence accuracies versus number of mix­
tures per state for the four test sets using the NG syntax. 

standard Viterbi training procedures, and be used to provide reasonably good recognition 
accuracy for a moderately complex task. The key issue now is what can be done, in 
meaningful ways to improve recognizer performance. To answer this question, we will 
examine several possible extensions of the basic recognition system in the next few sections. 

8.9 fONTEXT-DEPENDENT SUBWORD UNITS 

There are several advantages to using a small basic set of context-independent subword 
units for large vocabulary speech recognition. First of all we have shown that the models 
of these subword units are easily trained from fluent speech, with essentially no hµman 
decisions as to segmentation and labeling of individual sections of speech. Second, the 
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resulting units·are generalizable to new contexts (word vocabularies, tasks with different 
syntax and semantics) with no extra effort. Finally, the resulting models are relatively 
insensitive to the details of the context from which the training tokens are extracted. By 
this we mean that, in theory, we can derive the subword unit model parameters from two 
arbitrary but sufficiently large training sets of fluent speech (hopefully of the same size and 
general linguistic content but not necessarily the same vocabulary words and sentences) to 
obtain essentially the same parameter estimates for each model. In practice, this is almost 
the case. 

However, there are situations in which the subword unit model parameters are ex­
tracted from a training set whose linguistic content matches the test set precisely-that 
is, when the training set is a set of sentences drawn from the recognition task (with the 
same vocabulary, syntax, and semantics). In such a case, the resulting subword units are 
somewhat "word sensitive" (showing higher likelihood scores than in the general case) 
and typically provide higher recognition performance than equivalent model sets derived 
from arbitrary input speech. In particular, for the Resource Management task discussed 
in the previous section, "word-sensitive" subword unit models, trained on task-specific 
training sentences, give about I 0% higher word recognition accuracy than the same set of 
subword unit models trained on arbitrary sentences of comparable size. If the training set is 
increased in size by a factor of about 3, the word accuracy of the text-independent models 
approaches that of the word-sensitive models. 

Obviously, this performance difference can be attributed to the fact that context­
independent subword unit models are not adequate in representing the spectral and temporal 
properties of the speech unit in all contexts. (By context we mean the effects of the preceding 
and following sounds as well as the sound stress and information, and even the word in 
which the sound occurs.) The ultimate effect is a decrease in performance in word and 
sentence accuracy on speech-recognition tasks. 

The solution to this problem is basically a simple, straightforward one-namely, to 
extend the set of subword units to include context-dependent units (either in addition to or 
as a replacement for context-independent units) in the recognition system. In theory, the 
only change necessary in either training or recognition is to modify the word lexicon to be 
consistent with the final set of subword units. Consider the word "above." Based on using 
(1) context-independent units, (2) triphone (left and right context) units, (3) multiple-phone 
models, and (4) word-dependent units, we could have the following lexical representations: 

(1) above: ax b ah v Context-Independent Units 
(2) above: $-ax-b ax-b-ah b-ah-v ah-v-$ Triphones (Context Dependent) 
(3) above: ax2 b2 ahl vl Multiple Phone Units 
(4) above: ax (above) b (above) ah (above) v (above) Word-Dependent Units. 

In representation (2), using triphone units, the number of units needed for all sounds in all 
words is very large (on the order of 1~20,000). In practice, only a small percentage of 
such triphone units are used, since most units are seen rarely, if at all, in a finite training set. 
(We discuss this issue below in more detail.) In representation (3), using multiple models 
of each subword unit, the idea is to cluster common contexts together so as to reduce the 
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number of context-dependent models. This leads to problems in defining lexical entries for 
words. (We discuss this issue further in a later section of this chapter.) Finally, the use of 
word-dependent units is most effective for modeling short-function words (like a, the, in, 
of, an, and, or) whose spectral variability is significantly greater than that of long-content 
words like aboard and battleship. (We discuss the modeling of function words in a later 
section of this chapter.) Finally, it is both reasonable and meaningful to combine all four 
types of units in a common structure. In theory, as well as in practice, the training and 
recognition architectures can handle subword unit sets of arbitrary size and complexity. 
We now discuss each of these issues in more detail. 

8.9.1 Creation of Context-Dependent Diphones and Triphones 

Consider the basic set of context-independent PLUs in which we use the symbol p to denote 
an arbitrary PLU. We can define a set of context-dependent (CD) diphones as 

PL - p - $ left context (LC) diphone 
$ - p - PR right context (RC) diphone, 

in which PL is the PLU immediately preceding p (the left context sound), PR is the PLU 
immediately following p (the right context sound), and $ denotes a don't care ( or don't 
know) condition. 

Similarly we can define a set of context-dependent triphones as 

PL -p-pR left-right context (LRC) triphone. 

In theory, the potential number of left ( or right) context di phones is 46 x 45 (for a basic set 
of 47 PLUs and excluding silence) or about 2070 left context diphone units. The potential 
number of left-right context triphone units is 45 x 46 x 45 or 93,150 units. In practice, the 
actual number of context-dependent PLUs actually seen in a finite training set of sentences 
is significantly smaller than these upper bounds. 

To better understand these concepts, consider the RM task (991 word vocabulary) 
with a training set of 3990 sentences. To use diphone and triphone context-dependent units, 
we first convert the lexicon to such units using the rule that the initial sound becomes a 
right context diphone, the middle sounds become left-right context diphones, and the final 
sound becomes a left context diphone. Hence the word "above" is converted to the set of 
units $-ax-b, ax-b-ah, b-ah-v, ah-v-$. (We must use diphone units at the beginnings 
and ends of words because we do not know the preceding or following words.) The above 
rule is modified to eliminate triphone middles for words with only two PLUs (e.g., in, or) 
and to revert to the context-independent PLU for words with only one PLU (e.g., a). Using 
the above method of creating the lexicon, one can count the number of left-right context­
dependent (LRC) units (1778), the number of left-context (LC) units (279), the number of 
right-context (RC) units (280), and the number of context-independent (Cl) units (3) for a 
total of 2340 PLUs in the training set. This number of units, although significantly smaller 
than the maximum possible number of context-dependent units, is deceiving because many 
of the units occur only a small number of times in the training set, and therefore it would 
be difficult to reliably estimate model parameters for such models. 
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TABLE 8.4. Number of intra-word CD units as a function of count threshold, r. 
Count 

Number of Number Number Number Total 
Threshold (D 

LRC of LC of RC of CI Number 
PLUs PLUs PLUs PLUs of PLUs 

50 378 158 171 47 754 
40 461 172 188 47 868 
30 639 199 205 47 1090 
20 952 212 • 234 46 1444 
10 1302 243 258 44 1847 
5 1608 265 270 32 2175 
1 1778 279 280 3 2340 

To combat the difficulties due to the small number of occurrences of some context­
dependent units, one can use one of three strategies. Perhaps the simplest approach is to 
eliminate all models that don't occur sufficiently often in the training set. More formally 
we define c( ·) as the occurrence count for a given unit. Then, given a threshold T on the 
required number of occurrences of a unit (for reliable model estimation), a reasonable Unit 
Reduction Rule is 

If c(pl - p - PR) < T, then 

1. PL - P - PR ➔ $ - P - PR 
2. PL - P - PR ➔ PL - P - $ 
3. PL - P - PR ➔ $ - P - $ 

if c($ - p - PR) : T 
if c(pL - p - $) > T 
otherwise. 

The tests above are made sequentially until one passes and the procedure terminates. To 
illustrate the sensitivity of the CD PLU set to the threshold T, Table 8.4 shows the counts of 
LRC PLUs, LC PLUs, RC PLUs, CI PLUs, and the total PLU count for the 3990 sentence 
training set. For a threshold of 50, which is generally adequate for estimating model 
parameters, there are only 378 LRC PLUs (almost a 5-to-1 reduction over the number with 
a count threshold of 1) and a total of 754 PLUs. We will see later that although such 
CD PLU sets do provide improvements in recognition performance over CI PLU sets, the 
amount of context dependency achieved is small and alternative techniques are required to 
create CD PLU sets. 

8.9.2 Using lnterword Training to Create CD Units 

Although the lexical entry for each word uses right or left context diphone units for the 
first and last sound of each word, both in training and in scoring, one can utilize the known 
(or postulated) sequence of words to replace these diphone units with the triphone unit 
appropriate to the words actually (or assumed) spoken. Hence the sentence "Show all 
ships" would be represented as 

$-sh-ow sh-ow-$ $-aw-£ aw-£-$ $-sh-i sh-i-p i-,1r-s ,1r-s-$ 

using only intraword units, whereas the sentence would be represented as 
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Figure 8.14 Plots of the number of intraword units. interword units, 
and combined units as a function of the count threshold. 

$-sh-ow sh-ow-aw ow-aw-f. aw-f.-sh t'-sh-i sh-i-p i-p-s p-s-$ 

using both intraword and interword units. From this simple example we see that, whereas 
there were only two triphones based on intraword units, there are six triphones based 
on intraword and interword units-that is, a threefold increase in context-dependent tri­
phone units. (We are assuming no silence between words; it is straightforward to han­
dle the cases when silence actually occurs between words.) To illustrate this effect, 
Figure 8.14 shows a plot of the number of intraword units, the number of interword units, 
and the combined count, as a function of the count threshold, for the 1990 sentence DARPA 
training set. More than 5000 interword triphone units occur one or more times versus less 
than 2000 intraword units for the same count threshold. 

Even when using interword units, the problems associated with estimating model 
parameters from a small number of occurrences of the units is the major issue. In the next 
sections we discuss various ways of smoothing and interpolating context dependent models, 
created from small numbers of occurrences in the training set, with context-independent 
models, created from large numbers of occurrences in the training set. 

8.9.3 Smoothing and Interpolation of CD PLU Models 

As shown above, we are faced with the following problem. For a training set of reasonable 
size, there is sufficient data to reliably train context-independent unit models. However, as 
the number of units becomes larger (by including more context dependencies) the amount 
of data available for each unit decreases and the model estimates become less reliable. 
Although there is no ideal solution to this problem (short of increasing the amount of 
training data ad infinitum), a reasonable compromise is to exploit the reliability of the 
estimates of the higher level (e.g., Cl) unit models to smooth or interpolate the estimates 
of the lower level (CD) unit models. There are many ways in which such smoothing or 
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as - P - s Bs - P - s 
Figure 8.1S Deleted interpolation model for smoothing discrete 
density models. 

interpolation can be achieved. 
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The simplest way to smooth the parameter estimates for the CD models is to inter­
polate the spectral parameters with all higher (less context dependency) models that are 
consistent with the model [ 12]. By this we mean that the model for the CD unit PL - p - PR 

(call this )...PL-P-PR) should be interpolated with the models for the units $-p-pR (As-p-pR), 

PL - p - $ ()..PL -p-s) and $ - p - $ (.Xs-p-s). Such an interpolation of model parameters 
is meaningful only for discrete densities, within states of the HMM, based on a common 
codebook. Thus if each model )... is of the form (A, B, 1r) where B is a discrete density over 
a common codebook, then we can formulate the interpolation as: 

BPL -P-PR = aPL -p-pRBPL -P-PR + aPL -p-sBPL -p-S 

+ as-p-pRBs-P-PR + as-p-sBs-p-s, (8.19) 

where BPL -P-PR is the interpolated density. We constrain the o:s to add up to 1; hence 

(8.20) 

The way in which the as are determined is according to the deleted interpolation algorithm 
discussed in Section 6.13. We review the ideas, as they apply to these speech unit models, 
here. Each of the discrete densities, BpL-P-PR• BPL-p-S, Bs-P-PR• and Bs-p-S, is estimated 
from the training data where a small percentage (e.g., 20%) is withheld (deleted). Using the 
withheld data, the as are estimated using a standard forward-backward approach based on 
the HMM shown in Figure 8.15. The interpretation of the o:s is essentially the probability 
weighted percentage of new data (unseen in training) that favors each of the distributions 
over the others. Hence, for well-trained detailed models we get o:PL -P-PR ➔ l, whereas for 
poorly trained models we get aPL -P-PR ➔ 0 (i.e., the LRC model is essentially obtained 
from interpolating higher-level, lower context dependency models that are better trained 
than the detailed CD model). 

Other smoothing methods include empirical estimates of the o:s based on occurrence 
counts, co-occurrence smoothing based on joint probabilities of pairs of codebook symbols 
[14], and use of fuzzy VQs in which an input spectral vector is coded into two or more 

Amazon / Zentian Limited 
Exhibit 1013 

Page 314



464 Chap. 8 Large Vocabulary Continuous Speech Recognition 

codebook symbols. 

8.9.4 Smoothing and Interpolation of Continuous Densities 

When one uses continuous density modeling of PLUs it is very difficult to devise a good 
smoothing or interpolation algorithm because the acoustic space of different units is inher­
ently different. There are two reasonable ways to handle this problem. One is to exploit 
the so called semicontinuous or tied mixture modeling approach discussed earlier in which 
each PLU uses a fixed set (a codebook) of mixture means and variances, and the only 
variables are the mixture gains for each model. In this case it is trivial to exploit the method 
of deleted interpolation on the mixture gains in a manner virtually identical to the one 
discussed in the previous section. 

An alternative modeling approach, and one more in line with independent continuous 
density modeling of different sounds, is to use a tied-mixture approach on the CI unit level; 
that is, we design a separate (large) codebook of densities for each CI PLU and then constrain 
each derived CD unit to use the same mixture means and variances but with independent 
mixture gains. Again we can use the method of deleted interpolation to smooth mixture 
gains in an optimal manner. 

8.9.5 Implementation Issues Using CD Units 

The FSN structure of Figure 8.9 is used to implement the continuous speech-recognition 
algorithm based on a given vocabulary and task syntax ([15-19]). The structure is straight­
forward to implement when using strictly intraword units because there is no effect of 
context at word boundaries. Hence the models (HMMs) for each word can be constructed 
independently and concatenated at the appropriate point of the processing. This is illus­
trated below for the recognition of the string "what {is, are}" based on intraword units, 
where the individual words are represented in the lexicon as 

what {$-w-aa, w-aa-t, aa-t-$} 
is { $-ih-z, ih-z-$} 

are {$-aa-r, aa-r-$} 

$ - w - aa w - aa - t aa - t - $ $ - ih - z 
o----o>-----<~ 

~-aa-r 

ih-z-$ 

aa:-r-$ 

(If we allow silence between words there is a trivial modification to include a silence node 
after the word /what/.) When we include interword units in the recognition stage the FSN 
becomes considerably more complicated because the first unit of each word ( which we 
call the head unit) is variable depending on the last unit of each possible preceding word; 
similarly, the last unit of each word (which we call the tail unit) is variable depending on 
the first unit of each possible following word. (We call the set of units between the head 
unit and the tail unit, the body units.) Thus, in theory, a word like "what" consists of (up 
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to) 47 head units and (up to) 47 tail units, and would be represented as 
P1 -w-aa 

• • • 

465 

In practice many, if not most, of the head as well as tail units don't exist; hence, the structure 
is generally considerably less complex. Thus the FSN network of the strings "what {is, 
are}" becomes 

p1 -w-aa 

aa-t- ih t- ih - z ih-z-p 1 

t- aa- r 

that is, a considerably more complex network results. (Interestingly, the inclusion of silence 
adds only a single extra path to each branch of the network.) The bookkeeping associated 
with such networks can easily get out of hand and dominate the overall computation. 
Fortunately, several network architectures have been devised for efficiently handling the 
bookkeeping associated with such networks [ 15]. Interesting special cases occur when the 
number of units within a word falls below three. When there are exactly two units in a 
word, there are no body units so the variable head units merge with the variable tail units. 
When there is only a single unit within a word, there are no body units nor is there a tail 
unit. Effectively, the bookkeeping must look at both the preceding word set of tail units 
and the following word set of head units to handle this case. The three cases described 
above-namely, implementations of words with three or more units, words with two units, 
and words with one unit-are illustrated in Figure 8.16. 

8.9.5.1 Word Junction Effects 

The assumption that is made when training interword units is that in continuous speech, 
words are pronounced similar to the way they are pronounced in isolation. In most cases 
this assumption is reasonable in that the coarticulation phenomena at word boundaries 
only lead to small (soft) changes in the word pronunciation and therefore can readily be 
modeled by interword units based on the concatenation of the tail unit from one word 
with the appropriate head unit from the following word. However, in some cases, the 
pronunciation changes are radical (hard) changes in which a boundary sound (tail or head) 
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Figure 8.16 FSN representation of words with three or more units (a), 
two units (b), and one unit (c). 

is completely deleted or replaced with a totally different sound. Examples of such hard 
changes include the strings "what time" and "did you," among others. In the string "what 
time," the double stop consonant (t followed by t) between words is replaced with a single 
occurrence oft; hence one of the ts is deleted. In the string "did you," the standard phonetic 
transcription would be /d ih d y uw/; however, in continuous speech the actual transcription 
would be /d ih j h uw/ (or even /d ih jh ax/) where the /d y/ boundary phones are changed 
to the single sound /jh/. 

Phonologically predictable changes of the type shown above (the so-called hard 
sound changes) cannot easily be learned from the training procedure because they occur 
infrequently and they lead to radically different sounds than would be predicted from the 
concatenation of boundary sounds of the relevant words as spoken in isolation. To handle 
these hard changes correctly, a set of phonological rules has to be superimposed on both the 
training and recognition networks (in a relatively straightforward (brute force) manner). 
There are about 11 such rules that handle most of the known phonological changes in 
English (16]. 

Some typical phonological rules include the following: 

Rule 1 Geminate deletion. If a word ends in a consonant and the following word 
begins with the same consonant, the ending consonant is deleted; e.g., the 
final /t/ is deleted in the pair "what time." 

Rule 2 Palatization. If a word ends in a /d/, and the following word begins with 
a /y/, then (optionally), the final sound can be converted to a /jh/, and the 
initial sound of the following word is deleted. Thus the words "did you" 
can be spoken as either /d ih d y uw/ or /d ih jh uw/. 

Rule 3 Plosive deletion. If a word ends in the nasal /n/ followed by a plosive sound, 
and the following word begins in a plosive sound, then the final plosive in 
the initial word is deleted. Thus the words "went down" can be spoken as 
/w eh n d aw n/. 
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The complete set of rules is available in Reference [15]. 

s.9.5.2 Variance Estimation Problems 

467 

Perhaps the most difficult problem, in training, when using continuous density HMMs, is 
the estimation of mixture variances when the amount of training data is small (as is almost 
always the case when using context-dependent units). The problem is that to maximize the 
likelihood on the training data, the estimation procedure often tries to make the variance 
very small (i.e., choosing data samples that are very close to each other in value). Although 
this leads to good training likelihood scores, it often provides poor matches to independent 
test data. Hence, some protection against variances getting too small in training is required. 

Several proposals have been made as to how to realistically control the variance of 
the estimates to prevent such effects from occurring. One simple one is to tie variances 
across units, states, and even words, ultimately leading to a grand variance for each spectral 
component that is independent of the unit, state, and word. This idea is reasonable and has 
been shown to work well in practice [20). An alternative is to set a floor on the variance 
of each spectral component that is based on a statistical analysis of the range of values of 
the variance component for different sounds, states, etc. Thus rather than using a grand 
variance, the concept of setting a variance clipping threshold at an appropriate point of the 
distribution (e.g., 2 sigma below the mean) preserves the (reasonable) range of variance 
estimates while at the same time preventing the variance from getting unreasonably small. 
(One could also argue that a high clipping threshold would prevent the variance from 
getting unreasonably large; in practice, the process of maximizing likelihood prevents this 
from happening. See Section 6.5 for a more complete discussion of these concepts.) 

8.9.6 Recognition Results Using CD Units 

A key issue in continuous speech recognition is the total number of subword units used 
in the system. We have already discussed several different types of subword units, in­
cluding context-independent units, intraword context-dependent units, interword context­
dependent units, and various combinations of these. In later sections of this chapter we 
will extend the unit classes to include position-dependent units, function word-dependent 
units, and even function phase-dependent units. 

On the one hand, it seems clear that as we add more units with greater context de­
pendency, the performance of the recognition should continue to improve. On the other 
hand, for a fixed training set, the amount of training data available for estimating model 
parameters of context-dependent units becomes smaller as the number of units increases. 
Hence the reliability of the estimates of model parameters decreases and therefore recogni­
tion performance falls. (To combat this second effort, various smoothing and interpolation 
procedures have been devised.) The overall result is that recognition performance is max­
imized for a finite size subword unit set whose size depends on the training data, the 
recognition vocabulary, the task syntax, and the method for creating the context-dependent 
units. In this section we present several results illustrating this trade-off between number 
of subword units and overall word accuracy of the recognizer. 
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TABLE 8.5. Word error rates as a function of occurrence threshold for the 
feb 89 test set using intraword units with a 38 component/vector 
analysis. 

Threshold 00 30'1 25° 20'1 15° 100 
Number of Units 47 1090 1215 1444 1694 1874 
WP Word Error (%) 14.0 6.7 7.0 7.1 7.4 7.6 
NG Word Error(%) 40.0 25.0 24.8 25.0 25.2 25.6 

0 Sixteen mixtures per state were used for these model sets. 

TABLE 8.6. Word error rates as a function of occurrence threshold for 
the feb 89 test set using both intraword and interword units 
(independently) with a 38 component/vector analysis. 

Threshold 00 300 25° 200 15° l 0'1 
Number of Units 47 1769 2125 2534 2985 3863 
WP Word Error(%) 9.1 4.6 4.7 4.6 4.7 5.3 
NG Word Error(%) 32.7 20.8 19.8 19.4 20.6 20.9 

0 Sixteen mixtures per state were used for these model sets. 

For evaluating speech-recognition performance, we use the feb 89 test set of 300 
sentences spoken by 10 adult male and female talkers (30 sentences per talker). Using, 
as a baseline system, the recognizer based on the 47 context-independent units with 256 
mixtures per state, the unit reduction rule was used at several thresholds to generate unit 
sets with up to 1874 intraword units (no interword units were used here), and the tests 
were done using cepstral plus differential cepstral ( delta and delta-delta) with differential 
energy (first and second order) parameters (38/vector) with both the word pair (WP) and 
no grammar (NG) syntaxes. The word recognition accuracies for these systems are given 
in Table 8.5. A significant improvement in performance is achieved when adding context­
dependent intraword units (e.g., from 14% to 9.2% error rate for the WP case); however, 
increasing the total number of units from 638 to 915 or 1759 or 2340 does not reduce word 
error rate but instead increases it slightly. This is the tradeoff referred to above. For the 
NG syntax a similar trend is observed, although the recognizer performance is relatively 
flat for a large range of units. 

The results when using both intraword and interword units (independently, see next 
section) are shown in Table 8.6. For this test, we again used the feb 89 test set; however, 
we used the full 38 component/vector analysis frame (including delta-delta cepstral values, 
delta energy, and delta-delta energy). The effects of the enhanced analysis frame are seen 
in the improved performance of the 47 PLU set where the error rate falls from 14% to 
9.1 % for the WP syntax, and from 40% to 32.7% for the NG syntax. Similarly the use 
of interword units (along with the enhanced analysis) reduced the error rate to 4.6% for 
the WP case (using 1769 units) and to 19.4% for the NG case (using 2534 units). Again 
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we clearly see the saturation in performance as the number of units increases due to the 
problems in reliably estimating parameters of the context-dependent models from a finite 
training set. 

To illustrate the effects of training set size on recognition performance even more 
dramatically, Figure 8.17 (due to K. F. Lee) shows a plot of word accuracy versus number 
of units (called generalized triphone models in Lee's notation) for different size training 
sets (measured in terms of the number of speakers in the set). For the smallest training 
set (30 speakers), the word accuracy peaks at around 300 units and then falls dramatically 
beyond this point. For the 55-speaker training set the word accuracy peaks at around 625 
units and then falls slightly. For the 80 and 105 speaker sets the performance peaks at 
about I 000 and 2000 units. These results dramatically illustrate the difficulties in creating 
subword unit sets with a large number of context-dependent units. 

8.9.7 Position Dependent Units 

When using both intraword and interword units, it is natural and reasonable to combine 
occurrences of the same unit independent of whether they occurred within the word or 
across words. It has been observed that phones within words are significantly more stable, 
acoustically, than phones occurring at word boundaries. Thus it seems plausible that the 
spectral behavior of the same intra word and interword unit could be considerably different. 
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To illustrate this point, two sets of context-dependent subword units were created using the 
same unit reduction rule [21]. In one set common occurrences of intra word and interword 
units were combined; in the other set they were modeled independently according to their 
positions within the words or across words (thus the name position dependent). Using 
a threshold of 30, there were 1282 combined units, including 1101 left-right context 
units, 99 left-context units, 35 right-context units, and 47 CI units, and 1769 separate 
position-dependent units including 913 intraword units and 856 interword units. 

To show that the spectral properties of these two sets were different, the histograms 
of unit separation distances for the two sets were computed as follows. For each unit, >.p, 
in each set, we computed the minimum distance (likelihood separation) as 

D(p) = min{L(Ypl>.p) - L(YplAq)} 
q::f::p 

where Yp represents the training data segments used to estimate >.p. D(p) represents the 
smallest likelihood score difference when using any other model than the one created 
from Yp, (In practice, the computation is performed only for models, >.q, which had the 
same base unit as >..p since all other models gave significantly larger difference scores.) 
The histograms of unit separation distance for the 1282 PLU set of combined intraword 
and interword units, and for the 1769 PLU set of position dependent units are shown in 
Figure 8.18. For the 1769 PLU set almost all of the unit separation distances are larger 
than 2.0 (difference in log likelihoods), including the cases where the same unit occurred 
in both intraword and interword contexts. The average unit separation distance for this set 
is about 9.0. For the 1282 PLU set the histogram is skewed to the left, showing many small 
unit separations, with an average distance on the order of 4-5. The results clearly show that 
the spectral properties of context-dependent units are often significantly different within 
words than when they occur at word boundaries. 

8.9.8 Unit Splitting and Clustering 

We have shown in previous sections that it is relatively simple to train models for a small 
set of context-independent units from a training set of a reasonable size. The problem 
is that the recognizer performance is not good enough for large vocabulary continuous 
speech-recognition tasks. We also discussed one simple way to train models for a large set 
of context-dependent units from the same training set. Here the problem is the inadequacy 
of training data, which leads to poor estimates of model parameters for all but a small 
subset of the units observed in a typical training set. The result of the poor model estimates 
is that recognition performance saturates for about 1000--2000 context-dependent units and 
either remains constant or decreases as the number of units trained increases. 

Thus a key issue in the design and implementation of large vocabulary continu­
ous speech recognizers is how to efficiently determine the number and character of the 
context-dependent units that give best recognition performance for a given training set. 
Unfortunately, there is no simple answer to this question. In this section we discuss 
several proposed methods based on the concepts of either starting from a small set of 
context-independent units and iteratively splitting the units, or of starting from a large set 
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of context-dependent units and merging similar units to reduce the number of units based 
on some type of clustering procedure. 

8.9.8.1 Splitting of Subword Units 

The basic idea of subword unit splitting is illustrated in Figure 8.19. We assume that 
for each subword unit p; (with model>.;), representing a context-independent unit, there is 
some inherent internal distribution of training tokens that naturally clusters into two or more 
clusters. (Within the figure we show three clusters, namely p), p;, and Pt.) The clusters 
represent classes of sounds that are all labeled as p;, but which have different spectral 
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Figure 8.19 Splitting of subword unit p; into three clus­
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Figure 8.20 Histograms of likelihood score for four context­
independent units (vowels) (after Lee et al. [71). 
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properties depending on the context in which they occur. Once the separation of p; into 
clusters is achieved, we have effectively created multiple models of the context-independent 
subword unit, as shown at the bottom of Figure 8.19. 

There are several ways to create the clusters for each unit, but a particularly simple 
(and meaningful) one is based on the following argument. If we examine the histogram 
of (log) likelihood scores for each training token which is labeled p; we get curves similar 
to those shown in Figure 8.20. The likelihood score histograms show that for a large 
percentage of the training tokens, good scores are obtained using the context-independent 
unit. These training tokens are (relatively) well represented by A; and do not need to be 
split off. Instead the low tail of the histogram (below the dashed lines) represents training 
tokens whose likelihood scores are relatively low and these tokens need an alternative 
representation (model) to be well represented. 

Based on the above discussion, a simple procedure for splitting off training tokens 
with low likelihood scores and creating a new model from these tokens is as follows: 

1. For each subword unit, p;, which is to be split (not every unit need be split), all 
training tokens whose likelihood scores fall below a threshold are split off and used 
to estimate an additional model for that unit. 

2. The segmental k-means training procedure is iterated on the split-off tokens until the 
new model reaches convergence. 

3. The above procedure (steps I and 2) is iterated until the desired number of models, 
for each subword unit, is obtained. 

The results (in terms of average likelihood score over the entire set of units) of applying 
the above splitting procedure to the 47 PLU set of context-independent units is shown in 
Figure 8.21. The results are shown, as a function of iteration number, for splitting each 
of the 47 models into 2, 3, and 4 models. The procedure converges rapidly and provides 
small but consistent increases in average likelihood scores. 

The above model splitting procedure leads to one major difficulty, namely, How 
do we modify the word pronunciation dictionary to account for the presence of multiple 
versions of each subword unit? The inherent problem is illustrated in Figure 8.22, which 
shows the networks for a complete set of word models assuming every version of each 
sound in the word can follow every version of every other sound in the word (part a), or that 
instead we determine one or two best representations of each word via some type of word 
learning procedure (part b). The problem with the network of part a is that a word with N 
sounds (e.g., "often" has three sounds, /ao, f, en/) has 2N representations when we use the 
complete network (e.g., eight versions of "often") with two models for each sound. This 
means not only more computation, but even worse, more chances to cause word insertion 
or substitution in the recognition phase because there are so many more ways in which the 
words can occur. The network of part b, in which we explicitly enumerate the version of 
each unit used for each word, is far more viable; however, the problem is how to estimate 
the best sequence of units for each word in the lexicon. To do this properly we need 
occurrences, within the training set, of each word in the vocabulary from which we use 
the network of part a and backtrack to get the best sequences of the type shown in part b. 
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For words that don't occur in the training set, some canonic representation must be relied 
on (e.g., use the primary model for each sound as a default). The necessity of having each 
word occur in the training makes this type of splitting method less viable than alternative 
procedures. 

8.9.8.2 Clustering of Context Dependent Units 

The alternative to model splitting (a top-down approach) is model clustering (a bottom-up 
approach) in which we initially start with the complete set of context-dependent units (as 
many as exist in the training set based on a count threshold of I) and then sequentially 
merge units (actually the training tokens associated with the units) so that the decrease 
in likelihood score is minimized at each step. (In practice, we merge only units whose 
contexts are comparable, e.g., unit p; - Pj - Pk could be merged with units p; - Pj - Pt, 
I! =/= k, or Pt - Pj - Pk, or $ - Pj - Pk, or p; - Pj - $, or$ - Pj - $.) This procedure is 
iterated either until a desired number of units is reached or until the resulting decrease in 
likelihoods gets too large. 

A key advantage to model clustering is that it is trivial to modify the word lexicon to 
account for the decrease in units from merging. The procedure is basically to change each 
occurrence ofbothp;-pj-Pk andpe-pj-Pn to the merged unit, call itp;-pj-Pk, whenever 
they occur in the lexicon. Thus model clustering is inherently simpler to implement than 
model splitting and therefore has been used more widely in practical systems. 

Many variations on model clustering have been proposed, including knowledge­
based allophonic clustering [22], in which specific knowledge of the vowel and consonant 
contexts is explicitly used to guide the clustering procedure, and CART-based phonetic 
clusters in which a decision tree is used to choose the most reasonable clustering sequence 
based on phonetic considerations. 

8.9.9 Other Factors for Creating Additional Subword Units 

In practice, the training methods for creating robust, complete sets of subword unit models 
for representing continuous speech are up against hard physical limits, including amount of 
training data and ability to reliably estimate model parameters from insufficient training. To 
obtain improvements in recognition perfonnance, subject to the above constraints, several 
ideas have emerged for creating specialized units and models. For completeness, we briefly 
outline several interesting proposals that have been advanced along these lines. 

A key source of difficulty in continuous speech recognition are the so-called function 
words, which include words like a, and, for, in, and is. These function words have the 
following properties: 

1. They are generally unstressed in speech. 
2. They are poorly articulated in continuous speech. 
3. They are highly variable in pronunciation depending on context. 
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4. They account for a large percentage of the word recognition errors in continuous 
speech (upward of 50-70% in·some tests). 

To combat these problems, one simple idea is to represent function words independently of 
the rest of the training set, using either whole-word models, multiple pronunciations in the 
lexicon (e.g., the, thee), or special subword units, called function word dependent units, 
trained directly from occurrences of the function words within the training set. Experience 
shows small but consistent improvements in recognition performance when function word 
dependent units are added to the standard set of subword units. 

The idea of representing function words can be extended to the representation of 
function phrases such as "in the," or "what is." Thus, specialized units can be created for 
these combinations in much the same way as for individual function words. Again there 
are small performance gains that are achieved when using function phrase units. 

Another interesting idea is to create separate sets of units for both male and female 
talkers. The idea is that the spectral properties of the units are distinct for males and 
females. The problem is that by separating male from female talkers, the amount of 
training data for each separate gender set is reduced. Hence the reliability of the estimates 
of both sets of models is reduced even further. Experience again shows small, consistent 
gains in recognition performance using gender-specific models; hence this method is worth 
considering for practical implementations. 

Finally it has been proposed that a combination of word models and subword unit 
models might give the best performance for specific tasks. The idea is that for words that 
do occur often in the training set (e.g., function words), creation of whole-word models 
provides the highest recognition performance. For all other words in the lexicon, some 
type of subword units is required. Hence a combination of word and subword units would 
probably lead to the best implementation for many applications. This idea has yet to be 
evaluated in a practical application. 

8.9.10 Acoustic Segment Units 

In this chapter we have shown that large vocabulary continuous speech recognition systems 
use a combination of ideas from phonetics and acoustics to define subword units and to 
create a "consistent" framework for training the units and implementing the overall recog­
nition structure. The resulting system is neither phonetically nor acoustically consistent, 
but is instead a hybrid of the two methodologies. This is why the resulting subword units 
are called phonelike units (PLUs) rather than phones or allophones. 

In an attempt to create a consistent acoustic framework (devoid, in theory, of the 
phonetic basis), it is possible to define a set of acoustic segment units (ASUs) that can 
be trained from continuous (unlabeled) speech, and which form a basis for representing 
any spoken input. In concept, all one need do is to have a procedure that automatically 
segments fluent speech into unlabeled sections [9, 23] (based on a maximum likelihood 
procedure using some type of spectral similarity measure), and then cluster the resulting 
segments to create a codebook of ASUs. 
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The problem now becomes one of creating an acoustic lexicon that represents words 
in the recognition vocabulary in terms of the appropriate sequence of AS Us. For systems in 
which every vocabulary word is seen in the training set, techniques for creating the acoustic 
lexicon exist and appear to work well [9, 24]. However, for large vocabulary systems the 
problem of automatically creating the acoustic lexicon remains a major obstacle to the 
practical use of ASUs. 

8.10 CREATION OF VOCABULARY-INDEP.ENDENT UNITS 

A major limitation in the training procedures discussed in this chapter is that the resulting 
subword unit models are not truly vocabulary independent. This is because the unit models 
are generally trained from tokens that occur in only a small subset of the possible contexts, 
and this subset is from the same words as used in the recognition tests. As such, the 
resulting units are word/vocabulary dependent and do not perform well for tasks in which 
different vocabularies and task syntaxes are used. 

To alleviate this problem of vocabulary dependence, the "ideal" training procedure 
would be to use a training set that is completely independent of the test material, both 
in vocabulary and in syntax. If a sufficiently large training set is available, the units 
models will eventually converge so that the resulting recognition performance is virtually 
independent of the vocabulary and task. 

To evaluate this idea, two experiments were run at CMU (25]. Using a vocabulary­
independent training set of 15,000 sentences, subword unit models were created from 
subsets of 5000 (VI-5000), 10,000 (VI-10000), and 15,000 (VI-15000) sentences and 
tested against two tasks, namely a 122-word office correspondence task, and the 911 
RM task. The_ results of these two experiments are given in Tables 8.7 and 8.8. For 
comparison, in Table 8.7, results based on training models from 1000 sentences from the 
office correspondence task (VD-1000) are also given. For 5 times the size training set the 
error rate from Vl-5000 models is more than twice that of the VD- I 000 models. Even 
with 15 times as much training data, the error rate is still somewhat larger for the VI-15000 
model than for the VD-1000 model. 

An even worse performance is seen for the RM task in which a Vl-15000 training set 
led to almost twice the error rate of the RM-4200 (sentence) training set. (A final test was 
run at CMU in which new test sentences were recorded at CMU under the same recording 
conditions as those of the VI-15000 set, and the resulting recognition perfonnance of 
both the VI-15000 set and the RM-4200 set were comparable. Thus, some of the large 
differences in performance result from differences in recording conditions.) 

The results of these tests show that robust techniques for creating truly vocabulary­
independent units are yet to be devised. Until such methods are available, truly continuous 
speech recognition for unlimited vocabularies and tasks will be out of range. The interim 
solution is to use VI models and bootstrap them to VD models for specific applications. 
Experimental evidence exists that such procedures are viable for many applications. 
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TABLE 8.7. Recognition performance on 122-word, office correspondence task 
with both VI and VD models (after Hon & Lee [251). 

Word Triphone Word 
Training Set 

Coverage(%) Coverage(%) Error Rate(%) 

VI-5000 44.3 63.7 23.9 

VI- I 0000 63.9 95.3 15.2 

Vl-15000 70.5 99.2 13.3 

VD-1000 100 I 00 11.4 

TABLE 8.8. Recognition performance on 991-word, RM task, with both VI and 
VD models (after Hon & Lee [251). 

Training Set 

VI-15000 
RM-4200 

Word 
Coverage(%) 

57.0 
100 

Triphone 
Coverage(%) 

90 
I 00 

Word 
Error Rate(%) 

15.4 
8.3 

8.11 SEMANTIC POSTPROCESSOR FOR RECOGNITION 

The final stage of processing in most speech recognizers is a semantic processor whose 
job is to eliminate from consideration all semantically meaningless sentences. In a sense, 
the semantic processor exploits the fact that the syntax used in recognition has a great 
deal of overcoverage; that is, it allows meaningless sentences to be passed to the semantic 
analyzer. The semantic processor can use the actual perplexity of the task (generally much 
lower than the perplexity of the syntax) to convert the recognized output to a semantically 
valid string. 

In theory, the semantic processor should be able to communicate back to the recog­
nizer to request a new string whenever the resulting string is deemed invalid. In practice, 
one of two simple strategies can be used; either the recognizer can generate a list of the 
best N sentences (N = 500 - 1000) that the semantic processor can search until a valid one 
is found, or it can assume that the best (recognized) string is semantically "close" to the 
correct string and therefore process it appropriately to determine a valid approximation. 

Rather than discussing the details of how such semantic processing is done in practice, 
Figure 8.23 shows plots of improvements in word and sentence accuracy for different sets 
of subword units due to the use of a simple semantic postprocessor for the RM task [26]. 
Improvements in word accuracy of up 10% and improvements in sentence accuracy of over 
20% are achieved, even with simple processing. 

8.12 SUMMARY 

The framework of large vocabulary, continuous speech recognition is well established. 
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Techniques for training subword models have been developed and work well in practice. 
Recognition systems have been developed and these, too, work well in practice. Recog­
nition systems have been implemented with upward of 1000-20,000 word vocabularies 
using upward of I ~2000 subword units. Many unanswered questions remain. A key 
one is how to efficiently choose and design context-dependent, vocabulary-independent 
units from training sets of reasonable (but finite) size. Other issues concern effectiveness 
of different spectral representations, including codebooks and tied-mixture densities, effi­
ciency of implementation of search strategies, and efficient implementations of task syntax. 
Finally, the issues involved with task semantics are yet to be fully understood or resolved. 
Large vocabulary recognition has come a long way, but a great deal remains to be done 
before such systems will be used for practical applications. 
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