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called a hidden Markov model) is a doubly embedded stochastic process with an und 1 . . . I (. • h. dd ) b er Ytng 
stochastic process that is not directly observab e It is 1 en ut can be observed on] 
through another set of stochastic processes that_produce the sequence of observations. Y 

To illustrate the basic concepts of the hidden Markov model, we will use se 
. . . . u, b . . veraI 

simple examples including simple co1n-toss1ng expenments. ne eg1n with a revie . . w~ 
some basic ideas of probability in the following exercise. 

Exercise 6.1 
Given a single fair coin, i.e., P(Heads) = P(Tails) = 0.5, which you toss once and observe 

Tails, 
1. What is the probability that the next 10 tosses will provide the sequence 

(HHTHITHITH)? 
2. What is the probability that the next IO tosses will produce the sequence 

(HHHHHHHHHH)? 
3. What is the probability that 5 of the next 10 tosses will be tails? What is the expected 

number of tails over the next IO tosses? 

Solution 6.1 
1. For a fair coin, with independent coin tosses, the probability of any specific observation 

sequence of length 10 (10 tosses) is (1/2) 10 since there are i1° such sequences and all 
are equally probable. Thus: 

P(H HTHTTHTTH) = GY°. 
2. 

P(HHHHHHHHHH)= GY° 
Thus a specified run of length 10 is as likely as a specified run of interlaced H and T. 

3. The probability of 5 tails in the next 10 tosses is just the number of observation sequences 
with 5 tails and 5 heads (in any order) and this is 

P(5H, 5T) = ( 150) (!) JO = 252 rv O 25 
2 1024 • 

since there are ( 
1
5° ) ways of getting SH and 5T in IO tosses, and each sequence has 

probability of ( ! ) 10
• The expected n~mber of tails in IO tosses is 

lO 10 

E(T in 10 tosses) = L d ( ~) G) = s. 
d=O 

Thus, on average, there will be 5H and 5T in IO tosses but the probability of exactly 
5H and 5T is only 0.25. ' 

6.3.1 <::oin-Toss Models 

Assume the foil owing • v • • h scenano. iou are 1n a room with a barrier (e.g., a curtain) throug 

I 
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sec. 6.3 Extensions to Hidden Markov Models 327 

which you cannot see what is happening. On the other side of the barrier is another person 
who is performing a coin-tossing experiment (using one or more coins). The person wilJ not 
tell you which coin he selects at any time; he will only tell you the result of each coin flip. 
Thus a sequence of hidden coin-tossing experiments is performed, with the observation 
sequence consisting of a series of heads and tails. A typical observation sequence would 

be 

0 = ( 0 I 02 03 .. , Or) 

= (HHTTTHTTH ... H) 

where H stands for heads and T stands for tails. 
Given the above scenario, the question is, How do we build an HMM to explain 

(model) the observed sequence of heads and tails? The first problem we face is deciding 
what the states in the model correspond to, and then deciding how many states should be 
in the model. One possible choice would be to assume that only a single biased coin was 
being tossed. In this case, we could model the situation with a two-state model in which 
each state corresponds to the outcome of the previous toss (i.e., heads or tails). This model 
is depicted in Figure 6.3a. In this case, the Markov model is observable, and the only issue 
for complete specification of the model would be to decide on the best value for the single 
parameter of the model (i.e., the probability of, say, heads). Interestingly, an equivalent 
HMM to that of Figure 6.3a would be a degenerate one-state model in which the state 
corresponds to the single biased coin, and the unknown parameter is the bias of the coin. 

A second HMM for explaining the observed sequence of coin toss outcomes is given 
in Figure 6.3b. In this case there are two states in the model, and each state corresponds to a 
different, biased coin being tossed. Each state is characterized by a probability distribution 
of heads and tails, and transitions between states are characterized by a state-transition 
matrix. The physical mechanism that accounts for how state transitions are selected could 
itself be a set of independent coin tosses or some other probabilistic event. 

A third form of HMM for explaining the observed sequence of coin toss outcomes 
is given in Figure 6.3c. This model corresponds to using three biased coins, and choosing 
from among the three, based on some probabilistic event. 

Given the choice among the three models shown in Figure 6.3 for explaining the 
observed sequence of heads and tails, a natural question would be which model best matches 
the actual observations. It should be clear that the simple one-coin model of Figure 6.3a 
has only one unknown parameter; the two-coin model of Figure 6.3b has four unknown 
parameters; and the three-coin model of Figure 6.3c has nine unknown parameters. Thus, 
with the greater degrees of freedom, the larger HMMs would seem to be inherently more 
capable of modeling a series of coin-tossing experiments than would equivalently smaller 
models. Although this is theoretically true, we will see later in this chapter that practical 
considerations impose some strong limitations on the size of models that we can consider. 
A fundamental question here is whether the observed head-tail sequence is long and rich 
enough to be able to specify a complex model. Also, it might just be the case that only 
a single coin is being tossed. Then using the three-coin model of Figure 6.3c would be 
inappropriate because we would be using an underspecified system. 
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(a) PlH) 1-P(Hl 1-COIN MODEL 
(OBSERVABLE MARKOV MODEL) 

O=HHTTHTHHTTH .. . 
S=l 1221211221 .. . 

HEADS TAILS 

(b) 2-COINS MODEL 
(HIDDEN MARKOV MODEL) 

O = HHTTHTHHTTH .. . 
S=21122212212 .. . 

P(H) = Pi 

P(T) = l-P1 P(n = l-P2 

(c) 3-COINS MODEL 
(HIDDEN MARKOV MODEL) 

O=HHTTHTHHTTH .. . 
S=31233112313 .. . 

G33 

STATE 

_l_ __i_ _L_ 
P(H) P1 P2 P3 

P(T) 1-P, l-P2 l-P3 

Figure 6.3 Three possible Markov models that can account for the results of hidden coin-tossing 
experiments. (a) one-coin model, (b) two-coins model, (c) three-coins model. 

6.3.2 The Urn-and-Ball Model 

To extend the ideas of the HMM to a somewhat more complicated situation, consider the 
um-and-ball system of Figure 6.4. We assume that there are N (large) glass urns in a room. 
Within each um is a large quantity of colored balls. We assume there are M distinct colors 
of the balls. The physical process for obtaining observations is as follows. A genie is in 
the room, and, according to some random procedure, it chooses an initial um. From this 
um, a ball is chosen at random, and its color is recorded as the observation. The ball is 
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• • • 

URN 1 URN 2 URN N 

P(RED) • b1< 1) P(REO) • bz( 1) P(RED) • bN( 1) 
P( BLUE) • b1(2) P(BLUE) • b2(2) P(BLUE) • bN(2) 
P(GREEN) • b1(3) P(GREEN) • b2(3) P(GREEN) • bN(3) 
P(YELLOW) • b1(4) P(YELLOW) • bz( 4) P(YELLOW) 1: bN(4) 

• • • • 
• • 

P(ORANGE) • b1 (M) P(ORANGE) • b2(M) P(ORANGE) • bN(M) 

0• {GREEN, GREEN, BLUE, RED, YELLOW, RED, ....... , BLUE} 

Figure 6.4 An N-state um-and-ball model illustrating the general case of a discrete 
symbol HMM. 

329 

then replaced in the urn from which it was selected. A new um is then selected according 
to the random selection procedure associated with the current um, and the ball selection 
process is repeated. This entire process generates a finite observation sequence of colors, 
which we would like to model as the observable output of an HMM. 

It should be obvious that the simplest HMM that corresponds to the um-and-ball 
process is one in which each state corresponds to a specific um, and for which a (ball) color 
probability is defined for each state. The choice of urns is dictated by the state-transition 
matrix of the HMM. 

It should be noted that the ball colors in each um may be the same, and the distinction 
among various urns is in the way the collection of colored balls is composed. Therefore, 
an isolated observation of a particular color ball does not immediately tell which um it is 
drawn from. 

6.3.3 Elements of an HMM 

The above examples give us some idea of what an HMM is and how it can be applied to 
some simple scenarios. We now formally define the elements of an HMM. 

An HMM for discrete symbol observations such as the above um-and-ball model is 
characterized by the foil owing: 

1. N, the number of states in the model. Although the states are hidden, for many 
practical applications there is often some physical significance attached to the states 
or to sets of states of the model. Thus, in the coin-tossing experiments, each state 
corresponded to a distinct biased coin. In the um-and-ball model, the states cor­
responded to the urns. Generally the states are interconnected in such a way that 
any state can be reached from any other state (i.e., an ergodic model); however, we 
will see later in this chapter that other possible interconnections of states are often 
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330 Chap. 6 Theory and Implementation of Hidden Markov Models 

of interest and may better suit speech applications. We label the individual states as 
{ 1, 2, ... , N}, and denote the state at time t as q,. 

2. M, the number of distinct observation symbols per state-i.e., the discrete alphabet 
size. The observation symbols correspond to the physical output of the system being 
modeled. For the coin-toss experiments the observation symbols were simply heads 
or tails; for the ball-and-um model they were the colors of the balls selected from the 
urns. We denote the individual symbols as V = { v 1 , v2, ... , v M}. 

3. The state-transition probability distribution A = { aiJ} where 

aiJ = P[qr+l = jlq, = i], 1 < i,j < N. (6.7) 

For the special case in which any state can reach any other state in a single step, we 
have aij > 0 for all i,j. For other types of HMMs, we would have aij = 0 for one or 
more (i ,j) pairs. 

4. The observation symbol probability distribution, B = { bj(k)}, in which 

bj(k) = P[o, = vklq1 = }], 1 < k < M, (6.8) 

defines the symbol distribution in state},}= 1, 2, ... , N. 

5. The initial state distribution 1r = { 1r;} in which 

1r; = P[q1 = i], I < i < N. (6.9) 

It can be seen from the above discussion that a complete specification of an HMM 
requires specification of two model parameters, N and M, specification of observation 
symbols, and the specification of the three sets of probability measures A, B, and 1r. For 
convenience, we use the compact notation 

;\ = (A,B, 1r) (6.10) 

to indicate the complete parameter set of the model. This parameter set, of course, defines 
a probability measure for 0, i.e. P(OI;\), which we discuss in the next section. We use the 
tenninology HMM to indicate the parameter set .X and the associated probability measure 
interchangeably without ambiguity. 

6.3.4 HMM Generator of Observations 

Given appropriate values of N,M,A,B, and 1r, the HMM can be used as a generator to give 
an observation sequence 

(6.11) 

(in which each observation Or is one of the symbols from V, and T is the number of 
observations in the sequence) as follows: 

1. Choose an initial state qi = i according to the initial state distribution 1r. 

2. Sett= 1. 

3. Choose Or = vk according to the symbol probability distribution in state i, i.e., bj(k). 
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4. Transit to a new state q,+ 1 = j according to the state-transition probability distribution 
for state i, i.e., aij. 

s. Set t == t + 1; return to step 3 if t < T; otherwise, terminate the procedure. 

The following table shows the sequence of states and observations generated by the above 

procedure: 

time, t 

state 
observation 

2 3 4 5 6 T 

The above procedure can be used as both a generator of observations and as a model to 
simulate how a given observation sequence was generated by an appropriate HMM. 

Exercise 6.2 
Consider an HMM representation (parametrized by >.) of a coin-tossing experiment. Assume 
a three-state model (corresponding to three different coins) with probabilities 

P(H) 

P(T) 

State I 

0.5 
0.5 

State 2 

0.75 
0.25 

State 3 

0.25 
0.75 

and with all state-transition probabilities equal to I /3. (Assume initial state probabilities of 
1/3.) 

1. You observe the sequence 

0 = (HHHHTHTTTT). 

What state sequence is most likely? What is the probability of the observation sequence 
and this most likely state sequence? 

2. What is the probability that the observation sequence came entirely from state I? 

3. Consider the observation sequence 

6 = (HTTHTHHTTH). 

How would your answers to parts a and b change? 

4. If the state-transition probabilities were 

a11 = 0.9 
a,2 = 0.05 
a13 = 0.05 

, a21 = 0.45 
, a22=0.l 
, a23 = 0.45 

, a31 = 0.45 
, a32 = 0.45 
' 033 = 0.1 

that is, a new model ')..', how would your answers to parts 1-3 change? What does this 
suggest about the type of sequences generated by the models? 

Solution 6.2 
1. Given O = (HHHHTH777T) and that all state transitions are equiprobable, the most 

likely state sequence is the one for which the probability of each individual observation 
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is maximum. Thus for each H, the most likely_ state is 2 and for each T the most likely 
state is 3. Thus the most likely state sequence 1s 

q = (2 2 2 2 3 2 3 3 3 3). 

The probability of O and q (given the model) is 

( 1) 10 
P(O, qj-\) = (0.75)

10 

3 

2. The probability of O given that q is 

q = (1111 11 1 1 1 1) 

is 

P(O,qj-\) = (0.50) 10 (j) 10 

The ratio of P(O, qj>.) to P(O, qj-\) is: 

R = P(O, qj-\) = (~) 
10 

= 57.67 
P(O, qj-\) 2 

which shows, as expected, that q is more likely than q. 
3. Given O which has the same number of Hs and Ts, the answers to parts 1 and 2 would 

remain the same, as the most likely states occur the same number of times in both cases. 

4. The new probability of O and q becomes 

P(O, qj-\') = (0.75) 10 
( j) (0.1)6(0.45)3. 

The new probability of O and q becomes 

P(O, qj-\') = (0.50) 10 
( 1) (0.9)9. 

The ratio is 

R = (~) ro (if (1) 3 = 1.36 X 10-s. 

In other words, because of the nonuniform transition probabilities, q is more likely than q. (The 
rea~er is encouraged to find the most likely state sequence in this case.) Now, the probability 
of O and q is not the same as the probability of O and q. We have 

- 1 
P(O, qj-\') = 3 (0.1 )6 (0.45)3 (0.25)4 (0.75)6 

P(O, qj-\') = (0.50) 10 ( j") (0.9)9 

with ratio 

R = (if (lf (1)
4 

(~)
6 
= 1.67 X 10-

1
. 

Clearly, because a1, = 0.9, q is more likely. 
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THE THREE BASIC: PROBLEMS FOR HMMS 

Given the fonn of HMM of the previous section, three basic problems of interest must 
be solved for the model to be useful in real-world applications. These problems are the 
following: 

Problem 1 

Given the observation sequence O = (o, o ... or), and a mode1 A = (A,B, 1r), how do we 
efficiently compute P(OI .X). the probability of the observation sequence, given the model? 

Problem 2 

Given the observation sequence O = (o, o ... Or), and the model A, how do we choose 
a corresponding state sequence q = (q,q2 ... qr) that is optimal in some sense (i.e., best 
"explains" the observations)? 

Problem 3 

How do we adjust the model parameters A = (A, B, 11') to maximize P(Oj.X)? 

Problem I is the evaluation problem; namely, given a model and a sequence of 
observations, how do we compute the probability that the observed sequence was produced 
by the model? We can also view the problem as one of scoring how well a given model 
matches a given observation sequence. The latter viewpoint is extremely useful. For 
example, if we consider the case in which we are trying to choose among several competing 
models, the solution to Problem 1 allows us to choose the model that best matches the 
observations. 

Problem 2 is the one in which we attempt to uncover the hidden part o·~ the model­
that is, to find the "correct" state sequence. It should be clear that for all but the case of 
degenerate models, there is no "correct" state sequence to be found. Hence for practical 
situations, we usually use an optimality criterion to solve this problem as best as possible. 
As we will see, several reasonable optimal cy criteria can be imposed, and hence the choice 
of criterion is a strong function of the intended use for the uncovered state sequence. Typical 
uses might be to learn about the structure of the model, to find optimal state sequences for 
continuous speech recognition, or to get average statistics of individual states, etc. 

Problem 3 is the one in which we attempt to optimize the model parameters to best 
describe how a given observation sequence comes about. The observation sequence used 
to adjust the model parameters is called a training sequence because it is used to "train" the 
HMM. The training problem is the crucial one for most applications of HMMs, because 
it allows us to optimally adapt model parameters to observed training data-i.e., to create 
best models for real phenomena. 

To fix ideas, consider the following simple isolated-word speech recognizer. For each 
word of a W word vocabulary, we want to design a separateN-state HMM. We represent the 
speech signal of a given word as a time sequence of coded spectral vectors. We assume that 
the coding is done using a spectral codebook with M unique spectral vectors; hence each 
observation is the index of the spectral vector closest (in some spectral distortion sense) to 
the original speech signal. Thus, for each vocabulary word, we have a training sequence 

Amazon / Zentian Limited 
Exhibit 1013 

Page 184



334 Chap. 6 Theory and Implementation of Hidden Markov Models 

consisting of a number of repetitions of sequences of codebook indices of the word (by 
one or more talkers). The first task is to build individual word models. This task is done 
by using the solution to Problem 3 to optimally estimate model parameters for each word 
model. To develop an understanding of the physical meaning of the model states, we use 
the solution to Problem 2 to segment each of the word training sequences into states, and 
then study the properties of the spectral vectors that lead to the observations occurring in 
each state. The goal here is to make refinements of the model (e.g., more states, different 
codebook size) to improve its capability of modeling the spoken word sequences. Finally, 
once the set of W HMMs has been designed and optimized, recognition of an unknown 
word is performed using the solution to Problem I to score each word model based upon 
the given test observation sequence, and select the word whose model score is highest (i.e., 
the highest likelihood). 

In the next sections we present formal mathematical solutions to each fundamental 
problem for HMMs. We shall see that the three problems are tightly linked together under 
the probabilistic framework. 

6.4.1 Solution to Problem 1-Probability Evaluation 

We wish to calculate the probability of the observation sequence, 0 = ( o I o ... or), given 
the model >., i.e., P(Oj>.). The most straightforward way of doing this is through enumer­
ating every possible state sequence of length T (the number of observations). There are N7 

such state sequences. Consider one such fixed-state sequence 

(6.12) 

where q1 is the initial state. The probability of the observation sequence O given the state 
sequence of Eq. (6.12) is 

T 

P(Ojq, >.) = IT P(o,lq,, >.) (6.13a) 
t=I 

where we have assumed statistical independence of observations. Thus we get 

P(Olq, >.) = bq, (01) • bq 2(02) ... bqr(or). (6.13b) 

The probability of such a state sequence q can be written as 

P(qi>.) = 1rq,aq,q2aq2q3 • • • aqr-1Qr· (6.14) 

The joint probability of O and q, i.e., the probability that O and q occur simultaneously, is 
simply the product of the above two terms, i.e., 

P(O, qi>.) = P(Olq, >.)P(qi>.). (6. 15) 

The probability of O (given the model) is obtained by summing this joint probability over 
all possible state sequences q, giving 

P(OI>.) = L P(Olq, >.)P(qi>.) (6.16) 
all q 
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QI, Q2, ..• , QT 

335 

(6.17) 

The interpretation of the computation in the above equation is the following. Initially (at 
time t == 1) we are in state Q1 with probability 7rq 1 , and generate the symbol o1 (in this state) 
with probability bq1 (01). The clock changes from time t tot+ I (time= 2) and we make 
a transition to state Q2 from state Qi with probability aq 1q2 , and generate symbol 0i with 
probability bq2 (02). This process continues in this manner until we make the last transition 
(at time n from state QT-I to state QT with probability aqr-,qr and generate symbol Or with 
probability bq/0T ). 

A little thought should convince the reader that the calculation of P(Oj.X), according 
to its direct definition (Eq. (6.17)) involves on the order of 2T • NT calculations, since 
at every t = 1, 2, ... , T, there are N possible states that can be reached (i.e., there are 
NT possible state sequences), and for each such state sequence about 2T calculations are 
required for each term in the sum of Eq. ( 6.17). (To be precise, we need (2T - 1 )NT 
multiplications, and NT - I additions.) This calculation is computationally infeasible, even 
for small values of N and T; e.g., for N = 5 (states), T = 100 (observations), there are 
on the order of 2 • 100 • 5 100 ::::::: 1072 computations! Clearly a more efficient procedure is 
required to solve problem I. Fortunately such a procedure (called the forward procedure) 
exists. 

6.4.1.1 The Forward Procedure 

Consider the forward variable a,(i) defined as 

a,(i) = P(o102 ... o,, q, = ij.X) (6.18) 

that is, the probability of the partial observation sequence, 01 Oi ... o,, (until time t) and 
state i at time t, given the model >.. We can solve for a,(i) inductively, as follows: 

1. Initialization 
a1 (i) = 1r;b;(o1), 

2. Induction 
N 

at+i (j) = [~ a,(i)au] bj(0 1+i), 
t=I 

3. Termination 
N 

P(OI.X) = L aT(i). 
i=I 

1::;1::;r-1 
1 :s;j:s;N 

(6.19) 

(6.20) 

(6.21) 

Step 1 initializes the forward probabilities as the joint probability of state i and initial 
observation o1. The induction step, which is the heart of the forward calculation, is 
illustrated in Figure 6.5(a). This figure shows how state j can be reached at time t + 1 
from the N possible states, i, 1 < i < N, at time t. Since a,(i) is the probability of the 
joint event that o1 o2 ... o, are observed, and the state at time tis i, the product a,(i)aij is 
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(O) 

N 

U.I 

➔ 
._ 

(bl C ._ 
u, 

2 ➔ 
~ 

2 3 T 

OBSERVATION, t 

Figure 6.5 (a) Illustration of the sequence of operations required for 
the computation of the forward variable o 1+ 1 (j). (b) Implementation 
of the computation of a:1(i) in terms of a lattice of observations t, and 
states i. 

then the probability of the joint event that o1 o2 ... 0 1 are observed, and state j is reached 
at time t + 1 via state i at time t. Summing this product over all the N possible states, i, 
1 ~ i ~ Nat time t results in the probability of j at time t + I with all the accompanying 
previous partial observations. Once this is done and j is known, it is easy to see that a,+ 1 (j) 
is obtained by accounting for observation o,+1 in state j, i.e., by multiplying the summed 
quantity by the probability bj(o,+ 1). The computation of Eq. (6.20) is performed for all 
states j, I ~ j ~ N, for a given t; the computation is then iterated for t = 1, 2 ... , T - 1. 
Finally, step 3 gives the desired calculation of P(OI..\) as the sum of the terminal forward 
variables o.T(i). This is the case since, by definition, 

(6.22) 

and hence P(Oj..\) is just the sum of the aT(i)'s. 

If we examine the computation involved in the calculation of o.,(j), I < t ~ T, 
I ~ j ~ N, we see that it requires on the order of N 2T calculations, rather than 2TNr as 
required by the direct calculation. (Again, to be precise, we need N(N + I )(T - I) + N 
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rnultiplications and N(N - 1 )(T - 1) additions.) For N = 5, T = l 00, we need about 3000 
cornputations for the forward method, versus 1072 computations for the direct calculation, 
a savings of about 69 orders of magnitude. 

The forward probability calculation is, in effect, based upon the lattice (or trellis) 
stn1cture shown in Figure 6.5(b). The key is that, because there are only N states (nodes 
at each time slot in the lattice), all the possible state sequences will remerge into these N 
nodes, no matter how long the observation sequence. At time t = I (the first time slot in 
the lattice), we need to calculate values of a 1 (i), l ~ i ~ N. At times t = 2, 3, ... , T, we 
need only calculate values of a,(j), I < j < N, where each calculation involves only the N 
previous values of a,_ 1 (i) because each of the N grid points can be reached from only the 
N grid points at the previous time slot. 

6.4.1.2 The Backward Procedure 

In a similar manner, we can consider a backward variable /3,(i) defined as 

/J,(i) = P(o,+10,+2 .. . orlq, = i,A) (6.23) 

that is, the probability of the partial observation sequence from t + l to the end, given state 
i at time t and the model .A. Again we can solve for /3,(i) inductively, as follows: 

1. Initialization 

2. Induction 

/3-r(i) = 1, 1 ~ i ~ N. 

N 

/3,(i) = L aijbj(Or+1)/3,+1U), 
j=l 

t = T- 1, T- 2, ... , 1, 1 ~ i ~ N. 

(6.24) 

(6.25) 

The initialization step 1 arbitrarily defines /3r(i) to be 1 for all i. Step 2, which is illustrated 
in Figure 6.6, shows that in order to have been in state i at time t, and to account for the 
observation sequence from time t + 1 on, you have to consider all possible states j at time 
t + 1, accounting for the transition from i to j (the aij term), as well as the observation 
Or+ 1 in state j (the bj( Or+ 1) term), and then account for the remaining partial observation 
sequence from state j (the /3,+1 (j) term). We will see later how the backward as well as the 
forward calculations are used to help solve fundamental Problems 2 and 3 of HMMs. 

Again, the computation of /3,(i), 1 < t ~ T, 1 ~ i ~ N, requires on the order of N2T 
calculations, and can be computed in a lattice structure similar to that of Figure 6.5(b ). 

6.4.2 Solution to Problem 2-"0ptimal" State Sequence 

Unlike Problem 1, for which an exact solution can be given, there are several possible 
ways of solving Problem 2-namely, finding the "optimal" state sequence associated with 
the given observation sequence. The difficulty lies with the definition of the optimal state 
sequence-that is, there are several possible optimality criteria. For example, one possible 
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Si 

t + 1 

Figure 6.6 Sequence of operations required for the computa­
tion of the backward variable {3,(i). 

optimality criterion is to choose the states q1 that are individually most likely at each time t. 
This optimality criterion maximizes the expected number of correct individual states. To 
implement this solution to Problem 2, we can define the a posteriori probability variable 

,r(i) = P(q, = ilO, A) (6.26) 

that is, the probability of being in state i at time t, given the observation sequence 0, and 
the model A. We can express 11(i) in several forms, including 

"'(,(i) = P(q, = i I 0, A) 

P(O, q, = i I A) 
P(O I A) 

P(O, q, = i I A) 
N 

L P(O, q, = i I A) 
i=l 

Since P(O, q, = i I ,\) is equal to o:r(i)/3,(i), we can write ,,(i) as 

o,(i)/3,(i) ,,(,) = _N ___ _ 

L o,<i)/3,<i) 
i=l 

(6.27) 

(6.28) 

where we see that o,(i) accounts for the partial observation sequence o1 o2 . .. o, and state 
i at t, while /3i(i) accounts for the remainder of the observation sequence o,+10,+2 ... or, 
given state q, = i at t. 
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Using ,y,(i), we can solve for the individually most likely state q; at time t, as 

q~ = arg min ['y,(i)], 
lsJ-5,N 

I ~ t ~ T. (6.29) 

Although Eq. (6.29) maximizes the expected number of correct states (by choosing the most 
likely state for each t), there could be some problems with the resulting state sequence. 
for example, when the HMM has state transitions which have zero probability (aij = O for 
some i andj), the "optimal" state sequence may, in fact, not even be a valid state sequence. 
This is because the solution of Eq. (6.29) simply determines the most likely state at every 
instant, without regard to the probability of occurrence of sequences of states. 

One possible solution to the above problem is to modify the optimality criterion. 
For example, one could solve for the state sequence that maximizes the expected number 
of correct pairs of states (q,, q,+ i), or triples of states (q,, qt+ 1, q,+2), etc. Although these 
criteria might be reasonable for some applications, the most widely used criterion is to find 
the single best state sequence (path)-that is, to maximize P(qjO, A), which is equivalent to 
maximizing P( q, 0 I A). A formal technique for finding this single best state sequence exists, 
based on dynamic programming methods, and is called the Viterbi algorithm [15, 16]. 

6.4.2.1 The Viterbi Algorithm 

To find the single best state sequence, q = (q1 q2 ... qr), for the given observation sequence 
0 = (o1 02 ... or), we need to define the quantity 

8,(i) = max P[q1q2 ... q,-1, q, = i, 0102 ... o,jA] (6.30) 
Qt ,q2,····q,_, 

that is, 81(i) is the best score (highest probability) along a single path, at time t, which 
accounts for the first t observations and ends in state i. By induction we have 

(6.31) 

To actually retrieve the state sequence, we need to keep track of the argument that maximized 
Eq. (6.31), for each t and j. We do this via the array 'lj;,(j). The complete procedure for 
finding the best state sequence can now be stated as follows: 

1. Initialization 

2. Recursion 

81 (i) = 1r;b;(oi), 

'Ip) (i) = 0. 

8,(j) = max [8,-1(i)aij]bj(o,), 
lsJ$.N 

'l/J,(j) = arg max [8,_1(i)aij], 
I $_;$.N 

2 ~ t ~ T 
I ~j ~N 

2 ~ t ~ T 
1 ~j ~ N. 

(6.32a) 

(6.32b) 

(6.33a) 

(6.33b) 

' 
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3. Tennination 

p• = max [6r(i)] 
l<i<N 

Qr = arg max [ 8r(i)]. 
J<i<N 

4. Path ( state sequence) backtracking 

q; = 1P1+1(q7+1), t = T - 1, T - 2, ... , 1. 

(6.34a) 

(6.34b) 

(6.35) 

It should be noted that the Viterbi algorithm is similar (except for the backtracking step) in 
implementation to the forward calculation of Eqs. (6.19)-(6.21). The major difference is 
the maximization in Eq. (6.33a) over previous states, which is used in place of the summing 
procedure in Eq. (6.20). It also should be clear that a lattice (or trellis) structure efficiently ~J 

implements the computation of the Viterbi procedure. .,, 
~~ 

6.4.2.2 Alternative Viterbi Implementation f 

By ta1cing logarithms of the model parameters, the Viterbi algorithm of the preceding 
section can be implemented without the need for any multiplications. Thus: 

0. Preprocessing 

ii-; = log (1r;), 1 < i < N 
b;(o,) = log [b;(o,)], 1 < i < N, 1 < t < T 
aij = log (aiJ), 1 < i, j < N 

1. Initiali1.ation 
- -
81 (i) = log (81 (i)) = i; + b;(o1), 1 < i < N 
VJI (i) = 0, 1 < i < N 

2. Recursion 

6,(1) = log (8,(1)) = max [i,-1(i) + aiJ] + hj(o,) 
l<i<N 

1/J,(j) = arg max [8,-1(i) + aiJ], 2 < t < T, 1 <j < N 
l<i<N 

3. Termination 

4. Backtracking 

P* = max [6r(i)] 
l<i<N 

qi = arg max [67(i)] 
I<i<N 

t = T - 1, T - 2, ... , 1 

The calculation required for this alternative implementation is on the order of N2T additions 
(plus the calculation for preprocessing). Because the preprocessing needs to be performed 
once and saved, its cost is negligible for most systems. 
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Exercise 6.3 
Given the model of the coin-toss experiment used in Exercise 6.2 (i.e., three different coins) 
with probabilities 

State 1 State 2 State 3 

P(H) 
P(T) 

0.5 
0.5 

0.75 
0.25 

0.25 
0.75 

and with all state transition probabilities equal to 1 /3, and with initial probabilities equal to 
1 /3, for the observation sequence 

0 = (HHHHTHTTTT) 

find the most likely path with the Viterbi algorithm. 

Solution 6.3 
Since all aii terms are equal to 1 /3, we can omit these tenns (as well as the initial state 
probability term), giving 

61(1) = 0.5, 61(2) = 0.75, 61(3) = 0.25. 

The recursion for 6,(j) gives (2 :5 t ~ 10) 

62(1) = (0.75)(0.5), 

03(1) = (0.75) 2(0.5), 
64(1) = (0.75)3(0.5), 

6s(l) = (0.75) 4(0.5), 

66(1) = (0.75)5(0.5), 
61(1) = (0.75)6(0.5), 

68(1) = (0.75)7 (0.5), 
09(1) = (0.75) 8(0.5), 

610(1) = (0.75) 9(0.5), 

62(2) = (0.75) 2
, 

03(2) = (0.75) 3 
I 

04(2) = (0.75)4, 
6s(2) = (0.75) 4(0.25), 

06(2) = (0.75) 6, 
61(2) = (0.75)6(0.25), 
68(2) = (0.75)7(0.25), 

09(2) = (0.75) 8(0.25), 
610(2) = (0.75) 9(0.25), 

This leads to a diagram (trellis) of the form: 

State 2 

1 

1 2 3 4 5 6 7 

Observation Time 

8 

62(3) = (0.75)(0.25) 

03(3) = (0.75)2(0.25) 
04(3) = (0.75)3(0.25) 

8s(3) = (0.75)5 

06(3) = (0.75)5(0.25) 
~(3) = (0.75)7 

8s(3) = (0.75)8 

09(3) = (0.75)9 

810(3) = (0.75)10 

9 10 

Hence, the most likely state sequence is {2, 2, 2, 2, 3, 2, 3, 3, 3, 3}. 
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Si 

O··b·(Ot+1ll 
I l l I 

I 
I 

I 
St+1lj) a, ( i) 

I 
t-1 t I t + 1 t+ 2 

I 
Figure 6.7 Illustration of the sequence of operations required for the computation 
of the joint event that the system is in state i at time t and state j at time r + I. 

6.4.3 Solution to Problem 3-Parameter Estimation 

The third, and by far the most difficult, problem of HMMs is to determine a method to 

I~ 
1' • 
I!~ 
•· '.I 
I;~ 
f,(i 

adjust the model parameters (A, B, 1r) to satisfy a certain optimization criterion. There is no , ~1 

known way to analytically solve for the model parameter set that maximizes the probability J 
of the observation sequence in a closed form. We can, however, choose ,\ = (A, B, 1r) such 
that its likelihood, P(OI..\), is locally maximized using an iterative procedure such as the 
Baum-Welch method (also known as the EM (expectation-maximization) method [17]), or 
using gradient techniques [ I 8]. In this section we discuss one iterative procedure, based 
primarily on the classic work of Baum and his colleagues, for choosing the maximum 
likelihood (ML) model parameters. 

To describe the procedure for reestimation (iterative update and improvement) of 
HMM parameters, we first define €,(i,j), the probability of being in state i at time t, and 
state j at time t + 1, given the model and the observation sequence, i.e. 

€,(i,j) = P(q, = i, q,+l = jlO, ,\). (6.36) 

The paths that satisfy the conditions required by Eq. (6.36) are illustrated in Figure 6.7. 
From the definitions of the forward and backward variables, we can write €,(i ,j) in the form 

c (i ') = P(q, = i, qr+I = j, 0 I ,\) 
C.,.t ,J P(O I ,\) 

_ a,(i)aijbj(o,+1)/31+1(}) 

P(OI..\) 

a,(i) aijbj(o,+ 1 )/31+ 1 (j) 
N N 

LL a,(i)aijbj(o,+ 1){31+ 1()) 
i=I j=I 

(6.37) 

We have previously defined -y,(i) as the probability of being in state i at time t, given 
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the entire obse~a_ti?n sequence and the model; hence, we can relate -y,(l) to !,(i,J) by 
summing over J, g1vmg 

N 

'"'f,(i) = L ~,o,J). (6.38) 
j=I 

If we sum '"Y,(i) over the time index t, we get a quantity that can be interpreted as the expected 
(over time) number of times that state i is visited, or equivalently, the expected number 
of transitions made from state i (if we exclude the time slot t = T from the summation). 
Similarly, summation of ~,(i,j) overt (from t = 1 tot = T - 1) can be interpreted as the 
expected number of transitions from state i to state j. That is, 

T-1 

L '"Y,(i) = expected number of transitions from state i in O (6.39a) 
t=I 

T-1 

L ~,(i ,j) = expected number of transitions from state i to state j in 0. (6.39b) 
t=I 

Using the above formulas (and the concept of counting event occurrences), we 
can give a method for reestimation of the parameters of an HMM. A set of reasonable 
reestimation formulas for 1r, A, and B is 

1t1 = expected frequency (number of times) in state i 
at time (t = 1) = '"Y1 (i) 

_ expected number of transitions from state i to state j 
a·· - ------------------

'1 - expected number of transitions from state i 
T-l 

L~,<i,j) 
t=I 
T-1 

I: '"'(,(i) 
t=I 

- expected number of times in state j and observing symbol vk 

bj(k) = expected number of times in state J 
T 

L '"'(,(j) 
t=I 

s.1.0,=•.t -----
T 

L '"Y,<1) 
t=I 

(6.40a) 

(6.40b) 

(6.40c) 

If we define the current model as A= (A,B, 1r) and use that to comp~te the_!ight-band 
sides of Eqs. (6.40a)-(6.40c), and we define the reestimated mode_I as A = (A,B, 1r), as 
detennined from the left-hand sides of Eqs. (6.40a)-(6.40c), then it h~ _been p_roven by 
Baum and his colleagues that either ( t) the initial model .X defines a cnttcal pomt of the 
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likelihood function,Jn which case .,\ = ..\; or (2) model ..\ is more likel~ than model A in 
the sense that P(OIA) > P(Oj..\); that is, we have found a new model ..\ from which the 
observation sequence is more likely to have been produced._ 

Based on the above procedure, if we iteratively use A in place of ..\ and repeat the 
reestimation calculation, we then can improve the probability of O being observed from the 
model until some limiting point is reached. The final result of this reestimation procedure is 
an ML estimate of the HMM. It should be pointed out that the forward-backward algorithm 
leads to local maxima only, and that in most problems of interest, the likelihood function 
is very complex and has many local maxima. 

The reestimation fonnulas of Eqs. (6.40a)-(6.40c) can be derived directly by maxi­
mizing (using standard constrained optimization techniques) Baum 's auxiliary function 

Q(..\' ..\) = L P(O, ql.X') log P(O, qj..\) (6.4 I) 
q 

over A. Because 
(6.42) 

we can maximize the function Q(..\', A) over.,\ to improve .X' in the sense of increasing the 
likelihood P(Oj..\). Eventually the likelihood function converges to a critical point if we 
iterate the procedure. 

6.4.3.1 Derivation of Reestimation Formulas from the Q Function 

The auxiliary function Q(..\', ..\) was defined in Eq. (6.4 I) as 

Q(..\', ..\) = L P(O, qj.X') log P(O, qj..\) 
q 

in which we can express P and log P (in terms of the HMM parameters) as 

T 

P(O, qj..\) = 7rq0 IT aq,_ 1q,bq,(0 1) 

t=I 

T T 

log P(O, qi..\)= log 7rq0 + L log aq,_ 1q, + L log bq,(0 1) 

t=l t=I 

(There is a slight difference between the above equations and the expression of Eq. (6.17) 
in which the first observation is associated with the initial state before any state transition 
is made. This difference is inconsequential and should not impede our understanding of 
the method.) Thus we can write Q(..\', .,\) as 

N N 

Q(A
1

, A) = Q,r(A
1

, 7r) + L Q01 (..\', ai) + L Qb;(A1
, b;) 

i= I i=l 

where 

l 
I 

I 

I 

l 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 
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a, = [011, a;2, •.• , a;N ), b, i the parameter vector that dtfina b,(·) 

N 

Q,r(..\', ,r) = }: P(O qo = if..\') log w, 
I= 

N 1" 

Qa1(..\',a1) = LLP(O,q,_ 1 = i q, =il~')log a 
j=I t=I 

T 

Qb,(,\',b,) = LP(O,q, = if,\')log b;(Ot) 
t=I 

Because of the separability of Q(,\', ,\) into three independent term can m imi 
Q(,\', .X) over ~ by maximizing the individual terms separately. ubject to the StOICftaltiC 
constraints 

N 

:E11)=1 

i=I 
N 

Laii = 1, 'vj 
i=I 

and (for discrete densities where b;(o, = VA:) = b1(k)) 

K 

L b;(k) = 1, Vi. 
k=I 

Because the individual auxiliary functions all have the form 

N 

Lwilog Yi 
j=l 

which, as a function of {Yi}f=I • subject to the constraints E7=1 Y; = 1, Y; ~ 0, •ttains a 
global maximum at the single point 

j = 1, 2, ... ,N 

then the maximization leads to the model reestimate 1 = [1f,A BJ where 

P(O qo = ii.\) 
tr;= 

P(OI-X) 
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T L P(O, qr-I = i, qt = jl.X) 

r-l 
T 

L P(O, qr-l = il.X) 
t=l 

T 

L P(O, qt = il.X) 6(01, Vk) 

b;(k) = .:.....' _,:I_T ______ _ 

LP(O, q, = il.X) 
t=l 

where we have defined 
6(01, Vk) = 1 if 0 1 = Vk 

= 0 otherwise. 

els 

Using the definitions of the forward variable, o,(i) = P(o1, 02, • • •, o,, q, = ii A) and the 
backward variable, {3r(i) = P(o1+ 1, ... , orlqr = i, A), the reestimation transfonnations can 

be easily calculated as 

P(O, q, = il.X) = o,(i){3,(i) 
N N 

P(OI.X) = L or(i)/3,(i) = L a:r(i) 

. . 
g1vmg 

i=l 

_ a:o(i)/3o(i) ( ') 
7r; = = 1'0 l N 

L o:r<i) 
j=l 

T 

i=l 

La,_ 1 (i) aubj(o,){3,(j) 
_ t=l a;j = __ T _____ _ 

L 01-l (i)f3r-l (i) 
t=l 

T 

L O:r(i)/3r(i)8( 0 1, Vk) 

b;(k) = _t _I _____ _ 
T 

L <l'.r(i)/3,<i) 
t=l 

which are the formulas given in Eqs. (6.40a)-(6.40c). 

T 

E ~,-1<i,j) 
t=l 

T 

L ,,-1(i) 
t=l 

T 

L ,rco 

T 

L ,,<i) 
t=I 

/, 

t 
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Notes on the Reestimation Procedure 

The reestimation formulas can be readily interpreted as an implementation of the EM 
algorithm of statistics [ 17] in which the E (expectation) step is the calculation of the auxiliary 
function Q(A', ,\), (which is the expectation of log P(O qj.X)), and the M (maximization) 
step is the maximization of Q( ,\', ,\) over ,\ to obtain X. Thus the Baum-Welch reestimation 
equations are essentially identical to the EM steps for this particular problem. 

An important property of the reestimation procedure is that the stochastic constraints 
of the HMM parameters, namely 

N 

L ft;= I 
i-1 

N 

L G;j = 1, 
j=I 

M 

Lbj(k) = 1, 
k=I 

(6.43a) 

(6.43b) 

(6.43c) 

are automatically incorporated at each iteration. By looking at the parameter estimation 
problem as a constrained optimization of P(Oj,\) (subject to the constraints of Eq. (6.43)), 
we can formulate the solution procedure by use of the techniques of variational calculus 
to maximize P (we use the notation P = P(Oj,\) as shorthand in this section). Based on a 
standard Lagrange optimization setup using Lagrange multipliers, it can readily be shown 
that P is maximized when the following conditions are met: 

8P 
7r·­

' 8-rr; 
7r; = ----'--

N 8P 
~7rk­
L- 81rk 
k=l 

O;j = 

8P 
a··­

'
1 

8aij 

N 8P 
~a;k­
L- 8a·k 
k=I I • 

8P 
bj(k) 8bj(k) 

bj(k) = M 
8P 

L bj(f) 8b·(f) 
l=I J 

(6.44a) 

(6.44b) 

(6.44c) 

By appropriate manipulation of Eq. (6.44), the right-hand sides of each equation can be 
readily shown to be identical to the right-hand sides of each part of Eqs. (6.4~~)-(6.4?c), 
thereby showing that the reestimation formulas are indeed exactl_y co~ect at cnt1c_aJ po~ts 
of P. In fact, the form of Eq. (6.44) is essentially that of a reest1mat1on formula m which 
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the left-hand side is the reestimate and the right-hand side is computed using the current 
values of the variables. 

Finally, we note that since the entire problem can be set up as an optimization 
problem, standard gradient techniques can be used to solve for "optimal" values of the 
model parameters. Such procedures have been tried and have been shown to yield solutions 
comparable to those of the standard reestimation procedures [ 18]. One critical shortcoming 
of standard gradient technique, as applied to the maximization of P(OI-X), is tha~ the descent 
algorithms, which are critically dependent on taking a small step in the direction of the 
gradient, often do not produce monotonic improvement in the likelihood as the Baum-Welch 
reestimation is guaranteed by Eq. (6.42) to do. 

6.5 TYPES OF HMMS 

One way to classify types of HMMs is by the structure of the transition matrix, A, of the 
Markov chain. Until now, we have only considered the special case of ergodic or fully 
connected HMMs in which every state of the model could be reached (in a single step) 
from every other state of the model. (Strictly speaking, an ergodic model has the property 
that every state can be reached from every other state in a finite but aperiodic number of 
steps.) As shown in Figure 6.8(a), for an N = 4 state model, this type of model has the 
property that every aij coefficient is positive. Hence for the example of Figure 6.8(a) we 
have 

A= 

a11 a12 a13 a14 

a21 a22 a23 a24 

a31 a32 a33 a34 

a41 a42 a43 a44 

For some applications, particularly those to be discussed later in this chapter, other 
types of HMMs have been found to account for observed properties of the signal being 
modeled better than the standard ergodic model. One such model is shown in Figure 6.8(b). 
This model is called a left-right model or a Bakis model ([ 11], [ 10]) because the underlying 
state sequence associated with the model has the property that, as time increases, the state 
index increases ( or stays the same )-that is, the system states proceed from left to right. 
Clearly the left-right type of HMM has the desirable property that it can readily model 
signals whose properties change over time in a successive manner--e.g., speech. The 
fundamental property of all left-right HMMs is that the state-transition coefficients have 
the property 

j < i (6.45) 

that is, no transitions are allowed to states whose indices are lower than that of the current 
state. Furthermore, the initial state probabilities have the property 

=,· = { o, i. # 1 
II (6.46) 

I, 1 = 1 

because the state sequence must begin in state I (and end in state N). Often, with left-right 
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(0) 

lb) 

(C) 

Fipre 6.8 Dlustration of three distinct types of HMMs. (a) A 
4-statc ergodic model. (b) A 4-swc left-right model. (c) A 6-swe 
parallel path left-right model. 

349 

models, additional constraints are placed on the state-transition coefficients to make 1n 

that large changes in state indices do not occur, hence a consuaint of the form 

Dij = 0 (6.47) 

is often used. In particular, for the example of Figure 6.8(b), me value of Ai is 2; dw is. oo 
jumps of more than two states arc allowed. 1be form of lbe swe-uan.sitioo IIUllrix for die 
example of Figure 6.8(b) is thus 

A= 

D1 I D12 

0 
0 
0 

Q13 0 
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It should be clear that, for the last state in a left-right model, the state-transition coefficients 
are specified as 

i < N. 

(6.48a) 

(6.48b) 

Besides the above fully connected and left-right models, there are many other possible 
variations and combinations. By way of example, Figure 6.8(c) shows a cross-coupled 
connection of two parallel left-right HMMs. Strictly speaking, this model is a left-right 
model (it obeys all the aij constraints); however, it has certain flexibility not present in a 
strict left-right model (i.e., one without parallel paths). 

It should be clear that the imposition of the constraints of the left-right model, or those 
of the constrained jump model, essentially have no effect on the reestimation procedure. 
This is the case because any HMM parameter set to zero initially will remain at zero 
throughout the reestimation procedure (see Eq. (6.44)). 

6.6 CONTINUOUS OBSERVATION DENSITIES IN HMMS 

All of our discussion to this point has considered only when the observations were char­
acterized as discrete symbols chosen from a finite alphabet, and therefore we could use a 
discrete probability density within each state of this model ([ 19]-[2 l ]). The problem with 
this approach, at least for some applications, is that the observations are often continuous 
signals (or vectors). Although it is possible to convert such continuous signal represen­
tations into a sequence of discrete symbols via vector quantization codebooks and other 
methods, there might be serious degradation associated with such discretization of the con­
tinuous signal. Hence it would be advantageous to be able to use HMMs with continuous 
observation densities to model continuous signal representations directly. 

To use a continuous observation density, some restrictions must be placed on the 
form of the model probability density function (pdf) to ensure that the parameters of the 
pelf can be reestimated in a consistent way. The most general representation of the pdf, for 
which a reestimation procedure has been formulated, is a finite mixture of the form 

M 

bj(o) = L CjkN(o, µjk, Ujk), (6.49) 
k=l 

where o is the observation vector being modeled, Cjk is the mixture coefficient for the kth 
mixture in state j and N is any log-concave or elliptically symmetric density [18] (e.g., 
Gaussian). Without loss of generality, we assume that N is Gaussian in Eq. (6.49) with 
mean vector µjk and covariance matrix Ujk for the kth mixture component in state j. The 
mixture gains Cjk satisfy the stochastic constraint 

M 

L Cjk = 1, 1 S j S N (6.50a) 
k=l 

Cjk 2: 0, 1 S j SN, 1 S k S M (6.50b) 
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Figure 6.9 Equivalence of a state with a mixture density 10 a 
multistate single-density distribution (after Juang et al. (21 ]). 

so that the pdf is properly normalized, i.e., 

1-: bj(o)do = I, 

351 

(6.51) 

The pdf of Eq. (6.49) can be used to approximate, arbitrarily closely, any finite, continuous­
density function. Hence it can be applied to a wide range of problems. 

It has been shown that an HMM state with a mixture density is equivalent to a 
multistate single-mixture density model in the following way (21). Consider a state i with 
an M-mixture Gaussian density. Because the mixture gain coefficients sum up to 1, they 
define a set of transition coefficients to substates i1 (with transition probability c;1), i2 (with 
transition probability c;2 ) through iM (with transition probability C;M)- Within each substate 
ft, there is a single mixture with mean µ;k and variance U;k (see Figure 6.9 for a graphical 
interpretation). Each substate makes a transition to a wait state io with probability 1. The 
distribution of the composite set of substates ( each with a single density) is mathematically 
equivalent to the composite mixture density within a single state. 

It can be shown that the reestimation formulas for the coefficients of the mixture 
density, i.e., Cjk, µjk, and Ujk, are of the form 

T 

L ,,(j,k) 
t=l 

T M 

LL ,,(j,k) 
t=l k=I 

T 

L ,,(j, k). o, 
t=l 

jl,Jk = T 

L ,,(j, k) 
t=I 

(6.52) 

(6.53) 
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T L ,,(}, k) • (o, - µjk)(o, - µjk)' 

- ,-1 Uft=!..=..!.----T=--------

L ,,(j,k) 
t=I 

(6.54) 

where prime denotes vector transpose and where ,,(j, k) is the probability of being in state 
j at time t with the kth mixture component accounting for o,, i.e., 

(The term -y,(j, k) generalizes to,,(}) of Eq. (6.26) in the case of a simple mixture, or a 
discrete density.) The reestimation formula for au is identical to the one used for discrete 
observation densities (i.e., Eq. (6.40(b))). The interpretation of Eqs. (6.52)-(6.54) is fairly 
straightforward. The reestimation formula for Cjk is the ratio between the expected number 
of times the system is in state j using the kth mixture component, and the expected number 
of times the system is in state j. Similarly, the reestimation formula for the mean vector J.LJk 
weights each numerator term of Eq. (6.52) by the observation, thereby giving the expected 
value of the portion of the observation vector accounted for by the kth mixture component. 
A similar interpretation can be given for the reestimation term for the covariance matrix 

Ujk• 

6.7 AUTOREGRESSIVE HMMS 

Another very interesting class of HM Ms that is particular} y applicable to speech processing 
is the class of autoregressive HMMs ([22, 23]). For this class, the observation vectors 
are drawn from an autoregression process. (The autoregressive density is, of course, 
just another continuous-probability density. However, we elaborate on the subject here 
separately from Section 6.6 because of its importance in speech analysis as will be shown 
later.) 

To be more specific, consider the observation vector o = (x0 ,x 1 ,x 2, ... ,xK_ 1). The 
elements, Xi, could be simply the speech waveform samples. The components of o are 
assumed to be from an autoregressive Gaussian source, satisfying the relationship 

p 

Xk = - LaiXk-i + ek 

i=I 

(6.55) 

where ek, k = 0, 1, 2, ... , K - 1 are Gaussian, independent, identically distributed random 
variables with zero mean and variance a-;, and ai, i = 1, 2, ... , p, are the autoregression or 
predictor coefficients. It can be shown that for large K [22, 23], the density function for o 
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is approximately 

where 

p 

8(0, a)= r 0 (0)r(O) + 2 L r0 (i)r(i) 
i=I 

a= [l,a1,a2, ... ,ap]', (ao = I) 
p-i 

rau> = L anan+i, 
n=O 

K-i-1 

r(i) = L XnXn+i 
n=O 

0 ~; ~ p. 

353 

(6.56) 

(6.57a) 

(6.57b) 

(6.57c) 

(6.57d) 

In the above equations r(i) is the autocorrelation of the observation samples. and r0 (i) is the 
autocorrelation of the autoregressive coefficients. Furthermore, 6(0 a) is a form of residual 
energy resulting from inverse filtering the data x; with an all-zero filter defined by a. (See 
Eqs. 4.40-44.) 

As discussed in Chapter 4, the signal level in the observation o is often treated 
in a different fashion from the general spectral shape when it comes to speech-pattern 
comparison. One way to separate the signal level from the spectral shape is to use gain 
normalization; that is, we use o instead of o as the observation, where 

(6.58) 

and where CT~ is the minimum linear prediction residual energy per sample. (It is shown in 
Exercise 6.5 that CT~ = (CT;)ML for the given observation o.) The elements of o, Xk = Xt./ C1eo, 
still satisfy the autoregressive relationship 

p 

Xk = - L a;Xk-i + ek, 

i=l 

(6.59) 

However, the variance of ek is now unity. Therefore, we can write the probability density 
function for the output of an all-pole system defined by a, driven by a zero mean, unit 
variance Gaussian i.i.d. sequence, as 

f(O) = (2,r)-K 12 exp {-~6(6,a)} (6.60) 

if the data dimension K is sufficiently large. (Note that the normalization factor "ro 

depends on the original data observation o.) This type of pelf is often referred to as a 
"gain-independent" pdf. 

The way in which we use a Gaussian autoregressive density in HMMs is straightfor-
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ward. We assume a mixture density of the form 
M 

bj(o) = L Cjkbiio) (6.61) 
k=l 

. . d fi d by Eq. (6.60) with autoregression vector a-k ( 
where each b·k(o) 1s the density e ne . 1 or 

. 1 • t r r )· that 1s, eqmvalently by autocorrelation vec o ajk , 

bj,(o) = (2,r)-K/2 exp {-~6(0, aj,)} • (6.62) 

. • & 1 & the sequence autocorrelation for the jth state, kth mixture 
A reesumat1on 1ormu a 1or f 
component has been derived [22, 23], and is of the orm 

T 

~ ,,(j, k) • r, 
t=I (6.63a) 

t=I 

where r, = [rtCO),r,(1), ... ,r,(p)]' is the autocorrelati_o~ vector_as ~efined b~ ~- (6.57d) 
for the 1th frame, and ,,(j, k) is defined as the probab1hty of bemg m state J at timer and 

using mixture component k, i.e., 

[ 

o:,(j)/3,(j) ] [ Cjkbjk( Or) ] 

-r,(j,k) = t a,(j)/3,(j) t Cjtbj,(o,) • 

J=I k=I 

(6.63b) 

It can be seen that rik is a weighted sum (by probability of occurrence) of the normalized 
autocorrelations of the frames in the observation sequence. From rjk, one can solve a set of 
normal equations to obtain the corresponding autoregressive coefficient vector ajk, for the 
kth mixture of state j. The new autocorrection vectors of the autoregression coefficients as 
needed in the density function can then be calculated using Eq. (6.57c), thereby closing the 
reestimation loop. 

Exercise 6.4 
The probability density function (pdf) [22, 23] of Eq. (6.56) is defined by parameters a-; and 
a. Given a data observation vector o = (x0 , x1, ... , XK- i ), determine the maximum likelihood 
estimate of u; and a that best characterizes the observed o. 

Solution 6.4 

We write the likelihood function of o as a function of a; and a as 

f(olu;' a) = (21ru;)-K /2 exp { - 2~; 6( o, a)} 

and the log likelihood function as 

log f(ola;, a) = _ K log (21ra2) _ 6(0, a) 
2 t 2 2 • 

l7e 

I ,ti 

I 

I 

I 

I 

I 

,~1 
J~ 
I 1 
~,/1 

I 

I .~ 
I 

I 

I 

~ 
~ 
~ 
I 

1 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 
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I 
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Therefore, the maximum likelihood (ML) estimate is 

(a)ML = arg max log /(oju;, a) = arg min 6(0 a) 
• • 

= arg min(a'Ra) 
• 

where R = [rij] with rij = r(ji - JI) as defined by Eq. (6.57d). This establishes the relationship 
between maximum likelihood estimation and the classical method of autocorrelation matching 
(also called the method of minimization of prediction residuals) for LPC analysis (see Eq. 
(4.8H4. IO)). Furthermore, it is easy to show that 

(u;)ML = min6(o,a)/K 
• 

which leads to 

Exercise 6.5 
The pdf of Eq. (6.56) is related to the Itakura-Saito distonion measure of Eq. (4.45). Establish 
this relationship. 

Solution 6.5 
Consider the following likelihood difference 

L, = bt:: log /(ola;, a)] - log /(ola;, a) 

K 2 K K 2 6(0, a) = - 2 log [21r(ue)Md - 2 + 2 log (21ro-e) + 
2

c,; 

= 1 [K~; 6(0, a)+ log o-; - log (o-;)ML - I] . 

For distonion measures, we denote the all-pole (power) spectra by o-~/ IA0 (ei"")l2 and o-;/ 

IA(ei"')l2. corresponding to parameter sets { (o-;)ML, (a)ML} and { o-;, a}, respectively. (0-}
0 

= 
(o-;)ML,) Then, the bracketed term in the log likelihood difference, Ld, is simply d1s(o-}

0
/ 1Aol2, 

o-;/ IAl2) according to Eq. (4.45) because 

u2 ---------=- dw = .!_6(0, a) /_
,,. IA(ei"')l2 

Jo _,,. IAo(ei"')l2 21r K 

due to autocorrelation matching and Eq. (6.57a). (Note that we have defined u; (and o-:0) as 

the sample variance. The factor K would disappear from the above equation if we use the total 
frame prediction residual variance instead of the sample variance.) Therefore, 

f(ola;,a) = (21ru;i-•t 2 
exp {-1 [d,s c:~,, 1:f,) + log aJ, - log a;+ I]} 

2 2 { K ( o-}o u; ) } = G1(a10,ae)exp -2d1s IAol2, IAl2 

,. 
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where G, (a}
0

, o}) encompasses only the gain tenns. 

Exercise 6.6 
The pelf of Eq. (6.60) is related to the likelihood ratio distortion measure of Eq. (4.53). 

Establish this relationship. 

Solution 6.6 
Similar to the case of Eq. (6.56), 

I ,. j1r IA(eiw> 1

2 
dw 

-6oa = ~-;._-
K ( , ) -1r IAo(eiw)l2 21r 

= dLR ( l 2 , ~) + 1. 
IAol IAI 

Therefore, 

/(Ola)= (21r)-K/
2 
exp {-1 [ dLR ( IA:l2, l~l2) + I]} 

= G2exp {-1 dLR cA:l2, l~l2)} • 

Note that when the pdf is expressed in terms of the distortion measures (dis or dLR), the 
exponential tenn includes a factor K that represen!s the data dimension. In practice, this 
factor K is replaced by an effective frame length K, which is the net shift of consecutive 
data frames. Thus, if consecutive data frames (vectors) have 2/3 overlap, then an effective 
frame length k = K /3 is appropriate, so that the rate of characteristic change in tenns of 
the spectral parameters a is kept at the original wavef onn sampling rate. 

6.8 VARIANTS ON HMM STRUGTURES-NULL TRANSITIONS AND flED STATES 

Throughout this chapter we have considered HMMs in which the observations were as­
sociated with states of the model. It is also possible to consider models in which the 
observations are associated with the arcs of the model. This type of HMM has been used 
extensively in the IBM continuous speech recognizer [13]. It has been found useful, for 
this type of model, to allow transitions that produce no output; that is, jumps from one state 
to another that produce no observation [13]. Such transitions are called null transitions and 
are designated by a dashed line, with the symbol</> used to denote the null output. 

Figure 6.10 illustrates three examples (from speech-processing tasks) where null arcs 
have been successfully utilized. The example of part (a) corresponds to an HMM (a left­
right model) with a large number of states in which it is possible to omit transitions between 
any pair of states. Hence it is possible to generate observation sequences with as few as 

; 
I 
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. . . t) f) (1) - ~ 
"' h 

"two" 
(b) 

(c) 

Figure 6.10 Examples of networks incorporating null transi­
tions. (a) Left-right model. (b) Finite state network. (c) Grammar 
network. 

one observation and still account for a path that begins in state one and ends in state N. 

357 

The example of Figure 6.1 O(b) is a finite-state network (FSN) representation of a 
word in terms of linguistic unit models (i.e., the sound on each arc is itself an HMM). For 
this model the null transition gives a compact and efficient way of describing alternative 
word pronunciations (i.e., symbol deletions). 

Finally the FSN of Figure 6.10( c) shows how the ability to insert a null transition into 
a grammar network allows a relatively simple network to generate arbitrarily long word 
(digit) sequences. In the example shown in Figure 6.lO(c), the null transition allows the 
network to generate arbitrary sequences of digits of arbitrary length by returning to the 
initial state after each individual digit is produced. 

Another interesting variation in the HMM structure is the concept of parameter tying 
[13]. Basically, the idea is to set up an equivalence relation between HMM parameters 
in different states. In this manner the number of independent parameters in the model is 
reduced and the parameter estimation becomes somewhat simpler and in some cases more 
reliable. Parameter tieing is used when the observation density, for example, is known to 
be the same in two or more states. Such cases occur often in characterizing speech sounds. 
The technique is especially appropriate when there is insufficient training data to estimate, 
reliably, a large number of model parameters. For cases such as these, it is appropriate to 
tie model parameters so as to reduce the number of parameters (i.e., size of the model), 
thereby making the parameter estimation problem somewhat simpler. We will discuss this 
method later in this chapter. 
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Ojj 

Ojj 

Pj (d) 

• • 
S· J 

(a> 

< bl 

Figure 6.11 Illustration of general interstate connections of (a) a normal HMM with 
exponential state duration density, and (b) a variable duration HMM with specified state 
densities and no self-transitions from a state back to itself. 

6.9 INCLUSION OF EXPLICIT STATE DURATION DENSIT¥ IN HMMS 

Earlier we showed via Eq. (6.5) that the inherent duration probability density p;(d) 

associated with state i, with self-transition coefficient a;;, was of the form 

p;(d) = (a;;l- 1(1 - a;;) 

= probability of d consecutive observations in state i. (6.64) 

For most physical signals, this exponential state duration density is inappropriate. Instead 
we would prefer to explicitly model duration density in some analytic form. (An extensive 
treatment of state duration modeling can be found in the work of Ferguson of IDA [14], 
which is the basis of the material presented here. Other valuable references include [24] 
and [25].) Figure 6.11 illustrates, for a pair of model states i and j; the differences between 
HMMs without and with explicit duration density. In part (a) the states have exponential 
duration densities based on self-transition coefficients a;; and ajj, respectively. In part (b), 
the self-transition coefficients are set to zero, and an explicit duration density is specified. 
For this case, a transition is made only after the appropriate number of observations have 
occurred in the state (as specified by the duration density). Such a model is called a 
semi-Markov model. 

Based on the simple model of Figure 6.1 l(b), the sequence of events of the variable 
duration HMM is as follows: 

1. An initial state, q1 = i, is chosen according to the initial state distribution 1r;. 
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z. A duration d, • d,osen aa,onl" IO die ... tis lliol , .. ,, 
pedience and eue of i~ die dundolt • ,.<'» "· .,. .. 
muimum duration value D.) 

J. ()bservation o, 02 .... o,J • dloler. aa.iOldill ID 

bq, o1 02 ... o,, . C:,enerally we at111111t dal in ed .. oMml 

pendent 10 that bq1(01 O? ... ~ 1 = 0:~,b..,( . 

•· The next tate4 q2 = j, • cholm ac0onti11g -, die Stale u.-..• Oltalllillill. 
with the oonstraint that a, 1 ,, = 0, i..e... no ll'lllmlion bid 

oocur. Clearly thi i a n,quirancut, becai,e 
oblervation& occur. J 

A little thought hou1d convince lhe reader 1h11 !ht lriable 
made equivalent to the standard HMM by setting p,{4) to be b ~D0n"111111 GIIMIIY 

(6.64 ). 
U 'ing the above formulation, we mUSI make vaal ,..1'\!11.,-.-

Section 6.4.3 to allow calculation of P(Oj.\) and for reesiunation 
In particular we as ume that the fint swe begin at,= I and &he I 
We then define the forward variable 0,(1) as 

ct,(i) = P(o1 02 ... o, the stay in state i ends at ,1 ). 

We as umc that a total of r states have been vi ited durin the fi t t ~rv 1
UW1•, 

denote the states as q1• q2 ... , q, with durations associ led wi1h h 1e d1. d , ... , . 
Thu the constraint of E.q. (6.65) are 

Eq. (6.65) can then be written as 

q, =; 
, 

Ed,= t. 

t=l 

o.,(i) = L L ••• · Pta (da) • P(oa O? •.• 04, lq,) 

f " 

~a,,~Yft (d2)P(041 "Tl • - • 8' +4J "'2) • • • 

•Q 1-I JJ,1(d,)P(Ow1.M ... -•+• • • • e,fq, 

where the sum is over all stales q and all possible swe Ulliom d. By DdlCbOD 
write 0i,(J) as 

D ' 

o.,(j) = E E 0,--4(,)a;;p;(_d) II b 
i-1 4-1 l=I I 

(6~ 

(6.66b) 

where D is the maximum duration within Ill)' SlMC To initialize die a»■11Nl-■WJII ol o.,(j 
we use 
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2 N 

cdi) = 1r;p;(2) II b;(Os) + E aq (j)aj;p;(l)b;(o2) 
j:1 

s= I 11, 

3 2 N 

a
3
(i) = 1r;p;(3) II b;(Os) +EE 03-d(j)aj;p;(d) 

S
--1 d=l j=l 

j#i 

3 

· IJ b;(Os) 
s=4-d 

(6.69b) 

(6.69c) 

(6.69d) 

and so on, until a
0

(i) is computed; then Eq. (6.68) can be used for all t > D. It should be 
clear that the desired probability of O given the model A can be written in tenns of the os 

as 
N 

P(OIA) == E O'.T(i) (6.70) 

i=l 

as was previously used for ordinary HMMs. 
To give reestimation formulas for all the variables of the variable duration HMM, we 

must define three more forward-backward variables, namely 

a;(i) = P(o1 o2 ... o,, stay in state i starts at t + 1 jA) (6.71) 

f3r(i) = P(o1+1 ... oTI stay in state i ends at t, -X) (6.72) 

f3t(i) = P(or+t ... oTI stay in state i starts at t + 1, .X). (6.73) 

The relationships between a, a*, /3, and /3* are as follows: 

N 

a; (j) = L a1(i)au (6.74) 
i= I 

D t 

ar(i) = L a;_d(i)p;(d) II b;(Os) (6.75) 
d=l s=t-d+l 

N 

/3,(i) = L au/3,*(j) (6.76) 
}=I 

D t+d 

/3,*(i) = L f3r+d(i)p;(d) II b;(05 ). (6.77) 
d=l s=t+I 

Based on the above relationships and definitio • • 
duration HMM with discrete obse t· ns, the reeSttmatton formulas for the variable 

' rva ions, are 

ft· - 1r;/3o U) 
I - P(OI-X) (6.78) 

--:-:~­'•. I 
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T 

L 0 ,<i)a;j{J,· <11 
r=I Oij = -N:-:-----::-T ____ _ 

L L o,(i)aij/3; (J) 
j=I 1=1 

T 

~ [~ o;(i) • p;(r)- ~ 0,(1) ,(•)] 

b;(k) = -M;:'_·•_.o_,=--:;;:---------------

~ ~ [~ o;(,) • p;m -~ 0,(1)/J,(•)] 

s.1.0,=v, 

d=I t=I s=t+I 

)11 

(6.79) 

(6.80) 

(6.81) 

The interpretation of the reestimation formulas is the following: The fonnula for 1f, L the 
probability that state i was the first state, given 0. The formula for au is almo t the ame as 
for the usual HMM, except it uses the condition that the alpha terms in which a tate ends at 
t, join with the beta terms in which a new state begins at r + l. The formula for b1(k) is the 
expected number of times that observation o, = vk occurred in state i, nonnalized by the 
expected number of times that any observation occurred in state i. Finally, the reestimation 
fonnula for P;(d) is the ratio of the expected number of times state i occurred with any 
duration. 

The importance of incorporating state duration densities is reflected in the observation 
that, for some problems, the quality of the modeling is significantly improved when explicit 
state duration densities are used. However, there are drawbacks to the use of the variable 
duration model discussed in this section. One is the greatly increased computational load 
associated with using variable durations. It can be seen from the definition and initialization 
conditions on the forward variable o;(i), from Eqs. (6.68}-(6.69), that about D times the 
storage and D 2 /2 times the computation is required. For D on the order of 25 (as is 
reasonable for many speech-processing problems), computation is increased by a factor of 
300. Another problem with the variable duration models is the large number of parameters 
(D), associated with each state, that must be estimated, in addition to the usual HMM 
parameters. Furthermore, for a fixed number of observations T, in the training set, there 
are, on average, fewer state transitions and much less data to estimate p;(d) than would 
be used in a standard HMM. Thus the reestimation problem is more difficult for variable 
duration HMMs than for the standard HMM. 

One proposal to alleviate some of these problems is to use a parametric state duration 
density instead of the nonparametric p;(d) used above [23-24]. In particular, proposal 
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include the Gaussian family with 

p;(d) = N(d, µ;,a;) 

with parameters µ; and (Jf, or the Gamma family with 

r(f' cf';- I e-r,,d 

p;(d) = f(v;) 

(6.82) 

(6.83) 

with parameters v; and r,; and with mean V;'f/;-1 and variance v;r,;-
2

• Reestimation fonnulas 
for r,; and v; have been derived and used with good results. Another possibility, which 
has been used with good success, is to assume a unifonn duration distribution over an 
appropriate range of durations and use a path-constrained Viterbi decoding procedure. 

6.10 OPTIMIZATION CRITERION-ML, MMI, AND MDI 

The standard ML design criterion is to use a training sequence of observations O to derive 
the set of model parameters A, yielding 

(6.84) 

Any of the reestimation algorithms discussed previously provides a solution to this opti­
mization problem. 

The need to consider alternative design criteria, however, comes from several con­
cerns ([26--28]). The basic philosophy in statistical modeling methods, such as HMM, is 
that the signal or observation sequence can be well modeled if the parameters of the model 
are carefully and correctly chosen. The problem with this philosophy is that the assumed 
model-HMM in the present case-is sometimes inadequate to model the observed signal 
so that no matter how carefully the parameters are chosen, the modeling accuracy is limited. 
Often, this situation is described as a "model mismatch." The first alternative optimization 
criterion we discuss here is one that tries to overcome the problem of model mismatch in 
order to achieve a more accurate modeling of the observation signal. 

The observed signal O = (01, Oi, ... , or) is associated with a sequence of constraints 
n = (R1, R2, ... , Rr). For example, R, may be the autocorrelation matrix that charac­
terizes the observation o,. Then, obviously, 0 is only one of possibly uncountably many 
observation sequences that satisfy the constraint sequence n. Furthermore, in tenns of the 
probability distributions of the observation sequences, there exists a set of such distribu­
tions that would also satisfy n. We denote this set Q(R). The minimum discrimination 
information (MDI) is a measure of closeness between two probability measures ( one of 
which bears the HMM form here) under the gi~en constraint n and is defined by 

where 

/l 
v(R,P>J = inf /(Q: P>J (6.85) 

QEO{'R) 

l(Q : P >.J = j q(O) log q(O) dO 
p(OIA) 

(6.86) 
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is the discrimination infonnation between distributions Q and P>. (27,28]. (The function 
q(·) and p( •I~) a~e t~e probab_ilit~ density functions corresponding to Q and P >. respectively.) 
The discrimmat1on mfonnat10n 1s calculated based on the given training set of observations. 

The MDI criterion tries to choose a model parameter set ..\ such that 11('R., P>.) i 
minimized. An interpretation of MDI is that the model parameter set ..\ i chosen so 
that the model p(Oj..\) is as close as it can be to a member of the set O('R.). Since 
the closeness is always measured in tenns of the discrimination infonnation evaluated 
on the given observation, the intrinsic characteristics of the training sequences would 
then have substantial influence on the parameter selection. By emphasizing the measure 
discrimination, the model estimation is no longer solely dictated by the assumed model 
fonn. The MDI optimization problem is, however, not as straightforward as the ML 
optimization problem and no simple robust implementation of the procedure i known. 

Another concern about the HMM optimization criterion arises when we attempt to u 
it to solve a class of speech-recognition problems. Consider recognition of a vocabulary of 
V words, each of which is represented by an HMM, with parameter set A,,. = I. 2. . . . . . 
We assume P(v) to be the a priori probability for word v, v = I 2 ... , V. The set of HMM 
A = {Av} together with the a priori probabilities thus defines a probability measure for an 
arbitrary observation sequence 0 

V 

P A(O) = L P(0l..\v, v)P(v). (6.87) 
11=1 

(The notation P(Oj..\ 11, v) indicates that it is a probability conditioned on the word v. We 
include the model parameter >.v, sometimes, because of the necessity of treating A11 as 
random variables for estimation purposes. Obviously, when Av is fixed, P(0IAv, v) is the 
conditional probability, parameterized by Av.) To train these models (i.e., to estimate the 
optimum parameters of the associated models), utterances of known (labeled) words are 
used. We denote the labeled training sequence by ov where superscript v reflects the fact 
that ov is a rendition of word v. The standard ML criterion of Eq. (6.84) is to use ov to 

estimate model parameters Av, yielding 

(Av)ML = argminP(OvjA) . 
.x 

Each model is estimated separately using the correspondingly labeled training observa­
tion sequence(s). The resultant models, however, need not be the optimal solution for 
minimizing the probability of recognition error. 

An alternative design criterion that aims at maximizing the "discrimination" of each 
model (i.e., the ability to distinguish between observation sequences generated by the 
correct word model and those generated by alternative models) is the maximum mutual in­
fonnation (MMI) criterion [26]. The mutual infonnation between an observation sequence 
ov and the word v, parameterized by A = {Av}, v = 1, 2, ... , V, is 

" P(0v, vjA) 
h(O , v) = log p A(O")P(v) (6.88) 

Since 
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V 

/A(Ov, v) = log P(OvlAv) - log L P(OvlAw, w)P(w). (6.89) 
w=l 

The MMI criterion is to find the entire model set A such that the mutual information is 
maximized, 

V 

(A)MMI = mfx{ ~/A(O', v) }· (6.90) 

The MMI criterion is obviously different from the ML criterion. Both are minimum 
cross-entropy approaches. In the ML approach, an HMM for the distribution of the data 
given the word is matched to the empirical distribution. In the MMI approach, a model 
for the distribution of the word given the data is matched to the empirical distribution. 
This explains the merit of the MMI approach. The optimization procedure for the MMI 
approach involves the entire model parameter set A even if only one labeled training 
sequence ov is used. The ML criterion addresses the likelihood P(OvlAv) alone, while 
the MMI criterion compares the likelihood P(OvlAv) against the "probability background" 
PA (Ov) and attempts to maximize the difference. However, (A)MMI is not as straightforward 
to obtain as (A)ML, One often has to use general optimization procedures like the descent 
algorithms to solve Eq. (6.90). Such optimization procedures often lead to numerical 
problems in implementation. 

6.11 COMPARISONS OF HMMS 

An interesting question associated with HMMs is the following: Given two HMMs, ,\1 and 
..\2, what is a reasonable measure of the similarity of the two models ([29])? Consider the 
case of two models 

with 

Al = [ pl -p pl - p ] [ q 1 q ] B, = 1 -q q - 7r] = [ 1 /2 1 /2] 

and 

A=[' 1-rJ 2 1 - r r 
B2 = [ s 1 - s ] 

1 - s s 1r2 = [ 1 /2 1 /2]. 

For At to be equivalent to ..\2, in the sense of having the same statistical properties for the 
observation symbols, i.e., E[o, = vkj,\i] = E[o1 = vkj,\ 2], for all vk, we require 

pq + (I - p)(l - q) =rs+ (1 - r)(l - s) 

I 
I 

~ (, 
I 
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by solving for s, we get or, 
S=p+q-2pq 

I - 2r • 

365 

By choosing (arbitrarily)p = 0.6, q = 0.1, r = 0.2, we gets= 13/30 i::::= 0.433. Th even 
when the two models, At and A2, look ostensibly very different (i.e., A1 is very different 
from A2 and B t is very different from 82), statistical equivalence of the models can occur. 

We can generalize [29] the concept of mode' distance (dissimilarity) by defining a 
distance measure D(.Xt, .X2), between two Markov models, .Xt and .A2 as 

I 
D(At, A2) = T [log P(o<2>l.Xt) - log P(0(2ll,\2)] (6.91 

where 0(2) = ( o t 02 03 .•• or) is a sequence of observations generated by model . 8 ~ 
sically, Eq. (6.91) is a measure of how well model .A1 matches observation generated by 
model .X2, relative to how well model .X2 matches observations generated by itself. Several 
interpretations of Eq. (6.91) exist in terms of cross-entropy, or divergence, or discrimin tion 
infonnation [29]. 

One of the problems with the distance measure of Eq. (6.91) i that it i non ymmetric. 
Hence a natural expression of this measure is the symmetrized version, namely 

(6.92 

6.12 IMPLEMENTATION ISSUES FOR HMMS 

The discussion in the previous sections has dealt primarily with the theory of HMMs 
and several variations on the form of the model. In this section we deal with several 
practical implementation issues, including scaling, multiple observation sequences, initial 
parameter estimates, missing data, and choice of model size and type. For some of these 
implementation issues we can prescribe exact analytical solutions; for other issues we can 
provide only some seat-of-the-pants experience gained from working with HMMs. 

6.12.1 Scaling 

To understand why scaling ([ 18,23]) is required for implementing the reestimation pro­
cedure of HMMs, consider the definition of a,(i) of Eq. (6.18). It can be seen that o,(,) 
consists of the sum of a large number of terms, each of the fonn 

with q, = i and bis a discrete probability as defined by Eq. (6.8). Since each a and b term is 
less than 1 (generally significantly less than 1), it can be seen that as I starts to get big (c.g~ 
IO or more), each term of a,(i) starts to head exponentially to i.ero. For sufficiently large 
t (e.g., 100 or more) the dynamic range of the o,(i) computation will exceed the precision 
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range of essentially any machine (even in double precision). Hence the only reasonable 
way to perform the computation is to incorporate a scaling procedure. 

The basic scaling procedure multiplies a,(i) by a scaling coefficient that is indepen­
dent of i (i.e., it depends only on t), with the goal of keeping the scaled, a,(i) within the 
dynamic range of the computer for I ~ t ~ T. A similar scaling is done to the {31(i) 
coefficients (since these also tend to zero exponentially fast) and then, at the end of the 
computation, the scaling coefficients are canceled out exactly. 

To understand this scaling procedure better, consider the reestimation formula for the 
state-transition coefficients aij. If we write the reestimation formula (Eq. (6.40b)) dir~ctly 
in terms of the forward and backward variables, we get 

T-l 

L o:,(i)aijbj(o,+ 1 )f31+ 1 (j) 
r=l liij = -T--N--------- (6.93) 

L L o:,(i)aijbj(o,+df31+1U) 
t=I J=I 

Consider the computation of cx,(i). We use the n~tation cx1(i) to denote the unscaled 
as, o,(i) to denote the scaled (and iterated) as, and o,(i) to denote the local version of 
a before scaling. Initially, fort= 1, we compute cx1(i) according to Eq. (6.19) and set 
&1 (i) = 01 (i), with Ct = LN I and 01 (i) = Ct a1 (i). For each t, 2 < t < T, we first 

o:,(i) - -
-- 1=1 

compute &r(i) according to the induction formula (Eq. (6.20)), in terms of the previously 
scaled &,(i); that is, 

N 

&,(i) = L o,-1(J)a1;b;(o,). 
J=l 

We determine the scaling coefficient c1 as 

Ct= _N __ _ 

Z: J,u) 
i=I 

giving 

&,(i) = c,&,(i) 

From Eq. (6.94a--c) we can write the scaled &,(i) as c,&,(i) or 

N 

L &,_ 1 (j)a1;b;(o,) 

a,(i) = -N:-:-J_=--:lN~-----

L L &,_ 1 (j)ajib;(o,) 
i=l J=I 

(6.94a) 

(6.94b) 

(6.94c) 

(6.95) 
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BY induction we can write &,_ 1 (J) as 

'fhus we can write &,(i) as 

o,(i) 
N 

L a,(i) 
i=I 

that is, each a,(i) is effectively scaled by the sum over all states of o,(i). 

367 

(6.96a) 

(6.96b) 

Next we compute the /3,(i) tenns from the backward recursion. The only difference 
here is that we use the same scale factors for each time t for the betas as was used for the 
alphas. Hence the scaled {3s are of the fonn 

,. 

/3r(i) = Cr/3r(i). (6.97) 

Because each scale factor effectively restores the magnitude of the o tenns to 1, and 
because the magnitudes of the a and {3 tenns are comparable, using the same scaling 
factors on the {3s as was used on the os is an effective way to keep the computation 
within reasonable bounds. Furthermore, in tenns of the scaled variables, we see that the 
reestimation Eq. (6.93) becomes 

T-1 

L &,(i)aijbj(o,+1)~1+1(1) 
- t=l' aij = -T--l _N _______ _ (6.98) 

LL &,(i)aijbj(01+1)fi1+1 (j) 
t=l j=l 

but each &,(i) can be written as 

&,(i) = [IT c,] o,(i) = C,o,(i) 
s=l 

(6.99) 

A 

and each f3r+ 1 (j) can be written as 

~1+1U) = [ II c,].B,+1U) = D,+1.B,+1(1). 
s=t+l 

(6.100) 

Thus Eq. (6.98) can be written as 
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v •v1odels 
T-1 

_L c,a,(i)aijbj(o,+i>D,+1/3,+1 (j) 
- -~' ~( ___________ _ 
au= r-1 N 

~ L C,a:,(i)aubj(o,+1 )D,+1 /3,+1 (j) 
(6.I0J) 

t=I }=I 

Finally the term C,D,+ 1 can be seen to be of the form 

t T T 

C,Dr+I = IT Cs IT Cs = IT Cs = Cr 
s=I s=t+I s=I 

(6.102) 

independent of r. Hence the terms C,Dr+ 1 cancel out of both the numerator and denominat 
of Eq. (6. IOI) and the exact reestimation equation is therefore realized. or 

It should be obvious that the above scaling procedure applies equally well to rees­
timation of the 1r or B coefficients. It should also be obvious that the scaling procedure 
of Eq. (6.95) need not be applied at every time instant t, but can be performed whenever 
desired, or whenever necessary (e.g., to prevent underflow). If scaling is not perfonnect 
at some instant t, the scaling coefficients c, are set to I at that time, and all the conditions 
discussed above are then met. 

The only real change to the HMM procedure because of scaling is the procedure for 
computing P(OI>.). We cannot merely sum up the &r(i) terms, because these are scaled 
already. However, we can use the property that 

T N N 

IT c, L a:r(i) = Cr L a:r(i) = I. 
t=I i=I i=I 

(6.l03) 

Thus we have 
T 

IT c, • P(O/.-\) = I 
t=I 

(6.104) 

or 

P(Oj.-\) = __.!__ 
T (6.l05) 

II c, 
t=l 

or 

T 

log [P(O/.-\)] = L log c,. (6.l06) 
t== I 

Thus the log of p can be computed b p . . 
of the machine anyway. ' ut not , smce it would be out of the dynamic range 

Finally we note that when usin th V' . . 
state sequence no seal' . . g _e Iterbi algorithm to give the maximum likelihood 

. ' mg 1s reqmred 1f w 1 . 
Viterbi implementation. e use oganthms as discussed in the alternate 
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Multiple Observation Sequences 
,.12.2 

In Section 6.5 we discussed a fonn of HMM called the left-right or Baki model, in which 
the state proceeds from state I at r = I to state N at t = T in a sequential nwmer (ra::all 
the model of Figure 6.8(b)). We have already discussed how a left-righl model imposes 
constraints on the state-transition matrix, and the initial state probabiliti Eqs. 6.45}­
(6.48). However, the major problem with left-right model i tha1 one canno1 use a single 
observation sequence to train the model (i.e., for reestimation of model parameters). Th. 
,is because the transient nature of the states within the model allows only a mall number of 
observations for any state (until a transition is made to a successor state . Hc:nc:e, to ba 
sufficient data to make reliable estimates of all model parameters, one has to use multiple 
observation sequences (l 18]). 

The modification of the reestimation procedure is straightforward and i as folio 
We denote the set of K observation sequences as 

(6.107) 

where Q(k> = (o\k>oik> ... o~ 1
) is the kth observation sequence. We a sume each observ tion 

sequence is independent of every other observation sequence. and our goal i to ndju t the 
parameters of the model A to-maximize 

K 

P(OI-X) = II P(O<*>I-X) (6.108) 
k=I 

K 

= II Pk. (6.109) 
k=I 

Since the reestimation formulas are based on frequencies of occurrence of variou evenrs, 
the reestimation formulas for multiple observation sequences are modified by adding to­
gether the individual frequencies of occurrence for each sequence. Thus the modified 
reestimation formulas for llij and bj(f) are 

(6.110 

and 

(6.11 l) 
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and 7T'j is not reestimated since 1r1 = I, 7T'j = 0, i f:. 1. 
The proper scaling of Eqs. (6.110)-(6.111) is now straightforward since each obser­

vation sequence has its own scaling factor. The key idea is to remove the scaling factor 
from each term before summing. This can be accomplished by writing the reestimation 
equations in terms of the scaled variables, i.e., 

(6.112) 

In this manner, for each sequence o<k>, the same scale factors will appear in each tenn of 
the sum over t as appears in the Pk term, and hence will cancel exactly. Thus using the 
scaled values of the as and (Js results in an unscaled liu. A similar result is obtained for the 
bj(l) term. 

6.12.3 Initial Estimates of HMM Parameters 

In theory, the reestimation equations should give values of the HMM parameters that 
correspond to a local maximum of the likelihood function. A key question is, therefore, 
How do we choose initial estimates of the HMM parameters so that the local maximum is 
equal to or as close as possible to the global maximum of the likelihood function? 

Basically there is no simple or straightforward answer. Instead, experience has shown 
that either random (subject to the stochastic and the nonzero value constraints) or uniform 
initial estimates of the 1r and A parameters are adequate for giving useful reestimates of these 
parameters in almost all cases. However, for the B parameters, experience has shown that 
good initial estimates are helpful in the discrete symbol case and are essential (when dealing 
with multiple mixtures) in the continuous-distribution case. Such initial estimates can be 
obtained in a number of ways; these include (a) manual segmentation of the observation 
sequence(s) into states and averaging of observations within states, (b) maximum likelihood 
segmentation of observations and averaging, and (c) segmental k-means segmentation with 
clustering, etc. We discuss such segmentation techniques later in this chapter. 

6.12.4 Effe~ of Insufficient Training Data 

Another problem associated with training HMM parameters via reestimation methods is 
that the observation sequence used for training is, of necessity, finite ([30]). Thus there 
is always an inadequate number of occurrences of low-probability events (e.g., symbol 
occurrences within states) to give good estimates of the model parameters. By way of 
example, consider the case of a discrete observation HMM. Recall that the reestimation 
transformation of bj(k), Eq. (6.40c), requires a count of the expected number of times in 
state j and observing symbol vk simultaneously. If the training sequence is so small that 
it does not have any occurrences of this event (i.e., q, = j and o, = vk), bj(k) = 0 and 
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will tay 0 after ree timation. The resultant model ould produce I mo 
for any ob rvation sequence that tually includes ( = • Ind q, == /) • 
outcome -is obviousJy a consequence of the unrdi.lble estimale b t) 
in ufficiency of the training seL 

One soJution to thi problem i to increase dire iz.c of lbt lniinillta N!llilM!fV'•t.­

Often thi i impractical. A second possible lution • to mluce die 
(e.g., number of tate . number of ymbol per st.ate). Although Ibis· 

ffl 

often there are phy ical reason why a given model i used. and lhelefort de modtl 
jze cannot be changed. A third possible solution i to sect uncon!valtiaml di:Sttcll 

estimation algorithms that can somehow enhance the reliabili of lbt DIJimlt• 
even based on limited training data. Deleted interpolation and pu1m1tter ~MOIGN 
are two uch a1tematives. Since deleted interpolation i considered m<xe 
parameter e timation method, we discuss that subject in the nelt • 

The simplest way to hand1e the effects of in ufficient tnining 
threshold constraints to the model parameters to en ure that no model ftllll'lllll'Nl•..,.esliLffille 

falls below a specified level '[ 18). Thus, for example. we might sptci 
for a discrete symbol model, that 

bj(k) = { bj(k) 
t,b, 

or, for a continuous distribution model, that 

if b1(k) _ 

otherwise 

U
. ( ) _ { U11:(r, r), if U~(r r) _ ., 

11c r, r -
hu, otherwise 

When the numeric floor is invoked in the recstimation equation . 11 re-m inin 

6.11 ) 

( . II ) 

need to be rescaled so that the densities obey the required tochastic con train . 
postprocessor techniques are thus considered implcmcntational mcuu~. to com 
insufficient data problem and have been applied with good succc to secvcral prob in 
speech processing. The method of parameter thresholding has a ju tification from a BiYi 
statistics point of view. It can be shown that Eq. (6.113b) is, in fact. a maximum a eeriori 
(MAP) estimate of the variance under the assumption that the parameter prior P U ,, r 
is an 1infonnative one with uniform distribution and (Ujt(r,r)). = 68 [31). (See Section 
6.13.) 

·6.12.5 Choice of Model 

The 1remaining issues in implementing HMMs are the choice of type of model ergodjc 
or lef1-right or some other form), choice of model size (number of--,,~ and cboa (Jf 
observation -symbols (discrete or continuous. single or multimixtum-cboice of oblervalim 
parameters). Unfortunately. there is no simple. theoreticall COIRCt of making 
choices. These choices must be made depending on lhe signal being modeled. ilh dae 
comments, we end our discussion of the theorerieal aspects of hidden Mln&:W 111oaa:u 
and proceed to a discussion of ho such models ha e been applied lO • 11· OlallCd 

recognition .problem. 
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6.13 IMPROVING iTHE EFFECTIVENESS OF MODEL ESTIMATES 

We discuss three methods that have been shown to be able to enhance the effectiveness 
of HMM model estimates for speech recognition. These are (I) deleted interpolation, (2) 
Bayesian adaptation, and (3) corrective training. The first two methods are motivated by 
the problem of insufficient data, while the last method has the unique objective of trying to 
reduce recognition errors directly. 

6.13.1 Deleted Interpolation 

When training data are insufficient, reliable and robust determination of HMM parameters 
cannot be accomplished. The HMM obtained by the Baum-Welch reestimation method, 
based on the maximum likelihood criterion, may be adequate in characterizing the training 
data, but for new data the match may be quite poor. One parameter estimation method that 
aims to improve the model reliability is the method of "deleted interpolation." 

The concept involves combining two (or more) separately trained models, one of 
which is more reliably trained than the other. A scenario in which this can happen is the 
case when we use tied states which forces "different" states to share an identical statistical 
characterization, effectively reducing the number of parameters in the model. A model with 
tied states is often more robust than a model without tied states when trained on the same 
amount of data. But a model with tied states is also less precise than a model without tied 
states if the training data are sufficient. Therefore, the idea of combining the two models 
is to allow us to fall back to the more reliable model when the supposedly more precise 
model is, in fact, unreliable. A similar scenario occurs when context-independent (more 
robust) and context-dependent (more precise) phone models are used in large vocabulary 
recognition (see Chapter 8). 

Let the two models be defined by the parameter sets A = (A, B, 1r) and A' 
(A', B', 1r'), respectively. The interpolated model, 5. = (A, B, ii-), is obtained as 

(6.114) 

where E represents the weighting of the parameters of the "full" model (with more detailed 
characterization of the observations) and (1 - E) represents the weighting of the parameters 
of the reduced, but more reliable, model. A key issue is the determination of the optimal 
value of E, which is a strong function of the amount of training data. This is easy to see 
because as the amount of training data gets large, A becomes more reliable and we expect f. 
to tend to 1.0. Similarly, for small amounts of training data, A is unreliable and we expect 
E to tend to 0.0 so as to fall back to the more reliable model A'. 

The solution to the detennination of an optimal value for E was provided by Jelinek 
and Mercer [30), who showed how the optimal E could be estimated using the forward­
backward algorithm by interpreting Eq. (6.114) as an expanded HMM of the type shown 
in Figure 6.12. Figure 6.12a shows the part of the state-transition structure related to the 
state S. Using Figure 6.12b, we can interpret the interpolated model of Eq. (6.114) as an 
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-s 

(a) (b) 

Figure 6.12 Example of how the process of deleted inlapolalion an 
be represented using a state diagram. 

m 

expanded HMM in which each state is replaced by three states. The null tran iti from 
the expanded state S to S and S' have transition probabilities! and I - . respectivel . The 
transitions out of S are characterized by those of .X while those out of S' are iated with 
those of ,V. 

The expanded HMM interpretation suggests that the parameter can be optim ly 
determined by the usual forward-backward algorithm. However, ince the interpol ti n i 
designed to better predict unseen (future) data, rather than to account for the trainin data. 
determination of € must be based on data that was not used in obtaining eith r of the tw 
models, .X and .X'. A,key idea of deleted interpolation is thus to partition the training data 
7 into two disjoint sets; that is, T = Ti U 7i. For example, one might con ider a panition 
of the training set such that Ti is 90 percent of T and 7i is the remaining 10 percent of 
T. Training set Ti is first used to train .X and .X'. Training set 7i is then used to give an 
estimate of f, assuming .X and A' are fixed. There are obviously a large number of way in 
which such a partitioning can be accomplished, but one particularly simple one is to cycle 
7i through the data. That is, the first partition uses the last 10 percent of the data as Ti, the 
second partition uses the next-to-last 10 percent of the data as 7i, etc. An interpretation of 
deleted inteq>0lation is straightforward. If the unseen data fits the more elaborate model 
.X well (thus validating the reliability of -X), the forward-backward algorithm would give a 
value of f which is close to 1. Otherwise, the forward-backward algorithm gives a small 
value of €, indicating that the more reliable model ).' is a better characterization of the new 
data than .X. 

The technique of deleted interpolation has been successfully applied to a number of 
problems in speech recognition, including the estimation of trigram word probabilities for 
language models [ 13], and the estimation of HMM output probabilities for trigram phone 
models (to be discussed in Chapter 8 of this book). 

6.13.2 Bayesian Adaptation 

Another insufficient data situation occurs when we attempt to estimate a speaker-dependent 
model based on a limited amount of speaker-specific training data. An approach to this 
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problem is through speaker adaptation, in which a speaker-independent model, obtained by 
reliable training, is adapted to the particular talker using speaker-specific training data [31]. 

Speaker adaptation can be accomplished based on a Bayesian framework. Consider 
the HMM probability measure P(0I-X). If the HMM parameter>. is assumed to be fixed 
but unknown, the maximum likelihood (ML) estimate for >., given the training sequence 

• 0, is obtained by solving the likelihood equation, i.e. 

8 
a>. P(OI>-) = o. (6.115) 

/ 

(Normally, the Baum-Welch reestimation algorithm is used to obtain certain stationary 
point solutions instead of directly solving for Eq. (6.115).) If>. is assumed random with a 
priori distribution P0(>.), then the maximum a posteriori (MAP) estimate for>. is obtained 
by solving 

8 
-P(>.1O) = 0 a>. 

for the given training sequence 0. Using the Bayes theorem, we rewrite P(>.1O) as 

>-I0 _ P(Ol>-Wo(>.) 
P( ) - P(O) • 

(6.116) 

(6.117) 

The influence of the parameter prior Po(>.) in the solution process thus becomes explicit. 
Note that if the distribution is correctly chosen, the MAP solution attains minimum Bayes 
risk. 

The parameter prior distribution characterizes the statistics of the parameters of 
interest before any measurement is made. If the prior distribution indicates no preference 
as to what the parameter values are likely to be, then the prior is called a noninformative 
prior (which is essentially constant for the entire parameter space). In this case, the MAP 
estimate obtained by solving Eq.(6.116) is identical to the ML estimate of Eq. (6.115). If 
we do have prior knowledge about the parameter values of the model, the incorporation of 
such prior knowledge in the form of a prior distribution would become important in the 
MAP estimate for minimum Bayes risk. This type of prior is often called an informative 
prior. Intuitively, if we know what the parameter values are likely to be before observations 
are made, we may be able to make good use of the data, which may be limited, to obtain 
a good model estimate. If this is true, the questions remaining are how to derive the 
informative prior and how to use it in obtaining the MAP estimate. 

For mathematical tractability, conjugate priors are often used in Bayesian adaptation. 
A conjugate prior for a random vector is defined as the prior distribution for the parameters 
of the probability density function of the random vector, such that the posterior distribution 
P(>.1O) and the prior distribution P(>.) belong to the same distribution family for any sample 
observations 0. For example, it is well known that the conjugate prior for the mean of a 
Gaussian density is also a Gaussian density. In the following, we therefore discuss only 
the use of conjugate priors. We also discuss only the case of Bayesian adaptation of the 
Gaussian mean as it is sufficient to demonstrate the idea of Bayesian adaptation in dealing 
with small training set problems. 
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Let u focu on a Gau ian mixture component N(µ a-1) in I mitnndenlitf 

We use one-dimen ional observation for implidty. sume the me111 p, • 
nor distribution Po(µ) and the variance <72 is lnown and filed. It can be Sb0"'8 

~njugate prior forµ, i also Gaus ian; that i , if we assume l'o{Jt) to be the conrN•prior 
ofµ,, men Po(µ,) is Ga~ssian. Thus, let us ~ the mean and ffl'RID ~ Ille prior for 
µ by p and r 2

, respect1vely .. ~e MAP es~~ f~ the meat ,-■,ttlCJI 11 
adaptation, from a set of n trammg observations, is given by 

where 6 is the sample mean of the n training data. 1bc inte.rpremion of Eq~ 
follows. lf there are no ,training data presented, n = 0 and die best tuna . of p, 

(6.111 

the mean p of the prior distribution of the µ parameter. When tn.inin dllbl Ille tolltclt~ 
u ed. the MAP estimate becomes a weighted average of the prior mean p and tile samlOle 
mean of the presented observations. 6. Ultimately, n ➔ and the p. 
expected, the sample mean o. It should also be noted that if the pri ari 
larger than a 2 / n. the MAP estimate in Eq. (6.118) is essentially the ML 
corresponds to the case of using noninformative priors. 

A key question is, How do we determine p and r2? ln practice. pri 
have to be estimated from a collection of speaker-dependent or multi pe 
from a speaker-indepe:ident model with mixture distribution in each tat . F if 
p and r 2 can be estimated by 

and 

M 

p = L c,,,p,,, 
m=I 

M 

r2 = L c,,,(p,,, - p)2 
m=l 

(6.119a) 

(6.119b) 

where Cm is the weight assigned to the mm model (or the m'1' mixture component in die 
corresponding state of a mixture density speaker-independent HMM) and p,,, ' die mean of 
the corresponding mth model (or mixture component). When using a spcaker-indcpcndau 
Gaussian mixture HMM, the weight c., is basically the mixture gain for the ,,,;a mixture 
component, and the estimates of Eq. ( 6.119) are the ML estiroares 1Jf the mean and VII· u· nee 
parameters ofµ before any speak.er-specific training data are observed. 

The concept of Bayesian adaptation based on conjugate priors can be applied to 

other parameters as well. The adaptation method can be shown to provide good pannw::ICa 
estimates even when the number of speaker-specific training tokens is extremely limited. 
Experiments have shown that large improvements in recognition accuncy ~ obainc:d 
with the Bayesian adaptation method, compared to direct tnining, panicululy when only 
a small number of training tokens are available (30). 
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6.13.3 Corrective Training 

In statistical pattern recognition, the minimum Bayes' risk is the theoretical recognizer 
performance bound, conditioned on the exact knowledge of both the class prior P(v) and 
the conditional distributions P(Olv). When both distributions are not known exactly, and 
the classifier needs to be designed based on a finite training set, there are several ways to try 
to reduce the error rate. One method is based on the theoretical link between discriminant 
analysis and distribution estimation [32]. The idea is to design a classifier (discriminant 
function) such that the minimum classification error rate is attained on the training set. In 
particular, we wish to design a classifier that uses estimates of P(v) and P(Olv), and that 
achieves a minimum error rate for the training set in the same way a discriminant function 
is designed. The reason for using the HMM, P(OI>.,.), for modeling P(Olv), as opposed 
to other discriminant functions, is to exploit the strengths of the HMMs-consistency, 
flexibility and computational ease. 

Bahl et al. [33] were the first to propose an error-correction strategy, which they 
named corrective training, to specifically deal with the misclassification problem. Their 
training algorithm was motivated by analogy with an error-correction training procedure for 
linear classifiers. In their proposed method, the observation distribution is of a discrete type, 
B = [b;(k)], where b;(k) is the probability of observing a vector quantization code index 
(acoustic label) k when the HMM source is in state i. Each b;(k) is obtained via the forward­
backward algorithm as the weighted frequency of occurrence of the code index. The 
corrective training algorithm of Bahl et al. works as follows. First, use a labeled training set 
to estimate the parameters of the HMMs A = { >-v} with the forward-backward algorithm. 
For each utterance 0, labeled as v, for example, evaluate P(Ol>-v) for the correct class v and 
P(Ol>-w) for each incorrect class w. (The evaluation of likelihood for the incorrect classes 
need not be exhaustive.) Foreveryutterancewherelog P(Ol>-w) > log P(OIAv)-d, where 
d is a prescribed threshold, modify Av and Aw according to the following mechanism: 
(1) Apply the forward-backward algorithm to obtain estimates b:Ck) and b;'(k), using 
the labeled utterance O only, for the correct class v and incorrect class w, respectively; 
(2) Modify the original b;(k) in Av to b;(k) + ,b;(k) and the b;(k) in Aw to b;(k) - ,b!'(k). 
When the state labels are tied for certain models, the above procedure is equivalent to 
replacing the original b;(k) by b;(k)+,(b;(k)-b;'(k)). The prescribed adaptation parameter, 
,, controls the "rate of convergence" and the threshold, d, defines the "near-miss" cases. 
This corrective training algorithm therefore focuses on those parts of the model that are 
most important for word discrimination, a clear difference from the maximum likelihood 
principle. 

Bahl et al. reported that the corrective training procedure worked better (in isolated 
word-recognition tasks) than models obtained using the maximum mutual information 
or the conditional maximum likelihood criterion. The method, however, is primarily 
experimental. 

Several other forms of discriminative training were also proposed by Katagiri et al. 
[34] together with a framework for the analysis of related training/learning ideas for 
minimizing recognition errors. The discriminative training method described in Sec. 5.6.3 
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sec. 6.14 Model Clustering and Splitting 

can be applied to HMM training without difficulty. The corrective training algorithm of 
Bahl et al. can be shown to be just one possible choice for the minimization of a prescribed 
risk function. 

6
_
14 

MODEL CLUSTERING AND SPLITTING 

One of the basic assumptions in statistical modeling is that the variability in the observations 
from an information source can be modeled by the assumed statistical distributions. For 
speech recognition, the source could be a single word, a subword unit like a phoneme. or 
a word sequence. Because of variability in the production (e.g., accents speed of talking) 
or the processing (e.g., transmission distortion, noise), it is often expedient to con ider 
using more than a single HMM to characterize the source. There are two motivation 
behind this multiple HMM approach. First, lumping together all the variability from 
inhomogeneous data sources leads to unnecessarily complex models, often yielding lower 
modeling accuracy. Second, some of the variability. or rather the inhomogeneity in the 
source data, may be known a priori, thus warranting separate modeling of the source data 
sets. 

Several generalized clustering algorithms exist, such as the k-means clustering algo­
rithm, the generalized Lloyd algorithm as is widely used in vector quantizer design (35 J. 
and the greedy growing algorithm found in set partition or decision tree designs [36). all 
of which are suitable for the purpose of separating inconsistent training data so that each 
divided subgroup becomes more homogeneous and therefore is better modeled by a single 
HMM. The nearest-neighbor rule required in these clustering algorithms is simply to assign 
an observation sequence Oto cluster i if 

P(OI,\;) = m~x P(OI.Xi) 
J 

(6.120) 

where ,\is denote the models of the clusters. Successful application of the model clus­
tering algorithms to the speech-recognition problem, using the straightforward maximum 
likelihood criterion, has been reported. 

An alternative to model clustering is to arbitrarily subdivide a given speech source 
into a large number of subclasses with specialized characteristics and then consider a 
generalized procedure for model merging based on source likelihood considerations. By 
way of example, for large vocabulary speech recognition we often try to build specialized 
units (context sensitive) for recognition. For example, we could consider building units 
that are a function of the sound immediately preceding the unit (left-context) and the sound 
immediately following the unit (right-context). There are on the order of 10,000 such units 
in English. Many of the units are functionally almost identical. The problem is how to 
determine which pairs of units should be merged (so that the number of model units is made 
more manageable and the variance of the parameter estimate is reduced). To get ideas. 
consider two distinct models, ,\0 and ,\b, corresponding to training observation sets Oa and 
Ob, and the merged model Aa+b, corresponding to the merged observation sets {Oa, Ob}. 
We can then compute the change in entropy (i.e., loss of information) resulting from the 
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merged model as 

M-fab =Ha+ Hb - Ha+b 

= -P(Oal-Xa) log P(0 0 I-Xa) - P(OblAb) log P(OblAb) (6.121) 

+ P( {Oa, Ob}l>-a+b) log P( {Oa, Ob}l>-a+b), 

Whenever M-lab is small enough, it means that the change in entropy resulting from 
merging the models will not affect system performance (at least on the training set) and the 
models can be merged. The question of how small is acceptable is dependent on specific 
applications. This model merging technique has been used successfully by Lee [37] to 
create a generalized set of triphone models for large vocabulary speech recognition. 

6.15 HMM SYSTEM FOR ISOLATED WORD RECOGNITION 

To illustrate the techniques discussed in this chapter, consider using HMMs to build an 
isolated word recognizer ([38]). Assume we have a vocabulary of V words to be recognized 
and that each word is to be modeled by a distinct HMM. Further assume, for simplicity of 
notation, that for each word in the vocabulary we have a training set of K utterances of the 
word (spoken by one or more talkers) where each utterance constitutes an observation se­
quence, of some appropriate representation of the (spectral and/or temporal) characteristics 
of the word. To do isolated word speech recognition, we must perform the following: 

1. For each word v in the vocabulary, we must build an HMM Av-that is, we must 
estimate the model parameters (A, B, 1r) that optimize the likelihood of the training 
set observation vectors for the vth word. 

2. For each unknown word to be recognized, the processing shown in Figure 6.13 must 
be carried out, namely, measurement of the observation sequence O = {o1 o2 ... Or}, 
via a feature analysis of the speech corresponding to the word; followed by calculation 
of model likelihoods for all possible models, P(OIAv), 1 < v < V; followed by 
selection of the word whose model likelihood is highest-that is, 

(6.122) 

The probability computation step is generally performed using the Viterbi algorithm (i.e., 
the maximum likelihood path is used) and requires on the order of V . N2 . T computations. 
For modest vocabulary sizes, e.g., V = 100 words, with an N = 5 state model, and T = 40 
observations for the unknown word, a total of 1 c>5 computations is required for recognition 
(where each computation is a multiply, and add, and a calculation of observation density, 
b(o)). Clearly this amount of computation is modest compared to the capabilities of most 
modem signal processor chips. 
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