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Solution 3.3 
Given the definition of Sn(ei"') we have 

Xn(ei"') = 1Sn(ei"')j2 = [Sn(ei"')][Sn(ei"')t 

= lt= s(m)w(n - m)e-iw• l [,f s(r)w(n - r)Jw'] 

00 00 

= L L w(n - m)s(m)w(n - r)s(r)e-jw(m-r> 

r=-oo m=-oo 

Let r = k + m, then: 

00 00 

k=-oo k=-oo 

(since Rn(k) = Rn( -k)); therefore 

3.2.2.4 FFT Implementation of Uniform Filter Bank Based on the Short-Time 
Fourier Transform 

We now return to the question of how to efficiently implement the computation of the set 
of filter-bank outputs (Eq. (3.15)) for the uniform filter bank. If we assume, reasonably, 
that we are interested in a uniform frequency spacing-that is, if 

f; = i(Fs/N), i=O,I, ... ,N-I (3.21) 

then Eq. (3.15a) can be written as 

x;(n) = ei('lg-)in Ls(m)w(n - m)e-i(~)im_ (3.22) 
m 

Now consider breaking up the summation over m, into a double summation of rand k, in 
which 

m = Nr + k, 0 < k ~ N - 1, -oo < r < oo. 

In other words, we break up the computation over m into pieces of size N. If we let 

Sn(m) = s(m)w(n - m), 

then Eq. (3.22) can be written as 

(3.23) 

(3.24) 

(3.25) 
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Since e-j1.1rir = l, for all i, r, then 

(3.26) 

If we define 
Un(k) = L Sn(Nr + k), (3.27) 

r 

we wind up with 

x;(n) = eiC2; )in [I: Un(k)e-i( i; )ik] 

k=O 

(3.28) 

which is the desired result; that is, x;(n) is a modulated N-point DFf of the sequence un(k). 
Thus the basic steps in the computation of a uniform filter bank via FFf methods are 

as follows: 

1. Fonn the windowed signal sn(m) = s(m) w(n - m), m = n - L + 1, ... , n, where 
w(n) is a causal, finite window of duration L samples. Figure 3.16a illustrates this 
step. 

2. Fonn un(k) = L s11(Nr + k), 0 ::; k < N - 1. That is, break the signal Sn(m) into 
r 

pieces of size N samples and add up the pieces (alias them back unto itself) to give a 
signal of size N samples. Figures 3.16b and c illustrate this step for the case in which 
l»N. 

3. Take the N-point DFf of Un(k). 

4. Modulate the DFf by the sequence ei( 
2
: )in. 

The modulation step 4 can be avoided by circularly shifting the sequence, u11(k), by n EB N 
samples (where EB is the modulo operation), to give un((k - n))N, 0 < k < N - 1, prior to 
the DFf computation. 

The computation to implement the uniform filter bank via Eq. (3.28) is essentially 

CFBFFf ~ 2N log N•, +. (3.29) 

Consider now the ratio, R, between the computation for the direct form implementation of 
a uniform filter bank (Eq. (3.13)), and the FFT implementation (Eq. (3.29)), such that 

R = CoFFIR = LQ 
C FBFFT 2N log N • 

(3.30) 

If we assume N = 32 (i.e., a I 6-channel filter bank), with L = 128 (i.e., 12.8 msec impulse 
response filter at a IO-kHz sampling rate), and Q = 16 channels, we get 

R = 128 • 16 _ 
2 · 32 · 5 - 6.4. 

The FFf implementation is about 6.4 times more effi • h h ct· & ture 
c1ent t an t e 1rect 1orm struc • 
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Figure 3.16 FFf implementation of a uniform filter bank. 
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Figure 3.17 Direct form implementation of an 
arbitrary nonuniform filler bank. 

3.2.2.5 Nonuniform FIR Filter Bank Implementations 

89 

m 

The most general form of a nonuniform FIR filter bank is shown in Figure 3.17, where the 
kth bandpass filter impulse response, hk(n), represents a filter with center frequency wk, and 
bandwidth !:iwk. The set of Q bandpass filters is intended to cover the frequency range of 
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1 2 3 (a) 

f 

1 2 3 4 5 6 7 (b) 

f 

Figure 3.18 Two arbitrary nonuniform filter-bank ideal filter specifications 
consisting of either 3 bands (part a) or 7 bands (part b). 

interest for the intended speech-processing application. 
In its most general form, each bandpass filter is implemented via a direct convolution; 

that is, no efficient FFf structure can be used. In the case where each bandpass filter is 
designed via the windowing design method (Ref. [ 1 ]), using the same lowpass window, we 
can show that the composite frequency response of the Q-channel filter bank is independent 
of the number and distribution of the individual filters. Thus a filter bank with the three 
filters shown in Figure 3.18a has the exact same composite frequency response as the filter 
bank with the seven filters shown in Figure 3.18b. 

To show this we denote the impulse response of the kth bandpass filter as 

hk(n) = w(n)hk(n), (3.31) 

where w(n) is the RR window, and hk(n) is the impulse response of the ideal bandpass filter 
being designed. The frequency response of the kth bandpass filter, Hk(eiw), can be written 
as 

(3.32) 

Thus the frequency response of the composite filter bank, H(eiw), can be written as 

Q Q 

H(eiw) = L Hk(eiw) = L W(eJ°w)@ /h(eiw). (3.33) 

k=I k=I 

By interchanging the summation and the convolution we get 

Q 

H(eiw) = W(eiw)@ L Hk(eJ°w). (3.34) 

k=l 

By realizing_ ~at_the summation of Eq. (3.34) is the summation of ideal frequency responses, 
we see that 1t 1s mdependent of the number and distribution of the individual filters. 'fhus 
we can write the summation as 

Wmin < W < Wmax 

otherwise 
(3.35) 
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where Wmin is the lowest frequency in the filter bank, and Wmax is the highest frequency. 
Then Eq. (3.34) can be expressed as 

(3.36) 

independent of the number of ideal filters, Q, and their distribution in frequency, which is 
the desired result. 

3.2.2.6 FFT-Based Nonuniform Filter Banks 

One possible way to exploit the FFf structure for implementing uniform filter banks 
discussed earlier is to design a large uniform filter bank (e.g., N = 128 or 256 channels) 
and then create the nonuniformity by combining two or more uniform channels. This 
technique of combining channels is readily shown to be equivalent to applying a modified 
analysis window to the sequence prior to the FFf. To see this, consider taking an N-point 
DFf of the sequence x(n) (derived from the speech signal, s(n), by windowing by w(n)). 
Thus we get 

N-1 

xk = Lx(n)e-j
2
;nk, 

n=O 

as the set of DFT values. If we consider adding DFf outputs Xk and Xk+I, we get 

N-1 

Xk +Xk+I = LX(n) (e-j
2
;nk +e-j

2
;n(k+I)) 

n=O 

which can be written as 

(3.37) 

(3.38) 

(3.39) 

i.e. the equivalent kth channel value, Xt, could have been obtained by weighting the 
sequence, x(n), in time, by the complex sequence 2e-F';/ cos ( ~n). If more than two 
channels are combined, then a different equivalent weighting sequence results. Thus FFf 
channel combining is essentially a "quick and dirty" method of designing broader bandpass 
filters and is a simple and effective way of realizing certain types of nonuniform filter bank 
analysis structures. 

3.2.2.7 Tree Structure Realizations of Nonuniform Filter Banks 

A third method used to implement certain types of nonuniform filter banks is the tree 
structure in which the speech signal is filtered in stages, and the sampling rate is successively 
reduced at each stage for efficiency of implementation. An example of such a realization 
is given in Figure 3.19a for the 4-band, octave-spaced filter bank shown (ideally) in 
Figure 3.19b. The original speech signal, s(n), is filtered initially into two bands, a low 
band and a high band, using quadrature mirror filters (QMFs)-i.e., filters whose frequency 
responses are complementary. The high band, which covers half the spectrum, is reduced 
in sampling rate by a factor of 2, and represents the highest octave band ( 1r /2 ~ w :::; 1r) of 
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Figure 3.19 Tree structure implementation of a 4-band, octave-spaced, filter bank. 

the filter bank. The low band is similarly reduced in sampling rate by a factor of 2, and is 
fed into a second filtering stage in which the signal is again split into two equal bands using 
QMF filters. Again the high band of stage 2 is decimated by a factor of 2 and is used as the 
next-highest filter bank output; the low band is also decimated by a factor of 2 and fed into 
a third stage of QMF filters. These third-stage outputs, in this case after decimation by a 
factor of 2, are used as the two lowest filter bands. 

QMF filter bank structures are quite efficient and have been used for a number of 
speech-processing applications [3]. Their efficiency for arbitrary nonuniform filter bank 
structures is not as good as for the octave band designs of Figure 3.19. 

3.2.3 Summary of Considerations for Speech-Recognition Filter Banks 

In the previous sections we discussed several methods of implementing filter banks for 
speech recognition. We have not gone into great detail here because our goal was to make 
the reader familiar with the issues involved in filter-bank design and implementation, not 
to make the reader an expert in signal processing. The interested reader is urged to pursue 
this fascinating area further by studying the material in the References at the end of this 
chapter. In this section we summarize the considerations that go into choosing the number 
and types of filters used in the structures discussed earlier in this section. 

The first consideration for any filter bank is the type of digital filter used. The 
choices are IIR (recursive) and FIR (nonrecursive) designs. The IIR designs have the 
advantage of being implementable in simple, efficient structures. The big disadvantage of 
IIR filters is that their phase response is nonlinear; hence, to minimize this disadvantage 
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a trade-off is usually made between the ideal magnitude characteristics that can readily 
be realized, and the highly nonideal phase characteristics. On the other hand, AR filters 
can achieve linear phase without compromising the ability to approximate ideal magnitude 
characteristics; however, they are usually computationally expensive in implementation. 
For speech-recognition applications, we have shown how an FFf structure can often be 
applied to alleviate considerably the computational inefficiency of FIR filter banks; hence, 
most practical digital filter bank structures use FIR filters (usually in an FFf realization). 

Once the type of filter has been decided, the next consideration is the number of filters 
to be used in the filter bank. For unifonn filter banks, the number of filters, Q, cannot be too 
small or else the ability of the filter bank to resolve the speech spectrum is greatly impaired. 
Thus values of Q less than about 8 are generally avoided. Similarly, the value of Q cannot 
be too large (unless there is considerable filter overlap), because the filter bandwidths would 
eventually be too narrow for some talkers (e.g., high-pitch females or children), and there 
would be a high probability that certain bands would have extremely low speech energy 
(i.e., no prominent harmonic would fall within the band). Thus, practical systems tend to 
have values of Q < 32. Although unifonnly spaced filter banks have been widely used for 
recognition, many practical systems have used nonunifonn spacing in an effort to reduce 
overall computation and to characterize the speech spectrum in a manner considered more 
consistent with human perception. 

A final consideration for practical filter-bank analyzers is the choice of nonlinearity 
and lowpass filter used at the output of each channel. Typically the nonlinearity has been 
a full wave rectifier (FWR), a half wave rectifier (HWR), or a center clipper. The resultant 
spectrum is only weakly sensitive to the nonlinearity. The lowpass filter used in practice 
varies from a simple integrator to a fairly good quality UR lowpass filter (typically a Bessel 
filter). 

3.2.4 Practical Examples of Speech-Recognition Filter Banks 

Figures 3.20-3.25 [4] show examples of a wide range of speech-recognition filter banks, 
including both uniform and nonunifonn designs. Figure 3.20 is for a 15-channel uniform 
filter bank in which the basic lowpass filter was designed using the windowing technique 
with a IO I -point Kaiser window. Part a of the figure shows the impulse response of the 
lowpass filter (i.e., an ideal lowpass filter response multiplied by a Kaiser window). Part b 
of the figure shows the responses of the individual filters in the filter bank (note there is no 
overlap between adjacent filters), and part c shows the composite frequency response of the 
overall filter bank. The sidelobe peak ripple of each individual filter is down about 60 dB, 
and the composite frequency response is essentially ideally flat over the entire frequency 
range of interest (approximate 100-3000 Hz). 

By contrast, Figure 3.21 is for a 15-channel unifonn filter bank in which the basic 
lowpass filter was a Kaiser window (instead of the Kaiser windowed version of the ideal 
lowpass filter). From parts band c of this figure, it can be seen that the individual bandpass 
filters are narrower in bandwidth than those of Figure 3.20; furthennore, the composite 
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Figure 3.20 Window sequence, w(n), (part a), the individual filter response (part b), and 
the composite response (part c) of a Q = 15 channel, uniform filter bank, designed using a 
IOI-point Kaiser window smoothed lowpass window (after Dautrich et al. [4]). 

filter-bank response shows 18 dB gaps at the boundaries between each filter. Clearly, this 
filter bank would be unacceptable for speech-recognition applications. 

Figures 3.22 and 3.23 show individual filter frequency responses, and the composite 
frequency response, for a 4-channel, octave-band filter bank, and a 12-channel, I /3 octave 
filter bank, frequency, respectively. Each of these nonuniform filter banks was designed 
to cover the frequency band from 200 to 3200 Hz and used linear-phase FIR filters (IOI 
points for the octave band design, and 201 points for the 1 /3 octave band design) for each 
individual channel. The peak sidelobe ripple was about -40 dB for both filter banks. 

Figure 3.24 shows a similar set of responses for a 7-channel critical band filter bank 
in which each individual filter encompassed two critical bands. Again we used IOI-point, 
linear phase, FIR filters with a peak sidelobe of -54 dB to realize each individual bandpass 
filter. Finally, Figure 3.25 shows the responses of a 13-channel, critical band filter bank 
in which the individual channels were highly overlapping. The individual bandpass filter 
responses are rather poor (e.g., the ratios of center frequency to bandwidth of each filter was 
about 8). However, this poor frequency resolution characteristic was balanced somewhat 
by the excellent time resolution of the filters. 
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Figure 3.21 Window sequence, w(n), (part a), the individual filter responses (part b), and 
the composite response (part c) of a Q = 15 channel, uniform filter bank, designed using a 
IOI-point Kaiser window directly as the Jowpass window (after Dautrich et al. [4]). 

3.2.5 Generalizations of Filter-Bank Analyzer 

95 

Although we have been concerned primarily with designing and implementing individual 
channels of a filter-bank analyzer, there is a generalized structure that must be considered 
as part of the canonic filter-bank analysis method. This generalized structure is shown in 
Figure 3.26. The generalization includes a signal preprocessor that "conditions" the speech 
signal, s(n), to a new form, s(n), which is "more suitable" for filter-bank analysis, and a 
postprocessor that operates on the filter-bank output vectors, x(m), to give the processed 
vectors x(m) that are "more suitable" for recognition. Although a wide range of signal
processing operations could go into the preprocessor and postprocessor boxes, perhaps the 
most reasonable ones include the following. 

Preprocessor Operations 

• signal preemphasis (to equalize the inherent spectral tilt in speech) 
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Figure 3.22 Individual channel responses (parts a to d) and composite filter response (part c) of a 
Q = 4 channel, octave band design, using IOI-point FIR filters in each band (after Dautrich et al. [4)). 

• noise elimination 
• signal enhancement (to make the formant peaks more prominent) 

Postprocessor Operations 

• temporal smoothing of sequential filter-bank output vectors 

• frequency smoothing of individual filter-bank output vectors 
• normalization of each filter-bank output vector 

• thresholding and/or quantization of the filter-bank output vectors 

• principal components analysis of the filter-bank output vector. 

Ods 

The purpose of the preprocessor is to make the speech signal as clean as possible so far 
as the filter bank analyzer is concerned; hence, noise is eliminated, long-time spectral 
trends are removed, and the signal is spectrally flattened to give the best immunity 10 

measurement imperfections. Similarly, the purpose of the postprocessor is to clean up lhe 

Amazon / Zentian Limited 
Exhibit 1013 

Page 127



Sec. 3.3 Linear Predictive Coding Model for Speech Recognition 97 

C 1-+ANNEL 1 CHANNEL 6 CHANNEL 11 

_JJ~ 
0 3 33 

CHANNEL 2 CHANNEL 7 CHANNEL12 

COMPOSITE 

CHANNEL 4 CHANNEL 9 

_.:h;;; _J:r1:;1 
0 3 33 0 3 33 

CHANNELS CHANNEL1O 

_.:~ _.:w1::1 
0 3.33 0 3.33 
FR E QUE NC Y (kHz) FREQUENCY (kHz) 

Figure 3.23 Individual channel responses and composite filter response of a Q = 12 channel, 1/3 octave band 
design, using 201-point FIR filters in each band (after Dautrich et al. (4)). 

sequence of feature vectors from the filter-bank analyzer so as to best represent the spectral 
information in the speech signal and thereby to maximize the chances of successful speech 
recognition [4,5]. 

3.3 LINEAR PREDIC:TIVE CODING MODEL FOR SPEECH RECOGNITION 

The theory of linear predictive coding (LPC), as applied to speech, has been well understood 
for many years (see for example Ref. [6]). In this section we describe the basics of how LPC 
has been applied in speech-recognition systems. The mathematical details and derivations 
will be omitted here; the interested reader is referred to the references. 

Before describing a general LPC front-end processor for speech recognition, it is 
worthwhile to review the reasons why LPC has been so widely used. These include the 
following: 
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Figure 3.24 Individual channel responses (parts a to g) and composite filter response (part h) of a 
Q = 7 channel critical band filter bank design (after Dautrich et al. [4]). 

1. LPC provides a good model of the speech signal. This is especially true for the quasi 
steady state voiced regions of speech in which the all-pole model of LPC provides 
a good approximation to the vocal tract spectral envelope. During unvoiced and 
transient regions of speech, the LPC model is less effective than for voiced regions, 
but it still provides an acceptably useful model for speech-recognition purposes. 

2. The way in which LPC is applied to the analysis of speech signals leads to a reasonable 
source-vocal tract separation. As a result, a parsimonious representation of the vocal 
tract characteristics (which we know are directly related to the speech sound being 
produced) becomes possible. 

3. LPC is an analytically tractable model. The method of LPC is mathematically precise 
and is simple and straightforward to implement in either software or hardware. The 
computation involved in LPC processing is considerably less than that required for 
an all-digital implementation of the bank-of-filters model described in Section 3.2. 

4. The LPC model works well in recognition applications. Experience has shown that 
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Figure 3.25 Individual channel responses and composite filter response of a Q = 13 channel, critical band spacing 

filter bank, using highly overlapping filters in frequency (after Dautrich et al. [4]). 
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ANALYZER 

Figure 3.26 Generalization of filter-bank analysis model. 

the performance of speech recognizers, based on LPC front ends, is comparable to or 
better than that of recognizers based on filter-bank front ends (see References [ 4,5, 71). 

Based on the above considerations, LPC front-end processing has been used in a large 
number of recognizers. In particular, most of the systems to be described in this book are 
based on this model. 
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Figure 3.27 Linear prediction model of speech. 

3.3.1 The LPC Model 

The basic idea behind the LPC model is that a given speech sample at time n, s(n), can be 
approximated as a linear combination of the past p speech samples, such that 

(3.40) 

where the coefficients a 1, a2, ... , ap are assumed constant over the speech analysis frame. 
We convert Eq. (3.40) to an equality by including an excitation term, G u(n), giving: 

p 

s(n) = L a;s(n - i) + G u(n), (3.41) 
i=l 

where u(n) is a normalized excitation and G is the gain of the excitation. By expressing 
Eq. (3.41) in the z-domain we get the relation 

p 

S(z) = L a;z-iS(z) + G U(z) 
i=I 

leading to the transfer function 

S(z) 
H(z) = G U(z) 

1 1 
P - A(z). 

I - La;z-i 
i=I 

(3.42) 

(3.43) 

The interpretation of Eq. (3.43) is given in Figure 3.27, which shows the nonnalized 
excitation source, u(n), being scaled by the gain, G, and acting as input to the all-pole 
system, H(z) = A:z>, to produce the speech signal, s(n). Based on our knowledge that the 
actual excitation function for speech is essentially either a quasiperiodic pulse train (for 
voiced speech sounds) or a random noise source (for unvoiced sounds), the appropriate 
synthesis model for speech, corresponding to the LPC analysis, is as shown in Figure 3.28. 
Here the normalized excitation source is chosen by a switch whose position is controlled 
by the voiced/unvoiced character of the speech, which chooses either a quasiperiodic train 
of pulses as the excitation for voiced sounds, or a random noise sequence for unvoiced 
sounds. The appropriate gain, G, of the source is estimated from the speech signal, and the 
scaled source is used as input to a digital filter (H(z)), which is controlled by the vocal tract 

Amazon / Zentian Limited 
Exhibit 1013 

Page 131



sec. 3.3 Linear Predictive Coding Model for Speech Recognition 

PITCH 
PERIOD 

',, 

IMPULSE 
TRAIN 

GENERATOR 

RANDOM 
NOISE 

GENERATOR 

VOICED/ VOCAL TRACT 

/

UNVOICED PARAMETERS 
SWITCH ,O-

u( n) TIME -VARYING 
-----+{ X r----,~ DIGITAL 

FILTER 

G 

Figure 3.28 Speech synthesis model based on LPC model. 

101 

s(n) 

parameters characteristic of the speech being produced. Thus the parameters of this model 
are voiced/unvoiced classification, pitch period for voiced sounds, the gain parameter, and 
the coefficients of the digital filter, { ak}. These parameters all vary slowly with time. 

3.3.2 LPC Analysis Equations 

Based on the model of Figure 3.27, the exact relation between s(n) and u(n) is 

p 

s(n) = L aks(n - k) + G u(n). 
k=l 

(3.44) 

We consider the linear combination of past speech samples as the estimate s(n), defined as 

p 

s(n) = L aks(n - k). (3.45) 
k=l 

We now form the prediction error, e(n), defined as 
p 

e(n) = s(n) - s(n) = s(n) - L aks(n - k) (3.46) 
k=l 

with error transfer function 
p 

A(z) = E(z) = I - L akz-k • 
S(z) k=t 

(3.47) 

Clearly, when s(n) is actually generated by a linear system of the type shown in Figure 3.27, 
then the prediction error, e(n), will equal G u(n), the scaled excitation. 

The basic problem of linear prediction analysis is to determine the set of predictor 
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coefficients, { ak}, directly from the speech signal so that th~ s~ectral prope~ies of the digital 
filter of Figure 3.28 match those of the speech waveform within the analysis window s· 

. h d. . • Ince 
the spectral characteristics of speech vary over time, t e pre ictor coefficients at a . . &IVen 
time, n, must be estimated from a short segment of the ~peech sign~l occurring around 
time n. Thus the basic approach is to find a set of predictor coefficients that minimize 
the mean-squared prediction error over a short segment of the s~eech wavefonn. (Usuan 
this type of short time spectral analysis is perfonned on successive frames of speech, Wit~ 
frame spacing on the order of IO msec.) 

To set up the equations that must be solved t~ determine the predictor coefficients, 
we define short-tenn speech and error segments at time n as 

s11(m) = s(n + m) 

en(m) = e(n + m) 

and we seek to minimize the mean squared error signal at time n 

En= Le~(m) 
m 

which, using the definition of en(m) in terms of sn(m), can be written as 

En = ~ [s.(m) - t akSn(m - k)] 

2

• 

(3.48a) 

(3.48b) 

(3.49) 

(3.50) 

To solve Eq. (3.50), for the predictor coefficients, we differentiate En with respect to each 
ak and set the result to zero, 

k = 1, 2, ... ,p (3.51) 

giving 
p 

L Sn(m - i)sn(m) = L ilk L Sn(m - i)sn(m - k). (3.52) 
m k=l m 

By recognizing that tenns of the form L sn(m - i) sn(m - k) are terms of the short-tenn 
covariance of sn(m), i.e., 

<Pn(i, k) = L Sn(m -. i)sn(m - k) (3.53) 
m 

we can express Eq. (3.52) in the compact notation 

p 

<Pn(i, 0) = E ak¢n(i, k) (3.54) 

k=l 

which describes a set __ of p equations in p unknowns. It is readily shown that the minimum 
mean-squared error, En, can be expressed as 
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p 

En = L s~(m) - L ak L sn(m)sn(m - k) 
m k=I m 

p 

= <Pn(0, 0) - L ak¢n(0, k). 
k=l 

103 

(3.55) 

(3.56) 

Thus the minimum mean-squared error consists of a fixed tenn (</>n(0, 0)) and tenns that 
depend on the predictor coefficients. 

To solve Eq. (3.54) for the optimum predictor coefficients (the aks) we have to 
compute <l>nU, k) for 1 < i < p and O ~ k ~ p, and then solve the resulting set of p 
simultaneous equations. In practice, the method of solving the equations (as well as the 
method of computing the ¢s) is a strong function of the range of mused in defining both 
the section of speech for analysis and the region over which the mean-squared error is 
computed. We now discuss two standard methods of defining this range for speech. 

3.3.3 The Autocorrelation Method 

A fairly simple and straightforward way of defining the limits on m in the summations is 
to assume that the speech segment, sn(m), is identically zero outside the interval O ~ m ~ 
N - 1. This is equivalent to assuming that the speech signal, s(m + n), is multiplied by a 
finite length window, w(m), which is identically zero outside the range O ::; m ::; N - l. 
Thus the speech sample for minimization can be expressed as 

Sn(m) = . { 
s(m + n) • w(m), 0 ::; m ::; N - 1 

0, otherwise. 
(3.57) 

The effect of weighting of the speech by a window is illustrated in Figures 3.29-3.31. 
In each of these figures, the upper panel shows the running speech waveform, s(m), the 
middle panel shows the weighted section of speech (using a Hamming window for w(m)), 
and the bottom panel shows the resulting error signal, en(m), based on optimum selection 
of the predictor parameters. 

Based on Eq. (3.57), form < 0, the error signal en(m) is exactly zero since sn(m) = 0 
for all m < 0 and the ref ore there is no prediction error. Furthermore, for m > N - I + p 
there is again no prediction error because sn(m) = 0 for all m > N - I. However, in 
the region of m = 0 (i.e., from m = 0 tom = p - 1) the windowed speech signal sn(m) 
is being predicted from previous samples, some of which are arbitrarily zero. Hence the 
potential for relatively large prediction errors exists in this region and can actually be seen 
to exist in the bottom panel of Figure 3.29. Furthermore, in the region of m = N - I (i.e., 
from m = N - 1 to m = N - l + p) the potential of large prediction errors again exists 
because the zero-valued (weighted) speech signal is being predicted from at least some 
nonzero previous speech samples. In the bottom panel of Figure 3.30 we see this effect 
at the end of the prediction error waveform. These two effects are especially prominent 
for voiced speech when the beginning of a pitch period occurs at or very close to the 
m = 0 or m = N - I points of the sample. For unvoiced speech, these problems are 
essentially eliminated because no part of the waveform is position sensitive. Hence we see 
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Figure 3.29 Illustration of speech sample, weighted speech section, and prediction error 
for voiced speech where the prediction error is large at the beginning of the section. 

20000r---.......----r--,------,-:---,.--~--,---,-~-~-.---, 
s (m) 

~ -11000 '-----L-----'----'--..___ _ __.__....___..._ ____ ____, ______ _ 

..J 
~ 15000 ,-----,------,---,.----r-,,---,---r-r----,-----,-----, 

a: 
0 a: 
a: w 

I 

I 
I 

sn (m) 

-10000------------..__..__ _ _.._ _ __._~1~ __ _,_ _ _. 
N-1 

~00,-------,-------,--,----..----.e------,-----, 

N-1+p 600 
SAMPLE 

Figure 3.30 Illustration of speech sample, weighted speech section, and prediction error 
for voiced speech where the prediction error is large at the end of the section. 
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Figure 3.31 Illustration of speech sample, weighted speech section, and prediction error 
for unvoiced speech where there are almost no artifacts at the boundaries of the section. 

105 

neither effect occurring in the bottom panel of Figure 3.3.1. The purpose of the window 
of Eq. (3.57) is to taper the signal near m = 0 and near m = N - 1 so as to minimize the 
errors at section boundaries. 

Based on using the weighted signal of Eq. (3.57) the mean-squared error becomes 

and <Pn(i, k) can be expressed as 

N-l+p 

N-l+p 

En= L e~(m) 
m=O 

<PnO, k) = L Sn(m - i)sn(m - k), 
m=O 

or 
N-1-(i-k) 

<Pn(i, k) = L Sn(m)sn(m + i - k), 
m=O 

(3.58) 
1 

(3.59) 

(3.60) 

Since Eq. (3.60) is only a function of i - k (rather than the two independent variables i and 
k), the covariance function, <Pn(i, k), reduces to the simple autocorrelation function, i.e., 

N-1-(i-k) 

¢n(i, k) = rn(i - k) = L Sn(m)sn(m + i - k). (3.61) 

m=O 
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Since the autocorrelation function is symmetric, i.e. rn(-k) = rn(k), the LPC equat· ions 
can be expressed as 

p 

L rn(li - kl)ak = r nU), 
k=l 

and can be expressed in matrix f onn as 

rn(p-1) 
rn(p - 2) 
rn(p - 3) 

(3.62) 

• (3.63) 

The p x p matrix of autocorrelation values is a Toeplitz matrix (symmetric with all diagonal 
elements equal) and hence can be solved efficiently through several well-known procedures. 
(We will discuss one such procedure, the Durbin algorithm, later in this chapter.) 

3.3.4 The Covariance Method 

An alternative to using a weighting function or window for defining sn(m) is to fix the 
interval over which the mean-squared error is computed to the range O < m < N - 1 and 
to use the unweighted speech directly-that is, 

N-1 

En= Le~(m) 
m=O 

with ¢n(i, k) defined as 

N-1 

¢n(i, k) = L Sn(m - i)sn(m - k), 
m=O 

or, by a change of variables, 

N-i-1 

¢n(i, k) = L Sn(m)sn(m + i - k), 
m=-i 

I< i <p 
O<k<p' 

(3.64) 

(3.65) 

(3.66) 

If we consider when i = p we see that the computation of Eq. (3.66) involves speech samples 
sn(m) defined from m = -p up tom = N - 1 - p and, when k = 0, sn(m + i _ k) invol~es 
~amples from O to N - 1. Hence th~ range of speech required for the complete computau_on 
1s from Sn(-:~) ~o sn_(N ~ 1 )-that ts, the samples sn(-p), Sn(-p + I), ... , Sn(-1), outside 
the error m1n1m1zat1on interval, are required. 
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Using the extended speech interval to define the covariance values, <l>nU, k), the matrix 
fonn of the LPC analysis equations becomes 

<l>nO, 1) <l>nO, 2) <PnO, 3) <PnCl ,p) a1 ¢nCl, 0) 
<Pn(2, 1) <Pn(2, 2) <Pn(2, 3) <Pn(2,p) a2 <Pn(2, 0) 
<Pn(3, 1) <Pn(3, 2) <Pn(3, 3) <Pn(3,p) Q3 <Pn(3, 0) (3.67) 

<f>n(p, 1) <f>n(p, 2) <f>n(p, 3) <Pn(p,p) ap <Pn(p, 0) 

The resulting covariance matrix is symmetric (since <PnU, k) = <Pn(k, i)) but not Toeplitz, 
and can be solved efficiently by a set of techniques called the Cholesky decomposition 
method [6). Since the full covariance form of the LPC analysis equations is genera11y not 
used for speech-recognition systems, we will not discuss this method further but instead 
will concentrate on the autocorrelation method of LPC analysis for the remainder of this 
chapter. 

3.3.5 Review Exercise 

Exercise 3.4 
Given an LPC system of the form 

G H(z) = __ P __ _ 

1 - ~akZ-k 

k=I 

how would you evaluate H(t!..,) using FFf techniques? 

Solution 3.4 
Define the LPC polynomial as 

p 

G l ~ -k A(z) = - = - a*z . 
H(z) 

k=l 

This finite polynomial in z has a time domain response,f(n), which is an FIR sequence of the 

form 

{

1 n=O 

f(n) = ~an, 1 ~ n ~ p . 

0, otherwise 

Hence we can evaluate A(t!..,), using FFfs, by supplementingf(n) with sufficient zero-valued 
samples to form an N-point sequence (e.g., N = 256, or N = 512), and talcing the DFf of that 
sequence giving A(t! 2

; *), O < k < N - 1, i.e. A(i")lw=~. We can then evaluate H(e'w) for 

w = 2~*, k = 0, 1, ... ,N - 1 as G/A(t!w)l..,=2;1. 
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LR - IY VOWEL; 
M • 14 N• 200 
AUTOCORRELATION METHOD 
HAMMING WINDOW 

4415~--------:~-------------, 

SIGNAL 
-49440L------.V....----~-::-:--------~199 

TIME (SAMPLES) 
1373,------------------------, 

ERROR -1373..._ _____________________ ~ 

0 Tl ME. (SAMPLES) 199 
,02..-,r--------------------------, 

~OG 
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LOG 
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(d) 

41~•..;._.J..------------------~~ 
0 -~ FREQUENCY 

Figure 3.32 Typical signals and spectra for LPC autocorrelation method for a segment of 
speech spoken by a male speaker (after Rabiner et al. [8]). 

3.3.6 Examples of LPC Analysis 

To illustrate some of the properties of the signals involved in LPC analysis, Figures 3.32 
and 3.33 show series of waveform and spectral plots of the windowed speech signal (part a), 
the prediction error signal (part b), the signal log spectrum (FFf-based) fitted by an LPC 
log spectrum (as defined from Exercises 3.4, part c), and the log spectrum of the prediction 
error signal (part d). The results in Figure 3.32 are for the IY vowel spoken by a male 
speaker, those of Figure 3.33 are for the AH vowel spoken by a female speaker. For both 
examples the speech sample size was 20 msec (200 samples at a 10-kHz rate) and the 
analysis was perfonned using a p = 14th order LPC analysis. For the male speaker, about 
two periods of signal were used in the analysis frame. The error signal is a factor of almost 
4 smaller in magnitude than the speech signal and has a much flatter spectral trend than 
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Figure 3.33 Typical signals and spectra for LPC autocorrelation method for a segment of 
speech spoken by a female speaker (after Rabiner et al. (81). 

109 

the speech signal. This is the important "whitening" characteristics of the LPC analysis 
whereby the error signal spectrum is approximately a flat spectrum signal representing the 
source characteristics rather than those of the vocal tract. Similar behavior is seen in the 
plots of the vowel from the female talker. Finally, it can be seen that fairly close matches 
exist between the peaks of the FFf-based signal spectrum and the LPC spectrum. 

Figures 3.34-3.36 illustrate some additional properties of the LPC analysis 
method. Figure 3 .34 shows a series of sections of the waveforms ( differentiated for preem
phasis) for several vowels, and the corresponding prediction error signals. (The prediction 
error signals have been scaled up in value so as to make their amplitudes comparable to 
those of the signal; hence, gains of about 4 to 1 were used.) The high-frequency nature of 
the prediction error signal is seen in all these examples. What can also be seen is that, for 
many cases, the prediction error signal exhibits sharp pulses at intervals corresponding to 
the pitch periods of these vowels. This characteristic behavior has been used as the basis 
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.. ~ 

~ 
Figure 3.34 Examples of signal (differentiated) and prediction error for several 
vowels (after Strube [9]). 
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Figure 3.35 Variation of the RMS prediction error with the number of predic- 1 

tor coefficients, p (after Atal and Hanauer [ I 0)). 
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Figure 3.36 Spectra for a vowel sound for several values of predictor order, p. 
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for several LPC-based pitch period estimation methods. 
Figure 3.35 shows the effect of LPC prediction order, p, on the RMS prediction error, 

En, for both sections of voiced speech (solid curve) and unvoiced speech (dashed curve). 
The prediction error in the curves is normalized by the signal energy such that at p == o 
(i.e., no prediction) En = Rn(O). A sharp decrease in normalized prediction error occurs 
for small values of p (e.g., 1-4); however, beyond this value of p the normalized prediction 
error decreases much more slowly. It is also seen that the normalized prediction error for 
unvoiced speech, for a given value of p, is significantly higher than for voiced speech. The 
interpretation of this result is that unvoiced speech is less linearly predictable than voiced 
speech, a result one would anticipate based on our understanding of the speech-production 
mechanisms. 

Finally, Figure 3.36 shows the effect of prediction order, p, on the all-pole spectrum 
and its ability to match details in the FFT' spectrum of the speech segment. Shown in 
this figure are the input speech segment, the Fourier transform of that segment, and linear 
predictive spectra for values of p from 4 to 20. It is clear that asp increases, more of the 
detailed properties of the signal spectrum are preserved in the LPC spectrum. It is equally 
clear that beyond some value of p, the details of the signal spectrum that are preserved 
are generally irrelevant ones; that is, they do not reflect the relevant spectral resonances 
or antiresonances of the inherent sound. When the analysis order, p, becomes large, the 
LPC spectrum often tries to fit individual pitch harmonics of the speech signal, thereby 
resulting in a less parsimonious representation of the sound. On the basis of extensive 
experimental evaluations, it is generally acknowledged that values of p on the order of 
8-10 are reasonable for most speech-recognition applications. 

3.3.7 LPC Processor for Speech Recognition 

At this point, rather than spending more time discussing general properties of LPC methods, 
we describe the details of the LPC front-end processor that has been widely used in speech
recognition systems. Figure 3.37 shows a block diagram of the LPC processor. The basic 
steps in the processing include the following: 

1. Preemphasis-The digitized speech signal, s(n), is put through a low-order digital 
system (typically a first-order FIR filter), to spectrally flatten the signal and to make 
it less susceptible to finite precision effects later in the signal processing. The digital 
system used in the preemphasizer is either fixed or slowly adaptive (e.g., to average 
transmission conditions, noise backgrounds, or even to average signal spectrum). 
Perhaps the most widely used preemphasis network is the fixed first-order system: 

H(z)= l-az- 1, 0.9 <a< 1.0. (3.68) 

In this case, the output of the preemphasis network, s(n), is related to the input to the 
network, s(n), by the difference equation 

s(n) = s(n) - as(n - 1). (3.69) 

Amazon / Zentian Limited 
Exhibit 1013 

Page 143



Sec. 3.3 

s(n) . 

A 
~Cm(t) 

Linear Predictive Coding Model for Speech Recognition 

N M W(n) p 

·~ .~ '~ 

PREEMPHASIS 
i(n) 

FRAME 
1 
x,(n)• X1(n) 

f----t WINDOWING ~ 
AUTOCORRELATION 

BLOCKING ANALYSIS 

w(m) 

• 
TEMPORAL PARAMETER Cm(t) LPC lm(t) 
DERIVATIVE -- WEIGHTING ~ PARAMETER ~ 

LPC ' ~ 

CONVERSION ANALYSIS 

Figure 3.37 Block diagram of LPC processor for speech recognition. 
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rm(I) 

The most common value for a is around 0.95. (For fixed-point implementations a 
value of a = 15/16 = 0.9375 is often used.) A simple example of a first-order 
adaptive preemphasizer is the transfer function 

(3.70) 

where iin changes with time (n) according to the chosen adaptation criterion. One 
possibility is to choose an = rn(l)/rn(0). Figure 3.38 shows the magnitude charac
teristics of H(eiw) for the value a = 0.95. It can be seen that at w = 1r (half the 
sampling rate) there is a 32 dB boost in the magnitude over that at w = 0. 

2. Frame Blocking-In this step the preemphasized speech signal, s(n), is blocked 
into frames of N samples, with adjacent frames being separated by M samples. 
Figure 3.39 illustrates the blocking into frames for the case in which M = (1 /3) N. 
The first illustrated frame consists of the first N speech samples. The second frame 
begins M samples after the first frame, and overlaps it by N - M samples. Similarly, 
the third frame begins 2M samples after the first frame ( or M samples after the second 
frame) and overlaps it by N -2M samples. This process continues until all the speech 
is accounted for within one or more frames. It is easy to see that if M ~ N, then 
adjacent frames overlap (as in Figure 3.39), and the resulting LPC spectral estimates 
will be correlated from frame to frame; if M « N, then LPC spectral estimates from 
frame to frame will be quite smooth. On the other hand, if M > N, there will be no 
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Figure 3.39 Blocking of speech into overlapping frames. 

overlap between adjacent frames; in fact, some of the speech signal will be totally lost 
(i.e., never appear in any analysis frame), and the correlation between the resulting 
LPC spectral estimates of adjacent frames will contain a noisy component whose 
magnitude increases as M increases (i.e., as more speech is omitted from analysis). 
This situation is intolerable in any practical LPC analysis for speech recognition. If 
we denote the p_th frame of speech by xe(n), and there are L frames within the entire 
speech signal, then 

Xt(n) = s(Mf + n), n = 0, 1, ... , N - 1, f = 0, 1, ... , L - 1. (3.71) 

That is, the first frame of speech, x0(n), encompasses speech samples .s(O), s(I), ... , 
s(N - 1 ), the second frame of speech, x 1 (n), encompasses speech samples s(M), 
s(M + 1 ), ... , s(M + N - 1 ), and the Uh frame of speech, XL- 1 (n), encompasses 
speech samples s(M(L - 1)), s(M(L - 1) + 1 ), ... , s(M(L - I)+ N - 1). Typical 
values for N and M are 300 and 100 when the sampling rate of the speech is 6.67 kHz. 
These correspond to 45-msec frames, separated by 15 msec, or a 66.7-Hz frame rate. 

3. Windowing-The next step in the processing is to window each individual frarrieso 
as to minimize the signal discontinuities at the beginning and end of each frame. The 
concept here is identical to the one discussed with regard to the frequency domain 
interpretation of the short-time spectrum in Section 3.2-namely, to use the window 
to taper the signal to zero at the beginning and end of each frame. If we define the 
window as w(n), 0 :$ n :$ N - 1, then the result of windowing is the signal 

it(n) = xe(n)w(n), 0 ~ n SN- 1. (3.72) 

A "typical" window used for the autocorrelation method of LPC (the method most 
widely used for recognition systems) is the Hamming window, which has the fonn 

• w(n) = 0.54 - 0.46 cos -- , ( 
21rn) 

N-1 
O:$n:$N-l. (3.73) 

4. Autocorrelation Analysis-Each frame of windowed signal is next autocorrelated 
to give 

N-1-m 

rt(m) = L ie(n)ie(n + m), m = 0, 1, ... ,p, (3.74) 
n=O 

where the highest autocorrelation value, p, is the order of the LPC analysis. Typically, 
values of p from 8 to 16 have been used, with p = 8 being the value used for mo~t 
systems to be described in this book. A side benefit of the autocorrelation analysis 
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is that the zeroth autocorrelation, Re(O), is the energy of the £lh frame. The frame 
energy is an important parameter for speech-detection systems and will be discussed 
further in the next chapter. 

5. LPC Analysis-The next processing step is the LPC analysis, which converts each 
frame of p + 1 autocorrelations into an "LPC parameter set," in which the set might 
be the LPC coefficients, the reflection (or PARCOR) coefficients, the log area ratio 
coefficients, the cepstral coefficients, or any desired transformation of the above 
sets. The formal method for converting from autocorrelation coefficients to an LPC 
parameter set (for the LPC autocorrelation method) is known as Durbin 's method 
and can formally be given as the following algorithm (for convenience, we will omit 
the subscript f_ on re(m)): 

t:-0> = r(O) 

k; = {r(i) - >: a)'-l)r(li - jl)} / E-1-1), 

J=I 

(3.75) 

(3.76) 

(3.77) 

(3.78) 

(3.79) 

where the summation in Eq. (3.76) is omitted for i = 1. The set of equations 
(3.75-3.79) are solved recursively for i = 1, 2, ... ,p, and the final solution is given 

as 

am = LPC coefficients = a~>, 1 < m < p (3.80) 

km = PARCOR coefficients (3.81) 

gm = log area ratio coefficients = log ( ~ ~ :: ) • (3.82) 

6. LPC Parameter Conversion to Cepstral Coefficients-A very important LPC 
parameter set, which can be derived directly from the LPC coefficient set, is the LPC 
cepstral coefficients, c(m). The recursion used is 

m > p, 

(3.83a) 

(3.83b) 

(3.83c) 

where a 2 is the gain term in the LPC model. The cepstral coefficients, "'.hich 
are the coefficients of the Fourier transform representation of the log magnitude 
spectrum, have been shown to be a more robust, reliabl_e feature set for spee~h 
recognition than the LPC coefficients, the PARCOR coefficients, or the log area rallo 
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coefficients. Generally, a cepstral representation with Q > p coefficients is used 
whereQ '.::'. (!)p. ' 

7. Parameter Weighting-Because of the sensitivity of the low-order cepstral coeffi. 
cients to overall spectral slope and the sensitivity of the high-order cepstral coeffi. 
cients to noise (and other forms of noiselike variability), it has become a standard 
technique to weight the cepstral coefficients by a tapered window so as to minimize 
these sensitivities. A formal way of justifying the use of a cepstral window is to con. 
sider the Fourier representation of the log magnitude spectrum and the differentiated 
(in frequency) log magnitude spectrum, such that 

00 

(3.84) 
m=-oo 

(3.85) 

The differential log magnitude spectrum has the property that any fixed spectral 
slope in the log magnitude spectrum becomes a constant; furthermore, any prominent 
spectral peak in the log magnitude spectrum (e.g., the formants) is well preserved 
as a peak in the differentiated log magnitude spectrum. Hence, by considering the 
multiplication by (-jm) in the representation of the differentiated log magnitude 
spectrum as a form of weighting, we get 

! [log jS(i!w)I) = f cme-jwm, (3.86) 
m=-oo 

where 
(3.87) 

To achieve the robustness for large values of m (i.e., low weight near m = Q) and 
to truncate the infinite computation of Eq. (3.86), we must consider a more general 
weighting of the form 

1 < m < Q, (3.88) 

where an appropriate weighting is the bandpass lifter (filter in the cepstral domain) 

I< m < Q. (3.89) 

This weighting function truncates the computation and de-emphasizes Cm around 
m = 1 and around m = Q. 

8. Temporal Cepstral Derivative-The cepstral representation of the speech spectrum 
provides a good representation of the local spectral properties of the signal for 
the given analysis frame [ 11 ]. An improved representation can be obtained by 
extending the analysis to include information about the temporal cepstral derivative 
(both first and second derivatives have been investigated and found to improve the 
performance of speech-recognition systems). To introduce temporal order into the 
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cepstral representation, we denote the mth cepstral coefficient at time t by cm(t). Of 
course, in practice, the sampling time t refers to the analysis frame rather than an 
arbitrary time instance. The way in which the cepstral time derivative is approximated 
is as follows: The time derivative of the log magnitude spectrum has a Fourier series 
representation of the form 

00 

8cm(t) -jwm 

8t e • (3.90) 
m=-oo 

Hence, the temporal cepstral derivative must be detennined in an appropriate manner. 
It is well known that since cm(t) is a discrete time representation (where tis the frame 
index), simply using a first- or second-order difference is inappropriate to approximate 
the derivative (it is very noisy). Hence, a reasonable compromise is to approximate 
8cm(t) / 81 by an orthogonal polynomial fit (a least-squares estimate of the derivative) 
over a finite length window; that is, 

(3.91) 

where µ is an appropriate normalization constant and (2K + I) is the number of 
frames over which the computation is performed. Typically, a value of K = 3 has 
been found appropriate for computation of the first-order temporal derivative. Based 
on the computations described above, for each frame t, the result of the LPC analysis 
is a vector of Q weighted cepstral coefficients and an appended vector of Q cepstral 
time derivatives; that is, 

(3.92) 

where o, is a vector with 2Q components and ' denotes matrix transpose. Similarly, if 
second-order temporal derivatives are computed (giving ~2cm(t)), these are appended 
too, giving a vector with 3Q components (see Section 4.6 for more details). 

3.3.8 Review Exercises 

Exercise 3.5 
To illustrate LPC analysis via the autocorrelation method, consider a predictor of order p = 2. 
Assume an autocorrelation vector with components R = (r(O), r( 1 ), r(2)). Use the Durbin 
method, described in the previous section, to solve for the LPC coefficients a1 and a2 in terms 
of the Rs. Check your answer by solving the matrix equation 

[ 
r(O) r(l) l [ a1 l = [ r(l) ] 
r( 1) r(O) a2 r(2) 

using simple matrix algebra. 
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Solution 3.5 
Using the Durbin method, we get the following steps: 

E0
> = r(O) 

k1 = r(l)/r(O) 

0\
1

> = r(l)/r(O) 

E'l = (r\O) - r\I))/r(O) 

k2 = (r(2)r(O) - r2(I))/(r
2
(0) - r\l)) 

0 ~2> = (r(2)r(0)- r\1))/(r\O) - /(1)) 

0 \2> = (r(l)r(O) - r(l )r(2))/(r2(0) - r2( 1 )) 

(2) a,= o 1 
(2) 

a2 = o2 

Using matrix algebra we get 

a, r(O) + a2r(l) = r(l) 
a,r(l) + a2r(O) = r(2) 

Solving directly for a1 and a2 we get 

a 1 = (r(l)r(O) - r(l)r(2))/(r2(0) - r2(1)) 
a2 = (r(2)r(O) - r2(1 ))/(r2(0) - r2(1 )) 

which is the same result as obtained via the Durbin method. 

Exercise 3.6 
Consider two (windowed) speech sequences x(n) and x(n) both defined for O ~ n ~ N - I. 
(Outside this region both sequences are defined to be 0.) We perfonn an LPC analysis (using 
the autocorrelation method) on each frame. Thus, from the autocorrelation sequences 

N-1-k 

r(k) = L x(n)x(n + k), 

n=O 

N-1-k 

i'(k) = L i(n)x(n + k), 
n=O 

we solve for the predictor parameter a' = (ao, a 1, ... , ap) and a' = (ao, 01 , ... , ap) (ao :::: 
ao = -1) where ' denotes matrix transpose. 

I. Show that the prediction error (residual), defined as 

N-l+p N-1-p p 2 

f:'l= ~ e'(n)= ~ [-;a;x(n-i)] 

can be written in the fonn 
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where R.r is a (p + 1) by (p + 1) matrix. Detennine Rx. 

2. Consider passing the sequence x(n) through the inverse LPC system with LPC coeffi
cients a, to give the error signal e(n), defined as 

p 

e(n) = - I: a;x(n - i). 
i=O 

Show that the mean-squared error, EJ'>, defined by 

N-l+p 

£'1') = I: [e(n)12 

n=O 

can be written in the fonn 
;:.(o) I 

1:,· =aR;a, 

where Rt is a (p + 1) by (p + I) matrix. Detennine Rx. 

3. If we fonn the ratio 
f!J'> 

D = £<Pl 

what can be said about the range of D? 
(This exercise gives an initial appreciation of the concept of distortion measures. Chapter 4 
discusses this topic in great detail.) 

Solution 3.6 
1. Since 

But 

Thus 

where 

p 

e(n) = - L a;x(n - i) 

i=O 

&' = "?~;-•'<•>+ ·g'[-t.••>in-i)l [-t•;x(•-])l 

p p N-l+p 

= La; Lai L x(n - i)x(n -J). 

i::O j=O n=O 

N-l+p N-l+p L x(n - i)x(n - J) = L x(n)x(n - j + i) = r(li - jl). 

n=O n=O 

p p 

IfP> = La; L a1r(li - jl) = a'Rxa, 
i=O j=O 

Rx= 

r(O} r(l} 
r(l} r(O} 

r(p) r(p - 1) 

r(p) l r(p - 1) 

r(O) 
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p 

2. e(n) = - L a;x(n - i) 

i=O 
Repeating the derivation of part I, we get 

p p 

E1'> = ~ a; L a/·(li - jl) = a'R;a, 
i=O j=O 

where 
r(O) r(l) r(p) 

r(l) r(O) r(p - 1) 

R,-= 
r(p) r(p - I) r(O) 

r1n) 'R 
c:, V a ,a . D . . f d" . .d 1 d • no) • 3. D = - = ---- Smee 1s a ratio o pre 1ct1on rest ua s, an smce r:,~ 1s the 
£<P> a'R.i-a 

minimum prediction residual for LPC system a, then ffel must be greater than (or equal 
to) £'-I'>. Therefore 

D ~ 1.0 

Exercise 3. 7 

A proposed measure of spectral distance between two frames of speech represented by LPC 
coefficient sets a and a, and augmented autocorrelation matrices Rx and R; (see Exercise 3.6) 
is: 

_ a'Rxa 
D(a, a) = A'R A a ;a 

1. Show that the distance function D(a, a) can be written in the computationally efficient 
form 

D(a, a) = [ (r,(O)f(O) + 2 t r,(i)r(1)) ] , 

a'R;a 

where ra(i) is the autocorrelation of the a array, i.e., 

p-i 

ra(i) = L aiai+i, 
J=O 

2. Assume that the quantities (i.e., vectors, matrices, scalars) a, a, Rx, R;, a'Rxa, Rx an_d 
Ra are precomputed; that is, they are available at the time the distance calculation 15 

require~. C~ntra~t the computation required to evaluate D(a, a) using both expressions 
for D given m this exercise. 

Solution 3. 7 
We have that 

D(a, a) = a'Rx, a = EJ'l 
a'Rxa E<P> 
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From Exercise 3.6 we get 

i=O j=O 

Lening k = j - i (j = k + i) we get 

p p-i 

£"'> = La; L a*+;r(lkl). 
i=O k=-i 

By rearranging the summations on i and k and by recognizing that ae = O, f < O and ae = O, 
f > p, we can complete the square by summing on k from -p (the smallest value of k) to +p 
(the largest value of k), giving 

The inner summation is defined as r11(k}, hence 

p 

p> = L ru(k}r(lkl). 
k=-p 

Since ra(k) = ra(-k) and r(k) = r(-k) we can write f::<P> as 

p 

£"') = ra(0)r(0) + 2 L ra(k)r(k). 

k=l 

2 Since all the individual quantities are precomputed, to evaluate D as a ratio of residuals; 
that is, 

requires 
a. (p + 1) x (p + 2) multiplies and adds to multiply a' by Rx and then multiply the 

result by a. 

b. 1 divide to give D since a'Rxa is a precomputed scalar. 
For the alternative method of evaluating D, as discussed in part l of this exercise, we 
require: 

a. (p + 1) multiplies and adds to give the product r(k)ra(k) for l $ k $ p and to give 
r(O)ra(O). 

b. 1 divide to give D since a'Rxa is a precomputed scalar. 
Thus, neglecting the divide, the alternative computation of D requires a factor of (p + 2) 
less computation and therefore is significantly more efficient than direct computation 
of the ratio of prediction residuals. 

3,3,9 Typical LPC Analysis Parameters 

The computation of the LPC analysis system of Figure 3.37 is specified by a number of 
variable parameters, including 
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N number of samples in the analysis frame 
M number of samples shift between frames 

p LPC analysis order 

Signal Processing and Analysis Methods 

Q dimension of LPC derived cepstral vector 
K number of frames over which cepstral time derivatives are computed. 

Although each of these parameters can be varied over a wide range of values, the following 
table gives typical values for analysis systems at three different sampling rates (6.67 kHz, 
8 kHz, 10 kHz). 

Typical Values of LPC Analysis Parameters for Speech-Recognition Systems 

earameter F.<; = 6.67 kHz F_<; = 8 kHz Fs = IO kHz 

N 300 (45 msec) 240 (30 msec) 300 (30 msec) 
M 100 ( 15 msec) 80 (10 msec) 100 ( 10 msec) 
p 8 10 10 
Q 12 12 12 
K 3 3 3 

3.4 VECTOR QUANTIZATION 

The results of either the filter-bank analysis or the LPC analysis are a series of vectors char
acteristic of the time-varying spectral characteristics of the speech signal. For convenience, 
we denote the spectral vectors as v t, £ = 1, 2, ... , L, where typically each vector is a p
dimensional vector. If we compare the infonnation rate of the vector representation to that 
of the raw (uncoded) speech waveform, we see that the spectral analysis has significantly 
reduced the required information rate. Consider, for example, 10-kHz sampled speech with 
16-bit speech amplitudes. A raw signal infonnation rate of 160,000 bps is required to store 
the speech samples in uncompressed format. For the spectral analysis, consider vectors 
of dimension p = IO using I 00 spectral vectors per second. If we again represent each 
spectral component to 16-bit precision, the required storage is about 100 x 1 O x 16 bps, or 
16,000 bps-about a 1 O-to-1 reduction over the uncompressed signal. Such compressions 
in storage rate are impressive. Based on the concept of ultimately needing only a single 
spectral representation for each basic speech unit, it may be possible to further reduce 
the raw spectral representation of speech to those drawn from a small, finite number of 
"unique" spectral vectors, each corresponding to one of the basic speech units (i.e., the 
phonemes). This ideal representation is, of course, impractical, because there is so much 
variability in the spectral properties of each of the basic speech units. However, the concept 
of building a codebook of "distinct" analysis vectors, albeit with significantly more code 
words than the basic set of phonemes, remains an attractive idea and is the basis behind a 
set of techniques commonly called vector quantization (VQ) methods. Based on this line 
of reasoning, assume that we require a codebook with about 1024 unique spectral vectors 
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(i.e., about 25-variants for each of the 40 basic speech units). Then to represent an arbitrary 
spectral vector all we need is a I 0-bit number-the index of the codebook vector that best 
matches the input vector. Assuming a rate of I 00 spectral vectors per second, we see that 
a total bit rate of about 1000 bps is required to represent the spectral vectors of a speech 
signal. This rate is about 1 / 16th the rate required by the continuous spectral vectors. Hence 
the VQ representation is potentially an extremely efficient representation of the spectral 
information in the speech signal. This is one of the main reasons for the interest in VQ 
methods. 

Before discussing the concepts involved in designing and implementing a practical 
VQ system, we first discuss the advantages and disadvantages of this type of representation. 
The key advantages of the VQ representation are 

• reduced storage for spectral analysis information. We have already shown that the 
VQ representation is potentially very efficient. This efficiency can be exploited in a 
number of ways in practical VQ-based speech-recognition systems. 

• reduced computation for determining similarity of spectral analysis vectors. In speech 
recognition a major component of the computation is the determination of spectral 
similarity between a pair of vectors. Based on the VQ representation, this spectral 
similarity computation is often reduced to a table lookup of similarities between pairs 
of codebook vectors. 

• discrete representation of speech sounds. By associating a phonetic label (or possibly 
a set of phonetic labels or a phonetic class) with each codebook vector, the process 
of choosing a best codebook vector to represent a given spectral vector becomes 
equivalent to assigning a phonetic label to each spectral frame of speech. A range 
of recognition systems exist that exploit these labels so as to recognize speech in an 
efficient manner. 

The disadvantages of the use of a VQ codebook to represent speech spectral vectors are 

• an inherent spectral distortion in representing the actual analysis vector. Since there 
is only a finite number of codebook vectors, the process of choosing the "best" 
representation of a given spectral vector inherently is equivalent to quantizing the 
vector and leads, by definition, to a certain level of quantization error. As the size of 
the codebook increases, the size of the quantization error decreases. However, with 
any finite codebook there will always be some nonzero level of quantization error. 

• the storage required for codebook vectors is often nontrivial. The larger we make 
the codebook (so as to reduce quantization error), the more storage is required for 
the codebook entries. For codebook sizes of I 000 or larger, the storage is often 
nontrivial. Hence an inherent trade-off among quantization error, processing for 
choosing the codebook vector, and storage of codebook vectors exists, and practical 
designs balance each of these three factors. 

3-4.1 Elements of a Vector Quantization Implementation 

To build a VQ codebook and implement a VQ analysis procedure, we need the following: 
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Figure 3.40 Block diagram of the basic VQ training and classification structure. 

1. a large set of spectral analysis vectors, v 1, v2, ... , VL, which fonn a training set. The 
training set is used to create the "optimal" set of codebook vectors for representing 
the spectral variability observed in the training set. If we denote the size of the 
VQ codebook as M = 28 vectors (we call this a B-bit codebook). then we require 
L >> M so as to be able to find the best set of M codebook vectors in a robust manner. 
In practice, it has been found that L should be at least l OM in order to train a VQ 
codebook that works reasonably well. 

2. a measure of similarity, or distance, between a pair of spectral analysis vectors so as 
to be able to cluster the training set vectors as well as to associate or classify arbitrary 
spectral vectors into unique codebook entries. We denote the spectral distance, 
d(v;, Vj), between two vectors V; and Vj as dij. We defer a discussion of spectral 
distance measures to Chapter 4. 

3. a centroid computation procedure. On the basis of the partitioning that classifies 
the L training set vectors into M clusters we choose the M codebook vectors as the 
centroid of each of the M clusters. 

4. a classification procedure for arbitrary speech spectral analysis vectors that chooses 
the codebook vector closest to the input vector and uses the codebook index as the 
resulting spectral representation. This is often referred to as the nearest-neighbor 
labeling or optimal encoding procedure. The classification procedure is essentially a 
quantizer that accepts, as input, a speech spectral vector and provides, as output, the 
codebook index of the codebook vector that best matches the input. 

Figure 3.40 shows a block diagram of the basic VQ training and classification structure. In 
the following sections we discuss each element of the VQ structure in more detail. 

3.4.2 The VQ Training Set 

To properly train the VQ codebook, the training set vectors should span the anticipated 
range of the following: 
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• talkers, including ranges in age, accent, gender, speaking rate, levels, and other 
variables. 

• speaking conditions, such as quiet room, automobile, and noisy workstation. 

• transducers and transmission systems, including wideband microphones, telephone 
handsets (with both carbon and electret microphones), direct transmission, telephone 
channel, wideband channel, and other devices. 

• speech units including specific-recognition vocabularies (e.g., digits) and conversa
tional speech. 

The more narrowly focused the training set (i.e., limited talker populations, quiet room 
speaking, carbon button telephone over a standard telephone channel, vocabulary of digits) 
the smaller the quantization error in representing the spectral information with a fixed-size 
codebook. However, for applicability to a wide range of problems, the training set should 
be as broad, in each of the above dimensions, as possible. 

3.4.3 The Similarity or Distance Measure 

The spectral distance measure for comparing spectral vectors v; and vi is of the form 

{ 
= 0 if V; = Vj 

d(v;, Vj) = dij . . (3.93) 
> 0 otherwise 

As we will see in Chapter 4, the distance measure commonly used for comparing filter
bank vectors is an L 1, L2, or covariance weighted spectral difference, whereas for LPC 
vectors (and related feature sets such as LPC derived cepstral vectors), measures such as 
the likelihood and cepstral distance measures are generally used. 

3.4.4 Clustering the Training Vectors 

The way in which a set of L training vectors can be clustered into a set of M codebook 
vectors is the following (this procedure is known as the generalized Lloyd algorithm or the 
K-means clustering algorithm): 

1. Initialization: Arbitrarily choose M vectors (initially out of the training set of L 
vectors) as the initial set of code words in the codebook. 

2. Nearest-Neighbor Search: For each training vector, find the code word in the current 
codebook that is closest (in terms of spectral distance), and assign that vector to the 
corresponding cell (associated with the closest code word). 

3. Centroid Update: Update the code word in each cell using the centroid of the training 
vectors assigned to that cell. 

4. Iteration: Repeat steps 2 and 3 until the average distance falls below a preset threshold. 

Figure 3.41 illustrates the result of designing a VQ codebook by showing the parti
tioning of a (2-dimensional) spectral vector space into distinct regions, each of which is 
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PARTITIONED VECTOR SPACE 
X = CENTROID OF REGION 
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Figure 3.41 Partitioning of a vector space into VQ cells with each cell represented by a centroid 
vector. 

represented by a centroid vector. The shape of each partitioned cell is highly dependent 
on the spectral distortion measure and the statistics of the vectors in the training set. (For 
example, if a Euclidean distance is used, the cell boundaries are hyperplanes.) 

Although the above iterative procedure works well, it has been shown that it is 
advantageous to design an M-vector codebook in stages-i.e., by first designing a I-vector 
codebook, then using a splitting technique on the code words to initialize the search for a 2-
vector codebook, and continuing the splitting process until the desired M-vector codebook 
is obtained. This procedure is called the binary split algorithm and is formally implemented 
by the following procedure: 

1. Design a I-vector codebook; this is the centroid of the entire set of training vectors 
(hence, no iteration is required here). 

2. Double the size of the codebook by splitting each current codebook Yn according to 
the rule 

y; = yn(l + t:) 
y; = YnO - t:), 

(3.94) 

where n varies from I to the current size of the codebook, and € is a splitting parameter 
(typically f. is chosen in the range 0.01 < f. ~ 0.05). 

3. Use the K-means iterative algorithm (as discussed above) to get the best set of 
centroids for the split codebook (i.e., the codebook of twice the size). 

4. Iterate steps 2 and 3 until a codebook of size M is designed. 
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Figure 3.42 Flow diagram of binary split codebook 
generation algorithm. 
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Figure 3.42 shows, in a flow diagram, the detailed steps of the binary split VQ codebook 
generation technique. The box labeled "Classify Vectors" is the nearest-neighbor search 
procedure, and the box labeled "Find Centroids" is the centroid update procedure of the 
K-means algorithm. The box labeled "Compute D (Distortion)" sums the distances of all 
training vectors in the nearest-neighbor search so as to determine whether the procedure 
has converged (i.e., D = D' of the previous iteration). 

To illustrate the effect of codebook size (i.e., number of codebook vectors) on average 
training set distortion, Figure 3.43 [12] shows experimentally measured values of distortion 
(in terms of the likelihood ratio measure and the equivalent dB values; see Chapter 4 for 
more details) versus codebook size (as measured in bits per frame, B) for vectors of both 
voiced and unvoiced speech. It can be seen that very significant reductions in distortion 
are achieved in going from a codebook size of 1 bit (2 vectors) to about 7 bits (128 vectors) 
for both voiced and unvoiced speech. Beyond this point, reductions in distortion are much 
smaller. 

One initial motivation for considering the use of a VQ codebook was the assumption 
that, in the limit, the codebook should ideally have about 40 vectors-Le., one vector 
per speech sound. However, since the codebook vectors represent short time spectral 
measurements, there is inherently a certain degree of variability in specific codebook 
entries. Figure 3.44 shows a comparison of codebook vector locations in the F1 -F2 plane 
for a 32-vector codebook, along with the vowel ellipses discussed in Chapter 2. (The 32 
codewords were generated from a training set of conversational speech spoken by a set 
of male talkers. The training set included both speech and background signals.) It can 
be seen that the correspondence between codebook vector location and vowel location is 
weak. Furthermore, there appears to be a tendency to cluster around the neutral vowel /3-/. 
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Figure 3.43 Codebook distortion versus codebook size (measured in bits per 
frame) for both voiced and unvoiced speech (after Juang et al. [ 12)). 
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Figure 3.44 Codebook vector locations in the F 1 - F 2 plane (for a 32-vector 
codebook) superimposed on the vowel ellipses (after Juang et al. [12]). 

This can be attributed, in part, to both the distortion measure and to the manner in which 
spectral centroids are computed. 

3.4.5 Vector Classification Procedure 

The classification procedure for arbitrary spectral vectors is basically a full search thrO;~ 
the codebook to find the "best" match. Thus if we denote the codebook vectors 0 
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M-vector codebook as Ym, 1 :'.S m ::; M, and we denote the spectral vector to be classified 
(and quantized) as v, then the index, m*, of the best codebook entry is 

m* = arg min d(V,Ym), 
1$m$M 

(3.95) 

For codebooks with large values of M (e.g., M ~ 1024), the computation ofEq. (3.95) could 
be excessive, depending on the exact details of the distance measure; hence, alternative, 
suboptimal, procedures for designing VQ codebooks have been investigated. We will 
briefly discuss such methods in a later section of this chapter. 

3.4.6 Comparison of Vector and Scalar Quantizers 

To illustrate the power of the concept of quantizing an entire vector (rather than quantizing 
individual components of the vector), Figures 3.45 and 3.46 show comparisons of the results 
of using vector and scalar quantizers on typical speech spectral frames. In Figure 3.45 we 
see both model (speech) spectra and the resulting quantization error spectrum for 10-bit and 
24-bit scalar quantizers and for a IO-bit vector quantizer. It is clear that the quantization 
error of the I 0-bit vector quantizer is comparable to that of the 24-bit scalar quantizer. This 
implies that the vector quantizer provides a 14-bit reduction in storage (per frame) over a 
scalar quantizer, i.e., more than a 50% reduction in storage for the same distortion. 

Figure 3.46 shows temporal plots of distortion as well as distortion error histograms 
for the three quantizers of Figure 3.45. It can be seen that even though the average distortion 
of the IO-bit VQ is comparable to that of the 24-bit scalar quantizer, the peak distortion of 
the I 0-bit VQ is much smaller than the peak distortion of the 24-bit scalar quantizer. This 
represents another distinct advantage of VQ over scalar quantization. 

3.4.7 Extensions of Vector Quantization 

As mentioned earlier, several straightforward extensions of the ideas of VQ have been 
proposed and studied, including the following: 

1. Use of multiple codebooks in which codebooks are created separately (and indepen
dently) for each of several spectral (or temporal) representations of speech. Thus 
we might consider using a separate codebook for cepstral vectors and a separate 
codebook for the time derivatives of the cepstral vectors. This method of multiple 
codebooks has been used extensively in large vocabulary speech-recognition systems. 

2. Binary search trees in which a series of suboptimal VQs is used to limit the search 
space so as to reduce the computation of the overall VQ from M distances to log (M) 
distances. The training procedure first designs an optimal M = 2 VQ and then 
assigns all training vectors to one of the VQ cells. Next the procedure designs a 
pair of M = 2 VQs, one for each subset of the preceding stage. This process is 
iterated until the desired size is obtained in log M steps. The suboptimality of the 
procedure is related to the fact that training vectors initially split along one branch of 
the VQ cannot join the other branch at a later stage of processing; hence, the overall 
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Figure 3AS Model and distonion error spectra for scalar and vector quantizers (after Juang 
et al. [121). 

distortion is not minimal at each branch of the tree. 
3. K-tuple (fixed-length block) quantizers in which K-frames of speech are coded at a 

time, rather than single frames, as is conventionally the case. The idea is to exploit 
correlations in time for vowels and vowel-like sounds. The disadvantage occurs for 
sounds where the correlation along the K-tuple is low-i.e., transient sounds and 
many consonants. 

4. Matrix quantization in which a codebook of sounds or words of variable sequence 
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length is created. The concept here is to handle time variability via some types of 
dynamic programming procedure and thereby create a codebook of sequences of 
vectors that represent typical sounds or words. Such techniques are most applicable 
to word-recognition systems. 

5. Trellis codes in which time sequential dependencies among codebook entries are 
explicitly determined as part of the training phase. The idea here is that when 
input vector Vn is quantized using codeword Ye, then input vector Vn+I is quantized 
using one of a limited subset of codebook entries that are related to ye via a set of 
learned sequential constraints, thereby reducing computation of encoding the input, 
and increasing the ability to interpret the codebook output in terms of basic speech 
units. 

6. Hidden Markov models in which both time and spectral constraints are used to 
quantize an entire speech utterance in a well-defined and efficient manner. We defer 
a discussion of hidden Markov models to Chapter 6. 

3.4.8 Summary of the VQ Method 

In later chapters of this book we will see several examples of how VQ concepts can be 
exploited in speech-recognition systems. Here we have shown that the basic idea of VQ 
is to reduce the information rate of the speech signal to a low rate through the use of 
a codebook with a relatively small number of code words. The goal is to be able to 
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Figure 3.47 Physiological model of the human ear. 

represent the spectral information of the signal in an efficient manner and in a way that 
direct connections to the acoustic-phonetic framework discussed in Chapter 2 can be made. 
Various techniques for achieving this efficiency of representation were discussed, and their 
properties were illustrated on representative examples of speech. 

3.5 AUDITORY-BASED SPECTRAL ANALYSIS MODELS 

The motivation for investigating spectral analysis methods that are physiologically based 
is to gain an understanding of how the human auditory system processes speech, so as to 
be able to design and implement robust, efficient methods of analyzing and representing 
speech. It is generally assumed that the better we understand the signal processing in the 
human auditory system, the closer we will come to being able to design a system that can 
truly understand meaning as well as content of speech. 

With these considerations in mind, we first examine a physiological model of the 
human ear. Such a model is given in Figure 3.47 and it shows that the ear has three distinct 
regions called the outer ear, the middle ear, and the inner ear. The outer ear consists 
of the pinna (the ear surface surrounding the canal in which sound is funneled), and the 
external canal. Sound waves reach the ear and are guided through the outer ear to the 
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middle ear, which consists of the tympanic membrane or eardrum upon which the sound 
wave impinges and causes to move and a mechanical transducer (the malleus or hammer, 
the incus or anvil, and the stapes or stirrup), which converts the acoustical sound wave to 
mechanical vibrations along the inner ear. The inner ear consists of the cochlea, which is a 
fluid-filled chamber partitioned by the basilar membrane, and the cochlea or auditory nerve. 
The mechanical vibrations impinging on the oval window at the entrance to the cochlea 
create standing waves ( of the fluid inside the cochlea) that cause the basilar membrane to 
vibrate at frequencies commensurate with the input acoustic wave frequencies (e.g., the 
formants of voiced speech) and at a place along the basilar membrane that is associated 
with these frequencies. (An expanded view of the middle and inner ear mechanics is given 
in Figure 3.48. The 2 ½ turn, snail-like shape of the cochlea is shown as a straight tube in 
this figure for ease of presentation.) 

The basilar membrane is characterized by a set of frequency responses at different 
points along the membrane. Hence, in its simplest form, the cochlea can be modeled as a 
mechanical realization of a bank of filters (appropriately called cochlea filters). Distributed 
along the basilar member (in a dense but discrete manner) is a set of sensors called inner 
hair cells (IHC), which act as mechanical motion to neural activity converters. Mechanical 
motion at some point along the basilar membrane is sensed by the inner hair cells and 
causes firing activity at the nerve fibers that innervate the bottom of each IHC. Each IHC 
is connected to about IO nerve fibers, each of different diameter and of different synaptic 
connection. It has been shown experimentally that thin fibers fire (emit neural impulses) 
only at high motion levels, whereas thick fibers fire at much lower motion levels. A total 
of about 30,000 nerve fibers link the IHCs to the auditory nerve. 
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Beyond the auditory nerve, our knowledge of how the information signals (the neural 
activity along the auditory nerve) are processed and eventually converted to intelligence in 
the brain is almost primitive. Hence when we attempt to build auditory models for signal 
processing, we are primarily modeling the middle ear, cochlea, and hair cell systems. The 
assumption is that the signal produced by such a model exhibits some of the robustness 
(immunity to noise, reverberation) and efficiency of the human auditory systems. Thus 
in the remainder of this section we present one such model, called the Ensemble Interval 
Histogram (EIH) model and show some of the properties of speech signals processed by 
such a model. 

3.5.1 The EIH Model 

On the basis of the discussion in the preceding section, a model of the cochJea and the hair 
cell transduction consists of a filter bank that models the frequency selectivity at various 
points along a simulated basilar membrane, and a nonlinear processor for converting the 
filter bank output to neural firing patterns along a simulated auditory nerve. Such a model 
is shown in Figure 3.49 and is called the EIH model [ 13]. 

In the EIH model, the mechanical motion of the basilar membrane is sampled using 
165 IHC channels, equally spaced, on a log-frequency scale, between 150 and 7000 Hz. 
The corresponding cochlear filters are based on actual neural tuning curves for cats. The 
amplitude responses of 28 of these filters (i.e., about 1 in 8 from the model) are shown in 
Figure 3.50. The phase characteristics of these filters is minimum phase, and the relative 
gain, measured at the center frequency of the filter, reflects the corresponding value of the 
cat's middle ear transfer function. 

The next stage of processing in the EIH model of Figure 3.49 is an array oflevel cross
ing detectors that models the motion-to-neural activity transduction of the hair cell mech
anisms. The detection levels of each detector are pseudo-randomly distributed (based on 
measured distributions of level firings), thereby simulating the variability of fiber diameters 
and their synaptic connections. 

The output of the level-crossing detectors represents the discharge activity of the 
auditory nerve fibers. Figure 3.51 shows simulated auditory nerve activity, for the first 
60 msec of the vowel /o/ in the word "job," as a function of both time and the "characteristic 
frequency" of the IHC channels. (Note the logarithmic scale of the characteristic frequency 
which represents the place-to-frequency mapping on the basilar membrane.) In Figure 3.51, 
a level-crossing occurrence is marked as a single dot, and the output activity of each level
crossing detector is plotted as a separate trace. Each IHC channel contributes seven 
parallel traces (corresponding to the seven level-crossing detectors for each channel), with 
the lowest trace representing the lowest-threshold level-crossing detector. If the magnitude 
of the filter's output is low, only one level will be crossed, as is seen for the very top 
channels in Figure 3.51. However, for large signal magnitudes, several levels will be 
activated, creating a "darker" area of activity in the figure. 

The level-crossing patterns represent the auditory nerve activity, which, in tum, is 
the input to a second, more central stage of neural processing, which gives the overall 
ensemble interval histogram (EIH). Conceptually, the EIH is a measure of the spatial 
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extent of coherent neural activity across the simulated auditory nerve. Mathematically, 
it is the short-term probability density function of the reciprocal of the intervals between 
successive firings, measured over the entire simulated auditory nerve in a characteristic 
frequency-dependent time-frequency zone. 

As a consequence of the multilevel crossing detectors, the EIH representation pre
serves information about the signal's overall energy. To illustrate this point, consider the 
case in which the input signal is a pure sinusoid, i.e. s(t) = A sin(21rfot), and the character
istic frequency of a selected channel is Jo, as shown in Figure 3.52a. For a given intensity 
A, the cochlear filter output will activate only some low level-crossing detectors. For a 
given detector, the time interval between two successive positive-going level crossings is 
I /Jo. Since the histogram is scaled in units of frequency, this interval contributes a count 
to thefo bin. For the input signal in Figure 3.52a, all of the intervals are the same, resulting 
in a histogram in which the magnitude of each bin, save one (Jo), is zero. As the signal 
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amplitude A increases, more levels are activated. As a result, this cochlear filter contributes 
additional counts to the Jo bin of the EIH. Since the crossing levels are equally distributed 
on a log-amplitude scale, the magnitude of any EIH bin is related, in some fashion, to 
decibel units. However, this relation is not a straightforward one because there are several 
sources contributing counts to the Jo bin in a nonlinear manner. Figure 3.52b shows an 
input signal s(t) = A sin(21rJot) driving five adjacent cochlear filters with an amplitude 
response IH;(f)I and a phase response </>;(f), i = 1, 2, ... , 5. Due to the shape of the filters, 
more than one cochlear channel will contribute to the Jo bin. In fact, all the cochlear filters 
that produce s;(t) = A IH;(fo)I sin(21rJot + </>;<Jo)) will contribute to the Jo bin of the EIH, 
provided that A IH;(fo)I exceeds any of the level-crossing thresholds. In Figure 3.52b only 
cochlear filters 2, 3, and 4 are contributing nonzero histograms to the EIH. The number of 
counts is different for each filter, depending on the magnitude of A IH;(fo)I. 

One goal of auditory-based signal processing is to make the signal more robust to 
noise and reverberation than alternative spectral analysis procedures such as the filter-bank 
method or the LPC method. Figure 3.53 illustrates how well the EIH model achieves this 
goal. Shown in the figure are the log magnitude spectra of a clean (no noise) and a noisy 
(signal-to-noise ratio of O dB) speech signal processed by a standard Fourier filter bank 
(curves on the left) and by the EIH model (curves on the right). Also shown are LPC 
polynomial fits to the original signal spectrum (on the left) and to the EIH signal spectrUITl 
(on the right) for both the clean signal and the noisy signal. This figure clearly shows a 
tremendous sensitivity of the Fourier and LPC analyses to noise for the original signals. 
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(This is especially seen in the LPC polynomial fits.) In the EIH case, the log magnitude 
spectra are almost unaltered by the noise, and the LPC polynomial fits are extremely close 
to each other. 

The implication of the above results for speech recognition is that the EIH model has 
potential for use in recognizing speech robustly in noisy and reverberant environments. We 
will explore this issue in Chapter 5 when we talk about the effects of noise on performance 
of speech recognizers. 

3.6 SUMMARY 

In this chapter we have discussed several ways of performing spectral analysis of speech, 
including filter-bank analysis, LPC analysis, vector quantization, and auditory modeling. 
We have discussed the relative strengths and weaknesses of each approach and given a hint 
of the advantages and disadvantages for application to actual speech-recognition systems. 
We will see, in later chapters, how the type of spectral analysis that is used interacts with 
the processing of other parts of the recognizer. Only through such an understanding can 
one fully see the trade-offs among the different approaches to speech spectrum analysis. 
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Chapter 6 

THEORY 
AND IMPLEMENTATION 

6.1 INTRODUCTION 

OF HIDDEN 
MARKOV MODELS 

In Chapters 4 and 5 we presented one major pattern-recognition approach to speech recogni
tion, namely the template method. One key idea in the template method is to derive typical 
sequences of speech frames for a pattern (e.g., a word) via some averaging procedure, and 
to rely on the use of local spectral distance measures to compare patterns. Another key 
idea is to use some form of dynamic programming to temporally align patterns to account 
for differences in speaking rates across talkers as well as across repetitions of the word by 
the same talker. The methodology of the template approach is well developed and provides 
good recognition performance for a variety of practical applications. 

The template approach, however, is not based on· the ideas of statistical signal model
ing in a strict sense. Even though statistical techniques have been widely used in clustering 
to create reference patterns, the template approach is best classified as a simplified, non
parametric method in which a multiplicity of refe1ence tokens (sequences) are used to 
characterize the variation among different utterances. As such, statistical signal charac
terization inherent in the template representation is only implicit and often inadequate. 
Consider, for example, the use of a truncated cepstral distortion measure as the local dis
tance for template matching. The Euclidean distance form of the cepstral distance measure 
suggests that the reference vector can be viewed as the mean of some assumed distribution. 

321 
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Obviously, this simple form of the sufficient statistic 1 (use of only the mean reference 
vector) neglects the second-order statistics-Le., covariances, which, as will be seen later, 
are of particular significance in statistical modeling. (Note that this distribution is used 
to account for variations of the cepstral coefficients at the frame level since time align
ment is performed so as to match appropriate frames of the patterns being compared.) 
There is clearly a need to use a more elaborate and analytical statistical method for speech 
recognition. 

In this chapter we will study one well-known and widely used statistical method 
of characterizing the spectral properties of the frames of a pattern, namely the hidden 
Markov model (HMM) approach. (These models are also referred to as Markov sources or 
probabilistic functions of Markov chains in the communications literature.) The underlying 
assumption of the HMM (or any other type of statistical model) is that the speech signal 
can be well characterized as a parametric random process, and that the parameters of the 
stochastic process can be determined (estimated) in a precise, well-defined manner. We 
will show that the HMM method provides a natural and highly reliable way of recognizing 
speech for a wide range of applications and integrates well into systems incorporating both 
task syntax and semantics. 

The basic theory of hidden Markov models was published in a series of classic 
papers by Baum and his colleagues ([ I ]-[5]) in the late 1960s and early 1970s and was 
implemented for speech-processing applications by Baker [6] at CMU, and by Jelinek and 
his colleagues at IBM ([7]-[13]) in the 1970s. 

We begin this chapter with a review of the theory of Markov chains and then extend the 
ideas to HMMs using several simple examples. Based on the now-classical approach of Jack 
Ferguson of IDA (Institute for Defense Analyses), as introduced in lectures and in writing 
[ 14], we will focus our attention on the three fundamental problems for HMM design, 
namely: the evaluation of the probability (or likelihood) of a sequence of observations 
given a specific HMM; the determination of a best sequence of model states; and the 
adjustment of model parameters so as to best account for the observed signal. We will 
show that once these three fundamental problems are solved, we can readily apply HMMs 
to selected problems in speech recognition. 

6.2 DISC::RETE-TIME MARKOV PROCESSES 

Consider a system that may be described at any time as being in one of a set of N distinct 
states indexed by { l, 2, ... , N} as illustrated in Figure 6.1 (where N = 5 for simplicity). 
At regularly spaced, discrete times, the system undergoes a change of state (possibly back 
to the same state) according to a set of probabilities associated with the state. We denote 
the time instants associated with state changes as t = 1, 2, ... , and we denote the actual 

1 Sufficient statistics are a set of measurements from a process which contain all the relevant 
information for estimating the parameters of that process. 
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Figure 6.1 A Markov chain with five states Figure 6.2 Markov model of the weather. 
(labeled I to 5) with selected state transitions. 

state at time t as q,. A full probabilistic description of the above system would, in general, 
require specification of the current state (at time t), as well as all the predecessor states. For 
the special case of a discrete-time, first order, Markov chain, the probabilistic dependence 
is truncated to just the preceding state-that is, 

(6.1) 

Furthermore, we consider only those processes in which the right-hand side of (6.1) is 
independent of time, thereby leading to the set of state-transition probabilities aij of the 
form 

aii = P[q, = jlq,_ 1 = i], 

with the following properties 

N 

a·· >O I} -

Laij = 1 
J=I 

since they obey standard stochastic constraints. 

1 ~ i,j 5: N 

Vj,i 

Vi 

(6.2) 

(6.3a) 

(6.3b) 

The above stochastic process could be called an observable Markov model because 
the output of the process is the set of states at each instant of time, where each state 
corresponds to an observable event. To set ideas, consider a simple three-state Markov 
model of the weather as shown in Figure 6.2. We assume that once a day (e.g., at noon), 
the weather is observed as being one of the following: 

State 1: precipitation (rain or snow) 

State 2: cloudy 

State 3: sunny. 
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324 Chap. 6 Theory and Implementation of Hidden Markov Models 

We postulate that the weather on day t is characterized by a single one of the three states 
above, and that the matrix A of state-transition probabilities is 

[ 

0.4 0.3 0.3 ] 
A= {aij} = 0.2 0.6 0.2 . 

0.1 0.1 0.8 

Given the model of Figure 6.2 we can now ask (and answer) several interesting 
questions about weather patterns over time. For example, we can pose the following 
simple problem: 

Problem 

What is the probability (according to the model) that the weather for eight consecutive days is 
"sun-sun-sun-rain-rain-sun-cloudy-sun"? 

Solution 
We define the observation sequence, 0, as 

0 ( sunny, sunny, sunny, rain, rain, sunny, cloudy, sunny ) 
( 3, 3, 3, 1, 1, 3, 2, 3 ) 

day 1 2 3 4 5 6 7 8 
corresponding to the postulated set of weather conditions over the eight-day period and we 
want to calculate P(OIModel), the probability of the observation sequence 0, given the model 
of Figure 6.2. We can directly determine P(OIModel) as: 

P(O!Model) = P[3, 3, 3, I, I, 3, 2, 3IModel] 

= P[3]P[3l3J2 P[ll3]P[lll] 

P[311] P[213] P[3j2] 

= 1r3 • (a33)2 a31 a11 a13 a32 a23 

= ( 1.0)(0.8)2(0.1 )(0.4 )(0.3)(0.1 )(0.2) 

= 1.536 X 10- 4 

where we use the notation: 

1r; = P[qi = i], 

to denote the initial state probabilities. 

Another interesting question we can ask (and answer using the model) is: 

Problem 

(6.4) 

Given that the system is in a known state, what is the probability that it stays in that state for 
exactly 

Solution 
This probability can be evaluated as th b b'l' f · e pro a 1 tty o the observation sequence 

0 = ( i, i, 
I 2 3 day 

, ... , i, 
d 

Jc/=i 
d+l 
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given the model, which is 

P(OIModel,q1 = i)= P(O,q1 = ilModel)/P(q1 = l) 

= 7r;(a;;t-l(l - a;;)/1r; 

= (a;l- 10 - au) 

= p;(d) 

325 

(6.5) 

The quantity p;(d) is the probability distribution function of duration d in state i. This 
exponential distribution is characteristic of the state duration in a Markov chain. Based on 
p;(d), we can readily calculate the expected number of observations (duration) in a state 
conditioned on starting in that state as ' 

00 

d; = Ldp;(d) (6.6a) 

00 

(6.6b) 

Thus the expected number of consecutive days of sunny weather, according to the model, is 
1/(0.2) = 5; for cloudy it is 2.5; for rain it is 1.67. 

Problem 

Derive the expression for the mean of p;(d), i.e. Eq. (6.6b). 

Solution 
00 

d; = Ldp;(d) 
d=I 

00 

d=I 

= (1 - a;;)- "a;; 8 [ 
00 

d] 

oa;; LJ 
d=I 

= (1 - a;;)- --" -a ( a·· ) 
oa;; 1 - a;; 

1 ---
1 - a;; 

&.3 EXTENSIONS TO HIDDEN MARKOV MODELS 

So far we have considered Markov models in which each state corresponded to a deter
ministically observable event. Thus, the output of such sources in any given state is not 
random. This model is too restrictive to be applicable to many problems of interest. In 
this section we extend the concept of Markov models to include the case in which the 
observation is a probabilistic function of the state-that is, the resulting model (which is 
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