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Figure 2. 15 Spectrograms of the vowel sounds. 
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overlap between the fonnant frequencies for different vowel sounds by different talkers. 
The ellipses drawn in this figure represent gross characterizations of the regions in which 
most of the tokens of the different vowels lie. The message of Figure 2.16, for speech 
recognition by machine, is fairly clear; that is, it is not just a simple matter of measuring 
fonnant frequencies or spectral peaks accurately to accurately classify vowel sounds; one 
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Figure 2.17 The vowel triangle with centroid positions of the com­
mon vowels. 
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must do some type of talker (accent) normalization to account for the variability in formants 
and overlap between vowels. 

A common way of exploiting the information embodied in Figures 2. 15 and 2. 16 is to 
represent each vowel by a centroid in the formant space with the realization that the centroid, 
at best, represents average behavior and does not represent variability across talkers. Such 
a representation leads to the classic vowel triangle shown in Figure 2.17 and represented 
in terms of formant positions by the data given in Table 2.2. The vowel triangle represents 
the extremes of formant locations in the F 1 -F2 plane, as represented by /i/ (low F 1, high 
F2), /u/ (low F 1, low F2), and /a/ (high F 1, low F2), with other vowels appropriately placed 
with respect to the triangle vertices. The utility of the formant frequencies of Table 2.2 has 
been demonstrated in text-to-speech synthesis in which high-quality vowel sounds have 
been synthesized using these positions for the resonances [8]. 

2.4.2 Diphthongs 

Although there is some ambiguity and disagreement as to what is and what is not a 
diphthong, a reasonable definition is that a diphthong is a gliding monosyllabic speech 
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TABLE 2.2. Formant frequencies for typical vowels. 

ARPAB.ET 
Symbol for IPA Typical 

F1 F2 F3 
Vowel Symbol Word 

IY Iii beet 270 2290 3010 
IH /1/ bit 390 1990 2550 
EH /cl bet 530 1840 2480 
AE /re/ bat 660 1720 2410 
AH IA/ but 520 1190 2390 
AA la/ hot 730 1090 2440 
AO hi bought 570 840 2410 
UH /U/ foot 440 1020 2240 
uw /u/ boot 300 870 2240 
ER hi bird 490 1350 1690 

sound that starts at or near the articulatory position for one vowel and moves to or toward 
the position for another. According to this definition, there are six diphthongs in American 
English, namely /aY / (as in buy), /aw/ (as in down), /eY / (as in bait), and /-:,Y / (as in boy), 
/o/ (as in boat), and /ju/ (as in you). -

The diphthongs are produced by varying the vocal tract smoothly between vowel 
configurations appropriate to the diphthong. Figure 2.18 shows spectrogram plots of four 
of the diphthongs spoken by a male talker. The gliding motions of the formants are 
especially prominent for the sounds /aY /, /aw/ and /'JY / and are somewhat weaker for 
/eY / because of the closeness (in vowel space) of the two vowel sounds comprising this 
diphthong. 

An alternative way of displaying the time-varying spectral characteristics of diph­
thongs is via a plot of the values of the second formant versus the first formant (implicitly 
as a function of time) as shown in Figure 2.19 [9]. The arrows in this figure indicate the 
direction of motion of the formants (in the (F1 - F2) plane) as time increases. The dashed 
circles in this figure indicate average positions of the vowels. Based on these data, and 
other measurements, the diphthongs can be characterized by a time-varying vocal tract area 
function that varies between two vowel configurations. 

2.4.3 Semivowels 

The group of sounds consisting of /w/, /1/, /r/, and /y/ is quite difficult to characterize. 
These sounds are called semivowels because of their vowel-like nature. They are generally 
characterized by a gliding transition in vocal tract area function between adjacent phonemes. 
Thus the acoustic characteristics of these sounds are strongly influenced by the context in 
which they occur. For our purposes, they are best described as transitional, vowel-like 
sounds, and hence are similar in nature to the vowels and diphthongs. 
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Figure 2.18 Spectrogram plots of four diphthongs. 

2.4.4 Nasal Consonants 

The nasal consonants /m/, /n/, and /r,! are produced with glottal excitation and the vocal 
tract totally constricted at some point along the oral passageway. The velum is lowered so 
that air flows through the nasal tract, with sound being radiated at the nostrils. The oral 
cavity, although constricted toward the front, is still acoustically coupled to the pharynx. 
Thus, the mouth serves as a resonant cavity that traps acoustic energy at certain natural 
frequencies. As far as the radiated sound is concerned, these resonant frequencies of the 
oral cavity appear as antiresonances, or zeros of the transfer function of sound transmis­
sion. Furthermore, nasal consonants and nasalized vowels (i.e., some vowels preceding or 
following nasal consonants) are characterized by resonances that are spectrally broader, or 
more highly damped, than those for vowels. 

The three nasal consonants are distinguished by the place along the oral tract at 
which a total constriction is made. For /ml the constriction is at the lips; for /n/ the 
constriction is just behind the teeth; and for / r, / the constriction is just forward of the 
velum itself. Figure 2.20 shows typical speech waveforms and Figure 2.21 spectrograms 
for two nasal consonants in the context vowel-nasal-vowel. The waveforms of /m/ and /n/ 
look very similar. The spectrograms show a concentration of low-frequency energy with a 
midrange of frequencies that contain no prominent peaks. This is because of the particular 
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combination of resonances and antiresonances that result from the coupling of the nasal 
and oral tracts. 

2.4.5 Unvoiced Fricatives 

The unvoiced fricatives /f/, / () /, /s/, and /sh/ are produced by exciting the vocal tract by a 
steady air flow, which becomes turbulent in the region of a constriction in the vocal tract. 
The location of the constriction serves to determine which fricative sound is produced. 
For the fricative /f/ the constriction is near the lips; for /0 / it is near the teeth; for /s/ it 
is near the middle of the oral tract; and for /sh/ it is near the back of the oral tract. Thus 
the system for producing unvoiced fricatives consists of a source of noise at a constriction, 
which separates the vocal tract into two cavities. Sound is radiated from the lips-that is, 
from the front cavity. The back cavity serves, as in the case of nasals, to trap energy and 
thereby introduce antiresonances into the vocal output. Figure 2.22 shows the waveforms 
and Figure 2.23 the spectrograms of the fricatives /f/, /s/ and /sh/. The nonperiodic nature 
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of fricative excitation is obvious in the waveform plots. The spectral differences among 
the fricatives are readily seen by comparing the three spectrograms. 

2.4.6 Voiced Fricatives 

The voiced fricatives /v/, /th/, /z/ and /zh/ are the counterparts of the unvoiced fricatives /f/, 
/0/, /s/, and /sh/, respectively, in that the place of constriction for each of the corresponding 
phonemes is essentially identical. However, the voiced fricatives differ markedly from 
their unvoiced counterparts in that two excitation sources are involved in their production. 
For voiced fricatives the vocal cords are vibrating, and thus one excitation source is at 
the glottis. However, since the vocal tract is constricted at some point forward of the 
glottis, the air flow becomes turbulent in the neighborhood of the constriction. Thus the 
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Figure 2.21 Spectrograms of the sequences /a-m-a/ and a-n-a/. 

spectra of voiced fricatives can be expected to display two distinct components. These 
excitation features are readily observable in Figure 2.24, which shows typical waveforms, 
and in Figure 2.25, which shows spectra for two voiced fricatives. The similarity of the 
unvoiced fricative /fl to the voiced fricative /v/ is easily shown in a comparison between 
corresponding spectrograms in Figures 2.23 and 2.25. Likewise, it is instructive to compare 
the spectrograms of /sh/ and /zh/. 

2.4.7 Voiced and Unvoiced Stops 

The voiced stop consonants /b/, /d/, and /g/, are transient, noncontinuant sounds produced 
by building up pressure behind a total constriction somewhere in the oral tract and then 
suddenly releasing the pressure. For /b/ the constriction is at the lips; for /d/ the constriction 
is at the back of the teeth; and for /g/ it is near the velum. During the period when there is 
total constriction in the tract, no sound is radiated from the lips. However, there is often a 
small amount of low-frequency energy radiated through the walls of the throat (sometimes 
called a voice bar). This occurs when the vocal cords are able to vibrate even though the 
vocal tract is closed at some point. 

Since the stop sounds are dynamical in nature, their properties are highly influenced 
by the vowel that follows the stop consonant. As such, the waveforms for stop consonants 
give little information about the particular stop consonant. Figure 2.26 shows the waveform 
of the syllable /a-b-a/. The waveform of /b/ shows few distinguishing features except for 
the voiced excitation and lack of high-frequency energy. 
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Figure 2.24 Wavefonns for the sequences /a­
v-a/ and /a-zh-a/. 
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The unvoiced stop consonants /p/, /t/, and /k/ are similar to their voiced counterparts 
/bl, /di, and /g/, with one major exception. During t}:le period of total closure of the tract, 
as the pressure builds up, the vocal cords do not vibrate. Then, following the period of 
closure, as the air pressure is released, there is a brief interval of friction (due to sudden 
turbulence of the escaping air) followed by a period of aspiration (steady air flow from the 
glottis exciting the resonances of the vocal tract) before voiced excitation begins. 

Figure 2.27 shows waveforms and Figure 2.28 shows spectrograms of the voiced stop 
/b/ and the voiceless stop consonants /p/ and /t/. The "stop gap," or time interval, during 
which the pressure is built up is clearly in evidence. Also, it can be readily seen that the 
duration and frequency content of the frication noise and aspiration vary greatly with the 
stop consonant. 
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As a self-check on the reader's understanding of the material on speech sounds and their 
acoustic manifestations, we now digress and present some simple exercises along with the 
solutions. For maximum effectiveness, the reader is encouraged to think through each 
exercise before looking at the solution. 

Exercise 2.1 
1. Write out the phonetic transcription for the following words: 

he, eats, several, light, tacos 

2. What effect occurs when these five words are spoken in sequence as a sentence? What 
does this imply about automatic speech recognition? 
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Figure 2.28 Spectrogram comparisons of the sequences of voiced (/a-b-a/) and voiceless (/a-p-a/ 
and /a-t-a/) stop consonants. 

Solution 2.1 

1. The phonetic transcriptions of the words are 

Word Phoneme Seguence ARPABET 

he /hi/ HH-IY 
eats /its/ IY-TS 
several /s~v ul/ S-E H-V-R-AH-L 
light /1 aYt/ L-AY-T 
tacos /takoz/ T-AA-K-OW-Z 

2. When the words are spoken together, the last sound of each word merges with the 
first sound of the succeeding word (since they are the same sound), resulting in strong 
coarticulation of boundary sounds. The ARPABET transcription for the sentence is: 

HH-IY-T-S-EH-V-R-AH-L-AY-T-AA-K-OW-Z 

All information about word boundaries is totally lost; furthermore, the durations of 
the common sounds at the boundaries of words are much shorter than what would be 
predicted from the individual words. 

Exercise 2.2 

Some of the difficulties in large vocabulary speech recognition are related to the irregularities 
in the way basic speech sounds are combined to produce words. Exercise 2.2 highlights a 
couple of these difficulties. 

1. In word initial position of American English, which phoneme or phonemes can never 
occur? Which hardly ever occur? 

2. There are many word initial consonant clusters of length two, such as speak, drank, 
plead, and press. How many word initial consonant clusters of length three are there 
in American English? What general rule can you give about the sounds in each of the 
three positions? 
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3. A nasal consonant can be combined with a stop consonant (e.g., camp, tend) in a limited 
number of ways. What general rule do such combinations obey? There are several 
notable exceptions to this general rule. Can you give a couple of exceptions? What 
kind of speaking irregularity often results from these exceptions? 

Solution 2.2 

1. The only phoneme that never occurs in initial word position in English is the /ng/ sound 
(e.g., sing). The only other sound that almost never occurs naturally in English, in 
initial word position, is /zh/ except some foreign words imported into English, such as 
gendanne, which does have an initial /zh/. 

2. The word initial consonant clusters of length three in English include 

/spl/ split 
/spr/ spring 
/skw/ squirt 
/skr/ script 
/str/ string 

The general rule for such clusters is 

/sound s/unvoiced stop/semivowel/ 

3. The general rule for a nasal-stop combination is that the nasal and stop have the 
same place of articulation, e.g., front/lips (/mp/), mid/dental (Int/), back/velar (Ing k/). 
Exceptions occur in words like summed (/md/) or hanged (Ing di) or dreamt (/mt/). 
There is often a tendency to insert an extra stop in such situations (e.g., dreamt -+ 
/drempt/). 

Exercise 2.3 
An important speech task is accurate digit recognition. This exercise seeks to exploit knowl­
edge of acoustic phonetics to recognize first isolated digits, and next some simple connected 
digit strings. We first need a sound lexicon (a dictionary) for the digits. The sound lexicon 
describes the pronunciations of digits in terms of the basic sounds of English. Such a sound 
lexicon is given in Table 2.3. A single male adult talker (LRR) spoke each of the 11 digits in 
random sequence and in isolation, and spectrograms of these spoken utterances are shown in 
Figure 2.29. Figure 2.30 shows spectrograms of two connected digit sequences spoken by the 
same talker. 

1. Identify each of the 11 digits based on the acoustic properties of the sounds within the 
digit (as expressed in the sound lexicon). Remember that each digit was spoken exactly 
once. 

2. Try to identify the spoken digits in each of the connected digit strings. 

Solution 2.3 

1. The digits of the top row are 3 and 7: 
a. The digit 3 is cued by the distinctive brief initial fricative (101), followed by the 

semivowel /r/ where the second and third formants both get very low in frequency, 
followed by the /i/ where F2 and F3 both become very high in frequency. 

b. The digit 7 is cued by the strong /s/ frication at the beginning, the distinctive /c/, 
followed by the voiced fricative /vi, a short vowel /a/ and ending in the strong 
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Figure 2.29 Spectrograms of the 11 isolated digits, O through 9 plus oh, in 
random sequence. 
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TABLE 2.3. Sound Lexicon of Digits 

Word Sounds ARPABET 

Zero /z Ir o/ Z-IH-R-OW 
One /WA n/ W-AH-N 
Two It u/ T-UW 
Three /0 r i/ TH-R-IY 
Four /for/ F-OW-R 
Five /f aY v/ F-AY-V 
Six /s I ks/ S-IH-K-S 
Seven Is f: van/ S-EH-V-AX-N 
Eight /eY t/ EY-T 
Nine /n aY n/ N-AY-N 
Oh /o/ ow 
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Figure 2.30 Spectrograms of two connected digit sequences. 

nasal /n/. 
The digits in the second row are O and 9: 

a. The initial /z/ is cued by the strong frication with the presence of voicing at low 
frequencies; the following /I/ is seen by the high F2 and F3, the /r/ is signaled by 
the low F2 and F3, and the diphthong /o/ is signaled by the gliding motion of F2 

and F3 toward an /u/-like sound. 

b. The digit 9 is cued by the distinct initial and final nasals /n/ and by the /aY / glide 
between the nasals. 

The digits in the third row are 1 and 5: 
a. The digit l is cued by the strong initial semivowel /w/ with very low F2 and by the 

strong final nasal /n/. 

b. The digit 5 is cued by the weak initial frication of /f/, followed by the strong 
diphthong /aY / and ending in the very weak fricative /v/. 
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The digits in the fourth row are 2 and 8: 
a. The digit 2 is cued by the strong /t/ burst and release followed by the glide to the 

/u/ sound. 
b. The digit 8 is cued by the initial weak diphthong /eY / followed by a clear stop gap 

of the /t/ and then the /t/ release. 
The digits in the fifth row are "oh" and 4: 

a. The digit "oh" is virtually a steady sound with a slight gliding tendency toward/u/ 
at the end. 

b. The digit 4 is cued by the weak initial fricative /f/, followed by the strong /o/ vowel 
and ending with a classic /r/ where F2 and f 3 merge together. 

The digit in the last row is 6: 
a. The digit 6 is cued by the strong /s/ frication at the beginning and end, and by the 

steady vowel /1/ followed by the stop gap and release of the /kl. 
2. By examining the isolated digit sequences, one can eventually (with a lot of work and 

some good luck) conclude that the two sequences are 

Row 1: 
Row 2: 

2-oh-l 
5-8-2-3-3-1-6 

(telephone area code) 
(7-digit telephone number) 

We will defer any explanation of how any reasonable person, or machine, could perfonn 
this task until later in this book when we discuss connected word-recognition techniques. 
The purpose of this exercise is to convince the reader how difficult a relatively simple 
recognition task can be. 

2.5 APPROACHES TO AUTOMATIC SPEECH RECOGNITION BY MACHINE 

The material presented in the previous sections leads to a straightforward way of perfonning 
speech recognition by machine whereby the machine attempts to decode the speech signal 
in a sequential manner based on the observed acoustic features of the signal and the known 
relations between acoustic features and phonetic symbols. This method, appropriately 
called the acoustic-phonetic approach, is indeed viable and has been studied in great depth 
for more than 40 years. However, for a variety of reasons, the acoustic-phonetic approach 
has not achieved the same success in practical systems as have alternative methods. Hence, 
in this section, we provide an overview of several proposed approaches to automatic speech 
recognition by machine with the goal of providing some understanding as to the essentials 
of each proposed method, and the basic strengths and weaknesses of each approach. 

Broadly speaking, there are three approaches to speech recognition, namely: 

1. the acoustic-phonetic approach 

2. the pattern recognition approach 

3. the artificial intelligence approach 

The acoustic-phonetic approach is based on the theory of acoustic phonetics that postulates 
that there exist finite, distinctive phonetic units in spoken language and that the phonetic 
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Figure 2.31 Phoneme lattice for word string. 

units are broadly characterized by a set of properties that are manifest in the speech sig­
nal, or its spectrum, over time. Even though the acoustic properties of phonetic units 
are highly variable, both with speakers and with neighboring phonetic units (the so-called 
coarticulation of sounds), it is assumed that the rules governing the variability are straight­
forward and can readily be learned and applied in practical situations. Hence the first 
step in the acoustic-phonetic approach to speech recognition is called a segmentation and 
labeling phase because it involves segmenting the speech signal into discrete (in time) 
regions where the acoustic properties of the signal are representative of one (or possibly 
several) phonetic units (or classes), and then attaching one or more phonetic labels to each 
segmented region according to the acoustic properties. To actually do speech recognition. 
a second step is required. This second step attempts to determine a valid word (or string of 
words) from the sequence of phonetic labels produced in the first step, which is consistent 
with the constraints of the speech-recognition task (i.e., the words are drawn from a given 
vocabulary, the word sequence makes syntactic sense and has semantic meaning, etc.). 

To illustrate the steps involved in the acoustic-phonetic approach to speech recogni­
tion, consider the phoneme lattice shown in Figure 2.31. (A phoneme lattice is the result of 
the segmentation and labeling step of the recognition process and represents a sequential set 
of phonemes that are likely matches to the spoken input speech.) The problem is to decode 
the phoneme lattice into a word string (one or more words) such that every instant of time 
is included in one of the phonemes in the lattice, and such that the word ( or word sequence) 
is valid according to rules of English syntax. (The symbol SIL stands for silence or a pause 
between sounds or words; the vertical position in the lattice, at any time, is a measure of 
the goodness of the acoustic match to the phonetic unit, with the highest unit having the 
best match.) With a modest amount of searching, one can derive the appropriate phonetic 
string SIL-AO-L-AX-B-AW-T corresponding to the word string "all about," with the 
phonemes L, AX, and B having been second or third choices in the lattice and all other 
phonemes having been first choices. This simple example illustrates well the difficulty in 
decoding phonetic units into word strings. This is the so-called lexical access problem. 
Interestingly, as we will see in the next section, the real problem with the acoustic-phonetic 
approach to speech recognition is the difficulty in getting a reliable phoneme lattice for the 
lexical access stage. 

The pattern-recognition approach to speech recognition is basically one in which the 
speech patterns are used directly without explicit feature determination (in the acoustic­
phonetic sense) and segmentation. As in most pattern-recognition approaches, the method 
has two steps-namely, training of speech patterns, and recognition of patterns via pattern 
comparison. Speech "knowledge" is brought into the system via the training procedure. 
The concept is that if enough versions of a pattern to be recognized (be it a sound, a word, a 
phrase, etc.) are included in a training set provided to the algorithm, the training procedure 
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should be able to adequately characterize the acoustic properties of the pattern (with no 
regard for or knowledge of any other pattern presented to the training procedure). This 
type of characterization of speech via training is called pattern classification because the 
machine learns which acoustic properties of the speech class are reliable and repeatable 
across all training tokens of the pattern. The utility of the method is the pattern-comparison 
stage, which does a direct comparison of the unknown speech ( the speech to be recognized), 
with each possible pattern learned in the training phase and classifies the unknown speech 
according to the goodness of match of the patterns. 

The pattern-recognition approach to speech recognition is the basis for the remainder 
of this book. Hence there will be a great deal of discussion and explanation of virtually every 
aspect of the procedure. However, at this point, suffice it to say that the pattern-recognition 
approach is the method of choice for speech recognition for three reasons: 

I. Simplicity of use. The method is easy to understand, it is rich in mathematical and 
communication theory justification for individual procedures used in training and 
decoding, and it is widely used and understood. 

2. Robustness and invariance to different speech vocabularies, users, feature sets, pat­
tern comparison algorithms and decision rules. This property makes the algorithm 
appropriate for a wide range of speech units (ranging from phonemelike units all the 
way through words, phrases, and sentences), word vocabularies, talker populations, 
background environments, transmission conditions, etc. 

3. Proven high performance. It will be shown that the pattern-recognition approach 
to speech recognition consistently provides high performance on any task that is 
reasonable for the technology and provides a clear path for extending the technology 
in a wide range of directions such that the performance degrades gracefully as the 
problem becomes more and more difficult. 

The so-called artificial intelligence approach to speech recognition is a hybrid of the 
acoustic-phonetic approach and the pattern-recognition approach in that it exploits ideas and 
concepts of both methods. The artificial intelligence approach attempts to mechanize the 
recognition procedure according to the way a person applies its intelligence in visualizing, 
analyzing, and finally making a decision on the measured acoustic features. In particular, 
among the techniques used within this class of methods are the use of an expert system 
for segmentation and labeling so that this crucial and most difficult step can be performed 
with more than just the acoustic information used by pure acoustic-phonetic methods 
(in particular, methods that integrate phonemic, lexical, syntactic, semantic, and even 
pragmatic knowledge into the expert system have been proposed and studied); learning and 
adapting over time (i.e., the concept that knowledge is often both static and dynamic and 
that models must adapt to the dynamic component of the data); the use of neural networks 
for learning the relationships between phonetic events and all known inputs (including 
acoustic, lexical, syntactic, semantic, etc.) as well as for discrimination between similar 
sound classes. 

The use of neural networks could represent a separate structural approach to speech 
recognition or be regarded as an implementational architecture that may be incorporated 
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Figure 2.32 Block diagram of acoustic-phonetic speech-recognition system. 
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in any of the above three classical approaches. The concepts and ideas of applying neural 
networks to speech-recognition problems are relatively new; hence we will devote a fair 
amount of discussion within this chapter to outline the basic ways in which neural networks 
are used in general, and applied to problems in speech recognition, in particular. In the 
next several sections we expand on the ideas of these three general approaches to speech 
recognition by machine. 

2.5.1 Acoustic-Phonetic Approach to Speech Recognition 

Figure 2.32 shows a block diagram of the acoustic-phonetic approach to speech recognition. 
The first step in the processing (a step common to all approaches to speech recognition) 
is the speech analysis system (the so-called feature measurement method), which provides 
an appropriate (spectral) representation of the characteristics of the time-varying speech 
signal. The most common techniques of spectral analysis are the class of filter bank 
methods and the class of linear predictive coding (LPC) methods. The properties of these 
methods will be discussed in great detail in Chapter 3. Broadly speaking, both of these 
methods provide spectral descriptions of the speech over time. 

The next step in the processing is the feature-detection stage. The idea here is to 
convert the spectral measurements to a set of features that describe the broad acoustic 
properties of the different phonetic units. Among the features proposed for recognition are 
nasality (presence or absence of nasal resonance), frication (presence or absence of ran­
dom excitation in the speech), formant locations (frequencies of the first three resonances), 
voiced-unvoiced classification (periodic or aperiodic excitation), and ratios of high- and 
low-frequency energy. Many proposed features are inherently binary (e.g., nasality, frica­
tion, voiced-unvoiced); others are continuous (e.g., formant locations, energy ratios). The 
feature-detection stage usually consists of a set"of detectors that operate in parallel and 
use appropriate processing and logic to make the decision as to presence or absence, or 
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value, of a feature. The algorithms used for individual feature detectors are sometimes 
sophisticated ones that do a lot of signal processing, and sometimes they are rather trivial 
estimation procedures. 

The third step in the procedure is the segmentation and labeling phase whereby the 
system tries to find stable regions (where the features change very little over the region) and 
then to label the segmented region according to how well the features within that region 
match those of individual phonetic units. This stage is the heart of the acoustic-phonetic 
recognizer and is the most difficult one to carry out reliably; hence various control strategies 
are used to limit the range of segmentation points and label possibilities. For example, 
for individual word recognition, the constraint that a word contains at least two phonetic 
units and no more than six phonetic units means that the control strategy need consider 
solutions with between I and 5 internal segmentation points. Furthermore, the labeling 
strategy can exploit lexical constraints on words to consider only words with n phonetic 
units whenever the segmentation gives n - 1 segmentation points. These constraints are 
often powerful ones that reduce the search space and significantly increase perfonnance 
(accuracy of segmentation and labeling) of the system. 

The result of the segmentation and labeling step is usually a phoneme lattice (of 
the type shown in Figure 2.31) from which a lexical access procedure determines the best 
matching word or sequence of words. Other types of lattices (e.g., syllable, word) can 
also be derived by integrating vocabulary and syntax constraints into the control strategy 
as discussed above. The quality of the matching of the features, within a segment, to 
phonetic units can be used to assign probabilities to the labels, which then can be used in 
a probabilistic lexical access procedure. The final output of the recognizer is the word or 
word sequence that best matches, in some well-defined sense, the sequence of phonetic 
units in the phoneme lattice. 

2.5.1.1 Acoustic Phonetic Vowel Classifier 

To illustrate the labeling procedure on a segment classified as a vowel, consider the flow 
chart of Figure 2.33. We assume that three features have been detected over the segment..:.. 
namely, first formant, F 1, second formant, F2, and duration of the segment, D. Consider 
just the set of steady vowels (i.e., we exclude the diphthongs). To classify a vowel segment 
as one of the 10 steady vowels, several tests can be made to separate groups of vowels. 
As shown in Figure 2.33 the first test separates vowels with low F 1 (called diffuse vowels 
and including /i/, /1/, /a/, /U/, /u/) from vowels with high F 1 (called compact vowels and 
including/£/, Ice/, /a/, /A/,/-:,/). Each of these subsets can be split further on the basis of F2 
measurements, with acute vowels having high F2 and grave vowels having low F2. The 
third test is one based on segment duration, which separates tense vowels (large values 
of D) from lax vowels (small values of D). Finally, a finer test on formant values separates 
the remaining unresolved vowels, resolving the vowels into flat vowels (where F1 + F2 

exceeds a threshold T) and plain vowels (where F 1 + F2 falls below the threshold T). 
It should be clear that there are several thresholds embedded within the vowel classi­

fier. Such thresholds are often determined experimentally so as to maximize classification 
accuracy on a given corpus of speech. 
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Figure 2.33 Acoustic-phonetic vowel classifier. 

2.5.1.2 Speech Sound Classifier 
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Vowel classification is just a small part of the phonetic labeling procedure of an acoustic­
phonetic recognizer. In theory, one needs a method of classifying an arbitrary segment into 
one (or more) of the 40 plus phonetic units discussed earlier in this chapter. Rather than 
discussing how to solve this very difficult problem, consider the somewhat simpler problem 
of classifying a speech segment into one of several broad speech classes--e.g., unvoiced 
stop, voiced stop, unvoiced fricative. Again there is no simple or generally well-accepted 
procedure for accomplishing this task; however, we show in Figure 2.34 one simple and 
straightforward way to accomplish such a classification. 

The method uses a binary tree to make decisions as to various broad sound classes. 
The first decision is a sound/silence split in which the speech features (primarily energy in 
this case) are compared to selected thresholds, and silence is split off if the test is negative 
for speech sounds. The second decision is a voiced/unvoiced decision (primarily based on 
the presence of periodicity within the segment) in which unvoiced sounds are split apart 
from voiced sounds. A test for unvoiced stop consonants is made (seeing if a stop gap 
of silence preceded the segment), and this separates the unvoiced stops (/t/, /p/, /k/, /cl) 
from the unvoiced fricatives (If/, /0/, /sf, /sf). A high-frequency/low-frequency (energy) test 
separates voiced fricatives (Iv/, /o/, /z/, /z/) from other voiced sounds. Voiced stops are 
separated out by checking to see whether the preceding sound is silence (or silencelike). 
Finally, a vowellsonorant spectral test (searching for spectral gaps) separates vowels from 
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Figure 2.34 Binary tree speech sound classifier. 

na1 

sonorants (nasal consonants and /w/, /I/, /r/, and /y/). The vowel classifier of Figure 2.33 
can then be used for finer vowel distinctions. 

The tests shown in Figure 2.34 are rather crude and are therefore highly prone to 
error. For example, some voiced stop consonants are not preceded by silence or by a 
silencelike sound. Another problem is that no way of distinguishing diphthongs from 
vowels is provided. Virtually every decision in the binary tree is subject to scrutiny as to 
its utility in any practical system. 

2.5.1.3 Examples of Acoustic Phonetic Labeling 

To illustrate some of the difficulties faced by the acoustic-phonetic approach to speech 
recognition, consider the following example. (Shown in the example is the phonetic 
labeling of a sentence [only the top-choice phonetic candidate is shown for each segment], 
along with its decoding into the proper word sequence.) In this example (taken from 
an actual acoustic-phonetic recognizer) we see that there are inserted phonetic units (Y 
in "MAY," AX in "BY"), deleted phonetic units (N in "EARN," N in "MONEY"), and 
phonetic substitutions (J for Kin "WORKING," N for NG in "WORKING"). The difficulty 
of proper decoding of phonetic units into words and sentences grows dramatically with 
increases in the rates of phoneme insertion, deletion, and substitution. 

phonemes: 
ARPABET: 

words: 

/sill -/j/-/e/-/n/ lml-lel-ly/ '3.J-/m/-1-:,/ - Ir/ Im/-/ tJ-/sil/-/e/ 
SIL -JH-EY-N + M-EY-Y +ER-M-AO- R + M-AH-SIL-EY 

JANE MAY EARN MORE MONEY 
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Figure 2.35 Segmentation and labeling for word sequence "seven-six." 

phonemes: /b/-/aY /- /a/ lwl-1':!'l-lsi l/-/j/-/1/-/n/ /h/- /a/ -/r/-/si 1/-/d/ 
ARPABET: B -AY-AX+ W-ER-SIL-J-IH-N +HH-AA-R-SIL-D 

words: BY WORKING HARD 
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Two other examples of acoustic-phonetic segmentation and labeling are given in 
Figures 2.35 and 2.36. Shown in these figures are the energy contour of the speech 
signal, the voiced-unvoiced-silence classification over time, the segmentation points, and 
the lattice of phonetic units. The "proper" decoding of the lattice corresponding to the 
spoken word is shown as the phonetic units enclosed within the solid heavy lines. For 
the example of Figure 2.35 (the digit sequence "seven-six"), we see that although most 
top phoneme candidate errors are within the same sound class (e.g., /sh/ instead of /s/), 
some errors are between classes (e.g., /m/ instead of /v/). For decoding into digits, such 
cross-class errors are usually of little significance. 

For the example of Figure 2.36 (the word sequence "did you"), the decoding into 
phonetic units is only the first step in a difficult decoding problem, because the basic 
speech sounds of the words "did" and "you" are phonologically changed in context from 
D-IH-D-Y-UW to D-IH-J-UH. This phonological effect exacerbates the problem of acoustic 
phonetic decoding even further than the insertion/deletion/substitution problems mentioned 
earlier. 

2.5.1.4 Issues in Acoustic Phonetic Approach 

Many problems are associated with the acoustic-phonetic approach to speech recog­
nition. These problems, in many ways, account for the lack of success in practical 
speech-recognition systems. Among these are the following: 
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Figure 2.36 Segmentation and labeling for word sequence .. did 
you." 

1. The method requires extensive knowledge of the acoustic properties of phonetic 
units. (Recall that the existence of phonetic units is assumed a priori in the acoustic­
phonetic approach. Knowledge of acoustic properties of these phonetic units often is 
established in an a posteriori manner.) This knowledge is, at best incomplete, and at 
worst totally unavailable for all but the simplest of situations (e.g., steady vowels). 

2. The choice of features is made mostly based on ad hoc considerations. For most 
systems the choice of features is based on intuition and is not optimal in a well-defined 
and meaningful sense. 

3. The design of sound classifiers is also not optimal. Ad hoc methods are generally 
used to construct binary decision trees. More recently classification and regression 
tree (CART) methods have been used to make the decision trees more robust [10]. 
However, since the choice of features is most likely to be suboptimal, optimal 
implementation of CART is rarely achieved. 

4. No well-defined, automatic procedure exists for tuning the method (i.e., adjusting 
decision thresholds, etc.) on real, labeled speech. In fact, there is not even an ideal 
way of labeling the training speech in a manner consistent and agreed on unifonnlY 
by a wide class of linguistic experts. 

Because of all these problems, the acoustic-phonetic method of speech recognition remains 
an interesting idea but one that needs much more research and understanding before it can 
be used successfully in actual speech-recognition problems. 
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2.5.2 Statistical Pattern-Recognition Approach to Speech Recognition 
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A block diagram of a canonic pattern-recognition approach to speech recognition is shown 
in Figure 2.37. The pattern-recognition paradigm has four steps, namely: 

1. Feature measurement, in which a sequence of measurements is made on the input 
signal to define the "test pattern." For speech signals the feature measurements are 
usually the output of some type of spectral analysis technique, such as a filter bank 
analyzer, a linear predictive coding analysis, or a discrete Fourier transform (DFf) 
analysis. 

2. Pattern training, in which one or more test patterns corresponding to speech sounds 
of the same class are used to create a pattern representative of the features of that 
class. The resulting pattern, generally called a reference pattern, can be an exemplar 
or template, derived from some type of averaging technique, or it can be a model that 
characterizes the statistics of the features of the reference pattern. 

3. Pattern classification, in which the unknown test pattern is compared with each 
(sound) class reference pattern and a measure of similarity (distance) between the 
test pattern and each reference pattern is computed. To compare speech patterns 
(which consist of a sequence of spectral vectors), we require both a local distance 
measure, in which local distance is defined as the spectral "distance" between two 
well-defined spectral vectors, and a global time alignment procedure ( often called a 
dynamic time warping algorithm), which compensates for different rates of speaking 
(time scales) of the two patterns. 

4. Decision logic, in which the reference pattern similarity scores are used to decide 
which reference pattern (or possibly which sequence of reference patterns) best 

matches the unknown test pattern. 

The factors that distinguish different pattern-recognition approaches are the types of feature 
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measurement, the choice of templates or models for reference patterns, and the method 
used to create reference patterns and classify unknown test patterns. 

The remaining chapters of this book will discuss all aspects of the model shown 
in Figure 2.37. The general strengths and weaknesses of the pattern recognition model 
include the following: 

1. The perfonnance of the system is sensitive to the amount of training data available 
for creating sound class reference patterns; generally the more training, the higher 
the perfonnance of the system for virtually any task. 

2. The reference patterns are sensitive to the speaking environment and transmission 
characteristics of the medium used to create the speech; this is because the speech 
spectral characteristics are affected by transmission and background noise. 

3. No speech-specific knowledge is used explicitly in the system; hence, the method is 
relatively insensitive to choice of vocabulary words, task, syntax, and task semantics. 

4. The computational load for both pattern training and pattern classification is generally 
linearly proportional to the number of patterns being trained or recognized; hence, 
computation for a large number of sound classes could and often does become 
prohibitive. 

5. Because the system is insensitive to sound class, the basic techniques are applicable 
to a wide range of speech sounds, including phrases, whole words, and subword 
units. Hence we will see how a basic set of techniques developed for one sound 
class (e.g., words) can generally be directly applied to different sound classes (e.g., 
subword units) with little or no modifications to the algorithms. 

6. It is relatively straightforward to incorporate syntactic (and even semantic) con­
straints directly into the pattern-recognition structure, thereby improving recognition 
accuracy and reducing computation. 

2.5.3 Artificial Intelligence (Al) Approaches to Speech Recognition 

The basic idea of the artificial intelligence approach to speech recognition is to compile and 
incorporate knowledge from a variety of knowledge sources and to bring it to bear on the 
problem at hand. Thus, for example, the AI approach to segmentation and labeling would 
be to augment the generally used acoustic knowledge with phonemic knowledge, lexical 
knowledge, syntactic knowledge, semantic knowledge, and even pragmatic knowledge. To 
be more specific, we first define these different knowledge sources: 

• acoustic knowledge~vidence of which sounds (predefined phonetic units) are 
spoken on the basis of spectral measurements and presence or absence of features 

• lexical knowledge-the combination of acoustic evidence so as to postulate words 
as specified by a lexicon that maps sounds into words (or equivalently decomPoses 
words into sounds) 

• syntactic knowledge-the combination of words to form grammatically correct 
strings (according to a language model) such as sentences or phrases 

Amazon / Zentian Limited 
Exhibit 1013 

Page 83



Sec. 2.5 Approaches to Automatic Speech Recognition by Machine 53 

• semantic knowledge-understanding of the task domain so as to be able to validate 
sentences (or phrases) that are consistent with the task being performed, or which are 
consistent with previously decoded sentences 

• pragmatic knowledge-inference ability necessary in resolving ambiguity of meaning 
based on ways in which words are generally used. 

To illustrate the correcting and constraining power of these knowledge sources, 
consider the following sentences: 

1. Go to the refrigerator and get me a book. 
2. The bears killed the rams. 

3. Power plants colorless happily old. 

4. Good ideas often run when least expected. 

The first sentence is syntactically meaningful but semantically inconsistent. The second 
sentence can be interpreted in at least two pragmatically different ways, depending on 
whether the context is an event in a jungle or the description of a football game between two 
teams called the "bears" and the "rams." The third sentence is syntactically unacceptable 
and semantically meaningless. The fourth sentence is semantically inconsistent and can 
trivially be corrected by changing the word run to come, a slight phonetic difference. 

The word-correcting capability of higher-level knowledge sources is illustrated in 
Figure 2.38, which shows the word error probability of a recognizer both with and without 
syntactic constraints, as a function of a "deviation" parameter sigma. As the deviation 
parameter gets larger, the word error probability increases for both cases; however, without 
syntax the word error probability rapidly leads to 1.0, but with syntax it increases gradually 
with increases in the noise parameter. 

There are several ways to integrate knowledge sources within a speech recognizer. 
Perhaps the most standard approach is the "bottom-up" processor (Figure 2.39), in which 
the lowest-level processes (e.g., feature detection, phonetic decoding) precede higher-level 
processes (lexical decoding, language model) in a sequential manner so as to constrain 
each stage of the processing as little as possible. An alternative is the so-called "top-down" 
processor, in which the language model generates word hypotheses that are matched against 
the speech signal, and syntactically and semantically meaningful sentences are built up on 
the basis of the word match scores. Figure 2.40 shows a system that is often implemented 
in the top-down mode by integrating the unit matching, lexical decoding, and syntactic 
analyses modules into a consistent framework. (This system will be discussed extensively 
in the chapter on large-vocabulary continuous-speech recognition.) 

A third alternative is the so-called blackboard approach, as illustrated in Figure 2.41. 
In this approach, all knowledge sources (KS) are considered independent; a hypothesis­
and-test paradigm serves as the basic medium of communication among KSs; each KS is 
data driven, based on the occurrence of patterns on the blackboard that match the templates 
specified by the KS; the system activity operates asynchronously; assigned cost and utility 
considerations and an overall ratings policy to combine and propagate ratings across all 
levels. The blackboard approach was extensively studied at CMU in the 1970s [ 11 ]. 
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Figure 2.38 Illustration of the word correction capability of syntax in 
speech recognition (after Rabiner and Levinson [I]). 

2.5.4 Neural Networks and Their Application to Speech Recognition 

A variety of knowledge sources need to be established in the AI approach to speech 
recognition. Therefore, two key concepts of artificial intelligence are automatic knowl­
edge acquisition (learning) and adaptation. One way in which these concepts have been 
implemented is via the neural network approach. In this section, we discuss the moti­
vation for why people have studied neural networks and how they have been applied to 
speech-recognition systems. 

Figure 2.42 shows a conceptual block diagram of a speech understanding system 
loosely based on a model of speech perception in human beings. The acoustic input 
signal is analyzed by an "ear model" that provides spectral information (over time) about 
the signal and stores it in a sensory information store. Other sensory information (e.g., 
from vision or touch) is available in the sensory information store and is used to provide 
several "feature-level" descriptions of the speech. Both long-term (static) and short-tenn 
(dynamic) memory are available to the various feature detectors. Finally, after several 
stages of refined feature detection, the final output of the system is an interpretation of the 
information in the acoustic input. 

The system of Figure 2.42 is meant to model the human speech understanding system. 
The auditory analysis is based loosely on our understanding of the acoustic processing in 
the ear. The various feature analyses represent processing at various levels in the neural 
pathways to the brain. The short- and long-term memory provide external control of the 
neural processes in ways that are not well understood. The overall form of the model is 
that of a feed forward connectionist network-that is, a neural net. To better explain the 
strengths and limitations of neural networks, we now give a brief introduction to the issues 
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Figure 2.41 A blackboard approach to knowledge integration for speech recognition 
(after Lesser et al. I 11 ]). 

Figure 2.42 Conceptual block diagram of a human speech understanding system. 

in the theory and implementations of neural networks. Then we return to some practical 
proposals for how neural networks could implement actual speech recognizers. 

2.5.4.1 Basics of Neural Networks 

A neural network, which is also called a connectionist model a neural net, or a parallel 
distributed processing (PDP) model, is basically a dense inter~onnection of simple, non· 
linear, computation elements of the type shown in Figure 2.43. It is assumed that tbere 
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Figure 2.43 Simple computation element of a neural network. 

are N inputs, labeled x1, x2, ... , XN, which are summed with weights w1, w2, ... , wN, 

thresholded, and then nonlinearly compressed to give the output y, defined as 

N 

Y = 1(~ W;X; - ,/,). (2.1) 

where ¢ is an internal threshold or off set, and f is a nonlinearity of one of the types given 
below: 

1. hard limiter 

f(x) = { +l, x~O 

-1, x<O 
(2.2) 

or 

2. sigmoid functions 
f(x) = tanh(,Bx), ,B > 0 (2.3) 

or 
1 

,B > 0. f(x) = 1 + e-f3x' (2.4) 

The sigmoid nonlinearities are used most often because they are continuous and differen­
tiable. 

The biological basis of the neural network is a model by McCullough and Pitts [ 12) of 
neurons in the human nervous system, as illustrated in Figure 2.44. This model exhibits all 
the properties of the neural element of Figure 2.43, including excitation potential thresholds 
for neuron firing (below which there is little or no activity) and nonlinear amplification, 
which compresses strong input signals. 

2.5.4.2 Neural Network Topologies 

There are several issues in the design of so-called artificial neural networks (ANNs), which 
model various physical phenomena, where we define an ANN as an arbitrary connection of 
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Figure 2.44 McCullough-Pitts model of neurons (after McCullough ar.d Pitts [121). 

simple computational elements of the type shown in Figure 2.43. One key issue is network 
topology-that is, how the simple computational elements are interconnected. There are 
three standard and well known topologies: 

• single/multilayer perceptrons 

• Hopfield or recurrent networks 

• Kohonen or self-organizing networks 

In the single/multilayer perceptron, the outputs of one or more simple computational 
elements at one layer form the inputs to a new set of simple computational elements of 
the next layer. Figure 2.45 shows a single-layer perceptron and a three-layer perceptron. 
The single-layer perceptron has N inputs connected to M outputs in the output layer. The 
three-layer perceptron has two hidden layers between the input and output layers. What 
distinguishes the layers of the multilayer perceptron is the nonlinearity at each layer that 
enables the mapping between the input and output variables to possess certain particular 
classification/discrimination properties. For example, it can be proven that a single-layer 
perceptron, of the type shown in Figure 2.45a, can separate static patterns into classes with 
class boundaries characterized by hyperplanes in the (x1, x2, ... , xN) space. Similarly, a 
multilayer perceptron, with at least one hidden layer, can realize an arbitrary set of decision 
regions in the (x1, • • • , XN) space. Thus, for example, if the inputs to a multilayer perceptron 
are the first two speech resonances "(F 1 and F2), the network can implement a set of decision 
regions that partition the (F 1 - F2) space into the 10 steady state vowels, as shown in 
Figure 2.46 [ 13). 
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Figure 2.46 A multilayer perceptron for classifying steady vowels based on F 1, F2 measurements (after Lippmann [ 13]). 

The Hopfield network is a recurrent network in which the input to each computational 
element includes both inputs as well as outputs. Thus with the input and output indexed by 
time, x;(t) and y;(t), and the weight connecting the ith node and the J-th node denoted by w;j, 

the basic equation for the ,1h recurrent computational element is 

y;(t) = f [x;(t) + ~ wijyj(t - 1) - ¢] 
J 

(2.5) 

and a recurrent network with N inputs and N outputs would have the form shown in 
Figure 2.4 7. The most important property of the Hopfield network is that when Wij = wi; and 
when the recurrent computation (Eq. (2.5)) is performed asynchronously, for an arbitrary 
constant input, the network will eventually settle to a fixed point where y;(t) = y;(t - l) for 
all i. These fixed relaxation points represent stable configurations of the network and can 
be used in applications that have a fixed set of patterns to be matched (e.g., printed letters) 
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Figure 2.47 Model of a recurrent neural network. 
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Figure 2.48 A fixed point interpretation of the Hopfield network. 

in the form of a content addressable or associative memory. A simple interpretation of the 
Hopfield network is shown in Figure 2.48, which shows that the recurrent network has a 
stable set of attractors and repellers, each forming a fixed point in the input space. Every 
input vector, x, is either "attracted" to one of the fixed points or "repelled" from another 
of the fixed points. The strength of this type of network is its ability to correctly classify 
"noisy" versions of the patterns that form the stable fixed points. 

The third popular type of neural network topology is the Kohonen, self-organizing 
feature map, which is a clustering procedure for providing a codebook of stable patterns in 
the input space that characterize an arbitrary input vector, by a small number of represen· 
tative clusters. We defer a discussion of this type of network to the next chapter, where the 
ideas of vector quantization are presented in detail. 

2.5.4.3 Network Characteristics 

Four model characteristics must be specified to implement an arbitrary neural network: 
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1. number and.type of inputs-The issues involved in the choice of inputs to a neural 
network are similar to those involved in the choice of features for any pattern­
classification system. They must provide the information required to make the 
decision required of the network. 

2. connectivity of the network-This issue involves the size of the network-that is, the 
number of hidden layers and the number of nodes in each layer between input and 
output. There is no good rule of thumb as to how large (or small) such hidden layers 
must be. Intuition says that if the hidden layers are large, then it will be difficult to 
train the network (i.e., there will be too many parameters to estimate). Similarly, if the 
hidden layers are too small, the network may not be able to accurately classify all the 
desired input patterns. Clearly practical systems must balance these two competing 
effects. 

3. choice of offset-The choice of the threshold, ¢, for each computational element 
must be made as part of the training procedure, which chooses values for the 
interconnection weights (w;1) and the offset,¢. 

4. choice of non I inearity-Experience indicates that the exact choice of the nonlinearity, 
f, is not very important in terms of the network performance. However, f must be 
continuous and differentiable for the training algorithm to be applicable. 

2.5.4.4 Training of Neural Network Parameters 

To completely specify a neural network, values for the weighting coefficients and the 
offset threshold for each computation element must be determined, based on a labeled 
set of training data. By a labeled training set of data, we mean an association between 
a set of Q input vectors x1, x2 , ... , XQ and a set of Q output vectors Yt, Y2, ... , YQ where 
x 1 ::::} y 1, X2 ::::} Y2, ... , XQ ::::} y Q. For multilayer perceptrons a simple iterative, convergent 
procedure exists for choosing a set of parameters whose value asymptotically approaches 
a stationary point with a certain optimality property ( e.g., a local minimum of the mean 
squared error, etc.). This procedure, called back propagation learning, is a simple stochastic 
gradient technique. For a simple, single-layer network, the training algorithm can be 
realized via the following convergence steps: 

Perceptron Convergence Procedure 

1. Initialization: At time t = 0, set wij(O), ¢1 to small random values (where wii are 
the weighting coefficients connecting ith input node and /h output node artd <PJ is the 
offset to a particular computational element, and the wu are functions of time). 

2. Acquire Input: At time t, obtain a new input x = {x1 ,x2, ... ,XN} with the desired 

output, yx = {yj', Yi, • • • , YM} · 
3. Calculate Output: 
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4. Adapt Weights: Update the weights as 

w;j(t + I)= w;j(t) + T(t) r.y;· - Yi]· X; 

where the "step size" T(t) satisfies the constraints: 
T 

a. lim ~T(t) = oo 
T-HX>~ 

t=I 

T 

b. lim ~ T 2(t) < oo 
T-+oo ~ 

t=I 

The Speech Signal 

That is, compute the gradient of the error "E7= 1 (yJ - Yi )2 in the direction of the weight 
w;j(t). (A conventional choice of T(t) is I /t.) 

5. Iteration: Iterate steps 2-4 until: 

Vi, t, j. 

The perceptron convergence procedure is a slow, methodical procedure for estimating the 
coefficients of a system (a classifier as well as a neural network) based on a mean squared 
error criterion and has been extensively studied for several decades. The algorithm is 
simple and is guaranteed to converge, in probability, under a restricted set of conditions on 
T(t). However, its speed of convergence in many cases is not sufficiently fast. Alternative 
procedures for estimating neural network coefficients have been used with varying degrees 
of success. 

2.5.4.5 Advantages of Neural Networks 

Neural networks have been given serious consideration for a wide range of problems 
(including speech recognition) for several reasons. These include the following: 

1. They can readily implement a massive degree of parallel computation. Because a 
neural net is a highly parallel structure of simple, identical, computational elements, 
it should be clear that they are prime candidates for massively parallel (analog or 
digital) computation. 

2. They intrinsically possess a great deal of robustness or fault tolerance. Since the 
"information" embedded in the neural network is "spread" to every computational 
element within the network, this structure is inherently among the least sensitive of 
networks to noise or defects within the structure. 

3. The connection weights of the network need not be constrained to be fixed; they can 
be adapted in real time to improve performance. This is the basis of the concept of 
adaptive learning, which is inherent in the neural network structure. 

4. Because of the nonlinearity within each computational element, a sufficiently large 
neural network can approximate (arbitrarily closely) any nonlinearity or nonlinear 
dynamical system. Hence neural networks provide a convenient way of implementing 
nonlinear transformations between arbitrary inputs and outputs and are often more 
efficient than alternative physical implementations of the nonlinearity. 
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Figure 2.49 The time delay neural network computational element (after 
Waibel et al. [14)). 

2.5.4.6 Neural Network Structures for Speech Recognition 

63 

Conventional artificial neural networks are structured to deal with static patterns. As 
discussed throughout this chapter, speech is inherently dynamic in nature. Hence, some 
modifications to the simple structures discussed in the previous sections are required for all 
but the simplest of problems. There is no known correct or proper way of handling speech 
dynamics within the framework already discussed; however, several reasonable structures 
have been proposed and studied and we will point out a few such structures in this section. 

Perhaps the simplest neural network structure that incorporates speech pattern dy­
namics is the time delay neural network (TDNN) computation element shown in Figure 2.49 
[14]. This structure extends the input to each computational element to include N speech 
frames (i.e., spectral vectors that cover a duration of N 6. seconds, where 6. is the time 
separation between adjacent speech spectra). By expanding the input to N frames (where 
N is on the order of 15), various types of acoustic-phonetic detectors become practical via 
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the TDNN. For example, Figure 2.50 shows a TDNN network Y:'ith two hidden layers that 
has been used to distinguish /bl from /di from Jg/. 

A somewhat different neural network architecture for speech recognition, which 
combines the concept of a matched filter with a conventional neural network to account 
for the dynamic within speech, is shown in Figure 2.51 [ I 5]. The .. acoustic features" 
of the speech are estimated via conventional neural network architectures; the pattern 
classifier takes the detected acoustic feature vectors (delayed appropriately) and convolves 
them with filters "matched" to the acoustic features and sums up the results over time. 
At the appropriate time ( corresponding to the end of some speech unit to be detected or 
recognized), the output units in~icate the presence of the speech. 

To illustrate how the network of Figure 2.51 could be used for speech recognition, 
consider, as shown in Figure 2.52, a "sound" to be recognized that is characterized (in some 
type of sound lexicon) as the sequence of acoustic features (o, €, 8, /3, -y). Assume that this 
sound is the input to an appropriately designed network of the type shown in Figure 2.51, 
and the input is as shown in the first line of Figure 2.52. When the acoustic feature a is 
detected (as indicated by the line labeled D0 (t)), it is delayed and then convolved with a 
matched filter with a long time spreading function, yielding the signal D

0
(t- r)*P a(r)as 

shown in the next line of the figure. Similarly acoustic features e, 8, /3, and -y are detected, 
delayed appropriately, and convolved with the appropriate matched filter, as shown in the 
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Figure 2.51 A combination neural network and matched filter for speech recognition 
(after Tank & Hopfield [ 15 ]). 

65 

succeeding lines in Figure 2.52. Finally, at the end of the sequence, the convolved outputs 
are summed up and yield a large value, indicating the recognition of the appropriate sound. 

Finally, yet a third way of integrating temporal information into a neural network is 
shown in Figure 2.53. This network is called a hidden control neural network (HCNN) 
[ I 6] and uses the time varying control, c, as a supplement to the standard input, x, to allow 
the network properties (input-output relations) to change over time in a well-prescribed 
manner. 

2.6 SUMMARY 

In this chapter we have presented a brief discussion of the basic speech-production/ 
perception mechanism in human beings, and we have illustrated how we can exploit the so­
called acoustic-phonetic properties of speech to identify basic sounds. Acoustic-phonetics 
is the broad underpinning of all speech-recognition work. Differences in approach lie 
in the degree of reliance on how much acoustic-phonetics can be used in the recogni­
tion process. At one extreme is the class of acoustic-phonetic recognition methods that 
places total reliance on the acoustic-phonetic mapping; at the other extreme is the class 
of pattern-recognition approaches that do not make a priori assumptions on the phonetic 
characteristics and instead choose to "relearn" the appropriate acoustic-phonetic mapping 
for specific word vocabularies and tasks via an appropriately designed training set. Finally, 
there is the hybrid class of artificial intelligence approaches that exploit, in various degrees, 
aspects of both extreme views of the speech-recognition process. We also discussed the 
fundamentals of neural networks, which can be considered a separate structural approach, 
as well as a new pattern classifier design, with potential to benefit or advance all three 
classical approaches described in this chapter. 
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Figure 2.52 Example illustrating the combination of a neural network and a set of matched filters (after 
TanJc & Hopfield [15]). 

In the remainder of this book we will primarily discuss aspects of the pattern· 
recognition approach to speech recognition. However, the alternative methods will always 
be lurking just below the surf ace of our discussion. 
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Chapter 3 

SIGNAL PROCESSING 
AND ANALYSIS METHODS 

FOR SPEECH RECOGNITION 

3.1 INTRODUCTION 

As discussed in Chapter 1, a speech-recognition system, at its most elementary level, 
comprises a collection of algorithms drawn from a wide variety of disciplines, including 
statistical pattern recognition, communication theory, signal processing, combinatorial 
mathematics, and linguistics, among others. Although each of these areas is relied on to 
varying degrees in different recognizers, perhaps the greatest common denominator of all 
recognition systems is the signal-processing front end, which converts the speech waveform 
to some type of parametric representation (generally at a considerably lower information 
rate) for further analysis and processing. Because of the singular importance of signal­
processing techniques to the understanding of how speech recognizers are designed and 
how they function, we devote this chapter to a discussion of the most commonly used 
techniques in this area. 

A wide range of possibilities exists for parametrically representing the speech signal. 
These include the short time energy, zero crossing rates, level crossing rates, and other 
related parameters. Probably the most important parametric representation of speech is 
the short time spectral envelope, as discussed in Chapter 2. Spectral analysis methods 
are therefore generally considered as the core of the signal-processing front end in a 
speech-recognition system. In this chapter we discuss two dominant methods of spectral 
analysis-namely, the filter-bank spectrum analysis model, and the linear predictive coding 
(LPC) spectral analysis model. Also discussed in this chapter is the technique called vector 
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quantization, which is a procedure for encoding a continuous spectral representation by 
a "typical" spectral shape in a finite codebook (collection) of spectral shapes, thereby 
reducing the information rate of the signal processing even further. The technique of vector 
quantization can be applied to any spectral representation, including both the filter bank 
and LPC models. 

Finally, we close with a brief discussion of an auditory signal-processing model that 
has been proposed as an alternative to both filter banks and LPC models for speech spectral 
analysis. The argument for such a model is that, because it is based on known properties 
of the human auditory system (i.e., a model of cochlea mechanics), it is inherently a better 
representation of the relevant spectral information than either a filter-bank or an LPC model, 
and furthermore it should be quite robust to noise and reverberation. 

3. 1 .1 Spectral Analysis Models 

To motivate our discussion and see how the signal-processing techniques fit into our canonic 
recognition system models, let us review the pattern-recognition model of Figure 3. la and 
the acoustic-phonetic model of Figure 3.1 b. The three basic steps in the pattern-recognition 
model are (I) parameter measurement (in which a test pattern is created), (2) pattern 
comparison, and (3) decision making. The function of the parameter measurement block 
is to represent the relevant acoustic events in the speech signal in terms of a compact, 
efficient set of speech parameters. Although the choice of which parameters to use is 
dictated by other considerations (e.g., computational efficiency, type of implementation, 
available memory), the way in which the chosen representation is computed is based strictly 
on signal-processing considerations. In a similar manner, in the acoustic-phonetic model 
of recognition, the first step in the processing is essentially identical to that used in the 
pattern-recognition approach-namely, parameter measurement-although the steps that 
follow are markedly different. Hence, it is clear that a good fundamental understanding 
of the way in which we use signal-processing techniques to implement the parameter· 
measurement phase of the recognizer is mandatory for understanding the strengths and 
shortcomings of the various approaches to speech recognition that have been proposed and 
studied in the literature. 

As mentioned previously, the two most common choices of a signal-processing front 
end for speech recognition are a bank-of-filters model and an LPC model. The overall 
structure of the bank-of-filters model is shown in Figure 3.2. The speech signal, s(n), 
(assumed to be in digital form throughout this book), is passed through a bank of Q bandpass 
filters whose coverage spans the frequency range of interest in the signal (e.g., 100-3000Hz 
for telephone-quality signals, 100-8000 Hz for broadband signals). The individual filters 
can and generally do overlap in frequency, as shown at the bottom of Figure 3.2. The 
output of the ,11t bandpass filter, Xn(eiw;) (where w; is the normalized frequency 2nf;/Fs, 
with Fs the sampling frequency) is the short-time spectral representation of the signal s(n), 
at time n, as seen through the ith bandpass filter with center frequency w;. It can re~dil~ 
be seen that in the bank-of-filters model each bandpass filter processes the speech signa 
independently to produce the spectral representation Xn, The LPC analysis approach, as 
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BANDPASS ... ... 
FILTER .. .. 

1 

SPEECH .. • • s (n) 
... • 

BANDPASS ... .. 
FILTER .. .. 

a 

••• 

W3L 

W2H 

Figure 3.2 Bank-of-filters analysis model. 

N M 

1 , 1 , 

s PEECH .. BLOCK INTO LPC LPC 
G .. SPECTRAL • .. 

PARAMETER 
,,._ 

FRAMES .. .. p . 
s (n) ANALYSIS •n CONVERSION Cn 

Figure 3.3 LPC analysis model. 

illustrated in Figure 3.3, perfonns spectral analysis on blocks of speech (speech fram~s) 
with an all-pole modeling constraint. This means that the resulting spectral representauon 
Xn(eiw) is constrained to be of the form a/ A(eiw), where A(eiw) is a pth order polynomial 
with z-transfonn 

A(z) = I+ a1z-
1 + a2z- 2 + • • • + apz-P. 

The order, p, is called the LPC analysis order. Thus the output of the LPC spectral analysis 
block is a vector of coefficients (LPC parameters) that specify (parametrically) the spectrUm 
of an all-pole model that best matches the signal spectrum over the period of time in which 
the frame of speech samples was accumulated. 

Although alternative signal-processing front-end processors have been proposed for 
speech-recognition systems, the filter-bank and LPC models have proven themselves to give 
the highest perfonnance in practical speech-recognition systems. Thus, in this chapter, we 
will discuss these two analysis a~~roaches in greater detail and show how they fit into the 
framework of the pattem-recogmtton and acoustic-phonetic approaches 

10 
recognition. 
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Sec. 3.2 The Bank-of-Filters Front-End Processor 73 

3.2 THE BANK-Of .. fH:TERS FRONT-END PROCESSOR 

A block diagram of the canonic structure of a complete filter-bank front-end analyzer is 
given in Figure 3.4. The sampled speech signal, s(n), is passed through a bank of Q 
bandpass filters, giving the signals 

s;(n) = s(n) * h;(n), 

M;-1 

= L h;(m)s(n - m), 

m=O 

(3.la) 

(3.1 b) 

where we have assumed that the impulse response of the i'h bandpass filter is h;(m) with 
a duration of M; samples; hence, we use the convolution representation of the filtering 
operation to give an explicit expression for s;(n), the bandpass-filtered speech signal. Since 
the purpose of the filter-bank analyzer is to give a measurement of the energy of the speech 
signal in a given frequency band, each of the bandpass signals, s;(n), is passed through a 
nonlinearity, such as a full-wave or half-wave rectifier. The nonlinearity shifts the bandpass 
signal spectrum to the low-frequency band as well as creates high-frequency images. A 
lowpass filter is used to eliminate the high-frequency images, giving a set of signals, u;(n), 
1 < i ~ Q, which represent an estimate of the speech signal energy in each of the Q 
frequency bands. 

To more fully understand the effects of the nonlinearity and the lowpass filter, let us 
assume that the output of the ith bandpass filter is a pure sinusoid at frequency w;, i.e. 

s;(n) = a; sin(w;n). (3.2) 

This assumption is valid for speech in the case of steady state voiced sounds when the 
bandwidth of the filter is sufficiently narrow so that only a single speech harmonic is passed 
by the bandpass filter. If we use a full-wave rectifier as the nonlinearity, that is, 

/(s;(n)) = S;(n) for s;(n) ~ 0 

= -s;(n) for s;(n) < 0. 

Then we can represent the nonlinearity output as 

where 

v;(n) = f(s;(n)) = s;(n) • w(n), 

{ 
+ 1 if S;(n) ~ 0 

w(n) = 
-1 if S;(n) < 0 

(3.3) 

(3.4) 

(3.5) 

as illustrated in Figure 3.5(a)-(c). Since the nonlinearity output can be viewed as a 
modulation in time, as shown in Eq. (3.4), then in the frequency domain we get the result 
that 

(3.6) 

where V;(eiw), S;(eiw), and W(eiw) are the Fourier transfonns of the signals v;(n), s;(n) 

and w(n), respectively, and ® is circular convolution. The spectrum S;(eiw) is a single 
impulse at w0 = w;, whereas the spectrum W(eiw) is a set of impulses at the odd-harmonic 
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Figure 3.5 Typical waveforms and spectra for analysis of a pure sinusoid 
in the filter-bank model. 

75 

frequencies Wq = w;q, q = 1, 3, ... , qmax• Hence the spectrum of V;(eiw) is an impulse at 
w = 0 and a set of smaller amplitude impulses at wq = w;q, q = 2, 4, 6, ... , as shown in 
Figure 3.5 (d)-(f). The effect of the lowpass filter is to retain the DC component of V;(eiw) 
and to filter out the higher frequency components due to the nonlinearity. 

The above analysis, although only strictly correct for a pure sinusoid, is a reasonably 
good model for voiced, quasiperiodic speech sounds so long as the bandpass filter is not so 
wide that it has two or more strong signal harmonics. Because of the time-varying nature of 
the speech signal (i.e., the quasiperiodicity), the spectrum of the lowpass signal is not a pure 
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Figure 3.6 Typical waveforms and spectra of a voice speech signal in the bank-of-filters 
analysis model. 

DC impulse, but instead the information in the signal is contained in a low-frequency band 
around DC. Figure 3.6 illustrates typical waveforms of s(n), s;(n), w(n) and v;(n) for a brief 
(20 msec) section of voiced speech processed by a narrow bandwidth channel with center 
frequency of 500 Hz (sampling frequency for this example is 10,000 Hz). Also shown 
are the resulting spectral magnitudes for the four signals. It can be seen that jS;(eiw)j has 
most of its energy around 500 Hz (w = IOO(hr), whereas I W;(eiw) I (which is quasiperiodic) 
approximates an odd harmonic signal with peaks at 500, 1500, 2500 Hz. The resulting 
signal spectrum, jv;(eiw)j, shows the desired low-frequency concentration of energy as 
well as the undesired spectral peaks at 1000 Hz, 2000 Hz, etc. The role of the final lowpass 
filter is to eliminate the undesired spectral peaks. 

The bandwidth of the signal, v;(n), is related to the fastest rate of motion of speech 
harmonics in a narrow band and is generally acknowledged to be on the order of 20-30 Hz. 
Hence, the final two blocks of the canonic bank-of-filters model of Figure 3.4 are a sampling 
rate reduction box in which the lowpass-filtered signals, t;(n), are resampled at a rate on 
the order of 40--60 Hz (for economy of representation), and the signal dynamic range is 
compressed using an amplitude compression scheme (e.g., logarithmic encoding, µ-law 
encoding). 

Consider the design of a Q = 16 channel filter bank for a wideband speech signal 
where the highest frequency of interest is 8 kHz. Assume we use a sampling rate of 
Fs = 20 kHz on the speech data to minimize the effects of aliasing in the analog-to-digital 
conversion. The information (bit rate) rate of the raw speech signal is on the order of 
240 kbits per second (20 k samples per second times 12 bits per sample). At the output of 

Amazon / Zentian Limited 
Exhibit 1013 

Page 107



Sec. 3.2 

I 

The Bank-of-Filters Front-End Processor 
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Figure 3.7 Ideal (a) and realistic (b) set of filter responses of a Q-channel filter bank 
covering the frequency range Fs/N to (Q + 'h>Fs/N. 
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the analyzer, if we use a sampling rate of 50 Hz and we use a 7 bit logarithmic amplitude 
compressor, we get an information rate of 16 channels times 50 samples per second per 
channel times 7 bits per sample, or 5600 bits per second. Thus, for this simple example 
we have achieved about a 40-to- l reduction in bit rate, and hopefully such a data reduction 
would result in an improved representation of the significant information in the speech 
signal. 

3.2.1 Types of Filter Bank Used for Speech Recognition 

The most common type of filter bank used for speech recognition is the uniform filter bank 
for which the center frequency,_{;, of the ith bandpass filter is defined as 

(3.7) 

where F s is the sampling rate of the speech signal, and N is the number of uniformly spaced 
filters required to span the frequency range of the speech. The actual number of filters used 
in the filter bank, Q, satisfies the relation 

Q ~N/2 (3.8) 

with equality when the entire frequency range of the speech signal is used in the analysis. 
The bandwidth, b;, of the ith filter, generally satisfies the property 

(3.9) 

with equality meaning that there is no frequency overlap between adjacent filter channels, 
and with inequality meaning that adjacent filter channels overlap. (If b; < Fs/N, then 
certain portions of the speech spectrum would be missing from the analysis and the resulting 
speech spectrum would not be considered very meaningful.) Figure 3.7a shows a set of Q 
ideal, non-overlapping, bandpass filters covering the range from Fs/N( ½) to (Fs/N)(Q + 
½). Similarly Figure 3.7b shows a more realistic set of Q overlapping filters covering 

approximately the same range. 
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78 Chap. 3 Signal Processing and Analysis Methods 

The alternative to uniform filter banks is nonuniform filter banks designed according 
to some criterion for how the individual filters should be spaced in frequency. One 
commonly used criterion is to space the filters uniformly along a logarithmic frequency 
scale. (A logarithmic frequency scale is often justified from a human auditory perception 
point of view, as will be discussed in Chapter 4.) Thus for a set of Q bandpass filters with 
center frequencies,f;, and bandwidths, b;, 1 ~ i ~ Q, we set 

b1 =C 

b; = a,_b;-1, 

i-1 (b; - bi) f; =!1 + :~::::>j + 2 ' 
j=I 

(3.IOa) 

(3.IOb) 

(3.11) 

where C and/ 1 are the arbitrary bandwidth and center frequency of the first filter, and a is 
the logarithmic growth factor. 

The most commonly used values of a,_ are a,_ = 2, which gives an octave band spacing 
of adjacent filters, and o = 4/3 which gives a 1/3 octave filter spacing. Consider the 
design of a four band, octave-spaced, non-overlapping filter bank covering the frequency 
band from 200 to 3200 Hz (with a sampling rate of 6.67 kHz). Figure 3.8a shows the ideal 
filters for this filter bank. Values for / 1 and C of 300 Hz and 200 Hz are used, giving the 
following filter specifications: 

Filter I: / 1 = 300 Hz, 
Filter 2: / 2 = 600 Hz, 
Filter 3: /3 = 1200 Hz, 
Filter 4: / 4 = 2400 Hz, 

b1 = 200Hz 
b2 = 400Hz 
b3 = 800 Hz 
b4 = 1600 Hz 

An example of a 12-band, I /3-octave, ideal filter-bank specifications, covering the band 
from about 200 to 3200 Hz, is given in Figure 3.8b. For this example, C = 50 Hz, and 
/1 := 225 Hz. 

An alternative criterion for designing a nonuniform filter bank is to use the critical 
band scale directly. The spacing of filters along the critical band is based on perceptual 
studies and is intended to choose bands that give equal contribution to speech articulation. 
The general shape of the critical band scale is given in Figure 3.9. The scale is close to 
linear for frequencies below about I 000 Hz (i.e., the bandwidth is essentially constant as a 
function/), and is close to logarithmic for frequencies above 1000 Hz (i.e., the bandwidth 
is essentially exponential as a function of/). Several variants on the critical band scale 
have been used, including the mel scale and the bark scale. The differences between 
these variants are small and are, for the most part, insignificant with regard to design of 
filter banks for speech-recognition purposes. For example, Figure 3.8c shows a 7-band 
critical-band filter-bank specification. 

Other criteria for designing nonuniform filter banks have been proposed in the liter­
ature. For the most part, the uniform and nonuniform designs based on critical band scales 
have been the most widely used and studied filter-bank methods. 
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Figure 3.8 Ideal specifications of a 4-channel octave band-filter bank (a), a 12-channel third-octave band filter bank (b), 
and a ?-channel critical band scale filter bank (c) covering the telephone bandwidth range (200-3200 Hz). 

Figure 3.9 The variation of bandwidth with frequency for the per­

ceptually based critical band scale. 
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3.2.2 Implementations of Filter Banks 

A filter bank can be implemented in several w_a~s, depending o_n the method used to design 
the individual filters. Design methods for d1g1tal filters fall into two broad classes: (I) 
infinite impulse response (IIR) and (2) finite impulse response (FIR) methods. For IIR 
filters (also commonly called recursive filters in the literature), the most straightforward, 
and generally the most efficient implementation is to realize each individual bandpass filter 
as a cascade or parallel structure. (See Reference [ 1 ], pp. 40-46, for a discussion of such 
structures.) 

For FIR filters there are several possible methods of implementing the bandpass filters 
in the filter bank. The most straightforward and the simplest implementation is the direct 
fonn structure. In this case, if we denote the impulse response for the ith channel as h;(n), 
O < n < L - 1, then the output of the ith channel, x;(n), can be expressed as the discrete, 
finite convolution of the input signal, s(n), with the impulse response, h;(n), i.e. 

x;(n) = s(n) * h;(n) 
l-l 

= L h;(m)s(n - m). 
m=O 

(3.12a) 

(3.12b) 

The computation of Eq. (3.12) is iterated on each channel i, for i = l, 2, ... , Q. The 
advantages of the convolutional, direct fonn structure are its simplicity and that it works 
for arbitrary h;(n). The disadvantage of this implementation is the high computational 
requirement. Thus for a Q-channel FIR filter bank, where each bandpass FIR filter has an 
impulse response of L samples duration, we require 

CoFFIR = LQ ·, + (multiplication, addition) (3.13) 

for a complete evaluation of x;(n), i = I, 2, ... , Q, at a single value of n. 
An alternative, less-expensive implementation can be derived for the case in which 

each bandpass filter impulse response can be represented as a fixed lowpass window, w(n), 
modulated by the complex exponential, eiw,-n_that is, 

(3.14) 

In this case Eq. (2.12b) becomes 

x;(n) = L w(m)eiw;ms(n - m) 
m 

= L s(m) w(n - m)eiw;(n-m) 
m 

(3. 15a) 
m 

= eiw;nSn(eiw;), (3.15b) 

~here Sn(ei"';) is the sho~-time Fourier transfonn of s(n} at frequency w; = 2'/[f;. The 
importance of Eq. (3• I 5) is that efficient procedures often exist for evaluating the short· 
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Figure 3.10 The signals s(m) and w(n - m) used in evaluation of the short-time Fourier transform. 

time Fourier transform using FFf methods. We will discuss such procedures shortly; first, 
however, we briefly review the interpretations of the short-time Fourier transform (see 
Ref. [2] for a more complete discussion of this fascinating branch of signal processing). 

3.2.2.1 Frequency Domain Interpretation of the Short-Time Fourier 
Transform 

The short-time Fourier transform of the sequence s(m) is defined as 

Sn(eiw,) = L s(m)w(n - m)e-jw,m. 
m 

(3.16) 

If we take the point of view that we are evaluating Sn(eiw•) for a fixed n = no, then we can 
interpret Eq. (3.16) as 

(3.17) 

where Ff[·] denotes the Fourier Transform. Thus Sn0 (eiw;) is the conventional Fourier 
transform of the windowed signal, s(m) w(no - m), evaluated at the frequency w = w;. 

Figure 3.10 illustrates the signals s(m) and w(n - m), at times n = no = 50, 100, and 200 to 
show which parts of s(m) are used in the computation of the short-time Fourier transform. 
Since w(m) is an FIR filter (i.e., of finite size), if we denote that size by l, then using the 
conventional Fourier transform interpretation of Sn(eiw;), we can state the following: 

l. If L is large, relative to the signal periodicity (pitch), then Sn(eiw;) gives good fre­
quency resolution. That is, we can resolve individual pitch harmonics but only 
roughly see the overall spectral envelope of the section of speech within the window. 

2. If l is small relative to the signal periodicity, then Sn(eiw;) gives poor frequency 
resolution (i.e., no pitch harmonics are resolved), but a good estimate of the gross 
spectral shape is obtained. 

To illustrate these points, Figures 3.11-3.14 show examples of windowed signals, 
s(m)w(n - m), (part a of each figure) and the resulting log magnitude short time spectra, 
20 log 10 ISn(eiw) I (part b of each figure). Figure 3.11 shows results for an l = 500-point 
Hamming window applied to a section of voiced speech. The periodicity of the signal is 
clearly seen in the windowed time waveform, as well as in the short-time spectrum in which 
the fundamental frequency and its harmonics show up as narrow peaks at equally spaced 
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Figure 3.11 Short-time Fourier transform using a long (500 points or 50 msec) 
Hamming window on a section of voiced speech. 
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Figure 3.13 Short-time Fourier transform using a long (500 points or 50 msec) 
Hamming window on a section of unvoiced speech. 
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Figure 3.14 Short-time Fourier transform using a short (50 points or 5 msec) Ham­
ming window on a section of unvoiced speech. 
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#1'¥ 

s (n) s (n) 
w (n) 

Figure 3.15 Linear filter interpretation of the short-time Fourier 

transform. 

frequencies. Figure 3.12 shows a similar set of comparisons for an L = 50-point Hamming 
window. For such short windows, the time sequence s(m)w(n-m) does not show the signal 
periodicity, nor does the signal spectrum. In fact, what we see in the short-time Fourier 
transform log magnitude is a few rather broad peaks in frequency corresponding roughly 
to the speech f onnants. 

Figures 3.13 and 3.14 show the effects of using windows on a section of unvoiced 
speech (corresponding to the fricative /sh/) for an L = 500 sample window (Figure 3.13) 
and L = 50 sample window (Figure 3.14 ). Since there is no periodicity in the signal, the 
resulting short-time spectral magnitude of Figure 3.13, for the L = 500 sample window 
shows a ragged series of local peaks and valleys due to the random nature of the unvoiced 
speech. Using the shorter window smoothes out the random fluctuations in the short-time 
spectral magnitude and again shows the broad spectral envelope very well. 

3.2.2.2 Linear Filtering Interpretation of the Short-Time Fourier Transform 

The linear filtering interpretation of the short-time Fourier transform is derived by consid­
ering Sn(eiw;), of Eq. (3.16), for fixed values of w;, in which case we have 

(3.18) 

That is, Sn(eiw;) is a convolution of the lowpass window, w(n), with the speech signal, s(n), 
modulated to center frequency w;. This linear filtering interpretation of Sn(~w;) is illustrated 
in Figure 3 .15. 

If we denote the conventional Fourier transforms of s(n) and w(n) by S(~w) and 
W(eiw), then we see that the Fourier tr@nsfonn of s(n) of Figure 3.15 is just 

(3.19) 

and thus we get 

(3.20) 

Since W(ei"') approximates 1 over a narrow band, and is O everywhere else, we see that, for 
fixed values, w;, the short-time Fourier transfonn gives a signal representative of the signal 
spectrum in a band around w;. Thus the short-time Fourier transfonn, Sn(ei"'i), represents 
the signal spectral analysis at frequency w; by a filter whose bandwidth is that of W(eiw). 
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3.2.2.3 Review Exercises 

Exercise 3.1 
A speech signal is sampled at a rate of 20,000 samples per second <Fs = 20 kHz). A 20-msec 
window is used for short-time spectral analysis, and the window is moved by 10 msec in 
consecutive analysis frames. Assume that a radix-2 FFf is used to compute DFfs. 

1. How many speech samples are used in each segment? 

2. What is the frame rate of the short-time spectral analysis? 

3. What size DFf and FFf are required to guarantee that no time-aliasing will occur? 

4. What is the resulting frequency resolution (spacing in Hz) between adjacent spectral 
samples? 

Solution 3.1 

1. Twenty msec of speech at the rate of 20,000 samples per second gives 

20 x 10- 3 sec x 20,000 samples/sec = 400 samples. 

Each section of speech is 400 samples in duration. 

2. Since the shift between consecutive speech frames is IO msec (i.e., 200 samples at a 
20,000 samples/sec rate), the frame rate is 

l 
frame rate= f h'f rame s 1 t 

l 
----- = 100/sec. 
IO x 10- 3 sec 

That is, l 00 spectral analyses are performed per second of speech. 

3. To avoid time aliasing in using the DFr to evaluate the short-time Fourier transform, 
we require the DFf size to be at least as large as the frame size of the analysis frame. 
Hence, from part 1, we require at least a 400-point DFf. Since we are using a radix 2 
FFf, we require, in theory, a 512-point FFT ( the smallest power of 2 greater than 400) to 
compute the DFf without time aliasing. (We would use the 400 speech samples as the 
first 400 points of the 512-point array; we pad 112 zero-valued samples to the end of the 
array to fill in and give a 512-point array.) Since the speech signal is real (as opposed 
to complex), we can use an FFT size of 256 by appropriate signal preprocessing and 
postprocessing with a complex FFT algorithm. 

4. The frequency resolution of the analysis is defined as 

. sampling rate 20,000 Hz 
frequency resolution = DFf size - = 512 ~ 39 Hz. 

Exercise 3.2 
If the sequences s(n) and w(n) have normal (long-time) Fourier transforms S(ei"') and W(ei"'), 

then show that the short-time Fourier transform 
00 

Sn(eiw) = L s(m)w(n - m)e-jwm 

m=-oo 

can be expressed in the form 

Sn(eiw) = _1 f 1r W(eio)eionS(ei<w+o>)dO. 
271' -1r 
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That is S (eiw) is a smoothed (by the window spectrum) spectral estimate of S(eiw) at freq 
' n Uency 

w. 

Solution 3.2 
The long-time Fourier transforms of s(n) and w(n) can be expressed as 

CX) 

n=-ex> 

CX) 

n=-ex> 

The window sequence, w(n), can be recovered from its long-time Fourier transfonn via the 
integration 

1
1T' 

1 ·w ·wn 
w(n) = - W(e' )e' dw. 

2-rr 
-7T' 

Hence, the short-time Fourier transform 
CX) 

Sn(eiw) = L s(m)w(n - m)e-jwm 

m=-ex> 

can be put in the fonn (by substituting for w(n - m)): 

Exercise 3.3 

S.(/"') = m ~oo s(m) [ 2~ 1: W(/B)/B<n-m)d0] e-jwm 

= 2~ 1: W(iB)/Bn L f ~ s(m)e-j(w+B>m] d0 

= 2~ 1: W(i8)/Bns(ei(w+8))d0. 

If we define the short-time spectrum of a signal in terms of its short-time Fourier transfonn as 

and we define the short-time autocorrelation of the signal as 

00 

Rn(k) = L w(n - m)s(m)w(n - k - m) s(m + k) 
m=-oo 

then show that for 
(X) 

Sn(eiw) = L s(m)w(n - m)e-jwm 

m=-<X> 

Rn(k) and Xn(~:) ~e related~ a normal (long-time) Fourier transfonn pair. In other worrlS, 
show that Xn(e' ) 1s the (long-t1me) Fourier transform of Rn(k}, and vice versa. 
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