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Signal Enhancement Using Beamforming and
Nonstationarity with Applications to Speech

Sharon Gannot, Student Member, IEEE, David Burshtein, Senior Member, IEEE, and Ehud Weinstein, Fellow, IEEE

Abstract—We consider a sensor array located in an enclo-
sure, where arbitrary transfer functions (TFs) relate the source
signal and the sensors. The array is used for enhancing a signal
contaminated by interference. Constrained minimum power
adaptive beamforming, which has been suggested by Frost and,
in particular, the generalized sidelobe canceler (GSC) version,
which has been developed by Griffiths and Jim, are the most
widely used beamforming techniques. These methods rely on the
assumption that the received signals are simple delayed versions
of the source signal. The good interference suppression attained
underthis assumptionis severely impaired in complicated acoustic
environments, where arbitrary TFs may be encountered. In this
paper, we consider the arbitrary TF case. We propose a GSC
solution, which is adapted to the general TF case. We derive a
suboptimal algorithm that can be implemented by estimating
the TFs ratios, instead of estimating the TFs. The TF ratios are
estimated by exploiting the nonstationarity characteristics of the
desired signal. The algorithm is applied to the problem of speech
enhancementin a reverberating room. The discussion is supported
by an experimental study using speech and noise signals recorded
in an actual room acoustics environment.

Index Terms—Beamforming, nonstationarity, speech enhance-ment.

I. INTRODUCTION

IGNAL quality might significantly deteriorate in theG rrescnce of interference, especially when the signal is
also subject to reverberation. Multisensor-based enhancement
algorithms typically incorporate both spatial and spectral
information. Hence, they have the potential to improve on
single sensor solutions that utilize only spectral information.
In particular, when the desired signal is speech, single micro-
phonesolutions are knownto be limited in their performance.
Beamforming methods have therefore attracted a great deal of
interest in the past three decades. Applications of beamforming
to the speech enhancementproblem have also emergedrecently.

Constrained minimum power adaptive beamforming, which
has been suggested by Frost [1], deals with the problem of a
broadband signal received by an array, where pure delay re-
lates each pair of source and sensor. Each sensorsignal is pro-

_cessed by a tap delay line after applying a proper time delay
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compensation. The algorithm is capable ofsatisfying some de-
sired frequency responsein the look direction while minimizing
the output noise power by using constrained minimization of
the total output power. This minimization is realized by ad-
justing the taps ofthe filters under the desired constraint. Frost
suggested a constrained LMS-type algorithm. Griffiths and Jim
[2] reconsidered Frost’s algorithm and introduced the general-
ized sidelobe canceler (GSC) solution. The GSC algorithm is
comprisedof three building blocks. Thefirst is a fixed beam-
former, whichsatisfies the desired constraint. The secondis
a blocking matrix, which produces noise-only reference sig-
nals by blocking the desired signal (e.g., by subtracting pairs of
time-aligned signals). The third is an unconstrained LMS-type
algorithm that attempts to cancel the noise in the fixed beam-
formeroutput. In [2], it is shown that Frost algorithm can be
viewed as a special case of the GSC. The main drawback ofthe
GSCalgorithm isits delay-only propagation assumption.

Van Veen and Buckley [3] summarized various methods for
spatial filtering, including the GSC, and introduced a wider
range of possible constraints on the beam pattern. Cox efal.
[4] suggested constraint of the norm of the adaptive canceler
coefficients in order to solve the superdirectivity problem,
i.e., its sensitivity to steering errors. In particular, they have
suggested to update Frost’s (or the Griffiths and Jim) algorithm
by applying a quadratic constraint on the norm of the noise
canceler coefficients. This constraint, which can limit the
superdirectivity, is added to the usual linear constraints.

Someauthorshaverecently suggestedusing the GSC forspeech
enhancementin a reverberating environment. Hoshuyamaetal.
[5]-[7] used a three-block structuresimilar to the GSC. However,
the blocking matrix has been modified to operate adaptively. In
order to limitthe leakageofthedesired signal, whichisresponsible
fordistortioninthe outputsignal, aquadraticconstraintisimposed
onthe normofthe noisecancelercoefficients. Alternatively, useof
the leaky LMSalgorithm has been suggested.

Nordholm et al. [8] used a GSC solution in which the
blocking matrix is realized by spatial highpass filtering, thus
yielding improved noise-only reference signals. Meyer: and
Sydow [9] have suggested to construct the noise reference
signals by steering the lobes of a multibeam beamformer
toward the noise and desired signal directions separately.

Widrow and Stearns [10] have proposed a dual structure
beamformer. The master beamformeradaptsits coefficients to
minimize the output power while maintaining the beam-pattern
toward a predetermined pilot signal from the desired direc-
tion. Those coefficients are continuously copied to a slave
beamformer that.is used to enhance the speech signal. Dahl
et al. [11] have extended this solution by proposing a dual

1053-587X/01$10.00 © 2001 IEEE
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beamformer that attempts to cancel both noise and jammer
signals (e.g., loudspeaker). The pilot signal is constructed by
offline recordings of the jammer and desired signal in the
actual acoustic environmentduring a calibration phase. Thus,
both echo cancellation and noise suppression are achieved
simultaneously.

Othersolutionsutilize a beamformertype algorithm,followed
by a postprocessor. Zelinski [12] suggested a Wienerfilter, fol-
lowed by further noise reduction ina postprocessing configura-
tion. Meyer and Simmer[13] addressed the problem of high co-
herence betweenthe microphonesignals at low frequencies,as in-
dicated by Dal-Degan andPrati 14]. They have suggestedthe use
ofaspectral subtractionalgorithm in the low-frequency band and
Wienerfiltering in the high-frequency band. Fischer and Kam-
meyer[15] suggested to further split the microphone array into
differentially equispaced subarrays. This structure has been fur-
ther analyzed by Marro etal. [16]. Bitzer eral. [17] analyzed the
performance of the GSC solution and showedits dependence on
the noise field. They showed thatthe noise reduction mightbe in-
finitely large when the noise source is directional. However, in
the more practical situation of a reverberant enclosure, when the
noise field can be regarded as diffused, the performance degrades
severely. Bitzer ef al. [18] suggested a GSC with fixed Wienerfil-
ters in the noise canceling blockandfurtherpostfilters at the GSC
output, An improved performancein the lower frequency range
is achieved. In [19], itis shownthat the Wienerfilters can be com-

puted in advancebyutilizing prior knowledgeofthenoisefield.
Jan and Flanagan [20] suggested a matched filter beam-

forming (MFBF) instead of the conventional delay and sum
beamformer (DSBF). The MFBFconfiguration realizes signal
alignment by convolving the microphone signals with the
(estimated) acoustic transfer function (TF). Rabinkinet al. [21]
proved that the performance of MFBFis superior to DSBF,
provided that the room acoustics TF is not too complicated.
They have also suggested truncation of the estimated acoustic
TFsto ensure reliable estimates.

Grenier et al. [22]-[29] have proposed GSC-based enhance-
mentalgorithms.In [29], the case where general TFs relate the
source and microphones was considered. A subspace tracking
solution [30] has been proposed. The resulting TFs are con-
strained to the array manifold underthe assumption of an FIR
model and small displacements of the talker. The fixed beam-
former block of the GSC is realized using MFBF.

In this paper, we consider a sensor array located in an enclo-
sure, where general TFsrelate the source signal and the sensors.
Thearray is used for enhancing a signal contaminated byinter-
ference. We propose a GSCsolution, which is adapted to the
general TF case. The TFs are estimated by exploiting the non-
stationarity characteristics of the desired signal. The algorithm
is applied to the problem of speech enhancement in a rever-
berating room. The discussion is supported by an experimental
study using speech and noise signals recorded in an actual room
acoustics environment. The outcomeconsists of the assessment

of sound sonograms, signal-to-noise ratio (SNR) enhancement,
and informal subjective listening tests. The paper is organized
as follows. In Section II, we formulate the problem of beam-
forming in a general TF environmentin the frequency domain.
The constrained power minimizationis presented in SectionIII,
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where both Frost’s algorithm [1] and the Griffiths and Jim [2]
interpretation are derived in the frequency domain. This deriva-
tion motivatesthe intuitive structure suggested by other authors
for the beamformingproblem in reverberant environments. We
then show that a suboptimal algorithm can be implemented by
estimating the TF ratios instead of estimating the actual TFs. In
Section IV, we address the problem ofestimating the TF ratios
by extendingthe nonstationarity principle, which was suggested
by Shalvi and Weinstein [31]. An application of the suggested
algorithm to the speech enhancement problem is presented in
Section V. Section VI concludes the paper.

II. PROBLEM FORMULATION

Consideran array of sensors in a noisy and reverberantenvi-
ronment. Thereceived signal is comprised of two components.
Thefirst is some nonstationary (e.g., speech) signal. The second
is somestationary interference signal. Our goal is to reconstruct
the nonstationary signal componentfrom the received signals.
Weuse the following notation.
Zm(t) mth sensor signal;
a(t) desired signal source;
Nn (t) interference signal of the mth sensor comprised of

some directional noise component and some am-
bient noise component;

a,,(t) time-varying TFs from the desired speech source to
the mth sensor.

We have

Zm(t) = am(t) * (t) + M(t); m=1,....M (1)

where * denotes convolution. Suppose that the analysis frame
duration T’ is chosen such that the signal may be considered
stationary over the analysis frame. Typically, the TFs are
changing slowly in time so that they may also be considered
stationary over the analysis frame. Multiplying both sides of
(1) by a rectangular window function w(t) [w(t) = 1 over the
analysis frame w(t) = 0 otherwise] and applying the discrete
time Fourier transform (DTFT)operatoryields

Zm(t, 8”) & Am(e?”)S(t, e2”) + Nin(t, e%”)

m=1,...,M. (2)

The approximation is justified for T sufficiently large.
Zm(t, e”), S(t, e”) and Nm(t, e%) are the short time
Fourier transforms (STFTs) of the respective signals. Am(e%”)
is the TF of the mth sensor. Note that we have assumed that
the TFs are time invariant.

The vector formulation of the equation set (2) is

Z(t, e”) = A(e™)S(t, e”) + Nit, e) (3)

where

Z(t, &) = [Zi(t, e*) Zal(t, e) --- Zrr(t, e™)|

AT (e¥) = [Ar(e™) Ag(e”) +. Anu (e)]

N7(t, e%”) = [Ni(t, 2%) No(t, ce”) --- Nu(t, e)).
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Fig.1.

III. CONSTRAINED OUTPUT POWER MINIMIZATION

In [1], a beamforming algorithm was proposed under the
assumption that the TF from the desired signal source to each
sensor includes only gain and delay values, In this section,
we consider the general case of arbitrary TFs. By following
the derivation of [1] in the frequency domain, we derive a
beamforming algorithm for the general TF case. First, we
obtain a closed-form, linearly constrained, minimum variance
beamformer. Then, we derive an adaptive solution. The out-
come will be a constrained LMS-type algorithm. We proceed,
following the footsteps of Griffiths and Jim [2], and formulate
an unconstrained adaptive solution. We will initially assume
that the TFs are known.Later, in Section IV, we deal with the

problem of estimating the TFs.

A. Frequency Domain Frost Algorithm

1) Optimal Solution: Let W*(t, e”);m=1,..., Mbea
set of M filters

Writ, ei”) = (Wit, ee”) Wi(t, e”) --- Waylt, e*)]

where * denotes conjugation, and t denotes conjugation trans-
pose. A beamformeris realized by filtering each sensor output
by W*(t, ce”) m=1,..., M and summing the outputs

Y(t, ei”) = W(t, e”)Z(t, e”)

= Writ, e”)A(e%”)S(t, el)

+ W(t, e%”)N(t, e”)

Sy,(t, &”) + Y,(t,) (4)

where Y,(t, e?”) is the desired signal part, and Y,,(t, e”) is the
noise part. The output power of the beamformeris

E{Y(t, &)¥*(t, e)}

= E{Wit, e”)Z(t, e)Zt(t, e”)W(t, e””)}

= Wi(t, e™”)Sz2(t, e7”)Wt, e”)

- 1616 -
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Wopt (t, ee )

F(e*) = otsFle’)

Constraint plane: At(e*”)W(t,e”) = Fle”)

Constrained minimization.

where Szz(t, 4”) 2 E{Z(t, e%)Zt(t, e”)}. We want to
minimize the output powersubject to the following constraint
on Y,(t, e?”)

Y,(t, e#”) = Wit, e@”)A(e%”)S(t, e?”)

= F*(t, e™”)S(t, e”)

where F*(t, e?”) is some prespecified filter (usually a simple
delay). We thus have the following minimization problem:

min {Wi(t, 8”)bzz(t, e”)W(t, e”)}
subject to W(t, 7”)A(e™) = F*(t, e!”). (5)

Theminimization (5) is demonstrated in Fig. 1. The point where
the equipower contours are tangent to the constraint plane is
the optimum vector of beamformingfilters. The perpendicular
F(e?“) from theorigin to the constraint plane will be calculated
in Section III-A2.

To solve (5), we first define the following complex Lagrange
functional:

L(W) = Wit, e)dz2(t, ce”)W(t, e”)

+A [wiie, e™”)A(el”) — F*(t, e”)|

+A* [AT (t, e”)W(e) — F(t, e*)]

where A is a Lagrange multiplier. Setting the derivative with
respect to W*to 0 (e.g., [32]) yields

Vw-L(W) = z2z(t, &”)W(t, e”) + AA(e™) =0.

Now,recalling the constraintin (5), we obtain the following set
of optimal filters:

W(t, el) = [At(e)O52 (t, &)A(e)]
- BZ2(t, ef”)A(e)Fle).

This closed-form solutionis difficult to implementand does not
havethe ability to track changes in the environment. Therefore,
an adaptive solution should be more useful.
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Wit = 0,e) = F(ei)
W(t +1,e%) =

P(e”) (we, efv) —= wale, e)¥*(t, eJ”)] + Fle)
(P(e) and F(e)are defined by (6) and (7)).

Fig. 2. Frequency domain frost algorithm.

2) Adaptive Solution: Consider the following steepest de-
scent, adaptive algorithm:

W(t +1, e”)

= Wit, e”) — nVw- Le)

= Wit, e™) — w [Szz(t, &)W(t, e*) + AA(e™)].
Imposing our constraint on W(t + 1, e”) yields

F(e™) = At(e*)W(t + 1, e)

= At(e*)Wit, e/”)

— pAl(e)”)Sz7(t, ei”)W(t, ei)

— pAt(e”)A(e3”).

Solving for the Lagrange multiplier and applying furtherre-
arrangement of terms yields

W(t+1, ec”) = P(e”)Wit, &”)

— pP(*)baz(t, &)W(t, &)+F(e™)

where

soy 7. Ale)ANCS)
Pe) = 1 Te) ©

and ;
ju) A(e/”) Jat

Me) = Taye 7
Further simplification can be achieved by replacing
$zz(t, e%”) byits instantaneousestimator Z(t, e%”)Z'(t, e#”)
and recalling (4). We thus obtain

W(t +1, e”)

= P(e) [W(t, e%”)—uZ(t, e*)Y*(t, e%*)] + Fle).

The algorithm is summarized in Fig.2.

B. Generalized Sidelobe Canceler (GSC) Interpretation

In [2], Griffiths and Jim considered the case where each TF
is a delay element (with some gain). Griffiths and Jim obtained
an unconstrained adaptive enhancement algorithm, using the
same constrained, minimum output powercriterion used by
Frost [1]. The unconstrained algorithm is computationally
more efficient than the constrained algorithm. Furthermore, the

unconstrained algorithm is based on the well behaved NLMS
scheme.In Section III-A2, we obtained an adaptive algorithm
for the case where each TF is represented by an arbitrary linear
time-invariant system by tracing the derivation of Frost in the
frequency domain. We now repeat the arguments of Griffiths

- 1617 -
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and Jim for our case (arbitrary TFs) and derive an unconstrained
adaptive enhancement algorithm.

Considerthe null space of A(e!”), which is defined by

N(e*) = {W|At(e?”)W = 0}.

The constraint hyperplane

A(e”)) 2 {W| At(e#)W = F(e*)}

is parallel to. ’(e”’). In addition to that, let

R(ei#) & {«A(e%™) | for any real «}

be the column space. By the fundamental theorem of linear al-
gebra (e.g., (33]) R(ei”) 1 N(e%”). In particular, F(e™) is
perpendicular to V/(e4”) since

jw F(e) jw ju
F(e’ j= jaceyqe A ) E Rie? ).

Furthermore

At(ec)F(e)

= At(ei)A(e%) (At(e)A(e%)) 7 F(e”) =F(e%).
Thus, F(e%”) € A(e”) and F(e”) 1 A(e”). Hence, F(e?”)
is the perpendicular fromtheorigin to the constraint hyperplane
A(e”). The matrix P(e”), which is defined in (6), is the pro-
jection matrix to the null space of A(e”’), N(e7”).

Now,a vector in linear space can be uniquely split into a sum
of two vectors in mutually orthogonal subspaces (e.g., [33]).
Hence

Wit, e”) = Wo (t, e”) — V(t, e) (8)

where Wo(t, e””) € R(e!), and —V(t, e%”) € N(e”). By
the definition of M/(e7”)

Vit, &”) = Hei”)Git, ei”) (9)

where H(e%”) is some M x (M — 1) matrix, such that the
columns of #{(e7”) span the null space of A(e?“), i.e.,

At(e!”)H(el”) =0 rank {H(e)} = M-—1. (10)

The vector G(t, e%”) is an (M — 1) x 1 vector of adjustable
filters. By the geometrical interpretation of Frost’s algorithm

A(ei”)
\|A(e™) |?

[Recall that F(e%”) is the perpendicular from theorigin to the
constraint hyperplane A(e?“).] Now, using (4), (8), and (9) we
get

Wo(t, e”) = F(e”) = Fle”). 1)

Y(t, e&) = Yrnr(t, e”) — Yno(t, e”) (12)
where

Yepr(t, e”) = Walt, e*)Z(t, e)

Ync(t, %) = Gt(t, e)H"(e™)Z(é, e). (13)
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The outputof the constrained beamformeris a difference of two
terms, both operating on the input signal Z(t, e7”). The first
term Yrpr(t, e?”) utilizes only fixed components (which de-
pend on the TFs); therefore, it can be viewed as a fixed beam-
former (FBF). We now examinethe secondterm Ync(t, e”).
Note that

U(t, e%”) =Ht(e”

_=H" (e)

=H(el

)Z(t, e”)

“) [A(e**)S(t, e#) + N(é, e*)]
N(t, e”). (14)

The last transition is due to (10). U(t, e) are reference
noise signals. Hence, the signal dependent component of
Ync(¢, e%”) is completely eliminated (blocked) by Ht(e*”)
so that Yno(t, e/”) is a pure noise term. The noise term of
Yrpr(t, e?”) can be reduced by properly adjustingthefilters
G(t, e7”), using the minimum output powercriterion. This
adjustment problem is in fact the classical multichannel noise

cancellation problem. An adaptive LMSsolutionto the problem
was proposed by Widrow[34].

The GSCsolution is comprised of three components:
1) fixed beamformer (FBF);
2) blocking matrix (BM)that constructs the noise reference

signals;
3) multichannel noise canceler (NC).

We nowdiscuss each of these componentsin details.
1) Fixed Beamformer (FBF): By (3), (11), and (13), we

have

Yrar(t, e™) = F*(e™)S(t, e)

F*(ei4)
|A(e2”) ||?

Thefirst term on the right-hand side is the signal term. The
secondis the noise term. Note that by setting F*(e/”) = e~J¥7
(i.e., adelay), the signal componentof Yrpr(t, e?”) is an undis-
torted, delayed version of the desired signal.

Unfortunately, we usually do not have access to the actual
TFs (An(e7”); m = 1, ..., M). Later, we show how we can
estimate the TFs ratio

+ At(e™”)N(t, e”).

Am(e™)
Hn(e”) =Ai(ei)' m= 1, wy M, (15)

Let

T/piwy —[,Az(e™) Am(e)] _ AT(e%)are) = [1 FE Beh = ar
If in (11), the actual TFs are replaced by the TFsratios, then

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 8, AUGUST 200)

Thus, when Wo(t, e%”) is given by (16), the signal term of
Yrar(t, e’) is the desired signal distorted only bythefirst TF
A,(e4”). Now, suppose that

Wolt, e”) = Hei)F(e), (17)

In this case, Wo(t, e?”) is comprisedofthe cascade of H(e%)
whichis a filter matched to the TFsratio, and ¥(e/”). The new
Wo(t, e”) can be derived from (16) under the assumption that
||H(e%”)||? is constant. In fact, Grenier et al. [29] argue that
this assumption can be verified empirically. The FBF term of
the output is now given by

AC)?
Ae)

+ F*(ei”)H'(e”)N(t, e!”),

Yrar(t, e!”) = F*(e”)S(t, e!)

(18)

The signal componentof Yrpr(t, e?”) is now distorted. Hence,
only a suboptimal solution is achieved. Note, however,that all
the sensor outputs are added together coherently [this can be
seen from the term || A(e”)||?].

  

2) Blocking Matrix (BM): Consider the following
M x (M — 1) matrix H(e%”):

_ Axle”) A3(e7*) i (e?*)
Aj(e)—Aj(e) ~ Aj(e)

1 0 wee 0

H(e*) = 0 1 - 0

0 0 1

(19)

It can be easily verified that this matrix satisfies (10) and is,
hence, a proper blocking matrix that may be used for generating
the reference noise signals U(t, e*”). By (14), we have

jw j A,,(e”) ‘™m J =4m\l, qe) 7. ”Un(e?”)=Zm(t, e?”) (e™) Z(t, e7”)
m=2,..., M. (20)

Thus, the knowledge of the TFs ratios H,,(e”) =
Am(e™)/A1(e/”) is sufficient to implement the sidelobe
canceler.

3) Noise Canceler: By the GSC derivation, we have con-
structed twosignals. The first is Yrgr(t, e7”), which contains
both a desired speech term and a residual noise term. The second
signal is Yyo(t, e””). Yno(t, e?”) consists of an adaptive set

: _H(e)|of filters G(t, e7”) that are applied to the noise-only signalsjw ’

Wolt, e”) = eIFie), (16) Ut, ei.
Recall that our goal is to minimize the output power under

By (3) and (13), we have a constraint on the responseat the desired direction. Bysetting
; fw) ee jw ; Wo(t, e?”) accordingto (11), the constraintis satisfied. Hence,jw) — Jus J jw

Yeor(t, e!") = Arle \F (e™)S(t, e™) minimization of the output poweris achieved by adjusting the
1 F*(e™) Ht(e/)N(t, e#). filters Git, el). This is an unconstrained minimization, ex-

||H(e4”)||? actly as in Widrow’s classical problem [34]. We can implement
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it by using the multichannel Wienerfilter. Recalling (12), our
goalis to set G(t, e) to minimize

E {|lYrer(t, e”) — Gt(t, e)U(t, e)|7}.
Let

buy (t, ) =E {U(t, e)¥sp(t, e”)}
duult, e) = E {U(t, e*)Ut(t, ei”)}.

Then,the multichannel Wienerfilter is given by [19], [35]

G(t, e”) = 5b(t, e”)Our(t, e). (21)

In orderto be able to track changes, we processthe signals by
segments. The following frequency domain LMSalgorithm is
used. Let the residual signal be

Y(t, e!”) = Yppr(t, e™”) — Gtit, e”)U(t, e#).

Note that the residual signal is also the output of the enhance-
ment algorithm. By the orthogonality principle, the erroris or-
thogonal to the measurements. Thus

E{U(t, e™*)Y*(t, e*)} =0. (22)

Following the standard Widrow procedure, the solutionis

G(t+1, e”) = Git, e”) + pUlt, e”)Y*(t, e”).

Usually, a more stable solution is achieved by using the nor-
malized LMS (NLMS)algorithm, in which each frequency is
normalized separately, yielding

Umn(t, e%)¥*(t, e™)
Gn(t+ 1, e”) =Gnilt, el”) tu P. e(t ej)

m=2,...,M

where

Pest (t, e?”) = pPest(t -1, e”) + (1 _ p) > |Zm(t, ei)|?
(23)

pis a forgetting factor(typically 0.8 < p < 1). Anotherpossi-
bility is to calculate P.,_ using the powerofthe noise reference
signals. However,in that case, an energy detector is required so
that G(t, e?”) is updated only whenthere is no active signal.
If on the other hand, wecalculate P.s(t, e7”) using the input
sensorsignals,as indicated in (23); then, an energy detector may
be avoided. This is due to the fact that the adaptation term be-
comesrelatively small during periods ofactive input signal.

We assume that the noncasual TFs ratios h,, and the noise

cancelingfilters g,, are both FIRs:

ht =([hm(—az), ---) Mm(¢r)]

gl, = [9m(—-Kx), seey 9m(Kr)]

(both h,,, and gm are functionsof time; however, for notational
simplicity, we omit this dependence). Note that the TFs might
havezeros outside the unit circle. Thus, to ensure stability of the
TFs ratios, we do not impose them to be causal. When A; (e)”)
contains zerosthatare close to the unitcircle,the noise reference

(24)
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signals U,,(e”) at the corresponding frequencies might assume
very large values[recall (20)]. This may result in sharp peaks in
the reconstructed spectrum.This problemis partially overcome
by constraining the impulse response ofh,,, to an FIR structure.
It is also possible to constrain the maximal valueof the estimated
|H,n(e2”)| to be lower than somethreshold.

In orderto fulfill the FIR structure constraint (24), the filters

update is now given by

Um(t, e*)¥*(t, e?)
Gn(t +1, €”) = Gm(t, e*) +p ut, ef”)
Gin(t +1, &”) = Ga(t +1, e”) (25)

for m = 2,..., M. The operator <— includes the following
three stages,First, we transform Gn (t+1, e?”) to the time do-
main. Second, we truncate the resulting impulse responseto the
interval [—K,, Kp] (i-e., we impose an FIR constraint). Third,
wetransform back to the frequency domain.

Notethat the variousfiltering operations (multiplications in
the transform domain) are realized using the overlap and save
method [36].

The new algorithm can be regarded as an extension of the
Griffiths and Jim algorithm for the general TF case. Figs. 3 and
4 summarize our suggested solution. Theratios of the TFs are
assumedto be known atthis stage.

IV. SYSTEM IDENTIFICATION USING NONSTATIONARITY

Thus far, we assumed that the TFs ratio vector H(e%”) is
known.In practice, however, H(e?”) are not known and should
be estimated. Rearranging termsin (20), we have

Zmi(t, &”) = Hm(e?”)Z,(t, 2”) + Um(t, 2”). (26)

We have assumedthat the TFsratios are slowly changing in
time compared to the time variations of the desired signal. We
further assumethat the statistics of the noise signal is slowly
changing compared with thestatistics of the desired signal. Con-
sider someanalysis interval during which both the TFs and the
noise signal are assumedto be stationary. We divide that analysis
interval into frames such that the desired signal may be consid-
ered stationary during each frame. Consider the kth frame. By
(26), we have

OL"),(e) = Hm(e?*) OU), (e™) + by, 2, (7)
k=1,...,K (27)

where K is the number of frames used. ot) (e!”) is the
cross-PSD between z; and z; during the kth frame. ©,,_, ., (e7”)
is the cross-PSD between u,, and z,. Now,(2) and (20) imply
that

Um(t, e™) = Nm(t, e”) — Hin(e3”)Ni(t. e”) (28)

Zi(t, e%”) = Ar(e¥”)S(t, e#”) + Ni(t, eM). (29)

Since Nm(t, e), m = 1,..., M are assumed stationary
overthe analysis interval and since S(t, e/”) is independentof
Nm(t, e?”), it follows that ©,.,(e%”) is independent of the
frame index k.
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Fig. 3. Linearly constrained adaptive beamformer.

1) TF-s ratios: H(e/”) = Ae
2) Fixed beamformer:

Yrar(t,e) = Wh(e)Z(t,e)
3) Noise reference si

U(t,e) = Ht(ei)Z(t, ej”)
4) Outputsignal:

Y(t, e%”) = Yppr(t,oe Gt(t, e)U(t,e)5) Filters update, form =1,...,M—-1:

Galt +1,0!) = Gra(tyeM) + pbaee
Gm(t +1,e) €* Gn(t +1,€%)

where,
Pea(t, ei) = PPeat(t — 1,€%) + (1 — p) Dm |Zm(t, ei)?
6) keep only non-aliased samples.
(note: Wo(e) is defined in (16).
H(e“) is defined in (19)).

Fig. 4. Suggested algorithm.

used to obtain an unbiased estimate of H,,(e?”). Unfortunately,
by (28) and (29), U,,(t, e”) and Z;(t, e7”) are, in general, cor-
related. Hence,in [31],it is proposed that we obtain an unbiased
estimate of H,,(e%”) by applying least squaresto the following
set of overdetermined equations

di.(e)] fel(e) 1

Leton)(ei), 6, (e%) and 64"). (ei) be estimatesof &$*) (ei), 5("),"(ei) and ®,,,.,(e%”), respectively.
The estimates are obtained by replacing expectations with
averages. Note that (27) also holds for the estimated values. Let
el) (eiw) = O{*),(civ) —®,,,,z,(e7”) denote the estimation
error of the cross-PSD between z; and u,, in the kth frame.
We then have

$0), (el) = Hm (el)60%) (e™*) + Oy, 2 (0%)te(eM),

If the noise referencesignals U,,(t, e”).m=2,..., M were

uncorrelated with Z;(t, e7”),sen the standard system identifi-cation estimate Hy, (e%”) = &,,, +, (e™)/4., 2, (e) could be

- 1620 -

$2)..(e™)||O02, (e%*) 1 Hn(e): - : oe)
ace)|Lau,(e*) 1

ell)(eiv)
el?) (ei”)

(30)

eX) (iv)

(a separate set of equations is used form = 2,..., M). The
solution to (30) is given by

Hn(e?”)

_ (6aa, (e)O.2;CE (Ba.a (eHMem2 (&))
(8mck(ei))- ,, 2, (e% yy"

(31)
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llem Sem Tem Sem

  MICROPHONES

Fig. 5. Test scenario: Array offive microphonesin a noisy conference room.

where for a given set of K values 3‘*)(e3”), we define the av-
erage operation

. 1 .
(Ble) = YB(e™).k=1

Special attention should be given when choosing the frame
length. On the one hand,it should be longerthan the correlation
length of z,,(t), which must be longer than the length of the
filter a,,(t). On the other hand,it should be short enough for
the quasistationarity assumption to hold.

V. PERFORMANCE EVALUATION

In this section, we apply the suggested algorithm to the speech
enhancement problem and evaluate its performance. The sce-
nario shown in Fig. 5 was studied. The enclosure is a confer-
ence room with dimensions 5 m x 4 m x 2.8 m. A linear array

was placed ona table at the center of the room. Two loud-
speakers were used: one for the speech source and the other
for the noise source. The locations are markedin Fig. 5. The
impulse response and frequency response between the speech
source and the first microphoneare depicted in Fig. 6. This re-
sponse was obtained usinga least squaresfit between the input
signal source and the received microphonesignal (the response
includes the loudspeaker). We note that in all our experiments,
we used the actual recordings and did not use the estimated
impulse responses. Let the energy decay curve (EDC) corre-
sponding to some impulse response a(t) be defined by [29]

oo

EDC(t) 4 > a?(r).
T=t

The point where the EDC slope changesabruptlyis called total
duration (TD). Theclarity index is defined by

a EDC(t= 0)
Cla) = Epc¢ =D)’

In Fig. 6, we also show the EDC ofthe impulse response be-
tween the speech source and the first microphone. Thecorre-
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Fig. 6. (Top) Impulse response, (middle) frequency response, and (bottom)
EDCofthe TF between the speech loudspeaker andthefirst microphone.

spondingclarity index is 6.7 dB, which indicates a reverberated
environment[29].

The speech source was comprised of four TIMIT sentences
with various gain levels. The input microphone signals were
generated by mixing speech and noise components that were
created separately at various SNR levels. We consideredtwotest
scenarios. The first was speech contaminated by a point noise
source. The second was speech contaminated by a diffused noise
source. In order to generate the speech componentof the mi-
crophonesignals, we transmitted the four sentences through a
loudspeaker and recordedthe resulting microphone signals. In
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TABLE I

BLOCKING ABILITY FOR POINT SOURCE (Top) AND DIFFUSED NOISE
(BorTToM)IN DECIBELS. FIVE MICROPHONES

Input SNR|TF-GSCSNR|D-GSC SNR

 
order to generate the point noise source, we transmitted an ac-
tual recording of fan noise (lowpass spectrum)through another
loudspeaker. The diffused noise source was generated by simu-
lating an omnidirectional emittance of a white noise signal [14].

In our experiments, the noise canceler (NC) block was always
active. As was notedearlier, this is due to the fact that in (23),

weused the inputsignals, and notthe noise reference signals,in
order to calculate Psgt(t, e7”). Hence, a voice activity detector
(VAD)was not necessary.

The blocking filters h,, were modeled by noncausal FIRs
with 181 coefficients in the interval [—90, 90]. The canceling
filters g,, were modeled by noncausal FIRs with 251 coeffi-
cients in the interval [—125, 125]. In order to implementthe
overlap and save procedure, segments with 512 samples were
used. The system identification procedureutilized 13 segments.
The length of each segment was 1000-samples (sampling rate
was 8 kHz). We note that system identification was applied
only during active speech periods. However, an accurate VAD
is not necessary for this purpose. We have also implemented the
standard (delay only) GSC algorithm. The algorithm was im-
plementedin the time domain.In order to estimate the delays
we used a cross correlation criterion that was also applied only
during active speech periods. Essentially, there was no differ-
ence in the performance whenusingintegeror fractional delays.
The noise cancelerfilters were realized using the same length as
in our implementation of the new suggested algorithm.

In Table I, we assess the ability of the blocking matrix (BM)
to generate noise-only reference signals. For each input SNR
value, we evaluated the SNR ofthe referencesignals both for the
standard (delays only) GSC (hereby designated as D-GSC) and
for the new proposed algorithm (hereby designated as TF-GSC).
A high SNRvalueindicatesthatthere is a high leakage of speech
to the noise reference, and hence, the resulting output is ex-

pected to be reverberated due to self cancellation. As can be
seen,the quality ofthe noise reference produced by the TF-GSC
algorithm is better than that produced by the D-GSC algorithm.
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TABLE II

OuTPUT SNR AND NOISE REDUCTION (NR) FOR POINT SOURCE (Top) AND
FOR DIFFUSED SOURCE (BOTTOM)IN DECIBELS. FIVE MICROPHONES

In|D-GSC|TF-GSC|D-GSC|TF-GS
SNR|SNR SNR NR NR

 
195 5 0 15 20 25 10

Input SNA,(08)

Fig. 7. Averaged SNR improvementfor pointnoise source and diffused noisesource.

This holds both for the point noise source and for the diffused
noise source. As can be seen, for low SNR inputs, the blocking
ability of the D-GSC algorithm is poor. This is due to the fact
that for such SNR values, the delay estimation routine of the
D-GSC algorithm collapses.

In order to evaluate and compare the performanceoftheal-
gorithms, we usedthree objective quality measures. Thefirstis
signal to noise ratio (SNR) defined by

>> 2?.(t)
A teT,

SNR ==

>. (%,(¢) - Ky(t))?
te€T,

where 2), ,(t) is the signal component recorded bythefirst mi-
crophone. y(t) is the algorithm output (reconstructed speech
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Clean signal - Mic. #18

Amplitude 5

105 W 15 12 125
Time [sec]

Enhanced signal - (D-GSC)

105 "1 115 12 125
Time [sec]
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Nolsy signal — Mic. #18

3

 
105 "1 15 12 125

Time [sec]

Enhancad signal - (TF~GSC)

  15 12 125
Time [sec]

Fig. 8. Speech waveforms: Clean microphone #1. Noisy and enhanced (D-GSC, TF-GSC).

signal). T, denotes periods in time where the speech signal is
active. K is a gain factor that compensates for possible gain
level variations of the signals. In addition to that, z;,,(t) and
y(t) are time aligned.

The second quality measure is noise reduction (NR), which
is defined by

S (Kult)?
A teTh

>» i)
teT,

NR

where T,, denotes periods in time where the speech signal is
inactive. The quality measure NR comparesthe noise level in
the reconstructed speechto the noise level recorded by the first
microphone. Table II summarizes the SNR and NR values in
decibels when using the D-GSC and TF-GSCalgorithms. While
the noise reduction ability of both algorithms is comparable, the
SNR level achieved by the TF-GSC is much higher. These ob-
servations indicate that TF-GSC is characterized by a signif-
icantly lower speech distortion compared with D-GSC while
keeping the samelevelofnoise reduction.In the high input SNR
region, although the algorithm degrades the SNR measure, it re-
sults in an overall enhanced output. This is due to the fact that
it reduces the noise level. Finally, comparing our results for the
two noise sources,it can be seen that the SNR and NR values of

- 1623 -

both algorithms are higher for the point noise source case (ex-
cept for the SNR measure of D-GSC). This is due to the low
coherence function in the diffused noise case, which degrades
the performanceof the noise canceling block of the algorithm
[14].

The third quality measure is the averaged SNR, SNRayg.
Given somesignal z(t), SNRavg is defined by

S> x(t) -— 55 2(t)
A téT, teT,

SNR. = =O

avg - 2(t)
t€T,

(32)

This quality measure compares the signal energy in x(t) to the
noise energy. Fig. 7 shows SNRayg in decibels both for D-GSC
and TF-GSCfor both noise types (point and diffused). As can
be seen, TF-GSCyields higher values of SNRayg. The SNRavg
values of both algorithms are higher for the point noise source
case.

Fig. 8 shows the waveforms of the speech component
recorded by the first microphone, the noisy speechatthefirst
microphone, and the enhanced speech for both D-GSC and
TF-GSC algorithms. The noise signal used was a point source
at an SNR level of 0 dB. Fig. 9 shows sonograms of the same
data. It can be seen that the TF-GSC algorithm produces an
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Fig. 9. Sonograms: Clean Microphone#1.

enhanced speech signal with higher noise reduction and lower
distortion. The residual noise that correspondsto the horizontal
lines in the TF-GSC sonogram does not create an unnatural
sound effect. Moreover, when adding a single channel speech
enhancement post-processing device, this residual noise is
significantly reduced. We note that when the SNR increases,
these lines completely disappear.

To further assess the output speech quality, we have con-
ducted informal listening evaluations. All our listeners clearly
indicated impressive noise reduction without any noticeable
distortion for the TF-GSC algorithm. On the other hand, the
D-GSCalgorithm wasclassified as reverberated. This is due
to self-cancellation, which is caused by leakage of the desired

| ___ signalinto the noise reference.
All our algorithms were implemented without a VAD in the

noise canceling block. When a VADisincorporated, there is
no significant change in the performance of the TF-GSC algo-

_ tithm. However,there is an improvementin the performance of
the D-GSC,as noted in [37]. Even so, the quality of the en-
hanced speech produced by the TF-GSCalgorithmis signifi-
cantly higher than that produced by D-GSC.
Inorder to further improve the performance, we applied a

single microphone speech enhancementalgorithm [38] onthe
utputof the multimicrophone speech enhancement algorithm

a iesinglemicrophone alaordhey was.used i
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cessing stage). Postprocessing yields a further improvement of __
about 10dB both in SNRayg and NR.It also results ina small
improvementof about 1—2 dB in the SNR measure. Subjective
listening evaluations confirm these improvements.

VI. DISCUSSION

The suggested algorithm can be applied for enhancingan ar-
bitrary nonstationary signal corrupted by stationary noise. An
arbitrary TF and array geometry can be used. The use of TFs _
ratio rather than the TFs themselves (whichis the counterpart
of relative delay in delay-only arrays) improves the efficiency
and robustnessofthe algorithm since shorterfilters can be used.
This might be due to pole-zero cancellation in the TFsratio.

Although our algorithm was implemented in the frequency
domain,it can also be implemented in the time domain. This _
applies both to the adaptive beamformer stage and to the
system identification stage. Both versions of the algorithm
yield comparable performance. However, the computational —
burden of the frequency domain algorithm is significantly
smaller than thatof the time domain version. Inour (probably 4
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for each frequency bin examined (in the time domain,it is
uired to invert a matrix whose order is the dimension

of the desired filter). Second, the frequency domain system
identification need not be implemented for frequency bands
with too low-level speech signal components.

Although results are presented for the five-microphonecase,
the algorithm was also useful when a smaller numberof micro-
phones (e.g., two) were used.

In this paper, we have assumedthatthe noiseis nonstationary.
Sometimes, this assumption is not accurate (e.g., for a cock-
tail party noise). Nevertheless, wheneverthe noise is “more sta-
tionary” compared with the desired speechsignal, the estimation
method presented in Section IV is expected to be useful.

In order to use the proposed algorithm, one needs to re-es-
timate the TFs once the acoustic environment has changed.In
order to reduce the computational complexity, recursive proce-
dures [e.g., RLS methods for solving (30)] maybe incorporated.
This is left as a further research topic.
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