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Preface

The study and implementation of microphone arrays originated over 20 years
ago. Thanks to the research and experimental developments pursued to the
present day, the field has matured to the point that array-based technology
now has immediate applicability to a number of current systems and a vast
potential for the improvement of existing products and the creation of future
devices.

In putting this book together, our goal was to provide, for the first time,
a single complete reference on microphone arrays. We invited the top re-
searchers in the field to contribute articles addressing their specific topic(s)
of study. The reception we received from our colleagues was quite enthusi-
astic and very encouraging. There was the general consensus that a work
of this kind was well overdue. The results provided in this collection cover
the current state of the art in microphone array research, development, and
technological application.

This text is organized into four sections which roughly follow the major
areas of microphone array research today. Parts I and II are primarily the-
oretical in nature and emphasize the use of microphone arrays for speech
enhancement and source localization, respectively. Part III presents a num-
ber of specific applications of array-based technology. Part IV addresses some
open questions and explores the future of the field.

Part I concerns the problem of enhancing the speech signal acquired by
an array of microphones. For a variety of applications, including human-
computer interaction and hands-free telephony, the goal is to allow users to
roam unfettered in diverse environments while still providing a high quality
speech signal and robustness against background noise, interfering sources,
and reverberation effects. The use of microphone arrays gives one the oppor-
tunity to exploit the fact that the source of the desired speech signal and the
noise sources are physically separated in space. Conventional array process-
ing techniques, typically developed for applications such as radar and sonar,
were initially applied to the hands-free speech acquisition problem. However,
the environment in which microphone arrays is used is significantly different
from that of conventional array applications. Firstly, the desired speech signal
has an extremely wide bandwidth relative to its center frequency, meaning
that conventional narrowband techniques are not suitable. Secondly, there
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VI Preface

is significant multipath interference caused by room reverberation. Finally,
the speech source and noise signals may located close to the array, meaning
that the conventional far-field assumption is typically not valid. These dif-
ferences (amongst others) have meant that new array techniques have had
to be formulated for microphone array applications. Chapter 1 describes the
design of an array whose spatial response does not change appreciably over
a wide bandwidth. Such a design ensures that the spatial filtering performed
by the array is uniform across the entire bandwidth of the speech signal. The
main problem with many array designs is that a very large physical array is
required to obtain reasonable spatial resolution, especially at low frequencies.
This problem is addressed in Chapter 2, which reviews so-called superdirec-
tive arrays. These arrays are designed to achieve spatial directivity that is
significantly higher than a standard delay-and-sum beamformer. Chapter 3
describes the use of a single-channel noise suppression filter on the output
of a microphone array. The design of such a post-filter typically requires in-
formation about the correlation of the noise between different microphones.
The spatial correlation functions for various directional microphones are in-
vestigated in Chapter 4, which also describes the use of these functions in
adaptive noise cancellation applications. Chapter 5 reviews adaptive tech-
niques for microphone arrays, focusing on algorithms that are robust and
perform well in real environments. Chapter 6 presents optimal spatial filter-
ing algorithms based on the generalized singular-value decomposition. These
techniques require a large number of computations, so the chapter presents
techniques to reduce the computational complexity and thereby permit real-
time implementation. Chapter 7 advocates a new approach that combines
explicit modeling of the speech signal (a technique which is well-known in
single-channel speech enhancement applications) with the spatial filtering af-
forded by multi-channel array processing.

Part 11 is devoted to the source localization problem. The ability to locate
and track one or more speech sources is an essential requirement of micro-
phone array systems. For speech enhancement applications, an accurate fix
on the primary talker, as well as knowledge of any interfering talkers or coher-
ent noise sources, is necessary to effectively steer the array, enhancing a given
source while simultaneously attenuating those deemed undesirable. Location
data may be used as a guide for discriminating individual speakers in a multi-
source scenario. With this information available, it would then be possible to
automatically focus upon and follow a given source on an extended basis. Of
particular interest lately, is the application of the speaker location estimates
for aiming a camera or series of cameras in a video-conferencing system. In
this regard, the automated localization information eliminates the need for a
human or number of human camera operators. Several existing commercial
products apply microphone-array technology in small-room environments to
steer a robotic camera and frame active talkers. Chapter 8 summarizes the
various approaches which have heen explored to accurately locate an individ-
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Preface VII

ual in a practical acoustic environment. The emphasis is on precision in the
face of adverse conditions, with an appropriate method presented in detail.
Chapter 9 extends the problem to the case of multiple active sources. While
again considering realistic environments, the issue is complicated by the pres-
ence of several talkers. Chapter 10 further generalizes the source localization
scenario to include knowledge derived from non-acoustic sensor modalities.
In this case both audio and video signals are effectively combined to track
the motion of a talker.

Part ITT of this text details some specific applications of microphone array
technology available today. Microphone arrays have been deployed for a vari-
ety of practical applications thus far and their utility and presence in our daily
lives is increasing rapidly. At one extreme are large aperture arrays with tens
to hundreds of elements designed for large rooms, distant talkers, and adverse
acoustic conditions. Examples include the two-dimensional, harmonic array
installed in the main auditorium of Bell Laboratories, Murray Hill and the
512-element Huge Microphone Array (HMA) developed at Brown University.
While these systems provide tremendous functionality in the environments
for which they are intended, small arrays consisting of just a handful (usu-
ally 2 to 8) of microphones and encompassing only a few centimeters of space
have become far more common and affordable. These systems are intended
for sound capture in close-talking, low to moderate noise conditions (such
as an individual dictating at a workstation or using a hands-free telephone
in an automobile) and have exhibited a degree of effectiveness, especially
when compared to their single microphone counterparts. The technology has
developed to the point that microphone arrays are now available in off-the-
shelf consumer electronic devices available for under $§150. Because of their
growing popularity and feasibility we have chosen to focus primarily on the
issues associated with small-aperture devices. Chapter 11 addresses the in-
corporation of multiple microphones into hearing aid devices. The ability of
beamforming methods to reduce background noise and interference has been
shown to dramatically improve the speech understanding of the hearing im-
paired and to increase their overall satisfaction with the device. Chapter 12
focuses on the case of a simple two-element array combined with postfiltering
to achieve noise and echo reduction. The performance of this configuration
is analyzed under realistic acoustic conditions and its utility is demonstrated
for desktop conferencing and intercom applications. Chapter 13 is concerned
with the problem of acoustic feedback inherent in full-duplex communica~
tions involving loudspeakers and microphones. Existing single-channel echo
cancellation methods are integrated within a beamforming context to achieve
enhanced echo suppression. These results are applied to single- and multi-
channel conferencing scenarios. Chapter 14 explores the use of microphone
arrays for sound capture in automobiles. The issues of noise, interference, and
echo cancellation specifically within the car environment are addressed and a
particularly effective approach is detailed. Chapter 15 discusses the applica-
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VIII Preface

tion of microphone arrays to improve the performance of speech recognition
systems in adverse conditions. Strategies for effectively coupling the acous-
tic signal enhancements afforded through beamforming with existing speech
recognition techniques are presented. A specific adaptation of a recognizer to
function with an array is presented. Finally, Chapter 16 presents an overview
of the problem of separating blind mixtures of acoustic signals recorded at a
microphone array. This represents a very new application for microphone ar-
rays, and is a technique that is fundamentally different to the spatial filtering
approaches detailed in earlier chapters.

In the final section of the book, Part IV presents expert summaries of
current open problems in the field, as well as personal views of what the future
of microphone array processing might hold. These summaries, presented in
Chapters 17 and 18, describe both academically-oriented research problems,
as well as industry-focused areas where microphone array research may be
headed.

The individual chapters that we selected for the book were designed to
be tutorial in nature with a specific emphasis on recent important results.
We hope the result is a text that will be of utility to a large audience, from
the student or practicing engineer just approaching the field to the advanced
researcher with multi-channel signal processing experience.

Cambridge MA, USA Michael Brandstein
London, UK Darren Ward
January 2001
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1 Constant Directivity Beamforming

Darren B. Ward', Rodney A. Kennedy?, and Robert C. Williamson?

! Imperial College of Science, Technology and Medicine, London, UK
? The Australian National University, Canberra, Australia

Abstract. Beamforming, or spatial filtering, is one of the simplest methods for dis-
criminating between different signals based on the physical location of the sources.
Because speech is a very wideband signal, covering some four octaves, traditional
narrowband beamforming techniques are inappropriate for hands-free speech ac-
qnisition. One class of broadband beamformers, called constant directivity beam-
formers, aim to produce a constant spatial response over a broad frequency range.
In this chapter we review such beamformers, and discuss implementation issues
related to their use in microphone arrays.

1.1 Introduction

Beamforming is one of the simplest and most robust means of spatial filtering,
i.e., discriminating between signals based on the physical locations of the
signal sources [1]. In a typical microphone array environment, the desired
speech signal originates from a talker’s mouth, and is corrupted by interfering
signals such as other talkers and room reverberation. Spatial filtering can be
useful in such an environment, since the interfering sources generally originate
from points in space separate from the desired talker’s mouth. By exploiting
the spatial dimension of the problem, microphone arrays attempt to obtain a
high-quality speech signal without requiring the talker to speak directly into
a close-talking microphone.

In most beamforming applications two assumptions simplify the analysis:
(i) the signals incident on the array are narrowband (the narrowband as-
sumption); and (ii) the signal sources are located far enough away from the
array that the wavefronts impinging on the array can be modeled as plane
waves (the farfield assumption). For many microphone array applications, the
farfield assumption is valid. However, the narrowband assumption is never
valid, and it is this aspect of the beamforming problem that we focus on in
this chapter (see [2] for techniques that also lift the nearfield assumption).

To understand the inherent problem in using a narrowband array for
broadband signals, consider a linear array with a fixed number of elements
separated by a fixed inter-element distance. The important dimension in mea-
suring array performance is its size in terms of operating wavelength. Thus
for high frequency signals (having a small wavelength) a fixed array will ap-
pear large and the main beam will be narrow. However, for low frequencies
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Fig. 1.1. Response of a narrowband array operated over a wide bandwidth.

(large wavelength) the same physical array appears small and the main beam
will widen.

"This is illustrated in Fig. 1.1 which shows the beampattern of an array
designed for 1.5 kHz, but operated over a frequency range of 300 Hz to
3 kHz. If an interfering signal is present at, say, 60°, then ideally it should be
attenuated completely by the array. However, because the beam is wider at
low frequencies than at high frequencies, the interfering signal will be low-pass
filtered rather than uniformly attenuated over its entire band. This “spectral
tilt” results in a disturbing speech output if used for speech acquisition,
and thus, such a narrowband array is unacceptable for speech applications.
Another drawback of this narrowband design is that spatial aliasing is evident
at high frequencies.!

To overcome this problem, one must use a beamformer that is designed
specifically for broadband applications. In this chapter we focus on a spe-
cific class of broadband beamformers, called constant directivity beamformers
(CDB), designed such that the spatial response is the same over a wide fre-
quency band. The response of a typical CDB is shown in Fig. 1.6 on page 15.

There have been several techniques proposed to design a CDB. Most tech-
niques are based on the idea that at different frequencies, a different array
should be used that, has total size and inter-sensor spacing appropriate for
that particular frequency. An example of this idea is the use of harmonically-

' Spatial aliasing comes about if a sensor spacing wider than half a wavelength is
used. It is analogous to temporal aliasing in discrete-time signal processing,.
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1 Constant Directivity Beamforming 5

nested subarrays, e.g., [3-5]. In this case, the array is composed of a set of
nested equally-spaced arrays, with each subarray being designed as a nar-
rowband array. The outputs of the various subarrays are then combined by
appropriate bandpass filtering. The idea of harmonic nesting is to reduce the
beampattern variation to that which occurs within a single octave. This ap-
proach can be improved by using a set of subarray filters to interpolate to
frequencies between the subarray design frequencies [6].

A novel approach to CDB design was proposed by Smith in [7]. Noting
that, for a given array, the beamwidth narrows at high frequencies, Smith’s
idea was to form several beams and to steer each individual beam in such
a way that the width of the overall multi-beam was kept constant. Thus,
as the individual beams narrow at higher frequencies, they are progressively
“fanned” outwards in an attempt to keep the overall beamwidth constant.
Unless a very large number of beams are formed, at high frequencies this
fanning will result in notches in the main beam where the progressively nar-
rower beams no longer overlap. This approach was applied to the design of
microphone arrays in [8].

The first approach to CDB design that attempted to keep a constant
beampattern over the entire spatial region (not just for the main beam)
was presented by Doles and Benedict [9]. Using the asymptotic theory of
unequally-spaced arrays [10,11], they derived relationships between beam-
pattern characteristics and functional requirements on sensor spacings and
weightings. This results in a filter-and-sum array, with the sensor filters creat-
ing a space-tapered array: at each frequency the non-zero filter responses iden-
tify a subarray having total length and spacing appropriate for that frequency.
Although this design technique results in a beampattern that is frequency-
invariant over a specified frequency band, it is not a general design technique,
since it is based on a specific array geometry and beampattern shape. Other
recent techniques for CDB design include [12] (based on a two-dimensional
Fourier transform property [13] which exists for equally-spaced arrays) and
[14] (based on a beam space implementation).

Prompted by the work of Doles and Benedict, we derived in [15] a very
general design method for CDB’s, suitable for three-dimensional array geome-
tries. In this chapter we outline this technique, and discuss implementation
issues specific to microphone array applications.

Time-domain versus frequency-domain beamforming

There are two general methods of beamforming for broadband signals: time-
domain beamforming and frequency-domain beamforming. In time-domain
beamforming an FIR filter is used on each sensor, and the filter outputs
summed to form the beamformer output. For an array with M sensors, each
feeding a L tap filter, there are ML free parameters. In frequency-domain
beamforming the signal received by each sensor is separated into narrow-
band frequency bins (either through bandpass filtering or data segmentation

Meta Platforms, Inc. Exhibit 1003

Page 22 of 155



i

pRRTS

6 Ward et al.

and discrete Fourier transform), and the data in each frequency bin is pro-
cessed separately using narrowband techniques. For an array with M sen-
sors, with L frequency bins within the band of interest, there are again ML
free parameters. As with most beamformers, the method that we describe in
this chapter can be formulated in either domain. A time-domain formulation
has previously been given in [16], and hence, we restrict our attention to
frequency-domain processing here.

1.2 Problem Formulation

Consider a linear array of M = 2N + 1 sensors located at pp,n = —N,... ,N.
Assume that the data received at the nth sensor is separated into narrowband
frequency bins, each of width Af. Let the center frequency of the ith bin be
f;, and denote the frequencies within the bin as

F; =[fi— Af/2, fi + Af[2).

The array data received in the 4th bin at time k, is given by the M-vector:

zi(k) = a(b, fi)si(k) + vi(k).

The desired source signal is represented by s;(k), and the M-vector v;(k) rep-
resents the interfering noise (consisting of reverberation and other unwanted
noise sources). The array vector a(f, f) represents the propagation of the
signal source to the array, and its nth element is given by

aﬂ(@}f) - C—j27rfc_1pucosf3,

where ¢ is the speed of wave propagation, and 8 is the direction to the desired
source (measured relative to the array axis). To simplify notation we will drop
the explicit dependence on k in the sequel.

The beamformer output is formed by applying a weight vector to the

received array data, giving
yi =wia;, (1.1)

where ¥ denotes Hermitian transpose, and w; is the M-vector of array
weights to apply to the ith frequency bin.?
The spatial response of the beamformer is given by

b0, f) =wi'al6,f), fEF, (1.2)

which defines the transfer function between a source at location 6 € [—m, )
and the beamformer output. Also of interest is the beampattern, defined as
the squared magnitude of the spatial response.

2 Note that it is a notational convention to use w® rather than w” [1].
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1 Constant Directivity Beamforming 7

The problem of designing a CDB can now be formulated as finding the
array weights in each frequency bin such that the resulting spatial response
remains constant over all frequency bins of interest.

One simple (but not very illuminating) approach to solving this problem
is to perform a least-squares optimization in each frequency bin, i.e.,

ain [ [bed8) ~wF a0, SO 46, (L.3)
where by, (8) is the desired frequency-invariant response. Thus, in each fre-
quency bin there are M free parameters {0 optimize. Although this is a stan-
dard least-squares optimization problem and the required array weights are
easily found, the solution provides very little insight into the problem. Specif-
ically, there is no suggestion of any inherent structure in the CDB, and many
important questions are left unanswered, such as how many sensors are re-
quired, and what range of frequencies can be used.

In an attempt to provide some insight into the problem of designing a
CDB, we take an alternative theoretical approach in the following section,
and then relate these theoretical results back to the problem of finding the
required filter coefficients. As we will see, there is in fact a very strong implicit
structure in the CDB, and exploiting this structure enables us to reduce the
number of design parameters and find efficient implementations.

1.3 Theoretical Solution

It is well known that the important dimension in determining the array re-
sponse is the physical array size, measured in wavelengths. Thus, to obtain
the same beampattern at different frequencies requires that the array size
remains constant in terms of wavelength. Specifically, consider a linear ar-

ray with N elements located at p,,n = 1,... N, and assume the array

weights are chosen to produce a desired beampattern h(#) at a frequency
f1. Then, at a frequency f», the same beampattern b(9) will be produced
if the same array weights are used in an array with elements located at
po(fi/f2),n=1,...,N. In other words, the size of the array must scale di-
rectly with frequency to obtain the same beampattern.® To obtain the same
beampattern over a continuous range of frequencies would theoretically re-
quire a continuum of sensors.

1.3.1 Continuous sensor

Motivated by this interpretation, we consider the response of a theoretical
continuous sensor. Assume that a signal x(p, f) is received at a point p on

% This is precisely the idea used in the harmonically-nested subarray technique.
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the sensor at frequency f, and a weight w(p, f) is applied to the sensor at
this point and frequency. The output of the sensor is

u(F) = [ w(p, ) 2(p, f) dp,

and the spatial response for a source at angle 8 is

b, f) = /w(pj f) g=iamfe  poost gy (1.4)

We assume that the aperture has finite support in p, and thus, the integration
has infinite limits.

Let w = ¢ !cos#. The response of the continuous sensor can now be
written

bu(ur f) = f w(p, f) e I g,

Let the sensor weighting function be given by

w(p, f) = fB(pf), (1.5)

where B(-) is an arbitrary, absolutely-integrable, finite-support function. Sub-
stitution gives

bu(u, f) = /fB(pf) g Yy, (1.6)

With the change of variable ( = pf, and noting that d{ = fdp, it is casily
seen that the resulting spatial response is now independent of frequency, i.e.,

bu(u, f) = / B(¢) e 127 d¢ = by (u). (1.7)

This ig an important result, since it states that if the weighting function
is given by (1.5), then the resulting spatial response will be independent of
frequency. In other words, (1.5) defines the weighting function for a CDB. Tt
was shown in [15], that not only does (1.5) provide a sufficient condition, but
it is in fact the necessary condition for a frequency-invariant spatial response.

1.3.2 DBeam-shaping function

Equation (1.7) defines a Fourier transform relationship between B(:) and
bei(-). To achieve some desired spatial response, the required function B(()
is thus easily found by taking the inverse Fourier transform of b(u). We will
refer to B(-) as the beam-shaping (BS) function, since it has a fundamental
role in determining the spatial response.
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1 Constant Directivity Beamforming 9

Because of its symmetry with respect to space and frequency, the BS
function can be interpreted as either a filter response at a certain point,
i.e., Hy(f) = B(pf), or equivalently, as an aperture weighting function at a
certain frequency, i.e., A¢(p) = B(pf).

We will assume that the BS function is Hermitian symmetric, i.e., B(—() =
B*(¢). This implies that the resulting spatial response is real-valued.

1.4 Practical Implementation

Whilst we have shown theoretically that it is possible to produce a beampat-
tern that is exactly frequency-invariant using a continuous sensor, in prac-
tise we must attempt to approximate such a response using a finite array
of discrete sensors. The problem of approximating a continuous aperture by
a discrete array has been considered in [17]. One simple but effective tech-
nique is to approximate the integral in (1.6) using a Riemann sum—this is
the approach we take here. In particular, we use trapezoidal integration to
approximate the integral (1.6) by a summation of the form:

N

be(w) = Y fB(paf) e v A, (1.8)

n=—N

where p,, is the location of the nth discrete sensor, and BF, denotes an approx-
imation of by;. We assume that the array is Hermitian symmetric about the
origin, so that B(—pf) = B(pf)*, and p—, = —pn. Although the technique
is suitable for an arbitrary array geometry, a symmetric geometry simplifies
implementation, and ensures that the position of the array phase center does
not vary with frequency. The length of the nth subinterval is

PO L o i (1.9)
2
which we refer to as the spatial weighting term.

Relating (1.8) to the response of a general array (1.2), we find that for a
CDB the weight on the nth sensor in the ith frequency bin is

Wi n = fi AnB(pnfi)z (1'10)
where, recall, p,, is the location of the sensor, and f; is the center frequency

of the bin.

1.4.1 Dimension-reducing parameterization

Define the reference beam-shaping filter response as

H(f) = B(p.f), | (1.11)
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where p,.. is some reference location (to be defined later). Also define the
beam-shaping filler response of the nth sensor as

Hn(f) = B(pnf), n=-N,...,N.

It immediately follows that the BS filters satisfy the following dilation prop-
erty:

H’-‘l(f) =H(w/f), (1-12)
where
Tn = p_n
I’ref

is the dilation factor for the nth sensor. This is an extremely important prop-
erty, since it shows that the filter responses on all sensors can be derived from
the single filter response, H(f), and enables the following efficient implemen-
tation of the CDB.

Let the reference BS filter response be given by its standard FIR filter
representation:

H(f) = hllje~>mi/1L,
I

where f; is the sampling frequency, and h[l] is a L-vector of beam-shaping
coefficients. From (1.12), the nth BS filter response is given by

o.(f) = Z Rll] e~ 927 F/ Fonl
i

= hH dn(f), (1.13)

where d,(f) is the L-dimensional dilation vector for the nth sensor. From
(1.10), we see that the weight to use on the nth sensor in the ith bin is

win=h" 4, (1.14)
where
t'é,n = fd-Andn(fi) (1-15)

is a L-dimensional transformation vector.

Equation (1.14) demonstrates the efficient parameterization afforded by
this particular formulation of the CDB problem. Whereas the naive least-
squares approach (1.3) requires an optimization of M parameters w; in each
frequency bin, we find that it is really only necessary to choose L frequency-
independent BS parameters h. Changing the beampattern shape only re-
quires modification of these BS coefficients, and the implicit structure im-
posed by the transformation vectors ensures that the resulting response has
constant directivity over the design band.
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1 Constant Directivity Beamforming 11
1.4.2 Reference beam-shaping filter

The underlying principle of the CDB is that the size and shape of the active
array aperture should scale directly with frequency. This frequency scaling
operation is performed by the BS filters. In deciding the coeflicients of the rel-
erence BS filter, and the loeation of the reference point p..., we must consider
this scaling property in more detail.

Let the chosen aperture size be () wavelengths. Assuming the array is
symmetric about the origin, this means that at any wavelength A, sensors
further from the origin than QA/2 should be inactive. Tn other words, the
| ; nth sensor should have a low-pass characteristic with a cutoff frequency of

_ Qe
B 2Ipn|.

fa (1.16)

main, whereas v, < 1 results in frequency expansion. Since the discrete-time
frequency response H{f) is periodic, it follows that frequency compression
may cause aliasing; this is extremely undesirable. Aliasing can be avoided in
one of two ways. First, choosing p,.. = max |p,| ensures that v, < 1,Vn, thus
avoiding aliasing altogether—however, this requires additional constraints on
the reference BS coefficients to impose the low-pass property (1.16). Alterna-
tively, for sensors having vy, > 1, the weights w;_,, are set to zero for frequency
bins f; > f,—the reference BS weights are now potentially unconstrained.
Of these two approaches, the second is preferable, since it removes any con-
straints on the BS coefficients. Moreover, the requirement that the sensor
| weights within certain bins are always zero does not complicate implementa-
? tion.

Assume that the frequency response of the reference BS filter is non-zero
| for all frequencies up to f,/2, the Nyquist frequency; this is the most general
case of H(f). From (1.16), it follows that a sensor with non-zero frequency
. response up to f,/2 would be positioned at |p, | = Q¢/ fs. Thus, for the most
P general case of H([f) the reference location is chosen as

i c
= Bit = Q -
- e

The reference BS coefficients can be found by using the Fourier transform
relationship defined by (1.7). Specifically, the BS function B(() is found by
I taking the Fourier transform of the desired frequency-invariant spatial re-
sponse by, (u). Setting f = {/p..., B(¢) now defines the frequency response of
| the reference BS filter. The BS coefficient vector b is found using any stan-
L dard FIR filter design technique. In practise, low-order implementations of
the reference BS filter are generally to be preferred; this point is demonstrated

in the following section.

‘ : From (1.13), note that v, > 1 results in compression in the frequency do-
|

(1.17)
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1.4.3 Sensor placement

The most common geometry for array processing applications is typically
an equally-spaced array, usually with a spacing of one half-wavelength at
the highest frequency of operation. Although such a geometry is valid for a
CDB, less sensors are required if a logarithmically spaced array is used. Tn
choosing an appropriate sensor geometry, the most important consideration
is to ensure that at any frequency spatial aliasing is avoided.

The ideais to start with an equally-spaced array that is used at the highest
frequency, and then progressively add more sensors with wider spacings as
frequency decreases (and the wavelength increases). At any frequency f, the
total active aperture size should be Q¢/f, and the largest spacing within the
active array should be ¢/(2f). These requirements are met (using the least
number of sensors) with the following symmetric array geometry:

. 0 5
= = <n<— i
Pn ﬂng, 0<n< 5 (1.18a)
Q ) ~1)e
Pnt1 = o-1 Pn, T> 5 Pn < % (1.18b)
P—n = —Pn- (1.18¢)

Note that a harmonically-nested subarray geometry is only produced if () = 2.

1.4.4 Summary of implementation

1. Choose a set of L reference BS coefficients, h.
2. Position the sensors according to (1.18a)—(1.18c).
3. In the ith frequency bin, the weight on the nth sensor is

H
wi,n o h’ t‘i-,n;

where
E = fiAndn(fi): fx'<fn
B 5
0. otherwise,
_ Qe
fn o]
A, = Pni1 ;pn—l

dn(fi) = [ejg“f/f*'f“(l’"'l)/z,... ,E*J’zﬂf/fm(b—l)ﬂ}

ol
* P

Qe

Prat = —
g 1
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1 Constant Directivity Beamforming 13
1.5 Examples

We now show an example of the CDB design technique. The design was for
a bandwidth of 300-3000 Hz (i.e., the same bandwidth as used in Fig. 1.1),
with an aperture size of () = 4 wavelengths. Using an FF'T size of 128 resulted
in 44 bing within the design band, with each bin having a width of 62.5 Hz.
The sensors were positioned according to (1.18a)—(1.18c), resulting in the
M = 25 sensor array geometry shown in Fig. 1.2. For frequencies of 1000 Hz
and 2000 Hz, the active sensors are also indicated in this figure.

f=2000 Hz
1

® - - ® @ ® v eoeuseEspIe @ ® @ - - - -

f=1000 Hz

1 " 1 1 ] 1 1 PRERE: s 1
-25 -2 -1.5 o 0.5 0 0.5 1 1.8 2 2.5
POSITION (m)

Fig. 1.2. Array geometry used for example CDB.

Assume we wish to design a standard sinc-like response (as produced
by a uniformly weighted array). In this case it is known that the aperture
function should be uniform. Thus, the BS function B(-) should ideally be a
brick-wall low-pass filter. Assume we design the BS vector A to approximate
an ideal low-pass filter using I, = 101 filter coefficients. This results in the
BS frequency responses shown in Fig. 1.3; for each sensor in the array, the
weight required at each frequency is plotted. Note that these responses are
all dilations of a single response, and that each has a low-pass characteristic.

Using these BS coefficients, the resulting spatial response of the CDB is
shown in Fig. 1.4. Although the variation is not as great as for the narrow-
band design in Fig. 1.1, the spatial response in Fig. 1.4 is far from frequency
invariant. Why is this? The answer lies in the fact that the BS frequency
response has a very sharp cutoff. Consider a single sensor. At low frequencies
the sensor is always on. As frequency increases, there will come a point where
the sengor will suddenly turn off, and at this frequency the aperture abruptly
changes size. This abrupt change in the active aperture causes the alp-like
appearance of the gpatial response in Fig. 1.4.

Now, returning to the problem of designing the BS coefficients for the
desired uniform spatial response, assume we design the BS vector b to ap-
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Fig. 1.4. Spatial response of example CDB.

1800 2000 2500
FREQUENCY (Hz)

Fig. 1.3. Frequency responses of the weights on each sensor.

proximate an ideal low-pass filter using only L = 21 filter coefficients. This
results in the BS frequency responses shown in Fig. 1.5. In comparing this fig-
ure with Fig. 1.4, notice that the frequency responses exhibit a more gradual
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1.2 T

T T T T

AR
| 11 | \‘\ A
‘\\.\\\\ \ \\ AN

o 500 1000 1500 2000 2500 3000 3600 4000
FREQUENCY (Hz)

MAGNITUDE
(=1
@

o
-
T

Fig. 1.5. Frequency responses of the weights on each sensor.
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Fig. 1.6. Spatial response of example CDB.

Using these 21 BS coefficients, the resulting spatial response of the CDB is
shown in Fig. 1.6. In this case the spatial response shows very little variation
with frequency. This demonstrates that one should take careful consideration
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T

of how well the underlying function can be approximated by the discrete
array when choosing the required BS function.

=T

1.6 Conclusions

Constant-directivity beamforming is a useful technique for spatial filtering

in broadband signal environments in which the desired signal and the inter-

ference signals cover approximately the same bandwidth. In this chapter we

have developed a technique for designing a CDB, and shown that there is

an efficient parameterization and underlying structure exhibited by a CDB.

The greatest drawback of a CDB in microphone array applications is that i
the size of the array is related to the lowest frequency of operation. Thus, i
producing an array that has a frequency-invariant spatial response down to,
say, 300 Hz may require an array that is several meters long. In all but the
largest rooms this is impractical. However, a constant spatial response can be
readily achieved for mid and high frequencies (above say 1000 Hz) using an
array with a total size of less than & meter. For the lower frequencies, other !
methods (such as the superdirective techniques described in the following :
chapter) are probably more appropriate.
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2 Superdirective Microphone Arrays
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Abstract. This chapter gives an overview of so-called superdirective beamform-
ers, which can be derived by applying the minimum variance distortionless response
(MVDR) principle to theoretically well-defined noise fields, as for example the dif-
fuse noise field. We show that all relevant performance measures for beamformer
designs are functions of the coherence matrix of the noise field. Additionally, we
present unconstrained and constrained MVDR-solutions using modified coherence
functions. Solutions for different choices of the optimization criterion are given in-
cluding a new solution to optimize the front-to-back ratio. Finally, we present a
comparison of superdirective beamformers to gradient microphones and an alter-
native generalized sidelobe canceler (GSC) implementation of the superdirective
beamformer.

2.1 Introduction

What is “super” about a superdirective microphone array? Compared to
the standard delay-and-sum beamformer a superdirective array achieves a
higher directivity. Therefore, “super”-directivity indicates that summing is
not the optimal choice for combining sensor signals, if optimal directivity is
desired. The term directivity describes the ability of a beamformer to suppress
noise coming from all directions without affecting a desired signal from one
principal direction.

A short historical overview in [6] shows that superdirectivity (or super-
gain) in connection with array processing was first mentioned in the first half
of the last century. The solutions provided at that time were of academic
interest only, since a lot of practical problems occurred which restricted the
use of the theoretical work. The main reasons for failure were the self-noise
and the gain and phase errors of the microphones. In order to overcome these
problems a first constrained solution was published by Gilbert and Morgan
in 1955 [15]. Early applications with slight modifications were seismic and
sonar techniques [5]. Tt was not until the 90’s that supergain was connected
to microphone applications. Regearch in hearing aids highlighted the advan-
tages of fixed beamformers over adaptive solutions [17]. Modern designs of
superdirective beamformers include nearfield assumptions and the possibility
to adapt the constraining to the actual problem.

This chapter is organized as follows: Section 2.2 introduces the measures
to judge the different designs. In section 2.3 the optimal design will be derived
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20 Bitzer and Simmer

with respect to the given problems. Further extensions and special details are
given in section 2.4. Concluding remarks close this chapter.

2.2 Ewvaluation of Beamformers

In order to get a better understanding of the features of the different designs
of optimal beamformers, we first need to derive the measures to analyze their
performance.

[ e P R
l4 |: sl
. ,,le(k) =g ]C—TN_])‘F% ](k)(r'j PPN N
» IWN-IEQ‘ x" Ll TMy,

y

Fig. 2.1. Signal model consisting of noise ficld and desired source signal

The signal model is shown in Fig. 2.1. We assume that one sample of
the discrete input sequence xz(k) at each sensor n consists of a delayed and
attenuated version of the desired signal a;s(k — 7,,) and a noise component
vp(k) with arbitrary spatial statistics.

o (k) aps(k — 7o) vo (k)
z1(k) a1s(k— 1) v1(k)
. = : - )
.'EN_-l(k) aN—1 s(k'~— TN_1) vn—1(k)
z(k) =as(k—7)+v(k) . (2.1)

Since all relevant quantities and designs depend on the frequency, the follow-
ing examinations are carried out in the frequency domain without any loss
of generality. The Fourier-transform leads to

X (e'?) = S(e/)d + V (17) (2.2)

where d is the representation of the delays and the attenuation in the fre-
quency domain which depends on the actual geometry of the array and the
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2 Superdirective Microphone Arrays 21
direction of the source signal.
d" = [ag exp(—j270),a1 exp(—j271), - ,an—1exp(—jlTn_y)] . (2.3)

Finally, the output signal

N-1
Yi(e?) =) Wa ()X () = WHX (2.4)

n=0

where W, (e/?) denotes the frequency-domain coefficients of the beamformer
of sensor n at the frequency {2 and the operator ¥ denotes a conjugated
transposition (Hermitian operator). The inverse Fourier-transform results in
the discrete-time output signal ys(k).

2.2.1 Array-Gain

The array-gain (AG) is the measure which shows the improvement of the
signal-to-noise ratio (SNR) between one sensor and the output of the whole
array 1. Therefore,

_ SNRprray
G= SN Roear (2.5)

Assuming stationary signals, the SNR of one sensor is given by the ratio of
the power spectral densities (PSD) of the signal $55 and the average noise

By v, -
The SNR at the output can be computed by deriving the PSD of the

output signal

Pyy, = WHSxx W , (2:6)
where
Pxoxy Pxoxy oo PXgXy—a
roxn | PR Fux o dnm o
Bt B v By Bipecs

is a power spectral density matrix of the array input signals. When the desired
signal is present only, the output is

Py v, =®Pgg XWdez 3 (2.8)
Signal

! The dependence on 2 is omitted for the sake of brevity and readability.
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and for the noise-only case the output is

H
dSYhYb = CBVL.V“W Syv W, (29)
Noise
where Sy is a normalized cross power spectral density matrix of the noise®.
Therefore,

_ |wHal
S WEB W e

Assuming a homogeneous noise field (2.10) can be expressed in terms of
the coherence matrix

G

1 Iyyvy Tyveve -+ Tvpvws
Ty 1 Pvive - Tvive_,
Iyy = 2 . R SRS (2.11)
I‘VA’-—JV(} FVN—]Vl FVrv_iVn 1
where
) & j42
Iy, v, (&) = Vov (67) (2.12)
Vov,v, (62)Py, v, (e17)
is the coherence function [4].
Thus,
wid)’
PO Ll (2.13)
WHDyy W

This representation allows an easier examination of beamformers for different
noise fields, since many theoretically defined noise fields can be expressed by
their coherence function.

2.2.2 Beampattern

One way to evaluate beamformers is to compute the response of the array to
a wavefront coming from a specific frequency and a specific angle, depending
on azimuth ¢ and elevation § in a spherical coordinate system. Computing
this response over all angles and frequencies leads to the spatial-temporal
transfer function

wdf

(2.14)
WHFV\/‘

2
Hip,0)* | = ~10logyo
Wavefront

2 The normalization factor is set to force the trace of the matrix to equal N.
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2 Superdirective Microphone Arrays 23

called the farfield beampattern, which is usually displayed on a logarithmic
scale. It can be computed by using (2.13) and the knowledge of the coherence
function of a single wavefront with frequency {2 and an angle of arrival ¢, 6.
Additionally, fs denotes the sampling frequency, ¢ = 340 m/s the speed of
sound, and I, , the distances between the sensors in the Cartesian coordinate
system

Iy v, = exp(jﬂ’rnm) s (2‘15)

Wavefront

Tam = % Lz m sin(@) cas(p) + Iy nm sin(@) sin(y) + 1, nm cos(f)) .
(2.16)

Since the beampattern depends on three variables, it is not possible to
display it in a single plot. Fortunately, line arrays aligned to the z-axis have
a rotational symmetry and, therefore, the beampattern is independent of ¢.
Examples of beampatterns for line arrays will be shown in section 2.3.

2.2.3 Directivity

A common quantity to evaluate beamformers is the directivity factor, or its
logarithmic equivalent the directivity index (DI) which describes the ability
of the array to suppress a diffuse noise field. Therefore, we can compute the
directivity factor by using (2.13) and inserting the coherence function of a
diffuse noise field:

‘ in (2fslam/c)
I 282 — 5111( shmm 21
ikl (e ) Diffuse Qf_.;lnm/c ( ?)
= sinc {wﬁfyin = }
c
where sinc(z) = sin(z)/x. Thus, the DI is
. wHdl|’
DI(e?"?) = 10log,, | | (2.18)
\WHyy w
Diffuse

Another formal definition uses the transfer function (2.14) and describes
the ratio of the transfer function of the look-direction 6y, w of the array to
the spatial integration over all directions of incoming signals.

[H(e%?, po,60)|”

1 T plT . 9
= 762 2
m /0 /0 [T (7,4, 8)| sin(0)depdd

DI(e’") = 101log;, (2.19)
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2.2.4 Front-to-Back Ratio

In many applications no principal look-direction exists, as for example in
video-conferences or the recording of orchestras. Therefore, the DI is not the
best quantity to describe the behavior of the array. In such applications a
front-to-back ratio (FBR) is a better choice, since in most cases all desired
sources are in front of the array and all unwanted disturbances are behind
the array [19], [11]. The formal description utilizes the beampattern again:

/ , |H(e7?,0,6)| sin(8)dpdd

—m/2 Jypg—mw/2

9§+3n/2 ‘:ﬂ+3?r/2 _ ) (2.20)
'H(em, ©,0)|" sin(0)dypdd

/Gn-ﬁr/? wot+n /2
é

FBR(ejQ) =
Hg+7r/2 gﬂa+ﬂf2

2.2.5 White Noise Gain

This last quantity shows the ability of the array to suppress spatially uncor-
related noise, which can be caused by self-noise of the sensors. Inserting the
coherence matrix for this noise field

=1 (2.21)

uncorr

I'yvvy

into (2.13) results in the white noise gain:
oy [WHd[*
WNG (e?? =L——m-_
) = Ew

On a logarithmic scale positive values represent an attenuation of uncorre-
lated noise, whereas negative values show an amplification.

(2.22)

2.3 Design of Superdirective Beamformers

In order to design optimal beamformers, we have to minimize the power of
the output signal y; (k) of the array. The output PSD is given by (2.6) and is
a function of the input signal and the coefficients we want to determine. Tn
order to avoid the trivial solution W,, = 0, the minimization is constrained
to give an undistorted signal response in the desired look direction, i.e.,

WHEd=1. (2.23)
Therefore, the following constrained minimization problem has to be solved:

I%n WHSxxW subjectto Wid=1. (2.24)
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2 Superdirective Microphone Arrays 25

Since we are only interested in the optimal suppression of the noise, and we
assume a perfect correspondence between the direction of the desired signal
and the look-direction of the array, only the noise PSD-matrix @y is used.

The well-known solution for (2.24) is called the Minimum Variance Dis-
tortionless Response (MVDR) beamformer [6]. It is given by

@VV_ld

W= Faprd’

(2.25)
and can be derived by using the Lagrange-multiplier [13] or gradient compu-
tation [20], [9]. Assuming a homogeneous noise field the solution is a function
of the coherence matrix:

~1
W= I'yv'd

A m . (2- 26)

Equations (2.25) or (2.26) can be interpreted as a spatial decorrelation
process followed by a matched filter for the desired signal. The normalization
in the denominator leads to unity signal response for the look direction.

The design procedure reduces to the choice of theoretically well-defined
noise-fields in order to get optimal designs for different applications. Fur-
thermore, different models for the desired signal can be included, leading to
farfield and nearfield designs.

Examples for desired signal models are:

o Standard farfield model for linear arrays with equidistant sensors:

d” = [1,exp(—j2fsc” 1 cos(Bo)), exp(—j 2 fc 2 cos(fp)), (2:27)
-+ exp(=jR2fsc (N = 1)l cos(6o)))

where [ is the inter-sensor spacing.
e Nearfield design, including attenuation of the desired signal [14], [22]

d" = [ag exp(—jwmo), ay exp(—jwry), -+ ,an—1 exp(—jwrn_1)] ,
(2.28)
”q - prcf”
ai = 19~ Prefll 2.29
= la-pil (2.29)
7= Hq _pref”(‘_ ”q —PiH , (2.30)

where ||g — pres|| and ||g — pi|| denote the distance between the vector
location of the source ¢ and a reference sensor p,.p, or the sensor p;,
respectively.

More elaborate examples for exact nearfield designs can be found in [18], [23]
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2.3.1 Delay-and-Sum Beamformer

Although this chapter is called superdirective microphone arrays the well-
known Delay-and-Sum Beamformer (DSB) is included for comparison pur- .
poses. It is an ‘optimal’ beamformer for optimizing the WNG. We can derive ]
the coefficients from (2.26) by inserting the coherence matrix for spatial un-
correlated noise I' = I. Thus,

W = %d. (2.31)

The WNG is optimal in t’his case and reaches N. All other standard shad-
ing schemes like the Dolph-Chebycheff window [10] worsen the performance E |
subject to WNG, H

2.3.2 Design for spherical isotropic noise

In order to optimize the directivity factor, which depends on the noise-field
of a spherical isotropic noise field (diffuse), we have to solve (2.26) by using _
the coherence matrix of the diffuse noise field, given by (2.17). The resulting
coefficients represent the classic superdirective beamformer (SDB)?.

Figure 2.2 shows the beampattern of a DSB and a superdirective beam-
former, both using five linear equispaced microphones (I = 5 c¢m) in endfire
steering direction (fy = m). The x-axis represents the incoming spatial angle
([0---2x]) and the y-axes represents the frequency of the signal in kHz. The
sampling-frequency was set to 8 kHz to cover the telephone bandwidth. The
grey-scaled image represents the attenuation of the incoming signals in dB.

The look-direction is unmodified at all frequencies due to the linear con-
straint. Additionally, an unmodified region at higher frequencies can be seen
caused by spatial aliasing, since our choice of the parameter does not fulfill
the spatial sampling theorem, which is given by

I < 3 (2.32)
where A denotes the wavelength. The upper sampling frequency should there-
fore be restricted to f; = 6.8 kHz, or the distance should not exceed [ = 4.25 cm.
However, in order to show some effects we will keep these parameters in all "
experiments.

Furthermore, the DSB is unable to suppress low frequency noise sources
coming from any direction. In contrast, the superdirective beamformer atten-
uates very well sources coming from directions other than the look-direction

3 In this chapter the term superdirective beamformer is used for the beamformer
which optimizes the directivity factor, independent of the frequency or the ratio
of the wavelength to the distance between the sensor elements. In the classic .
definition this is often restricted to the case where the wavelength is large with
respect to the distance between sensors.
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(2m) in Hz

«—Qf /

1
0/n—

Fig. 2.2. Left: beampattern of a delay-and-sum beamformer. Right: beampattern
of an optimal array for isotropic noise (superdirective beamformer). (I = 5 cm,
N =5, endfire steering direction)

over the whole frequency range. However, at higher frequencies the superdi-
rective beamformer degrades to the DSB, since supergain can only be achieved
if the signal wavelength is larger than two times the microphone distance.

0
T
110 &
2] '2 -20
2 £
= o
5 5
o g 40
0 : : : 60 : : :
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Q fs /(2m) in Hz — Q fs /2r) in Hz —

Fig. 2.3. Left: Directivity index (DI) for delay-and-sum beamformer and superdi-
rective beamformer. Right: White noise gain (WNG) for delay-and-sum beamformer
and superdirective beamformer. (I =5 cm, N = 5, endfire steering direction)

Figure 2.3 shows the DI on the left side and the WNG on the right side for
the same parameters as in the previous figure. The directivity index reaches
zero at low frequencies for the DSB (as expected by analyzing the beam-
pattern) and N? for the superdirective beamformer. The proof for this limit
in the endfire steering case can be found in [11]. At higher frequencies the
directivity for both designs is nearly the same and it is given by N, since the
sinc{-} function tends to zero, and the noise field is uncorrelated in this case.
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If we now take a closer look at the WNG, we can see why this design is not
suitable in real-world applications. Whereas the DSB suppresses uncorrelated
noise equally at all frequencies, the SDB boosts uncorrelated noise at lower
frequencies.

In order to give a deeper insight into how supergain works, we will com-
pute the coeflicients for an array of only two microphones. The distance is
again 5 cm, and endfire steering is used.

0.5 - - -
: — Sengor 1
4 — - Sens_;or 2
£ z
§ O Fsononsd cioe gl v s =
T : T T
2 S e
fos ] -
-~
” L
= » ] / - - -
-10 ~0.5'<
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Q fs /(2m) in Hz — Q fs /(2m) in Hz —

Fig. 2.4. Coefficients of a two channel SDB, left: Magnitude, right: Phase (I = 5
cm, N = 2, endfire steering direction)

In Fig. 2.4 the squared magnitude and the phase of the two coefficient vec-
tors are shown. First of all, the coefficients are conjugate complex. Secondly,
the filters force the phase between the noise components at each sensor to
be . Therefore, the correlated part of the noise will be compensated. Hence,
the desired signal is also correlated, and therefore it is reduced as well. To
fulfill the constraint of an undisturbed desired signal, the coefficients have
to boost the input signals to compensate this behavior, which can be seen
on the left side of Fig. 2.4. Therefore, uncorrelated noise will be amplified.
At higher frequencies the correlation between the noise components vanishes
and the beamformer degrades to the DSB. The magnitude of the coefficients
reaches 1/2.

In order to overcome the problem of self-noise amplification in superdirec-
tive designs, Gilbert and Morgan have proposed a method for solving (2.24)
under a WNG constraint [15]. The method uses a small added scalar p to
the main diagonal of the normalized PSD or coherence matrix:

_ (yvv +ul)'d
B dH(I'VV -|-,U,I*]d'

W, (2.33)

We prefer a mathematically equivalent form, which preserves the interpreta-
tion as a coherence matrix with elements smaller than one. Instead of adding
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the scalar to the main diagonal, we divide each non-diagonal element by 1+ .
Therefore, 2 can be interpreted as the ratio of the sensor noise o2 to the am-
bient noise power @y . For the diffuse noise field the non-diagonal elements
are given by

Sinc { ﬂfslﬂ m

Tv.v,, = —"2—}— V n#m. (2.34)

1+
Pyv

The factor g can vary from zero to infinity, which results in the unconstrained
SDB or the DSB respectively. The WNG changes as a monotonic function
between the two limits [15]. Typical values for p are in the range between
—10dB to —30dB. Unfortunately, there is no simple relation between p and
the resulting WNG. By using a frequency variant p the WNG can be re-
stricted at all frequencies, but not through direct computation.

There are two different iterative design schemes. The first one was pub-
lished by Doerbecker [9]. It is a straightforward implementation of a trial-
and-error strategy. Another iterative design method uses the scaled projection
algorithm developed by Cox et al. for adaptive arrays [6]. Instead of the es-
timated PSD-matrix, the theoretically defined coherence or PSD-matrix is
inserted in the scaled projection algorithm. This solution was presented in
[17]. Both algorithms result in similar coefficients and can be implemented
easily.

10
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Fig. 2.5. Left: Directivity index (DI) for different constrained designs. Right: White
noise gain (WNG) for different constrained designs. (I = 5 cm, N = 5, endfire
steering direction)

Figure 2.5 depicts the effects for three fixed and one variable p as con-
straining parameters. For the variable g, the WNG constraint was set to
—6dB. The constrained design facilitates a good compromise between DI
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and WNG. A careful design can optimize such arrays for a wide range of
applications.

2.3.3 Design for Cylindrical Isotropic Noise

In some applications a spherical isotropic noise field is not the best choice
or the best approximation of a given noise-field. Another well-defined noise-
field can be used, if we reduce the three dimensions to two dimensions. We
get a noise-field which is defined by infinite noise sources of a circle with an
infinite radius. This kind of noise can arise if a lot of people speak in large
rooms where the ceiling and the floor are damped well, or in the free-field
(cocktail-party noise) *. The coherence between two sensors is given by [7]

Iy x.. @) = Jo (“"l:m) , (2.35)

where Jp (-) is the zeroth-order Bessel function of the first kind. This leads to
the solution of [8] as an improved design for speech enhancement for a hearing-
aid application. In order to constrain the coefficients, a similar technique as
in (2.34) has to be carried out.

In comparison to the design for a diffuse noise-field the differences are not
large, but at lower frequencies a better suppression of noise sources behind
the look direction can be observed. Elko [11] has shown that the directivity
factor is less and its limit is 2N — 1, in contrast to N2 in the unconstrained
case (i = 0). A design example will be given in the next section.

2.3.4 Design for an Optimal Front-to-Back Ratio

A last data-independent design tries to optimize the front-to-back ratio. In
many applications the look direction of the desired signal cannot be pre-
determined, but in most cases the desired signal is in front of the array and
all disturbances are at the rear, e.g. when recording an orchestra or in video-
conferences.

Our suggestion for a different design strategy is not to use an isotropic
noise field, but to restrict the assumed infinite noise sources to the back half
of a circle or a sphere.

The resulting noise-field between two sensors separated by the distance [
can be described by an integration over an infinite number of uncorrelated
noise sources. The resulting function in the two-dimensional case is:

o 1 Bo+3w/2
f(e?*,80) = ;/;+ " exp (702fsc L cos(d)) db. (2.36)
o4

* The origin of this cylindrical isotropic noise-field is the sonar application in shal-
low water.
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Using numerical integration methods, inserting the resulting complex values
in the coherence matrix and solving (2.26), results in a new design which
suppresses noise sources from the rear very well.
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Fig. 2.6. Left: beampattern of a constrained superdirective beamformer. Right:
beampattern of a constrained beamformer, designed with (2.36). (I =5 cm, N = 5,
p = 0.01, endfire steering direction)

Figure 2.6 shows beampatterns of two constrained beamformers (p =
0.01). The left side is computed with optimized coefficients for a diffuse noise-
field, and the right side uses coefficients designed with the help of (2.36).
At lower frequencies the constraining parameter is dominant and therefore,
both designs do not perform well. From 300 Hz to 2800 Hz the new design
suppresses all signals coming from the rear at the cost of a wider main lobe;
this is sometimes an advantage, for example if the source is not exactly in
endfire position.

At higher frequencies, especially if spatial aliasing occurs, the new design
boosts signals coming from directions near the look direction, which can cause
some unnatural coloring of the signal and the remaining noise. Therefore,
special care has to be taken when choosing the parameters of the new design
scheme.

In order to show the advantages of the new schemes, Fig. 2.7 depicts the
DI and the FBR measure for the three different designs. At lower frequencies
the small advantage of the cylindrical optimal design against the spherical
design for the FBR can be seen, but the differences are very small over the
whole frequency range. On the other hand, the behavior of the new design is
completely different. Measuring the DI leads to much smaller values, but the
FBR is very high, especially in the mid-frequency range.

Interestingly, we can transform between the optimal design for cylindri-
cal isotropic noise and the new design by introducing a new variable which

Meta Platforms, Inc. Exhibit 1003
Page 47 of 155



32 Bitzer and Simmer

Fig. 2.7. Left: Directivity index (DI} for three optimal designs. Right: Front-to-
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l adjusts the limits of the integral, i.e.,

) nfg—8-427
“ f(e7%,80,8) = Q(Tr—l—g)- /g . exp (j2fsc ' lcos(F)) df 0<ds<m
+
' (2.37)

(2.36).

\
’ Setting § = 0 corresponds to the isotropic noise case, and § = 7/2 results in
JI 2.3.5 Design for Measured Noise Fields

So far, only data-independent designs have been considered. Tf a priori knowl-
edge is available, however, it should be used to improve the performance. For
| example, this information could be a prescribed direction (4 = angle) of an
incoming noise source. Assuming the noise source is in the far field of the mi-
' crophone array, the complex coherence function between two sensors is given

| by
Re{ T, x, @)} = oos (2120 ) (238)
Im{Iy, x, (w)} = —sin (%LW—) (2.39)

Inserting the complete coherence matrix in (2.26) forms a null in that direc-
tion over the whole frequency range. In order to restrict the WNG a con-
strained design is necessary.

Furthermore, if we assume stationarity we can measure the actual noige-
field and solve the design equation which results in the MVDR solution.
Adaptive algorithms like the constrained projection by Cox [6], or the original
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algorithm by Frost [13], will converge exactly to the same solution under the
assumption of stationary noise and an infinitely small step-size.

2.4 Extensions and Details

After describing the main form of the MVDR beamformer and typical data-
independent designs, we will compare them to their analogue counterparts,
the gradient microphones. Furthermore, an alternative implementation struc-
ture will be given which can reduce the computational complexity and open
superdirective designs for future extensions.

2.4.1 Alternative Form

Assuming a time-aligned input signal, the optimal weights are defined differ-
ently, since the look-direction vector d is replaced by the column-vector

1=[1’1,; T

containing only ones, and the PSD-matrix or the coherence matrix contain
the statistical information after time alignment (see Fig. 2.8). This gives

R i I Rl G C B
- ]
( Time New
™
FL’ . " delay ————— coherence
estimation ‘ or PSD
K\}_ ] and/or | S measure-
4 CO“:P"“‘ ment
sat
X 00 = skt v @] | X, = sG vido | point
[ r— e e |

Fig. 2.8. Signal model after time delay compensation

_ IT(P{,V + uI)™!

ta  AT(IYy, +pl)~11°

(2.40)

This solution of the constrained minimization problem can be decomposed
into two orthogonal parts, following the ideas of Griffith and Jim [16]. One
part represents the constraints only and the other part represents the uncon-

strained coefficients to minimize the output power of the noise.
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Fig. 2.9. Schematic description of the decomposition of the optimal weight vector
into two orthogonal parts

The decomposed structure is depicted in Fig. 2.9. The multi-channel time-
aligned input signal X is multiplied by W to fulfill the constraints. Fur-
thermore, the input signal is projected onto the noise-only subspace® by a
blocking matrix B. The resulting vector X® is multiplied by the optimal
vector H and then subtracted from the output of the upper part of the struc-
ture to get the noise-reduced output signal 7. Several authors have shown
the equivalence between this structure and the standard beamformer [16],
3], [12], if

- 1

{ A
we=_1,

which represents a delay-and-sum beamformer. Additionally, B has to fulfill
the following properties:

e The size of the matrix is (N - 1) x N
e The sum of all values in one row is zero
e The matrix has to be of rank N-1.

An example for N = 4 is given by

T 1= =i
B=|1-1-11 (2.41)
1=1 1 =1

Another well-known example is the original Griffith-Jim matrix which sub-
tracts two adjacent channels only:

1-10 0 --- 0
01 -10---0
B =
0--- 00 1 -1
The last step to achieve a solution equivalent to (2.25) is the computation

of the optimal filter H. A closer look at Fig. 2.9 shows that Y7, X? and Z
describe exactly the problem of a multiple input noise canceler, described by

® Which means that the desired signal is spatially filtered out (blocked).

o
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Widrow and Stearns [24]. Therefore, this structure is called the generalized
sidelobe canceler (GSC), if an adaptive implementation is used. The non-
adaptive multi-channel Wiener solution of this problem can be found in [21]

H‘——éxﬂxa_lé‘xa}? 5 (2.42)

where @ x5 x5 denotes the PSD-matrix of all signals after the matrix B, and
P x5y, is the cross-PSD vector between the fixed beamformer output and
the output signals X . Additionally, the coefficient vector can be computed
as a function of the input PSD-matrix:

H = (B®yy'B") 'B&y'WC . (2.43)

If we now assume a homogeneous noise field, the PSD-matrix can be replaced
by the coherence matrix of the delay-compensated noise field to compute the
optimal coefficients:

= 14 a vv' Wo. -
H = (BI'yy'BY¥)'BIyy'W° (2.44)

Therefore, all designs presented in section 2.3 can be implemented by using
the GSC-structure. However, why should we do that? First of all, the new
structure needs one filter less than the direct implementation. Using the first
blocking matrix (2.41) further reduces the number of filters [1]. Secondly, a
DSB output is available which can be used for future extensions. Thirdly, the
new structure allows us to combine superdirective beamformers with adap-
tive post-filters for further noise reduction [2], and the new structure gives a
deeper insight into MVDR-beamforming. For example, we can see that opti-
mal beamforming is an averaging process combined with noise compensation.

2.4.2 Comparison with Gradient Microphones

Other devices with superdirectional characteristics are optimized gradient
microphones [11]. In Fig. 2.10 a typical structure of a first order gradient
microphone and its technical equivalent (composed of two omni-directional
microphones) is shown.

The acoustic delay between the two open parts of the microphone can be
realized by placing the diaphragm not exactly in the middle, or by using a
material with a slower speed of sound.

The output of such systems is given by

E(w,0) = Py(1 - exp(—jw[r + ¢~ 'Lcos(8)])) , (2.45)

where 7 is the acoustic delay and F; denotes the amplitude of the source
signal. If we now assume a small spacing with respect to the wavelength, an
approximate solution can be derived:

E(w,0) =~ Pyw(t + ¢ 'l cos(f)) . (2.46)

P e e

e

i =i g
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Fig. 2.10. Schematic description of a first order gradient microphone

A proper choice of 7 leads to the different superdirective designs, called car-
dioid, supercardioid and hypercardioid. For example, the beampattern for a
hypercardioid first order gradient microphone shows its zeros at ~ £109°,
This type of microphone is designed to optimize the directivity factor and
therefore, it represents the analogue equivalent of a two-sensor superdirective
array. For a deeper insight and a complete review of higher order gradient
microphones see [11].

At lower frequencies the two systems react more or less equally. The ad-
vantages of the analogue system are the smaller size of the device, and that
no analogue-to-digital conversion is necessary. The advantages of the digital
array technique are its flexibility, the easy scaling for many microphones, and
the possible extensions with post-filters or other adaptive techniques.

At higher frequencies, if the assumption of small spacing is not valid any-
more, the differences become visible. Through careful manufacturing these
frequencies are much higher than the covered bandwidth. However, at some
high frequencies the analogue microphone cancels the desired signal com-
pletely. On the other hand the array system reacts like a DSB at these fre-
quencies, and no cancellation occurs.

2.5 Conclusion

Designing a so-called superdirective array or an optimal array for theoret-
ically well-defined noise fields can be reduced to solving a single equation.
Even nearfield assumptions and measured noise fields can be easily included.
We have shown that the spatial characteristic, described by the coherence
function, plays a key role in designing arrays. Most of the evaluation tools
like the beampattern or the directivity index are directly connected to the
coherence function. Beamformer designs with optimized directivity or higher
front-to-back ratio also use the coherence.

One of the new aspects included in this chapter was a new noise model
to improve the front-to-back ratio. Furthermore, we emphasized the close
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relationship between superdirective arrays and adaptive beamformers and
their well known implementation as a generalized sidelobe canceler.
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Abstract. In the context of microphone arrays, the term post-filtering denotes the
post-processing of the array output by a single-channel noise suppression filter. A
theoretical analysis shows that Wiener post-filtering of the output of an optimum
distortionless beamformer provides a minimum mean squared error solution. We
examine published methods for post-filter estimation and develop a new algorithm.
A simulation system is presented to compare the performance of the discussed
algorithms.

3.1 Introduction

What can be gained by additional post-filtering if the Minimum Variance
Distortionless Response (MVDR) beamformer already provides the optimum
solution for a given sound field?

Assuming that signal and noise are mutually uncorrelated the MVDR
beamformer minimizes the noise power (or variance) subject to the constraint
of a distortionless look direction response. The solution can be shown to be
optimum in the Maximum Likelihood (ML) sense and produces the best pos-
sible Signal to Noise Ratio (SNR) for a narrowband input [1]. However, it
does not maximize the SNR for a broadband input such as speech. Further-
more, the MVDR beamformer does not provide a broadband Minimum Mean
Squared Error (MMSE) solution. The best possible linear filter in the MMSE
gense is the multi-channel Wiener filter. As shown below the broadband multi-
channel MMSE solution can be factorized into a MVDR beamformer followed
by a single-channel Wiener post-filter. The multi-channel Wiener filter gen-
erally produces a higher output SNR than the MVDR filter. Therefore, addi-
tional post-filtering can significantly improve the SNR, which motivates this
chapter.

The squared error minimized by the single-channel Wiener filter is the
snm of residual naise and signal distortion components at the output of the
filter. As a result, linear distortion of the desired signal cannot be avoided en-
tirely if Wiener filtering is used. Additional Wiener filtering is advantageous
in practice, however, because signal distortions can be masked by residual
noise and a compromise between signal distortion and noise suppression can
be found. Using MVDR beamforming alone often does not provide sufficient
noise reduction due to its limited ability to reduce diffuse noise and rever-
beration.
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The first concept of an electronic multi-microphone device to suppress
diffuse reverberation was proposed by Danilenko in 1968 [2]. His research
was motivated by Békésy’s [3] observation that human listeners are able to
suppress reverberation if sounds are presented binaurally. In Danilenko’s re-
verberation suppressor a main microphone signal is multiplied by a broad-
band gain factor that is equal to the ratio of short-time cross-correlation and
energy measurements. Two auxiliary microphones were used to measure cor-
relation and energy. Danilenko already noted that such a system would also
suppress incoherent acoustic noise. However, the proposed analog, electronic
tube version of this system was not realized at that time. Another proposal
in [2] was to evaluate squared sum and differences of two microphone signals,
an idea that later was developed independently by Gierl and others in the
context of digital multi-channel spectral subtraction algorithms [4], [5], [6],
[7), 18]

According to Danilenko, his correlation-based concept was first realized
during Blauert’s stay at Bell Labs. In [9], Allen et al. presented a digital,
two-microphone algorithm for dereverberation based on short-term Fourier-
Transform and the overlap-add method. In 1984, Kaneda and Tohyama ex-
tended the application of the correlation based post-filters to noise reduction
[10]. The first multi-microphone solution was published by Zelinski [11], [12].
Simmer and Wasiljeff showed that Zelinski’s approach does not provide an op- |
timum solution in the Wiener sense if the noise is spatially uncorrelated, and ’
developed a slightly modified version [13). A deeper analysis of the Zelinski a i
and the Simmer post-filter can be found in [14], [15].

In the last decade, several new combinations and extensions of the post- I
filter approach were published. Le-Bouquin and Faucon used the coherence
function as a post-filter [16], [17] and extended their system by a coherence “
subtraction method to overcome the problem of insufficient noise reduction at !
low frequencies [18], [19]. The problem of time delay estimation and further ] ‘
improvement of the estimalion of the transfer function was independently |
addressed by Kuczynski et al. [20], [21] and Drews et ol, [22], [23]. Fischer
and Simmer gave a first solution by associating a post-filter and a generalized
sidelobe canceler (GSC) to improve the noise reduction in case the noise field
is dominated by coherent sources [24], [25]. Another system for the same task =
was introduced by Hussain et al. [26] and was based on switching between al- 3
gorithms. The same strategy of switching between different algorithms, where ' ‘
the decision is based on the coherence between the sensors, can be found in ] i
[27], [28]. Furthermore, Mamhoudi and Drygajlo used the wavelet-transform |
in combination with different post-filters to improve the performance [29], |
[30]. Bitzer et al. |31], [32] proposed a solution with a super-directive array ‘
and McCowan et al. used a near-field super-directive approach [33]. ‘

Reading these papers we find that a theoretical basis for post-filtering
seems to be missing. Therefore, an analysis based on optimum MMSE multi-
channel filtering is presented in the following section.

—c

i
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3.2 Multi-channel Wiener Filtering in Subbands

We use matrix notation for a compact derivation. Signal vector x and weight
vector w denote the multi-channel signal at the output of the N microphones
and the multi-channel beamformer coefficients, respectively. We assume that
the input signal vector x(k) is decomposed into M complex subband signals
%(k,?) by means of an analysis filter-bank, where k is the discrete time in-
dex and ¢ is the subband incdex. The optimum weight vector wo,(k,i) for
transforming the input signal vector x(k,i) = s(k,i) + v(k,1) corrupted by
additive noise v(k, ) into the best possible MMSE approximation of the de-
sired scalar signal s(k,1) is referred to as multi-channel Wiener filter [34].
We assume that the relation between the desired scalar signal s(k,4) and the
signal vector s(k. i) is linear and that the N elements of the column vectors
s(k,i) and v(k,i) are random processes. In the following, 7 denotes trans-
position, * denotes complex conjugation, 7 denotes Hermitian transposition,
and E[-] denotes the statistical expectation operator.

3.2.1 Derivation of the Optimum Solution

The error in subband i for an arbitrary weight vector w(k, 1) is defined as
the difference of the filter output

y(k,) = wh (k,0)x(k,4) = wh (k,9) [s(k,1) + v(k,i)] (3.1)
and the scalar desired signal s(k,7), that is

e(kyi) = s(k,i) — w (k,i)x(k,1). (3.2)
Using the definitions for the power of a complex signal

bea (ki) = E [z(k,i)z(k,d)"], (3.3)
the cross-correlation vector

ey (k,i) = E [x(k,i)y" (k,i)], (34)
and the correlation matrix

D, (k,i) = E [x(k,i)x" (k,i)], (3.5)

the squared error at time & rnay be written as
Bee(i) = B [{s() — w™ (@)x(i) Hs* (i) — x" (i) w(i)}]
= ¢os(8) — WH (i) 2 (1) — PE ()W (i) + W (i) 820 (i)W (i), (3.6)
where the time index & has been omitted without loss of generality. The
optimum solution minimizes the sum of all error powers ¢ (i):

M
D [Besi) = W (0)as(i) — SEOWE) + wH ()Bus (W) (37)

i=()
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Since the error power is necessarily real-valued and nonnegative for all sub-
bands, the sum can be minimized for the weight vector w(i) by minimizing
the error power ¢.¢(i) for each subband. Therefore, the frequency index ¢
may also be omitted without loss of generality.

The power ¢.. is a quadratic function of w and therefore has a single,
global minimum. The optimum weight vector minimizing the squared error
is obtained by setting the gradient of ¢,. with respect to w equal to the null
vector [33]:

3‘;’88
Aw*

The resulting expression is the subband version of the multi-channel Wiener-
Hopf equation in its most general form

vw(¢es) =2 = —20ss + 2&,,w = 0. (38)

quzwop-l‘. = Py, (3.9)

where &, is the correlation matrix of the noisy input vector and ¢, is the
cross-correlation vector between the noisy input vector and the desired scalar
signal s. Assuming @, to be nonsingular, we may solve (3.9) for the optimum
weight vector:

Wopt = Spmw‘lqﬁws- (3-10)

3.2.2 Factorization of the Wiener Solution

In our application, the received signal is assumed to consist of a single desired
scalar signal that is transformed by the acoustic path d and additive noise:

x=sd-+v. (3.11)
The noise vector v is given by
v =fuo, v, yun—1]" (312)

where v, is a. complex noise signal in subband i at microphone n. The complex
propagation vector is

d = [do, i, -+ ,dy—1]" (3.13)

where d,, describes the acoustic path from the desired source to the micro-
phone n for subband i. The propagation vector d may include time delays,
near-field effects, and the transfer functions of enclosure and microphones.
With the definitions (3.3), (3.4), (3.5) and assuming that signal and noise are
uncorrelated, the cross-correlation vector may be reduced to

¢xs = ﬁf’sad (3_]4)
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and the correlation matrix may be expressed as
B,y = Pasdd? + By (3.15)
Congequently, the optimum vweight vector may be written as
Wopt = Pz hoed = [Bosdd¥ +6,,] 7 deod. (3.16)

The multi-channel Wiener filter can now be factorized into an array processor
and a single channel post-filter by applying the Sherman-Morrison-Woodbury
formula

[A~'+BC'BY]” = A- AB(C + B"AB)'B7A (3.17)
which is also known as the matrix inversion lemma [35]. Substituting
A=%,""t B=+/pd, and C=1 (3.18)

into (3.17), and taking into account that the Hermitian form d"®,, 'd is
scalar and real valued, the MMSE solution (3.16) can be transformed into

‘ =1 H@ -l
Wopt = [vi‘_l — Pssfyn dd f;j ] ﬁﬁssd
1+ ¢ssdH Py, d
= [1 __¢sd"0,'d ]¢ &, 'd
1+ ppedfidy, 1d] "

¢88 } -1
= P d
[1 + ¢psdfp,,~1d]| "

¢ss @vwild
= = <1 3.19)
[d)!g + (quSUv_ld) : dH@r{m 1(1 (

Fquation (3.19) shows that the multi-channel Wiener filter (3.10) can be
written as the producl of Lhe weight vector of the MVDR beamformer, (see
Chapter 2) and a real-valued scalar factor. A similar result is used in [36] and
[1] to show that the multi-channel Wiener and the MVDR solution yield the
same SNR if the input is narrowband. In this case the MVDR beamformer is
preferable since it is data incdependent (i.e. completely defined by the spatial
configuration of signal and noise sources), whereas the Wiener solulion is
data dependent (¢4 must be known or estimated) and is therefore much
more difficult to handle. However, MVDR and Wiener solutiong yield the
same SNR only if the input consists of a single frequency. For the broadband
case (which has already been discussed in [37]), the scalar factor becomes a
subband or frequency domain post-filter that may significantly improve the
SNR.

e

e
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To show that the optimum post-filter is also a Wiener filter that operates
on the single-channel output data, we evaluate the power of the desired signal
at the output of the MVDR processor as

2

di,,'d
£ = ¢hys. (3.20)

H H
Psgso = PasWiyardd” Wmvar = @us dAE. 1
d%é,,d

This demonstrates the distortionless magnitude response. Furthermore, we
determine the power of the output noise as

d’,,~'d 1
PR - 3 = vy .
Posve = WrngasPovWavds = Tars T3 = G, —id

(3.21)

Substituting (3.20) and (3.21) into (3.19), we can finally factorize the opti-
mum MMSE solution into the following expression:

¢’s 8 ] @vuild .
gt == LB : 3.22
s [aﬁsoso + buv. ) dH &, d (3.22)

e v
Wiener post—filter MVDR array

L.

Equation (3.22) includes the complex weight vector of the MVDR beam-
former

Pl ) ki) i
df (ki) ®yy (k1) d(k,i)

Wmvdr (k7 1) —

and the scalar, single channel Wiener post-filter that depends on the SNR at
the output of the beamformer:
. Q‘L"s 8 (kai) SNRoui(k: 2")
Hosilk. i) = 2 T —. 24
post ) Psos, (k1) + o, (k1) L4 SNRout(kaﬁ) (3 )
The output signal z(k,4) of the factorized MMSE filter is the product of the
output signal y(k,1) of the MVDR, array:

y(k,i) = ngdr(k,‘i) x(k, 1), (3.25)
and the transfer function Hyae(k, 1) of a single-channel post-filter:
2(k, 1) = y(k, i) Hpost (k,)- (3-26)

The MVDR solution (3.23) maximizes the directivity index if &,, equals
the correlation matrix of the diffuse sound field. The resulting system may
therefore be called ‘superdirective array with Wiener post-filter’ (although
the term superdirectivity originated in the context of analog microphones).
Since the definition (3.13) of the propagation vector does not include any far-
field assumptions, (3.23) may also be used to design a near-field superdirective
array.
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3.2.3 Interpretation

Although the above results are clearly related to Wiener’s work on optimum
filtering [38], some basic assumptions were different. First of all, Wiener con-
sidered continuous time signals which leads to the Wiener-Hopf integral equa-
tion. The corresponding equation in matrix form (3.10) usually determines
the filter coefficients for an optimum discrete time FIR filter of order N. In
our case, the delay line is defined by the spatial arrangement of the acoustic
sensor and the taps are realized by the N microphones. The array and the
weight vector form a spatial filter. Wiener assumed that signal and noise are
ergodic and stationary random processes and he used the Fourier-transform
%0 find a solution for the optimum filter. This leads to a linear, time invariant
filter. Such a filter is not appropriate for speech signals that may be modeled
as short-time stationary processes only. The derivation used here is hased
on ensemble averages (expectations) and does not assume stationarity. In
practice, however, only an approximate realization of such a filter is possible.

There are two main sources of errors: the analysis and synthesis filter-
bank, and the procedures to estimate the time-varying signal and noise powers
in the individual subbands. For the design of the filter-banks, a compromise
between frequency and time resolution has to be made. High resolution in the
frequency domain leads to poor resolution in the time domain and vice versa.
Therefore, the highest possible frequency resolution that does not violate
the short-term stationarity of speech should be chosen. Furthermore, the
minimum error in the time-domain is only reached if the filters have non-
overlapping frequency regions (see the discussion of subband methods in [39]).
Since such filters are physically unrealizable, overlapping of subbands cannot
be avoided. Ag a result, the suppression of a noisc-only subband may affect
adjacent subbands containing desired signal components. In the following,
we will use windowing, Fast Fourier Transform (FFT) and the overlap-add
method to implement the filter-bank. However, (3.22) is general enough to
allow any complex or real valued filter-bank method. If overlap-add is used,
circular convolution should be avoided by zero padding and by constraints
imposed on the estimated transfer function.

Tn the derivation of the optimum filter, expectations are used to cstimate
the parameters. This is a theoretical construction since the ensemble averages
cannot be computed in practice. An approximation proposed in [9] is the
recursive Welsh periodogram:

Pou(kri) = @ $aylk — 1,4) + (1 — ada(k, Dy (K. ). (3.27)

where a = exp(—D/ [tafs]) i8 defined by the decimation factor D of the
filter-bank, the time-constant 7,, (ms), and the sampling frequency f, (kHz).
The time constant is again a compromise. If 7, is low, artifacts may oceur
due to the variation of the transfer function estimate. On the other hand, if
a high time constant 7, is chosen, the assumption of short time stationarity
is violated and the output speech signal may sound reverberant.
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Unfortunately, the factorized result (3.22) does not give any indication of
how the Wiener post-filter could be estimated. A possible golution, which we
discuss in the next section, is based on the observation that the correlation
between two microphone signals is low if the sound field is diffuse and the

microphone distance is large enough.

3.3 Algorithms for Post-Filter Estimation

Figure 3.1 shows the block diagram of the studied algorithms. The micro-
phone signals are time aligned and decomposed by a frequency subband
transform (FT). The coefficients w,, represent the weight vector w of the
beamformer and H represents the post-filter. The inverse subband transform
(IFT) synthesizes the output signal. The coefficients fy for post-filter estima~
tion form a vector T. Unless otherwise noted we assume that f = w. ‘We begin

Ay wEWE
o WU—{O—P]EFT T B Y
X (k_'ﬂ 8lx, (k);;'(k’l) F — j ,_i(léiﬁ z(k,i) z (k)
Cr @D——rFT*_ = wylki) £ - g‘Hﬂs,i};E%@+
é X ()| [==
Ko ()] N - |
ST | sk | |

| | ; = —tile = ——

‘ 9 k) E ’{

>

il

| gy -
; . Post- ‘
‘ i(k’l) : filter

estimation }

. 54-_'2
Thten E

I

Fig. 3.1. General block diagram of the examined post-filters.

our analysis on multi-microphone post-filters by recalling some results on the
performance of arrays from Chapter 2 since these results are needed later. We
generally asstume that the coefficients are normalized so that wH1lfw =1
and FE117T = 1, where 1 is the N-vector of ones. Therefore, the array gain
equals the noise reduction of the array. For convenience, we define a noise
power attenuation factor that equals the inverse of the array gain:

Ap =Wl law=G1, (3.28)

Meta Platforms, Inc. Exhibit 1003
Page 62 of 155




3 Post-filtering Techniques 47

jwhere the coherence matrix I'y, 18 the normalized noise correlation matrix
I'yy = @y N/trace[®,,], and all quantities are assumed to be frequency de-

pendent.
An examination of (3.28) shows that the noise attenuation of the array

is the weighted sum of the complex coherence functions of all sensor pairs.
Thus, all products appear in conjugate pairs I, + Iym = 2Re {Ihm}- As
a result, the noise reduction of the array is actually a function of the real
part of the complex coherence between the sensors. The knowledge of the
magnitude squared coherence is not sufficient.

The white noise gain is the array gain for spatially uncorrelated noise,
where I, = 1. Thus, the attenuation factor for spatially white noise is

Ay = whw = WNG™L. (3.29)
The additional noise attenuation of the post-filter is given by
Apos: - [Hpust.’2 . (330)

The total noise attenuation of the combined system is the product of the at-
tenuation of the array and the attenuation of the post-filter, or the respective
sum in dB:

3.3.1 Analysis of Post-Filter Algorithms

The first method for post-filter estimation we study is a generalized version of
Zelinski’s algorithms that was discussed by Marro et al, [15]. It covers several
other algorithms as a special case.

N-2 N-1
{Z z w($)w), (1) Py, 0., (2) } Z;'wn

n=0 m=n+1 n=0 (3.32)

-2 N-1
{Z Z Un )‘LU }Z \wn a'nzrn(i)

n=0 m=n+1

Hzm{i)

Equation (3.32) includes Danilenko’s [2] idea to use the ratio of cross-correlation

P ., and power @, . for suppressing incoherent nouise, the complex sub-
band approach of Allen et al. [9], Zelinski’s proposal to average over all mi-
crophone pairs m > n [L1], and Marrao’s [40] extension to complex shading
coefficients w,,. To write this algorithm in matrix notation, we note that

N-2 N-—i N—1N-—1 N-1
2Re Z Z Wi, Po z ¢ = Z Z Wi P — Z Wty Py g, -
n=0

n=0 m=n+1 n=0 m=0
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This is a Hermitian form of the shading coefficients w,, and the correlation
matrix &,,, minus the weighted sum of diagonal elements of @,,. The algo-
rithm (3.32) requires that the relative time-delay differences and gain ratios
between the microphone signals have been compensated in advance so that
d = 1, This leads to a modificd noise correlation matrix @,, (see Chapter
2). The transfer function of the post-filter (3.32) may now conveniently be
written in matrix form as

(WHEPMW —}WH@EmW) whw

= 3.39
(Wﬂllﬂw — wHw) wh oD w’ ( )

Him=t

where @é"w is a diagonal matrix of the diagonal elements of &,,. If the sound
field is homogeneous, we have the same input power at each microphone, i.e.
@fx = (b1, and may write

(W dpow — o wiw)

R v (3.34)

Hzm

If signal and noise are uncorrelated we have @, = $;; + @, Therefore,

H —4 (W”gD”w = (p“"'WHW) + (wﬂ @U.UW i ¢1;1;WIIW)
Zm ((f),m s Q:’mx) (WﬂllHW g WHw) .

(3.35)

Assuming that the coefficients are normalized such that w#11%w = 1, the
desired signal is coherent, i.e., $,; = ¢ys11%. With the noise correlation
matrix being @y = ¢yy Ly, Where ¢y, = trace [$,,] /N, we finally obtain

Qs_“ Q’;"U'u (WHHJ'UW A WHW)

= i s g Fen] (L—ww)

Although the designs of the MVDR. array and the post-filter estimation
algorithm do not seem to have much in common, the transfer function of the
post-filter may be expressed ag a function of the attenuation factors of the
array by substituting (3.28) and (3.29) into (3.36):

Ham (3.36)

ﬁbss ¢t’v (AI‘ s AI)
. Pss + Puo d (Cﬁss = ‘:bi!v) (1 = AI) # 37)

This is also true for the slightly modified version of Zelinski’s algorithm [13]:

N2 N1
Re{z Z 11)n(i}w;1(f)¢mﬂmm{i)}

n=0 m=n+1

N-2 N-1 #
Re{z % wn(é)w:L(f)}cbygfi)

n=0 m=n+1

(3.38)

Him (1,) =
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where ¢y, = dgs + GupAr is the output power of the array. The modified
pust-filter can be expressed as

¢’ss gb‘u-uAP (AF = AI)
+ : 3.29
¢ss -+ évaF (ﬁi’ss =+ ¢UTJAF) (1 = AI) ( )
These rather surprising results were first derived in [15]. They are used in

the following section to discuss the properties of a large class of post-filtering
algorithms.

HS[[L ==

3.3.2 Properties of Post-Filter Algorithms

First of all, we note that the shading coefficients w, form a weight vector
w that generally can be computed by using the design rule of the MVDR
array. It is not necessary, however, to use the same design for array processor
and post-filter (see Fig. 3.1). Both the MVDR weight vector and the array
gain are functions of the noise correlation matrix. 1t should be noted that the
correlation matrix that is used for the design may differ from the correlation
matrix of the environment in which the array operates. Therefore, three dif-
ferent correlation matrices may be involved: a first one for the design of the
array processor, a second one for the design of the post-filter, and a third one
to determine the performance in the actual environment.
Analyzing (3.37) and (3.39) leads to the following conclusions:

e Optimum performance is only reached if Ap = Ay
The difference of the two attenuation factors is zero only if the noise is
spatially uncorrelated which was Danilenko’s initial assumption in the
design of his suppression system. In this case, (3.37) becomes a Wiener
filter for the input signal of the beamformer. On the other hand, (3.39)
becomes a Wiener filter for the beamformer output and therefore rep-
resents the MMSE solution for uncorrelated noise if the delay and sum
beamformer is used. All other coefficient sets, including superdirective so-
lutions, yield suboptimal performance. In a diffuse sound field, the noise
is correlated at low frequencies which leads to poor performance for low
frequency noise.

s Negative post-filter if Ay < Ar:

In a diffuse noise field, or if coherent sources are present, the difference of

the attenuation factors (Ar — A;) may cause a negative transfer-function.

If negative parts of the transfer functions are set to zero, which ig a

common strategy, signal cancellation may occur.

Infinite post-filter if Ay = 1:

This is usually the case with superdirective designs which amplify uncor-

related noise at low frequencies.

To demonstrate the preceding results, we computed the theoretical perfor-
mance of a four microphone end-fire array with 8 em inter-microphone dis-
tance in a diffuse noise field (¢;; = 0). Figure 3.2 shows the attenuation
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Fig. 3.2. Thearetical noise attenuation of an end-fire array for a diffuse noise field.
Left: delay auncl sum beamformer coefficients. Right: superdirective coefficients.

factors Ar and Ay of the beamformer and the noise attenuation Ay of
the post-filter (3.37). The left part depicts the attenuation for delay and
sum beamformer coefficients (f = w = 1/N) and the right part depicts the
attenuation for superdirective coefficients (F = wyvvpn)-

The performance of the delay and sum beamformer and the respective
post-filter is poor at low frequencies. At high frequencies the coherence of a
diffuse noise field is approaching zero. Therefore, Ar is close to 4y and both
post-filters perform nearly optimally.

The superdirective beamformer performs particularly well at low frequen-
cies. The respective post-filter, however, does not benefit from using superdi-
rective coefficients. The performance gets even worse at low frequencies and
the transfer function is infinite at the frequency where Ay crosses () dB.

3.3.3 A New Post-Filter Algorithm

To derive an improved algorithm we note that in all cases the subtraction of
the white noise attenuation Ay in (3.37) is causing the trouble. It reduces the
performance for superdirective coefficients and is responsible for negative or
infinite post-filters. Our straightforward approach for solving these problems
is to replace the difference Ar — Ay with A, since Ar is the parameter that
is actually minimized by the design of the MVDR, beamformer. Substituting
Ay =0 in (3.37) results in

(‘f’ss é-u-u"llf = Qt’yy (340)

N g TR Tl iy

This new algorithm can be implemented easily by estimating the ratio of
the output power ¢,,, and the input power ¢, of the beamformer for all sub-
bands, where ¢, is the power of the microphone closest to the desired source

Hapa,b .

Meta Platforms, Inc. Exhibit 1003
Page 66 of 155



—

I —

e

A S TR

iy

e

sl A

3  Post-filtering Techniques 51

or, alternatively, the average input power of the beamformer (sce Fig. 3.3).
This design is compatible with superdirective coefficients, is always positive,
and provides good performance for low frequency noise. However, the new
transfer function still approximates a Wiener filter for the input signal. It
does not take into account that the noise has already been reduced by the
MVDR beamformer. In order to correct this behavior, we may apply the

following function to (3.40)

9(H,A)= ﬂﬁ{{—_—'m (3.41)

This transforms the Wiener filter for the input to a Wiener filter for the
output of the beamformer:

Pss Pss
— Ay )= ———. 3.42
4 (¢ss + QSM' ; r) ¢ss 4 ¢’va1" ( )

Since Ar is usually unknown, we may implement (3.40) directly and call this
algorithm Adaptive Post-Filter for an Arbitrary Beamformer (APAB).

e St D Channel- ’
[ switch
o s g
| -
(ki) ] o
Xol1)f . I Post-filter-
? [ ’ w, (ki) ?—g— L estimation —l
= * £ o LE 3
Xflr(k,l)' L e f“ y(k.i) I }

j I 1§ T S =Y
e <

Fig. 3.3. Block diagram of the adaptive post-filier for an arbitrary beamformer
(APAB).
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3.4 Performance Evaluation

It is difficult to obtain reliable speech quality measures for the performance
evaluation of noise reduction units. Subjective listening tests reach statistical
significance only for a large number of trained listeners and are expensive
and time-consuming. On the olher hand, objective measures are often less
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sensitive than the human auditory system to artifacts such as musical tones.
Therefore, we did not rely exclusively on objective measures to optimize
the noise reduction algorithms. Accompanying informal listening tests were
conducted to validate the objective results.

3.4.1 Simulation System

Qur simulation system consists of three parts: A signal generation module,
the device or algorithm under test (DUT), and the evaluation unit. In a first
step, clean speech s(k) and a pure noise signal v(k) are convolved with room
impulse responses (RTR) that are computed using the image method of Allen
and Berkley [41]. In Fig. 3.4, we show the room configuration used. Noise is
added to the computed multi-channel signals to produce a given signal-to-
noige ratio (SNR). The resulting noisy signal is fed into the DUT.

y A Broadside Ya Endlire
Noise Noise i
V(1.9m/241m/1m) V(1.99m/241l m/1m) !
L o Source
Source 9 .
| . ® \
. 45° N 45°
\&’ 3 Y
Im < [s0em 2m\\ | 50 em
4 4 Ny
™ 34m % R 34m % Oy
OD 000 ol
==, 5 ch_"
10 cm )
1m
I'm
| B b 4
PARm 74 m % Pr5 74m X
z z f

Fig. 3.4. Configuration of the simulated room.

The adaptive coefficients of the algorithm are copied to two slave algo-
rithms which process speech or noige only. Thus, we have access to the pro-
cessed apeech signal y.(k), the processed noise signal g, (%), and a processed
SUM Yuto (k). Finally, these three output signals and the input signals are
used in the evaluation unit to compute several speech quality measures. See
Fig. 3.5 for a graphical description of the complete system.

3.4.2 Objective Measures

We are using three different quantities to obtain objective information about
the tested algorithm. The first one is the segmental signal-to-noise ratio en-
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Fig. 3.5. Graphical description of the complete simulation system.

hancement (SNRE):
SNRE(l) = SNRin(l) — SN Rpus(l). (3.43)

The segmental SNR. is computed from consecutive samples with block-length
B = 256 at a sampling frequency of 8 kHz:

(I+1)B
Z 5% (k)

SNRin(l) = 10-logy, ’:;“f);‘ S (3.44)

Z vi(k)

k=IlB+1

(4+1)B

> k)

SN Rout(1) = 10-10g1o fopg—— (3.45)

S vk
k=IB+1
The second objective measure is the log-area-ratio distance (LAR) which
has been tested with good results in [42]. This quantity can be computed in
three steps:

1. Estimate the PARtial CORrelation coefficients (PARCOR.) of a block of
samples. The block-size should be small enough to hold the assumption of
stationarity but large enough to reduce bias and variance of the estimated
values. A good choice is a block-size of 256 for a model order of P = 12. An
algorithm for estimating PARCOR coefficients is the well-known Burg-
algorithm [35].

2. Determine the area-coefficients by

ally = LERBD

T—k(p,]) V 1<p<12 (3.46)
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where k(p,1) is the pth PARCOR coefficient of block [.
3. Compute the LAR of block [

LAR(I) z 20log, 4

Jgs p(’;) )’ (3.47)

The final quantity we use is a speech degradation measure, which can be
defined by the LAR of the input and the output speech signals only

12
= ZQO]ogm 9s(p; 1) ’
p=1

(3.48)

Jy., (p: Z)

Tt includes the room reverheration, the signal distortion caused by the tested
algorithm, and the dereverberation features of the tested algorithm only.
Tinally, the average of all blocks containing speech is computed.

3.4.3 Simulation Results

The described simulation system was used to evaluate the performance of
four different. post-filter algorithms:

1. Zel88: The algorithm by Zelinsldi in the frequency-domain implementation
[21].

2. 5im92: The algorithm by Simmer described in [13].

3. APAB: The adaptive post-filter for an arbitrary beamformer, described
in section 3.3 with a constrained MVDR-beamformer designed for an
isotropic noise field in three dimensions (superdirective beamformer). The
constraining parameter is set to g = 0.01 (sece Chapter 2).

4. APES: The adaptive post-filter extension for superdirective beamformers
[32].

For comparison, we include the results of the case in which no algorithm is
used (No NRR).

The speech sample we used is the sentence “I am now speaking to you
from a distance of 50 ¢m from the microphone” spoken by an adult male.
The length of this file leads to 98 blocks coutaining speech. The roise file
was white Gaussian noise used in order to give technical results which can
be reproduced by other researchers. The input SNR was computed only for
blocks containing speech by using the segmental SNR.

In the first experiment, the broadside array shown on the left side of
Tig, 3.4 is examined. Figure 3.6 depicts the results for the SNRE. The left
side shows the dependence on the input-SNR if the reverberation time ig
set o 760 = 300 ms. The right figure shows the results for SNR=5 dB as a
function of the reverberation time. This provides information on the behavior
of the algorithms [or different, spatial conditions. The noise-field is coherent
for low reverberation time and approximately diffuse for high values.
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Fig. 3.6. Left: SNRE vs. input-SNR,. Right: SNRE vs. reverberation time g0
(Broadside).

Although not optimal the Zel88 algorithm performs quite well, especially
for high reverberation times where it provides the best results of all tested al-
gorithms (if only the SNRE is considered). At low reverberation times APAB
and APES can benefit from the better suppression at low frequencies by us-
ing a superdirective beamformer instead of a standard delay and sum beam-

former.
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Fig. 3.7. Left: SD vs. input-SNR. Right: SD vs. reverberation time rs0 (Broadside).

If we take into account the next two measures shown in Fig. 3.7 and 3.8,
which describe the performance in terms of speech quality, the results are
different. All algorithmns enhance the speech quality in comparison to the
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Fig. 3.9. Left: SNRE vs. input-SNR. Right: SNRE vs. reverberation tims 740 (End-
fire).

unprocessed input signal !. However, the algorithm with the highest SNRE
does not produce the best LAR. A closer look at Iig. 3.7 explains this behav-
ior. Since these figures show the speech degradation only, the non-processed
signal is constant versus the SNR and reduces to zero if no reverberation
is added to the speech signal. The algorithms cause signal distortion at low
SNR and the algorithm with the highest performance in SNRE induces the
largest. distortion, whereas APAB and APES provide the best speech quality
(LAR). At very good conditions (SNR > 15 dB), these algorithms are able
to suppress reverberation without introducing speech degradation. The lack
of artifacts was corroborated through informal listening tests.

! Smaller values indicate hetter quality.
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In a second experiment, (right side of Fig. 3.4), we changed the orientation

of the array and the inter-microphone distance. Additionally, only four mi-
crophones were used to reduced the array size. In Fig. 3.9 the SNRE results
"' of the simulation are shown. The performance of the Sim92 and Zel88 al-
gorithms degrades drastically, since the inherent delay and sum beamformer

does not perform well at low frequencies due to the small array size. On
‘__ the other hand, APAB and APES perform well under all conditions. The
SNRE for APES at high reverberation time is close to the result for the

| broadside-experiment although the number of microphones is reduced. Thus,
we conclude that end-fire stecring is preferable for this algorithm. ]

e o e N
it

e e T e

; 3.5 Conclusion

Wiener post-filtering of the output signal of an MVDR beamformer pro-
' vides an optimum MMSE solution for signal enhancement. A large number
of published algorithms for post-filter estimation are based on the agsumption
of spatially uncorrelated noise. This assumption leads to post-filtering algo-
G rithms with suboptimal performance in coherent and diffuse noise fields. In
i this chapter we presented a new algorithm which performs considerably bet-
ter in correlated noise fields by using the gain of an arbitrary array. Small size
end-fire arrays comprising an MVDR beamformer and optimized post-filters
showed the best performance in our simulations.
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5 Robust Adaptive Beamforming

Osamu Hoshuyama and Akihiko Sugiyvama,

NEC Media Research Labs, Kawasaki, Japan

Abstract. This chapter presents robust adaptive beamforming techniques designed
specifically for microphone array applications. The basics of adaptive beamform-
ers are first reviewed with the Griffiths-Jim beamformer (GJBF). Its robustness
problems caused by steering vector errors are then discussed with some convention-
ally proposed robust beamformers. As better solutions to the conventional robust
beamformers, GIBFs with an adaptive blocking matrix are presented in the form of
a microphone array. Simulation results and real-time evaluation data show that a
new robust adaptive microphone array achieves improved robustness against steer-
ing vector errors. Good sound quality of the output signal is also confirmed by a
subjective evaluation.

5.1 Introduction

Beamforming is a technique which extracts the desired signal contaminated
by interference based on directivity, i.e. spatial signal selectivity [1]-[5]. This
extraction is performed by processing the signals obtained by multiple sensors
such as microphones, antennas, and sonar transducers located at different
positions in the space. The principle of beamforming has been known for a
long time. Because of the vast amount of necessary signal processing, most
research and development effort has been focused on geological investigations
and sonar, which can afford a higher cost. With the advent of LSI technology,
the required amount of signal processing has become relatively small. As a
result, a variety of research projects where acoustic beamforming is applied
to consumer-oriented applications, have been carried out [6].

Applications of beamforming include microphone arrays for speech en-
hancement. The goal of speech enhancement is to remove undesirable sig-
nals such as noise and reverberation. Among research areas in the field of
speech enhancement are teleconferencing [7]-[8], hands-free telephones [9]-
[11], hearing aids [12]-[21], speech recognition [22]-{23], intelligibility improve-
ment [24]-[25], and acoustic measurement [26].

Beamforming can be considered as multidimensional signal processing
in space and time. Ideal conditions assumed in most theoretical discussions
are not always maintained. The target DOA (direction of arrival), which is
assumed to be stable, does change with the movement of the speaker. The
sensor gains, which are assumed uniform, exhibit significant distribution. As
a result, the performance obtained by beamforming may not be as good as
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is expected. Therefore, robustness against steering-vector errors caused by
these array imperfections are becoming more and more important.

This chapter presents robust adaptive beamforming with the emphasis
on microphone arrays as its application. In Section 2, the basics of adap-
tive beamformers are reviewed with the Griffiths-Jim beamformer (GJBF).
Section 3 discusses robustness problems in the GJBF. Robust adaptive micro-
phone arrays as solutions to the robustness problem are presented in Section
4. Finally in Section 5 evaluations of a robust adaptive microphone array are
presented with simulation results and real-time evaluation data.

5.2 Adaptive Beamformers

A beamformer which adaptively forms its directivity pattern is called an
adaptive beamformer. Tt simultaneously performs beam steering and null
steering. Tn most acoustic beamformers, however, only null steering is per-
formed with an assumption that the target DOA is known a priori. Due
to adaptive processing, deep nulls can be developed even when errors in the
propagation model exist. As a result, adaptive beamformers naturally exhibit
higher interference suppression capability than its fixed counterpart. Among
various adaptive beamformers, the Griffiths-Jim beamformer (GJBF) [27], or
the generalized sidelobe canceler, is most widely known.

Figure 5.1 depicts the structure of the GJBE. It comprises a fixed beam-
former (FBF), a multiple-input canceler (MC), and a blocking matrix (BM).
The FBF is designed to form a beam in the look direction so that the target
signal is passed and all other signals are attenuated. On the contrary, the BM
forms a null in the look direction so that the target signal is suppressed and
all other signals are passed through.

The simplest structure for the BM is a delay-and-subtract beamformer
which was described in the previous section. Assuming a look direction per-
pendicular to the array surface, no delay element is necessary. Thus, a set
of subtracters which take the difference between the signals at the adjacent
microphones can be used as a BM. This structure is actually the one shown
in Fig. 5.1. The BM was named after its function, which is to block the target
signal.

The MC is composed of multiple adaptive filters each of which is driven
by a BM output, z, (k) (n=0, 1, - -+, N —2). The BM outputs, z,(k), contain
all the signal components except that in the look direction. Based on these
signals, the adaptive filters generate replicas of components correlated with
the interferences. All the replicas are subtracted from a delayed output signal,
b(k — L;),} of the fixed beamformer which has an enhanced target signal
component. As a result, in the subtracter output y(k), the target signal is

! The L;-sample delay is introduced to compensate for the signal processing delay
in the BM and the MC.
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Microphones

0

M: Blockin
Matrix

Fig. 5.1. Griffiths-Jim beamformer. It comprises a fixed beamformer (FBF), a
multiple-input canceler (MC), and a blocking matrix (BM).
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Fig. 5.2. Example directivity pattern of the Griffiths-Jim beamformer.

enhanced and undesirable signals such as ambient noise and interferences are
suppressed.

The GIBF can be considered as an adaptive noise canceler with multiple
reference signals, each of which is preprocessed by the BM. In an adaptive
noise canceler, the auxiliary microphone is located close to the noise source
to obtain a best possible noise reference. On the other hand, the BM in the
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Fig. 5.3. Directivity pattern of a fixed beamformer (FBF) and a blocking matrix
(BM).

GJBF extracts, with its directivity, the signal components correlated with
the noise.

Figure 5.2 depicts an example directivity pattern obtained by the GJBF.
In the direction of the target signal, almost constant gains close to (0 dB are
obtained over a wide range of frequencies. On the contrary, in the direction
of the interference, a deep null is formed. Although the directivity has fre-
quency dependency, target signal extraction and interference suppression are
simultaneously achieved.

With the same microphone array, adaptive beamformers generally achieve
better interference suppression than fixed beamformers. This is because nulls
are sharper than beams. The effect is demonstrated in Fig. 5.3, where direc-
tivity patterns of the FBF and the BM are illustrated. The null of the BM
and the main lobe (beam) of the FBF are located in the target direction. It
is also clear from the figure that they are orthogonal to each other. The BM
in Fig. 5.1 has a simple delay-and-sum structure, however, a filter-and-sum
beamformer [28,29] may also be employed.

5.3 Robustness Problem in the GJBF

The GJBF suffers from target-signal cancellation due to steering-vector er-
rors, which is caused by an undesirable phase difference between z,(k) and
Zn41 (k) for the target. A phase error leads to target signal leakage into the
BM output signal. As a result, blocking of the target becomes incomplete,
which results in target signal cancellation at the microphone array output.
Steering-vector errors are inevitable because the propagation model does
not always reflect the nonstationary physical environment. The steering vec-
tor is sensitive to errors in the microphone positions, those in the microphone
characteristics, and those in the assumed target DOA (which is also known
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as the look direction). For teleconferencing and hands-free communication in
the car, the error in the assumed target DOA is the dominant factor.

A variety of techniques to reduce target-signal cancellation have been pro-
posed mainly in the field of antennas and radars. The beamformers with these
techniques are called robust beamformers. Typical approaches are reduction
of the target-signal leakage in the BM outputs and restraint of coefficient
growth in the MC. The former can be considered as a direct approach which
reduces the target leakage in the BM output. The latter takes the form of an
indirect approach. Even if there is target leakage in the BM output used as
the MC input, the MC tries to minimize its influence. '

Techniques to reduce target-signal leakage include:

o Target Tracking: The look direction is steered to the continuously esti-
mated DOA [30]-[32]. Mistracking to interference may occur in the ab-
sence of a target signal.

e Multiple Constraints in BM: Multiple constraints are imposed on the BM
so that signals from multiple DOAs are eliminated [33]. To compensate
for the loss of the degrees of freedom for interference reduction with a
large DOA error, additional microphones are needed.

e Constrained Gradient for Look-Direction Sensitivity: Gradient of the sen-
sitivity at the look direction is constrained for a smaller variance of the
sensitivity [34,35]. For a large error, loss in the degrees of freedom is
inevitable.

e Improved Spatial Filter: A carefully designed spatial filter is used to elim-
inate the target signal [28]. Such a spatial filter also loses degrees of free-
dom.

Techniques that attempt to restraint excess coefficient growth include:

e Noise Injection: Artificially-generated noise is added to the error signal
used to update the adaptive filters in the MC. This noise causes errors in
the adaptive filter coeflicients, preventing tap coeflicients from growing
excessively [36]. A higher noise level is needed to allow a larger look-
direction error, resulting in less interference suppression.

e Norm Constraint: The coefficient norm of the adaptive filters in the MC is
constrained by an inequality to suppress the growth of the tap coefficients
[37]. In spite of its simplicity, interference reduction is degraded when the
constraint is designed to allow a large error.

o Leaky Adaptive Algorithm: A leaky coefficient adaptation algorithm such

- as leaky LMS is used for the adaptive filters in the MC [28]. A large

i leakage is needed to allow a large look-direction error, leading to degraded
interference-reduction.

e Adaptation Mode Control: Coefficient adaptation in the MC is controlled
so that adaptation is carried out only when there is no target signal [38].
If there is no target signal when coefficients are adapted in the MC,
the target leakage, if any, will have no effect on the performance of the
beamformer.
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Fig. 5.4. GJBF with a LAF-LAF Structure.

These methods have been developed for a small look-direction error, typ-
ically less than 10 degrees. In the case of microphone arrays, the variance
of the target DOA is typically much larger than in antennas and radar ap-
plications. No single conventional technique for robustness is sufficient for

microphone arrays with a larger phase errors.

5.4 Robust Adaptive Microphone Arrays — Solutions
to Steering-Vector Errors

5.4.1 LAF-LAF Structure

A target-tracking method with leaky adaptive filters (LAF) in the BM was
proposed as a solution to target signal cancellation in [39]. It is combined
with leaky adaptive filters in the MC [28], thereby called a LAF-LAF struc-
ture. Figure 5.4 depicts its block diagram. The leaky adaptive filters in the
BM alleviate the influence of phase error, which results in the robustness.
This structure can pick up a target signal with little distortion when the
error between the actual and the assumed DOAs is not small. It does not
need matrix products, and provides easy implementation. The nth output
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zp(k)(n=0,1,... ,N —1) of the BM can be obtained as follows:

zn(k) = 2 (k — Lz) — h (k)b(k), (5.1)
(k) = [Ano(k); B, (K), - s Bonyaty =1 (R)]7, (5.2)
b(k) = [b(k),b(k — 1), ... ,b(k — M; + 1)]7, (5.3)

where []7 denotes vector transpose and z,, (k) is the nth microphone signal.
Ly is the number of delay samples for causality, h,, (k) is the coefficient vector
of the nth LAF, and b(k) is the signal vector consisting of delayed signals
of b(k) (which is the FBF output). Each LAF is assumed to have M, taps.
The adaptation by the normalized LMS (NLMS) algorithm [40] is described

as follows:

hp(k+1) = hy(k) = 6 - hy, (k) +ab(:;'——1(,%){—5b(k), (5.4)

where a is the step size for the adaptation algorithm, and 4,0 < § < 1, is the
leakage constant.

LAFs are also used in the MC for enhancing the robustness obtained
in the BM. The LAFs prevent undesirable target-signal cancellation caused
by the remaining correlation with the target signal in z,(k). Tap coeflicient
vectors w, (k) of the MC have M, taps and are updated by an equation
similar to (5.4), where h,, b, and z,(k) are replaced with w,, z,, and y(k),
respectively. The leakage constant § and the step size a are replaced with ~y
and A respectively, and may take different values from those in (5.4).

With the LAFs in the BM, the LAF-LAF structure adaptively controls the
look direction, which is fixed in the GJBF. Due to robustness by the adaptive
control of the look direction, the LAF-LAF structure does not lose degrees
of freedom for interference reduction. Thus, no additional microphones are
required compared to the conventional robust beamformers. Target signal
leakage in the BM is sufficiently small to use a minimum leakage constant +
in the MC even for a large look-direction error. Such a value of v leads to
a higher interference-reduction performance in the MC. The output of the
LAFs are sumnmed and subtracted from an L) sample delayed version of the
FBF output to generate the microphone array output y(k).

The width of the allowable DOA for the target is determined by the
leaky constants and the step sizes in both the BM and the MC. Generally,
smaller values of these parameters make the allowable target DOA wider. The
allowable DOA width for the target is not a simple function of the parameters,
however, and is not easy to preseribe. It is reported [39] that the interference

is attenuated by more than 18 dB when it is designed, through simulations,
to allow 20 degree directional error. Tracking may not be sufficiently precise
for a large tracking range. Thus, there is a trade-off between the degree of
target-signal cancellation and the amount of interference suppression.

i
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Bi: Blocking h

l Fig. 5.5. GJBF with a CCAF-LAF Structure.

| 5.4.2 CCAF-LAF Structure

A more effective solution is to use coefficient-constrained adaptive filters o
(CCAFs) in the BM [41,42). When combined with leaky adaptive filters in .
: the MC as depicted in Fig. 5.5, the result is called a CCAF-LAF structure.

[ o CCAFs behave like adaptive noise cancelers. The input signal to each CCAF

| ' is the output of the FBF, and the output of the CCAF is subtracted from the

‘ : delayed microphone signal. The CCAF coefficient vectors h,, (k) are adapted

| with constraints. Adaptation by the NLMS algorithm is described as follows:

| b o (k+1) = ha (k) + ab—cz_%%b(k), (5.5)
| ; O for ', (k+1) > ¢,
' h,(k+1) = .., for ', (k+1) <, (5.6)

h',,(k+1), otherwise.
| | b 2 (b0 brts s Gnan]T (5.7)
inb:'xa é [wn,()awn,lr"' ;"I)n,Ml—l]Tg (58)

where each CCAF is assumed to have M; taps and h',(k+1) is a temporal
coefficient vector for limiting functions. ¢,, and 1, are the upper and lower
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5 Robust Adaptive Beamforming 95

bounds for coefficients. Tn the output signal z,(k), the components correlated
with b(k) are cancelled by the CCAFs.

BEach coefficient of the CCAFs is constrained based on the fact that filter
coefficients for target-signal minimization vary significantly with the target
DOA. An example of filter-coefficient variation is illustrated in Fig. 5.6. By
the design of the constrained regions of the CCAF coefficients, the maximum
allowable look-direction error can be specified. For example, when the CCAF
coefficients are constrained in the hatched region in Fig. 5.6, up to 20° error
in look direction could be allowed. Only the signal that arrives from a DOA in
the limited DOA region is minimized at the outputs of the BM and remains
at the output of the MC. If no interference exists in the region, which is
common with microphone arrays, no mistracking occurs. For details on the
design of upper and lower bounds, refer to [42].

Figure 5.7 illustrates a qualitative comparison between the LAF and the
CCAF with respect to look-direction error and coeflicient error from the
optimum for signal blocking. Both the CCAF and the LAF give error char-
acteristics approximating the ideal nonlinearity for target tracking. However,
the coefficient error of the CCAF is a better approximation to the ideal non-
linearity than that of the LAF as shown by Fig. 5.7. The coeflicient error
of the CCAF becomes effective only when the look-direction error exceeds
the threshold, otherwise it has no effect. On the other hand, the coefficient
error of the LAF varies continuously with the look-direction error. Therefore,
the CCAF leads to precise target tracking, which results in sharper spatial
selectivity and less target-signal cancellation.

5.4.3 CCAF-NCAF Structure

It is possible to combine the BM with CCAFs [42] and the MC with norm-
constrained adaptive filters (NCAFs) [37]. This is a CCAF-NCAF struc-
ture [43]. NCAFs subtract from b(k — L;) the components correlated with
Zp(k) (n=0,...,N —1). Let M> be the number of taps in each NCAF, and
let w, (k) and z, (k) be the coefficient vector and the signal vector of the nth
NCATF, respectively. The signal processing in the MC is described by

N-1 ’
y(k) = bk — L) = Y wl(K)za(k), (5.9)
n=>0
where
Wﬂa(k) = {wﬂgﬂ(k)vwﬂ,l(k)a ma !wﬂ,M2—l(k)fTs (510)
2 (k) £ [2n(K), 24(k=1), ... , 2, (k—Ma+1)]". (5.11)
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0.6 1 T 1 T T T T

=}
I~

_0‘4 1 1 L L 1 ] L
0 2 4 6 8 10 12 14
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Fig. 5.6. An example of CCAF coefficients to minimize signals from different DOAs
and their constraints. When the CCAF coefficients are constrained in the hatched
region, up to 20° error in look direction could be allowed.

/ |deal

/
S X__LAF

CCAF

Look-Direction Error

— N
Target Signal Noise

Coel. Error from Optimum

Fig. 5.7. Comparison of selectivity in LAF and CCAF.

Coefficients of the NCAFs are updated by an adaptive algorithm with a norm
constraint. Adaptation with the NLMS algorithm is described as follows:

y(k)
W: = Wn(k +[3F—sz(k 3 5.12
= ) B T L
2 =wlwl, (5.13)
K
WaED) =q 8 Yo B (5.14)
w!, otherwise,
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5 Robust Adaptive Beamforming 97

where 8 and w), are a step size and a temporal vector for the constraint,
respectively. 2 and K are the total squared-norm of w, (k) and a threshold.
If 12 exceeds K, w,(k+ 1) are restrained by scaling. The norm constraint by
scaling restrains excess growth of tap coefficients. The restraint inhibits the
undesirable target cancellation when the target signal leaks into the NCAF
inputs. If the outputs of the BM have no target signal, the MC cancels only
the interference signals. In this ideal case, a norm constraint in the MC is not
needed. However, complete rejection of the target signal is almost impossible
in the BM, because actual environments have reflection and reverberation.
To completely cancel the target signal in a reverberant environment, more
than 1,000 taps are needed for each CCAF in the BM. Such a large number of
taps leads to slow convergence, large misadjustment, and increased compu-
tation. Even with a high-speed processor and a fast convergence algorithm,
misadjustment with the adaptive filters is inevitable. Adaptation with a low
signal-to-interference ratio (SIR) causes additional misadjustment by the in-
terference, which leads to leakage of the target signal at the BM outputs.
Therefore, to avoid the target signal cancellation by leakage, a restraint with
the MC such as the NCAF is essential. Because the CCAF-NCAF structure
loses no degrees of freedom for interference reduction in the BM, it is robust
to large look-direction errors with a small number of microphones.

5.4.4 CCAF-NCAF Structure with an AMC

Adaptations in the BM and in the MC should be performed alternately.
This is because the relationship between the desired signal and the noise for
the adaptation algorithm in the BM is contrary to that in the MC. For the
adaptation algorithm in the BM, the target signal is the desired signal and
the noise is the undesired signal. In the MC, however, the noise is the desired
signal and the target signal is the undesired signal.

In the robust adaptive beamformers discussed so far, it was implicitly
assumed that adaptive filters in the BM are adapted only when the target is
active and those in the MC are adapted only when the target is inactive. In
a real environment, however, the situation is not so simple, since incorrect
adaptation of the BM may cause incomplete target blocking. As a result,
the MC directivity may have a null in the direction of the target signal,
resulting in target-signal cancellation. Combined with target tracking by the
BM, adapting coefficients only when the target signal is absent is an effective
strategy for adding robustness to adaptive beamforming [38]-[45]. In order
to discriminate active and inactive periods of the target, an adaptation mode
controller (AMC) is necessary.

The CCAF-NCAF structure with an AMC [46] depicted in Fig. 5.8 uses
a mixed approach of the BM with CCAFs, the MC with NCAFs [37], and an
AMC. A BM consisting of CCAFs provides a wider null for the target with
sharper edges than leaky adaptive filters. An MC comprising NCAFs reduces
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undesirable target-signal cancellation when the MC inputs have some leakage
from the target signal.

CCAF: Coefficient-Constrained . e
Adaptive Filter B
Microphones NCAF: Norm-Constrained Adaptive -~ |
%o (k) Filter
0 | leer:
D Fixed b(k) L
: Beam- Z
: former

‘MC: Multiple-
Canceller

=

= w‘wx!\;’-i‘ (k 'LQ)

o
S e Bt

o
i i tation-Mode Controller
£ E&tﬂ!smamggﬂgg ﬁg’mm««* Bt R ?

Fig.5.8. CCAF-NCAF structure with an AMC.
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5 Robust Adaptive Beamforming 99

The AMC controls adaptation of the BM and the MC by target-signal
detection based on an estimate of the SIR [46]. The SIR is estimated as a
power ratio of the output signal b(k) of the FBF, to the output signal 2 (k)
of the BM. The main component in the FBF output is the target signal and
that in the BM output is the noise. Therefore, the power ratio s(k) can be
considered as a direct estimate of the SIR. When the ratio is larger than a
threshold 7, the adaptation of the BM is performed. Otherwise, the MC is
adapted.

5.5 Software Evaluation of a Robust Adaptive
Microphone Array

The GJBF with COAF-NCAF structure combined with an AMC (GJBF-
CNA) was evaluated in a computer-simulated anechoic environment and in
4 real environment with reverberation. In the former environment, it was
compared with conventional beamformers in terms of sensitivity pattern. In
the latter environment, it was evaluated objectively by SIR and subjectively
by mean opinion score (MOS).

20 T T T T T T T T T

A: Fixed Beamformer C: Norm Constrained
B: GJBF + D: Proposed

b
Allowable target
direction error

Normalized Qutput Power [dB]

50 L L i I i | ) i
-80 -60 -40 -20 0 20 40 60 80
Direction of Arrival @ [degrees]

Fig. 5.9. Normalized output power after convergence as a function of DOA.

5.5.1 Simulated Anechoic Environment

A four-channel equi-spaced broadside array was used for these simulations.
The spacing between microphones was 4.1 cm.The sampling rate was 8 kHz.
The FBF used was a simple beamformer whose output is given by

1 N-—1
b(k) = = > @alk). (5.15)
n=0

i}
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The first simulation investigated sensitivity (after convergence) as a func-
tion of the single-sided DOA. Band-limited (0.3-3.7 kHz) Gaussian signals
were used, and the assumed target direction was 0°. The maximum allowable
target-direction error was 20°, unless otherwise stated. The number of coef-
ficients for all the CCAFs and all the NCAFs was 16. The parameters were
L;i=10, Ly=>5, K=10.0, a=0.1, and 3=0.2. The constraints of the CCAF were
set based on the arrangement of the simulated array and maximum allowable
target-direction errors. Total output powers after convergence, normalized by
the power of the assumed target direction, are plotted in Fig. 5.9.

The plots are of the FBF (FBF), simple GJBF [27] (GJBF), norm con-
strained method [37] (Norm Constrained), and the GJBF-CNA (Proposed).
The solid line D shows that the GJBF-CNA achieves both robustness against
20° target-direction error and high interference-reduction performance (which
is 30 dB at #==30°). Similar results for a colored signal instead of the band-
limited Gaussian signal have been obtained [43]. The directivity pattern of
the GIJBF-CNA is slightly degraded for a colored signal. However, the degra-
dation by the norm-constrained method is more serious. This fact shows that
the GJBF-CNA exhibits robustness to the power spectrum of input signal.

20 T T T T T 1 T T
A H00H2 D: 3000Hz
B: 1000Hz E- 3500Hz2
C: 2000Hz ‘ z

% (v
B

oLy G ' ii
aly i f‘:;"z Allowable target
i"' direction error
Ji | i i

Normalized Output Power [dB]

g
-
-40 20 O 20 40

Direction of Arrival g [degrees|

Vg
-

v

Loy

60 80

Fig. 5.10. Sensitivities after convergence as a function of DOA at different frequen-
cies.

Frequency dependency of the directivity pattern is shown in Fig. 5.10.
In this figure, sensitivities to the frequency component of the target signal
are plotted. Frequency dependency of the GJBF-CNA is small, and thus,
the GIBF-CNA is suitable for broadband applications such as microphone
arrays. The widths of the high-sensitivity regions are almost the same as the
allowable target-direction error (—20° < § < 20°) and the sensitivity in the
region is constant.
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In the second simulation, sensitivities for different STRs were investigated.
The simulation was performed with amplitude control that was similar to a
realistic scenario. A target signal source generated a band-limited white Gaus-
sian signal for the first 50,000 iterations and then stopped. This is a simple
simulation of burst characteristics like speech. Another bandlimited white
Gaussian signal, which imitates an interference like airconditioner noise, ex-
isted throughout the simulation. The SIR is defined as a power ratio of the
two signals. The target signal source was placed about 10° off the assumed
target DOA and the DOA of the interfering signal source was scanned.

Figure 5.11 shows normalized output power after convergence as a func-
tion of interference DOA. Lines G and H have a sharp peak at = 10°, which
indicates that the target-signal at the output of the BM is sufficiently mini-
mized for the overall robustness. Therefore, when SIR, is higher than about
10dB (which is lower than a typical SIR, value expected in teleconference) the
interference is suppressed even if it arrives from a direction in the allowable
target DOA region. When the interference comes from outside the allowable
target DOA region, even an SIR of 0 dB causes almost no problem in the
GIBF-CNA.

Finally, Fig. 5.12 shows the total output powers for various coefficient
congtraints with the CCAFs. The signal was bandlimited white Gaussian
noise. The allowable target-direction errors are approximately 4, 6, 9, 12, 16,
and 20 degrees. These lines demonstrate that the allowable target-direction
error can be specified by the user.

5.5.2 Reverberant Environment

Simulations with real sound data captured in a reverberant environment were
also performed. The data were recorded with a broad-side linear array. Four
omni-directional microphones without calibration were mounted on a univer-
sal printed circuit board with an equal spacing of 4.1 cm. The signal of each
microphone was bandlimited between 0.3 and 3.4 kHz and sampled at 8 kHz.
The number of taps was 16 for both the CCAFs and NCAFs.

Figure 5.13 illustrates the arrangement for sound-data acquisition. The
target source was located in front of the array at a distance of 2.0 m. A white
noise source was placed about 6 = 45° off the target DOA at a distance of
2.0 m. The reverberation time of the room was about 0.3 second, which is
common with actual small offices. All the parameters except the step-sizes
were the same as those in the previous subsection. The target source was an
English male speech signal.

Objective Evaluation

Output powers for the FBF, the GIBF [27] (GJBF), and the norm-constrained
method [37] (Norm Constrained) after convergence are shown in Fig. 5.14.
The step-size « for the CCAFs was 0.02 and S for the NCAFs was 0.004.
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Fig. 5.11. Normalized output power after convergence as a function of DOA with
different SIRs.
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Fig. 5.12. Normalized output power after convergence for different allowable target
directions.

These step-sizes were selected so that breathing noise and cancellation of the
target signal are sufficiently small subjectively. All other parameters were
selected based on the microphone arrangement. If there is any difference be-
tween trajectory A and any of B, C, D, E, or F when the voice is active
(sample index from 1,720,000 to 1,740,000), the target signal corresponding
to the trajectory is partially cancelled. The FBF (B) causes almost no target-
signal cancellation. With the GJBF (C), cancellation of the target signal is
serious. With the the norm-constrained method (D), and the GJBF-CNA
(E), the cancellation of target signal was 2dB, which is subjectively small.
The output powers during voice absence (after sample index 1,760,000)
indicate the interference-reduction ratio (IRR). The IRR of the FBF is 3dB,

R
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Fig. 5.13. Experimental set-up.
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Fig. 5.14. Output Powers for a male speech signal and white noise.

and that of the norm-constrained method is 9dB. On the other hand, with
the GIBF-CNA (F), the IRR is as much as 19dB.

Subjective Evaluation

MOS evaluation by 10 nonprofessional subjects was performed based on [47].
As anchors, the signal recorded by a single microphone was used for grade 1
and the original male speech without interference for grade 5. Subjects were
instructed that target-signal cancellation should obtain a low score.
Evaluation results are shown in Fig. 5.15. The thick horizontal line on
each bar and the number on it represent the score obtained by the corre-
sponding method. The vertical hatched box on each bar indicates + one
standard deviation. The FBF obtained 1.7 points because the number of
microphones is so small that its IRR is low. The GJBF reduced the interfer-

Meta Platforms, Inc. Exhibit 1003

Page 93 of 155




104 Hoshuyama and Sugiyama
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Mean Opinion Score

Single FBE GJBF Norm  Proposed
Mic. Constrained

Fig. 5.15. Mean opinion score results.

ence considerably with serious target signal cancellation, thus, it was scored
2.8 points. The norm-constrained method was scored 2.6 points for its 9dB
interference-reduction capability. The GJBF-CNA obtained 3.8 points, which
is the highest of all the beamformers.

5.6 Hardware Evaluation of a Robust Adaptive
Microphone Array

5.6.1 Implementation

The GJBF-CNA was implemented on a portable and flexible DSP system
shown in Fig. 5.16 [48,49]. The system comprises a microphone array and
a compact touch-panel personal computer which includes a floating point
DSP, the ADSP-21062 [50]. The DSP contains a dual on-chip 2-Mbit SRAM
and allows 32-bit IEEE floating-point computation. The sampling rate was
software-programmed at 8 kHz.

The DSP board has a PCI (Peripheral Component Interconnect) interface,
therefore, it can be connected to the PCI bus of any personal computer. A
graphical interface has been developed to facilitate ease-of-use and monitoring
of the implemented GIBF-CNA. It provides interactive parameter selection
and displays the input and the output signals powers as well as the filter
coefficients. This graphical display is useful for demonstrating the behavior
of the GIJBF-CNA and its performance. The system is shown in Fig. 5.16

5.6.2 Evaluation in a Real Environment

The GJBF-CNA in Fig. 5.16 was evaluated using the same linear microphone
array as in the previous section. The selected step sizes were 0.02 for the ABM
and 0.005 for the MC. The threshold n = 0.65 was used for the AMC. All
other parameters were the same as those in the previous gection.
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Fig. 5.16. Real-time DSP system.
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Fig. 5.17. Directivity patterns (i.e., the output powers normalized by the power at
the center) measured in 5-degree intervals.
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Directivity

Directivity for a single signal-source was measured. A white-noise source was
scanned in two directions from 0° to 50° at a distance of 2.0 m from the
array. Output powers of the system were measured in 5-degree intervals, and
compared with those of a single microphone and an FBF (delay-and-sum
beamformer). Figure 5.17 shows the output powers normalized by the power
at the center. The figure indicates that the GJBF-CNA can suppress the
interference at # = 30° by as much as 15 dB when the allowable target DOA

is set to =20 degrees.

Noise Reduction

Noise reduction capability was evaluated in the same room as that for direc-
tivity evaluation. There were several computers with noisy fans. In addition,
two noise-generating loudspeakers were located on both sides of the array.

Stereo music or white noise was used as the noise signal.

In the beginning, breathing noise due to adaptation was observed at al-
most every utterance. It disappeared in a second and caused almost no prob-
lem for conversation. Although the degree of noise reduction depends on the
loudspeaker positions, it was typically 8 to 1 dB. These results confirm that
the GJBF-CNA is a promising technique for voice communications.

5.7 Conclusion

An overview of robust adaptive beamforming techniques have been presented
in this chapter, with an emphasis on systems that are robust to steering-vector
errors. It has been shown that the GJBF with the CCAF-NCAF structure
and an AMC (GJBF-CNA) is effective in a real environment. Integrated
systems with a microphone array, a noise canceler, and an echo canceler will
play a key role in future acoustic noise and echo control devices.
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8 Robust Localization in Reverberant Rooms

Joseph H. DiBiase!, Harvey F. Silverman!, and Michael S. Brandstein®

! Brown University, Providence RI, USA
? Harvard University, Cambridge MA, USA

Abstract. Talker localization with microphone arrays has received significant at-
tention lately as a means for the antomated tracking of individuals in an enclo-
sure and as a necessary component of any general purpose speech capture systemn.
Several algorithmic approaches are available for speech source localization with
multi-channel data. This chapter summarizes the current field and comments on
the general merits and shortcomings of each genre. A new localization method is
then presented in detail. By utilizing key features of existing methods, this new
algorithm is shown to be significantly more robust to acoustical conditions, par-
ticularly reverberation effects, than the traditional localization techniques in use

today.

8.1 Imntroduction

The primary goal of a speech localization system is accuracy. In general, es-
timate precision is dependent upon a number of factors. Major issues include
(1) the quantity and quality of microphones employed, (2) microphone place-
ment relative to each other and the speech sources to be analyzed, (3) the
ambient noise and reverberation levels, and (4) the number of active sources
and their spectral content. The performance of localization techniques gen-
erally improves with the number of microphones in the array, particularly
when adverse acoustic effects are present. This has spawned the research
and construction of large array systems (e.g. 512 elements) [1]. However,
when acoustic conditions are favorable and the microphones are positioned
judiciously, source localization can be performed adequately using a modest
number (e.g. 4 elements) of microphones. Performance is clearly affected by
the array geometry. The optimal design of the array based on localization cri-
teria is typically dependent on the room layout, speaking scenarios, and the
acoustic conditions [2]. In practice, many of these design considerations are
very dependent on the specific application conditions, the hardware avail-
able, and non-scientific cost criteria. In an effort to make its applicability
as general as possible, this chapter will focus primarily on speech localiza-
tion effectiveness as a function of the acoustic degradations present, namely
background noise and reverberations, rather than attempt to address more
specific environmental scenarios.

In addition to high accuracy, these location estimates must be updated
frequently in order to be useful in practical tracking and beamforming appli-
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cations. Consider the problem of beamforming to a moving speech source. It
has been shown that for sources in close proximity to the microphones, the
array aiming location must be accurate to within a few centimeters to pre-
vent high-frequency rolloff in the received signal [3] and to allow for effective
channel equalization [4]. A practical beamformer must therefore be capable of
including a continuous and accurate location procedure within its algorithm.
This requirement necessitates the use of a location estimator capable of fine
resolution at a high update rate. Additionally, any such estimator would have
to be computationally non-demanding and possess a short processing latency
to make it practical for real-time systems.

These factors place tight constraints on the microphone data require-
ments. While the computation time required by the algorithm largely de-
termines the latency of the locator, it is the data requirements that define
theoretical limits. The work in [5], for example, focuses on reducing the size
of the data segments necessary for accurate source localization in realistic
room environments.

The goal of this chapter is to detail the issues associated with the problem
of speech source localization in reverberant and noisy rooms and to present
an effective methodology for its solution. While the focus will be the single-
source scenario, the techniques described, in many cases, are applicable to
situations where several individuals are conversing. The more general prob-
lem of simultaneous, multi-talker localization is addressed further in Chap-
ter 9. The following section contains a summary of the existing genres for
speech source localization using microphone arrays and highlights their rel-
ative merits. It is followed in Section 8.3 by the development of a speech
source localization algorithm designed specifically for reverberant enclosures
which combines two of these general approaches. Section 8.4 then offers some
experimental results and conclusions.

8.2 Source Localization Strategies

Existing source localization procedures may be loosely divided into three
general categories: those based upon maximizing the steered response
power (SRP) of a beamformer, techniques adopting high-resclution spec-
tral estimation concepts, and approaches employing time-difference of arrival
(TDOA) information. These broad classifications are delineated by their ap-
plication environment and method of estimation. The first refers to any situ-
ation where the location estimate is derived directly from a filtered, weighted,
and summed version of the signal data received at the sensors. The second
will be used to term any localization scheme relying upon an application of
the signal correlation matrix. The last category includes procedures which
calculate source locations from a set of delay estimates measured across var-
ious combinations of microphones.

Meta Platforms, Inc. Exhibit 1003

Page 102 of 155




e e e

8 Robust Localization in Reverberant Rooms 159

Z)
i I 8.2.1 Steered-Beamformer-Based Locators

The first categorization applies to passive arrays for which the system in-

put is an acoustic signal produced by the source. The optimal Maximum

o Likelihood (ML) location estimator in this situation amounts to a focused

il beamformer which steers the array to various locations and searches for a

k! peak in output power. Termed focalization, derivations of the optimality of

B the procedure and variations thereof are presented in [6-8]. Theoretical and

: practical variance bounds obtained via focalization are detailed in [6,7,9] and

£l the steered-beamformer approach has been extended to the case of multiple-
signal sources in [10].

The simplest type of steered response is obtained using the output of a
delay-and-sum beamformer. This is what is most often referred to as a con-
ventional beamformer. Delay-and-sum beamformers apply time shifts to the
array signals to compensate for the propagation delays in the arrival of the

f source signal at each microphone. Thesge signals are time-aligned and summed
: ‘ together to form a single output signal. More sophisticated beamformers ap-
ply filters to the array signals as well as this time alignment. The derivation
. of the filters in these filter-and-sum beamformers is what distinguishes one
: method from another.
§ | Beamforming has been used extensively in speech-array applications for
! voice capture. However, due to the efficiency and satisfactory performance
of other methods, it has rarely been applied to the talker localization prob-
| lem. The physical realization of the ML estimator requires the solution of
| a nonlinear optimization problem. The use of standard iterative optimiza-
il tion methods, such as steepest descent and Newton-Raphson, for this pro-

'[ cess was addressed by [10]. A shortcoming of each of these approaches is
that the objective function to be minimized does not have a strong global
peak and frequently contains several local maxima. As a result, this genre
of efficient search methods is often inaccurate and extremely sensitive to the
initial search location. In [11] an optimization method appropriate for a multi-
modal objective function, Stochastic Region Contraction (SRC), was applied
specifically to the talker localization problem. While improving the robust-
ness of the location estimate, the resulting search method involved an order
of magnitude more evaluations of the objective function in comparison to
the less robust search techniques. Overall, the computational requirements of
the focalization-based ML estimator, namely the complexity of the objective
function itself as well as the relative inefficiency of an appropriate optimiza-
tion procedure, prohibit its use in the majority of practical, real-time source
locators.

{ Furthermore, the steered response of a conventional beamformer is highly
dependent on the spectral content of the source gignal. Many optimal deriva-
tions are based on a priori knowledge of the spectral content of the back-
ground noise, as well as the source signal [7,8]. In the presence of significant
J reverberation, the noise and source signals are highly correlated, making ac-
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curate estimation of the noise infeasible. Furthermore, in nearly all array-
applications, little or nothing is known about the source signal. Hence, such
optimal estimators are not very practical in realistic speech-array environ-
ments.

The practical shortcomings of applying correlation-based localization es-
timation techniques without a great deal of intelligent pruning is typified by
the system produced in [12]. In this work a sub-optimal version of the ML
steered-beamformer estimator was adapted for the talker-location problem.
A source localization algorithm based on multi-rate interpolation of the sum
of cross-correlations of many microphone pairs was implemented in conjune-
tion with a real-time beamformer. However, because of the computational
requirements of the procedure, it was not possible to obtain the accuracy
and update rate required for effective beamforming in real-time given the
hardware available.

8.2.2 High-Resolution Spectral-Estimation-Based Locators

This second categorization of location estimation techniques includes the
modern beamforming methods adapted from the field of high-resolution spec-
tral analysis: autoregressive (AR) modeling, minimum variance (MV) spec-
tral estimation, and the variety of eigenanalysis-based techniques (of which
the popular MUSIC algorithm is an example). Detailed summaries of these
approaches may be found in [13,14]. While these approaches have success-
fully found their way into a variety of array processing applications, they all
possess certain restrictions that have been found to limit their effectiveness
with the speech-source localization problem addressed here.

Each of these high-resolution processes is based upon the spatiospectral
correlation matrix derived from the signals received at the sensors. When ex-
act knowledge of this matrix is unknown (which is most always the case), it
must be estimated from the observed data. This is done via ensemble averag-
ing of the signals over an interval in which the sources and noise are assumed
to be statistically stationary and their estimation parameters (location in this
case) are assumed to be fixed. For speech sources, fulfilling these conditions
while allowing sufficient averaging can be very problematic in practice.

With regard to the localization problem at hand, these methods were
developed in the context of far-field plane waves projecting onto a linear array.
While the MV and MUSIC algorithms have been shown to be extendible to
the case of general array geometries and near-field sources [15], the AR model
and certain eigenanalysis approaches are limited to the far-field, uniform
linear array situation.

With regard to the issue of computational expense, a search of the lo-
cation space is required in each of these scenarios. While the computational
complexity at each iteration is not as demanding as the case of the steered-
beamformer, the objective space typically consists of sharp peaks. This prop-
erty precludes the use of iteratively efficient optimization methods. The sit-
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uation is compounded if a more complex source model is adopted (incorpo-
rating source orientation or head radiator effects, for instance) in an effort to
improve algorithm performance. Additionally, it should be noted that these
high-resolution methods are all designed for narrowband signals. They can
be extended to wideband signals, including speech, either through simple
serial application of the narrowband methods or more sophisticated general-
izations of these approaches, such as [16-18]. Either of these routes extends
the computational requirements considerably.

These algorithms tend to be significantly less robust to source and sen-
sor modeling errors than conventional beamforming methods [19,20]. The
incorporated models typically assume ideal source radiators, uniform sensor
channel characteristics, and exact knowledge of the sensor positions. Such
conditions are impossible to obtain in real-world environments. While the sen-
sitivity of these high-resolution methods to the modeling assumptions may be
reduced, it is at the cost of performance. Additionally, signal coherence, such
as that created by the reverberation conditions of primary concern here, is
detrimental to algorithmic performance, particularly that of the eigenanalysis
approaches. This situation may be improved via signal processing resources,
but again at the cost of decreased resolution[21]. Primarily for these reasons,
localization methods based upon these high-resolution strategies will not con-
sidered further in this work. However, this should not exclude their judicious
use in other speech localization contexts, particularly multi-source scenarios.

8.2.3 TDOA-Based Locators

With this third localization strategy, a two-step procedure is adopted. Time
delay estimation (TDE) of the speech signals relative to pairs of spatially
separated microphones is performed. This data along with knowledge of the
microphone positions are then used to generate hyperbolic curves which are
then intersected in some optimal sense to arrive at a source location estimate.
A number of variations on this principle have been developed, [22-28] are
examples. They differ considerably in the method of derivation, the extent
of their applicability (2-D vs. 3-D, near source vs. distant source, etc.), and
their means of solution. Primarily because of their computational practicality
and reasonable performance under amicable conditions, the bulk of passive
talker localization systems in use today are TDOA-based.

Accurate and robust TDE is the key to the effectiveness of localizers
within this genre. The two major sources of signal degradation which com-
plicate this estimation problem are background noise and channel multi-path
due to room reverberations. The noise-alone case has been addressed at length
and is well understood. Assuming uncorrelated, stationary Gaussian signal
and noise sources with known statistics and no multi-path, the MT time-delay
estimate is derived from a SNR-weighted version of the Generalized Cross-
Correlation (GCC) function [29]. An ML-type weighting appropriate for non-
stationary speech sources was presented in [30] and applied successfully to
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speech source localization in low-multipath environments [31]. However, once
room reverberations rise above minimal levels, these methods begin to ex-
hibit dramatic performance degradations and become unreliable [32,33]. A
basic approach to dealing with multi-path channel distortions in this con-
text has been to make the GCC function more robust by deemphasizing the
frequency-dependent weightings. The Phase Transform (PHAT) [29] is one
extreme of this procedure which has received considerable attention recently
as the basis of speech source localization systems [34-36]. By placing equal
emphasis on each component of the cross-spectrum phase, the resulting peak
in the GCC-PHAT function corresponds to the dominant delay in the rever-
berated signal. While effective at reducing some of the degradations due to
multi-path, the Phase Transform accentuates components of the spectrum
with poor SNR and has the potential to provide poor results, particularly
under low reverberation, high noise conditions.

Other approaches for TDE of talkers in adverse environments are avail-
able. A procedure which utilizes a speech specific criterion in the design of
the GCC weighting function is presented in [37]. Cepstral prefiltering [38] has
been used to deconvolve the effects of reverberation prior to applying GCC.
However, deconvolution requires long data segments since the duration of
a typical small-room impulse response is 200-400 ms. It is also very sensi-
tive to the high variability and non-stationarity of speech signals. In fact,
the experiments performed in [38] avoided the use of speech as input alto-
gether. Instead, colored Gaussian noise was used as the source signal. While
identification of room impulse responses is extremely problematic when the
source signal is unknown, the method proposed in [24], which is based on
eigenvalue decomposition, efficiently detects the direct paths of the two im-
pulse responses. This method is effective with speech as input, but requires
250 ms of microphone data to converge. A short-time TDE method, which
is more complex than GCC, is presented in [33]. It involves the minimiza-
tion of a weighted least-squares function of the phase data. It was shown
to outperform both GCC-ML and GCC-PHAT in reverberant conditions.
However, this improvement comes at the cost of a complicated searching al-
gorithm. The marginal improvement over GCC-PHAT may not justify this
added cost in computational complexity. Reverberation effects can also be
overcome to some degree by classifying TDE’s acquired over time and as-
sociating them with the direction of arrival (DOA) of the sound waves [39].
This approach, however, is not suitable for short-time TDE. Under extreme
acoustic conditions, a large percentage of the TDE’s are anomalous, and it
takes a considerable period (1-2 s in [39]) to acquire enough estimates for a
statistically meaningful classification.

Among the methods summarized above, those that rely on long data seg-
ments generally outperform those that do not. This result may be attributed
to the ensemble averaging performed under these conditions to improve the
quality of the underlying signal statistics. However, the dynamic environ-
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ments of many speech array applications require high update rates, which
limit the duration of the data segments used for analysis. For example, the
automatic camera steering video-conferencing system detailed in [34] utilizes
a TDOA-based method with GCC-PHAT TDE applied at update rates of
200-300 ms. With such long data segments, reliable estimates are produced,
even in moderately adverse acoustic conditions. However, applications such
as adaptive beamforming and the tracking of multiple talkers using a TDOA-
based localizer require an appreciably higher estimate rate; source positions
must be acquired from independent data segments as short as 20-30 ms. Over
such limited durations, the lack of ensemble averaging has a severe impact
on the performance of the TDE.

Given a set of TDOA figures with known error statistics, the second step
of obtaining the ML location estimate necessitates solving a set of nonlinear
equations. The calculation of this result is considerably less computationally
expensive than that required for estimators belonging to the two previously
discussed genres. There is an extensive class of sub-optimal, closed-form loca-
tion estimators. designed to approximate the exact solution to the nonlinear
problem. These techniques are computationally undemanding and, in many
cases, suffer little detriment in performance relative to their more compute-
intensive counterparts. [22,25-28,40,41] are typical of these methods. Re-
gardless of the solution method employed, this third class of location esti-
mation techniques possesses a significant computational advantage over the
steered-beamformer or high-resolution spectral-estimation based approaches.

TDOA-based locators do present several disadvantages when used as the
basis of a general localization scheme. Their primary limitation is the inability
to accommodate multi-source scenarios. These algorithms assume a single-
source model. While TDOA-based methods with short analysis intervals may
be used to track several individuals in a conversational situation [31,42],
the presence of multiple simultaneous talkers, excessive ambient noise, or
moderate to high reverberation levels in the acoustic field typically results
in poor TDOA figures and subsequently, unreliable location fixes. A TDOA-
based locator operating in such an environment would require a means for
evaluating the validity and accuracy of the delay and location estimates.
These shortcomings may be overcome to some degree through judicious use
of appropriate detection methods at each stage in the process [31].

While practical, the application of TDOA-based localization procedures
is of limited utility in realistic, acoustic environments. Stecred-Beamformer
strategies are computationally more intensive, but tend to possess a robust-
ness advantage and require a shorter analysis interval. The two-stage pro-
cess requiring time-delay estimation prior to the actual location evaluation is
suboptimal. The intermediate signal parameterization accomplished by the
TDOA estimation procedure represents a significant data reduction at the
expense of a decrease in theoretical localization performance. However, in
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real situations the performance advantage inherent in the optimal steered-
beamformer estimator is lessened because of incomplete knowledge of the
signal and noise spectral content as well as unrealistic stationarity assump-
tions.

With these relative advantages and shortcomings in mind, a new local-
ization method, which combines the best features of the steercd-beamformer
with those of the Phase Transform weighting of the GCC, was introduced
in [5]. The goal was to exploit the inherent robustness and short-time anal-
ysis characteristics of the steered response power approach with the insen-
sitivity to signal conditions afforded by the Phase Transform. This new al-
gorithm, termed SRP-PHAT, will be detailed in the following section and
will be shown to produce highly reliable location estimates in rooms with
reverberation times up to 200 ms, using independent 25 ms data segments.

8.3 A Robust Localization Algorithm

Before describing the SRP-PHAT algorithm, it will be necessary to develop
further a number of topics addressed in the prior section. Specifically, the
following subsections will provide details of the impulse response model, the
GCC and its PHAT implementation, ML TDOA-based localization, and the
computation of the SRP. These items will then be tied together in the final
subsection to motivate and define the SRP-PHAT algorithm.

8.3.1 The Impulse Response Model

It will be assumed that sound waves propagate as predicted by the linear
wave equation [43]. With this assumption, the acoustic paths between sound
sources and microphones can be modeled as linear systems [44]. This is clearly
advantageous to the analysis and modeling of the signals produced by the mi-
crophones of an array. Such linear models are valid under the realistic condi-
tions encountered in small-room speech-array environments and are regularly
exploited by array-processing techniques [13].

In the presence of sound-reflecting surfaces, the sound waves produced
by a single source propagate along multiple acoustic paths. This gives rise
to the familiar effects of reverberation; sounds reflect off objects and pro-
duce echoes. The walls of most rooms are reflective enough to create sig-
nificant reverberation. While it is not always noticeable to the occupants,
even mild reverberation can severely impact the performance of speech-array
systems. Hence, multi-path propagation must be incorporated into the signal-
processing model.

The wave field at a particular location inside a reverberant room may be
considered to be linearly related to the source signal, s(¢). Let the 3-element
vectors, p,, and g,, define the Cartesian coordinates of the n*® microphone
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and the source, respectively. The received signal at the n** microphone may
now be expressed as

Tn(t) = 8(t) * hn(ge, t) + va(t) (8.1)

The overall impulse response, hn(gs,t), is the result of cascading two fil-
ters: the room impulse response and the microphone channel response. The
former characterizes all acoustic paths between the source and microphone
locations, including the direct path. It is a function of p, as well as the
source location, g,, and is highly dependent on these parameters. In general,
the room impulse response is affected by environmental conditions, such as
temperature and humidity. It also varies with the movement of furniture and
individuals inside the room. While such variations are significant, it is reason-
able to assume that these factors remain constant over short periods. Hence,
a room impulse response may be considered time-invariant for short periods
when the source and microphone are spatially fixed. The microphone chan-
nel response accounts for the electrical, mechanical and acoustical properties
of the microphone system. In general, the microphone’s directivity pattern
makes its response a function of its orientation as well as its spatial place-
ment relative to the source. The additive term, v, (t), is the result of channel
noise in the microphone system and any propagating ambient noise such as
that due to fans or other mechanical equipment. The propagating noise is
usually more significant than the channel noise and tends to dominate this
term. Generally, v,,(t) is assumed to be uncorrelated with s(t).

Figure 8.1 illustrates a close-up view of the response that was measured in
a typical conference room. The direct-path component and some of the strong
reflected components are highlighted in this plot. The peaks corresponding
to the reflected sound waves are comparable in size to the direct-path peak.
These peaks, which occur within 20 ms of the direct-path, are responsible for
many of the erroneous results produced by short-time TDE'’s, which operate
on data blocks as small as 25 ms. The large secondary peaks in the room
response are highly correlated with the false peaks in the GCC function [5].

The purpose of TDE is to evaluate the temporal disparity between the
direct-path components in the two received microphone signals. To this end,
it will be useful to rewrite the impulse response specifically in terms of its
direct-path component. Equation 8.1 is modified to:

Za(t) = %su — 1) % 9n(@er 1) +0n(2) (8.2)

where 7, is the source-microphone separation distance, 7, is the direct path
time delay, and g,(gs, t) is the modified impulse response which encompasses
the original responge minus the direct path component. The microphone sig-
nal model is now expressed explicitly in terms of the parameter of interest,
namely the time delay, 7,.
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Fig. 8.1. A close-up of a 10-millisecond segment of a room impulse response mea-

sured in a typical conference room. The direct-path component and some strong
reflected compounents are highlighted.

8.3.2 The GCC and PHAT Weighting Function

For a pair of microphones, n = 1,2, their associated TDOA, 72, is defined
as

T .= To'— T« (8.3)

Applying this definition to their associated received microphone signal
models yields

.T,|(t) = %S(t"TI)*gl(q‘wt] +U1(t)

2a(t) = %s(t o onplanpalin, B-Eulil (8.4)

If the modified impulse responses for the microphone pair are similar,
then (8.4) shows that a scaled version of s(t — 71) is present in the signal
from microphone 1 and a time-shifted (and scaled) version of s(t — 7;) is
present in the signal from microphone 2. The cross-correlation of the two
signals should show a peak at the time lag where the shifted versions of s(t)
align, corresponding to the TDOA, 7y2. The cross correlation of signals and
is defined as:

+o0
Clg(‘T) = /_ Ty (f):ﬂz (t + ?‘)dﬁ (85)
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The GCC function, R;5(7), is defined as the cross correlation of two fil-
tered versions of z;(¢) and z2(t) [29]. With the Fourier transforms of these
filters denoted by G (w) and G4{w), respectively, the GCC function can be
expressed in terms of the Fourier transforms of the microphone signals

1 + o0 i
R =5- [ (610)X1(0)) (62(0)Xa(w)) ' d (8.6)

Rearranging the order of the signals and filters and defining the frequency
dependent weighting function, ¥, = G, (w)G2(w)*, the GCC function can
be expressed as

1 +o0 )
mmzyf P12 (w) X1 () Xa(w)" ™" doo (8.7)
T Jeoo
Ideally, Rys(7) will exhibit an explicit global maximum at the lag value
which corresponds to the relative delay. The TDOA estimate is calculated
from

712 = argmax Ry»(7). (8.8)
TED

The range of potential TDOA values is restricted to a finite interval, D, which
is determined by the physical separation between the microphones. In general,
Ry5(7) will have multiple local maxima which may obscure the true TDOA
peak and subsequently, produce an incorrect estimate. The amplitudes and
corresponding time lags of these erroneous maxima depend on a number of
factors, typically ambient noise levels and reverberation conditions.

The goal of the weighting function, ¥;,, is to emphasize the GCC value
at the true TDOA value over the undesired local extrema. A number of such
functions have been investigated. As previously stated, for realsitic acoustical
conditions the PHAT weighting [29] defined by

1

X @)X5 @) (8.9)

Fiy(w) =
has been found to perform considerably better than its counterparts designed
to be statistically optimal under specific non-reverberant, noise conditions.
The PHAT weighting whitens the microphone signals to equally emphasize
all frequencies. The utility of this strategy and its extension to steered-
beamforming form the basis of the SRP-PHAT algorithm that follows.

8.3.3 ML TDOA-Based Source Localization

Consider the i*" pair of microphones with spatial coordinates denoted by the
3-element vectors, p;; and pje, respectively. For a signal source with known

Meta Platforms, Inc. Exhibit 1003

Page 111 of 155




F———

e EEE——

B ————.

168 DiBiase et al.

spatial location, g, the true TDOA relative to the i** sensor pair will be
denoted by T({pi1,Pi2},q:), and is calculated from the expression

T({pa, pa},q.) = 2= Pel =10~ Pul (8.10)

where ¢ is the speed of sound in air. The estimate of this true TDOA, the
result of a TDE procedure involving the signals received at the two micro-
phones, will be given by 7;. In practice, the TDOA estimate is a corrupted
version of the true TDOA and in general, 7; # T ({pi1, Pi2 },¢s)-

For a single microphone pair and its TDOA estimate, the locus of potential
source locations in 3-space which satisfy (8.10) corresponds to one-half of a
hyperboloid of two sheets. This hyperboloid is centered about the midpoint
of the microphones and has p;» — p;1 as its axis of symmetry.

For sources with a large source-range to microphone-separation ratio, the
hyperboloid may be well-approximated by a cone with a constant direction
angle relative to the axis of symmetry. The corresponding estimated direction
angle, 6;, for the microphone pair is given by:

f; = cos™ (—L) (8.11)
|mi1 - mi2|

In this manner each microphone pair and TDOA estimate combination may
be associated with a single parameter which specifies the angle of the cone
relative to the sensor pair axis. For a given source and TDOA estimate, 6; is
referred to as the DOA relative to the i** pair of microphones.

Given a set of M TDOA estimates derived from the signals received at
multiple pairs of microphones, the problem remains as how to best estimate
the true source location, q,. Ideally, the estimate will be an element of the
intersection of all the potential source loci. In practice, however, for more
than two pairs of sensors this intersection is, in general, the empty set. This
digparity is due in part to imprecision in the knowledge of system parame-
ters (TDOA estimate and sensor location measurement errors) and in part to
unrealistic modeling assumptions (point source radiator, ideal medium, ideal
sensor characteristics, etc.). With no ideal solution available, the source loca-
tion must be estimated as the point in space which best fifs the sensor-TDOA
data or more specifically, minimizes an error criterion that is a function of the
given data and a hypothesized source location. If the time-delay estimates at
each microphone pair are assumed to be independently corrupted by zero-
mean additive white Gaussian noise of equal variance then the ML location
estimate can be shown to be the position which minimizes the least squares
error criterion

M
E(q) = Z(ﬂ' - T({pn, P}, )" (8.12)

=1
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The location estimate is then found from

g, = argmin E(qg). (8.13)
q
The criterion in (8.12) will be referred to as the LS-TDOA error. As stated
earlier, the evaluation of §, in this manmer involves the optimization of a
non-linear function and necessitates the use of search methods. Closed-form
approximations to this method were given earlier.

8.3.4 SRP-Based Source Localization

The microphone signal model in (8.2) shows that for an array of N mi-
crophones in the reception region of a source, a delayed, filtered, and noise
corrupted version of the source signal, s(¢), is present in each of the received
microphone signals. The delay-and-sum beamformer time aligns and sums to-
gether the z,(¢), in an effort to preserve unmodified the signal from a given
spatial location while attenuating to some degree the noise and convolutional
components. It is defined as simply as

N
y(t,q:) =Y zalt+ Ap) (8.14)

where A, are the steering delays appropriate for focusing the array to the
source spatial location, g, and compensating for the direct path propagation
delay associated with the desired signal at each microphone. In practice, the
delays relative to a reference microphone are used instead of the absolute
delays. This makes all shifting operations causal, which is a requirement of
any practical system, and implies that y(¢, g5) will contain an overall delayed
version of the desired signal which in practice is not detrimental. The use
of a single reference microphone means that the steering delays may be de-
termined directly from the TDOA’s (estimated or theoretical) between each
microphone and the reference. This implies that knowledge of the TDOA’s
alone is sufficient for steering the beamformer without an explicit source lo-
cation.

In the most ideal case with no additive noise and channel effects, the
output of the deal-and-sum beamformer represents a scaled and potentially
delayed version of the desired signal. For the limited case of additive, uncor-
related, and uniform variance noise and equal source-microphone distances
this simple beamformer is optimal. These are certainly very restrictive condi-
tions. In practice, convolutional channel effects are nontrivial and the additive
noise is more complicated. The degree to which these noise and reverberation
components of the microphone signals are suppressed by the delay-and-sum
beamformer is frequently minimal and difficult to analyze. Other methods
have been developed to extend the delay-and-sum concept to the more general
filter-and-sum approach, which applies adaptive filtering to the microphone
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signals before they are time-aligned and summed. Again, these methods tend
to not be robust to non-theoretical conditions, particularly with regard to
the channel effects.

The output of an N-element, filter-and-sum beamformer can be defined

in the frequency domain as

N
Y(@,9) = ) Ga(w)Xn(w)e™ 4 (8.15)

n=1

where X,,(w) and G, (w) are the Fourier Transforms of the n** microphone
signal and its associated filter, respectively. The microphone signals are phase-
aligned by the steering delays appropriate for the source location, g. This is
equivalent to the time-domain beamformer version. The addition of micro-
phone and frequency-dependent filtering allows for some means to compen-
sate for the environmental and channel effects. Choosing the appropriate
filters depends on a number of factors, including the nature of the source
signal and the type of noise and reverberations present. As will be seen, the
strategy used by the PHAT of weighing each frequency component equally
will prove advantageous for practical situations where the ideal filters are
unobtainable.

The beamformer may be used as a means for source localization by steer-
ing the array {o specific spatial points of interest in some fashion and evalu-
ating the output signal, typically its power. When the focus corresponds to
the location of the sound source, the SRP should reach a global maximum. In
practice, peaks are produced at a number of incorrect locations as well. These
may be due to strong reflective sources or merely a byproduct of the array
geometry and signal conditions. In some cases, these extraneous maxima in
the SRP space may obscure the true location and in any case, complicate the
search for the global peak. The SRP for a potential source location can be
expressed as the output power of a filter-and-sum beamformer by

+oo .
P@= [ I¥@)fds (8.16)

“00

and location estimate is found from

g, = argmax P(q). (8.17)
q

8.3.5 The SRP-PHAT Algorithm

Given this background, the SRP-PHAT algorithm may now be defined. With
respect to GCC-based TDE, the PIIAT weighting has been found to provide
an enhanced robustness in low to moderate reverberation conditions. While
improving the quality of the underlying delay estimates, it is still not sufficient
to render TDOA-based localization effective under more adverse conditions.
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The delay-and-sum SRP approach requires shorter analysis intervals and ex-
hibits an elevated insensitivity to environmental conditions, though again,
not to a degree that allows for their use under excessive multi-path. The
filter-and-sum version of the SRP adds flexibility but the design of the filters
is typically geared towards optimizing SNR in noise-only conditions and is
excessively dependent on knowledge of the signal and channel content. Orig-
inally introduced in [5], the goal of the SRP-PHAT algorithm is to combine
the advantages of the steered beamformer for source localization with the
signal and condition independent robustness offered by the PHAT weighting.
The SRP of the filter-and-sum beamformer can be expressed as

N N _—
P@=YY [ #u@X@Xi@)e @ ad (8.18)

=1k=1""

where ¥y (w) = Gi(w)G} (w) is analogous to the two-channel GCC weighting
term in (8.7). The corresponding multi-channel version of the PHAT weight-
ing is given by

1
1 X (w) X ()|

which in the context of the filter-and-sum beamformer (8.15) is equivalent to
the use of the individual channel filters

1

Gn(w) Ko@) (8.20)

These are the desired SRP-PHAT filters. They may be implemented from
the frequency-domain expression above. Alternatively, it may be shown that
(8.18) is equivalent to the sum of the GCC’s of all possible N-choose-2 micro-
phone pairings. This means that the SRP of a 2-clement array is equivalent
to the GCC of those two microphones. Hence, as the number of microphones
is increased, SRP naturally extends the GCC method from a pairwise to a
multi-microphone technique. Denoting Ry (7) as the PHAT-weighted GCC
of the I** and k** microphone signals, a time-domain version of SRP-PHAT
functional can now be expressed as

P (w) = (8.19)

N N

P(q) =27 Y Ru(Ar — A). (8.21)

=1 k=1

This is the sum of all possible pairwise GCC permutations which are time-
shifted by the differences in the steering delays. Included in this summation
is the sum of the N autocorrelations, which is the GCC evaluated at a lag of
zero. These terms contribute only a DC offset to the steered response power
since they are independent of the steering delays.

Given either method of computation, SRP-PHAT localization is per-
formed in a manner similar to the standard SRP-based approaches. Namely,
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Fig. 8.2. Conference room layout.

P(q) is maximized over a region of potential source locations. As will be
shown in the next section, relative to the search space indicative of the stan-
dard SRP approach, the SRP-PHAT functional significantly deemphasizes
extraneous peaks and dramatically sharpens the resolution of the true peak.
These desirable features result in a decreased sensitivity to noise and rever-
berations and more precise location estimates than the existing localization
methods offer. Additionally, this is achieved using a very short analysis in-
terval.

8.4 Experimental Comparison

While more extensive results are available in [5], an experiment is offered
here to evaluate and compare the relative characteristics and performance
of three different source locators: SRP, SRP-PHAT and ML-TDOA. Five
second recordings were made for three source locations in a 7 by 4 by 3 m
conference room at Brown University using a 15-clement microphone array.
Figure 8.2 illustrates the room layout. Pre-recorded speech, which was ac-
quired using a close-talking microphone, was played through a loudspeaker
while simultaneously recording the signals from the array. The use of the
loudspeaker was preferable to an actual talker since the loudspeaker could
be precisely located and would be fixed over the duration of the recordings.
The talkers were males uttering a unique string of alpha-digits. Source 1 was
most distant from the array and was positioned at standing height in front
of a white-board. The other two sources were positioned at a seated level
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around a conference table, which was located approximately in the center of
the room.

The microphone array was composed of eight omni-directional electret
condenser microphones, which were randomly distributed on a plane within
a .33 by 0.36 m rectangle. The microphones were attached to a rectangular
sheet of acoustic foam, which was supported by an aluminum frame. This
frame was mounted on a tripod that was placed parallel to the back wall at a
distance of 0.9 m. The acoustic foam damps some of the multi-path reflections
from this wall and isolates the microphones from vibrations traveling along
the mountings.

The loudspeaker faced the array and the volume level was adjusted at each
location to maximize SNR conditions. SNR levels at each microphone aver-
aged about 25 dB for the three source locations. Source 3, with its location
the closest to the microphone array, had SNRs as high as 36 dB. With such
high SNRs, all microphones signals in the conference room dataset have min-
imal contributions from the background noise, which was primarily produced
by the fans inside the computer equipment.

The measured reverberation time of the room was determined to be
200 ms. This qualifies as a mildly reverberant room. However, the near-end
peaks in the impulse responses (as in Figure 8.1) combined with a 200 ms
reverberation time do, in fact, have a significant impact on localization. This
will be demonstrated by the following performance comparisons.

Given the size of the array aperture relative to the source ranges, all three
talkers can be considered to lie in the far field of array. Under such conditions,
range estimates are ambiguous, and only the azimuth and elevation angles
can be estimated reliably. Accordingly, this experiment will focus on DOA
measures as opposed to 3-D Cartesian coordinates. Results obtained with
more extensive arrays and near-field sources are available in [5].

The recorded data was segmented into 25 ms frames using a half-
overlapping Hanning window. SNR-based speech detection was performed
for each frame. All frames where any of the eight microphone channels had
SNR within 12dB of the background noise were eliminated. Qut of the 399
frames per recording, 313, 340, and 297 were retained for sources 1,2, and
3, respectively. The DOA’s of the sources were estimated by minimization
of the LS-TDOA error and maximization of SRP and SRP-PHAT evaluated
over azimuth and elevation relative to the array’s origin. The frequency range
used to compute both the steered responses and the GCC’s was 300 Hz to
8 kHz. These functions were computed over a range of —60° to +60° for both
azimuth and elevation with a 0.1° resolution.

By taking all possible combinations, 28 microphone pairs were formed us-
ing the 8-clement array. Hence, for each data frame, 28 TDOA estimates were
made for each of the three speech recordings using GCC-PHAT. Figure 8.3
illustrates the LS-TDOA error as a function of azimuth and elevation for a
segment of nine successive frames recorded for source 1. The white point in
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Fig. 8.3. Speech segment (top) with nine frames of the LS-TDOA error surfaces.

each contour plot marks the true DOA. The dark area in the center of the
images represents the minima of the LS-TDOA error. At the top of this fig-
ure is a plot of the amplitude of the corresponding speech segment, which
is the letter “R”, spoken as in “Are we there yet?” Superimposed on this
speech signal is a curve representing the average power of the signals from
the array, with the scale of its vertical axis labeled on the right side of the
graph. Each point along this power curve corresponds to the average frame
SNR. The three frames at the beginning and end of this speech segment
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Fig. 8.4. Delay-and-sum beamformer SRP over nine, 25 ms frames.

lacked sufficient SNR to included in the analysis. These plots show that the
LS-TDOA error is generally a smooth surface with a global minimum over
the angular range of £60°. However, from frame to frame the minima vary
from the true source location. This inaccuracy is caused by erroneous TDOA
estimates. Note also that because of the smooth nature of the error space,
the resolution of the DOA estimates is considerably limited.

Figures 8.4 and 8.5 illustrate the error spaces of the SRP and SRP-PHAT
as evaluated for the same nine 25 ms frames of speech. Relative to the prior
figure the contour images are now inverted in darkness to emphasize the max-
ima. The plots of the delay-and-sum beamformer SRP in Figure 8.4 bear a
noticeable similarity in general shape to their LS-TDOA counterparts. The
maximum value in each SRP image, marked by an X, occurs at points dis-
tant from the actual DOA, indicated by a white dot. The main beam of the
delay-and-sum beamformer is broad and fluctuates considerably over the du-
ration of the speech segment. As a result, many inaccurate location estimates
are produced by this method. In contrast to the LS-TDOA and SRP cases,
the peaks of SRP-PHAT plots in Figure 8.5 match the actual DOA almost
exactly. The main beam of the PHAT beamformer is sharp and consistent
over each frame. This produces contour images which appear quite different
from the LS-TDOA and SRP versions. The PHAT filters, when applied to
the filter-and-sum beamformer, yield an error space that is superior to that of
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Fig. 8.5. SRP-PHAT response over nine, 25 ms frames.

the delay-and-sum beamformer or the TDOA-based criterion. This qualita-
tive observation will now be corroborated through a numerical performance
comparison.

For the DOA estimates produced for each of the three source locations,
an RMS DOA error was computed from

A A

Epms (@, ¢) = \/ 6 -6)2+ (¢ — )2 (8.22)

where ¢ and 6 are the true azimuth and elevation angles and ¢ and  are their
estimated counterparts. Figure 8.6 illustrates the results. These plots show
the fraction of DOA estimates in each case which exceed a given RMS error
threshold. Using this metric, the SRP-PHAT consistently outperforms the
other two methods for each of the source locations. The ML-TDOA exhibits
definite advantages over the SRP. While the SRP-PHAT’s results are nearly
identical for all the source locations, including the most distant source 1, the
ML-TDOA locator is highly dependent on source location. For example, 60%
percent of the estimates from source 1 had error greater than 10° while 50%
percent from source 2 and 15% percent from source 3 had error greater 10°.
In contrast, nearly all the estimates produced by SRP-PHAT had error less
than 10°. About 90% of the estimates from sources 2 and 3, and 80% from
source 1 had errors less than 4°.
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Fig. 8.6. Localizer DOA error rates for three different sources.

The results of this limited experiment illustrate the performance advan-

tages of the SRP-PHAT localizer relative to more traditional approaches for
talker localzation with microphone arrays. Other experiments conducted un-

der more general and adverse conditions are consistent with the results here

and serve to confirm the utility of combining steered-beamforming and a
uniform-magnitude spectral weighting for this purpose.

While the TDOA-based localization method performed satisfactorily for
a talker relatively close to the array, it was severely impacted by even the
mild reverberation levels encountered when the source was more distant. This
result is due to the fact that signal-to-reverberation ratios decrease with in-
creasing source-to-microphone distance. As the reverberation component of
the received signal increases relative to the direct path component, the valid- :
ity of the single-source model inherent in the TDE development is no longer
valid. As a result TDOA-based schemes rapidly exhibit poor performance

as the talker moves away from the microphones. The SRP-PHAT algorithm
is relatively insensitive to this effect. As the results here suggest the pro-
posed algorithm exhibits no marked performance degradation from the near
to distant source conditions tested.

The SRP-PHAT algorithm is computationally more demanding than the
TDOA-based localization methods. However, its significantly superior perfor-
mance may easily warrant the additional processing expense. Additionally,
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while not discussed here, it is possible to alter the algorithm to dramatically
| reduce its computational load while maintaining much of its benefit.
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13 Acoustic Echo Cancellation for
Beamforming Microphone Arrays

Walter L. Kellermann

University Erlangen — Niirnberg, Germany

Abstract. Acoustic feedback from loudspeakers to microphones constitutes a ma-
jor challenge for digital signal processing in interfaces for natural, full-duplex
human-machine speech interaction. Two techniques, each one successful on its
own, are combined here to jointly achieve maximum echo cancellation in real en-
vironments: For one, acoustic echo cancellation (AEC), which has matured for
single-microphone signal acquisition, and, secondly, beamforming microphone ar-
rays, which aim at dereverberation of desired local signals and suppression of local
interferers, including acoustic echoes. Structural analysis shows that straightfor-
ward combinations of the two techniques either multiply the considerable compu-
tational cost of AEC by the number of array microphones or sacrifice algorithmic
performance if the beamforming is time-varying. Striving for increased computa-
tional efficiency without performance loss, the integration of AEC into time-varying
beamforming is examined for two broad classes of beamforming structures. Finally,
the combination of AEC and beamforming is discussed for multi-channel recording
and multi-channel reproduction schemes.

13.1 Introduction

For natural human-machine interaction, acoustic interfaces are desirable that
support seamless full-duplex communication without requiring the user to
wear or hold special devices. For that, the general scenario of Figure 13.1
foresees several loudspeakers for multi-channel sound reproduction and a mi-
crophone array for acquisition of desired signals in the local acoustic en-
vironment. Acoustic signal processing is employed to support services such
as speech transmission, speech recognition, or sound field synthesis offered
by communication networks or autonomous interactive systems. Such hands-
free acoustic interfaces may be tailored for incorporation into a wide variety
of communication terminals, including teleconferencing equipment, mobile
phones and computers, car information systems, and home entertainment
equipment.

For signal acquisition, microphone arrays allow spatial filtering of arriving
signals and, thus, desired signals can be enhanced and interferers can be sup-
pressed. With full-duplex communication, echoes of the loudspeaker signals
will join local interferers to corrupt the desired source signals. Beamforming,
however, does not exploit the available loudspeaker signals as reference infor-
mation for suppressing the acoustic echoes. This is accomplished by acoustic
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Fig. 13.1. Acoustic interface for natural human-machine communication.

echo cancellation (AEC) algorithms [1-3]. For discussing the combination of
AEC with microphone arrays, the concept of AEC is first reviewed in Sec-
tion 13.2 and beamforming methods are categorized in Section 13.3 with re-
spect to the properties determining the interaction with AEC. Then, generic
concepts for the combination of AEC and beamforming are discussed in Sec-
tion 13.4. Structures for integrating AEC into beamforming are investigated
in Section 13.5. Finally, the extension from single-channel reproduction to
the case of multiple reproduction channels is outlined.

13.2 Acoustic Echo Cancellation

The coneept of AEC is first considered for the case of a single loudspeaker
and a single microphone according to Figure 13.2. To remove the echo from
the microphone signal z(n) (with n denoting discrete time), AEC aims at
generating a replica (n) for the signal v(n), which is an echoed version of the
loudspeaker signal u(n). Aside from the echo »(n), z(n) contains components
originating from local desired sources and local interferers, s(n) and r(n),
respectively. Introducing the residual echo

e(n) = v(n) —v(n), (13.1)
the estimate for the desired signal 5(n) can be written as:
3(n) = z(n) —0(n) = s(n) + e(n) + r(n). (13.2)
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Fig. 13.2. Basic structure for single-channel AEC.

The amount of echo attenuation achieved by AEC is expressed by the echo
return loss enhancement (ERLE)":

E{vin

ERLE,,(n) =10 -log S—{{% [dB], (13.3)
with & {-} denoting the expectation operator. As long as potential nonlineari-
ties of the loudspeaker system can be neglected [4], the loudspeaker-enclosure-
microphone(LEM) system is completely characterized by its generally time-
varying impulse response h(k,n). Indeed, the impulse response may vary
drastically and unpredictably over time, as a slight change in position of any
object can alter many coefficients significantly [2]. The number of impulse
response samples that must be modeled for an ERLE),, value of ¢ dB is
estimated by [2,5]

T

Lape = 50 Is + Too, (13.4)
where f, denotes the sampling frequency, and Typ is the reverberation time?.
Based on this estimate, more than L 4pc = 1000 impulse response coefficients
must be perfectly matched to assure 20 dB of ERLE,, for a typical office
with Ty = 400 ms and an echo canceller operating at fs = 8 kHz.

As a model for the LEM system, a digital FIR filter structure with a
time-varying impulse response h(k,n) of length Lapc is employed, so that
the estimated echo T(n) is given by

#(n) = h?(n) - u(n) (13.5)

! As v(n) and e(n) are not accessible in practical situations, ERLE must be esti-
mated from 3(n) and z(n) [2].

2 As characteristic parameter of an enclosure, the reverberation time Tso is the
time until the sound energy decays by 60dB after switching off the source.
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where 7 denotes transposition and
-~ T
h(n) = [R(0,n),B(1,n),... ,h(Lasc — l,n)] , (13.6)

u(n) = [u(n),u(n —1),... ,u(n — Lagc + 1)]T. (13.7)
The misalignment between the FIR model ﬂ(n) and the LEM gystem h(n)
is described by the logarithmic system error norm Dy,y(n):
||b(n) — h(n)|}3
lh(n)[l3 °

with || - ||2 denoting the I norm?®.

Dipe(n) = 10-log (13.8)
9

13.2.1 Adaptation algorithms

For identifying the time-varying impulse response h(k,n), adaptive filtering
algorithms derive an optimum vector ﬂopt (n) by minimizing a mean square
error criterion based on the input u(n) and the estimation error e(n) (assum-
ing here, for simplicity, s(n) = r(n) = 0). Three fundamental algorithms are
introduced below for the general case of complex signals (for a comprehen-
sive treatment of adaptive FIR filtering see, e.g., [6,7]). Adaptation control
in the context of AEC is addressed and frequency domain implementations
are outlined briefly.

Fundamental algorithms. Minimizing the mean squared error E {|e(n)|?}
for (at least) wide-sense stationary signals and a time-invariant echo path
h(k,n) = h(k) leads to the Wiener-Hopf equation for the optimum echo
canceller ﬂopi 7

ﬁapt = R-;(ll s Tuav (139)

with the time-invariant correlation matrix R, and the crosscorrelation vec-
TOr Tyy given by

Ruu = E {u(n)u(n)}, (13.10)
ru = E {u(n)v*(n)}, (13.11)
respectively. (* denotes complex conjugation and 7 conjugate complex trans-
position.) For nonstationary environments, iterative or recursive algorithms
are required to approach the Wiener solution in (13.9). As the most popu-

lar adaptation algorithm, the NLMS(Normalized Least Mean Square) algo-
rithm [6,7] updates the filter according to

h(n+1) =h(n) + - Tf)z(n) *(n) (13.12)

3 If the length of h(n) is greater than Lapc, then h(n) must be complemented
with zeros accordingly.
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and may be understood as a stochastic approximation of the steepest descent
algorithm, with u(n) approximating the negative gradient vector, and a step-
size parameter @, 0 < a < 2. Obviously, for correlated signals such as speech,
u(n) will not cover uniformly the L 4gc-dimensional vector space, which im-
plies that the convergence to minimum system error Diee(n) in (13.8) is
slow [7]. The popularity of the NLMS is based on its robust convergence
behavior [2] and its low computational complexity (about 2L 4gc multipli-
cations per sampling interval 7' (MUL’s per T') are needed for implementing
(13.1), (13.5), and (13.12)).

To improve the convergence for speech signals, the Affine Projection Al-
gorithm (APA) uses P previous input vectors

U(n) = [u(n),u(n —1),... ,u(n — P+ 1)] (13.13)

to compute an error vector

e(n) = v(n) = UL(n) - h*(n), (13.14)
where

e(n) = [e(n),e(n —1),... ,e(n — P+1)], (13.15)

v(n) = [v(n),v(n —1),... ,v(n — P+1)]. (13.16)

The filter coefficients are then updated according to
h(n +1) = h(n) + aU(n) [UF (n)U(n) — 61] ~et(n), (13.17)

with the regularization parameter ¢ (4 > 0) and I denoting the identity ma-
trix. Thus, the APA can be interpreted as a generalization of the NLMS
algorithm, which in turn corresponds to an APA with P = 1,0 = 0. The
gradient estimate for the APA is equal to the projection of the system mis-
alignment vector h(n) — h(n) onto the P-dimensional subspace spanned by
U(n). Thus, the complementary orthogonal component of the misalignment
vector becomes smaller with increasing P. The computational complexity of
the APA amounts to approximately (P + 1) - Lagc + O(P?) MUL’s per T,
where, typically, P = 2,...,32, and Lapc is given by (13.4). Fast versions
of the APA reduce the computational load to 2L 4pc + 20P, but require
additional measures to assure numerical stability [2,6].

As the most powerful and computationally demanding adaptation
method, the RLS(Recursive Least Squares) algorithm directly minimizes a
weighted sum of previous error samples

J(h,n) = zn:ﬁ(kne(k)ﬁ, with 0 <3< 1. (13.18)
k=1
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The solution has the form of (13.9), however with time-dependent estimates
for Ryu(n), rue(n) given by

Ruu(n) =) _ A(kyulkyu™ (k), (13.19)
k=1

Tuo(n) = > Bk u(k)v* (k). (13.20)
k=1

The update equation reads here
h(n+1) =h(n) + RZ (n)u(n)e*(n). (13.21)

If an exponential window B(k) = A"~* with the forgetting factor 0 < A < 1
is used, the inversion of Ryy(n) is avoided by exploiting the matrix inversion
lemma that allows recursive update of the inverse [7]. Then, the complexity
of the RLS algorithm is on the order of L% ;o MUL’s per T' [6]. Similarly
to the APA, fast versions for the RLS algorithm have been proposed which
reduce computational complexity to 7L agc MUL’s per T'. However, the large
filter order Larc and the nonpersistent. excitation u(n) require extra efforts
0 assure stable convergence [6]. A simplified version of fast RLS algorithms
is the Fast Newton Algorithm [6], which reduces the complexity to Lagc - P
MUL’s per T, with P being a predictor order that should be matched to
the correlation properties of the input u(n). (For speech signals, P =~ 10 is a
typical value at f, = 8kHz.)

Adaptation control. Adaptation control has to satisfy two contradict-
ing requirements. On one hand, changes in the echo path h(k,n) should be
tracked as fast as possible. This requires a large stepsize, @, for the NLMS
and APA algorithms in (13.12) and (13.17)), and a rapidly decaying /3 for the
RLS algorithm in (13.21), respectively. On the other hand, the adaptation
must be robust to interfering local sources s(n) and noise r(n), which requires
a small stepsize, o, and a slowly decaying 3, respectively [2,7]. When a local
talker is active, adaptation should be stalled immediately to avoid diver-
gence of h(n). Therefore, a fast and reliable detection of local source activity
and estimation of background noise levels is decisive for efficient AEC op-
eration. Correspondingly, a significant amount of computational complexity
is invested in monitoring parameters and signals which support adaptation
control [2]. With properly tuned adaptation control, acoustic echoes are at-
tenuated by, typically, about 25 dB of KRLFE;,, during steady state using
the above adaptation algorithms.

Frequency subband and transform domain structures. To reduce
computational load and to speed up convergence of adaptation algorithms
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which do not inherently decorrelate u(n) (e.g., the NLMS algorithm), fre-
quency subband and transform domain structures have been developed [1,8].
Subband structures decompose the fullband signals u(n) and z(n) into M
subbands which are usually downsampled by B < M [3,9]. The adaptive
subband filters operate at a reduced sampling rate and require fewer coef-
ficients which leads to overall computational savings by a factor of close to
R?/M compared to fullband adaptive filtering. After subtraction, the sub-
band signals are synthesized to yield again a fullband signal 3(n). While the
additional complexity for the analysis/synthesis filter banks is relatively small
for large L 4pc, the introduced signal delay for 5(n) is objectionable in some
applications [2,31].

Transform-domain structures draw their computational advantage over
direct time-domain implementations from the fast Fourier transform (FFT)
and its use for fast convolution [1,6,8]. Block-exact adaptation algorithms,
which behave exactly like their time-domain counterparts, have been pro-
posed for all the fundamental algorithms above. For the long impulse re-
sponses at issue, the system model h(k,n) is often partitioned into shorter
subsystems to reduce the signal delay [2].

13.2.2 AEC for multi-channel sound reproduction

Considering a multi-channel reproduction unit (see Figure 13.1) broadcasting
K different sound channels ux(n) (¢ = 0,...,K — 1) with usunally time-
varying mutual correlation, any microphone records the sum of K echo signals
produced by different echo paths h,(k,n),

K-1
v(n) = 3 hy(n)T - ue(n), (13.22)
r=0

with h,(n), u.(n) being defined according to (13.6) and (13.7). Correspond-
ingly, K echo cancellers, h,.(n), are needed to model the respective echo
paths. As only one error signal, e(n), is available, the K inputs, u.(n), must
be mutually decorrelated without perceptible distortion to allow identifica-
tion of the individual h,(n). This difference to single-channel AEC defines
an even more challenging system identification problem, which has been con-
sidered only for the stereo case (K = 2) so far [1,10-12]. Current adaptation
schemes still exhibit slower convergence and multiply computational load by
more than K compared to their single-channel AEC counterparts.

13.2.3 AEC for multi-channel acquisition

A straightforward extension of the single-loudspeaker/ single-microphone sce-
nario to an N-microphone acquisition system essentially multiplies the num-
ber of adaptive filters by N. The N-channel echo cancellation is captured by
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extending the signals in (13.2) to N-dimensional eolumn vectors,

| 8(n) = x(n) — ¥(n) =s(n) +r(n) +e(n) (13.23)
f- = s(n) +r(n) + v(n) — H (n)u(n) (13.24)

with u(n) according to (13.7), with e(n),r(n),8(n),s(n),v(n),v(n),x(n) as
column vectors of the form

x(n) = [zo(n), ... ,2n_1(n)]", (13.25)

£ and with H(n) as a matrix containing the impulse responses ﬂ,,(n) as columns
according to

H(n) = [ﬂg(n),... B (n), ... ,i’iN_l(n)] . (13.26)

While this implies a corresponding multiplication of the computational cost
for filtering, the cost for adaptation and its control is not necessarily multi-
plied by N. All operations depending only on the input data, u(n), have to be
carried out only once for all N channels, which would include the matrix in-
version in the APA or RLS algorithms, (13.17) and (13.21), respectively. How-
ever, some fast versions draw their efficiency from interweaving matrix inver-
sion and update equations [6] and, therefore, do not completely support this
i separation. Frequency subband and transform domain algorithms [1,6,8,9]
support this separation at least by requiring the analysis transform of u(n)
only once for all channels.

i i e R e e L

13.3 Beamforming

This section only aims at categorizing beamforming algorithms with respect
to their interaction with AEC. For a comprehensive treatment of fundamental
techniques see, e.g., [13,14], while the current state of beamforming technol-
ogy with microphone arrays is covered in several other chapters of this book.

13.3.1 General structure

Consider a microphone array capturing N real-valued sensor signals, z,(n),
which are filtered by linear time-varying systems with impulse responses
gv(k,n) and then summed up (Figure 13.3). The resulting beamformer out-
put, y(n), can be written as

y(n) = G¥(n) - X(n) = GT (n) - [S(n) + R(n) + V(n)], (13.27)

_ with the column vector G(n) representing the concatenated impulse response . .
: vectors g, (n)

G(n) = [go (1), --- ;8N _1(n)]

e : |
?

(13.28) : |
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Fig. 13.3. General structure for a beamforming microphone array

where all g, (n) are of length Lpp:
gv(n) = [g.(0,n), ... ,gu(Lpr — 1,n)]" . (13.29)

The column vector X(n) (and, equally, R(n),S(n), V(n)) contains the latest
L signal samples of each microphone signal

X(n) = [ (n),... , x5 1 (n)]" (13.30)
with
x,(n) = [£,(n),... ,z,(n - Lpp + 1)]" . (13.31)

In the scenario of Figure 13.1, beamforming aims at spatial filtering to dere-
verberate the components s(n) originating from the desired source(s) and to
suppress interfering signals r(n) and echoes v(n).

For ideal dereverberation of a single source, the desired signal as it is
emitted by the source, s(ﬂj(n), should be retrieved except for some delay

no > O:
| GT(n) - S(n) = 59 (n — no). (13.32)

Assuming that delayed versions of 5(%)(n) are contained in s,(n) defined by
(13.31), the filters g,(k,n) have to equalize the corresponding delays and
the sum of the filters has to provide a flat frequency response for all sig-
nals arriving from the source direction. Obviously, delay equalization requires
_ knowledge about the location of the desired source(s). For the following, it is
! assumed that the source location is given by a prieri knowledge or separately
determined by some source localization algorithm (see, e.g., Chapters 8-10).
For an anechoic environment and with the desired signal components being
! delay-equalized by the array geometry, the total impulse response, g(k,n), of
the beamformer to the desired source s(% (n) should ideally fulfill

N
g(k,n) = 3~ gu(k,n) = 6(k — ko) (13.33)

v=1
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‘ t0 assure a constant frequency response with unity gain and constant group
delay kqg.

For interference suppression, the beamformer should minimize its response
to all undesired signal components, which include here local interferers and
loudspeaker echoes. Using, the mean squared error (MSE) as optimization
criterion, this reads:

; £ {(G"(m)-[R(n) + V(n)])"} = min. (13.34)

Based on this general concept and with AEC in mind, basic methods for
time-invariant or time-varying beamforming are outlined below.

13.3.2 Time-invariant beamforming

Time-invariant beamforming, i.e., G(n) = G, g.(n) = g., is used for applica-

1 tions where the beamformer does not have to change the ‘look direction’ and
- where the potential nonstationarity of the involved signals, s(n),r(n), v(n),
i is not accounted for. |

As the most basic beamforming method, the delay-and-sum beam-
former (DSB) realizes in its simplest form a tapped delay line with a single
non-zero coefficient for each filter g, (n) [13,14]. If the required delays for the
desired ‘look direction’ do not coincide with integer multiples of the sampling
period, interpolation filters are required for realizing fractional delays [15-17].
Accounting for the wideband nature of speech and audio signals, nested ar-
i rays are often employed using different sets of sensors for different frequency
! bands to approximate a constant ratio between aperture width and signal
wavelength [17-19]. As a generalization of DSB, filter-and-sum beamform-
ing (FSB) aims for a frequency-independent spatial selectivity within each
frequency band as detailed in Chapter 1 and [20]. Both beamforming con-
: cepts, DSB and FSB, were first developed on the basis of the far-field assump- _.
1 tion [18], but may also be extended to near-field beamforming as described ’
] in Chapter 1. Time-invariant DSB and FSB are mostly signal-independent, i
i.e., no attention is paid to the power spectral densities of the signals s(n), . i
r(n), v(n) and the direction of arrival (DOA) of interferers.

Such ‘beamsteering’ techniques are obviously appropriate for human-
machine interfaces in reverberant environments with a restricted range of
movement for a single desired source and where, due to reverberation, un- [
wanted signal components of comparable level must be expected from all 4
directions.

Nevertheless, time-invariant beamforming can incorporate additional spa-
tial information to suppress dominant interferers [21,22]. Moreover, know-
ledge about long-term statistics of the noise field can be accounted for [23]
and may lead to statistically optimum beamformers with superdirective be-
haviour for low frequencies as described in Chapter 2 and [24].

LI Ll
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Fig. 13.4. Generalized sidelobe canceller structure for adaptive beamforming.

13.3.3 Time-varying beamforming

For nonstationary environments with both nonstationary signal characteris-
tics and potentially moving sources, the beamformer should be able to track
the time-variance of the signal characteristics and the spatial arrangement
of the interfering sources. For that purpose, adaptive beamforming methods
design filters g, (k,n) which minimize a statistical error criterion based on
the array output, y(n), with constraints for the DOA of a desired source (or
‘target’) such as formulated in (13.33) and (13.34) [13,14,25-27]. See also
Chapter 5.

Generalized Sidelobe Canceller (GSC). As an example for an efficient
implementation of adaptive beamformers that minimize a mean square er-
ror (MSE) criterion subject to a linear constraint, the generalized sidelobe
canceller structure [13,25] is considered (Figure 13.4). Here, the adaptive
beamforming is separated into two parallel paths: The upper path is a time-
invariant, signal-independent beamformer, G, steered toward the desired
source. In the lower path, the first stage implements a blocking-matrix,
Gpar(n), which, ideally, completely suppresses the components of the de-
sired source, s(n), by a linear combination of the microphone channels [13]
or filtering [28]. This topic is also detailed in Chapter 5. The P < N outputs,
wi(n),i =0,...,P —1, are then used by the adaptive interference canceller,
Grc(n), to form an estimate for the interference component in y(n). Op-
timization of Gjc(n) becomes an unconstrained Wiener filtering problem
when the MSE criterion of (13.9) is used, and ideally leads to removal of all
components in y(n) which are correlated to w;(n). For identifying the opti-
mum Gja(n), the same adaptation algorithms as for echo cancellation can
be used, i.e., (13.12),(13.17),(13.21), with gradient-type algorithms like the
NLMS algorithm being most comrnon.
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13.3.4 Computational complexity

For both time-invariant and time-varying beamforming, the computational
load is essentially proportional to the number of sensors N. The FIR fil-
ter lengths typically do not exceed Lgr = 128 [17,20,29,30]. With increasing
filter length, computational savings are obtained by frequency-domain imple-
mentations of the filtering [20,29]. As with AEC, for adaptive beamforming
implementations a significant share of computational complexity is dedicated
to fast and reliable source activity detection which forms the basis of adap-
tation control.

13.4 Generic structures for combining AEC with
beamforming

First, the combination of AEC with beamforming is motivated by comparing
practical requirements with typical performance of AEC and beamforming.
Then, the main properties of two generic options for a combination are dis-
cussed in some detail.

13.4.1 Motivation

Although AEC and beamforming are two distinct signal processing concepts,
their goals meet with regard to acoustic echoes. While AEC subtracts from
x(n) an echo estimate, V(n), based on u(n) as reference information, beam-
forming suppresses echoes within x(n) as undesired interference by its spatial
filtering capability. With beamforming being undisputed for its effectiveness
in suppressing local noise and reverberance of local desired sources, the need
for a complementary AEC unit for acoustic echo suppression is discussed in
the following.

As a guideline for desired echo suppression for telecommunication, [31]
requires ERLFE),, > 45 dB during single-talk and at least 30 dB during
double-talk, assuming a ‘natural’ echo attenuation of up to 6 dB between the
loudspeaker signal, u(n), and the microphone signal, z(n). Echo suppression
methods other than AEC, e.g., noise reduction, loss insertion, or nonlinear
devices, impair full-duplex communication and, thus, are only acceptable as
supplementary measures [2]. For full-duplex speech dialogue systems employ-
ing automatic speech recognition, the echo attenuation requirements are not
as well-defined and will depend on the desired recognition rate as well as
on the robustness of the speech recognizer with respect to speech-like in-
terference. In view of these requirements, the echo attenuation provided by
microphone arrays and the echo path gain for a microphone array are exam-
ined below.
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Array gain. The echo attenuation provided by a microphone array is usu-
ally identified with the array gain for the desired sources relative to echoes
as interference. For signal-independent time-invariant beamforming, the di-
rectivity index quantifying the array gain of the desired direction over the
average of all other directions [26] does typically not exceed 20 dB over a
wide frequency range, and is much smaller at low frequencies (< 500 Hz)
due to usual geometrical aperture constraints [19,26]. This contrasts with
the fact that acoustic echoes usually exhibit their maximum energy at low
frequencies [2]. As a remedy, differential beamforming realizes superdirective
array gains at low frequencies and allows for a directivity index of up to
12 dB in practical implementations [1,27]. On the other hand, for adaptive
: beamforming, interference suppression is usually also limited to about 20 dB
B for reverberant environments if distortion of the desired source signal 59 (n)
should be precluded. See Chapters 2 and 5 as well as [19,32].

Echo path gain. For microphone array applications, the echo path gain
between w(n) and the beamformer output, y(n), will often be higher than
for single-microphone systems (—6 dB), because the sum of the distances
from the loudspeaker to the listener, and from the desired source to the
k microphone array, will usually be greater (e.g. in teleconferencing). The user
will typically increase the gains for the loudspeaker signal and the microphone
array correspondingly to compensate for the decay of the sound level (=~
6 dB per doubling of distance in the far-field). If the microphone array and
loudspeaker are relatively close, then the required echo attenuation will be
increased accordingly.

13.4.2 Basic options

Restricting the scenario to a single reproduction channel, w(n), and a sin-
gle acquisition channel, §(n), a combination of AEC and beamforming is
obviously conceivable in two fundamentally different ways as shown in Fig-
ure 13.5. Here, ‘AEC first’ realizes one adaptive filter for each microphone in
H (n) of (13.26), whereas ‘Beamforming first’ uses a single-channel AEC,
h{D (n), which obviously has to include the beamformer, G(n), into its echo
path model.

13.4.3 ‘AEC first’

This structure suggests that H{ )(ﬂ) may operate without any repercussions
from the beamforming so that the AEC problem corresponds to that de-
scribed by (13.23). On the other hand, with perfect echo cancellation, the
beamforming will be undisturbed by acoustic echoes and will concentrate on
suppressing local interferers and reverberation.

i

R
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Fig. 18.5. Generic structures for combining AEC with beamforming.

AEC properties. Although AEC could operate independently from the
beamforming, synergies with beamforming should be exploited with regard
to detection of local source activity and computational complexity.

Local source activity detection. Asnoted above, the adaptation of H(n), re-
quires a fast and reliable detection of local source activity to avoid divergence.
With single-channel AEC, the detection is based on comparing estimates for

E{vi(n
E{(r.(n) +5.(n))?}
to a given threshold. With subsequent beamforming, this decision can be
derived from estimates of

E {(GT('H,)V(n)]Q}
B{(G"(n) [R(n) + S(n)))*}

which reflect local source activity much clearer than Q. (n) as r, (n), v, (n) are
suppressed relative to s(n) by beamforming. Thus, @(n) reduces uncertainty
in local source activity detection and allows adaptation during time intervals
where adaptation might have been stalled if its control was based on @, (n).

Qv (n) =

(13.36)

Qn) =

Computational complexity. At least the filtering and the filter coefficient up-
date of the AEC adaptation will require N-fold computational cost compared
to a single-channel AEC. Even with continuing growth of the performance-
cost ratio of signal processing hardware, this computational load will remain
prohibitive in the near future for many cost-sensitive or very large systems
employing N = 5,... ,512 sensors [17,19,26,30,33,34]. One option to alleviate
the computational burden is to reduce the length Lage in (13.4) of the FIR
filter models, h,, and to rely on the beamformer for suppressing the residual
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Fig. 13.6. Example for convergence of ERLE),, components and local interference
suppression(IR) for AEC first’ structure (N = 8, Tso ~ 300 ms, f, = 12 kHz,
Lapc = 2500, L = 16, Lic = 50).

echoes, e(n). Shortening fi, implies however, that the adaptation of the AEC
is disturbed by an increased noise component, which is due to the unmodeled
tail of the true echo path impulse response, h,(n) [2].

Beamforming performance. For a signal-independent beamformer, the
presence and performance of the AEC has no impact on the beamforming.
The signal-independent spatial filtering will increase echo suppression accord- ks
ing to its directivity while suppression of local interferers remains unaffected. Il
Signal-dependent beamformers use w(n) = x(n) — ¥)(n) for optimizing
the beamforming filters G(n). Thereby, at the cost of local interference sup- |
pression, the beamformer will concentrate on suppressing echo components, {
e(n), if their levels exceed that of local interferers, r(n), and it will further
suppress residual echoes as long as they are not negligibly small compared to [t
the local interferers. For illustration, the typical convergence behaviour for ‘
‘AEC first’ using a GSC beamformer is shown in Figure 13.6 for r(n), s(n), l! !
u(n) being white noise signals, and for alternating adaptation of G;¢(n), and
H® (n) (see also [32]). Due to its short filters, the beamformer converges al- il
most instantaneously to about FRLEgsc = 18 dB, and thereby provides a |
significant amount of ERLFE},, long before H?)(n) has converged. At the ‘
same time, suppression of local interference, I R¢sc, remains essentially con-
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stant over time, as it converges very rapidly to almost 20 dB and is not
allowed to converge much further to preclude distortion of the desired signal.

13.4.4 ‘Beamforming first’

In this structure, the beamformer is essentially independent from the AEC
so that the beamforming performance agrees with Section 13.3 for acous-
tic echoes being perceived as another source of interference. AEC is realized
by a single adaptive filter h??)(n) as in Figure 13.5 which is attractive with
regard to computational complexity. However, the system identification prob-
lem faced by h{7")(n) requires closer examination.

Echo path for AEC. Incorporating the beamformer, G(n), into the echo
path model means that, ideally, the adaptive filter, h/") (n), models the sum
of N echo paths from the loudspeaker input, u(n), to the beamformer output,
y(n), (see Figure 13.3)

B (n) = £(n) = ny(n (13.37)

with the impulse responses, f£(n), given by ( * denotes linear convolution):

£,(n) = [£f,0,n),..., fo(Lancsnr —1,n)]7, (13.38)
fy(krn) - h,,(k,ﬂ) *gv{k:n)- (1339)

Thus, the impulse response length of h(D (n) depends on the beamforming,
and, if any g,(k,n) is time-varying, hUD(n) has to track this time-variance
as well*. The required length, Lagcype, for hUD(n) is essentially the sum
of the length Lgg and the necessary length for the acoustic path (including
loudspeaker and microphone), Lagc:

Lagcypr = Lapc+ Lpr — 1. (13.40)

Note that for a given desired ERLE;,,, Lagc can be chosen smaller than
given by (13.4) depending on the expected contribution of beamforming to
ERLE,,, (see also [35]).

Signal-independent, time-invariant beamformers. Due to the time-invariance
of g, (k,n), the adaptation of h(/7) (n) only has to track the time-variance of

h, (n) and, thus, the adaptation of h7) (n) is identical to the adaptation of
one of the N filters h{" (n) in the ‘AEC first’ structure except for the different
filter length Lapcype.

* Note that the time-varying components h, (k,n) cannot be identified separately,
although gu(k,n) is known (*knapsack problem’).
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Signal-dependent, time-varying beammformers. Here, the main problem is that
the adaptation of h'7)(n) has to track the time-variance of G(n). As for the
adaptation algorithms discussed in Section 13.2.1 an increasing filter order in-
volves a reduced tracking capability [7], the high-order filter, h/7) (n), cannot
follow the time-variance of the low-order filters of G(n) {LAE(,+3F > Lpr).
Therefore, ') (n) can find a useful echo path model only when G(n) re-
mains time-invariant for a sufficiently long time. In Figure 13.7, the adapta-
tion behaviour of the ‘beamforming first’ structure is analyzed for a speech
conversation with a GSC as adaptive beamformer [28,32). Inspecting the time
domain signals u(n) and s(n) in Figures 13.7a and 13.7b shows that a ‘double-
talk’ period occurs for time n = 3.5...4.0-10°, Figure 13.7c illustrates which
component is adapted at a given time. To track slight movements of the de-
sired local source, the blocking matrix, Ggas(n), is adapted if only the local
source and noise are present [28,32]. The system error of (13.8) depicted in
Figure 13.7d converges monotonically when h(') (n) is adapted. When the
interference canceller, G;c(n), or the blocking matrix, G gas(n), are adapted
the system error rises instantaneously (n = 2...3.5-10%). This is not critical
as long as u(n) = 0, however, during double-talk (n = 3.5...4.0-10%), a
large residual error, e(n), arises (Figure 13.7e,f) as hU7)(n) cannot recon-
verge. Consequently, with the ‘beamforming first’ structure, the benefits of
AEC are migging when they are desired most, i.e., during double-talk and
during transitions from far-end activity to local activity and vice-versa (at
other times primitive echo suppression methods, such as loss insertion [2], are
less objectionable).

13.5 Integration of AEC into time-varying
beamforming

As time-varying beamforming, G(n), cannot be tracked satisfactorily by the
adaptation of h(!! )(n), a compromise is desirable for AEC which avoids the
computational burden of H )(n) for large N and provides improved echo
cancellation compared to hU7)(n). For this, the beamformer is decomposed
into a time-invariant and a time-varying part in the sequel, with AEC acting
only on the output of the time-invariant part. Two options for arranging
the time-invariant and the time-varying stage are examined: First, a cascade
with the time-invariant stage followed by the time-varying stage, and second,
a parallel arrangement of the two stages.

13.5.1 Cascading time-invariant and time-varying beamforming

Ag illustrated in Figure 13.8, instead of a single beamformer output, y(n),
(see Figure 13.3), M < ... « N beamformer output signals y(n) =
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Fig. 13.8. AEC integrated into cascaded beamforming.

[yo(n),...yM_l(n)]T are produced by M sets of fixed beamforming filters
GS;M) according to

y(n) =GP0 X(n), (13.41)
where X(n) is given by (13.30) and
e}l (e NN - | SRR | (13.42)

with G, according to (13.28). For AEC, H('ZD) () realizes M adaptive echo
cancellers ﬁ“ (n),p=0,..., M — 1, which exhibit the same performance as
h(")(n) with time-invariant G (n) (see Section 13.4.4). Thus, if M < N and
Ligc+Br = Lagc, AEC operates at a reduced computational cost compared
to HD(n) (see Section 13.4.3). The time-varying part of the beamforming
implements a weighted sum (‘voting’) using time-varying weights, g, ,(n):

3(n) =g, (n) - z(n) (13.43)
“with

o) = [g0,0(n); - G0 u(n),- - o2 (m)]" (13.44)

z(n) = [20(n), ... ,2,(n), ..., 2p—1(n)]" . (13.45)

Fixed beamformer design. The fixed beamformers of GE'-M} may be de-
signed to account for various situations, for instance, different beamformers
could be employed for the présence or absence of echo, v(n), and of certain
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local interferers, r(n). This concept is easily extended to cover several desired
sources or moving desired sources, which is especially attractive for telecon-
ferencing [5,17,18,22,26]. For the actual design of Gr,,, techniques based on
both time-invariant or time-varying beamforming can be applied. Updating
may be attractive to allow for long-term flexibility.

G%M} based on time-invariant beamforming. As a straightforward approach,
My > M signal-independent fixed beams may be formed to cover several
possible interference scenarios and/or all possible desired source positions.
The output of these My beamformers is monitored and a subset of M beam-
formers is used for Ggﬂfm(n) to produce potentially desired signals y(n). As
an example, in a teleconferencing studio with My = 7 seats and three local
participants being present, only M = 3 beams should produce desired signals
(for examples see [17,18,22,26]).

GE;M) based on adaptive beamforming. Signal-dependent adaptive beamform-
ing can be used to identify fixed beamformers for typical interference scenar-
ios. To this end, an adaptive beamformer operates at a normal adaptation
rate with its flter coefficients acting as a training sequence for finding M
representative fixed beamformers. A priori knowledge of the desired source
location(s) for incorporating constraints is necessary as well as initial train-
ing [5].

Initializing and updating Ggf"’) . The monitoring of My fixed beams, or the
learning of optimum beamformers for deciding upon Gg,im can be carried out
during an initial training phase only, or continuously. Continuous monitoring
is recommended when changes are expected that demand the updating of
G}M). Monitoring of My beams helps also to establish reliable estimates for
background noise levels and supports detection of local talker activity so
that convergence speed and robustness of AEC adaptation can be improved.
Generally, as long as updating of foﬂ occurs less frequently than significant
changes in the acoustic path, the model of time-invariant beamforming is
justified with respect to AEC behavior. Aiming at minimum computational
cornplexity for AEC, more frequent updates of G%M) may be accepted for
reduced M. The update should preferably occur at the beginning of ‘far-end
speech only’ periods, as then, the AEC HU4)(n) can immediately adapt to
the new echo path.

Voting. The time-varying weights, g, ,(n), in (13.44) must be chosen to
allow for a fast reaction (< 20 ms) to newly active local sources or chang-
ing interference scenarios, while at the same time avoiding the perception of
switching, e.g., by applying a sigmoid-like gain increase over time. For maxi-
mum spatial selectivity, only one beam signal should have a nonzero weight,
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Fig. 13.9. GSC with embedded AEC.

gv,u(n), in the stationary case. Frequent toggling between beams is subjec-
tively objectionable and should be prevented by hysteresis mechanisms (see
also [17,26]).

13.5.2 AEC with GSC-type beamforming structures

As a popular representative of adaptive beamformers, the GSC (see Sec-
tion 13.3.3) is also an example for a parallel arrangement of time-varying
and time-invariant beamforming. If an integrated AEC should only see time-
i invariant beamforming in the echo path, it has to act on the output of the
e fixed beamformer, y(n), as depicted in Figure 13.9 [32]. Obviously, only a sin-
i gle adaptive filter, (V) (n), is necessary which faces the same system identi-
fication task as h() (n) for time-invariant beamforming (see Section 13.4.4),
B which in turn is essentially identical to the plain single-microphone AEC
L problem. However, residuals of acoustic echoes, v(n), will also be contained
in w(n) unless they are eliminated by Ggar(n) or Gre(n). Here, leaving echo
suppression to the interference canceller, Gz (n), seems to be the obvious
solution. Recall that G yo(n) minimizes the quadratic norm of 5(n) to remove
all components from z(n) that are correlated with w(n). If h'V)(n) is per-
fectly adjusted, no echo components remain in z(n) and the echo estimate |
within w{n) should be zero. On the other hand, local interference components
in w(n) should be linearly combined using nonzero filter coefficients, so that
: w(n) can remove interference residuals from z(n). Clearly, a conflict in the
[ 4 design of G (n) arises [32].
L For illustration, consider a stationary situation for a given frequency, wy,
in a 2-D plane containing a linear beamforming array with time-invariant Gr,
G, and Gye. A local interferer, r(n), arrives as a planar wave from 6y and
passes the blocking matrix which is transparent for r(n) (G5, -r(n) = r(n)).
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Then, for perfect interference cancellation, Gre(n) has to model the re-
sponse of the fixed beamformer, F {Gc} (6o, wo) = F {Gr} (fo,wo), with
F{G, } (8,w) denoting the frequency response for a plane wave of frequency
w arriving from 6. If, on the other hand, an acoustic echo arrives from the
same direction, #y, with nonzero spectral support at wg, this should be per-
fectly suppressed if z(n) contains no echo, which means F {Gr¢c} (0o, wo) = 0.
Obviously, this conflict requires a compromise at the cost of either local in-
terference suppression or echo attenuation. Here, adaptation algorithms will
automatically favor the dominant signal component in w(n). Even if echo and
local interference do not arrive from the same direction, the finite number of
degrees of freedom limits the ability of Gro to suppress echo and local inter-
ference simultaneously. This is especially true for reverberant environments
which possess a very large (if not infinite) number of DOAs for both echoes
and local interference.

To avoid the conflict of interests within Gr¢, a suppression of the acoustic
echoes, v(n), using Gpup(n) seems attractive. Considering the options, it is
obvious that the output, w(n), should be freed from v(n) without suppressing
r(n) or impairing the suppression of s(n). This means that no additional
filtering on x(n) is allowed. As an alternative, estimates for the echoes, v(n),
could be subtracted from w(n), which requires one adaptive filter for each of
the P < N channels and is similar to the generic concept of Section 13.4.3.

13.6 Combined AEC and beamforming for
multi-channel recording and multi-channel
reproduction

Multi-channel recording means that the output of the acquisition part of the
acoustic interface in Figure 13.1 consists of several (L > 1) channels which,
e.g., are necessary to convey spatial information for remote multi-channel
sound reproduction, but may also support local signal processing. In Fig-
ures 13.5, 13.6, and 13.7 this translates to an L-dimensional output vector
8(n). With respect to the beamforming, it means a duplication of the filtering
and adaptation for each channel using the techniques outlined in Section 13.3.
Both, time-invariant and adaptive beamforming will typically use L differ-
ent ‘look directions.” Regarding the generic methods to combine AEC with
beamforming (Section 13.4), this means that for the ‘AEC first’ structure,
the AEC part, H!)(n), remains unchanged while only the beamforming has
to be duplicated. For the ‘beamforming first’ structure, the AEC realized by
hU") (n) has to be duplicated as well.

When AEC is integrated into cascaded beamforming (see Section 13.5.1)
the extension to the multi-channel recording case is included in the concept.
The number of parallel fixed beams simply must equate or exceed the number
of recorded channels, M > L, and the voting must be chosen accordingly. The

~

AEC structure, H'')(n), remains unchanged. If the AEC is embedded into
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a GSC-like structure, both the beamforming, G(n), and the AEC structure,
h(¥)(n), have to be implemented I times. However, removal of the acoustic
echoes in the blocking matrix is necessary only once if performed directly on
the microphone signals, x(n).

Multi-channel reproduction introduces a K-channel AEC problem (as de-
scribed in Section 13.2.2), wherever a single echo cancellation filter is em-
ployed for single-channel reproduction, regardless of whether echo is to be re-
moved from a microphone output or from a beamformer output. Essentially,
this deteriorates convergence behavior and increases computational complex-
ity for all structures discussed in Sections 13.4 and 13.5, accordingly.

Finally, for a system with both multi-channel reproduction and multi-
channel recording as suggested in Figure 13.1, the complexity for combined
AEC and beamforming obeys the superposition principle with respect to
filtering and filter adaptation. Synergies are obtained by the common use
of control information for several channels. The nature of the problems,
however, does not change compared to the basic scenarios studied in Sec-
tiong 13.2.2, 13.4, and 13.5 so that the corresponding results remain mean-
ingful.

13.7 Conclusions

Beamforming and acoustic echo cancellation have been shown to jointly con-
tribute to the suppression of acoustic feedback occurring in hands-free acous-
tic man-machine interfaces. While for time-invariant beamforming a single
adaptive AEC filter suffices in the case of single-channel reproduction and
single-channel recording, time-varying beamformers demand multiple adap-
tive filters if echo cancellation performance is not to degrade severely. How-
ever, realizing a time-varying beamformer as a cascade of time-invariant
beamforming and time-varying voting requires only a few adaptive echo can-
cellers even for microphone arrays with many sensors. Implementing a combi-
nation of AEC and beamforming for a multi-channel reproduction and multi-
channel recording system involves a corresponding increase in computational
complexity. Signal processing performance, however, is still determined by
the solutions for the elementary problems.
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The study and implementation of microphone arrays originated
over 20 years ago. Thanks to the research and experimental
developments pursued to the present day, the field has matured to
the point that array-based technology now has immediate
applicability to a number of current systems and a vast potential
for the improvement of existing products and the creation of futu-
re devices. This text is organized into four sections which roughly
follow the major areas of microphone array research today.

Parts I and II are primarily theoretical in nature and emphasize
the use of microphone arrays for speech enhancement and source
localization, respectively. Part [11 presents a number of specific
applications of array-based technology. Part IV addresses some
open questions and explores the future of the field. The resultis a
text that will be of utility to a large audience, from the student

or practicing engineer just approaching the field to the advanced
researcher with multi-channel signal processing experience.
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