
The Roles of FPGA’s in Reprogrammable
Systems

SCOTT HAUCK, MEMBER, IEEE

Reprogrammable systems based on field programmable gate
arrays are revolutionizing some forms of computation and
digital logic. As a logic emulation system, they provide orders
of magnitude faster computation than software simulation. As a
custom-computing machine, they achieve the highest performance
implementation for many types of applications. As a multimode
system, they yield significant hardware savings and provide truly
generic hardware.

In this paper, we discuss the promise and problems of
reprogrammable systems. This includes an overview of the chip
and system architectures of reprogrammable systems as well as
the applications of these systems. We also discuss the challenges
and opportunities of future reprogrammable systems.

Keywords—Adaptive computing, custom computing, FPGA,
logic emulation, multi-FPGA systems, reconfigurable computing.

I. INTRODUCTION

In the mid-1980’s, a new technology for implementing
digital logic was introduced: the field programmable gate
array (FPGA). These devices could be viewed as either
small, slow gate arrays (MPGA’s) or large, expensive
programmable logic devices (PLD’s). FPGA’s were capable
of implementing significantly more logic than PLD’s, espe-
cially because they could implement multilevel logic, while
most PLD’s were optimized for two-level logic. Although
they did not have the capacity of MPGA’s, they also did
not have to be custom fabricated, greatly lowering the costs
for low-volume parts and avoiding long fabrication delays.
While many of the FPGA’s were configured by static
random access memory (SRAM) cells in the array, this was
generally viewed as a liability by potential customers who
worried over the chip’s volatility. Antifuse-based FPGA’s
also were developed and for many applications were much
more attractive, both because they tended to be smaller and
faster due to less programming overhead and because there
was no volatility to the configuration.

Manuscript received May 5, 1997; revised January 20, 1998. This work
was supported in part by the Defense Advanced Research Project Agency
under Contract DABT63-97-C-0035 and in part by the National Science
Foundation under Grants CDA-9703228 and MIP-9616572.

The author is with the Department of Electrical and Computer Engi-
neering, Northwestern University, Evanston, IL 60208-3118 USA.

Publisher Item Identifier S 0018-9219(98)02669-3.

In the late 1980’s and early 1990’s, there was a growing
realization that the volatility of SRAM-based FPGA’s was
not a liability but was in fact the key to many new types
of applications. Since the programming of such an FPGA
could be changed by a completely electrical process, much
as a standard processor can be configured to run many
programs, SRAM-based FPGA’s have become the work-
horse of many new reprogrammable applications. Some
uses of reprogrammability are simple extensions of the
standard logic implementation tasks for which the FPGA’s
were originally designed. An FPGA plus several different
configurations stored in read-only memory (ROM) could
be used for multimode hardware, with the functions on
the chip changed in reaction to the current demands. Also,
boards constructed purely from FPGA’s, microcontrollers,
and other reprogrammable parts could be truly generic
hardware, allowing a single board to be reprogrammed to
serve many different applications.

Some of the most exciting new uses of FPGA’s move
beyond the implementation of digital logic and instead
harness large numbers of FPGA’s as a general-purpose
computation medium. The circuit mapped onto the FPGA’s
need not be standard hardware equations but can even
be operations from algorithms and general computations.
While these FPGA-based custom-computing machines may
not challenge the performance of microprocessors for all
applications, for computations of the right form, an FPGA-
based machine can offer extremely high performance, sur-
passing any other programmable solution. Although a cus-
tom hardware implementation will be able to beat the power
of any generic programmable system, and thus there must
always be a faster solution than a multi-FPGA system, the
fact is that few applications will ever merit the expense
of creating application-specific solutions. An FPGA-based
computing machine, which can be reprogrammed like a
standard workstation, offers the highest realizable perfor-
mance for many different applications. In a sense, it is
a hardware supercomputer, surpassing traditional machine
architectures for certain applications. This potential has
been realized by many different research machines. The
Splash system [50] has provided performance on genetic
string matching that is almost 200 times greater than all

0018–9219/98$10.00 1998 IEEE

PROCEEDINGS OF THE IEEE, VOL. 86, NO. 4, APRIL 1998 615

Authorized licensed use limited to: Riva Laughlin. Downloaded on May 08,2023 at 15:24:24 UTC from IEEE Xplore. Restrictions apply.

Ex.1030
CISCO SYSTEMS, INC. / Page 1 of 24

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

(a) (b)

Fig. 1. Actel’s programmable low-impedance circuit element (PLICE). As shown in (a), an
unblown antifuse has an oxide–nitride–oxide (ONO) dielectric preventing current from flowing
between diffusion and polysilicon. The antifuse can be blown by applying a 16-V pulse across the
dielectric. This melts the dielectric, allowing a conducting channel to be formed (b). Current is then
free to flow between the diffusion and the polysilicon [1], [54].

other supercomputer implementations. The DECPeRLe-1
system [133] has demonstrated world-record performance
for many other applications, including RSA cryptography.

One of the applications of multi-FPGA systems with
the greatest potential is logic emulation. The designers of
a custom chip need to verify that the circuit they have
designed actually behaves as desired. Software simulation
and prototyping have been the traditional solution to this
problem. As chip designs become more complex, however,
software simulation is only able to test an ever decreasing
portion of the chips’ computations, and it is quite expensive
in time and money to debug by repeated prototype fabrica-
tions. The solution is logic emulation, the mapping of the
circuit under test onto a multi-FPGA system. Since the logic
is implemented in the FPGA’s in the system, the emulation
can run at near real time, yielding test cycles several
orders of magnitude faster than software simulation, yet
with none of the time delays and inflexibility of prototype
fabrications. These benefits have led many of the advanced
microprocessor manufacturers to include logic emulation
in their validation process.

In this paper, we discuss the different applications
and types of reprogrammable systems. In Section II, we
present an overview of FPGA architectures as well as field
programmable interconnect components (FPIC’s). Then,
Section III details what kinds of opportunities these devices
provide for new types of systems. We then categorize the
types of reprogrammable systems in Section IV, including
coprocessors and multi-FPGA systems. Section V describes
in depth the different multi-FPGA systems, highlighting
their important features. Last, Sections VI and VII conclude
with an overview of the status of reprogrammable systems
and how they are likely to evolve. Note that this paper is
not meant to be a catalog of every existing reprogrammable
architecture and application. We instead focus on some of
the more important aspects of these systems in order to
give an overview of the field.

II. FPGA TECHNOLOGY

One of the most common field programmable elements
is PLD’s. PLD’s concentrate primarily on two-level, sum-
of-products implementations of logic functions. They have
simple routing structures with predictable delays. Since
they are completely prefabricated, they are ready to use in
seconds, avoiding long delays for chip fabrication. FPGA’s

Fig. 2. Floating gate structure for EPROM/EEPROM. The float-
ing gate is completely isolated. An unprogrammed transistor, with
no charge on the floating gate, operates the same as a normal
n-transistor, with the access gate as the transistor’s gate. To
program the transistor, a high voltage on the access gate plus a
lower voltage on the drain accelerates electrons from the source fast
enough to travel across the gate oxide insulator to the floating gate.
This negative charge then prevents the access gate from closing
the source–drain connection during normal operation. To erase,
EPROM uses ultraviolet light to accelerate electrons off the floating
gate, while EEPROM removes electrons by a technique similar to
programming but with the opposite polarity on the access gate
[134], [148].

are also completely prefabricated, but instead of two-level
logic, they are optimized for multilevel circuits. This allows
them to handle much more complex circuits on a single
chip, but it often sacrifices the predictable delays of PLD’s.
Note that FPGA’s are sometimes considered another form
of PLD, often under the heading of complex PLD.

Just as in PLD’s, FPGA’s are completely prefabricated
and contain special features for customization. These con-
figuration points are normally SRAM cells, EPROM, EEP-
ROM, or antifuses. Antifuses are one-time programmable
devices (Fig. 1), which when “blown” create a connection.
When they are “unblown,” no current can flow between
their terminals (thus, it is an “anti” fuse, since its behavior
is opposite to a standard fuse). Because the configuration
of an antifuse is permanent, antifuse-based FPGA’s are
one-time programmable, while SRAM-based FPGA’s are
reprogrammable, even in the target system. Since SRAM’s
are volatile, an SRAM-based FPGA must be reprogrammed
every time the system is powered up, usually from a ROM
included in the circuit to hold configuration files. Note
that FPGA’s often have on-chip control circuitry to load
this configuration data automatically. EEPROM/EPROM
(Fig. 2) are devices somewhere between SRAM and an-
tifuse in their features. The programming of an EEP-
ROM/EPROM is retained even when the power is turned
off, avoiding the need to reprogram the chip at power-

616 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 4, APRIL 1998

Authorized licensed use limited to: Riva Laughlin. Downloaded on May 08,2023 at 15:24:24 UTC from IEEE Xplore. Restrictions apply.

Ex.1030
CISCO SYSTEMS, INC. / Page 2 of 24

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

(a) (b)

Fig. 3. Programming bit for (a) SRAM-based FPGA’s [145] and (b) a three-input lookup table.

up, while their configuration can be changed electrically.
However, the high voltages required to program the device
often mean that they are not reprogrammed in the target
system.

SRAM cells are larger than antifuses and EEP-
ROM/EPROM, meaning that SRAM-based FPGA’s will
have fewer configuration points than FPGA’s using
other programming technologies. However, SRAM-
based FPGA’s have numerous advantages. Since they
are easily reprogrammable, their configurations can be
changed for bug fixes or upgrades. Thus, they provide
an ideal prototyping medium. Also, these devices can
be used in situations where they can expect to have
numerous different configurations, such as multimode
systems and reconfigurable computing machines. More
details on such applications are included later in this
paper. Because antifuse-based FPGA’s are only one-
time programmable, they are generally not used in
reprogrammable systems. EEPROM/EPROM devices could
potentially be reprogrammed in-system, although in general
this feature is not widely used. Thus, this paper will
concentrate solely on SRAM-based FPGA’s.

There are many different types of FPGA’s, with many
different structures. Instead of discussing all of them here,
which would be quite involved, this section will present
two representative FPGA’s. Details on many others can
be found elsewhere [21], [26], [75], [103], [112], [127].
Note that reconfigurable systems can often employ non-
FPGA reconfigurable elements; these will be described in
Section V.

In SRAM-based FPGA’s, memory cells are scattered
throughout the FPGA. As shown in Fig. 3(a), a pair of
cross-coupled inverters will sustain whatever value is pro-
grammed onto them. A single-transistor gate is provided
for either writing a value or reading a value back out.
The ratio of sizes between the transistor and the upper
inverter is set to allow values sent through the-transistor
to overpower the inverter. The read-back feature is used
during debugging to determine the current state of the
system. The actual control of the FPGA is handled by the

and outputs. One simple application of an SRAM
bit is to have the terminal connected to the gate of
an -transistor. If a “1” is assigned to the programming
bit, the transistor is closed, and values can pass between
the source and drain. If a “0” is assigned, the transistor
is opened, and values cannot pass. Thus, this construct
operates similarly to an antifuse, though it requires much

Fig. 4. The Xilinx 4000 series FPGA structure [145]. Logic
blocks are surrounded by horizontal and vertical routing channels.

more area. One of the most useful SRAM-based structures
is the lookup table (LUT). By connecting programming
bits to a multiplexer [Fig. 3(b)], any -input combinational
Boolean function can be implemented. Although it can
require a large number of programming bits for large,
LUT’s of up to five inputs can provide a flexible, powerful
function implementation medium.

One of the best known FPGA’s is the Xilinx logic
cell array [126], [145]. In this section, we will describe
their third-generation FPGA, the Xilinx 4000 series. The
Xilinx array is an “Island-style” FPGA [127] with logic
cells embedded in a general routing structure that permits
arbitrary point-to-point communication (Fig. 4). The only
requirement for good routing in this structure is that the
source and destinations be relatively close together. Details
of the routing structure are shown in Fig. 5. Each of the
inputs of the cell (F1-F4, G1-G4, C1-C4, K) comes from
one of a set of tracks adjacent to that cell. The outputs
are similar (X, XQ, Y, YQ), except that they have the
choice of both horizontal and vertical tracks. The routing
structure is made up of three lengths of lines. Single-length
lines travel the height of a single cell, where they then
enter a switch matrix [Fig. 6(b)]. The switch matrix allows
this signal to travel out vertically and/or horizontally from
the switch matrix. Thus, multiple single-length lines can be
cascaded together to travel longer distances. Double-length

HAUCK: FPGA’S IN REPROGRAMMABLE SYSTEMS 617

Authorized licensed use limited to: Riva Laughlin. Downloaded on May 08,2023 at 15:24:24 UTC from IEEE Xplore. Restrictions apply.

Ex.1030
CISCO SYSTEMS, INC. / Page 3 of 24

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Fig. 5. Details of the Xilinx 4000 series routing structure [145]. The configurable logic blocks
(CLB’s) are surrounded by vertical and horizontal routing channels containing single-length lines,
double-length lines, and long lines. Empty diamonds represent programmable connections between
perpendicular signal lines (signal lines on opposite sides of the diamonds are always connected).

lines are similar, except that they travel the height of two
cells before entering a switch matrix (notice that only half
the double-length lines enter a switch matrix, and there is
a twist in the middle of the line). Thus, double-length lines
are useful for longer distance routing, traversing two cell
heights without the extra delay and the wasted configuration
sites of an intermediate switch matrix. Last, long lines are
lines that go half the chip height and do not enter the
switch matrix. In this way, routes of very long distance can
be accommodated efficiently. With this rich sea of routing
resources, the Xilinx 4000 series is able to handle fairly
arbitrary routing demands, though mappings emphasizing
local communication will still be handled more efficiently.

As shown in Fig. 6(a), the Xilinx 4000 series logic cell
is made up of three LUT’s, two programmable flip-flops,
and multiple programmable multiplexers. The LUT’s allow
arbitrary combinational functions of its inputs to be created.
Thus, the structure shown can perform any function of five
inputs (using all three LUT’s, with the F and G inputs
identical), any two functions of four inputs (the two four-
input LUT’s used independently), or some functions of up
to nine inputs (using all three LUT’s, with the F and G
inputs different). SRAM-controlled multiplexers then can
route these signals out the X and Y outputs, as well as to
the two flip-flops. The inputs at the top (C1-C4) provide
enable and set or reset signals to the flip-flops, a direct
connection to the flip-flop inputs, and the third input to
the three-input LUT. This structure yields a very powerful
method of implementing arbitrary, complex digital logic.

Note that there are several additional features of the Xilinx
FPGA not shown in these figures, including support for
embedded memories and carry chains.

While many SRAM-based FPGA’s are designed like
the Xilinx architecture, with a routing structure optimized
for arbitrary, long-distance communications, several other
FPGA’s concentrate instead on local communication. The
“cellular”-style FPGA’s [127] feature fast, local commu-
nication resources at the expense of more global, long-
distance signals. As shown in Fig. 7, the CLi FPGA [75]
has an array of cells, with a limited number of routing
resources running horizontally and vertically between the
cells. There is one local communication bus on each side
of the cell. It runs the height of eight cells, at which point
it enters a repeater. Express buses are similar to local
buses, except that there are no connections between the
express buses and the cells. The repeaters allow access to
the express buses. These repeaters can be programmed to
connect together any of the two local buses and two express
buses connected to it. Thus, limited global communication
can be accomplished on the local and express buses, with
the local buses allowing shorter distance communications
and connections to the cells while express buses allow
longer distance connections between local buses.

While the local and global buses allow some of the
flexibility of the Xilinx FPGA’s arbitrary routing structure,
there are significantly fewer buses in the CLi FPGA than
are present in the Xilinx FPGA. The CLi FPGA instead
features a large number of local communication resources.

618 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 4, APRIL 1998

Authorized licensed use limited to: Riva Laughlin. Downloaded on May 08,2023 at 15:24:24 UTC from IEEE Xplore. Restrictions apply.

Ex.1030
CISCO SYSTEMS, INC. / Page 4 of 24

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

(a) (b)

Fig. 6. Details of the Xilinx (a) CLB and [(b), top] switchbox [145]. The multiplexers, LUT’s,
and latches in the CLB are configured by SRAM bits. Diamonds in the switchbox represent six
individual connections [(b), bottom], allowing any permutation of connections among the four
signals incident to the diamond.

As shown in Fig. 8, each cell receives two signals from each
of its four neighbors. It then sends the same two outputs
(A and B) to all of its neighbors. That is, the cell one to
the north will send signals AN and BN, and the cell one
to the south will send AS and BS, while both will receive
the same signals A and B. The input signals become the
inputs to the logic cell (Fig. 9).

Instead of Xilinx’s LUT’s, which require many program-
ming bits per cell, the CLi logic block is much simpler.
It has multiplexers controlled by SRAM bits, which select
one each of the A and B outputs of the neighboring cells.
These are then fed intoAND andXOR gates within the cell,
as well as into a flip-flop. Although the possible functions
are complex, notice that there is a path leading to the B
output that produces theNAND of the selected A and B
inputs, sending it out the B output. This path is enabled
by setting the two 2 : 1 multiplexers to their constant input
and setting B’s output multiplexer to the third input from
the top. Thus, the cell is functionally complete. Also, with
the XOR path leading to output A, the cell can efficiently
implement a half-adder. The cell can perform a pure routing
function by connecting one of the A inputs to the A output
and one of the B inputs to the B output, or vice-versa.
This routing function is created by setting the two 2 : 1
multiplexers to their constant inputs and setting A’s and B’s
output multiplexer to either of their top two inputs. There
are also provisions for bringing in or sending out a signal
on one or more of the neighboring local buses (NS1, NS2,
EW1, EW2). Note that since there is only a single wire
connecting the bus terminals, there can only be a single
signal sent to or received from the local buses. If more
than one of the buses is connected to the cell, they will be
coupled together. Thus, the cell can take a signal running

horizontally on an EW local bus and send it vertically on
an NS local bus without using up the cell’s logic unit. By
bringing a signal in from the local buses, however, the cell
can implement two three-input functions.

The major differences between the Island-style archi-
tecture of the Xilinx 4000 series and the cellular style
of the CLi FPGA is in their routing structure and cell
granularity. The Xilinx 4000 series is optimized for com-
plex, irregular random logic. It features a powerful routing
structure optimized for arbitrary global routing and large
logic cells capable of providing arbitrary four- and five-
input functions. This provides a very flexible architecture,
though one that requires many programming bits per cell
(and thus cells that take up a large portion of the chip area).
In contrast, the CLi architecture is optimized for highly
local, pipelined circuits such as systolic arrays and bit-serial
arithmetic. Thus, it emphasizes local communication at the
expense of global routing and has simple cells. Because
of the very simple logic cells, there will be many more
CLi cells on a chip than will be found in the Xilinx FPGA,
yielding a greater logic capacity for those circuits that match
the FPGA’s structure. Because of the restricted routing,
the CLi FPGA is much harder to map to automatically
than the Xilinx 4000 series, though the simplicity of the
CLi architecture makes it easier for a human designer to
hand-map to the CLi’s structure. Thus, in general, cellular
architectures tend to appeal to designers with appropriate
circuit structures who are willing to spend the effort to
hand-map their circuits to the FPGA, while the Xilinx 4000
series is more appropriate for handling random-logic tasks
and automatically mapped circuits.

Compared with technologies such as full-custom standard
cells and MPGA’s, FPGA’s will in general be slower and

HAUCK: FPGA’S IN REPROGRAMMABLE SYSTEMS 619

Authorized licensed use limited to: Riva Laughlin. Downloaded on May 08,2023 at 15:24:24 UTC from IEEE Xplore. Restrictions apply.

Ex.1030
CISCO SYSTEMS, INC. / Page 5 of 24

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

