the Transmission Research Section of IRCTR (International Research Center for Telecommunications - Transmission and Radar) and also Program Director of the Center for Wireless Personal Communications (CEWPC). Since June 1999, he has been with Aalborg University, Denmark as Co-director of Center for PersonKommunikation (CPK) and holds the Chair of Wireless Information and Multimedia Communications. He was involved in the European ACTS project FRAMES (Future Radio Wideband Multiple Access System) as a DUT Project Leader. He is Project leader of several international industrial funded projects. He has published over 300 technical papers, authored and co-authored three books "CDMA for Wireless Personal Communications," "Universal Wireless Personal Communications," and "Wideband CDMA for Third Generation Mobile Communications" published by Artech House, Boston. His current research interest lies in wireless networks, packet communications, multiple access protocols, adaptive equalizers, spread-spectrum CDMA systems, and multimedia communications.

He has served as a member of advisory and program committees of several IEEE international conferences. He has also presented keynote speeches, invited papers, and tutorials on WPMC at various universities, technical institutions, and IEEE conferences. He Vehicular Interim Chairman of the **IEEE** was the Organizer and Technology/Communications Society Joint Chapter, Benelux Section. He is now the Elected Chairman of the joint chapter. He is also founder of the IEEE Symposium on Communications and Vehicular Technology (SCVT) in the Benelux and he was the Symposium Chairman of SCVT'93.

He is the Co-ordinating Editor and Editor-in-chief of the Kluwer international journal on *Wireless Personal Communications* and also a member of the editorial board of other international journals, including the IEEE Communications Magazine and the IEE Electronics Communication Engineering Journal. He was the Technical Program Chairman of the PIMRC'94 International Symposium held in The Hague, The Netherlands, during September 19–23, 1994, and also of the Third Communication Theory Mini-Conference in conjunction with the GLOBECOM'94 held in San Francisco, CA, November 27–30, 1994. He was the Conference Chairman of IEEE Vehicular Technology Conference, VTC'99 (Fall), Amsterdam, The Netherlands held on September 19–22, 1999 and also the steering committee chairman of The Second International Symposium on Wireless Personal Multimedia Communications (WPMC), Amsterdam, The Netherlands held on September 21–23, 1999.

He is listed in the US Who's Who in the World. He is a fellow of the IEE, a fellow of the Institution of Electronics & Telecommunication engineers, a senior member of IEEE and a member of NERG (The Netherlands Electronics and Radio Society).

Index

Additive white Gaussian noise (AWGN), 63, 69 Advanced Communication Technologies and	Cell loss ratio (CLR), 243–245 Channel
_	
Services (ACTS), 3, 8, 233	characterization, 2 coding, 220
Air interface multiple access, 3	estimate, 98
Algorithm, 38, 239, 240, 247	estimator, 96
AM-PM conversion, 127	model, 180–182
Analog-to-digital conversion, 48	models, 16
ANDEFT, 23	Clipping, 123–126
Antennas, 9, 10	Code sequence, 163–165, 170
Anti-jamming, 159	Coded modulation, 62–70
Asynchronous Transfer Mode (ATM), 1, 7, 12,	Coding, 53–70
13, 14, 15, 229, 235,	Coherence time, 19, 20
237, 238, 239	Coherent detection, 95–107
adaptation layer, 14	Complementary code, 87
network layer, 14	Concatenated codes, 61
Auto-covariance matrix, 98	Constant bit rate (CBR), 3
Automatic repeat request (ARQ), 243–245	Constellation, 41, 60, 57, 60, 62, 63, 66
Available bit rate (ABR), 3, 4	Convolutional codes, 55
Averaging CDMA, 161	Convolutional interleaver, 59
Avoidance CDMA, 161	CORDIC algorithm, 50
AWACS, 3, 4	Correlation peak, 81, 86
	Correlation, 81
Backoff, 125	Crest factor, 119
BAHAMA, 3	Cross-covariance matrix, 98
Bandwidth, 47	CSMA/CA, 6
Battery, 9, 10	Cyclic extension, 39–42
Bessel function, 99	Cyclic prefix, 80, 81
Binary codes, 54	
B-ISDN, 7, 9, 12	Data rate, 6, 8
Bit error ratio (BER), 33, 66, 67	Decision feedback equalizer, 50
Bit rate, 47	DECT, 9
Block codes, 54	Deep fades, 59
Block interleaver, 59	Delay spread, 16–19, 33, 39, 43
BPSK, 6, 40, 62, 244	Delay, 39
Butterfly, 41, 145, 146	Delay, 39
Dutterry, 41, 143, 140	DFT, 22
CDMA arg. 157	Differential amplitude and phase shift keying
CDMA 25, 155, 176	
CDMA, 25, 155–176	(DAPSK), 115

Differential detection, 106-116	Health hazards, 2
Differential techniques, 48, 95, 106-116.	HIPERLAN, 5, 6,7, 8, 241-251
Digital Audio Broadcasting (DAB), 23, 104,	Hybrid
233–235	CDMA, 160
Digital filter, 45	contention CDMA, 160
Digital Video Broadcasting (DVB), 104, 235-	contentionless CDMA, 160
237	OFDM/CDMA, 160
Direct sequence (DS) CDMA, 160, 162-165,	#2
182–184, 194	Ideal OFDM spectrum, 128
Doppler shift, 19	IDFT, 36–39
Doppler spread, 19, 33	IEEE 802.11, 4, 5, 6, 7, 9, 25, 241-251
DS/FH CDMA, 161	IFFT, 33, 36-39, 43, 44, 47, 48
DS/TH CDMA, 161	Information bandwidth, 158
Dynamic channel allocation (DCA), 222, 229-	In-phase component, 88
232	Intercarrier interference (ICI), 39, 40, 44, 45,
	46, 73
Effective guard time, 44	Interference rejection, 159
Effective isotropic radiated power, 246	Interfrequency handover, 175
Equal gain combining, 187	Interleaving, 59
Equalizer, 50	Internet protocol (IP), 1
Error floor, 67, 69, 70	Internet, 1
ETSI BRAN, 4, 5, 25, 229	Interpolation matrix, 98
2707 270 111, 4, 3, 23, 22,	Intersymbol interference (ISI), 44, 45, 46, 73
Fading channel, 68	Irreducible packet error ratio, 70
FDD, 4	ISDN, 9
FFT, 22, 40, 47, 48	ISM, 6
FH/TH CDMA, 161	
Filtering, 45	Kaiser window, 124
Forward-error correction coding, 33, 54–58	KATHRYN, 23
Frame structure, 243	KINEPLEX, 23
FRAMES, 156	
Frequency division multiple access (FDMA),	Linear minimum mean square error (LMMSE),
213	176
Frequency error standard deviation, 85	Lorentzian spectrum, 74
Frequency hopping (FH) CDMA, 160, 165-168	Low probability of interception (LPI), 159
Frequency hopping OFDMA, 213–228	F
Frequency	Magic WAND, 3, 4, 25, 233-241
modulation (FM), 158	Matched filter, 86
offset, 73, 77, 78	Matrix inversion, 98
synchronization, 221	Maximal ratio combining (MRC), 187
synchronization, 73, 75, 78	Maximum delay spread, 18, 19
	Maximum likelihood decoding, 145–147
Gaussian Minimum Shift Keying (GMSK), 49	MC-CDMA receiver, 188
Global information village, 1, 2	MC-CDMA transmitter, 188
Gold codes, 197	MEDIAN, 3, 4
GSM, 7, 8, 9	Medium access control (MAC), 242–252
Guard time, 39–42	Minimum mean square error combining
Hamming distance, 54	(MMSEC), 187
Hamming window, 124	MMAC, 4, 5, 241-251
Handover, 173	Mobile broadband systems (MBS), 5, 6, 12, 13,
HDTV 7 23	14

Mobile multimedia, 1	Power
Mobile telephony, 1	amplifier, 127
Multi carrier (MC)-CDMA, 27, 160, 179-209,	control, 172
215	delay profile, 17
Multipath channel models,16	spectral density, 134, 136
Multipath propagation, 15-20	Preguard interval, 44
Multitone (MT)-CDMA, 160	Privacy, 159
Multiuser detection (MUD), 175	Processing gain, 158
Multi-user detection, 155	PSK, 33, 95
,	Pulse amplitude modulation (PAM), 60
Narrowband CDMA, 157	Pulse modulation (PM), 158
Network interface unit, 14, 15	Pure CDMA, 160
Non-binary codes, 54	Take oblini, 100
Non-ideal power amplifier, 127	QAM, 6, 33, 34, 35, 41, 46, 48, 53, 61–62
Normalized delay spread, 66, 68, 69	QPSK, 6, 56, 60, 61, 62, 230, 232, 244
Normalized delay spicad, 66, 68, 69	Quadrature component, 88
Normalized guard time, 67, 68	Quality of service (QoS), 243–245, 247
Nyquist sampling, 96	Quantized OFDM signal, 87
OFDMA, 213-228	Radio interface unit (RIU), 14, 15
Offset synchronization, 222	Raised cosine, 45, 89
Optimal timing, 88	RAKE receiver, 155, 171
Orthogonal Frequency Division Multiplexing	Random frequency hopping, 224
(OFDM), 1, 3, 5, 20, 21,	Rapp's model, 127
22, 23, 33-51, 115, 233,	Rayleigh fading, 66, 68
239, 241	Reed-Solomon codes, 54
preamble, 238, 244, 249-252	Reference cancellation function, 131
receiver, 95	Repetition codes, 54
symbol time, 41	Rolloff factor, 44, 45
transceiver, 48, 245	
Orthogonal restoring combining, 189	Safety considerations, 10, 11
Orthogonality, 35, 40, 41, 44, 89	SAMBA, 3, 4
0.1.1.0gonumey, 55, 10, 1.1, 1.1, 0.5	Scrambling, 130, 150–152
Packet error ratio (PER), 68, 69	Sensitivity, 73
Packet transmission, 105	Shift registers, 55
PAP ratio distribution, 121–123	Sidelobes, 81
PAP reduction codes, 138–150	Signal processing, 47, 245
Parallel interference cancellation (PIC), 175	Signal-to-noise ratio (SNR), 33, 46, 56–58, 96
Peak cancellation, 119, 130	107, 232
Peak windowing, 123–126	Single parity check, 54
Peak-to-average power (PAP), 121–156	Single-carrier modulation, 49–51
Phase	Single-sided spectrum, 74
error, 84	Smart antenna, 3
	Soft decision, 56, 58
estimation, 83	
noise spectral density, 75	Soft handover, 173
noise, 73	Spreading code, 157, 158, 160
Phase-locked loop (PLL), 76, 77	Spread-spectrum, 156
Pilot estimates, 98	modulation, 158
Pilot subcarrier, 105	multiple access (SSMA), 158
Pilots, 97, 98, 236, 248, 251	Standard deviation, 81
Postguard interval, 44	Subcarriers, 39

Suboptimal decoding, 147

Successive interference cancellation (SIC), 176

SWAN, 3

Symbol energy-to-noise density ratio (E_b/N_0) ,

56, 57, 59, 61, 62, 65

Symbol scrambling, 150-152

Symbol structure, 91

Symbol time, 39, 44, 230, 235

Synchronization, 73-92

TDD, 4, 6

TDMA, 4

TDMA/CDMA, 161

Time hopping (TH) CDMA, 160-170

Time synchronization, 221

Timing errors, 78-80

Timing offset, 73

Tracking loop bandwidth, 76

Training symbol, 81

Transmission bandwidth, 158

Trellis coding, 62

UMTS, 9 UNII, 6

Variable bit rate (VBR), 3

Very large scale integration (VLSI), 23

Very-High-Speed Digital Subscriber Line

(VDSL), 23

Virtual channel identifier (VCI), 13

Virtual path identifier (VPI), 13

Viterbi decoding, 56

Voltage controlled Oscillator (VCO), 76

Walsh-Hadamard code, 197

Walsh-Hadamard transform, 146, 147

WATM, 3

Wideband CDMA, 157

Windowing, 42-46, 235, 245

Wireless Broadband Mobile Communication

Systems, 12, 13, 14, 15

Wireless Customer Premises Network

(WCPN), 2

Wireless Local Area Network (WLAN), 1, 2, 6,

Wireless Local Loop (WLL), 2

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

