
  

 

    

   

445 Hoes Lane Piscataway, NJ 08854  

 

 

 

 

DECLARATION OF GORDON MACPHERSON 

 

I, Gordon MacPherson, am over twenty-one (21) years of age.  I have never been 

convicted of a felony, and I am fully competent to make this declaration.  I declare the following 

to be true to the best of my knowledge, information and belief: 

 

1. I am Director, Board Governance & Policy Development of The Institute of Electrical 

and Electronics Engineers, Incorporated (“IEEE”). 

 

2. IEEE is a neutral third party in this dispute. 

 

3. I am not being compensated for this declaration and IEEE is only being reimbursed 

for the cost of the article I am certifying. 

 

4. Among my responsibilities as Director, Board Governance & Policy Development, I 

act as a custodian of certain records for IEEE. 

 

5. I make this declaration based on my personal knowledge and information contained 

in the business records of IEEE. 

 

6. As part of its ordinary course of business, IEEE publishes and makes available 

technical articles and standards.  These publications are made available for public 

download through the IEEE digital library, IEEE Xplore. 

 

7. It is the regular practice of IEEE to publish articles and other writings including 

article abstracts and make them available to the public through IEEE Xplore.  IEEE 

maintains copies of publications in the ordinary course of its regularly conducted 

activities. 

 

8. The article below has been attached as Exhibit A to this declaration: 

 

A.  S. Fiske, et al.; “Thread prioritization: a thread scheduling mechanism for 

multiple-context parallel processors”, published in Proceedings of 1995 1st 

IEEE Symposium on High Performance Computer Architecture, date of 

conference January 22-25, 1995. 

 

9. I obtained a copy of Exhibit A through IEEE Xplore, where it is maintained in the 

ordinary course of IEEE’s business.  Exhibit A is a true and correct copy of the 

Exhibit, as it existed on or about May 11, 2023. 

 

DocuSign Envelope ID: F0A92180-66A9-4C5C-A81C-637CE721AAE6

Realtek Ex. 1012
Case No. IPR2023-00922

Page 1 of 15f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


10. The article and abstract from IEEE Xplore shows the date of publication.  IEEE 

Xplore populates this information using the metadata associated with the publication. 

 

11. S. Fiske, et al.; “Thread prioritization: a thread scheduling mechanism for multiple-

context parallel processors”, published in Proceedings of 1995 1st IEEE Symposium 

on High Performance Computer Architecture, date of conference January 22-25, 

1995.  Copies of the conference proceedings were made available no later than the 

last day of the conference. The article is currently available for public download from 

the IEEE digital library, IEEE Xplore. 

12. I hereby declare that all statements made herein of my own knowledge are true and 

that all statements made on information and belief are believed to be true, and further 

that these statements were made with the knowledge that willful false statements and 

the like are punishable by fine or imprisonment, or both, under 18 U.S.C. § 1001. 

 

I declare under penalty of perjury that the foregoing statements are true and correct. 

 

 

 

 

Executed on: 

    

     

 

 

DocuSign Envelope ID: F0A92180-66A9-4C5C-A81C-637CE721AAE6

5/11/2023

Realtek Ex. 1012
Case No. IPR2023-00922

Page 2 of 15f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


 

 

 

 

 

 

 

 

 

 

 

EXHIBIT A 
 

DocuSign Envelope ID: F0A92180-66A9-4C5C-A81C-637CE721AAE6

Realtek Ex. 1012
Case No. IPR2023-00922

Page 3 of 15f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Thread Prioritization: A Thread Scheduling Mechanism 
for Multiple-Context Parallel Processors* 

Stuart Fiske and William J. Dally 
stuart@ai.mit.edu, billd@ai.mit.edu 

Artificial Intelligence Laboratory and Laboratory for Computer Science 
Massachusetts Institute of Technology 

Cambridge, Massachusetts 02139 
Abstract 

Multiple-context processors provide register resources 
that allow rapid context switching between several threads 
as a means of tolerating long communication and synchro- 
nization latencies. When scheduling threads on such a pro- 
cessor; we must first decide which threads should have their 
state loaded into the multiple contexts, and second, which 
loaded thread is to execute instructions at any given time. 
In this paper we show that both decisions are important, 
and that incorrect choices can lead to serious performance 
degradation. We propose thread priorithation as a means 
of guiding both levels of scheduling. Each thread has a pri- 
ority that can change dynamically, and that the scheduler 
uses to allocate as many computation resources as possible 
to critical threads. We briejy describe its implementation, 
and we show simulation performance results fora number of 
simple benchmarks in which synchronization performance 
is critical. 

1 Introduction 
Parallel processor performance is critically tied to the 

mechanisms provided for tolerating long latencies that oc- 
cur during remote memory accesses, and processor syn- 
chronization operations. Multiple-context processors [20, 
3, 13, 151 provide multiple register sets to multiplex sev- 
eral threads over a processor pipeline in order to tolerate 
these communication and synchronization latencies. Mul- 
tiple register sets, including multiple instruction pointers, 
allow the state of multiple threads to be loaded and ready 
to run at the same time. Each time the currently executing 
thread misses in the cache or fails a synchronization test, 
the processor can begin executing one of the other threads 
loaded in one of the other hardware contexts. 

For a multiple-context processor as shown in Figure 1, 
there are both loaded and unloaded threads. A thread is 
loaded if its register state is in one of the hardware con- 
texts, and unloaded otherwise. Unloaded threads wait to 

'The research described in this paper was supported by the Advanced 
Research Rojects Agency under ARPA order number 8272. and moni- 
tored by the Air Force Electronic Systems Division under contract number 
F19628-92-C-0045. 

0.8186-6445-2195 $04 no c 1995 IEEE 

Pipeline 
- ~ 1  

Multiple-context processor Thread queue in main memory 

Figure 1: Multiple-context processor with N contexts. 

be loaded in a software scheduling queue. To allow a tra- 
ditional RISC pipeline design, we assume a block multi- 
threading model [23,3], in which blocks of instructions are 
executed from each context in turn, rather than a cycle-by- 
cycle interleaving of instructions from the different con- 
texts [20, 15, 131. At any given time, the processor is 
executing one of the loaded threads. A context switch oc- 
curs when the processor switches from executing one loaded 
thread, to executing another loaded thread, an operation that 
can be done in 1 to 20 cycles, depending on the processor 
design. A thread swap involves swapping a loaded thread 
with an unloaded thread from the software queue. The cost 
of a thread swap is one to two orders of magnitude greater 
than a context switch, because it involves saving and restor- 
ing register state, and manipulating the thread scheduling 
queue. 

The scheduling problem on a multiple-context proces- 
sor involves two components. First, we must decide which 
threads should be loaded in the contexts. Second, in the 
case that there are multiple loaded threads, we must decide 
which one is executing at any given time. In this paper we 

210 

Authorized licensed use limited to: IEEE Staff. Downloaded on May 11,2023 at 12:52:42 UTC from IEEE Xplore.  Restrictions apply. 

Realtek Ex. 1012
Case No. IPR2023-00922

Page 4 of 15f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

mailto:stuart@ai.mit.edu
mailto:billd@ai.mit.edu
https://www.docketalarm.com/


show that it is important to correctly make both types of 
scheduling decisions. If a critical thread is not loaded, then 
no progress can be made along the critical path, and runtime 
performance suffers. If the critical threads are loaded along 
with other non-critical threads and the scheduler treats all 
the loaded threads as equal, then runtime performance suf- 
fers. Time devoted to the non-critical loaded threads could 
potentially be devoted to the critical threads. 

Thread prioritization is a simple means of guiding the 
scheduling of threads on a node. Each thread has a priority 
that indicates the importance of the thread in the overall 
problem. The software scheduler on each node chooses the 
highest priority threads as the loaded threads. On a context 
switch, the hardware scheduler chooses the loaded thread 
with the highest priority as the next thread using simple 
hardware, in order to minimize context switch overhead. 
The goal is to devote as many of the processor resources as 
possible to the tasks that are known to be critical to overall 
performance. 

This paper examines a number of benchmarks that show 
the effects of prioritizingat both levels of scheduling. These 
benchmarks evaluate the performance of barrier synchro- 
nization, queue locks, and fine-grain synchronization. Our 
experiments vary the number of threads and contexts per 
processor. When threads are prioritized, the performance 
of the barrier benchmark improves by up to a factor of 2, 
and the performance of the queue lock benchmark improves 
by up to a factor of 7. For the fine-grain synchronization 
benchmark, performance was improved by up to 26%. 

This paper is organized as follows. Section 2 describes 
thread prioritization and outlines some of the implementa- 
tion details and costs. Section 3 briefly outlines the simula- 
tion environment and assumptions, and Section 4 presents 
the results from a number of simple scheduling experiments. 
Section 5 describes related work, while Section 6 concludes 
the paper and discusses future work. 

2 Thread Prioritization 
Thread prioritization involves assigning a priority to all 

the different threads in an application, and then using this 
priority to make thread scheduling decisions. The priority 
reflects the importance of a single thread to the completion 
of a singleapplication. The thread scheduler uses the thread 
priority in a very different way than process scheduling in 
UNIX for instance, where the goal is to achieve good in- 
teractive performance and time sharing between competing 
processes [16]. In our case, the goal is to identify as ex- 
actly as possible a relative order in which threads should 
be run, and devote as many resources as possible to the 
most important threads. Also, the granularity of scheduling 
is much different: in our case the priority is used to make 
scheduling decisions on every hardware context switch in a 
multiple-context processor. 

2.1 Priority Thread Scheduling 
Consider an application that consists of a set T of threads 

on each processor, where each processor has C contexts. 
Each thread t ;  E T has a priority P;, with a higher value 
of Pi indicating a higher thread priority. The hardware and 
software schedulers use the priority to do the scheduling. 

First, the software scheduler uses the priority to decide 
which threads are loaded. Specifically, it chooses a set 
TL of threads to load into the C contexts, and a set TU of 
unloaded threads to remain in a software scheduling queue. 
The scheduler chooses the loaded threads such that PI 2 P, 
for all ti E TL and tu E Tu. Threads of equal priority are 
scheduled in round-robin fashion. 

Second, at each context switch the hardware scheduler 
uses the priority to determine which loaded thread to ex- 
ecute. The scheduler chooses a thread t, E TL such that 
P, = m a + { A }  for all tr E TL. If a thread is waiting for 
a memory reference to be satisfied then it is stalled and is 
not considered for scheduling until the memory reference is 
satisfied. If several loaded threads have the same priority, 
then these threads are chosen in round-robin fashion. A 
context switch can occur on a cache miss, on a failed syn- 
chronization test, or on a change of priority of one of the 
threads on the processor. Each change in priority results 
in a re-evaluation of Tu, TL, and t,. In this sense, the 
scheduling is preemptive. 

Note as well that thread scheduling as defined here is 
purely a local operation. Each processor has its own set 
of threads, and schedules only these. We do not consider 
dynamic load balancing issues in this paper. 

2.2 Assigning Thread Priorities 
In our benchmarks the user explicitly assigns a priority 

to each thread, and changes this priority as the algorithm 
requires. Although initially the use of thread prioritiza- 
tion is likely to be limited to special runtime libraries (e.g. 
synchronization primitives) and user-available program di- 
rectives, we expect that it will eventually be possible have 
a compiler assign priorities to threads automatically. Au- 
tomatic thread prioritization is particularly straightforward 
when the program can be described as a well defined DAG 
(Directed Acyclic Graph) that can be analyzed and used to 
assign the priorities. 

Prioritizing threads incorrectly can lead to a number of 
deadlock situations. Specifically, if thread A is waiting for 
another thread B to complete some operation, and thread B 
has a low priority that does not allow it to be loaded, then 
deadlock results. Thus the priorities assigned to threads 
must respect the dependencies of the computation. 

One way of avoiding deadlock is to guarantee some sort 
of fairness in the scheduling. If all threads are guaranteed to 
run some amount of time despite their priorities, then we can 
guarantee that deadlock will not result. However, as will be 

211 

Authorized licensed use limited to: IEEE Staff. Downloaded on May 11,2023 at 12:52:42 UTC from IEEE Xplore.  Restrictions apply. 

Realtek Ex. 1012
Case No. IPR2023-00922

Page 5 of 15f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time  

alerts and advanced team management tools built for  
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal, 
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native 

docket research platform finds what other services can’t. 
Coverage includes Federal, State, plus PTAB, TTAB, ITC  
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past 
with full text, pinpoint searching. Link to case law cited  
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,  

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are  
always at your fingertips.

Docket Alarm provides insights to develop a more  

informed litigation strategy and the peace of mind of 

knowing you’re on top of things.

Explore Litigation 
Insights

®

WHAT WILL YOU BUILD?  |  sales@docketalarm.com  |  1-866-77-FASTCASE

API
Docket Alarm offers a powerful API 
(application programming inter-
face) to developers that want to 
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your 
attorneys and clients with live data 
direct from the court.

Automate many repetitive legal  
tasks like conflict checks, document 
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks 
for companies and debtors.

E-DISCOVERY AND  
LEGAL VENDORS
Sync your system to PACER to  
automate legal marketing.


