
1 UNITED STATES PATENT AND TRADEMARK OFFICE

2 BEFORE THE PATENT TRIAL AND APPEAL BOARD

3

4 _____________________________

)

5 LG ELECTRONICS, INC.,)

)

6 Petitioner,)

)

7 vs.) Nos. IPR2015-00326

) IPR2015-00330

8 ATI TECHNOLOGIES ULC,)

)

9 Patent Owner.)

 _____________________________)

10

11

12

13

14

15 VIDEOTAPED DEPOSITION OF NADER BAGHERZADEH, Ph.D.

16 Los Angeles, California

17 Tuesday, September 15, 2015

18 Volume I

19

20

21 Veritext Legal Solutions

Mid-Atlantic Region

1250 Eye Street NW - Suite 1201

22 Washington, D.C. 20005

23

24

25

Page 1

Veritext Legal Solutions
215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI 2073
LG v. ATI

IPR2015-00326

ATI Ex. 2120
IPR2023-00922

Page 1 of 611

Page 2
1 UNITED STATES PATENT AND TRADEMARK OFFICE
2 BEFORE THE PATENT TRIAL AND APPEAL BOARD
3
4 _____________________________

)
5 LG ELECTRONICS, INC.,)

)
6 Petitioner,)

)
7 vs.) Nos. IPR2015-00326

) IPR2015-00330
8 ATI TECHNOLOGIES ULC,)

)
9 Patent Owner.)

 _____________________________)
10
11
12
13
14 Videotaped deposition of NADER BAGHERZADEH,
15 Ph.D., Volume I, taken on behalf of Patent Owner, at
16 350 South Grand Avenue, Suite 2500, Los Angeles,
17 California, beginning at 9:38 a.m. and ending at
18 1:42 p.m. on Tuesday, September 15, 2015, before
19 NADIA NEWHART, Certified Shorthand Reporter
20 No. 8714.
21
22
23
24
25

Page 3
1 APPEARANCES:
2
3 For Petitioner:
4 MAYER BROWN, LLP
5 BY: ROBERT G. PLUTA
6 Attorney at Law
7 71 South Wacker Drive
8 Chicago, Illinois 60606-4637
9 312-701-8641

10 rpluta@mayerbrown.com
11
12 MAYER BROWN, LLP
13 BY: JOHN X. ZHU
14 Attorney at Law
15 1999 K Street, N.W.
16 Washington, D.C. 20006-1101
17 202-263-3318
18 jzhu@mayerbrown.com
19
20
21
22
23
24
25

Page 4
1 APPEARANCES (Continued):
2
3 For Patent Owner:
4 STERNE KESSLER GOLDSTEIN FOX
5 BY: JONATHAN TUMINARO, Ph.D.
6 BY: TYLER J. DUTTON
7 Attorneys at Law
8 1100 New York Avenue, NW
9 Washington, D.C. 20005

10 202-371-2600
11 jtuminar@skgf.com
12 tdutton@skgf.com
13
14 Videographer:
15 GRANT CIHLAR
16
17
18
19
20
21
22
23
24
25

Page 5
1 INDEX
2 WITNESS EXAMINATION
3 NADER BAGHERZADEH, Ph.D.
4 Volume I
5 BY MR. TUMINARO 8
6 BY MR. PLUTA 123
7
8 EXHIBITS
9 NUMBER DESCRIPTION PAGE

10 Exhibit 1 Declaration of Dr. Nader 10
11 Bagherzadeh; 111 pages
12
13 Exhibit 2 Declaration of Dr. Nader 11
14 Bagherzadeh; 86 pages
15
16 Exhibit 3 Consultant Curriculum Vitae 15
17 for Nader Bagherzadeh, Ph.D.;
18 33 pages
19
20 Exhibit 4 Article entitled "How GPUs 36
21 Work"; 5 pages
22
23 Exhibit 5 Article entitled "Exploiting 40
24 the Shader Model 4.0
25 Architecture"; 9 pages

2 (Pages 2 - 5)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922

Page 2 of 611

Page 6
1 INDEX (Continued):
2 EXHIBITS
3 NUMBER DESCRIPTION PAGE
4 Exhibit 6 United States Patent 61
5 Number 5,808,690; 50 pages
6
7 Exhibit 7 United States Patent 61
8 Number 6,897,871; 10 pages
9

10 Exhibit 8 United States Patent 84
11 Number 7,015,913; 20 pages
12
13 Exhibit 9 United States Patent 98
14 Number 7,376,811; 12 pages
15
16 Exhibit 10 Patent Trial and Appeal 104
17 Board Decision; 28 pages
18
19
20
21
22
23
24
25

Page 7
1 Los Angeles, California, Tuesday, September 15, 2015
2 9:38 a.m.
3
4 THE VIDEOGRAPHER: Good morning. We're on
5 the record. The time is 9:38 a.m. on
6 September 15th, 2015. This is the video-recorded
7 deposition of Dr. Nader Bagherzadeh.
8 My name is Grant Cihlar, here with our court
9 reporter, Nadia Newhart. We are here from Veritext

10 Legal Solutions at the request of counsel for the
11 patent owner. This deposition is being held at
12 Mayer Brown in Los Angeles, California.
13 The caption of this case is LG Electronics,
14 Incorporated versus ATI Technologies ULC. The case
15 numbers are IPR2015-00330 and IPR2015-00326.
16 Please note that audio and video recording
17 will take place unless all parties agree to go off
18 the record. Microphones are sensitive and may pick
19 up whispers, private conversations and cellular
20 interference. I am a notary public. I am not
21 related to any party in this action, nor am I
22 financially interested in the outcome in any way.
23 If there are any objections to proceeding, please
24 state them at the time of your appearance beginning
25 with the noticing attorney.

Page 8
1 MR. TUMINARO: Jonathan Tuminaro from the law
2 firm of Sterne Kessler Goldstein & Fox on behalf of
3 the patent owner, ATI Technologies ULC. And with me
4 is Tyler Dutton, also from Sterne Kessler.
5 MR. PLUTA: Robert Pluta from Mayer Brown on
6 behalf of LG Electronics.
7 MR. ZHU: John Zhu also of Mayer Brown for LG
8 Electronics.
9 THE VIDEOGRAPHER: Thank you.

10 The witness will be sworn in, and counsel may
11 begin the examination.
12
13 NADER BAGHERZADEH, Ph.D.,
14 having been first duly sworn, was examined and
15 testified as follows:
16
17 EXAMINATION
18 BY MR. TUMINARO:
19 Q Good morning, sir.
20 A Good morning.
21 Q This is the second time I'm taking your
22 deposition, right?
23 A Correct.
24 Q Correct. Okay. Just a couple ground rules
25 for this deposition as we did last time. We're

Page 9
1 trying to get a clear record from the court
2 reporter, so I'll ask that you don't speak over me
3 and I'll try not to speak over you; is that fair?
4 A That's good.
5 Q Okay. I'm going to try to ask clear
6 questions, but if at any time you don't understand
7 my question, will you let me know?
8 A Sure.
9 Q Okay. If you answer one of my questions, I'm

10 going to assume you understood it; is that fair?
11 A That's fair.
12 Q Okay. I'm going to take periodic breaks, but
13 if at any time you need a break, will you let me
14 know?
15 A Yes.
16 Q Okay. One thing I'd ask, though, if there's
17 a pending question, I ask that you answer the
18 que- -- answer the question before we take a break;
19 is that fair?
20 A That is fair.
21 Q Okay. You understand that you are testifying
22 under oath here today?
23 A Correct.
24 Q Is there any reason you cannot do that?
25 A No.

3 (Pages 6 - 9)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922

Page 3 of 611

Page 10
1 Q Okay. You submitted two declarations in
2 these two cases?
3 A Two cases, two declarations, yes.
4 MR. TUMINARO: Okay. I'd like to have this
5 marked.
6 (Exhibit 1 was marked for identification
7 by the court reporter and is attached hereto.)
8 BY MR. TUMINARO:
9 Q Sir, you've been handed what's been marked as

10 Exhibit 1 for identification purposes. This is the
11 declaration that you submitted in the 326 IPR; is
12 that right?
13 A Correct.
14 Q And if you would turn with me to the last
15 page before Appendix A.
16 A Exhibit 1?
17 Q Exhibit 1.
18 A Last page?
19 Q Before Appendix A.
20 A Yes.
21 Q Is that your signature that appears on that
22 last page that's not numbered?
23 A Correct.
24 Q Okay. And you signed this declaration on
25 December 10th, 2014?

Page 11
1 A Correct.
2 MR. TUMINARO: Okay.
3 (Exhibit 2 was marked for identification
4 by the court reporter and is attached hereto.)
5 BY MR. TUMINARO:
6 Q If you turn with me to Exhibit 2, this is the
7 declaration that you submitted in 330 IPR; is that
8 right?
9 A Correct.

10 Q Okay. And again, if you would just turn with
11 me to the last page before the appendix. Is that
12 your signature?
13 A Yes.
14 Q Okay. And you signed the declaration in the
15 330 IPR on December 9th, 2014; is that right?
16 A That is correct.
17 Q Okay. All right. With respect to Exhibit 1,
18 is there anything that you would like to add?
19 MR. PLUTA: Object to the form.
20 THE WITNESS: Not that I can think of right
21 now.
22 BY MR. TUMINARO:
23 Q Is there anything that you would like to
24 delete?
25 A Not that I can think of right now.

Page 12
1 Q Are there any changes at all that you would
2 like to make to your declaration in the 326 IPR?
3 A Nothing comes to mind right now.
4 Q Okay. Same with respect to Exhibit 2, which
5 is your declaration in the 330 IPR. Anything that
6 you would like to add to that declaration?
7 A No.
8 Q Anything that you'd like to delete?
9 A No.

10 Q Any changes at all that you'd like to make to
11 that declaration?
12 A Not at this time.
13 Q Okay. When were you first contacted with
14 respect to these two IPRs?
15 A So this was signed December. I would say --
16 I'm guessing early fall.
17 Q 2014?
18 A Yeah.
19 Q Okay. And who contacted you?
20 A I think it was Mr. Maas and Mr. Zhu and
21 others from that team, I think.
22 Q Okay.
23 A I'm -- I'm not certain about this, but these
24 are the names that come to mind.
25 Q That's your best recollection?

Page 13
1 A That's right.
2 Q Okay. And how were you contacted? By
3 telephone? By e-mail? In what form were you
4 contacted?
5 A First time?
6 Q Yes.
7 A Phone call, I would say, yeah.
8 Q Okay. And since the time that you were first
9 contacted until you submitted your declaration, how

10 much time did you spend preparing your declaration?
11 A Oh, I'm going to give you a lower bound like
12 I have done in the past for my depositions. It was
13 at least 40 hours.
14 Q At least 40 hours on each or combined? Each
15 declaration --
16 A On each.
17 Q On each.
18 So a total of at least 80 hours working on
19 your declaration in the 326 --
20 A And the --
21 Q -- and the 330?
22 A I'm sorry. Because there was some other
23 case, as well, so that's -- there were -- sorry.
24 There were other patents involved, so I would say --
25 I would say 40 hours each of these two, no. I would

4 (Pages 10 - 13)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922

Page 4 of 611

Page 14
1 say total, about 40 hours or more.
2 Q Okay.
3 A Yeah, I think that's correct.
4 Q Okay. And what did you do to prepare for
5 today's deposition?
6 A I reviewed my declaration. I looked at all
7 the appendix references. I can -- I looked at the
8 patent. I glanced over the patent history. I've
9 looked at Lindholm's patent, Rich Kizhepat,

10 Kurihara. I looked at certain portions of OpenGL
11 that I was interested in, and that's it.
12 Q Okay. And did you also -- so with respect --
13 strike that.
14 You looked at the 871 patent; is that right?
15 A Yes.
16 Q Did you also look at the 369 patent?
17 A Yes, I did.
18 Q Okay. Did you also look at the prosecution
19 history of the 369 patent?
20 A Glanced over it, yes.
21 Q Okay. And did you look at -- in preparing
22 for your deposition here today, did you review any
23 other exhibits that are not listed in your materials
24 considered for your declarations?
25 A Not that I recall.

Page 15
1 Q Okay. Did you look at the patent owner's
2 response in the 053 case?
3 MR. PLUTA: Object to form.
4 THE WITNESS: 053 case?
5 BY MR. TUMINARO:
6 Q Yes.
7 A In preparation, I only looked at what's
8 related to these two patents.
9 Q Okay. Have you seen the patent owner's

10 response in the 053 case?
11 MR. PLUTA: Object to form, object to
12 relevance.
13 THE WITNESS: I don't understand your
14 question, Counsel. You mean since my deposition,
15 there was a response; is that what you're saying?
16 BY MR. TUMINARO:
17 Q Yeah. Since your deposition, there was a
18 response in the 053 case. Have you seen that
19 response?
20 A No.
21 MR. TUMINARO: Okay.
22 (Exhibit 3 was marked for identification
23 by the court reporter and is attached hereto.)
24 BY MR. TUMINARO:
25 Q Sir, you've been handed what's been marked as

Page 16
1 Exhibit 3 for identification purposes. This is the
2 consultant CV that was attached to -- as an exhibit
3 to each of your declarations; is that right?
4 A That's correct.
5 Q All right. Again, anything that you would
6 like to add to this CV?
7 A No. I mean, I've published additional
8 papers, but I -- I think this is fine.
9 Q You've published additional papers since you

10 submitted this declaration in -- on December 9th or
11 December 10th of 2014?
12 A Yes. We publish all the time.
13 Q Okay. Apart from any other papers, any- --
14 anything that you'd want to add to this --
15 A No.
16 Q -- CV?
17 A No.
18 Q Anything that you'd want to delete from the
19 CV?
20 A Oh, no.
21 Q Any changes at all that you would like to
22 make?
23 A I mean, if there's a typo somewhere here, I
24 would like to change it, but I have not seen a typo.
25 If there is any misspelling or, you know, some

Page 17
1 cosmetic things, you know, I might want to change
2 that. But I don't see anything that I can think of
3 to be changed here.
4 Q Okay. Do you have any other CVs that you use
5 in your professional capacity?
6 A Yes.
7 Q Apart from this consultant CV?
8 A That's right.
9 Q How many other CVs do you use?

10 A Different venues; different CVs. I have a CV
11 for National Science Foundation grants. Those are
12 two-page CVs. I have a CV for merit and promotions
13 at the University of California. That's over
14 70 pages.
15 Q Do you have any other CVs besides those two
16 that you mentioned?
17 A There are other ones for different
18 applications. You know, the -- the way they ask
19 you, a one-page CV or like an executive summary or
20 something like that, yeah.
21 Q Do you -- do you talk on a regular basis,
22 give -- give presentations on a regular basis?
23 A Yes, I do.
24 Q Do you have a CV that you use to indicate
25 your experience with talking engagements?

5 (Pages 14 - 17)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922

Page 5 of 611

Page 18
1 A No, because they know me so they don't ask
2 for a CV.
3 Q Okay.
4 A That's right. It would be a little weird for
5 them to ask for a CV for somebody they're inviting
6 for a talk.
7 Q Okay.
8 A That's usually not done.
9 Q Is your NSF CV publicly available?

10 A That's a good question. I don't know if it
11 is publicly available.
12 Q Do you -- you're a -- you're a professor at
13 the University of California, Irvine; is that right?
14 A Correct.
15 Q Do you publish your CV on -- on the
16 university's webpage?
17 A No, we don't. We just have a summary on the
18 website. If you Google, you'll find out.
19 Q So based on your CV, you've -- you've never
20 worked at a graphics processing company, correct?
21 MR. PLUTA: Object to form.
22 THE WITNESS: Well, I worked for our
23 start-up, and one of the application was for
24 graphics processing.
25 BY MR. TUMINARO:

Page 19
1 Q The start-up being the MorphoSys?
2 A Yes, Morpho Technology.
3 Q Morpho Technologies.
4 Okay. If we look at Morpho Technologies on
5 your CV, it says:
6 "Duties: Cofounder; DSP design
7 for communication and multimedia
8 systems."
9 Is that right? What about that signifies

10 that you worked on graphics?
11 A So we added the functionality of multimedia
12 graphics processing, because we were seeking
13 customers and clients to adopt a technology. And we
14 had a -- you know, we had a hammer. We were looking
15 for a nail.
16 So basically, we had a parallel processor, an
17 SIMD, to say it more specifically. We were very
18 proud of it because it worked really nicely. And
19 many of these problems are data parallel, so we felt
20 very strongly about being able to apply it to the
21 pixel processing and so on.
22 Q Okay. So you felt strongly that you could
23 apply it to pixel processing. Did you actually
24 apply it to pixel processing?
25 MR. PLUTA: Object to form.

Page 20
1 THE WITNESS: We did. We did, yeah.
2 BY MR. TUMINARO:
3 Q Did you actually do that work?
4 A I'm sorry?
5 Q Were you the one that did that work?
6 A I was the key engineer, yes.
7 Q Okay. Is it -- you've worked on digital
8 signal processors?
9 A Sure, yes.

10 Q DSP for short; is that right?
11 A Yes.
12 Q You've worked on system-on-a-chip
13 architectures?
14 A I have, and I continue to, yes.
15 Q You've continued to work on that?
16 A Uh-huh.
17 Q You've published papers on a system-on-a-chip
18 architecture?
19 A All the time.
20 Q You continue to do research on system-on-a-
21 chip architecture?
22 A That's what we do.
23 Q Okay. And you also work on processor
24 architecture in general?
25 A That's all my life, yes.

Page 21
1 Q That's your research?
2 A Yes.
3 Q You've written papers on processor
4 architecture?
5 A Yes.
6 Q Okay. All right. Let -- let's -- let's look
7 at your papers, if you would. On page 5 of your CV,
8 there's a section that reads "Journal" -- well, it
9 starts with "Publications."

10 Do you see that?
11 A Yes.
12 Q And in the "Journals" section, there are
13 listed, starting on page 5 and spanning to page 13,
14 88 journal articles; is that right?
15 A Right.
16 Q And then starting on page 13, there's a
17 section that reads "Journal" -- "Journals (other)."
18 Do you see that?
19 A Yes.
20 Q What does that refer to?
21 A These are not -- okay. Yeah. When -- when
22 you have a special issue in a journal -- actually, I
23 see a typo here.
24 When you see a special issue in a journal,
25 then there would be editors that would be writing a

6 (Pages 18 - 21)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922

Page 6 of 611

Page 22
1 summary, an overview of what the special is all --
2 special issue is all about. So the "Journal
3 (others)" means that we wrote an opening statement
4 about what this particular special issue is about.
5 For instance, let's say there was a special issue
6 for configurable computing, like jo3.
7 So Fadi Kurdahi and I, plus others, wrote an
8 opening remark. So this is really not
9 peer-reviewed. That's why it's called "Journals

10 (other)."
11 Q I see.
12 A All the other ones are peer-reviewed, and we
13 really don't count these for promotions. And this
14 is just a service to the society, IEEE society, and
15 whoever else is in charge. We have to do that.
16 I -- I don't know how it is in other fields,
17 but it takes time because you have to review those
18 selected papers and make a summary of what -- what's
19 coming up, and so it takes time.
20 Q Okay. So under "Journals (other)," you have
21 six articles that are listed there; is that right?
22 A Right.
23 Q Okay. And after "Journals," starting on
24 page 13 of your CV, there's book chapters; is that
25 right?

Page 23
1 A That's right.
2 Q And there's five listed book -- book chapters
3 that you've contributed?
4 A Correct.
5 Q Okay. Then on page 14, there's conference
6 papers, I -- I assume; is that right? Is that what
7 that means?
8 A Yes.
9 Q They're refereed?

10 A That's right.
11 Q Okay. And starting on page 14 and spanning
12 all the way until -- I guess it's page 29, there's
13 160 conference papers listed on your CV?
14 A Yes.
15 Q Okay. Then starting on page 29, there's
16 another section that reads "Technical Reports,"
17 correct?
18 A Correct.
19 Q Okay. And from page 29 to page 30 of your
20 CV, there's 13 technical reports that are listed?
21 A Yes.
22 Q So in total, if you add up all those papers
23 on your CV, you have 272 papers listed on your CV?
24 A Yes.
25 Q Okay. And only eight of them are directed to

Page 24
1 graphics processing, right?
2 MR. PLUTA: Object to form.
3 THE WITNESS: I don't know.
4 BY MR. TUMINARO:
5 Q Well, I counted, and there's only eight of
6 them. We could go through them if you'd like. If
7 you look at j54.
8 A Okay. I appreciate your due diligence on
9 this. I -- I would be glad to verify them.

10 Q On page 10, j54.
11 A Okay. Okay. j54.
12 Can I -- I just want to put a checkmark to --
13 j54. Okay.
14 Q Is that directed to a graphics paper?
15 A It is.
16 Q Okay. How about j71? Is that a graphics
17 paper on page 11?
18 A Yes.
19 MR. PLUTA: Object to form.
20 BY MR. TUMINARO:
21 Q It is?
22 A Yes, it is.
23 Q Okay. How about c47, which appears on
24 page 18 of your declaration -- I mean of your CV. I
25 apologize.

Page 25
1 A Yes.
2 Q c76 on page 21 of your CV, is that related to
3 graphics?
4 A Yes.
5 Q All right. c81, page 21, is that related to
6 graphics?
7 A Yes.
8 Q c87 on page 22, is that related to graphics?
9 A Yes.

10 Q c89, is that related to graphics?
11 A Yes.
12 Q And c95 on page 23, is that related to
13 graphics?
14 A Yes.
15 Q Those are eight papers that you say are
16 related to graphics.
17 Are there any others that are listed on your
18 CV?
19 MR. PLUTA: Object to form.
20 THE WITNESS: Yes.
21 BY MR. TUMINARO:
22 Q Where?
23 A So let's start.
24 Q If you'd --
25 A Yes.

7 (Pages 22 - 25)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922

Page 7 of 611

Page 26
1 Q -- take a look at it and tell me if there's
2 others.
3 A Sure. So some of these are tangentially
4 related. Like j7, "Finding circular shapes in an
5 image on a pyramid architecture." Some of these
6 techniques could be used to create a primitive, like
7 primitives for 3D graphics because you're trying to
8 figure out the shape. And primitives could be
9 triangles or could be some other exotic shape. So

10 that's -- that -- those algorithms are useful, so I
11 would consider that as one related to that.
12 So j12, although it says "image processing,"
13 but the concept of a hierarchical pyramid
14 architecture, it's very relevant to the graphics
15 because of the way -- as -- as you may recall, we do
16 the vertex processing, and then it goes down to the
17 pixel processing.
18 So this hierarchical level works for image
19 processing and graphics. And people have looked at
20 this hierarchical architecture. And to some extent
21 a unified shader probably is trying to do something
22 like that. So I would put a little bit of
23 checkmark, at least from my point of view.
24 So let me finish all of this, and then if you
25 have any questions --

Page 27
1 Q Sure.
2 A -- I will answer that. But I'd like to go
3 through this.
4 Q Okay. You want to --
5 A It would not take much time.
6 Q Okay. Sure. Go -- go right ahead. Please
7 do.
8 A So the j14, also circle detection, it goes
9 back to primitives and identifying primitive

10 objects, although usually people use triangles, but
11 that helps consolidate, you know, triangles or
12 whatever into circles. So that is -- that could be
13 used for graphics, as well.
14 Q Well, I'll stop you. In that paper, was it
15 actually directed to graphics?
16 MR. PLUTA: Object to form.
17 THE WITNESS: It was for identifying circles.
18 BY MR. TUMINARO:
19 Q Okay. And you mentioned that circles could
20 be used in graphics, but was it actually -- in that
21 paper, were you discussing graphics processing?
22 MR. PLUTA: Object to form.
23 THE WITNESS: Not directly. Indirectly.
24 BY MR. TUMINARO:
25 Q Okay.

Page 28
1 A Again, j19 is about pyramid architectures.
2 So that's -- let me go through this more here.
3 So I'm down to j40, j41.
4 So I -- let me -- before forgetting, what we
5 did at Morpho, as you can imagine, it was a
6 start-up. We had investors, and we had -- it was
7 not possible to publish some of that work. So we
8 did a lot of work on using SIMD for graphics
9 processing, in particular, pixel processing, and

10 they were not publishable.
11 I just wanted to mention that to you for the
12 record, because there is no -- any documentation on
13 that. And that's true for many companies, by the
14 way.
15 Q Okay. And before you go on, I notice that
16 some of these papers, you're listed as the first
17 named author, and some you're -- you're the second
18 or third or fourth or fifth named author.
19 A Uh-huh.
20 Q How is that determined, what order that
21 you're an author?
22 A So that's a very interesting point of view
23 for faculty. All of these are our ideas or, in this
24 case, my ideas. It's just when a student is working
25 with me, we try to give him more credit. Some

Page 29
1 faculty don't follow this strategy. I do and many
2 others do.
3 So we put their names first and ours in the
4 back, kind of in the middle or at the end. And if
5 they help write some of this, they will get some
6 credit for that, as well. We do writing, too, but
7 it's the style of the faculty. I would say
8 75 percent follow what I do. Some like to see their
9 name first.

10 Q So if you're listed as a first named
11 inventor -- I mean, first named author, I apologize,
12 that means you did more of the work on that paper?
13 MR. PLUTA: Object to form.
14 THE WITNESS: Not really, no, no, because the
15 ideas come from us.
16 BY MR. TUMINARO:
17 Q Come from us, who's us?
18 A The faculty.
19 Q Okay.
20 A Me in this case. We give the ideas. We
21 provide the -- I mean, the whole idea of MorphoSys
22 architecture was my idea. But writing the code and
23 implementing it, some of the students helped out.
24 Q Okay. All right. So then I'll ask, why
25 don't you go through your -- your papers, and if you

8 (Pages 26 - 29)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922

Page 8 of 611

Page 30
1 find any additional ones that you think relate to
2 graphics --
3 A Sure. I'm almost done.
4 Q -- you can let me know.
5 A So again, I repeat that what happened in
6 Morpho was not published related to graphics.
7 c78, it's "Hardware Accelerated Voxel
8 Carving." Voxel is a three-dimensional pixel, so it
9 is definitely graphics. And it's published in

10 graphics -- computer graphics symposium, so
11 definitely that should be counted in your list,
12 among other things that I've mentioned, c78.
13 Q j78, you mean?
14 A c78.
15 Q c78.
16 A And you can see that it says "computer
17 graphics symposium."
18 "Recovering 3D Metric Structure and Motion
19 for Multiple Uncalibrated Camera;" that's also
20 computer graphics, c83.
21 There are a couple of papers here. We tried
22 to improve the SIMD to have branches. And that was
23 in preparation for applying it for graphics
24 computation, because you want to do a conditional
25 statement in SIMD, which we did not have before.

Page 31
1 And that's what c85 with Anido and also with
2 c81 which you already identified.
3 "Persepolis: Recovering History with a
4 Handheld Camera," that is definitely graphics you're
5 trying to identify.
6 "Image Based Mesh Reconstruction and
7 Rendering," that's also --
8 Q You're saying c90?
9 A c90, c91, "Camera Calibration Long Image

10 Sequences," those are all related to graphics.
11 "Automatic creation of three-dimensional
12 avatars," that's also graphics.
13 Again, c98, anything with avatars, you're
14 trying to do -- carving these three-dimensional
15 pixels, some of the details, I mean -- yes, c100,
16 c98.
17 So I would say there are at least twice as
18 many as you mentioned that are directly or
19 indirectly related.
20 Anyway, so...
21 Q Okay. Let's look at your litigation support
22 experience that starts on page 2 of your --
23 A Yeah, sure.
24 Q -- CV, and that spans to page 5 of your CV;
25 is that right?

Page 32
1 A Yes.
2 Q Okay. So before you got involved in these
3 cases between LG and ATI at the patent office, had
4 you ever -- well, strike that.
5 Before you got involved with these cases, LG
6 versus ATI, you never worked on a graphics case; is
7 that right?
8 MR. PLUTA: Object to form.
9 THE WITNESS: No, that's not correct.

10 BY MR. TUMINARO:
11 Q That's not correct.
12 Which one of the cases listed on your CV
13 relates to graphics?
14 A Fish and Richardson, RIM ITC versus GPH.
15 There's also one more, but it's just -- the
16 Milberg -- 2011, Milberg, Class versus NVIDIA.
17 Q Any others?
18 A I just looked at it quickly. And that's
19 about it, I think, for now.
20 Q Okay. When you were at Morpho Technologies,
21 I think you said eventually you added more graphics
22 capabilities to the MorphoSys?
23 A It -- it had the capability. We just tried
24 different applications on it to just be able to do
25 pixel processing and so on. You kind of -- you can

Page 33
1 see that a graphics computation is really an array,
2 to the array. And the MorphoSys was perfectly
3 designed for that purpose.
4 Q Switching gears, I'd like to look at your
5 declaration, Exhibit 1.
6 A Okay.
7 Q Starting on page 11 of that declaration,
8 there is a large heading number III, "Technology
9 Background."

10 A Yes.
11 Q Okay. In this technology background, it
12 spans all the way to page -- the bottom of page 16;
13 is that right?
14 A Yes.
15 Q Oh, actually, there's one word at the top of
16 page 17, "processing"; is that right?
17 A Yes.
18 Q Okay. In this entire section about the
19 technology background, there's not a single
20 citation; is that right?
21 MR. PLUTA: Object to form.
22 THE WITNESS: I can check.
23 I don't see one, yes.
24 BY MR. TUMINARO:
25 Q Where did the information for this section

9 (Pages 30 - 33)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922

Page 9 of 611

Page 34
1 come from?
2 A My knowledge of the field.
3 Q Okay. So as an expert in graphics, you're
4 knowledgeable about graphics technology?
5 A Yes.
6 Q You're knowledgeable about the evolution of
7 graphics technology?
8 A Yes.
9 Q If you turn with me to page 27, there is a

10 Figure 1 that is shown in --
11 A Page 27?
12 Q I'm sorry, I meant paragraph 27. If I said
13 page 27 --
14 A Right.
15 Q Paragraph 27, there's a figure shown in
16 paragraph 27.
17 A Correct.
18 Q Where did that figure come from?
19 A From one of my sources that I had or what's
20 on the web.
21 Q Did you generate this figure?
22 A It's from one of my references or from what's
23 available on the Internet. It could be from a
24 specific source. I -- I -- I did not exactly draw
25 this.

Page 35
1 Q Okay. So this came from something on the
2 Internet or some other source?
3 A Yeah.
4 Q If you look at your materials considered,
5 there's -- that Internet or other source is not
6 listed, is it?
7 A That source? No.
8 Q Okay. If you turn with me to paragraph 31 of
9 your declaration --

10 A Yes.
11 Q -- the first sentence of paragraph 31 reads:
12 "The first programable pipeline
13 (PP) was introduced in 2001."
14 Do you see that?
15 A Yes.
16 Q What's the basis for that statement?
17 A Just my knowledge, what I -- what I know from
18 what I've read.
19 Q What pipeline was it that you were referring
20 to there?
21 A Used for graphics.
22 Q Well, what was the product? Is there a
23 product that's associated with that?
24 A No.
25 MR. PLUTA: Object to form.

Page 36
1 THE WITNESS: I don't have a product. I just
2 remember that.
3 BY MR. TUMINARO:
4 Q You just remember that?
5 A Right.
6 MR. TUMINARO: I'll like to have that marked.
7 (Exhibit 4 was marked for identification
8 by the court reporter and is attached hereto.)
9 BY MR. TUMINARO:

10 Q I've handed you what's been marked as
11 Exhibit 4 for identification purposes. This is a
12 document entitled "How GPUs Work."
13 Do you see that?
14 A Yeah.
15 Q And if you'll turn with me to page -- the
16 second page of -- of Exhibit --
17 A Uh-huh.
18 Q -- 4.
19 MR. PLUTA: I'm just going to object to the
20 introduction of this evidence as irrelevant at this
21 point, lack of foundation.
22 MR. TUMINARO: I'm trying to get to the
23 foundation.
24 Q If you look with me to the right of page --
25 it's listed 127, in the right-hand column there's

Page 37
1 a -- sort of midway through there's a sentence that
2 starts with "for example."
3 Do you see that?
4 A Yes.
5 Q I'll read it for the record:
6 "For example, the NVIDIA GeForce
7 3, launched in February 2001,
8 introduced programmable vertex
9 shaders. These shaders provide

10 units that the programmer can use
11 for performing matrix-vector
12 multiplication, exponentiation, and
13 square root calculations, as well as
14 short default program that use these
15 units to perform vertex
16 transformation and lighting."
17 Do you see that?
18 A Yes.
19 Q Is that the product that you were referring
20 to that was a programmable pipeline in 2001?
21 A I'm not sure. I'm not sure if that was the
22 product or there were other products, but it seems
23 to be consistent with what I said.
24 Q Okay. So when you wrote this sentence in
25 paragraph 31, you didn't have any specific product

10 (Pages 34 - 37)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 10 of 611

Page 38
1 in mind?
2 A No, no.
3 Q Just your general knowledge of the GPU
4 evolution in technology?
5 A Correct.
6 Q If you turn with me to paragraph 32 of your
7 declaration.
8 A Yeah.
9 Q The first sentence reads:

10 "OpenGL and DirectX are now the
11 common standards that most hardware
12 vendors support as part of their
13 graphics card development
14 environment."
15 Do you see that?
16 A Yes.
17 Q When you say "now," what time frame are you
18 referring to?
19 A Well, now meant December 2014.
20 Q Okay. So you're aware of your general
21 knowledge of GPUs that at the time that the 871
22 patent was filed, neither DirectX nor OpenGL
23 provided a unified shader architecture, correct?
24 MR. PLUTA: Object to form.
25 THE WITNESS: So am I aware that at the time

Page 39
1 frame that 871 was filed, there was a unified shader
2 or not?
3 BY MR. TUMINARO:
4 Q There --
5 A Can you repeat the question? I'm sorry.
6 Q Sure. So you were aware, based on your
7 general knowledge of GPUs that at the time that the
8 871 patent was filed --
9 A Which is --

10 Q -- which is 2003, neither DirectX nor OpenGL
11 provided a unified shader architecture, correct?
12 A I can't be certain on that one, sorry.
13 Q How about this? You're aware that DirectX 10
14 was the first version of DirectX that had a unified
15 shader model, right?
16 MR. PLUTA: Object to form.
17 THE WITNESS: Did I say that in my report?
18 BY MR. TUMINARO:
19 Q I'm asking you the question.
20 A It's not in here, so I don't -- I did not
21 opine on that, but, you know --
22 Q So based on your general knowledge of
23 graphics, you're not aware one way or the other
24 whether DirectX 10 was the first API to have a
25 unified shader architecture?

Page 40
1 A The --
2 MR. PLUTA: Object to form.
3 THE WITNESS: The first --
4 MR. PLUTA: Lack of foundation.
5 THE WITNESS: -- I could not tell you, but
6 the DirectX 10 does because it's the latest one or
7 one of the latest ones that we have. So -- so I
8 would say -- I can't tell you if it was the first
9 one or not. I cannot tell you that.

10 MR. TUMINARO: I'll have this marked.
11 (Exhibit 5 was marked for identification
12 by the court reporter and is attached hereto.)
13 BY MR. TUMINARO:
14 Q So you've been handed what's been marked as
15 Exhibit 5. This is titled "Exploiting the Shader
16 Model 4.0 Architecture."
17 Do you see that?
18 A Yeah, yes.
19 Q And it says in the abstract -- I'll read --
20 the first sentence says:
21 "The Direct 3D10/SM4.0 system is
22 the 4th generation programmable
23 graphics processing units (GPUs)
24 architecture. The new pipeline
25 introduces significant additions and

Page 41
1 changes to prior generation
2 pipeline."
3 And then skipping a sentence, it says:
4 "The main facilities introduced
5 that we ponder upon are, Unified
6 Architecture providing common
7 features set for all programmable
8 stages."
9 And then it goes on.

10 Do you see that?
11 A Okay.
12 MR. PLUTA: I'm going to object to the
13 relevance of this exhibit and also lack of
14 foundation. Also, hearsay.
15 THE WITNESS: I'm seeing this for the first
16 time, so -- I mean, judging from that paragraph, it
17 says what it says. What do you want me to add to
18 that?
19 BY MR. TUMINARO:
20 Q I was going to ask the question.
21 A Right.
22 Q So does this -- does this jog your memory, as
23 an expert in graphics, that Shader Model 4.0 in
24 DirectX 10 was the first to introduce a unified
25 shader architecture?

11 (Pages 38 - 41)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 11 of 611

Page 42
1 MR. PLUTA: Object to form.
2 THE WITNESS: I could not answer that based
3 on this document. I have to do more research on
4 that.
5 BY MR. TUMINARO:
6 Q So you don't know one way or the other; is
7 that your testimony?
8 A That is not my testimony. I need more work
9 on that. I have some ideas, but I'm not going to

10 render my ideas based on just one article.
11 Q Well, what's your idea, then --
12 (Simultaneous speaking - unreportable.)
13 MR. PLUTA: Object to form, calls for
14 speculation.
15 THE WITNESS: I need more work on that to
16 give you an answer.
17 BY MR. TUMINARO:
18 Q You can't -- do you have an idea of when the
19 first unified shader architecture came out?
20 A I can't give you for certain what date.
21 Q What's your best understanding of what the
22 date is?
23 A I can't guess.
24 Q I -- I didn't ask you to guess. I asked,
25 what's your best understanding?

Page 43
1 MR. PLUTA: Object to form.
2 THE WITNESS: I'd have to guess, and I'm not
3 going to guess.
4 BY MR. TUMINARO:
5 Q Okay. You are aware, though, now, as of
6 today, OpenGL and DirectX provide a unified shader
7 architecture?
8 MR. PLUTA: Object to form, relevance.
9 THE WITNESS: Yes.

10 BY MR. TUMINARO:
11 Q Okay. And you know that -- you've heard of
12 NVIDIA?
13 A Yes.
14 Q And you understand that NVIDIA initially was
15 skeptical of whether unified architecture would
16 work?
17 MR. PLUTA: Object to form, relevance.
18 THE WITNESS: I have no idea about their
19 position on that.
20 BY MR. TUMINARO:
21 Q So based on your general knowledge of shader
22 architecture and graphics evolution, you have no --
23 no understanding one way or the other?
24 MR. PLUTA: Object to form.
25 THE WITNESS: I would not guess what NVIDIA

Page 44
1 felt. We just looked at their architecture; we
2 still do. We look at their papers. I'm interested
3 in architectures. I'm not interested in how they
4 view and what they interpret what is possible or
5 not.
6 BY MR. TUMINARO:
7 Q And just to be clear, you didn't consider
8 that in forming your declar- -- the opinions
9 expressed in your declaration; is that right?

10 MR. PLUTA: Object to form.
11 THE WITNESS: I did not mention it here.
12 BY MR. TUMINARO:
13 Q So given that now the two major APIs, OpenGL
14 and DirectX 10, provide a unified shader model, it
15 would be more efficient for graphics hardware to
16 implement a unified shader; isn't that right?
17 MR. PLUTA: Object to form.
18 THE WITNESS: What do you define efficiency?
19 BY MR. TUMINARO:
20 Q How would you define efficiency?
21 A You asked me the question about efficiency.
22 What efficiency do you have in mind?
23 Q Well, that's what I'm asking you, how do you
24 understand the word "efficiency" in the context of
25 graphics processing?

Page 45
1 A This is a very broad question. What is --
2 what is the application?
3 Q Graphics processing.
4 A Counsel, there's a graphic processing in your
5 smartphone. There's a graphic processing in your
6 desktop.
7 Q Okay.
8 A There's a graphic processing for applications
9 in military and civilian applications. Which one do

10 you have in mind? You're asking a very broad
11 question.
12 Q Okay. So I have in mind graphics processing
13 in my cell phone or in a desktop.
14 A You are asking that?
15 Q Yeah, in either one of those, what would it
16 mean to be efficient?
17 A Okay. Efficiency means computation
18 efficiency. Efficiency could be battery power
19 efficiency. And between the two applications, I
20 would think that you agree with me that the
21 smartphone battery power efficiency's a lot more
22 important than your computation efficiency.
23 Efficiency could mean cost. It's more
24 efficient to have -- well, maybe you don't use the
25 word "efficiency" for cost, but it means lower cost

12 (Pages 42 - 45)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 12 of 611

Page 46
1 that gives you the targeted efficiency. So it
2 really depends.
3 If your -- if your unified shader is going to
4 cost you more for grandma's phone, I might opt for
5 a -- just a hardwire approach. Just it's cheaper.
6 I might just do that. I don't think NVIDIA or
7 anybody will -- will dispute that.
8 So it really depends on what your target
9 application is and what your cost is. If the cost

10 of unified -- unified shader comes down to the level
11 of that is acceptable to many target applications,
12 then that would be the way to go.
13 Q You mentioned that if you were going to put
14 it in grandma's phone, you might want to just use a
15 hardwire approach.
16 A Uh-huh.
17 Q What's a hardwire approach?
18 A It's the FFP, the fixed function pipeline
19 basically, or used to be.
20 Let's say the unified shader is very exotic.
21 It probably is all the latest technologies that you
22 have, but I really don't want that. I really don't
23 want -- you don't want to have an 8-cylinder car.
24 You're just going to the grocery store, and that's
25 all you're doing. You're not racing. That would be

Page 47
1 the grandma's. Then you may want to use -- then you
2 may want to use an ASIC approach, basically,
3 where -- where you just -- simple and already
4 proven, and it's very efficient cost-wise and
5 probably power-wise, too.
6 So it really depends. And I don't think
7 anybody would dispute that.
8 Q So are you suggesting that graphics
9 processors are now moving toward more of a hardwire

10 approach?
11 MR. PLUTA: Object to form.
12 THE WITNESS: That's not what I said. I said
13 it depends on your application. A unified shader
14 gives you the capability through software means.
15 It's a lot more advanced. It's the way to go. But
16 there are applications that you may find out that
17 unified shader is too much of a burden in terms --
18 in terms of power consumption, cost and so on.
19 If the cost and power consumption comes down
20 towards the ASIC solutions, then yes, that would be
21 the ultimate graphics engine.
22 BY MR. TUMINARO:
23 Q So you're --
24 A We're struggling with this right now in
25 all -- all the things that we do that are

Page 48
1 programmable.
2 Q So you're aware that in graphics processing,
3 initially it was fixed pipeline, correct?
4 A Yes.
5 Q Okay. And then it moved to a programmable
6 pipeline, correct?
7 A That's right.
8 Q And unified pipeline is now sort of the --
9 A Program.

10 Q -- state of the art kind of pipeline?
11 MR. PLUTA: Object to form.
12 THE WITNESS: Yeah.
13 BY MR. TUMINARO:
14 Q And you said it's the way to go; is that
15 right?
16 A How often do you charge your phone? You
17 charge it a lot. You've got an 8-core processor on
18 your phone, so we are getting to a point of wanting
19 to know the efficiency of the execution. A
20 programmable solution is good for lots of people.
21 I'm not saying we're going back to the ASIC
22 solutions. I'm just saying when you talk about
23 efficiency, you have to be more accurate in terms of
24 what is -- what problem are you trying to solve?
25 You have to -- you have to qualify that. What --

Page 49
1 what do you mean by efficiency. That's -- that's
2 what I'm trying to tell you.
3 I'm not saying we're dropping off unified
4 shader or programmable solutions. I'm not saying
5 that at all. If I said that, I maybe mis- --
6 misspoke.
7 Q So you're aware in your understanding of
8 graphics processing that the industry has moved away
9 from a fixed pipeline, right?

10 MR. PLUTA: Object to form, lack of
11 foundation.
12 THE WITNESS: I said as much in my report,
13 but I'm saying if -- if efficiency -- power
14 efficiency's important, there might be solutions
15 that are not that way. That's what I'm trying to
16 tell you.
17 BY MR. TUMINARO:
18 Q Okay. My question was not about efficiency.
19 I'm just saying, are you aware that it moved -- the
20 industry has moved away from fixed pipeline and now
21 it's toward a programmable pipeline?
22 MR. PLUTA: Object to form --
23 BY MR. TUMINARO:
24 Q You said that in your declaration, correct?
25 A Correct. But your original question was

13 (Pages 46 - 49)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 13 of 611

Page 50
1 about efficiency, if you recall. Are we -- are we
2 out of that question?
3 Q Just to remind you how this works, I ask a
4 question; you answer the question that I ask; is
5 that right?
6 A Yes. Then I'm confused about what question
7 you're asking.
8 Q Okay. So now I'm asking the question.
9 You're aware that the industry has moved away

10 from a fixed pipeline and has moved toward a
11 programmable pipeline, correct?
12 MR. PLUTA: Object to form.
13 THE WITNESS: I said as much in my report.
14 BY MR. TUMINARO:
15 Q Okay. And the industry -- after the -- the
16 programmable pipeline is moving toward a unified
17 shader pipeline, is that correct, the graphics
18 processing industry?
19 MR. PLUTA: Object to form.
20 THE WITNESS: That is correct.
21 BY MR. TUMINARO:
22 Q Okay. And the unified shader architecture,
23 it's the thing of the future, correct?
24 A What do you --
25 MR. PLUTA: Object to form.

Page 51
1 THE WITNESS: What do you mean by the
2 thing --
3 BY MR. TUMINARO:
4 Q Well, you said it's the way to go.
5 A If I talk about efficiency -- if your
6 power -- if your power consumption is an issue for
7 you, we may find changes on that model.
8 BY MR. TUMINARO:
9 Q Okay. How about this. What if your factor

10 that you're considering is performance, not -- not
11 power consumption, performance? If you want to
12 increase performance, would you move toward a
13 unified shader architecture?
14 MR. PLUTA: Object to form.
15 THE WITNESS: Okay. You may be shocked by
16 this, but an ASIC solution is far more efficient in
17 computation than a programmable unified shader, but
18 it's not programmable because it will have problems
19 in case there's a bug or there are fixes to be made.
20 So that's why unified shader is better, because you
21 can change it, you can modify it easy, and you don't
22 have to retape the device.
23 But it is a well-known concept that the
24 hardwired solutions are more power efficient and
25 they're more computation efficient. But a

Page 52
1 programmable unified shader is the way to go because
2 people don't want to design new chips every time
3 there's a bug. So I hope you understand my position
4 on that.
5 BY MR. TUMINARO:
6 Q Okay. Switching topics, I'd like to talk
7 about -- you've heard of what a -- a register? You
8 know what a register is?
9 A Register in the context of?

10 Q Computer processing.
11 A Yes.
12 Q What's a register?
13 A Stores information.
14 Q Okay. A register is typically a multi-ported
15 storage unit?
16 A Typically. What's your application?
17 Q Graphics processing.
18 A I mean, yes and no, depending on what you're
19 trying to do. I have to see what the diagram
20 looks -- schematic looks like to tell you what
21 you're trying to do.
22 Q Okay. A register is typically the closest
23 piece of memory to an ALU?
24 MR. PLUTA: Object to form.
25 THE WITNESS: Generally, yes.

Page 53
1 BY MR. TUMINARO:
2 Q And a memory is typically something different
3 than a register, correct?
4 MR. PLUTA: Object to form.
5 THE WITNESS: I don't understand why you
6 distinguish between the two.
7 BY MR. TUMINARO:
8 Q Well, a memory is typically further from an
9 ALU compared to a register?

10 MR. PLUTA: Object to form.
11 THE WITNESS: Proximity to ALU doesn't
12 identify the differences. It just stores
13 information. Remember what I defined register to
14 be, stores information; so does memory.
15 BY MR. TUMINARO:
16 Q And a memory is typically a single-ported
17 storage unit as compared to a register, which is
18 typically a multi-ported?
19 A No. You can have dual port memories, too. I
20 have designed dual port memories.
21 Q Well, let me ask you this. A register is a
22 different thing than a memory, right?
23 A In terms of storing information, no.
24 Q But in terms of difference -- they're
25 different, correct? A register is different than a

14 (Pages 50 - 53)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 14 of 611

Page 54
1 memory?
2 A In what way? I don't -- I mean, they have
3 different names, yes, they are different names. But
4 they store information and you retrieve information.
5 So from that point of view --
6 Q So then why does the industry use a
7 different --
8 MR. PLUTA: Hold on, Counsel. I don't --
9 MR. TUMINARO: I thought he was done.

10 MR. PLUTA: I don't think he was done.
11 THE WITNESS: I wasn't done, yeah. Sorry.
12 Let me identify what a block of storage is.
13 You write to it and you read from it. Both of these
14 entities do that. Register and memory are
15 indistinguishable in terms of writing to it and
16 reading it.
17 In terms of volatility, they both could be
18 nonvolatile or could be volatile, both of them. So
19 I don't see any difference in terms of
20 functionality.
21 BY MR. TUMINARO:
22 Q Well, the industry has come up with two
23 different names for these storage units, right? A
24 register and a memory, correct?
25 A Correct.

Page 55
1 Q So are you telling me that it's -- it's
2 typically not the case that a register is
3 multi-ported?
4 A I don't know if I said that.
5 Q So is a -- is a register typically
6 multi-ported?
7 A It depends on your application. I mean, you
8 could have an accumulator, which is a register, and
9 it could be one-ported. It really depends on what

10 application you have. It's really -- you cannot
11 generalize that, application dependent.
12 Q So in your mind, is a register the same thing
13 as a memory?
14 MR. PLUTA: Object to form.
15 THE WITNESS: The functionality is very
16 similar in terms of reading, writing, storing
17 information for a period of time. From that point
18 of view, the same. So it stores data.
19 BY MR. TUMINARO:
20 Q Are there any differences?
21 A So register is a little faster than a
22 memory -- actually, a lot faster, yeah.
23 Q Anything else?
24 A As in -- you asked the question earlier, it's
25 closer to the ALU or the processor, so that's the

Page 56
1 case, as well. So those are very important issues.
2 Q Those are two differences. Any others
3 between a register and a memory?
4 A The actual circuit design could be different
5 because you're trying to save power, save energy and
6 so on. So yeah, if you are asking memory, it would
7 be a little different, but the functionality's
8 identical.
9 Q Okay. Anything -- any other differences that

10 you can think of between an AL- -- between a
11 register and a memory?
12 A It stores data -- no, I think I mentioned all
13 the big differences. Performance, proximity to ALU
14 and the circuit actually is being different.
15 Q Okay. You've heard of the term "ALU"?
16 A Yes, I have for a long time, unfortunately.
17 Q ALU means what?
18 A Arithmetic logic unit.
19 Q Okay. You've heard of the term "processor
20 unit" -- strike that, "processor"?
21 A Yes.
22 Q Okay. Is a processor the same thing as an
23 ALU?
24 MR. PLUTA: Object to form.
25 THE WITNESS: Okay. Traditionally, if this

Page 57
1 is a class, which I will have in two weeks, a
2 processor includes an ALU and register file and any
3 other things that you can think of, a processor, a
4 processor, a microprocessor.
5 BY MR. TUMINARO:
6 Q So -- so you're saying a processor has
7 additional structure that's not in an ALU?
8 A If you define the microprocessor the way we
9 define it in our textbooks, a microprocessor has

10 those components.
11 Q An ALU and register?
12 A Register file and other things, address
13 decoder and so on --
14 Q So --
15 A -- and program counter and so on. Sorry.
16 Q So an ALU can do functions like add,
17 subtract, compare, correct?
18 A Sure, yes.
19 Q Whereas a processor can run instructions,
20 right?
21 A No. Remember when I put the -- the -- the
22 area around the processor, the processor included
23 the ALU and the register file.
24 Q So, what, you're saying a processor doesn't
25 run instructions?

15 (Pages 54 - 57)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 15 of 611

Page 58
1 A I didn't say that.
2 MR. PLUTA: Object to form.
3 BY MR. TUMINARO:
4 Q So -- so my question was, a processor can run
5 instructions, right? And you said no.
6 A So let me --
7 Q So let me ask the question again.
8 A Yeah, please.
9 Q A processor can run instructions, right?

10 A A processor executes instructions from its
11 instruction memory. And based on those
12 instructions, it will activate the control signals
13 for all the internal components, which means
14 activates the register file, activates the ALU and a
15 few other blocks.
16 Q Just so I'm clear because I'm not -- that
17 means yes, a processor can run instructions; is that
18 right?
19 A I think I just said that, yeah.
20 Q I just wasn't clear. I didn't know if that
21 was a yes or not.
22 A The answer is the processor executes
23 instructions based on a program counter, which is
24 basically sequencing through the instruction memory,
25 and activates -- I'm giving you a little bit more

Page 59
1 answer because --
2 Q Okay.
3 A -- I think it has to be clear that ALU does
4 the function on behest of the instruction decoded.
5 Q Okay. So just to be clear, though, an ALU by
6 itself does not run instructions, right, or cannot
7 run instructions by itself?
8 MR. PLUTA: Object to form.
9 THE WITNESS: Instruction has to be decoded

10 to activate the control signals for the ALU. Some
11 people mistakenly call ALU the microprocessor.
12 That's -- that's their definition. But, yes, ALU
13 gets its control signals from the decoded
14 instructions.
15 BY MR. TUMINARO:
16 Q Okay. So you would say it's a mistake to
17 call an ALU a processor?
18 MR. PLUTA: Object to form.
19 THE WITNESS: The ALU by itself, you may call
20 it the processor, but that's not what textbooks
21 usually talk about.
22 BY MR. TUMINARO:
23 Q So the textbook definition would say that a
24 microprocessor is not the same thing as an ALU?
25 A This is like saying that mechanical textbooks

Page 60
1 will say the engine is different from the car. The
2 car includes the engine. This is the same
3 relationship. So it's the only way I can answer
4 your question without confusing myself.
5 So if the processor is the car, engine is the
6 ALU, is that -- does that help you with -- to
7 answer?
8 Q That helps. But -- so just in your example,
9 a car is not the same thing as an engine, right?

10 A It includes the engine.
11 Q It includes the engine, but they're not the
12 same thing?
13 A Where do you say the car is? I mean, I
14 don't -- I don't understand. Would you call the
15 shell of the car to be the car? I don't know.
16 Q Okay. At least I understand your testimony.
17 A Okay. Thank you.
18 MR. PLUTA: We've been going for about an
19 hour. Is it a good time for a break?
20 MR. TUMINARO: Oh, yeah, sure, yeah, yeah.
21 THE VIDEOGRAPHER: We are off the record.
22 The time is 10:45 a.m.
23 (Recess.)
24 THE VIDEOGRAPHER: We're back on the record.
25 The time is 10:59 a.m.

Page 61
1 Please continue.
2 (Exhibit 6 was marked for identification
3 by the court reporter and is attached hereto.)
4 BY MR. TUMINARO:
5 Q Welcome back, Dr. Bagherzadeh.
6 A Thank you.
7 Q You have in front of you Exhibit 6, which is
8 the Rich patent, U.S. patent number 5,808,690.
9 You recognize this document, right?

10 A Yes, I do.
11 Q You considered this, the Rich patent, in
12 preparing your declarations --
13 A Yes.
14 Q -- in this case?
15 (Exhibit 7 was marked for identification
16 by the court reporter and is attached hereto.)
17 BY MR. TUMINARO:
18 Q Okay. You also have in front of you
19 Exhibit 7, which is U.S. patent number 6,897,871.
20 You -- I'll refer to this as the 871 patent.
21 You'll understand what I'm talking about?
22 A Yes.
23 Q And you considered the 871 patent in
24 preparing your declaration, correct?
25 A Yes.

16 (Pages 58 - 61)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 16 of 611

Page 62
1 Q Okay. And, in fact, just to be clear, it's
2 your opinion that Rich renders claim 15 of the 871
3 patent obvious, correct?
4 A Yes. Right. Rich teaches claim 15, correct.
5 Q Okay. Now, if we look at claim 15 of the 871
6 patent, there are sort of three elements recited.
7 There's a unified shader comprising a general
8 purpose register block, a processor unit and a
9 sequencer, right?

10 A Yes.
11 Q Okay. Now, I think I have this right.
12 You're saying that -- well, okay. Strike that.
13 Let's look at Figure 2 of Rich.
14 A Uh-huh, yes.
15 Q Figure 2 of Rich, it shows an architecture
16 that's disclosed, a computer architecture that's
17 disclosed in Rich, right?
18 A Correct.
19 Q And there is an ALU 33 and a memory 34 in
20 Figure 2 of Rich?
21 A Correct.
22 Q And there is a processing element array
23 control 40 in Figure 2 of Rich, correct?
24 A Correct.
25 Q Now, correct --

Page 63
1 A Processing element array controller, yes.
2 Q Okay. Now, correct me if I'm wrong, but I --
3 I think this is what you're saying, that in your
4 opinion, memory 34 corresponds to the claimed
5 general purpose register block; is that right?
6 A So let's look at -- let's look at the details
7 of this.
8 Q I'll help you out. You talk about Rich in
9 claim 15 starting at paragraph 214 of your

10 declaration.
11 How -- how about we do this? How about we do
12 this?
13 A Okay. Yes.
14 Q How about what you can do for me is circle in
15 Figure 2 of Rich what you say corresponds to the
16 claimed elements in claim 15 of the 871 patent.
17 MR. PLUTA: Object to form.
18 THE WITNESS: I would rather not do that and
19 answer your question, because this is a complicated,
20 very high-level block diagram. And I -- I would not
21 do service to the inventors and what they meant.
22 But let me try to do it differently and just
23 refer to you -- to -- refer you to my report and see
24 if that's satisfactory to you.
25 BY MR. TUMINARO:

Page 64
1 Q Well, I -- I read your report, and that's
2 what I'm trying to understand is -- well, let me ask
3 you this.
4 Are you saying that general purpose register
5 block claim -- in claim 15 of the 871 patent
6 corresponds to memory 34 in Figure 2 of Rich?
7 A I was just about to answer that question, if
8 you allow me. It will take a few minutes.
9 It does provide the resources to the ALU, and

10 you can see it from Figure 12. And that's
11 consistent with providing operands to the ALU from
12 what -- what I --
13 THE REPORTER: "Providing" what?
14 THE WITNESS: Operands, o-p-e-r-a-n-d.
15 So that combination of memory in ALU
16 satisfies that operands are available, and ALU
17 executes them.
18 BY MR. TUMINARO:
19 Q Okay. And then --
20 A And I will continue to --
21 Q Oh, there's more? Okay.
22 A And Rich says:
23 "Each processing element 32
24 comprises an 8-bit multifunction
25 arithmetic logic unit 33, directly

Page 65
1 coupled to its own bank of" --
2 Too fast?
3 THE REPORTER: Yes.
4 THE WITNESS: Sorry.
5 I repeat:
6 "Each processing element 32
7 comprises an 8-bit multifunction
8 arithmetic logic unit 33, directly
9 coupled to its own bank of 128 bytes

10 of memory, 34. Each ALU is capable
11 of simultaneously accessing its own
12 memory and can share data with its
13 neighbors via an interconnecting bus
14 architect structure."
15 So -- so it does provide that functionality
16 of a -- of a register in terms of providing
17 operands.
18 BY MR. TUMINARO:
19 Q So when you say "it does," you're saying
20 memory 34, in your opinion, corresponds to the
21 general purpose of register block claimed in claim
22 15 of the 871?
23 MR. PLUTA: Object to form.
24 THE WITNESS: It provides the data that it
25 needs in combination with other components.

17 (Pages 62 - 65)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 17 of 611

Page 66
1 BY MR. TUMINARO:
2 Q Okay. What in Rich are you saying
3 corresponds to the claimed processor unit in claim
4 15 of the 871 patent?
5 MR. PLUTA: Object to form.
6 THE WITNESS: So the processing units are
7 those -- those ALUs. That's what Rich says.
8 BY MR. TUMINARO:
9 Q Okay.

10 A The processing elements 32 operating --
11 processing elements 32. It says that here --
12 Q Okay.
13 A -- "processing elements 32
14 operating normally as a single
15 instruction multiple data
16 configuration."
17 Q Okay.
18 A Each processing element 32. So that -- that
19 box is called a processing element, which includes
20 an ALU.
21 Q Okay. Great. That's it?
22 A Yes.
23 Q Okay. Now, what in Rich are you saying
24 corresponds to the claimed sequencer in claim 15 of
25 the 871 patent?

Page 67
1 A The control unit 40:
2 "The processing element, array
3 element control unit 40 is primarily
4 responsible for sequencing
5 instructions and addresses to the
6 processing element array 30."
7 Q Great.
8 A It's in my chart.
9 Q Excellent. We're on the same page now.

10 Thank you.
11 A You are so excited, Counsel. Okay. Okay.
12 Good.
13 Q All right. Now, you would agree with me that
14 Rich never discloses that vertex data is retrieved
15 from memory 34, correct?
16 MR. PLUTA: Object to form.
17 THE WITNESS: Well, this is a graphics
18 processing engine, and clearly talks about
19 performing those operations, so it would have been
20 very clear to whoever is looking at this technology
21 that that's what Rich is talking about, that it can
22 access vertex or pixel.
23 BY MR. TUMINARO:
24 Q Okay. I'll ask the question again, because I
25 think I didn't get an answer to my question.

Page 68
1 A Right.
2 Q You'll agree with me that Rich never
3 discloses that vertex data is retrieved from memory
4 34, right?
5 MR. PLUTA: Object to form.
6 THE WITNESS: It -- it is -- well, I mean, it
7 does perform the operations for graphics
8 computation. And even if it doesn't say it
9 specifically, it is capable of doing that.

10 BY MR. TUMINARO:
11 Q Okay. Let's --
12 A Because -- because it's -- it is a processing
13 element, it has access to the memory. And it is
14 done for interpolation of the pixels, rasterizations
15 and other functions. So, therefore, vertex
16 processing is part of that, and therefore, it is
17 consistent with my understanding.
18 Q Okay. Let -- let's look at what you said in
19 paragraph 216. The last sentence says:
20 "Rich does not explicitly disclose
21 vertex processing on data retrieved
22 from processing memory 34."
23 Do you see that?
24 A Yes.
25 Q Do you agree with that statement?

Page 69
1 A I say it.
2 Q So it's a true statement?
3 A It's what I've said, yeah.
4 Q Okay.
5 A But -- but it doesn't do it explicitly, but
6 it's implicitly.
7 Q So then you would agree with me that Rich
8 does not disclose that vertex data is retrieved from
9 memory 34, right?

10 MR. PLUTA: Object to form.
11 THE WITNESS: I think I can read what I have
12 here. It doesn't say it explicitly --
13 MR. TUMINARO: Okay.
14 THE WITNESS: -- but for an engine that is
15 doing graphics computation, it is -- to me, that's
16 clear.
17 BY MR. TUMINARO:
18 Q Okay. But it's your opinion that it would be
19 obvious to modify Rich to store both vertex data and
20 pixel data in memory 34; is that right?
21 A That is correct.
22 Q Okay. But doesn't Rich actually teach away
23 from storing both vertex and pixel data in memory
24 34?
25 MR. PLUTA: Object to form.

18 (Pages 66 - 69)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 18 of 611

Page 70
1 THE WITNESS: Where does it say that?
2 BY MR. TUMINARO:
3 Q Well, Rich explicitly discloses the vertex
4 data by itself, without even considering the pixel
5 data; the vertex data is too big to fit in memory
6 34, right?
7 A Can you refer me to what section of the Rich
8 you're talking about?
9 Q How about I'll refer you to your own

10 declaration at page -- paragraph 33.
11 A Paragraph 33?
12 Q Paragraph 233.
13 A Okay.
14 Q And the second sentence reads -- and I'll
15 read it for the record:
16 "For example, Rich discloses that
17 the user of" --
18 I think that should be "use," not user; is
19 that right?
20 A Okay.
21 Q So I'll read it again --
22 A Yes.
23 Q -- with the correction:
24 "For example, Rich discloses that
25 the use of external memory for the

Page 71
1 storage of data for processing is
2 necessary because the processing
3 elements 32 only have a small amount
4 of dedicated memory."
5 Do you see that?
6 A Yeah.
7 Q And the next sentence reads:
8 "Further, transformed vertex data
9 is stored in external memory after

10 the geometry function."
11 Do you see that?
12 A Yeah, but it -- but --
13 Q There's --
14 A -- I think --
15 Q Okay.
16 A -- adding more memory to the processing
17 element 32, it's a minor change, extremely trivial.
18 And the technology slope for that -- when was this
19 disclosed? 1998. That's not an issue anymore for
20 us.
21 Q Okay. But --
22 A This is almost 20 years ago.
23 Q But it's true that on chip memory, because
24 that is so small, Rich teaches that it's necessary
25 to store the vertex data in memory, external memory?

Page 72
1 A For what he saw then. But a POSITA looking
2 at that technology will not say that I don't have
3 enough memory to put the vertexes in there, because
4 the design is consistent with being able to do
5 vertex processing.
6 Q Well, didn't you opine that a POSITA would
7 actually read Rich to interpret that the vertex data
8 is stored in external memory?
9 A POSITA was doing that around early 2003.

10 That's almost seven years or six years after this
11 came out. I would -- I would submit to you that the
12 memory technology had improved probably by -- by at
13 least 30, 40 percent. So I -- I don't see that as a
14 problem.
15 Q In paragraph 233 of your declaration, did you
16 or did you not opine that Rich discloses that vertex
17 data is stored in external memory, not processor
18 memory 34?
19 A I'm repeating what Rich says, right? I am
20 quoting what Rich says. I did not -- it says
21 basically -- referring to column 16, 52 through 55,
22 which is consistent with what Rich disclosed and
23 what was the understanding at that time.
24 What I'm trying to explain to you is that
25 five years later, it would have been definitely

Page 73
1 clear to the designers to not be limited but at
2 local memory. It would have been -- one of the
3 first things that would improve is the size of the
4 memory. So I would not find that as a problem.
5 Q All right. That wasn't my question on
6 whether it was a problem. Let's just see if we
7 agree that Rich teaches that vertex data is stored
8 in external memory, not in the local memory 34. Do
9 we agree on that?

10 A That's what he says directly in his -- in
11 his -- in his invention, yes.
12 Q Okay.
13 A But -- but if I could qualify that response
14 by saying that it would have been very clear to a
15 designer to not be limited by that, because the
16 design is so versatile. So you could do vertex and
17 pixel at the same time.
18 Q Okay. And isn't it a fact that the pixel
19 data is larger than vertex data?
20 MR. PLUTA: Object to form.
21 THE WITNESS: It's -- it's hard to say,
22 depending on what format you have in mind. But it
23 could be -- because you have more data for the --
24 for the triangle, there are more pixels than
25 vertices. But then vertices are -- you know,

19 (Pages 70 - 73)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 19 of 611

Page 74
1 they're described in 32-bit or 64-bit floating point
2 descriptions. So it depends; the size of the
3 triangle, how many RGB bits you have for the pixel,
4 so it depends.
5 BY MR. TUMINARO:
6 Q Let's look at what you said in paragraph 235
7 of your declaration.
8 A Right.
9 Q "That is, the data size of pixels

10 after rasterization is more than the
11 data size of transformed vertices
12 after vertex operations."
13 A Okay.
14 Q Do you see that?
15 A Yeah.
16 Q So you said that, right?
17 A I said that and I agree with that, but it
18 depends on the size of the triangles and the type of
19 pixels you have.
20 If you use a 2-bit RGB, it will not be the
21 case, right?
22 Q So now, we agree that Rich discloses that
23 vertex data is stored in external memory, correct?
24 A Rich does that, yeah.
25 Q Okay. And we agree that pixel data is bigger

Page 75
1 than vertex data, correct?
2 MR. PLUTA: Object to form.
3 THE WITNESS: From what -- what -- what it
4 could be considered that way, yes.
5 BY MR. TUMINARO:
6 Q Okay. So then why would you store both
7 vertex data and pixel data in memory 34 and not in
8 external memory?
9 A The answer is obvious, because you need the

10 data to be closer to the ALU.
11 Q Well, in fact, didn't you actually opine that
12 it would be obvious in view of Rich to store pixel
13 data in external memory?
14 A Could you show me where I opine that?
15 Q Paragraph 234:
16 "It would have been obvious to one
17 of ordinary skill in the art that
18 pixel data can also be stored in
19 external memory after rasterization
20 and pixel processing" -- "and before
21 pixel processing because of the
22 same" --
23 A Yeah.
24 Q -- "concern emphasized by Rich about
25 the small amount of dedicated memory

Page 76
1 on processing elements 32 themselves."
2 Do you see that?
3 A Yeah. It's okay. It's -- it's good. You
4 can keep larger data outside the processor. We do
5 it all the time.
6 Q So --
7 A What -- what is the -- what -- the -- the
8 concern you have is -- I'm a little -- you know, I
9 mean, I don't know what -- what concerns you, but I

10 answer your question, because that's what I have to
11 do, is that if you have larger sized data, you leave
12 it outside the processor and you bring it in.
13 That's how systems work. Whether it's the vertex
14 data or it's pixel data, it's really irrelevant.
15 So if he doesn't say it, that's how it would
16 be done if the internal memory was large enough to
17 hold the data.
18 So I don't see any inconsistency with what
19 I've said here, what is disclosed here or what an
20 engineer could figure out in 2003.
21 Q But just so that we're clear, Rich explicitly
22 discloses that vertex data is stored in external
23 memory, not local memory 34?
24 A The pixel data?
25 Q Vertex data.

Page 77
1 A Vertex data. Yes, he says that.
2 Q And you opine that it would be obvious to
3 modify Rich to store pixel data in external memory,
4 as well, correct?
5 A Correct.
6 Q Okay. Yet you still think it's obvious to
7 store both of those things in memory 34 on chip?
8 A The job of memory 34 chip is to provide
9 executable data to the ALUs. It doesn't matter what

10 it is, it's pixel, vertices, whatever you have, that
11 is -- the ALU wants to see things close to the ALU.
12 So if you have vertex data in the outside memory, in
13 the larger memory, you have to kind of mosey them
14 down to the -- to the local memory or registers,
15 what have you.
16 So that is the standard practice. That is
17 the standard practice. That's what a POSITA would
18 know, that a processing element would need its
19 operations very close to it, whether it's a vertex
20 or pixel. So that's -- that is inconsistent with
21 the knowledge of a POSITA in 2003 time frame and
22 what has been disclosed and what I am saying in this
23 report.
24 Q Let's look at paragraph 41 of your
25 declaration.

20 (Pages 74 - 77)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 20 of 611

Page 78
1 A 41.
2 Q Paragraph 41 reads:
3 "I believe that a person of
4 ordinary skill in the art relating
5 to the 871 Patent would be someone
6 with a good working knowledge of
7 computer graphic processing
8 architecture, as well as the systems
9 and programs that support such

10 architecture. The person would also
11 be familiar with graphics standards
12 as well as general data processing
13 architecture and techniques."
14 Do you see that?
15 A Yes.
16 Q It goes on to read:
17 "The person would have gained this
18 knowledge through a Master's Degree
19 in Electrical or Computer
20 Engineering, or equivalent thereof,
21 and 2+ years of practical working
22 experience in the relevant field."
23 Do you see that?
24 A Yes.
25 Q Are you a person of ordinary skill in the art

Page 79
1 with respect to your own definition?
2 A Yes, Counsel.
3 Q Okay. What do you mean when you say that a
4 person would be familiar with graphics standards as
5 well as general data processing architecture and
6 techniques?
7 A I think it speaks for itself.
8 Q Well, what does -- what does it mean to be
9 familiar? What are you referring to?

10 A Understand them.
11 Q Understand them. Understand all the
12 intricacies of them? I'm trying to understand the
13 scope of what they would understand.
14 A Whatever you need to understand, whatever the
15 job duty is, you have to understand.
16 Q What time frame are you referring to? What
17 graphics standards?
18 A Early 2003.
19 Q So that's not in, like, the current graphics
20 standards. It's only the 2003 graphics standards?
21 A Well, I mean -- I mean, if he has been
22 working or she has been working in the field,
23 will -- will continue if the job required, of
24 course.
25 Q So they would be familiar, for example -- a

Page 80
1 person of ordinary skill in the art would know
2 whether a graphics standard required a unified
3 architecture?
4 A Could --
5 MR. PLUTA: Object to form.
6 THE WITNESS: Could be, yeah, depending on
7 what the job requirement was. You could be
8 designing a piece of the graphics engine that would
9 require you limited amount of knowledge. So it's --

10 really depends on what you're doing.
11 BY MR. TUMINARO:
12 Q Turn to paragraph 19 of your declaration.
13 Paragraph 19 reads:
14 "I also understand that the
15 relevant inquiry into obviousness
16 requires consideration of four
17 factors."
18 Do you see that?
19 A I do.
20 Q And the fourth factor that's listed there is
21 objective factors, correct?
22 A They are what factors?
23 Q Objective factors.
24 A As opposed to?
25 Q That's what's written here --

Page 81
1 A Okay.
2 Q -- in your declaration:
3 "Objective factors indicating
4 obviousness or non-obviousness."
5 Do you see that?
6 A Yeah. Yes, go ahead.
7 Q Did you consider, in forming your opinions
8 expressed in your declaration, any objective factors
9 indicating obviousness or nonobviousness?

10 A I -- I considered these factors that I have
11 mentioned here.
12 Q Which factors?
13 A The four factors, scope and content of the
14 prior art -- do you want me to read that, all four
15 of them?
16 Q Well, in your declaration, did -- did you
17 discuss any of the objective factors in your
18 analysis?
19 A Discuss --
20 MR. PLUTA: Object to form.
21 THE WITNESS: Discuss it with who?
22 BY MR. TUMINARO:
23 Q Do you have any discussion in your
24 declaration relating to objective factors?
25 A These are legal descriptions of what

21 (Pages 78 - 81)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 21 of 611

Page 82
1 obviousness factors are, and in my analysis, I
2 included whatever was relevant.
3 Q Well, apart from what appears in -- in
4 paragraph 19, do you discuss objective factors
5 anywhere else in your declaration?
6 A I can -- I mean, let's go through them one by
7 one. It seems to be that would be easier for me if
8 we break it down into -- than just a general
9 question. The differences between the prior art and

10 the claim at issue, sure, I've done that. I've done
11 that in my -- in my analysis. We can go through
12 that.
13 The knowledge of a person of ordinary skill
14 in the pertinent art, we just went through that. So
15 I don't understand -- you want me to identify every
16 one of these factors?
17 Q No, that was not my question.
18 A Then I don't understand your question.
19 Q Okay. You say that there are four factors
20 that must be considered in an obviousness analysis,
21 correct? That's what you say in paragraph 19.
22 A That's right.
23 Q Okay. And there's -- A is:
24 "The scope and content of the
25 prior art."

Page 83
1 Correct?
2 A Uh-huh.
3 Q B is:
4 "The differences between the prior
5 art and the claims at issue."
6 Correct?
7 A Uh-huh, yes.
8 Q C is:
9 "The knowledge of a person of

10 ordinary skill in the pertinent
11 art."
12 Correct?
13 A Correct.
14 Q And D lists:
15 "Objective factors indicating
16 obviousness or nonobviousness."
17 A Correct.
18 Q Okay. Now, my question is -- I'm not
19 concerned about the first three factors. I want to
20 know about objective factors.
21 A Okay. I get that.
22 Q Did you discuss objective factors anywhere in
23 your declaration apart from paragraph 19?
24 A I considered them, but I did not report them.
25 I mean, it was -- it was definitely something I did

Page 84
1 not put in my report; that's for sure.
2 Q So discussion of objective factors apart from
3 paragraph 19 doesn't appear anywhere in your report,
4 correct?
5 A Yeah. If you find it, let me know.
6 (Exhibit 8 was marked for identification
7 by the court reporter and is attached hereto.)
8 BY MR. TUMINARO:
9 Q Sir, you've been handed what's been marked as

10 Exhibit 8 for identification purposes. This is U.S.
11 patent number 7,015,913 to Lindholm.
12 Do you see that?
13 A Yes.
14 Q You considered -- I'm going to refer to this
15 as the Lindholm patent; is that fair?
16 A That is fair.
17 Q And you considered the Lindholm patent when
18 forming the opinions expressed in your declarations,
19 correct?
20 A Yes.
21 Q Okay. And if you turn to page 32 of your
22 declaration, there's a section that reads "Ground
23 1."
24 Do you see that?
25 A Yeah, yes.

Page 85
1 Q So just so we're clear, it's your opinion
2 that Lindholm anticipates certain claims of the 871
3 patent, correct?
4 A Correct.
5 Q Okay.
6 MR. PLUTA: I'm sorry. Which declaration
7 were you referring to?
8 MR. TUMINARO: Oh, I'm sorry. I was
9 referring to the -- what's Exhibit 1 with respect to

10 the 871 patent.
11 MR. PLUTA: Thank you.
12 BY MR. TUMINARO:
13 Q And if you look at -- starting on page 32 of
14 your declaration, Exhibit 1, with respect to the 871
15 patent, there is a section that is -- has a heading
16 labeled "Lindholm Discloses Claim 1."
17 Do you see that?
18 A Yes, I do.
19 Q And that spans all the way to page 34, where,
20 then, there's a claim chart --
21 A I see that.
22 Q -- correct? Okay.
23 And on page 33 of your declaration, you
24 reproduce Figure 4 from Lindholm, correct?
25 A Yes, I do, correct.

22 (Pages 82 - 85)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 22 of 611

Page 86
1 Q So if you would go to Figure 4 of Lindholm
2 for me and circle in Lindholm Figure 4 what you say
3 corresponds to the claimed elements in claim 1 of
4 the 871 patent.
5 MR. PLUTA: Object to form.
6 THE WITNESS: You want in Figure 4 to
7 identify what's mentioned in claim 1, those
8 components; is that what the question is?
9 BY MR. TUMINARO:

10 Q Claim 1 of the 871 patent, yes.
11 A I would refer you to my chart. I think
12 that's more accurate. If you want, you can go
13 through it one by one. I -- I think it would be
14 easier for me to explain. I would rather do that.
15 Q Well, I'm asking you if you can mark up
16 Figure 4 of Lindholm and show me where in Lindholm
17 you're saying -- what in Lindholm Figure 4
18 corresponds to the elements claimed in claim 1 of
19 the 871 patent.
20 A I would rather read it from the report, which
21 I think is very clear, in my opinion.
22 So the Lindholm thread control buffer -- so
23 claim 1 of 871 -- so claim 1 of 871 basically says
24 an arbiter -- it's a graphic processing -- the
25 Lindholm talks about graphic processing in the

Page 87
1 abstract.
2 Then the -- the next part or the -- of the
3 claim 1 talks about an arbiter circuit for selecting
4 one of plurality of inputs in response to a control
5 signal. And in this case, we have the TCB, which is
6 working as an arbiter here, deciding between the
7 inputs, 215 and 220. These are corresponding to
8 vertex and pixel input data.
9 Q All right. Let me try this, sir. If you

10 would turn with me to paragraph 90 of your
11 declaration.
12 A Yes.
13 Q Paragraph 90 reads:
14 "Because Lindholm's Execution
15 Pipeline 240 performs both vertex
16 operations such as transforming
17 vertices and pixel operations such
18 as texture mapping and blending,
19 components of the Pipeline 240
20 correspond to the 'shader' of claim
21 1."
22 Do you see that?
23 A Yes.
24 Q So what I want to know is what components of
25 execut- -- execution pipeline 240 correspond to the

Page 88
1 shader of claim 1.
2 A The shader is the -- the processor that is
3 doing the job in general, right? So that's the --
4 the execution units.
5 Q Let -- let me ask again. In paragraph 90,
6 you say:
7 "Components of Execution Pipeline
8 240 correspond to the 'shader' of
9 claim 1."

10 Correct?
11 A Right, the components of 240. And it's shown
12 here, Figure 4, and all the components are there.
13 Q So now my question is, which components of
14 execution 240 correspond to the shader claimed in
15 claim 1?
16 A The shader in claim 1 is identified as
17 Box 62, correct? And that particular function is
18 handled by the execution units.
19 Q So is it -- is it your testimony -- I just
20 want to make sure I understand -- that execution
21 unit 470 corresponds to shader -- the claimed
22 shader?
23 A Including all the components that goes with
24 it in terms of the instruction, the sequencers and
25 so on.

Page 89
1 Q So that's -- that's my question. I want to
2 know what your opinion is. In -- in your -- in
3 paragraph 90, you say:
4 "Components of Execution Pipeline
5 240 correspond to the 'shader' of
6 claim 1."
7 I want to know what components of execution
8 pipeline 240 you're talking about.
9 Can you identify them for me in Lindholm?

10 A Sure. I say it in paragraph 95:
11 "The Execution Unit 470 eventually
12 processes the retrieved samples
13 along with received instructions
14 from Instruction Dispatcher 440 'to
15 perform operations such as linear
16 interpolation, derivative
17 calculation, blending... and output
18 the processed sample to a
19 destination specified by'" -- "'by
20 the instruction.'"
21 So that should give you the answer,
22 paragraph 95.
23 Q So is the answer to my question, then, that
24 instruction dispatcher 240 and execution unit 470
25 correspond to the claimed shader --

23 (Pages 86 - 89)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 23 of 611

Page 90
1 MR. PLUTA: Object to form.
2 BY MR. TUMINARO:
3 Q -- of --
4 MR. PLUTA: I'm sorry.
5 BY MR. TUMINARO:
6 Q -- the 871 patent?
7 MR. PLUTA: Object to form.
8 THE WITNESS: There are -- there are
9 components that are related to the shader that help

10 470 to execute. So I -- I don't know where you want
11 to put the -- the border in terms of where the
12 shader is.
13 But the shader, if you want to count it as
14 the execution unit, it would be the 470. The
15 instructions are coming from above, as you see in
16 Figure 4.
17 BY MR. TUMINARO:
18 Q It's not where I want to put the borders. I
19 want to know where you put the borders. I want to
20 know what your opinion is. Which components --
21 A And I --
22 Q -- are -- are corresponding to the shader?
23 A The shader is --
24 MR. PLUTA: Object to form.
25 THE WITNESS: -- defined as the execution

Page 91
1 unit. I've -- I've said it several times -- I mean,
2 I've repeated my answer several times. The
3 execution unit 470 processes the received samples
4 along with the received instructions from
5 instruction patch -- instruction dispatch 440. So
6 instruction dispatch provides the instructions to
7 470 to do the computation.
8 BY MR. TUMINARO:
9 Q Okay. So it's -- 440 and 470 correspond to

10 the unit -- to the shader claimed in claim 1.
11 Is there anything else that you're pointing
12 to that corresponds to the shader in claim 1?
13 MR. PLUTA: Object to form.
14 MR. TUMINARO: I'll ask again.
15 Q Is there anything else in Lindholm besides
16 instruction dispatcher 440 and execution --
17 execution unit 470? Is there anything else besides
18 those two components that you're saying corresponds
19 to the claimed shader in claim 1 of the 871 patent?
20 A The -- the way that I interpret your question
21 is that the shader is the execution unit part of the
22 computation, and that's the one 470 in terms of the
23 computation.
24 But there are other components that feed into
25 this block. So there are instructions that come to

Page 92
1 the shader and perform the operation. So that's --
2 to me, that's clear, at least from what I explained.
3 Q I guess it's -- it's not clear to me. I
4 don't know -- is it 470 and instruction dispatcher
5 240 from Lindholm that make up the -- the claimed
6 shader, or are there other things that you are
7 pointing to in Lindholm that correspond to the
8 shader?
9 A And the define -- the definition of the

10 shader is? You -- the definition that is in 871?
11 Q The claimed shader in 871.
12 A The claimed shader in 871. Well, it shows
13 the unified shader in this figure, right, if you're
14 referring to that. Assuming what's put into that
15 871 -- Figure 5. Hold on a second.
16 Okay. So the -- looking at 871, the unified
17 shader is defined to be including what's in here,
18 Figure 5, correct?
19 So that means it includes the instruction
20 store. So I would put anything to do with
21 instructions as part of the shader based on what
22 this -- these guys have defined in 871.
23 Q Okay.
24 A And that is consistent with this
25 understanding.

Page 93
1 Q So what structures, then, are you talking
2 about that correspond to the instructions -- strike
3 that.
4 What structure in Lindholm are you referring
5 to that corresponds to the instruction store?
6 A Anywhere you see an instruction, it's
7 referring to this information that is in Figure 5.
8 It says "instruction store." They -- they
9 identified this figure to be the shader based on

10 their definition of a shader. And that's consistent
11 with this figure. So that includes anything to do
12 with the instruction, Counsel.
13 Q Sir -- sir, I --
14 A Let me finish my -- you're not -- you're not
15 letting me finish.
16 Q I didn't say anything.
17 A You started talking, sir.
18 But whatever has to do with instruction is
19 part of this shader.
20 Q That's -- that's what I want to know. What
21 things in -- in Figure 4 or in Lindholm generally
22 are you pointing to that correspond to the claimed
23 shader? You said the execution unit 470, the
24 instruction dispatcher 440.
25 Is there anything else in Lindholm that

24 (Pages 90 - 93)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 24 of 611

Page 94
1 you're pointing to that corresponds to the claimed
2 shader?
3 A So --
4 MR. PLUTA: Objection; asked and answered.
5 THE WITNESS: It -- it includes instructions,
6 it includes the register file, it includes anything
7 to do with what has been defined in 871 to be the
8 shader, consistent with that.
9 BY MR. TUMINARO:

10 Q So -- just so I understand now, register file
11 450 in Lindholm you're saying corresponds to the
12 claimed shader, as well?
13 A Because there are source registers here for
14 the CPU based on Figure 5 of -- of the 871, so there
15 are registers corresponding to this.
16 Q Okay.
17 A If -- if you open up execution unit 470, if
18 there are registers in there, that will be
19 corresponding to the -- to the Figure 5.
20 Q Okay. Anything else in -- in Lindholm,
21 besides instruction dispatcher 440, execution unit
22 470, register file 450, anything else in Lindholm
23 that you're saying corresponds to the claimed shader
24 in 871?
25 MR. PLUTA: Object to form.

Page 95
1 THE WITNESS: Whatever 871 -- 871 defines in
2 Figure 5 to be the unified shader, they have coined
3 that for their -- for their understanding of unified
4 shader. It may be different from NVIDIA. It might
5 be different from somebody else.
6 So referring to Figure 5, referring to Figure
7 5 -- I'm going to repeat what's in Figure 5. There
8 are instruction stores. There's a -- there's a
9 constant, which are -- these are specialized

10 functions. There are source register operands.
11 There is a CPU which does the computation, and there
12 is block 92. And that's consistent what's in that
13 page.
14 (Unintelligible reading) to be
15 process (unintelligible reading) to the general
16 purpose register block 92. So that's -- that's --
17 if they define that to be the part of the shader,
18 and it's right here, the register file.
19 BY MR. TUMINARO:
20 Q Okay. Just -- we'll agree that the 871
21 Figure 5 is not referring to Lindholm, right?
22 A Excuse me?
23 Q Figure 5 of the 871 patent is not referring
24 to Lindholm, right?
25 A I -- no. I'm just trying to explain to you

Page 96
1 as defined here for the unified shader, I'm
2 identifying -- that's what you wanted me to do.
3 Q Right.
4 A I've identified those pieces that match
5 Figure 5 here.
6 Q Okay. So Figure 5 is defining the invention
7 or the -- it's describing what's in the 871 patent,
8 right, not what's in Lindholm, right?
9 A No. I was using that as a model to explain

10 to you what the unified shader defined here
11 corresponds to here. That's what you wanted me to
12 do.
13 Q Right. And it's your opinion that Lindholm
14 discloses what's in the -- claim 1 of the 871
15 patent, right?
16 A Based on Figure 5, yes.
17 Q Okay. So what I'm trying to understand is
18 the scope of your opinion. I want to know what --
19 if there's anything else in Lindholm besides
20 instruction dispatcher 440, register file 450,
21 execution unit 470, is there anything else that
22 you're pointing to in Lindholm that corresponds to
23 the claimed shader, in your opinion? I want to know
24 what your opinion is.
25 MR. PLUTA: Object to form.

Page 97
1 THE WITNESS: They did not explain the
2 details about how they were --
3 BY MR. TUMINARO:
4 Q Who's they?
5 A 871.
6 Q Okay.
7 A There are additional information -- there's
8 just one Figure 5 to show the exploded
9 description -- they use the word "exploded"

10 description of the shader. This is not sufficient
11 to explain whether the score boarding algorithms are
12 in there, whether the other components are there.
13 Because it talks about resources not being
14 available.
15 If you read 871, which I'm sure you have, it
16 says we will switch from vertices to pixels,
17 depending on resources being available. There is
18 nothing here to tell me how that switching is done.
19 But -- but Lindholm has a lot more detail in
20 terms of explaining what's going on. So given
21 what's in Figure 5, I have identified what's
22 available in Lindholm, but there are other things in
23 Lindholm that 871 did not discuss.
24 MR. TUMINARO: I'd like to take a break, I
25 guess, to -- to change the tape, and we'll come

25 (Pages 94 - 97)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 25 of 611

Page 98
1 back.
2 THE VIDEOGRAPHER: This -- we are off the
3 record. The time is 11:46 a.m., and this is the end
4 of the first media.
5 (Lunch recess.)
6 THE VIDEOGRAPHER: This is the beginning of
7 the second media. We're back on the record. The
8 time is 12:37 p.m.
9 Please continue.

10 BY MR. TUMINARO:
11 Q Welcome back, sir.
12 A Good afternoon.
13 Q During the break, did you talk with your
14 counsel about the substance of your testimony?
15 A No.
16 MR. TUMINARO: Okay.
17 Did you give him the exhibit?
18 THE REPORTER: Yes.
19 (Exhibit 9 was marked for identification
20 by the court reporter and is attached hereto.)
21 BY MR. TUMINARO:
22 Q You have in front of you Exhibit 9. It's
23 U.S. patent number 7,376,811. This is the Kizhepat
24 reference.
25 A Kizhepat.

Page 99
1 Q Yes?
2 A Yes, I have it.
3 Q And you considered Exhibit 9 in forming the
4 opinions expressed in both of your declarations?
5 A I believe so.
6 Q Okay. All right. If we look at the "Field
7 of the Invention," it's in column 1. It reads:
8 "The present invention relates to
9 system architectures for data

10 processing, and more particularly to
11 an architecture based upon a
12 hardware engine which performs
13 operations and computations on data
14 as the data traverses paths
15 controlled by software."
16 Do you see that?
17 A Column 1, "Field of Invention," right?
18 "Traverses paths controlled by software," yes. You
19 read the paragraph correctly, yes.
20 Q I apologize. In the -- the declaration that
21 you submitted for the 330 IPR, Exhibit Number 2, you
22 did not consider the Kizhepat reference for that
23 declaration, right? If you look at the
24 materials considered -- strike that.
25 Just look at the materials considered in

Page 100
1 Exhibit 2, your declaration, number 330.
2 A Okay.
3 Q Are you there?
4 A Yes.
5 Q All right. I just want to confirm, I
6 misspoke earlier. You did not actually consider
7 Kizhepat in forming the opinions expressed in the
8 declaration for the 369 patent, which is Exhibit 2?
9 A Yeah.

10 Q Right. Okay.
11 Thank you, Counsel.
12 All right. Now -- so we read the field of
13 the invention for Kizhepat.
14 A Kizhepat.
15 Q Yeah, okay. It's a fact, is it not, that the
16 acronym GPU appears nowhere in Kizhepat?
17 A Okay. I have to check.
18 So it's mostly talking about data processing
19 system. By looking at it very quickly, I did not
20 see the word "GPU," but data processing of this type
21 of architecture is consistent with the understanding
22 of doing graphics operations.
23 Q And the fact is Kizhepat doesn't use the
24 phrase "graphics processor," correct?
25 A It's -- it -- it -- it is data processing,

Page 101
1 and some aspects of graphic processing is data
2 processing.
3 Q Well, answer me this. Is the word -- does
4 the word "graphics" appear anywhere in Kizhepat?
5 A I looked at it quickly, and I did not come
6 across it, but that doesn't mean I looked at every
7 single sentence.
8 Q Well, look at every single sentence and tell
9 me, does the word "graphics" appears anywhere in

10 Kizhepat?
11 A Okay. So all the claims refer to data
12 processing. I looked at the claims. I think,
13 judging from 871, which is the preamble of claim 1,
14 and I think Lindholm also talks about graphics
15 processing. I just want to make sure that's the
16 case.
17 Yeah, so it's not in the claim description.
18 Q So we agree that Kizhepat neither uses the
19 acronym "GPU" nor the word "graphics" anywhere --
20 A In the claim disclosures, right.
21 Q In fact, it doesn't appear -- in addition to
22 the claims, it doesn't appear anywhere in the
23 patent?
24 MR. PLUTA: Object to form.
25 THE WITNESS: I would assume that if they had

26 (Pages 98 - 101)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 26 of 611

Page 102
1 mentioned it, it would be in the description
2 specification, as well, so...
3 BY MR. TUMINARO:
4 Q And in your declaration, when you're talking
5 about Kizhepat, you didn't cite anyplace in your
6 declaration where Kizhepat discloses the acronym
7 "GPU" or the word "graphics," correct?
8 A I was looking at that. And what I used --
9 Kizhepat is for combining with Lindholm regarding

10 your multiplexers, the --
11 THE REPORTER: "Regarding" what?
12 THE WITNESS: Multiplexers.
13 And the fact that you're able to select one
14 of those input to the processors.
15 So that -- that's basically the level of --
16 as I say in paragraph 158:
17 "A typical and common multiplexing
18 system is described in Kizhepat.
19 Kizhepat discloses a hardware engine
20 for data processing that includes a
21 plurality of functional units and
22 data routing units that interconnect
23 the functional units."
24 So that's been --
25 BY MR. TUMINARO:

Page 103
1 Q Okay. I appreciate -- I appreciate the
2 answer, but I think it didn't answer my question.
3 My question was, in your declaration, when
4 you're talking about Kizhepat, you didn't cite
5 anywhere in Kizhepat just -- that Kizhepat discloses
6 the word "GPU" or "graphics processor," right?
7 A It's not in my report.
8 Q Okay. Switching gears to the materials
9 considered, did you review the board's institution

10 decision with respect to the 871 patent?
11 A I think you asked that this morning, right?
12 Q Well, I asked if you reviewed anything else.
13 I'm just wondering if you looked at the institution
14 decision.
15 A You did ask, and I said no.
16 Q So are you aware of the fact that the board
17 construed --
18 A I'm sorry. You asked me about the response
19 you gave to -- I apologize. You asked me about the
20 response you gave for some other case.
21 Did I look at the review -- did I look at the
22 board's response? Yes, I did.
23 MR. TUMINARO: Okay. Maybe this will make it
24 faster.
25 Can you grab that.

Page 104
1 (Exhibit 10 was marked for identification
2 by the court reporter and is attached hereto.)
3 MR. TUMINARO: This is 10, right?
4 THE REPORTER: 10.
5 BY MR. TUMINARO:
6 Q You've been handed what's been marked as
7 Exhibit 10 for identification purposes. This is --
8 this is the decision by the PTAB regarding
9 institution of the IPR2015-00326, correct?

10 A Correct.
11 Q And you've seen this document before?
12 A I have.
13 Q Okay. So I'd like to direct your attention
14 to page 9 at the bottom, the last sentence that --
15 that bridges across page 9 and into page 10. I'll
16 read it for the record:
17 "Thus, for purposes of this
18 decision, we construe the 'means for
19 performing vertex operations and
20 pixel operations and performing one
21 of the vertex operations or pixel
22 operations based on the selected one
23 of the plurality of inputs' to
24 include a register, an instruction
25 sequencer capable of providing

Page 105
1 instructions for performing vertex
2 operations and pixel operations, and
3 a processor capable of floating
4 point, arithmetic, and logical
5 operations on a selected input."
6 Do you see that?
7 A Yes.
8 Q Did I read it correctly?
9 A I didn't check.

10 Q Okay. My question is, do you agree with the
11 board's construction for this means for limitation?
12 A My understanding is that we have to accept
13 the board's understanding -- or construction.
14 That's my understanding from legal point of view.
15 I don't know if there is -- and I agree with
16 it.
17 "To include the register,
18 instruction sequencer capable of" --
19 "we construe the means of performing
20 vertex operations and pixel
21 operations and" (unintelligible
22 reading) --
23 THE REPORTER: I'm sorry.
24 THE WITNESS: I'm sorry. I'm just -- I
25 should read it for myself.

27 (Pages 102 - 105)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 27 of 611

Page 106
1 It's identifying what they say should be
2 included. I would say that plus additional stuff,
3 if you want to get to the details. That's the
4 minimum requirement, I would say.
5 BY MR. TUMINARO:
6 Q Are you -- are you saying that the board
7 missed out some structure and there should be
8 additional stuff in their construction?
9 A No, I'm not saying that. I'm saying these

10 are the basic components. And depending what else
11 you want to do, you may add additional stuff to it.
12 It de- -- it depends on the level of -- so I -- it's
13 consistent with my understanding.
14 Q Okay. You've heard of the word "arbiter"
15 before?
16 A In the context of?
17 Q Graphics processing.
18 A Yes.
19 Q Okay. And an arbiter selects from available
20 inputs?
21 A Correct.
22 Q Okay. If you'd turn with me to the 871
23 patent, it's Exhibit 7.
24 A 87- -- 871. What page?
25 Q 871 patent, Figure 4A.

Page 107
1 A 4A.
2 Q Are you there, 4A?
3 A Yep, yes.
4 Q All right. My question is, you see MUX 66 at
5 the top of Figure 4A?
6 A I see it.
7 Q Is MUX 66 an arbiter?
8 MR. PLUTA: Object to form.
9 THE WITNESS: Does it say it's an arbiter?

10 It says it's a MUX.
11 BY MR. TUMINARO:
12 Q Well, that's my question.
13 A Unless it's a typo.
14 Q That's my question. Do you consider, in your
15 opinion, MUX 66 to be an arbiter?
16 MR. PLUTA: Object to form.
17 THE WITNESS: If -- if you want to implement
18 an arbiter, you need to have a control, and you need
19 to have a way of selecting between inputs. A MUX
20 does that on its own, and a simple control would
21 basically let you select between the inputs. You
22 can basically select which one of the inputs would
23 be the output. You can call that an arbiter if you
24 want, depending on what -- how you control it.
25 A simple control will be just selecting

Page 108
1 between the inputs. A more sophisticated control
2 will be the -- the logic behind that control signal.
3 BY MR. TUMINARO:
4 Q In the past, you've opined that an arbiter
5 receives and provides, correct?
6 MR. PLUTA: Object to form. Object to
7 relevance.
8 THE WITNESS: In the past meaning what? What
9 do you mean in the past?

10 BY MR. TUMINARO:
11 Q In --
12 A In my history of my life?
13 Q -- in another -- in -- in another proceeding
14 you have opined that arbiter means -- refers to
15 structure that receives and provides, correct?
16 MR. PLUTA: Object to form. Object to
17 relevance. Counsel, it's a different patent,
18 different references, different terms.
19 THE WITNESS: I just explained to you what a
20 MUX is. It has two inputs and has outputs in this
21 case, so it's a two-to-one selector.
22 BY MR. TUMINARO:
23 Q Is it or is it not true that in the past, in
24 another proceeding, you opined that arbiter is
25 structure that receives and provides?

Page 109
1 MR. PLUTA: Object to form. Same objection
2 as to relevance.
3 THE WITNESS: I -- I don't know in what
4 context that was, but in general, a MUX has an input
5 and output. There's no question about it. It's a
6 circuit that has an input and output.
7 I don't know what -- what -- can you repeat
8 what you just said about what I --
9 BY MR. TUMINARO:

10 Q Sure. I'll repeat the question again.
11 Is it or is it not true that in the past, in
12 another proceeding, you opined that an arbiter is
13 structure that receives and provides?
14 MR. PLUTA: Object to form. Object to
15 relevance.
16 THE WITNESS: My answer to you is that it
17 inputs and outputs. Receives an input and generates
18 an output.
19 BY MR. TUMINARO:
20 Q An arbiter receives an input and generates an
21 output?
22 A Of course.
23 I mean, I -- I don't know what else I can add
24 to what I just said.
25 Q Going back to your declaration, with respect

28 (Pages 106 - 109)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 28 of 611

Page 110
1 to the 871 patent, Exhibit 1.
2 A What page?
3 Q I'm trying to get there.
4 Page 32.
5 A Okay.
6 Q Paragraph 91 reads:
7 "Lindholm also discloses a Thread
8 Control Buffer 420 which is read as
9 the 'arbiter circuit' of claim 1."

10 Do you see that?
11 A I see that.
12 Q So thread control buffer 420 appears in
13 Figure 4 of Lindholm, right?
14 A It does.
15 Q And that thread control buffer 420 is what
16 you're saying corresponds to the claimed arbiter
17 circuit, correct?
18 A Correct.
19 Q Is there anything else in Lindholm that
20 you're pointing to or that you opine that
21 corresponds to the claimed arbiter circuit?
22 A That's just one example.
23 Q The thread -- what's just one example?
24 A TCB is an arbiter.
25 Q TCB 420, you're saying, is an arbiter?

Page 111
1 A Right.
2 Q Right. Okay. My question is -- so you say
3 that corresponds to the claimed arbiter circuit of
4 claim 1?
5 A Yes.
6 Q Is there any other structure in Lindholm that
7 you're relying on to meet the claimed arbiter
8 circuit?
9 A My position is that's the arbiter that I'm

10 using to discuss claim 1 in my charts. I think
11 that's what I've said. I have not --
12 Q Okay.
13 A -- opined on anything else.
14 Q Okay. All right. Earlier I asked you, is it
15 your opinion that execution unit 470, which appears
16 in Figure 4, corresponds to the claimed shader, and
17 you answered:
18 "Including all the components that
19 goes with it in terms of the
20 instruction, the sequencers and so
21 on."
22 A Right.
23 Q So you -- is it your opinion that anything in
24 Figure 4 that relates to instructions, corresponds
25 to the claimed shader of the 871 patent?

Page 112
1 MR. PLUTA: Object to form.
2 THE WITNESS: I have it -- the sequencer,
3 which is identified in Figure 5, it's also discussed
4 here to be the instruction scheduler and dispatcher
5 and the -- and the components related to that. Then
6 the register file and the execution unit. So I've
7 already discussed that with you earlier. I don't
8 know what other component you're referring to.
9 The sequencer is the one that sequences

10 through the -- through the steps, and that's what --
11 what instruction scheduler and dispatcher do.
12 BY MR. TUMINARO:
13 Q I'm still very confused. I apologize.
14 In claim 1 of the 871 patent, there's claimed
15 a shader, correct?
16 A Yes.
17 Q Okay. In paragraph 90 of your declaration,
18 you say:
19 "Components of the Execution
20 Pipeline 240" --
21 Which you're referring to Figure 4 of
22 Lindholm. You say that certain:
23 "Components of Execution Pipeline
24 240 correspond to 'shader' of claim
25 1."

Page 113
1 Correct? You said that in paragraph 90?
2 A I said register file, the processing unit,
3 which is the execution unit, and the sequencer,
4 which in this case would be sequencing the execution
5 unit.
6 Q What are you saying is the sequencer in
7 Figure 4 of Lindholm? I don't see those words.
8 A Instruction scheduler, instruction
9 dispatcher.

10 Q Anything else?
11 A That's all I said.
12 MR. TUMINARO: Okay.
13 Could we go off the record.
14 THE VIDEOGRAPHER: We are off the record.
15 The time is 1:04 p.m.
16 (Recess.)
17 THE VIDEOGRAPHER: We're back on the record.
18 The time is 1:27 p.m.
19 Please continue.
20 BY MR. TUMINARO:
21 Q Would you turn back to Exhibit 1 for me.
22 A Yeah.
23 Q And paragraph 22, which is on page 11.
24 A Yeah.
25 Q I'll read it:

29 (Pages 110 - 113)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 29 of 611

Page 114
1 "I have been informed that the
2 application that issued as the 871
3 patent was filed in November 2003.
4 As a result, I will assume the
5 relevant time period for determining
6 what one of ordinary skill in the
7 art knew is early to mid 2003."
8 Do you see that?
9 A Yes.

10 Q So you didn't consider what a person of
11 ordinary skill would have known in, for example,
12 2002, right?
13 A It would be not from that statement, but it's
14 additive. Whatever they knew in 2002, they have
15 gained some knowledge since then. So I -- I see it
16 like an additive.
17 Q Okay. Is there anywhere in your dec- -- in
18 your declaration where you talk about what a person
19 of ordinary skill in the art would have known in
20 2002?
21 MR. PLUTA: Object to form.
22 THE WITNESS: No, but it is consistent with
23 what I understand, they keep adding to their
24 knowledge to that point, not all happening in that
25 time frame. It would be gradual.

Page 115
1 BY MR. TUMINARO:
2 Q Okay. Switching gears --
3 A Okay.
4 Q -- Rich performs vertex operations and pixel
5 operations sequentially, correct?
6 MR. PLUTA: Object to form.
7 BY MR. TUMINARO:
8 Q Let me ask that again.
9 The system disclosed in Rich performs vertex

10 operations and pixel operations sequentially,
11 correct?
12 A Let me check. Is there a specific section
13 you want me to refer to, or is this a general
14 question? Do you have a reference so I can look at
15 it?
16 Q All right. Look at column 9.
17 A Okay. I don't see the word "sequentially
18 executed."
19 Q All right. Let me help you out, then.
20 A Yeah.
21 Q Look at the first sentence in column 9. It
22 reads:
23 "The first function carried out by
24 one particular embodiment of the
25 image generation system is

Page 116
1 illustrated in Figure 3."
2 Do you see that?
3 A Yeah.
4 Q Okay. And if you turn to Figure 5, the third
5 line -- are you there? I mean column 5, the third
6 line. Excuse me.
7 A Uh-huh.
8 Q Column 5 --
9 A Yes.

10 Q -- the third line reads:
11 "Figure 3 is a flow chart of
12 geometry processing aspects of the
13 image generation system of Figure
14 1."
15 A Okay.
16 Q So those two sentences in combination, if you
17 read line 1 of column 9 and the fact that Figure 3
18 relates to geometry processing, that means the first
19 function carried out by the system is geometry
20 processing as illustrated in Figure 3, correct?
21 MR. PLUTA: Object to form.
22 THE WITNESS: It says it's geometry
23 processing, but it doesn't say that it -- it is
24 limited to doing that sequentially with respect to
25 pixel. I don't get that --

Page 117
1 MR. TUMINARO: Okay.
2 THE WITNESS: -- information out of that.
3 BY MR. TUMINARO:
4 Q Okay. Then let's look at line 40 in column
5 9. It says:
6 "After geometry processing, the
7 next function carried out by the
8 image generation system is
9 rasterization."

10 Do you see that?
11 A Yes.
12 Q And rasterization is a pixel operation?
13 A Yes, but --
14 Q So pixel operations occur after geometry
15 processing?
16 A You have to have the primitives before you
17 can do rasterization, but -- it says -- first of
18 all, in one embodiment, I think it said that as
19 much. There is no limitation from what I see here
20 whereby the control unit can activate primitives
21 being executed into the corresponding rasterization
22 while some other primitive's being evaluated,
23 because you have multiple primitives. So it is not
24 limiting that because you have multiple processing
25 units, and the control unit can control these

30 (Pages 114 - 117)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 30 of 611

Page 118
1 independent of each other.
2 Q I'm asking about what's actually disclosed in
3 Rich. And in column 9, it says first you do
4 geometry operations, and after the geometry
5 operations, you do pixel operations; is that right?
6 A In one particular embodiment, but it doesn't
7 say that's the only way to do it.
8 Q Point to me an embodiment where it says
9 they're not done sequentially.

10 A It didn't need to, because it was obvious to
11 somebody who was looking at this -- or it was clear
12 to somebody who was looking at this that I have
13 multiple processing elements. I have a central
14 control unit that I can control these processing
15 elements.
16 What I want to do is to able to do a linear
17 expression evaluation on a subset of these
18 primitives, convert them into pixels while I'm
19 working on the primitives of some other portions of
20 the graphics image.
21 So I would say it's -- in other embodiments,
22 that could happen. I don't see any limitations here
23 on that.
24 Q Okay. I'm not asking about what could
25 happen, what -- I want to know, is there anything in

Page 119
1 disclo- -- disclosed in Rich --
2 A The block diagram.
3 Q -- that says that you do geometry operations
4 and pixel operations not sequentially?
5 MR. PLUTA: Object to form.
6 THE WITNESS: I think the block diagram gives
7 you that -- that information. But if you want to
8 see it written and happening concurrently, it
9 doesn't say anything about sequentiality either. So

10 I don't have any specific sentence to saying it's
11 happening sequentially or otherwise concurrently.
12 But -- but Figure 2 in this case is
13 indication to me that the -- the operation could
14 happen in a partition way, namely, portions of the
15 primitives could be handling -- could be working on
16 rasterization while the other parts are doing vertex
17 operations. So I -- I would say that is quite
18 possible with this design, although it didn't say it
19 specifically.
20 BY MR. TUMINARO:
21 Q Okay. And given your knowledge of graphics
22 processing generally, you're aware that there were
23 no graphics processors --
24 A Uh-huh.
25 Q -- in 2003 or 2002 that had a unified shader,

Page 120
1 correct?
2 MR. PLUTA: Object to form.
3 THE WITNESS: I haven't checked all the
4 designs at that time frame. There are hundreds of
5 patents and disclosures and so on. I couldn't tell
6 you that for a fact, but it is possible that they
7 were there.
8 BY MR. TUMINARO:
9 Q Well, you're aware of the fact that ATI's

10 Xenos processor is recognized as -- in the industry
11 as the first to provide a graphics processor with a
12 unified shader, correct?
13 MR. PLUTA: Object to form, lack of
14 foundation --
15 THE WITNESS: I don't have any --
16 MR. PLUTA: -- relevance.
17 THE WITNESS: -- indication of that. But I
18 can assure you in conferences and journals, which
19 they do the foundation work that ends up in these
20 products, there has been reports of unified shaders
21 prior to that.
22 BY MR. TUMINARO:
23 Q And you didn't cite any of those reports
24 anywhere in your declaration that talked about a
25 unified shader before 2003, correct?

Page 121
1 A I didn't need to. I was convinced with what
2 I had.
3 Q If you turn back with me to the institution
4 decision --
5 A Yeah.
6 Q -- in the 326 case.
7 A Yes.
8 Q On page 22, the second paragraph, the third
9 sentence of the second paragraph, it starts with

10 "Nevertheless."
11 Do you see that?
12 A Yes.
13 Q I'll read it:
14 "Nevertheless, as discussed above,
15 both Petitioner and Patent Owner
16 recognize that Rich discloses
17 performing vertex operations and
18 pixel operations sequentially."
19 Do you see that?
20 A Yeah.
21 Based on what it --
22 MR. PLUTA: There's no question pending.
23 THE WITNESS: Oh, sorry.
24 BY MR. TUMINARO:
25 Q So during vertex operations, the system

31 (Pages 118 - 121)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 31 of 611

Page 122
1 disclosed in Rich will be performing operations on
2 vertex data, correct?
3 MR. PLUTA: Object to the form of the
4 question, lacks foundation. I also object to the
5 relevance because, Counsel, you're reading from a
6 ground that was not instituted by the board in this
7 decision.
8 THE WITNESS: Okay. Thank you.
9 You need an answer?

10 BY MR. TUMINARO:
11 Q I do.
12 A I think I gave you my answer regarding what
13 Rich can do and cannot do. From understanding of
14 the technology, my position is that one could
15 implement that in parallel because it has all the
16 resources as defined in the description.
17 MR. TUMINARO: All right. I have no more
18 questions at this time.
19 THE WITNESS: Okay.
20 MR. PLUTA: I have a couple questions.
21 Should I -- I'll just --
22 THE WITNESS: Okay.
23 MR. PLUTA: It's a little awkward for the
24 video, but...
25 EXAMINATION

Page 123
1 BY MR. PLUTA:
2 Q Do you remember the questions regarding your
3 CV earlier about graphics processing?
4 A I do.
5 Q And you remember -- you listed quite a few
6 publications or journals that counsel did not
7 include that were on your CV related to graphics
8 processing, correct?
9 A Correct.

10 MR. TUMINARO: Objection; leading.
11 THE WITNESS: Correct.
12 BY MR. PLUTA:
13 Q What's your experience with graphics
14 processing outside of just published papers or
15 conference papers?
16 A The work I did at Morpho Technologies
17 developing the SIMD architecture for pixel
18 processing.
19 THE REPORTER: "Developing" what?
20 THE WITNESS: The SIMD processor for pixel
21 processing.
22 There are too many processing.
23 BY MR. PLUTA:
24 Q You remember you were -- you remember you
25 were asked some questions about the terminologies of

Page 124
1 ALU and microprocessors?
2 A Yes.
3 Q Is it your testimony that sometimes the
4 terminology of microprocessor and ALU is used
5 interchangeably?
6 A Sometimes, yeah.
7 Q Going to the Rich reference, is it your
8 opinion that vertex data and pixel data in Rich can
9 be stored on external memory?

10 A It is, yeah.
11 Q Is it your opinion that vertex data and pixel
12 data in Rich may also be stored in an internal
13 memory?
14 A That's right.
15 MR. PLUTA: I don't have any ques- -- further
16 questions at this time.
17 MR. TUMINARO: I have no more.
18 THE VIDEOGRAPHER: We are off the record.
19 The time is 1:42 p.m., and this concludes today's
20 testimony given by Dr. Nader Bagherzadeh. The total
21 number of media used was two and will be retained by
22 Veritext Legal Solutions.
23 (TIME NOTED: 1:42 p.m.)
24
25

Page 125
1 I, the undersigned, a Certified Shorthand
2 Reporter of the State of California, do hereby
3 certify:
4 That the foregoing proceedings were taken
5 before me at the time and place herein set forth;
6 that any witnesses in the foregoing proceedings,
7 prior to testifying, were placed under oath; that a
8 verbatim record of the proceedings was made by me
9 using machine shorthand which was thereafter

10 transcribed under my direction; further, that the
11 foregoing is an accurate transcription thereof.
12 I further certify that I am neither
13 financially interested in the action nor a relative
14 or employee of any attorney of any of the parties.
15 IN WITNESS WHEREOF, I have this date
16 subscribed my name.
17
18 Dated: September, 18 2015
19
20
21 <%signature%>

 NADIA NEWHART
22 CSR No. 8714
23
24
25

32 (Pages 122 - 125)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 32 of 611

Page 126
1 LG Electronics Inc v. ATI Technologies ULC
2 Dr Nader Bagherzadeh
3 INSTRUCTIONS TO THE WITNESS
4 Please read your deposition over
5 carefully and make any necessary corrections.
6 You should state the reason in the
7 appropriate space on the errata sheet for any
8 corrections that are made.
9 After doing so, please sign the errata

10 sheet and date it.
11 You are signing same subject to the
12 changes you have noted on the errata sheet,
13 which will be attached to your deposition.
14 It is imperative that you return the
15 original errata sheet to the deposing
16 attorney within thirty (30) days of receipt
17 of the deposition transcript by you. If you
18 fail to do so, the deposition transcript may
19 be deemed to be accurate and may be used in
20 court.
21
22
23
24
25 2134835

Page 127
1 LG Electronics Inc v. ATI Technologies ULC
2 Dr Nader Bagherzadeh
3 E R R A T A
4 - - - - -
5 PAGE LINE CHANGE
6 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
7 Reason:_______________________________________
8 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
9 Reason:_______________________________________

10 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
11 Reason:_______________________________________
12 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
13 Reason:_______________________________________
14 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
15 Reason:_______________________________________
16 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
17 Reason:_______________________________________
18 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
19 Reason:_______________________________________
20 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
21 Reason:_______________________________________
22 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
23 Reason:_______________________________________
24 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
25 2134835

Page 128
1 LG Electronics Inc v. ATI Technologies ULC
2 Dr Nader Bagherzadeh
3 ACKNOWLEDGMENT OF DEPONENT
4 I, ______________________, do
5 hereby certify that I have read the foregoing
6 pages and that the same is a correct
7 transcription of the answers given by
8 me to the questions therein propounded,
9 except for the corrections or changes in form

10 or substance, if any, noted in the attached
11 Errata Sheet.
12
13 __________ ________________________
14 DATE SIGNATURE
15
16 Subscribed and sworn to before me this
17 ____________ day of ______________, 20__.
18
19 My commission expires: _________________
20 ____________________________
21 Notary Public
22
23
24
25 2134835

33 (Pages 126 - 128)
Veritext Legal Solutions

215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 33 of 611

&
& 8:2

0
053 15:2,4,10,18

1
1 5:10 10:6,10,16,17

11:17 33:5 34:10
84:23 85:9,14,16
86:3,7,10,18,23,23
87:3,21 88:1,9,15
88:16 89:6 91:10,12
91:19 96:14 99:7,17
101:13 110:1,9
111:4,10 112:14,25
113:21 116:14,17

10 5:10 6:8,16 24:10
39:13,24 40:6 41:24
44:14 104:1,3,4,7
104:15

104 6:16
10:45 60:22
10:59 60:25
10th 10:25 16:11
11 5:13 24:17 33:7

113:23
1100 4:8
111 5:11
11:46 98:3
12 6:14 64:10
1201 1:21
123 5:6
1250 1:21
127 36:25
128 65:9
12:37 98:8
13 21:13,16 22:24

23:20
14 23:5,11
15 1:17 2:18 5:16

7:1 62:2,4,5 63:9,16
64:5 65:22 66:4,24

158 102:16

15th 7:6
16 33:12 72:21
160 23:13
17 33:16
18 24:24 125:18
19 80:12,13 82:4,21

83:23 84:3
1998 71:19
1999 3:15
1:04 113:15
1:27 113:18
1:42 2:18 124:19,23

2
2 5:13 11:3,6 12:4

31:22 62:13,15,20
62:23 63:15 64:6
74:20 78:21 99:21
100:1,8 119:12

20 6:11 71:22
128:17

20005 1:22 4:9
20006-1101 3:16
2001 35:13 37:7,20
2002 114:12,14,20

119:25
2003 39:10 72:9

76:20 77:21 79:18
79:20 114:3,7
119:25 120:25

2011 32:16
2014 10:25 11:15

12:17 16:11 38:19
2015 1:17 2:18 7:1,6

125:18
202-263-3318 3:17
202-371-2600 4:10
21 25:2,5
2134835 126:25

127:25 128:25
214 63:9
215 87:7
216 68:19
22 25:8 113:23

121:8

220 87:7
23 25:12
233 70:12 72:15
234 75:15
235 74:6
240 87:15,19,25

88:8,11,14 89:5,8
89:24 92:5 112:20
112:24

2500 2:16
27 34:9,11,12,13,15

34:16
272 23:23
28 6:17
29 23:12,15,19

3
3 5:16 15:22 16:1

37:7 116:1,11,17,20
30 23:19 67:6 72:13

126:16
31 35:8,11 37:25
312-701-8641 3:9
32 38:6 64:23 65:6

66:10,11,13,18 71:3
71:17 74:1 76:1
84:21 85:13 110:4

326 10:11 12:2
13:19 121:6

33 5:18 62:19 64:25
65:8 70:10,11 85:23

330 11:7,15 12:5
13:21 99:21 100:1

34 62:19 63:4 64:6
65:10,20 67:15 68:4
68:22 69:9,20,24
70:6 72:18 73:8
75:7 76:23 77:7,8
85:19

350 2:16
36 5:20
369 14:16,19 100:8
3d 26:7 30:18
3d10 40:21

4
4 5:20 36:7,11,18

85:24 86:1,2,6,16
86:17 88:12 90:16
93:21 110:13
111:16,24 112:21
113:7

4.0 5:24 40:16 41:23
40 5:23 13:13,14,25

14:1 62:23 67:1,3
72:13 117:4

41 77:24 78:1,2
420 110:8,12,15,25
440 89:14 91:5,9,16

93:24 94:21 96:20
450 94:11,22 96:20
470 88:21 89:11,24

90:10,14 91:3,7,9
91:17,22 92:4 93:23
94:17,22 96:21
111:15

4a 106:25 107:1,2,5
4th 40:22

5
5 5:21,23 21:7,13

31:24 40:11,15
92:15,18 93:7 94:14
94:19 95:2,6,7,7,21
95:23 96:5,6,16
97:8,21 112:3 116:4
116:5,8

5,808,690 6:5 61:8
50 6:5
52 72:21
55 72:21

6
6 6:4 61:2,7
6,897,871 6:8 61:19
60606-4637 3:8
61 6:4,7
62 88:17
64 74:1

[& - 64] Page 1

Veritext Legal Solutions
215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 34 of 611

66 107:4,7,15
7

7 6:7 61:15,19
106:23

7,015,913 6:11
84:11

7,376,811 6:14
98:23

70 17:14
71 3:7
75 29:8

8
8 5:5 6:10 46:23

48:17 64:24 65:7
84:6,10

80 13:18
84 6:10
86 5:14
87 106:24
871 14:14 38:21

39:1,8 61:20,23
62:2,5 63:16 64:5
65:22 66:4,25 78:5
85:2,10,14 86:4,10
86:19,23,23 90:6
91:19 92:10,11,12
92:15,16,22 94:7,14
94:24 95:1,1,20,23
96:7,14 97:5,15,23
101:13 103:10
106:22,24,25 110:1
111:25 112:14
114:2

8714 2:20 125:22
88 21:14

9
9 5:25 6:13 98:19,22

99:3 104:14,15
115:16,21 116:17
117:5 118:3

90 87:10,13 88:5
89:3 112:17 113:1

91 110:6
92 95:12,16
95 89:10,22
98 6:13
9:38 2:17 7:2,5
9th 11:15 16:10

a
a.m. 2:17 7:2,5

60:22,25 98:3
able 19:20 32:24

72:4 102:13 118:16
abstract 40:19 87:1
accelerated 30:7
accept 105:12
acceptable 46:11
access 67:22 68:13
accessing 65:11
accumulator 55:8
accurate 48:23

86:12 125:11
126:19

acknowledgment
128:3

acronym 100:16
101:19 102:6

action 7:21 125:13
activate 58:12 59:10

117:20
activates 58:14,14

58:25
actual 56:4
add 11:18 12:6 16:6

16:14 23:22 41:17
57:16 106:11
109:23

added 19:11 32:21
adding 71:16 114:23
addition 101:21
additional 16:7,9

30:1 57:7 97:7
106:2,8,11

additions 40:25
additive 114:14,16

address 57:12
addresses 67:5
adopt 19:13
advanced 47:15
afternoon 98:12
ago 71:22
agree 7:17 45:20

67:13 68:2,25 69:7
73:7,9 74:17,22,25
95:20 101:18
105:10,15

ahead 27:6 81:6
al 56:10
algorithms 26:10

97:11
allow 64:8
alu 52:23 53:9,11

55:25 56:13,15,17
56:23 57:2,7,11,16
57:23 58:14 59:3,5
59:10,11,12,17,19
59:24 60:6 62:19
64:9,11,15,16 65:10
66:20 75:10 77:11
77:11 124:1,4

alus 66:7 77:9
amount 71:3 75:25

80:9
analysis 81:18 82:1

82:11,20
angeles 1:16 2:16

7:1,12
anido 31:1
answer 9:9,17,18

27:2 42:2,16 50:4
58:22 59:1 60:3,7
63:19 64:7 67:25
75:9 76:10 89:21,23
91:2 101:3 103:2,2
109:16 122:9,12

answered 94:4
111:17

answers 128:7
anticipates 85:2

anybody 46:7 47:7
anymore 71:19
anyplace 102:5
anyway 31:20
apart 16:13 17:7

82:3 83:23 84:2
api 39:24
apis 44:13
apologize 24:25

29:11 99:20 103:19
112:13

appeal 1:2 2:2 6:16
appear 84:3 101:4

101:21,22
appearance 7:24
appearances 3:1 4:1
appears 10:21 24:23

82:3 100:16 101:9
110:12 111:15

appendix 10:15,19
11:11 14:7

application 18:23
45:2 46:9 47:13
52:16 55:7,10,11
114:2

applications 17:18
32:24 45:8,9,19
46:11 47:16

apply 19:20,23,24
applying 30:23
appreciate 24:8

103:1,1
approach 46:5,15

46:17 47:2,10
appropriate 126:7
arbiter 86:24 87:3,6

106:14,19 107:7,9
107:15,18,23 108:4
108:14,24 109:12
109:20 110:9,16,21
110:24,25 111:3,7,9

architect 65:14
architecture 5:25

20:18,21,24 21:4
26:5,14,20 29:22

[66 - architecture] Page 2

Veritext Legal Solutions
215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 35 of 611

38:23 39:11,25
40:16,24 41:6,25
42:19 43:7,15,22
44:1 50:22 51:13
62:15,16 78:8,10,13
79:5 80:3 99:11
100:21 123:17

architectures 20:13
28:1 44:3 99:9

area 57:22
arithmetic 56:18

64:25 65:8 105:4
array 33:1,2 62:22

63:1 67:2,6
art 48:10 75:17 78:4

78:25 80:1 81:14
82:9,14,25 83:5,11
114:7,19

article 5:20,23 42:10
articles 21:14 22:21
asic 47:2,20 48:21

51:16
asked 42:24 44:21

55:24 94:4 103:11
103:12,18,19
111:14 123:25

asking 39:19 44:23
45:10,14 50:7,8
56:6 86:15 118:2,24

aspects 101:1
116:12

associated 35:23
assume 9:10 23:6

101:25 114:4
assuming 92:14
assure 120:18
ati 1:8 2:8 7:14 8:3

32:3,6 126:1 127:1
128:1

ati's 120:9
atlantic 1:21
attached 10:7 11:4

15:23 16:2 36:8
40:12 61:3,16 84:7
98:20 104:2 126:13

128:10
attention 104:13
attorney 3:6,14 7:25

125:14 126:16
attorneys 4:7
audio 7:16
author 28:17,18,21

29:11
automatic 31:11
available 18:9,11

34:23 64:16 97:14
97:17,22 106:19

avatars 31:12,13
avenue 2:16 4:8
aware 38:20,25 39:6

39:13,23 43:5 48:2
49:7,19 50:9 103:16
119:22 120:9

awkward 122:23
b

b 83:3
back 27:9 29:4

48:21 60:24 61:5
98:1,7,11 109:25
113:17,21 121:3

background 33:9,11
33:19

bagherzadeh 1:15
2:14 5:3,11,14,17
7:7 8:13 61:5
124:20 126:2 127:2
128:2

bank 65:1,9
based 18:19 31:6

39:6,22 42:2,10
43:21 58:11,23
92:21 93:9 94:14
96:16 99:11 104:22
121:21

basic 106:10
basically 19:16

46:19 47:2 58:24
72:21 86:23 102:15
107:21,22

basis 17:21,22 35:16
battery 45:18,21
beginning 2:17 7:24

98:6
behalf 2:15 8:2,6
behest 59:4
believe 78:3 99:5
best 12:25 42:21,25
better 51:20
big 56:13 70:5
bigger 74:25
bit 26:22 58:25

64:24 65:7 74:1,1
74:20

bits 74:3
blending 87:18

89:17
block 54:12 62:8

63:5,20 64:5 65:21
91:25 95:12,16
119:2,6

blocks 58:15
board 1:2 2:2 6:17

103:16 106:6 122:6
board's 103:9,22

105:11,13
boarding 97:11
book 22:24 23:2,2
border 90:11
borders 90:18,19
bottom 33:12

104:14
bound 13:11
box 66:19 88:17
branches 30:22
break 9:13,18 60:19

82:8 97:24 98:13
breaks 9:12
bridges 104:15
bring 76:12
broad 45:1,10
brown 3:4,12 7:12

8:5,7
buffer 86:22 110:8

110:12,15

bug 51:19 52:3
burden 47:17
bus 65:13
bytes 65:9

c
c 83:8
c100 31:15
c47 24:23
c76 25:2
c78 30:7,12,14,15
c81 25:5 31:2
c83 30:20
c85 31:1
c87 25:8
c89 25:10
c90 31:8,9
c91 31:9
c95 25:12
c98 31:13,16
calculation 89:17
calculations 37:13
calibration 31:9
california 1:16 2:17

7:1,12 17:13 18:13
125:2

call 13:7 59:11,17
59:19 60:14 107:23

called 22:9 66:19
calls 42:13
camera 30:19 31:4,9
capabilities 32:22
capability 32:23

47:14
capable 65:10 68:9

104:25 105:3,18
capacity 17:5
caption 7:13
car 46:23 60:1,2,5,9

60:13,15,15
card 38:13
carefully 126:5
carried 115:23

116:19 117:7

[architecture - carried] Page 3

Veritext Legal Solutions
215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 36 of 611

carving 30:8 31:14
case 7:13,14 13:23

15:2,4,10,18 28:24
29:20 32:6 51:19
55:2 56:1 61:14
74:21 87:5 101:16
103:20 108:21
113:4 119:12 121:6

cases 10:2,3 32:3,5
32:12

cell 45:13
cellular 7:19
central 118:13
certain 12:23 14:10

39:12 42:20 85:2
112:22

certified 2:19 125:1
certify 125:3,12

128:5
change 16:24 17:1

51:21 71:17 97:25
127:5

changed 17:3
changes 12:1,10

16:21 41:1 51:7
126:12 128:9

chapters 22:24 23:2
charge 22:15 48:16

48:17
chart 67:8 85:20

86:11 116:11
charts 111:10
cheaper 46:5
check 33:22 100:17

105:9 115:12
checked 120:3
checkmark 24:12

26:23
chicago 3:8
chip 20:12,17,21

71:23 77:7,8
chips 52:2
cihlar 4:15 7:8
circle 27:8 63:14

86:2

circles 27:12,17,19
circuit 56:4,14 87:3

109:6 110:9,17,21
111:3,8

circular 26:4
citation 33:20
cite 102:5 103:4

120:23
civilian 45:9
claim 62:2,4,5 63:9

63:16 64:5,5 65:21
66:3,24 82:10 85:16
85:20 86:3,7,10,18
86:23,23 87:3,20
88:1,9,15,16 89:6
91:10,12,19 96:14
101:13,17,20 110:9
111:4,10 112:14,24

claimed 63:4,16
65:21 66:3,24 86:3
86:18 88:14,21
89:25 91:10,19 92:5
92:11,12 93:22 94:1
94:12,23 96:23
110:16,21 111:3,7
111:16,25 112:14

claims 83:5 85:2
101:11,12,22

class 32:16 57:1
clear 9:1,5 44:7

58:16,20 59:3,5
62:1 67:20 69:16
73:1,14 76:21 85:1
86:21 92:2,3 118:11

clearly 67:18
clients 19:13
close 77:11,19
closer 55:25 75:10
closest 52:22
code 29:22
cofounder 19:6
coined 95:2
column 36:25 72:21

99:7,17 115:16,21
116:5,8,17 117:4

118:3
combination 64:15

65:25 116:16
combined 13:14
combining 102:9
come 12:24 29:15,17

34:1,18 54:22 91:25
97:25 101:5

comes 12:3 46:10
47:19

coming 22:19 90:15
commission 128:19
common 38:11 41:6

102:17
communication

19:7
companies 28:13
company 18:20
compare 57:17
compared 53:9,17
complicated 63:19
component 112:8
components 57:10

58:13 65:25 86:8
87:19,24 88:7,11,12
88:13,23 89:4,7
90:9,20 91:18,24
97:12 106:10
111:18 112:5,19,23

comprises 64:24
65:7

comprising 62:7
computation 30:24

33:1 45:17,22 51:17
51:25 68:8 69:15
91:7,22,23 95:11

computations 99:13
computer 30:10,16

30:20 52:10 62:16
78:7,19

computing 22:6
concept 26:13 51:23
concern 75:24 76:8
concerned 83:19

concerns 76:9
concludes 124:19
concurrently 119:8

119:11
conditional 30:24
conference 23:5,13

123:15
conferences 120:18
configurable 22:6
configuration 66:16
confirm 100:5
confused 50:6

112:13
confusing 60:4
consider 26:11 44:7

81:7 99:22 100:6
107:14 114:10

consideration 80:16
considered 14:24

35:4 61:11,23 75:4
81:10 82:20 83:24
84:14,17 99:3,24,25
103:9

considering 51:10
70:4

consistent 37:23
64:11 68:17 72:4,22
92:24 93:10 94:8
95:12 100:21
106:13 114:22

consolidate 27:11
constant 95:9
construction 105:11

105:13 106:8
construe 104:18

105:19
construed 103:17
consultant 5:16 16:2

17:7
consumption 47:18

47:19 51:6,11
contacted 12:13,19

13:2,4,9
content 81:13 82:24

[carving - content] Page 4

Veritext Legal Solutions
215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 37 of 611

context 44:24 52:9
106:16 109:4

continue 20:14,20
61:1 64:20 79:23
98:9 113:19

continued 4:1 6:1
20:15

contributed 23:3
control 58:12 59:10

59:13 62:23 67:1,3
86:22 87:4 107:18
107:20,24,25 108:1
108:2 110:8,12,15
117:20,25,25
118:14,14

controlled 99:15,18
controller 63:1
conversations 7:19
convert 118:18
convinced 121:1
core 48:17
correct 8:23,24 9:23

10:13,23 11:1,9,16
14:3 16:4 18:14,20
23:4,17,18 32:9,11
34:17 38:5,23 39:11
48:3,6 49:24,25
50:11,17,20,23 53:3
53:25 54:24,25
57:17 61:24 62:3,4
62:18,21,23,24,25
63:2 67:15 69:21
74:23 75:1 77:4,5
80:21 82:21 83:1,6
83:12,13,17 84:4,19
85:3,4,22,24,25
88:10,17 92:18
100:24 102:7 104:9
104:10 106:21
108:5,15 110:17,18
112:15 113:1 115:5
115:11 116:20
120:1,12,25 122:2
123:8,9,11 128:6

correction 70:23
corrections 126:5,8

128:9
correctly 99:19

105:8
correspond 87:20

87:25 88:8,14 89:5
89:25 91:9 92:7
93:2,22 112:24

corresponding 87:7
90:22 94:15,19
117:21

corresponds 63:4,15
64:6 65:20 66:3,24
86:3,18 88:21 91:12
91:18 93:5 94:1,11
94:23 96:11,22
110:16,21 111:3,16
111:24

cosmetic 17:1
cost 45:23,25,25

46:4,9,9 47:4,18,19
counsel 7:10 8:10

15:14 45:4 54:8
67:11 79:2 93:12
98:14 100:11
108:17 122:5 123:6

count 22:13 90:13
counted 24:5 30:11
counter 57:15 58:23
couple 8:24 30:21

122:20
coupled 65:1,9
course 79:24 109:22
court 7:8 9:1 10:7

11:4 15:23 36:8
40:12 61:3,16 84:7
98:20 104:2 126:20

cpu 94:14 95:11
create 26:6
creation 31:11
credit 28:25 29:6
csr 125:22
current 79:19

curriculum 5:16
customers 19:13
cv 16:2,6,16,19 17:7

17:10,12,19,24 18:2
18:5,9,15,19 19:5
21:7 22:24 23:13,20
23:23,23 24:24 25:2
25:18 31:24,24
32:12 123:3,7

cvs 17:4,9,10,12,15
cylinder 46:23

d
d 64:14 83:14
d.c. 1:22 3:16 4:9
data 19:19 55:18

56:12 65:12,24
66:15 67:14 68:3,21
69:8,19,20,23 70:4
70:5,5 71:1,8,25
72:7,17 73:7,19,19
73:23 74:9,11,23,25
75:1,7,7,10,13,18
76:4,11,14,14,17,22
76:24,25 77:1,3,9
77:12 78:12 79:5
87:8 99:9,13,14
100:18,20,25 101:1
101:11 102:20,22
122:2 124:8,8,11,12

date 42:20,22
125:15 126:10
128:14

dated 125:18
day 128:17
days 126:16
de 106:12
dec 114:17
december 10:25

11:15 12:15 16:10
16:11 38:19

deciding 87:6
decision 6:17 103:10

103:14 104:8,18
121:4 122:7

declar 44:8
declaration 5:10,13

10:11,24 11:7,14
12:2,5,6,11 13:9,10
13:15,19 14:6 16:10
24:24 33:5,7 35:9
38:7 44:9 49:24
61:24 63:10 70:10
72:15 74:7 77:25
80:12 81:2,8,16,24
82:5 83:23 84:22
85:6,14,23 87:11
99:20,23 100:1,8
102:4,6 103:3
109:25 112:17
114:18 120:24

declarations 10:1,3
14:24 16:3 61:12
84:18 99:4

decoded 59:4,9,13
decoder 57:13
dedicated 71:4

75:25
deemed 126:19
default 37:14
define 44:18,20 57:8

57:9 92:9 95:17
defined 53:13 90:25

92:17,22 94:7 96:1
96:10 122:16

defines 95:1
defining 96:6
definitely 30:9,11

31:4 72:25 83:25
definition 59:12,23

79:1 92:9,10 93:10
degree 78:18
delete 11:24 12:8

16:18
dependent 55:11
depending 52:18

73:22 80:6 97:17
106:10 107:24

depends 46:2,8 47:6
47:13 55:7,9 74:2,4

[context - depends] Page 5

Veritext Legal Solutions
215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 38 of 611

74:18 80:10 106:12
deponent 128:3
deposing 126:15
deposition 1:15 2:14

7:7,11 8:22,25 14:5
14:22 15:14,17
126:4,13,17,18

depositions 13:12
derivative 89:16
described 74:1

102:18
describing 96:7
description 5:9 6:3

97:9,10 101:17
102:1 122:16

descriptions 74:2
81:25

design 19:6 52:2
56:4 72:4 73:16
119:18

designed 33:3 53:20
designer 73:15
designers 73:1
designing 80:8
designs 120:4
desktop 45:6,13
destination 89:19
detail 97:19
details 31:15 63:6

97:2 106:3
detection 27:8
determined 28:20
determining 114:5
developing 123:17

123:19
development 38:13
device 51:22
diagram 52:19

63:20 119:2,6
difference 53:24

54:19
differences 53:12

55:20 56:2,9,13
82:9 83:4

different 17:10,10
17:17 32:24 53:2,22
53:25,25 54:3,3,7
54:23 56:4,7,14
60:1 95:4,5 108:17
108:18,18

differently 63:22
digital 20:7
diligence 24:8
dimensional 30:8

31:11,14
direct 40:21 104:13
directed 23:25

24:14 27:15
direction 125:10
directly 27:23 31:18

64:25 65:8 73:10
directx 38:10,22

39:10,13,14,24 40:6
41:24 43:6 44:14

disclo 119:1
disclose 68:20 69:8
disclosed 62:16,17

71:19 72:22 76:19
77:22 115:9 118:2
119:1 122:1

discloses 67:14 68:3
70:3,16,24 72:16
74:22 76:22 85:16
96:14 102:6,19
103:5 110:7 121:16

disclosures 101:20
120:5

discuss 81:17,19,21
82:4 83:22 97:23
111:10

discussed 112:3,7
121:14

discussing 27:21
discussion 81:23

84:2
dispatch 91:5,6
dispatcher 89:14,24

91:16 92:4 93:24
94:21 96:20 112:4

112:11 113:9
dispute 46:7 47:7
distinguish 53:6
document 36:12

42:3 61:9 104:11
documentation

28:12
doing 46:25 68:9

69:15 72:9 80:10
88:3 100:22 116:24
119:16 126:9

dr 5:10,13 7:7 61:5
124:20 126:2 127:2
128:2

draw 34:24
drive 3:7
dropping 49:3
dsp 19:6 20:10
dual 53:19,20
due 24:8
duly 8:14
duties 19:6
dutton 4:6 8:4
duty 79:15

e
e 13:3 64:14 127:3
earlier 55:24 100:6

111:14 112:7 123:3
early 12:16 72:9

79:18 114:7
easier 82:7 86:14
easy 51:21
editors 21:25
efficiency 44:18,20

44:21,22,24 45:17
45:18,18,19,22,23
45:25 46:1 48:19,23
49:1,13,18 50:1
51:5

efficiency's 45:21
49:14

efficient 44:15 45:16
45:24 47:4 51:16,24
51:25

eight 23:25 24:5
25:15

either 45:15 119:9
electrical 78:19
electronics 1:5 2:5

7:13 8:6,8 126:1
127:1 128:1

element 62:22 63:1
64:23 65:6 66:18,19
67:2,3,6 68:13
71:17 77:18

elements 62:6 63:16
66:10,11,13 71:3
76:1 86:3,18 118:13
118:15

embodiment 115:24
117:18 118:6,8

embodiments
118:21

emphasized 75:24
employee 125:14
ends 120:19
energy 56:5
engagements 17:25
engine 47:21 60:1,2

60:5,9,10,11 67:18
69:14 80:8 99:12
102:19

engineer 20:6 76:20
engineering 78:20
entire 33:18
entities 54:14
entitled 5:20,23

36:12
environment 38:14
equivalent 78:20
errata 126:7,9,12,15

128:11
evaluated 117:22
evaluation 118:17
eventually 32:21

89:11
evidence 36:20
evolution 34:6 38:4

43:22

[depends - evolution] Page 6

Veritext Legal Solutions
215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 39 of 611

exactly 34:24
examination 5:2

8:11,17 122:25
examined 8:14
example 37:2,6 60:8

70:16,24 79:25
110:22,23 114:11

excellent 67:9
excited 67:11
excuse 95:22 116:6
execut 87:25
executable 77:9
execute 90:10
executed 115:18

117:21
executes 58:10,22

64:17
execution 48:19

87:14,25 88:4,7,14
88:18,20 89:4,7,11
89:24 90:14,25 91:3
91:16,17,21 93:23
94:17,21 96:21
111:15 112:6,19,23
113:3,4

executive 17:19
exhibit 5:10,13,16

5:20,23 6:4,7,10,13
6:16 10:6,10,16,17
11:3,6,17 12:4
15:22 16:1,2 33:5
36:7,11,16 40:11,15
41:13 61:2,7,15,19
84:6,10 85:9,14
98:17,19,22 99:3,21
100:1,8 104:1,7
106:23 110:1
113:21

exhibits 5:8 6:2
14:23

exotic 26:9 46:20
experience 17:25

31:22 78:22 123:13
expert 34:3 41:23

expires 128:19
explain 72:24 86:14

95:25 96:9 97:1,11
explained 92:2

108:19
explaining 97:20
explicitly 68:20 69:5

69:12 70:3 76:21
exploded 97:8,9
exploiting 5:23

40:15
exponentiation

37:12
expressed 44:9 81:8

84:18 99:4 100:7
expression 118:17
extent 26:20
external 70:25 71:9

71:25 72:8,17 73:8
74:23 75:8,13,19
76:22 77:3 124:9

extremely 71:17
eye 1:21

f
facilities 41:4
fact 62:1 73:18

75:11 100:15,23
101:21 102:13
103:16 116:17
120:6,9

factor 51:9 80:20
factors 80:17,21,22

80:23 81:3,8,10,12
81:13,17,24 82:1,4
82:16,19 83:15,19
83:20,22 84:2

faculty 28:23 29:1,7
29:18

fadi 22:7
fail 126:18
fair 9:3,10,11,19,20

84:15,16
fall 12:16

familiar 78:11 79:4
79:9,25

far 51:16
fast 65:2
faster 55:21,22

103:24
features 41:7
february 37:7
feed 91:24
felt 19:19,22 44:1
ffp 46:18
field 34:2 78:22

79:22 99:6,17
100:12

fields 22:16
fifth 28:18
figure 26:8 34:10,15

34:18,21 62:13,15
62:20,23 63:15 64:6
64:10 76:20 85:24
86:1,2,6,16,17
88:12 90:16 92:13
92:15,18 93:7,9,11
93:21 94:14,19 95:2
95:6,6,7,21,23 96:5
96:6,16 97:8,21
106:25 107:5
110:13 111:16,24
112:3,21 113:7
116:1,4,11,13,17,20
119:12

file 57:2,12,23 58:14
94:6,10,22 95:18
96:20 112:6 113:2

filed 38:22 39:1,8
114:3

financially 7:22
125:13

find 18:18 30:1
47:16 51:7 73:4
84:5

finding 26:4
fine 16:8
finish 26:24 93:14

93:15

firm 8:2
first 8:14 12:13 13:5

13:8 28:16 29:3,9
29:10,11 35:11,12
38:9 39:14,24 40:3
40:8,20 41:15,24
42:19 73:3 83:19
98:4 115:21,23
116:18 117:17
118:3 120:11

fish 32:14
fit 70:5
five 23:2 72:25
fixed 46:18 48:3

49:9,20 50:10
fixes 51:19
floating 74:1 105:3
flow 116:11
follow 29:1,8
follows 8:15
foregoing 125:4,6

125:11 128:5
forgetting 28:4
form 11:19 13:3

15:3,11 18:21 19:25
24:2,19 25:19 27:16
27:22 29:13 32:8
33:21 35:25 38:24
39:16 40:2 42:1,13
43:1,8,17,24 44:10
44:17 47:11 48:11
49:10,22 50:12,19
50:25 51:14 52:24
53:4,10 55:14 56:24
58:2 59:8,18 63:17
65:23 66:5 67:16
68:5 69:10,25 73:20
75:2 80:5 81:20
86:5 90:1,7,24
91:13 94:25 96:25
101:24 107:8,16
108:6,16 109:1,14
112:1 114:21 115:6
116:21 119:5 120:2
120:13 122:3 128:9

[exactly - form] Page 7

Veritext Legal Solutions
215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 40 of 611

format 73:22
forming 44:8 81:7

84:18 99:3 100:7
forth 125:5
foundation 17:11

36:21,23 40:4 41:14
49:11 120:14,19
122:4

four 80:16 81:13,14
82:19

fourth 28:18 80:20
fox 4:4 8:2
frame 38:17 39:1

77:21 79:16 114:25
120:4

front 61:7,18 98:22
function 46:18 59:4

71:10 88:17 115:23
116:19 117:7

functional 102:21
102:23

functionality 19:11
54:20 55:15 65:15

functionality's 56:7
functions 57:16

68:15 95:10
further 53:8 71:8

124:15 125:10,12
future 50:23

g
g 3:5
gained 78:17 114:15
gears 33:4 103:8

115:2
geforce 37:6
general 20:24 38:3

38:20 39:7,22 43:21
62:7 63:5 64:4
65:21 78:12 79:5
82:8 88:3 95:15
109:4 115:13

generalize 55:11
generally 52:25

93:21 119:22

generate 34:21
generates 109:17,20
generation 40:22

41:1 115:25 116:13
117:8

geometry 71:10
116:12,18,19,22
117:6,14 118:4,4
119:3

getting 48:18
give 13:11 17:22,22

28:25 29:20 42:16
42:20 89:21 98:17

given 44:13 97:20
119:21 124:20
128:7

gives 46:1 47:14
119:6

giving 58:25
glad 24:9
glanced 14:8,20
go 7:17 24:6 27:2,6

27:6 28:2,15 29:25
46:12 47:15 48:14
51:4 52:1 81:6 82:6
82:11 86:1,12
113:13

goes 26:16 27:8 41:9
78:16 88:23 111:19

going 9:5,10,12
13:11 36:19 41:12
41:20 42:9 43:3
46:3,13,24 48:21
60:18 84:14 95:7
97:20 109:25 124:7

goldstein 4:4 8:2
good 7:4 8:19,20 9:4

18:10 48:20 60:19
67:12 76:3 78:6
98:12

google 18:18
gph 32:14
gpu 38:3 100:16,20

101:19 102:7 103:6

gpus 5:20 36:12
38:21 39:7 40:23

grab 103:25
gradual 114:25
grand 2:16
grandma's 46:4,14

47:1
grant 4:15 7:8
grants 17:11
graphic 45:4,5,8

78:7 86:24,25 101:1
graphics 18:20,24

19:10,12 24:1,14,16
25:3,6,8,10,13,16
26:7,14,19 27:13,15
27:20,21 28:8 30:2
30:6,9,10,10,17,20
30:23 31:4,10,12
32:6,13,21 33:1
34:3,4,7 35:21
38:13 39:23 40:23
41:23 43:22 44:15
44:25 45:3,12 47:8
47:21 48:2 49:8
50:17 52:17 67:17
68:7 69:15 78:11
79:4,17,19,20 80:2
80:8 100:22,24
101:4,9,14,19 102:7
103:6 106:17
118:20 119:21,23
120:11 123:3,7,13

great 66:21 67:7
grocery 46:24
ground 8:24 84:22

122:6
guess 23:12 42:23

42:24 43:2,3,25
92:3 97:25

guessing 12:16
guys 92:22

h
hammer 19:14

hand 36:25
handed 10:9 15:25

36:10 40:14 84:9
104:6

handheld 31:4
handled 88:18
handling 119:15
happen 118:22,25

119:14
happened 30:5
happening 114:24

119:8,11
hard 73:21
hardware 30:7

38:11 44:15 99:12
102:19

hardwire 46:5,15,17
47:9

hardwired 51:24
heading 33:8 85:15
heard 43:11 52:7

56:15,19 106:14
hearsay 41:14
held 7:11
help 29:5 60:6 63:8

90:9 115:19
helped 29:23
helps 27:11 60:8
hereto 10:7 11:4

15:23 36:8 40:12
61:3,16 84:7 98:20
104:2

hierarchical 26:13
26:18,20

high 63:20
history 14:8,19 31:3

108:12
hold 54:8 76:17

92:15
hope 52:3
hour 60:19
hours 13:13,14,18

13:25 14:1
huh 20:16 28:19

36:17 46:16 62:14

[format - huh] Page 8

Veritext Legal Solutions
215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 41 of 611

83:2,7 116:7 119:24
hundreds 120:4

i
idea 29:21,22 42:11

42:18 43:18
ideas 28:23,24 29:15

29:20 42:9,10
identical 56:8
identification 10:6

10:10 11:3 15:22
16:1 36:7,11 40:11
61:2,15 84:6,10
98:19 104:1,7

identified 31:2
88:16 93:9 96:4
97:21 112:3

identify 31:5 53:12
54:12 82:15 86:7
89:9

identifying 27:9,17
96:2 106:1

ieee 22:14
iii 33:8
illinois 3:8
illustrated 116:1,20
image 26:5,12,18

31:6,9 115:25
116:13 117:8
118:20

imagine 28:5
imperative 126:14
implement 44:16

107:17 122:15
implementing 29:23
implicitly 69:6
important 45:22

49:14 56:1
improve 30:22 73:3
improved 72:12
include 104:24

105:17 123:7
included 57:22 82:2

106:2

includes 57:2 60:2
60:10,11 66:19
92:19 93:11 94:5,6
94:6 102:20

including 88:23
92:17 111:18

inconsistency 76:18
inconsistent 77:20
incorporated 7:14
increase 51:12
independent 118:1
index 5:1 6:1
indicate 17:24
indicating 81:3,9

83:15
indication 119:13

120:17
indirectly 27:23

31:19
indistinguishable

54:15
industry 49:8,20

50:9,15,18 54:6,22
120:10

information 33:25
52:13 53:13,14,23
54:4,4 55:17 93:7
97:7 117:2 119:7

informed 114:1
initially 43:14 48:3
input 87:8 102:14

105:5 109:4,6,17,20
inputs 87:4,7 104:23

106:20 107:19,21
107:22 108:1,20
109:17

inquiry 80:15
instance 22:5
instituted 122:6
institution 103:9,13

104:9 121:3
instruction 58:11,24

59:4,9 66:15 88:24
89:14,20,24 91:5,5
91:6,16 92:4,19

93:5,6,8,12,18,24
94:21 95:8 96:20
104:24 105:18
111:20 112:4,11
113:8,8

instructions 57:19
57:25 58:5,9,10,12
58:17,23 59:6,7,14
67:5 89:13 90:15
91:4,6,25 92:21
93:2 94:5 105:1
111:24 126:3

interchangeably
124:5

interconnect 102:22
interconnecting

65:13
interested 7:22

14:11 44:2,3 125:13
interesting 28:22
interference 7:20
internal 58:13 76:16

124:12
internet 34:23 35:2

35:5
interpolation 68:14

89:16
interpret 44:4 72:7

91:20
intricacies 79:12
introduce 41:24
introduced 35:13

37:8 41:4
introduces 40:25
introduction 36:20
invention 73:11

96:6 99:7,8,17
100:13

inventor 29:11
inventors 63:21
investors 28:6
inviting 18:5
involved 13:24 32:2

32:5

ipr 10:11 11:7,15
12:2,5 99:21

ipr2015-00326 1:7
2:7 7:15 104:9

ipr2015-00330 1:7
2:7 7:15

iprs 12:14
irrelevant 36:20

76:14
irvine 18:13
issue 21:22,24 22:2

22:4,5 51:6 71:19
82:10 83:5

issued 114:2
issues 56:1
itc 32:14

j
j 4:6
j12 26:12
j14 27:8
j19 28:1
j40 28:3
j41 28:3
j54 24:7,10,11,13
j7 26:4
j71 24:16
j78 30:13
jo3 22:6
job 77:8 79:15,23

80:7 88:3
jog 41:22
john 3:13 8:7
jonathan 4:5 8:1
journal 21:8,14,17

21:22,24 22:2
journals 21:12,17

22:9,20,23 120:18
123:6

jtuminar 4:11
judging 41:16

101:13
jzhu 3:18

[huh - jzhu] Page 9

Veritext Legal Solutions
215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 42 of 611

k
k 3:15
keep 76:4 114:23
kessler 4:4 8:2,4
key 20:6
kind 29:4 32:25

48:10 77:13
kizhepat 14:9 98:23

98:25 99:22 100:7
100:13,14,16,23
101:4,10,18 102:5,6
102:9,18,19 103:4,5
103:5

knew 114:7,14
know 9:7,14 16:25

17:1,18 18:1,10
19:14 22:16 24:3
27:11 30:4 35:17
39:21 42:6 43:11
48:19 52:8 55:4
58:20 60:15 73:25
76:8,9 77:18 80:1
83:20 84:5 87:24
89:2,7 90:10,19,20
92:4 93:20 96:18,23
105:15 109:3,7,23
112:8 118:25

knowledge 34:2
35:17 38:3,21 39:7
39:22 43:21 77:21
78:6,18 80:9 82:13
83:9 114:15,24
119:21

knowledgeable 34:4
34:6

known 51:23 114:11
114:19

kurdahi 22:7
kurihara 14:10

l
labeled 85:16
lack 36:21 40:4

41:13 49:10 120:13

lacks 122:4
large 33:8 76:16
larger 73:19 76:4,11

77:13
latest 40:6,7 46:21
launched 37:7
law 3:6,14 4:7 8:1
leading 123:10
leave 76:11
legal 1:21 7:10

81:25 105:14
124:22

letting 93:15
level 26:18 46:10

63:20 102:15
106:12

lg 1:5 2:5 7:13 8:6,7
32:3,5 126:1 127:1
128:1

life 20:25 108:12
lighting 37:16
limitation 105:11

117:19
limitations 118:22
limited 73:1,15 80:9

116:24
limiting 117:24
lindholm 84:11,15

84:17 85:2,16,24
86:1,2,16,16,17,22
86:25 89:9 91:15
92:5,7 93:4,21,25
94:11,20,22 95:21
95:24 96:8,13,19,22
97:19,22,23 101:14
102:9 110:7,13,19
111:6 112:22 113:7

lindholm's 14:9
87:14

line 116:5,6,10,17
117:4 127:5

linear 89:15 118:16
list 30:11
listed 14:23 21:13

22:21 23:2,13,20,23

25:17 28:16 29:10
32:12 35:6 36:25
80:20 123:5

lists 83:14
litigation 31:21
little 18:4 26:22

55:21 56:7 58:25
76:8 122:23

llp 3:4,12
local 73:2,8 76:23

77:14
logic 56:18 64:25

65:8 108:2
logical 105:4
long 31:9 56:16
look 14:16,18,21

15:1 19:4 21:6 24:7
26:1 31:21 33:4
35:4 36:24 44:2
62:5,13 63:6,6
68:18 74:6 77:24
85:13 99:6,23,25
101:8 103:21,21
115:14,16,21 117:4

looked 14:6,7,9,10
14:14 15:7 26:19
32:18 44:1 101:5,6
101:12 103:13

looking 19:14 67:20
72:1 92:16 100:19
102:8 118:11,12

looks 52:20,20
los 1:16 2:16 7:1,12
lot 28:8 45:21 47:15

48:17 55:22 97:19
lots 48:20
lower 13:11 45:25
lunch 98:5

m
maas 12:20
machine 125:9
mail 13:3
main 41:4

major 44:13
mapping 87:18
mark 86:15
marked 10:5,6,9

11:3 15:22,25 36:6
36:7,10 40:10,11,14
61:2,15 84:6,9
98:19 104:1,6

master's 78:18
match 96:4
materials 14:23

35:4 99:24,25 103:8
matrix 37:11
matter 77:9
mayer 3:4,12 7:12

8:5,7
mayerbrown.com

3:10,18
mean 15:14 16:7,23

24:24 29:11,21
30:13 31:15 41:16
45:16,23 49:1 51:1
52:18 54:2 55:7
60:13 68:6 76:9
79:3,8,21,21 82:6
83:25 91:1 101:6
108:9 109:23 116:5

meaning 108:8
means 22:3 23:7

29:12 45:17,25
47:14 56:17 58:13
58:17 92:19 104:18
105:11,19 108:14
116:18

meant 34:12 38:19
63:21

mechanical 59:25
media 98:4,7 124:21
meet 111:7
memories 53:19,20
memory 41:22

52:23 53:2,8,14,16
53:22 54:1,14,24
55:13,22 56:3,6,11
58:11,24 62:19 63:4

[k - memory] Page 10

Veritext Legal Solutions
215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 43 of 611

64:6,15 65:10,12,20
67:15 68:3,13,22
69:9,20,23 70:5,25
71:4,9,16,23,25,25
72:3,8,12,17,18
73:2,4,8,8 74:23
75:7,8,13,19,25
76:16,23,23 77:3,7
77:8,12,13,14 124:9
124:13

mention 28:11
44:11

mentioned 17:16
27:19 30:12 31:18
46:13 56:12 81:11
86:7 102:1

merit 17:12
mesh 31:6
metric 30:18
microphones 7:18
microprocessor

57:4,8,9 59:11,24
124:4

microprocessors
124:1

mid 1:21 114:7
middle 29:4
midway 37:1
milberg 32:16,16
military 45:9
mind 12:3,24 38:1

44:22 45:10,12
55:12 73:22

minimum 106:4
minor 71:17
minutes 64:8
mis 49:5
missed 106:7
misspelling 16:25
misspoke 49:6 100:6
mistake 59:16
mistakenly 59:11
model 5:24 39:15

40:16 41:23 44:14
51:7 96:9

modify 51:21 69:19
77:3

morning 7:4 8:19,20
103:11

morpho 19:2,3,4
28:5 30:6 32:20
123:16

morphosys 19:1
29:21 32:22 33:2

mosey 77:13
motion 30:18
move 51:12
moved 48:5 49:8,19

49:20 50:9,10
moving 47:9 50:16
multi 52:14 53:18

55:3,6
multifunction 64:24

65:7
multimedia 19:7,11
multiple 30:19

66:15 117:23,24
118:13

multiplexers 102:10
102:12

multiplexing 102:17
multiplication 37:12
mux 107:4,7,10,15

107:19 108:20
109:4

n
n 64:14
n.w. 3:15
nader 1:15 2:14 5:3

5:10,13,17 7:7 8:13
124:20 126:2 127:2
128:2

nadia 2:19 7:9
125:21

nail 19:15
name 7:8 29:9

125:16
named 28:17,18

29:10,11

names 12:24 29:3
54:3,3,23

national 17:11
necessary 71:2,24

126:5
need 9:13 42:8,15

75:9 77:18 79:14
107:18,18 118:10
121:1 122:9

needs 65:25
neighbors 65:13
neither 38:22 39:10

101:18 125:12
never 18:19 32:6

67:14 68:2
nevertheless 121:10

121:14
new 4:8 40:24 52:2
newhart 2:19 7:9

125:21
nicely 19:18
non 81:4
nonobviousness

81:9 83:16
nonvolatile 54:18
normally 66:14
nos 1:7 2:7
notary 7:20 128:21
note 7:16
noted 124:23 126:12

128:10
notice 28:15
noticing 7:25
november 114:3
nsf 18:9
number 5:9 6:3,5,8

6:11,14 33:8 61:8
61:19 84:11 98:23
99:21 100:1 124:21

numbered 10:22
numbers 7:15
nvidia 32:16 37:6

43:12,14,25 46:6
95:4

nw 1:21 4:8
o

o 64:14
oath 9:22 125:7
object 11:19 15:3,11

15:11 18:21 19:25
24:2,19 25:19 27:16
27:22 29:13 32:8
33:21 35:25 36:19
38:24 39:16 40:2
41:12 42:1,13 43:1
43:8,17,24 44:10,17
47:11 48:11 49:10
49:22 50:12,19,25
51:14 52:24 53:4,10
55:14 56:24 58:2
59:8,18 63:17 65:23
66:5 67:16 68:5
69:10,25 73:20 75:2
80:5 81:20 86:5
90:1,7,24 91:13
94:25 96:25 101:24
107:8,16 108:6,6,16
108:16 109:1,14,14
112:1 114:21 115:6
116:21 119:5 120:2
120:13 122:3,4

objection 94:4 109:1
123:10

objections 7:23
objective 80:21,23

81:3,8,17,24 82:4
83:15,20,22 84:2

objects 27:10
obvious 62:3 69:19

75:9,12,16 77:2,6
118:10

obviousness 80:15
81:4,4,9 82:1,20
83:16

occur 117:14
office 1:1 2:1 32:3
oh 13:11 16:20

33:15 60:20 64:21

[memory - oh] Page 11

Veritext Legal Solutions
215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 44 of 611

85:8 121:23
okay 8:24 9:5,9,12

9:16,21 10:1,4,24
11:2,10,14,17 12:4
12:13,19,22 13:2,8
14:2,4,12,18,21
15:1,9,21 16:13
17:4 18:3,7 19:4,22
20:7,23 21:6,21
22:20,23 23:5,11,15
23:19,25 24:8,11,11
24:13,16,23 27:4,6
27:19,25 28:15
29:19,24 31:21 32:2
32:20 33:6,11,18
34:3 35:1,8 37:24
38:20 41:11 43:5,11
45:7,12,17 48:5
49:18 50:8,15,22
51:9,15 52:6,14,22
56:9,15,19,22,25
59:2,5,16 60:16,17
61:18 62:1,5,11,12
63:2,13 64:19,21
66:2,9,12,17,21,23
67:11,11,24 68:11
68:18 69:4,13,18,22
70:13,20 71:15,21
73:12,18 74:13,25
75:6 76:3 77:6 79:3
81:1 82:19,23 83:18
83:21 84:21 85:5,22
91:9 92:16,23 94:16
94:20 95:20 96:6,17
97:6 98:16 99:6
100:2,10,15,17
101:11 103:1,8,23
104:13 105:10
106:14,19,22 110:5
111:2,12,14 112:17
113:12 114:17
115:2,3,17 116:4,15
117:1,4 118:24
119:21 122:8,19,22

ones 17:17 22:12
30:1 40:7

open 94:17
opengl 14:10 38:10

38:22 39:10 43:6
44:13

opening 22:3,8
operands 64:11,14

64:16 65:17 95:10
operating 66:10,14
operation 92:1

117:12 119:13
operations 67:19

68:7 74:12 77:19
87:16,17 89:15
99:13 100:22
104:19,20,21,22
105:2,2,5,20,21
115:4,5,10,10
117:14 118:4,5,5
119:3,4,17 121:17
121:18,25 122:1

opine 39:21 72:6,16
75:11,14 77:2
110:20

opined 108:4,14,24
109:12 111:13

opinion 62:2 63:4
65:20 69:18 85:1
86:21 89:2 90:20
96:13,18,23,24
107:15 111:15,23
124:8,11

opinions 44:8 81:7
84:18 99:4 100:7

opposed 80:24
opt 46:4
order 28:20
ordinary 75:17 78:4

78:25 80:1 82:13
83:10 114:6,11,19

original 49:25
126:15

outcome 7:22

output 89:17 107:23
109:5,6,18,21

outputs 108:20
109:17

outside 76:4,12
77:12 123:14

overview 22:1
owner 1:9 2:9,15 4:3

7:11 8:3 121:15
owner's 15:1,9

p
p 64:14
p.m. 2:18 98:8

113:15,18 124:19
124:23

page 5:9 6:3 10:15
10:18,22 11:11
17:12,19 21:7,13,13
21:16 22:24 23:5,11
23:12,15,19,19
24:10,17,24 25:2,5
25:8,12 31:22,24
33:7,12,12,16 34:9
34:11,13 36:15,16
36:24 67:9 70:10
84:21 85:13,19,23
95:13 104:14,15,15
106:24 110:2,4
113:23 121:8 127:5

pages 5:11,14,18,21
5:25 6:5,8,11,14,17
17:14 128:6

paper 24:14,17
27:14,21 29:12

papers 16:8,9,13
20:17 21:3,7 22:18
23:6,13,22,23 25:15
28:16 29:25 30:21
44:2 123:14,15

paragraph 34:12,15
34:16 35:8,11 37:25
38:6 41:16 63:9
68:19 70:10,11,12
72:15 74:6 75:15

77:24 78:2 80:12,13
82:4,21 83:23 84:3
87:10,13 88:5 89:3
89:10,22 99:19
102:16 110:6
112:17 113:1,23
121:8,9

parallel 19:16,19
122:15

part 38:12 68:16
87:2 91:21 92:21
93:19 95:17

particular 22:4 28:9
88:17 115:24 118:6

particularly 99:10
parties 7:17 125:14
partition 119:14
parts 119:16
party 7:21
patch 91:5
patent 1:1,2,9 2:1,2

2:9,15 4:3 6:4,7,10
6:13,16 7:11 8:3
14:8,8,9,14,16,19
15:1,9 32:3 38:22
39:8 61:8,8,11,19
61:20,23 62:3,6
63:16 64:5 66:4,25
78:5 84:11,15,17
85:3,10,15 86:4,10
86:19 90:6 91:19
95:23 96:7,15 98:23
100:8 101:23
103:10 106:23,25
108:17 110:1
111:25 112:14
114:3 121:15

patents 13:24 15:8
120:5

paths 99:14,18
peer 22:9,12
pending 9:17 121:22
people 26:19 27:10

48:20 52:2 59:11

[oh - people] Page 12

Veritext Legal Solutions
215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 45 of 611

percent 29:8 72:13
perfectly 33:2
perform 37:15 68:7

89:15 92:1
performance 51:10

51:11,12 56:13
performing 37:11

67:19 104:19,20
105:1,19 121:17
122:1

performs 87:15
99:12 115:4,9

period 55:17 114:5
periodic 9:12
persepolis 31:3
person 78:3,10,17

78:25 79:4 80:1
82:13 83:9 114:10
114:18

pertinent 82:14
83:10

petitioner 1:6 2:6
3:3 121:15

ph.d. 1:15 2:15 4:5
5:3,17 8:13

phone 13:7 45:13
46:4,14 48:16,18

phrase 100:24
pick 7:18
piece 52:23 80:8
pieces 96:4
pipeline 35:12,19

37:20 40:24 41:2
46:18 48:3,6,8,10
49:9,20,21 50:10,11
50:16,17 87:15,19
87:25 88:7 89:4,8
112:20,23

pixel 19:21,23,24
26:17 28:9 30:8
32:25 67:22 69:20
69:23 70:4 73:17,18
74:3,25 75:7,12,18
75:20,21 76:14,24
77:3,10,20 87:8,17

104:20,21 105:2,20
115:4,10 116:25
117:12,14 118:5
119:4 121:18
123:17,20 124:8,11

pixels 31:15 68:14
73:24 74:9,19 97:16
118:18

place 7:17 125:5
placed 125:7
please 7:16,23 27:6

58:8 61:1 98:9
113:19 126:4,9

plurality 87:4
102:21 104:23

plus 22:7 106:2
pluta 3:5 5:6 8:5,5

11:19 15:3,11 18:21
19:25 24:2,19 25:19
27:16,22 29:13 32:8
33:21 35:25 36:19
38:24 39:16 40:2,4
41:12 42:1,13 43:1
43:8,17,24 44:10,17
47:11 48:11 49:10
49:22 50:12,19,25
51:14 52:24 53:4,10
54:8,10 55:14 56:24
58:2 59:8,18 60:18
63:17 65:23 66:5
67:16 68:5 69:10,25
73:20 75:2 80:5
81:20 85:6,11 86:5
90:1,4,7,24 91:13
94:4,25 96:25
101:24 107:8,16
108:6,16 109:1,14
112:1 114:21 115:6
116:21 119:5 120:2
120:13,16 121:22
122:3,20,23 123:1
123:12,23 124:15

point 26:23 28:22
36:21 48:18 54:5
55:17 74:1 105:4,14

114:24 118:8
pointing 91:11 92:7

93:22 94:1 96:22
110:20

ponder 41:5
port 53:19,20
ported 52:14 53:16

53:18 55:3,6,9
portions 14:10

118:19 119:14
posita 72:1,6,9

77:17,21
position 43:19 52:3

111:9 122:14
possible 28:7 44:4

119:18 120:6
power 45:18,21 47:5

47:18,19 49:13 51:6
51:6,11,24 56:5

pp 35:13
practical 78:21
practice 77:16,17
preamble 101:13
preparation 15:7

30:23
prepare 14:4
preparing 13:10

14:21 61:12,24
present 99:8
presentations 17:22
primarily 67:3
primitive 26:6 27:9
primitive's 117:22
primitives 26:7,8

27:9 117:16,20,23
118:18,19 119:15

prior 41:1 81:14
82:9,25 83:4 120:21
125:7

private 7:19
probably 26:21

46:21 47:5 72:12
problem 48:24

72:14 73:4,6

problems 19:19
51:18

proceeding 7:23
108:13,24 109:12

proceedings 125:4,6
125:8

process 95:15
processed 89:18
processes 89:12

91:3
processing 18:20,24

19:12,21,23,24 24:1
26:12,16,17,19
27:21 28:9,9 32:25
33:16 40:23 44:25
45:3,4,5,8,12 48:2
49:8 50:18 52:10,17
62:22 63:1 64:23
65:6 66:6,10,11,13
66:18,19 67:2,6,18
68:12,16,21,22 71:1
71:2,16 72:5 75:20
75:21 76:1 77:18
78:7,12 79:5 86:24
86:25 99:10 100:18
100:20,25 101:1,2
101:12,15 102:20
106:17 113:2
116:12,18,20,23
117:6,15,24 118:13
118:14 119:22
123:3,8,14,18,21,22

processor 19:16
20:23 21:3 48:17
55:25 56:19,20,22
57:2,3,4,6,19,22,22
57:24 58:4,9,10,17
58:22 59:17,20 60:5
62:8 66:3 72:17
76:4,12 88:2 100:24
103:6 105:3 120:10
120:11 123:20

processors 20:8
47:9 102:14 119:23

[percent - processors] Page 13

Veritext Legal Solutions
215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 46 of 611

product 35:22,23
36:1 37:19,22,25

products 37:22
120:20

professional 17:5
professor 18:12
program 37:14 48:9

57:15 58:23
programable 35:12
programmable 37:8

37:20 40:22 41:7
48:1,5,20 49:4,21
50:11,16 51:17,18
52:1

programmer 37:10
programs 78:9
promotions 17:12

22:13
propounded 128:8
prosecution 14:18
proud 19:18
proven 47:4
provide 29:21 37:9

43:6 44:14 64:9
65:15 77:8 120:11

provided 38:23
39:11

provides 65:24 91:6
108:5,15,25 109:13

providing 41:6
64:11,13 65:16
104:25

proximity 53:11
56:13

ptab 104:8
public 7:20 128:21
publications 21:9

123:6
publicly 18:9,11
publish 16:12 18:15

28:7
publishable 28:10
published 16:7,9

20:17 30:6,9 123:14

purpose 33:3 62:8
63:5 64:4 65:21
95:16

purposes 10:10 16:1
36:11 84:10 104:7
104:17

put 24:12 26:22
29:3 46:13 57:21
72:3 84:1 90:11,18
90:19 92:14,20

pyramid 26:5,13
28:1

q
qualify 48:25 73:13
que 9:18
ques 124:15
question 9:7,17,18

15:14 18:10 39:5,19
41:20 44:21 45:1,11
49:18,25 50:2,4,4,6
50:8 55:24 58:4,7
60:4 63:19 64:7
67:24,25 73:5 76:10
82:9,17,18 83:18
86:8 88:13 89:1,23
91:20 103:2,3
105:10 107:4,12,14
109:5,10 111:2
115:14 121:22
122:4

questions 9:6,9
26:25 122:18,20
123:2,25 124:16
128:8

quickly 32:18
100:19 101:5

quite 119:17 123:5
quoting 72:20

r
r 64:14 127:3,3
racing 46:25
rasterization 74:10

75:19 117:9,12,17
117:21 119:16

rasterizations 68:14
read 35:18 37:5

40:19 54:13 64:1
69:11 70:15,21 72:7
78:16 81:14 86:20
97:15 99:19 100:12
104:16 105:8,25
110:8 113:25
116:17 121:13
126:4 128:5

reading 54:16 55:16
95:14,15 105:22
122:5

reads 21:8,17 23:16
35:11 38:9 70:14
71:7 78:2 80:13
84:22 87:13 99:7
110:6 115:22
116:10

really 19:18 22:8,13
29:14 33:1 46:2,8
46:22,22 47:6 55:9
55:10 76:14 80:10

reason 9:24 126:6
127:7,9,11,13,15,17
127:19,21,23

recall 14:25 26:15
50:1

receipt 126:16
received 89:13 91:3

91:4
receives 108:5,15,25

109:13,17,20
recess 60:23 98:5

113:16
recited 62:6
recognize 61:9

121:16
recognized 120:10
recollection 12:25
reconstruction 31:6
record 7:5,18 9:1

28:12 37:5 60:21,24
70:15 98:3,7 104:16
113:13,14,17

124:18 125:8
recorded 7:6
recording 7:16
recovering 30:18

31:3
refer 21:20 61:20

63:23,23 70:7,9
84:14 86:11 101:11
115:13

refereed 23:9
reference 98:24

99:22 115:14 124:7
references 14:7

34:22 108:18
referring 35:19

37:19 38:18 72:21
79:9,16 85:7,9
92:14 93:4,7 95:6,6
95:21,23 112:8,21

refers 108:14
regarding 102:9,11

104:8 122:12 123:2
region 1:21
register 52:7,8,9,12

52:14,22 53:3,9,13
53:17,21,25 54:14
54:24 55:2,5,8,12
55:21 56:3,11 57:2
57:11,12,23 58:14
62:8 63:5 64:4
65:16,21 94:6,10,22
95:10,16,18 96:20
104:24 105:17
112:6 113:2

registers 77:14
94:13,15,18

regular 17:21,22
relate 30:1
related 7:21 15:8

25:2,5,8,10,12,16
26:4,11 30:6 31:10
31:19 90:9 112:5
123:7

relates 32:13 99:8
111:24 116:18

[product - relates] Page 14

Veritext Legal Solutions
215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 47 of 611

relating 78:4 81:24
relationship 60:3
relative 125:13
relevance 15:12

41:13 43:8,17 108:7
108:17 109:2,15
120:16 122:5

relevant 26:14
78:22 80:15 82:2
114:5

relying 111:7
remark 22:8
remember 36:2,4

53:13 57:21 123:2,5
123:24,24

remind 50:3
render 42:10
rendering 31:7
renders 62:2
repeat 30:5 39:5

65:5 95:7 109:7,10
repeated 91:2
repeating 72:19
report 39:17 49:12

50:13 63:23 64:1
77:23 83:24 84:1,3
86:20 103:7

reporter 2:19 7:9
9:2 10:7 11:4 15:23
36:8 40:12 61:3,16
64:13 65:3 84:7
98:18,20 102:11
104:2,4 105:23
123:19 125:2

reports 23:16,20
120:20,23

reproduce 85:24
request 7:10
require 80:9
required 79:23 80:2
requirement 80:7

106:4
requires 80:16
research 20:20 21:1

42:3

resources 64:9
97:13,17 122:16

respect 11:17 12:4
12:14 14:12 79:1
85:9,14 103:10
109:25 116:24

response 15:2,10,15
15:18,19 73:13 87:4
103:18,20,22

responsible 67:4
result 114:4
retained 124:21
retape 51:22
retrieve 54:4
retrieved 67:14 68:3

68:21 69:8 89:12
return 126:14
review 14:22 22:17

103:9,21
reviewed 14:6 22:9

22:12 103:12
rgb 74:3,20
rich 14:9 61:8,11

62:2,4,13,15,17,20
62:23 63:8,15 64:6
64:22 66:2,7,23
67:14,21 68:2,20
69:7,19,22 70:3,7
70:16,24 71:24 72:7
72:16,19,20,22 73:7
74:22,24 75:12,24
76:21 77:3 115:4,9
118:3 119:1 121:16
122:1,13 124:7,8,12

richardson 32:14
right 8:22 10:12

11:8,15,17,20,25
12:3 13:1 14:14
16:3,5 17:8 18:4,13
19:9 20:10 21:6,14
21:15 22:21,22,25
23:1,6,10 24:1 25:5
27:6 29:24 31:25
32:7 33:13,16,20
34:14 36:5,24,25

39:15 41:21 44:9,16
47:24 48:7,15 49:9
50:5 53:22 54:23
57:20 58:5,9,18
59:6 60:9 61:9 62:4
62:9,11,17 63:5
67:13 68:1,4 69:9
69:20 70:6,19 72:19
73:5 74:8,16,21
82:22 87:9 88:3,11
92:13 95:18,21,24
96:3,8,8,13,15 99:6
99:17,23 100:5,10
100:12 101:20
103:6,11 104:3
107:4 110:13 111:1
111:2,14,22 114:12
115:16,19 118:5
122:17 124:14

rim 32:14
robert 3:5 8:5
root 37:13
routing 102:22
rpluta 3:10
rules 8:24
run 57:19,25 58:4,9

58:17 59:6,7
s

sample 89:18
samples 89:12 91:3
satisfactory 63:24
satisfies 64:16
save 56:5,5
saw 72:1
saying 15:15 31:8

48:21,22 49:3,4,13
49:19 57:6,24 59:25
62:12 63:3 64:4
65:19 66:2,23 73:14
77:22 86:17 91:18
94:11,23 106:6,9,9
110:16,25 113:6
119:10

says 19:5 26:12
30:16 40:19,20 41:3
41:17,17 64:22 66:7
66:11 68:19 72:19
72:20,20 73:10 77:1
86:23 93:8 97:16
107:10 116:22
117:5,17 118:3,8
119:3

scheduler 112:4,11
113:8

schematic 52:20
science 17:11
scope 79:13 81:13

82:24 96:18
score 97:11
second 8:21 28:17

36:16 70:14 92:15
98:7 121:8,9

section 21:8,12,17
23:16 33:18,25 70:7
84:22 85:15 115:12

see 17:2 21:10,18,23
21:24 22:11 29:8
30:16 33:1,23 35:14
36:13 37:3,17 38:15
40:17 41:10 52:19
54:19 63:23 64:10
68:23 71:5,11 72:13
73:6 74:14 76:2,18
77:11 78:14,23
80:18 81:5 84:12,24
85:17,21 87:22
90:15 93:6 99:16
100:20 105:6 107:4
107:6 110:10,11
113:7 114:8,15
115:17 116:2
117:10,19 118:22
119:8 121:11,19

seeing 41:15
seeking 19:12
seen 15:9,18 16:24

104:11

[relating - seen] Page 15

Veritext Legal Solutions
215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 48 of 611

select 102:13 107:21
107:22

selected 22:18
104:22 105:5

selecting 87:3
107:19,25

selector 108:21
selects 106:19
sensitive 7:18
sentence 35:11 37:1

37:24 38:9 40:20
41:3 68:19 70:14
71:7 101:7,8 104:14
115:21 119:10
121:9

sentences 116:16
september 1:17 2:18

7:1,6 125:18
sequencer 62:9

66:24 104:25
105:18 112:2,9
113:3,6

sequencers 88:24
111:20

sequences 31:10
112:9

sequencing 58:24
67:4 113:4

sequentiality 119:9
sequentially 115:5

115:10,17 116:24
118:9 119:4,11
121:18

service 22:14 63:21
set 41:7 125:5
seven 72:10
shader 5:24 26:21

38:23 39:1,11,15,25
40:15 41:23,25
42:19 43:6,21 44:14
44:16 46:3,10,20
47:13,17 49:4 50:17
50:22 51:13,17,20
52:1 62:7 87:20
88:1,2,8,14,16,21,22

89:5,25 90:9,12,13
90:22,23 91:10,12
91:19,21 92:1,6,8
92:10,11,12,13,17
92:21 93:9,10,19,23
94:2,8,12,23 95:2,4
95:17 96:1,10,23
97:10 111:16,25
112:15,24 119:25
120:12,25

shaders 37:9,9
120:20

shape 26:8,9
shapes 26:4
share 65:12
sheet 126:7,10,12,15

128:11
shell 60:15
shocked 51:15
short 20:10 37:14
shorthand 2:19

125:1,9
show 75:14 86:16

97:8
shown 34:10,15

88:11
shows 62:15 92:12
sign 126:9
signal 20:8 87:5

108:2
signals 58:12 59:10

59:13
signature 10:21

11:12 125:21
128:14

signed 10:24 11:14
12:15

significant 40:25
signifies 19:9
signing 126:11
simd 19:17 28:8

30:22,25 123:17,20
similar 55:16
simple 47:3 107:20

107:25

simultaneous 42:12
simultaneously

65:11
single 33:19 53:16

66:14 101:7,8
sir 8:19 10:9 15:25

84:9 87:9 93:13,13
93:17 98:11

six 22:21 72:10
size 73:3 74:2,9,11

74:18
sized 76:11
skeptical 43:15
skgf.com 4:11,12
skill 75:17 78:4,25

80:1 82:13 83:10
114:6,11,19

skipping 41:3
slope 71:18
sm4.0 40:21
small 71:3,24 75:25
smartphone 45:5,21
society 22:14,14
software 47:14

99:15,18
solution 48:20 51:16
solutions 1:21 7:10

47:20 48:22 49:4,14
51:24 124:22

solve 48:24
somebody 18:5 95:5

118:11,12
sophisticated 108:1
sorry 13:22,23 20:4

34:12 39:5,12 54:11
57:15 65:4 85:6,8
90:4 103:18 105:23
105:24 121:23

sort 37:1 48:8 62:6
source 34:24 35:2,5

35:7 94:13 95:10
sources 34:19
south 2:16 3:7
space 126:7

spanning 21:13
23:11

spans 31:24 33:12
85:19

speak 9:2,3
speaking 42:12
speaks 79:7
special 21:22,24

22:1,2,4,5
specialized 95:9
specific 34:24 37:25

115:12 119:10
specifically 19:17

68:9 119:19
specification 102:2
specified 89:19
speculation 42:14
spend 13:10
square 37:13
stages 41:8
standard 77:16,17

80:2
standards 38:11

78:11 79:4,17,20,20
start 18:23 19:1

25:23 28:6
started 93:17
starting 21:13,16

22:23 23:11,15 33:7
63:9 85:13

starts 21:9 31:22
37:2 121:9

state 7:24 48:10
125:2 126:6

statement 22:3
30:25 35:16 68:25
69:2 114:13

states 1:1 2:1 6:4,7
6:10,13

steps 112:10
sterne 4:4 8:2,4
stop 27:14
storage 52:15 53:17

54:12,23 71:1

[select - storage] Page 16

Veritext Legal Solutions
215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 49 of 611

store 46:24 54:4
69:19 71:25 75:6,12
77:3,7 92:20 93:5,8

stored 71:9 72:8,17
73:7 74:23 75:18
76:22 124:9,12

stores 52:13 53:12
53:14 55:18 56:12
95:8

storing 53:23 55:16
69:23

strategy 29:1
street 1:21 3:15
strike 14:13 32:4

56:20 62:12 93:2
99:24

strongly 19:20,22
structure 30:18 57:7

65:14 93:4 106:7
108:15,25 109:13
111:6

structures 93:1
struggling 47:24
student 28:24
students 29:23
stuff 106:2,8,11
style 29:7
subject 126:11
submit 72:11
submitted 10:1,11

11:7 13:9 16:10
99:21

subscribed 125:16
128:16

subset 118:17
substance 98:14

128:10
subtract 57:17
sufficient 97:10
suggesting 47:8
suite 1:21 2:16
summary 17:19

18:17 22:1,18
support 31:21 38:12

78:9

sure 9:8 20:9 26:3
27:1,6 30:3 31:23
37:21,21 39:6 57:18
60:20 82:10 84:1
88:20 89:10 97:15
101:15 109:10

switch 97:16
switching 33:4 52:6

97:18 103:8 115:2
sworn 8:10,14

128:16
symposium 30:10

30:17
system 20:12,17,20

40:21 99:9 100:19
102:18 115:9,25
116:13,19 117:8
121:25

systems 19:8 76:13
78:8

t
t 127:3
take 7:17 9:12,18

26:1 27:5 64:8
97:24

taken 2:15 125:4
takes 22:17,19
talk 17:21 18:6

48:22 51:5 52:6
59:21 63:8 98:13
114:18

talked 120:24
talking 17:25 61:21

67:21 70:8 89:8
93:1,17 100:18
102:4 103:4

talks 67:18 86:25
87:3 97:13 101:14

tangentially 26:3
tape 97:25
target 46:8,11
targeted 46:1
tcb 87:5 110:24,25

tdutton 4:12
teach 69:22
teaches 62:4 71:24

73:7
team 12:21
technical 23:16,20
techniques 26:6

78:13 79:6
technologies 1:8 2:8

7:14 8:3 19:3,4
32:20 46:21 123:16
126:1 127:1 128:1

technology 19:2,13
33:8,11,19 34:4,7
38:4 67:20 71:18
72:2,12 122:14

telephone 13:3
tell 26:1 40:5,8,9

49:2,16 52:20 97:18
101:8 120:5

telling 55:1
term 56:15,19
terminologies

123:25
terminology 124:4
terms 47:17,18

48:23 53:23,24
54:15,17,19 55:16
65:16 88:24 90:11
91:22 97:20 108:18
111:19

testified 8:15
testifying 9:21 125:7
testimony 42:7,8

60:16 88:19 98:14
124:3,20

textbook 59:23
textbooks 57:9

59:20,25
texture 87:18
thank 8:9 60:17

61:6 67:10 85:11
100:11 122:8

thereof 78:20
125:11

thing 9:16 50:23
51:2 53:22 55:12
56:22 59:24 60:9,12

things 17:1 30:12
47:25 57:3,12 73:3
77:7,11 92:6 93:21
97:22

think 11:20,25
12:20,21 14:3 16:8
17:2 30:1 32:19,21
45:20 46:6 47:6
54:10 56:10,12 57:3
58:19 59:3 62:11
63:3 67:25 69:11
70:18 71:14 77:6
79:7 86:11,13,21
101:12,14 103:2,11
111:10 117:18
119:6 122:12

third 28:18 116:4,5
116:10 121:8

thirty 126:16
thought 54:9
thread 86:22 110:7

110:12,15,23
three 30:8 31:11,14

62:6 83:19
time 7:5,24 8:21,25

9:6,13 12:12 13:5,8
13:10 16:12 20:19
22:17,19 27:5 38:17
38:21,25 39:7 41:16
52:2 55:17 56:16
60:19,22,25 72:23
73:17 76:5 77:21
79:16 98:3,8 113:15
113:18 114:5,25
120:4 122:18
124:16,19,23 125:5

times 91:1,2
titled 40:15
today 9:22 14:22

43:6
today's 14:5 124:19

[store - today's] Page 17

Veritext Legal Solutions
215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 50 of 611

top 33:15 107:5
topics 52:6
total 13:18 14:1

23:22 124:20
trademark 1:1 2:1
traditionally 56:25
transcribed 125:10
transcript 126:17

126:18
transcription

125:11 128:7
transformation

37:16
transformed 71:8

74:11
transforming 87:16
traverses 99:14,18
trial 1:2 2:2 6:16
triangle 73:24 74:3
triangles 26:9 27:10

27:11 74:18
tried 30:21 32:23
trivial 71:17
true 28:13 69:2

71:23 108:23
109:11

try 9:3,5 28:25
63:22 87:9

trying 9:1 26:7,21
31:5,14 36:22 48:24
49:2,15 52:19,21
56:5 64:2 72:24
79:12 95:25 96:17
110:3

tuesday 1:17 2:18
7:1

tuminaro 4:5 5:5
8:1,1,18 10:4,8 11:2
11:5,22 15:5,16,21
15:24 18:25 20:2
24:4,20 25:21 27:18
27:24 29:16 32:10
33:24 36:3,6,9,22
39:3,18 40:10,13
41:19 42:5,17 43:4

43:10,20 44:6,12,19
47:22 48:13 49:17
49:23 50:14,21 51:3
51:8 52:5 53:1,7,15
54:9,21 55:19 57:5
58:3 59:15,22 60:20
61:4,17 63:25 64:18
65:18 66:1,8 67:23
68:10 69:13,17 70:2
74:5 75:5 80:11
81:22 84:8 85:8,12
86:9 90:2,5,17 91:8
91:14 94:9 95:19
97:3,24 98:10,16,21
102:3,25 103:23
104:3,5 106:5
107:11 108:3,10,22
109:9,19 112:12
113:12,20 115:1,7
117:1,3 119:20
120:8,22 121:24
122:10,17 123:10
124:17

turn 10:14 11:6,10
34:9 35:8 36:15
38:6 80:12 84:21
87:10 106:22
113:21 116:4 121:3

twice 31:17
two 10:1,2,3,3 12:14

13:25 15:8 17:12,15
44:13 45:19 53:6
54:22 56:2 57:1
91:18 108:20,21
116:16 124:21

tyler 4:6 8:4
type 74:18 100:20
typical 102:17
typically 52:14,16

52:22 53:2,8,16,18
55:2,5

typo 16:23,24 21:23
107:13

u
u.s. 61:8,19 84:10

98:23
uh 20:16 28:19

36:17 46:16 62:14
83:2,7 116:7 119:24

ulc 1:8 2:8 7:14 8:3
126:1 127:1 128:1

ultimate 47:21
uncalibrated 30:19
undersigned 125:1
understand 9:6,21

15:13 43:14 44:24
52:3 53:5 60:14,16
61:21 64:2 79:10,11
79:11,12,13,14,15
80:14 82:15,18
88:20 94:10 96:17
114:23

understanding
42:21,25 43:23 49:7
68:17 72:23 92:25
95:3 100:21 105:12
105:13,14 106:13
122:13

understood 9:10
unfortunately 56:16
unified 26:21 38:23

39:1,11,14,25 41:5
41:24 42:19 43:6,15
44:14,16 46:3,10,10
46:20 47:13,17 48:8
49:3 50:16,22 51:13
51:17,20 52:1 62:7
80:2 92:13,16 95:2
95:3 96:1,10 119:25
120:12,20,25

unintelligible 95:14
95:15 105:21

unit 52:15 53:17
56:18,20 62:8 64:25
65:8 66:3 67:1,3
88:21 89:11,24
90:14 91:1,3,10,17

91:21 93:23 94:17
94:21 96:21 111:15
112:6 113:2,3,5
117:20,25 118:14

united 1:1 2:1 6:4,7
6:10,13

units 37:10,15 40:23
54:23 66:6 88:4,18
102:21,22,23
117:25

university 17:13
18:13

university's 18:16
unreportable 42:12
use 17:4,9,24 27:10

37:10,14 45:24
46:14 47:1,2 54:6
70:18,25 74:20 97:9
100:23

useful 26:10
user 70:17,18
uses 101:18
usually 18:8 27:10

59:21
v

v 126:1 127:1 128:1
vector 37:11
vendors 38:12
venues 17:10
verbatim 125:8
verify 24:9
veritext 1:21 7:9

124:22
versatile 73:16
version 39:14
versus 7:14 32:6,14

32:16
vertex 26:16 37:8,15

67:14,22 68:3,15,21
69:8,19,23 70:3,5
71:8,25 72:5,7,16
73:7,16,19 74:12,23
75:1,7 76:13,22,25
77:1,12,19 87:8,15

[top - vertex] Page 18

Veritext Legal Solutions
215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 51 of 611

104:19,21 105:1,20
115:4,9 119:16
121:17,25 122:2
124:8,11

vertexes 72:3
vertices 73:25,25

74:11 77:10 87:17
97:16

video 7:6,16 122:24
videographer 4:14

7:4 8:9 60:21,24
98:2,6 113:14,17
124:18

videotaped 1:15
2:14

view 26:23 28:22
44:4 54:5 55:18
75:12 105:14

vitae 5:16
volatile 54:18
volatility 54:17
volume 1:18 2:15

5:4
voxel 30:7,8
vs 1:7 2:7

w
wacker 3:7
want 16:14,18 17:1

24:12 27:4 30:24
41:17 46:14,22,23
46:23 47:1,2 51:11
52:2 81:14 82:15
83:19 86:6,12 87:24
88:20 89:1,7 90:10
90:13,18,19,19
93:20 96:18,23
100:5 101:15 106:3
106:11 107:17,24
115:13 118:16,25
119:7

wanted 28:11 96:2
96:11

wanting 48:18

wants 77:11
washington 1:22

3:16 4:9
way 7:22 17:18

23:12 26:15 28:14
33:12 39:23 42:6
43:23 46:12 47:15
48:14 49:15 51:4
52:1 54:2 57:8 60:3
75:4 85:19 91:20
107:19 118:7
119:14

we've 60:18
web 34:20
webpage 18:16
website 18:18
weeks 57:1
weird 18:4
welcome 61:5 98:11
went 82:14
whereof 125:15
whispers 7:19
wise 47:4,5
witness 5:2 8:10

11:20 15:4,13 18:22
20:1 24:3 25:20
27:17,23 29:14 32:9
33:22 36:1 38:25
39:17 40:3,5 41:15
42:2,15 43:2,9,18
43:25 44:11,18
47:12 48:12 49:12
50:13,20 51:1,15
52:25 53:5,11 54:11
55:15 56:25 59:9,19
63:18 64:14 65:4,24
66:6 67:17 68:6
69:11,14 70:1 73:21
75:3 80:6 81:21
86:6 90:8,25 94:5
95:1 97:1 101:25
102:12 105:24
107:9,17 108:8,19
109:3,16 112:2
114:22 116:22

117:2 119:6 120:3
120:15,17 121:23
122:8,19,22 123:11
123:20 125:15
126:3

witnesses 125:6
wondering 103:13
word 33:15 44:24

45:25 97:9 100:20
101:3,4,9,19 102:7
103:6 106:14
115:17

words 113:7
work 5:21 20:3,5,15

20:23 28:7,8 29:12
36:12 42:8,15 43:16
76:13 120:19
123:16

worked 18:20,22
19:10,18 20:7,12
32:6

working 13:18
28:24 78:6,21 79:22
79:22 87:6 118:19
119:15

works 26:18 50:3
write 29:5 54:13
writing 21:25 29:6

29:22 54:15 55:16
written 21:3 80:25

119:8
wrong 63:2
wrote 22:3,7 37:24

x
x 3:13
xenos 120:10

y
yeah 12:18 13:7

14:3 15:17 17:20
20:1 21:21 31:23
35:3 36:14 38:8
40:18 45:15 48:12
54:11 55:22 56:6
58:8,19 60:20,20,20

69:3 71:6,12 74:15
74:24 75:23 76:3
80:6 81:6 84:5,25
100:9,15 101:17
113:22,24 115:20
116:3 121:5,20
124:6,10

years 71:22 72:10
72:10,25 78:21

yep 107:3
york 4:8

z
zhu 3:13 8:7,7 12:20

[vertex - zhu] Page 19

Veritext Legal Solutions
215-241-1000 ~ 610-434-8588 ~ 302-571-0510 ~ 202-803-8830

ATI Ex. 2120
IPR2023-00922
Page 52 of 611

Federal Rules of Civil Procedure

Rule 30

(e) Review By the Witness; Changes.

(1) Review; Statement of Changes. On request by the

deponent or a party before the deposition is

completed, the deponent must be allowed 30 days

after being notified by the officer that the

transcript or recording is available in which:

(A) to review the transcript or recording; and

(B) if there are changes in form or substance, to

sign a statement listing the changes and the

reasons for making them.

(2) Changes Indicated in the Officer's Certificate.

The officer must note in the certificate prescribed

by Rule 30(f)(1) whether a review was requested

and, if so, must attach any changes the deponent

makes during the 30-day period.

DISCLAIMER: THE FOREGOING FEDERAL PROCEDURE RULES

ARE PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

THE ABOVE RULES ARE CURRENT AS OF SEPTEMBER 1,

2014. PLEASE REFER TO THE APPLICABLE FEDERAL RULES

OF CIVIL PROCEDURE FOR UP-TO-DATE INFORMATION.

ATI Ex. 2120
IPR2023-00922
Page 53 of 611

Page 1

 UNITED STATES PATENT AND TRADEMARK OFFICE

 BEFORE THE PATENT TRIAL AND APPEAL BOARD

 LG ELECTRONICS, INC.)
)
 Petitioner,)
)
 vs.) No. Ipr 2015-00325
)
 ATI TECHNOLOGIES ULC,)
)
 Respondent.)

 The deposition of NADER BAGHERZADEH,

taken before JO ANN LOSOYA, C.S.R., pursuant to the

provisions of the Illinois Code of Civil Procedure

and the Rules of the Supreme Court thereof

pertaining to the taking of depositions for the

purpose of discovery at 71 South Wacker Drive,

Chicago, Illinois commencing at 9:05 a.m. on

August 14, 2015.

ATI 2074
LG v. ATI

IPR2015-00326

ATI Ex. 2120
IPR2023-00922
Page 54 of 611

2 (Pages 2 to 5)

Page 2

1 PRESENT:
2 MAYER BROWN ROWE & MAW

 MR. ROBERT G. PLUTA
3 MR. JOHN X. ZHU

 71 South Wacker Drive
4 Chicago, Illinois 60606-4637

 (312) 701-8641
5 rpluta@mayerbrown.com

 rzhu@mayerbrown.com
6 Appeared on behalf of the Petitioner;
7

 STERNE KESSLER GOLDSTEIN FOX
8 MR. JONATHAN TUMINARO, Ph.D.

 MR. ZHU HE
9 1100 New York Avenue NW

 Washington, DC 20005
10 (202) 371-2600

 jtuminar@skgf.com
11 zhe@skgf.com

 Appeared on behalf of the Respondent.
12

 ROBIN KAPLAN
13 MR. BRYAN J. MECHELL

 800 LaSalle Avenue
14 Suite 2800

 Minneapolis, Minnesota 55402
15 (612) 349-0172

 bmechell@robinskaplan.com
16 Appeared on behalf of the Respondent.
17
18 ALSO PRESENT:
19 Mary Ann Naas, Videographer.
20
21
22
23 REPORTED BY: JO ANN LOSOYA
24 LICENSE #: 084-002437

Page 3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Page 4

1 EXAMINATION
2 Witness Page Line
3 NADER BAGHERZADEH
4 By Mr. Tuminaro 6 10
5 By Mr. Pluta 154 10
6 By Mr. Tuminaro 158 20
7
8 ***************
9 E X H I B I T S

10 Deposition Exhibit Page Line
11 Exhibit No. 1................ 8 17
12 Exhibit No. 2................ 14 12
13 Exhibit No. 3................ 18 14
14 Exhibit No. 4................ 36 12
15 Exhibit No. 5................ 37 1
16 Exhibit No. 6................ 40 15
17 Exhibit No. 7................ 69 24
18 Exhibit No. 8................ 93 12
19 Exhibit No. 9................ 113 17
20 Exhibit No. 10............... 148 8
21
22
23
24

Page 5

1 THE VIDEOGRAPHER: We are on record. My

2 name is Mary Ann Naas representing Veritext.

3 Today's date is 8-14-2015. The time is

4 approximately 9:07 a.m.

5 This deposition is being held at

6 Mayer Brown located at 71 South Wacker Drive,

7 Chicago, Illinois, and is taken by the patent owner.

8 The caption of this case is LG Electronics, Inc.,

9 versus ATI Technologies ULC. This case is being

10 held before the Patent and Trial Appeal Board, case

11 number IPR 2015-00325. The name of the witness is

12 Nader Bagherzadeh.

13 At this time, will the attorneys

14 please announce their presence on record.

15 MR. TUMINARO: Jonathan Tuminaro from the

16 law firm Sterne, Kessler, Goldstein, and Fox on

17 behalf of the patent owner, ATI Technologies ULC.

18 And with me is Zhu He, also from Sterne Kessler.

19 MR. MECHELL: Also Bryan Mechell from

20 Robins Kaplan on behalf of the patent owner, ATI

21 Technologies ULC.

22 MR. PLUTA: Robert Pluta from Mayer Brown

23 on behalf of LG Electronics.

24 MR. ZHU: John Zhu from Mayer Brown also

ATI Ex. 2120
IPR2023-00922
Page 55 of 611

3 (Pages 6 to 9)

Page 6

1 on behalf of LG Electronics.

2 THE VIDEOGRAPHER: Our court reporter,

3 JoAnn Losoya, representing Veritext, will now swear

4 in the witness.

5 WHEREUPON:

6 NADER BAGHERZADEH,

7 called as a witness herein, having been first duly

8 sworn, was examined and testified as follows:

9 E X A M I N A T I O N

10 BY MR. TUMINARO:

11 Q. Good morning. Please state your name,

12 sir.

13 A. Nader Bagherzadeh.

14 Q. And please state your home address?

15 A. My address is 415 Hilledge in Laguna

16 Beach, California.

17 Q. Your work address?

18 A. University of California, Irvine, Irvine,

19 California.

20 Q. Sir, I understand that you have been

21 deposed several times before; is that right?

22 A. That's correct.

23 Q. Just a couple of ground rules for this

24 deposition. As you know, we're trying to get a

Page 7

1 clear record. So I'll ask that you don't speak over
2 me, and I'll try not to speak over you. Is that
3 fair?
4 A. That is fair.
5 Q. Okay. I'm going to try to ask clear
6 questions; but if at any point you don't understand
7 my question, will you let me know?
8 A. Sure. Can I ask you to slow down a
9 little bit?

10 Q. Oh, sure. Sure. Okay.
11 If you answer one of my questions,
12 I'm going to assume that you understood it. Is that
13 fair?
14 A. Yes. If I answer, that means I
15 understood it, correct.
16 Q. Okay. I'm going to take periodic breaks,
17 but if at any time you need a break, would you let
18 me know?
19 A. Absolutely.
20 Q. Okay. But if there's a pending question,
21 I'd ask that you answer the question before we take
22 a break. Is that fair?
23 A. Sure.
24 Q. You understand that you're testifying

Page 8

1 under oath here this morning?
2 A. Absolutely.
3 Q. And all day today actually.
4 A. Absolutely.
5 Q. Is there any reason you cannot do that?
6 A. No, I cannot see a reason why I could not
7 do that.
8 Q. Okay. Do you know why you're here today?
9 A. Yes.

10 Q. Why?
11 A. There's a case pending.
12 Q. And you submitted a declaration in that
13 case?
14 A. Yes. If you have it, I can show it to
15 you.
16 (WHEREUPON, document marked as
17 Exhibit No. 1.)
18 BY MR. TUMINARO:
19 Q. Sir, you've been handed what has been
20 marked as Exhibit 1. This is titled Declaration of
21 Dr. Nader Bagherzadeh. Is this your declaration?
22 A. Yes, sir.
23 Q. If you turn to the last page of the
24 declaration before the appendix, there's a signature

Page 9

1 there?

2 A. Yes.

3 Q. Is that your signature?

4 A. Yes.

5 Q. And you signed this declaration on

6 December 9, 2014?

7 A. Yes.

8 Q. Is there anything that you'd like to add

9 to this declaration?

10 A. No.

11 MR. PLUTA: Counsel, did you -- I thought

12 I heard you refer to this as Exhibit 1. Are you

13 referring to it as a different exhibit number?

14 MR. TUMINARO: Just Exhibit 1 to this

15 deposition.

16 MR. PLUTA: Okay. So you are not going

17 to refer to it as Exhibit 1003.

18 MR. TUMINARO: I may during the course of

19 it. I just wanted to mark this so that it is clear

20 this is Exhibit 1 to Dr. Bagherzadeh's deposition.

21 MR. PLUTA: Fair enough.

22 BY MR. TUMINARO:

23 Q. Is there anything that you would like to

24 delete from your declaration?

ATI Ex. 2120
IPR2023-00922
Page 56 of 611

4 (Pages 10 to 13)

Page 10

1 A. No, I don't think so.
2 Q. Are there any changes that you'd like to
3 make to your declaration at all?
4 A. No.
5 Q. If you would turn with me to Paragraph 2
6 of your declaration.
7 A. Okay.
8 Q. Paragraph 2 reads: "I have been asked to
9 provide my opinions and views on materials I have

10 reviewed in this case related to U.S. Patent
11 No. 7742053 (the '053 patent)."
12 Do you see that?
13 A. Yes.
14 Q. What materials are you referring to that
15 you reviewed?
16 A. I think we have a list of that. If I
17 refer you to Page 87 of Exhibit 1, you can see the
18 list.
19 Q. That's titled Materials Considered and
20 Exhibit List, correct?
21 A. That is correct.
22 Q. Does this list all the materials that you
23 reviewed in preparing your declaration?
24 A. Yes.

Page 11

1 Q. In fact, there are no other materials
2 that you reviewed in preparation for your
3 declaration?
4 A. If they were, I would have put them in
5 here.
6 Q. Okay. If you would turn with me to
7 Page 10 of your declaration.
8 A. Yes.
9 Q. At the top of Page 10, there's a figure

10 or a picture.
11 Do you see that?
12 A. Hm-hmm.
13 Q. You didn't generate this picture, did
14 you?
15 A. It was probably from one of my lectures.
16 Q. One of the lectures that you prepared?
17 A. Yeah.
18 Q. But that's not listed on your materials
19 considered, is it?
20 A. It's one of my lectures, yeah.
21 Q. So. One of your lectures is one of the
22 things that you considered in preparing your
23 declaration?
24 A. My knowledge is what was considered for

Page 12

1 this.
2 Q. But, in fact, a figure from one of those
3 lectures is actually in your declaration, right?
4 A. It could be. I couldn't say for certain.
5 Q. Let's look at the next page, Page 11. In
6 Paragraph 31, there's also a figure. Where did this
7 figure come from?
8 A. From one of my lectures.
9 Q. Your lectures aren't listed in the

10 materials considered, right?
11 A. It's from my knowledge that I have.
12 Q. Well, I appreciate the answer, but I
13 think it didn't answer my question. This lecture is
14 not listed on your materials considered, right?
15 MR. PLUTA: Object to form.
16 BY THE WITNESS:
17 A. It's what I know. So the lecture is not
18 cited, that's right, but it's what I know. I have a
19 lot of other knowledge that is not cited here about
20 computer architecture, the textbooks that I've used
21 over the years, my papers I've written over the
22 years. No, they're not cited here, but they're up
23 in my head.
24

Page 13

1 BY MR. TUMINARO:
2 Q. Is there anything else that you relied
3 upon in preparing your declaration that you did not
4 list in your exhibits considered?
5 A. I cannot think of anything right now
6 unless you point it out.
7 Q. The figure in Paragraph 31, do you know
8 what lecture this refers to?
9 A. Computer architecture.

10 Q. Is that publicly available?
11 A. No.
12 MR. TUMINARO: Counsel, I'd guess I'd
13 state for the record that we want a copy of that
14 lecture. It's not listed on the materials
15 considered, and it appears to be something that was
16 used in generating this declaration.
17 MR. PLUTA: Other than the figure and
18 what he just testified, I don't see how the
19 relevance of the lecture in its entirety would be
20 relevant to this proceeding.
21 BY MR. TUMINARO:
22 Q. Did you write your declaration?
23 A. Yes, sir.
24 Q. How much time did you spend in preparing

ATI Ex. 2120
IPR2023-00922
Page 57 of 611

5 (Pages 14 to 17)

Page 14

1 your declaration?
2 A. Over 40 hours.
3 Q. Over 40 hours. Was it over 50 hours?
4 A. I can't tell you.
5 Q. When were you first contacted with
6 respect to this matter?
7 A. I don't remember.
8 Q. Who contacted you?
9 A. Oh, that's a -- it's an agency that ties

10 the experts to the lawyers.
11 (WHEREUPON, document marked as
12 Exhibit No. 2.)
13 BY MR. TUMINARO:
14 Q. You have been handed what's been marked
15 as Exhibit 2 for identification purposes. The title
16 is Consultant Curriculum Vitae, Nader Bagherzadeh,
17 Ph.D.
18 Do you see that?
19 A. Yes.
20 Q. You have seen this document before?
21 A. Yes.
22 Q. This is your current CV?
23 A. Yes.
24 Q. Just to be clear, is this just your

Page 15

1 consultant CV? It says consultant CV.
2 A. It says so, yes.
3 Q. Do you have a different CV?
4 A. I have different CVs, yeah.
5 Q. This is the one that you use for patent
6 matters?
7 A. It seems that way. I mean, it's here
8 so...
9 Q. And anything you want to add to this CV?

10 A. No.
11 Q. Anything you want to delete?
12 A. No.
13 Q. Any changes at all?
14 A. No.
15 Q. Okay. You worked at AT&T Bell Labs,
16 right?
17 A. Yes, sir.
18 Q. While you were there, did that work
19 involve any sort of work on microchips?
20 A. It did.
21 Q. What did you do?
22 A. Used them.
23 Q. You used them. Did you make any
24 microchips at Bell Labs?

Page 16

1 A. No. We designed boards.
2 Q. And you left Bell Labs in 1984?
3 A. Yes, sir.
4 Q. So for the past 30 years, you have been
5 in academia, right?
6 A. Not accurate.
7 Q. What's not accurate about my statement?
8 A. Because I went to school.
9 Q. Oh so -- I see. In 1987, you started in

10 academia; is that right?
11 A. That's right.
12 Q. Since 1987, you have been in academia,
13 right?
14 A. Correct, with a little period of running
15 a start-up as you may have seen it in my resume.
16 Q. You have never actually built a computer
17 chip, have you?
18 A. I did, yes.
19 MR. PLUTA: Object to form.
20 BY MR. TUMINARO:
21 Q. You did build a computer chip.
22 A. Absolutely.
23 Q. What did you do then?
24 A. I designed it.

Page 17

1 Q. You designed it?
2 A. Yes.
3 Q. You're telling me that just designing a
4 chip is building it?
5 A. Excuse me.
6 Q. Are you telling me that just designing a
7 chip is building a chip?
8 A. You didn't ask me if I fabricated it.
9 You asked me if I designed it, and I said I designed

10 it. Designing means to design something. Then you
11 have to fabricate it.
12 Q. Have you built a chip?
13 A. Fabricate it, is that what you are asking
14 me?
15 Q. Do you know what the word "build" means?
16 A. Do you know what the fabrication means?
17 Q. I do. Do you know what the word "build"
18 means?
19 A. Yes. We don't use building. We use the
20 word fabrication. We fabricated the chip, yes.
21 Q. You fabricated the chip, and you designed
22 the chip?
23 A. You just asked me, and I said yes.
24 Q. Did you ever design a GPU?

ATI Ex. 2120
IPR2023-00922
Page 58 of 611

6 (Pages 18 to 21)

Page 18

1 MR. PLUTA: Object to form.
2 BY THE WITNESS:
3 A. We designed pieces of the GPU for our
4 chip.
5 BY MR. TUMINARO:
6 Q. Which chip are you referring to?
7 A. Multiple chips.
8 Q. Did you build a chip called morphosys?
9 MR. PLUTA: Object to form. Object to

10 relevance.
11 BY THE WITNESS:
12 A. Yes, I did.
13 (WHEREUPON, document marked as
14 Exhibit No. 3.)
15 BY MR. TUMINARO:
16 Q. Sir, you have been handed what has been
17 marked as Exhibit 3 for identification purposes. Do
18 you recognize this document?
19 A. Yes.
20 Q. What is it?
21 A. It's a paper I have written with my
22 colleagues and former students.
23 MR. PLUTA: I'm going to object to the
24 relevance of this exhibit at this time.

Page 19

1 BY MR. TUMINARO:

2 Q. If you turn with me to I guess what is

3 labeled as Page 10-3. Well, first of all -- first

4 of all, if you will turn to your CV again,

5 Exhibit 2, on Page 19 of your CV.

6 A. Yeah.

7 Q. Are you there, sir, Page 19?

8 A. Yes.

9 Q. Okay. If you look at C57, there's a

10 paper there that's listed, and the title of the

11 paper is: "Morphosys: An Integrated Reconfigurable

12 Architecture."

13 Do you see that?

14 A. Yes.

15 Q. If you look at the title of Exhibit 3,

16 it's the same, right?

17 A. Yes.

18 Q. Exhibit 3 would be an example of some of

19 the stuff that's in your head as you said earlier,

20 right?

21 MR. PLUTA: Object to form.

22 BY THE WITNESS:

23 A. It's an example of what's in my head?

24

Page 20

1 BY MR. TUMINARO:

2 Q. Your knowledge about --

3 A. Knowledge, yes.

4 Q. So Exhibit 3 is an example of your

5 knowledge?

6 A. That's right. That's better. Yes, thank

7 you.

8 Q. If you will turn with me in Exhibit 3 to

9 Page 10-3.

10 A. Hm-hmm.

11 Q. And on the left-hand column, about midway

12 through the page, there's a heading four, Morphosys,

13 System Model.

14 Do you see that?

15 A. Yes.

16 Q. And the last sentence, it says: "The

17 system model and architecture details for the first

18 implementation of morphosys (M1 chip) are described

19 hereafter."

20 Do you see that?

21 A. Yes, I see that.

22 Q. Was this morphosys actually a chip?

23 A. Yes, sir.

24 Q. So the architectural details were

Page 21

1 sufficient to be an implementation of a chip?
2 MR. PLUTA: Object to form.
3 BY THE WITNESS:
4 A. So your question is by looking at this
5 paper, do I prove that I fabricated the chip or not?
6 BY MR. TUMINARO:
7 Q. That was not my question.
8 A. But I'm getting that from your question.
9 I'm repeating it because I didn't understand what

10 you said.
11 Q. Then I'll clarify.
12 A. Right. Please.
13 Q. In this sentence in your paper, it says:
14 "The system model and architectural details for the
15 first implementation of the morphosys chip are
16 described hereafter." Right?
17 A. Right.
18 Q. So, you had an implementation?
19 A. I had an implementation. That's right.
20 Q. That implementation was based on
21 architectural details of the chip?
22 A. That is described in this document, yes.
23 Q. What were the architectural details that
24 you had made at that time?

ATI Ex. 2120
IPR2023-00922
Page 59 of 611

7 (Pages 22 to 25)

Page 22

1 MR. PLUTA: Object to form. Object to
2 relevance.
3 BY THE WITNESS:
4 A. It's in the paper.
5 BY MR. TUMINARO:
6 Q. Let's look at what the paper says.
7 A. I'll be glad to go over it with you.
8 Q. If you will turn with me to Page 10-10.
9 On the right-hand side, there's a number 7,

10 Interactive Software Environment.
11 Do you see that?
12 A. 10-10. Which column?
13 Q. On the right-hand side.
14 A. Yes.
15 Q. The first sentence after Interactive
16 Software Environment, it reads: "The morphosys
17 reconfigurable system has been specified in
18 behavioral VHDL."
19 Do you see that?
20 A. I do.
21 Q. What is VHDL?
22 A. It stands for a hardware description
23 language.
24 Q. Verilog Hardware Description Language?

Page 23

1 A. It says VHDL. It doesn't say verilog.

2 Q. Does VHDL stand for Verilog Hardware

3 Description Language?

4 A. No, it does not. I don't think it does.

5 Q. What does the V stand for, then?

6 A. I don't know. It could be.

7 Q. Having read that sentence, turning back

8 to the sentence on Page 3 that talked about

9 architectural details, were the architectural

10 details that are described on Page 3 the VHDL code

11 that you were talking about?

12 MR. PLUTA: Object to form. Object to

13 relevance.

14 BY THE WITNESS:

15 A. Well, the statement there is accurate.

16 It says the morphosys reconfigurable system has been

17 specified in behavior VHDL.

18 BY MR. TUMINARO:

19 Q. You didn't answer my question. On Page

20 3, you said the system -- the system model and

21 architectural details for the implementation of

22 morphosys (M1 chip) are described hereafter, right?

23 A. You read that. Yes.

24 Q. I asked you earlier about what

Page 24

1 architectural details are, correct?
2 A. Hm-hmm.
3 Q. You said it's described in the paper,
4 right?
5 A. Yes.
6 Q. And I went to Page 10 and the
7 architectural details. Now, my question is are the
8 architectural details the VHDL that's described on
9 Page 10 of your paper?

10 MR. PLUTA: Object to form. Object to
11 relevance.
12 BY THE WITNESS:
13 A. Sir, if I read that sentence --
14 MR. PLUTA: Object to foundation.
15 BY THE WITNESS:
16 A. If I read that sentence, it should give
17 you the information. I'll read it again. It
18 says -- let me finish the sentence, please.
19 The morphosys reconfigurable system
20 has been specified in behavior VHDL. Which
21 morphosys am I talking about? It's the one that
22 that is discussed in this paper. So the relevance
23 is obvious. You have to deduce it from this
24 statement. If you are not getting that information,

Page 25

1 maybe we didn't write it properly.
2 BY MR. TUMINARO:
3 Q. That's what I'm asking you. I could read
4 the paper. I'm asking you are the architectural
5 details the VHDL?
6 MR. PLUTA: Object to form. Object to
7 relevance. Object to foundation.
8 BY THE WITNESS:
9 A. I repeat my -- at the beginning, we talk

10 about architectural details. This is referring to
11 the morphosys reconfigurable system. Which other
12 architecture are we talking about if it's not what I
13 just said in Page 2 that you had? Can you tell me
14 that I could be talking about something else? I
15 just don't see why it's so puzzling to you.
16 BY MR. TUMINARO:
17 Q. Is the answer to my question, yes, then,
18 that the architectural details are the VHDL?
19 MR. PLUTA: Object to form. Object to
20 relevance.
21 BY THE WITNESS:
22 A. It says morphosys reconfigurable system
23 has been specified in VHDL. It could not be any
24 other morphosys circuit.

ATI Ex. 2120
IPR2023-00922
Page 60 of 611

8 (Pages 26 to 29)

Page 26

1 BY MR. TUMINARO:
2 Q. So that means that the VHDL was an
3 implementation of that morphosys chip?
4 MR. PLUTA: Object to form. Object to
5 relevance. Asked and answered.
6 BY THE WITNESS:
7 A. Yes. That's what it says. Of course.
8 BY MR. TUMINARO:
9 Q. If you turn back with me to your

10 declaration at Paragraph 38, I'll read it for the
11 record. Are you there?
12 A. Yeah.
13 Q. Paragraph 38 reads: "I believe that a
14 person of ordinary skill in the art relating to the
15 '053 patent would be someone with a good working
16 knowledge of computer graphic processing
17 architecture as well as the systems and programs
18 that support such architecture."
19 Do you see that?
20 A. Yes.
21 Q. How did you come up with that definition?
22 A. I just wrote it.
23 Q. Based on what?
24 A. Based on my knowledge.

Page 27

1 Q. Do you satisfy that definition?
2 A. It's in the report. So I'm happy with
3 it.
4 Q. No, no. That wasn't my question.
5 Are you a person of ordinary skill in
6 the art with respect to your own definition?
7 A. Sorry about that. I took it as satisfied
8 differently.
9 Yes, I am.

10 Q. Were you a person of ordinary skill in
11 the art as of the time that the '053 patent was
12 filed?
13 A. Yes, I was.
14 Q. Have you ever designed a GPU?
15 A. I designed some of the architectures that
16 we have that were used for computer graphics, yes.
17 Q. Architectures other than the morphosys?
18 A. Yes. I have done several architectures,
19 but morphosys was used for graphics.
20 Q. That had graphics in it?
21 A. Yes.
22 Q. You never worked in a graphics company,
23 did you?
24 MR. PLUTA: Object to form.

Page 28

1 BY THE WITNESS:

2 A. My resume speaks for itself. I never

3 did.

4 BY MR. TUMINARO:

5 Q. You never programmed a 3D graphics on a

6 GPU, did you?

7 A. I taught a course, and I did some

8 programming in open GL for the course to prepare the

9 exams, the homework, and so on. Yeah.

10 Q. Have you ever used a -- strike that. You

11 mentioned the open GL. Have you heard of DX10, 11?

12 A. Yes. I have heard of those.

13 Q. Have you ever used those?

14 A. Not specifically, but I have -- I am

15 supervising projects or supervised projects, we

16 tried to use GPUs for high performance computing and

17 we're still doing that.

18 Q. By high performance computing, you don't

19 mean 3D graphics, do you?

20 A. Well, you're using the GPUs, but you are

21 doing it for number crunching.

22 Q. Right.

23 A. It's called GPGPUs.

24 Q. It's general purpose GPU, right?

Page 29

1 A. Yes. But we're using all the resources
2 on the GPU. All the resources.
3 Q. Okay. My question is you are not using
4 the GPU to do 3D graphics processing, right?
5 A. Not now.
6 Q. Have you ever?
7 A. Before we did, yes.
8 Q. If you look back with me, I guess, at
9 Paragraph 31, there's that figure that you put in

10 from your lecture.
11 A. Yes.
12 Q. That figure is relating to a
13 multi-threaded CPU, right?
14 A. It's related to multi-threading in
15 general. And you could think about it as a CPU.
16 You could think about it as a GPU. You can think
17 about it as any computation form. It's not target
18 application specific.
19 Q. If you look at the previous page,
20 Page 10, that figure is for multi-threading on a
21 CPU, right?
22 A. It says CPU, right. I couldn't tell you
23 that's a GPU. It says CPU.
24 Q. The '053 patent is about a GPU, not a

ATI Ex. 2120
IPR2023-00922
Page 61 of 611

9 (Pages 30 to 33)

Page 30

1 CPU?
2 MR. PLUTA: Object to form.
3 BY THE WITNESS:
4 A. '053 is about multi-threading for GPUs.
5 So this is to give you information about the
6 background of multi-threading. It's not talking
7 about -- I'm not trying to address GPUs here. I'm
8 talking about what is multi-threading for the layman
9 person.

10 BY MR. TUMINARO:
11 Q. Let's go back to your materials
12 considered.
13 A. Yes, sir.
14 Q. Just to be clear, your lectures aren't
15 shown in the materials considered, right?
16 MR. PLUTA: Object to form. Asked and
17 answered.
18 BY THE WITNESS:
19 A. I think we established that, Counsel.
20 BY MR. TUMINARO:
21 Q. Is the answer yes?
22 A. It's clear that it's not.
23 Q. Earlier you mentioned that you had
24 designed GPUs or certain aspects of GPUs for your

Page 31

1 chips. Those previous designs aren't listed in your
2 previous materials considered?
3 MR. PLUTA: Object to form.
4 BY THE WITNESS:
5 A. No, sir.
6 BY MR. TUMINARO:
7 Q. Let's go back to your technical
8 background which starts on Page 7 of your
9 declaration. And the technical background spans

10 from Page 7 through to the top of Page 12, correct?
11 A. Yes.
12 Q. And in that entire section, there's not a
13 single cite to any external material, correct?
14 A. Let me check.
15 MR. PLUTA: Object to form.
16 BY MR. TUMINARO:
17 Q. Let me ask the question again.
18 In that entire section, you didn't
19 cite any extrinsic evidence to support any statement
20 that you made in this section, right?
21 A. Would you like me to check? I was just
22 about to do that for you.
23 Q. Yeah. I wanted to clarify my question.
24 A. Yes. I think I understood your question.

Page 32

1 So I'm going to look for references to see if there
2 are.
3 Q. Okay. Great.
4 A. If I'm misunderstanding, please let me
5 know.
6 It doesn't seem to be.
7 Q. Where does this material come from then?
8 A. I think I addressed that earlier. From
9 my knowledge and lectures, research, all of it done

10 over the years.
11 Q. So the entirety of the technical
12 background section just comes from stuff that you
13 have in your head?
14 MR. PLUTA: Object to form.
15 BY THE WITNESS:
16 A. Yes. That's why I'm here. 25 years of
17 experience in education. If you want me to cite
18 everything I know, then it will be a book.
19 BY MR. TUMINARO:
20 Q. If you'd turn with me to Page 8, I'd like
21 to focus on the Bullet No. 2 that says
22 rasterization.
23 A. Yes.
24 Q. Rasterization, that's about generating

Page 33

1 pixels; is that right?
2 A. Yep.
3 Q. If you'd turn with me to Page 10, the
4 last bullet there talks about cache misses.
5 There's a penalty for a cache miss,
6 right?
7 A. Yes.
8 Q. So if you increase the size of the cache,
9 that will likely decrease cache misses; right?

10 A. There is a reason for that, but you
11 cannot assume increasing the cache size will always
12 improve your performance. There is a limit to that.
13 This is what is called a bathtub curve.
14 Q. Bathtub curve, you moved your hand --
15 A. Just like a bathtub. You cannot keep
16 increasing the cache size and expect improvements,
17 but it gets better. You're right.
18 Q. And by -- and you said increasing the
19 cache size will increase your performance?
20 A. Yeah.
21 Q. By increased performance, you mean
22 decreased cache misses?
23 A. It will give you more room to put stuff
24 in there so you can keep track of more instructions

ATI Ex. 2120
IPR2023-00922
Page 62 of 611

10 (Pages 34 to 37)

Page 34

1 or data, and then there's something called how big
2 is the cache block. It's all related.
3 Q. Maybe my question is not perfect. So, a
4 cache miss is a penalty, right? A timing penalty?
5 A. Yes. You're right.
6 Q. If you miss in the cache, you have to go
7 out and get whatever it is you're looking for in
8 memory, right?
9 A. From the slower memory, that's right.

10 Q. So it's a penalty in time?
11 A. That is right, and penalty in power
12 consumption.
13 Q. Great. So if you decrease the cache
14 size, that will likely increase cache misses; right?
15 MR. PLUTA: Object to form.
16 BY THE WITNESS:
17 A. What application do you have in mind?
18 BY MR. TUMINARO:
19 Q. I'm asking you in general. If you have a
20 smaller cache or fewer things in there, it is more
21 likely that you are going to have a miss -- a cache
22 miss, right?
23 A. Well, if your application is three lines,
24 it will fit in a small cache. So you don't need

Page 35

1 that. So you have to qualify your question is for
2 what type of application you're talking about.
3 Q. All right. Since this case is about
4 GPUs, let's talk about GPUs.
5 A. You didn't qualify your question with
6 that. You asked me a general question.
7 Q. Okay. How about in GPUs? If you
8 decrease the cache size, it will likely increase the
9 likelihood of a cache miss in a GPU, right?

10 MR. PLUTA: Object to form.
11 BY THE WITNESS:
12 A. You can write two lines of GPUs, and it
13 still would be a very good size cache. So your
14 qualification is still not sufficient for me to
15 answer that. But let me help you out. If you want
16 a larger program, yes, you need a bigger cache.
17 BY MR. TUMINARO:
18 Q. A larger program in a typical type GPU
19 that you would use in a commercial implementation,
20 decreasing the cache size will increase cache
21 misses?
22 MR. PLUTA: Object to form.
23 BY THE WITNESS:
24 A. Yes. You asked me questions that are

Page 36

1 related to general topics.

2 MR. TUMINARO: I could keep going, but

3 I'm going to switch into something new. So do you

4 want to take a break now or do you want me to keep

5 going? It is up to you, sir.

6 THE WITNESS: I'm okay. If I get tired,

7 I'll let you know if it's not in the middle of a

8 question like you said.

9 MR. TUMINARO: Okay. Great.

10

11 (WHEREUPON, document marked as

12 Exhibit No. 4.)

13 BY MR. TUMINARO:

14 Q. You have been handed what has been marked

15 as Exhibit 4 for identifications purposes. This is

16 U.S. Patent No. 7233335.

17 Have you seen this document before?

18 A. Yes.

19 Q. This is the Morton patent, correct?

20 A. Correct.

21 Q. And this is listed on your materials

22 considered, correct?

23 A. Correct.

24 (WHEREUPON, document marked as

Page 37

1 Exhibit No. 5.)
2 BY MR. TUMINARO:
3 Q. Sir, you have been handed what has been
4 marked as Exhibit 5 for identification purposes.
5 This is U.S. Patent No. 7742053. This is the '053
6 patent that we have been talking about.
7 A. Correct.
8 Q. It's listed on your materials considered?
9 A. Correct.

10 Q. If you would turn with me to the last
11 column, column A in claim No. 5. Are you there,
12 sir?
13 A. Yeah.
14 Q. The last element in claim No. 5 is a
15 plurality of command processing engines.
16 Do you see that?
17 A. Yes.
18 Q. And I'll read it for the record. "A
19 plurality of command processing engines, coupled to
20 the arbiter, each operable to receive and process
21 the command thread."
22 Do you see that?
23 A. Yes.
24 Q. And in the previous element, it cites an

ATI Ex. 2120
IPR2023-00922
Page 63 of 611

11 (Pages 38 to 41)

Page 38

1 arbiter.

2 Do you see that?

3 A. Yes.

4 Q. I'll read that one. "An arbiter, coupled

5 to be at least one memory device, operable to select

6 a command thread from either of the plurality of

7 pixel command threads and the plurality of vertex

8 command threads."

9 Do you see that?

10 A. Yes.

11 Q. So looking at the plurality of command

12 processing engines, each of those has to be able to

13 process a vertex command thread or a pixel command

14 thread, right?

15 MR. PLUTA: Object to form.

16 THE WITNESS: You are asking a yes or no

17 question?

18 BY MR. TUMINARO:

19 Q. Yes.

20 A. No.

21 Q. It does not?

22 A. No.

23 Q. When it says in claim 5, "each operable

24 to receive and process the command thread," that's

Page 39

1 not referring to vertex command threads or pixel

2 command threads?

3 A. It doesn't say that. It just says

4 receive and process. I don't get the --

5 Q. It doesn't say "the command thread"?

6 A. Yeah, but it doesn't say that it should

7 be able to do both. I don't see that here.

8 Q. What do you understand the command thread

9 to be then?

10 A. It's -- it doesn't say what you're

11 saying.

12 Q. You don't understand it to be a pixel

13 command thread or a vertex command thread?

14 A. Not to do both. There will be some that

15 would do pixel commands. The other ones would be to

16 thread commands.

17 Counsel, do you want to take a break?

18 MR. TUMINARO: Sure. Now is a good time

19 to take a break.

20 THE VIDEOGRAPHER: We're going off

21 record. The time is 9:55 a.m.

22 (Whereupon, a break in the

23 proceedings was taken.)

24 THE VIDEOGRAPHER: We're back on record.

Page 40

1 The time is 10:09 a.m.
2 BY MR. TUMINARO:
3 Q. If you would turn -- Welcome back,
4 Dr. Bagherzadeh. Did you talk with counsel about
5 the substance of your testimony during the break?
6 A. No.
7 Q. If you'd turn with me to Exhibit 1, your
8 declaration again. In particular, I would like to
9 go to Page 72. I'm sorry. Paragraph 72, this is

10 referring to the Lindholm reference, is that right,
11 starting on Page 20?
12 A. Correct.
13

14 (WHEREUPON, document marked as
15 Exhibit No. 6.)
16 BY MR. TUMINARO:
17 Q. You have been handed what's been marked
18 as Exhibit 6 for identification purposes. This is
19 U.S. Patent No. 7015913.
20 A. Yes.
21 Q. This is the Lindholm patent?
22 A. Correct.
23 Q. This is listed on your materials
24 considered.

Page 41

1 A. Correct.
2 Q. Now, Paragraph 72 of your declaration
3 says and I'll read it for the record: "Because
4 thread control buffer 420 stores information for
5 both pixel and vertex threads, they are the claimed
6 memory device."
7 Do you see that?
8 A. I see that.
9 Q. So, Paragraph 72 of your declaration is

10 referring to -- just to be clear, the thread
11 controlled buffer 420, which is illustrated, for
12 example, in figure 4 of Lindholm; is that right?
13 A. Yes.
14 Q. If you will look with me back to
15 Exhibit 5.
16 A. Yes.
17 Q. In claim 1, which appears on column 7,
18 the memory device that's claimed in claim 1 reads,
19 and I'll read it for the record: "At least one
20 memory device comprising a first portion operative
21 to store a plurality of pixel command threads and a
22 second portion operative to store a plurality of
23 vertex command threads."
24 Do you see that?

ATI Ex. 2120
IPR2023-00922
Page 64 of 611

12 (Pages 42 to 45)

Page 42

1 A. Yes.

2 Q. Claim 1, the thing that's required to be

3 stored are the pixel command threads, command

4 threads -- strike that. Let me start over. It was

5 all mixed up.

6 In claim 1, the thing that is stored

7 by the memory device are the pixel command threads

8 and the vertex command threads; is that right?

9 MR. PLUTA: Object to form.

10 BY THE WITNESS:

11 A. You just repeated that claim, right? It

12 talks about -- is that what you did?

13 BY MR. TUMINARO:

14 Q. What I'm trying to get at is the memory

15 device stores a plurality of pixel command threads

16 and a plurality of vertex command threads.

17 MR. PLUTA: Object to form, if that's a

18 question.

19 BY THE WITNESS:

20 A. It says a memory device comprising of a

21 first portion operative to store a plurality of

22 pixel command threads and a second portion operative

23 to store a plurality of vertex command threads. I

24 agree with what it says.

Page 43

1 BY MR. TUMINARO:
2 Q. I'm not trying to trick you. There are
3 two things that are stored in the memory device,
4 right?
5 MR. PLUTA: Object to form.
6 BY MR. TUMINARO:
7 Q. Let me try again. There are two types
8 that are stored by the memory device in claim 1; is
9 that right?

10 MR. PLUTA: Object to form.
11 BY THE WITNESS:
12 A. You're saying at most two or at least two
13 or exactly two?
14 BY MR. TUMINARO:
15 Q. At least two.
16 MR. PLUTA: Still objection.
17 BY THE WITNESS:
18 A. I would say it says two here right now.
19 I would not know if there was more or less -- I mean
20 more.
21 BY MR. TUMINARO:
22 Q. So what is stored, what does the claim
23 require that the memory device stores?
24 MR. PLUTA: Object to form.

Page 44

1 BY THE WITNESS:

2 A. It says to store a several pixel command

3 threads and several vertex command threads.

4 BY MR. TUMINARO:

5 Q. Okay. Great. We agree that it's pixel

6 command threads and vertex command threads, right?

7 A. These are instructions for the threads,

8 yes.

9 Q. In Paragraph 72 of your declaration, what

10 you say that is stored is "information" for both

11 pixels and vertex threads; is that right?

12 A. You're reading my statement.

13 Q. I just want to be clear that you're

14 saying information about the pixels and vertices

15 satisfies the claimed vertex command thread and

16 pixel command thread?

17 A. I'm not saying that.

18 Q. What are you saying then?

19 A. It's a combination of TCB plus the

20 instruction cache that satisfies that particular

21 element of claim 1.

22 Q. Well, in Paragraph 72 of your

23 declaration, you're saying that the TCB, as you put

24 it, stores information, right?

Page 45

1 A. Yes.

2 Q. The claim requires command threads,

3 right?

4 A. That's what it says, yes.

5 Q. I just want to be clear. So you're

6 saying that the information stored by the TCB

7 satisfies the claimed command threads?

8 MR. PLUTA: Object to form.

9 BY THE WITNESS:

10 A. I did not say that.

11 BY MR. TUMINARO:

12 Q. That's not what you're saying in

13 Paragraph 72?

14 A. All I'm saying is -- I think you're

15 mixing information with instructions.

16 Q. That's what I'm trying to understand.

17 I'm trying to understand exactly what it is that

18 you're mapping in Lindholm that corresponds to the

19 claimed vertex command threads and pixel command

20 threads.

21 A. As I think I just alluded to just a few

22 minutes ago, it's a combination of TCB plus the

23 instruction cache.

24 Q. So what is the thing that is stored in

ATI Ex. 2120
IPR2023-00922
Page 65 of 611

13 (Pages 46 to 49)

Page 46

1 the TCB and instruction cache that you're saying is
2 the claimed command threads?
3 A. It is the instructions plus information.
4 Q. Just to be clear -- I guess what I'm not
5 clear about is what is the information that you're
6 talking about?
7 A. Okay.
8 MR. PLUTA: Object to form.
9 BY MR. TUMINARO:

10 Q. All right. Let me clarify. No, I
11 appreciate his objection. So let me clarify.
12 In Paragraph 72 of your declaration,
13 what information is it that you're talking about?
14 A. Let me refer you to my report. I wish I
15 could do a search.
16 Referring to my claim chart on
17 Page 25 of my report, it's just an example of this.
18 It says TCB or thread control buffer 420 includes
19 storage resources to retain thread state data for a
20 subset of predetermined number of threads and that's
21 the data. It's the state data because you have to
22 track this information while instructions are alive,
23 and once they retire, you let go of that state.
24 Q. Just to be clear, the thread control

Page 47

1 buffer 420 stores this state data that you just
2 referred to?
3 A. At least.
4 Q. At least the state data. And that state
5 data corresponds to the information that you refer
6 to in Paragraph 72 of your declaration?
7 A. Some of the information is state data,
8 right.
9 Q. If you turn with me to Paragraph 73 of

10 your declaration.
11 A. Okay.
12 Q. And the first word is "while" in that
13 paragraph, right?
14 A. Yes.
15 Q. After that, it reads: "The thread
16 control buffer 42 does not explicitly disclose a
17 first portion for storing pixel command threads or a
18 second portion for storing vertex command threads."
19 Do you see that?
20 A. I think you read it correctly.
21 Q. Is that a true statement? It's an
22 accurate statement?
23 A. Everything I have here is true.
24 Q. Okay. So you would agree with me that

Page 48

1 Lindholm does not explicitly disclose thread -- a

2 thread control buffer that has a first portion for

3 storing pixel command threads and a second portion

4 for storing vertex command threads?

5 MR. PLUTA: Object to form.

6 BY THE WITNESS:

7 A. Explicitly? I say it, but a POSITA would

8 have figured it out from the block diagram and the

9 knowledge that it is --

10 BY MR. TUMINARO:

11 Q. Okay --

12 A. -- a combination.

13 Q. -- I'm not talking about that for a

14 second. I'll get to that. I'll get to that. I

15 promise you. Just for now you would agree that

16 there is no explicit disclosure in Lindholm about a

17 first portion that stores pixel command threads and

18 a second portion that stores vertex command threads?

19 A. So taking the first part of that

20 sentence, you are repeating it correctly, but there

21 is more to that.

22 Q. So you would agree with me -- strike

23 that.

24 And that storing of a first portion

Page 49

1 operative to store a plurality of pixel command
2 threads and a second portion operative to store a
3 plurality of vertex command threads, that's a
4 requirement of claim 1 of the '053 patent, right?
5 You could look at the '053 patent if
6 you need to.
7 A. You repeated claim 1, the first element
8 of that claim 1, right?
9 Q. Right.

10 A. Your question is that is a requirement?
11 Q. Yes.
12 A. It's a requirement and Lindholm satisfies
13 it.
14 Q. You would agree with me that Lindholm
15 doesn't explicitly disclose it, right?
16 MR. PLUTA: Object to form.
17 BY THE WITNESS:
18 A. I think it says in my report, but it's my
19 opinion that it would have been obvious to one of
20 the ordinary skill. Because if you take the
21 sentence out of the context, just the first part,
22 it's not really my position.
23 BY MR. TUMINARO:
24 Q. I appreciate that. I just want to be

ATI Ex. 2120
IPR2023-00922
Page 66 of 611

14 (Pages 50 to 53)

Page 50

1 clear on what your position is. I'll get to
2 obviousness. I promise. You are not saying that
3 Lindholm anticipates claim 1, right?
4 A. I don't think we said that it anticipates
5 claim 1.
6 Q. Okay. Okay.
7 A. I don't think we did, but I can check for
8 you. In view of AAPA, so we're not saying
9 anticipates, right. I'm not saying it's

10 anticipating that.
11 Q. I just want to be clear. You agree
12 Lindholm does not anticipate claim 1?
13 A. On it's own, correct.
14 Q. Okay. All right. But you think that
15 it's obvious, right?
16 A. Yes.
17 Q. Okay. I told you I would get to
18 obviousness. That's what I'm trying to get to.
19 MR. PLUTA: Object to form.
20 BY MR. TUMINARO:
21 Q. And the reason -- if you look at
22 Paragraph 73, it says about -- after that first
23 subordinate clause that I read, it says: "It is my
24 opinion."

Page 51

1 Do you see that in Paragraph 73?
2 A. Yes.
3 Q. I'll read it for the record just so it's
4 clear. "It is my opinion that it would have been
5 obvious to one of ordinary skill in the art to
6 modify Lindholm's multi-threaded system to store
7 different types of command threads in separate
8 portions of memory because it is well known that
9 pixel threads and vertex threads are necessarily

10 different types of data."
11 Do you see that?
12 A. Yes.
13 Q. You stand by that statement?
14 MR. PLUTA: I'm going to object, Counsel.
15 This is outside the scope of the instituted grounds.
16 BY MR. TUMINARO:
17 Q. If you would turn with me to
18 Paragraph 100 of your declaration.
19 A. Yep.
20 Q. And Paragraph 100, this is related to
21 your position that this paragraph falls within the
22 section related to ground No. 2 where you're saying
23 that Lindholm and so-called admitted prior art
24 render obvious certain claims of '053; is that

Page 52

1 right?

2 A. It's Lindholm in view of AAPA, that's

3 right.

4 Q. And the AAPA that you're relying on, you

5 talk about that in Paragraph 100, right?

6 A. Correct.

7 Q. You mention here in Paragraph 100, it

8 says, "the '053 patent discloses that buffer 104

9 stores ALU resource command threads while buffer 106

10 stores texture fetch resource command threads."

11 Do you see that?

12 A. Correct.

13 Q. Okay. So this background material talks

14 about ALU threads and texture threads, right?

15 MR. PLUTA: Object to form.

16 BY THE WITNESS:

17 A. It talks about instructions belonging to

18 the -- okay.

19 BY MR. TUMINARO:

20 Q. Let me clarify. There's a first buffer,

21 buffer 104 for storing ALU threads, resource command

22 threads, and a second buffer, 106, for storing

23 texture fetch resource command threads, right?

24 A. Yes.

Page 53

1 Q. Okay. If you go back to claim 1 of the

2 '053 patent, claim 1 is not about -- it doesn't say

3 anything about ALU command threads or texture

4 command threads. It talks about pixel command

5 threads and vertex command threads, correct?

6 A. That's what it says. But I can qualify

7 that if you are trying to tie it into this

8 paragraph.

9 Q. I guess in paragraph -- okay. In

10 Paragraph 101, you say: "In graphics processing, it

11 is well known that vertex command threads belong in

12 the category of ALU resource division because of the

13 nature of vertex operations."

14 A. Correct.

15 Q. You provide no cite for that, correct?

16 A. It says well known, in my experience,

17 teaching, research.

18 Q. You think it's a true statement?

19 A. It is.

20 Q. In fact, pixel commands can also be ALU

21 operations; is that right?

22 A. Sometimes. Predominantly, it is vertex.

23 Q. You didn't qualify it like that in

24 Paragraph 101, did you?

ATI Ex. 2120
IPR2023-00922
Page 67 of 611

15 (Pages 54 to 57)

Page 54

1 A. It's obvious.

2 Q. But you said -- so you would agree with

3 me then that pixel command threads could also be ALU

4 operations, right?

5 MR. PLUTA: Object to form.

6 BY THE WITNESS:

7 A. Predominantly, it's vertex.

8 BY MR. TUMINARO:

9 Q. I don't think you answered my question.

10 You would agree with me that pixel command threads

11 can also be ALU operations?

12 MR. PLUTA: Object to form.

13 BY THE WITNESS:

14 A. They could, but it's not very common.

15 BY MR. TUMINARO:

16 Q. Alpha blending would be an example of

17 which pixels commands would be associated with an

18 ALU type operation, right?

19 MR. PLUTA: Object to form, lack of

20 foundation.

21 BY THE WITNESS:

22 A. As an architect, when we evaluate

23 systems, we look at dominance of certain functions

24 in terms of performance, power consumption, and so

Page 55

1 on. A POSITA would have looked at this and would
2 have said, yeah, vertex computations are taking a
3 lot of computations in terms of using the ALUs. So,
4 yeah. It would be the dominant one, 80, 70 percent,
5 and that's -- that's what you do, part of the
6 design.
7 BY MR. TUMINARO:
8 Q. None of that answered my question,
9 respectfully.

10 A. I'm so sorry about that.
11 Q. Alpha blending would be an example in
12 which -- well, strike that.
13 Alpha blend is a pixel type
14 operation?
15 A. It is. But it's not the dominant
16 computation in terms of -- how you design the
17 architecture is you want to be able to address the
18 most computation intensive functions. So, vertex
19 will dominant here.
20 Q. In alpha blending, the pixel command
21 involves multiplication, right?
22 MR. PLUTA: Object to form.
23 BY THE WITNESS:
24 A. It includes some sort of a computation.

Page 56

1 Multiplication could be one of them, but it is
2 usually not floating point. It's integer.
3 BY MR. TUMINARO:
4 Q. Multiplication is an ALU, not a texture
5 type of operation, right?
6 MR. PLUTA: Object to form.
7 BY THE WITNESS:
8 A. It is multiplication. It is ALU.
9 BY MR. TUMINARO:

10 Q. So, in fact, alpha blending is an example
11 of a pixel command that involves ALU operations?
12 MR. PLUTA: Object to form. It is also
13 outside the scope of the report.
14 BY THE WITNESS:
15 A. I think I have answered you to the best
16 of my abilities. I explained to you that
17 predominantly it is vertex operations. I don't have
18 anything more to add to that.
19 BY MR. TUMINARO:
20 Q. In paragraph 101 you say that vertex
21 command threads belong to the category of ALU
22 resource division, right?
23 A. That's what it says.
24 Q. But isn't it a fact that vertex commands

Page 57

1 can also involve texture operations?
2 A. Well, again, predominantly they're
3 computation intensive operations. So they belong to
4 the ALU sections.
5 Q. But it is a fact that vertex commands can
6 involve texture operations, right?
7 MR. PLUTA: Object to form.
8 BY THE WITNESS:
9 A. It's a small percentage in terms of

10 overall computation. So if you want to take a
11 hundred to be the example, just using as an example,
12 a hundred to be the amount of time, 80 percent
13 perhaps would be -- 90 percent would be in the ALU
14 portion, there will be a small portion for texture.
15 BY MR. TUMINARO:
16 Q. Just to be clear, the answer to my
17 question is yes?
18 MR. PLUTA: Object to form.
19 BY MR. TUMINARO:
20 Q. Vertex commands can involve texture
21 operations?
22 A. I explained to you that it's
23 predominantly a computation of ALU.
24 Q. But it can be -- vertex commands can be

ATI Ex. 2120
IPR2023-00922
Page 68 of 611

16 (Pages 58 to 61)

Page 58

1 texture operations?
2 MR. PLUTA: Object to form, asked and
3 answered.
4 BY THE WITNESS:
5 A. I cannot add any more to what I just
6 said. I mean, it is what it is. You can design it
7 the way you want. But it's predominantly a
8 computation of the ALU.
9 BY MR. TUMINARO:

10 Q. The morphosys chip that you developed --
11 A. We're switching topics back to morphosys?
12 Is that what you are asking me?
13 Q. Yes. Could that system handle alpha
14 blending?
15 MR. PLUTA: Object to form. Object to
16 the relevance.
17 BY THE WITNESS:
18 A. Yes.
19 BY MR. TUMINARO:
20 Q. If you will turn with me to the '053
21 patent and claim 1.
22 A. Yes, sir.
23 Q. And the second element is an arbiter.
24 And it reads, for the record, "an arbiter, coupled

Page 59

1 to be at least one memory device, operable to select
2 a command thread from either of the plurality of
3 pixel command threads and the plurality of vertex
4 command threads." I'll stop there.
5 Do you see that?
6 A. I see that.
7 Q. So the claimed arbiter has to select from
8 two types of things, right, vertex command threads
9 and pixel command threads?

10 MR. PLUTA: Object to form.
11 BY THE WITNESS:
12 A. The arbiter has to select a command
13 thread from either of the plurality of pixel command
14 threads. Yeah, that's what it says.
15 BY MR. TUMINARO:
16 Q. In order to select either a pixel or a
17 vertex, those options both must be available to the
18 arbiter at the same time, right?
19 MR. PLUTA: Object to form.
20 BY THE WITNESS:
21 A. What do you mean, those options have to
22 be available? I don't understand that.
23 BY MR. TUMINARO:
24 Q. Well, if you are going to select

Page 60

1 something, select one of two different things, you
2 have to have the option to select either of those
3 two things, right?
4 A. You could have a computation that only
5 the vertex is available. I mean, it's not an --
6 it's not against whatever they say here. It could
7 be just one chute, if I could use the word chute, is
8 available, and you just pick from that one.
9 Q. Well, if I say to you do you want pizza

10 or a sub for lunch, you select. You have to have
11 both of those options available at the same time,
12 right?
13 A. If the Subway is closed, I'm going to
14 have pizza. So until the subway opens.
15 Q. In which case you haven't made a
16 selection, right?
17 A. Sure. I made a selection, but it was not
18 available.
19 Q. Right but you didn't make that the
20 selection, right?
21 A. No. I had the option to going to the
22 Subway, but it was closed. It was not available.
23 Q. Is it your position if an option is not
24 available to you, you're still selecting that

Page 61

1 option?

2 A. In what context are we talking about now?

3 The Subway or the computer architecture?

4 Q. Let's talk about the context of the

5 arbiter. If the pixel is not available to the

6 arbiter, would you say the arbiter is selecting a

7 vertex even though a pixel is not available to it?

8 A. The job of the arbiter -- I have to

9 explain to you, Counsel, if you allow me to finish.

10 If you are not going to allow me to finish, then I

11 won't be able to answer your question.

12 Q. Sir, I didn't say anything.

13 A. The way you shaked your face, it was like

14 you were frustrated with me.

15 The job of the arbiter is to select

16 between the available options. Is that clear what I

17 said? And that's all it does. You gave an example

18 of two for this particular claim. It could be

19 three, it could be four, and depending when it is

20 available. So it's very simple. No tricks.

21 Q. In claim 1, the available options are

22 pixel command threads and vertex command threads?

23 A. If they're available, yes.

24 Q. In claim 1, they are available, right?

ATI Ex. 2120
IPR2023-00922
Page 69 of 611

17 (Pages 62 to 65)

Page 62

1 MR. PLUTA: Object to form.
2 BY THE WITNESS:
3 A. Does it say that, that it has to be
4 available? I don't see that.
5 BY MR. TUMINARO:
6 Q. Well, it doesn't say if they are
7 available, does it?
8 A. Yeah. So, to be more general, it doesn't
9 say it's a necessary condition for the arbiter to

10 work.
11 Q. I apologize.
12 A. If you let me finish the thought, please.
13 I'm trying to clarify what's on the claim. As you
14 probably know better than I do, these claims
15 sometimes are not very well written.
16 But in this case it doesn't say the
17 requirement of having both available. It says it
18 has the option of choosing between the two. I agree
19 with that.
20 Q. You said the job of the arbiter is to
21 select between available options?
22 A. Yeah.
23 Q. Right. You're talking about the claimed
24 arbiter.

Page 63

1 A. That was a general comment, but it

2 applies here.

3 Q. The claimed arbiter, the options are

4 pixel command threads and vertex command threads?

5 A. If they're available.

6 Q. If they're available is not a limitation

7 that appears in claim 1, right?

8 A. It doesn't say that.

9 Q. Okay.

10 A. But it could be interpreted by whoever is

11 looking at this.

12 Q. But it's not a limitation that's in the

13 claim?

14 MR. PLUTA: Object to form.

15 BY THE WITNESS:

16 A. Right.

17 BY MR. TUMINARO:

18 Q. So an arbiter, the claimed arbiter, has

19 to decide or resolve something?

20 MR. PLUTA: Object to form.

21 BY THE WITNESS:

22 A. I'm not sure if I understand that

23 question.

24

Page 64

1 BY MR. TUMINARO:
2 Q. Well, it has to select?
3 A. It has to select. I agree with that.
4 MR. PLUTA: Object to form.
5 BY MR. TUMINARO:
6 Q. Does a FIFO select? Do you know what a
7 FIFO is?
8 A. First-in first-out.
9 Q. First-in first-out buffer?

10 A. Okay.
11 Q. Does a FIFO select?
12 A. You could design a FIFO that has a select
13 line.
14 Q. But Does a FIFO by itself select?
15 A. I mean, you're talking about a FIFO
16 without giving me any information about what you
17 want to do. So it's a very broad question. If I
18 give you a FIFO description, and I say I want to
19 have an arbiter in front of it, you can design it.
20 Q. I'll tell you what. What is a FIFO?
21 A. First-in first-out.
22 Q. What does it do?
23 A. The first-in first-out, basically that's
24 how it operates.

Page 65

1 Q. It stores the first thing that it gets

2 and it outputs -- the first thing that's input is

3 the first thing that's output, is that what you're

4 saying?

5 A. I think FIFO means that.

6 Q. So does a FIFO select between available

7 options?

8 A. You can design it to do that.

9 Q. How would you design it to do that?

10 A. You put an arbiter in it.

11 Q. So a FIFO is not an arbiter itself?

12 A. No. It depends on what you want to do.

13 If you want it to have an arbitration, you could. I

14 could design a FIFO with an arbiter.

15 Q. You would have to put an arbiter in front

16 of the FIFO for the FIFO arbitrate?

17 A. You have to put the functionality in the

18 FIFO. If you need that, you put it in, and you call

19 that a FIFO. That will be my FIFO because I need

20 that functionality. There is no set -- well, you

21 could look up a dictionary and come up and say FIFO

22 means this; but if I want to design it, I can add

23 anything I want to it and it will be a FIFO. I have

24 done that.

ATI Ex. 2120
IPR2023-00922
Page 70 of 611

18 (Pages 66 to 69)

Page 66

1 Q. Do you know what a bus is in a computer
2 context?
3 A. Yes, I do.
4 Q. A bus provides data?
5 A. It does.
6 Q. It receives data?
7 A. Not only data.
8 Q. What else does it receive?
9 A. Other things.

10 Q. Is a bus an arbiter?
11 A. It could be.
12 Q. How?
13 A. Put an arbiter in it as part of the bus.
14 Q. So the arbiter is something different
15 than the bus?
16 A. It could be integrated with the bus.
17 Q. What's a register?
18 A. It's memory.
19 Q. Memory. What's a register do?
20 A. Store information.
21 Q. So it could receive information?
22 A. It has to if it wants to store
23 information.
24 Q. It could provide information?

Page 67

1 A. It can read it and write it.

2 Q. Is a register an arbiter?

3 A. Tough question.

4 Q. You are the expert.

5 A. You are asking a very abstract question.

6 A register is part of the arbiter.

7 Q. It is part of an arbiter?

8 A. If you design an arbiter without a

9 register, you have a design that may not work.

10 Q. So it's a portion of an arbiter. What

11 else would you need to add to the register to make

12 it an arbiter?

13 A. Oh, this is a lot of things.

14 Q. Some sort of logic to select, right?

15 A. Yeah. You asked me outside the scope of

16 this case. Are you asking me a general question

17 about computer architecture? Because I want to know

18 what the relevance is to what my report is and so

19 on. If you could kindly direct me to what I'm

20 prepared to talk to you about here. I mean, I can

21 talk about these things if I have to because that's

22 my job to answer your questions, but I don't see the

23 relevance to this.

24 Q. Earlier you said a register can read and

Page 68

1 write information.

2 A. In the context of, sorry, computer

3 architecture, yes.

4 Q. In the context of computer architecture?

5 A. In general, yes.

6 Q. Would that be true also in a GPU?

7 MR. PLUTA: Counsel, I'm going to object.

8 I gave you a little leeway as the witness said. Can

9 you tie this back to the scope of his report and

10 particular information in his report? If not, I'm

11 going to object to the relevance at this point.

12 MR. TUMINARO: Counsel, I'll draw your

13 attention to the scheduling order, and it reminds

14 everyone about the testimonial guidelines, and the

15 testimonial guidelines are explicit that objections

16 should be limited to a single word or term.

17 Examples of objections that would be properly stated

18 are objection, form; objection, hearsay; objection,

19 relevance; and objection, foundation.

20 So I'm going to ask you to refrain

21 from speaking objections from now on.

22

23

24

Page 69

1 MR. PLUTA: Then I'll restate my
2 objection. I object to the relevance of this line
3 of questioning.
4 BY MR. TUMINARO:
5 Q. If you would turn with me to in your
6 declaration to Page 10. And there's a figure at the
7 top of Page 10, the figure from your lectures.
8 A. Yes.
9 Q. On the right-hand block that says CPU and

10 on the left-hand block, there's a block inside with
11 what is labeled as CPU and a block is R-E-G-S.
12 Do you see that?
13 A. Yes.
14 Q. That stands for register?
15 A. Yes.
16 Q. Is that register that you're showing in
17 your diagram an arbiter?
18 A. Not in that case.
19 Q. Because it doesn't select?
20 A. That one is used for holding temporary
21 data for the PC -- for the CPU. I get confused that
22 PC is program counter.
23 (WHEREUPON, document marked as
24 Exhibit No. 7.)

ATI Ex. 2120
IPR2023-00922
Page 71 of 611

19 (Pages 70 to 73)

Page 70

1 BY MR. TUMINARO:

2 Q. You have been handed what has been marked

3 as Exhibit 7 for your identification. This is an

4 U.S. Patent 7363427. This is the Stuttard patent.

5 A. Yes.

6 Q. You have reviewed this patent?

7 A. Yes, sir.

8 Q. It's listed on your materials considered?

9 A. Correct.

10 Q. If you look at figure 3 of Stuttard, what

11 is shown in figure 3 what's labeled as a processing

12 block 106.

13 Do you see that?

14 A. Yes.

15 Q. And each of these processing blocks

16 include a plurality or an array of processing

17 elements 1061?

18 A. Yes.

19 Q. If you turn with me to column 4, line 33,

20 it reads in the example shown in Figure 2, "the

21 processing core 10 is provided with eight processing

22 blocks 106."

23 Do you see that?

24 A. Sorry. Column four, line what?

Page 71

1 Q. 33.
2 A. 33. Core 10? Processing core 10 is
3 provided with eight processing blocks 106.
4 Processing core 10. Where is processing core 10?
5 Q. If you look at figure 2B. I'll try to
6 help you.
7 A. Thank you.
8 Q. Are you there, sir?
9 A. Yes.

10 Q. You see it sort of toward the top left,
11 there's a label 106, and it says eight times fusion
12 blocks.
13 Do you see that?
14 A. Yes.
15 Q. And that 106 is the same number as shown
16 in figure 3, the processing blocks?
17 A. Okay.
18 Q. Right. So in this example, there are
19 eight processing blocks; is that right?
20 A. Eight 106s, that's correct.
21 Q. Now, Stuttard says that the -- well,
22 strike that.
23 Stuttard does geometry processing?
24 MR. PLUTA: Object to form.

Page 72

1 BY MR. TUMINARO:
2 Q. Let me clarify. The system disclosed in
3 Stuttard does geometry processing?
4 A. Let me check.
5 Yes.
6 Q. Okay. And the system disclosed in
7 Stuttard also does rasterization or pixel-type
8 operations?
9 A. Correct.

10 Q. In fact, Stuttard discloses that the
11 geometry operation and rasterization operations
12 happen in phases, right?
13 MR. PLUTA: Object to form.
14 BY THE WITNESS:
15 A. Can you show me what you're talking
16 about?
17 BY MR. TUMINARO:
18 Q. Sure. If you turn to column 18. I think
19 it is line 11. I'll read it for you.
20 A. Do you mind if I read it on my own and
21 then you can read it for the record. I would prefer
22 that, if you don't mind.
23 Q. Sure.
24 A. Go ahead.

Page 73

1 Q. I'll read it for the record.
2 A. Thank you.
3 Q. "The bidding process must maintain
4 primitive order between the geometry and
5 rasterization phases due to the requirement of most
6 host systems."
7 Do you see that?
8 A. Yes. You read it correctly.
9 Q. That means Stuttard discloses a geometry

10 phase as distinct from a rasterization phase, right?
11 A. It says phases. I don't know what these
12 phases mean.
13 Q. You reviewed Stuttard, right?
14 A. I didn't memorize it.
15 Q. You provided an opinion about what
16 Stuttard discloses, right?
17 A. I did. But I don't recall what the phase
18 means here. We can look at it if you want.
19 Q. Sure. The next sentence in column 8, it
20 says since both phases, referring back to the
21 geometry and rasterization phases, are block
22 parallel, there needs to be a mechanism for
23 transferring data between any block to any of the
24 bins between any bin and any block.

ATI Ex. 2120
IPR2023-00922
Page 72 of 611

20 (Pages 74 to 77)

Page 74

1 Do you see that?

2 A. Yes.

3 Q. When it says that the phases are block

4 parallel, that means all the processing blocks 106

5 do geometry processing during the geometry phase and

6 all the processing blocks 106 do pixel processing

7 during the rasterization phase, right?

8 MR. PLUTA: Object to form.

9 BY THE WITNESS:

10 A. I could not tell you that.

11 BY MR. TUMINARO:

12 Q. Well, let's go down then to line 18. It

13 says: "This is implemented by creating multiple

14 bins -- strike that. Let me start again.

15 "This is implemented by creating

16 multiple bin lists per region, one for every

17 processing block 106 that is processing geometry

18 data. This allows the geometry output phase to

19 proceed in block parallel mode."

20 Do you see that?

21 A. You're reading it correctly.

22 Q. That means the geometry phase is

23 performed in block parallel mode, right?

24 MR. PLUTA: Object to form.

Page 75

1 BY THE WITNESS:
2 A. You're reading what it says or you're
3 asserting what it says.
4 BY MR. TUMINARO:
5 Q. So what that means is that block
6 parallel, during the geometry phase, all processing
7 blocks 106 are doing geometry operations; right?
8 MR. PLUTA: Object to form.
9 BY THE WITNESS:

10 A. I could not tell you that. The phases
11 could happen at the same time or in different levels
12 of -- you know, this is very detailed analysis of
13 what Stuttard does.
14 BY MR. TUMINARO:
15 Q. But Stuttard says they occur in block
16 parallel, right?
17 MR. PLUTA: Object to form.
18 BY THE WITNESS:
19 A. That has nothing to do with phases. That
20 means it is data parallel.
21 BY MR. TUMINARO:
22 Q. It says there is geometry phases.
23 A. No. Block parallel means other things.
24 Data parallel is a different business.

Page 76

1 Q. Let's look further down at line 29. "A

2 record is kept of how many primitives are written to

3 each bin so that regions can be sorted into similar

4 size groups for block parallel rasterization."

5 Do you see that?

6 A. Yes.

7 Q. Block parallel rasterization means all

8 blocks are doing rasterization, right?

9 MR. PLUTA: Object to form.

10 BY THE WITNESS:

11 A. Yes. I think you're taking this out of

12 the original context. Block parallel doesn't mean

13 that there's no other activities going on. That

14 means there's a data parallelism in the computation

15 meaning that you apply a single instruction to

16 multiple data to some extent. So I think you're

17 taking a block parallel out of its original context,

18 which means multiple things could happen at the same

19 time.

20 So, I mean, I'll be glad to look at

21 the phases and so on, but that's not the way I read

22 this. To have more information, I mean I have to

23 look at the phases.

24 I don't want to take too much time to

Page 77

1 explain what the block parallel is, but it has to do
2 with data parallelism, and I think that means the
3 processing elements are working, all of them, on one
4 block, like you said, but there are multiple
5 processes that could do that.
6 Q. In fact, in Stuttard, there is one core
7 processor, that is core processor 10, right? Look
8 at figure 2B.
9 A. 2B. Okay. Yes.

10 Q. And that core processor has eight blocks,
11 right?
12 A. Yes.
13 Q. And column 18 says that geometry output
14 phase proceeds in block parallel mode, talking about
15 all the blocks 106 on core 10?
16 A. Yes. But figure 3 shows you -- you see
17 the dot dots on the processor unit? Inside the
18 belly of 106, there are whole bunch of processors
19 inside that. You have got eight times whatever that
20 is. I have to read more to figure out how the block
21 is done. Is it done across this or inside this? I
22 would be glad to look at all of this if you want.
23 But I disagree with your statement there.
24 Q. Let's look at what each processing

ATI Ex. 2120
IPR2023-00922
Page 73 of 611

21 (Pages 78 to 81)

Page 78

1 element within a block does. If you'll turn with me
2 to column 9.
3 A. Sure.
4 Q. Line 57.
5 A. Okay.
6 Q. It says, "the data is loaded into the PEs
7 of the graphic system so that each PE contains data
8 for one vertex." Do you see that?
9 A. Which PE are we talking about?

10 Q. Those are the PEs that are inside a block
11 106 if you look at the figure 3.
12 A. Okay.
13 Q. There's processing elements 1061.
14 A. I understand.
15 Q. You agree that at column 9, paragraph --
16 line 57, Stuttard is saying that each of the
17 processing elements stores vertex data, right?
18 MR. PLUTA: Object to form.
19 BY THE WITNESS:
20 A. Reading that, it says each -- the data is
21 loaded into the PEs of the graphic system so that
22 each PE contains the data for one vertex. That I
23 understand.
24

Page 79

1 BY MR. TUMINARO:
2 Q. So each PE has vertex data?
3 A. One of the things it does, it has the
4 vertex data among other things.
5 Q. Each PE in block 106 has vertex data
6 according to what Stuttard is saying?
7 A. For this example, yes, but it could have
8 other things.
9 Q. You. But Stuttard doesn't say that,

10 right? Stuttard said each PE has vertex data.
11 A. In that sentence, it says that. But I
12 have to look at the rest to see if it does other
13 things.
14 Q. It continues on to say "that each PE then
15 represents a vertex of a primitive that could be at
16 an end of a line or part of a two-dimensional shape
17 such as a triangle."
18 A. For that paragraph, that is correct.
19 But, again, PEs could be doing other things.
20 Q. Then let's look at what Stuttard says
21 about pixel processing. Let's look at what it says
22 about pixel processing.
23 At column 10, line 30, "each PE then
24 transfers in its data concerning its primitive to

Page 80

1 the ME for processing in to the pixel data."
2 Do you see that?
3 A. Can you tell me the column again?
4 Q. Column 10, line 30.
5 A. Thanks.
6 Q. Do you see that?
7 A. Yes.
8 Q. The last sentence in that paragraph, line
9 39, it says: "Each PE also includes data about a

10 respective pixel (ie, data is stored on a pixel per
11 PE basis)."
12 Do you see that?
13 A. You're reading it as it says, yes.
14 Q. In line 45 -- well, I'll read line 42.
15 "Once each pixel is determined to be outside or
16 inside the triangle (primitive) concern, the
17 processing for the primitive can be carried out only
18 on those pixels occurring inside the perimeter."
19 Do you see that?
20 A. You're reading it correctly, yes.
21 Q. And then it goes on to say that "the
22 remainder of the PEs in the processing block do not
23 take any further part in the processing until that
24 primitive is processed."

Page 81

1 Do you see that?
2 A. Yes.
3 Q. That means during the pixel operation,
4 all the PEs are doing pixel operations or nothing,
5 right?
6 MR. PLUTA: Object to form.
7 BY THE WITNESS:
8 A. With the caveat that there are eight
9 slices of those, and other slices could be doing

10 other things. You just looked at one slice.
11 BY MR. TUMINARO:
12 Q. Okay.
13 A. I agree with what you said about one
14 slice. Across -- let me finish, please.
15 MR. PLUTA: You guys are talking over
16 each other.
17 THE WITNESS: I'm trying to finish my
18 explanation if you don't mind. There are eight
19 slices, and they could be doing other things
20 including vertex.
21 BY MR. TUMINARO:
22 Q. But each slice, when it's doing pixel
23 operations -- the slice you're talking about at
24 block 106, right? When it's doing pixel operations,

ATI Ex. 2120
IPR2023-00922
Page 74 of 611

22 (Pages 82 to 85)

Page 82

1 every processing element within block 106 does
2 either a pixel operation or nothing, right?
3 A. Can I -- not having read the whole thing
4 again here, by looking at what you showed me that
5 you are correct, but I want to qualify that that I
6 need to check the whole document to make sure that
7 it doesn't say another embodiment we can do these.
8 I want to be clear on that.
9 Q. But here, that's what this means?

10 A. In this example as you provided -- if
11 it's one embodiment, you're right. But if the other
12 embodiments are there, I'm not agreeing to what you
13 say.
14 Q. Okay. So that's for pixels.
15 And then for vertices, within a
16 processing block, each processing element within
17 that processing block does vertex operations, right?
18 A. As I tried to explain, it could be that
19 each slice is doing different things at the same
20 time -- at the same time.
21 Q. I appreciate that. But what I'm trying
22 to get out now is what a particular slice or
23 processing block is doing. And if a processing
24 block is doing pixels, all the processing elements

Page 83

1 within that processing block do pixels or nothing,
2 we established that, right?
3 A. For this embodiment.
4 Q. Now, I want to talk for vertices. If a
5 processing block is doing vertices, all the
6 processing elements within that block do vertices,
7 right?
8 A. Can you show me that section because you
9 showed me for the pixel, not vertices.

10 Q. Let's look for the vertices.
11 Column 9, line 57, "the data is
12 loaded into the PEs of the graphic system so that
13 each PE contains data for one vertex."
14 That means every PE has vertex data,
15 right?
16 MR. PLUTA: Object to form.
17 BY MR. TUMINARO:
18 Q. Did you nod your head? Is that a yes?
19 A. Sorry. Apologies. I'm reading and
20 listening to you at the same time.
21 Okay. Yes. You're reading what it
22 says, yes.
23 Q. Well, just to be clear, that means that
24 all the processing elements within that block 106

Page 84

1 are doing vertex operations when block 106 is doing
2 a vertex operation?
3 MR. PLUTA: Object to form.
4 BY THE WITNESS:
5 A. Okay. It doesn't say it has the data for
6 one vertex only. It could have data for pixels
7 already in the register. So I cannot say from this
8 statement that it does not have other information.
9 If it said only vertex, you're right.

10 BY MR. TUMINARO:
11 Q. It does say each PE, right?
12 A. No.
13 Q. I'll read it again.
14 A. I didn't -- if I could qualify what I
15 said.
16 Q. Let me read it again for the record.
17 A. Sure.
18 Q. "The data is loaded into the PEs for the
19 graphic system so that each PE contains data for one
20 vertex."
21 Did I read that correctly?
22 A. You did. It's not convincing to me that
23 it's the only thing that it has.
24 Q. You don't read each PE to mean that every

Page 85

1 single PE in the block has vertex data?

2 A. No, Counsel. It should have said that

3 only vertex data, then I agree with you. It doesn't

4 say only. Does it say?

5 Q. It says each PE --

6 A. Right.

7 Q. -- has vertex data. So you're saying a

8 PE could have other data?

9 A. Absolutely. From previous computations.

10 It actually does something like that because you

11 need to keep track of the state of what you did.

12 The registers -- you showed me the register file.

13 They have registers. They keep track of the state.

14 MR. TUMINARO: Why don't we take a break.

15 THE VIDEOGRAPHER: We're going off the

16 record. This is the end of Media 2. The time is

17 11:15 a.m.

18 (Whereupon, a break in the

19 proceedings was taken.)

20 THE VIDEOGRAPHER: We're back on record.

21 This is the beginning of Media 2. The time is

22 11:36.

23 BY MR. TUMINARO:

24 Q. Welcome back, sir.

ATI Ex. 2120
IPR2023-00922
Page 75 of 611

23 (Pages 86 to 89)

Page 86

1 A. Thank you.
2 Q. You have heard of the phrase unified
3 shader?
4 A. Yes.
5 Q. And unified shader refers to an
6 architecture where the same hardware does both
7 vertex operations and pixel operations, right?
8 MR. PLUTA: Object to form.
9 BY THE WITNESS:

10 A. That's the general idea.
11 BY MR. TUMINARO:
12 Q. The claims of the '053 patent are
13 directed to a unified shader, right?
14 A. Did they use the word unified shader
15 anywhere? Can you point me to it?
16 Q. I guess, if you look at claim 1, it is
17 talking about a single set of hardware that does
18 both vertex operations and pixel operations, right?
19 A. Where do you get that information from
20 claim 1?
21 Q. Well, the memory stores both vertex
22 commands and pixel demands, right?
23 A. That's the memory.
24 Q. And the arbiter selects either vertex

Page 87

1 commands or pixel commands, right?
2 A. Correct.
3 Q. It's a single set of hardware that's
4 doing --
5 A. Overall, it's hardware with multiple
6 functional units.
7 Q. It's doing vertex operations and pixel
8 operations?
9 A. It's really a broad definition, unified

10 shader. You could have specialized hardware, but I
11 mean, I haven't really opined on that for this case.
12 Q. I guess I'm asking you right now as an
13 expert in this field, would you consider claim 1 to
14 be directed to a unified shader?
15 MR. PLUTA: Objection, relevance.
16 Objection, form.
17 BY THE WITNESS:
18 A. I haven't formed an idea on this because
19 it's really not a matter of just being a
20 programmable shader. One has to see more details
21 about it. I couldn't tell you for certain that this
22 is a unified shader because there are no more
23 details about what these functional units do. I
24 cannot say from what I have here.

Page 88

1 But the understanding of unified
2 shader in general, it's a programmable system that
3 can handle multiple functions as part of shading.
4 That's the understanding I have.
5 BY MR. TUMINARO:
6 Q. Does claim 1 handle vertex operations and
7 pixel operations?
8 MR. PLUTA: Object to form.
9 BY THE WITNESS:

10 A. Claim 1 says that an arbiter -- okay.
11 Does it handle vertex operations? It refers to
12 vertex data. I agree with that. It says that it
13 will select between vertex and pixel data. That, I
14 see and I agree with the statement here.
15 BY MR. TUMINARO:
16 Q. If you would turn with me with
17 Paragraph 19 of your declaration.
18 A. Paragraph 19, okay.
19 Q. Page 5 if that helps. It reads, "I also
20 understand that the relevance" -- excuse me. I'll
21 start again.
22 "I also understand that the relevant
23 inquiry into obviousness requires consideration of
24 four factors."

Page 89

1 Do you see that?
2 A. Yes.
3 Q. And one of the factors that's listed as
4 (d) is objective factors, right?
5 A. Correct.
6 Q. And one of the objective factors is
7 copying of the invention by others in the field?
8 A. Commercial success, long-felt needs,
9 copying of the invention by others in the field.

10 That's what it says, yes.
11 Q. You would agree with me that copying of
12 the invention by others is objective evidence of
13 nonobviousness?
14 MR. PLUTA: Object to form.
15 BY THE WITNESS:
16 A. Okay. You are asking me -- I know it's
17 in my report, but this is a legal matter. My level
18 of understanding, it is exactly what it says here.
19 I cannot dwell on this more than what it is. You
20 know, I'm not here for legal issues; but you're
21 right, it is in my report and that's what it is. I
22 cannot add any more than what you see there
23 unfortunately. Sorry.
24

ATI Ex. 2120
IPR2023-00922
Page 76 of 611

24 (Pages 90 to 93)

Page 90

1 BY MR. TUMINARO:
2 Q. Okay. You're aware, as an expert, that
3 nearly the entire computing industry now uses
4 unified shader?
5 MR. PLUTA: Object to form. Objection,
6 relevance.
7 BY THE WITNESS:
8 A. Yeah. I could not tell you that. I have
9 not opined on that for my report. It requires

10 looking at the entire industry.
11 BY MR. TUMINARO:
12 Q. You have heard of the DX10?
13 MR. PLUTA: Object to form. Sorry.
14 Withdraw the objection to form. But objection to
15 relevance.
16 BY THE WITNESS:
17 A. I have heard of it.
18 BY MR. TUMINARO:
19 Q. It's an application programming interface
20 developed by Microsoft?
21 MR. PLUTA: Objection, relevance.
22 BY THE WITNESS:
23 A. You are asking me something outside the
24 scope of my report. It is an API, but that's all I

Page 91

1 can tell you about that. I need to evaluate it

2 more.

3 BY MR. TUMINARO:

4 Q. I'll just say for the record your report

5 talks about objective indicia and copying is

6 relevant inquiry into obviousness. You opined on

7 obviousness, right?

8 MR. PLUTA: Objection, form.

9 BY THE WITNESS:

10 A. I did opine on obviousness to the level

11 of an expert using it to evaluate the prior art, but

12 secondary indices or whatever you call it, that's

13 not my specialty. I will not be able to give you

14 any meaningful example, although I understand some

15 of it.

16 BY MR. TUMINARO:

17 Q. As an expert -- you claim to be an expert

18 in computer graphics?

19 A. Yes.

20 Q. You have heard of DX10?

21 MR. PLUTA: Objection, relevance.

22 BY THE WITNESS:

23 A. Yes.

24

Page 92

1 BY MR. TUMINARO:

2 Q. And computer graphics chips have to be

3 compatible with DX10 if they want to work on that

4 platform, right?

5 MR. PLUTA: Objection, form. Objection,

6 relevance.

7 BY THE WITNESS:

8 A. Which computer graphic chips? There are

9 a whole bunch of computer graphic chips.

10 BY MR. TUMINARO:

11 Q. Any graphic chip that's want to be

12 compatible with DX10 would have to implement what

13 DX10 talks about, right?

14 MR. PLUTA: Same objection. I'm sorry,

15 Counsel. That prior objection also included a

16 relevance objection.

17 BY THE WITNESS:

18 A. Without having studied it, if I say

19 something is able to do a particular application or

20 API, then I have to be able to do it. I can answer

21 that in a general term. I would not advertise that

22 I could do graphics for DX10 API and not be able to

23 do it.

24

Page 93

1 BY MR. TUMINARO:

2 Q. Let me ask this, I guess.

3 A. Sure.

4 Q. DX10 includes a unified shader mode,

5 right?

6 MR. PLUTA: Objection, form. Objection

7 relevance.

8 BY THE WITNESS:

9 A. I have not looked at that.

10 MR. TUMINARO: I'll have this marked.

11 (WHEREUPON, document marked as

12 Exhibit No. 8.)

13 BY MR. TUMINARO:

14 Q. You have been handed what has been marked

15 as Exhibit 8. This is the DX10 architecture.

16 Do you see that?

17 A. I do.

18 MR. PLUTA: I'm going to object to the

19 introduction of this exhibit as irrelevant. Also

20 hearsay.

21 BY MR. TUMINARO:

22 Q. If you will turn with me to Page 14.

23 Page 14 at the top says DX10 shader model 4.0.

24 Do you see that?

ATI Ex. 2120
IPR2023-00922
Page 77 of 611

25 (Pages 94 to 97)

Page 94

1 A. Yes.
2 Q. After it reads "shader model 4.0 (SM 4.0)
3 is the new instruction set architecture (ISA) for DX
4 10 that looks at the graphics in a unified way."
5 Do you see that?
6 A. Yes.
7 Q. If you look at the second bullet, it
8 says, "flexible load balancing."
9 Do you see that?

10 A. Yes.
11 Q. And the third sentence says that "the
12 unified shader is made up of shader blocks that
13 could handle all vertex, pixel, and geometry
14 instructions."
15 Do you see that?
16 A. Yes. You're reading the sentence.
17 Q. Okay. So if a GPU wants to be compatible
18 with DX10 shader model 4.0, the GPU has to offer a
19 unified shader, right?
20 MR. PLUTA: Objection, relevance.
21 Objection, hearsay.
22 BY THE WITNESS:
23 A. I could not tell you that from that
24 sentence. You picked one sentence out of this

Page 95

1 document. I'm a very precise person. If I have to
2 make a comment on that, I cannot do that with one
3 sentence. You lifted one sentence out of this
4 document that I have never seen before.
5 BY MR. TUMINARO:
6 Q. Have you used DX10 shader model 4.0?
7 MR. PLUTA: Objection, form and
8 relevance.
9 BY THE WITNESS:

10 A. No, I have not.
11 BY MR. TUMINARO:
12 Q. Have you used any of the later versions
13 of DX, DX11, DX12 offered by Microsoft?
14 MR. PLUTA: Objection, relevance.
15 Objection, form.
16 BY THE WITNESS:
17 A. I don't know how it's related to my
18 report.
19 BY MR. TUMINARO:
20 Q. You are an expert in graphics, right?
21 A. Yes.
22 Q. Supposedly.
23 A. I do not appreciate the comment about
24 supposedly. But I have not used this one, no, and

Page 96

1 then later on.
2 Q. You don't know one way or the other
3 whether DX10 or its later version require a unified
4 shader?
5 MR. PLUTA: Objection, form. Objection
6 relevance.
7 BY THE WITNESS:
8 A. If I read the documents, I can tell you
9 for sure.

10 BY MR. TUMINARO:
11 Q. Why don't you read it.
12 A. If I need additional documents, can I get
13 them if it's not sufficient?
14 Q. Why don't read the document and we'll go
15 from there.
16 A. Okay.
17 MR. PLUTA: While he's doing that, I'm
18 just going to also lodge an objection to the
19 authenticity of this document.
20 In addition to the authenticity, I'm
21 going to object also to the foundation with the
22 introduction of this exhibit.
23 THE WITNESS: The question was on 14.
24 Okay, your question is?

Page 97

1 BY MR. TUMINARO:
2 Q. After reviewing this --
3 A. Up to here. I haven't finished. Do you
4 want me to finish?
5 Q. Page 14?
6 A. Yeah.
7 Q. You can look at Page 14.
8 A. No. I haven't finished the whole
9 document. I stopped at 14. Do you want me to read

10 more?
11 Q. I guess -- let's see if you can answer my
12 question.
13 After reviewing this, does DX10
14 shader model 4.0 require a unified shader?
15 MR. PLUTA: Objection, form. Objection
16 relevance.
17 BY THE WITNESS:
18 A. Although it is not related to my report
19 and I had a quick review of this document, it
20 provides a programmable shader.
21 BY MR. TUMINARO:
22 Q. A unified shader?
23 MR. PLUTA: Objection, form. Objection
24 relevance.

ATI Ex. 2120
IPR2023-00922
Page 78 of 611

26 (Pages 98 to 101)

Page 98

1 BY THE WITNESS:
2 A. A computing resource that can be
3 programmed to do different shading.
4 BY MR. TUMINARO:
5 Q. So before you submitted your declaration,
6 you didn't know one way or the other whether DX10
7 required a unified shader?
8 MR. PLUTA: Objection, form. Objection
9 relevance.

10 BY THE WITNESS:
11 A. I'm very familiar with unified shaders.
12 BY MR. TUMINARO:
13 Q. But my question is did you know that DX10
14 required a unified shader?
15 MR. PLUTA: Same objections.
16 BY THE WITNESS:
17 A. No, I did not.
18 BY MR. TUMINARO:
19 Q. You have heard of open GL?
20 A. Yes.
21 Q. Before you submitted your declaration,
22 did you know one way or the other whether the
23 current version of open GL required the unified
24 shader?

Page 99

1 MR. PLUTA: Objection, form. Objection
2 relevance.
3 BY THE WITNESS:
4 A. I actually knew about open GL and unified
5 shaders. And now I recall that DX. I also knew
6 about unified shaders for another.
7 BY MR. TUMINARO:
8 Q. So they both required unified shader?
9 A. At that time I knew, yes.

10 MR. PLUTA: Objection, form. Objection
11 relevance.
12 BY MR. TUMINARO:
13 Q. In Paragraph 19 you mentioned -- of your
14 declaration.
15 A. Okay.
16 Q. You mentioned objective factors are one
17 of the things that must be required for an
18 obviousness analysis.
19 A. Okay. I say that. And the question is?
20 Q. Well, that's true, right? Objective
21 indicia is one of the things that must be analyzed
22 in an obviousness consideration?
23 MR. PLUTA: Objection, form.
24

Page 100

1 BY THE WITNESS:
2 A. I could not tell you. That's a legal
3 issue. I cannot opine on that. I'm sorry. I mean
4 I know I have it in my report. It is just to tell
5 you that I know about this information, but I cannot
6 go beyond what this sentence says. Analyze it or
7 discuss it in any way.
8 BY MR. TUMINARO:
9 Q. Okay. In your report, you didn't analyze

10 any secondary factors of nonobviousness, right?
11 MR. PLUTA: Objection, form.
12 BY THE WITNESS:
13 A. I don't recall I did that. If I'm
14 missing something, please let me know. I don't
15 recall doing that.
16 BY MR. TUMINARO:
17 Q. In this case, counsel provided you with
18 all the prior art that you considered, right?
19 MR. PLUTA: Objection, form.
20 BY THE WITNESS:
21 A. I identified prior art myself.
22 BY MR. TUMINARO:
23 Q. You identified the prior art that you
24 applied?

Page 101

1 A. Right.
2 Q. Did Counsel provide you with any evidence
3 of objective indicia of nonobviousness?
4 MR. PLUTA: Objection, form. Objection,
5 relevance.
6 BY THE WITNESS:
7 A. Again, I cannot comment on that because
8 I'm not familiar with the exact term in legal.
9 BY MR. TUMINARO:

10 Q. Did you go out and try to see if anyone
11 was copying the claimed invention?
12 MR. PLUTA: Objection, form. Objection,
13 relevance.
14 BY THE WITNESS:
15 A. Going out means what? Going visiting
16 companies and looking at chips?
17 BY MR. TUMINARO:
18 Q. Did you do any researching, any analysis,
19 any inquiry to see if there was copying of the
20 claimed invention?
21 MR. PLUTA: Same objections.
22 BY THE WITNESS:
23 A. Copying of the claimed inventions.
24 Outside what I have in this report, I have nothing

ATI Ex. 2120
IPR2023-00922
Page 79 of 611

27 (Pages 102 to 105)

Page 102

1 else to add.
2 BY MR. TUMINARO:
3 Q. So the answer is you didn't do that?
4 A. To see if anybody has copied the claims
5 for the product?
6 MR. PLUTA: Objection, form.
7 BY THE WITNESS:
8 A. No. What is in this report is what I
9 have done.

10 BY MR. TUMINARO:
11 Q. You didn't do any analysis about
12 long-felt need for the claimed invention?
13 A. It's not in this report, correct?
14 Q. That's correct.
15 A. Whatever is in this report I have done.
16 Q. You didn't do any analysis of failed
17 attempts by others to create the claimed invention?
18 A. Again, I don't recall; but if it's here,
19 it's in the report.
20 Q. The fact is you didn't consider any
21 objective indicia of nonobviousness in forming your
22 opinion about obviousness; is that right?
23 MR. PLUTA: Objection, form.
24

Page 103

1 BY THE WITNESS:
2 A. That's a, again, legal matter. I will
3 not want to opine on something I'm not very familiar
4 with, but I mean, it says what it says.
5 BY MR. TUMINARO:
6 Q. You considered only prior art in forming
7 your opinions on obviousness?
8 MR. PLUTA: Objection, form.
9 BY THE WITNESS:

10 A. I considered what's in the exhibits,
11 whatever you see here. Prosecution history, patents
12 and so on. These are the items I considered. I
13 think we went through that with you. If I had done
14 something, it would be here.
15 BY MR. TUMINARO:
16 Q. So now you remember now that DX10 and
17 open GL require a unified shader?
18 MR. PLUTA: Objection, relevance.
19 BY THE WITNESS:
20 A. Yes, I looked at that before, yeah.
21 BY MR. TUMINARO:
22 Q. So if a graphics processing architecture
23 wants to be compatible with either of those APIs,
24 the GPU would have to have a unified shader, right?

Page 104

1 MR. PLUTA: Objection, form, objection
2 relevance.
3 BY THE WITNESS:
4 A. I can't comment on that, had to. There
5 might be other options.
6 BY MR. TUMINARO:
7 Q. If they want to be compatible with those
8 APIs, they would have to include it, right?
9 MR. PLUTA: Same objections.

10 BY THE WITNESS:
11 A. It requires a thorough assessment. I
12 cannot comment on that.
13 BY MR. TUMINARO:
14 Q. What assessment would you have to do to
15 determine what --
16 MR. PLUTA: Objection, form. Objection
17 relevance.
18 BY THE WITNESS:
19 A. Not during a deposition. I have to spend
20 time to look into it, the details and so on. I will
21 not be able to opine on that right here based on
22 what you showed me.
23 BY MR. TUMINARO:
24 Q. And you didn't consider that -- any of

Page 105

1 that in forming your opinions on obviousness?

2 MR. PLUTA: Objection, form.

3 BY THE WITNESS:

4 A. Whatever I opined on is right here.

5 MR. TUMINARO: Let's break for lunch.

6 MR. PLUTA: Sure.

7 THE VIDEOGRAPHER: We're going off

8 record. The time is 12:06.

9 (Whereupon, a short break in the

10 proceedings was taken.)

11 THE VIDEOGRAPHER: We're back on record.

12 The time is 12:50.

13 BY MR. TUMINARO:

14 Q. Welcome back, sir. You testified earlier

15 I believe that you designed GPU?

16 A. I designed a processor that had GPU

17 capabilities.

18 Q. What's the first step that you took in

19 designing that processor that had GPU capabilities?

20 MR. PLUTA: Objection, form. Objection

21 relevance.

22 BY THE WITNESS:

23 A. You are asking me a general question, not

24 related to this case, right? Because I haven't

ATI Ex. 2120
IPR2023-00922
Page 80 of 611

28 (Pages 106 to 109)

Page 106

1 opined about that particular question in this
2 document.
3 BY MR. TUMINARO:
4 Q. What was the process -- what was the
5 first step that you took --
6 MR. PLUTA: Same objections. Sorry.
7 BY MR. TUMINARO:
8 Q. -- in developing the chip that had a GPU
9 capability?

10 A. Coming up with a new idea. Epiphany.
11 You take the idea to the process of simulating it,
12 you simulate using some sort of a cycle accurate
13 simulator.
14 Q. You said?
15 A. Cycle accurate simulator.
16 Q. Cycle accurate, is that what you said?
17 A. Yes. And then once you're happy with the
18 results, you move onto the level of, like we talked
19 about, writing the VHDL code.
20 Q. You simulate it. What are you simulating
21 then at that point?
22 MR. PLUTA: Objection, form. Objection
23 relevance.
24

Page 107

1 BY THE WITNESS:

2 A. The ideas. The architectural ideas.

3 BY MR. TUMINARO:

4 Q. I guess what I'm confused about, what I

5 don't understand is what form are the architectural

6 ideas in? Are they on paper? Are they in your

7 head?

8 MR. PLUTA: Objection, form. Objection,

9 relevance.

10 BY THE WITNESS:

11 A. Well, I mean, they go from your head to

12 the piece of paper, and then finally you write the

13 software to represent the architecture.

14 Let's use the morphosys as an example

15 since you had done your due diligence and looked at

16 that paper. We had to simulate it before we go into

17 fabricating it. We had funding from the government

18 agencies. It's unusual for a university to actually

19 fabricate a chip as you probably were alluding to.

20 But we had funding. We went simulations -- we did

21 simulations and then ultimately we went to the VHDL

22 model and did the layout.

23 BY MR. TUMINARO:

24 Q. Oh, okay. You simulated, what, some kind

Page 108

1 of an C code or something?
2 MR. PLUTA: Objection, form. Objection,
3 relevance.
4 BY THE WITNESS:
5 A. Yeah. Right.
6 BY MR. TUMINARO:
7 Q. After you did the simulations of the C
8 code, that's when you went to the VHDL?
9 MR. PLUTA: Same objections.

10 BY THE WITNESS:
11 A. Yes. That's what we do. That's what we
12 do. That's what we did then, and we continue to do
13 the same thing.
14 BY MR. TUMINARO:
15 Q. Is that what is done in the industry?
16 A. It is.
17 MR. PLUTA: Objection, form. Objection,
18 relevance.
19 BY MR. TUMINARO:
20 Q. Is that what you teach your students?
21 MR. PLUTA: Objection, relevance.
22 BY THE WITNESS:
23 A. Yeah. That's what we do. We not only we
24 teach our students, we also -- we continue our

Page 109

1 research in that direction. It would be unwise to
2 go and design the hardware without having it
3 modeled. And that's true for every field I would
4 say, not just us. And I think -- I would hope not
5 thinking that it is my personal style. It's the
6 style of all the designers do -- go for it. I mean,
7 they basically model simulate. Then they go to the
8 hardware.
9 BY MR. TUMINARO:

10 Q. What does the model tell you?
11 MR. PLUTA: Objection, form. Objection,
12 relevance.
13 BY THE WITNESS:
14 A. If you recall, I said cycle accurate. So
15 it gives you the number of cycles it will take to do
16 a computation.
17 So, the morphosys project, we had a
18 cycle accurate or close to cycle accurate model of
19 the system. We massaged certain things.
20 BY MR. TUMINARO:
21 Q. What does that mean?
22 MR. PLUTA: Objection, form.
23 BY THE WITNESS:
24 A. Meaning that we had -- I don't know your

ATI Ex. 2120
IPR2023-00922
Page 81 of 611

29 (Pages 110 to 113)

Page 110

1 background but engineering is all about tradeoffs
2 and, you know, we're coming up with new things
3 instead of finding out what is already there. Like,
4 what physicists and chemists will do, they find
5 things that are already there. We're trying to come
6 up with new things. There's a lot of trial and
7 error. So that's why when you model and simulate
8 based on the application, that application presents
9 itself, it says this particular piece of

10 architecture is not the right choice for me. We go
11 and massage it and go change it. I don't know when
12 I start whether I have the optimal solution or not.
13 It is a very trial and error basis.
14 Q. By massage, you're saying it helps you
15 determine what the appropriate architecture should
16 be?
17 A. Adjusted. Yeah. Think of it as dials.
18 You used the word cache as an example. So let's use
19 that as an example. You find out the size of the
20 cache is not appropriate, then you change the cache.
21 Q. And you could tell that kind of stuff
22 from your model of the chip?
23 MR. PLUTA: Objection, form. Objection,
24 relevance.

Page 111

1 BY THE WITNESS:
2 A. Yeah. I mean, that's basically what it
3 is.
4 BY MR. TUMINARO:
5 Q. Switching topics. I think earlier you
6 mentioned that an arbiter selects from available
7 options, right?
8 MR. PLUTA: Objection, form.
9 BY THE WITNESS:

10 A. Arbiter is -- the job of arbiter is to
11 selecting available inputs.
12 BY MR. TUMINARO:
13 Q. So, is an accurate definition of a
14 arbiter any computer hardware, software, or
15 combination thereof that receives and provides a
16 command thread?
17 MR. PLUTA: Objection, form.
18 BY THE WITNESS:
19 A. I think that's the claim construction
20 that I offered, I think. Let me check that, please,
21 just to make sure that you got it right.
22 Reading for the record Paragraph 51,
23 "the '053 patent discloses that an arbiter may be an
24 implementation of hardware, software, or a

Page 112

1 combination thereof such that it receives the

2 command thread and thereupon provides the command

3 thread to a command processing engine."

4 So that's my definition.

5 BY MR. TUMINARO:

6 Q. What part of that definition describes

7 that the arbiter selects from available inputs?

8 A. It basically describes how the arbiter is

9 implemented, and arbiter as we described is the one

10 that selects between inputs.

11 Q. Just to be clear, your interpretation of

12 arbiter is in Paragraph 52 of your declaration,

13 right?

14 A. Yes. That's the implementation of it.

15 This is the definition of it, right. 51 is the --

16 how you implement it and 52 explains what it does.

17 Q. So where in your definition in

18 Paragraph 52 does it explain that the arbiter is

19 selecting from available inputs?

20 A. It says it receives and provides a

21 thread.

22 Q. You're reading receives and provides to

23 mean selects from available inputs?

24 A. Yes.

Page 113

1 Q. If you turn with me to the Lindholm

2 reference.

3 A. Okay.

4 Q. At figure 4 in Lindholm, there's the

5 thread control buffer 420?

6 A. Yes.

7 Q. I just want to make sure I understand

8 your position. Is it your position that the thread

9 control buffer 420 in Lindholm is the claimed memory

10 device in claim 1 of the '053 patent?

11 MR. PLUTA: Object to form.

12 BY THE WITNESS:

13 A. In combination with instruction cache.

14 MR. TUMINARO: Let's have this marked,

15 please.

16 (WHEREUPON, document marked as

17 Exhibit No. 9.)

18 BY MR. TUMINARO:

19 Q. Okay. You have been handed what's been

20 marked as Exhibit 9. This is the petition for inter

21 partes review of U.S. Patent 00742053. You have

22 seen this document before?

23 A. I have seen it. It's not on my list of

24 materials considered, but I've seen it, yes.

ATI Ex. 2120
IPR2023-00922
Page 82 of 611

30 (Pages 114 to 117)

Page 114

1 Q. If you will turn with me to paragraph --
2 I mean Page 13?
3 A. Page 13. All right.
4 Q. And the first full paragraph, there's in
5 the first sentence, after the comma, it reads:
6 "Lindholm's thread control buffer." Do you see
7 that?
8 A. Yeah.
9 Q. I'll read it for the record. "Lindholm's

10 thread control buffer 420 corresponds to the claimed
11 memory device."
12 Do you see that?
13 A. Yes.
14 Q. You disagree with the petitioner that the
15 thread control buffer is the memory device?
16 MR. PLUTA: Object to form.
17 BY THE WITNESS:
18 A. It's part of the memory device. It
19 completes the memory device. It is an important
20 part of the memory device.
21 BY MR. TUMINARO:
22 Q. So you have a different position than the
23 petitioner?
24 MR. PLUTA: Object to form.

Page 115

1 BY THE WITNESS:
2 A. It is consistent with the petitioner in
3 my opinion.
4 BY MR. TUMINARO:
5 Q. But you will agree that on Page 13 of the
6 petition, it doesn't say anything about the memory
7 device -- the claimed memory device also including
8 the instruction cache, right?
9 MR. PLUTA: Object to form.

10 BY THE WITNESS:
11 A. It also does not exclude it and it
12 doesn't say it's the only thing so....
13 BY MR. TUMINARO:
14 Q. Let's go back to your declaration. And
15 I'd like to go to Paragraph 22. It's on Page 7.
16 A. 22. Yes.
17 Q. And the second sentence of that paragraph
18 reads: "As a result, I will assume the relevant
19 time period for determining what one of ordinary
20 skill in the art knew is mid-to-late 2003."
21 Do you see that?
22 A. Yes.
23 Q. That's an accurate statement?
24 A. That's what it says. I mean, this is my

Page 116

1 report. I agree with what's in there.

2 Q. You didn't consider any other time frame

3 besides mid-to-late 2003?

4 MR. PLUTA: Object to form.

5 BY THE WITNESS:

6 A. What do you mean by that?

7 BY MR. TUMINARO:

8 Q. Well, you considered the relevant time

9 period for determining what a person of ordinary

10 skill in the art to be -- to have known would be

11 mid-to-late 2003?

12 A. That's what it says.

13 Q. That's the time frame you're considering.

14 My question is: You didn't consider any other time

15 period, right?

16 MR. PLUTA: Object to form.

17 BY THE WITNESS:

18 A. Any other time meaning before that time.

19 It could not be after that time, right?

20 BY MR. TUMINARO:

21 Q. It could be before. It could be after.

22 You didn't consider any other times when determining

23 what a person of ordinary skill in the art would

24 have known?

Page 117

1 MR. PLUTA: Same objection.
2 BY THE WITNESS:
3 A. Well, if this was filed September, 2003,
4 it would be very illogical for me to assume anybody
5 after the filing date or after the application
6 filing date, right? So your question is probably
7 before that. It cannot be after that.
8 BY MR. TUMINARO:
9 Q. So you didn't consider after because you

10 think it is illogical?
11 A. I mean, I'm not a lawyer, but I'm
12 assuming that would not work very well.
13 Q. How about before? Did you consider
14 before mid-to-late 2003?
15 A. Well, the person of ordinary skill in the
16 art should have all those prior art references
17 available to them, and if they were available, it
18 would be sufficient, whatever that time frame is.
19 They're taking the knowledge that they have, and
20 they're combining those references. So that's all I
21 can tell you about that. It should be inclusive of
22 all those references.
23 Q. If you could go with me to Paragraph 116
24 of your declaration. It's on Page 40. Further, I

ATI Ex. 2120
IPR2023-00922
Page 83 of 611

31 (Pages 118 to 121)

Page 118

1 guess at the top of Page 40, you have a figure 4
2 from the Stuttard reference, right?
3 A. That is correct.
4 Q. And if you look at Paragraph 116, the
5 last sentence says "because cache unit 1024 includes
6 both vertex and pixel command threads, it is the
7 claimed memory device."
8 Do you see that?
9 A. Yes.

10 Q. What's your basis for saying that the
11 cache unit 1024 in Stuttard includes both vertex and
12 pixel command threads?
13 A. Because it feeds the instructions for the
14 graphics processing all the instructions.
15 Q. What feeds that?
16 A. The cache.
17 Q. So how do you know it has both pixel
18 command threads and vertex command threads?
19 A. It's identified as one cache and that's
20 what it does. If there were more than one, it would
21 have shown it, and also I can check to see what I
22 have in my claim chart. Let me see if I can find
23 you the text.
24 I mean, there's just the first part.

Page 119

1 It says the thread manager 102 is shown in more
2 detail in figure 4, and comprises a cache memory
3 unit 1024 for storing instructions fetch for each
4 thread. And Stuttard does vertex and pixel so it is
5 correct.
6 Later on, if you look at Page 43, the
7 top of it, it says, for example, thread zero may be
8 assigned for general system control, thread one
9 assigned to execute 2D, two-dimensional activities,

10 and threads 2 through 7 assigned to executing 3D
11 activities, such as calculating vertices,
12 primitives, or rastering.
13 The citation is column 5, lines 56
14 through 64.
15 Q. If you'd turn with me in Stuttard,
16 Exhibit 7.
17 A. Okay.
18 Q. We talked about column 10, lines 42
19 through 47. Do you recall that?
20 A. Where -- when did I talk about that?
21 Q. Earlier today, I read this into the
22 record. Starting at line 43, "once each pixel is
23 determined to be outside or inside the triangle
24 (primitive) concerned, the processing for the

Page 120

1 primitive can be carried out only those pixels
2 occurred inside the primitive. The remainder of the
3 PEs in the processing block do not take any further
4 part in the processing until that primitive is
5 processed."
6 A. I remember that discussion.
7 Q. We agreed that that embodiment discloses
8 that in a given processing block all the PEs do
9 either pixel operations or nothing, right?

10 MR. PLUTA: Object to form.
11 BY THE WITNESS:
12 A. I don't believe I agreed with that.
13 BY MR. TUMINARO:
14 Q. You didn't agree to that earlier?
15 A. You can read what's on the record. I
16 agreed with that's what you read which was the PEs
17 were doing the same thing, and I also interjected
18 that they could have state from other computations
19 that are going on. And I also interjected that
20 those slices could be doing different things.
21 Q. I guess my question is in this embodiment
22 that is disclosed at column 10, line 45, the
23 sentence reads that "the remainder of the PEs in the
24 processing block do not take any further part in the

Page 121

1 processing until the primitive is processed."
2 So those PEs in the processing block
3 do nothing, right?
4 A. That's what he's saying for that block.
5 Q. And the other PEs in that block in the
6 sentence before that, he says those other PEs are
7 doing pixel operations, right?
8 A. It says they're doing pixel, yeah. Yes.
9 Q. In column 10 in that paragraph that we're

10 talking about, it starts at line 43 and goes to line
11 47, the first sentence says that the PEs in the
12 processing block are doing pixel operations and the
13 second sentence in that paragraph says that pixel --
14 the PEs are not doing anything, right?
15 MR. PLUTA: Object to form.
16 BY THE WITNESS:
17 A. The remainder of the PEs. Not the PEs
18 are not doing anything. It just -- that means if
19 there are eight of them, maybe four are doing PE and
20 four are not doing anything, although they may have
21 residual computation from previous operations
22 because they may hand it over to the next step.
23 BY MR. TUMINARO:
24 Q. Okay. Just to be clear, I just want to

ATI Ex. 2120
IPR2023-00922
Page 84 of 611

32 (Pages 122 to 125)

Page 122

1 make it clear. This paragraph says that within a

2 processing block, the PEs will either do -- if that

3 processing block is doing pixels, the PEs in that

4 processing block will either do pixel operations or

5 nothing. Is that what this paragraph says?

6 A. Counsel, let's identify the processing

7 blocks so there's no misunderstanding between you

8 and me and the records. So I want it to be clear

9 what I'm saying. So let's understand for the record

10 that the eight fusion blocks, I'm saying that those

11 could be doing different things. What you're saying

12 what's happening inside the fusion block --

13 Q. That's right.

14 A. -- which is, for the record, it's figure

15 3, identified as 106 processors. Okay.

16 So, if that is referring to that --

17 no, I'm sorry, what you just read refers to

18 106 blocks, yes, that's what he says he's doing.

19 Although we don't know anything about what residual

20 state is in there and how the other blocks perform

21 the vertex processes simultaneously.

22 Q. I want to make sure we agree on what the

23 paragraph says at column 10 starting at line 43 and

24 going to line 47. That paragraph is referring to

Page 123

1 processing going on within one processing block 106,

2 right?

3 A. One slice of 106, yes.

4 Q. And that paragraph is saying that the

5 processing elements within one processing block will

6 be doing either pixel operations or nothing. Do we

7 agree?

8 A. Yes, that's what it says. But I

9 qualified my response -- my response to you that

10 those other blocks, fusion blocks, are doing other

11 things including vertex operations.

12 Q. Okay. Where does it say that?

13 A. We are going to find out.

14 Q. Look at it.

15 A. Can I have a pen or something to mark the

16 areas that I want to refer to later on? Can I mark

17 the exhibit?

18 Q. Yes, please do.

19 A. Okay. I didn't know what the rules were.

20 Let me give you some explanations. If you are not

21 happy, then I'll continue reading. How's that? We

22 call that prefetching.

23 Okay. So are you ready?

24 Q. I am. At some point I am going to want

Page 124

1 my pen back.
2 A. I will give you your pen back.
3 MR. PLUTA: Is there a question pending
4 just to refresh?
5 MR. TUMINARO: I'll ask the question
6 again. Thank you.
7 BY MR. TUMINARO:
8 Q. Okay. Sir, you mentioned that the other
9 blocks 106 could potentially be doing vertex

10 operations when a single block is doing a pixel
11 operation, is that right?
12 A. Yes, I am reconfirmed my position on that
13 by reading the text.
14 Q. Tell me where.
15 A. I'll tell you the text and then we can
16 see if it is convincing for you. So if you go to
17 column 2, line -- I'm going to give you a whole
18 bunch of excerpts from this to see how things are
19 with this with respect if it is satisfactory. It
20 says --
21 Q. What line?
22 A. I was just going to get to that. Let's
23 read that top paragraph, "according to another
24 aspect of the present invention, there is provided a

Page 125

1 data -- there is provided a data processing

2 apparatus comprising an array of processing elements

3 which are operable to process respective data items

4 in accordance with a common received instruction.

5 When the processing elements are operably divided

6 into plurality of processing blocks having at least

7 one processing element and the processing blocks

8 being operable to process respective group of data

9 items, this data items refers to a general group of

10 data that is related to graphic processing including

11 vertices and pixels."

12 So let's continue with that. Same

13 column.

14 Let me give you all of the evidence

15 that I found and then you can go and attack it if

16 you wish. But let me finish the thought up to that

17 point. Is that okay?

18 Q. Hm-hmm.

19 A. Column 2, line 52 or 51, "however, this

20 embodiment is purely exemplary. This goes to the

21 embodiment issue that we have talked about before.

22 And it will be readily apparent that techniques and

23 architecture described here for processing graphical

24 data are equally applicable to other data types such

ATI Ex. 2120
IPR2023-00922
Page 85 of 611

33 (Pages 126 to 129)

Page 126

1 as video data and so on."

2 If it covers video data, it for sure

3 covers vertex and pixel because it is inherent in

4 the discussion of graphics processing. So I would

5 say this guy basically went beyond graphics.

6 So let's go to column 4, line 25.

7 "As will be explained in greater detail below the

8 processing core 10 includes a number of control

9 units, thread manager 102, a rate controller 104,

10 and channel controller 108 and bidding unit 1069 per

11 block, and micro code store 105. These control

12 units control the operation of a number of

13 processing blocks which perform the graphic

14 processing itself."

15 Again, vertex and pixel are a

16 divisible part of the graphic processing. So it is

17 also there for somebody who is reading this as an

18 expert or a person with ordinary skill in the art.

19 Again, the same column, it says the

20 array of --

21 Q. What line?

22 A. Sorry. Line 58, "the array 1061 of

23 processing elements provide a single instruction

24 multiple data processing structure." That's a data

Page 127

1 block parallel that I mentioned to you before. It

2 is SIMD.

3 "Each PE in the array 1061 is

4 supplied with the same instruction, which is used to

5 process data specific to the PE concerned." So

6 basically they have all the instructions they need

7 to perform the different data types that we just

8 talked or I just talked about earlier.

9 Now, notice that there is the thread

10 controller at the top of that page, right, if you

11 could look at it. It says a thread controller, and

12 the job of that thread controller is basically to

13 dole out --

14 Q. What page?

15 A. Thread manager. Thread manager is 102,

16 figure 3 at the very top. Okay.

17 So the thread manager for a

18 multi-threaded processor, which is responsible for

19 different data types, is equally responsible for

20 launching vertices. And the way it's shown in its

21 design, it could easily provide that to these PEs

22 simultaneously. But not to one group of PEs because

23 they would be doing SIMD for pixels, as you said,

24 and I also agree. But they could be doing different

Page 128

1 things because they're different data types, it's a

2 multi-threaded, and it has the capability to launch

3 these instructions to each slice of the PEs.

4 So, with that respect and the fact

5 that he talks about embodiments that could do more,

6 I consider that his invention or their invention is

7 consistent with the fact that they can do PE and --

8 they could do pixel and vertices simultaneously.

9 Q. When you say they could do pixel and

10 vertices simultaneously, you mean the processing

11 blocks, one processing block could do vertex and one

12 processing block could do pixel, that's your

13 position?

14 A. That's right.

15 Q. The section that you didn't cite is

16 column 18.

17 A. I didn't get to it. I thought people

18 were getting impatient.

19 Q. In column 18 as we talked about earlier

20 says at line 19 -- I guess, starting at line 17,

21 "this is implemented by creating multiple bin lists

22 per region, one for every processing block 106 that

23 is processing geometry data. This allows the

24 geometry output phase to proceed in block parallel

Page 129

1 mode."
2 A. Hm-hmm.
3 Q. The block parallel mode means that all
4 the blocks 106 are doing geometry operations, right?
5 MR. PLUTA: Object to form.
6 BY THE WITNESS:
7 A. It's an SIMD, yes. I think if you
8 recall, I read that these blocks operate in SIMD.
9 BY MR. TUMINARO:

10 Q. If the block parallel mode is referring
11 to blocks 106, right?
12 A. Yes. Each slice can do an SIMD
13 operation.
14 Q. And in line 30 of that same column 18, it
15 says, "a record is kept of how many primitives are
16 written to each bin so that regions can be sorted
17 into similar size groups for block parallel
18 rasterization."
19 Do you see that? So block parallel
20 rasterization means that all the blocks 106 are
21 doing rasterization, right?
22 A. One slice.
23 Q. Block parallel means only one slice?
24 A. Again, if you go back to -- so this

ATI Ex. 2120
IPR2023-00922
Page 86 of 611

34 (Pages 130 to 133)

Page 130

1 is parallelism -- the only way I can explain it to
2 you is -- why don't we just use books as these
3 fusion blocks. I have ten books on a book shelf.
4 One book is doing rasterization. The other book is
5 doing vertex operations. The other book may be
6 doing something else. The design is not preventing
7 you from designing it that way and the inventors
8 talk about it, the flexibility of the design.
9 So I agree with you that one slice or

10 one book of that bookshelf is doing what you said
11 but the other books are doing different things and
12 they can do different things because the thread is
13 distributing information to different blocks.
14 Q. What's your interpretation of Stuttard's
15 disclosure of block parallel rasterization? Doesn't
16 that mean that all the processing blocks 106 are
17 doing rasterization, they're doing that in parallel?
18 MR. PLUTA: Object to form.
19 BY THE WITNESS:
20 A. One slice is doing the same thing. The
21 other slice is doing different things.
22 BY MR. TUMINARO:
23 Q. What is the parallel -- what does
24 parallel mean in that?

Page 131

1 A. SIMD, single instruction multiple data.

2 The best way to explain SIMD -- morpho was an SIMD.

3 Morphosys is an SIMD. If you read the paper, you

4 saw I mentioned that it was SIMD. SIMD is single

5 instruction multiple data.

6 Q. You don't interpret block parallel to

7 mean that all the blocks are doing the same parallel

8 type of operation?

9 A. That's what SIMD is, single instruction

10 multiple data, but you have multiple slices. Think

11 of it as a stack of these guys. Each slice -- so,

12 if I wanted to do the morpho this way, I would have

13 had two layers of morpho. One would be doing one

14 type and the other another type. That is consistent

15 with what he says.

16 Q. Maybe we're talking past each other. The

17 slices that you're talking about in Stuttard --

18 strike that.

19 The slices that you're talking about

20 Stuttard calls processing block 106, right?

21 A. Yes.

22 Q. So, when he says block parallel, doesn't

23 he mean that the processing blocks 106 are doing

24 parallel operations?

Page 132

1 MR. PLUTA: Objection to form.
2 BY THE WITNESS:
3 A. You have your hands like this so I have a
4 feeling that you want to say that all the fusion
5 blocks you're talking about. I disagree with that.
6 One is doing that. The other slice might be doing
7 something else. He has that flexibility.
8 BY MR. TUMINARO:
9 Q. So it's your interpretation that when he

10 says block parallel, the block that he's talking
11 about there is not processing block 106; is that
12 your --
13 MR. PLUTA: Object to form.
14 BY THE WITNESS:
15 A. No. It is processing block 106. Let
16 help refer you to the figure if you don't mind. For
17 the record, we're looking at figure 3.
18 BY MR. TUMINARO:
19 Q. Mark it up.
20 A. Okay. I'm going to letter name them. So
21 it will be A, B, and C. So I have shown you -- of
22 course, there's a dot dot, here, right? It could be
23 like E, G, F. So that is one slice. Okay.
24 Q. A is one slice?

Page 133

1 A. That's right because you got the PEs.
2 They can work in SIMD fashion. There is another
3 slice right behind it.
4 Q. Slice B?
5 A. That's right. It could do the SIMD, and
6 it could be doing something else. He says that. We
7 work on different data types. The slice D and so
8 on. So it gives you the capability to function
9 multiple SIMDs at the same time.

10 Q. Okay. Referring to figure 3 -- thank
11 you. Referring to figure 3, block 106 on the top,
12 which you labeled as A, is shown as being parallel
13 to block B, correct?
14 A. Yeah. I see where you're -- Sorry, you
15 might be misunderstanding here. We're not talking
16 about parallel there. We're talking about parallel
17 here.
18 Q. So -- but just to be clear --
19 A. I understand what -- I see what your
20 confusion may be.
21 Q. Your interpreting block parallel -- when
22 Stuttard is talking about block parallel in column
23 18, he's not referring to processing block 106?
24 A. No, no. Not by any stretch. If he's

ATI Ex. 2120
IPR2023-00922
Page 87 of 611

35 (Pages 134 to 137)

Page 134

1 inventing his own definition, that's a different

2 ball game. Somebody who is working in the field, a

3 POSITA, would understand a block parallel, it means

4 that PEs here are working in parallel. They're

5 doing an SIMD function. So just think of it as 106

6 slice A is a morpho.

7 Q. How would a person of ordinary skill in

8 the art know that when Studdard talks about block

9 parallel mode in column 18 -- let me start over.

10 How would a person of ordinary skill

11 in the art know in 2003, reading Stuttard, that

12 Stuttard meant block parallel mode in column 18 to

13 refer to an SIMD device?

14 A. Did we not say what degree the person

15 should have as a POSITA? I think we did opine that

16 he has to have a degree in electrical engineering or

17 computer science, and that topic is covered. And

18 somebody working in the field with a background,

19 somebody taking course in engineering, especially

20 computer engineering and computer science would know

21 that what SIMD is. We cover it. Our degree is a

22 very typical ABET accredited. I think that's true

23 for everybody.

24 Q. SIMD was well known in 2003?

Page 135

1 A. Morpho was an SIMD, so...
2 Q. In fact, at other times when Stuttard
3 meant SIMD, he explicitly said SIMD, right?
4 A. That's right.
5 Q. For example, in column 1, line 21, it
6 says, "the present invention relates to parallel
7 data processing apparatus, in particular to SIMD,
8 (single instruction multiple data) processing
9 apparatus." Right?

10 A. Yes.
11 MR. PLUTA: Objection, form.
12 BY MR. TUMINARO:
13 Q. So when Stuttard meant SIMD, he said
14 SIMD, right?
15 MR. PLUTA: Object to form.
16 BY THE WITNESS:
17 A. When he said SIMD, he meant SIMD. I
18 don't know. I mean, that's probably what he meant.
19 BY MR. TUMINARO:
20 Q. So when he wanted to refer to a single
21 instruction multiple data, he said SIMD, right?
22 MR. PLUTA: Objection, form.
23 BY THE WITNESS:
24 A. He says a previously proposed -- he talks

Page 136

1 about SIMD, yeah.

2 BY MR. TUMINARO:

3 Q. Column 18 in the lines that we read

4 doesn't say SIMD?

5 A. It is implied.

6 Q. Doesn't say it, right?

7 A. A POSITA would know.

8 Q. Just SIMD does not appear in column 18?

9 MR. PLUTA: Objection, form.

10 BY THE WITNESS:

11 A. Out of 33 pages, you are referring to a

12 paragraph that doesn't have SIMD, but he talks about

13 SIMD. It is clear to a POSITA that it is SIMD. So

14 you can take whatever you want from that paragraph.

15 I disagree with that.

16 BY MR. TUMINARO:

17 Q. Switching gears --

18 A. My resume.

19 Q. Earlier we talked about DX10 and open GL

20 or the current version of DX and the current version

21 of open GL and we agreed that they require a unified

22 shader?

23 MR. PLUTA: Objection, form. Objection,

24 relevance.

Page 137

1 BY THE WITNESS:

2 A. From the document, you provided and I

3 read, that's what it says.

4 BY MR. TUMINARO:

5 Q. And do you also remember that now?

6 MR. PLUTA: Objection, form. Objection,

7 relevance.

8 BY THE WITNESS:

9 A. I believe that at the time we were

10 looking at the DX and open GL, they were referring,

11 but I don't know the exact year of the open GL we

12 looked at. They transitioned to this as you can

13 see. So I cannot say for certain that when I looked

14 at open GL for another thing.

15 BY MR. TUMINARO:

16 Q. Okay. So a GPU today, as of today, to be

17 fully compatible with the current version of DX and

18 the current version of open GL, that GPU would have

19 to provide a unified shader, right?

20 MR. PLUTA: Objection, form. Objection,

21 relevance.

22 BY THE WITNESS:

23 A. I could not tell you that for sure. Can

24 there be a design around where you do it without a

ATI Ex. 2120
IPR2023-00922
Page 88 of 611

36 (Pages 138 to 141)

Page 138

1 unified shader? Anything is possible.
2 Q. Well, I'm asking to be fully compliant
3 with those APIs, the GPU would have to provide a
4 unified shader, to be fully compliant?
5 MR. PLUTA: Objection, form.
6 MR. TUMINARO: Not a design around.
7 MR. PLUTA: Objection. Objection, form.
8 Objection, relevance.
9 BY THE WITNESS:

10 A. It's hard to say, Counsel. It's hard to
11 say.
12 BY MR. TUMINARO:
13 Q. Why is it hard to say?
14 A. Because you could design it that it is
15 interacting with the APIs the DX10 and 11 and open
16 GL and still not completely a unified shader. It's
17 hard to say. You have to design it. I cannot
18 answer that the way you are asking me.
19 Q. What do you mean by completely a unified
20 shader? What is the qualifier "completely" mean?
21 MR. PLUTA: Objection, form. Objection,
22 relevance.
23 BY THE WITNESS:
24 A. A unified shader has to be a fully

Page 139

1 programmable solution. There might be ways of doing

2 this without adhering to that objective. Yeah.

3 That's basically what I have to say. I cannot

4 answer the question without more analysis.

5 BY MR. TUMINARO:

6 Q. I guess what I'm hung up about, if the

7 GPU has to satisfy everything that's in those APIs,

8 and one of things that's in the API is a unified

9 shader, how is it that the GPU could not provide a

10 unified shader?

11 MR. PLUTA: Object, form. Objection,

12 relevance.

13 BY THE WITNESS:

14 A. This is outside the scope of what I

15 worked on. So I will not be able to give you a very

16 accurate and professional answer. It requires more

17 work. I would be glad to work on that and get back

18 to you.

19 BY MR. TUMINARO:

20 Q. Because you didn't provide any opinion on

21 objective indicia of nonobviousness?

22 MR. PLUTA: Objection, form.

23 BY THE WITNESS:

24 A. Now you're wrapping a legal issue on

Page 140

1 that. I cannot answer. Sorry.

2 BY MR. TUMINARO:

3 Q. You don't know one way or the other if

4 you provided an opinion on objective indicia of

5 nonobviousness?

6 MR. PLUTA: Objection, form.

7 BY THE WITNESS:

8 A. I would be glad to look at my report. I

9 have prior art. I have other items that I've

10 discussed.

11 BY MR. TUMINARO:

12 Q. Take a look at your report. Tell me.

13 Did you provide an opinion on objective indicia of

14 nonobviousness?

15 A. I don't believe I have.

16 MR. PLUTA: We've been going about an

17 hour and a half. Is this a good breaking point?

18 MR. TUMINARO: Sure. We can take a

19 break.

20 THE VIDEOGRAPHER: We're going off

21 record. The time is 1:49 p.m.

22 (Whereupon, a short break in the

23 proceedings was taken.)

24 THE VIDEOGRAPHER: We're back on record.

Page 141

1 This is the beginning of Media 3. The time is
2 2:12 p.m.
3 BY MR. TUMINARO:
4 Q. Would you turn with me to Lindholm
5 reference. I forget what exhibit number it is.
6 MR. PLUTA: 6.
7 MR. TUMINARO: Thank you.
8 BY MR. TUMINARO:
9 Q. Would you circle what you're calling the

10 arbiter? What in Lindholm corresponds to the
11 arbiter?
12 A. Which figure?
13 Q. Whatever figure you think best depicts
14 the arbiter.
15 MR. PLUTA: Object to the form.
16 BY MR. TUMINARO:
17 Q. Would you write arbiter next to it?
18 A. (Witness marking document.)
19 Q. Would you circle for me what you're
20 saying corresponds to the claim claimed plurality of
21 command processing engines from the '053 patent --
22 that was a terrible question. Let me start again.
23 Would you please look at the Lindholm
24 reference and circle in Lindholm what you say

ATI Ex. 2120
IPR2023-00922
Page 89 of 611

37 (Pages 142 to 145)

Page 142

1 corresponds to the claimed plurality of command

2 processing engines?

3 A. (Witness marking document.)

4 Q. Just to be clear, what figure are you

5 marking up?

6 A. Figure 4.

7 Q. Figure 4 of Lindholm?

8 A. Yes. I think so, yes.

9 Q. Okay. Would you turn with me to the

10 Morton reference, which is Exhibit 4?

11 A. Are we done with this?

12 Q. You can put it aside.

13 A. Yes.

14 Q. Sorry. I didn't realize you were there.

15 I apologize.

16 Would you circle for me in Morton

17 what corresponds to the claimed plurality of command

18 processing engines?

19 MR. PLUTA: Objection, form.

20 BY THE WITNESS:

21 A. He talks about this being one slice or

22 multiple slices, but at least figure 1 shows one

23 slice. I'm going to make the assumption that -- so

24 as I pointed out, it's 140 through 170. These are

Page 143

1 the graphics processors.
2 BY MR. TUMINARO:
3 Q. Would you write next to that command
4 processing engines.
5 A. (Witness marking document.)
6 Q. Just so we're clear, you're marking
7 figure 1 of Morton?
8 A. Yeah.
9 Q. Claim 1 of the '053 patent recites a

10 first portion and a second portion for the memory
11 device.
12 A. Yes.
13 Q. Would you circle the first portion and
14 the second portion that you say -- strike that.
15 Would you circle in Morton what you
16 say corresponds to the claimed first portion and
17 second portion from the '053 patent?
18 MR. PLUTA: Objection, form.
19 BY THE WITNESS:
20 A. So referring to column 15, 48 through 67.
21 Also referring to the claim construction page --
22 chart -- sorry -- my claim construction chart,
23 figure 5 shows a conceptual diagram of a memory
24 resource 200 containing memory spaces that are

Page 144

1 reserved and managed according to an alternative

2 memory space reservations process. Figure 5 is

3 described in relation to figures 1 and 2. Memory

4 resource 200 of figure 5 contains each element shown

5 in figure 2. Memory resource also contains a second

6 memory section 520 having at least two memory spaces

7 505 for use by threads of second set of threads

8 executing on graphics processor 125. All threads of

9 the first set of threads are of the first thread

10 type and are each reserved in memory space 205.

11 So basically memory space 205 is used

12 for the first set of threads and then on memory

13 space 505 is for the other type. So, this is

14 referring to this passage. Memory space 505 having

15 a second memory space second thread type being

16 different than the first thread type.

17 BY MR. TUMINARO:

18 Q. Is memory space 505 on figure 5?

19 A. That's what it's referring to in this

20 section of the document.

21 Q. Is that one of the -- is that the first

22 portion or the second portion?

23 A. Second memory thread type.

24 Q. Would you circle that then?

Page 145

1 A. It's done.
2 Q. Would you label it?
3 A. (Witness marking document.)
4 Q. Thank you.
5 It was figure 5 that you marked up,
6 just so the record is clear?
7 A. Yeah.
8 Q. Would you turn with me to Paragraph 131
9 of your declaration. I'll read for the record with

10 respect to claim 7. "Because Stuttard also
11 discloses that the processing elements 1061 perform
12 'lighting and shading' functions, the processing
13 elements 1061 must necessarily include a texture
14 processing engine."
15 Do you see that?
16 A. Yes.
17 Q. Is it your position that lighting
18 functions necessarily require texture processing?
19 MR. PLUTA: Objection, form.
20 BY THE WITNESS:
21 A. It speaks for itself. Lighting and
22 shading functions must necessarily include the
23 texture processing engine. I cannot add anything
24 more than what is in here.

ATI Ex. 2120
IPR2023-00922
Page 90 of 611

38 (Pages 146 to 149)

Page 146

1 BY MR. TUMINARO:
2 Q. Isn't it true, though, that a shading
3 function can be performed without texture
4 processing?
5 A. In my opinion, predominantly, this is how
6 it is done.
7 Q. Predominantly, but it is possible that a
8 shading function can be performed without texture
9 processing, right?

10 A. No. In my opinion, that's the way it's
11 done.
12 Q. So shading functions have to include
13 texture processing?
14 MR. PLUTA: Objection, form.
15 BY THE WITNESS:
16 A. It says, must necessarily include the
17 texture processing engine. So that's clear what it
18 says: Must necessarily.
19 BY MR. TUMINARO:
20 Q. Is it possible that a shading function
21 can be performed, and in doing that shading
22 function, there's no texture processing? Is that
23 possible?
24 MR. PLUTA: Objection, form.

Page 147

1 BY THE WITNESS:
2 A. It is my opinion that a texture
3 processing engine must include lighting and shading.
4 BY MR. TUMINARO:
5 Q. I can read your declaration. My question
6 is a little bit different. Is it possible that a
7 shading function can be performed; and in doing that
8 shading function, there's no texture processing?
9 MR. PLUTA: Objection, form. Objection,

10 relevance.
11 BY THE WITNESS:
12 A. I mean, somebody could design something,
13 but it is my opinion that that should include
14 lighting and shading.
15 BY MR. TUMINARO:
16 Q. Is it possible that a lighting function
17 can be performed that does not involve any texture
18 processing?
19 MR. PLUTA: Objection, form. Objection,
20 relevance.
21 BY THE WITNESS:
22 A. It is my opinion that lighting and
23 shading should be part of the texture processing.
24

Page 148

1 BY MR. TUMINARO:

2 Q. Can you answer my question?

3 MR. PLUTA: Objection, form. Objection,

4 relevance. Asked and answered.

5 BY THE WITNESS:

6 A. I did the best I could.

7 (WHEREUPON, document marked as

8 Exhibit No. 10.)

9 MR. PLUTA: I'm going to object to the

10 relevance of this, the introduction of this exhibit

11 into evidence.

12 BY MR. TUMINARO:

13 Q. This is Exhibit 10. You have been handed

14 what has been marked as Exhibit 10 for

15 identification purposes. This paper is titled

16 Design and Implementation of a Rendering Algorithm

17 in a SIMD Reconfigurable Architecture (Morphosys).

18 Do you see that?

19 A. Yes.

20 Q. In the listing of inventors there is one

21 Nader Bagherzadeh. Do you see that?

22 MR. PLUTA: Objection, form.

23 BY THE WITNESS:

24 A. Not correct. We're -- this is an

Page 149

1 article. It's not a patent. So it's not an
2 invention.
3 BY MR. TUMINARO:
4 Q. Sorry. I said inventors? Sorry.
5 A. We don't consider ourselves inventors.
6 Q. One of the authors listed on Exhibit 10
7 is an individual named Nader Bagherzadeh?
8 A. Yes.
9 Q. Is that you?

10 A. Yes.
11 Q. You're one of the authors on this paper?
12 A. Yes.
13 Q. If you would turn with me to the third
14 page. It is not numbered. The third page of text.
15 On the right-hand side of the page,
16 right hand column, there's a formula, which is the
17 first line on the right-hand column. It says Id
18 equals I and it goes on. Do you see that?
19 A. Yes.
20 Q. If you look to the left-hand column in
21 the last full paragraph, it starts with "in order to
22 obtain."
23 Do you see that?
24 A. Yes.

ATI Ex. 2120
IPR2023-00922
Page 91 of 611

39 (Pages 150 to 153)

Page 150

1 Q. I'll read it. "In order to obtain an
2 image with enough realism, we apply to each pixel a
3 Gouraud shading algorithm." Did I say that
4 correctly?
5 A. Gouraud shading.
6 Q. Can you explain what Gouraud shading is?
7 MR. PLUTA: Objection, form. Objection,
8 relevance.
9 BY THE WITNESS:

10 A. It is says we calculate the light
11 intensity for each triangle, basically like
12 perpendicular to the surface of a vertex to that
13 other primitive.
14 BY MR. TUMINARO:
15 Q. A Gouraud shading, does that include
16 texture mapping?
17 MR. PLUTA: Objection, form. Objection,
18 relevance.
19 BY THE WITNESS:
20 A. It could. But in this case, we didn't
21 talk about it.
22 BY MR. TUMINARO:
23 Q. In this case, does it include texture
24 mapping?

Page 151

1 MR. PLUTA: Objection, form. Objection,
2 relevance.
3 BY THE WITNESS:
4 A. Yeah, in this case, we did not talk about
5 texture mapping, but we could have. It was just not
6 part of the design. It would have been appropriate
7 to add that as well.
8 BY MR. TUMINARO:
9 Q. But it is a fact that in this shading

10 algorithm there is no texting mapping?
11 MR. PLUTA: Objection, form. Objection,
12 relevance.
13 BY THE WITNESS:
14 A. What it is is that it gives you an
15 opportunity to find Gouraud shading, but a box that
16 does texture -- what did we call it? A texture
17 processing engine would include this particular
18 function as well. So -- so, this is part of the
19 texture mapping engine.
20 BY MR. TUMINARO:
21 Q. This is your paper and you talk about
22 Gouraud shading, right? And this Gouraud shading
23 that you talk about in your paper, it is an example
24 where a shading function does not include texture

Page 152

1 mapping, right?
2 MR. PLUTA: Objection, form. Objection,
3 relevance.
4 BY THE WITNESS:
5 A. The function that is responsible for
6 lighting and shading would be called texture
7 processing engine, and this would be part of that.
8 But we did not call it that much because this was a
9 limited time. But an expanded version of this

10 should have a texture processing engine named and
11 included this function.
12 BY MR. TUMINARO:
13 Q. Okay. There might be an expanded
14 version, but yes or no, this shading function that's
15 disclosed in your own paper is an example of a
16 shading function that does not include texture
17 mapping?
18 MR. PLUTA: Objection, form and
19 relevance.
20 BY THE WITNESS:
21 A. This function is part of a texture
22 processing engine, the box responsible for that.
23 BY MR. TUMINARO:
24 Q. Is it your testimony that this Gouraud

Page 153

1 shading that's described in your paper necessarily

2 occurs in a texture processing engine?

3 MR. PLUTA: Objection, form. Objection,

4 relevance.

5 BY THE WITNESS:

6 A. It belongs necessarily to a texture

7 processing engine, yes.

8 BY MR. TUMINARO:

9 Q. Is that how it was implemented in the

10 example that you described in your paper?

11 MR. PLUTA: Same objections.

12 BY THE WITNESS:

13 A. I think we basically simulated a lot of

14 stuff here. We did not implement this as far as I

15 remember. This was just a paper analysis.

16 BY MR. TUMINARO:

17 Q. Did this paper analysis include the

18 simulation of a texture processing engine?

19 MR. PLUTA: Objection, form. Objection,

20 relevance.

21 BY THE WITNESS:

22 A. It is assumed that that is part of the

23 texture processing engine, yes.

24 MR. TUMINARO: We have no more questions

ATI Ex. 2120
IPR2023-00922
Page 92 of 611

40 (Pages 154 to 157)

Page 154

1 at this time.

2 MR. PLUTA: Let's go off the record.

3 THE VIDEOGRAPHER: Going off record. The

4 time is 2:32 p.m.

5 (Whereupon, a short break in the

6 proceedings was taken.)

7 THE VIDEOGRAPHER: We're back on record.

8 The time is 3:06 p.m.

9 E X A M I N A T I O N

10 BY MR. PLUTA:

11 Q. Welcome back. I just have a couple of

12 questions for you.

13 Do you recall the discussion about

14 VHDL and in specifically in relation to Exhibit 3 --

15 A. Yes.

16 Q. -- your paper?

17 A. Yes.

18 Q. Now, putting aside my objections to the

19 paper, I have a couple of questions for you on that

20 topic. You recall the questions counsel asked you

21 about building a chip, correct?

22 A. Yes.

23 Q. You also mentioned, I'm paraphrasing your

24 testimony here, that to you building a chip means

Page 155

1 fabrication of a chip, correct?
2 A. Right.
3 Q. You also mentioned a process of massaging
4 during the process of designing a computer chip in
5 particular after simulation of it?
6 A. Yes.
7 Q. And is it true that you testified that
8 there's a lot of trial and error involved in the
9 design of a computer chip?

10 A. Yes.
11 Q. I also like to direct you now to
12 Lindholm, which is Exhibit 6, just for reference,
13 and then I'm also going to take you to Paragraph 72
14 of your declaration.
15 A. Yep.
16 Q. Do you recall questions about the thread
17 control buffer 420?
18 A. Yes.
19 Q. Is your opinion that the thread control
20 buffer is the only element that corresponds to the
21 claimed memory device?
22 A. No.
23 Q. What else are you pointing to as
24 corresponding to the claimed memory device?

Page 156

1 A. Instruction cache, which is Box 410.
2 Q. Let's look at another document, the
3 petition, which is Exhibit 9. Do you recall Counsel
4 took you to Page 13 I believe of the --
5 A. Okay.
6 Q. -- petition? Do you recall that counsel
7 asked you about Page 13 and regarding the thread
8 control buffer 420?
9 A. Correct.

10 Q. And you recall counsel asked you whether
11 you agree with petitioner's statement and you
12 said -- and I'm paraphrasing here -- you agree with
13 it because it includes the thread control buffer
14 420, right?
15 MR. TUMINARO: Objection, leading.
16 BY MR. PLUTA:
17 Q. Do you recall your testimony regarding
18 Page 13 of the petition?
19 A. Yes.
20 Q. And counsel asked you about the position
21 with respect to I believe it's the first paragraph
22 of Page 13?
23 A. Okay.
24 Q. And you agreed that the memory device

Page 157

1 includes the thread control buffer, correct?
2 A. Correct.
3 Q. And you just testified that you also
4 believed that it also includes the instruction
5 cache, correct?
6 A. Correct.
7 Q. I'd like to turn to Page 22 of the
8 petition and direct your attention to the second
9 full paragraph on that page. Could you read that

10 second full paragraph, please, for the record?
11 A. "As discussed above, Lindholm discloses
12 instruction cache 410 and thread control buffer 420
13 which corresponds to the claim at least one memory
14 device."
15 Q. Now, after reading that, is it your
16 position that the thread control buffer in
17 combination with the instruction cache corresponds
18 to the claimed memory device consistent with the
19 petitioner's petition here in this case?
20 A. Yep. This is exactly what I had in mind.
21 Q. Let's switch one more topic.
22 A. Okay.
23 Q. Do you recall the questioning regarding
24 the ALU resource and texture fetch resource

ATI Ex. 2120
IPR2023-00922
Page 93 of 611

41 (Pages 158 to 161)

Page 158

1 divisions with respect to the background of the '053
2 patent?
3 A. Yes.
4 Q. The command threads in the ALU resource
5 division and texture fetch resource divisions are
6 different types of threads, correct?
7 A. Correct.
8 MR. TUMINARO: Objection, leading.
9 BY MR. PLUTA:

10 Q. Are the command threads in the ALU
11 resource division and the texture fetch resource
12 division different types of threads?
13 A. They are.
14 Q. Are pixel command threads and vertex
15 command threads also different types of threads?
16 A. Yes.
17 MR. PLUTA: No further questions at this
18 time.
19 E X A M I N A T I O N
20 BY MR. TUMINARO:
21 Q. I have questions. Did you talk with your
22 counsel about the substance of your testimony after
23 I said I had no further questions at this time?
24 A. Absolutely not. They did not even say

Page 159

1 hello to me, which I was disappointed.
2 MR. TUMINARO: I have nothing else.
3 THE VIDEOGRAPHER: This concludes the
4 videotaped deposition of Nader Bagherzadeh. The
5 time is 3:12 p.m. We're off record.
6 (Witness excused at 3:12 p.m.)
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Page 160

1 REPORTER CERTIFICATE

2

3 I, JO ANN LOSOYA, a Certified Shorthand

4 Reporter within and for the County of Cook and State

5 of Illinois, do hereby certify:

6 That previous to the commencement

7 of the examination of the witness, the witness was

8 duly sworn to testify the whole truth concerning the

9 matters herein;

10 That the foregoing deposition

11 transcript was reported stenographically by me, was

12 thereafter reduced to typewriting under my personal

13 direction and constitutes a true record of the

14 testimony given and the proceedings had;

15 That the said deposition was taken

16 before me at the time and place specified;

17 That I am not a relative or

18 employee or attorney or counsel, nor a relative or

19 employee of such attorney or counsel for any of the

20 parties hereto, nor interested directly or

21 indirectly in the outcome of this action.

22

23

24

Page 161

1 IN WITNESS WHEREOF, I do hereunto set my

2 hand this August 15, 2015.

3

4

5

6

7

8 ______________________________

 JO ANN LOSOYA, CSR

9 C.S.R. No. 84-002437

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

ATI Ex. 2120
IPR2023-00922
Page 94 of 611

Page 162

A
AAPA 50:8 52:2,4
ABET 134:22
abilities 56:16
able 38:12 39:7

55:17 61:11 91:13
92:19,20,22
104:21 139:15

Absolutely 7:19 8:2
8:4 16:22 85:9
158:24

abstract 67:5
academia 16:5,10

16:12
accredited 134:22
accurate 16:6,7

23:15 47:22
106:12,15,16
109:14,18,18
111:13 115:23
139:16

action 160:21
activities 76:13

119:9,11
add 9:8 15:9 56:18

58:5 65:22 67:11
89:22 102:1
145:23 151:7

addition 96:20
additional 96:12
address 6:14,15,17

30:7 55:17
addressed 32:8
adhering 139:2
Adjusted 110:17
admitted 51:23
advertise 92:21
agencies 107:18
agency 14:9
ago 45:22
agree 42:24 44:5

47:24 48:15,22
49:14 50:11 54:2
54:10 62:18 64:3
78:15 81:13 85:3
88:12,14 89:11
115:5 116:1
120:14 122:22
123:7 127:24

130:9 156:11,12
agreed 120:7,12,16

136:21 156:24
agreeing 82:12
ahead 72:24
algorithm 148:16

150:3 151:10
alive 46:22
allow 61:9,10
allows 74:18

128:23
alluded 45:21
alluding 107:19
alpha 54:16 55:11

55:13,20 56:10
58:13

alternative 144:1
ALU 52:9,14,21

53:3,12,20 54:3
54:11,18 56:4,8
56:11,21 57:4,13
57:23 58:8 157:24
158:4,10

ALUs 55:3
amount 57:12
analysis 75:12

99:18 101:18
102:11,16 139:4
153:15,17

analyze 100:6,9
analyzed 99:21
Ann 1:14 2:19,23

5:2 160:3 161:8
announce 5:14
answer 7:11,14,21

12:12,13 23:19
25:17 30:21 35:15
57:16 61:11 67:22
92:20 97:11 102:3
138:18 139:4,16
140:1 148:2

answered 26:5
30:17 54:9 55:8
56:15 58:3 148:4

anticipate 50:12
anticipates 50:3,4,9
anticipating 50:10
anybody 102:4

117:4

API 90:24 92:20,22
139:8

APIs 103:23 104:8
138:3,15 139:7

Apologies 83:19
apologize 62:11

142:15
apparatus 125:2

135:7,9
apparent 125:22
Appeal 1:4 5:10
appear 136:8
Appeared 2:6,11

2:16
appears 13:15

41:17 63:7
appendix 8:24
applicable 125:24
application 29:18

34:17,23 35:2
90:19 92:19 110:8
110:8 117:5

applied 100:24
applies 63:2
apply 76:15 150:2
appreciate 12:12

46:11 49:24 82:21
95:23

appropriate 110:15
110:20 151:6

approximately 5:4
arbiter 37:20 38:1

38:4 58:23,24
59:7,12,18 61:5,6
61:6,8,15 62:9,20
62:24 63:3,18,18
64:19 65:10,11,14
65:15 66:10,13,14
67:2,6,7,8,10,12
69:17 86:24 88:10
111:6,10,10,14,23
112:7,8,9,12,18
141:10,11,14,17

arbitrate 65:16
arbitration 65:13
architect 54:22
architectural 20:24

21:14,21,23 23:9
23:9,21 24:1,7,8

25:4,10,18 107:2
107:5

architecture 12:20
13:9 19:12 20:17
25:12 26:17,18
55:17 61:3 67:17
68:3,4 86:6 93:15
94:3 103:22
107:13 110:10,15
125:23 148:17

architectures 27:15
27:17,18

areas 123:16
array 70:16 125:2

126:20,22 127:3
art 26:14 27:6,11

51:5,23 91:11
100:18,21,23
103:6 115:20
116:10,23 117:16
117:16 126:18
134:8,11 140:9

article 149:1
aside 142:12

154:18
asked 10:8 17:9,23

23:24 26:5 30:16
35:6,24 58:2
67:15 148:4
154:20 156:7,10
156:20

asking 17:13 25:3,4
34:19 38:16 58:12
67:5,16 87:12
89:16 90:23
105:23 138:2,18

aspect 124:24
aspects 30:24
asserting 75:3
assessment 104:11

104:14
assigned 119:8,9,10
associated 54:17
assume 7:12 33:11

115:18 117:4
assumed 153:22
assuming 117:12
assumption 142:23
ATI 1:10 5:9,17,20

attack 125:15
attempts 102:17
attention 68:13

157:8
attorney 160:18,19
attorneys 5:13
AT&T 15:15
August 1:20 161:2
authenticity 96:19

96:20
authors 149:6,11
available 13:10

59:17,22 60:5,8
60:11,18,22,24
61:5,7,16,20,21
61:23,24 62:4,7
62:17,21 63:5,6
65:6 111:6,11
112:7,19,23
117:17,17

Avenue 2:9,13
aware 90:2
a.m 1:19 5:4 39:21

40:1 85:17

B
B 4:9 132:21 133:4

133:13
back 23:7 26:9 29:8

30:11 31:7 39:24
40:3 41:14 53:1
58:11 68:9 73:20
85:20,24 105:11
105:14 115:14
124:1,2 129:24
139:17 140:24
154:7,11

background 30:6
31:8,9 32:12
52:13 110:1
134:18 158:1

Bagherzadeh 1:13
4:3 5:12 6:6,13
8:21 14:16 40:4
148:21 149:7
159:4

Bagherzadeh's
9:20

balancing 94:8

ATI Ex. 2120
IPR2023-00922
Page 95 of 611

Page 163

ball 134:2
based 21:20 26:23

26:24 104:21
110:8

basically 64:23
109:7 111:2 112:8
126:5 127:6,12
139:3 144:11
150:11 153:13

basis 80:11 110:13
118:10

bathtub 33:13,14
33:15

Beach 6:16
beginning 25:9

85:21 141:1
behalf 2:6,11,16

5:17,20,23 6:1
behavior 23:17

24:20
behavioral 22:18
believe 26:13

105:15 120:12
137:9 140:15
156:4,21

believed 157:4
Bell 15:15,24 16:2
belly 77:18
belong 53:11 56:21

57:3
belonging 52:17
belongs 153:6
best 56:15 131:2

141:13 148:6
better 20:6 33:17

62:14
beyond 100:6 126:5
bidding 73:3

126:10
big 34:1
bigger 35:16
bin 73:24 74:16

76:3 128:21
129:16

bins 73:24 74:14
bit 7:9 147:6
blend 55:13
blending 54:16

55:11,20 56:10

58:14
block 34:2 48:8

69:9,10,10,11
70:12 73:21,23,24
74:3,17,19,23
75:5,15,23 76:4,7
76:12,17 77:1,4
77:14,20 78:1,10
79:5 80:22 81:24
82:1,16,17,23,24
83:1,5,6,24 84:1
85:1 120:3,8,24
121:2,4,5,12
122:2,3,4,12
123:1,5 124:10
126:11 127:1
128:11,12,22,24
129:3,10,17,19,23
130:15 131:6,20
131:22 132:10,10
132:11,15 133:11
133:13,21,22,23
134:3,8,12

blocks 70:15,22
71:3,12,16,19
74:4,6 75:7 76:8
77:10,15 94:12
122:7,10,18,20
123:10,10 124:9
125:6,7 126:13
128:11 129:4,8,11
129:20 130:3,13
130:16 131:7,23
132:5

bmechell@robin...
2:15

Board 1:4 5:10
boards 16:1
book 32:18 130:3,4

130:4,5,10
books 130:2,3,11
bookshelf 130:10
box 151:15 152:22

156:1
break 7:17,22 36:4

39:17,19,22 40:5
85:14,18 105:5,9
140:19,22 154:5

breaking 140:17

breaks 7:16
broad 64:17 87:9
Brown 2:2 5:6,22

5:24
Bryan 2:13 5:19
buffer 41:4,11

46:18 47:1,16
48:2 52:8,9,20,21
52:22 64:9 113:5
113:9 114:6,10,15
155:17,20 156:8
156:13 157:1,12
157:16

build 16:21 17:15
17:17 18:8

building 17:4,7,19
154:21,24

built 16:16 17:12
bullet 32:21 33:4

94:7
bunch 77:18 92:9

124:18
bus 66:1,4,10,13,15

66:16
business 75:24

C
C 108:1,7 132:21
cache 33:4,5,8,9,11

33:16,19,22 34:2
34:4,6,13,14,20
34:21,24 35:8,9
35:13,16,20,20
44:20 45:23 46:1
110:18,20,20
113:13 115:8
118:5,11,16,19
119:2 156:1 157:5
157:12,17

calculate 150:10
calculating 119:11
California 6:16,18

6:19
call 65:18 91:12

123:22 151:16
152:8

called 6:7 18:8
28:23 33:13 34:1
152:6

calling 141:9
calls 131:20
capabilities 105:17

105:19
capability 106:9

128:2 133:8
caption 5:8
carried 80:17 120:1
case 5:8,9,10 8:11

8:13 10:10 35:3
60:15 62:16 67:16
69:18 87:11
100:17 105:24
150:20,23 151:4
157:19

category 53:12
56:21

caveat 81:8
certain 12:4 30:24

51:24 54:23 87:21
109:19 137:13

CERTIFICATE
160:1

Certified 160:3
certify 160:5
change 110:11,20
changes 10:2 15:13
channel 126:10
chart 46:16 118:22

143:22,22
check 31:14,21

50:7 72:4 82:6
111:20 118:21

chemists 110:4
Chicago 1:19 2:4

5:7
chip 16:17,21 17:4

17:7,7,12,20,21
17:22 18:4,6,8
20:18,22 21:1,5
21:15,21 23:22
26:3 58:10 92:11
106:8 107:19
110:22 154:21,24
155:1,4,9

chips 18:7 31:1
92:2,8,9 101:16

choice 110:10
choosing 62:18

chute 60:7,7
circle 141:9,19,24

142:16 143:13,15
144:24

circuit 25:24
citation 119:13
cite 31:13,19 32:17

53:15 128:15
cited 12:18,19,22
cites 37:24
Civil 1:15
claim 37:11,14

38:23 41:17,18
42:2,6,11 43:8,22
44:21 45:2 46:16
49:4,7,8 50:3,5,12
53:1,2 58:21
61:18,21,24 62:13
63:7,13 86:16,20
87:13 88:6,10
91:17 111:19
113:10 118:22
141:20 143:9,21
143:22 145:10
157:13

claimed 41:5,18
44:15 45:7,19
46:2 59:7 62:23
63:3,18 101:11,20
101:23 102:12,17
113:9 114:10
115:7 118:7
141:20 142:1,17
143:16 155:21,24
157:18

claims 51:24 62:14
86:12 102:4

clarify 21:11 31:23
46:10,11 52:20
62:13 72:2

clause 50:23
clear 7:1,5 9:19

14:24 30:14,22
41:10 44:13 45:5
46:4,5,24 50:1,11
51:4 57:16 61:16
82:8 83:23 112:11
121:24 122:1,8
133:18 136:13

ATI Ex. 2120
IPR2023-00922
Page 96 of 611

Page 164

142:4 143:6 145:6
146:17

close 109:18
closed 60:13,22
code 1:15 23:10

106:19 108:1,8
126:11

colleagues 18:22
column 20:11

22:12 37:11,11
41:17 70:19,24
72:18 73:19 77:13
78:2,15 79:23
80:3,4 83:11
119:13,18 120:22
121:9 122:23
124:17 125:13,19
126:6,19 128:16
128:19 129:14
133:22 134:9,12
135:5 136:3,8
143:20 149:16,17
149:20

combination 44:19
45:22 48:12
111:15 112:1
113:13 157:17

combining 117:20
come 12:7 26:21

32:7 65:21 110:5
comes 32:12
coming 106:10

110:2
comma 114:5
command 37:15,19

37:21 38:6,7,8,11
38:13,13,24 39:1
39:2,5,8,13,13
41:21,23 42:3,3,7
42:8,15,16,22,23
44:2,3,6,6,15,16
45:2,7,19,19 46:2
47:17,18 48:3,4
48:17,18 49:1,3
51:7 52:9,10,21
52:23 53:3,4,4,5
53:11 54:3,10
55:20 56:11,21
59:2,3,4,8,9,12,13

61:22,22 63:4,4
111:16 112:2,2,3
118:6,12,18,18
141:21 142:1,17
143:3 158:4,10,14
158:15

commands 39:15
39:16 53:20 54:17
56:24 57:5,20,24
86:22 87:1,1

commencement
160:6

commencing 1:19
comment 63:1 95:2

95:23 101:7 104:4
104:12

commercial 35:19
89:8

common 54:14
125:4

companies 101:16
company 27:22
compatible 92:3,12

94:17 103:23
104:7 137:17

completely 138:16
138:19,20

completes 114:19
compliant 138:2,4
comprises 119:2
comprising 41:20

42:20 125:2
computation 29:17

55:16,18,24 57:3
57:10,23 58:8
60:4 76:14 109:16
121:21

computations 55:2
55:3 85:9 120:18

computer 12:20
13:9 16:16,21
26:16 27:16 61:3
66:1 67:17 68:2,4
91:18 92:2,8,9
111:14 134:17,20
134:20 155:4,9

computing 28:16
28:18 90:3 98:2

conceptual 143:23

concern 80:16
concerned 119:24

127:5
concerning 79:24

160:8
concludes 159:3
condition 62:9
confused 69:21

107:4
confusion 133:20
consider 87:13

102:20 104:24
116:2,14,22 117:9
117:13 128:6
149:5

consideration
88:23 99:22

considered 10:19
11:19,22,24 12:10
12:14 13:4,15
30:12,15 31:2
36:22 37:8 40:24
70:8 100:18 103:6
103:10,12 113:24
116:8

considering 116:13
consistent 115:2

128:7 131:14
157:18

constitutes 160:13
construction

111:19 143:21,22
consultant 14:16

15:1,1
consumption 34:12

54:24
contacted 14:5,8
containing 143:24
contains 78:7,22

83:13 84:19 144:4
144:5

context 49:21 61:2
61:4 66:2 68:2,4
76:12,17

continue 108:12,24
123:21 125:12

continues 79:14
control 41:4 46:18

46:24 47:16 48:2

113:5,9 114:6,10
114:15 119:8
126:8,11,12
155:17,19 156:8
156:13 157:1,12
157:16

controlled 41:11
controller 126:9,10

127:10,11,12
convincing 84:22

124:16
Cook 160:4
copied 102:4
copy 13:13
copying 89:7,9,11

91:5 101:11,19,23
core 70:21 71:2,2,4

71:4 77:6,7,10,15
126:8

correct 6:22 7:15
10:20,21 16:14
24:1 31:10,13
36:19,20,22,23
37:7,9 40:12,22
41:1 50:13 52:6
52:12 53:5,14,15
70:9 71:20 72:9
79:18 82:5 87:2
89:5 102:13,14
118:3 119:5
133:13 148:24
154:21 155:1
156:9 157:1,2,5,6
158:6,7

correctly 47:20
48:20 73:8 74:21
80:20 84:21 150:4

corresponding
155:24

corresponds 45:18
47:5 114:10
141:10,20 142:1
142:17 143:16
155:20 157:13,17

counsel 9:11 13:12
30:19 39:17 40:4
51:14 61:9 68:7
68:12 85:2 92:15
100:17 101:2

122:6 138:10
154:20 156:3,6,10
156:20 158:22
160:18,19

counter 69:22
County 160:4
couple 6:23 154:11

154:19
coupled 37:19 38:4

58:24
course 9:18 26:7

28:7,8 132:22
134:19

court 1:16 6:2
cover 134:21
covered 134:17
covers 126:2,3
CPU 29:13,15,21

29:22,23 30:1
69:9,11,21

create 102:17
creating 74:13,15

128:21
crunching 28:21
CSR 161:8
current 14:22

98:23 136:20,20
137:17,18

Curriculum 14:16
curve 33:13,14
CV 14:22 15:1,1,3

15:9 19:4,5
CVs 15:4
cycle 106:12,15,16

109:14,18,18
cycles 109:15
C.S.R 1:14 161:9
C57 19:9

D
d 89:4 133:7
data 34:1 46:19,21

46:21 47:1,4,5,7
51:10 66:4,6,7
69:21 73:23 74:18
75:20,24 76:14,16
77:2 78:6,7,17,20
78:22 79:2,4,5,10
79:24 80:1,9,10

ATI Ex. 2120
IPR2023-00922
Page 97 of 611

Page 165

83:11,13,14 84:5
84:6,18,19 85:1,3
85:7,8 88:12,13
125:1,1,3,8,9,10
125:24,24 126:1,2
126:24,24 127:5,7
127:19 128:1,23
131:1,5,10 133:7
135:7,8,21

date 5:3 117:5,6
day 8:3
DC 2:9
December 9:6
decide 63:19
declaration 8:12,20

8:21,24 9:5,9,24
10:3,6,23 11:3,7
11:23 12:3 13:3
13:16,22 14:1
26:10 31:9 40:8
41:2,9 44:9,23
46:12 47:6,10
51:18 69:6 88:17
98:5,21 99:14
112:12 115:14
117:24 145:9
147:5 155:14

decrease 33:9
34:13 35:8

decreased 33:22
decreasing 35:20
deduce 24:23
definition 26:21

27:1,6 87:9
111:13 112:4,6,15
112:17 134:1

degree 134:14,16
134:21

delete 9:24 15:11
demands 86:22
depending 61:19
depends 65:12
depicts 141:13
deposed 6:21
deposition 1:13

4:10 5:5 6:24
9:15,20 104:19
159:4 160:10,15

depositions 1:17

described 20:18
21:16,22 23:10,22
24:3,8 112:9
125:23 144:3
153:1,10

describes 112:6,8
description 22:22

22:24 23:3 64:18
design 17:10,24

55:6,16 58:6
64:12,19 65:8,9
65:14,22 67:8,9
109:2 127:21
130:6,8 137:24
138:6,14,17
147:12 148:16
151:6 155:9

designed 16:1,24
17:1,9,9,21 18:3
27:14,15 30:24
105:15,16

designers 109:6
designing 17:3,6,10

105:19 130:7
155:4

designs 31:1
detail 119:2 126:7
detailed 75:12
details 20:17,24

21:14,21,23 23:9
23:10,21 24:1,7,8
25:5,10,18 87:20
87:23 104:20

determine 104:15
110:15

determined 80:15
119:23

determining
115:19 116:9,22

developed 58:10
90:20

developing 106:8
device 38:5 41:6,18

41:20 42:7,15,20
43:3,8,23 59:1
113:10 114:11,15
114:18,19,20
115:7,7 118:7
134:13 143:11

155:21,24 156:24
157:14,18

diagram 48:8 69:17
143:23

dials 110:17
dictionary 65:21
different 9:13 15:3

15:4 51:7,10 60:1
66:14 75:11,24
82:19 98:3 114:22
120:20 122:11
127:7,19,24 128:1
130:11,12,13,21
133:7 134:1
144:16 147:6
158:6,12,15

differently 27:8
diligence 107:15
direct 67:19 155:11

157:8
directed 86:13

87:14
direction 109:1

160:13
directly 160:20
disagree 77:23

114:14 132:5
136:15

disappointed 159:1
disclose 47:16 48:1

49:15
disclosed 72:2,6

120:22 152:15
discloses 52:8

72:10 73:9,16
111:23 120:7
145:11 157:11

disclosure 48:16
130:15

discovery 1:18
discuss 100:7
discussed 24:22

140:10 157:11
discussion 120:6

126:4 154:13
distinct 73:10
distributing 130:13
divided 125:5
divisible 126:16

division 53:12
56:22 158:5,11,12

divisions 158:1,5
document 8:16

14:11,20 18:13,18
21:22 36:11,17,24
40:14 69:23 82:6
93:11 95:1,4
96:14,19 97:9,19
106:2 113:16,22
137:2 141:18
142:3 143:5
144:20 145:3
148:7 156:2

documents 96:8,12
doing 28:17,21

75:7 76:8 79:19
81:4,9,19,22,24
82:19,23,24 83:5
84:1,1 87:4,7
96:17 100:15
120:17,20 121:7,8
121:12,14,18,19
121:20 122:3,11
122:18 123:6,10
124:9,10 127:23
127:24 129:4,21
130:4,5,6,10,11
130:17,17,20,21
131:7,13,23 132:6
132:6 133:6 134:5
139:1 146:21
147:7

dole 127:13
dominance 54:23
dominant 55:4,15

55:19
dot 77:17 132:22

132:22
dots 77:17
Dr 8:21 9:20 40:4
draw 68:12
Drive 1:18 2:3 5:6
due 73:5 107:15
duly 6:7 160:8
dwell 89:19
DX 94:3 95:13 99:5

136:20 137:10,17
DX10 28:11 90:12

91:20 92:3,12,13
92:22 93:4,15,23
94:18 95:6 96:3
97:13 98:6,13
103:16 136:19
138:15

DX11 95:13
DX12 95:13

E
E 4:9 6:9 132:23

154:9 158:19
earlier 19:19 23:24

30:23 32:8 67:24
105:14 111:5
119:21 120:14
127:8 128:19
136:19

easily 127:21
education 32:17
eight 70:21 71:3,11

71:19,20 77:10,19
81:8,18 121:19
122:10

either 38:6 59:2,13
59:16 60:2 82:2
86:24 103:23
120:9 122:2,4
123:6

electrical 134:16
Electronics 1:7 5:8

5:23 6:1
element 37:14,24

44:21 49:7 58:23
78:1 82:1,16
125:7 144:4
155:20

elements 70:17
77:3 78:13,17
82:24 83:6,24
123:5 125:2,5
126:23 145:11,13

embodiment 82:7
82:11 83:3 120:7
120:21 125:20,21

embodiments
82:12 128:5

employee 160:18
160:19

ATI Ex. 2120
IPR2023-00922
Page 98 of 611

Page 166

engine 112:3
145:14,23 146:17
147:3 151:17,19
152:7,10,22 153:2
153:7,18,23

engineering 110:1
134:16,19,20

engines 37:15,19
38:12 141:21
142:2,18 143:4

entire 31:12,18
90:3,10

entirety 13:19
32:11

Environment
22:10,16

Epiphany 106:10
equally 125:24

127:19
equals 149:18
error 110:7,13

155:8
especially 134:19
established 30:19

83:2
evaluate 54:22 91:1

91:11
everybody 134:23
evidence 31:19

89:12 101:2
125:14 148:11

exact 101:8 137:11
exactly 43:13 45:17

89:18 157:20
examination 4:1

160:7
examined 6:8
example 19:18,23

20:4 41:12 46:17
54:16 55:11 56:10
57:11,11 61:17
70:20 71:18 79:7
82:10 91:14
107:14 110:18,19
119:7 135:5
151:23 152:15
153:10

Examples 68:17
exams 28:9

excerpts 124:18
exclude 115:11
excuse 17:5 88:20
excused 159:6
execute 119:9
executing 119:10

144:8
exemplary 125:20
exhibit 4:10,11,12

4:13,14,15,16,17
4:18,19,20 8:17
8:20 9:12,13,14
9:17,20 10:17,20
14:12,15 18:14,17
18:24 19:5,15,18
20:4,8 36:12,15
37:1,4 40:7,15,18
41:15 69:24 70:3
93:12,15,19 96:22
113:17,20 119:16
123:17 141:5
142:10 148:8,10
148:13,14 149:6
154:14 155:12
156:3

exhibits 13:4
103:10

expanded 152:9,13
expect 33:16
experience 32:17

53:16
expert 67:4 87:13

90:2 91:11,17,17
95:20 126:18

experts 14:10
explain 61:9 77:1

82:18 112:18
130:1 131:2 150:6

explained 56:16
57:22 126:7

explains 112:16
explanation 81:18
explanations

123:20
explicit 48:16 68:15
explicitly 47:16

48:1,7 49:15
135:3

extent 76:16

external 31:13
extrinsic 31:19

F
F 132:23
fabricate 17:11,13

107:19
fabricated 17:8,20

17:21 21:5
fabricating 107:17
fabrication 17:16

17:20 155:1
face 61:13
fact 11:1 12:2

53:20 56:10,24
57:5 72:10 77:6
102:20 128:4,7
135:2 151:9

factors 88:24 89:3
89:4,6 99:16
100:10

failed 102:16
fair 7:3,4,13,22

9:21
falls 51:21
familiar 98:11

101:8 103:3
far 153:14
fashion 133:2
feeds 118:13,15
feeling 132:4
fetch 52:10,23

119:3 157:24
158:5,11

fewer 34:20
field 87:13 89:7,9

109:3 134:2,18
FIFO 64:6,7,11,12

64:14,15,18,20
65:5,6,11,14,16
65:16,18,19,19,21
65:23

figure 11:9 12:2,6,7
13:7,17 29:9,12
29:20 41:12 69:6
69:7 70:10,11,20
71:5,16 77:8,16
77:20 78:11 113:4
118:1 119:2

122:14 127:16
132:16,17 133:10
133:11 141:12,13
142:4,6,7,22
143:7,23 144:2,4
144:5,18 145:5

figured 48:8
figures 144:3
file 85:12
filed 27:12 117:3
filing 117:5,6
finally 107:12
find 110:4,19

118:22 123:13
151:15

finding 110:3
finish 24:18 61:9

61:10 62:12 81:14
81:17 97:4 125:16

finished 97:3,8
firm 5:16
first 6:7 14:5 19:3,3

20:17 21:15 22:15
41:20 42:21 47:12
47:17 48:2,17,19
48:24 49:7,21
50:22 52:20 65:1
65:2,3 105:18
106:5 114:4,5
118:24 121:11
143:10,13,16
144:9,9,12,16,21
149:17 156:21

first-in 64:8,9,21
64:23

first-out 64:8,9,21
64:23

fit 34:24
flexibility 130:8

132:7
flexible 94:8
floating 56:2
focus 32:21
follows 6:8
foregoing 160:10
forget 141:5
form 12:15 16:19

18:1,9 19:21 21:2
22:1 23:12 24:10

25:6,19 26:4
27:24 29:17 30:2
30:16 31:3,15
32:14 34:15 35:10
35:22 38:15 42:9
42:17 43:5,10,24
45:8 46:8 48:5
49:16 50:19 52:15
54:5,12,19 55:22
56:6,12 57:7,18
58:2,15 59:10,19
62:1 63:14,20
64:4 68:18 71:24
72:13 74:8,24
75:8,17 76:9
78:18 81:6 83:16
84:3 86:8 87:16
88:8 89:14 90:5
90:13,14 91:8
92:5 93:6 95:7,15
96:5 97:15,23
98:8 99:1,10,23
100:11,19 101:4
101:12 102:6,23
103:8 104:1,16
105:2,20 106:22
107:5,8 108:2,17
109:11,22 110:23
111:8,17 113:11
114:16,24 115:9
116:4,16 120:10
121:15 129:5
130:18 132:1,13
135:11,15,22
136:9,23 137:6,20
138:5,7,21 139:11
139:22 140:6
141:15 142:19
143:18 145:19
146:14,24 147:9
147:19 148:3,22
150:7,17 151:1,11
152:2,18 153:3,19

formed 87:18
former 18:22
forming 102:21

103:6 105:1
formula 149:16
found 125:15

ATI Ex. 2120
IPR2023-00922
Page 99 of 611

Page 167

foundation 24:14
25:7 54:20 68:19
96:21

four 20:12 61:19
70:24 88:24
121:19,20

Fox 2:7 5:16
frame 116:2,13

117:18
front 64:19 65:15
frustrated 61:14
full 114:4 149:21

157:9,10
fully 137:17 138:2

138:4,24
function 133:8

134:5 146:3,8,20
146:22 147:7,8,16
151:18,24 152:5
152:11,14,16,21

functional 87:6,23
functionality 65:17

65:20
functions 54:23

55:18 88:3 145:12
145:18,22 146:12

funding 107:17,20
further 76:1 80:23

117:24 120:3,24
158:17,23

fusion 71:11
122:10,12 123:10
130:3 132:4

G
G 2:2 132:23
game 134:2
gears 136:17
general 28:24

29:15 34:19 35:6
36:1 62:8 63:1
67:16 68:5 86:10
88:2 92:21 105:23
119:8 125:9

generate 11:13
generating 13:16

32:24
geometry 71:23

72:3,11 73:4,9,21

74:5,5,17,18,22
75:6,7,22 77:13
94:13 128:23,24
129:4

getting 21:8 24:24
128:18

give 24:16 30:5
33:23 64:18 91:13
123:20 124:2,17
125:14 139:15

given 120:8 160:14
gives 109:15 133:8

151:14
giving 64:16
GL 28:8,11 98:19

98:23 99:4 103:17
136:19,21 137:10
137:11,14,18
138:16

glad 22:7 76:20
77:22 139:17
140:8

go 22:7 30:11 31:7
34:6 40:9 46:23
53:1 72:24 74:12
96:14 100:6
101:10 107:11,16
109:2,6,7 110:10
110:11 115:14,15
117:23 124:16
125:15 126:6
129:24 154:2

goes 80:21 121:10
125:20 149:18

going 7:5,12,16
9:16 18:23 32:1
34:21 36:2,3,5
39:20 51:14 59:24
60:13,21 61:10
68:7,11,20 76:13
85:15 93:18 96:18
96:21 101:15,15
105:7 120:19
122:24 123:1,13
123:24 124:17,22
132:20 140:16,20
142:23 148:9
154:3 155:13

Goldstein 2:7 5:16

good 6:11 26:15
35:13 39:18
140:17

Gouraud 150:3,5,6
150:15 151:15,22
151:22 152:24

government 107:17
GPGPUs 28:23
GPU 17:24 18:3

27:14 28:6,24
29:2,4,16,23,24
35:9,18 68:6
94:17,18 103:24
105:15,16,19
106:8 137:16,18
138:3 139:7,9

GPUs 28:16,20
30:4,7,24,24 35:4
35:4,7,12

graphic 26:16 78:7
78:21 83:12 84:19
92:8,9,11 125:10
126:13,16

graphical 125:23
graphics 27:16,19

27:20,22 28:5,19
29:4 53:10 91:18
92:2,22 94:4
95:20 103:22
118:14 126:4,5
143:1 144:8

Great 32:3 34:13
36:9 44:5

greater 126:7
ground 6:23 51:22
grounds 51:15
group 125:8,9

127:22
groups 76:4 129:17
guess 13:12 19:2

29:8 46:4 53:9
86:16 87:12 93:2
97:11 107:4 118:1
120:21 128:20
139:6

guidelines 68:14,15
guy 126:5
guys 81:15 131:11

H
H 4:9
half 140:17
hand 33:14 121:22

149:16 161:2
handed 8:19 14:14

18:16 36:14 37:3
40:17 70:2 93:14
113:19 148:13

handle 58:13 88:3
88:6,11 94:13

hands 132:3
happen 72:12

75:11 76:18
happening 122:12
happy 27:2 106:17

123:21
hard 138:10,10,13

138:17
hardware 22:22,24

23:2 86:6,17 87:3
87:5,10 109:2,8
111:14,24

head 12:23 19:19
19:23 32:13 83:18
107:7,11

heading 20:12
heard 9:12 28:11

28:12 86:2 90:12
90:17 91:20 98:19

hearsay 68:18
93:20 94:21

held 5:5,10
hello 159:1
help 35:15 71:6

132:16
helps 88:19 110:14
hereto 160:20
hereunto 161:1
high 28:16,18
Hilledge 6:15
history 103:11
Hm-hmm 11:12

20:10 24:2 125:18
129:2

holding 69:20
home 6:14
homework 28:9
hope 109:4

host 73:6
hour 140:17
hours 14:2,3,3
How's 123:21
hundred 57:11,12
hung 139:6

I
Id 149:17
idea 86:10 87:18

106:10,11
ideas 107:2,2,6
identification

14:15 18:17 37:4
40:18 70:3 148:15

identifications
36:15

identified 100:21
100:23 118:19
122:15

identify 122:6
Illinois 1:15,19 2:4

5:7 160:5
illogical 117:4,10
illustrated 41:11
image 150:2
impatient 128:18
implement 92:12

112:16 153:14
implementation

20:18 21:1,15,18
21:19,20 23:21
26:3 35:19 111:24
112:14 148:16

implemented 74:13
74:15 112:9
128:21 153:9

implied 136:5
important 114:19
improve 33:12
improvements

33:16
include 70:16 104:8

145:13,22 146:12
146:16 147:3,13
150:15,23 151:17
151:24 152:16
153:17

included 92:15

ATI Ex. 2120
IPR2023-00922

Page 100 of 611

Page 168

152:11
includes 46:18

55:24 80:9 93:4
118:5,11 126:8
156:13 157:1,4

including 81:20
115:7 123:11
125:10

inclusive 117:21
increase 33:8,19

34:14 35:8,20
increased 33:21
increasing 33:11,16

33:18
indices 91:12
indicia 91:5 99:21

101:3 102:21
139:21 140:4,13

indirectly 160:21
individual 149:7
industry 90:3,10

108:15
information 24:17

24:24 30:5 41:4
44:10,14,24 45:6
45:15 46:3,5,13
46:22 47:5,7
64:16 66:20,21,23
66:24 68:1,10
76:22 84:8 86:19
100:5 130:13

inherent 126:3
input 65:2
inputs 111:11

112:7,10,19,23
inquiry 88:23 91:6

101:19
inside 69:10 77:17

77:19,21 78:10
80:16,18 119:23
120:2 122:12

instituted 51:15
instruction 44:20

45:23 46:1 76:15
94:3 113:13 115:8
125:4 126:23
127:4 131:1,5,9
135:8,21 156:1
157:4,12,17

instructions 33:24
44:7 45:15 46:3
46:22 52:17 94:14
118:13,14 119:3
127:6 128:3

integer 56:2
integrated 19:11

66:16
intensity 150:11
intensive 55:18

57:3
inter 113:20
interacting 138:15
Interactive 22:10

22:15
interested 160:20
interface 90:19
interjected 120:17

120:19
interpret 131:6
interpretation

112:11 130:14
132:9

interpreted 63:10
interpreting

133:21
introduction 93:19

96:22 148:10
inventing 134:1
invention 89:7,9,12

101:11,20 102:12
102:17 124:24
128:6,6 135:6
149:2

inventions 101:23
inventors 130:7

148:20 149:4,5
involve 15:19 57:1

57:6,20 147:17
involved 155:8
involves 55:21

56:11
Ipr 1:9 5:11
irrelevant 93:19
Irvine 6:18,18
ISA 94:3
issue 100:3 125:21

139:24
issues 89:20

items 103:12 125:3
125:9,9 140:9

J
J 2:13
JO 1:14 2:23 160:3

161:8
JoAnn 6:3
job 61:8,15 62:20

67:22 111:10
127:12

John 2:3 5:24
Jonathan 2:8 5:15
jtuminar@skgf.c...

2:10

K
Kaplan 2:12 5:20
keep 33:15,24 36:2

36:4 85:11,13
kept 76:2 129:15
Kessler 2:7 5:16,18
kind 107:24 110:21
kindly 67:19
knew 99:4,5,9

115:20
know 6:24 7:7,18

8:8 12:17,18 13:7
17:15,16,17 23:6
32:5,18 36:7
43:19 62:14 64:6
66:1 67:17 73:11
75:12 89:16,20
95:17 96:2 98:6
98:13,22 100:4,5
100:14 109:24
110:2,11 118:17
122:19 123:19
134:8,11,20
135:18 136:7
137:11 140:3

knowledge 11:24
12:11,19 20:2,3,5
26:16,24 32:9
48:9 117:19

known 51:8 53:11
53:16 116:10,24
134:24

L

label 71:11 145:2
labeled 19:3 69:11

70:11 133:12
Labs 15:15,24 16:2
lack 54:19
Laguna 6:15
language 22:23,24

23:3
larger 35:16,18
LaSalle 2:13
launch 128:2
launching 127:20
law 5:16
lawyer 117:11
lawyers 14:10
layers 131:13
layman 30:8
layout 107:22
leading 156:15

158:8
lecture 12:13,17

13:8,14,19 29:10
lectures 11:15,16

11:20,21 12:3,8,9
30:14 32:9 69:7

leeway 68:8
left 16:2 71:10
left-hand 20:11

69:10 149:20
legal 89:17,20

100:2 101:8 103:2
139:24

letter 132:20
let's 12:5 22:6

30:11 31:7 35:4
61:4 74:12 76:1
77:24 79:20,21
83:10 97:11 105:5
107:14 110:18
113:14 115:14
122:6,9 124:22
125:12 126:6
154:2 156:2
157:21

level 89:17 91:10
106:18

levels 75:11
LG 1:7 5:8,23 6:1
LICENSE 2:24

lifted 95:3
light 150:10
lighting 145:12,17

145:21 147:3,14
147:16,22 152:6

likelihood 35:9
limit 33:12
limitation 63:6,12
limited 68:16 152:9
Lindholm 40:10,21

41:12 45:18 48:1
48:16 49:12,14
50:3,12 51:23
52:2 113:1,4,9
141:4,10,23,24
142:7 155:12
157:11

Lindholm's 51:6
114:6,9

line 4:2,10 64:13
69:2 70:19,24
72:19 74:12 76:1
78:4,16 79:16,23
80:4,8,14,14
83:11 119:22
120:22 121:10,10
122:23,24 124:17
124:21 125:19
126:6,21,22
128:20,20 129:14
135:5 149:17

lines 34:23 35:12
119:13,18 136:3

list 10:16,18,20,22
13:4 113:23

listed 11:18 12:9,14
13:14 19:10 31:1
36:21 37:8 40:23
70:8 89:3 149:6

listening 83:20
listing 148:20
lists 74:16 128:21
little 7:9 16:14 68:8

147:6
load 94:8
loaded 78:6,21

83:12 84:18
located 5:6
lodge 96:18

ATI Ex. 2120
IPR2023-00922

Page 101 of 611

Page 169

logic 67:14
long-felt 89:8

102:12
look 12:5 19:9,15

22:6 29:8,19 32:1
41:14 49:5 50:21
54:23 65:21 70:10
71:5 73:18 76:1
76:20,23 77:7,22
77:24 78:11 79:12
79:20,21 83:10
86:16 94:7 97:7
104:20 118:4
119:6 123:14
127:11 140:8,12
141:23 149:20
156:2

looked 55:1 81:10
93:9 103:20
107:15 137:12,13

looking 21:4 34:7
38:11 63:11 82:4
90:10 101:16
132:17 137:10

looks 94:4
Losoya 1:14 2:23

6:3 160:3 161:8
lot 12:19 55:3

67:13 110:6
153:13 155:8

lunch 60:10 105:5

M
M 6:9 154:9 158:19
maintain 73:3
managed 144:1
manager 119:1

126:9 127:15,15
127:17

mapping 45:18
150:16,24 151:5
151:10,19 152:1
152:17

mark 9:19 123:15
123:16 132:19

marked 8:16,20
14:11,14 18:13,17
36:11,14,24 37:4
40:14,17 69:23

70:2 93:10,11,14
113:14,16,20
145:5 148:7,14

marking 141:18
142:3,5 143:5,6
145:3

Mary 2:19 5:2
massage 110:11,14
massaged 109:19
massaging 155:3
material 31:13 32:7

52:13
materials 10:9,14

10:19,22 11:1,18
12:10,14 13:14
30:11,15 31:2
36:21 37:8 40:23
70:8 113:24

matter 14:6 87:19
89:17 103:2

matters 15:6 160:9
MAW 2:2
Mayer 2:2 5:6,22

5:24
mean 15:7 28:19

33:21 43:19 58:6
59:21 60:5 64:15
67:20 73:12 76:12
76:20,22 84:24
87:11 100:3 103:4
107:11 109:6,21
111:2 112:23
114:2 115:24
116:6 117:11
118:24 128:10
130:16,24 131:7
131:23 135:18
138:19,20 147:12

meaning 76:15
109:24 116:18

meaningful 91:14
means 7:14 17:10

17:15,16,18 26:2
65:5,22 73:9,18
74:4,22 75:5,20
75:23 76:7,14,18
77:2 81:3 82:9
83:14,23 101:15
121:18 129:3,20

129:23 134:3
154:24

meant 134:12
135:3,13,17,18

mechanism 73:22
Mechell 2:13 5:19

5:19
Media 85:16,21

141:1
memorize 73:14
memory 34:8,9

38:5 41:6,18,20
42:7,14,20 43:3,8
43:23 51:8 59:1
66:18,19 86:21,23
113:9 114:11,15
114:18,19,20
115:6,7 118:7
119:2 143:10,23
143:24 144:2,3,5
144:6,6,10,11,12
144:14,15,18,23
155:21,24 156:24
157:13,18

mention 52:7
mentioned 28:11

30:23 99:13,16
111:6 124:8 127:1
131:4 154:23
155:3

micro 126:11
microchips 15:19

15:24
Microsoft 90:20

95:13
middle 36:7
midway 20:11
mid-to-late 115:20

116:3,11 117:14
mind 34:17 72:20

72:22 81:18
132:16 157:20

Minneapolis 2:14
Minnesota 2:14
minutes 45:22
misses 33:4,9,22

34:14 35:21
missing 100:14
misunderstanding

32:4 122:7 133:15
mixed 42:5
mixing 45:15
mode 74:19,23

77:14 93:4 129:1
129:3,10 134:9,12

model 20:13,17
21:14 23:20 93:23
94:2,18 95:6
97:14 107:22
109:7,10,18 110:7
110:22

modeled 109:3
modify 51:6
morning 6:11 8:1
morpho 131:2,12

131:13 134:6
135:1

morphosys 18:8
19:11 20:12,18,22
21:15 22:16 23:16
23:22 24:19,21
25:11,22,24 26:3
27:17,19 58:10,11
107:14 109:17
131:3 148:17

Morton 36:19
142:10,16 143:7
143:15

move 106:18
moved 33:14
multiple 18:7 74:13

74:16 76:16,18
77:4 87:5 88:3
126:24 128:21
131:1,5,10,10
133:9 135:8,21
142:22

multiplication
55:21 56:1,4,8

multi-threaded
29:13 51:6 127:18
128:2

multi-threading
29:14,20 30:4,6,8

M1 20:18 23:22

N
N 6:9,9 154:9,9

158:19,19
Naas 2:19 5:2
Nader 1:13 4:3

5:12 6:6,13 8:21
14:16 148:21
149:7 159:4

name 5:2,11 6:11
132:20

named 149:7
152:10

nature 53:13
nearly 90:3
necessarily 51:9

145:13,18,22
146:16,18 153:1,6

necessary 62:9
need 7:17 34:24

35:16 49:6 65:18
65:19 67:11 82:6
85:11 91:1 96:12
102:12 127:6

needs 73:22 89:8
never 16:16 27:22

28:2,5 95:4
new 2:9 36:3 94:3

106:10 110:2,6
nod 83:18
nonobviousness

89:13 100:10
101:3 102:21
139:21 140:5,14

notice 127:9
number 5:11 9:13

22:9 28:21 46:20
71:15 109:15
126:8,12 141:5

numbered 149:14
NW 2:9

O
O 6:9 154:9 158:19
oath 8:1
object 12:15 16:19

18:1,9,9,23 19:21
21:2 22:1,1 23:12
23:12 24:10,10,14
25:6,6,7,19,19
26:4,4 27:24 30:2
30:16 31:3,15

ATI Ex. 2120
IPR2023-00922

Page 102 of 611

Page 170

32:14 34:15 35:10
35:22 38:15 42:9
42:17 43:5,10,24
45:8 46:8 48:5
49:16 50:19 51:14
52:15 54:5,12,19
55:22 56:6,12
57:7,18 58:2,15
58:15 59:10,19
62:1 63:14,20
64:4 68:7,11 69:2
71:24 72:13 74:8
74:24 75:8,17
76:9 78:18 81:6
83:16 84:3 86:8
88:8 89:14 90:5
90:13 93:18 96:21
113:11 114:16,24
115:9 116:4,16
120:10 121:15
129:5 130:18
132:13 135:15
139:11 141:15
148:9

objection 43:16
46:11 68:18,18,18
68:19 69:2 87:15
87:16 90:5,14,14
90:21 91:8,21
92:5,5,14,15,16
93:6,6 94:20,21
95:7,14,15 96:5,5
96:18 97:15,15,23
97:23 98:8,8 99:1
99:1,10,10,23
100:11,19 101:4,4
101:12,12 102:6
102:23 103:8,18
104:1,1,16,16
105:2,20,20
106:22,22 107:8,8
108:2,2,17,17,21
109:11,11,22
110:23,23 111:8
111:17 117:1
132:1 135:11,22
136:9,23,23 137:6
137:6,20,20 138:5
138:7,7,8,21,21

139:11,22 140:6
142:19 143:18
145:19 146:14,24
147:9,9,19,19
148:3,3,22 150:7
150:7,17,17 151:1
151:1,11,11 152:2
152:2,18 153:3,3
153:19,19 156:15
158:8

objections 68:15,17
68:21 98:15
101:21 104:9
106:6 108:9
153:11 154:18

objective 89:4,6,12
91:5 99:16,20
101:3 102:21
139:2,21 140:4,13

obtain 149:22
150:1

obvious 24:23
49:19 50:15 51:5
51:24 54:1

obviousness 50:2
50:18 88:23 91:6
91:7,10 99:18,22
102:22 103:7
105:1

occur 75:15
occurred 120:2
occurring 80:18
occurs 153:2
offer 94:18
offered 95:13

111:20
OFFICE 1:3
Oh 7:10 14:9 16:9

67:13 107:24
okay 7:5,10,16,20

8:8 9:16 10:7
11:6 15:15 19:9
29:3 32:3 35:7
36:6,9 44:5 46:7
47:11,24 48:11
50:6,6,14,17
52:13,18 53:1,9
63:9 64:10 71:17
72:6 77:9 78:5,12

81:12 82:14 83:21
84:5 88:10,18
89:16 90:2 94:17
96:16,24 99:15,19
100:9 107:24
113:3,19 119:17
121:24 122:15
123:12,19,23
124:8 125:17
127:16 132:20,23
133:10 137:16
142:9 152:13
156:5,23 157:22

once 46:23 80:15
106:17 119:22

ones 39:15
open 28:8,11 98:19

98:23 99:4 103:17
136:19,21 137:10
137:11,14,18
138:15

opens 60:14
operable 37:20

38:5,23 59:1
125:3,8

operably 125:5
operate 129:8
operates 64:24
operation 54:18

55:14 56:5 72:11
81:3 82:2 84:2
124:11 126:12
129:13 131:8

operations 53:13
53:21 54:4,11
56:11,17 57:1,3,6
57:21 58:1 72:8
72:11 75:7 81:4
81:23,24 82:17
84:1 86:7,7,18,18
87:7,8 88:6,7,11
120:9 121:7,12,21
122:4 123:6,11
124:10 129:4
130:5 131:24

operative 41:20,22
42:21,22 49:1,2

opine 91:10 100:3
103:3 104:21

134:15
opined 87:11 90:9

91:6 105:4 106:1
opinion 49:19

50:24 51:4 73:15
102:22 115:3
139:20 140:4,13
146:5,10 147:2,13
147:22 155:19

opinions 10:9
103:7 105:1

opportunity 151:15
optimal 110:12
option 60:2,21,23

61:1 62:18
options 59:17,21

60:11 61:16,21
62:21 63:3 65:7
104:5 111:7

order 59:16 68:13
73:4 149:21 150:1

ordinary 26:14
27:5,10 49:20
51:5 115:19 116:9
116:23 117:15
126:18 134:7,10

original 76:12,17
outcome 160:21
output 65:3 74:18

77:13 128:24
outputs 65:2
outside 51:15 56:13

67:15 80:15 90:23
101:24 119:23
139:14

overall 57:10 87:5
owner 5:7,17,20

P
page 4:2,10 8:23

10:17 11:7,9 12:5
12:5 19:3,5,7 20:9
20:12 22:8 23:8
23:10,19 24:6,9
25:13 29:19,20
31:8,10,10 32:20
33:3 40:9,11
46:17 69:6,7
88:19 93:22,23

97:5,7 114:2,3
115:5,15 117:24
118:1 119:6
127:10,14 143:21
149:14,14,15
156:4,7,18,22
157:7,9

pages 136:11
paper 18:21 19:10

19:11 21:5,13
22:4,6 24:3,9,22
25:4 107:6,12,16
131:3 148:15
149:11 151:21,23
152:15 153:1,10
153:15,17 154:16
154:19

papers 12:21
paragraph 10:5,8

12:6 13:7 26:10
26:13 29:9 40:9
41:2,9 44:9,22
45:13 46:12 47:6
47:9,13 50:22
51:1,18,20,21
52:5,7 53:8,9,10
53:24 56:20 78:15
79:18 80:8 88:17
88:18 99:13
111:22 112:12,18
114:1,4 115:15,17
117:23 118:4
121:9,13 122:1,5
122:23,24 123:4
124:23 136:12,14
145:8 149:21
155:13 156:21
157:9,10

parallel 73:22 74:4
74:19,23 75:6,16
75:20,23,24 76:4
76:7,12,17 77:1
77:14 127:1
128:24 129:3,10
129:17,19,23
130:15,17,23,24
131:6,7,22,24
132:10 133:12,16
133:16,21,22

ATI Ex. 2120
IPR2023-00922

Page 103 of 611

Page 171

134:3,4,9,12
135:6

parallelism 76:14
77:2 130:1

paraphrasing
154:23 156:12

part 48:19 49:21
55:5 66:13 67:6,7
79:16 80:23 88:3
112:6 114:18,20
118:24 120:4,24
126:16 147:23
151:6,18 152:7,21
153:22

partes 113:21
particular 40:8

44:20 61:18 68:10
82:22 92:19 106:1
110:9 135:7
151:17 155:5

parties 160:20
passage 144:14
patent 1:3,4 5:7,10

5:17,20 10:10,11
15:5 26:15 27:11
29:24 36:16,19
37:5,6 40:19,21
49:4,5 52:8 53:2
58:21 70:4,4,6
86:12 111:23
113:10,21 141:21
143:9,17 149:1
158:2

patents 103:11
PC 69:21,22
PE 78:7,9,22 79:2,5

79:10,14,23 80:9
80:11 83:13,14
84:11,19,24 85:1
85:5,8 121:19
127:3,5 128:7

pen 123:15 124:1,2
penalty 33:5 34:4,4

34:10,11
pending 7:20 8:11

124:3
people 128:17
percent 55:4 57:12

57:13

percentage 57:9
perfect 34:3
perform 122:20

126:13 127:7
145:11

performance 28:16
28:18 33:12,19,21
54:24

performed 74:23
146:3,8,21 147:7
147:17

perimeter 80:18
period 16:14

115:19 116:9,15
periodic 7:16
perpendicular

150:12
person 26:14 27:5

27:10 30:9 95:1
116:9,23 117:15
126:18 134:7,10
134:14

personal 109:5
160:12

pertaining 1:17
PEs 78:6,10,21

79:19 80:22 81:4
83:12 84:18 120:3
120:8,16,23 121:2
121:5,6,11,14,17
121:17 122:2,3
127:21,22 128:3
133:1 134:4

petition 113:20
115:6 156:3,6,18
157:8,19

petitioner 1:8 2:6
114:14,23 115:2

petitioner's 156:11
157:19

phase 73:10,10,17
74:5,7,18,22 75:6
77:14 128:24

phases 72:12 73:5
73:11,12,20,21
74:3 75:10,19,22
76:21,23

phrase 86:2
physicists 110:4

Ph.D 2:8 14:17
pick 60:8
picked 94:24
picture 11:10,13
piece 107:12 110:9
pieces 18:3
pixel 38:7,13 39:1

39:12,15 41:5,21
42:3,7,15,22 44:2
44:5,16 45:19
47:17 48:3,17
49:1 51:9 53:4,20
54:3,10 55:13,20
56:11 59:3,9,13
59:16 61:5,7,22
63:4 74:6 79:21
79:22 80:1,10,10
80:15 81:3,4,22
81:24 82:2 83:9
86:7,18,22 87:1,7
88:7,13 94:13
118:6,12,17 119:4
119:22 120:9
121:7,8,12,13
122:4 123:6
124:10 126:3,15
128:8,9,12 150:2
158:14

pixels 33:1 44:11
44:14 54:17 80:18
82:14,24 83:1
84:6 120:1 122:3
125:11 127:23

pixel-type 72:7
pizza 60:9,14
place 160:16
platform 92:4
please 5:14 6:11,14

21:12 24:18 32:4
62:12 81:14
100:14 111:20
113:15 123:18
141:23 157:10

plurality 37:15,19
38:6,7,11 41:21
41:22 42:15,16,21
42:23 49:1,3 59:2
59:3,13 70:16
125:6 141:20

142:1,17
plus 44:19 45:22

46:3
Pluta 2:2 4:5 5:22

5:22 9:11,16,21
12:15 13:17 16:19
18:1,9,23 19:21
21:2 22:1 23:12
24:10,14 25:6,19
26:4 27:24 30:2
30:16 31:3,15
32:14 34:15 35:10
35:22 38:15 42:9
42:17 43:5,10,16
43:24 45:8 46:8
48:5 49:16 50:19
51:14 52:15 54:5
54:12,19 55:22
56:6,12 57:7,18
58:2,15 59:10,19
62:1 63:14,20
64:4 68:7 69:1
71:24 72:13 74:8
74:24 75:8,17
76:9 78:18 81:6
81:15 83:16 84:3
86:8 87:15 88:8
89:14 90:5,13,21
91:8,21 92:5,14
93:6,18 94:20
95:7,14 96:5,17
97:15,23 98:8,15
99:1,10,23 100:11
100:19 101:4,12
101:21 102:6,23
103:8,18 104:1,9
104:16 105:2,6,20
106:6,22 107:8
108:2,9,17,21
109:11,22 110:23
111:8,17 113:11
114:16,24 115:9
116:4,16 117:1
120:10 121:15
124:3 129:5
130:18 132:1,13
135:11,15,22
136:9,23 137:6,20
138:5,7,21 139:11

139:22 140:6,16
141:6,15 142:19
143:18 145:19
146:14,24 147:9
147:19 148:3,9,22
150:7,17 151:1,11
152:2,18 153:3,11
153:19 154:2,10
156:16 158:9,17

point 7:6 13:6 56:2
68:11 86:15
106:21 123:24
125:17 140:17

pointed 142:24
pointing 155:23
portion 41:20,22

42:21,22 47:17,18
48:2,3,17,18,24
49:2 57:14,14
67:10 143:10,10
143:13,14,16,17
144:22,22

portions 51:8
POSITA 48:7 55:1

134:3,15 136:7,13
position 49:22 50:1

51:21 60:23 113:8
113:8 114:22
124:12 128:13
145:17 156:20
157:16

possible 138:1
146:7,20,23 147:6
147:16

potentially 124:9
power 34:11 54:24
precise 95:1
predetermined

46:20
predominantly

53:22 54:7 56:17
57:2,23 58:7
146:5,7

prefer 72:21
prefetching 123:22
preparation 11:2
prepare 28:8
prepared 11:16

67:20

ATI Ex. 2120
IPR2023-00922

Page 104 of 611

Page 172

preparing 10:23
11:22 13:3,24

presence 5:14
present 2:1,18

124:24 135:6
presents 110:8
preventing 130:6
previous 29:19

31:1,2 37:24 85:9
121:21 160:6

previously 135:24
primitive 73:4

79:15,24 80:16,17
80:24 119:24
120:1,2,4 121:1
150:13

primitives 76:2
119:12 129:15

prior 51:23 91:11
92:15 100:18,21
100:23 103:6
117:16 140:9

probably 11:15
62:14 107:19
117:6 135:18

Procedure 1:15
proceed 74:19

128:24
proceeding 13:20
proceedings 39:23

85:19 105:10
140:23 154:6
160:14

proceeds 77:14
process 37:20

38:13,24 39:4
73:3 106:4,11
125:3,8 127:5
144:2 155:3,4

processed 80:24
120:5 121:1

processes 77:5
122:21

processing 26:16
29:4 37:15,19
38:12 53:10 70:11
70:15,16,21,21
71:2,3,4,4,16,19
71:23 72:3 74:4,5

74:6,6,17,17 75:6
77:3,24 78:13,17
79:21,22 80:1,17
80:22,23 82:1,16
82:16,17,23,23,24
83:1,5,6,24
103:22 112:3
118:14 119:24
120:3,4,8,24
121:1,2,12 122:2
122:3,4,6 123:1,1
123:5,5 125:1,2,5
125:6,7,7,10,23
126:4,8,13,14,16
126:23,24 128:10
128:11,12,22,23
130:16 131:20,23
132:11,15 133:23
135:7,8 141:21
142:2,18 143:4
145:11,12,14,18
145:23 146:4,9,13
146:17,22 147:3,8
147:18,23 151:17
152:7,10,22 153:2
153:7,18,23

processor 77:7,7,10
77:17 105:16,19
127:18 144:8

processors 77:18
122:15 143:1

product 102:5
professional

139:16
program 35:16,18

69:22
programmable

87:20 88:2 97:20
139:1

programmed 28:5
98:3

programming 28:8
90:19

programs 26:17
project 109:17
projects 28:15,15
promise 48:15 50:2
properly 25:1

68:17

proposed 135:24
Prosecution 103:11
prove 21:5
provide 10:9 53:15

66:24 101:2
126:23 127:21
137:19 138:3
139:9,20 140:13

provided 70:21
71:3 73:15 82:10
100:17 124:24
125:1 137:2 140:4

provides 66:4
97:20 111:15
112:2,20,22

provisions 1:15
publicly 13:10
purely 125:20
purpose 1:18 28:24
purposes 14:15

18:17 36:15 37:4
40:18 148:15

pursuant 1:14
put 11:4 29:9 33:23

44:23 65:10,15,17
65:18 66:13
142:12

putting 154:18
puzzling 25:15
p.m 140:21 141:2

154:4,8 159:5,6

Q
qualification 35:14
qualified 123:9
qualifier 138:20
qualify 35:1,5 53:6

53:23 82:5 84:14
question 7:7,20,21

12:13 21:4,7,8
23:19 24:7 25:17
27:4 29:3 31:17
31:23,24 34:3
35:1,5,6 36:8
38:17 42:18 49:10
54:9 55:8 57:17
61:11 63:23 64:17
67:3,5,16 96:23
96:24 97:12 98:13

99:19 105:23
106:1 116:14
117:6 120:21
124:3,5 139:4
141:22 147:5
148:2

questioning 69:3
157:23

questions 7:6,11
35:24 67:22
153:24 154:12,19
154:20 155:16
158:17,21,23

quick 97:19

R
rastering 119:12
rasterization 32:22

32:24 72:7,11
73:5,10,21 74:7
76:4,7,8 129:18
129:20,21 130:4
130:15,17

rate 126:9
read 23:7,23 24:13

24:16,17 25:3
26:10 37:18 38:4
41:3,19 47:20
50:23 51:3 67:1
67:24 72:19,20,21
73:1,8 76:21
77:20 80:14 82:3
84:13,16,21,24
96:8,11,14 97:9
114:9 119:21
120:15,16 122:17
124:23 129:8
131:3 136:3 137:3
145:9 147:5 150:1
157:9

readily 125:22
reading 44:12

74:21 75:2 78:20
80:13,20 83:19,21
94:16 111:22
112:22 123:21
124:13 126:17
134:11 157:15

reads 10:8 22:16

26:13 41:18 47:15
58:24 70:20 88:19
94:2 114:5 115:18
120:23

ready 123:23
realism 150:2
realize 142:14
really 49:22 87:9

87:11,19
reason 8:5,6 33:10

50:21
recall 73:17 99:5

100:13,15 102:18
109:14 119:19
129:8 154:13,20
155:16 156:3,6,10
156:17 157:23

receive 37:20 38:24
39:4 66:8,21

received 125:4
receives 66:6

111:15 112:1,20
112:22

recites 143:9
recognize 18:18
reconfigurable

19:11 22:17 23:16
24:19 25:11,22
148:17

reconfirmed
124:12

record 5:1,14 7:1
13:13 26:11 37:18
39:21,24 41:3,19
51:3 58:24 72:21
73:1 76:2 84:16
85:16,20 91:4
105:8,11 111:22
114:9 119:22
120:15 122:9,14
129:15 132:17
140:21,24 145:6,9
154:2,3,7 157:10
159:5 160:13

records 122:8
reduced 160:12
refer 9:12,17 10:17

46:14 47:5 123:16
132:16 134:13

ATI Ex. 2120
IPR2023-00922

Page 105 of 611

Page 173

135:20
reference 40:10

113:2 118:2 141:5
141:24 142:10
155:12

references 32:1
117:16,20,22

referred 47:2
referring 9:13

10:14 18:6 25:10
39:1 40:10 41:10
46:16 73:20
122:16,24 129:10
133:10,11,23
136:11 137:10
143:20,21 144:14
144:19

refers 13:8 86:5
88:11 122:17
125:9

refrain 68:20
refresh 124:4
regarding 156:7,17

157:23
region 74:16

128:22
regions 76:3 129:16
register 66:17,19

67:2,6,9,11,24
69:14,16 84:7
85:12

registers 85:12,13
related 10:10 29:14

34:2 36:1 51:20
51:22 95:17 97:18
105:24 125:10

relates 135:6
relating 26:14

29:12
relation 144:3

154:14
relative 160:17,18
relevance 13:19

18:10,24 22:2
23:13 24:11,22
25:7,20 26:5
58:16 67:18,23
68:11,19 69:2
87:15 88:20 90:6

90:15,21 91:21
92:6,16 93:7
94:20 95:8,14
96:6 97:16,24
98:9 99:2,11
101:5,13 103:18
104:2,17 105:21
106:23 107:9
108:3,18,21
109:12 110:24
136:24 137:7,21
138:8,22 139:12
147:10,20 148:4
148:10 150:8,18
151:2,12 152:3,19
153:4,20

relevant 13:20
88:22 91:6 115:18
116:8

relied 13:2
relying 52:4
remainder 80:22

120:2,23 121:17
remember 14:7

103:16 120:6
137:5 153:15

reminds 68:13
render 51:24
Rendering 148:16
repeat 25:9
repeated 42:11

49:7
repeating 21:9

48:20
report 27:2 46:14

46:17 49:18 56:13
67:18 68:9,10
89:17,21 90:9,24
91:4 95:18 97:18
100:4,9 101:24
102:8,13,15,19
116:1 140:8,12

reported 2:23
160:11

reporter 6:2 160:1
160:4

represent 107:13
representing 5:2

6:3

represents 79:15
require 43:23 96:3

97:14 103:17
136:21 145:18

required 42:2 98:7
98:14,23 99:8,17

requirement 49:4
49:10,12 62:17
73:5

requires 45:2 88:23
90:9 104:11
139:16

research 32:9
53:17 109:1

researching 101:18
reservations 144:2
reserved 144:1,10
residual 121:21

122:19
resolve 63:19
resource 52:9,10,21

52:23 53:12 56:22
98:2 143:24 144:4
144:5 157:24,24
158:4,5,11,11

resources 29:1,2
46:19

respect 14:6 27:6
124:19 128:4
145:10 156:21
158:1

respectfully 55:9
respective 80:10

125:3,8
Respondent 1:11

2:11,16
response 123:9,9
responsible 127:18

127:19 152:5,22
rest 79:12
restate 69:1
result 115:18
results 106:18
resume 16:15 28:2

136:18
retain 46:19
retire 46:23
review 97:19

113:21

reviewed 10:10,15
10:23 11:2 70:6
73:13

reviewing 97:2,13
right 6:21 12:3,10

12:14,18 13:5
15:16 16:5,10,11
16:13 19:16,20
20:6 21:12,16,17
21:19 23:22 24:4
28:22,24 29:4,13
29:21,22 30:15
31:20 33:1,6,9,17
34:4,5,8,9,11,14
34:22 35:3,9
38:14 40:10 41:12
42:8,11 43:4,9,18
44:6,11,24 45:3
46:10 47:8,13
49:4,8,9,15 50:3,9
50:14,15 52:1,3,5
52:14,23 53:21
54:4,18 55:21
56:5,22 57:6 59:8
59:18 60:3,12,16
60:19,20 61:24
62:23 63:7,16
67:14 71:18,19
72:12 73:10,13,16
74:7,23 75:7,16
76:8 77:7,11
78:17 79:10 81:5
81:24 82:2,11,17
83:2,7,15 84:9,11
85:6 86:7,13,18
86:22 87:1,12
89:4,21 91:7 92:4
92:13 93:5 94:19
95:20 99:20
100:10,18 101:1
102:22 103:24
104:8,21 105:4,24
108:5 110:10
111:7,21 112:13
112:15 114:3
115:8 116:15,19
117:6 118:2 120:9
121:3,7,14 122:13
123:2 124:11

127:10 128:14
129:4,11,21
131:20 132:22
133:1,3,5 135:3,4
135:9,14,21 136:6
137:19 146:9
149:16 151:22
152:1 155:2
156:14

right-hand 22:9,13
69:9 149:15,17

Robert 2:2 5:22
ROBIN 2:12
Robins 5:20
room 33:23
ROWE 2:2
rpluta@mayerbr...

2:5
rules 1:16 6:23

123:19
running 16:14
rzhu@mayerbro...

2:5
R-E-G-S 69:11

S
S 4:9
satisfactory 124:19
satisfied 27:7
satisfies 44:15,20

45:7 49:12
satisfy 27:1 139:7
saw 131:4
saying 39:11 43:12

44:14,17,18,23
45:6,12,14 46:1
50:2,8,9 51:22
65:4 78:16 79:6
85:7 110:14
118:10 121:4
122:9,10,11 123:4
141:20

says 15:1,2 20:16
21:13 22:6 23:1
23:16 24:18 25:22
26:7 29:22,23
32:21 38:23 39:3
41:3 42:20,24
43:18 44:2 45:4

ATI Ex. 2120
IPR2023-00922

Page 106 of 611

Page 174

46:18 49:18 50:22
50:23 52:8 53:6
53:16 56:23 59:14
62:17 69:9 71:11
71:21 73:11,20
74:3,13 75:2,3,15
75:22 77:13 78:6
78:20 79:11,20,21
80:9,13 83:22
85:5 88:10,12
89:10,18 93:23
94:8,11 100:6
103:4,4 110:9
112:20 115:24
116:12 118:5
119:1,7 121:6,8
121:11,13 122:1,5
122:18,23 123:8
124:20 126:19
127:11 128:20
129:15 131:15,22
132:10 133:6
135:6,24 137:3
146:16,18 149:17
150:10

scheduling 68:13
school 16:8
science 134:17,20
scope 51:15 56:13

67:15 68:9 90:24
139:14

search 46:15
second 41:22 42:22

47:18 48:3,14,18
49:2 52:22 58:23
94:7 115:17
121:13 143:10,14
143:17 144:5,7,15
144:15,22,23
157:8,10

secondary 91:12
100:10

section 31:12,18,20
32:12 51:22 83:8
128:15 144:6,20

sections 57:4
see 8:6 10:12,17

11:11 13:18 14:18
16:9 19:13 20:14

20:20,21 22:11,19
25:15 26:19 32:1
37:16,22 38:2,9
39:7 41:7,8,24
47:19 51:1,11
52:11 59:5,6 62:4
67:22 69:12 70:13
70:23 71:10,13
73:7 74:1,20 76:5
77:16 78:8 79:12
80:2,6,12,19 81:1
87:20 88:14 89:1
89:22 93:16,24
94:5,9,15 97:11
101:10,19 102:4
103:11 114:6,12
115:21 118:8,21
118:22 124:16,18
129:19 133:14,19
137:13 145:15
148:18,21 149:18
149:23

seen 14:20 16:15
36:17 95:4 113:22
113:23,24

select 38:5 59:1,7
59:12,16,24 60:1
60:2,10 61:15
62:21 64:2,3,6,11
64:12,14 65:6
67:14 69:19 88:13

selecting 60:24
61:6 111:11
112:19

selection 60:16,17
60:20

selects 86:24 111:6
112:7,10,23

sentence 20:16
21:13 22:15 23:7
23:8 24:13,16,18
48:20 49:21 73:19
79:11 80:8 94:11
94:16,24,24 95:3
95:3 100:6 114:5
115:17 118:5
120:23 121:6,11
121:13

separate 51:7

September 117:3
set 65:20 86:17

87:3 94:3 144:7,9
144:12 161:1

shader 86:3,5,13,14
87:10,14,20,22
88:2 90:4 93:4,23
94:2,12,12,18,19
95:6 96:4 97:14
97:14,20,22 98:7
98:14,24 99:8
103:17,24 136:22
137:19 138:1,4,16
138:20,24 139:9
139:10

shaders 98:11 99:5
99:6

shading 88:3 98:3
145:12,22 146:2,8
146:12,20,21
147:3,7,8,14,23
150:3,5,6,15
151:9,15,22,22,24
152:6,14,16 153:1

shaked 61:13
shape 79:16
shelf 130:3
short 105:9 140:22

154:5
Shorthand 160:3
show 8:14 72:15

83:8
showed 82:4 83:9

85:12 104:22
showing 69:16
shown 30:15 70:11

70:20 71:15
118:21 119:1
127:20 132:21
133:12 144:4

shows 77:16 142:22
143:23

side 22:9,13 149:15
signature 8:24 9:3
signed 9:5
SIMD 127:2,23

129:7,8,12 131:1
131:2,2,3,4,4,9
133:2,5 134:5,13

134:21,24 135:1,3
135:3,7,13,14,17
135:17,21 136:1,4
136:8,12,13,13
148:17

SIMDs 133:9
similar 76:3 129:17
simple 61:20
simulate 106:12,20

107:16 109:7
110:7

simulated 107:24
153:13

simulating 106:11
106:20

simulation 153:18
155:5

simulations 107:20
107:21 108:7

simulator 106:13
106:15

simultaneously
122:21 127:22
128:8,10

single 31:13 68:16
76:15 85:1 86:17
87:3 124:10
126:23 131:1,4,9
135:8,20

sir 6:12,20 8:19,22
13:23 15:17 16:3
18:16 19:7 20:23
24:13 30:13 31:5
36:5 37:3,12
58:22 61:12 70:7
71:8 85:24 105:14
124:8

size 33:8,11,16,19
34:14 35:8,13,20
76:4 110:19
129:17

skill 26:14 27:5,10
49:20 51:5 115:20
116:10,23 117:15
126:18 134:7,10

slice 81:10,14,22,23
82:19,22 123:3
128:3 129:12,22
129:23 130:9,20

130:21 131:11
132:6,23,24 133:3
133:4,7 134:6
142:21,23

slices 81:9,9,19
120:20 131:10,17
131:19 142:22

slow 7:8
slower 34:9
SM 94:2
small 34:24 57:9,14
smaller 34:20
software 22:10,16

107:13 111:14,24
solution 110:12

139:1
somebody 126:17

134:2,18,19
147:12

sorry 27:7 40:9
55:10 68:2 70:24
83:19 89:23 90:13
92:14 100:3 106:6
122:17 126:22
133:14 140:1
142:14 143:22
149:4,4

sort 15:19 55:24
67:14 71:10
106:12

sorted 76:3 129:16
South 1:18 2:3 5:6
so-called 51:23
space 144:2,10,11

144:13,14,15,18
spaces 143:24

144:6
spans 31:9
speak 7:1,2
speaking 68:21
speaks 28:2 145:21
specialized 87:10
specialty 91:13
specific 29:18

127:5
specifically 28:14

154:14
specified 22:17

23:17 24:20 25:23

ATI Ex. 2120
IPR2023-00922

Page 107 of 611

Page 175

160:16
spend 13:24 104:19
stack 131:11
stand 23:2,5 51:13
stands 22:22 69:14
start 42:4 74:14

88:21 110:12
134:9 141:22

started 16:9
starting 40:11

119:22 122:23
128:20

starts 31:8 121:10
149:21

start-up 16:15
state 6:11,14 13:13

46:19,21,23 47:1
47:4,4,7 85:11,13
120:18 122:20
160:4

stated 68:17
statement 16:7

23:15 24:24 31:19
44:12 47:21,22
51:13 53:18 77:23
84:8 88:14 115:23
156:11

STATES 1:3
stenographically

160:11
step 105:18 106:5

121:22
Sterne 2:7 5:16,18
stop 59:4
stopped 97:9
storage 46:19
store 41:21,22

42:21,23 44:2
49:1,2 51:6 66:20
66:22 126:11

stored 42:3,6 43:3
43:8,22 44:10
45:6,24 80:10

stores 41:4 42:15
43:23 44:24 47:1
48:17,18 52:9,10
65:1 78:17 86:21

storing 47:17,18
48:3,4,24 52:21

52:22 119:3
stretch 133:24
strike 28:10 42:4

48:22 55:12 71:22
74:14 131:18
143:14

structure 126:24
Studdard 134:8
students 18:22

108:20,24
studied 92:18
stuff 19:19 32:12

33:23 110:21
153:14

Stuttard 70:4,10
71:21,23 72:3,7
72:10 73:9,13,16
75:13,15 77:6
78:16 79:6,9,10
79:20 118:2,11
119:4,15 131:17
131:20 133:22
134:11,12 135:2
135:13 145:10

Stuttard's 130:14
style 109:5,6
sub 60:10
submitted 8:12

98:5,21
subordinate 50:23
subset 46:20
substance 40:5

158:22
subway 60:13,14

60:22 61:3
success 89:8
sufficient 21:1

35:14 96:13
117:18

Suite 2:14
supervised 28:15
supervising 28:15
supplied 127:4
support 26:18

31:19
supposedly 95:22

95:24
Supreme 1:16
sure 7:8,10,10,23

39:18 60:17 63:22
72:18,23 73:19
78:3 82:6 84:17
93:3 96:9 105:6
111:21 113:7
122:22 126:2
137:23 140:18

surface 150:12
swear 6:3
switch 36:3 157:21
switching 58:11

111:5 136:17
sworn 6:8 160:8
system 20:13,17

21:14 22:17 23:16
23:20,20 24:19
25:11,22 51:6
58:13 72:2,6 78:7
78:21 83:12 84:19
88:2 109:19 119:8

systems 26:17
54:23 73:6

T
T 4:9 6:9 154:9

158:19
take 7:16,21 36:4

39:17,19 49:20
57:10 76:24 80:23
85:14 106:11
109:15 120:3,24
136:14 140:12,18
155:13

taken 1:14 5:7
39:23 85:19
105:10 140:23
154:6 160:15

talk 25:9 35:4 40:4
52:5 61:4 67:20
67:21 83:4 119:20
130:8 150:21
151:4,21,23
158:21

talked 23:8 106:18
119:18 125:21
127:8,8 128:19
136:19

talking 23:11 24:21
25:12,14 30:6,8

35:2 37:6 46:6,13
48:13 61:2 62:23
64:15 72:15 77:14
78:9 81:15,23
86:17 121:10
131:16,17,19
132:5,10 133:15
133:16,22

talks 33:4 42:12
52:13,17 53:4
91:5 92:13 128:5
134:8 135:24
136:12 142:21

target 29:17
taught 28:7
TCB 44:19,23 45:6

45:22 46:1,18
teach 108:20,24
teaching 53:17
technical 31:7,9

32:11
techniques 125:22
Technologies 1:10

5:9,17,21
tell 14:4 25:13

29:22 64:20 74:10
75:10 80:3 87:21
90:8 91:1 94:23
96:8 100:2,4
109:10 110:21
117:21 124:14,15
137:23 140:12

telling 17:3,6
temporary 69:20
ten 130:3
term 68:16 92:21

101:8
terms 54:24 55:3

55:16 57:9
terrible 141:22
testified 6:8 13:18

105:14 155:7
157:3

testify 160:8
testifying 7:24
testimonial 68:14

68:15
testimony 40:5

152:24 154:24

156:17 158:22
160:14

text 118:23 124:13
124:15 149:14

textbooks 12:20
texting 151:10
texture 52:10,14,23

53:3 56:4 57:1,6
57:14,20 58:1
145:13,18,23
146:3,8,13,17,22
147:2,8,17,23
150:16,23 151:5
151:16,16,19,24
152:6,10,16,21
153:2,6,18,23
157:24 158:5,11

thank 20:6 71:7
73:2 86:1 124:6
133:10 141:7
145:4

Thanks 80:5
thereof 1:16 111:15

112:1
thing 42:2,6 45:24

65:1,2,3 82:3
84:23 108:13
115:12 120:17
130:20 137:14

things 11:22 34:20
43:3 59:8 60:1,3
66:9 67:13,21
75:23 76:18 79:3
79:4,8,13,19
81:10,19 82:19
99:17,21 109:19
110:2,5,6 120:20
122:11 123:11
124:18 128:1
130:11,12,21
139:8

think 10:1,16 12:13
13:5 23:4 29:15
29:16,16 30:19
31:24 32:8 45:14
45:21 47:20 49:18
50:4,7,14 53:18
54:9 56:15 65:5
72:18 76:11,16

ATI Ex. 2120
IPR2023-00922

Page 108 of 611

Page 176

77:2 103:13 109:4
110:17 111:5,19
111:20 117:10
129:7 131:10
134:5,15,22
141:13 142:8
153:13

thinking 109:5
third 94:11 149:13

149:14
thorough 104:11
thought 9:11 62:12

125:16 128:17
thread 37:21 38:6

38:13,14,24 39:5
39:8,13,13,16
41:4,10 44:15,16
46:18,19,24 47:15
48:1,2 59:2,13
111:16 112:2,3,21
113:5,8 114:6,10
114:15 119:1,4,7
119:8 126:9 127:9
127:11,12,15,15
127:17 130:12
144:9,15,16,23
155:16,19 156:7
156:13 157:1,12
157:16

threads 38:7,8 39:1
39:2 41:5,21,23
42:3,4,7,8,15,16
42:22,23 44:3,3,6
44:6,7,11 45:2,7
45:19,20 46:2,20
47:17,18 48:3,4
48:17,18 49:2,3
51:7,9,9 52:9,10
52:14,14,21,22,23
53:3,4,5,5,11 54:3
54:10 56:21 59:3
59:4,8,9,14 61:22
61:22 63:4,4
118:6,12,18,18
119:10 144:7,7,8
144:9,12 158:4,6
158:10,12,14,15
158:15

three 34:23 61:19

tie 53:7 68:9
ties 14:9
time 5:3,13 7:17

13:24 18:24 21:24
27:11 34:10 39:18
39:21 40:1 57:12
59:18 60:11 75:11
76:19,24 82:20,20
83:20 85:16,21
99:9 104:20 105:8
105:12 115:19
116:2,8,13,14,18
116:18,19 117:18
133:9 137:9
140:21 141:1
152:9 154:1,4,8
158:18,23 159:5
160:16

times 6:21 71:11
77:19 116:22
135:2

timing 34:4
tired 36:6
title 14:15 19:10,15
titled 8:20 10:19

148:15
today 8:3,8 119:21

137:16,16
Today's 5:3
told 50:17
top 11:9 31:10 69:7

71:10 93:23 118:1
119:7 124:23
127:10,16 133:11

topic 134:17 154:20
157:21

topics 36:1 58:11
111:5

Tough 67:3
track 33:24 46:22

85:11,13
TRADEMARK 1:3
tradeoffs 110:1
transcript 160:11
transferring 73:23
transfers 79:24
transitioned

137:12
trial 1:4 5:10 110:6

110:13 155:8
triangle 79:17

80:16 119:23
150:11

trick 43:2
tricks 61:20
tried 28:16 82:18
true 47:21,23 53:18

68:6 99:20 109:3
134:22 146:2
155:7 160:13

truth 160:8
try 7:2,5 43:7 71:5

101:10
trying 6:24 30:7

42:14 43:2 45:16
45:17 50:18 53:7
62:13 81:17 82:21
110:5

Tuminaro 2:8 4:4,6
5:15,15 6:10 8:18
9:14,18,22 13:1
13:12,21 14:13
16:20 18:5,15
19:1 20:1 21:6
22:5 23:18 25:2
25:16 26:1,8 28:4
30:10,20 31:6,16
32:19 34:18 35:17
36:2,9,13 37:2
38:18 39:18 40:2
40:16 42:13 43:1
43:6,14,21 44:4
45:11 46:9 48:10
49:23 50:20 51:16
52:19 54:8,15
55:7 56:3,9,19
57:15,19 58:9,19
59:15,23 62:5
63:17 64:1,5
68:12 69:4 70:1
72:1,17 74:11
75:4,14,21 79:1
81:11,21 83:17
84:10 85:14,23
86:11 88:5,15
90:1,11,18 91:3
91:16 92:1,10
93:1,10,13,21

95:5,11,19 96:10
97:1,21 98:4,12
98:18 99:7,12
100:8,16,22 101:9
101:17 102:2,10
103:5,15,21 104:6
104:13,23 105:5
105:13 106:3,7
107:3,23 108:6,14
108:19 109:9,20
111:4,12 112:5
113:14,18 114:21
115:4,13 116:7,20
117:8 120:13
121:23 124:5,7
129:9 130:22
132:8,18 135:12
135:19 136:2,16
137:4,15 138:6,12
139:5,19 140:2,11
140:18 141:3,7,8
141:16 143:2
144:17 146:1,19
147:4,15 148:1,12
149:3 150:14,22
151:8,20 152:12
152:23 153:8,16
153:24 156:15
158:8,20 159:2

turn 8:23 10:5 11:6
19:2,4 20:8 22:8
26:9 32:20 33:3
37:10 40:3,7 47:9
51:17 58:20 69:5
70:19 72:18 78:1
88:16 93:22 113:1
114:1 119:15
141:4 142:9 145:8
149:13 157:7

turning 23:7
two 35:12 43:3,7,12

43:12,13,15,18
59:8 60:1,3 61:18
62:18 131:13
144:6

two-dimensional
79:16 119:9

type 35:2,18 54:18
55:13 56:5 131:8

131:14,14 144:10
144:13,15,16,23

types 43:7 51:7,10
59:8 125:24 127:7
127:19 128:1
133:7 158:6,12,15

typewriting 160:12
typical 35:18

134:22

U
ULC 1:10 5:9,17,21
ultimately 107:21
understand 6:20

7:6,24 21:9 39:8
39:12 45:16,17
59:22 63:22 78:14
78:23 88:20,22
91:14 107:5 113:7
122:9 133:19
134:3

understanding
88:1,4 89:18

understood 7:12,15
31:24

unfortunately
89:23

unified 86:2,5,13
86:14 87:9,14,22
88:1 90:4 93:4
94:4,12,19 96:3
97:14,22 98:7,11
98:14,23 99:4,6,8
103:17,24 136:21
137:19 138:1,4,16
138:19,24 139:8
139:10

unit 77:17 118:5,11
119:3 126:10

UNITED 1:3
units 87:6,23 126:9

126:12
university 6:18

107:18
unusual 107:18
unwise 109:1
use 15:5 17:19,19

28:16 35:19 60:7
86:14 107:14

ATI Ex. 2120
IPR2023-00922

Page 109 of 611

Page 177

110:18 130:2
144:7

uses 90:3
usually 56:2
U.S 10:10 36:16

37:5 40:19 70:4
113:21

V
V 23:5
verilog 22:24 23:1

23:2
Veritext 5:2 6:3
version 96:3 98:23

136:20,20 137:17
137:18 152:9,14

versions 95:12
versus 5:9
vertex 38:7,13 39:1

39:13 41:5,23
42:8,16,23 44:3,6
44:11,15 45:19
47:18 48:4,18
49:3 51:9 53:5,11
53:13,22 54:7
55:2,18 56:17,20
56:24 57:5,20,24
59:3,8,17 60:5
61:7,22 63:4 78:8
78:17,22 79:2,4,5
79:10,15 81:20
82:17 83:13,14
84:1,2,6,9,20 85:1
85:3,7 86:7,18,21
86:24 87:7 88:6
88:11,12,13 94:13
118:6,11,18 119:4
122:21 123:11
124:9 126:3,15
128:11 130:5
150:12 158:14

vertices 44:14
82:15 83:4,5,6,9
83:10 119:11
125:11 127:20
128:8,10

VHDL 22:18,21
23:1,2,10,17 24:8
24:20 25:5,18,23

26:2 106:19
107:21 108:8
154:14

video 126:1,2
Videographer 2:19

5:1 6:2 39:20,24
85:15,20 105:7,11
140:20,24 154:3,7
159:3

videotaped 159:4
view 50:8 52:2
views 10:9
visiting 101:15
Vitae 14:16
vs 1:9

W
Wacker 1:18 2:3

5:6
want 13:13 15:9,11

32:17 35:15 36:4
36:4 39:17 44:13
45:5 49:24 50:11
55:17 57:10 58:7
60:9 64:17,18
65:12,13,22,23
67:17 73:18 76:24
77:22 82:5,8 83:4
92:3,11 97:4,9
103:3 104:7 113:7
121:24 122:8,22
123:16,24 132:4
136:14

wanted 9:19 31:23
131:12 135:20

wants 66:22 94:17
103:23

Washington 2:9
wasn't 27:4
way 15:7 58:7

61:13 76:21 94:4
96:2 98:6,22
100:7 127:20
130:1,7 131:2,12
138:18 140:3
146:10

ways 139:1
Welcome 40:3

85:24 105:14

154:11
went 16:8 24:6

103:13 107:20,21
108:8 126:5

we'll 96:14
we're 6:24 28:17

29:1 39:20,24
50:8 58:11 85:15
85:20 105:7,11
110:2,5 121:9
131:16 132:17
133:15,16 140:20
140:24 143:6
148:24 154:7
159:5

We've 140:16
WHEREOF 161:1
wish 46:14 125:16
Withdraw 90:14
witness 4:2 5:11

6:4,7 12:16 18:2
18:11 19:22 21:3
22:3 23:14 24:12
24:15 25:8,21
26:6 28:1 30:3,18
31:4 32:15 34:16
35:11,23 36:6
38:16 42:10,19
43:11,17 44:1
45:9 48:6 49:17
52:16 54:6,13,21
55:23 56:7,14
57:8 58:4,17
59:11,20 62:2
63:15,21 68:8
72:14 74:9 75:1,9
75:18 76:10 78:19
81:7,17 84:4 86:9
87:17 88:9 89:15
90:7,16,22 91:9
91:22 92:7,17
93:8 94:22 95:9
95:16 96:7,23
97:17 98:1,10,16
99:3 100:1,12,20
101:6,14,22 102:7
103:1,9,19 104:3
104:10,18 105:3
105:22 107:1,10

108:4,10,22
109:13,23 111:1,9
111:18 113:12
114:17 115:1,10
116:5,17 117:2
120:11 121:16
129:6 130:19
132:2,14 135:16
135:23 136:10
137:1,8,22 138:9
138:23 139:13,23
140:7 141:18
142:3,20 143:5,19
145:3,20 146:15
147:1,11,21 148:5
148:23 150:9,19
151:3,13 152:4,20
153:5,12,21 159:6
160:7,7 161:1

word 17:15,17,20
47:12 60:7 68:16
86:14 110:18

work 6:17 15:18,19
62:10 67:9 92:3
117:12 133:2,7
139:17,17

worked 15:15
27:22 139:15

working 26:15 77:3
134:2,4,18

wrapping 139:24
write 13:22 25:1

35:12 67:1 68:1
107:12 141:17
143:3

writing 106:19
written 12:21 18:21

62:15 76:2 129:16
wrote 26:22

X
X 2:3 4:9 6:9 154:9

158:19

Y
yeah 11:17,20 15:4

19:6 26:12 28:9
31:23 33:20 37:13
39:6 55:2,4 59:14
62:8,22 67:15

90:8 97:6 103:20
108:5,23 110:17
111:2 114:8 121:8
133:14 136:1
139:2 143:8 145:7
151:4

year 137:11
years 12:21,22 16:4

32:10,16
Yep 33:2 51:19

155:15 157:20
York 2:9

Z
zero 119:7
zhe@skgf.com

2:11
Zhu 2:3,8 5:18,24

5:24

0
00742053 113:21
053 10:11 26:15

27:11 29:24 30:4
37:5 49:4,5 51:24
52:8 53:2 58:20
86:12 111:23
113:10 141:21
143:9,17 158:1

084-002437 2:24

1
1 4:11,15 8:17,20

9:12,14,20 10:17
40:7 41:17,18
42:2,6 43:8 44:21
49:4,7,8 50:3,5,12
53:1,2 58:21
61:21,24 63:7
86:16,20 87:13
88:6,10 113:10
135:5 142:22
143:7,9 144:3

1:49 140:21
10 4:4,5,20 11:7,9

24:6,9 29:20 33:3
69:6,7 70:21 71:2
71:2,4,4 77:7,15
79:23 80:4 94:4
119:18 120:22

ATI Ex. 2120
IPR2023-00922

Page 110 of 611

Page 178

121:9 122:23
126:8 148:8,13,14
149:6

10-10 22:8,12
10-3 19:3 20:9
10:09 40:1
100 51:18,20 52:5,7
1003 9:17
101 53:10,24 56:20
102 119:1 126:9

127:15
1024 118:5,11

119:3
104 52:8,21 126:9
105 126:11
106 52:9,22 70:12

70:22 71:3,11,15
74:4,6,17 75:7
77:15,18 78:11
79:5 81:24 82:1
83:24 84:1 122:15
122:18 123:1,3
124:9 128:22
129:4,11,20
130:16 131:20,23
132:11,15 133:11
133:23 134:5

106s 71:20
1061 70:17 78:13

126:22 127:3
145:11,13

1069 126:10
108 126:10
11 12:5 28:11 72:19

138:15
11:15 85:17
11:36 85:22
1100 2:9
113 4:19
116 117:23 118:4
12 4:12,14,18 31:10
12:06 105:8
12:50 105:12
125 144:8
13 114:2,3 115:5

156:4,7,18,22
131 145:8
14 1:20 4:12,13

93:22,23 96:23

97:5,7,9
140 142:24
148 4:20
15 4:16 143:20

161:2
154 4:5
158 4:6
17 4:11,19 128:20
170 142:24
18 4:13 72:18 74:12

77:13 128:16,19
129:14 133:23
134:9,12 136:3,8

19 19:5,7 88:17,18
99:13 128:20

1984 16:2
1987 16:9,12

2
2 4:12 10:5,8 14:12

14:15 19:5 25:13
32:21 51:22 70:20
85:16,21 119:10
124:17 125:19
144:3,5

2B 71:5 77:8,9
2D 119:9
2:12 141:2
2:32 154:4
20 4:6 40:11
200 143:24 144:4
20005 2:9
2003 115:20 116:3

116:11 117:3,14
134:11,24

2014 9:6
2015 1:20 161:2
2015-00325 1:9

5:11
202 2:10
205 144:10,11
21 135:5
22 115:15,16 157:7
24 4:17
25 32:16 46:17

126:6
2800 2:14
29 76:1

3

3 4:13 18:14,17
19:15,18 20:4,8
23:8,10,20 70:10
70:11 71:16 77:16
78:11 122:15
127:16 132:17
133:10,11 141:1
154:14

3D 28:5,19 29:4
119:10

3:06 154:8
3:12 159:5,6
30 16:4 79:23 80:4

129:14
31 12:6 13:7 29:9
312 2:4
33 70:19 71:1,2

136:11
349-0172 2:15
36 4:14
37 4:15
371-2600 2:10
38 26:10,13
39 80:9

4
4 4:14 36:12,15

41:12 70:19 113:4
118:1 119:2 126:6
142:6,7,10

4.0 93:23 94:2,2,18
95:6 97:14

40 4:16 14:2,3
117:24 118:1

410 156:1 157:12
415 6:15
42 47:16 80:14

119:18
420 41:4,11 46:18

47:1 113:5,9
114:10 155:17
156:8,14 157:12

43 119:6,22 121:10
122:23

45 80:14 120:22
47 119:19 121:11

122:24
48 143:20

5

5 4:15 37:1,4,11,14
38:23 41:15 88:19
119:13 143:23
144:2,4,18 145:5

50 14:3
505 144:7,13,14,18
51 111:22 112:15

125:19
52 112:12,16,18

125:19
520 144:6
55402 2:14
56 119:13
57 78:4,16 83:11
58 126:22

6
6 4:4,16 40:15,18

141:6 155:12
60606-4637 2:4
612 2:15
64 119:14
67 143:20
69 4:17

7
7 4:17 22:9 31:8,10

41:17 69:24 70:3
115:15 119:10,16
145:10

70 55:4
701-8641 2:4
7015913 40:19
71 1:18 2:3 5:6
72 40:9,9 41:2,9

44:9,22 45:13
46:12 47:6 155:13

7233335 36:16
73 47:9 50:22 51:1
7363427 70:4
7742053 10:11 37:5

8
8 4:11,18,20 32:20

73:19 93:12,15
8-14-2015 5:3
80 55:4 57:12
800 2:13
84-002437 161:9
87 10:17

9
9 4:19 9:6 78:2,15

83:11 113:17,20
156:3

9:05 1:19
9:07 5:4
9:55 39:21
90 57:13
93 4:18

ATI Ex. 2120
IPR2023-00922

Page 111 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

IN THE UNITED STATES DISTRICT COURT

FOR THE NORTHERN DISTRICT OF CALIFORNIA

UNIRAM TECHNOLOGY, INC,

Plaintiff,

v

TAIWAN SEMICONDUCTOR
MANUFACTURING COMPANY, LTD and
TSMC NORTH AMERICA,

Defendants.
 /

No C 04-1268 VRW

FINDINGS OF FACT AND
CONCLUSIONS OF LAW

This is a patent dispute between UniRAM Technology, Inc

(“UniRAM”) and Taiwan Semiconductor Manufacturing Company Ltd and

TSMC North America (collectively “TSMC”). UniRAM sued TSMC for

patent infringement and misappropriation of trade secrets, among

other claims. TSMC counterclaimed that one of UniRAM’s patents was

unenforceable due to inequitable conduct in front of the Patent and

Trademark Office.

On January 14 and 15, 2008, the court heard testimony

concerning TSMC’s allegation that UniRAM committed inequitable

conduct in the prosecution of US Patent No 6,108,229 (“the ‘229

patent”). The court heard live testimony from Bo-In Lin, Jeng-Jye

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page1 of 28

ATI 2075
LG v. ATI

IPR2015-00326

ATI Ex. 2120
IPR2023-00922

Page 112 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

2

Shau, David Taylor, and Carl Sechen, and deposition testimony from

Richard Killworth and Peter Gillingham. That testimony

supplemented testimony heard by the court from September 9 to 21,

2007, at the jury trial of UniRAM’s trade secret misappropriation

(and related) claims.

FINDINGS OF FACT

1. United States Patent 6,108,229 ("the ‘229 Patent," Ex.

353) issued on August 22, 2000, from United States Application

Serial No 09/114,538 ("the ‘538 Application," Ex. 5133), which was

filed on July 13, 1998. The ‘538 Application was filed as a

continuation-in-part ("CIP") both of United States Application

Serial No 08/805,290 (the "'290 Application," Ex 5132) and United

States Application Serial No 08/653,620 (the "'620 Application," Ex

5109).

2. The ‘620 Application was filed on May 24, 1996, and issued

as United States Patent No 5,748,547 (“the ‘547 Patent”) on May 5,

1998. Ex 7.

3. The ‘290 Application was filed on February 25, 1997, as a

continuation-in-part of the ‘620 Application, and issued as United

States Patent No. 5,825,704 (“the ’704 Patent”) on October 20,

1998. Ex 9.

4. All three patents name Dr Jeng-Jye Shau as the sole

inventor. Exs 7, 9 & 353.

5. Dr Shau’s native language is Mandarin Chinese. Although

he can communicate in English, Shau’s English is imperfect. Doc

#621 85:15 to 86:10. TSMC’s expert stated that Shau’s “patent

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page2 of 28

ATI Ex. 2120
IPR2023-00922

Page 113 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

3

obviously is written by someone who doesn’t have a great command of

English.” Doc #621 154:24 to 155:15.

6. Shau is an integrated circuit designer. Jury Trial

146:23-24.

7. The person of ordinary skill for purposes of Shau’s

patents is an integrated-circuit designer, and not an

integrated-circuit manufacturer. Doc #621 134:4-9; 175:2 to

176:11. TSMC’s own expert, Mr Taylor, defined a person of ordinary

skill as having “a Bachelor’s degree in electrical engineering and

three to five years of experience in the design of semiconductor

memory products, preferably DRAM products.” Doc #621 134:7-9

(emphasis added). TSMC’s expert therefore defined a person of

ordinary skill with respect to experience and training in circuit

design.

8. The work of an integrated-circuit designer is performed

almost entirely on a computer. Circuit designers make extensive

use of software-based circuit simulation, verification and layout

tools. Doc #621 96:13 to 97:7; 101:9-12; 166:10-12; 177:9-22;

180:19 to 181:2.

9. The entire integrated-circuit design industry relies

heavily on software simulation tools to predict accurately how a

circuit will perform once manufactured. Doc #621 177:23 to 178:4;

188:5-18.

10. As a general practice, circuit designers simulate their

designs extensively before having their circuit designs fabricated

into a physical integrated-circuit, commonly called a “chip.” Doc

#621 188:9-16.

11. A circuit designer’s product is his design, and his or

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page3 of 28

ATI Ex. 2120
IPR2023-00922

Page 114 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

4

her final product is an electronic design file known as a “tape

out” file. Doc #621 181:16-20; 190:3-17. Even TSMC sometimes

refers to design files as products. Doc #621 191:4-24. The tape

out file serves as a blueprint from which the entirety of a

design’s details may be discerned and from which a circuit

manufacturer can fabricate a chip. Jury Trial 177:8-12.

12. Once the design stages are completed - including

simulations, verifications, and the creation of a tape out file -

the design in the form of a tape out file is generally submitted to

a circuit fabrication facility, commonly termed a “fab.” Doc #621

181:12-15.

13. Whereas the final product of a circuit designer is a tape

out and a circuit design, the final product of a fab, or foundry,

is a physical chip.

14. Although circuit design and circuit manufacturing are

part of the overall integrated-circuit production process, they are

typically separate and distinct activities. Generally, circuit

designers do not fabricate chips, and generally foundries do not

design tape out files. Doc #621 181:16-24. Circuit designers and

manufacturers by and large employ distinct vocabularies. Doc #621

177:1-5.

15. Integrated circuits from the point of view of a

circuit-designer are under production when the circuit designer

begins computer layout work on his or her design. This includes

computer-simulations of the anticipated performance of the design,

verification on a computer of the design’s compliance with

foundry-specific “design rules,” creation of a tape-out file on a

computer and continues until the tape out file is submitted to the

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page4 of 28

ATI Ex. 2120
IPR2023-00922

Page 115 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

5

fab and sometimes continues therein and thereafter during an

iterative refinement process. Doc #621 177:6 to 182:3.

16. UniRAM presented Dr Carl Sechen as an expert on how a

circuit-designer with an appropriate background would interpret

certain of Shau’s patent statements that TSMC has challenged in the

instant case. Dr Sechen holds a PhD from the University of

California at Berkeley, is a fellow in the IEEE, has authored 150

publications in the field of integrated circuit design and has

taught at Yale University, the University of Washington and the

University of Texas at Dallas (where he is currently a full

professor). Doc #621 170:13 to 172:21.

17. TSMC’s expert on how one of ordinary skill would

interpret certain of Shau’s patent statements, Mr David Taylor, is

less qualified than Dr Sechen. Mr Taylor lacks a PhD, is not a

fellow in the IEEE and lacks the teaching and research experience

of Dr Sechen. Ex 5291.

18. Mr Taylor, unlike Dr Sechen, cited no documents in either

his expert report or his trial testimony to corroborate his

opinions. Doc #621 152:3-20.

19. Dr Sechen consistently offered opinions that were more

specific and complete than the answers given by Mr Taylor. Dr

Sechen’s opinions were supported by reference to objective

standards in the industry, such as terms of art. Mr Taylor, by

contrast, relied more often on his view of common sense and his

personal interpretations of disputed phrases. Dr Sechen explained

his interpretations of disputed terms in greater detail, usually by

a more thorough consideration of the context in which the term

appears.

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page5 of 28

ATI Ex. 2120
IPR2023-00922

Page 116 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

6

20. In May 1996, Shau began developing an integrated-circuit

design that included a dynamic random access memory (“DRAM”)

architecture. Doc #621 88:22 to 89:2.

21. In May 1996, Shau began layout work on a tape out file

using a software program named MAGIC and completed simulations

using software programs named SPICE and RSIM. Doc #621 89:20 to

90:1; 90:10 to 91:3; Jury Trial 161:1 to 162:2.

22. The simulations reflected that the “access time” for

Shau’s DRAM architecture using 0.6 micron (“µm”) technology design

rules was 4 nanoseconds (“ns”). Doc #621 55:11-13; 72:17-24.

23. After confirming the viability of his DRAM architecture

by simulation, and while he continued work on the tape out, Shau

began drafting the ‘620 Application. Doc #621 91:11-19.

24. Shau is not a lawyer, and he drafted the ‘620 Application

by himself, without assistance from counsel. Doc #621 88:11-21;

Jury Trial 156:19-24.

25. The ‘620 Application as drafted included the following

passage:

Our results show that a memory of the present invention
is faster than an SRAM of the same memory capacity.

Ex. 5109, at 5109-014. The court finds this statement was not

false or misleading.

26. At the time Shau made this statement, no physical “chip”

had yet been fabricated. The ‘620 Application would not, however,

suggest to a person of ordinary skill in the art that any physical

semiconductor chips had been fabricated. Instead, this statement

about “results” refers to simulations conducted on Shau’s design.

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page6 of 28

ATI Ex. 2120
IPR2023-00922

Page 117 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

7

Doc #621 202:11-18.

27. Circuit designers simulate their designs regularly. Doc

#621 94:5-10. UniRAM’s expert stated that “[t]he whole [integrated

circuit] industry relies extensively on simulation results to

accurately predict the performance of the design.” Doc #621

188:12-14. TSMC’s expert stated that simulations provide

“realistic predictions of just what the performance will be” once

the design is fabricated. Doc #621 138:14-19.

28. From the perspective of a circuit designer, the term

“results” in this sentence refers to simulation results that

pertain to a design file, not results from testing a physical chip.

Doc #621 93:20 to 94:10; 186:18 to 187:11.

29. The challenged statement refers to “results” only, not

“measured results.” The choice of the word “results” is important

because the phrase “measured results” is a term of art in the

semiconductor industry. Doc #621 187:2-4. When persons of

ordinary skill in the art discuss test results on a physical,

fabricated chip as opposed to test results on a design, they often

use the phrase “measured results.” Doc #621 187:2-11. Creators of

integrated circuits “get a lot of accolades for actually producing

a part and having measured results.” Doc #621 187:6-8. The

modifier “measured” in the phrase “measured results” is a very

“prestigious and important qualifier” on the word “results.” Doc

#622 231:7-10. Accordingly, if and only if a circuit designer has

a physical chip, he will use the term of art “measured results” to

describe his test results. The absence of that term of art

suggests strongly that the designer does not have a physical chip.

Doc #621 187:9-11. Because Shau never in May 1996 made any

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page7 of 28

ATI Ex. 2120
IPR2023-00922

Page 118 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

8

reference to “measured results,” a person of ordinary skill would

not read his statements to suggest the existence of a physical

chip. Doc #621 186:18 to 187:11.

30. The Figures included in the ‘547 patent prove to one

skilled in the art that the application discussed simulations and

not actual chips. Figures 7a, 7b, and 7c in the ‘547 patent

include artificial curves, input labels such as “BLKSEL” or “KWL”

and output labels such as “BL” or “BL#” that a circuit designer

would understand come from the SPICE simulation program and not a

physical chip. Doc #621 91:9 to 93:19.

 31. Circuit designers would also understand Figure 7a

necessarily to relate to simulation results and not physical chip

measurements. Figure 7a includes data on bitline outputs. It is

not possible, however, to measure the bitline output of a physical

chip. Accordingly, a circuit designer reviewing Figure 7a would

know that the author of the patent had to have been reporting

simulation results. Doc #621 98:15 to 99:4.

32. Similarly, the absence in the patent of any “chip

photomicrographs” suggests that a person of ordinary skill in the

art would infer that no physical chips had been produced. Doc #621

187:12 to 188:4. A chip photomicrograph is essentially a

photograph that shows the details of the actual fabricated silicon

chip. 187:16-22. Without such evidence, “no one would believe you

have actually produced an actual chip.” 187:23-24. Shau’s patent

did not include any reference to a chip photomicrograph. 187:25 to

188:4.

33. The ‘620 Application includes the following passage:

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page8 of 28

ATI Ex. 2120
IPR2023-00922

Page 119 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

9

Although the bit line structure in FIG. 3b is the actual
bit line structure used in our product, for simplicity,
we will use the simpler two-dimensional bit line
structure in FIG. 3a as example in the following
discussions.

Ex. 5109, at 5109-020. The court finds this statement was not

false or misleading.

34. At the time Shau made this statement, no physical “chip”

had yet been fabricated. A person of ordinary skill in the art,

however, would also not interpret this statement to suggest that a

physical “chip” had been manufactured. TSMC does not offer

credible evidence to the contrary.

35. The audience of the patent is a circuit designer, and the

subject matter of the patent is a circuit design. For circuit

designers, the final product is a circuit design and a tape out

file. As UniRAM’s expert stated, because the person of ordinary

skill in the art for the ‘620 Application is a circuit designer,

the term “product” logically can mean a circuit design or a tape

out file. Doc #621 190:3-17.

36. TSMC’s expert stated that to a person of ordinary skill

in the art, “product” refers to a chip that is “well beyond a test

chip” and is “working to meet all specifications and is something

that is available to be commercialized and sold.” That testimony

is less credible than the testimony of UniRAM’s expert because the

context and subject matter of the patent is not a physical chip

that has been tested, but rather a design that has undergone

simulations as described above.

37. There is no credible evidence that the statement

“Although the bit line structure in FIG 3b is the actual bit line

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page9 of 28

ATI Ex. 2120
IPR2023-00922

Page 120 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

10

structure used in our product, for simplicity, we will use the

simpler two-dimensional bit line structure in FIG 3a as example in

the following discussions” was false or misleading.

38. The ‘620 Application includes the following passage:

A memory device of the present invention is under
production. Using 0.6 micron technology to build a memory
array containing one million memory cells, we are able to
achieve 4 ns access time, which is more than 10 times
faster then existing memories devices of the same storage
capacity.

Ex. 5109, at 5109-026. The court finds this statement was not

false or misleading.

39. TSMC offers no credible evidence that the term “memory

device” refers necessarily to physical fabricated chips. To the

contrary, TSMC’s expert stated that there is no “‘nice, clear-cut

totally clear definition of what a memory device is.’” Doc #621

154:6-23.

40. UniRAM’s expert testified that in the context of the ‘229

patent, “memory device” refers to an integrated circuit – which can

exist as a design on a computer – and is completely different from

a “physical integrated circuit” or a “physical chip.” #621 222:7-

23.

41. UniRAM’s expert stated that a memory device can exist

“way before fabrication,” including “in the design stage on a

computer.” #621 225:12-14. He specifically rejected the idea that

a memory device refers to a physical chip. #621 222:16-23 and

220:10-11. In the context of the patent at issue, which discussed

circuit design, it was “inconceivable” that the author was

referring to a physical chip. Doc #622 226:4-10.

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page10 of 28

ATI Ex. 2120
IPR2023-00922

Page 121 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

11

42. UniRAM’s expert also testified that the phrase “device

has been fabricated” is a term of art. Doc #621 183:16-20.

Without that term of art, a person of ordinary skill in the art

would be “convinced beyond any doubt that nothing has been actually

fabricated.” Doc #621 184:1-3. That term of art does not appear

in the patent. Doc #621 183:16 to 184:3.

43. TSMC’s only evidence that “memory device” refers

necessarily to physical fabricated chips is its expert’s statement

that “I think in my view, it’s pretty clear that when it says a

device, it means something physical.” Doc #621 152:24-25. He did

not connect his interpretation to any terms of art or industry

standards.

44. TSMC offers no credible evidence that the term “under

production” means necessarily that physical chips are being

fabricated for sale.

45. Unlike “under production,” the phrase “in production” is

a term of art in the semiconductor industry that “means that

products intended for sale are actually being fabricated and

produced.” Doc #621 192:5-15; 182:22 to 183:4. UniRAM’s expert

compared having chips “in production” to producing automobiles on

an assembly line in Detroit. Doc #622 215:6-24.

46. By contrast, the phrase “under production” does not have

any widely understood specific meaning. Doc #621 183:1-4. In

fact, because the phrase “in production” is a term of art referring

specifically to mass production of chips, the use of the phrase

“under production” suggests that physical chips are not being

fabricated. Doc #622 215:6-24.

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page11 of 28

ATI Ex. 2120
IPR2023-00922

Page 122 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

12

47. Because the meaning of “under production” is open-ended,

the phrase should be interpreted in context. Doc #622 212:3-7.

The context of the statement in the patent is circuit design, and

thus the phrase “under production” refers to “the steps of the

design process, including design, simulation, verification and on

to the tapeout.” Doc #621 183:5-12.

48. In addition, other assorted terms of art in the industry

that also refer to the physical production of chips, such as

“fabricated” or “manufactured,” do not appear in the patent. Doc

#621 183:16 to 184:3. The absence of any terms of art referring to

physical production of chips suggests strongly that a person of

ordinary skill in the art would not interpret “under production” as

referring to the physical production of chips.

49. TSMC’s expert testified that “under production” refers to

the process of producing thousands of copies of a chip to test its

viability before moving on to high-volume mass production, which

runs in the millions of copies. Doc #621 139:25 to 141:16. His

description of this pre-production process may be an accurate

statement of production practices in the industry, but he offers no

testimony that the specific term “under production” refers

necessarily to the specific pre-production process he describes.

He did not state that “under production” is a term of art, and he

did not discuss whether his interpretation of “under production” is

the same for the purposes of manufacturing processes and for the

purposes of disclosures in a circuit design patent.

50. In the specific context of design disclosures in a

circuit design patent, the use of the phrase “under production” to

mean fabrication would be “highly unlikely.” Doc #622 217:9-16.

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page12 of 28

ATI Ex. 2120
IPR2023-00922

Page 123 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

13

This is because the usual practice for designers is to obtain a

valid patent on a design before proceeding to manufacture and sale

of the invention. Doc #622 215:19 to 216:15.

51. Because a circuit designer’s final product is a circuit

design and tape out, the statement in the ‘620 Application that a

“memory device” was “under production” is consistent with a circuit

design being in progress and the tape out being under production.

Shau’s design was “under production” as long as he was working on

the layout of the chip design, including simulations. Doc #621

182:9 to 184:3; Jury Trial 269:1-19; 270:12-15. At the time the

‘620 Application was filed on May 24, 1996, most if not all of

Shau’s simulation work was finished and his layout work had begun.

Doc #621 89:20 to 90:1. When he filed the ‘620 Application, Shau

had completed the entire layout for the memory device that was

claimed (but had not completed the external logic circuitry

design). Doc #621 44:6-22. Shau’s tape out, which is a circuit

designer’s product, was thus “under production” as of May 24, 1996.

52. The passage in the ‘620 Application “[u]sing 0.6 micron

technology to build a memory array containing one million memory

cells” referred to Shau’s process of designing an array of a

million memory cells and implementing the design with 0.6 micron

technology design rules, not to a physical chip. Doc #621 95:9 to

96:8.

53. The reference to a “memory array” further shows that Shau

was referring to a design and not a physical chip because an

“array” is not a physical chip from a circuit designer’s point of

view. Doc #621 95:9 to 96:1; Jury Trial 271:8-15. Shau

demonstrated a “memory array” for the jury on his computer -

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page13 of 28

ATI Ex. 2120
IPR2023-00922

Page 124 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

14

navigating a software file, not a physical chip - while explaining

his USRAM tape out. Jury Trial 188:20 to 189:3.

54. The reference to “build[ing]” an array also does not

suggest necessarily a physical chip, because circuit designers -

those of ordinary skill in the art - use the infinitive “to build”

to discuss their work on design files, performed on a computer. Doc

#621 96:13 to 97:10; 184:15 to 185:1; Jury Trial 271:19 to 272:8.

The word “build” is not a term of art among circuit designers. Doc

#621 184:21-22. Even if “build” refers commonly to physical

structures, TSMC offers no evidence that “build” cannot be used as

a metaphor for other purposes. According to Webster’s Third

International Dictionary, for instance, one can “build” an

argument, a work of art or a piece of literature. Webster’s Third

New International Dictionary 291-92 (1981).

55. Shau’s simulation results at the time of the ‘620

Application reflected a 4 ns access time, which was at relevant

times more than ten times faster than traditional DRAM memories of

the same size. Doc #621 94:2-17; 55:24 to 56:3; 97:18 to 98:3.

56. The reference to “4 ns” access time also would indicate

to a person or ordinary skill in the art that Shau was referring to

a design - and not a physical chip - because circuit designers use

more than one digit of precision when referring to a physical,

tested chip (for example, 4.x nanosecond access time) rather than a

design (for example, 4 ns access time). Doc #621 185:25 to 186:17.

Accordingly, Shau was not claiming to achieve a specific result, as

he would if he were referring to a physical chip. TSMC’s expert

did not address Shau’s use of one rather than two significant

figures in his patent.

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page14 of 28

ATI Ex. 2120
IPR2023-00922

Page 125 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

15

57. Shau was not referring to Sunaga prior art when he

claimed that his invention was ten times faster than existing prior

art. Doc #621 55:24 to 56:2; 39:16 to 44:5.

58. The reference to “one million memory cells” further

indicates that a person of ordinary skill in the art would not read

this patent language to suggest the presence of a physical chip.

In the industry, memory cells in finished chips are always counted

as a power of two, and one million is not a power of two.

Accordingly, a person of ordinary skill in the art would interpret

Shau’s imprecise description as suggesting that a design is being

discussed. Doc #621 185:2-24.

59. In the summer of 1996, Shau completed his first tape out

and submitted it to MOSIS. Doc #621 102:10-15.

60. MOSIS (not to be confused with MoSys, a former defendant

in this case) is a relatively low-cost semiconductor manufacturing

service often used for academic or research purposes. Doc #621

102:2-9.

61. Shau realized that MOSIS could support only small test

chips, so his original million memory cell array was reduced in

size for the MOSIS tape out. Doc #621 107:23 to 108:14. Ex. 1378.

62. The MOSIS design was a test chip with a simple interface

for testing purposes only. It was not configured as a commercial

product. Doc #621 103:24 to 104:15.

63. MOSIS sent Shau manufactured and packaged chips in late

1996. Doc #621 102:10-24.

64. Shau’s initial tape out to MOSIS had bugs, but the bugs

related to the logic portions of the tape out. The bugs did not

relate to Shau’s DRAM architecture, the subject of the claimed

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page15 of 28

ATI Ex. 2120
IPR2023-00922

Page 126 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

16

inventions of Shau’s patents. Shau was able to bypass the bugs to

determine that the architecture of his design worked. Doc #621

102:10-21. The MOSIS tape out was successful. Doc #621 102:10-17.

65. Shau’s success in verifying his memory architecture using

the MOSIS prototype is reflected by his contemporaneous statement

to TSMC in December 1996 that the “USRAM architecture has been

verified on silicon by a 8K x 9 device.” Ex 443 at 0041660.

66. Shau wished to verify his DRAM architecture on a

full-size chip. Shau decided to approach TSMC, the world’s largest

independent commercial foundry, to begin commercial fabrication

activities on his DRAM architecture designs. Doc #621 102:22 to

103:9.

67. In the latter part of 1996, pursuant to a nondisclosure

agreement, Shau disclosed his DRAM architecture to TSMC and secured

permission from TSMC to submit a tape out as a paying customer. Doc

#621 103:10-17; Jury Trial 162:20 to 164:7.

68. In late 1996, Shau sent TSMC a tape out file. Shau’s

tape out to TSMC employed the same general DRAM architecture as the

MOSIS tape out but was modified significantly. Doc #621 103:24 to

104:7. For example, the chip that Shau taped out to TSMC was much

larger and had a more complex interface. Doc #621 104:2-7; 108:3-

14.

69. Unlike his earlier MOSIS tape out, the design embodied in

Shau’s first tape out to TSMC was a test chip fully compatible with

a popular commercial chip at the time, called CacheRAM. Doc #621

104:13-15; 106:16 to 107:8.

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page16 of 28

ATI Ex. 2120
IPR2023-00922

Page 127 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

17

70. TSMC successfully completed the physical fabrication of

Shau’s first TSMC tape out in January 1997 and sent him a small

number of test chips. Jury Trial 211:6 to 211:24.

71. Shau’s initial TSMC tape out had bugs. However, the bugs

were outside the portion of the tape out corresponding to Shau’s

DRAM architecture that is the subject of the claimed inventions of

Shau’s patents. Doc #621 109:17-25. Shau was able to bypass those

errors for purposes of establishing that he could read and write

data to the memory cells in the memory array. This meant that his

memory array design was working properly. Doc #621 109:2 to

111:16; Jury Trial 211:25 to 213:1-18; 469:3-6; 214:17-22.

72. On February 25, 1997, Shau filed the ‘290 Application.

The ‘290 Application included the following additional text in its

specification:

Using this memory cell 1400 and a memory architecture
disclosed in this invention and in our previous patent
application, commercial memory products were manufactured
successfully. The major advantage of the logic memory
cell 1400 is that it can be manufactured using standard
logic technology. The resulting memory product achieved
unprecedented high performance.

Ex. 5132, at 5132-035.

73. As of the time of the filing of the ‘290 Application,

physical chips corresponding to Shau’s design had been fabricated

successfully by TSMC. Doc #621 111:9-16; 116:21 to 117:2.

74. Because a physical semiconductor chip had been fabricated

by February 1997, Shau included text in the ‘290 Application to

reflect that a product had been “manufactured,” whereas the term

“manufactured” had not previously been employed in the ‘620

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page17 of 28

ATI Ex. 2120
IPR2023-00922

Page 128 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

18

Application. Compare Ex 5109, with Ex 5132; see also Doc #621

183:23 to 184:9.

75. Because he had actually achieved (past tense) measured

results from a manufactured chip, Shau used the term “achieved” in

the ‘290 Application - rather than the present tense term “we are

able to achieve” as was used in the ‘620 Application in reference

to simulation results. Compare Ex 5109, at 5109-026, with Ex 5132,

at 5132-035. The statement that the chip achieved unprecedented

high performance was accurate. Doc #621 72:7; 72:22-24; 114:11-14.

76. The initial TSMC test chip was a “commercial” chip in the

sense that it was configured as a commercial CacheRAM chip and was

manufactured by a commercial foundry (TSMC) rather than an academic

foundry (MOSIS). Doc #621 104:13-15; 106:16 to 107:8; 112:22-25.

It was also a “commercial” chip in the sense that Shau intended it

as a profit-making vehicle. Doc #621 49:19 to 50:15.

77. Most importantly, a person of ordinary skill in the art

would consider a design to be a “commercial product” so long as it

is intended and designed for eventual commercial sale - and not,

for example, for experimental or academic purposes. Doc #621

194:18 to 195:3.

78. Based upon Shau’s experience at Intel Corporation, he

considered a product to be “commercial” if it was designed to be

sold. Doc #621 112:24 to 113:5. Indeed, even the personnel at

TSMC referred to Shau’s USRAM product as a commercial product. Doc

#621 113:6-8.

79. The phrase “manufactured successfully” is not a term of

art, and its meaning is ambiguous rather than clear and

unequivocal. Doc #621 195:4-10. Interpreted literally, the term

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page18 of 28

ATI Ex. 2120
IPR2023-00922

Page 129 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

19

“manufactured successfully” in the ‘290 Application would indicate

to a person of ordinary skill at a bare minimum that the circuit

manufacturer had fabricated a chip successfully, the chip achieved

a degree of functionality and the chip might lead to a successful

commercial product. Doc #621 195:11 to 196:5.

80. The term “manufactured successfully” does not mean that

the design is free of errors or bugs as long as the design is

likely to lead to commercial success. Doc #621 195:16-21.

81. The first TSMC test chip had completed the manufacturing

process, and, despite the presence of bugs in the extraneous logic

portions of the chip, the memory portion of the chip (which

contained the inventions claimed by the ‘290 Application)

functioned successfully. Doc #621 109:2-25. Accordingly, the test

chip was “manufactured successfully.” Doc #621 114:2-5.

82. A person of ordinary skill would not interpret the term

“manufactured successfully” in the ‘290 Application to reflect

“full” or perfect functionality. The phrase “fully functional” is

a term of art in the industry for perfect functionality, including

functionality in areas of the chip that may have absolutely nothing

to do with the claimed invention. Nor would a person of ordinary

skill interpret “manufactured successfully” to suggest that the

design was ready for mass production. Doc #621 195:4 to 196:22.

Shau’s statements to TSMC that his design was not worthy for mass

production and not fully functional are consistent with his

statement to the PTO that his claimed invention was successful; the

claimed invention in his patent application related to the memory

array (which worked perfectly), while the errors precluding mass

production referred to the external logic circuitry.

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page19 of 28

ATI Ex. 2120
IPR2023-00922

Page 130 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

20

83. In the latter half of 1997, Shau began designing his DRAM

architecture using TSMC’s 0.35µm technology. That same year, Shau

submitted to TSMC a tape out designed for TSMC’s 0.35µm generic

logic process. Jury Trial 217:10-23.

84. After revision of his 0.35µm TSMC tape out, Shau received

fabricated chips from TSMC that were fully functional. Based on

these fully functional chips, Shau filed the ‘538 Application,

which ultimately issued as the ‘229 Patent. Jury Trial 217:10 to

218:20. Thus, a fully functional chip existed at the time the

application for the ‘229 Patent was filed.

85. TSMC filed its motion for summary judgment on its

inequitable conduct counterclaim on the eve of a mediation with

UniRAM, suggesting that its pursuit of this claim was intended as

settlement leverage against UniRAM. Doc #621 116:14-20.

86. In 2006, UniRAM reached a settlement with MoSys, a former

defendant in this case. Doc #293.

87. To provide MoSys with complete relief, UniRAM had to

include a patent release in the MoSys settlement that covered TSMC.

Doc #287 at 3.

88. After executing the MoSys settlement, UniRAM pursued only

trade-secret, and not patent, claims against TSMC. In November of

2006, UniRAM and TSMC filed jointly with the court a case

management statement in which UniRAM stated that it was no longer

seeking to enforce the ‘229 patent against TSMC. Doc #287 at 3.

89. Despite no longer needing to pursue its inequitable

conduct theory as a defense against UniRAM’s patent claims -

because UniRAM relinquished those claims - TSMC did not drop its

inequitable conduct counterclaim.

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page20 of 28

ATI Ex. 2120
IPR2023-00922

Page 131 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

21

90. At the hearing on TSMC’s motion for summary judgment,

counsel for TSMC informed the court that a motivation behind filing

the motion was to deny UniRAM’s and UniRAM’s counsel access to the

MoSys settlement funds: “UniRAM’s a corporate entity and they could

pay [the settlement money] out to their shareholders. Whether

that’s appropriate or not is a different question. There’s

probably preexisting payments to law firms that need to be made.

They don’t have a lot of money.” Doc #381 (1/11/07 Inequitable

Conduct Summary Judgment Hearing Tr) at 3.

91. Relatedly, if TSMC had only been interested in protecting

the settlement funds, it could have chosen a less drastic measure,

such as an injunction, rather than seeking a judgment on its

counterclaim. Doc #381 at 3-13. This suggests that TSMC’s

continued pursuit of its counterclaim was pretextual and was not in

good faith.

92. In February 2007, the court denied TSMC’s motion for

summary judgment on inequitable conduct. Doc #349.

93. In the court’s order denying TSMC’s motion for summary

judgment, the court indicated that TSMC had failed to identify any

bases by which a PTO examiner could have made an obviousness or

enablement rejection of the UniRAM patents. The court also labeled

TSMC’s interpretation of its evidence of Shau’s intent to deceive

the PTO as “odd.” Doc #349 at 16.

94. Despite the summary judgment order that called into

question the fundamental merits of TSMC’s inequitable conduct

counterclaim, TSMC continued to pursue that counterclaim after

issuance of the order.

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page21 of 28

ATI Ex. 2120
IPR2023-00922

Page 132 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

22

95. In continuing to pursue its inequitable conduct

counterclaim after the summary judgment order, TSMC did not act to

rectify the deficiencies in its position identified in that order.

Doc #601 at 3-4.

96. UniRAM’s trade secret claims proceeded to trial in

September 2007.

97. During the trade secret trial, TSMC cross-examined Shau

about most of the same supposed misstatements in his patent

applications that form the basis of its inequitable conduct

counterclaim. Jury Trial 265:25 to 287:5.

98. During the trade secret trial, TSMC’s counsel argued to

the jury in closing arguments that these supposed misstatements

meant that Shau lacked credibility. Jury Trial 1841:15 to 1847:18.

99. Despite TSMC’s arguments about the supposed misstatements

in UniRAM’s patents, the jury found in favor of Shau and UniRAM.

Doc #544.

100. Even though TSMC’s use of its supposed inequitable

conduct evidence had not persuaded the jury to find against UniRAM,

TSMC continued to pursue its inequitable conduct counterclaim

against UniRAM following the jury verdict.

 CONCLUSIONS OF LAW

1. A breach of the duties of candor, good faith, and honesty

when prosecuting patent applications constitutes inequitable

conduct. Molins PLC v Textron, Inc, 48 F3d 1172, 1178 (Fed Cir

1995). The proponent of an inequitable conduct defense has a

“heavy burden to meet.” UniRAM Tech, Inc v Taiwan Semiconductor

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page22 of 28

ATI Ex. 2120
IPR2023-00922

Page 133 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

23

Mfg Co, No 04-1268 (VRW), 2007 WL 596397, at *2 (N D Cal Feb 21,

2007), citing Hoffman-La Roche, Inc v Promega Corp, 323 F3d 1354,

1359 (Fed Cir 2003).

2. Inequitable conduct based upon an affirmative

misstatement of fact or omission requires clear and convincing

evidence of:

a. a misrepresentation (by statement or omission) by
the applicant;

b. the materiality of the misrepresentation and

c. intent to deceive the PTO.

Honeywell Intl Inc v Universal Avionics Sys Corp, 488 F3d 982, 999

(Fed Cir 2007); Syntex (USA) LLC v Apotex, Inc, 407 F3d 1371, 1384

(Fed Cir 2005) (“Materiality and intent to deceive are distinct

factual inquiries, and each must be shown by clear and convincing

evidence.”), quoting Life Techs, Inc v Clontech Labs, Inc, 224 F3d

1320, 1324 (Fed Cir 2000).

3. Once a material misstatement or omission and intent to

deceive have been established, the district court must weigh these

factors in light of all of the circumstances to determine whether a

finding that inequitable conduct occurred is appropriate. Dayco

Prods, Inc v Total Containment, Inc, 329 F3d 1358, 1362-63 (Fed Cir

2003).

4. “[A] court must conduct a balancing test between the

levels of materiality and intent, with a greater showing of one

factor allowing a lesser showing of the other. Life Techs, 224 F3d

at 1324.

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page23 of 28

ATI Ex. 2120
IPR2023-00922

Page 134 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

24

5. Where the proponent of the inequitable conduct defense

seeks to have a later patent declared unenforceable based upon

alleged inequitable conduct in related patents, the proponent “must

prove an ‘immediate and necessary relation’ between the inequitable

conduct in the earlier patents and the enforcement of the

descendent patent.” UniRAM, 2007 WL 596397, at *2; see Hoffman-La

Roche, Inc v Promega Corp, 319 F Supp 2d 1011 (N D Cal 2004).

6. The fact that an applicant uses an imprecise term in a

patent application does not provide “clear and convincing” evidence

of a misstatement. Kothmann Enterprises, Inc v Trinity Indus, Inc,

455 F Supp 2d 608, 618-24 (S D Tex 2006), citing Hoffmann-La Roche,

Inc v Promega Corp, 323 F3d 1354, 1363 (Fed Cir 2003), Purdue

Pharma LP v Endo Pharms, Inc, 410 F3d 690 (Fed Cir 2005) and

Frazier v Roessel Cine Photo Tech, Inc, 417 F3d 1230 (Fed Cir

2005). Although courts have found inequitable conduct based on

“applicants’ representations that they had performed experimental

testing when they had not done so and that they had achieved test

results that simply did not exist” (see Kothmann, 455 F Supp 2d at

623), here the evidence shows that Shau did perform tests. The

language Shau used to describe his claimed invention may at points

have been imprecise. Shau’s testimony describing the testing he

did and the language he chose to use in his patent applications

makes clear that the statements TSMC challenges were not

misrepresentations. See Kothmann, 455 F Supp 2d at 623-24.

7. If the PTO needs more information in interpreting a

patent application, the PTO examiner is authorized to seek

clarification or additional information. Star Fruits SNC v United

States, 393 F3d 1277, 1283 (Fed Cir 2005) (“The Office is clearly

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page24 of 28

ATI Ex. 2120
IPR2023-00922

Page 135 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

25

entitled to use section 1.105 to seek information that may support

a rejection. Just as the applicant produces information it deems

pertinent to patentability under section 1.56, the examiner is free

to request information under section 1.105 that the examiner deems

pertinent to the issue of patentability.”).

8. The PTO has adequate resources to investigate the

representations made by applicants, if necessary. The PTO has the

benefit of “hundreds of experts in the relevant arts to make

independent inquiries.” Aptix Corp v Quickturn Design Systems,

Inc, 269 F3d 1369, 1379 (Fed Cir 2001) (“The courts have no greater

resources to uncover fraud than the PTO. Although patent

prosecutions are ex parte and judicial proceedings are adversarial,

the PTO has the benefit of hundreds of experts in the relevant arts

to make independent inquiries.”) (Mayer dissenting in part).

9. Attorney fees may be awarded in an exceptional case. 35

USC § 285.

10. A finding that a case is exceptional imposes a more

stringent requirement than the standard for proof of inequitable

conduct, and in turn, an award of attorney fees imposes a more

stringent requirement than the “exceptional case” standard. Argus

Chemical Corp v Fibre Glass-Evercoat Co, 812 F2d 1381, 1387 (Fed

Cir 1987) (Nies concurring).

11. Whether a case is “exceptional” is a question of fact.

Brasseler, USA I, LP v Stryker Sales Corp, 267 F3d 1370, 1378 (Fed

Cir 2001); Graco, Inc v Binks Mfg Co, 60 F3d 785, 794-95 (Fed Cir

1995) (“A finding by a court that a case is exceptional is a

factual determination whereas the decision to award fees is

discretionary.”) (internal citations omitted). Direct or

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page25 of 28

ATI Ex. 2120
IPR2023-00922

Page 136 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

26

circumstantial evidence that is clear and convincing is needed to

establish an “exceptional case.” Brasseler, 267 F3d at 1378-79.

12. Over-assertion of the defense of inequitable conduct has

become an “absolute plague.” Burlington Indus, Inc v Dayco Corp,

849 F2d 1418, 1422 (Fed Cir 1988).

13. Often litigants improperly assert the defense as a delay

tactic, a tactic to obfuscate the issues before the court or to

drive up the patentee’s litigation costs. Chiron Corp v Abbott

Labs, 156 FRD 219, 221 (N D Cal 1994).

14. “A patent litigant should be made to feel * * * that an

unsupported charge of inequitable conduct in the Patent Office is a

negative contribution to the rightful administration of justice.”

Burlington Indus, 849 F2d at 1422; see Fiskars, Inc v Hunt Mfg Co,

221 F3d 1318, 1328 (Fed Cir 2000) (affirming an award of attorney

fees for an inequitable conduct defense “so lacking in substance as

to constitute a waste of the time and resources of all the

participants”).

15. Under 28 USC § 1927, courts have statutory authority to

sanction attorneys for improper litigation conduct: “Any attorney

* * * who so multiplies the proceedings in any case unreasonably

and vexatiously may be required by the court to satisfy personally

the excess costs, expenses, and attorneys’ fees reasonably incurred

because of such conduct.”

16. Having reviewed the evidence and considered the testimony

at trial, the court considers the testimony of UniRAM’s witnesses

to be more credible as to the existence or nonexistence of alleged

misstatements in the patents and patent applications at issue in

this proceeding than the evidence and testimony presented by TSMC.

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page26 of 28

ATI Ex. 2120
IPR2023-00922

Page 137 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

27

17. The testimony of TSMC’s primary witness as to falsity

rested primarily upon his experience alone and was uncorroborated

by any documents or other witnesses. Accordingly, it fails to

provide clear and convincing evidence of falsity.

18. The basis of TSMC’s claim is that some of Shau’s

statements can be possibly read in a context that would make the

statements misleading. TSMC does not come close to proving that

the alleged misstatements were false or misleading.

19. To the extent that the words used in the patents and

patent applications at issue were imprecise, this imprecision does

not give rise to clear and convincing evidence of falsity.

20. The court concludes that TSMC failed to prove by a

preponderance of the evidence, much less clear and convincing

evidence, that Shau made any misstatements in the patents and

patent applications at issue.

21. Because TSMC has failed to establish by clear and

convincing evidence the existence of any misstatements, the court

concludes that there was no inequitable conduct in the prosecution

of any of the patents at issue. The issues of materiality and

intent are moot.

22. In light of the circumstances, the court finds that this

is an exceptional case because TSMC pursued its counterclaim long

after UniRAM dropped its patent infringement case. Moreover,

circumstantial evidence suggests that TSMC brought this

counterclaim not because it believed that Shau lied to the patent

office but because it wanted to intimidate UniRAM. Most

importantly, TSMC’s evidence of falsity was barren. TSMC’s pursuit

of its inequitable conduct contention is highly questionable.

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page27 of 28

ATI Ex. 2120
IPR2023-00922

Page 138 of 611

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

28

Nonetheless, the court declines to order TSMC to pay the attorney

fees UniRAM incurred in defending the defense and counterclaim.

Awarding fees is an extraordinary sanction, and the Federal Circuit

has not developed detailed criteria for such awards in the context

of inequitable conduct claims.

IT IS SO ORDERED.

VAUGHN R WALKER
United States District Chief Judge

Case3:04-cv-01268-VRW Document627 Filed04/14/08 Page28 of 28

ATI Ex. 2120
IPR2023-00922

Page 139 of 611

..

PATENT APPLICATION
ATTY. DOCKET NO. 00100.02.0001

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

FILING OF A UNITED STATES PATENT APPLICATION

A GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

INVENTORS:

Steven Morein Laurent Lefebvre
10 Magazine, Apt. 801 124 Parenchere

Cambridge, Massachusetts 02139 Lachenaie Quebec Canada J6W 6A5

Andy Gruber
Andi Skende

215 Pleasant Street
49 Sheridan Drive, # 11

Shrewsbury, Massachusetts 01545
Arlington, Massachusetts 02476

ASSIGNEE:
A TI Technologies, Inc.

1 Commerce Valley Drive East
Markham, Ontario
Canada L3T 7X6

ATTORNEY OF RECORD:
CHRISTOPHER J. RECKAMP

REGISTRATION NO. 34,414
VEDDER, PRICE, KAUFMAN & KAMMHOLZ, P.C.

222 NORTH LASALLE STREET, SUITE 2600
CHICAGO, ILLINOIS 60601

PHONE (312) 609-7500
FAX (312) 609-SOOS

Express Mail Label No. EL982266165US

Date of Deposit: November 20. 2003
I hereby certifY that this paper is being deposited
with the U.S. Postal Service "Express Mail Post
Office to Addressee" service under 37 C.F.R.
Section 1. 10 on the date of deposit, indicated
above, and is addressed to: Mail Stop Patent
Application, Commissioner for Patents, P. 0. Box
1450, Alexandria, VA 22313-1450.

NameofDe~aruso

Signature: 'd fi4.A tLLtJ

ATI 2076
LG v. ATI

IPR2015-003260001

ATI Ex. 2120
IPR2023-00922

Page 140 of 611

A GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED
SHADER

FIELD OF THE INVENTION

[0001] The present invention generally relates to graphics processors and, more

particularly, to a graphics processor architecture employing a single shader.

BACKGROUND OF THE INVENTION

[0002] In computer graphics applications, complex shapes and structures are formed

through the sampling, interconnection and rendering of more simple objects, referred to

as primitives. An example of such a primitive is a triangle, or ~her suitable polygon.
\._

These primitives, in turn, are formed by the interconnection of individual pixels. Color

and texture are then applied to the individual pixels that comprise the shape based on

their location within the primitive and the primitives orientation with respect to the

generated shape; thereby generating the object that is rendered to a corresponding display

for subsequent viewing.

[0003] The interconnection of primitives and the application of color and textures to

generated shapes are generally performed by a graphics processor. Conventional

graphics processors include a series of shaders that specify how and with what

corresponding attributes, a final image is drawn on a screen, or suitable display device.

As illustrated in FIG. 1, a conventional shader 10 can be represented as a processing

block 12 that accepts a plurality of bits of input data, such as, for example, object shape

data (14) in object space (x,y,z); material properties of the object, such as color (16);

texture information (18); luminance information (20); and viewing angle information (22)

0002

ATI Ex. 2120
IPR2023-00922

Page 141 of 611

and provides output data (28) representing the object with texture and other appearance

properties applied thereto (x', y', z').

[0004] In exemplary fashion, as illustrated in FIGS. 2A-2B, the shader accepts the vertex

coordinate data representing cube 30 (FIG. 2A) as inputs and provides data representing,

for example, a perspectively corrected view of the cube 30' (FIG. 2B) as an output. The

corrected view may be provided, for example, by applying an appropriate transformation

matrix to the data representing the initial cube 30. More specifically, the representation

illustrated in FIG. 2B is provided by a vertex shader that accepts as inputs the data

representing, for example, vertices Vx, Vv and Vz, among others of cube 30 and

providing angularly oriented vertices Vx·,Vv· and Vz·, including any appearance

attributes of corresponding cube 30'.

[0005] In addition to the vertex shader discussed above, a shader processing block that

operates on the pixel level, referred to as a pixel shader is also used when generating an

object for display. Generally, the pixel shader provides the color value associated with

each pixel of a rendered object. Conventionally, both the vertex shader and pixel shader

are separate components that are configured to perform only a single transformation or

operation. Thus, in order to perform a position and a texture transformation of an input,

at least two shading operations and hence, at least two shaders, need to be employed.

Conventional graphics processors require the use of both a vertex shader and a pixel

shader in order to generate an object. Because both types of shaders are required, known

graphics processors are relatively large in size, with most of the real estate being taken up

by the vertex and pixel shaders.

2

0003

ATI Ex. 2120
IPR2023-00922

Page 142 of 611

[0006] In addition to the real estate penalty associated with conventional graphics

processors, there is also a corresponding performance penalty associated therewith. In

conventional graphics processors, the vertex shader and the pixel shader are juxtaposed in

a sequential, pipelined fashion, with the vertex shader being positioned before and

operating on vertex data before the pixel shader can operate on individual pixel data.

[0007] Thus, there is a need for an improved graphics processor employing a shader that

is both space efficient and computationally effective.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The present invention and the associated advantages and features thereof, will

become better understood and appreciated upon review of the following detailed

description of the invention, taken in conjunction with the following drawings, where like

numerals represent like elements, in which:

[0009] FIG. 1 is a schematic block diagram of a conventional shader;

[00010] FIGS. 2A·2B are graphical representations of the operations performed by

the shader illustrated in FIG. 1 ;

[00011] FIG. 3 is a schematic block diagram of a conventional graphics processor

architecture;

[00012] FIG. 4A is a schematic block diagram of a graphics processor architecture

according to the present invention;

3

0004

ATI Ex. 2120
IPR2023-00922

Page 143 of 611

[00013) FIG. 4B is a schematic block diagram of an optional input component to

the graphics processor according to an alternate embodiment of the present invention; and

[00014] FIG. 5 is an exploded schematic block diagram of the unified shader

employed in the graphics processor illustrated in FIG. 4A.

DETAILED DESCRIPTION OF THE INVENTION

[00015) Briefly stated, the present invention is directed to a graphics processor that

employs a unified shader that is capable of performing both the vertex operations and the

pixel operations in a space saving and computationally efficient manner. In an exemplary

embodiment, a graphics processor according to the present invention includes an arbiter

circuit for selecting one of a plurality of inputs for processing in response to a control

signal; and a shader, coupled to the arbiter, operative to process the selected one of the

plurality of inputs, the shader including means for performing vertex operations and pixel

operations, and wherein the shader performs one of the vertex operations or pixel

operations based on the selected one of the plurality of inputs.

[00016) The shader includes a general purpose register block for storing at least the

plurality of selected inputs, a sequencer for storing logical and arithmetic instructions that

are used to perform vertex and pixel manipulation operations and a processor capable of

executing both floating point arithmetic and logical operations on the selected inputs

according to the instructions maintained in the sequencer. The shader of the present

invention is referred to as a "unified" shader because it is configured to perform both

vertex and pixel operations. By employing the unified shader of the present invention,

4

0005

ATI Ex. 2120
IPR2023-00922

Page 144 of 611

the associated graphics processor is more space efficient than conventional graphics

processors because the unified shader takes up less real estate than the conventional

multi-shader processor architecture.

[00017] In addition, according to the present invention, the unified shader is more

computationally efficient because it allows the shader to be flexibly allocated to pixels or

vertices based on workload.

[00018] Referring now to FIG. 3, illustrated therein is a graphics processor

incorporating a conventional pipeline architecture. As shown, the graphics processor 40

includes a vertex fetch block 42 which receives vertex information relating to a primitive

to be rendered from an off-chip memory 55 on line 41. The fetched vertex data is then

transmitted to a vertex cache 44 for storage on line 43. Upon request, the vertex data

maintained in the vertex cache 44 is transmitted to a vertex shader 46 on line 45. As

discussed above, an example of the information that is requested by and transmitted to

the vertex shader 46 includes the object shape, material properties (e.g. color), texture

information, and viewing angle. Generally, the vertex shader 46 is a programmable

mechanism which applies a transformation position matrix to the input position

information (obtained from the vertex cache 44), thereby providing data representing a

perspectively corrected image of the object to be rendered, along with any texture or

color coordinates thereof.

[00019] After performing the transformation operation, the data representing the

transformed vertices are then provided to a vertex store 48 on line 4 7. The vertex store

48 then transmits the modified vertex information contained therein to a primitive

5

0006

ATI Ex. 2120
IPR2023-00922

Page 145 of 611

assembly block 50 on line 49. The primitive assembly block 50 assembles, or converts,

the input vertex information into a plurality of primitives to be subsequently processed.

Suitable methods of assembling the input vertex information into primitives is known in

the art and will not be discussed in greater detail here. The assembled primitives are then

transmitted to a rasterization engine 52, which converts the previously assembled

primitives into pixel data through a process referred to as walking. The resulting pixel

data is then transmitted to a pixel shader 54 on line 53.

[00020] The pixel shader 54 generates the color and additional appearance

attributes that are to be applied to a given pixel, and applies the appearance attributes to

the respective pixels. In addition, the pixel shader 54 is capable of fetching texture data

from a texture map 57 as indexed by the pixel data from the rasterization engine 52 by

transmitting such information on line 55 to the texture map. The requested texture data is

then transmitted back from the texture map 57 on line 57' and stored in a texture cache

56 before being routed to the pixel shader on line 58. Once the texture data has been

received, the pixel shader 54 then performs specified logical or arithmetic operations on

the received texture data to generate the pixel color or other appearance attribute of

interest. The generated pixel appearance attribute is then combined with a base color, as

provided by the rasterization engine on line 53, to thereby provide a pixel color to the

pixel corresponding at the position of interest. The pixel appearance attribute present on

line 59 is then transmitted to post raster processing blocks (not shown).

[00021] As described above, the conventional graphics processor 40 requires the

use of two separate shaders: a vertex shader 46 and a pixel shader 54. A drawback

associated with such an architecture is that the overall footprint of the graphics processor

6

0007

ATI Ex. 2120
IPR2023-00922

Page 146 of 611

is relatively large as the two shaders take up a large amount of real estate. Another

drawback associated with conventional graphics processor architectures is that can

exhibit poor computational efficiency.

[00022] Referring now to FIG. 4A, in an exemplary embodiment, the graphics

processor 60 of the present invention includes a multiplexer· 66 having vertex (e.g.

indices) data provided at a first input thereto and interpolated pixel parameter (e.g.

position) data and attribute data from a rasterization engine 74 provided at a second input.

A control signal generated by an arbiter 64 is transmitted to the multiplexer 66 on line 63.

The arbiter 64 determines which of the two inputs to the multiplexer 66 is transmitted to a

unified shader 62 for further processing. The arbitration scheme employed by the arbiter

64 is as follows: the vertex data on the first input of the multiplexer 66 is transmitted to

the unified shader 62 on line 65 if there is enough resources available in the unified

shader to operate on the vertex data; otherwise, the interpolated pixel parameter data

present on the second input will be passed to the unified shader 62 for further processing.

[00023] Referring briefly to FIG. 5, the unified shader 62 will now be described.

As illustrated, the unified shader 62 includes a general purpose register block 92, a

plurality of source registers: including source register A 93, source register B 95, and

source register C 97, a processor (e.g. CPU) 96 and a sequencer 99. The general purpose

register block 92 includes sixty four registers, or available entries, for storing the

information transmitted from the multiplexer 66 on line 65 or any other information to be

maintained within the unified shader. The data present in the general purpose register

block 92 is transmitted to the plurality of source registers via line 109.

7

0008

ATI Ex. 2120
IPR2023-00922

Page 147 of 611

[00024] The processor 96 may be comprised of a dedicated piece of hardware or

can be configured as part of a general purpose computing device (i.e. personal computer).

In an exemplary embodiment, the processor 96 is adapted to perform 32-bit floating point

arithmetic operations as well as a complete series of logical operations on corresponding

operands. As shown, the processor is logically partitioned into two sections. Section 96

is configured to execute, for example, the 32-bit floating point arithmetic operations of

the unified shader. The second section, 96A, is configured to perform scaler operations

(e.g. log, exponent, reciprocal square root) of the unified shader.

[00025] The sequencer 99 includes constants block 91 and an instruction store 98.

The constants block 91 contains, for example, the several transformation matrices used in

connection with vertex manipulation operations. The instruction store 98 contains the

necessary instructions that are executed by the processor 96 in order to perform the

respective arithmetic and logic operations on the data maintained in the general purpose

register block 92 as provided by the source registers 93-95. The instruction store 98

further includes memory fetch instructions that, when executed, causes the unified shader

62 to fetch texture and other types of data, from memory 82 (FIG. 4A). In operation, the

sequencer 99 determines whether the next instruction to be executed (from the instruction

store 98) is an arithmetic or logical instruction or a memory (e.g. texture fetch)

instruction. If the next instruction is a memory instruction or request, the sequencer 99

sends the request to a fetch block (not shown) which retrieves the required information

from memory 82 (FIG. 4A). The retrieved information is then transmitted to the

sequencer 99, through the vertex texture cache 68 (FIG. 4A) as described in greater detail

below.

8

0009

ATI Ex. 2120
IPR2023-00922

Page 148 of 611

[00026] If the next instruction to be executed is an arithmetic or logical instruction,

the sequencer 99 causes the appropriate operands to be transferred from the general

purpose register block 92 into the appropriate source registers (93, 95, 97) for execution,

and an appropriate signal is sent to the processor 96 on line 1 0 1 indicating what operation

or series of operations are to be executed on the several operands present in the source

registers. At this point, the processor 96 executes the instructions on the operands present

in the source registers and provides the result on line 85. The information present on line

85 may be transmitted back to the general purpose register block 92 for storage, or

transmitted to succeeding components of the graphics processor 60.

[00027] As discussed above, the instruction store 98 maintains both vertex

manipulation instructions and pixel manipulation instructions. Therefore, the unified

shader 99 of the present invention is able to perform both vertex and pixel operations, as

well as execute memory fetch operations. As such, the unified shader 62 of the present

invention is able to perform both the vertex shading and pixel shading operations on data

in the context of a graphics controller based on information passed from the multiplexer.

By being adapted to perform memory fetches, the unified shader of the present invention

is able to perform additional processes that conventional vertex shaders cannot perform;

while at the same time, perform pixel operations.

[00028] The unified shader 62 has ability to simultaneously perform vertex

manipulation operations and pixel manipulation operations at various degrees of

completion by being able to freely switch between such programs or instructions,

maintained in the instruction store 98, very quickly. In application, vertex data to be

processed is transmitted into the general purpose register block 92 from multiplexer 66.

9

0010

ATI Ex. 2120
IPR2023-00922

Page 149 of 611

The instruction store 98 then passes the corresponding control signals to the processor 96

on line 1 01 to perform such vertex operations. However, if the general purpose register

block 92 does not have enough available space therein to store the incoming vertex data,

such information will not be transmitted as the arbitration scheme of the arbiter 64 is not

satisfied. In this manner, any pixel calculation operations that are to be, or are currently

being, performed by the processor 96 are continued, based on the instructions maintained

in the instruction store 98, until enough registers within the general purpose register block

92 become available. Thus, through the sharing of resources within the unified shader

62, processing of image data is enhanced as there is no down time associated with the

processor 96.

[00029] Referring back to FIG. 4A, the graphics processor 60 further includes a

cache block 70, including a parameter cache 70A and a position cache 70B which accepts

the pixel based output of the unified shader 62 on line 85 and stores the respective pixel

parameter and position information in the corresponding cache. The pixel information

present in the cache block 70 is then transmitted to the primitive assembly block 72 on

line 71. The primitive assembly block 72 is responsible for assembling the information

transmitted thereto from the cache block 70 into a series of triangles, or other suitable

primitives, for further processing. The assembled primitives are then transmitted on line

73 to rasterization engine block 74, where the transmitted primitives are then converted

into individual pixel data information through a walking process, or any other suitable

pixel generation process. The resulting pixel data from the rasterization engine block 7 4

is the interpolated pixel parameter data that is transmitted to the second input of the

multiplexer 66 on line 75.

10

0011

ATI Ex. 2120
IPR2023-00922

Page 150 of 611

[00030] In those situations when vertex data is transmitted to the unified shader 62

through the multiplexer 66, the resulting vertex data generated by the processor 96, is

transmitted to a render back end block 76 which converts the resulting vertex data into at

least one of several formats suitable for later display on display device 84. For example,

if a stained glass appearance effect is to be applied to an image, the information

corresponding to such appearance effect is associated with the appropriate position data

by the render back end 76. The information from the render back end 76 is then

transmitted to memory 82 and a display controller line 80 via memory controller 78.

Such appropriately formatted information is then transmitted on line 83 for presentation

on display device 84.

[00031] Referring now to FIG. 4B, shown therein is a vertex block 61 which is

used to provide the vertex information at the first input of the multiplexer 66 according to

an alternate embodiment of the present invention. The vertex block 61 includes a vertex

fetch block 61A which is responsible for retrieving vertex information from memory 82,

if requested, and transmitting that vertex information into the vertex cache 61 B. The

information stored in the vertex cache 61 B comprises the vertex information that is

coupled to the first input of multiplexer 66.

[00032] As discussed above, the graphics processor 60 of the present invention

incorporates a unified shader 62 which is capable of performing both vertex manipulation

operations and pixel manipulation operations based on the instructions stored in the

instruction store 98. In this fashion, the graphics processor 60 of the present invention

takes up less real estate than conventional graphics processors as separate vertex shaders

and pixel shaders are no longer required. In addition, as the unified shader 62 is capable

11

0012

ATI Ex. 2120
IPR2023-00922

Page 151 of 611

of alternating between performing vertex manipulation operations and pixel manipulation

operations, graphics processing efficiency is enhanced as one type of data operations is

not dependent upon another type of data operations. Therefore, any performance

penalties experienced as a result of dependent operations in conventional graphics

processors are overcome.

[00033] The above detailed description of the present invention and the examples

described therein have been presented for the purposes of illustration and description. It

is therefore contemplated that the present invention cover any and all modifications,

variations and equivalents that fall within the spirit and scope of the basic underlying

principles disclosed and claimed herein.

12

0013

ATI Ex. 2120
IPR2023-00922

Page 152 of 611

CLAIMS

What is claimed is:

1. A graphics processor, comprising:

an arbiter circuit for selecting one of a plurality of inputs in response to a

control signal; and

a shader, coupled to the arbiter circuit, operative to process the selected

one of the plurality of inputs, the shader including means for performing vertex

operations and pixel operations, and performing one of the vertex operations or pixel

operations based on the selected one of the plurality of inputs, wherein the shader

provides a appearance attribute.

2. The graphics processor of claim 1, further including a vertex storage block for

maintaining vertex information.

3. The graphics processor of claim 2, wherein the vertex storage block further

includes a parameter cache operative to maintain appearance attribute data for a

corresponding vertex and a position cache operative to maintain position data for a

corresponding vertex.

4. The graphics processor of claim 1, wherein the appearance attribute is color,

and the color is associated with a corresponding pixel when the selected one of the

plurality inputs is pixel data.

13

0014

ATI Ex. 2120
IPR2023-00922

Page 153 of 611

5. The graphics processor of claim 1, wherein the appearance attribute is position,

and the position attribute is associated with a corresponding vertex when the selected one

of the plurality of inputs is vertex data.

6. The graphics processor of claim 5, wherein the appearance attribute is color,

and the color attribute is associated with a corresponding pixel when the selected one of

the plurality of inputs is pixel data.

7. The graphics processor of claim 5, wherein the appearance attribute is one of

the following: color, lighting, texture, normal and position data.

8. The graphics processor of claim 1, wherein the appearance value is depth.

9. The graphics processor of claim 1, wherein the selection circuit is a

multiplexer, and the control signal is provided by an arbiter, wherein the arbiter is

coupled to the multiplexer.

10. The graphics processor of claim 1, wherein the shader provides vertex

position data and further including a primitive assembly block, coupled to the shader,

operative to generate primitives in response to the vertex position data.

14

0015

ATI Ex. 2120
IPR2023-00922

Page 154 of 611

11. The graphics processor of claim 10, further including a raster engine, coupled

to the primitive assembly block, operative to generate pixel parameter data in response to

the assembled vertex data.

12. The graphics processor of claim 1, wherein the shader generates pixel color

information in response to the selected one of the plurality of inputs.

13. The graphics processor of claim 1, wherein the shader includes a register

block for maintaining the selected one of the plurality of inputs, a computation element

operative to perform arithmetic and logical operations on the data maintained in the

register block, and a sequencer for maintaining the instructions that are executed by the

computation element.

14. The graphics processor of claim 1, wherein the shader further includes

circuitry operative to access a memory.

15

0016

ATI Ex. 2120
IPR2023-00922

Page 155 of 611

15. A unified shader, comprising:

a general purpose register block for maintaining data;

a processor unit; and

a sequencer, coupled to the general purpose register block and the

processor unit, the sequencer maintaining instructions operative to cause the processor

unit to execute vertex calculation and pixel calculation operations on selected data

maintained in the general purpose register block.

16. The shader of claim 15, wherein the sequencer further includes circuitry

operative to fetch data from a memory.

17. The shader of claim 15, further including a selection circuit operative to

provide information to the general purpose block in response to a control signal.

18. The shader of claim 15, wherein the processor unit executes instructions that

generate a pixel color in response to the selected one of the plurality of inputs.

19. The shader of claim 15, wherein the processor unit executes vertex

calculations while the pixel calculations are still in progress.

20. The shader of claim 15, wherein the processor unit generates vertex position

and appearance data in response to a selected one of the plurality of inputs.

16

0017

ATI Ex. 2120
IPR2023-00922

Page 156 of 611

21. The shader of claim 17, wherein the selection circuit is a multiplexer and the

control signal is provided by an arbiter.

17

0018

ATI Ex. 2120
IPR2023-00922

Page 157 of 611

A GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED
SHADER

ABSTRACT

A graphics processing architecture employing a single shader is disclosed. The

architecture includes a circuit operative to select one of a plurality of inputs in response

to a control signal; and a shader, coupled to the arbiter, operative to process the selected

one of the plurality of inputs, the shader including means for performing vertex

operations and pixel operations, and wherein the shader performs one of the vertex

operations or pixel operations based on the selected one of the plurality of inputs. The

shader includes a register block which is used to store the plurality of selected inputs, a

sequencer which maintains vertex manipulation and pixel manipulations instructions and

a processor capable of executing both floating point arithmetic and logical operations on

the selected inputs in response to the instructions maintained in the sequencer.

CHICAG0/#837098.1

18

0019

ATI Ex. 2120
IPR2023-00922

Page 158 of 611

~I

"A Graphics Processing Architecture
Employing A Unified Shader"
Inventors: Morein et at.
Docket No. 0100.02.0001

1/5

co
T""

1-w 0::: Oa..
UJ<(0

....J ""')J: 0 ~C/) (.)

0:::
UJ
Cl
<(
J:
C/)

co
T""

0 N
N N

UJ UJ
0:::
~~

(.)
z

1-<(<(
~Cl z
1- :2

~
....J

(.!)UJ
z.....~
~(.!)
wz
><(

0020

ATI Ex. 2120
IPR2023-00922

Page 159 of 611

30:.__.../1

"A Graphics P~ocessirig Architecture
Employing A Unified Shader"
Inventors: Morein et al.
Docket No. 0100.02.0001

FIG. 2A
(PRIOR ART)

30a'

FIG. 28
(PRIOR ART)

30

/
30f

0021

ATI Ex. 2120
IPR2023-00922

Page 160 of 611

MEMORY

r--41

"A Graphics Processing Architecture
Employing A Unified Shader"
Inventors: Morein et al.
Docket No. 0100.02.0001

315

57
~-·········-~----·-··-
1
I
I

i TEXTURE
i MAP
I
I
I
t _____________________ _

VERTEX FETCH V-CACHE
/44

'-42
-45

VERTEX
SHADER

'-46

FROM TEXTURE
57 ..I CACHE

56..1

FIG. 3
(PRIOR ART)

TO
57 ...

58_;

1

47

/55

I

VERTEX
STORE

-49

PRIMITIVE
ASSEMBLY

-51

RASTERIZA TION
ENGINE

53-

PIXEL
SHADER

54--'

-59

~.-

POST RASTER
PROCESSING

/48

/50

/52

0022

ATI Ex. 2120
IPR2023-00922

Page 161 of 611

"A Graphics P~ocessi~g Architecture
Employing A Unified Shader"
Inventors: Morein et al.
Docket No. 0100.02.0001

4/5

INDICES

ARBITER \

.__-r--_____,J 63~)
64..1

DISPLAY
CONTROLLER

83-

DISPLAY

I
MUX)ee

'------..----J

f.---65 62
/

UNIFIED
SHADER

.... as

RENDER
BACK
END

MEMORY
CONTROLLER

~81

MEMORY

FIG. 4A

/67 TO MEMORY
, r-68 '

TEXTURE

6~A
VERTEX 6k
CACHE

PARAMETER JOA
CACHE 00

POSITION ~OB
CACHE

PRIMITIVE J2

ASSEMBLY

73

RASTERIZATION ~4
ENGINE

'75

'"\ME MORY
;,1 D ATA

0023

ATI Ex. 2120
IPR2023-00922

Page 162 of 611

"A Graphics Pro~essing Architecture
Employing A Unified Shader"
Inventors: Morein et at.
Docket No. 0100.02.0001

INDICES 515 ·

J
61

·---------- ----------------~-----------------1 I
I
I
I
I
I

VERTEX
FETCH

VERTEX
CACHE

l TO MUX
I
I
I

I
SOURCE A

"-93

"-85

I
I
I
I
I

FIG. 48
----------------------- -----------~
61A 618

FROM MUX

v6s
0

MEMORY
/99 FETCH

r-------._----~~67,

/
98

INSTRUCTION
STORE 1-------------f 92

1)

r109

63 -
91

CONSTANTS /

"-94 ;
~--------------~

SOURCE B

CPU

I r97

SOURCE C

96A -------- --u
-~----....J
I
I

.__---r--~~~-----------1
.'-96T (SCALER)

"-1 01

FIG. 5 _62
0024

ATI Ex. 2120
IPR2023-00922

Page 163 of 611

History of the Modern Graphics Processor, Part 3 - TechSpot

https://web.archive.org/web/20130412060547/http://www.techspot.com/article/657-history-of-the-gpu-part-3/[9/12/2015 3:16:17 PM]

TechSpot on: Like Follow

Most Popular

Trending Featured

More Trending Topics

Featured on Keyboards

also @ TechSpot: Iranian scientist says he has built a machine that can predict the future

CPU & Motherboards Graphics Desktops Laptops Tablets Smartphones Storage Cases Input Software & Games

HOME FEATURES

History of the Modern Graphics Processor, Part 3
›

Find and Compare the Best Tech ProductsBy Graham Singer on April 10, 2013

Read user comments (22)

The Fall of 3Dfx and The Rise of
Two Giants
With the turn of the century the graphics industry bore witness to further consolidation.

The pro market saw iXMICRO leave graphics entirely, while NEC and Hewlett-Packard both
produced their last products, the TE5 and VISUALIZE FX10 series respectively. Evans &
Sutherland also parted ways with the sale of its RealVision line to focus on the planetaria and
fulldome projection systems.

In the consumer graphics market, ATI announced the acquisition of ArtX Inc. in February 2000,
for around $400 million in stock. ArtX was developing the GPU codenamed Project Dolphin
(eventually named “Flipper”) for the Nintendo GameCube, which added significantly to ATI’s
bottom line.

Also in February, 3dfx
announced a 20% workforce
cut, then promptly moved to
acquire Gigapixel for $186

58
Like

Tweet

Hacker demonstrates how to
hijack an airplane using an
Android app
37 Comments

The History of the Modern
Graphics Processor, Part 3: The
Nvidia vs. ATI era begins
21 Comments

Iranian scientist says he has built
a machine that can predict the
future
15 Comments

PC industry posts steepest
quarterly sales decline in history
21 Comments

Next Xbox to feature AMD
processor, not compatible with
360 titles
35 Comments

Metadot Das Keyboard
Professional

79 6 reviews

Logitech Illuminated Keyboard

87
24 reviews

Razer BlackWidow Ultimate
24 reviews

TECHSPOT NEWS PRODUCTS DOWNLOADS FORUMS

AboutSign in

ATI 2077
LG v. ATI

IPR2015-00326
0001

ATI Ex. 2120
IPR2023-00922

Page 164 of 611

History of the Modern Graphics Processor, Part 3 - TechSpot

https://web.archive.org/web/20130412060547/http://www.techspot.com/article/657-history-of-the-gpu-part-3/[9/12/2015 3:16:17 PM]

Legion Hardware Reviews

Downloads and Drivers

Downloads Drivers

More Downloads

Latest Discussion

More Recent Discussion

Subscribe to TechSpot

ATI GameCube GPU

Where 3dfx was once a
byword for raw
performance, its
strengths around this
time laid in its full
screen antialiasing
image quality.

million and gained the
company’s tile-based rendering
IP.

Meanwhile, S3 and Nvidia
settled their outstanding patent
suits and signed a seven-year
cross-license agreement.

VIA assumed control of S3
around April-May which itself
was just finishing a restructuring process from the acquisition of Number Nine. As part of S3’s
restructuring, the company merged with Diamond Multimedia in a stock swap valued at $165
million. Diamond’s high-end professional graphics division, FireGL, was spun off as SONICblue
and later sold to ATI in March 2001 for $10 million.

3DLabs acquired Intergraph’s Intense3D in April, while the final acts of 3dfx played out towards
the end of the year, despite 2000 kicking off with the promise of a better future as the long-
awaited Voodoo 5 5500 neared its debut in July. The latter ended up trading blows with the
GeForce 256 DDR and won the high-resolution battle.

But where 3dfx was once a byword for raw
performance, its strengths around this time laid in
its full screen antialiasing image quality. The
Voodoo 5 introduced T-buffer technology as an
alternative to transformation and lighting, by
basically taking a few rendered frames and
aggregating them into one image. This produced
a slightly blurred picture that, when run in frame
sequence, smoothed out the motion of the
animation.

3dfx’s technology became the forerunner of many
image quality enhancements seen today, like soft

shadows and reflections, motion blur, as well as depth of field blurring.

3dfx’s swan song, the Voodoo 4 4500, arrived October 19 after several delays – unlike the 4200
and 4800 that were never released. The card was originally scheduled for spring as a competitor
to Nvidia’s TNT2, but ended up going against the company’s iconic GeForce 256 DDR instead, as
well as the much better performing GeForce 2 GTS and ATI Radeon DDR.

On November 14, 3dfx announced they were belatedly ceasing production and sale of their own-
branded graphics cards, something that had been rumoured for some time but largely discounted.
Adding fuel to the fire, news got out that upcoming Pentium 4 motherboards would not support
the 3.3V AGP signalling required Voodoo 5 series.

84

Corsair Vengeance K90

90
13 reviews

Apple Wireless Keyboard MB167

82
13 reviews

HIS Radeon HD 7790 iCooler Turbo 1GB

QNAP TS-469L

Gigabyte GeForce GTX Titan

HIS Radeon HD 7850 iPower IceQ Turbo
4GB Crossfire

Thecus N5550

Speccy 1.21.491

3DMark for Android 1.0.1-949

UVK Ultra Virus Killer 5.3.0.0

VLC Media Player 2.0.6

LG PC Sync Suite

Speaker got dropped, now it gets no
power
7 replies on Audio and Video

Gaming PC monitor, IPS or 120hz?
2 replies on Audio and Video

Used GeForce 9800GT 1GB overheats --
should I buy it?
14 replies on Audio and Video

Graphic adapter for Dell XPS M1530?
4 replies on Audio and Video

Relation between fps and refresh rate
14 replies on Audio and Video

Get free exclusive content, learn about new
features and breaking tech news.

0002

ATI Ex. 2120
IPR2023-00922

Page 165 of 611

History of the Modern Graphics Processor, Part 3 - TechSpot

https://web.archive.org/web/20130412060547/http://www.techspot.com/article/657-history-of-the-gpu-part-3/[9/12/2015 3:16:17 PM]

Voodoo5 5500 AGP box art

The death knell sounded a month later for 3dfx when Nvidia purchased its IP portfolio for $70
million plus one million shares of common stock. A few internet wits later noted that the 3dfx
design team which had moved to Nvidia eventually got both their revenge and lived up to their
potential, by delivering the underperforming NV30 graphics chip powering the FX 5700 and FX
5800 cards behind schedule.

The Nvidia vs. ATI Era Begins
Prior to the Voodoo 5’s arrival, ATI had announced the Radeon DDR as “the most powerful
graphics processor ever designed for desktop PCs.” Previews of the card had already gone public
on April 25, and only twenty-four hours later Nvidia countered with the announcement of the
GeForce 2 GTS (GigaTexel Shader). The latter included Nvidia’s version of ATI’s Pixel Tapestry
Architecture, named Nvidia Shading Rasterizer, allowing for effects such as specular shading,
volumetric explosion, refraction, waves, vertex blending, shadow volumes, bump mapping and
elevation mapping to be applied on a per-pixel basis via hardware.

The feature was believed to have made it to the previous NV10 (GeForce 256) chip but it
remained disabled due to a hardware fault. The GTS also followed ATI’s Charisma Engine in
allowing for all transform, clipping and lighting calculations to be supported by the GPU. That
said, ATI went a step further with vertex skinning for a more fluid movement of polygons, and
keyframe interpolation, where developers designed a starting and finishing mesh for an animation
and the Charisma core calculated the intervening meshes.

Email:

0003

ATI Ex. 2120
IPR2023-00922

Page 166 of 611

History of the Modern Graphics Processor, Part 3 - TechSpot

https://web.archive.org/web/20130412060547/http://www.techspot.com/article/657-history-of-the-gpu-part-3/[9/12/2015 3:16:17 PM]

By the time 2001
dawned, the PC
graphics market
consisted of a discrete
card duopoly, with both

ATI Radeon DDR

The ATI Radeon DDR eventually launched for retail in August 2000. Backed by a superior T&L
implementation and support for several of the upcoming DirectX 8 features, the Radeon DDR
alongside the GeForce 2 GTS ushered in the use of DVI outputs by integrating support for the
interface into the chip itself. The DVI output was more often found on OEM cards, however, as
the retail variety usually sported VIVO plugs.

One downside to the Radeon DDR is that boards shipped with their core and memory
downclocked from the promised 200MHz and 183MHz, respectively. In addition, drivers were
once again less than optimal at launch. There were issues with 16-bit color and compatibility
problems with VIA chipsets, but this did not stop the card from dominating the competition at
resolutions higher than 1024x768x32. A price of $399 for the 64MB version stacked up well
versus $349-399 for the 64MB GeForce 2 GTS, which it beat by a margin of 10-20% in
benchmarks, and helped ATI maintain its number one position in graphics market share over
Nvidia.

Nvidia wasn’t doing all that bad for themselves either. The company reported net income of $98.5
million for the fiscal year on record revenue of $735.3 million, driven in large part by its market
segmentation strategy, releasing a watered-down MX version of the card in June and a higher
clocked Ultra model in August. The latter dethroned the Radeon in terms of performance but it
also cost $499. A Pro model arrived in December.

Besides releasing a GeForce 2 card at every price point, from the budget MX to the professional
Quadro 2 range, Nvidia also released its first mobile chip in the form of the GeForce2 Go.

As 3dfx was undergoing its death throes in
November, Imagination Tech (ex-VideoLogic) and
ST Micro attempted to address the high volume
budget market with the PowerVR series 3 KYRO.
Typically ranging in price from $80 to $110
depending on the memory framebuffer, the card
represented good value for the money in gaming
at resolutions of 1024x768 or lower. It would have
become more popular, had the GeForce2 MX

0004

ATI Ex. 2120
IPR2023-00922

Page 167 of 611

History of the Modern Graphics Processor, Part 3 - TechSpot

https://web.archive.org/web/20130412060547/http://www.techspot.com/article/657-history-of-the-gpu-part-3/[9/12/2015 3:16:17 PM]

of them in addition to
Intel supplying the vast
majority of integrated
graphics chipsets.

arrived later, or not so aggressively priced at
~$110.

The KYRO II arrived in April 2001 with a bump in
clock speeds compared to the original and
manufactured on a smaller 180nm process by ST
Micro. But once again the card faced stiff
competition from the GeForce 2 MX. Nvidia rebadged the card as the MX200 and lopped 40% off
its price, while adding a higher clocked MX400 card at the same price as the Kyro II.

When PowerVR failed to secure game development impetus for tile based rendering, and ST
Micro closed down its graphics business in early 2002, Imagination Technologies moved from
desktop graphics to mobile and leveraged that expertise into system on chip graphics. They
licenced the Series 5/5XT/6 for use with ARM-based processors in the ultra portable and
smartphone markets.

By the time 2001 dawned, the PC graphics market consisted of a discrete card duopoly, with both
of them in addition to Intel supplying the vast majority of integrated graphics chipsets.

Meanwhile, Matrox and S3/VIA clung to the margins of traditional markets.

Building on the strides made with the GeForce 2 series, Nvidia unveiled the GeForce 3 on
February 27, 2001 priced between $339 and $449. The card became the new king of the hill, but
it really only came into its own at the (then) extreme resolution of 1600x1200, preferably with full
screen antialiasing applied.

Nvidia's stock GeForce 3 card

Initial drivers were buggy, especially in some OpenGL titles. What the new GeForce did bring to
the table was DirectX 8, multisampling AA, quincunx AA (basically 2xMSAA + post process blur),
8x anisotrophic filtering as well as the unrivalled ability to handle 8xAF + trilinear filtering, and a
programmable vertex shader which allowed for closer control of polygon mesh motion and a more
fluid animation sequence.

There was also LMA (Lightspeed Memory Architecture) support -- basically Nvidia's version of
HyperZ -- for culling pixels that would end up hidden behind others on screen (Z occlusion
culling) as well as compressing and decompressing data to optimize use of bandwidth (Z
compression).

Lastly, Nvidia implemented load-balancing algorithms as part of what they called the Crossbar
Memory Controller, which consisted of four independent memory sub-controllers as opposed to
the industry standard single controller, allowing incoming memory requests to be routed more
effectively.

0005

ATI Ex. 2120
IPR2023-00922

Page 168 of 611

History of the Modern Graphics Processor, Part 3 - TechSpot

https://web.archive.org/web/20130412060547/http://www.techspot.com/article/657-history-of-the-gpu-part-3/[9/12/2015 3:16:17 PM]

Nvidia NV2A inside Microsoft's Xbox

Nvidia’s product line later added the
NV2A, a derivative of the GeForce 3
with GeForce4 attributes that was used
in Microsoft's Xbox game console.

At this point, Nvidia controlled 31% of
the graphics market to Intel’s 26% and
ATI’s 17%.

As Nvidia complemented the GF3 line-
up with underclocked Ti 200 and
overclocked Ti 500 models, ATI hurried
to ramp up deliveries of the Radeon
8500. The card was built around the
R200 GPU using TSMC’s 150nm
process (the same used by GeForce
3’s NV20). The chip had been

announced in August and was eagerly awaited since John Carmack of id software talked it up
saying it would run the new Doom 3 “twice as well” as the GeForce 3.

ATI’s official R8500 announcement was no less enthusiastic. But reality kicked in once the card
launched in October and was found to perform at the level of the underclocked GF3 Ti 200 in
games. Unfinished drivers and a lack of workable Smoothvision antialiasing weighted heavily
against the R8500 in its initial round of reviews. By the time the holiday season arrived, a second
round of reviews showed that the drivers had matured to a degree and raised the R8500’s
performance in-between the Ti 200 and the standard GF3.

Spec comparison snapshot

Core

clock

(MHz)

Pixel

pipelines

Fill rate

(Mpixels/s

Texture

units per

pixel

pipeline

Fill rate

(Mtexels/s)

Memory

clock

(MHz)

Memory

bus

width

(bits)

Memory

bandwidth

(GB/s)

GeForce3 Ti 200 175 4 700 2 1400 400 128 6.4

GeForce3 200 4 800 2 1600 460 128 7.4

GeForce3 Ti 500 240 4 960 2 1920 500 128 8.0

Radeon 64MB DDR 183 2 366 3 1100 366 128 5.9

Radeon 8500 275 4 1100 2 2200 550 128 8.8

Very competitive pricing and a better all around feature set (2D image quality, video playback,
performance under antialiasing) made the card a worthy competitor to the GF3 and Ti 500
nonetheless.

ATI’s sales for the year dropped to $1.04 billion as the company recorded a net loss of $54.2
million. The company began granting licenses to board partners to build and market graphics
boards, while refocusing their resources on design and chip making.

ATI also debuted the Set-Top-
Wonder Xilleon, a development
platform based on the Xilleon
220 SoC which provided a full
processor, graphics, I/O, video
and audio for set-top boxes
integrated into digital TV
designs.

To complement Xilleon, ATI
acquired NxtWave

0006

ATI Ex. 2120
IPR2023-00922

Page 169 of 611

History of the Modern Graphics Processor, Part 3 - TechSpot

https://web.archive.org/web/20130412060547/http://www.techspot.com/article/657-history-of-the-gpu-part-3/[9/12/2015 3:16:17 PM]

ATI Xilleon board

Communications for $20 million
in June 2002. The company
specialized in digital signal
processing and applications for
set-top boxes and terrestrial

digital solutions.

Keeping up with their product launch cycle, Nvidia released the GeForce 4 in February 2002.
Three MX parts, three mobile parts based on the MX models, and two performance Titanium
models (Ti 4400 and Ti 4600) made up the initial line up -- built on TSMC’s 150nm process. The
GeForce 4 was effectively ready for release two months earlier but the launch was delayed to
avoid eating into GeForce 3 sales over the holiday season.

The MX series cards were intended for the budget segment but they were still largely uninspiring
as they were based on the old GeForce 2 architecture. MPEG2 decode added but the cards
reverted to DirectX 7.0/7.1 support as the earlier GF2 MX line. Pricing at $99-179 reflected the
reduced feature set.

The Titanium models on the other hand were excellent performers and in some instances
managed a 50+% increase in performance over the GeForce3 Ti 500. The Ti 4600 became the
performance champ overnight, easily disposing of the Radeon 8500, while the Ti 4200 at $199
represented the best value for money card.

But then came the Radeon 9700 Pro and promptly consigned every other card to also-ran status.

ATI Radeon 9700 Pro (FIC A97P)

Developed by a team that had originally formed the core of ArtX, the ATI R300 GPU delivered
spectacularly and arrived very promptly. It was the first to bring DirectX 9.0 support, and by
extension, the first architecture to support shader model 2.0, vertex shader 2.0, and pixel shader

0007

ATI Ex. 2120
IPR2023-00922

Page 170 of 611

History of the Modern Graphics Processor, Part 3 - TechSpot

https://web.archive.org/web/20130412060547/http://www.techspot.com/article/657-history-of-the-gpu-part-3/[9/12/2015 3:16:17 PM]

About flip-chip GPU packages: Previous
generations of graphics chips and other ICs
used wire-bonding mounting. With this
method, the chip sits on the board with the
logic blocks sitting under the metal layers
whose pads would be connected by thin
wires arranged around the edges of the
chip down to solder balls or pins on the
underside. Flip–chip does away with the
wire component through contact points
(usually soldered in a ball grid array)
directly on the “top” of the chip, which is
then inverted, or “flipped” so that the solder
points directly contact the substrate or
circuit board. The chip then undergoes
localised heating (reflow) to melt the solder
that then forms the connection with the
underlying contact points of the board.

2.0. Other notable achievements: it was the second GPU series to support AGP 8x -- SiS’s Xabre
80/200/400 line was first -- and implementing the first flip-chip GPU package.

ATI complemented the line-up in
October by adding a non-Pro 9700 at
$299 for those unable to part with
$399 for the top model. Meanwhile,
the cut down 9500 Pro ($199) and
9500 ($179) reached down through
mainstream market segments, and
the FireGL Z1/X1 filled in the $550-
950 bracket for professional
graphics. The All-In-Wonder 9700
Pro ($449) was also added in
December.

ATI’s sales are likely to have taken a
hit when it was found that many
cards could be modded to their more
expensive counterparts. Examples of
this included the ability to turn a
9500 card into a 9700 using its
reference board (with the full
complement of memory traces), or a
9800 Pro to its XT counterpart. For the latter, a driver patch was made available to check if it
would accept the mod, which consisted of soldering in a resistor or using a pencil to tweak the
GPU and memory voltage control chip. Hard mods also included upgrading various 9800 models
into a FireGL X2, while a patched/Omega driver had the ability to turn a $250 9800 SE 256MB
into a $499 9800 Pro 256MB.

In addition to discrete graphics, ATI also introduced desktop integrated graphics and chipsets.
These included the A3/ IGP 320 meant to be paired with AMD CPUs, RS200/IGP 330 & 340 for
Intel chips, as well as the mobile series U1/IGP 320M for AMD platforms and RS200M for
Pentium 4-M. All of them were complemented with ATI southbridges, specifically the IXP200/250.

SiS unveiled the Xabre line between the launch of the GeForce4 and the R300. The cards were
consistently slower than Nvidia and ATI’s offerings at the same price points, and were
handicapped by the lack of vertex shader pipelines. This translated into a heavy reliance upon
drivers and game developers to get the most out of software emulation, thus keeping SiS in the
margins of desktop discrete 3D graphics.

The Xabre line also implemented “Turbo Texturing”, where framerates were increased by
drastically reducing texture quality, and lacked anisotrophic filtering . All this did little to endear
reviewers to the cards.

The Xabre line was the last under the SiS banner, as the company spun off its graphics division
(renamed XGI) and merged with Trident Graphics a couple of months later in June.

The first of Nvidia’s FX series arrived on January 27, 2003 with the infamous “Dustbuster” FX
5800 and the slightly faster (read: less slow) FX 5800 Ultra. When compared to the reigning
champ, the ATI Radeon 9700 Pro (and non-Pro), the FX was much louder, it delivered inferior
anisotrophic filtering (AF) quality and antialiasing (AA) performance, and was overall much
slower. ATI was so far ahead that a second-tier Radeon 9700 card launched five months earlier
comfortably outperformed the Ultra, and it was $100 cheaper ($299 vs $399).

The 3dfx design team which had moved to Nvidia got
both their revenge and lived up to their potential, by
delivering the underperforming NV30 graphics chip

0008

ATI Ex. 2120
IPR2023-00922

Page 171 of 611

History of the Modern Graphics Processor, Part 3 - TechSpot

https://web.archive.org/web/20130412060547/http://www.techspot.com/article/657-history-of-the-gpu-part-3/[9/12/2015 3:16:17 PM]

Xbox 360 GPU (ATI C1 / Xenos)

behind schedule.

The NV30 chip was supposed to debut in August, around the same time as the Radeon 9700, but
ramping problems and high defect rates on TSMC’s Low-K 130nm process held Nvidia back.
Some circles also argued that the company was strapped for engineering resources, with more
than a few tied up with the NV2A Xbox console chip, the SoundStorm APU, as well as the
motherboard chipsets.

Looking to move things forward Nvidia undertook a project to have several FX series chips
fabricated on IBM’s more conventional Fluorosilicate glass (FSG) low-K 130nm process.

ATI refreshed its line of cards in March, starting with the 9800 Pro, featuring a R350 GPU that
was basically an R300 with some enhancements to the Hyper-Z caching and compression
instruction.

The RV350 and RV280 followed in April. The first of these, found inside the Radeon 9600, was
built using the same TSMC 130nm low-K process that Nvidia had adopted, Meanwhile, the
RV280 powering the Radeon 9200 was little more than a rebadged RV250 of the Radeon 9000
with AGP 8x support.

The same month saw ATI and
Nintendo sign a technology agreement
that would eventually lead to the
Hollywood GPU for the Nintendo Wii
console. ATI added a second console
coup in August, when Microsoft
awarded the Xbox 360 GPU contract to
them.

A scant three and a half months after
the inglorious debut of the FX 5800,
Nvidia took another shot with the NV35
(FX 5900 and FX 5900 Ultra). The new
Detonator FX driver greatly improved
AA and AF, almost matching ATI's
solution in terms of quality. However
the 5900 achieved what the 5800 could
not. It knocked ATI’s Radeon 9800 Pro
from its spot as the fastest card around,
although at $499 apiece, few would
actually take advantage of this.

As expected, ATI regained bragging rights in September with the release of the 9800 XT. Superior
driver support – mainly with some DX9 games – also made the XT a better overall card than
Nvidia’s counterpart, ensuring that ATI ended the year with the performance crown. The 9700 Pro
remained the standout mainstream board, while the FX 5700 Ultra at $199 won the sub-$200
price segment.

ATI bounced back with a $35.2 million profit in 2003 after posting a $47.5 million loss in 2002. A
good chunk of this came from higher selling prices for the dominant 9800 and 9600 cards.
Meanwhile, Nvidia retained 75% of the DirectX 9 value segment market, thanks to the popularity
of the FX 5200.

0009

ATI Ex. 2120
IPR2023-00922

Page 172 of 611

History of the Modern Graphics Processor, Part 3 - TechSpot

https://web.archive.org/web/20130412060547/http://www.techspot.com/article/657-history-of-the-gpu-part-3/[9/12/2015 3:16:17 PM]

Another company
making a comeback
into desktop graphics
was S3. Unfortunately,
the buying public now
generally saw desktop
graphics as a two horse
race – and S3 wasn’t
one of the two.

Source DirectX 9.0 Effects Trailer, shown during ATI's presentation of the Radeon 9800 XT
and 9600 XT

The newly formed XGI launched the Xabre successor in a staggered release between September
and November. Renamed Volari, the card line-up ranged from the $49 V3 to the dual GPU Duo
V8 Ultra. The V3 was virtually a rebrand of Trident’s Blade XP4 and a DX 8.1 part, while the rest
of the series (V5 and V8) was developed from the previous SiS Xabre and featured DX9.0
support.

For the most part, all of the models underdelivered, with the exception of the entry-level V3 which
offered performance equal to the GeForce FX 5200 Ultra and and Radeon 9200. The Duo V8
Ultra was priced ~20% higher than the Radeon 9800 Pro 128MB, yet delivered performance on
par or lower than the 9600XT.

XGI’s Volari line lingered on with the 8300 in late
2005, which was more or less on par with the
Radeon X300SE/GeForce 6200 at $49, as well as
the Z9/Z11 and XP10. The company was
reabsorbed back into SiS in October 2010.

Another company making a comeback into
desktop graphics was S3. After the graphics
division was sold to VIA for $208 million plus the
company’s $60 million debt, the restructured
venture concentrated primarily on chipset projects.

DeltaChrome desktop cards were announced in
January, but in time-honoured S3 fashion, the
first S4 and S8 models didn’t start appearing in
the retail channel until December. The new cards
featured most of the new must-haves of 2003;

DirectX 9 support, 16x AF, HD 1080p support, and portrait-mode display support.

Unfortunately, the buying public now generally saw desktop graphics as a two horse race – and
S3 wasn’t one of the two. While S3 was looking to keep competitive, ATI and Nvidia were driving
each other to achieve ever-increasing levels of performance and image quality.

The DeltaChrome was succeeded by the GammaChrome in 2005.

Nvidia and ATI continued in 2005 their staggered launches. The former launched its first GDDR3
card in March as the FX 5700 Ultra, followed by the GeForce 6 series with the high-end 6800
range. The initial line up comprised the 6800 ($299), GT ($399), the Ultra ($499), and an
overclocked variant known as the Ultra Extreme ($549) to counter ATI’s X800 XT Platinum
Edition. The latter was sold by a select band of add-in board partners.

The 6800 Ultra 512MB was added on March 14 2005 and sold for the unbelievable price of $899
-- BFG added an overclocked version for $999. The midrange was well catered for with the 6600
series in September.

Nvidia’s feature set for the 6000 series included DirectX 9.0c support, shader model 3.0 (although
the cards were never able to fully exploit this), Nvidia’s PureVideo decode and playback engine,

0010

ATI Ex. 2120
IPR2023-00922

Page 173 of 611

History of the Modern Graphics Processor, Part 3 - TechSpot

https://web.archive.org/web/20130412060547/http://www.techspot.com/article/657-history-of-the-gpu-part-3/[9/12/2015 3:16:17 PM]

While Nvidia's SLI was
announced in June
2004, the required
nForce4 motherboards
didn't hit the retail
channel in numbers
until November, and
initial driver releases
where sporadic until

and SLI support -- the multi-GPU performance multiplier IP that was acquired from 3dfx.

Reintroducing an old feature: SLI

Where the 3dfx implementation resulted in each processing unit being responsible for alternate
line scans, Nvidia handled things in a few different ways. The company implemented split frame
rendering (SFR), in which each GPU rendered the top or bottom half of the frame, alternate frame
rendering (AFR) so GPUs rendered frames in turn, and in some cases the driver just disabled SLI
depending on whether the game supported the feature. This last feature was a hit-or-miss early in
driver development.

While the technology was announced in June, it required a motherboard with an nForce4 chipset
to enable multi-GPU setups, and these didn’t start reaching the retail channel in numbers until
late November. Adding fuel to the fire, initial driver releases where sporadic (at best) until into the
following year.

Reviews at the time generally mirrored current
performance, showing that two lower tier cards
(like the 6600 GT SLI which could be had for
$398) generally equalled one enthusiast card at
lower resolutions and image quality. At highest
resolutions and with antialiasing applied, however,
single card setups still gained the upper hand.
SLI and ATI’s CrossFire performance was as
erratic then as it sometimes is now, running the
full gamut from perfect scaling to not working at
all.

Nvidia’s board partners immediately saw
marketing opportunities with the re-invented tech,
with Gigabyte offering a dual 6600 GT SLI card
(the 3D1), followed by a dual 6600 (3D1-XL), and

0011

ATI Ex. 2120
IPR2023-00922

Page 174 of 611

History of the Modern Graphics Processor, Part 3 - TechSpot

https://web.archive.org/web/20130412060547/http://www.techspot.com/article/657-history-of-the-gpu-part-3/[9/12/2015 3:16:17 PM]

into the following year.
the 6800 GT (3D1-68GT). These cards not only
required an nF4 chipset but also a Gigabyte
branded motherboard as well.

Of the high-end single GPU cards, the 6800 Ultra and X800 XT/XT PE were fairly evenly
matched, both in price and performance. But they weren't without their issues. The latter arrived
in May and suffered supply constraints throughout its entire production life, while Nvidia’s flagship
6800 Ultra was extremely late arriving in August and suffered supply constraints too depending on
distribution area, since the card was only made available by a percentage of board partners.

The 6800 GT generally bested the X800 Pro at $399, while the 6600 GT cleaned up in the $199
bracket.

Intense competition with Nvidia that year didn’t have an adverse effect on ATI’s bottom line, as
profit peaked at $204.8 million for the year from nearly $2 billion in revenue.

One quirk associated with the well-received 6600 GT was that it initially launched as a PCI
Express card, at a time when PCI-E was an Intel-only feature for motherboards designed for
Pentium 4 processors. These chips generally lagged in gaming performance behind AMD’s
offerings, which of course used the AGP data bus.

Nvidia’s 7000 series started rolling off the assembly lines well before the 6000 series had
completed its model line-up. The 7800 GTX arrived a full five months before the reduced bill of
materials (BoM) 6800 GS saw the light of day. The first iteration of the 7800 series was based
around the G70 GPU on TSMC’s 110nm process, but quickly gave way to the G71-based 7900
series, made on TSMC’s 90nm process.

While the naming convention changed from “NV” to “G”, the latter were architecturally related to
the NV40 series of the GeForce 6000. And while only fractionally larger than the NV40-45 at
334mm², the G70 packed in an extra eighty million transistors (for a total of 302 million), adding a
third more vertex pipelines and 50% more pixel pipelines. In most cases, the G70 was
superseded within nine months, and in the case of the GS and GTX 512MB, the figure was 3 and
4 months respectively.

At the entry level, the 7100 GS continued the use of TurboCache (the ability for the board to use
some system memory), which was introduced with the previous generation GeForce 6200 TC.

Nvidia GeForce 7800 GTX

At the other end of the spectrum, the 7800 GTX 256MB hit retail on June 22 with an MSRP of
$599, though its actual street price was higher in many instances. ATI wrested the single-GPU
crown back with the X1800 XT, but Nvidia countered with a 512MB version of the 7800 GTX
thirty-five days later and promptly regained the title.

0012

ATI Ex. 2120
IPR2023-00922

Page 175 of 611

History of the Modern Graphics Processor, Part 3 - TechSpot

https://web.archive.org/web/20130412060547/http://www.techspot.com/article/657-history-of-the-gpu-part-3/[9/12/2015 3:16:17 PM]

ATI's original CrossFire design
required using an external Y cable

ATI’s revenue rose to a
record $2.2 billion in
2005, the highest in the
company’s history,
aided by shipments of
Xenos GPUs for the
Xbox 360. Net profit,
however, slumped to
$16.9 million.

Two months later, ATI launched the X1900 XTX, which traded blows with Nvidia’s flagship. This
particular graphics horsepower race resulted in both cards being priced at $650. One spinoff of
the cards moving to a 512MB frame buffer was that gaming at 2560x1600 with 32-bit color and a
high level of image quality enabled was now possible via dual link DVI.

ATI announced their multi-card
Crossfire technology in May 2005 and
made it available in September with the
launch of the Xpress 200 Crossfire
Edition chipset, and X850 XT Crossfire
Master board. Due to a single-link
TMDS, resolution and refresh rates
were initially limited to 1600x1200
@60Hz, but a dual-link TMDS for
2560x1600 would soon replace it.

Unlike Nvidia’s solution of two identical
cards communicating via a bridge
connector, ATI implemented a master
card with TMDS receiver, which
accepted input from a slave card via external dongle and a Xilinx compositing chip.

Like Nvidia’s SLI, CrossFire offered alternative frame rendering (AFR) and split frame rendering
(SFR), but also a rendering technique called SuperTiling. The latter offered a performance
increase in certain applications, but it did not work with OpenGL or support accelerated geometry
processing. Also like SLI, Crossfire faced its share of driver-related troubles.

ATI intended to have their R520 based cards – their first to incorporate Shader Model 3.0 – ready
by the June-July timeframe, but the late discovery of a bug in the cell library forced a 4 month
delay.

Initial launches comprised the X1800 XL/XT using the R520 core, the X1300 budget cards using
the RV515 with essentially one quarter of the graphics pipelines of the R520, and the X1600
Pro/XT based on the RV530, which was similar to the RV515 but with a higher shader and vertex
pipeline-to-TMU and ROP ratio.

Due to the initial delay with the R520, the GPU and its derivations were being replaced a scant
three and a half months later by the R580-based X1900 series which used TSMC’s new 80nm
process. Continuing with the roll out, half the graphics pipeline resources went into the RV570
(X1650 GT/XT and X1950 GT/Pro), while a shrunk RV530 became the RV535 powering the
X1650 Pro as well as the X1300 XT.

ATI’s revenue rose to a record $2.2 billion for the year, the highest in the company’s history,
aided by shipments of Xenos GPUs for the Xbox 360. Net profit, however, slumped to $16.9
million.

By this stage, any graphics card launch not based
on an Nvidia or ATI GPU was received with a
certain amount of curiosity, if not enthusiasm.
Such was the scene when S3’s overhauled
graphics line-up debuted in November.

The Chrome S25 and S27 promised good gaming
performance based on their high clocks, but
delivered a mostly sub-par product. Initial pricing
at $99 (S25) and $115 (S27) put the cards in
competition against Nvidia’s 6600/6600GT and
ATI’s X1300Pro/X1600Pro, but neither S3 card
stood up to the competition in any meaningful
way, aside from power consumption. That slight
advantage evaporated as ATI/AMD and Nvidia

0013

ATI Ex. 2120
IPR2023-00922

Page 176 of 611

History of the Modern Graphics Processor, Part 3 - TechSpot

https://web.archive.org/web/20130412060547/http://www.techspot.com/article/657-history-of-the-gpu-part-3/[9/12/2015 3:16:17 PM]

addressed the HTPC and entry-level market
segment, effectively killing S3’s subsequent Chrome 400 and 500 series.

An added issue for S3 was that the cost of building the cards resulted in razor thin profits. The
company needed high volume sales in a market dominated by two vendors. HTC were to acquire
S3 in July 2012 for $300 million, a move originally seen as leverage in HTC’s and S3’s separate
legal disputes with Apple.

Nvidia and ATI continued to hog the press coverage in 2006.

ATI acquired Macrosynergy, a Shanghai based design and engineering centre with personnel
working in California and previously part of the XGI group. Then in May the company bought
BitBoys in a $44 million deal.

Meanwhile, Nvidia’s first foray into dual-GPU single board products came in March, following in
the footsteps of ATI, 3dfx, and XGI. The 7900 GX2 would sandwich two custom boards
essentially carrying a couple of downclocked 7900 GTXs. But Asustek didn’t wait around for
Nvidia’s dual-GPU solution, however, and released its own take as the Extreme N7800GT Dual
($900, 2000 units built), which paired two 7800 GT GPUs instead.

This card started Asus interest in limited edition dual-GPU boards, and possibly hardened
Nvidia’s attitude towards board partners’, as Asustek products took the spotlight from their
reference models at launch.

In the higher volume mainstream market, the 7600 GT and GS both provided solid performance
and remarkable longevity, while ATI’s X1950 XTX and Crossfire ruled the top end enthusiast
benchmarks for single GPU cards. The X1900 XT and GeForce 7900 GT were fairly evenly
matched in the upper mainstream bracket.

ATI's David Orton and AMD's Hector Ruiz officially announce the historic merger

After twenty-one years as an independent company, ATI was bought out by AMD on October 25
2006 for a total price of $5.4 billion – split between $1.7 billion from AMD, $2.5 billion borrowed
from lending institutions, 57 million AMD shares and 11 million options/restricted stock units
valued at $1.2 billion. At the time of the buy out, around 60-70% of ATI’s chipset/IGP revenues
were accrued from a partnership with Intel based motherboards.

Two weeks after the ATI buy-out, Nvidia ushered in

0014

ATI Ex. 2120
IPR2023-00922

Page 177 of 611

History of the Modern Graphics Processor, Part 3 - TechSpot

https://web.archive.org/web/20130412060547/http://www.techspot.com/article/657-history-of-the-gpu-part-3/[9/12/2015 3:16:17 PM]

Share this:

the age of unified shader architectures for PC
graphics.

With a large part of Intel’s IGP chipset market moving to Nvidia, market share dropped
dramatically. The logic behind the buy was a seemingly quick path to GPU technology, rather
than use the $5.4 billion to develop AMD’s own IP and add licenced technology where needed. At
the time, AMD was aiming at the quick introduction of Torrenza and the associated Fusion
projects.

Two weeks after the ATI buy-out, Nvidia ushered in the age of unified shader architectures for PC
graphics. ATI’s Xenos GPU for the Xbox 360 had already introduced the unified architecture to
consoles.

This article is the third installment on a series of four. Next week we'll wrap things up,

following the development of Radeon products under AMD's wing, the continued rivalry between

GeForce and Radeon CPUs, the transition toward stream processing, and what the present a

near future holds for graphics processors.

Part 1: (1976 - 1995) The Early Days of 3D Consumer Graphics

Part 2: (1995 - 1999) 3Dfx Voodoo: The Game-changer

Part 3: (2000 - 2006) The Nvidia vs. ATI Era Begins

Part 4: (2006 - Present) The Modern GPU: Stream processing units a.k.a.

GPGPU

22 comments - Read user comments, write your own

Contact the author: Graham Singer

Check out other recent features published at TechSpot

Back to TechSpot

TechSpot | Technology News and Analysis

© 2013 TechSpot, Inc. All Rights Reserved

TechSpot is a registered trademark

Terms of Use | Privacy Policy

Main Sections

Technology News

Reviews

Guides

Product Finder

Downloads

Drivers

Community

TechSpot Forums

Recent Topics

Recent Comments

Community Activity

Useful Resources

Trending Topics

Featured on TechSpot

PC Buying Guide

Hot Downloads

RSS Feeds

About TechSpot

About Us

Advertising

News Archive

The TechSpot Blog

0015

ATI Ex. 2120
IPR2023-00922

Page 178 of 611

96 Computer

H O W T H I N G S W O R K

I n the early 1990s, ubiquitous
interactive 3D graphics was still
the stuff of science fiction. By the
end of the decade, nearly every
new computer contained a graph-

ics processing unit (GPU) dedicated to
providing a high-performance, visu-
ally rich, interactive 3D experience.

This dramatic shift was the in-
evitable consequence of consumer
demand for videogames, advances in
manufacturing technology, and the
exploitation of the inherent paral-
lelism in the feed-forward graphics
pipeline. Today, the raw computa-
tional power of a GPU dwarfs that of
the most powerful CPU, and the gap is
steadily widening.

Furthermore, GPUs have moved
away from the traditional fixed-func-
tion 3D graphics pipeline toward
a flexible general-purpose compu-
tational engine. Today, GPUs can
implement many parallel algorithms
directly using graphics hardware.
Well-suited algorithms that leverage
all the underlying computational
horsepower often achieve tremendous
speedups. Truly, the GPU is the first
widely deployed commodity desktop
parallel computer.

THE GRAPHICS PIPELINE
The task of any 3D graphics system

is to synthesize an image from a
description of a scene—60 times per
second for real-time graphics such as
videogames. This scene contains the
geometric primitives to be viewed as
well as descriptions of the lights illu-
minating the scene, the way that each
object reflects light, and the viewer’s
position and orientation.

GPU designers traditionally have
expressed this image-synthesis process
as a hardware pipeline of specialized
stages. Here, we provide a high-level
overview of the classic graphics
pipeline; our goal is to highlight those
aspects of the real-time rendering cal-
culation that allow graphics applica-
tion developers to exploit modern
GPUs as general-purpose parallel
computation engines.

Pipeline input
Most real-time graphics systems

assume that everything is made of tri-
angles, and they first carve up any more
complex shapes, such as quadrilaterals
or curved surface patches, into trian-
gles. The developer uses a computer
graphics library (such as OpenGL or

Direct3D) to provide each triangle to
the graphics pipeline one vertex at a
time; the GPU assembles vertices into
triangles as needed.

Model transformations
A GPU can specify each logical

object in a scene in its own locally
defined coordinate system, which is
convenient for objects that are natu-
rally defined hierarchically. This con-
venience comes at a price: before
rendering, the GPU must first trans-
form all objects into a common coor-
dinate system. To ensure that triangles
aren’t warped or twisted into curved
shapes, this transformation is limited
to simple affine operations such as
rotations, translations, scalings, and
the like.

As the “Homogeneous Coordinates”
sidebar explains, by representing each
vertex in homogeneous coordinates,
the graphics system can perform the
entire hierarchy of transformations
simultaneously with a single matrix-
vector multiply. The need for efficient
hardware to perform floating-point
vector arithmetic for millions of ver-
tices each second has helped drive the
GPU parallel-computing revolution.

The output of this stage of the
pipeline is a stream of triangles, all
expressed in a common 3D coordinate
system in which the viewer is located
at the origin, and the direction of view
is aligned with the z-axis.

Lighting
Once each triangle is in a global

coordinate system, the GPU can com-
pute its color based on the lights in the
scene. As an example, we describe the
calculations for a single-point light
source (imagine a very small lightbulb).
The GPU handles multiple lights by
summing the contributions of each
individual light. The traditional graph-
ics pipeline supports the Phong light-
ing equation (B-T. Phong, “Illumina-
tion for Computer-Generated Images,”
Comm. ACM, June 1975, pp. 311-
317), a phenomenological appearance
model that approximates the look of
plastic. These materials combine a dull
diffuse base with a shiny specular high-

How GPUs
Work
David Luebke, NVIDIA Research
Greg Humphreys, University of Virginia

GPUs have moved away from

the traditional fixed-function

3D graphics pipeline toward

a flexible general-purpose

computational engine.

r2How.qxp 23/1/07 12:44 PM Page 96

ATI 2078
LG v. ATI

IPR2015-00326

ATI Ex. 2120
IPR2023-00922

Page 179 of 611

light. The Phong lighting equation
gives the output color C = KdLi(N · L)
+ KsLi(R · V)s.

Table 1 defines each term in the
equation. The mathematics here isn’t
as important as the computation’s
structure; to evaluate this equation
efficiently, GPUs must again operate
directly on vectors. In this case, we
repeatedly evaluate the dot product of
two vectors, performing a four-com-
ponent multiply-and-add operation.

Camera simulation
The graphics pipeline next projects

each colored 3D triangle onto the vir-
tual camera’s film plane. Like the
model transformations, the GPU does
this using matrix-vector multiplication,
again leveraging efficient vector opera-
tions in hardware. This stage’s output
is a stream of triangles in screen coor-
dinates, ready to be turned into pixels.

Rasterization
Each visible screen-space triangle

overlaps some pixels on the display;
determining these pixels is called ras-
terization. GPU designers have incor-
porated many rasterizatiom algo-
rithms over the years, which all ex-
ploit one crucial observation: Each
pixel can be treated independently
from all other pixels. Therefore, the
machine can handle all pixels in par-
allel—indeed, some exotic machines
have had a processor for each pixel.
This inherent independence has led
GPU designers to build increasingly
parallel sets of pipelines.

Texturing
The actual color of each pixel can

be taken directly from the lighting cal-
culations, but for added realism,
images called textures are often
draped over the geometry to give the
illusion of detail. GPUs store these tex-
tures in high-speed memory, which
each pixel calculation must access to
determine or modify that pixel’s color.

In practice, the GPU might require
multiple texture accesses per pixel to
mitigate visual artifacts that can result
when textures appear either smaller
or larger on screen than their native

resolution. Because the access pattern
to texture memory is typically very
regular (nearby pixels tend to access
nearby texture image locations), spe-
cialized cache designs help hide the
latency of memory accesses.

Hidden surfaces
In most scenes, some objects

obscure other objects. If each pixel
were simply written to display mem-
ory, the most recently submitted tri-
angle would appear to be in front.
Thus, correct hidden surface removal
would require sorting all triangles
from back to front for each view, an
expensive operation that isn’t even
always possible for all scenes.

All modern GPUs provide a depth
buffer, a region of memory that stores
the distance from each pixel to the
viewer. Before writing to the display,
the GPU compares a pixel’s distance to
the distance of the pixel that’s already
present, and it updates the display
memory only if the new pixel is closer.

THE GRAPHICS PIPELINE,
EVOLVED

GPUs have evolved from a hardwired
implementation of the graphics pipeline

to a programmable computational sub-
strate that can support it. Fixed-func-
tion units for transforming vertices and
texturing pixels have been subsumed by
a unified grid of processors, or shaders,
that can perform these tasks and much
more. This evolution has taken place
over several generations by gradually
replacing individual pipeline stages
with increasingly programmable units.
For example, the NVIDIA GeForce 3,
launched in February 2001, introduced
programmable vertex shaders. These
shaders provide units that the pro-
grammer can use for performing
matrix-vector multiplication, exponen-
tiation, and square root calculations, as

February 2007 97

Homogeneous Coordinates

Points in three dimensions are typically represented as a triple (x,y,z). In
computer graphics, however, it’s frequently useful to add a fourth coordinate,
w, to the point representation. To convert a point to this new representation,
we set w = 1. To recover the original point, we apply the transformation
(x,y,z,w) —> (x/w, y/w, z/w).

Although at first glance this might seem like needless complexity, it has sev-
eral significant advantages. As a simple example, we can use the otherwise
undefined point (x,y,z,0) to represent the direction vector (x,y,z). With this uni-
fied representation for points and vectors in place, we can also perform several
useful transformations such as simple matrix-vector multiplies that would oth-
erwise be impossible. For example, the multiplication

can accomplish translation by an amount Dx, Dy, Dz.
Furthermore, these matrices can encode useful nonlinear transformations

such as perspective foreshortening.

1 0 0 ∆x

0 1 0 ∆y

0 0 1 ∆z

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

x

y

z

w

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Table 1. Phong lighting equation terms.

Term Meaning

Kd Diffuse color
Li Light color
N Surface normal
L Vector to light
Ks Specular color
R Reflected light vector
V Vector to camera
s “Shininess”

r2How.qxp 23/1/07 12:44 PM Page 97

ATI Ex. 2120
IPR2023-00922

Page 180 of 611

well as a short default program that
uses these units to perform vertex trans-
formation and lighting.

GeForce 3 also introduced limited
reconfigurability into pixel processing,

exposing the texturing hardware’s
functionality as a set of register com-
biners that could achieve novel visual
effects such as the “soap-bubble” look
demonstrated in Figure 1. Subsequent

GPUs introduced increased flexibility,
adding support for longer programs,
more registers, and control-flow prim-
itives such as branches, loops, and
subroutines.

The ATI Radeon 9700 (July 2002)
and NVIDIA GeForce FX (January
2003) replaced the often awkward reg-
ister combiners with fully program-
mable pixel shaders. NVIDIA’s latest
chip, the GeForce 8800 (November
2006), adds programmability to the
primitive assembly stage, allowing
developers to control how they con-
struct triangles from transformed ver-
tices. As Figure 2 shows, modern
GPUs achieve stunning visual realism.

Increases in precision have accom-
panied increases in programmability.
The traditional graphics pipeline pro-
vided only 8-bit integers per color
channel, allowing values ranging from
0 to 255. The ATI Radeon 9700
increased the representable range of
color to 24-bit floating point, and
NVIDIA’s GeForce FX followed with
both 16-bit and 32-bit floating point.
Both vendors have announced plans
to support 64-bit double-precision
floating point in upcoming chips.

To keep up with the relentless
demand for graphics performance,
GPUs have aggressively embraced
parallel design. GPUs have long used
four-wide vector registers much like
Intel’s Streaming SIMD Extensions
(SSE) instruction sets now provide on
Intel CPUs. The number of such four-
wide processors executing in parallel
has increased as well, from only four
on GeForce FX to 16 on GeForce
6800 (April 2004) to 24 on GeForce
7800 (May 2005). The GeForce 8800
actually includes 128 scalar shader
processors that also run on a special
shader clock at 2.5 times the clock
rate (relative to pixel output) of for-
mer chips, so the computational per-
formance might be considered equiv-
alent to 128 ¥ 2.5/4 = 80 four-wide
pixel shaders.

UNIFIED SHADERS
The latest step in the evolution from

hardwired pipeline to flexible compu-
tational fabric is the introduction of

98 Computer

H O W T H I N G S W O R K

Figure 1. Programmable shading.The introduction of programmable shading in 2001 led

to several visual effects not previously possible, such as this simulation of refractive

chromatic dispersion for a “soap bubble” effect.

Figure 2. Unprecedented visual realism. Modern GPUs can use programmable shading to

achieve near-cinematic realism, as this interactive demonstration shows, featuring

actress Adrianne Curry on an NVIDIA GeForce 8800 GTX.

r2How.qxp 23/1/07 12:44 PM Page 98

ATI Ex. 2120
IPR2023-00922

Page 181 of 611

February 2007 99

extremely high arithmetic throughput
and streaming memory bandwidth
but tolerates considerable latency in
an individual computation since final
images are only displayed every 16
milliseconds. These workload charac-
teristics have shaped the underlying
GPU architecture: Whereas CPUs are
optimized for low latency, GPUs are
optimized for high throughput.

The raw computational horsepower
of GPUs is staggering: A single GeForce
8800 chip achieves a sustained 330 bil-
lion floating-point operations per sec-
ond (Gflops) on simple benchmarks
(http://graphics.stanford.edu/projects/
gpubench). The ever-increasing power,
programmability, and precision of
GPUs have motivated a great deal of
research on general-purpose compu-
tation on graphics hardware—GPGPU
for short. GPGPU researchers and
developers use the GPU as a compu-
tational coprocessor rather than as an
image-synthesis device.

The GPU’s specialized architecture
isn’t well suited to every algorithm.
Many applications are inherently ser-
ial and are characterized by incoher-
ent and unpredictable memory access.
Nonetheless, many important prob-
lems require significant computational

unified shaders. Unified shaders were
first realized in the ATI Xenos chip for
the Xbox 360 game console, and
NVIDIA introduced them to PCs with
the GeForce 8800 chip.

Instead of separate custom proces-
sors for vertex shaders, geometry
shaders, and pixel shaders, a unified
shader architecture provides one large
grid of data-parallel floating-point
processors general enough to run all
these shader workloads. As Figure 3
shows, vertices, triangles, and pixels
recirculate through the grid rather
than flowing through a pipeline with
stages of fixed width.

This configuration leads to better
overall utilization because demand for
the various shaders varies greatly
between applications, and indeed even
within a single frame of one applica-
tion. For example, a videogame might
begin an image by using large trian-
gles to draw the sky and distant ter-
rain. This quickly saturates the pixel
shaders in a traditional pipeline, while
leaving the vertex shaders mostly idle.
One millisecond later, the game might
use highly detailed geometry to draw
intricate characters and objects. This
behavior will swamp the vertex shaders
and leave the pixel shaders mostly idle.

These dramatic oscillations in
resource demands in a single image
present a load-balancing nightmare
for the game designer and can also
vary unpredictably as the players’
viewpoint and actions change. A uni-
fied shader architecture, on the other
hand, can allocate a varying percent-
age of its pool of processors to each
shader type.

For this example, a GeForce 8800
might use 90 percent of its 128 proces-
sors as pixel shaders and 10 percent
as vertex shaders while drawing the
sky, then reverse that ratio when
drawing a distant character’s geome-
try. The net result is a flexible parallel
architecture that improves GPU uti-
lization and provides much greater
flexibility for game designers.

GPGPU
The highly parallel workload of

real-time computer graphics demands

resources, mapping well to the GPU’s
many-core arithmetic intensity, or
they require streaming through large
quantities of data, mapping well to the
GPU’s streaming memory subsystem.

Porting a judiciously chosen algo-
rithm to the GPU often produces
speedups of five to 20 times over
mature, optimized CPU codes running
on state-of-the-art CPUs, and speed-
ups of more than 100 times have been
reported for some algorithms that
map especially well.

Notable GPGPU success stories
include Stanford University’s Folding@
home project, which uses spare cycles
that users around the world donate to
study protein folding (http://folding.
stanford.edu). A new GPU-accelerated
Folding@home client contributed
28,000 Gflops in the month after its
October 2006 release—more than 18
percent of the total Gflops that CPU
clients contributed running on Micro-
soft Windows since October 2000.

In another GPGPU success story,
researchers at the University of North
Carolina and Microsoft used GPU-
based code to win the 2006 Indy
PennySort category of the TeraSort
competition, a sorting benchmark
testing price/performance for database

GPU

Vertex
programs

3D geometric
primitives

Geometry
programs

Programmable unified processors

Hidden surface
removal

Compute
programs

GPU memory (DRAM)
Final image

Rasterization

Pixel
programs

Figure 3. Graphics pipeline evolution.The NVIDIA GeForce 8800 GPU replaces the

traditional graphics pipeline with a unified shader architecture in which vertices,

triangles, and pixels recirculate through a set of programmable processors.The flexibility

and computational power of these processors invites their use for general-purpose com-

puting tasks.

r2How.qxp 23/1/07 12:44 PM Page 99

ATI Ex. 2120
IPR2023-00922

Page 182 of 611

operations (http://gamma.cs.unc.edu/
GPUTERASORT). Closer to home for
the GPU business, the HavokFX prod-
uct uses GPGPU techniques to accel-
erate tenfold the physics calculations
used to add realistic behavior to
objects in computer games (www.
havok.com).

M odern GPUs could be seen as
the first generation of com-
modity data-parallel proces-

sors. Their tremendous computational
capacity and rapid growth curve, far
outstripping traditional CPUs, high-
light the advantages of domain-spe-
cialized data-parallel computing.

We can expect increased program-
mability and generality from future

GPU architectures, but not without
limit; neither vendors nor users want
to sacrifice the specialized architec-
ture that made GPUs successful in the
first place. Today, GPU developers
need new high-level programming
models for massively multithreaded
parallel computation, a problem soon
to impact multicore CPU vendors as
well.

Can GPU vendors, graphics devel-
opers, and the GPGPU research com-
munity build on their success with
commodity parallel computing to
transcend their computer graphics
roots and develop the computational
idioms, techniques, and frameworks
for the desktop parallel computing
environment of the future? ■

David Luebke is a research scientist
at NVIDIA Research. Contact him at
dluebke@nvidia.com.

Greg Humphreys is a faculty member in
the Computer Science Department at the
University of Virginia. Contact him at
humper@cs.virginia.edu.

100 Computer

H O W T H I N G S W O R K

Computer welcomes your submis-
sions to this bimonthly column. For
additional information, or to
suggest topics that you would like
to see explained, contact column
editor Alf Weaver at weaver@cs.
virginia.edu.

To submit a manuscript for peer review,
see Computer’s author guidelines:

www.computer.org/computer/author.htm

Computer

magazine

looks ahead

to future

technologies

• Computer, the flagship publication of the IEEE Computer
Society, publishes peer-reviewed technical content that
covers all aspects of computer science, computer
engineering, technology, and applications.

• Articles selected for publication in Computer are edited
to enhance readability for the nearly 100,000 computing
professionals who receive this monthly magazine.

• Readers depend on Computer to provide current,
unbiased, thoroughly researched information on the
newest directions in computing technology.

Welcomes Your Contribution

r2How.qxp 23/1/07 12:44 PM Page 100

ATI Ex. 2120
IPR2023-00922

Page 183 of 611

Microsoft and ATI Technologies Announce Technology Development Agreement | News Center

http://news.microsoft.com/2003/08/14/microsoft-and-ati-technologies-announce-technology-development-agreement/[9/12/2015 3:25:16 PM]

News Center Menu ≡N

Microsoft and ATI Technologies Announce
Technology Development Agreement

REDMOND, Wash., Aug. 14, 2003 — Microsoft Corp. (Nasdaq
“MSFT”) today announced it has entered into a technology development agreement with ATI Technologies Inc. (TSX: ATY,
NASDAQ: ATYT). Under the agreement, ATI is developing custom, leading-edge graphics technologies for use in future Xbox®
products and services.

“We’re combining Microsoft’s vision, software experience and R & D resources with ATI’s pioneering leadership in graphics
technologies to create innovative future Xbox products and services that meet the lifestyle needs of consumers in the Digital
Decade,”
said Robbie Bach, senior vice president of the Home and Entertainment Division at Microsoft.
“We selected ATI after reviewing the top graphics technologies in development and determining that ATI’s technical vision fits
perfectly with the future direction of Xbox.”

“Microsoft shares our passion for cutting-edge innovation,”
said K. Y. Ho, chairman and chief executive officer, ATI Technologies Inc.
“Our success working with Microsoft in the past gives us great confidence as we move forward, and our broad experience and
wealth of engineering resources will ensure that we deliver. This agreement cements ATI’s position as the prime graphics supplier
for the future of the games industry.”

About ATI Technologies Inc.

ATI Technologies Inc. is a world leader in the design and manufacture of innovative 3-D graphics and digital media silicon
solutions. An industry pioneer since 1985, ATI is the world’s foremost visual processor unit (VPU) provider and is dedicated to
delivering leading-edge performance solutions for the full range of PC and Mac desktop and notebook platforms, workstation,
set-top and digital television, game console, and handheld markets. With 2002 revenues in excess of U.S. $1 billion, ATI has
more than 2,000 employees in the Americas, Europe and Asia. ATI common shares trade on Nasdaq (ATYT) and the Toronto
Stock Exchange (ATY).

ATI 2079
LG v. ATI

IPR2015-00326
0001

ATI Ex. 2120
IPR2023-00922

Page 184 of 611

Microsoft and ATI Technologies Announce Technology Development Agreement | News Center

http://news.microsoft.com/2003/08/14/microsoft-and-ati-technologies-announce-technology-development-agreement/[9/12/2015 3:25:16 PM]

About Xbox

Xbox (http://www.xbox.com/) is Microsoft’s future-generation video game system that delivers the most powerful games
experiences ever. Xbox empowers game artists by giving them the technology to fulfill their creative visions as never before,
creating games that blur the lines between fantasy and reality. Xbox is now available in the continents of North America, Europe,
Asia and Australia.

About Microsoft

Founded in 1975, Microsoft (Nasdaq
“MSFT”
) is the worldwide leader in software, services and Internet technologies for personal and business computing. The company
offers a wide range of products and services designed to empower people through great software — any time, any place and on
any device.

Microsoft and Xbox are either registered trademarks or trademarks of Microsoft Corp. in the United States and/or other
countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Note to editors : If you are interested in viewing additional information on Microsoft, please visit the Microsoft®
Web page at http://www.microsoft.com/presspass/ on Microsoft’s corporate information pages. Web links, telephone numbers
and titles were correct at time of publication, but may since have changed. For additional assistance, journalists and analysts may
contact Microsoft’s Rapid Response Team or other appropriate contacts listed at
http://www.microsoft.com/presspass/contactpr.asp .

Featured Posts

Microsoft and Dell partner to deliver Windows 10 devices and unmatched sales, services and support
to the enterprise

Microsoft reinvents productivity with upcoming release of customer engagement solution

Xbox unveils more of its greatest games lineup in history

ROUND ROCK, TX and REDMOND, WA – Sept. 8, 2015 – … Read more »

REDMOND, Wash. — Sept. 8, 2015 — Microsoft Corp. (Nasdaq … Read more »

COLOGNE, Germany — Aug. 4, 2015 — Today Xbox opened gamescom … Read more »

Most Popular

0002

ATI Ex. 2120
IPR2023-00922

Page 185 of 611

Microsoft and ATI Technologies Announce Technology Development Agreement | News Center

http://news.microsoft.com/2003/08/14/microsoft-and-ati-technologies-announce-technology-development-agreement/[9/12/2015 3:25:16 PM]

Follow us:

Follow @MSFTNews 808K followers

Share this page:

 Tweet 0

Microsoft and Dell partner to deliver Windows 10 devices and unmatched sales, services and support
to the enterprise

Microsoft reinvents productivity with upcoming release of customer engagement solution

Windows 10 Upgrade Your World Initiative: Beagle Freedom Project wins; more chances to vote for
your favorite nonprofits in 10 countries

0Share

Other Microsoft sites

Downloads

Download Center

Windows downloads

Office downloads

Support

Support home

Knowledge base

Windows

Office

Surface

Windows Phone

Mobile devices

Xbox

Skype

Bing

Microsoft Store

c

0003

ATI Ex. 2120
IPR2023-00922

Page 186 of 611

Microsoft and ATI Technologies Announce Technology Development Agreement | News Center

http://news.microsoft.com/2003/08/14/microsoft-and-ati-technologies-announce-technology-development-agreement/[9/12/2015 3:25:16 PM]

Security

Security home

Microsoft Security Essentials

About

Microsoft

Careers

Company News

Microsoft Account

Investor relations

Site map

Popular resources

Windows Phone devices

Windows Phone app and games

Laptops and desktop computers

Microsoft computer security

Malware removal tool

Free antivirus software

Cloud computing solutions

Microsoft Dynamics CRM Online

News Center

Contact us Privacy & Cookies Terms of Use Trademarks About our ads

© 2015 Microsoft

0004

ATI Ex. 2120
IPR2023-00922

Page 187 of 611

X-bit labs - Hardware news - ATI and NVIDIA Proclaim Different Graphics Processors Architecture Goals

http://web.archive.org/web/20041224013927/http://www.xbitlabs.com/news/video/display/20041223075525.html[9/12/2015 3:49:31 PM]

 www.xbitlabs.com
 CPU Chipsets Memory Mainboards Video Storage Multimedia Mobile Other

 Home Editorial Hardware News Forums Links Our Blog Check Prices
Comparison Shopping

Search for in Computers

Browse for Laptops
 Desktops

 CPUs (processors)
 Memory

 Motherboards
 Video Cards (graphic cards)

Powered by

 Search

Advanced search

 Services

 Print article
 Send link to friend

 Information

X-bit labs Year 2004
Poll

Once again X-bit labs
asks you what you think
about the companies
participating in the
hardware market and
their results in 2004.
Who is the leader and
who is the follower?
What is really fast and
what is a marketing
gimmick? Share your
opinion with us - choose
the best of the best in
2004.

 Video

ATI and NVIDIA Proclaim Different
Graphics Processors Architecture Goals
ATI Says Unified Rendering Engine – the Way to Go,
NVIDIA Disagrees

by Anton Shilov
12/23/2004 | 07:55 AM

While particular approaches in graphics processing units design have been
pretty different for leading computer visual companies ATI Technologies
and NVIDIA Corp., in future the architecture of GPUs from the firms may
be fundamentally different, as executives from both companies proclaim
different approaches for chip internal architectures.

NVIDIA Disagrees with ATI Technologies

ATI Technologies’ developer relations manager Richard Huddy said last
month during a conference in London, UK, that the company’s future
visual processing units will feature unified pixel and shader processing.
While he declined to elaborate on the timeframes for such chips, he said
unified pixel and vertex data processing is a required capability for
Windows Graphics Foundation 2.0 that comes out together with Microsoft’s
next-generation operating system called Windows Longhorn. On of the
benefits the unified approach brings is ability to dynamically allocate chip
resources depending on the demand for pixel and vertex processing, Mr.
Huddy said. Another one is simplified software development.

NVIDIA Corp.’s chief architect David Kirk called the unified graphics
engines as an implementation detail, not a feature, but admitted the
unified architecture would be nice for programmers, who would have one
instruction set for vertex and pixel shaders.

“It’s not clear to me that an architecture for a good, efficient, and fast
vertex shader is the same as the architecture for a good and fast pixel
shader. A pixel shader would need far, far more texture math performance
and read bandwidth than an optimized vertex shader. So, if you used that
pixel shader to do vertex shading, most of the hardware would be idle,
most of the time. Which is better – a lean and mean optimized vertex
shader and a lean and mean optimized pixel shader or two less-efficient
hybrid shaders? There is an old saying: ‘Jack of all trades, master of
none’,” Mr. Kirk said in an interview with ExtremeTech web-site.

ATI: Bridging Today and Tomorrow

Not much is known about the architecture and capabilities of the code-
named R520 product scheduled for release in Q2 2005 that was initially
referred as the R500. What is clear now is that the new graphics chip will

 News Archive

Video
December, 2004

 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

 News Categories

 CPU
 Chipsets
 Memory
 Mainboards
 Video
 Storage
 Multimedia
 Mobile
 Other

 Latest News

Thursday, December 23,
2004

 [5:17 pm | Video] ATI’s Rialto
Bridge: “Over the Next
Couple of Months”. ATI's
AGP-to-PCI Express Bridge
to be Ready Soon
 [2:22 pm | CPU] IBM's, Apple's
Computers to Get
Virtualization in 2005. IBM to
Incorporate Virtualization
Technologies into Power
Chips Next Year
 [10:39 am | Other] Intel to
Strengthen Concentration on
Platform at Upcoming
IDF. Intel Developer Forum
Puts Tomorrow's Platforms
Center Stage
 [7:55 am | Video] ATI and
NVIDIA Proclaim Different
Graphics Processors
Architecture Goals. ATI Says

ATI 2080
LG v. ATI

IPR2015-00326
0001

ATI Ex. 2120
IPR2023-00922

Page 188 of 611

X-bit labs - Hardware news - ATI and NVIDIA Proclaim Different Graphics Processors Architecture Goals

http://web.archive.org/web/20041224013927/http://www.xbitlabs.com/news/video/display/20041223075525.html[9/12/2015 3:49:31 PM]

� � � � � ��

sport Shader Model 3.0 – pixel shaders 3.0 and vertex shaders 3.0 –
bringing additional programming capabilities to ATI’s future graphics
processors as well as some other innovations.

ATI’s R5xx architecture will not resemble that of the previous generation
products and NVIDIA’s GeForce 6 architecture known as NV4x, particularly
ATI will implement efficient flow-control, a crucial feature for pixel shaders
3.0, that will not bring speed penalty it does on existing SM3.0 hardware,
according to sources. The future of the graphics hardware lies in higher
number of ALUs ops per texture ops, unified pixel and vertex shaders as
well as some other requirements of Microsoft Windows Longhorn
operating system, such as virtualisation and context switches. While ATI
agrees on the long-term goals for its roadmap, it does not name feature-
set of actual products and says all the architectural changes will be
implemented gradually, not at once.

Some sources claim that the R500 is a code-name of ATI’s graphics
processor that will be submitted for Microsoft’s next Xbox console. The
shader core of the R500 was reported to have 48 Arithmetic Logic Units
(ALUs) that can execute 64 simultaneous threads on groups of 64 vertices
or pixels. ALUs are automatically and dynamically assigned to either pixel
or vertex processing depending on load. The ALUs can each perform one
vector and one scalar operation per clock cycle, for a total of 96 shader
operations per clock cycle. Texture loads can be done in parallel to ALU
operations. At peak performance, the GPU can issue 48 billion shader
operations per second, it was said.

The R520 is also expected to feature advanced memory interface,
presumably supporting GDDR4 memory.

NVIDIA: Plans Unclear

While NVIDIA remains extremely tight-lipped over its future products, it is
known that the company is readying its code-named NV47 visual
processing unit, a massively revamped GeForce 6 architecture with 24
pixel pipelines. The NV47 is expected to be released sometime in Spring,
2005, but it is unknown whether NVIDIA is ahead, or behind ATI’s R520
product. NVIDIA also reportedly plans to release a chip called NV48 in Q2
2005.

The status of NVIDIA’s future architecture code-named NV50 is also
uncertain: some reported recently that the chip had been cancelled, but
officials decline to confirm or deny the information.

Related news:
 NVIDIA’s PureVideo Accelerates Media on the PC. NVIDIA Finally

Delivers GeForce6 Video Engine
 Gigabyte Plugs Two Graphics Processors on One Graphics Card.

Gigabyte 3D1 with Two GeForce 6600 GT Outperforms Top VPUs
 NVIDIA’s NV48 to be Made at TSMC, Says Article. NVIDIA's NV48 May

Still Be in Plans, Contrary to Reports
 Industry Welcomes NVIDIA’s New Low-End Graphics Cards. NVIDIA's

GeForce 6200 with TurboCache Set to Redefine Entry-Level
 Samsung Tests Memory for 512MB Graphics Cards. Samsung Samples

512Mb GDDR3 Chips
 NVIDIA Strikes PCI Express Graphics Cards Promotion Deal with Intel.

Intel Corp. to Supply NVIDIA's Graphics Cards with its Mainboards
 NVIDIA Begins to Certify Hardware for Multi-GPU Deployments.

NVIDIA Launches SLI Certification and Logo Program

Unified Rendering Engine –
the Way to Go, NVIDIA
Disagrees
 [5:51 am | Chipsets] Intel to
Remove DDR2 Support from
Forthcoming Mainstream
Chipsets. Intel's 915PL and
915GL Chipsets to Lack
DDR2 Support

News Archive

0002

ATI Ex. 2120
IPR2023-00922

Page 189 of 611

X-bit labs - Hardware news - ATI and NVIDIA Proclaim Different Graphics Processors Architecture Goals

http://web.archive.org/web/20041224013927/http://www.xbitlabs.com/news/video/display/20041223075525.html[9/12/2015 3:49:31 PM]

�Sign In��

 Discussion

Comments currently: 8
Discussion started: 12/23/04
View comments

Add your Comment

Name/Nickname

Password
 Registered users, please, enter your

password. Register on our forums here.
E-mail

Your Comments

Copyright (c) 1999-2004 X-bit labs
E-mail: info@xbitlabs.com
Contact information
Advertising
About us

Homepage
SiteMap

Terms & Conditions

0003

ATI Ex. 2120
IPR2023-00922

Page 190 of 611

X-bit labs - Hardware news - NVIDIA Chief Architect: Unified Pixel and Vertex Pipelines – The Way to Go.

http://web.archive.org/web/20051126060929/http://www.xbitlabs.com/news/video/display/20050711230734.html[9/12/2015 3:52:10 PM]

Search

Advanced search

Services

 Print article
 Send link to friend

Page canno

� � �

�

Information

The results of our annual
2004 Readers’ Choice
poll have been
summarized and the
winners have been finally
identified. 12 prestigious
awards have been given
by over 20,000 of regular
X-bit labs readers. Let’s
find out, who the winners
are! The results of our
Readers' Choice the Best
of 2004 Poll are available
here!

Comparison Shopping

Search
for:

in Computers

Browse
for:

Laptops
Desktops

CPUs (processors)
Memory

Motherboards
Video Cards (graphic cards)

Powered by

� � � � � ��
Video

NVIDIA Chief Architect: Unified Pixel and Vertex Pipelines – The
Way to Go.
NVIDIA Says It Would Make a Chip with Unified Pipes “When it Makes
Sense”
Category: Video

by Anton Shilov
[07/11/2005 | 11:07 PM]

NVIDIA Corp.’s chief architect David Kirk said in an interview that the company would make a
graphics processor with unified pixel and vertex processing engines – an approach backed by
Microsoft Corp. and ATI Technologies, but denounced by NVIDIA earlier – in future. The
executive said that from manufacturing standpoint such a chip would be easier to make, but
harder to design.

“We will do a unified architecture in hardware when it makes sense. When it’s possible to make
the hardware work faster unified, then of course we will. It will be easier to build in the future,
but for the meantime, there's plenty of mileage left in this architecture,” David Kirk said in an
interview with Bit-tech.net web-site.

Late last year ATI and NVIDIA revealed their standpoints on the so-called unified shader
processing engines within a graphics chip. ATI said that such an approach was very efficient and
would allow to dynamically allocate resources of a chip. The company has developed a graphics
processor for Microsoft’s Xbox 360 console, which actually has unified shader processors. NVIDIA
late last year said that unified shader processor was not really efficient for both vertex and pixel
processing compared to specifically optimized pipes.

Microsoft pushes unified shader language for pixel and vertex shaders in its next-generation
Xbox 360 game console ad well as graphics API of Windows Longhorn – Windows Graphics
Foundation 2.0. As a result of that graphics hardware designers should deliver their chips with
unified shader engines at some point in future in order to more efficiently support the new API.
But at this point NVIDIA thinks the approach is not something required tremendously in short-
term future, which may be a feasible, as Longhorn is not expected to be launched earlier than in
mid-2006.

“It’s far harder to design a unified processor - it has to do, by design, twice as much. Another
word for ‘unified’ is ‘shared’, and another word for ‘shared’ is ‘competing’. It’s a challenge to
create a chip that does load balancing and performance prediction. It’s extremely important,
especially in a console architecture, for the performance to be predicable. With all that
balancing, it’s difficult to make the performance predictable,” Mr. Kirk said.

Related news

NVIDIA’s GeForce 7800 GTX Runs on Multiple Clock-Speeds.
NVIDIA’s New GPU Operates at Different Frequencies

NVIDIA Preps More GeForce 7 Graphics Chips.
NVIDIA’s G72, NV48 Tested by the Company

Graphics Card Makers Boost NVIDIA GeForce 7800 GTX Performance [UPDATED].
ASUS, Leadtek Overclock NVIDIA GeForce 7800 GTX

ATI Delays Next-Gen Graphics Processors Family.
ATI’s R5-Series Possibly Postponed to August

Samsung Electronics Shows Off 2.0GHz GDDR3 Memory.
Samsung Develops Memory for Future Graphics Cards, Consoles

ASUS Cancels Dual-Chip GeForce 6800 Graphics Cards.
ASUS Decides Not to Proceed with Dual GeForce 6800 Graphics Cards

NVIDIA Shows "The Way It’s Meant to Be Launched".

News Archive

Video

July, 2005

 1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

31

< June, 2005 August, 2005 >

Page cannot be

� � � �

��

�

News Categories

CPU
Chipsets
Memory
Mainboards
Video
Storage
Multimedia
Other
Coolers

Home Editorial Hardware News Forums Links Anna's Blog Check Prices

CPU Chipsets Memory Mainboards Video Storage Multimedia Other Coolers Mobile

X-bit
labs

ATI 2081
LG v. ATI

IPR2015-00326
0001

ATI Ex. 2120
IPR2023-00922

Page 191 of 611

X-bit labs - Hardware news - NVIDIA Chief Architect: Unified Pixel and Vertex Pipelines – The Way to Go.

http://web.archive.org/web/20051126060929/http://www.xbitlabs.com/news/video/display/20050711230734.html[9/12/2015 3:52:10 PM]

Contact information
Advertising
About us

Homepage
SiteMap
Terms & Conditions

Copyright (c) 1999-2005 X-bit labs
E-mail: info@xbitlabs.com

Graphics Company NVIDIA Unleashes GeForce 7800 GTX

Discussion

Comments currently: 0

Add your Comment

Name/Nickname

Your Comments

Mobile

Latest News

Friday, November 25, 2005
9:35 am | CPU AMD Set to Adopt

New Interconnect Architecture,
DDR3 in Three Years. AMD
Promises to Improve Server
Processors, Add DDR3 Support in
2008

7:59 am | Multimedia Customers
Report Instabilities with Xbox
360. Some of the Xbox 360
Consoles Are Unstable, Users
Claim

3:47 am | CPU Intel’s Chips to
Boost Processor System Bus
Speed. Intel’s Xeon Chips Set to
Acquire 1333MHz Bus
Thursday, November 24,
2005

10:03 pm | Multimedia 40 Million
Game Consoles to Be Sold in
2006 – Analysts. Console Market
to Explode Next Year, Analysts
Believe

9:42 pm | Chipsets Intel to
Manufacture Chipsets Using 90nm
Process Technology. Intel to Use
90nm Fabrication Process for
Chipsets

1:06 pm | CPU AMD, Sun Intro
Faster Dual-Core Server
Processors. AMD, Sun Debut AMD
Athlon 64 FX-60-Like Chips

8:47 am | Video GeForce 7800 GTX
512 Crusher: RADEON X1800 XT
PE or R580? ATI Readies
Competitor for the GeForce 7800
GTX 512

News Archive

0002

ATI Ex. 2120
IPR2023-00922

Page 192 of 611

Page 1 of 7

ATI 2082
LG v. ATI

IPR2015-00326

ATI Ex. 2120
IPR2023-00922

Page 193 of 611

Hoi-Jun Yoo Jeong-Ho Woo Ju-Ho Sohn Byung-Gyu Nam

allie

Mobile 3D Graphics SoC
From Algorithm to Chip

i

ATI 2082

LG v. ATI

Page 1 of 7 IPR2015-00326

 emp

ATI Ex. 2120

IPR2023-00922

Page 193 of 611

MOBILE 3D
GRAPHICS SoC

Page 2 of 7

ATI Ex. 2120
IPR2023-00922

Page 194 of 611

MOBILE 3D
GRAPHICS SoC
From Algorithm to Chip

Jeong-Ho Woo
Korea Advanced Institute of Science and Technology, Republic of Korea

Ju-Ho Sohn
LG Electronics Institute of Technology, Republic of Korea

Byeong-Gyu Nam
Samsung Electronics, Republic of Korea

Hoi-Jun Yoo
Korea Advanced Institute of Science and Technology, Republic of Korea

Page 3 of 7

ATI Ex. 2120
IPR2023-00922

Page 195 of 611

Copyright � 2010 John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop, # 02-01,

Singapore 129809

Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in

any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as

expressly permitted by law, without either the prior written permission of the Publisher, or authorization through

payment of the appropriate photocopy fee to the Copyright Clearance Center. Requests for permission should be

addressed to the Publisher, John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop, #02-01, Singapore 129809,

tel: 65-64632400, fax: 65-64646912, email: enquiry@wiley.com.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names

and product names used in this book are trade names, service marks, trademarks or registered trademarks of their

respective owners. The Publisher is not associated with any product or vendor mentioned in this book. All trademarks

referred to in the text of this publication are the property of their respective owners.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered.

It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional

advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstrasse 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons Canada Ltd, 5353 Dundas Street West, Suite 400, Toronto, ONT, M9B 6H8, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not

be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Mobile 3D graphics SoC : from algorithm to chip / Jeong-Ho Woo ... [et al.].

p. cm.

Includes index.

ISBN 978-0-470-82377-4 (cloth)

1. Computer graphics. 2. Mobile computing. 3. Systems on a chip. 4. Three dimensional display systems.

I. Woo, Jeong-Ho.

T385.M62193 2010

621.3815–dc22

2009049311

ISBN 978-0-470-82377-4 (HB)

Typeset in 10/12pt Times by Thomson Digital, Noida, India.

Printed and bound in Singapore by Markono Print Media Pte Ltd, Singapore.

This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees

are planted for each one used for paper production.

Page 4 of 7

ATI Ex. 2120
IPR2023-00922

Page 196 of 611

5.2.3 Mobile Unified Shader

As shaders have developed, vertex shaders and pixel shaders have similar instruction

set architecture and register files, except for some unique instructions such as texture

sampling. Therefore a unified shader architecture, which can compute vertex

shading and pixel shading with the same hardware, has been developed to reduce

Figure 5.16 Partial activation

Table 5.4 SRAM characteristics in 0.13mm CMOS processor (200MHz, 1.2V)

Capacity Size (mm2) AC current

(mA)a
Peak

current (mA)

Standby

current (mA)

32� 16 (512 b) 316� 124 12.5 154.1 0.002

64� 16 (1Kb) 559� 124 14.9 144.8 0.002

128� 16 (2Kb) 559� 134 14.9 144.8 0.002

256� 16 (4Kb) 563� 154 15.0 144.8 0.002

512� 16 (1KB) 568� 195 15.0 145.0 0.002

1024� 16 (2KB) 753� 125 13.0 183.4 0.003

32� 32 (1Kb) 559� 124 20.8 271.5 0.003

64� 32 (2Kb) 1044� 124 25.5 277.0 0.003

128� 32 (4Kb) 1044� 134 25.6 277.1 0.002

256� 32 (1KB) 1044� 154 25.6 277.2 0.002

512� 32 (2KB) 1053� 195 25.6 277.4 0.002

1024� 32 (4KB) 1451� 125 24.8 354.5 0.006

aAC current is measured at 25% read, 25% write, 50% idle state.

Mobile 3D Graphics SoC 113

Page 5 of 7

ATI Ex. 2120
IPR2023-00922

Page 197 of 611

design complexity and turnaround time. The first unified shader was implemented in

Xenos by ATI for X-Box 360 [26]. In PC and console devices, a few tens of unified

shaders are integrated and controlled with multi-thread control. Therefore, program-

mable graphics operations can be mapped to those unified shaders dynamically in

real time, and the 3D graphics processor with unified shader can utilize the hardware

resources more efficiently than conventional architecture with vertex shader and

pixel shader.

In the mobile environment, a fully programmable 3D graphics pipeline is required.

Owing to the need for low power consumption and small area, the conventional

architecturewith separate vertex shader and pixel shader is hard to implement. Since a

unified shader can compute vertex shading and pixel shading in a single hardware, it is

a good solution for programmable 3D graphics [21]. Figure 5.17a shows the block

diagram of the 3D graphics processor, in which the unified shader performs vertex and

pixel shading and other blocks perform other operations of the 3D graphics pipeline

such as clipping, rasterization, and blending.

The unified shader is a 4-way SIMDprocessor. It consists of 128 b, 4� 32-bit SIMD

datapath, a special functional unit, a texture engine, a low-power lighting engine,

register files, and control logic, as shown in Figure 5.17b. The SIMD datapath is

responsible for vector and matrix arithmetic operations such as addition (ADD),

multiplication (MUL), and inner product (DOT), and the special functional unit is

dedicated to special functional scalar operations such as logarithm (LOG), exponent

Figure 5.17 Mobile unified shader: (a) 3D graphics processor, and (b) mobile unified shader

114 Mobile 3D Graphics SoC

Page 6 of 7

ATI Ex. 2120
IPR2023-00922

Page 198 of 611

(EXP), reciprocal (RCP), and reciprocal square-root (RSQ). The texture engine

performs texture address generation, texture fetching, and texture filtering.

Since the single shader performs both vertex shading and pixel shading, task

scheduling is crucial. Figure 5.18a shows a data flow diagram of the programmable

3Dgraphics pipeline. In conventional architecture, the primitivevertices are computed

in thevertex shader for per-vertex operations such as transformation and lighting.After

per-vertex operations, vertex generator and fragment generator perform clipping and

Figure 5.18 Pixel–vertex multi-threading: (a) data flow diagram, and (b) pixel–vertex multi-threading

Mobile 3D Graphics SoC 115

Page 7 of 7

ATI Ex. 2120
IPR2023-00922

Page 199 of 611

ATI 2083
LG v. ATI

IPR2015-00326
0001

ATI Ex. 2120
IPR2023-00922

Page 200 of 611

leTitte
DirectX9.0

Ry Wie nk D. Luna),re eam amya

ATI 2083

0001 LG v. ATI

IPR2015-00326

ATI Ex. 2120

IPR2023-00922

Page 200 of 611

0002

ATI Ex. 2120
IPR2023-00922

Page 201 of 611

Introduction to 3D

Game Programming
with DirectX’° 9.0

Frank D. Luna

Technical review by Rod Lopez

Wordware Publishing, Inc.

ATI Ex. 2120

IPR2023-00922

Page 201 of 611

0003

ATI Ex. 2120
IPR2023-00922

Page 202 of 611

Library of Congress Cataloging-in-Publication Data

Luna, Frank D.
Introduction to 3D game programming with DirectX 9.0 / by Frank D. Luna.

p. cm.
ISBN-10: 1-55622-913-5 (pbk.)
1. Computer games--Programming. 2. DirectX. |. Title.
QA76.76.C672L83 2003

794.8'15268--de21 2003005834
CIP

© 2003, Wordware Publishing,Inc.

All Rights Reserved

2320 Los Rios Boulevard

Plano, Texas 75074

No part of this book may be reproduced in any form or by any means
without permission in writing from Wordware Publishing,Inc.

Printed in the United States of America

ISBN-13: 978-1-55622-913-8

ISBN-10: 1-55622-913-5

1098765

0305

DirectX is a registered trademark of Microsoft Corporation in the United States and/or other
countries.

All brand names and product names mentionedin this book are trademarksor service marks
of their respective companies. Any omission or misuse (of any kind) of service marks or
trademarks should not be regarded as intent to infringe on the property of others. The
publisher recognizes and respects all marks used by companies, manufacturers, and
developers as a means to distinguish their products.

All inquiries for volume purchases of this book should be addressed to Wordware
Publishing, Inc., at the above address. Telephone inquiries may be madebycalling:

(972) 423-0090

0003

ATI Ex. 2120

IPR2023-00922

Page 202 of 611

0004

ATI Ex. 2120
IPR2023-00922

Page 203 of 611

94 Chapter 4

const D3DXCOLOR YELLOW (D3DCOLOR_XRGB(255, 255, 0));
const D3DKCOLOR CYAN(D3DCOLOR_XRGB(0, 255, 255)); 4
const D3DXCOLOR§MAGENTA{ D3DCOLORXRGB(255, 0, 255));

}

4.2 Vertex Colors

Thecolor of a primitive is determined by the colorof the vertices that
makeit up. Therefore, we must add a color memberto our vertex dat,
structure. Note that a D3DCOLORVALUEtype cannot be used here

because Direct3D expects a 32-bit value to describe the color of a ver.
tex. (Acually, by using a vertex shader we could use 4D color vectors
for the vertex color, and thereby gain 128-bit color, but thatis getting
aheadof ourselves for now. Vertex shaders are covered in Chapter 17.)
struct ColorVertex

{

float x, _y, _ZF
D3DCOLOR _color;
static const DWORD FVT;

}

const DWORD ColorVertex::EFVF = D3DFVF_KXYZ | D3DFVF_DIEFUSE;

4.3 Shading

Shading occurs during rasterization and specifies how the vertex colors
are used to compute the pixel colors that make up the primitive. There
are two shading modesthat are presently used:flat shading and
Gouraud shading.

With flat shading, the pixels of a primitive are uniformly colored by
the color specified in thefirst vertex of the primitive. So the triangle
formed by the following three vertices would be red, since thefirst ver-
tex color is red. The colors of the second andthird vertices are ignored
with flat shading.

ColorVertex t[3];

t[0]._color = D3DCOLOR_XRGB(255, 0, 0);
f[1]._coler = D3DCOLOR_XRGB(0, 255, 0);
t[2]. color = D3DCOLORXRGB(O, 0, 255); : |

Flat shading tends to make objects appear blocky becausethere is no
smooth transition from one color to the next. A muchbetter form of

shading is called Gouraud shading (also called smooth shading). With
Gouraud shading, the colors at each vertex are interpolated linearly
across the face of the primitive. Figure 4.2 shows a red flat shaded tri-
angle and a triangle colored using Gouraud shading.

ATI Ex. 2120

IPR2023-00922

Page 203 of 611

0005

ATI Ex. 2120
IPR2023-00922

Page 204 of 611

Color 95

is Preedae

Figure 4.2: Ontheleft is a
triangle colored red with flot
shading. On the right is a
triangle with vertex colors
red, green, and blue; notice
that with Gouraud shading,
the vertex colors are inter-

polated across the triangle.

Like many things in Direct3D, the shading modeis controlled through
the Direct3D state machine. Partil
jf set flat shading
pevice->SetRenderState (DIDRS_SHADEMODE, D3DSHADEFLAT) ;

// set Gouraud shading
Device->SetRenderState (D3DRSSHADEMODE, D3DSHADE_GOURAUD);

44 SampleApplication: Colored Triangle
The sample program for this chapter demonstrates a triangle colored
using flat shading and a triangle colored using Gouraud shading.It ren-
ders the image shownin Figure 4.2. First we add the following global
variables:

ia World;Direct30VertexBuffer9* Triangle = 0;

We include a D3DXMATRIX that is used to store the world transforma-

tion of the triangles that we are going to draw. The Triangle variable
is the vertex buffer that stores the vertex dataof a triangle. Notice that

_ We only have to store the geometry of one triangle because we can
draw it multiple times at different positions in the world using the
World matrix.
___ The Setup method creates the vertex buffer andfills it with the
data of a triangle with colored vertices. Thefirst vertex in the triangle
aS full-intensity red (255), the second is full-intensity green (255), and
‘the thirdis full-intensity blue (255). Finally, we disable lighting forthis
Sample, Notice that this sample uses the new ColorVertex structure,
4S explained in section 4.2,

ATI Ex. 2120

IPR2023-00922

Page 204 of 611

0006

ATI Ex. 2120
IPR2023-00922

Page 205 of 611

96 Chapter 4

bool Setup ()
{

// create vertex buffer
Device->CreateVertexBuffer (

3 * sizeof (ColorVertex),

D3DUSAGE_WRITEONLY,
ColorVertex: :FVF,

D3DPOOL_MANAGED, j
&Triangle, |
0);

// €i11 the buffers with the triangle data
ColorVertex* v7

Triangle->Lock(0, 0, (void**)&v, 9);

v(Q]) = ColorVertex(-1.0f, 0.0£, 2.0£, D3DCOLOR_XRGB(255, a, 0)),
v(1] = ColorVertex(0.0£, 1.0£, 2.0£, D3DCOLOR_XRGB(0, 255, 9))'
v[2] = ColorVertex(1.0£, 0.0£, 2.0£, D3DCOLOR XRGB(O, 0, 255)); |

Triangle->Unlock (); ‘

// set projection matrix
D3DXMATRIX proj;
D3DXMatrixPerspectiveFovLH(

&proj,
D3DX_PT * 0.5f, // 90 — degree
(float)Width / (float) Height,
LOL,
1000.0£) ;

Device->SetTransform(D3DTSPROJECTION, &proj);

// set the render states

Device->SetRenderState (D3DRS_LIGHTING, false);

return true;

}

Then, the Display function draws Triangle twice in two different
positions and with different shade modes. The position of eachtriangle
is controlled with the world matrix—world.

bool Display(float timeDelta)
{

if(Device)
{

Device->Clear(0, 0, D3DCLEARTARGET | D3DCLEAR_ZBUFFER,
Oxff£fEffff, 1.0£, 0);

Device->BeginScene ();

Device->SetFVF (ColorVertex: :FVF) 7

Device->SetStreamSource(0, Triangle, 0, sizeof (ColorVertex)

0006

ATI Ex. 2120

IPR2023-00922

Page 205 of 611

0007

ATI Ex. 2120
IPR2023-00922

Page 206 of 611

Color 97

// draw the triangle to the left with flat shading

p3DxMatrixTranslation (&World, Lect. G.0£, 2 0£).
Devyice->SetTransfomn(D3IDTSWORLD, &World);

Device—>SeétRenderState (D3DRS_SHADEMODE, D3DSHADEFLAT);
Device->DrawPrimitive (D3DPTTRIANGLELIST, 0, 1);

// dvaw the triangle to the right with gouraud shading
D3DXMatrixTranslation (&World, 1.25f, 0.0f, 0.0f);

Device->SetTransform(D3DTS WORLD, &World);

Device->SetRenderState (D3DRSSHADEMODE, D3DSHADEGOURAUD);
Device->DrawPrimitive (D3DPTTRIANGLELIST, 0, 1);

Device—>EndScene ();
Device->Present(0, 0, 0, 6);

I
yeturn true;

PartIl
4.5 Summary
2)

= Colors are described by specifying an intensity of red, green, and
blue. The additive mixing of these three colors at different intensi-
ties allows us to describe millions of colors. In Direct3D, we can
use the D3DCOLOR, the D3DCOLORVALUE,or the D3DXCOLOR type
to describe a colorin code.

= We sometimestreat a color as a 4D vector (7 g, b, 2). Color vectors
are added, subtracted, and scaledjust like regular vectors. On the
other hand, dot and cross products do wot make sensefor color vec-
tors, but component-wise multiplication does make sensefor col-
ors. The symbol @ denotes component-wise multiplication, andit is
defined as: (C1, C2, C3, Cy) ® (Ry, Ro, Ra, Ry) = (Crky, CoRa, Cos, CR4)-

= We specify the color of each vertex, and then Direct3D usesthe
current shade mode to determine how these vertex colors are used

to compute the pixel colors of the triangle during rasterization.

® With flat shading,the pixels of a primitive are uniformly colored by
the color specified in thefirst vertex of the primitive. With Gouraud
shading, the colors at each vertex are interpolated linearly across
the face of the primitive.

|
y

ATI Ex. 2120

IPR2023-00922

Page 206 of 611

0008

ATI Ex. 2120
IPR2023-00922

Page 207 of 611

114 Chapter 6

Example:

Device->SetTexture (9, _stonewall) ;

Note: In Direct3D, you can set up to eight textures that can be com.
bined to create a more detailed image. This is called multitexturing,
We do not use multitexturing in this book until Part IV; therefore we
alwaysset the texture’s stage to 0, for now.

To disable a texture at a particular texturing stage, set pTextura to
For instance, if we don’t want to render an object with a texture, we
would write:

Device=sSetTexture (07 OF
renderObjectWithoutTexture(); :
If our scene has trianglesthat use different textures, we would haye to
do something similar to the following code:

Device->SetTexture (0, tex0);
drawTrisUsingTex0 () 7

Device->SetTéxture (0, _texl);
drawTrisUsingTex] ();

6.3 Filters

As mentioned previously, textures are mappedtotriangles in screen
space. Usually, the texture triangle is not the samesize as the screen
triangle. When the texture triangle is smaller than the screen triangle,
the texture triangle is magnified to fit. When the texture triangle is
larger than the screen triangle, the texture triangle is minified tofit. In
both cases, distortion will occur. Filtering is a technique Direct3D uses
to help smooth out these distortions.

Direct3D provides three different types offilters; each one pro-
vides a different level of quality. The better the quality, the slowerit is,
so you must make the trade-off between quality and speed. Texture
filters are set with the [Direct 3Dvevice9: :SetSamplerState
method.

® Nearest point sampling—Thisis the default filtering method
and produces the worst-looking results, but it is also the fastest to
compute. The following code sets nearest point sampling as the
minification and magnification filter:

Device->SetSamplerState (0, D3DSAMP MAGFILTER, D3DTEXE POINT); :
Device->SetSamplerState(0, D3DSAMPMINFILTER, D3DTEXFPOINT):

= Linearfiltering —This typeoffiltering producesfairly good
results and can be done veryfast on today’s hardware.It is

0008

ATI Ex. 2120

IPR2023-00922

Page 207 of 611

0009

ATI Ex. 2120
IPR2023-00922

Page 208 of 611

Lighting 107

ace a light is registered, we can turn it on and off using what this next
-xample illustrates:

yice-7b ightEnable(
pe // the element in the light list to enable/disable

true)? // true = enable, false = disable

 5 sample Application: Lighting
ett sample for this chapter creates the scene shownin Figure5,7.It

demonstrates how to specify vertex normals, how to create a material,
and how to create and activate a directional light. Note that in this sam-
ple program we do not make useof the d3dUtility.h/cpp material and
light functionality code because we want to show howit is done manu-
ally first. However, the rest of the samples in this book do use the
material andlight utility code. PartIl
Peed

ri
}

=

a
Figure 5.7: Screen shot from
the LitPyramid sample

The steps for adding light to a scene are:

Enable lighting.

Create a material for each object and set the material before ren-
dering the corresponding object.

3. Create one or morelight sources,set the light sources, and enable
them.

4. Enable any additional lighting states, such as specular highlights.

First we instantiate a global vertex buffer that stores the pyramid’s
Vertices:

Wirect3pvertexBuffer 9* Pyramid = 0;

The Setup function containsall the code relevant to this chapter, so
E omit the other functions to save space. It implements the previously
1Scussed steps to add lighting to a scene. The Setup methodstarts by

0009

ATI Ex. 2120

IPR2023-00922

Page 208of 611

0010

ATI Ex. 2120
IPR2023-00922

Page 209 of 611

108 Chapter 5

enabling lighting, whichisn’t necessary becauseit’s enabled by defay}
(but it doesn’t hurt either). t
bool Setup ()
{ :

Device->SetRenderState (D3DRSLIGHTING, true);

Next, we create the vertex buffer, lock it, and specify the vertices that
form triangles of the pyramid. The vertex normals were precomputeg
using the algorithm covered in section 5.3. Notice that while the trian.
gles share vertices, they do not share normals; thusit is not very
advantageousto use an indexlist for this object. For example,all the
triangles share the peak point (0, 1, 0); however, for each triangle, the
peak vertex normalpoints in a different direction.

Device->CreateVertexBuffer(
12 * sizeof (Vertex),

D3DUSAGEWRITEONLY,
Vertex: :FVF,

D3DPOOL_MANAGED,
&Pyramid,
O)7

// fill the vertex buffer with pyramid data
Vertex* v7 ‘
Pyramid->Lock (0, 0, (void**)&v, 0);

// front face

v[0] = Vertex(-1.0f, 0.0£, -1.0£, 0.0£, 0.707£, -0.707£);
vik] = Vertex (0.0£, 1.0£,° OLDE, OL0f, Db, 707h, —0. 70782
v[2] = Vertex(1.0£, 0.0f, -1.0£, O.0£, O.7O7£, -0.707£);

// lett face

Vi[3) = Vertem(=1.05, OJ0£,9 2.08; -—-O.7076. 8.7078, OOF?
v[4] = Vertex(0.0f, 1.0f, 0O.0f, -O.707£, O.7O7£, 0.0£):

Wis] = Verrex(-li0f, O20F, —-L0F, —O7O7ie OL/0iL, OLOL)s

// vight face
v[6] = Vertex(1.0f, 0.0f, -1.0£, O.707£, O.707£, 0.0);
v([7] = Vertex(O.0f, 1.0f, O.0£, O.707£, 0.707£, O.Of);
Vi) = Vertex(1.08, 0.0f, Lf, O05; O. 7O7E, Os08e

{/ back face

[3] = NVertex(0ts O20r, Lit, O08. CO. 7Ove, eOL 70es

¥[LO} = Vertex(O0f, L.0f, O.0£, 0.0f, O-F7O7E, 0.7078) 7
v(1l] = Vertex(-1.0f, 0.0f, 1.0£, C.OF, 0.707£, 0.707£);

Pyramid—>Unlock ();

After we have generated the vertex data of our object, we describe how
the object interacts with light by describing its materials. In this sam-
ple, the pyramid reflects whitelights, emits no light, and produces
some highlights.

0010

aa

ATI Ex. 2120

IPR2023-00922

Page 209 of 611

0011

ATI Ex. 2120
IPR2023-00922

Page 210 of 611

Lighting 109

p3DMATERIALS meri;
mtrl.Ambient = d3d::WHITE;
mtrl.Diffuse = a3d::WHITE;

mtrl.Specular = d3d::WHITE;
mtrl.Emissive = d3d::BLACK;
mtrl.Power = 5,.0£;

pevice->SetMaterial (&mtr1);

Second to last, we create and enablea directionallight. The directional
light rays run parallel to the x-axis in the positive direction. Thelight
emits strong whitediffuse light (dir.Diffuse = WHITE), weak
white specular light (dir.Specular = WHITE * 0.3£),anda
medium amount of white ambientlight (dir.Ambient = WHITE *
0.6f).

p3DLIGHT9 dir; = H
::ZeroMemory (&dir, sizeof (dir)); pis iH
dir. Type = D3DLIGHTDIRECTIONAL; 5 i
dix.Diffuse = d3d::WHITE; o. i
dir.Specular=d3d::WHITE * 0.3£; i if

d3d::WHITE * 0.6f; h—!

D3DXVECTOR3S (1L.0f, 0.9£, O.Of); i

dir-.Ambient
dir.Direction [The1
Device->SetLight(0, &dir);
Device->LightEnable(0, true);

Finally, we set the state to renormalize normals and enable specular
highlights.

Device->SetRenderState (D3DRS_NORMALTZENORMALS, true) ;
Device->SetRenderState (D3DRS_SPECULARENABLE, true);

// ... code to set up the view matrix and projection matrix
// omitted

return true;

5.6 Additional Samples

Three additional samples are included for this chapter in the companion
files. They use the D3DxCreate* functions to create the 3D objects
that compose the scene. The D3DxCreate* functions create vertex
data with the format D3DFVF_XYZ | D3DFVF_NORMAL.In addition,
these functions compute the vertex normals of each meshfor us. The
additional samples demonstrate how to use directionallights, point
lights, and spotlights. Figure 5.8 showsa screen shot from the direc-
tonal light sample.

ATI Ex. 2120

IPR2023-00922

Page 210 of 611

OpenGL - Lighting, Material,Shading and

Texture Mapping

CS475 - Computer Graphics
Sumair Ahmed
IIT Bombay

August 28, 2009

ATI 2084
LG v. ATI

IPR2015-003260001

ATI Ex. 2120
IPR2023-00922

Page 211 of 611

This document briefs about the ways to deal with the prominent features existing
in OpenGL. Here we discuss the Lighting, Shading,Material and Texture Mapping in
programming perspective of OpenGL.

Lighting

Light makes the scene look real. Effectively, in a real world, light is present every-
where. Objects also have their own reaction in presence of a light. OpenGL supports
a number of lighting effects - Directional, Spot, Ambient lights and attenuation. The
Lighting and the Shading models define the light in OpenGL. But before setting these
up, lighting mode has to be enabled. Lighting support needs the depth buffer to be
enabled.

glEnable (GL DEPTH TEST) ;
glEnable (GL LIGHTING) ;

The above function glEnable can enable many features of OpenGL; the feature you
want to enable is provided as an input parameter. The above code enables the lighting,
however we need lights as well. OpenGL has direct support for about 8 lights . To
enable a light, call:

glEnable (GL LIGHT0) ;

Likewise, LIGHT1 or 2..8 shall be enabled when you want to handle multiple lights.
Similar to glEnable function, OpenGL also has glDisable function that disables the
features set before by glEnable. These functions turn a particular feature ON or
OFF. OpenGL also provides a set of specific global properties to specify the visual
behavior of the lighting model. This is done in two ways:

glLightModelf(GLenum pname, GLfloat param); // scalar params
glLightModelfv(GLenum pname, const GLfloat params); // vector params

For Instance, suppose you want to have a GLOBAL Ambient light that casts on all
the rendered objects. The following code sets the global ambient colour on all the
objects.

Glfloat global ambient[] = {0.5f, 0.5f, 0.5f, 1.0f} // R,G,B,Alpha
glLightModelfv (GL LIGHT MODEL AMBIENT, global ambient) ;

Similarly, we have GL LIGHT MODEL TWO SIDE and GL LIGHT MODEL
LOCAL V IEWER parameters. The first parameter defines if the light is to be

applied on two sides of an object or one side. Second defines how specular component
is calculated. The specular highlight depends on the direction from the vertex to the
viewpoint and also the direction from the vertex to the light source. So, the highlight
depends on the eye position. With a default infinite viewpoint, the direction from the
vertex to the viewpoint remains the same for all vertices. 0 is considered as infinite
viewpoint, while 1 is local view point.

glLightModelf (GL LIGHT MODEL LOCAL V IEWER,GL TRUE) ;

There are two types of light properties you should consider while programming the
lighting model in OpenGL. The first type describes a light source and the second type
describes the light reflected by the material of an object’s surface. These four indepen-
dent models define the light - GL AMBIENT , GL DIFFUSE, GL SPECULAR
and GL EMISSIV E

For every type of light source you need to call the glLightfv function with pa-
rameters. For example, To add a component of specular light to a light source, you
would make the following function call:

GLfloat specular[] = {1.0f, 1.0f, 1.0f, 1.0f};
glLightfv (GL LIGHT0, GL SPECULAR, specular) ;

1

0002

ATI Ex. 2120
IPR2023-00922

Page 212 of 611

The first three parameters of specular variable are the RGB values which can range
between 0.0f and 1.0f. 0 being no colour, and 1 being full colour. The final parameter,
Alpha, is used to define the translucency factor of an object and is used to simulate
materials made out of translucent matter such as glass. The colour format here is
often referred as RGBA format.

OpenGL also provides the light attenuation feature, that reduces the light inten-
sity with the distance. Light Intensity should decrease with the distance to mimic
the real world. It shall be inversely related to the distance. The Intensity attenuation
formula would be :

Attenuated Intensity = Intensity of light Source * 1
C+L∗d+Q∗d2

= Intensity of light Source * Attenuation Factor

where

d = distance between light source and the vertex
C = GL Constant Attenuation (default is 1)

L = GL Linear Attenuation (default is 0)
Q = GL Quadratic Attenuation (default is 0)

are the three attenuation provided by OpenGL. In order to have an attenuation
with the distance, you should set to a value different to 0 the linear or quadratic. It
calculates an attenuation factor (between 0 and 1) which is multiplied to the ambient,
diffuse and specular colours. By default, attenuation factor is 1, it means there is no
attenuation w.r.t the distance.

glLightf(GL LIGHT0, GL LINEAR ATTENUATION, 0.2f);

But assigning ambient, diffuse and specular types of light to a light source is not
usually enough. You also have to specify the position of the light source. You can
have Directional light source instead of the below Positional light source.

Glfloat position1[] = {−1.5f, 1.0f,−4.0f, 1.0f}; //x,y,z,w
Glfloat position2[] = {−1.05f, 1.0f,−1.0f, 0.0f}; //x,y,z,w

glLightfv (GL LIGHT0, GL POSITION, position1) ;
glLightfv (GL LIGHT0, GL POSITION, position2) ;

Figure 1: Positional and Directional light source

The light source can be a positional (w > 0) or directional (w = 0) light source de-
pending on the w value. A positional light source is positioned at the location (x, y,
z) as shown above. The source emits light from that particular location towards all
directions. for example: lamp, bulb.

A directional one does not have any location. The source emits light from an in-
finite location, the rays are all parallel and have the direction (x, y, z). A directional
light is not subject to attenuation since it is at an infinite distance. for example: Sun.

2

0003

ATI Ex. 2120
IPR2023-00922

Page 213 of 611

Shading

The Shading model is set up with a call to glShadeModel and can be either set
to SMOOTH or FLAT model. The SMOOTH shading model specifies the use of
Gouraud-shaded polygons to describe light while the FLAT shading model specifies
the use of single-colored polygons.

glShadeModel (GL SMOOTH) ;

When SMOOTH model is selected, Lighting is evaluated at each vertex, and pixel
colours are linearly interpolated across polygons. However, in FLAT model, Lighting
is evaluated once for a polygon, and the resulting colour value is used for the complete
object.

Material

This defines the reaction of an object when its surface is hit with the light. For exam-
ple, some objects absorb a particular colour or reflects light. Usually when the lighting
is enabled it is equally likely to assign material properties with the glMaterialf com-
mand as shown in the following code sample:

Glfloat mcolor[] = {1.0f, 0.0f, 0.0f, 1.0f};
glMaterialfv (GL FRONT,GL AMBIENT AND DIFFUSE, mcolor) ;

The material property of an object (defined by RGB colour format), is usually the
colour reflected by that object. The first parameter of the glMaterialfv command
indicates which face of the polygon should reflect the light specified by mcolor. Ap-
parently, there are two sides to a polygon - front and back. OpenGl provides two
ways to specify a polygon in 3D space in order to decide the front face. The clockwise
or counterclockwise direction describes which side is the front and which is the back.
OpenGL lets you specify these rules with the glFrontFace command. The Following
code denotes that counter clockwise direction direction of the polygons is considered
to be Front Face.

glFrontFace(GL CCW);

glMaterial command should be called prior to defining the polygon’s vertices to ap-
ply these material properties to the surface.

A convenient alternative to glmaterial is color tracking. Material properties are
specified by merely calling the glColor command prior to each object or polygon.
Also it has to be enabled.

glEnable (GL COLOR MATERIAL) ;
glColorMaterial (GL FRONT,GL AMBIENT AND DIFFUSE) ;

glColor3f(0.0f, 0.0f, 1.0f);// blue reflective properties

Example: This code would typically be placed with the OpenGL initialization code

//set the global lighting / shading
glShadeModel (GL SMOOTH) ; // or GL FLAT
glEnable (GL NORMALIZE) ;
glEnable (GL LIGHTING) ;

//set the global ambient light
GLfloat ambient = {.2, .2, .2, 1};
glLightModelfv (GL LIGHT MODEL AMBIENT, globalAmb) ;

//set up a light and enable it
GLfloat diffuse[] = {1, 0, 0, 1};
GLfloat ambient[] = {.5, 0, 0, 1};
GLfloat specular[] = {1, 1, 1, 1};

3

0004

ATI Ex. 2120
IPR2023-00922

Page 214 of 611

glLightfv (GL LIGHT0, GL DIFFUSE, diffuse) ;
glLightfv (GL LIGHT0, GL AMBIENT, ambient) ;
glLightfv (GL LIGHT0, GL SPECULAR, specular) ;
glEnable (GL LIGHT0) ; //enable the light

//set light position
// set last term to 0 for a spotlight
Glfloat lightpos[] = {1, 1, 1, 1};
glLightfv (GL LIGHT0, GL POSITION, lightpos) ;

//This code sets a simple material property
GLfloat ambient[] = {.5, 0, 0, 1};
GLfloat specular[] = {1, 1, 1, 1};

//set params for front and back separately (GL BACK, GL FRONT AND BACK)
glMaterialfv (GL FRONT,GL AMBIENT AND DIFFUSE, ambient) ;
glMaterialfv (GL FRONT,GL SPECULAR, ambient) ;

Example2: A Cube in an environment with two diffuse lights and an ambient
light. Two Diffuse lights are of different colours (blue & green) whereas the ambient
light is red colour.

GLfloatDiffuseLight1[] = {0, 0, 1};
GLfloatDiffuseLight2[] = {0, 1, 0};
GLfloatAmbientLight[] = {1, 0, 0};
glLightfv (GL LIGHT0, GL DIFFUSE, DiffuseLight1) ;
glLightfv (GL LIGHT1, GL AMBIENT,AmbientLight) ;
glLightfv (GL LIGHT2, GL DIFFUSE, DiffuseLight2) ;
GLfloatLightPosition1[] = {0, 0, 3, 0};
GLfloatLightPosition2[] = {3, 0, 0, 0};
glLightfv (GL LIGHT0, GL POSITION, LightPosition1) ;
glLightfv (GL LIGHT2, GL POSITION, LightPosition2) ;
gluLookAt (3.0,−2.0, 4.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0) ;

Figure 2: Output of Example2

You can see three colours on three sides of a cube. There is one diffuse light at
position (3,0,0) and the other at (0,0,3). There is also an Ambient light of red colour.
The eye position is at (3,-2,4) and is looking at (0,0,0) i.e., the center of cube.

4

0005

ATI Ex. 2120
IPR2023-00922

Page 215 of 611

Texture Mapping

Another feature in OpenGL is Texture Mapping feature where you can apply the
textures to your geometry. Once a texture is uploaded to the video memory it can be
used throughout the program. There are certain steps to be followed before a texture
is readily available to the program. We first need a texture name. This is essentially
a number that OpenGL uses to index all the different textures.

GLuint texture; // allocate a texture name
glGenTextures (1, &texture) ; //get a free texture id

Now that we have our texture name, it has to be bound before doing anything to
it. Note that there are two forms of textures in OpenGL, 1D and 2D. You can load
different textures, however only one is selected at a time.

// select our current texture
glBindTexture (GL TEXTURE 2D, texture) ;

Now we need to set some texture parameters and load the texture data on the current
texture. OpenGL has four texture parameters to setup. Here, it defines several effects
like bilinear, trilinear texture filtering, and mipmapping. We also can define whether
the texture wraps over at the edges or is clamped at the ends.

// the texture wraps over at the edges (repeat)
glTexParameteri (GL TEXTURE 2D,GL TEXTURE WRAP S, GL REPEAT) ;
glTexParameteri (GL TEXTURE 2D,GL TEXTURE WRAP T, GL REPEAT) ;

// when texture area is large, bilinear filter the original
glTexParameteri (GL TEXTURE 2D,GL TEXTURE MAG FILTER, GL LINEAR) ;
glTexParameteri (GL TEXTURE 2D,GL TEXTURE MIN FILTER, GL LINEAR) ;

The default state of MIN FILTER is GL LINEAR MIPMAP NEAREST ,
if it is not defined. In such a case, the texture is considered incomplete and it renders
a white texture on the object.

Also we need to set environment variables for the current texture. This tells the
OpenGL how the texture should act when it is rendered into a scene.

glTexEnvf(GL TEXTURE ENV, GL TEXTURE ENV MODE, GL MODULATE);

Here it sets the active texture to GL MODULATE. This attribute allows to apply
effects such as lighting and colouring to your texture. If you would like to display the
texture unchanged then replace it with GL DECAL.

After all these parameters are set, OpenGL calls glTexImage2D that will upload
the texture to the video memory and will be ready for us to use in our programs.

glTexImage2D(GL TEXTURE 2D, level, internalFormat, width, height,
border, format, type, ptexels);

� internalFormat - This tells OpenGL how many colour components are needed
to represent internally from the texture that is uploaded.ex: GL RGB

� format - Format of the pixel data that will be uploaded. ex: GL RGB

� type - Type of data that will be uploaded. ex: GL UNSIGNED BY TE

� ptexels - Pointer to the image data.

Note that after your call to glTexImage2D you can free this memory with free
function since the texture is already uploaded into video memory. A good alternative
to glTexImage2D is to build your texture mipmaps. This can be done by:

5

0006

ATI Ex. 2120
IPR2023-00922

Page 216 of 611

gluBuild2DMipmaps(GL TEXTURE 2D, 3, width, height, GL RGB,
GL UNSIGNED BY TE, data);

Now the texture is ready to be applied to your geometry, with all the above pa-
rameters set. Remember Texturing has to be enabled.

Example: Texture Quad

// enable texturing
glEnable (GL TEXTURE 2D) ;
glBegin (GL QUADS) ;
glTexCoord2d (0.0, 0.0) ; glV ertex2d (0.0, 0.0) ;
glTexCoord2d (1.0, 0.0) ; glV ertex2d (1.0, 0.0) ;
glTexCoord2d (1.0, 1.0) ; glV ertex2d (1.0, 1.0) ;
glTexCoord2d (0.0, 1.0) ; glV ertex2d (0.0, 1.0) ;
glEnd () ;

References

� OpenGL Tutorials - http : //www.swiftless.com/tutorials/opengl/opengltuts.html

� Texture Mapping - http : //www.opengl.org/wiki/Texture Mapping

� OpenGL Lighting - http : //www.falloutsoftware.com/tutorials/gl/gl8.htm

� OpenGL Texture Mapping - http : //www.gamedev.net/reference/articles/article947.asp

� OpenGL Texture Tutorial - http : //www.nullterminator.net/gltexture.html

6

0007

ATI Ex. 2120
IPR2023-00922

Page 217 of 611

ATI 2085
LG v. ATI

IPR2015-003260001

ATI Ex. 2120
IPR2023-00922

Page 218 of 611

+ OVER &
“10,000 .
ee 2):

JComPULer
mseforeIny

 ali] Z |

Ly Eas\ F = 7 =)4alsii }

2 De 7 Wiles alk a a

sortwe f

ATI 2085

LG vy. ATI

0001 IPR2015-00326

ATI Ex. 2120

IPR2023-00922

Page 218 of 611

0002

ATI Ex. 2120
IPR2023-00922

Page 219 of 611

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2002 by Microsoft Corporation

Allrights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher,

Library of Congress Cataloging-in-Publication Data
Microsoft Computer Dictionary.--Sth ed.

p- cm.
ISBN 0-7356-1495-4

1. Computers--Dictionaries. 2. Microcomputers--Dictionaries.

AQ76.5,M52267 2002
004".03--de21 2002197 14

Printed and bound in the United States of America.

23456789 QWT 765432

Distributed in Canada by H.B. Fenn and CompanyLtd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa-
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to mspinput @ microsoft.com.

Active Desktop, Active Directory, ActiveMovie, ActiveStore, ActiveSync, ActiveX, Authenticode,
BackOffice, BizTalk, ClearType, Direct3D, DitectAnimation, DirectDraw, DirectInput, DirectMusic,
DirectPlay, DirectShow, DirectSound, DirectX, Entourage, FoxPro, FrontPage, Hotmail, IntelliEye,
IntelliMouse, IntelliSense, JScript, MapPoint, Microsoft, Microsoft Press, Mobile Explorer, MS-DOS,
MSN, Music Central, NetMeeting, Outlook, PhotoDraw, PowerPoint, SharePoint, UltimateTY, Visio,
Visual Basic, Visual C++, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe, Visual Studio,

Win32, Win32s, Windows, Windows Media, Windows NT, Xbox are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries. Other product and
company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

Acquisitions Editor: Alex Blanton
Project Editor: Sandra Haynes

Body Part No. X08-41929

0002

ATI Ex. 2120

IPR2023-00922

Page 219 of 611

0003

ATI Ex. 2120
IPR2023-00922

Page 220 of 611

application processor

application processor 7. A processor dedicated to a sin-

gle application.

application program 7. See application.

application program Interface. #. See application pro-

gramming interface,

application programming Interface 7. A set ofroutines

used by an application program to direct the performance
of procedures by the computer’s operating system.
Acranym: APLAIso called: application program interface.

application server 7. 1. A server programon a computer
in a distributed network that handles the business logic

between users and backend business applications or data-
bases. Application servers also can provide transaction
management, failover, and load balancing. An application
server is often viewed as part of a three-tier application
consisting of a front-end GUIserver such as an HTTP

server (first tier), an application server (middle tier), anda
backend database and transaction server (third tier). Also

called: appserver, Compare HTTPserver (definition 1).
2. Any machine on which an application-server program

is running. Also called: appservet.

application service provider 7. A third-party company
of organization that hosts applications or services for indi-
viduals or business customers. The customer connects toa

data center maintained by the application service provider
(ASP) through [nternet or private lines to access applica-
tions that would otherwise need to be housed on the cus-

tomer’s local servers or individual PCs, This arrangement
allows the customerto free up disk space that would other-

wise be taken by applications, as well as to access the
most recent software updates. ASPs deliver solutions

ranging from high-end applications to services for small

and medium-sized businesses. Acronym. ASP.

application shortcut key #. A key or combination of
keys that when pressed will quickly perform an action
within an application that would normally requite several

user actions, such as menu selections, Alse called: keyboard
shortcut.

application software n. See application.

application-specific Integrated clrcult 1, See gale array.

application sulte #. See suite (definition 1).

appserver #. See application server.

Aqua nv. The graphical aser interface (GUI) of Macintosh

OS X, Aqua was designed to maintain fanuliarity and a
comfort level for users of the earlier Macintosh system

while allowing access to newer Macintosh OS X capabili-
ties. The Aqua GUIfeatures updated versions of Macin-

tosh staples such as the Finder alongside new features like
the Dock, a new type of organizational tool, See alse
Dock, Macintosh OS X.

arbitration 7. A set of rules for resolving competing
demands for a machine tesource by multiple users or pro-
cesses, See also contention.

-are 7, The file extension that identifies compressed
archive files encoded using the Advanced RISC Comput-
ing Specification (ARC) format. See also compressed file.

arcade game n, 1. A coin-operated computer game for

one or more players that features high-quality screen

graphics, sound, and rapid action. 2. Any computer game
designed to mimic the style of a coin-operated arcade
game, such as games marketed for the home computer.
See alse computer game.

Archle #, An [ntemet utility for finding files in public
archives obtainable by anonymous FTP. The master

Archie server alt McGill University in Montreal downloads
FTP indexes from participating FTP servers, merges them
into a masterlist, and sends updated copies of the master
list to other Archie servers each day, Archie is a shortened
form of archive, See also anonymous FTP, FTP! (defini-
tion 1). Compare Jughead, Veronica.

Archle cllent 7. See Archie,

Archle server 7. On the Internet, a server that contains

Archie indexes to the names and addresses offiles in pub-
lic FTP archives. See also Archie, FTP! (definition 1),
server (definition 2).

architecture 7. 1. The physical construction or design of

a computer system and its components. See also cache,
CISC, closed architecture, network architecture, open

architecture, pipelining, RISC. 2. The data-handling
capacity of a microprocessor, 3. The design of application
software incorporating protocols and the means for expan-
sion and interfacing with other programs.

archive? n. 1. A tape or disk containing files copied from
another storage device and used as backup storage. 2. A
compressedfile. 3. A file directory on the Interetthat is

33

0003

ATI Ex. 2120

IPR2023-00922

Page 220 of 611

0004

ATI Ex. 2120
IPR2023-00922

Page 221 of 611

COM callable wrapper

CD, A permitation is a grouping ofelements taken from a
larger set with regard to the order of the elements. For

example, in making permutations of two objects from the
same set of four objects, there would be four candidates to
choose from for the first selection (A), and three left over

to choose from for the second selection (B), or 12 permuta-
tions in all: AB, AC, AD, BA, BC, BD, CA, CB, CD, DA,

DB, DC.See also combinatorial explosion.

COM callable wrapper #. A proxy object generated by

the runtime so that existing COM applications can use
managed classes, including .NET Framework classes,

transparently. Acronym: CCW.

COMDEX x. Any of a series of annual computer trade
shows operated by Softbank COMDEX,Inc. One of these
shows takes place in Las Vegas each November andis the
largest computer trade show in the United States.

Comlté Consultatif International Télégraphique et
Téléphonique n. See CCITT.

comma-delimited file 7. A data file consisting offields

and records, stored as text, in which the fields are separated
from each other by commas. Use of comma-delimitedfiles

allows communication between database systems that use
different formats, If the data in a field contains a comma,

the field is further surrounded with quotation marks.

command #. An instruction to a computer program that,
when issued by the user, causes an action to be carried out.
Commands are usually either typed at the keyboard or
chosen from a menu,

command buffer 7. An area in memory in which com-
mands entered by the user are kept. A command buffer can

enable the user to repeat commands without retyping them
completely, edit past commands to change some argument
or correct a mistake, undo commands, or obtain a list of

past commands. See also history, template (definition 4).

command button 7. A control shaped like a pushbutton

in a dialog box in a graphical user interface. By clicking a
command button, the uset causes the computer to perform

some action, such as opening a file that has just been

selected using the other controls in the dialog box.

COMMAND.COM #. The commandinterpreter for MS-
DOS, See also command interpreter.

444.

0004

command prompt window

command-driven adj. Accepting commands in the form
of code words or letters, which the user must leat. Com-

pare menu-driven.

command-driven system 7. A system in which the user

initiates operations by a command entered from the con-
sole, Compare graphical user interface.

commandInterpreter #. A program, usually part of the

operating system, that accepts typed commands from the
keyboard and performs tasks as directed. The command.

interpreter is responsible for loading applications and
directing the flow of information between applications. In

OS/2 and MS-DOS, the command interpreter also handles
simple functions, such as moving and copyingfiles and
displaying disk directory information. See also shell'.

Command key 7. On the original Macintosh keyboard, a
key labeled with the special symbol, sometimes called the

propeller or puppy foot. This key is found on one or both
sides of the Spacebar, depending on the version of the

Apple keyboard. The key serves some of the same func-

tions as the Control key on IBM keyboards. See also Con-
trol key.

command language n. The set of keywords and expres-
sions that are accepted as valid by the command inter-
preter. See afso commandinterpreter.

commandIIne #. A string of text written in the command
language and passed to the command interpreter for exe-
cution, See alse command language.

command-line Interface #. A form of interface between

the operating system and the user in which the user types

commands, using a special command language. Although
systems with command-line interfaces ate usually consid-
ered more difficult to learn and use than those with graph-
ical interfaces, command-based systems are usually
programmable; this gives them flexibility unavailable in

graphics-based systems that do not have a programming
interface, Compare graphical user interface.

command mode #. A mode of operation in which a pro-

gram waits for a command to be issued, Compare edit
mode, insert mode.

command processing n. See command-driven system.

command processor 7. See command interpreter.

command prompt window 7. A window displayed on
the desktop used to interface with the MS-DOS operating

ATI Ex. 2120

IPR2023-00922

Page 221 of 611

0005

ATI Ex. 2120
IPR2023-00922

Page 222 of 611

insider attack

Insider attack #. An attack on a network or system car-
ned out by an individual associated with the hacked sys-
tem. Insider attacks are typically the work of current or
former employees of a company or organization who have

knowledge of passwords and network vulnerabilities,
Compare intruder attack.

Ins key n. See Insert key.

Install vb, To setin place and prepare for operation, Oper-
ating systems and apphcation programs commonly

include a disk-based installation, or setup, program that
does most of the work of preparing the program to work

with the computer, printer, and other devices, Often such a
program can check for devices attached to the system,
request the user to choose from sets of options, create a
place for the program on the bard disk, and modify system
startup files as necessary.

Installable device driver x. A device driver that can be

embedded within an operating system, usually in order to

override an existing, less-finctional service.

Installable File System Manager x. In Windows 9x

and Windows 2000, the part of the file system architecture

responsible for arbitrating access to the differentfile sys-
tem components, Acronym, IFS,

Installation program 7. A program whose function is to
install another program, either on a storage medium or in
memory. An installation program, also called a setup pro-
eram, might be used to guide a user through the often
complex process of setting up.an application for a particu-
lar combination of machine, printer, and monitor.

Installer 7. A program, provided with the Apple Macin-
tosh operating system, that allows the user to install sys-
tem upgrades and make bootable (system) disks.

Instance 7. An object, in object-oriented programming,

in relation to the class to which it belongs. For example, an
object myList that belongs to.a class Listis an instance of
the class Lisr. See also class, instance variable, instantiate,

object (definition 2).

Instance varlable v. A variable associated with an

instance of a class (an object), Ifa class defines a certain
variable, each instance of the class has its own copy ofthat
variable. See also class, instance, object (definition 2),
object-oriented programming.

Instantlate vb. To create an instance of a class. See alse

class, instance, object (definition 2).

instruction set

Instant messaging nx. A service that alerts users when
friends or colleagues are on line and allows them to com-

municate with each other in real time through private
online chat areas. With instant messaging, a user creates a
list of other users with whom he or she wishes to commmu-

micate; when a user from his or her list is on line, the ser-
vice alerts the user andenables immediate contact with the

other user. While instant messaging has primarily been a
proprietary service offered by Internet service providers

such as AOL and MSN,businesses are starting to employ
instant messaging to increase employeeefficiency and.
make expertise more teadily available to employees.

Institute of Electrical and Electronics Engineers i.
See IEEE.

Instruction #. An action statement in any computer lan-
guage, most often in machine or assembly language. Most
programs consist of two types of statements: declarations
and instructions, See alse declaration, statement.

instruction code x. See operation code.

instruction counter #. See instruction register.

Instruction cycle n, The cycle in which a processor

retrieves an instruction from memory, decodesit, and car-
nes it out. The time required for an instruction cycle is the
sum of the instruction (fetch) time and the execution

(translate and execute) time and is measured by the num-
ber of clock ticks (pulses of a processor’s internal tumer)
consumed.

Instruction mix 7. The assortment of types of instruc-
tions contained in a program, such as assignment imstruc-
tions, mathematical instructions (floating-point or

integer), control instructions, and indexing instructions.
Knowledge of instruction mixes is important to designers
ofCPUs because it tells them which instructions should be

shortened to yield the greatest speed, and to designers of
benchmarks because it enables them to make the bench-
marks relevant to real tasks.

Instruction pointer n. See program counter.

Instruction register #. A register in a central processing
unit that holds the address of the next instruction to be

executed.

Instruction set 7. The set of machine instructions that.a

processor recognizes and can execute. See also assembler,
microcode.

ATI Ex. 2120

IPR2023-00922

Page 222 of 611

0006

ATI Ex. 2120
IPR2023-00922

Page 223 of 611

pipeline process ing

frequently requested data) on computers running at bus
speeds of 75 MHzorhigher. Acronym: PB SRAM.See
also burst (definition ?), L?2 cache, pipelining, static RAM.
Compare asynchronous static RAM, dynamic RAM, syn-
chronous burst static RAM.

pipeline processing ». A method of processing ona
computer that allows fast parallel processing of data, This

iz accomplished by overlapping operations using apipe, or

a portion of memory that passes information from one

process to another. ‘e¢ also parallel processing, pipe (def-
inition 1), pipelining (definition 3).

Pipelining +, 1..A method of fetching and decoding
instructions (preprocessing) in which, at any given time,

several program instructions are in various stages of being
fetched or decoded. Ideally, pipelining speeds execution
time by ensuring that the microprocessor does not have to
wait for instructions; when it completes execution of one
instruction, the next is ready and waiting. Jee also super-
pipelining. 2. In parallel] processing, a method in which
instructions are passed from one processing unit to
another, as on an assembly line, and each unitis special-
ized for performing a particular type of operation. 3. The
use of pipes in passing the output of one task as input to
another until a desired sequence of tasks has been carried
out. See also pipe (definition 1), pour.

piracy «. 1. The theft of a computer design or program.
2. Unauthorized distribution and use of a computer
program.

-pit #. A file extension for an archive file compressed with
PackIT. See also PackiT.

pitch ». A measure, generally used with monospace fonts,
that describes the numberof characters that fit in a heri-

zontal inch. Se also characters per inch, screen pitch.
Compare point! (definition 1).

PivotChart ad; A graphical tool in Microsoft Excel or
Access that can be used to display data from a list or data-
base in chart form. Based on user-selected in formation

incorporated in an Excel PivetTable report or list, a Pivot-
Chart report provides theability to chart the data interac-
tively—for example, to “pivot” the chart’s point of view
from product sales by category to product sales by region
or by salesperson. See also PivotTable.

pixel Inmage

PivotTable ad) An interactive table in Microsoft Excel or
Access that can show the same data from a list or a data-

base in more than one arrangement. A user can manipulate.
the rows and columnsin a PivotTable to view or summarize

the information in different ways for purposes of analysis.

In Excel, a PivotTabk reportis the basis for creating a Piv-
otChart report that displays the same data in chart form.
See also PivotChart.

pivot year ». In Year 2000 windowing, a date in a 100-
year period that serves as the point from which correct
dates can be calculated in systems or software that can
store only 2-digit years. For example, a pivot year of 1970
means that the numbers 70 through 99 are interpreted as
the years 1970 te 1999, and the numbers 90 through 69 as
the years 2000 through 2069. See also windowing.

pixel ». Short for picture (pix) element One spot in a rec-
tilinear erid of thousands of such spots that are individu-
ally “painted” to form an image produced on the screen by
a computer or on paper by a printer A pixel is the smallest
elementthat display or print hardware and software can
manipulate in creating letters, numbers, or graphics. See
the illustration. Alse called: pel.

Pixel

Pixel. The letter Aw actually made up ofapattem ofpurels m
a grid, as is the cat's eye.

pixel image » The representation of a color graphic ina
computer's memory. A pixel image is similar to a bit
image, which also describes a screen graphic, but a pixel

image has an added dimension, sometimes called depth,

that describes the number of bits in memory assigned to

each on-screen pixel.

ATI Ex. 2120

IPR2023-00922

Page 223 of 611

0007

ATI Ex. 2120
IPR2023-00922

Page 224 of 611

point of sale

polnt of sale 7. See POS,

polnt-to-polnt configuration 7. A communications link

in which dedicated Inks exist between individual origins
and destinations, as opposed toa point-to-multipoint config-

uration, in which the same signal goes to many destinations
(such as a cable TV system), or a switched configuration, in
which the signal moves from the origin to a switch that
routes the signal to one of several possible destinations. Also
called: point-to-point connection.

polnt-to-polnt connectlon #. See point-to-point config-
uration.

polnt-to-polnt message system #7. In Sun Microsys-

tems’s J2EE network platform, aimessaging system that
uses Message queues to store asynchronous, formatted

data for coordinating enterprise applications. Each mes-
sage is addressed to a specific queue, and client applica-

tions retrieve messages fromthe queues, See also
as¥nchronous, J2EE.

Polnt-to-Polnt Protocol 7. See PPP.

polnt-to-polnt tunneling 7, A means of setting up secure
communications over an open, public network such as the
Internet. See also PPTP.

Polnt-to-Polnt Tunneling Protocol x. See PPTP.

Polssondistribution 7. A mathematical curve often used

in statistics and simulation to represent the likelihood of
some event occurring, such as the arrival of a customer in

a queue, when the average likelihood is known. This dis-
tribution, named after the French mathematician §. D.

Poisson, is simpler to calculate than the normal and bino-
tial distributions. See also binomial distribution, normal
distribution.

poke vb. To store a byte into an absolute memory loca-
tion. PEEK (read a byte from memory) and POKE com-

mands are often found in programming languages, such as
Basie, that do not normally allow access to specific mem-

ory locations,

polar coordinates 7, Coordinates of the form (r, q) used
to locate a pointin two dimensions (on a plane). The polar

coordinate r is the length ofthe line that starts at the origin
and ends at the point, and q (Greek theta) is the angle

between that line and the positive x-axis. Compare Carte-
sian coordinates.

411

0007

Pong.

polarity #. The sign of the potential (voltage) difference
between two points in a circuit, When a potential differ-

ence exists between two points, one point has a positive
polarity and the other a negative polarity. Electrons flow

from negative to positive; by convention, however, current
is considered to flow from positive to negative.

polarized component #. A circuit component that must
be installed with its leads in a particular orientation with
respect to the polarity of the circuit. Diodes, rectifiers, and

some capacitors are examples of polarized components.

polarizing filter . A transparent piece of glass or plastic
that polarizes the light passing through it; that is, it allows
only waves vibrating in a certain direction to pass through.
Polarizing filters are ofterm used to reduce glare on monitor
screens, See also glare filter,

Polish notation #. See prefix notation.

polling #. See autopolling.

polling cycle n. The time and sequence required fora
program to poll each of its devices or network nodes. See

aise autopolling.

polygon x. Any two-dimensional closed shape composed
of three or more line segments, such as a hexagon, an octa-
gon, or a triangle. Computer users encounter polygons in
eraphics programs.

polyline #. An open shape consisting of multiple con-
nected segments. Polylines are used in CAD and other

graphics programs. See also CAD,

polymorphism #7. In an object-oriented programming lan-
guage, the ability to redefine a routine in a derived class (a
class that inherited its data structures and routines from

another class). Polymorphism allows the programmer to

define a base class that includes routines that perform
standard operations on groups of related objects, without

regard to the exact type of each object. The programmer
then redefines the routines in the derived class for each

type, taking into account the characteristics of the object.
See also class, derived class, object (definition 2), object-
oriented programming.

Pong #. The first commercial video game, a table tennis
simulation, created by Nolan Bushnell of Atari in 1972.

ATI Ex. 2120

IPR2023-00922

Page 224 of 611

0008

ATI Ex. 2120
IPR2023-00922

Page 225 of 611

preventive maintenance

preventive malntenance #. Routine servicing of hard-
ware intended to keep equipment in good operating condi-

tion and to find and correct problems before they develop
into severe malfunctions.

preview #. In word processors and other applications, the
feature that formats a documentfor printing but displays it
on the video monitor rather than sending it directly to the
printer.

PRI». Acronym for Primary Rate Interface. One of two
ISDN transmission rate services (the other is the basic rate

interface, BRI). PRI has two variations. The first, which

operates at 1.536 Mbps, transmits data over 23 B channels
and sends signaling information at 64 Kbps over one D
channel in the United States, Canada, and Japan. The sec-
ond, which operates at 1.984 Mbps, transmits data over 30 B
channels and sends signaling information at 64 Kbps over
one D channelin Europe and Australia. See aiso BRI, ISDN.

primary channel #, The data-transmission channel in a

communications device, such as a modem. Compare sec-

ondary channel.

Primary Domaln Controller #. 1. In Windows NT, a

database providing a centralized administration site for
resources and user accounts. The database allows users to

log onto the domain, rather than onto a specific host
machine, A separate account database keeps track of the
machines in the domain and allocates the domain’s

resources to users. 2. In any local area network, the server
that maintains the master copy of the domain’s user
accounts database and that validates logon requests, Acro-
nym: PDC,

primary key 7. In databases, the key field that serves as
the unique identifier of a specific tuple (row) in a relation

(database table). Afso called: major key. See aiso alternate

key (definition 1), candidate key. Compare secondary key.

Primary Rate Interface 7. See PRI.

primary storage n. Random access memory (RAM), the
main general-purpose storage region to which the micro-

processor has direct access, A computer’s other storage

options, such as disks and tape, are called secondary stor-
age of (sometimes) backing storage.

primitive 7. 1. ln computer graphics, a shape, such asa
line, circle, curve, or polygon, that can be drawn, stored,

and manipulated as a discrete entity by a graphics program.
A primitive is one of the elements from which a large
graphic design is created. 2. In programming, a fundamen-

419

0008

printed circuit board

tal element in a language that can be used to create larger
procedures that do the work a programmer wants to do.

print v2. In computing, to send information to a printer.
The word is also sometimes used in the sense of “show

me”or “copy this.” For example, the PRINT statement in
Basic causes output to be displayed (printed) on the
screen. Similarly, an application program that can be told
to print a file to disk interprets the command as an instruc-
tion to route output to a disk file instead ofto a printer.

print buffer #2. A section ofmemory to which print output
can be sent for temporary storage until the printer is ready

to handle it. A print buffer can exist in a computer’s ran-
dom access memory (RAM), in the printer, in a separate
unit between the computer and the printer, or on disk.
Regardless of its location, the function of a print bufferis
to free the computer for other tasks by taking print output
at high speed from the computer and passing it along at
the much slower rate required by the printer. Print buffers

vary in sophistication: some simply hold the next few
characters to be printed, and others can queue, reprint, or

delete documents sent for printing.

printed clrcult board #. A flat board made of noncon-
ducting material, such as plastic or fiberglass, on which
chips and other electronic components are mounted, usu-
ally in predrilled holes designed to hold them, The compo-

nent holes are connected electrically by predefined
conductive metal pathways that are printed on the surface

of the beard. The metal leads protruding from the elec-

tronic components are soldered to the conductive metal
pathways to form a connection. A printed circuit board

should be held by the edges and protected from dirt and
static electricity to avoid damage, See the illustration,
Acronym: PCB.

Printed circuit board.

ATI Ex. 2120

IPR2023-00922

Page 225 of 611

0009

ATI Ex. 2120
IPR2023-00922

Page 226 of 611

privileged mode

privileged mode n. A mode of execution, supported by
the protected mode of the Intel 80286 and higher micro-

processors, in which software can carry out restricted
operations that manipulate critical components of the sys-

tem, such as memory and input/output ports (channels).
Application programs cannot be executed in privileged

mode; the heart (kernel) of the OS/2 operating system can
be, as can the programs (device drivers) that control
devices attached to the system,

privileges x. See access privileges.

PRN iz. The logical device name for printer, A name

reserved by the MS-DOSoperating system for the stan-
dard print device. PRN usually refers to a system’s first
parallel port, also known as LPT 1.

-pro 7. One of seven new top-level domain names approved
in 2000 by the Internet Corporation for Assigned Names

and Numbers (CANN), .prois meant for use in Web sites
relating to professions such as physicians, accountants, and
lawyers. Six of the new domains became available for use

in the spring of 2001; negotiations are still underway for the
final registry agreement for the .pro domain.

probability #. The likelihood that an event will happen,
which can often be estimated mathematically. In mathe-
matics, statistics and probability theory are related fields.
In computing, probability is used to determine the likeli-

hoodof failure or error in a system or device.

problem solving x. 1. The process of devising and imple-
menting a strategy for finding a solution or for transform-
ing a less desirable condition into a mote desirable one.
2. An aspect of artificial inteligence wherein the task of

problem solving is performed solely by a program. See
also artificial intelligence.

procedural language . A programming language in
which the basic programming element is the procedure (a
named sequence of statements, such as a routine, subrou-
tine, or function), The most widely used high-level lan-
suages (C, Pascal, Basic, FORTRAN, COBOL, Ada) are

all procedural languages. See also procedure. Compare
nonprocedural language.

procedural rendering #. The rendering of a two-dimen-
sional image from three-dimensional coordinates with tex-
turing according to user-specified conditions, such as
direction and degree of lighting.

423

0009

Prodigy

procedure x. In a program, a named sequenceofstate-
ments, often with associated constants, data types, and

vatiables, that usually performs a single task. A procedure
can usually be called (executed) by other procedures, as

well as by the main body of the program, Some languages
distinguish between a procedure and a function, with the
latter (the function) returning a value. See aise function,

parameter, procedural language, routine, subroutine.

procedure call 7. In programming, an instruction that

causes a procedure to be executed. A procedure call can be
locatedin another procedure or in the main body of the

program. See also procedure.

process? n. A program or patt of a program; a cohefent
sequence of steps undertaken by a program.

process? vb. To manipulate data with a program.

process-bound adj. Limmied in performance by process-

ing requirements, See also computation-bound.

process color 4. A method of handling color in a docu-
ment in which each block of color is separated into its sub-

tractive primary color components for printing: cyan,
magenta, and yellow (as well as black), All other colors

ate created by blending layers of various sizes of halftone
spots printed in cyan, magenta, and yellow to create the

image. See also color model, color separation (definition
1}. Compare spot color.

processing #. The manipulation of data within a com-

puter system. Processing is the vital step between receiv-
ing data (input) and producing results (output)—the task

for which computers are designed.

processor 7, See central processing unit, microprocessor,

Processor Direct Slot 4. See PDS (definition 1),

Processor Input/Output “. See PIO.

Procmall 7. An open-source e-mail-processing utility for
Linux and other UNIX-based computers and networks.

Procmail can be used to create mail servers and mailing
lists, filter mail, sort incoming mail, preprocess mail, and

perform other mail-related functions.

Prodigy 7. An Internet service provider (ISP) that offers

Internet access and a wide range of related services. Prod-

igy was founded by IBM and Sears as a proprietary online
service, was acquired by International Wireless in 1996,
andin 1999 entered into a partnership with SBC Commu-

ATI Ex. 2120

IPR2023-00922

Page 226 of 611

0010

ATI Ex. 2120
IPR2023-00922

Page 227 of 611

Prodigy Information Service

nications. The addition of SBC’s Internet customer base

made Prodigy the third largest ISP in the United States,

Prodigy Information Service n. An online information

service founded by IBM and Sears, Like its competitors

America Online and CompuServe, Prodigy offers access
to databases and file hbraries, online chat, special interest
groups, e-mail, and Internet connectivity. Also called:
Prodigy.

product 7. 1. An operator in the relational algebra used in
database management that, when applied to two existing
relations (tables), results in the creation of a new table

containing all possible ordered concatenations (combina-
tions) of tuples (rows) from the first relation with tuples
from the second, The number of rows in the resulting rela-
tion is the produet of the number of rows in the two soutce
relations. Also called: Cartesian product. Compare inner
join. 2. In mathematics, the result of multiplying two or
mote numbers, 3. In the most general sense, an entity con-

ceived and developed for the purpose of competing in a
commercial market. Although computers are products, the

term is more commonly applied to software, peripherals,

and accessories in the computing arena.

production system x. [In expert systems, an approach to
problem solving based on an “IF this, THEN that’
approach that uses a set of rules, a database of informa-

tion, and a “rule interpreter” to match premises with facts
and form a conclusion. Production systems are also known

a8 rule-based systems or inference systems. See also

expert system.

Professlonal Graphics Adapter n. A video adapter
introduced by IBM, primarily for CAD applications. The
Professional Graphics Adapter is capable of displaying
256 colors, with a horizontal resolution of 640 pixels anda
vertical resolution of480 pixels, Acronym: PGA,

Professional Graphics Display 7. An analog display

introduced by IBM, intended for use with their Profes-
sional Graphics Adapter. See aiso Professional Graphics
Adapter.

profile? #. See user profile.

profile? vb. To analyze a program to determine how
much time is spent in different parts of the program dur-
ing execution,

profiler n. A diagnostic tool for analyzing the run-time
behavior of programs.

program Tile

Profiles for Open Systems Internetworking

Technology x, See POSIT.

program? n, A sequence of instructions that can be exe-
cuted by a computer, The term can refer to the original

source code or to the executable (machine language) ver-
sion. Also called: software, See also program creation,
routine, statement.

program? vb. To create a computer program, a set of
instructions that a computer or other device executes to
perform a series.of actions or a particular type of work.

program button #. On a handheld device, a navigation
control that is pressed to launch an application, Also

called: application button,

program card n. See PC Card, ROM card.

program cartridge ii. See ROM cartridge.

program comprehension tool 7. A software engineer-
ing tool that facilitates the process of understanding the

structure and/or functionality of computer applications.
Acronym: PCT. Alse called: software exploration tool.

program counter 7. A register (small, high-speed mem-

ory circuit within a microprocessor) that contains the
address (location) of the instruction to be executed next in

the program sequence.

program creation 7. The process of producing an exe-
cutable file, Traditionally, program creation comprises
three steps: (1) compiling the high-level source code into
assembly language source code; (2) assembling the

assembly language source code into machine-code object
files; and (3) linking the machine-code objectfiles with
various data files, run-time files, and library files into an
executable file. Some compilers go directly from high-

level source to machine-code object, and some integrated
development environments compress all three steps into a

single command. See alse assembler, compiler (definition
2), linker, program.

program encapsulation #. A method of dealing with

programs with Year 2000 problems that entailed modify-
ing the data with which a program worked. The input data
is modified to reflect a parallel date in the past that the
program can handle. When output is generated, that data is

changed again, to reflect the correct date. The program
itself remains unchanged.

program file #. A disk file that contains the executable

portions of a computer program. Depending on its size and.

424

0010

ATI Ex. 2120

IPR2023-00922

Page 227 of 611

0011

ATI Ex. 2120
IPR2023-00922

Page 228 of 611

remote monitoring

net, remote login is done primarily by rlogin andtelnet.
See alse tlogin! (defimtion 1), telnet?.

remote monitoring 7. See RMON,

remote network monitoring n. See RMON,

Remote PC #. See remote system.

remote procedure call #. In programming,a call by one
program to a second program on a remote system. The
second program generally performs a task and returns the

results of that task to the first program. Acronym: RPC.

remote system 7. The computer or network that a

remote user is accessing via amodem. See also remote
access. Compare remote terminal.

remote terminal #. A terminal that is located at a site

removed from the computer to which it is attached,
Remote terminals rely on modems and telephone lines to

communicate with the host computer, See alse remote
access. Compare remote system.

removable disk 7. A disk that can be removed from a

disk drive. Floppy disks are removable} hard disks usually

are not. Also called: exchangeable disk.

REM statement x. Short for remark statement, A state-

ment in the Basic programming language and the MS-
DOS and OS/2 batch file languages that is used to add
comments to a program or batch file. Any statement
beginning with the word REM is ignored by the interpreter
or compiler or the command processor, See also comment.

rename 7. A command in most file transfer protocol

(FTP) clients and in many other systems that allows the
user to assign a new name to a file or files.

render vb. To produce a graphic image from a data file on
an output device such asa video display or printer.

rendering #. The creation of an image containing geo-
metric models, using color and shading to give the image a
realistic look. Usually part of a geometric modeling pack-
age such as a CAD program, rendering uses mathematics
to describe the location of a light source in relation to the
object and to calculate the way in which the light would
create highlights, shading, and variations in color. The

degree of realism can range from opaque, shaded poly-

gons to images approximating photographs in their com-
plexity. See also ray tracing.

RenderMan Shading Language n. A C-like sraphics
and rendering language developed by Pixar.

449

0011

replace

repaginate vb. To recalculate the page breaks in a docu-
ment.

Repeat na. A command in Microsoft Word that causes all

information contained in either the last command dialog
box or the last uninterrupted editing session to be
repeated.

repeat counter #. A loop counter, typically, a register

that holds a number representing how many times a repet-
itive process has been or is to be executed.

Repeat delay n#. A delay for the amount. of time that
elapses before a character begins tepeating when you hold
down a key.

repeater #. A device used on communications circuits

that decreases distortion by amplifving or regenerating a

signal so that it can be transmitted onward in its original
strength and form. Ona network, a repeater connects two

networks of two network segments at the physical layer of
the ISO/OSI reference model and regenerates the signal.

repeating Ethernet 7. See repeaier.

repeat key #. On some keyboards, a key that must be
held down at the same time as a character key to cause the
character key’s key code to be sent repeatedly, On most

computer keyboards, however, a repeat key is not needed
because a key automatically repeats if held down for

longer than a brief delay. Compare typematic.

RepeatKeys rn. A feature ofWindows 9x and Windows NT

that allows a user to adjust or disable the typematic keyboard
feature so as to accommodate users with restricted mobility,
who may activate typematic by accident because they have

trouble lifting their fingers from the keys. See also type-
matic. Compare BounceKeys, FilterKeys, MouseKeys,

ShowSounds, SoundSentry, StickyKeys, ToggleKeys.

repetitive straln Injury 7, An occupational disorderofthe

tendons, ligaments, and nerves caused by the cumulative
effects ofprolonged repetitious movements. Repetitive strain

injuries are appearing with increasing frequency among
office workers who spend long hours typing at computerized
workstations that are not equipped with safeguards such as

wrist supports. Acronym: RSI, See also carpal tunnel syn-
drome, ergonomic keyboard, wrist support.

replace vb. To put new datain the place of other data,
usually after conducting a search for the data to be

teplaced. Text-based applications such as word processors
typically include search-and-replace commands. In such

ATI Ex. 2120

IPR2023-00922

Page 228 of 611

0012

ATI Ex. 2120
IPR2023-00922

Page 229 of 611

xerox PARC

Xerox PARC x. Short for Xerox Palo Alto Research Cen-

ter, Xerox’s research and developmentfacility in Palo Alto,

California. Xerox PARC is the birthplace of such innova-
tions as the local area network (LAN), the laser printer, and

the graphical user interface (GUI).

XFCN x. Short for external function, An external code

resource that returns a value after it has completed execut-
ing. XFCNs are used in HyperCard, a hypermedia program
developed for the Macintosh. See also HyperCard, XCMD,

XFDL x. Short for Extensible Forms Description Lan-
guage, a document description language introduced and

submitted to the World Wide Web Committee in 1998 by
the Canadian Internet forms company UWI.Com. XFDL
is an XML-based language for describing complex forms,
such as legal and government documents. Itis designed to
allow for interactivity yet remain consistent with Internet
standards.

XGA n. See Extended Graphics Array,

x-helght #. In typography, the height of the lowercase

letter x in a particular font. The x-height thus represents
the height of the body only of a lowercase letter, exclud-

ing ascenders (such as the top of the letter b) and
descenders (such as the tail on the letter ¢). See also
ascender, descender.

XHTML #. Short for Extensible Hypertext Markup Lan-
guage, A markup language incorporating elements of
HTML and XML. Websites designed using XHTML can
be more readily displayed on handheld computers and

digital phones equipped with microbrowsers. XHTML
was released for comments by the World Wide Web Con-

sortium (W3C) in September 1999. See afso HTML,
microbrowser, XML.

XIP #. See execute in place,

XLANG n. A derivative XML language that describes the
logical sequencing of business processes, as well as the

implementation of the business process by using various
application services.

XLink #. An XML language that provides a set of
attributes that are used to create links between resources.

XLink provides complex extended linking, link behavior,
and management capabilities. X Link is able to describe
links that connect sets of resources, point to multiple tar-

gets, of serve multiple roles within an AML document.

XML-RPG

XLL vn. Acronym for eXtensible Linking Language. Broad
term intended to denote the family of XML. linking/pointing/

addressing languages, which include XLink, XPointer, and
Path.

RMI #. 1. Acronym for XML Metadata Interchange Fot-
mat, An object-based model for exchanging program data
across the Internet. XMI1is sponsored by IBM, Unisys, and
others and was submitted as a proposed standard to the
Object Management Group (OMG): it is now one of

OMG’s recommended technologies, XMI1is designed to
allow for storing and sharing programming information
and exchanging data among tools, applications, and storage
locations through a network or the Internet so that software.

developers can collaborate on applications, even if they are

not all using the same development tools. 2. As XMI bus,
a 64-bit paralle] bus supported on certain DEC and Alpha-

Server processors, An AMI bus is capable oftransferring
data, exclusive of addressing overhead, at 100 Mbps.

XML x. Acronym for eXtensible Markup Language,a
condensed form of SGML (Standard Generalized Markup

Language), XML lets Web developers and designers cre-

ate customized tags that offer greater flexibility in orga-
nizing and presenting information than is possible with the
older HTML document coding system, XMLis defined as
a language standard published by the W3C and supported

by the industry. See also SGML.

XMLattribute #. Information added to a tag to provide
more information about the tag, such as <ingredient

quantity="2"units="cups”& ot; flour</ingredient>.

XML element #. Information delimited by a start tag
and an end tag in an eXtensible Markup Language
(XML) document. An example would be <Last-
named&st, Davaho<,/LastNamed&st;,

XMLentitles x. Combinations of characters and symbols
that replace other characters when an XML documentis

patsed, usnally those that have other meanings in XML.
For example, &lt; represents the &1t; symbol, which
is also the opening bracket for a tag.

XML Metadata Interchange Format 7. See XMI (defi-
nition 1),

XML-RPC fv. Acronym for eXtensible Markup Language-
Remote Procedure Call. A set of XML-based implemen-
tations that allows cross-platform and cross-programming
language procedure calls over the Internet. XML-RPC

ATI Ex. 2120

IPR2023-00922

Page 229 of 611

ATI 2086
LG v. ATI

IPR2015-00326
0001

ATI Ex. 2120
IPR2023-00922

Page 230 of 611

0001

ATI 2086

LG v. ATI

IPR2015-00326

ATI Ex. 2120

IPR2023-00922

Page 230 of 611

0002

ATI Ex. 2120
IPR2023-00922

Page 231 of 611

Fundamentals

Or --
Interactive

Computer
Graphics

JAMES D. FOLEY
The George Washington University

ANDRIES VAN DAM
Brown University

vy Addison-Wesley Publishing Company
Reading, Massachusetts » Menlo Park, California
London + Amsterdam + Don Mills, Ontario « Sydney

0002

ATI Ex. 2120

IPR2023-00922

Page 231 of 611

0003

ATI Ex. 2120
IPR2023-00922

Page 232 of 611

Sponsoring Editor: William B. Gruener
Production Editor: Rima Zolina

Designer: Herb Caswell
Illustration: ANCO/Boston

Cover Design: Richard Hannus
Art coordinator: Dick Morton

This book is in the

Addison-Wesley Systems Programming Series
Consulting editors: IBM Editorial Board

Library of Congress Cataloging in Publication Data

Foley, James D 1942-
Fundamentals of interactive computer graphics.

(The Systems programming series)
Bibliography: p.
Includes index.

1. Computer graphics. 2. Interactive computer
systems. I. Van Dam, Andries, 1938- joint author.
If. Title;

T385.F63 001.64’ 43 80-24311

iSBN 0-201-14468-9

Reprinted with corrections, July 1984

Copyright © 1982 by Addison-Wesley Publishing Company, Inc. Philippines copyright 1982 by
Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher. Printed in the United States of America. Published
simultaneously in Canada. Library of Congress Catalog Card No. 80-24311

ISBN: N=-201-14468-9

NOPQR=HA=8987

0003

- - — . |

ATI Ex. 2120

IPR2023-00922

Page 232 of 611

0004

ATI Ex. 2120
IPR2023-00922

Page 233 of 611

580 Shading Models

(a) Phong model ({b) Torrance-Sparrow model

Fig. 16.5 Comparison of Phong and Torrance-Sparrow models for a 70° angle of ingj-
dentlight (by J. Blinn [BLIN77a], courtesy University of Utah).

(a) Phong model (b) Torrance-Sparrow model

Fig. 16.6 Comparison of the Phong and Torrance-Sparrow models for a metallic
sphere illuminated by a light source from different directions. Differences are most
apparent for back-lit cases (bottom rows) (by J. Blinn [BLIN7 7a], courtesy University of
Utah).

16.4 POLYGON MESH SHADING

There are three basic ways to shade objects defined by polygon meshes. In order of
increasing complexity, they are: constant shading, intensity interpolation shading,
and normal-vector interpolation shading. In each case, any of the shading models
from the previous two sections can be used. Recall that color shading just involves
three equations rather than one.

Constant shading calculates a single intensity value for shading an entire poly-
gon. Several assumptions are made:

0004

ATI Ex. 2120

IPR2023-00922

Page 233 of 611

0005

ATI Ex. 2120
IPR2023-00922

Page 234 of 611

16.4 Polygon Mesh Shading 581

1. The light sourceis at infinity, so N- Z is constant across the polygonalface:
2. The viewer is at infinity, so N- V is constant across the polygon face;

3. The polygon represents the actual surface being modeled, andis not an approxi-
mation to a curved surface.

If either of the first two assumptionsis unacceptable, then an average L and V might
be used, perhaps calculated at the center of the polygon.

The final assumption is most often the one which is incorrect and has a much
more substantial effect on the resulting image than the other two. The effect is that
each visible polygonal facet of the approximated surfaceis distinguishable, because
each is a slightly different intensity than its neighbors. The difference in shading on
adjacent facets is accentuated by the Mach band effect, which was discovered in
1865 by E. Mach and is described in detail in [RATL65]. The effect is one of
exaggeration of intensity change at any edge wherethereis a discontinuity in magni-
tude or slope of intensity. Figure 16.7 shows, for two separate cases, the actual and
perceived changesin intensity along a surface. The effect is caused by /ateral inhibi-
tion of the receptors in the eye, whose responseto light is influenced by adjacent
receptors in inverse relation to the distance to the adjacent receptor. Receptors
immediately to the brighter side of an intensity change have more response than
those further from the edge, because they receive less inhibition from their neighbors
on the darkerside. Similarly, receptors immediately to the darker side of an intensity
change will have less response than those further into the darker area, because they
receive more inhibition from their neighbors onthe brighterside.

Figure 16.8(b) shows a car with constant shading. The Machbandeffectis quite
evident. Even though the polygonal patches are quite noticeable, the image is much
more realistic than that in Fig. 16.8(a), which shows only the polygon edges.

Intensity Intensity ~ os
Distance along surface Distance along surface

(a) (b)

Fig. 16.7 Mach band effect— actual and perceived intensities: dashed lines—per-
ceived intensity; solid lines—actual intensity.

ATI Ex. 2120

IPR2023-00922

Page 234 of 611

0006

ATI Ex. 2120
IPR2023-00922

Page 235 of 611

582 Shading Models —_—

(b) Constant shading (ce) Gouraud shading

Fig. 16.8 Car body displayed three ways (courtesy University of Utah).

Intensity interpolation shading, usually known from the nameofits developer
as Gouraud shading [GOUR71], eliminates intensity discontinuities. Figure 16.8(c)
shows a Gouraud-shaded car. The intensity ridge running down the hood on the
right side of the picture, close to the fender, is a Mach band caused by a rapid
changein the slope of the intensity curve: Gouraud shading does not completely
eliminate such intensity changes.

The Gouraud shading process consists of four steps. First, surface normals are
calculated. Second, vertex normals are calculated by averaging the surface normals
of all polygonal facets that share the vertex (Fig. 16.9). If an edge is meant to be |
visible (such as at the joint between a planes’ wing and body), then two i£ anormals, one for each side of the edge, are found by separately averagin
normals of polygons on each side of the edge. Third, vertex intensities are found by

. using the vertex normals with any desired shading model. Finally, each polyeo? a
shaded bylinear interpolation of vertex intensities along each edge and then betwee
edges along each scan line (Fig. 16.10).

ATI Ex. 2120

IPR2023-00922

Page 235 of 611

ATI 2086
LG v. ATI

IPR2015-00326
0001

ATI Ex. 2120
IPR2023-00922

Page 236 of 611

0001

ATI 2086

LG v. ATI

IPR2015-00326

ATI Ex. 2120

IPR2023-00922

Page 236 of 611

0002

ATI Ex. 2120
IPR2023-00922

Page 237 of 611

Fundamentals

Or --
Interactive

Computer
Graphics

JAMES D. FOLEY
The George Washington University

ANDRIES VAN DAM
Brown University

vy Addison-Wesley Publishing Company
Reading, Massachusetts » Menlo Park, California
London + Amsterdam + Don Mills, Ontario « Sydney

0002

ATI Ex. 2120

IPR2023-00922

Page 237 of 611

0003

ATI Ex. 2120
IPR2023-00922

Page 238 of 611

Sponsoring Editor: William B. Gruener
Production Editor: Rima Zolina

Designer: Herb Caswell
Illustration: ANCO/Boston

Cover Design: Richard Hannus
Art coordinator: Dick Morton

This book is in the

Addison-Wesley Systems Programming Series
Consulting editors: IBM Editorial Board

Library of Congress Cataloging in Publication Data

Foley, James D 1942-
Fundamentals of interactive computer graphics.

(The Systems programming series)
Bibliography: p.
Includes index.

1. Computer graphics. 2. Interactive computer
systems. I. Van Dam, Andries, 1938- joint author.
If. Title;

T385.F63 001.64’ 43 80-24311

iSBN 0-201-14468-9

Reprinted with corrections, July 1984

Copyright © 1982 by Addison-Wesley Publishing Company, Inc. Philippines copyright 1982 by
Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher. Printed in the United States of America. Published
simultaneously in Canada. Library of Congress Catalog Card No. 80-24311

ISBN: N=-201-14468-9

NOPQR=HA=8987

0003

- - — . |

ATI Ex. 2120

IPR2023-00922

Page 238 of 611

0004

ATI Ex. 2120
IPR2023-00922

Page 239 of 611

580 Shading Models

(a) Phong model ({b) Torrance-Sparrow model

Fig. 16.5 Comparison of Phong and Torrance-Sparrow models for a 70° angle of ingj-
dentlight (by J. Blinn [BLIN77a], courtesy University of Utah).

(a) Phong model (b) Torrance-Sparrow model

Fig. 16.6 Comparison of the Phong and Torrance-Sparrow models for a metallic
sphere illuminated by a light source from different directions. Differences are most
apparent for back-lit cases (bottom rows) (by J. Blinn [BLIN7 7a], courtesy University of
Utah).

16.4 POLYGON MESH SHADING

There are three basic ways to shade objects defined by polygon meshes. In order of
increasing complexity, they are: constant shading, intensity interpolation shading,
and normal-vector interpolation shading. In each case, any of the shading models
from the previous two sections can be used. Recall that color shading just involves
three equations rather than one.

Constant shading calculates a single intensity value for shading an entire poly-
gon. Several assumptions are made:

0004

ATI Ex. 2120

IPR2023-00922

Page 239 of 611

0005

ATI Ex. 2120
IPR2023-00922

Page 240 of 611

16.4 Polygon Mesh Shading 581

1. The light sourceis at infinity, so N- Z is constant across the polygonalface:
2. The viewer is at infinity, so N- V is constant across the polygon face;

3. The polygon represents the actual surface being modeled, andis not an approxi-
mation to a curved surface.

If either of the first two assumptionsis unacceptable, then an average L and V might
be used, perhaps calculated at the center of the polygon.

The final assumption is most often the one which is incorrect and has a much
more substantial effect on the resulting image than the other two. The effect is that
each visible polygonal facet of the approximated surfaceis distinguishable, because
each is a slightly different intensity than its neighbors. The difference in shading on
adjacent facets is accentuated by the Mach band effect, which was discovered in
1865 by E. Mach and is described in detail in [RATL65]. The effect is one of
exaggeration of intensity change at any edge wherethereis a discontinuity in magni-
tude or slope of intensity. Figure 16.7 shows, for two separate cases, the actual and
perceived changesin intensity along a surface. The effect is caused by /ateral inhibi-
tion of the receptors in the eye, whose responseto light is influenced by adjacent
receptors in inverse relation to the distance to the adjacent receptor. Receptors
immediately to the brighter side of an intensity change have more response than
those further from the edge, because they receive less inhibition from their neighbors
on the darkerside. Similarly, receptors immediately to the darker side of an intensity
change will have less response than those further into the darker area, because they
receive more inhibition from their neighbors onthe brighterside.

Figure 16.8(b) shows a car with constant shading. The Machbandeffectis quite
evident. Even though the polygonal patches are quite noticeable, the image is much
more realistic than that in Fig. 16.8(a), which shows only the polygon edges.

Intensity Intensity ~ os
Distance along surface Distance along surface

(a) (b)

Fig. 16.7 Mach band effect— actual and perceived intensities: dashed lines—per-
ceived intensity; solid lines—actual intensity.

ATI Ex. 2120

IPR2023-00922

Page 240 of 611

0006

ATI Ex. 2120
IPR2023-00922

Page 241 of 611

582 Shading Models —_—

(b) Constant shading (ce) Gouraud shading

Fig. 16.8 Car body displayed three ways (courtesy University of Utah).

Intensity interpolation shading, usually known from the nameofits developer
as Gouraud shading [GOUR71], eliminates intensity discontinuities. Figure 16.8(c)
shows a Gouraud-shaded car. The intensity ridge running down the hood on the
right side of the picture, close to the fender, is a Mach band caused by a rapid
changein the slope of the intensity curve: Gouraud shading does not completely
eliminate such intensity changes.

The Gouraud shading process consists of four steps. First, surface normals are
calculated. Second, vertex normals are calculated by averaging the surface normals
of all polygonal facets that share the vertex (Fig. 16.9). If an edge is meant to be |
visible (such as at the joint between a planes’ wing and body), then two i£ anormals, one for each side of the edge, are found by separately averagin
normals of polygons on each side of the edge. Third, vertex intensities are found by

. using the vertex normals with any desired shading model. Finally, each polyeo? a
shaded bylinear interpolation of vertex intensities along each edge and then betwee
edges along each scan line (Fig. 16.10).

ATI Ex. 2120

IPR2023-00922

Page 241 of 611

DirectX 10
Architecture

for

Chrome 400 Series
Discrete Graphics Processors

A
S3 Graphics
White Paper

© 2007 S3 Graphics. All rights reserved. WP016-A.0
www.s3graphics.com 7/21/2007

ATI 2087
LG v. ATI

IPR2015-00326

0001

ATI Ex. 2120
IPR2023-00922

Page 242 of 611

S3 Graphics WP016-A.0
DirectX 10 Architecture 7/21/2007
for Chrome 400 Series Processors Page 2 of 19

0002

ATI Ex. 2120
IPR2023-00922

Page 243 of 611

Introduction
This White Paper provides an overview of Microsoft’s DirectX 10 architecture.
DirectX 10 compatible features provide an important component of the enhanced
experience available to users of systems featuring S3 Graphics Chrome 400
Series graphics processors. These processors are designed especially for
Microsoft DirectX 10 and Windows Vista.

DirectX 3D is the standard API (application programming interface) that allows
graphics hardware to render and support graphics on Microsoft Windows
platforms. This API is a common interface or middleware that provides a
hardware abstraction layer which allows developers of an application, such as a
3D game or CAD program, to access the graphics hardware via programming
calls to the operating system (OS). When the application makes a request to
draw an image on the screen, the API calls the OS, which in turn will invoke the
graphics processor (GPU) driver to communicate with the graphics hardware to
draw the corresponding image and output the result to the display. By using the
standard DirectX interface, application developers need only need be concerned
about their specific application, without needing to be concerned about details of
the underlying hardware implementation. This allows developers to quickly create
many visually stunning images and realistic detail, by providing fast access to the
advanced hardware capabilities of today’s leading edge GPUs.

Previous generations of Microsoft’s DirectX (DX) 3D, had significant changes.
Fixed function hardware units were used in DirectX generations up to DX7. Then
programmable hardware shader units with new user-defined programming
capabilities appeared for DX8. DX9 featured added hardware functionality and
programmability. The latest release from Microsoft is DX10, which introduces a
new architecture that is the subject of this white paper. S3 Graphics continues to
work closely with Microsoft’s DirectX team to extend its leadership in graphics
technology with high performance parts, including the Chrome S20 Series
processors based on DX9.0c, and the Chrome 400 Series graphics processor
line with advanced DX10 support.

Microsoft’s latest DirectX release, DX10, extends the API beyond the limitations
of previous generations. The DX10 API is the first redesign to the underlying
architecture of DirectX 3D. New are optimized run-time features, CPU off-loading
during state changes, a hardware geometry shader, texture arrays, and other
graphics rendering enhancements that allow cinematic-like image quality. S3
Graphics Chrome 400 Series product line fully supports these new capabilities of
DX10.

S3 Graphics WP016-A.0
DirectX 10 Architecture 7/21/2007
for Chrome 400 Series Processors Page 3 of 19

0003

ATI Ex. 2120
IPR2023-00922

Page 244 of 611

DirectX 9 Hardware Pipeline

Figure 1. DirectX 8/9 Graphics Pipeline

The DirectX 8/9 pipeline is diagrammed in the above figure, which shows the
basic features of a DX8/9 GPU. With the introduction of DX8/9 GPUs such as S3
Graphics’ Chrome 20 Series, the transition from a fixed to a programmable
pipeline changed the graphics landscape. Fixed function pipelines meant the
hardware blocks were hard-coded with specific graphics algorithms. Application
developers had to limit their development to what the hardware supported.
DirectX 8 introduced and DirectX 9 expanded programmable pipelines which
provided an additional programmable API layer closer to the graphics hardware.
Developers can take advantage of this layer by using shader assembly language
to creatively write specific code to control the different shaders and elements of
the programmable pipeline. The main parts of the pipeline are as follows:

• Vertex shaders (VS) replace the “Transform and lighting engine” logic prevalent in
previous generations of graphics hardware. The VS can only manipulate vertices and
transform the shapes of objects from the 3D model space to be displayed on a 2D
screen. The VS also does per-vertex lighting based on computed color to give the vertex
more detail. The VS cannot create or destroy any vertices and the unit can only work on
one vertex at a time (in the API level). Actual graphics hardware may process batches or
packets of vertices in parallel to increase throughput.

S3 Graphics WP016-A.0
DirectX 10 Architecture 7/21/2007
for Chrome 400 Series Processors Page 4 of 19

0004

ATI Ex. 2120
IPR2023-00922

Page 245 of 611

S3 Graphics WP016-A.0
DirectX 10 Architecture 7/21/2007
for Chrome 400 Series Processors Page 5 of 19

• Rasterization is the process of mapping a triangle from object to image space
(combining vertices from the VS output) and determining which screen pixels cover the
triangle. All pixels inside the triangle are tested for visibility using the depth buffer and are
kept if the triangle being rasterized is closer from a viewer perspective than other
triangles. All invisible triangles and pixels are discarded since they will not be seen
onscreen. This step prepares the object to be modified at the pixel level by the pixel
shader.

• Pixel shaders (PS) calculate color and texture on each individual pixel. They give
flexibility to developers by allowing high quality details to be shown on each object.

• The 2D and 3D Raster Operation Pipeline (ROP) is responsible for outputting the
rendered object to the render target buffer from the pipeline after textures and blending
have been applied.

• The graphics memory stores vertex and texture data in addition to the final object and
frame that is to be drawn onscreen.

0005

ATI Ex. 2120
IPR2023-00922

Page 246 of 611

Limitations of DirectX 8/9
Microsoft designed DirectX 10 to address some of the following key
disadvantages identified in the DirectX 8/9 architectures. These include the
following.

1. API overhead is high for DX8/9
• When a DX9 application requires use of the graphics hardware to draw an object

onscreen, the application needs to perform a call to the DX8/9 API to tell the OS what
to do. The OS would then call the graphics driver, which would instruct the graphics
hardware to perform the assigned task for the application.

• The DX8/9 API runtime provides resource management like allocation, virtualization,
and initialization for the graphics hardware for vertex buffers, texture maps, and state
changes. With the introduction of programmable shaders, runtime allocation tends to
be harder to manage since there are more levels of abstraction, control and detail per
scene.

• As Figure 2 illustrates, all DX8/9 functional or runtime calls from an application to the
graphics hardware were done by the CPU (once per object), causing CPU
bottlenecks whenever many objects need to be rendered for the current frame. The
high API overhead also limits the number of objects per scene, causing potential loss
of detail in each frame.

• State changes within the GPU for the shaders and textures generate additional
overhead as the CPU had to decode state change instructions in order to implement
visual details for realistic rendering to object surfaces and textures. If multiple visual
effects need to be performed on an object, multiple passes through the hardware
could be required. That translates into multiple state changes per pass performed by
the CPU.

• The CPU overhead required to direct the GPU, in essence, became the bottleneck
between the DX8/9 application and DX8/9 hardware, which limits the overall capacity
for creating stunning visuals.

Figure 2. DirectX 8/9 Graphics API Interface

S3 Graphics WP016-A.0
DirectX 10 Architecture 7/21/2007
for Chrome 400 Series Processors Page 6 of 19

0006

ATI Ex. 2120
IPR2023-00922

Page 247 of 611

S3 Graphics WP016-A.0
DirectX 10 Architecture 7/21/2007
for Chrome 400 Series Processors Page 7 of 19

2. Vendor Variations in DirectX features

• Differences in DirectX feature support across GPU vendors, and even within a
vendor’s product lines, frequently cause problems for application development,
because of the numerous levels of support that must be implemented across these
multiple hardware platforms. Typical issues that must be addressed include allowing
for the resource limitations of different hardware. The lack of support for optional
features may prevent an application from running at its highest level on a particular
platform. Differences in arithmetic precision in the hardware shaders, instruction and
data types, and variations in storage of intermediate data formats may all affect the
rendering process.

3. Hardware resource limitations
• The number of separate VS and PS units in the GPU are fixed. Applications requiring

heavy use of one type of shader will cause the other shader to be idle. For example,
large triangles create heavy loading for the PS, idling the VS. Since there is the
possibility of an application being shader-limited, throughput of the rendering pipeline
will be limited by the number and type of shaders. The DirectX 10 API allows
graphics hardware to overcome this resource bottleneck by introducing a novel
architecture which has been incorporated into all S3 Graphics Chrome 400 Series
graphics processors.

• Another drawback of DX8/9 generation GPU architectures is their specialized focus
on one task, that of 3D graphics rendering. A DirectX 8/9 GPU was designed to
optimize that task, which in effect limited its ability to perform additional computing
tasks. With the introduction of GPU architecture designed for DirectX 10, the GPU
can now take on additional capabilities and complexity. The processor now becomes
more of a general compute processor, capable of offloading the CPU from some
basic tasks, and thus takes a significant step towards becoming a general purpose
GPU (GPGPU).

0007

ATI Ex. 2120
IPR2023-00922

Page 248 of 611

S3 Graphics WP016-A.0
DirectX 10 Architecture 7/21/2007
for Chrome 400 Series Processors Page 8 of 19

DirectX 10 New Capabilities and Benefits
The main objective for redesigning the entire DirectX 10 API and hardware
architecture was to provide a solution for the CPU overhead problem and the
hardware capability issues. This re-design also incorporated benefits from the
application development, API, and hardware perspectives. The improvements
based on this extensive research and re-design are as follows:

1. Efficient runtime (lower API overhead)
• In DirectX 10 the number of possible states that need to be tracked by the system

has been reduced, minimizing the overhead related to state changes.

• Overhead per object has been reduced which allows more objects per frame. This
produces better graphic realism and a higher level of detail than was possible with
previous generations of the API.

• The validation of objects has been redefined and the process is now more efficient.
Validation checks the format of commands and the integrity of data sent by the
application to make sure there are no interoperability issues with the hardware. The
drawback of validation is a large CPU overhead at runtime. DX10 uses this feature
minimally by only validating each object once when it is created, rather than every
time the object is used, as was the case in DX9.

2. Reduced CPU loading
Rendering an object or applying multiple textures to an object in a repeated manner
uses up valuable CPU cycles and overhead. DX10 has introduced several new
instructions and hardware capabilities to help overcome rendering limitations.

• A new 3D pipeline unit called the geometry shader (GS) has been introduced with
this iteration of DirectX. The GS can modify, create, or destroy primitive vertex data
from the VS without CPU intervention, so no resource-intensive state changes or
associated overhead is required by the API. In the past, any changes to the vertex
data needed CPU-GPU coordination and state changes.

• The new hardware model in the DX10 pipeline gives more capability to the GPU to
handle state changes and instructions. The DX10 GPU now includes built-in
arithmetic and flow control logic, thereby providing flexibility in primitive shading and
state change handling, and offloading the tasks once performed by the CPU.

• Stream out is a new feature that allows the VS/GS to output data directly into
graphics memory where the data can be accessed automatically and repeatedly by
the shader units. This is a great new feature controlled entirely by the GPU (with no
CPU overhead), for recursive rendering on objects that require multiple passes
through the pipeline. In addition, data from any step in the pipeline can go directly to
memory. By avoiding the need to send data completely through the pipeline,
resources are not wasted on processing intermediate vertices or pixels.

• Arrayed resources allow texture maps to be created as a linear array of up to 512
elements. Developers now have index instructions to access elements within the
array in a single pass, so the GPU can work on multiple elements without any static
switching overhead. For example, an environmental cube map can be stored in an

0008

ATI Ex. 2120
IPR2023-00922

Page 249 of 611

array as six elements (one for each face of the cube), and the GPU can work on all
six elements concurrently in one pass.

• Multiple render targets allow the GPU to create different versions of a scene in a
single pass. DX10 has the ability to create up to eight render targets at a time.

• High dynamic-range rendering is another feature that brings realistic graphics
rendering to the user experience. Formats used in the past to represent color in
floating-point representation took at least twice the amount of storage compared to
integer formats with half the precision. DX10 provides more efficient mechanism for
storage of color components by providing floating point format RGB 11:11:10 (R/G
11-bits each, B 10-bits) and RGBE format (5-bit shared exponent for R/G/B with 9-bit
mantissas for each). These formats allow a wider range of color and more vivid detail
to be represented as seen in the examples below.

Figure 3. High Dynamic Range Rendering in Half-Life 2: Lost Coast

• A more complex method of utilizing occlusion query has also been implemented to

conserve valuable GPU and CPU resources. Occlusion query is a method where
non-visible primitives and objects in the Z-buffer are not rendered to save hardware
computational resources. Because frame-to-frame rendering is very dynamic and
implementation may vary with the application, occlusion query is not guaranteed to
omit unseen pixels. DX10 takes it one step further by allowing the GPU to render
complex objects in simple line drawing approximations. If the object needs to be
drawn onscreen, the GPU already has the framework ready. If the object is not
needed or is invisible onscreen, the GPU can throw away the object approximation,
without wasting many CPU and GPU cycles.

• Data and resource mapping enhancements improve the ability of the GPU to access
data in a timely manner. As an example, vertex buffer data for an application needs
to be mapped to its memory address space, since that data can only be used by the
application. The API and driver will allocate this buffer space at runtime either from
the graphics memory (frame buffer) or system memory. While access to frame buffer
is almost instantaneous, access to system memory is many magnitudes slower
because of the communication lag between the GPU and system memory via the
chipset. In DX10 resources are mapped according to how frequently they are used

S3 Graphics WP016-A.0
DirectX 10 Architecture 7/21/2007
for Chrome 400 Series Processors Page 9 of 19

0009

ATI Ex. 2120
IPR2023-00922

Page 250 of 611

S3 Graphics WP016-A.0
DirectX 10 Architecture 7/21/2007
for Chrome 400 Series Processors Page 10 of 19

(reads/writes) with four resource classes: default, immutable, dynamic, and staging.
Using these new resource classes, developers can optimize performance by putting
frequently used data in the frame buffer to be closer to the GPU and putting seldom-
used data in system memory.

3. Additional constructs to improve efficiency
In graphics, multiple iterations of textures and blending usually take place to produce
realistic images, such as re-creating hair moving in the wind or the ripples on the
surface of a lake. These multiple loops previously required state changes and
extensive CPU work to be performed. With DX10, state objects and constant buffers
are now available to manage multiple loops in the rendering pipeline and increase
the range of processing that can be done in one pass.

• State objects define what the graphics pipeline units should do as an object
travels through the pipeline. The state objects have information to tell the
pipeline which textures to blend or to tell the GS to create more detail for
specific vertices in a part of the rendered frame. DX10 handles all of these
details by introducing five state object commands, and programmers can work
using a high-level language, instead of low-level constructs where they would
need to keep track of all the pipeline stage units. The commands InputLayout,
Sampler, Rasterizer, DepthStencil, and Blend are performed in the GPU, with
minimal CPU intervention for state changes.

• Constant buffers store large amounts of predefined values (data) for items in a
scene, so the CPU or GPU does not have to keep track of those values
constantly. Each buffer stores up to 4096 constants hold information such as
camera view/projection and light source color/position/intensity. Since these
items have update intervals which may be once per frame or once per object,
doing several hundred of these constant updates one at a time required
significant CPU overhead when done using DirectX 9 or earlier. In DX10, the
constant buffer groups the constants based on frequency of use and does
batch processing to update the constants, which significantly reduces CPU use
and dependence.

4. DX10 hardware specification set
• In pre-DX10 revisions of the API, hardware vendors were able to provide

capability bits to inform the system about what features were supported in
hardware. DX10 has changed this scheme. DX10 binds the 3D hardware
feature set with a DirectX version number, so consistency across all hardware
vendors exists and identifies support for a set of same basic features.
Implementation of these features is the key for differentiating the graphics
quality seen across vendors. S3 Graphics Chrome 400 Series processors have
proprietary design implementations that give them an edge over the competition
in visual quality and rendering capability.

• The basic programmable and fixed function pipelines of the past have been
redesigned or eliminated. New and powerful hardware is capable of extending
the implementation scope beyond the limits of rendering-only applications to
provide high-throughput computing implementations for physics and AI.

0010

ATI Ex. 2120
IPR2023-00922

Page 251 of 611

S3 Graphics WP016-A.0
DirectX 10 Architecture 7/21/2007
for Chrome 400 Series Processors Page 11 of 19

The additional capabilities available in DX10 hardware and software offload most
of the runtime events associated with rendering an object from the CPU to the
GPU. With new and even more powerful functional units, an expanded instruction
set, a new architecture that streamlines the graphics pipeline, efficient memory
access methods, and multi-pass rendering capability, DX10 has introduced an
astounding ability to generate graphics realism into our computing lives today
and in the immediate future.

0011

ATI Ex. 2120
IPR2023-00922

Page 252 of 611

DX10 Pipeline Introduction

DX8/9 Pipeline DX10 Pipeline

Figure 4. DX8/9 Pipeline Compared to DX10 Pipeline

Figure 4 shows a DX8/9 pipeline (left) compared to the latest DX10 hardware.
Common functional units like the vertex/pixel shaders, rasterizer, and
ROP/Output Merge (OM) block exist in both architectures and perform similar
functions. The Input Assembler (IA) converts or replicates input vertex data from
incoming streams (vertex structure) to be used by the pipeline. The key
difference is the introduction of the Geometry Shader (GS) and Stream Output
(SO) described below.

• The Geometry Shader (GS) takes the vertices of a primitive, such as a line, point, or
triangle, and will either create additional vertices (generate data) or destroy the vertices.
The GS increases the number of vertices by creating additional primitives composed of
up to 1024 32-bit vertex data per instance. If a vertex is not needed, the GS can delete it
from the rendering pipeline. The GS can also add additional elements to a primitive
without needing to create a new vertex stream. In the past, the pipeline could not create
or destroy vertices, only modify them. DX10 moves one step ahead by allowing even
more flexibility and power in hardware, where the GS performs per-primitive modifications
and also accesses adjacent primitive information. For example, in a GS implementation
for a realistic shadow rendering, the GS can control a point or line and its neighboring
primitive, as well as control the displacement mapping, where more detail can be shown
with the creation of new primitives based on height maps.

S3 Graphics WP016-A.0
DirectX 10 Architecture 7/21/2007
for Chrome 400 Series Processors Page 12 of 19

0012

ATI Ex. 2120
IPR2023-00922

Page 253 of 611

• Stream output can write vertex or primitive information from the VS/GS to a stream buffer
in memory immediately after the GS stage. In the past a primitive had to exit the PS and
then it could be written to the render target buffer in memory. Now data in the stream
buffer can be used recursively or iteratively by other functional blocks in the pipeline on
an as-needed basis to improve data re-use efficiency. Other uses of this feature are
physics calculation support such as used in particle systems where ongoing calculations
are needed to generate and destroy primitives to simulate water, smoke, and clouds.

• Graphics memory has been changed from an area that stored vertex and texture data
separately, to memory where each independent shader unit can access the same data.
The data storage formats have also been updated to allow the pipeline to store and use
multiple format types to increase flexibility. The memory can store data in arrays which
allows recirculation of data and texture fetches by the VS, GS, and PS.

DX10 introduces a unified architecture that builds upon the pipeline diagramed in
Figure 4. The DX10 pipeline combines three types of shaders into unified
execution units capable of handling VS, GS, and PS instructions. The DX10
pipeline architectural design has solved many issues seen in previous
generations of DirectX. It has added significant changes to the software,
instruction set, instruction support/capability, as well as requiring new hardware
blocks and features.

This new design still has a limitation in the utilization rate for each shader type
based on the application (see Figure 5 below). If complex geometry calculations
and processing are needed, then the VS may be fully utilized while the PS might
remain idle. If an application is pixel processing heavy, then the PS may be
running at full speed while the VS will only be partially loaded.

Figure 5. Vertex and Pixel Shader Resource Utilization for Different Applications

S3 Graphics WP016-A.0
DirectX 10 Architecture 7/21/2007
for Chrome 400 Series Processors Page 13 of 19

0013

ATI Ex. 2120
IPR2023-00922

Page 254 of 611

DX10 Shader Model 4.0
Shader Model 4.0 (SM4.0) is the new instruction set architecture (ISA) for DX10
that looks at the graphics in a unified way. Some keys advantages of SM4.0 are:

• Easy Programmability: Developers do not need to be bogged down with the low-level
details of the hardware. In the past, programmers needed to control and write different
low-level program code for each individual shader (VS/PS). Each shader was also
considered an individual virtual machine that had separate input/output/general registers
that had to be tracked for shader I/O, memory transfers, and intermediate data storage.
SM4.0 instructions hide the low-level implementation details and incorporate all the
pipeline flow control.

• Flexible Load Balancing: The new unified ISA allows flexibility. Developers can now
look at these shaders units as one cohesive block (single common core virtual machine)
instead of separate blocks, as shown in Figure 6. The unified shader is made up of
shader blocks that can handle all vertex, pixel, and geometry instructions, so the GPU is
fully utilized without concern for shader loading imbalances (geometry processing vs.
pixel processing, as shown in Figure 5). There is also additional logic to load balance the
shader units to keep all functional units fully utilized. If more pixel processing is needed,
then more of the unified shader blocks can be allocated to pixel processing to increase
throughput. The same shader-type allocation can be done with the VS and GS, as seen
in Figure 7.

• Unified Shader Code: Developers code in “shader” instructions, not VS/PS/GS specific
code.

• Programmable Offloading: The unified model helps offload the CPU state change
overhead by incorporating flow control logic that programmers can control.

Figure 6. Unified Shader Model (Left) Compared to Basic DX10 Pipeline (Right)

S3 Graphics WP016-A.0
DirectX 10 Architecture 7/21/2007
for Chrome 400 Series Processors Page 14 of 19

0014

ATI Ex. 2120
IPR2023-00922

Page 255 of 611

Figure 7. Unified Shader Utilized for Different Shader Types

• Additional resources, data formats, and instructions are available to the programmer for
more efficient use and coupling of the graphics hardware to the application level.

Feature DX9 DX10
Instruction Slots 512 64K
Constant Registers 256 4096 (x16)
Temporary Registers 32 4096
Render Targets 4 8
Textures 16 128
Texture Size 2K x 2K 8K x 8K
Load Operations No Yes
Sample Offsets No Yes
Flow Control Static/Dynamic Dynamic

Table 1. Basic Comparison Table of DX9 and DX10

• Full integer and bitwise instructions allow the GPU to compute complex algorithms more
efficiently in integer format instead of converting between floating point and integer.

• Switch statements are another great addition because they provide multiple paths/options
when rendering objects on a per-primitive basis. This means the GPU can replicate
objects (instancing) and also provide unique characteristics for each object independently
of the other objects in the scene.

• Increased texture support and size greatly enhance visual quality.

o In DX9, developers only had 16 textures to work with at a given time and their
size limitation was 4096 x 4096. Since the application of multiple textures
required multiple texture changes and multiple state changes (large CPU
overhead), developers were limited in what they could do. If developers needed
multiple textures, they created a texture atlas that combined many smaller
textures that could be accessed by indexing into the atlas. This method proved
very inefficient since the boundaries between smaller textures were not as clearly
defined and the atlas could only hold a certain amount of textures so there was a
trade-off between storing fewer (larger) textures or more (smaller) textures.

o SM4.0 has new instructions and indexed texture arrays, which can store 512
textures with resolutions of up to 8192 x 8192. This method effectively replaces
the texture atlas with a large array that can be indexed into easy-to-access
multiple textures. In addition, the number of textures a shader can use has
increased from 16 to 128, allowing hardware to take advantage of the texture
array to add more detail to all objects in a frame.

S3 Graphics WP016-A.0
DirectX 10 Architecture 7/21/2007
for Chrome 400 Series Processors Page 15 of 19

0015

ATI Ex. 2120
IPR2023-00922

Page 256 of 611

S3 Graphics WP016-A.0
DirectX 10 Architecture 7/21/2007
for Chrome 400 Series Processors Page 16 of 19

High-Level Shader Language (HLSL 10)
HLSL 10 is the name given to the programming language developers use to take
advantage of DX10 shader and hardware capabilities. The advantages of HLSL
are many.

• Application developers do not need to worry about using assembly-like instructions to
control the shader and pipeline at the hardware level.

• Applications can offload the task of resource management.

• Bind-by-name to bind-by-position allows less overhead at runtime. Bind-by-name in DX9
performs checks like matching input/output between hardware functional units and
matching vertex buffer format with the vertex shader. Any type mismatch would cause
huge overhead since the hardware was not as flexible. In DX10 shader units have
associated signatures with their inputs and outputs. As long as the output of the
preceding stage is compatible with the input of the following stage, then the data type
mismatch is allowed since DX10 allows multiple data formats to be used at any stage in
the pipeline.

• DX10 has a “view” method for representing resources such as vertex buffers or texture
maps, which can be read in many different formats, so that they are not type-set. This
allows resources to be used in multiple parts of the pipeline. Data from one shader can
be used in another for on-the-fly updates, regardless of the format type of the
intermediate data.

0016

ATI Ex. 2120
IPR2023-00922

Page 257 of 611

Examples of DX10 Visual Effects

Figure 8. DX9 Screenshot Figure 9. DX10 Screenshot
(Source: Flight Simulator X game)

Figure 10. DX9 Screenshot Figure 11. DX10 Screenshot
(Source: Crysis game)

Figure 12.
DX9 (normal mapping)

Figure 13.
DX10 (displacement mapping)

 (Source: “DirectX 10: The Next Generation in Gaming” – http://windowsvistablog.com)

S3 Graphics WP016-A.0
DirectX 10 Architecture 7/21/2007
for Chrome 400 Series Processors Page 17 of 19

0017

ATI Ex. 2120
IPR2023-00922

Page 258 of 611

Figure 14. DX10 Morphing using the geometry shader and stream output

(Source: Microsoft MSDN Direct3D 10 Samples, http://msdn2.microsoft.com)

Figure 15. DX10 Alpha to Coverage

(Source: Microsoft “Intro to Direct3D 10” presentation by Sam Glassenberg)

Figure 16. DX10 Instancing

(Source: Microsoft MSDN Direct3D 10 Samples, http://msdn2.microsoft.com)

S3 Graphics WP016-A.0
DirectX 10 Architecture 7/21/2007
for Chrome 400 Series Processors Page 18 of 19

0018

ATI Ex. 2120
IPR2023-00922

Page 259 of 611

S3 Graphics WP016-A.0
DirectX 10 Architecture 7/21/2007
for Chrome 400 Series Processors Page 19 of 19

Conclusion
The introduction of DirectX 10 brings an inflection point to the graphics market
where the rendering capabilities of advanced hardware and the creativity of
software developers can now bring real-life 3D graphics to our daily lives.
Features, which once were found only in luxury high-end graphics products
costing several thousands of dollars, can now be achieved using the new DirectX
10 companion GPUs of the S3 Graphics Chrome 400 Series product line.

S3 Graphics Chrome 400 Series graphics processors are technological marvels
with their multiple programmable DX10/SM4.0 execution units which provide a
unified shader architecture. With support for all the new DX10 features such as
stream processing, geometry shaders, and HLSL 10 programming, S3 Graphics
continues its position as an industry leader in visual computing for current and
future generations of the DirectX 3D API.

0019

ATI Ex. 2120
IPR2023-00922

Page 260 of 611

ATI 2088
LG v. ATI

IPR2015-003260001

ATI Ex. 2120
IPR2023-00922

Page 261 of 611

DICTIONARY OF

COMPUTING

FOURTH EDITION

S.M.H. Collin

PETER COLLIN PUBLISHING

ATI 2088

LG v. ATI

0001 IPR2015-00326

ATI Ex. 2120

IPR2023-00922

Page 261 of 611

0002

ATI Ex. 2120
IPR2023-00922

Page 262 of 611

Fourth edition published 2002
Third edition published 1998

Second edition published 1994
First published in Great Britain 1988

Published by Peter Collin Publishing, an imprint of
Bloomsbury Publishing Ple

38 Soho Square, London WID 3HB
© Copyright S.M.H. Collin, 1988, 1994, 1998. 2002

All rights reserved. No part of this publication may
be reproduced in any form or by any means withoutthe

permission ofthe publishers.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN 1-901659-46-|

Text computer typeset by PCP
Printed and boundin Italy by Legaprint

Cover artwork by Gary Weston

0002

ATI Ex. 2120

IPR2023-00922

Page 262 of 611

0003

ATI Ex. 2120
IPR2023-00922

Page 263 of 611

vectored interrupt 374 VESA

vectored interrupt=ovew—interrupt
signal which directs the processor to a
routine at a particular address

QUOTE: the great advantage of
the vector-scan display is
that it requires littie memory
to store a picture

Electronics & Power

Veitch diagram noun graphical
representation ofa truth table
velocity oun speed, the disk drive motor
spins at a constant velocity
velocity (of sound) sow: speed of
sound which is equal to 33] metres per
second through air; the speed of sound
varies in different materials

vendor jon person who manufactures pr
sells or supplies hardware or software
products; vendor independent = hardware
oe software that will work with hardware
and software manufactured by other
vendors; apposite is PROPRIETARY;
vendor-independent messaging = see VIM
vendor-independent messaging
see VIM

Venn diagram noun graphical
representation of the relationships between
the states in.a system ar circuil
verification wow: checking that data has
been keyboarded correctly or that data
transferred from one mediumto another has
been iransferred correctly; keystroke
verification = check made on each key
pressed to make sure it is valid for a
particular application; verification and
validation (V & V) = testing a system to
check that it is functioning correctly and
that jt is suitable for the tasks intended

verifier veiw: special device for verifying
input data
verify verb to check that data recorded or
entered is correc!

Veronica tool that works with Gopher ta
help a user find information or files on the
Internet

version joucopy or program er statement
whichis slightly different from others; the
latest version uf the software includes an
improved graphics routine, version
control = utility software that allows
several programmers to work on @ source
file and monitors the changes that have been
made by each programmer, version

0003

number = number of the version of a
product

vertex oun point in space defined by the
three coordinates x, y, and z

vertical adjective at right angles to the
horizontal; vertical=application ==
application software that has been designed
for a specific use, rather than for general
use; your new software to manage a
flovist's is a good vertical application:
vertical blanking interval = see RASTER;
vertical format unit (VFU) = part of the
control system of a printer which governs
the vertical format of the document to be
printed (such as vertical spacing, page
length); vertical interval time code = see
VITC; vertical justification = adjustment
of the spacing betweenlines of text to fit a
section of text into a page: vertical parity
check = error detection test in whichthe bits
of a word are added and compared with a
correct total; vertical portal (VORTAL) =
website that contains information for just
one particular industry or interest group:
vertical redundancy check (WRC) = (odd)
parity check on each character of a block
received, to detect any errors; vertical scan
frequency = number of times a picture
beamin a monitor moves [rom the last line
back up to the first; vertical scrolling =
displayed text which moves up or down the
computer screen one line at a time; vertical
syne signal = (in a video signal) signal
which indicates the end ofthe last trace at

the bottom of the display; vertical tab =
number of lines that should be skipped
before printing starts again

vertically adverb from top to bottom or
going up and down at right angles to the
horizontal; the page has been justified
vertically

very large scale integration (VLSI)
noun integrated circuit wilh 10,000 ta
100,000 components

VESA = VIDEO ELECTRONICS
STANDARDS ASSOCIATION; VESA
local bus or VL-bus = (in an IBM PC)
standard defined by VESA which allows Up
to three special expansionslots that provide
direct, bus-master control of the central
processor and allow very high speed dat
transfers between main memory and the
expansion card without using the processor:

ATI Ex. 2120

IPR2023-00922

Page 263 of 611

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 9, SEPTEMBER 2008 2047

A 195 mW/152 mW Mobile Multimedia SoC
With Fully Programmable 3-D Graphics and

MPEG4/H.264/JPEG
Jeong-Ho Woo, Student Member, IEEE, Ju-Ho Sohn, Associate Member, IEEE, Hyejung Kim, Student Member, IEEE,

and Hoi-Jun Yoo, Fellow, IEEE

Abstract—In this paper, we present a low power multimedia
SoC with fully programmable 3-D graphics, MPEG4 codec, H.264
decoder, and JPEG codec for mobile devices. The mobile unified
shader in 3-D graphics engine provides fully programmable 3-D
graphics pipeline with 35% area and 28% power reduction. Low
power lighting engine which employs logarithmic number data-
path and the specialized lighting instruction enable 9.1 Mvertices/s
vertex fill rate, which is 2.5 times improvement compared with
previous works including transformations and OpenGL lighting.
The SoC consumes less than 152 mW for video applications and
less than 195 mW for 3-D graphics applications. The mobile
unified shader and merged JPEG/MPEG4 codec reduce the silicon
area and the SoC consumes 6.4 mm 6.4 mm in 0.13 m CMOS
logic process.

Index Terms—Low power design, mobile multimedia SoC, mo-
bile unified shader, programmable 3-D graphics.

I. INTRODUCTION

R ECENTLY, multiple multimedia applications are merged
into the mobile devices to be a personal multimedia ter-

minal [2]. The digital camera and real-time audio playback are
widely incorporated and recently even digital multimedia broad-
casting (DMB) and real-time 3-D graphics are employed for
mobile entertainments. The real-time 3-D graphics has been
used for various applications such as 3-D games or 3-D user-in-
terfaces and recently portable navigation devices (PND) try to
employ the real-time 3-D graphics for 3-D map displaying and
3-D navigation services.

In mobile devices, since users often hold the small screens
closer to their eyes, the average eye-to-pixel angle is larger than
that of a PC [3]. Therefore, every pixel in mobile applications
should be drawn with realistic 3-D graphics effects, which
can be achieved by a fully programmable 3-D graphics. In PC
graphics, dedicated vertex shader and pixel shader carry out
the fully programmable 3-D graphics and they make realistic
3-D images [9]. But, that PC graphics architecture cannot be
migrated into the mobile devices due to its silicon area and
power consumption.

Manuscript received October 29, 2007; revised May 5, 2008. Current version
published September 10, 2008.

J.-H. Woo, H. Kim, and H.-J. Yoo are with the Division of Electrical Engi-
neering, Department of Electrical Engineering and Computer Science, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon 305-701,
Korea (e-mail: denber@eeinfo.kaist.ac.kr).

J.-H. Sohn is with LG Electronics Company, Ltd., Seoul 137-724, Korea
(e-mail: sohnjuho@lge.com).

Digital Object Identifier 10.1109/JSSC.2008.2001911

Since the mobile devices restrict silicon area and power
consumption, various multimedia applications should be imple-
mented with small area and low power consumption. Although
there have been many publications on mobile multimedia solu-
tions [2]–[8], these chips did not integrate the full multimedia
functions such as digital camera, video, audio and real-time
3-D graphics on a single die due to its huge gate counts and
design complexity. Moreover, they could not provide a fully
programmable 3-D graphics pipeline, which is required for
realistic 3-D graphics effects compatible with OpenGL ES-2.0.

In this work [1], a low power multimedia SoC with full in-
tegration of a fully programmable 3-D graphics and MPEG4,
H.264 and JPEG processing is presented for mobile devices.

For the purpose to achieve low power, small area, and high
performance, the programmable 3-D graphics engine with
unique unified shader architecture [10] is employed. Its mobile
unified shader is power optimized single shader for mobile
devices in contrast to that of console device which has mul-
tiple general purpose unified shaders. The lighting engine and
specialized lighting instruction are adopted for low power and
high performance.

This paper consists of six sections. The system architecture
and video engine will be discussed in Section II, and the pro-
grammable 3-D graphics engine and details of mobile unified
shader will follow in Section III and Section IV, respectively.
The chip implementation of the SoC and performance compar-
ison will be described in Section V, and finally the conclusion
of our work will be made in Section VI.

II. SYSTEM ARCHITECTURE AND VIDEO ENGINE

Fig. 1(a) shows a block diagram of the developed SoC. It
integrates a 3-D graphics engine dedicated for acceleration of
the fully programmable 3-D graphics pipeline, the ARM9 RISC
processor, video engine, display engine and other peripheral
IPs. Since most of the current mobile multimedia SoCs em-
ploy the AMBA bus so that the IPs are connected to the single
layer AMBA bus. The video engine is employed to support
video application such as DMB or digital camera. It is dedi-
cated to MPEG encoding/decoding, H.264 decoding and JPEG
image processing using dedicated hardwired blocks. Since both
the JPEG codec and the MPEG codec use DCT, IDCT, VLC
and VLD units, the JPEG and MPEG codec shares those func-
tional blocks to reduce silicon area and power consumption. The
fully hardwired H.264 decoder consists of a content-address-
able variable-length decoder (CAVLD), an inverse-transform, a
motion compensator and de-blocking filter. The video engine

0018-9200/$25.00 © 2008 IEEE

ATI 2089
LG v. ATI

IPR2015-00326

ATI Ex. 2120
IPR2023-00922

Page 264 of 611

2048 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 9, SEPTEMBER 2008

Fig. 1. Mobile multimedia SoC. (a) System architecture. (b) Power and clock domains.

supports up to 3M pixels image sensors, MPEG4 @ simple pro-
file Lv.0 3 encoding/decoding and H.264 baseline Lv.0 3 de-
coding of 30 fps for CIF image resolution. During video opera-
tion, it consumes less than 152 mW at 1.2 V supply voltage and
48 MHz operating frequency.

For low power consumption, the developed SoC adopts block
level clock gating and power gating. The SoC consists of five
voltage islands and five clock domains as shown in Fig. 1(b).
According to the operating mode, the power sources and clocks

of the functional blocks are selectively turned off. In the sleep
mode, all IPs except wake-up logics are turned off and the SoC
consumes less than 150 W. In normal operation mode, the
RISC processor controls whether the IPs are turned off or not.

Since the IPs shares bus bandwidth, the bandwidth occupa-
tion is one of the important design issues in mobile multimedia
SoC. During the 3-D graphics applications, the ARM processor
computes application programs and transfer graphics processor
(GPU) commands and primitive vertex indexes to the GPU

ATI Ex. 2120
IPR2023-00922

Page 265 of 611

WOO et al.: A 195 mW/152 mW MOBILE MULTIMEDIA SoC WITH FULLY PROGRAMMABLE 3-D GRAPHICS AND MPEG4/H.264/JPEG 2049

Fig. 2. Programmable 3-D graphics processor.

through the system bus. Using the GPU commands, the GPU
performs geometry operations and rendering operations. For
geometry and rendering operations, the GPU fetches primi-
tive vertex attributes, depth, color, and texture from the system
memory. Those graphics data are transferred through the system
bus and they consumes about 700 MBs/s if the GPU computes
the graphics data at the speed of 10 Mvertices/s–296 MB/s
for primitive vertices and 400 MB/s for rendering. Although
the AMBA bus has 400 MB/s bus bandwidth, it can provide
less than 120 MB/s bus bandwidth to GPU because the ARM
processor and other peripherals operate simultaneously with
the GPU. To reduce the data transaction of the GPU, the
GPU employs vertex cache [4] for primitive vertex, texture
cache with 1:4 texture compression for texture, and 2-D direct
mapped cache [3] for color and depth. With those techniques,
the required data bandwidth is reduced to 116.4 MB/s for
drawing 10 Mvertices/s.

III. PROGRAMMABLE 3-D GRAPHICS ENGINE

A. Internal Architecture

The programmable 3-D graphics engine consists of Mobile
Unified Shader, Vertex Generator, Fragment Generator, Pixel
Generator, Matrix/Quaternion-Vector Generator and graphics
caches as shown in Fig. 2.

The mobile unified shader is designed to perform both
programmable vertex operation and programmable pixel oper-
ation, which are fully compatible with the mobile 3-D graphics

. Since the redundant functional blocks
of the vertex shader and the pixel shader into a single hard-
ware, the mobile unified shader reduces silicon area and power
consumption. The SIMD datapath and special functional unit

TABLE I
MATRIX GENERATOR COMMAND SET

(SFU) of the mobile unified shader are responsible for the com-
putational works and the texture engine [3] is responsible for
texture address generation, texture fetch, and texture filtering.
The vertex generator, fragment generator, and pixel generator
are responsible for the rest of the 3-D graphics pipelines, clip-
ping, triangle setup, rasterization, and blending, respectively.
To reduce power consumption, the fragment generator employs
low power SlimShader architecture [3].

During the per-vertex operation, the mobile unified shader
uses several floating-point matrices related to rotation, trans-
portation, scale, and projection and those matrices are gener-
ated by the embedded RISC processor. Since the embedded
RISC processor has only integer datapaths, the floating point
computations are done by complex emulation equations. There-
fore, thousands of cycles are consumed for matrix operations
and this computation cycles limit the 3-D graphics performance.
In order to accelerate those matrix operations, the mobile uni-
fied shader employs the matrix generator. The matrix generator
consists of 6 floating-point multipliers, 6 floating-point adders,
a floating-point divider, a floating-point square-root block and a
floating-point trigonometric function block and it is controlled
by the RISC processor using the dedicated matrix generator in-
structions as shown in Table I. With those matrix instructions,
the matrix generator calculates transformation and projection
matrices by matrix basis while embedded RISC processor com-
putes by components basis. In addition, since the matrix gener-
ator and the mobile unified shader have independent commands
and datapaths respectively, user can use the matrix generator and
the mobile unified shader at the same time. For example, when
the shader program contains complex matrix operations, users
can use matrix generator instead of shader datapath to simplify
the shader operations.

B. Pixel-Vertex Multi Threading

Fig. 3(a) shows a data flow diagram of the programmable
3-D graphics pipeline. In conventional architecture, the prim-
itive vertices are computed in the vertex shader for per-vertex
operations such as transformation and lighting. After per-vertex
operations, vertex generator and fragment generator perform
clipping and rasterization and they generate interpolated pixels
(fragments). After that, the fragments are modified in the pixel
shader using per-pixel effects and blending operations generate
final pixel data. In contrast with conventional architecture, the

ATI Ex. 2120
IPR2023-00922

Page 266 of 611

2050 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 9, SEPTEMBER 2008

Fig. 3. Pixel-vertex multi-threading. (a) Data flow of the programmable 3-D graphics pipeline. (b) Pixel-vertex multi-threading.

mobile unified shader is responsible for both per-vertex opera-
tions and per-pixel operations in a single hardware. Therefore,
the graphics data traverse the mobile unified shader twice in a
single 3-D graphics pipeline as shown in Fig. 3(a) and thus, the
3-D graphics performance is limited less than the half of the its
peak performance. Moreover, texture cache miss wastes a few
tens of cycles until the cache is filled up and it degrades the
graphics performance is degraded further.

To improve the 3-D graphics performance, the 3-D graphics
processor adopts a Pixel-Vertex-Multi-Threading (PVMT),
which utilizes datapaths of the mobile unified shader in par-
allel. Since the texture engine performs texture fetching and
filtering independent with SIMD datapath and SFU, those
datapaths are idle during the texture operations. Therefore, the
PVMT enables SIMD datapath and SFU to compute per-vertex

operations during the texture cache miss as shown in Fig. 3(b).
When the texture cache miss occurs during per-pixel operations
and vertex buffer contains vertices to be computed, PVMT
issues next vertices and SIMD datapath and SFU perform
per-vertex operations. If the texture cache filling is finished
during the per-vertex operations, the mobile unified shader
moves back to per-pixel operation and finalize the remaining
pixel operations. Otherwise, the PVMT issues next vertices and
performs per-vertex operations continuously.

Since the PVMT uses wasted cycles by the texture cache
miss, the efficiency of the PVMT depends on the application
characteristics such as vertex/pixel ratio or texture cache miss
rate. In mobile 3-D graphics, the texture cache miss is occurred
with about 10% probability in average and it consumes as short
as 64 cycles, or 148 cycles at the most in the developed mobile

ATI Ex. 2120
IPR2023-00922

Page 267 of 611

WOO et al.: A 195 mW/152 mW MOBILE MULTIMEDIA SoC WITH FULLY PROGRAMMABLE 3-D GRAPHICS AND MPEG4/H.264/JPEG 2051

Fig. 4. Efficiency of pixel-vertex multi-threading.

multimedia SoC. Since the per-vertex operations such as trans-
form and lighting (TnL) consume about 20 cycles in the test
contents, more than three vertices could be computed during the
texture cache miss if the vertex buffers are enough. Fig. 4 shows
the efficiency of the PVMT versus the number of vertex buffers
and the vertex/pixel ratio. While the effects of the PVMT vary
from the vertex/pixel ratio, the PVMT reduces the cycles of the
vertex operation as short as 60%, or 94% at the most. Although
the PVMT reduces cycles of the vertex operations, the effect of
the PVMT is bounded when the vertex buffer has five entries be-
cause the PVMT uses wasted cycles by the texture cache miss
and the cycle counts are limited around 100 cycles in average.
Therefore, the developed 3-D graphics processor has 5 entries
vertex buffer for trade-off between hardware cost and the per-
formance. By employing PVMT with five-entries vertex buffer,
about 90% of the vertex operations are interleaved into the pixel
operations and we can remove the cycle time of the vertex op-
erations from the graphics pipeline.

IV. MOBILE UNIFIED SHADER

A. Internal Architecture

The mobile unified shader is a SIMD processor for fully
programmable 3-D graphics. It consists of 128 bits, 4 32
bit SIMD datapath, SFU, texture engine, logarithmic lighting
engine, dedicated register file and control logic as shown in
Fig. 5. The SIMD datapath is responsible to vector arithmetic
operations such as Addition (ADD), Multiplication (MUL) and
inner product (DOT). The SFU is dedicated to special func-
tional scalar operations such as Logarithm (LOG), Exponent
(EXP), Reciprocal (RCP) and Reciprocal-square-root (RSQ).
And the texture engine and the lighting engine perform texture
related operations and lighting operations, respectively.

Since the LOG, EXP, RCP and RSQ operations are difficult
to compute in ordinary number datapaths, the SFU employs the
logarithmic number system (LNS) [11]. In the LNS, since the

Fig. 5. Mobile unified shader architecture.

ordinary number data should be converted into the LNS and
the results should be converted into ordinary number, one of
the critical issues is the data conversion error. Therefore, we
employed more precise LOG and EXP converts, which use 16
piecewise-linear-regions. By employing precise LNS datapath,
the SFU computes the LOG, EXP, RCP and RSQ in only two cy-
cles keeping the error bound much below the standard graphics
API, OpenGL ES-2.0. Since the vertex shading is performed in
IEEE-754 floating point number system and pixel shading is
performed in 32 bit fixed-point number system, the SFU is de-
signed to handle both number systems in a single hardware.

For streaming graphics processing, the mobile unified shader
contains multiple register files—input registers, output registers,
constant register and temporary SIMD registers. The input reg-
ister is used to hold the vertex attributes such as position and
normal vector and pixel attributes such as position, color and
texture coordinate. In order to reduce data fetch time, the input
register consists of two register banks for double buffering. The
constant register stores the coefficients for the 3-D graphics op-
erations. The temporal register is used to store temporary results
during vertex program and pixel program execution. The modi-
fied vertex and modified pixel information are transformed into
output register.

B. Unified SIMD Datapaths

The SIMD datapath is responsible for vector and matrix
arithmetic operations such as Addition (ADD), Multiplica-
tion (MUL), and Inner Product (DOT). Since, in mobile 3-D
graphics API-OpenGL ES, per-vertex operations use IEEE-754
floating-point number system for wide dynamic range and
per-pixel operations use fixed-point number system for high
throughput, the conventional vertex shader has floating-point

ATI Ex. 2120
IPR2023-00922

Page 268 of 611

2052 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 9, SEPTEMBER 2008

Fig. 6. Unified SIMD datapath. (a) Unified adder. (b) Unified multiplier.

SIMD datapath and pixel shader has fixed-point SIMD data-
path. To compute both operations in a single mobile unified
shader, we employed the unified datapaths, adder and multi-
plier, which computes IEEE-754 floating-point numbers and
fixed-point numbers in a single hardware.

Since the fixed-point adder requires 32 bit addition and the
floating point adder requires 8 bit addition for exponent and 24
bit addition for mantissa, the 32 bit adder can be shared for both
number systems. Therefore, the unified adder has configurable
32 bit adder, which consists of a 24 bit adder and 8 bit adder as
shown in Fig. 6(a). The configurable 32 bit adder is configured
by operands selection and it computes floating-point addition
with 2 cycle latency and 1 cycle throughput, and fixed-point
addition in a single cycle. The unified multiplier consists of
common 32 bit 24 bit multiplier, optional 32 bit 8 bit mul-
tiplier, and 8 bit adder for floating-point exponent as shown in
Fig. 6(b) because the floating point multiplication includes 24
bit by 24 bit multiplication for mantissa and fixed point multi-
plication includes 32 bit by 32 bit multiplication. The final 32
8 multiplier is conditionally enabled and the CPA chain selects
the input between 24 bit result and 32 bit result. The unified mul-
tiplier calculates both floating-point MUL and floating-point
MUL with 2 cycle latency and 1 cycle throughput. By sharing
the common functional blocks of floating point datapath and
fixed point datapath, the unified SIMD datapath reduces silicon
area by 47% and power consumption by 42% compared with
separated floating-point and fixed-point SIMD datapaths.

C. Low Power Lighting Engine

The lighting equation is the most complex operation during
the vertex operation due to the power (POW) operation of spec-

ular lighting. To accelerate the lighting equation with low power
consumption, the low power lighting engine is employed. The
OpenGL lighting equation which includes an ambient light, a
diffuse light and a specular light is described in (1):

(1)

In conventional implementation [9], the lighting equation is
performed sequential fashion as shown in Fig. 7(a). At first, the
LIT instruction computes lighting coefficients. Then multipli-
cations and additions are performed. During lighting computa-
tion, the data dependency wastes several cycles and it degrades
graphics performance. However, as shown in (2), the lighting
equation consists of three independent components and it can
be computed in parallel:

(2)

To improve lighting computation, the lighting engine and
specialized lighting instruction are designed to compute three
components simultaneously. Since the POW operation can be
converted into a multiplication as shown in (2), the lighting
engine employs the logarithmic number datapaths [11] for
specular lighting. Therefore, the lighting engine consists of
ordinary number datapaths for ambient and diffuser lighting
computation and logarithmic number datapaths to accelerate
specular lighting computation as shown in Fig. 7(b). To utilize
the lighting engine efficiently by graphics APIs, the specialized
lighting instruction, TLT, is proposed. The TLT instruction

ATI Ex. 2120
IPR2023-00922

Page 269 of 611

WOO et al.: A 195 mW/152 mW MOBILE MULTIMEDIA SoC WITH FULLY PROGRAMMABLE 3-D GRAPHICS AND MPEG4/H.264/JPEG 2053

Fig. 7. Low power lighting engine. (a) Conventional lighting computation. (b) Proposed lighting engine.

combines the coefficient calculation and the multiplication of
coefficients and materials together as shown in Fig. 7(b). The
lighting engine with TLT instruction computes the lighting
equation without data dependency so that, the lighting engine
with TLT instruction generates lit vertex in every two cycles.
For compatibility with interface, the lighting
engine supports both the conventional LIT instruction and TLT
instruction. In the conventional lighting operation, the lighting
engine accelerates the POW operations and it computes only
the lighting coefficients, which are used for complex 3-D
graphics effects such as user-defined lighting. Otherwise, the
TLT instruction is used to accelerate the common lighting
environments, which is widely used in commercial mobile 3-D
contents. By adopting logarithmic LE and TLT instruction, the
mobile unified shader generates a lit-vertex in every two cycles
and it achieves 9.1 Mverticies/s, which is 2.5 times higher
performance compared with previous implementation [3].

D. Micro-Level Power Management

For low power consumption of the mobile unified shader,
it implements instruction-level power management. To activate
the 3-D graphics processor, the ARM processor must drive ac-
tivation signal to 3-D graphics processor and the 3-D GPU con-
troller drive enable signal to the unified shader only when the

current shader instruction is valid. Using this enable signal, the
clock signals of the SIMD register files can be gated off when the
write operations of the register files are not required. The read
operations of the register files are still possible in the clock-off
state. Like the same way, the enable signal also reduces the
power dissipation of SIMD arithmetic units by eliminating the
unnecessary signal transition. Therefore, the power consump-
tion of the mobile unified shader is controlled on an instruction
level. In the mobile unified shader, since the SIMD register files
and datapath consumes about 80% of power, about 85% acti-
vation ratio in full 3-D graphics pipeline achieves up to 12%
power reduction of the mobile unified shader. For power man-
agement of the pixel-operations, it implements pixel-level clock
gating. The pixel operation includes fragment generator for tri-
angle setup and rasterization, mobile unified shader for per-pixel
operations, and pixel generator for blending operations. To re-
duce power consumption, the fragment generator allows clock
gating, which uses depth-comparison results generated in early
stage of rendering pipeline. If a new pixel to be drawn is already
covered by the pixels near from the viewpoint, the remaining op-
erations does not need to process further. To use this property,
per-pixel operations of the mobile unified shader is killed and
the clock signal of the pixel generator is gated-off to prevent
unnecessary operations.

ATI Ex. 2120
IPR2023-00922

Page 270 of 611

2054 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 9, SEPTEMBER 2008

Fig. 8. Die microphoto.

TABLE II
FEATURE SUMMARY

V. IMPLEMENTATION RESULTS

The mobile multimedia SoC is fabricated using a 0.13 m
seven-metal CMOS logic process. It contains 18.6 M tran-
sistors including 128 KB SRAM in 6.4 6.4 mm . Fig. 8
shows the chip microphotograph and Table II summarizes chip
features. By using this chip, realistic 3-D graphics effects can
be processed with 9.1 Mvertices/s peak graphics performance
and 30 fps MPEG4 encoding/decoding and 30 fps H.264
decoding can be processed in the mobile devices. The 3-D
graphics images with realistic graphics effects are successfully
demonstrated by the fabricated chip on the system evaluation
board as shown in Fig. 9. For a demo content which uses both
the per-vertex operations such as transformation and lighting
and the per-pixel operations such as environmental mapping,
the developed SoC continuously draws the 3-D images at the
speed of 7.4 Mpixels/s.

With the mobile unified shader, the developed SoC can
provide fully programmable 3-D graphics pipeline, per-vertex

Fig. 9. System evaluation board.

Fig. 10. Power dissipation of the 3-D graphics applications.

operations and per-pixel operations, and thus, it can completely
generate realistic 3-D graphics effects such as environmental
mapping or per-pixel lighting. The proposed mobile unified
shader reduces silicon area of the 3-D graphics processor by
35% with the help of the unified SIMD datapaths, logarithmic
datapath. The logarithmic datapaths, low power register file,
and micro-level (instruction-level and pixel-level) clock gating
reduces the power consumption by 28%. The developed SoC
consumes 195 mW in continuous calculation of 9.1 Mver-
tices/s full 3-D graphics pipeline including programmable
per-vertex operations and programmable per-pixel operations
at 100 MHz operating frequency and 1.2 V supply voltage and
it consumes 152 mW in continuous calculation of CIF 30 fps
H.264 decoding including audio playback at 48 MHz operating
frequency and 1.2 V supply voltage. The power dissipations of
the functional blocks are summarized in Fig. 10.

Fig. 11 shows the 3-D graphics performance comparison with
that of the previous implementations [3], [5], [12]. The 3-D
graphics performance is measured including transformation and
OpenGL lighting with one ambient light, one diffuse light, and
one specular light for geometry and texture blending for ren-
dering. The developed SoC provides 9.1 Mvertices/s fully pro-
grammable 3-D graphics including transformation and lighting
and, with the help of the lighting engine and specialized lighting
instruction, it improves 2.1 times vertex fill rate compared with

ATI Ex. 2120
IPR2023-00922

Page 271 of 611

WOO et al.: A 195 mW/152 mW MOBILE MULTIMEDIA SoC WITH FULLY PROGRAMMABLE 3-D GRAPHICS AND MPEG4/H.264/JPEG 2055

Fig. 11. 3-D graphics performance comparison.

previous implementation [3]. The 3-D graphics performance in
the mobile devices cannot be compared directly in terms of pro-
cessing speed such as vertex fill rate because the power con-
sumption must be taken into account as well [5]. Based on the
performance index of the mobile 3-D graphics [3], which is the
vertex fill rate normalized by the power consumption, the devel-
oped SoC shows 46.67 Kvertices/s/mW, which is about 2 times
improvement over the previous implementation [3].

VI. CONCLUSION

A low power multimedia SoC is designed for mobile de-
vices. It integrates fully programmable 3-D graphics engine,
MPEG4/JPEG codec and H.264 decoder in a single chip. The
mobile unified shader provides a fully programmable 3-D
graphics with 35% area reduction and 28% power reduction.
Low power lighting engine and the specialized lighting instruc-
tion achieves 9.1 MVertices/s vertex fill rate which is 2.5 times
improvement over previous works including transformation and
OpenGL lighting. The PVMT improves graphics performance
by interleaving the vertex operations into pixel operations and
as a result, up to 94% vertex operations are hided into the pixel
operations. The SoC consumes less than 195 mW at 1.2 V
supply voltage and 100 MHz operating frequency for 3-D
graphics and less than 152 mW at 1.2 V supply voltage and
48 MHz operating frequency for video operations. With the help
of the mobile unified shader and merged JPEG/MPEG4 codec

engine, the SoC reduces silicon area and it is implemented in
6.4 mm 6.4 mm using 0.13 m CMOS logic process.

REFERENCES

[1] J. H. Woo et al., “A 152mW mobile multimedia SoC with fully pro-
grammable 3D graphics and MPEG4/H.264/JPEG,” in IEEE Symp.
VLSI Circuits, 2007, pp. 220–221.

[2] J. H. Sohn et al., “Low power 3D graphics processors for mobile ter-
minals,” IEEE Commun. Mag., vol. 43, no. 12, pp. 90–99, Dec. 2005.

[3] J. H. Sohn et al., “A 155-mW 50-Mvertices/s graphics processor with
fixed-point programmable vertex shader for mobile applications,”
IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1081–1091, May 2006.

[4] B. G. Nam et al., “A low-power unified arithmetic unit for pro-
grammable handheld 3-D graphics systems,” IEEE J. Solid-State
Circuits, vol. 42, no. 8, pp. 1767–1778, Aug. 2007.

[5] R. Woo et al., “A 210 mW graphics lsi implementing full 3-D pipeline
with 264 Mtexels/s texturing for mobile multimedia applications,” in
IEEE ISSCC Dig. Tech. Papers, 2003, pp. 44–45.

[6] T. M. Liu et al., “A 125 �W, fully scalable MPEG-2 and H.264/AVC
video decoder for mobile applications,” in IEEE ISSCC Dig. Tech. Pa-
pers, 2006, pp. 402–403.

[7] T. Hashimoto et al., “A 27-MHz/54-MHz 11-mW MPEG-4 video de-
coder LSI for mobile applications,” IEEE J. Solid-State Circuits, vol.
37, no. 11, pp. 1574–1581, Nov. 2002.

[8] M. Imai et al., “A 109.5 mW 1.2 V 600 Mtexel/s 3D graphics engine,”
in IEEE ISSCC Dig. Tech. Papers, 2004, pp. 332–333.

[9] J. Montrym et al., “Geforce4,” in ACM SIGGRAPH/Eurograph
Graphics Hardware Workshop, 2002.

[10] M. Doggett, “Xenos: XBOX360 GPU,” in ACM Eurographics, 2005.
[11] H. Kim et al., “A 231 MHz, 2.18 mW 32 bit logarithmic arithmetic unit

for fixed-point 3-D graphics system,” IEEE J. Solid-State Circuits, vol.
41, no. 11, pp. 2373–2381, Nov. 2006.

[12] M. Kameyama et al., “3-D graphics LSI core for mobile phone “Z3-
D”,” in Graphics Hardware Workshop, 2003.

ATI Ex. 2120
IPR2023-00922

Page 272 of 611

2056 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 9, SEPTEMBER 2008

Jeong-Ho Woo (S’02) received the B.S. and M.S.
degrees in electrical engineering from the Korea
Advanced Institute of Science and Technology
(KAIST), Daejeon, Korea, in 2002 and 2004, re-
spectively. He is currently working toward the Ph.D.
degree in electrical engineering at KAIST.

His research includes design of low-power mobile
multimedia system with 3-D computer graphics and
its implementation. In particular, he is now working
on a low-power programmable 3-D graphics pro-
cessor for mobile devices.

Ju-Ho Sohn (A’07) received the B.S. (summa cum
laude), M.S., and Ph.D. degrees in electrical engi-
neering from the Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, Korea, in 2001,
2003, and 2006, respectively. During the period in
KAIST, he developed low-power programmable 3-D
graphics processor integrated with vertex shader and
DSP engine.

His research interests include low-power high-per-
formance circuits and multimedia system design with
specific interest in 3-D computer graphics and video

processing architecture. Currently, he is with LG Electronics, Seoul, Korea, de-
signing a digital TV image enhancement chip.

Hyejung Kim (S’04) received the B.S. and M.S.
degrees in electrical engineering from the Korea
Advanced Institute of Science and Technology
(KAIST), Daejeon, Korea, in 2004 and 2006, respec-
tively. She is currently working toward the Ph.D.
degree in the same department at KAIST.

Her research interests include low-power arith-
metic unit and microprocessor design for mobile and
implantable system applications.

Hoi-Jun Yoo (M’95–SM’04–F’08) graduated
from the Electronic Department of Seoul National
University, Seoul, Korea, in 1983 and received the
M.S. and Ph.D. degrees in electrical engineering
from the Korea Advanced Institute of Science and
Technology (KAIST), Daejeon, Korea, in 1985 and
1988, respectively. His Ph.D. work concerned the
fabrication process for GaAs vertical optoelectronic
integrated circuits.

From 1988 to 1990, he was with Bell Communica-
tions Research, Red Bank, NJ, where he invented the

two-dimensional phase-locked VCSEL array, the front-surface-emitting laser,
and the high-speed lateral HBT. In 1991, he became Manager of a DRAM design
group at Hyundai Electronics and designed a family of fast-1 M DRAMs and
256 M synchronous DRAMs. In 1998 he joined the faculty of the Department of
Electrical Engineering at KAIST and now is a full Professor. From 2001 to 2005,
he was the Director of the System Integration and IP Authoring Research Center
(SIPAC), funded by the Korean government to promote worldwide IP authoring
and its SoC application. From 2003 to 2005, he was the full-time Advisor to the
Minister of Korea Ministry of Information and Communication and National
Project Manager for SoC and Computer. In 2007, he founded SDIA (System De-
sign Innovation and Application Research Center) at KAIST to research and de-
velop SoCs for intelligent robots, wearable computers and biosystems. His cur-
rent interests are high-speed and low-power networks-on-chips, 3-D graphics,
body area networks, biomedical devices and circuits, and memory circuits and
systems. He is the author of the books DRAM Design (Hongleung, 1996; in
Korean), High Performance DRAM (Sigma, 1999; in Korean), and chapters of
Networks on Chips (Morgan Kaufmann, 2006).

Dr. Yoo received the Electronic Industrial Association of Korea Award for his
contribution to DRAM technology in 1994, the Hynix Development Award in
1995, the Korea Semiconductor Industry Association Award in 2002, the Best
Research of KAIST Award in 2007, the Design Award of 2001 ASP-DAC, and
Outstanding Design Awards at 2005, 2006, and 2007 A-SSCC. He is a member
of the executive committees of ISSCC, Symposium on VLSI, and A-SSCC. He
is the TPC chair of A-SSCC 2008.

ATI Ex. 2120
IPR2023-00922

Page 273 of 611

Technical Brief

NVIDIA GeForce® GTX 200 GPU
Architectural Overview

Second-Generation Unified GPU
Architecture for Visual Computing

ATI 2090
LG v. ATI

IPR2015-003260001

ATI Ex. 2120
IPR2023-00922

Page 274 of 611

Table of Contents

Introduction ...4
GeForce GTX 200 Architectural Design Goals and Key Capabilities...............................5

Architectural Design Goals... 5
Gaming Beyond: Dynamic 3D Realism .. 6

Gaming Beyond: Extreme HD... 7
Gaming Beyond: SLI ... 7

Beyond Gaming: High-Performance Visual Computing and Professional Computation.............. 8
GeForce GTX 200 GPU Architecture ...9

More Processor Cores.. 9
Graphics Processing Architecture.. 10
Parallel Computing Architecture.. 12
SIMT Architecture ... 13
Greater Number of Threads in Flight... 13
Larger Register File ... 14
Improved Dual Issue... 15
Double Precision Support... 15
Improved Texturing Performance ... 15
Higher Shader to Texture Ratio .. 16
ROP Improvements... 16
1 GB Framebuffer ... 16
Geometry Shading and Stream Out .. 17
512-bit Memory Interface .. 17
Power Management Enhancements .. 18
Additional Pipeline and Architecture Enhancements.. 18

Summary ..20
Appendix A: Retrospective ...21
Appendix B: Figure 1 References ...22

2 May, 2008 | TB-04044-001_v01

0002

ATI Ex. 2120
IPR2023-00922

Page 275 of 611

Figures

Figure 1: Realistic warrior from NVIDIA “Medusa” demo.. 6
Figure 2: Far Cry 2 – Extreme HD Dynamic Beauty! (Ubisoft)... 7
Figure 3: Significant Speedup Using GPU.. 8
Figure 4: GeForce GTX 280 GPU Graphics Processing Architecture.. 10
Figure 5: GeForce GTX 280 GPU Parallel Computing Architecture ... 12
Figure 6: TPC (Thread Processing Cluster) ... 13
Figure 7: Local Register File 2× versus 1× ... 14
Figure 8: Geometry Shading Performance .. 17

Tables

Table 1: Number of GPU Processing Cores ... 9
Table 2: GeForce 8800 GTX vs GeForce GTX 280 .. 11
Table 3: Maximum Number of Threads .. 14
Table 4: Theoretical vs Measured Texture Filtering Rates... 16

 May 2008 | TB-04044-001_v01 3
0003

ATI Ex. 2120
IPR2023-00922

Page 276 of 611

Introduction

In this technical brief we introduce NVIDIA’s new GeForce® GTX 200 GPU
family, the first GPUs to implement NVIDIA’s second-generation unified graphics
and computing architecture. The high-end, enthusiast-class GeForce GTX 280
GPU and performance-oriented GeForce GTX 260 GPU are the first members of
the GeForce GTX 200 GPU family and deliver the ultimate visual computing and
extreme high-definition (HD) gaming experience.

We’ll begin by describing architectural design goals and key features, and then dive
into the technical implementation of the GeForce GTX 200 GPUs. We assume you
have a basic understanding of first-generation NVIDIA unified GPU architecture,
including unified shader design, scalar processing cores, decoupled texture and math
units, and other architectural features. If you are not well versed in NVIDIA unified
GPU architecture, we suggest you first read the Technical Brief titled NVIDIA
GeForce 8800 GPU Architecture Overview. You can also refer to Appendix A for a
historical retrospective.

4 May, 2008 | TB-04044-001_v01

0004

ATI Ex. 2120
IPR2023-00922

Page 277 of 611

GeForce GTX 200 Architectural Design Goals
and Key Capabilities

GeForce GTX 200 GPUs are massively multithreaded, many-core, visual computing
processors that incorporate both a second-generation unified graphics architecture
and an enhanced high-performance, parallel-computing architecture.

Two overarching themes drove GeForce GTX 200 architectural design and are
represented by two key phrases: “Beyond Gaming” and “Gaming Beyond.”

Beyond Gaming means the GPU has evolved beyond being used primarily for 3D
games and driving standard PC display capabilities. More and more, GPUs are
accelerating non-gaming, computationally-intensive applications for both
professionals and consumers.

Gaming Beyond means that the GeForce GTX 200 GPUs enable amazing new
gaming effects and dynamic realism, delivering much higher levels of scene and
character detail, more natural character motion, and very accurate and convincing
physics effects.

The GeForce GTX 200 GPUs are designed to be fully compliant with Microsoft
DirectX 10 and Open GL 2.1.

Architectural Design Goals
NVIDIA engineers specified the following design goals for the GeForce GTX 200
GPUs:

 Design a processor with up to twice the performance of GeForce 8800
GTX

 Rebalance the architecture for future games that use more complex
shaders and more memory

 Improve architectural efficiency per watt and per square millimeter
 Improve performance for DirectX 10 features such as geometry

shading and stream out
 Provide significantly enhanced computation ability for high-

performance CUDA™ applications and GPU physics
 Deliver improved power management capability, including a substantial

reduction in idle power.

GeForce GTX 200 GPUs enable major new graphics and compute capabilities,
providing the most realistic 3D graphics effects ever rendered by GPUs to date,
while also providing nearly a teraflop of computational power.

 May 2008 | TB-04044-001_v01 5
0005

ATI Ex. 2120
IPR2023-00922

Page 278 of 611

Gaming Beyond: Dynamic 3D Realism
While prior-generation GPUs could deliver real-time images that appeared true-to-
life in many cases, frame rates could drop to unplayable levels in complex scenes
with significant animation, numerous physical effects, and multiple characters. The
combination of the sheer shader processing power of GeForce GTX 200 GPUs and
NVIDIA’s new PhysX™ technology facilitates many new high-end graphics effects
including:

 Convincing facial and character animation
 Multiple ultra-high polygon characters in complex environments
 Advanced volumetric effects (smoke, fog, mist, etc.)
 Fluid and cloth simulation
 Fully simulated physical effects such as live debris, explosions, and

fires.
 Physical weather effects such as accumulating snow and water, sand

storms, soaking, drying, dampening, overheating, and freezing
 Better lighting for dramatic and spectacular effect, including ambient

occlusion, global illumination, soft shadows, color bleeding, indirect
lighting, and accurate reflections.

Figure 1: Realistic warrior from NVIDIA “Medusa” demo

6 May, 2008 | TB-04044-001_v01

0006

ATI Ex. 2120
IPR2023-00922

Page 279 of 611

Gaming Beyond: Extreme HD
GeForce GTX 200 GPUs provide 50-100% more performance over prior-
generation GPUs, permitting increased frame rates and higher visual quality settings
at extreme resolutions, resulting in a truly cinematic gaming experience.

Figure 2: Far Cry 2 – Extreme HD Dynamic Beauty! (Ubisoft)
Support for the new DisplayPort interface allows resolutions beyond 2560 × 1600,
and 10-bit color support permits up to a billion different colors on screen (driver,
display, and application support is also required). Note that prior-generation GPUs
included internal 10-bit processing, but could only output 8-bit component colors
(RGB). GeForce GTX 200 GPUs permit both 10-bit internal processing and 10-bit
color output.

Gaming Beyond: SLI
NVIDIA’s SLI® technology is the industry’s leading multi-GPU technology, giving
you an easy, low-cost, high-impact performance upgrade. PC gaming simply doesn’t
get any faster or more realistic than running GeForce GTX 200 GPU-based boards
in SLI mode on the latest nForce® motherboards.

Two flavors of SLI are supported by the initial GeForce GTX 200 GPUs:

 Standard SLI (two GPU boards), which typically boosts supported
game performance by 60-90% and permits higher quality settings

 3-way SLI, which provides even higher frame rates and permits higher
quality settings for the ultimate experience in PC gaming when
connected to a high-end, high-resolution monitor.

GeForce GTX 200 GPUs process and display complex DirectX 10 and OpenGL
game environments with amazing graphics effects and high frame rates at extreme,
high-definition resolutions.

 May 2008 | TB-04044-001_v01 7
0007

ATI Ex. 2120
IPR2023-00922

Page 280 of 611

Beyond Gaming: High-Performance Visual
Computing and Professional Computation

With the power of CUDA technology and the new CUDA runtime for Windows
Vista, intensive computational tasks can be offloaded from the CPU to the GPU.
GeForce GTX 200 GPUs can accelerate numerous rich-media and computationally-
intensive applications such as video and audio transcoding, or running distributed
computing applications like Folding@home in the background while surfing the
web. Examples of GPU-enabled applications include the RapidHD video
transcoding application from Elemental and various video and photo editing
applications.

Many engineering, scientific, medical, and financial areas demand high-performance
computational horsepower for numerous applications.

Figure 3 shows the amazing speedups that can be achieved by using a GPU instead
of a CPU in a number of professional visual computing applications, in addition to
mainstream video transcoding. Appendix B lists references and details for these
applications.

Figure 3: Significant Speedup Using GPU
With an understanding of the GeForce GTX 200 GPU design goals and key
objectives, let’s delve deeper into its internal architecture, looking at both the
graphics and parallel processing capabilities.

8 May, 2008 | TB-04044-001_v01

0008

ATI Ex. 2120
IPR2023-00922

Page 281 of 611

GeForce GTX 200 GPU Architecture

GeForce GTX 200 GPUs are the first to implement NVIDIA’s second-generation
unified shader and compute architecture. The GeForce GTX 200 GPUs include
significantly enhanced features and deliver, on average, 1.5× the performance of
GeForce 8 or 9 Series GPUs.

Manufactured using TSMC’s 65 nm fabrication process, GeForce GTX 200 GPUs
include 1.4 billion transistors and are the largest, most powerful, and most complex
GPU ever made. All GTX 200 GPUs are built to operate comfortably within the
power and heat specifications of high-end PCs.

You may recall that the first-generation NVIDIA unified visual computing
architecture in GeForce 8 and 9 Series GPUs was based on a Scalable Processor
Array (SPA) framework. The second-generation architecture in GeForce GTX 200
GPUs is based on a reengineered, enhanced, and extended SPA architecture.

The SPA architecture consists of a number of TPCs, which stands for “Texture
Processing Clusters” in graphics processing mode, and “Thread Processing
Clusters” in parallel compute mode. Each TPC is in turn made up of a number of
streaming multiprocessors (SMs), and each SM contains eight processor cores (also
called streaming processors (SPs) or thread processors). Every SM also includes
texture filtering processors used in graphics processing, but also useful for various
filtering operations in compute mode, such as filtering images as they are zoomed in
and out.

More Processor Cores
The new second-generation SPA architecture in the GeForce GTX 280 improves
performance compared to the prior generation G80 and G92 designs on two levels.
First, it increases the number of SMs per TPC from two to three. Second, it
increases the maximum number of TPCs per chip from 8 to 10. The effect is
multiplicative, resulting in 240 processor cores.

Chip TPCs SMs per
TPC

SPs per SM Total SPs

GeForce 8 & 9
Series

8 2 8 128

GeForce GTX
200 GPUs

10 3 8 240

Table 1: Number of GPU Processing Cores

 May 2008 | TB-04044-001_v01 9
0009

ATI Ex. 2120
IPR2023-00922

Page 282 of 611

Based on traditional processing core designs that can perform integer and floating-
point math, memory operations, and logic operations, each processing core is a
hardware-multithreaded processor with multiple pipeline stages that execute an
instruction for each thread every clock.

Various types of threads exist, including pixel, vertex, geometry, and compute. For
graphics processing, threads execute a shader program and many related threads
often simultaneously execute the same shader program for greater efficiency.

All GeForce GTX 200 GPUs include a substantial portion of die area dedicated to
processing, unlike CPUs where a majority of die area is dedicated to onboard cache
memory. Rough estimates show 20% of the transistors of a CPU are dedicated to
computation, compared to 80% of GPU transistors. GPU processing is centered on
computation and throughput, where CPUs focus heavily on reducing latency and
keeping their pipelines busy (high cache hit rates and efficient branch prediction).

Graphics Processing Architecture
As mentioned earlier, the GeForce GTX 200 GPUs include two different
architectural personalities—graphics and computing. Figure 4 represents the
GeForce 280 GTX in graphics mode. You can see the shader thread dispatch logic
at the top, in addition to setup and raster units. The ten TPCs each include three
SMs, and each SM has 24 processing cores for a total of 240 scalar processing cores.
ROP (raster operations processors) and memory interface units are located at the
bottom.

Figure 4: GeForce GTX 280 GPU Graphics Processing Architecture

10 May, 2008 | TB-04044-001_v01

0010

ATI Ex. 2120
IPR2023-00922

Page 283 of 611

Although not apparent in the above diagram, the architectural efficiency of the
GeForce GTX 200 GPUs is substantially enhanced over the prior generation. We’ll
be discussing many areas that were improved in more detail, such as texture
processing, geometry shading, dual issue, and stream out. In directed tests, GeForce
GTX 200 GPUs can attain efficiencies closer to the theoretical performance limits
than could prior generations.

Table 2 compares the GeForce 8800 GTX to the new GeForce GTX 280 GPU.
You will notice sizable increases in a number of important measurable parameters.

 Features 8800 GTX GTX 280 % Increase

Cores 128 240 87.5 %

TEX 64t/clk 80t/clk 25 %

ROP Blend 12p/clk 32p/clk 167 %

Precision fp32 fp64 --

GFLOPs 518 933 80 %

FB Bandwidth 86 GB 142 GB 65 %

Texture Fill 37 GT/s 48 GT/s 29.7 %

ROP Blend 7 GBL/s 19 GBL/s 171 %

PCI Express 6.4 GB 12.8 GB 100 %

Video VP1 VP2 --

Table 2: GeForce 8800 GTX vs GeForce GTX 280

 May 2008 | TB-04044-001_v01 11
0011

ATI Ex. 2120
IPR2023-00922

Page 284 of 611

Parallel Computing Architecture
Figure 5 depicts a high-level view of the GeForce GTX 280 GPU parallel
computing architecture. A hardware-based thread scheduler at the top manages
scheduling threads across the TPCs. You’ll also notice the compute mode includes
texture caches and memory interface units. The texture caches are used to combine
memory accesses for more efficient and higher bandwidth memory read/write
operations. The elements indicated as “atomic” refer to the ability to perform
atomic read-modify-write operations to memory. Atomic access provides granular
access to memory locations and facilitates parallel reductions and parallel data
structure management.

Figure 5: GeForce GTX 280 GPU Parallel Computing Architecture

A TPC in compute mode is represented in Figure 6 below. You can see local shared
memory is included in each of the three SMs. Each processing core in an SM can
share data with other processing cores in the SM via the shared memory, without
having to read or write to or from an external memory subsystem. This contributes
greatly to increased computational speed and efficiency for a variety of algorithms.

12 May, 2008 | TB-04044-001_v01

0012

ATI Ex. 2120
IPR2023-00922

Page 285 of 611

Figure 6: TPC (Thread Processing Cluster)

SIMT Architecture
NVIDIA’s unified shading and compute architecture uses two different processing
models. For execution across the TPCs, the architecture is MIMD (multiple
instruction, multiple data). For execution across each SM, the architecture is SIMT
(single instruction, multiple thread).

SIMT improves upon pure SIMD (single instruction, multiple data) designs in both
performance and ease of programmability. Being scalar, SIMT has no set vector
width and therefore performs at full speed irrespective of vector sizes.

In contrast, SIMD machines operate at a reduced capacity if the input is smaller
than the MIMD or SIMD width. SIMT ensures the processing cores are fully
utilized at all times.

From the programmer’s perspective, SIMT also allows each thread to take on its
own path. Since branching is handled by the hardware, there is no need to manually
manage branching within the vector width.

Greater Number of Threads in Flight
GeForce GTX 200 GPUs support over thirty thousand threads in flight. Hardware
thread scheduling ensures all processing cores attain nearly 100% utilization. The
GPU architecture is latency-tolerant—if a particular thread is waiting for a memory
access, the GPU can perform zero-cost hardware-based context switching and
immediately switch to another thread to process.

The SIMT multithreaded instruction unit within an SM creates, manages, schedules,
and executes threads in groups of 32 parallel threads called “warps.” Up to 32
warps/SM are supported in GeForce GTX 200 GPUs, versus 24 warps/SM in
GeForce 8 or 9 Series GPUs.

 May 2008 | TB-04044-001_v01 13
0013

ATI Ex. 2120
IPR2023-00922

Page 286 of 611

Chip TPCs SM per
TPC

Threads per
SM

Total
Threads Per

Chip

GeForce 8 &
9 Series

8 2 768 12,288

GeForce
GTX 200
GPUs

10 3 1,024 30,720

Table 3: Maximum Number of Threads
Doing the math results in 32 x 32, or 1,024 maximum concurrent threads that can
be managed by each SM. With 30 SMs in total, the GeForce GTX 280 supports up
to 30,720 concurrent threads in hardware (versus 768 threads/SM × 2 SMs/TPC ×
8 TPCs = 12,288 maximum concurrent threads in GeForce 8800 GTX).

Larger Register File
The local register file size has doubled per SM in GeForce GTX 200 GPUs
compared to GeForce 8 & 9 Series GPUs. The older GPUs could run into
situations with long shaders where registers would be exhausted, generating the
need to swap to memory. A much larger register file permits larger and more
complex shaders to be run on the GeForce GTX 200 GPUs faster and more
efficiently. In terms of die size increase, the additional register file takes only a small
fraction of SM die area.

Games are employing more and more complex shaders that require more register
space. Figure 7 below highlights performance improvements 2× register file size in
3D Mark Vantage.

2x vs 1x Register File Size
3D Mark Vantage
Extreme Preset

3600

3800

4000

4200

4400

4600

4800

Overall Score GPU Total

Normal LRF (2x)
Decreased LRF (1x)

Figure 7: Local Register File 2× versus 1×
14 May, 2008 | TB-04044-001_v01

0014

ATI Ex. 2120
IPR2023-00922

Page 287 of 611

Improved Dual Issue
Special function units (SFUs) in the SMs compute transcendental math, attribute
interpolation (interpreting pixel attributes from a primitive’s vertex attributes), and
perform floating-point MUL instructions. The individual streaming processing cores
of GeForce GTX 200 GPUs can now perform near full-speed dual-issue of
multiply-add operations (MADs) and MULs (3 flops/SP) by using the SP’s MAD
unit to perform a MUL and ADD per clock, and using the SFU to perform another
MUL in the same clock. Optimized and directed tests can measure around 93-94%
efficiency.

The entire GeForce GTX 200 GPU SPA delivers nearly one teraflop of peak,
single-precision, IEEE 754, floating-point performance.

Double Precision Support
A very important new addition to the GeForce GTX 200 GPU architecture is
double-precision, 64-bit floating point computation support. This benefits various
high-end scientific, engineering, and financial computing applications or any
computational task requiring very high accuracy of results. Each SM incorporates a
double-precision 64-bit floating math unit, for a total of 30 double-precision 64-bit
processing cores.

The double-precision unit performs a fused MAD, which is a high-precision
implementation of a MAD instruction that is also fully IEEE 754R floating-point
specification compliant. The overall double-precision performance of all 10 TPCs of
a GeForce GTX 280 GPU is roughly equivalent to an eight-core Xeon CPU,
yielding up to 78 gigaflops.

Improved Texturing Performance
The eight TPCs of the GeForce 8800 GTX allowed for 64 pixels per clock of
texture filtering, 32 pixels per clock of texture addressing, 32 pixels per clock of 2×
anisotropic bilinear filtering (8-bit integer), or 32-bilinear-filtered pixels per clock (8-
bit integer or 16-bit floating point). Subsequent GeForce 8 and 9 Series GPUs
balanced texture addressing and filtering.

 For example, the GeForce 9800 GTX can address and filter 64 pixels
per clock, supporting 64-bilinear-filtered pixels per clock (8-bit integer)
or 32-bilinear-filtered pixels per clock (16-bit floating point).

GeForce GTX 200 GPUs also provide balanced texture addressing and filtering and
each of the 10 TPCs includes a dual-quad texture unit capable of addressing and
filtering eight bilinear pixels/clock, or four 2:1 anisotropic filtered pixels/clock, or
four FP16 bilinear-filtered pixels/clock. Total bilinear texture addressing and
filtering capability for an entire high-end GeForce GTX 200 GPU is 80 pixels per
clock.

GeForce GTX 200 GPUs employ a more efficient scheduler, allowing the chips to
attain close to theoretical peak performance in texture filtering. In real world
measurements, it is 22% more efficient than the GeForce 9 Series.

 May 2008 | TB-04044-001_v01 15
0015

ATI Ex. 2120
IPR2023-00922

Page 288 of 611

Chip Theoretical
Bilinear Fillrate

Measured Rate
(3DMark
multitex)

Measured
Performance /

Theoretical
Performance

GeForce 9
Series

33,600 25,600 76.2%

GeForce GTX
200 GPUs

51,840 48,266 93.1%

Table 4: Theoretical vs Measured Texture Filtering Rates

Higher Shader to Texture Ratio
Because games and other visual applications are continually employing more and
more complex shaders, the GeForce GTX 200 GPU design shifts the balance to a
higher shader to texture ratio. By adding one more SM to each TPC, and keeping
texturing hardware constant, the shader to texture ratio is increased by 50%. This
shift allows the GeForce GTX 200 GPUs to perform efficiently for both today’s
and tomorrow’s games.

ROP Improvements
The previous-generation GeForce 8 series ROP subsystem supported multisampled,
supersampled, transparency adaptive, and coverage sampling antialiasing. It also
supported frame buffer (FB) blending of floating-point (FP16 and FP32) render
target surfaces, and either type of FP surface could be used in conjunction with
multisampled antialiasing for outstanding HDR rendering quality.

The new GeForce GTX 200 GPU ROP subsystem supports all of the previous
generation features, and delivers a maximum of 32 pixels per clock output, equating
to 4 pixels/clock per ROP partition × 8 partitions. Up to 32 color and Z samples
per clock for 8 × MSAA are supported per ROP partition. Pixels using U8 (8-bit
unsigned integer) data format can be blended at twice the rate per TPC of the older-
generation GPUs. Given the prior generation GPU had six ROP partitions, it could
output 24 pixels/clock and blend 12 pixels/clock. In contrast the GeForce GTX
280 can output and blend 32 pixels/clock.

1 GB Framebuffer
Today’s 3D games use a variety of textures to attain realism. Normal maps are used
to enhance surface realism, cubemaps for reflections, and high-resolution
perspective shadow maps for soft shadows. This means much more memory is
needed to render a single scene than classic rendering which relied mainly on the
base texture. Deferred rendering engines also make extensive use of multiple render
targets, where attributes of the image are rendered off screen before the final image
is composed. These techniques consume an immense amount of video memory and
memory bandwidth, especially when used in conjunction with antialiasing.

16 May, 2008 | TB-04044-001_v01

0016

ATI Ex. 2120
IPR2023-00922

Page 289 of 611

The GeForce GTX 280 and GeForce GTX 260 support 1,024 MB and 896 MB of
frame buffer respectively, a two-fold improvement from over prior generation
GPUs. With 1 GB of frame buffer, high-resolution antialiasing performance is
dramatically improved. For example, deferred rendered games like S.T.A.L.K.E.R.
can now be enjoyed with antialiasing.

Geometry Shading and Stream Out
Internal output buffer structures have been significantly upsized by a factor of 6× in
GeForce GTX 200 GPUs compared to the prior generation, providing much faster
geometry shading and stream out performance. Figure 8 shows the latest RightMark
3D 2.0 benchmark results, including geometry shading tests. The GeForce GTX
280 GPU is significantly faster than prior generation NVIDIA GPUs and
competitive products.

Geometry Shader Performance
Rightmark 3D 2.0 - Hyperlight Heavy

http://www.ixbt.com/video/itogi-video/ini/rmdx10.rar

0

100

200

300

400

500

600

Low Med High

8800 GTX
3870
3870X2
GTX 280

 Figure 8: Geometry Shading Performance
Our own Medusa demo is highly dependent on the much faster geometry and
stream out performance.

512-bit Memory Interface
Maximum memory interface width is expanded from 384 bits in previous-generation
GPUs to 512 bits in GeForce GTX 200 GPUs, using eight 64-bit-wide frame buffer
interface units. Memory bandwidth has been significantly increased.

In terms of rebalancing the architecture versus prior generations, the texture to
frame buffer (TEX:FB) bandwidth ratio has also been modified to best support
current and future workloads. NVIDIA engineers tested many applications to arrive

 May 2008 | TB-04044-001_v01 17
0017

ATI Ex. 2120
IPR2023-00922

Page 290 of 611

at the right balance of frame buffer bandwidth required to keep the texture units
fully utilized and not starved for data.

General frame buffer efficiency has been improved for GeForce GTX 200 GPUs.
We reworked the critical paths in the frame buffer to allow higher speed memory
operation, up to 1.1 GHz GDDR3 stock speed. Memory bank access patterns and
caching algorithms have also been improved. Additional compression hardware in
GeForce GTX 200 GPUs effectively increase frame buffer bandwidth by permitting
more data to traverse the interface per unit time, enabling better performance at
higher resolutions.

Power Management Enhancements
GeForce GTX 200 GPUs include a more dynamic and flexible power management
architecture than past generation NVIDIA GPUs. Four different performance /
power modes are employed:

 Idle/2D power mode (approx 25 W)
 Blu-ray DVD playback mode (approx 35 W)
 Full 3D performance mode (varies—worst case TDP 236 W)
 HybridPower™ mode (effectively 0 W)

Using a HybridPower-capable nForce motherboard, such as those based on the
nForce 780a chipset, a GeForce GTX 200 GPU can be fully powered off when not
performing intensive graphics operations and graphics output can be handled by the
motherboard GPU (mGPU).

For 3D graphics-intensive applications, the NVIDIA driver can seamlessly switch
between the power modes based on utilization of the GPU. Each of the new
GeForce GTX 200 GPUs integrates utilization monitors (“digital watchdogs”) that
constantly check the amount of traffic occurring inside of the GPU. Based on the
level of utilization reported by these monitors, the GPU driver can dynamically set
the appropriate performance mode (i.e., a defined clock and voltage level) that
minimizes the power draw of the graphics card—all fully transparent to the end
user.

The GPU also has clock-gating circuitry, which effectively “shuts down” blocks of
the GPU which are not being used at a particular time (where time is measured in
milliseconds), further reducing power during periods of non-peak GPU utilization.

All this enables GeForce GTX 200 graphics cards to deliver idle power that is nearly
1/10th of its maximum power (approximately 25 W on GeForce GTX 280 GPUs).
This dynamic power range gives you incredible power efficiency across a full range
of applications (gaming, video playback, surfing the web, etc).

Many other areas of the GeForce GTX 200 GPU pipeline have been reworked to
improve performance and reduce various processing bottlenecks.

Additional Pipeline and Architecture Enhancements
Starting from the top of the GeForce GTX 200 GPUs, the front-end unit
communicates with the graphics driver running on the host system to accept
commands and data. The communication protocol and certain software classes have

18 May, 2008 | TB-04044-001_v01

0018

ATI Ex. 2120
IPR2023-00922

Page 291 of 611

been modified to improve efficiency of data transfer between the driver and the
front end.

The memory crossbar between the data assembler and the frame buffer units has
been optimized, allowing the GeForce GTX 200 GPUs to run at full speed when
performing indexed primitive fetches (unlike the prior generation which suffered
some contention between the front end and data assembler).

The post-transform cache size has been increased, resulting in fewer pipeline stalls
and faster communication from the geometry and vertex stages to the viewport
clip/cull stage. (Setup rates are similar to prior generation, supporting up to one
primitive per clock).

Z-Culling performance has also been improved, especially at high resolutions. Early-
Z rejection rates have been increased because the number of ZROPs was increased.
The maximum ZROP cull rate is 256 samples/clock or 32 pixels/clock.

GeForce GTX 200 GPUs also include significant micro-architectural improvements
in register allocation, instruction scheduling, and instruction issue. The GPUs can
now feed the execution units more swiftly. These improvements are responsible for
the ability to dual-issue instructions to SPs and SFUs as previously discussed.
Scheduling of work between texture units and the SM controller has also been
improved.

 May 2008 | TB-04044-001_v01 19
0019

ATI Ex. 2120
IPR2023-00922

Page 292 of 611

Summary

NVIDIA’s second generation unified visual computing architecture as embodied in
the new GeForce GTX 200 GPUs is a significant evolution over the original unified
architecture of GeForce 8 and 9 series GPUs. Numerous extensions and functional
enhancements to the architecture permit a performance increase averaging 1.5× the
prior architecture. Improvements in sheer processing power combined with
improved architectural efficiency allow amazing speedups in gaming, visual
computing, and high-end computation.

Compared to earlier GPUs such as GeForce 8800 GTX, the GeForce GTX 280
provides:

 1.88× more processing cores
 2.5× more threads per chip
 Doubled register file size
 Double-precision floating-point support
 Much faster geometry shading
 1 GB frame buffer with 512-bit memory interface
 More efficient instruction scheduling and instruction issue
 Higher clocked and more efficient frame buffer memory access
 Improvements in on-chip communications between various units
 Improved Z-cull and compression supporting higher performance at

high resolutions, and
 10-bit color support

These all result in enough graphics and compute power to deliver the most intensive
and extreme 3D gaming experiences and teraflop performance for demanding high-
end compute-intensive applications.

NVIDIA SLI technology is taken to new levels with GeForce GTX 200 GPUs and
NVIDIA PhysX technology will add amazing new graphical effects to upcoming
game titles. CUDA applications will benefit from additional cores, far more threads,
double-precision math, and increased register file size.

Wise users purchasing new systems will conduct performance analyses to optimize
their PC architecture. They will find that a lower-end CPU paired with a higher-end
GPU produces more performance than the reverse and for the same price. This
heterogeneous computing using the right processors for the right tasks and
designing optimized PCs to take advantage of it is the wave of the future.

20 May, 2008 | TB-04044-001_v01

0020

ATI Ex. 2120
IPR2023-00922

Page 293 of 611

Appendix A: Retrospective

Over the past decade, NVIDIA’s graphics processing units (GPUs) have evolved
from specialized, fixed-function 3D graphics processors to highly programmable,
massively multithreaded, parallel-processing architectures used for visual computing
and high-performance computation.

NVIDIA GeForce GPUs enable incredibly realistic 3D gaming and outstanding
high-definition video playback, while NVIDIA Quadro® GPUs provide the highest
quality and fastest workstation graphics for professional design and creation. For
high-performance computing tasks in various engineering, scientific, medical, and
financial fields, NVIDIA’s new Tesla™ GPUs and CUDA parallel programming
environment enable supercomputing-level performance on the desktop, at a fraction
of the cost of comparably performing CPU-based multiprocessor clusters.

The GeForce 8800 GPU was launched in November 2006. It was the world’s first
DirectX 10 GPU with a unified shader architecture. This was important as each of
the unified shader processing cores could be dynamically allocated to vertex, pixel,
and geometry workloads, making it far more efficient than prior-generation GPUs,
which used a fixed number of pixel processing units and a fixed number of vertex
processing units. This same unified architecture provided the framework for
efficient high-end computation using NVIDIA CUDA software technology.

The GeForce 9 Series GPUs were introduced in 2007, offering a vastly improved
price-performance ratio and advanced PureVideo® features. Its smaller chip allowed
dual-GPU GeForce 9800 GX2 graphics boards to be built more efficiently, while
offering up to twice the performance of the GeForce 8800 GTX.

As of May 2008, over 70 million NVIDIA GeForce 8 and 9 Series GPUs have
shipped and each supports CUDA technology, allowing greatly accelerated
performance for mainstream visual computing applications like audio and video
encoding and transcoding, image processing, and photo editing. These GPUs also
support the new NVIDIA PhysX technology for enabling real-time physics in
games.

GPUs are the most important and most powerful processors in the new era of
visual computing. High-end GeForce GTX 200 GPUs provide the best user
experience when running intensive DirectX 10-based games like Crysis at high
quality and high resolution settings. Very capable motherboard and mid-range
GPUs are also needed for stutter-free, high-definition video playback on the PC
while simultaneously displaying the Aero 3D user interface of Windows Vista.

 May 2008 | TB-04044-001_v01 21
0021

ATI Ex. 2120
IPR2023-00922

Page 294 of 611

22 May, 2008 | TB-04044-001_v01

Appendix B: Figure 3 References

1. “Interactive Visualization of Volumetric White Matter Connectivity in DT-
MRI Using a Parallel-Hardware Hamilton-Jacobi Solver,” by Won-Ki Jeong, P.
Thomas Fletcher, Ran Tao, and Ross T. Whitaker

2. “GPU Acceleration of Molecular Modeling Applications.”

3. Video encoding uses iTunes on the CPU and Elemental on the GPU
running under Windows XP. CPUs tested were Intel Core 2 Duo 1.66 GHz and
Intel Core 2 Quad Extreme 3 GHz. GPUs tested were GeForce 8800M on the
Gateway P-Series FX notebook and GeForce 8800 GTS 512 MB. CPUs and
GeForce 8800 GTS 512 were run on Asus P5K-V motherboard (Intel G33 based)
with 2 GB DDR2 system memory. Based on an extrapolation of 1 min 50 sec 1280
× 720 high-definition movie clip.

4. http://developer.nvidia.com/object/matlab_cuda.html

5. “High performance direct gravitational N-body simulations on graphics
processing units paper,” communicated by E.P.J. van den Heuvel

6. “LIBOR,” by Mike Giles and Su Xiaoke.

7. “FLAG@lab: An M-script API for Linear Algebra Operations on Graphics
Processors.”

8. http://www.techniscanmedicalsystems.com/

9. “General Purpose Molecular Dynamics Simulations Fully Implemented on
Graphics Processing Units,” by Joshua A. Anderson, Chris D. Lorenz, and A.
Travesset

10. “Fast Exact String Matching On the GPU,” presentation by Michael C.
Schatz and Cole Trapnell

0022

ATI Ex. 2120
IPR2023-00922

Page 295 of 611

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, Quadro, Tesla, CUDA, PhysX, nForce, PureVideo, and SLI are trademarks
or registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they are associated

Copyright

© 2008 NVIDIA Corporation. All rights reserved.

0023

ATI Ex. 2120
IPR2023-00922

Page 296 of 611

Intel® Processor Graphics
DirectX* Developer's Guide

How to maximize graphics performance on Intel®

microarchitecture codename Sandy Bridge

Copyright © 2008-2010 Intel Corporation

All Rights Reserved

Document Number: 321371-002

Revision: 2.9.6

Contributors: Jeff Freeman, Chris McVay, Chuck DeSylva, Luis Gimenez, Katen Shah,
Jeff Frizzell, Ben Sluis, Anthony Bernecky, Raghu Muthyalampalli, Ganeshkumar
Doraisamy, Steven Smith, Axel Mamode

World Wide Web: http://www.intel.com

Document Number: 321671-005US

ATI 2091
LG v. ATI

IPR2015-003260001

ATI Ex. 2120
IPR2023-00922

Page 297 of 611

Intel® Processor Graphics DirectX* Developer's Guide

2 Document Number: 321371-002US

Disclaimer and Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF
INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED
NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD
CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them. The information
here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before
placing your product order.

Copies of documents which have an order number and are referenced in this document, or other
Intel literature, may be obtained by calling 1-800-548-4725, or go to:
http://www.intel.com/design/literature.htm

Software Source Code Disclaimer

Any software source code reprinted in this document is furnished under a software license and may
only be used or copied in accordance with the terms of that license:

Intel Sample Source Code License Agreement

This license governs use of the accompanying software. By installing or copying all or

any part of the software components in this package, you (“you” or “Licensee”) agree

to the terms of this agreement. Do not install or copy the software until you have

carefully read and agreed to the following terms and conditions. If you do not agree

0002

ATI Ex. 2120
IPR2023-00922

Page 298 of 611

About this Document

How to maximize graphics performance on Intel® Integrated Graphics 3

to the terms of this agreement, promptly return the software to Intel Corporation

(“Intel”).

1. Definitions:

A. “Materials" are defined as the software (including the Redistributables and
Sample Source as defined herein), documentation, and other materials,
including any updates and upgrade thereto, that are provided to you under
this Agreement.

B. "Redistributables" are the files listed in the "redist.txt" file that is included in
the Materials or are otherwise clearly identified as redistributable files by
Intel.

C. “Sample Source” is the source code file(s) that: (i) demonstrate(s) certain
functions for particular purposes; (ii) are identified as sample source code;
and (iii) are provided hereunder in source code form.

D. “Intel‟s Licensed Patent Claims” means those claims of Intel‟s patents that
(a) are infringed by the Sample Source or Redistributables, alone and not in
combination, in their unmodified form, as furnished by Intel to Licensee and
(b) Intel has the right to license.

2. License Grant: Subject to all of the terms and conditions of this Agreement:

A. Intel grants to you a non-exclusive, non-assignable, copyright license to use

the Material for your internal development purposes only.

B. Intel grants to you a non-exclusive, non-assignable copyright license to
reproduce the Sample Source, prepare derivative works of the Sample
Source and distribute the Sample Source or any derivative works thereof
that you create, as part of the product or application you develop using the
Materials.

C. Intel grants to you a non-exclusive, non-assignable copyright license to

distribute the Redistributables, or any portions thereof, as part of the
product or application you develop using the Materials.

D. Intel grants Licensee a non-transferable, non-exclusive, worldwide, non-

sublicenseable license under Intel‟s Licensed Patent Claims to make, use,

sell, and import the Sample Source and the Redistributables.

3. Conditions and Limitations:

A. This license does not grant you any rights to use Intel‟s name, logo or

trademarks.

B. Title to the Materials and all copies thereof remain with Intel. The Materials
are copyrighted and are protected by United States copyright laws. You will
not remove any copyright notice from the Materials. You agree to prevent
any unauthorized copying of the Materials. Except as expressly provided

0003

ATI Ex. 2120
IPR2023-00922

Page 299 of 611

Intel® Processor Graphics DirectX* Developer's Guide

4 Document Number: 321371-002US

herein, Intel does not grant any express or implied right to you under Intel
patents, copyrights, trademarks, or trade secret information.

C. You may NOT: (i) use or copy the Materials except as provided in this

Agreement; (ii) rent or lease the Materials to any third party; (iii) assign this
Agreement or transfer the Materials without the express written consent of
Intel; (iv) modify, adapt, or translate the Materials in whole or in part
except as provided in this Agreement; (v) reverse engineer, decompile, or
disassemble the Materials not provided to you in source code form; or (vii)
distribute, sublicense or transfer the source code form of any components of
the Materials and derivatives thereof to any third party except as provided
in this Agreement.

4. No Warranty:

 THE MATERIALS ARE PROVIDED “AS IS”. INTEL DISCLAIMS ALL EXPRESS

OR IMPLIED WARRANTIES WITH RESPECT TO THEM, INCLUDING ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, AND
FITNESS FOR ANY PARTICULAR PURPOSE.

5. Limitation of Liability: NEITHER INTEL NOR ITS SUPPLIERS SHALL BE

LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER LOSS)
ARISING OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE, EVEN
IF INTEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
BECAUSE SOME JURISDICTIONS PROHIBIT THE EXCLUSION OR
LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL
DAMAGES, THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

6. USER SUBMISSIONS: You agree that any material, information or other

communication, including all data, images, sounds, text, and other things
embodied therein, you transmit or post to an Intel website or provide to
Intel under this Agreement will be considered non-confidential
("Communications"). Intel will have no confidentiality obligations with
respect to the Communications. You agree that Intel and its designees will
be free to copy, modify, create derivative works, publicly display, disclose,
distribute, license and sublicense through multiple tiers of distribution and
licensees, incorporate and otherwise use the Communications, including
derivative works thereto, for any and all commercial or non-commercial
purposes

7. TERMINATION OF THIS LICENSE: This Agreement becomes effective on the

date you accept this Agreement and will continue until terminated as
provided for in this Agreement. Intel may terminate this license at any time
if you are in breach of any of its terms and conditions. Upon termination,
you will immediately return to Intel or destroy the Materials and all copies
thereof.

8. U.S. GOVERNMENT RESTRICTED RIGHTS: The Materials are provided with

"RESTRICTED RIGHTS". Use, duplication or disclosure by the Government is
subject to restrictions set forth in FAR52.227-14 and DFAR252.227-7013 et
seq. or its successor. Use of the Materials by the Government constitutes
acknowledgment of Intel's rights in them.

0004

ATI Ex. 2120
IPR2023-00922

Page 300 of 611

About this Document

How to maximize graphics performance on Intel® Integrated Graphics 5

9. APPLICABLE LAWS: Any claim arising under or relating to this Agreement
shall be governed by the internal substantive laws of the State of Delaware,
without regard to principles of conflict of laws. You may not export the
Materials in violation of applicable export laws.

* Other names and brands may be claimed as the property of others.
Copyright (C) 2008 – 2010, Intel Corporation. All rights reserved.

Revision History

Document
Number

Revision
Number

Description Revision
Date

321671-001US 1.0 Re-drafted for Intel® 4-Series Chipsets. Sept 2008

321671-001US 1.1 Re-drafted for Intel® 4-Series Chipsets. Sept 2008

321671-002US 2.6.6 Intel HD Graphics DirectX* Developer's Guide (Sandy
Bridge).

March 2009

321671-003US 2.6.7 Intel® HD Graphics DirectX* Developer's Guide (Sandy
Bridge).

April 2009

321671-004US 2.7.1 Intel® HD Graphics DirectX* Developer's Guide (Sandy
Bridge) featuring Intel® HD Graphics

Feb 2010

321671-005US 2.8.0 Intel® HD Graphics DirectX* Developer‟s Guide for the
Intel® microarchitecture codename Sandy Bridge.

August 2010

321671-006US 2.9.5 Incremental changes and additions related to Intel
microarchitecture codename Sandy Bridge

December
2010

 2.9.6 Incremental changes prior to GDC release February 2011

0005

ATI Ex. 2120
IPR2023-00922

Page 301 of 611

Intel® Processor Graphics DirectX* Developer's Guide

6 Document Number: 321371-002US

Contents

Disclaimer and Legal Information ..2

Software Source Code Disclaimer ...2

Revision History..5

1 About this Document ...8

1.1 Intended Audience ...8
1.2 Conventions, Symbols, and Terms ...8

Table 1 Coding Style and Symbols Used in this Document ..8

Table 2 Terms Used in this Document ...9

1.3 Further Help Beyond this Guide ...9

2 Intel® HD Graphics to Intel® Processor Graphics ... 10

2.1 Intel® HD Graphics is Becoming Core .. 10
2.2 What‟s New in Intel® Processor Graphics ... 12
2.3 Intel® Processor Graphics Specifications .. 14

3 Quick Tips: Graphics Performance Tuning .. 15

3.1.1 Optimizing for the Vertex Cache ... 15
3.1.2 Other Tips On Vertex/Primitive Processing 16

3.2 Shader Capabilities .. 17
3.2.1 DirectX* 11 on 10 .. 18
3.2.2 Tips on Shader Capabilities .. 18

3.3 Texture Sample and Pixel Operations ... 20
3.3.1 Tips on Texture Sampling / Pixel Operations 21

3.4 Microsoft DirectX* 10 Optional Features ... 22
3.5 Managing Constants on Microsoft DirectX* .. 22

3.5.1 Tips on Managing Constants on Microsoft DirectX* 9 23
3.5.2 Tips on Managing Constants on Microsoft DirectX* 10 23

3.6 Advanced DirectX* 9 Capabilities ... 24
3.6.1 FourCC and other surface and texture formats 24
3.6.2 Notes on supported FourCC texture formats 26
3.6.3 MSAA Under DirectX* 9 ... 26

3.7 Graphics Memory Allocation .. 26
3.7.1 Checking for Available Memory ... 27
3.7.2 Tips On Resource Management ... 27

3.8 Identifying Intel® Processor Graphics and Specifying Graphics Presets 28
3.9 Surviving a Graphics Hardware Switch on the Fly 28

3.9.1 Microsoft DirectX* 9 Algorithm ... 28
3.9.2 Algorithm for DirectX* 10 .. 29

3.10 Some suggestions, tips & tricks from the field ... 29
3.10.1 Device Capabilities .. 29
3.10.2 DirectX* 9 Extensions ... 30
3.10.3 Revisit Assumptions on Performance ... 30
3.10.4 Avoid Writing to Unlocked Buffers ... 31

0006

ATI Ex. 2120
IPR2023-00922

Page 302 of 611

About this Document

How to maximize graphics performance on Intel® Integrated Graphics 7

3.10.5 Avoid Tight Polling on Queries .. 31

4 Appendix: Sample Code for Identifying Intel® Processor Graphics and Specifying
Graphics Presets ... 32

5 Support ... 37

6 References ... 38

§

0007

ATI Ex. 2120
IPR2023-00922

Page 303 of 611

Intel® Processor Graphics DirectX* Developer's Guide

8 Document Number: 321371-002US

1 About this Document
This document provides development hints and tips to ensure that your customers will
have a great experience playing your games and running other interactive 3D graphics
applications on Intel® Processor Graphics. This document details software
development practices using the latest generation of Intel processor graphics: Intel®
Processor Graphics as well as two previous generations of the Intel® Graphics Media
Accelerator with a focus on performance analysis using Microsoft DirectX*. Intel tools
useful in optimizing graphics applications are introduced in a section detailing
performance analysis with the Intel® Graphics Performance Analyzers (Intel® GPA).

Intel® Graphics is split into product generations. The latest one was introduced in
2011 with Intel® microarchitecture codename Sandy Bridge. This family of
processors is now on the same silicon as the CPU and it is now called Intel® Processor
Graphics. In addition to vastly improved performance, Intel Processor Graphics also
adds significant new features and functionalities over the previous generation of Intel
Graphics called Intel® HD Graphics. Intel Processor Graphics currently represents the
most common graphics solution chosen by new PC purchasers. This document is
meant to help you include this broad market as a target for your applications and
optimize the experience for widest people. By following the tips and tricks in this
document, you have the opportunity to make your application shine with the graphics
volume market leader.

1.1 Intended Audience
This document is targeted at experienced graphics developers who are familiar with
OpenGL*/Microsoft DirectX*, C/C++, multithreading and shader programming,
Microsoft Windows* operating systems, and 3D graphics.

1.2 Conventions, Symbols, and Terms

Table 1 Coding Style used in the Document

Source code:
for(int i = 0; i < 10; ++i)

{

 cout << i << endl;

}

The following terms are used in this document.

0008

ATI Ex. 2120
IPR2023-00922

Page 304 of 611

About this Document

How to maximize graphics performance on Intel® Integrated Graphics 9

Table 2 Terms Used in this Document

1. HDG –Intel® HD Graphics, the generation of graphics from Intel which was
characterized by the graphics subsystem being on a separate die from the CPU

2. Processor Graphics - The latest generation of graphics from Intel® included in
the same processor die of the Intel® microarchitecture codename Sandy Bridge
family of processors

3. UMA – Unified Memory Architecture - an architecture where the graphics
subsystem does not have exclusive dedicated memory and uses the host system‟s

memory (SDRAM)
4. DVMT – Dynamic Video Memory Technology – a memory allocation scheme in

UMA systems which allocates an exclusive, dynamically resizable chunk of main
memory to the graphics (driver)

5. VF – Vertex Fetch
6. VS – Vertex Shader
7. PS – Pixel Shader
8. GS – Geometry Shader
9. EU – Execution Unit, a vector machine component
10. I$ - Instruction cache
11. SO – Stream Output
12. HWVP – Hardware vertex processing - see the following Intel document for more

information on this: http://www.intel.com/assets/pdf/whitepaper/318888.pdf

1.3 Further Help Beyond this Guide
There are several other places you can look for additional information on Intel
Processor Graphics, including the following sites:

Intel® HD Graphics (previous generation): http://software.intel.com/en-
us/articles/intel-graphics-developers-guides/

Intel® 4 Series Chipsets (the Intel® 4500, X4500, and X4500HD GMAs) Developer‟s
Guide: http://software.intel.com/en-us/articles/intel-graphics-media-accelerator-
developers-guide/

Intel® 3 Series Express Chipsets including the Intel® 3000 GMA and Intel® X3000
GMA Developer‟s Guide: http://software.intel.com/en-us/articles/intel-gma-3000-and-
x3000-developers-guide/.

We hope your questions are covered in these resources, including this Guide. We are
constantly updating these resources and welcome your comments and suggestions. If
you have questions not answered in these resources, or have suggestions on
improving the Guide, please get in touch with us at: GameDevInput@intel.com. If
you are actively working with Intel already, you can also reach us through your
engineering or account management contacts.

0009

ATI Ex. 2120
IPR2023-00922

Page 305 of 611

Intel® Processor Graphics DirectX* Developer's Guide

10 Document Number: 321371-002US

2 Intel® HD Graphics to Intel®
Processor Graphics

2.1 Intel® HD Graphics is Becoming Core

Several versions of the Intel® Core™ i3, Core™ i5, and Core™ i7 processors have
launched in 2011 using Intel® microarchitecture codename Sandy Bridge. These
represent the first instantiation of complete platform integration, with Intel®
Processor Graphics co-residing on the CPU die.

Two key versions of graphics will be available, Intel® Processor Graphics 2000 and
Intel® Processor Graphics 3000, with Intel® Processor Graphics 2000 targeting lower
voltage (lower power) applications and Intel® Processor Graphics 3000 a more
mainstream set of applications.

0010

ATI Ex. 2120
IPR2023-00922

Page 306 of 611

Intel® HD Graphics to Intel® Processor Graphics

How to maximize graphics performance on Intel® Integrated Graphics 11

Table 3 Evolution of Intel® Processor Graphics

2009 2010 2011

GMA Series 4
Chipset

Intel codename
Ironlake - 1st Gen
CPU Integration

Intel® microarchitecture codename Sandy Bridge -
1st Gen CPU/Graphics single die

DirectX* 10 SM4,
OpenGL* 2.0

DirectX* 10, SM4,
OpenGL* 2.1

DirectX* 10.1 SM4.1 , OpenGL* 3.0, DirectX* 11
API on DirectX* 10 hardware

Mobile /
Desktop*:

21 / 32 GFLOPs

Mobile / Desktop:
37 / 43 GFLOPs

Mobile / Desktop:
~105-125 GFLOPs for Processor Graphics 3000 &

~55-65 GFLOPS for Processor Graphics 2000

Mobile/Desktop
400 - 533 MHz/

800 MHz

Mobile/Desktop
500-766 MHz/ 533 -

900 MHz

Mobile/Desktop
Base: 350-650 MHz/650-850 MHz

Turbo: 900-1250 MHz/1100-1350 MHz

1.7x 3D performance

increase

Intel® Processor Graphics
2000:

6 Execution Units
≥1x with lower voltage

requirements.

Intel® Processor
Graphics 3000:

12 Execution Units
1.5-2.5x performance

increase

* Single precision peak values with MAD instructions.

0011

ATI Ex. 2120
IPR2023-00922

Page 307 of 611

Intel® Processor Graphics DirectX* Developer's Guide

12 Document Number: 321371-002US

Figure 1 Intel® Processor Graphics Architecture Diagram

Intel® Processor Graphics has been architected to support Microsoft DirectX* 10.1
and take advantage of a generalized unified shader model including support for
Shader Model 4.1 and lower. The platform also has support for DirectX* 11 on
DirectX* 10 hardware. The graphics core executes vertex, geometry, and pixel
shaders on the programmable array of Execution Units (EUs). The EUs have
programmable SIMD (Single Instruction, Multiple Data) widths of 4 and 8 element
vectors (two 4 element vectors paired) for geometry processing and 8 and 16 single
data element vectors for pixel processing). Each EU is capable of executing multiple
threads to cover latency. The new generation of Intel® Processor Graphics now
integrates transcendental shader instructions into the EU units, rather than a shared
math box found in prior generations, resulting in improved processing of instructions
such as POW, COS, SIN. Clipping and setup have moved to Fixed Function units,
further increasing performance by reducing contention within the EU‟s. The end result
is the fastest Intel® Processor Graphics to date.

2.2 What’s New in Intel® Processor
Graphics

2.2.1.1 Graphics Features

The latest version of Intel® Processor Graphics includes several performance changes
since the previous generation:

0012

ATI Ex. 2120
IPR2023-00922

Page 308 of 611

Intel® HD Graphics to Intel® Processor Graphics

How to maximize graphics performance on Intel® Integrated Graphics 13

Table 4 Intel® Processor Graphics Feature Specifications

2.2.1.2 Intel® Turbo Boost Technology

Intel® Processor Graphics utilizes a dynamic frequency on mobile and desktop
graphics to automatically increase the clock frequencies of the CPU cores and the
graphics cores to boost performance when the workload demands it and also to scale
back the frequencies when demand decreases. Intel® microarchitecture codename
Sandy Bridge supports higher performance boosts after extended CPU idle periods. In
addition to the Intel® Turbo Boost Technology on the CPU, a similar technology has
been extended to graphics on both the mobile and desktop platforms. This allows the
graphics subsystem to run at higher frequencies when the CPU is not using its nominal
thermal design power (TDP). In combination, these technologies dynamically manage
the CPU and graphics core performances based on workload demands, to allow for
better performance when needed and minimize power usage when possible.

3D Pipeline Key Improvements in Intel® Processor Graphics

Geometry
Processing

 Improved throughput up to 2x better than previous generations

 Sharing of the last level cache with the CPU

 Increased number of threads for vertex shading

 Faster clip, cull, and setup

 Improved throughput of geometry shader and stream out

 OpenGL* driver now uses hardware geometry processing

Rasterization
and Z

 Improved hierarchical Z performance

 Improved clear performance

 Added OpenGL* MSAA 4X support

 Added 2X and 4X MSAA support under DirectX* 9 and DirectX* 10

Computes
 >3X increase in transcendental computations

 Overall arithmetic performance improvement in shaders due to math box
integration within EU‟s

Texture and
Pixel Processing

 Added support for Gather4, Target Independent Blend Modes, Per Sample
Shader Frequency, TextureCubeArray, VS/GS 32 Registers, per the
DirectX* 10.1 specification

 Improved fill rate for short shaders due to fixed function setup
management of barycentric coefficients

0013

ATI Ex. 2120
IPR2023-00922

Page 309 of 611

Intel® Processor Graphics DirectX* Developer's Guide

14 Document Number: 321371-002US

2.3 Intel® Processor Graphics
Specifications

Table 5 Intel® Processor Graphics Feature Specifications

Intel Graphics Core Intel® Processor Graphics

Intel Chipset

(see Error! Reference source
not found.)

Intel® microarchitecture codename Sandy Bridge

Graphics Architecture
Intel® Processor

Graphics 2000
Intel® Processor Graphics

3000

Segment Desktop/Mobile Desktop/Mobile

Maximum Video Memory

Depends on system memory and operating system.

Windows Vista*/Windows* 7: refer to the table below:

System Memory 1GB 2GB >2GB

Max Available

Video Memory
256 MB 783 MB 1692 MB

DirectX* Support

10.1, DirectX* 11 on DirectX* 10 hardware,

Compute Shader 4.x,

DirectX* 11 API multi-threaded rendering on DirectX* 10
hardware (asynchronous object creation supported,

software support for asynchronous command list in the
runtime)

OpenGL* Support 3.0

Shader Model Support 4.1

0014

ATI Ex. 2120
IPR2023-00922

Page 310 of 611

Quick Tips: Graphics Performance Tuning

How to maximize graphics performance on Intel® Integrated Graphics 15

3 Quick Tips: Graphics
Performance Tuning

3.1.1 Optimizing for the vertex cache
Use IDirect3DDevice9::DrawIndexedPrimitive (DirectX* 9) or
ID3D10Device::DrawIndexed (DirectX* 10) to maximize reuse of the vertex cache.

Pre- and post-transform vertex cache sizes can vary significantly, even across
different generations of Intel Graphics platforms. To maximize performance of vertex
processing, it can help to optimize the ordering of vertices and triangle indices in your
vertex and index buffers.

There are two methods you can use to optimize your data for the vertex cache:

The preferred method is to use the D3DXOptimizeFaces and D3DXOptimizeVertices
APIs. These apply a good generalized optimization that will work well for all cache
sizes (and across all hardware). Since this optimization works well across all
hardware, it can be applied at authoring time (e.g. when exporting mesh data from
your content creation pipeline), cutting down level load times.

The code snippet below demonstrates how to use these APIs on mesh data:

void OptimizeMesh(WORD * Indices, // [In/Out] - Index buffer data

 DWORD NumFaces, // Number of faces in the mesh

 Vertex * Vertices, // [In/Out] - Vertex buffer data

 DWORD NumVertices) // Number of vertices in the mesh

{

 HRESULT hr;

 // Create a "re-map" buffer for the new face ordering, and

 // calculate the new order.

 DWORD *Remap = new DWORD[NumFaces];

 hr = D3DXOptimizeFaces(IndicesIn, NumFaces, NumVertices,

 FALSE, Remap);

 // Make a copy of the old indices, which we'll pull from for the new

 // re-ordered list of indices.

 WORD *OldIndices = new WORD[NumFaces * 3];

 memcpy(OldIndices, IndicesIn, sizeof(WORD) * NumFaces * 3);

 WORD * NewFaces = Indices;

 // Apply the new mapping.

 for(DWORD i = 0; i < NumFaces; ++i)

 {

 WORD *OldFaceBase = OldIndices + (Remap[i] * 3);

 NewFaces[0] = OldFaceBase[0];

0015

ATI Ex. 2120
IPR2023-00922

Page 311 of 611

Intel® Processor Graphics DirectX* Developer's Guide

16 Document Number: 321371-002US

 NewFaces[1] = OldFaceBase[1];

 NewFaces[2] = OldFaceBase[2];

 NewFaces += 3;

 }

 delete[] Remap;

 delete[] OldIndices;

 // Create a "re-map" buffer for the new vertex ordering, and

 // calculate the new order.

 DWORD ActualVertexCount = 0;

 Remap = new DWORD[NumVertices];

 hr = D3DXOptimizeVertices(Indices, NumFaces, NumVertices,

 FALSE, Remap);

 // Count how many vertices we actually have. Remap indices of

 // 0xffffffff indicate a vertex that was not referenced by any faces.

 DWORD dwVertexCount = 0;

 for(DWORD i = 0; i < NumVertices; ++i)

 {

 if(aRemap[i] == 0xffffffff)

 break;

 ++ActualVertexCount;

 }

 // Copy the vertex data into a temp buffer.

 Vertex *OldVertices = new Vertex[NumVertices];

 memcpy(OldVertices, Vertices, sizeof(Vertex) * NumVertices);

 // Perform the remapping

 const DWORD *CurrentRemap = Remap;

 const SVertex *OldVertex = OldVertices;

 for(DWORD i = 0; i < ActualVertexCount; ++i)

 {

 aVertices[*(CurrentRemap++)] = *(OldVertex++);

 }

 // We'll also need to re-index our vertices to point to the new

 // vertex locations.

 for(DWORD i = 0; i < NumFaces * 3; i++)

 {

 Indices[i] = (WORD)aRemap[Indices[i]];

 }

 delete[] Remap;

 delete[] OldVertices;

}

3.1.2 Other Tips On Vertex/Primitive Processing
1. Ensure adequate batching of primitives to amortize runtime and driver overhead.

a. Use instancing to enable better vertex throughput especially for small batch
sizes. This also minimizes state changes and Draw calls.

0016

ATI Ex. 2120
IPR2023-00922

Page 312 of 611

Quick Tips: Graphics Performance Tuning

How to maximize graphics performance on Intel® Integrated Graphics 17

b. Aim for 2000 or fewer draw-calls per frame (or less than 50,000 draws per
second). Above this number the CPU overhead in the driver can become
prohibitive.

c. Minimize render state changes between batches to reduce the number of
pipeline flushes.

2. Use static vertex buffers where possible.
3. Use visibility tests to reject objects that fall outside the view frustum to reduce the

impact of objects that are not visible.
a. Set D3DRS_CLIPPING to FALSE for objects that do not need clipping.

4. Take advantage of Early-Z rejection.
a. Render with a Z-only pass (meaning no color buffer writes or pixel shader

execution) followed by a normal render pass. This uses the higher
performance of Early-Z to reject occluded fragments which reduces compute
times and raster operations.

b. Balance a Z-only pass against the inherent cost of such an additional pass. A
Z-only pass increases the number of draw calls (which can impact the CPU
usage) as well as the amount of work done up to the Rasterizer. Measure the
performance difference between the two approaches to assess the actual
benefit.

c. Avoid writing Z values (depth) in the pixel shader. Writing the depth value
will skip the Early-Z hardware optimization algorithm since it potentially
changes the visibility of the fragment.

5. Use the Occlusion Query feature of Microsoft DirectX* to reduce overdraws for

complex scenes. Render the bounding box or a simplified model – if it returns
zero, then the object does not need to be rendered at all.
a. Allow sufficient time between Occlusion Query tests and verifying the results

to avoid serializing the platform. See the Microsoft DirectX* 10 “Draw

Predicated” sample included in the Microsoft DirectX* SDK for more

information on this.
See Section 3.10.5 Avoid Tight Polling on Queries for more tips on using
queries properly.

6. Consider drawing the opaque overlays in the scene such as heads up displays
(HUD) first and writing them to the Z buffer. This reduces the screen rendering
area leading to considerable performance improvement.

3.2 Shader Capabilities
Intel® Processor Graphics includes support for Microsoft DirectX* Shader Model 4.1
for 10.1 devices and Shader Model 3.0 for DirectX* 9 devices. Intel®
microarchitecture codename Sandy Bridge provides significantly improved
computational capability and better handling of large and complicated shaders over
prior architectures.

0017

ATI Ex. 2120
IPR2023-00922

Page 313 of 611

Intel® Processor Graphics DirectX* Developer's Guide

18 Document Number: 321371-002US

3.2.1 DirectX* 11 on 10
In addition to DirectX* 10.1 hardware support, Intel® Processor Graphics includes
partial DirectX11 API support. This allows developers to use the DirectX* 11 API on
DirectX* 10 (or 10.1) level hardware. There are two DirectX11-specific features
exposed through this paradigm, specifically:

1. Multithreading: The D3D11 API provides means to record command lists
on multiple threads (multithreaded rendering) as well as object creation
on multiple threads. The Processor Graphics driver currently supports
driver-level concurrent object creation.

2. Compute Shader 4 (CS4): A limited subset of DirectX11-level compute
shader (CS5) a number of restrictions, specifically:

 Maximum threads is limited to 768.
 Z dimension of numthreads/dispatch limited to 1.
 Only one unordered access view bound per shader (and only

RWStructuredBuffers and RWByteAddressBuffers are bindable).
 Threads are limited to writing to only their own region of

groupshared memory (although they can thread from any
location).

 SV_GroupIndex must be used when accessing groupshared
memory for writing.

 Groupshared memory limited to 16KB per group.
 Atomics and double-precision are not available.

Other DirectX* 11 features (Tessellation, CS5, extended texture formats such as
BC6/7) are not supported.

Utilize the DirectX* ID3D11Device::CheckFormatSupport() API for individual format
support of the D3D11_FORMAT_SUPPORT enumeration.

3.2.2 Tips on Shader Capabilities
1. Reduce texture sampling intensive operations when possible. The following

common shader effects typically affect performance and should be tested for
performance and optimization. Pay special attention to full screen post processing
effects including per-pixel and multiple pass techniques when evaluating graphics
related performance bottlenecks.
a. Glow/Bloom
b. Motion blur
c. Depth of field
d. HDR/tone mapping
e. Heat distortion
f. Atmospheric effects
g. Dynamic Ambient Occlusion
h. High quality soft shadows
i. Parallax occlusion mapping with a wide radius

2. Balance texture samples and shader complexity.

0018

ATI Ex. 2120
IPR2023-00922

Page 314 of 611

Quick Tips: Graphics Performance Tuning

How to maximize graphics performance on Intel® Integrated Graphics 19

a. Recommend greater than 4:1 ratio of ALU:Sample for better latency
coverage. A larger ratio may be better for floating point textures, higher
order filtering, and 3D textures.

3. Space your texture sampling calls away from where it is used in pixel shaders
when possible and practical to maximize EU utilization.

4. Generically speaking where a choice is available between using programmable
shading and fixed function pipeline, programmable shading gives better
performance.
a. In particular, use shader-based fog instead of fixed function fog on DirectX*

9. Fixed Function fog has been deprecated on SM 3.0.
b. One notable exception to this rule is the use of the texkill instruction.

Consider using alpha test to achieve the same result if possible, as it
performs better on this platform.

5. Use flow control wisely - it can be expensive. In some cases, it might be
advantageous to split a single shader into multiple ones, to avoid flow control
statements.
a. The pixel shader operates on up to 16 pixels in parallel. This means the

benefits of dynamic flow control will depend on the likelihood of the number
of pixels taking the same branch. If any 2 of those pixels take different paths,
all pixels will execute both branches of the control flow.

b. Dynamic flow control can provide significant benefits by skipping a large
number of computations. Ensure that this is used where a large number of
instructions can be skipped.

6. Shader Model 3.0 supports dynamic flow instructions such as if bool, break, and
break_comp. It also supports predication registers. Often the dynamic flow
control instructions can be eliminated by using predication registers in their place.
When possible, use predication instructions over dynamic flow control for shorter
branching instruction sequences. Optimize your shader performance by adequate
use of your processor graphics - mask alpha if you are not using it.

7. Minimize the usage of geometry shaders, especially in cases where they result in
geometry amplification (more geometry output from the GS than came in). If in
doubt, examine your application‟s performance with and without geometry

shaders to determine if they are a significant performance issue.
8. In general, minimize use of StreamOut and DrawAuto() for optimal performance,

since they can incur a significant bandwidth penalty with their usage of system
memory.

0019

ATI Ex. 2120
IPR2023-00922

Page 315 of 611

Intel® Processor Graphics DirectX* Developer's Guide

20 Document Number: 321371-002US

3.3 Texture Sample and Pixel Operations
Table 6 Intel® Processor Graphics Texture Sampling and Pixel Specifications

CPU Product See Error! Reference source not found.

Graphics Architecture Desktop and Mobile (Processor Graphics 2000 & 3000)

Format Support
16/32-bit fixed point

16/32-bit floating point operations

Max # of Samplers
Up to 16

Vertex Textures
Yes

Max 2D/3D/Cube
Textures 8Kx8K/2Kx2Kx2K/8K

Filtering Type Support
BLF, TLF and Dynamic AF with up to 16 degrees of anisotropic
filtering + DirectX* 10.1

Texture Compression
DirectX* 9: DXT1/3/5, ATI1, ATI2; DirectX* 10: BCx

Multi-Sample Render
MSAA 4X

Multi-Target Render
8

Alpha-Blend FP
formats FP16 and FP32 formats are supported. For a complete list, do a

caps check on DirectX* 9 and on DirectX* 10, utilize the DirectX*
CheckFormatSupport() call as format support may be added in
future driver versions.

0020

ATI Ex. 2120
IPR2023-00922

Page 316 of 611

Quick Tips: Graphics Performance Tuning

How to maximize graphics performance on Intel® Integrated Graphics 21

Table 7 Intel® Processor Graphics Sampler Filtering Specifications

Product See Error! Reference source not found.

32-bit Texels (per clock cycle)

e.g. RGBA UNORM8, RG FP16, R FP32

Point/Bilinear
1X

Trilinear
1X

Anisotropic

(n samples) 0.5X/n

64-bit Texels (per clock cycle)

e.g. RG FP32, RGBA FP16, RGBA UINT16

Point/Bilinear
1X

Trilinear
0.5X

Anisotropic

(n samples) 0.25X/n

128-bit Texels (per clock cycle)

e.g. RGBA FP32, RGBA UINT32

Point
0.25X

Bilinear
0.25X

Trilinear
0.125X

All sampler filtering types are supported, including dynamic anisotropic filtering.

3.3.1 Tips on Texture Sampling / Pixel Operations
1. Use compressed textures and mip-maps and minimize the use of large textures.

Even though the architecture supports up to 8K×8K textures, for optimal
performance it is best to use smaller textures.

2. Minimize the use of Anisotropic Filtering, and both Trilinear and Anisotropic
filtering for floating point textures. With floating point texture formats, the
performance of bilinear and trilinear filtering are not equivalent.

0021

ATI Ex. 2120
IPR2023-00922

Page 317 of 611

Intel® Processor Graphics DirectX* Developer's Guide

22 Document Number: 321371-002US

 Examine the scene to determine where you can make performance/quality trade-
offs with texture filtering. Prefer bilinear filtering where there is little visual
difference.

3. Generically speaking, the more compact the texture format being used, the better
the performance. DXT compressed formats are best. Minimize the use of 32-bit
floating point textures, since they carry a heavy bandwidth penalty and fill the
texture caches faster.

4. Use as few render targets as possible, ideally keeping it to less than four. More
render targets requires more bandwidth. If in doubt, analyze your performance
using a tool such as Intel® GPA to determine if you are fill bound.

5. Minimize the number of Clear calls. Clear surfaces, Color and Z/Stencil buffer at
the same time when required.

6. Avoid stencil shadows as they are fill intensive.

3.4 Microsoft DirectX* 10 Optional
Features

D3D10 specifies optional features that can be checked for support in the code through
API functions like CheckFormatSupport(...), CheckMultipleQualityLevels(...),
CheckFeatureSupport(...)

The current platform supports more of those optional features than the previous ones
and even more features will likely be supported in future. So it is better to explicitly
test for such features using those APIs rather than relying on vendor and device ID's
for the platform.

For example, DirectX* 10 specifies a large number of resource types and data formats
that are optional. Utilize the DirectX* 10 CheckFormatSupport(...) call to determine
which ones are supported. Also, utilize the DirectX* 10 CheckFormatSupport(...) call
for UNORM and SNORM blending support

The following optional features are supported at the time of review of this Guide:

1. MSAA 2X and 4X on DirectX* 10.
2. 32-bit floating point blending

3.5 Managing Constants on Microsoft
DirectX*

Constants are external variables passed as parameters to the shaders; their values
remain “constant” during each invocation of the shader program. Despite their name,
constants are one of the most frequently changing values in a Microsoft DirectX*

0022

ATI Ex. 2120
IPR2023-00922

Page 318 of 611

Quick Tips: Graphics Performance Tuning

How to maximize graphics performance on Intel® Integrated Graphics 23

application. A shader program can initialize a constant value statically to a value in the
shader file or at runtime through the application.

Many of the recommendations described here are standard in the industry. They are
very much applicable to Intel processor graphics and the recommendations attempt to
detail them in a cohesive manner.

In addition to these points it is worth noting that care should be taken when porting
from Microsoft DirectX* 9 to Microsoft DirectX* 10 to maintain performance. For more
information on this topic, see the Intel publication “DirectX* Constants Optimizations
For Intel® Processor graphics” [2] available on the Intel Software Network.

3.5.1 Tips on Managing Constants on Microsoft
DirectX* 9

1. The driver optimizes access to the most frequently used constants. Use less than
32 (FLOAT4) constants per shader to achieve the best performance gain from this
feature. Limit the use of dynamic indexed constants (C[ax], C[r]) as these cannot
be optimized by the driver and will result in high latency in shaders (dynamic
indexed constants are normally found in vertex shaders).

2. Prefer local constants over global constants - the former are better for
performance.

3. Immediate constants provide better performance than dynamic indexed constants.
In dynamic indexed constants the driver cannot determine a previous index value
and needs to create a full size constant buffer space in memory, instead of using
the hardware constant buffer.

3.5.2 Tips on Managing Constants on Microsoft
DirectX* 10

1. As previously detailed for DirectX* 9 above, the driver optimizes access to the
most frequently used constants. The same advice applies for DirectX* 10: use
less than 32 constants per shader to achieve the best performance gain from this
feature, and limit the use of dynamic indexed constants (C[ax], C[r]) as these
cannot be optimized by the driver.

2. For better performance prefer multiple, smaller constant buffers. The constant
buffers need to be loaded to the graphics subsystem ahead of the shader
execution, and the entire buffer needs to reloaded every time its contents change.
Larger the size of the buffer, longer it takes to load the buffer to the graphics
subsystem, causing significant performance impacts. If multiple buffers are
combined into a single larger buffer, every time any of the contents changes, the
entire large buffer will have to be loaded again, degrading the performance. And,
because of the performance impact that reloading a constant buffer can have,
where possible, if multiple shaders share the same buffer that could help the
performance. Whether that performance gain is actually realized depends on
whether the shared buffer is still resident when the second shader sharing the
buffer is executed. But sharing the buffers between shaders can help but does
not hurt the performance. For optimal constant buffer management, smaller
packed constant buffers grouped by frequency of update and access pattern are

0023

ATI Ex. 2120
IPR2023-00922

Page 319 of 611

Intel® Processor Graphics DirectX* Developer's Guide

24 Document Number: 321371-002US

ideal for higher performance. As an example: organize Per Frame/ Per Pass/ Per
Instance constant buffers first which tend to be smaller in size and have a low
update rate followed by Per Draw/Per Material constant buffers which may also be
small but have a higher update rate. Put large constant buffers like skinning
constants last.

3. If there are constants that are unused by most of the shaders move those to the
bottom of the constant definition list so that you can bind a smaller buffer to those
shaders.

4. Break up constant buffers based on features that are optional in games (e.g.
shadows, post-processing effects, etc.). Very likely, due to performance
constraints for integrated platforms, some of these features are either going to be
disabled or run with a lower setting. So it would be beneficial to break up the
constants into separate buffers and then selectively disable the updates to these
constant buffers based on the settings selected by the user.

5. When using indexed constant buffers, it is recommended to keep the buffer size
tailored to actual needs. For example, if the shader iterates over five elements
only, declare a 5-element constant buffer for this shader rather than a general
purpose 50-element constant buffer shared among shaders. This allows the driver
to optimize placement so that it incurs a low latency path.

3.6 Advanced DirectX* 9 Capabilities
Several advanced features beyond those required by the DirectX* 9 specifications are
supported by the Intel Graphics Platforms. This section provides the details on some
of them.

The feature list is current for Intel® microarchitecture codename Sandy Bridge, when
this Guide is being prepared and is likely to be extended over time. Further, support
for the features vary between different Intel platforms. We strongly advise the
developers to first confirm in their code that the feature of interest is supported and
provide alternative execution paths in the code where features are not supported.

These are capabilities not directly exposed by DirectX* 9 interfaces. Developers will
have to use indirect methods to check for their availability. Code segments showing
how to check for such features are given in this section.

3.6.1 FourCC and other surface and texture formats
Intel Graphics platforms support multiple surface-formats beyond those required by
the DirectX* 9 specifications. These are listed in Table 8.

0024

ATI Ex. 2120
IPR2023-00922

Page 320 of 611

Quick Tips: Graphics Performance Tuning

How to maximize graphics performance on Intel® Integrated Graphics 25

Table 8 Additional DirectX* 9 texture and surface formats supported on Intel platforms

Format Resource
Type

Usage Description

INTZ
Texture Depth/Stencil For reading depth buffer as a texture

DF16
Texture Depth/Stencil For reading depth buffer as a texture

RESZ
Surface Render Target For converting a multisampled depth buffer into a depth

stencil texture.

ATI1N
Texture Texture Single Channel Texture Compression. Functionally

equivalent (but not identical) to DirectX* 10 BC4 format.

ATI2N
Texture Texture Two-channel Texture Compression. Functionally

equivalent (but not identical) to DirectX* 10 BC5 format.

NULL
Texture Render Target Render Target with no memory allocated. Useful as a

dummy render target to render exclusively to a depth
buffer.

ATOC
Surface Render Target Alpha to coverage multisampling.

The following code segment shows a sample outline and works for most FourCC

formats.

See the code accompanying this Guide for an example of how to test for more
formats.

...

// format of the display mode into which the adapter will be placed

D3DFORMAT AdapterFmt = D3DFMT_X8R8G8B8;

// check for FourCC formats like INTZ

if (pD3D->CheckDeviceFormat(D3DADAPTER_DEFAULT,

 D3DDEVTYPE_HAL,

 AdapterFmt,

 D3DUSAGE_DEPTHSTENCIL,

 D3DRTYPE_TEXTURE,

 (D3DFORMAT)(MAKEFOURCC('I','N','T','Z')

) == D3D_OK)

{

 return true;

}

...

0025

ATI Ex. 2120
IPR2023-00922

Page 321 of 611

Intel® Processor Graphics DirectX* Developer's Guide

26 Document Number: 321371-002US

3.6.2 Notes on supported FourCC texture formats
1. INTZ is a depth texture format meant for accessing 24-bit depth buffer and 8-bit
stencil buffer. In addition to depth operations this allows for using it for stencil
operations as well.

This surface cannot be used as a texture when it is being used for depth buffering,
unless the depth writes are disabled.

2. DF24 and DF16 formats are meant for use in Percentage-Closer Filtering (PCF)
used in shadow mapping applications that use PCF. DF16 has better performance.

3. Intel® microarchitecture codename Sandy Bridge supports MSAA under DirectX*
9. RESZ provides the ability to use multisampling in depth buffer and then copy the
result as a single value into a depth-stencil buffer. This process is often referred to as
"resolving" a multi-sample depth-stencil buffer into a single-sample depth-stencil
buffer.

4. Some ISV's use FourCC formats at times known as ATI1N which allows for the
compression of single channel textures. The latest Intel platforms support this for the
benefit of those ISV's.

5. 3DC format is also known in the industry as ATI2N format. This format is also
supported in the latest Intel platforms.

6. A NULL Render Target is a dummy render target format which acts like a valid
render target with a crucial difference that the driver will not allocate any memory for
it. DX9 requires that a color render target be used for all rendering operations. Since
a color render target is often not used with depth-only render targets, using a NULL
render target in such cases can avoid memory allocation for a color render target will
not be used.

7. ATOC, short for "Alpha To Coverage", is meant for interpreting the alpha channel
value for approximating the multichannel pixel coverage. The texture itself has no
practical use; but you use it as an argument in the SetRenderState(...) function, to
convert the incoming alpha value output by the pixel shader into multichannel pixel
coverage value.

3.6.3 MSAA Under DirectX* 9
2x and 4X MSAA are supported in DX9 on the latest Intel platforms. In general MSAA
requires the graphics engine to do more work and hence impacts the performance to
varying degrees. The developers should weigh in the tradeoffs ahead of using MSAA
in their titles.

3.7 Graphics Memory Allocation
Processor graphics will continue to use the Unified Memory Architecture (UMA) and
Dynamic Video Memory Technology (DVMT) as noted in the chart below. As with past
processor graphics solutions, UMA specifies that memory resources can be used for
video memory when needed. DVMT is an enhancement of the UMA concept, wherein

0026

ATI Ex. 2120
IPR2023-00922

Page 322 of 611

Quick Tips: Graphics Performance Tuning

How to maximize graphics performance on Intel® Integrated Graphics 27

system memory is allocated for balanced graphics and system performance. DVMT
dynamically responds to system requirements and application demands, by allocating
the proper amount of display, texturing, and buffer. The operating system views the
Intel graphics driver as an application, which uses system memory to request
allocation of additional memory for 3D applications, and returns the memory to the
operating system when no longer required.

Table 9 Intel® Processor Graphics Memory Specifications

CPU Product See Error! Reference source not found.

Segment Processor Graphics
2000

Processor Graphics
3000

Memory BW (GB/s) 17.1 - 21.3 17.1-25.6

UMA Capability 2x DDR3 up to 1333 2x DDR3 up to 1600

Max DVMT (XP) 1 or 2GB System
Memory

Limited to 1GB max for all system memory
configurations

Max DVMT (Windows
Vista*/Windows* 7) x86/x64:

System Memory
The memory is managed by the operating system
and the driver.

Memory Interface 64 bits

3.7.1 Checking for Available Memory
Graphics applications often check for the amount of available free video memory early
in execution. Developers typically want to know the amount of memory that the
graphics device can access at full performance.

As a result of the dynamic allocation of graphics memory performed by the Intel®
Processor Graphics devices (based on application requests), memory checks that only
request the amount of „local‟ or „dedicated‟ graphics memory available do not supply a
number that is appropriate for the Intel® Processor Graphics devices.

The Microsoft DirectX* SDK (June 2010) includes the VideoMemory sample code which
demonstrates 5 commonly used methods to detect the total amount of video memory.
Of these tests, GetVideoMemoryViaWMI is recommended. All other methods either
return the local/dedicated graphics memory and consequently will report incorrect
results on Intel® Processor Graphics, or will report the sum of the dedicated memory
and the shared memory, something that is typically not suitable for discrete graphics
devices. For more information, see the sample code: http://msdn.microsoft.com/en-
us/library/ee419018(v=VS.85).aspx

3.7.2 Tips On Resource Management
1. Allocate surfaces in priority order. The render surfaces that will be used most

frequently should be allocated first. On Microsoft DirectX* 10, memory is taken
care of for you by the OS. On Microsoft DirectX* 9:

0027

ATI Ex. 2120
IPR2023-00922

Page 323 of 611

Intel® Processor Graphics DirectX* Developer's Guide

28 Document Number: 321371-002US

a. Use D3DPOOL_DEFAULT for lockable memory (dynamic vertex/index buffers).
b. Use D3DPOOL_MANAGED for non-lockable memory (textures, back buffers, etc).

2. On D3D10, use of the Copy…() methods are preferred over calling the Update…()
operations. Partial or sub-resource copies should be used sparingly. For example
when updating all or most of the LODs of a resource use CopyResource() rather
than multiple CopySubResource().

3.8 Identifying Intel® Processor Graphics
and Specifying Graphics Presets

Games often specify a range of graphics capabilities and presets to identify with a
Low, Medium, and High fidelity level. Please refer to the Appendix for sample code
that demonstrates how to identify Intel® Processor Graphics versions and set fidelity
levels for older generations (Low) to the most recent (Medium) based on the
requested D3D*_FEATURE_LEVEL.

Note that on Windows* 7, multiple graphics adapters are supported so care should be
taken in determining which adapter will be used for rendering.

3.9 Surviving a Graphics Hardware
Switch on the Fly

Intel in combination with third party graphics vendors jointly developed a switchable
graphics solution that allows end users to switch on-the-fly, between two
heterogeneous graphics hardware systems without a reboot. This functionality can
incorporate the energy efficiency of Intel processor graphics with the 3D performance
of discrete graphics hardware in a single notebook solution. This technology is
applicable to about 30 million discrete graphics hardware notebooks purchased
annually. Currently most applications running on PC platforms with heterogeneous
graphics hardware do not survive when switched between the two at run-time as they
do not re-query underlying graphics capability when the active adapter changes.

Keys to handling graphics hardware switches:

 New applications should be aware of multiple graphics hardware configurations and
handle the D3DERR_DEVICELOST and WM_DISPLAYCHANGE messages properly.

 Legacy applications where possible should develop and distribute patches for old
games to handle the D3DERR_DEVICELOST and WM_DISPLAYCHANGE messages.

3.9.1 Microsoft DirectX* 9 Algorithm
Microsoft DirectX* 9 applications should follow the below procedure to query GFX
adapter‟s capabilities (re-create DX object/device) on D3DERR_DEVICELOST:

0028

ATI Ex. 2120
IPR2023-00922

Page 324 of 611

Quick Tips: Graphics Performance Tuning

How to maximize graphics performance on Intel® Integrated Graphics 29

1. Manually save the current context including state and draw information in the
application.

2. Query if the graphics adapter has changed, using the Windows* API‟s

EnumDisplaySettings() or EnumDisplayDevices().
3. If the adapter has changed, then:

a. Recreate a Microsoft DirectX* device.
b. Restore the context.
c. Continue rendering from last scene rendered before the D3DERR_DEVICELOST

event occurred.

3.9.2 Algorithm for DirectX* 10
By design, DirectX* 10 does not have the concept of device lost until the next Present,
and the developer is guaranteed the API will keep working until then. The changes in
Microsoft DirectX* 10 applications are:
1. Check for WM_DISPLAYCHANGE windows message in the message handler.

2. Query if the graphics adapter has changed using the Windows* API‟s

EnumDisplaySettings() or EnumDisplayDevices().
3. If yes, then save off the current context including state and draw information in

the application and then:
a. Recreate the Microsoft DirectX* device.
b. Restore the context.
c. Continue rendering from the last scene rendered before the

WM_DISPLAYCHANGE message occurred.

3.10 Some suggestions, tips & tricks from
the field

The items in this section are based on the observations of Intel engineers with code
from developers with different levels of experiences. These are collected here as a
checklist for reference for developers. Some of the items are generic to all graphics
platforms.

3.10.1 Device Capabilities
Intel® microarchitecture codename Sandy Bridge supports DirectX* functionality up
to and including full D3D10.1 support.

If you encounter a Direct3D feature that does not work on the latest drivers on this
device, please contact your Intel Account Manager. Intel will investigate these issues
for future drivers and should be able to suggest workarounds.

0029

ATI Ex. 2120
IPR2023-00922

Page 325 of 611

Intel® Processor Graphics DirectX* Developer's Guide

30 Document Number: 321371-002US

3.10.2 DirectX* 9 Extensions
Several hardware vendors support their own extensions to the DirectX* 9
specifications through specific texture formats and render paths that are not part of
Microsoft's official DirectX* 9 specifications.

To ensure maximum compatibility with these extensions, Intel now supports many of
those extensions. A list of those, current as of the release of this Guide, is given in
section 3.6 Advanced DirectX* 9 Capabilities (page 24).

If there are additional extensions that you believe are useful, (or have OpenGL*
extensions that you require) please let your Intel Account Manager know.

3.10.3 Revisit Assumptions on Performance
Intel® Processor Graphics is continually increasing functionality and performance. As
well as the addition of full D3D10.1 support and increased capabilities previously
mentioned, the performance profile has been improved significantly for this platform.
As such, it is advised to remove previous restrictions and scale your title to match this
increased performance and functionality.

Should you see unexpected issues, please follow these steps:

1. Verify you are running the latest drivers. This platform is evolving, so
there will be frequent driver updates. Check for updates at
http://www.intel.com and if you are an Intel software partner, at
http://platformsw.intel.com.
Intel graphics drivers follow a naming convention that use four field
numbers - for example, 15.21.8.2279. The number in the last field - 2279 in
the example - increases sequentially with each driver release. So a driver
with a higher number there is more recent. You always want to have the
most recent driver installed on your system.

2. If you suspect that it is a functionality bug, try to recreate the bug with
the reference rasterizer.

3. Look for easily fixed hotspots using the Intel® Graphics Performance
Analyzers (Intel® GPA). Talk to your Intel Account Manager if you do not
already have access to this tool.

4. If the above steps do not resolve the issue, or you need additional help
determining the root cause, please contact us - see the section Further
Help Beyond this Guide in this document. Intel engineers are available to
help enable your title to run effectively on our platforms. This enabling can
potentially include (but is not limited to):

a. Training on using Intel GPA to get the best results for your title.
b. In-depth performance analysis of your code running on our platform, with

specific feedback on optimization opportunities.
c. Championing the resolution of your issues within Intel, such as helping

resolve or workaround driver issues, addressing tool issues, etc.

0030

ATI Ex. 2120
IPR2023-00922

Page 326 of 611

Quick Tips: Graphics Performance Tuning

How to maximize graphics performance on Intel® Integrated Graphics 31

3.10.4 Avoid Writing to Unlocked Buffers
We have found multiple cases of corruption which were caused by the writes to
unlocked buffers. Typically the title first locked the buffer, then unlocked the buffer
and then attempted to write to the buffer that is already unlocked. This sometimes
works because the system might have not moved the buffer and has not dispatched
the rendering commands to the graphics hardware. This is inconsistent with Microsoft
DirectX* specifications and it is not safe for applications to expect it to work
consistently.

Avoid writing to buffers that have not been locked. Some drivers on other hardware
platforms are more forgiving of this approach, and may handle it gracefully. The Intel
driver makes optimizations based on the specified behavior of the API, so the behavior
of this platform will be undefined in this case.

Always test your application with the DirectX* debug runtime enabled. The debug
runtime will catch scenarios like this and help you avoid problems should driver
behavior change in the future.

3.10.5 Avoid Tight Polling on Queries
Tight polling on event/occlusion queries degrades performance by interfering with the
graphics subsystem's turbo mode operation.

Allow for queries to work asynchronously and avoid waiting on the query response
immediately after sending the query. Issue queries as early as possible in the frame,
and issue their dependent draws as late as possible. If the query result is not available
at the time the draw is to be submitted just issue the draw. Any additional delay at
this point will cause a pipeline stall.

0031

ATI Ex. 2120
IPR2023-00922

Page 327 of 611

Intel® Processor Graphics DirectX* Developer's Guide

32 Document Number: 321371-002US

4 Appendix: Sample Code for
Identifying Intel® Processor
Graphics and Specifying
Graphics Presets

The following sample code and configuration file demonstrates how to identify Intel®
Processor Graphics versions and set fidelity levels for older generations (Low) to the
most recent (Medium) based on the requested D3D*_FEATURE_LEVEL.

Example Source Code:
// Copyright 2010 Intel Corporation

// All Rights Reserved

//

// Permission is granted to use, copy, distribute and prepare derivative works of this

// software for any purpose and without fee, provided, that the above copyright notice

// and this statement appear in all copies. Intel makes no representations about the

// suitability of this software for any purpose. THIS SOFTWARE IS PROVIDED ""AS IS.""

// INTEL SPECIFICALLY DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, AND ALL LIABILITY,

// INCLUDING CONSEQUENTIAL AND OTHER INDIRECT DAMAGES, FOR THE USE OF THIS SOFTWARE,

// INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, AND INCLUDING THE

// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Intel does not

// assume any responsibility for any errors which may appear in this software nor any

// responsibility to update it.

//

// DeviceId.cpp : Implements the Graphics Device detection and graphics settings

// configuration functions.

//

#include <stdio.h>

#include <tchar.h>

#include <D3DCommon.h>

#include <DXGI.h>

#include <D3D9.h>

static const int FIRST_GFX_ADAPTER = 0;

// Define settings to reflect Fidelity abstraction levels you need

typedef enum {

 NotCompatible, // Found Graphics is not compatible with the app

 Low,

 Medium,

 High,

 Undefined // No predefined setting found in cfg file.

 // Use a default level for unknown video cards.

 }

 PresetLevel;

/***

 * getGraphicsDeviceID

 *

 * Function to get the primary graphics device's Vendor ID and Device ID, either

 * through the new DXGI interface or through the older D3D9 interfaces.

 *

 ***/

0032

ATI Ex. 2120
IPR2023-00922

Page 328 of 611

Appendix: Sample Code for Identifying Intel® Processor Graphics and Specifying Graphics Presets

How to maximize graphics performance on Intel® Integrated Graphics 33

bool getGraphicsDeviceID(unsigned int& VendorId, unsigned int& DeviceId)

{

 bool retVal = false;

 bool bHasWDDMDriver = false;

 HMODULE hD3D9 = LoadLibrary(L"d3d9.dll");

 if (hD3D9 == NULL)

 return false;

 /*

 * Try to create IDirect3D9Ex interface (also known as a DX9L interface).

 * This interface can only be created if the driver is a WDDM driver.

 */

 // Define a function pointer to the Direct3DCreate9Ex function.

 typedef HRESULT (WINAPI *LPDIRECT3DCREATE9EX)(UINT, void **);

 // Obtain the address of the Direct3DCreate9Ex function.

 LPDIRECT3DCREATE9EX pD3D9Create9Ex = NULL;

 pD3D9Create9Ex = (LPDIRECT3DCREATE9EX) GetProcAddress(hD3D9, "Direct3DCreate9Ex");

 bHasWDDMDriver = (pD3D9Create9Ex != NULL);

 if(bHasWDDMDriver)

 {

 // Has WDDM Driver (Vista, and later)

 HMODULE hDXGI = NULL;

 hDXGI = LoadLibrary(L"dxgi.dll");

 // DXGI libs should really be present when WDDM driver present.

 if (hDXGI)

 {

 // Define a function pointer to the CreateDXGIFactory1 function.

 typedef HRESULT (WINAPI *LPCREATEDXGIFACTORY)(REFIID riid, void **ppFactory);

 // Obtain the address of the CreateDXGIFactory1 function.

 LPCREATEDXGIFACTORY pCreateDXGIFactory = NULL;

 pCreateDXGIFactory = (LPCREATEDXGIFACTORY) GetProcAddress(hDXGI,

 "CreateDXGIFactory");

 if (pCreateDXGIFactory)

 {

 // Got the function hook from the DLL

 // Create an IDXGIFactory object.

 IDXGIFactory * pFactory;

 if (SUCCEEDED((*pCreateDXGIFactory)(__uuidof(IDXGIFactory),

 (void**)(&pFactory))))

 {

 // Enumerate adapters.

 // Code here only gets the info for the first adapter.

 // If secondary or multiple Gfx adapters will be used,

 // the code needs to be modified to accomodate that.

 IDXGIAdapter *pAdapter;

 if (SUCCEEDED(pFactory->EnumAdapters(FIRST_GFX_ADAPTER,

 &pAdapter)))

 {

 DXGI_ADAPTER_DESC adapterDesc;

 pAdapter->GetDesc(&adapterDesc);

 // Extract Vendor and Device ID information from adapter descriptor

 VendorId = adapterDesc.VendorId;

 DeviceId = adapterDesc.DeviceId;

 pAdapter->Release();

 retVal = true;

 }

 }

 }

 FreeLibrary(hDXGI);

 }

 }

 else

 {

0033

ATI Ex. 2120
IPR2023-00922

Page 329 of 611

Intel® Processor Graphics DirectX* Developer's Guide

34 Document Number: 321371-002US

 /*

 * Does NOT have WDDM Driver. We must be on XP.

 * Let's try using the Direct3DCreate9 function (instead of DXGI)

 */

 // Define a function pointer to the Direct3DCreate9 function.

 typedef IDirect3D9* (WINAPI *LPDIRECT3DCREATE9)(UINT);

 // Obtain the address of the Direct3DCreate9 function.

 LPDIRECT3DCREATE9 pD3D9Create9 = NULL;

 pD3D9Create9 = (LPDIRECT3DCREATE9) GetProcAddress(hD3D9, "Direct3DCreate9");

 if(pD3D9Create9)

 {

 // Initialize the D3D9 interface

 LPDIRECT3D9 pD3D = NULL;

 if ((pD3D = (*pD3D9Create9)(D3D_SDK_VERSION)) != NULL)

 {

 D3DADAPTER_IDENTIFIER9 adapterDesc;

 // Enumerate adapters. Code here only gets the info for the first adapter.

 if (pD3D->GetAdapterIdentifier(FIRST_GFX_ADAPTER, 0,

 &adapterDesc) == D3D_OK)

 {

 VendorId = adapterDesc.VendorId;

 DeviceId = adapterDesc.DeviceId;

 retVal = true;

 }

 pD3D->Release();

 }

 }

 }

 FreeLibrary(hD3D9);

 return retVal;

}

/***

 * getDefaultFidelityPresets

 *

 * Function to find / set the default fidelity preset level, based on the type

 * of graphics adapter present.

 *

 * The guidelines for graphics preset levels for Intel devices is a generic one

 * based on our observations with various contemporary games. You would have to

 * change it if your game already plays well on the older hardware even at high

 * settings.

 *

 ***/

PresetLevel getDefaultFidelityPresets(void)

{

 unsigned int VendorId, DeviceId;

 PresetLevel presets = Undefined;

 if (!getGraphicsDeviceID (VendorId, DeviceId))

 {

 return NotCompatible;

 }

 FILE *fp = NULL;

 switch(VendorId)

 {

 case 0x8086:

 fopen_s (&fp, "IntelGfx.cfg", "r");

 break;

 // Add cases to handle other graphics vendors…

 default:

 break;

 }

0034

ATI Ex. 2120
IPR2023-00922

Page 330 of 611

Appendix: Sample Code for Identifying Intel® Processor Graphics and Specifying Graphics Presets

How to maximize graphics performance on Intel® Integrated Graphics 35

 if(fp)

 {

 char line[100];

 char *context = NULL;

 char *szVendorId = NULL;

 char *szDeviceId = NULL;

 char *szPresetLevel = NULL;

 while (fgets (line, _countof(line), fp)) // read one line at a time till EOF

 {

 // Parse and remove the comment part of any line

 int i; for(i = 0; line[i] && line[i]!=';'; ++i); line[i] = '\0';

 // Try to extract VendorId, DeviceId and recommended Default Preset Level

 szVendorId = strtok_s(line, ",\n", &context);

 szDeviceId = strtok_s(NULL, ",\n", &context);

 szPresetLevel = strtok_s(NULL, ",\n", &context);

 if((szVendorId == NULL) ||

 (szDeviceId == NULL) ||

 (szPresetLevel == NULL))

 {

 continue; // blank or improper line in cfg file - skip to next line

 }

 unsigned int vId, dId;

 sscanf_s(szVendorId, "%x", &vId);

 sscanf_s(szDeviceId, "%x", &dId);

 // If current graphics device is found in the cfg file, use the

 // pre-configured default Graphics Presets setting.

 if((vId == VendorId) && (dId == DeviceId))

 {

 // Found the device

 char s[10];

 sscanf_s(szPresetLevel, "%s", s, _countof(s));

 if (!_stricmp(s, "Low"))

 presets = Low;

 else if (!_stricmp(s, "Medium"))

 presets = Medium;

 else if (!_stricmp(s, "High"))

 presets = High;

 else

 presets = NotCompatible;

 break; // Done reading file.

 }

 }

 fclose(fp); // Close open file handle

 }

 // If the current graphics device was not listed in any of the config

 // files, or if config file not found, use Low settings as default.

 if (presets == Undefined)

 presets = Low;

 return presets;

}

Example Configuration File:
;

; Intel Graphics Preset Levels

;

; Format:

; VendorIDHex, DeviceIDHex, CapabilityEnum ;Commented name of cards

;

0x8086, 0x2582, Low ; SM2 ; Intel(R) 82915G/GV/910GL Express Chipset Family

0x8086, 0x2782, Low ; SM2 ; Intel(R) 82915G/GV/910GL Express Chipset Family

0x8086, 0x2592, Low ; SM2 ; Mobile Intel(R) 82915GM/GMS, 910GML Express Chipset Family

0035

ATI Ex. 2120
IPR2023-00922

Page 331 of 611

Intel® Processor Graphics DirectX* Developer's Guide

36 Document Number: 321371-002US

0x8086, 0x2792, Low ; SM2 ; Mobile Intel(R) 82915GM/GMS, 910GML Express Chipset Family

0x8086, 0x2772, Low ; SM2 ; Intel(R) 82945G Express Chipset Family

0x8086, 0x2776, Low ; SM2 ; Intel(R) 82945G Express Chipset Family

0x8086, 0x27A2, Low ; SM2 ; Mobile Intel(R) 945GM Express Chipset Family

0x8086, 0x27A6, Low ; SM2 ; Mobile Intel(R) 945GM Express Chipset Family

0x8086, 0x2972, Low ; SM2 ; Intel(R) 946GZ Express Chipset Family

0x8086, 0x2973, Low ; SM2 ; Intel(R) 946GZ Express Chipset Family

0x8086, 0x2992, Low ; SM2 ; Intel(R) Q965/Q963 Express Chipset Family

0x8086, 0x2993, Low ; SM2 ; Intel(R) Q965/Q963 Express Chipset Family

0x8086, 0x29B2, Low ; SM2 ; Intel(R) Q35 Express Chipset Family

0x8086, 0x29B3, Low ; SM2 ; Intel(R) Q35 Express Chipset Family

0x8086, 0x29C2, Low ; SM2 ; Intel(R) G33/G31 Express Chipset Family

0x8086, 0x29C3, Low ; SM2 ; Intel(R) G33/G31 Express Chipset Family

0x8086, 0x29D2, Low ; SM2 ; Intel(R) Q33 Express Chipset Family

0x8086, 0x29D3, Low ; SM2 ; Intel(R) Q33 Express Chipset Family

0x8086, 0xA001, Low ; SM2 ; Intel(R) NetTop Atom D410 (GMA 3150)

0x8086, 0xA002, Low ; SM2 ; Intel(R) NetTop Atom D510 (GMA 3150)

0x8086, 0xA011, Low ; SM2 ; Intel(R) NetBook Atom N4x0 (GMA 3150)

0x8086, 0xA012, Low ; SM2 ; Intel(R) NetBook Atom N4x0 (GMA 3150)

0x8086, 0x29A2, Low ; SM3 ; Intel(R) G965 Express Chipset Family

0x8086, 0x29A3, Low ; SM3 ; Intel(R) G965 Express Chipset Family

0x8086, 0x8108, Low ; SM3 ; Intel(R) GMA 500 (Poulsbo) on MID platforms

0x8086, 0x8109, Low ; SM3 ; Intel(R) GMA 500 (Poulsbo) on MID platforms

0x8086, 0x2982, Low ; SM4 ; Intel(R) G35 Express Chipset Family

0x8086, 0x2983, Low ; SM4 ; Intel(R) G35 Express Chipset Family

0x8086, 0x2A02, Low ; SM4 ; Mobile Intel(R) 965 Express Chipset Family

0x8086, 0x2A03, Low ; SM4 ; Mobile Intel(R) 965 Express Chipset Family

0x8086, 0x2A12, Low ; SM4 ; Mobile Intel(R) 965 Express Chipset Family

0x8086, 0x2A13, Low ; SM4 ; Mobile Intel(R) 965 Express Chipset Family

0x8086, 0x2A42, Low ; SM4 ; Mobile Intel(R) 4 Series Express Chipset Family

0x8086, 0x2A43, Low ; SM4 ; Mobile Intel(R) 4 Series Express Chipset Family

0x8086, 0x2E02, Low ; SM4 ; Intel(R) 4 Series Express Chipset

0x8086, 0x2E03, Low ; SM4 ; Intel(R) 4 Series Express Chipset

0x8086, 0x2E22, Low ; SM4 ; Intel(R) G45/G43 Express Chipset

0x8086, 0x2E23, Low ; SM4 ; Intel(R) G45/G43 Express Chipset

0x8086, 0x2E12, Low ; SM4 ; Intel(R) Q45/Q43 Express Chipset

0x8086, 0x2E13, Low ; SM4 ; Intel(R) Q45/Q43 Express Chipset

0x8086, 0x2E32, Low ; SM4 ; Intel(R) G41 Express Chipset

0x8086, 0x2E33, Low ; SM4 ; Intel(R) G41 Express Chipset

0x8086, 0x2E42, Low ; SM4 ; Intel(R) B43 Express Chipset

0x8086, 0x2E43, Low ; SM4 ; Intel(R) B43 Express Chipset

0x8086, 0x2E92, Low ; SM4 ; Intel(R) B43 Express Chipset

0x8086, 0x2E93, Low ; SM4 ; Intel(R) B43 Express Chipset

0x8086, 0x0046, Low ; SM4 ; Intel(R) Processor Graphics - Core i3/i5/i7 Mobile

Processors

0x8086, 0x0042, Low ; SM4 ; Intel(R) Processor Graphics - Core i3/i5 + Pentium G9650

Processors

0x8086, 0x0106, Low ; SM4.1 ; Mobile SandyBridge Processor GRAPHICS 2000

0x8086, 0x0102, Low ; SM4.1 ; Desktop SandyBridge Processor GRAPHICS 2000

0x8086, 0x010A, Low ; SM4.1 ; SandyBridge Server

0x8086, 0x0112, Medium ; SM4.1 ; Desktop SandyBridge Processor GRAPHICS 3000

0x8086, 0x0122, Medium ; SM4.1 ; Desktop SandyBridge Processor GRAPHICS 3000

0x8086, 0x0116, Medium ; SM4.1 ; Mobile SandyBridge Processor GRAPHICS 3000

0x8086, 0x0126, Medium ; SM4.1 ; Mobile SandyBrdige Processor GRAPHICS 3000

0036

ATI Ex. 2120
IPR2023-00922

Page 332 of 611

Support

How to maximize graphics performance on Intel® Integrated Graphics 37

5 Support
 Intel‟s processor graphics chipset development community forum:

http://software.intel.com/en-us/forums/developing-software-for-visual-
computing/

 Game programming resources:

http://software.intel.com/en-us/visual-computing/

 Intel® Software Network:

http://software.intel.com/en-us/

 Intel® Software Partner Program:

http://www.intel.com/software/partner/visualcomputing/

 Intel® Visual Adrenaline graphics and gaming campaign:

http://www.intel.com/software/visualadrenaline/

 Intel® Graphics Performance Analyzers (Intel® GPA):

 http://software.intel.com/en-us/articles/intel-gpa/

 Intel® Parallel Studio:

 http://software.intel.com/en-us/articles/intel-parallel-studio-home/

 Intel® VTune™ Amplifier XE (Formerly Intel® VTune™ Performance Analyzer):

http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/

0037

ATI Ex. 2120
IPR2023-00922

Page 333 of 611

Intel® Processor Graphics DirectX* Developer's Guide

38 Document Number: 321371-002US

6 References
[1] “Copying and Accessing Resource Data (Direct3D 10)”. Direct3D Programming

Guide. Microsoft DirectX* SDK (November 2008).

[2] “DirectX* Constants Optimizations for Intel processor graphics”. Intel

Software Network, Intel: http://software.intel.com/en-us/articles/directx-
constants-optimizations-for-intel-integrated-graphics/.

0038

ATI Ex. 2120
IPR2023-00922

Page 334 of 611

© 2014 Qualcomm Technologies, Inc. All Rights Reserved.

THE RISE OF MOBILE GAMING
ON ANDROID:

QUALCOMM® SNAPDRAGON™
TECHNOLOGY LEADERSHIP

0001

ATI 2092
LG v. ATI

IPR2015-00326

ATI Ex. 2120
IPR2023-00922

Page 335 of 611

© 2014 Qualcomm Technologies, Inc. All Rights Reserved.

Qualcomm Technologies, Inc.

Qualcomm, Snapdragon, Adreno, FlexRender, Trepn, Vuforia, Brew and Hexagon are trademarks of
Qualcomm Incorporated, registered in the United States and other countries. TruPalette, ecoPix, Krait and
Smart Terrain are trademarks of Qualcomm Incorporated. All Qualcomm Incorporated trademarks are used
with permission. AllJoyn is a trademark of Qualcomm Innovation Center, Inc., registered in the United States
and other countries, used with permission. Other products and brand names may be trademarks or
registered trademarks of their respective owners.

Qualcomm Snapdragon, Qualcomm Adreno, Qualcomm TruPalette, Qualcomm ecoPix, FlexRender, Trepn,
Brew, Hexagon and Krait are products of Qualcomm Technologies, Inc. Qualcomm Vuforia is a product of
Qualcomm Connected Experiences, Inc. Smart Terrain is a feature of the Qualcomm Vuforia SDK. AllJoyn
open source project is hosted by the Allseen Alliance.

Qualcomm Technologies, Inc.
5775 Morehouse Drive
San Diego, CA 92121
U.S.A.

© 2014 Qualcomm Technologies, Inc.
All Rights Reserved.

0002

ATI Ex. 2120
IPR2023-00922

Page 336 of 611

© 2014 Qualcomm Technologies, Inc. All Rights Reserved.

Table of Contents

1 Executive summary ... 1

2 The rise of mobile gaming on Android ... 1

3 Immersive mobile gaming experiences at low power ... 2

3.1 Heterogeneous computing: specialized engines designed for efficient processing 4

3.2 Efficient SoC architecture: smart management of system resources 9

4 Providing a consistent development platform at scale... 10

4.1 Android gaming on Snapdragon: an excellent opportunity ... 10

4.2 Scalable architecture: consistent gaming experiences across various tiers 12

5 Unlocking the potential of Snapdragon processors for developers .. 12

5.1 Supporting developers with comprehensive tools .. 13

5.2 Supporting the developer community ... 16

5.3 Next-generation gaming experiences .. 17

6 Conclusion ... 18

0003

ATI Ex. 2120
IPR2023-00922

Page 337 of 611

1
© 2014 Qualcomm Technologies, Inc. All Rights Reserved.

1 Executive summary

Mobile gaming is the fastest growing segment in the game industry.1 Today’s consumers want
immersive, connected gaming with all-day battery life that provides visually stunning graphics and high-
fidelity audio. Android is helping fulfill that desire. With a large user base, Android devices provide a
growing opportunity for game developers to generate revenue on a global scale.

The rapid iteration and fast innovation of Android have created a thriving ecosystem with numerous
custom-designed form factors across device tiers. However, there are three challenges to taking
Android gaming to the next level, including:

• How to create immersive gaming experiences within the power and thermal constraints of
mobile devices?

• How to develop a game that addresses a sizeable portion of the mobile gaming segment with
minimal code variations?

• How to take advantage of the hardware’s capabilities without sacrificing time-to-market?

Qualcomm Technologies, Inc. (QTI) was the number one provider of Android smartphone application
processor (AP) shipments in 2013.2 Its Qualcomm® Snapdragon™ processors3 are fully integrated
system on a chip (SoC) solutions designed with mobile in mind, handling everything from the most
advanced, console-quality mobile games to the most popular casual games, all while delivering long
battery life. This paper will describe the rise of mobile gaming on Android and how QTI is meeting the
three challenges by:

• Creating low-power mobile processors by taking a heterogeneous computing (HC) approach
and designing an efficient SoC architecture.

• Providing a consistent development platform across tiers due to its scalable architecture.
• Offering tools, support, and advanced technologies to easily unlock the full potential of

Snapdragon processors for developers.

2 The rise of mobile gaming on Android
Mobile gaming is the fastest growing segment in the game industry, with a 30% compound annual
revenue growth rate projected from 2013 to 2015.1

Android burst onto the scene in 2008. The open nature and rapid iteration of the platform, combined
with improving hardware, and a growing installed base of devices worldwide, has created excellent
opportunities for the mobile gaming ecosystem.

1 Source: Gartner, October 2013, “Forecast Video Game Ecosystem Worldwide”
2 Source: Strategy Analytics, April 2014
3 Snapdragon processors extend across four product tiers: Snapdragon 800, Snapdragon 600, Snapdragon 400, and Snapdragon 200.

0004

ATI Ex. 2120
IPR2023-00922

Page 338 of 611

2
© 2014 Qualcomm Technologies, Inc. All Rights Reserved.

Through standard application program interfaces (APIs), Android exposes key platform capabilities to
developers, such as connectivity, sensors, and graphics rendering. Android also has a history of quickly
adopting the latest graphics standards, like OpenGL ES. The consistent release of new APIs helps limit
fragmentation, improve ease of use, and decrease time-to market.

To take advantage of increasing consumer engagement on the Google Play app store, developers are
now creating games that utilize the latest Android capabilities (e.g., 3D graphics). As a result, new
game brands have been introduced (e.g., Real Soccer, Asphalt, Real Racing, and Modern Combat).
Debuting in the smartphone, Android is now extending to other form factors, including tablets, handheld
gaming devices, set-top-boxes, TVs, and more.

Total mobile gaming revenues (for all platforms) are projected to grow from $13 billion in 2013 to $22
billion in 20154. Within this category, the Android platform provides a large and growing opportunity for
developers. On the device side, 78.4% of smartphones shipped last year were Android, outselling
devices based on the next leading smartphone mobile OS by almost 5x.5 Android device shipments
(smartphones and tablets) are projected to exceed one billion units in 2014.6 On the apps side, 75% of
Android users play games7, accounting for 90% of the app-generated revenue on Google Play8.

3 Immersive mobile gaming experiences at low power
Immersive gaming requires more than just console-quality graphics. Other elements include cinema-
quality sound, realistic effects, instantaneous response times (low latency), and the ability to play
anywhere. Figure 1 highlights the key components that contribute to the overall gaming experience.

Figure 1: Example of key gaming components in Modern Combat 5: Blackout by Gameloft

4 Gartner, October 2013, “Forecast Video Game Ecosystem Worldwide”
5 Gartner, “Gartner Says Annual Smartphone Sales Surpassed Sales of Feature Phones for the First Time in 2013”
6 Gartner, “Gartner Says Worldwide Traditional PC, Tablet, Ultramobile and Mobile Phone Shipments On Pace to Grow 7.6% in 2014”
7 Kris Holt, “Google Adds Some Serious Oomph to Play Games”
8 eMarketer, “Game Apps Are No. 1 for Amazon, Apple and Google”

0005

ATI Ex. 2120
IPR2023-00922

Page 339 of 611

3
© 2014 Qualcomm Technologies, Inc. All Rights Reserved.

Today’s mobile graphics are approaching the visual quality of consoles and PCs with high-end graphics
cards.

Figure 2: Mobile (left) vs. PC (right) rendering for Epic Unreal Engine 4

Consumers expect console-quality graphics and long battery life when playing any mobile game, from
simple casual games like Candy Crush to more immersive games like Modern Combat 5: Blackout.
However, enabling advanced mobile gaming experiences for sustained periods is challenging.
Consoles and PCs have the luxury of being able to use fans (and large heat sinks) while drawing triple-
digit wattages from an external power outlet. Mobile devices, on the other hand, are passively cooled,
powered by a battery, and limited to single-digit wattages in order to meet the power and thermal
constraints of the thin form factor.

Through its Snapdragon processors, QTI is addressing the performance and power challenge by:

• Taking a power-optimized, heterogeneous approach to mobile computing.
• Analyzing performance bottlenecks and designing an efficient SoC architecture that improves

each generation.

Figure 3: Asphalt 8: Airborne by Gameloft

“Qualcomm® Snapdragon™ processors really
help enable us to create an immersive
experience for the gamer...”

Sylvain Baudry
Business Development Director
Gameloft

0006

ATI Ex. 2120
IPR2023-00922

Page 340 of 611

4
© 2014 Qualcomm Technologies, Inc. All Rights Reserved.

3.1 Heterogeneous computing: specialized engines designed for efficient
processing

QTI has a long history of taking a heterogeneous computing approach. This approach intelligently
utilizes specialized engines, such as the GPU, DSP, and display engine, to support new immersive
experiences, while helping to maximize battery life and thermal efficiency.

Figure 4: Snapdragon processing engines

As mentioned in Section 3, games are comprised of multiple components. These components may be
implemented as one or more tasks. To support the optimal gaming experience at the lowest power and
thermal levels, each task should be designed to run on the most appropriate engine. Figure 5 is an
example of this.

Figure 5: High-level view of gaming tasks being appropriately distributed to specialized engines

0007

ATI Ex. 2120
IPR2023-00922

Page 341 of 611

5
© 2014 Qualcomm Technologies, Inc. All Rights Reserved.

The rest of this section provides examples of how Snapdragon processors are designed to run key
gaming tasks on the most appropriate processing engines.

Controlling gameplay execution — keeping everything in sync: The CPU dispatches work to the
appropriate specialized engine and processes individual functions within the game as separate tasks.
For example AI, animation, physics, and gameplay are processed on the CPU.

Functions like physics and AI require high-precision math, which can be efficiently processed on the
VeNum floating point units of QTI’s custom-designed Krait™ CPU. In addition, because the tasks are
independent, they can be written as separate threads and run on separate CPUs for optimal
performance and latency.

QTI has been innovating its power management and scheduling software for years to provide the
different amounts of processing that various tasks require. For example, Krait CPUs have long
employed asynchronous symmetric multi-processing (aSMP) so that optimized performance is
delivered per CPU core, thus saving power.

Console-quality graphics — advanced features and graphics rendering (at low power): When
most people think of modern mobile gaming, it is the console-quality graphics that immediately come to
mind. Rendering graphics at low power and at high frame rates requires a specialized engine, the GPU.
QTI’s custom-designed Qualcomm® Adreno™ GPUs are a family of low power, fully programmable
GPUs that are designed for optimal mobile gaming performance.

Adreno GPUs provide comprehensive support for the latest graphics APIs. The Khronos OpenGL ES
specifications define the primary graphics APIs for Android gaming. QTI works closely with the Khronos
group to help define the standards, and the Adreno GPU is optimized to support OpenGL ES (from the
silicon to the drivers and software stack).

Adreno GPUs have a long history of graphics technology leadership. They support many design
innovations for efficient graphics processing, including a flexible, power-efficient unified shader
architecture, which is designed to support dynamic resource allocation (for optimal shader processing).

“Epic now has brought Unreal Engine 4 to Android with the Snapdragon 800 and 805 chipsets
from Qualcomm Technologies. Recently we worked with Qualcomm [Technologies] to elevate
graphics to the next level on the … Adreno GPU hardware, which delivers some of the most
power-efficient unified shader capabilities we’ve seen yet for Android smartphones and tablets.”
— Niklas “Smedis” Smedberg, Epic Games

The Adreno GPU also supports dynamic FlexRender™ technology, which is designed to intelligently
choose between immediate/direct mode and deferred/tile-based rendering, to render various tasks
(such as user interface and gameplay) in a more efficient manner.

Custom designing the Adreno GPUs allows QTI to evolve the architecture in a timely manner for
emerging mobile use cases, such as new gaming features and APIs. For example, the newest Adreno
4x series GPUs are designed to the DirectX11FL_11_2 specification, the same graphics specification
as today’s high-end desktop graphics cards and the latest gaming consoles.

0008

ATI Ex. 2120
IPR2023-00922

Page 342 of 611

6
© 2014 Qualcomm Technologies, Inc. All Rights Reserved.

To support next-gen features (beyond the newly announced Khronos OpenGL ES 3.1 APIs), Adreno 4x
series GPUs extended their unified shader architecture by adding several completely new shaders
(e.g., geometry and tessellation).

Figure 6: Adreno 4x series GPU’s DirectX11 FL_12 based 3D hardware pipeline

The Adreno 420 GPU is one of the first commercial mobile GPUs to support dynamic hardware
tessellation. Dynamic hardware tessellation is designed to help developers to provide greater detail for
more visually realistic scenes in a manner that requires less memory bandwidth, lower power
consumption, and lower overall memory footprint for the application.

Traditionally, in order for most 3D games to be visually immersive, the programmer must include a
substantial amount of geometry detail per object. The denser the geometric mesh used to create an
object in the scene (human or monster for example) of a game, the smoother and more realistic its
surfaces will look. In traditional mobile GPUs, these additional geometry assets (required for improved
visual realism) need to be stored in memory as part of the game binary package. These assets have to
be copied or written by the CPU to the system memory and eventually have to be read into the GPU for
further processing. These additional read and write operations could increase the memory bandwidth
usage and power consumption to unsustainable levels (for console-quality games) on mobile devices.

Dynamic hardware tessellation helps solve this problem by allowing the GPU to generate additional
geometry on-chip, without requiring additional data transfers from off-chip, system memory. Dynamic
hardware tessellation can help significantly reduce bandwidth and power consumption. Another
advantage is that the developer doesn’t have to author and store these additional geometry details into
their game package, which significantly reduces the memory footprint and the overall binary size of the
game.

0009

ATI Ex. 2120
IPR2023-00922

Page 343 of 611

7
© 2014 Qualcomm Technologies, Inc. All Rights Reserved.

The image below shows the additional detail that tessellation provides to both the wireframe and the
final image rendered. For this simple “Hornet” graphics scene, hardware tessellation delivers a
bandwidth savings of ~360MB/s, and a memory footprint savings of ~20MB9. For larger games, the
savings on memory footprint could be in GBs.

Figure 7: Tessellation (OFF: left, ON: right) provides more realistic and detailed graphics

By providing more detail, tessellation is designed to help significantly improve the gaming experience,
not only for high resolution content, but also for low resolution content that needs to be upscaled.

The Adreno 4x series GPUs are a great example of QTI’s commitment to bringing console-quality
gaming up to 4K Ultra HD (4K) resolution to mobile devices.

“[Adreno 420 is] the most aggressive move in mobile graphics by any company, to add all the
shader types, and HW tessellation, on top of what they did in Subdiv for Motorola, shows
Qualcomm [Technologies] as the most committed mobile graphics supplier today. It really is
bringing console-class graphics to mobile devices.”10 — Jon Peddie, Jon Peddie Research.

Multi-screen experiences — high fidelity on your screens: Playing a game on a high-quality, high-
resolution screen significantly enhances the gaming experience. The display engine enhances images,
composites multiple images, and supports high resolution (both on-device and on external displays) of
up to 4K.

For image enhancement, the display engine utilizes QTI’s Qualcomm® TruPalette™ and Qualcomm®
EcoPix™ feature sets, which include high quality post-processing algorithms for superior picture quality,
including picture adjustment, color enhancement, contrast enhancement, scaling, sharpening, and
power efficiency. For example, using the ecoPix sunlight visibility improvement technology, the display
engine can use information from the device’s light sensor to enhance the rendered game content to
make it much more visible in bright conditions (e.g., outdoors on a sunny day) through tone correction.

9 Numbers based on QTI internal testing
10 Jon Peddie, “Qualcomm Moves to 4K with Snapdragon 805”

0010

ATI Ex. 2120
IPR2023-00922

Page 344 of 611

8
© 2014 Qualcomm Technologies, Inc. All Rights Reserved.

Figure 8: Snapdragon display engine TruPalette and EcoPix feature sets

Device-to-device connectivity further elevates the mobile gaming experience. External displays, such
as a TV, are driven by either a wired (e.g., HDMI) or wireless connection (e.g., Miracast). It is the task
of the display engine to efficiently process both types of connections. With the wireless display feature,
you can send the contents of your mobile device screen to your smart TV screen. QTI supports
wireless display standards, like Miracast, and is adding wireless display support to an increasing
number of Android devices.

Cinema-quality sound — efficient audio processing in sync with the graphics: Just as sound is a
huge part of the movie-going experience, it is also important in the world of immersive mobile gaming.
Accordingly, QTI provides a comprehensive audio solution, including hardware and software, which
offers high-fidelity audio and advanced features like 24-bit/96kHz play back and cinema-quality 7.1
surround sound audio.

The processing required to efficiently support these computationally complex audio features is primarily
handled by QTI’s Hexagon™ DSP, which is custom designed for heavy signal processing tasks, like
audio. The real-time processing capabilities of QTI’s Hexagon DSP are designed to keep the audio in
sync with the graphics rendering. QTI has also worked with industry leaders, such as DTS and Dolby,
to provide an optimal audio experience on Snapdragon processors, including support for headphone
surround virtualization.

High-quality video — specialized video engine: Some games incorporate pre-rendered cut scenes
to enhance the overall gaming experience. To save memory, these scenes are compressed into
encoded video. To playback video, Snapdragon processors are designed to use a specialized video
engine to decompress encoded videos at low power. For higher resolutions and more complex codecs,
a specialized engine becomes even more important.

Figure 9 shows that running H.265 HEVC decode on a specialized video engine versus a CPU reduces
power consumption, while still meeting the frame rate requirements11.

11 Estimated numbers based on QTI internal testing

0011

ATI Ex. 2120
IPR2023-00922

Page 345 of 611

9
© 2014 Qualcomm Technologies, Inc. All Rights Reserved.

Figure 9: Power reduction by running HEVC decode on specialized video engine versus the CPU

Fast connectivity — multi-player gaming: Connected gaming experiences, like massively multiplayer
online (MMO) games, require fast and reliable connectivity solutions with low latency where the
difference between winning and losing often comes down to milliseconds. To achieve that, Snapdragon
processors include connectivity technologies, such as 802.11ac Wi-Fi and 3G/4G LTE.

QTI has a long history of being an industry leader in advanced connectivity solutions. Its latest
Snapdragon 810 processor continues the tradition, integrating a Cat 6 LTE Advanced multimode
modem that is designed to support reliable communication at speeds of up to 300 Mbps. QTI optimizes
the software stack for connectivity to achieve low client-server ping times on Snapdragon processors,
so gamers can worry less about a slow connection and focus more on enjoying the game.

Responsive and accurate control — supporting multiple input methods: A good gaming
experience requires an input method that gives precise control at low latency. There are multiple ways
to control and interface to games, such as through a touch screen, device movement, a game
controller, and gestures. Snapdragon processors have been designed to reduce latency and provide
accurate control for these methods. For example, device movement generally is determined by
processing data from motion sensors, such as the accelerometer or gyroscope. Sensor processing
requires intensive signal processing, control processing, and real-time processing. QTI’s specialized
sensor engine, which excels at handling these tasks, is integrated in Snapdragon processors. As a
result, the response time for device movement is faster — and at low power.

3.2 Efficient SoC architecture: smart management of system resources

An efficient SoC architecture is required in order to sustain console-quality gaming at high frame rates
within the thermal and power constraints of mobile devices. As noted above, the majority of the
processing engines within the SoC are running concurrently in a heterogeneous manner to efficiently
process gaming tasks. Beyond heterogeneous computing, smartly managing the shared system
resources, such as memory bandwidth, power budget, and thermal budget, is necessary to support
sustained gameplay of a visually complex game.

0012

ATI Ex. 2120
IPR2023-00922

Page 346 of 611

10
© 2014 Qualcomm Technologies, Inc. All Rights Reserved.

Efficient memory bandwidth: While playing a game, the processing engines need to be fed data
(starving a processing engine of data can lead to lower frame rates). To prevent bottlenecks,
Snapdragon processors use advanced memory management techniques. The memory controller is
designed to deliver high quality of service (QoS) for different throughput and latency requirements of
different processing engines, while still maximizing the memory utilization. By minimizing the overhead
associated with memory transactions, the memory controller helps increase memory utilization and
minimizes power consumption.

Snapdragon processors are also designed to deploy smart caching mechanisms in many processing
engines to help minimize the need for frequent DRAM access. For example, the Adreno GPU’s tile-
based architecture, which subdivides the graphics image into smaller tiles and renders them to the tile-
buffer cache, helps minimize DRAM bandwidth and saves power.

Advanced power and thermal management technology: Drawing high power not only reduces
battery life, it also releases excess heat. This will raise the skin temperature of the device, making it
uncomfortable to hold. To reduce the system power, Snapdragon processors are designed to deploy
sophisticated algorithms that manage power based on workload requirements. They support a wide
range Dynamic Clock and Voltage Scaling (DCVS). DCVS dynamically varies the clock frequencies and
voltages of the processing engines. For example, the Adreno 420 GPU now has more granular DCVS
power control levels, so it can run most use cases at a nominal voltage state, thus saving power.

Several of the specialized engines have innovative, power-saving techniques. For example, the display
engine also uses a proprietary compression scheme called Frame Buffer Compression (FBC), which
compresses display data by up to 66% in a visually lossless manner—before transmission to the
display panel.12

The Adreno 420 GPU also has an increased Z-reject rate for graphics rendering so that pixels that are
not going to be visible (because they are blocked by a pixel on top) are not processed. An increased Z-
reject rate means lower power per pixel—and improved performance.

4 Providing a consistent development platform at scale
To attract game developers, devices with Snapdragon processors provide an excellent opportunity with
a consistent development environment.

4.1 Android gaming on Snapdragon: an excellent opportunity

As of January 2014, over 1,350 devices with Snapdragon processors had been announced or were
commercially shipping. In addition, more than 525 new device designs are in development, and QTI is
currently working with over 85 manufacturers worldwide. QTI was the #1 provider of Android
smartphone AP shipments in 2013.13

12 QTI internal metrics
13 Strategy Analytics, April 2014

0013

ATI Ex. 2120
IPR2023-00922

Page 347 of 611

11
© 2014 Qualcomm Technologies, Inc. All Rights Reserved.

By optimizing their games on Snapdragon processors, developers have the opportunity to reach this
very large and growing installed base of Android devices with Snapdragon processors that span across
various price tiers and regions.

Figure 10: Devices with Snapdragon processors

Examples include iconic flagship Android-based devices like the Nexus 5 by Google, LG G Pro2, and
Samsung Galaxy Note 3. Recently launched devices, including the HTC One (M8), One+ One, LG G3,
Samsung Galaxy S5, and the Sony Xperia Z2, are powered by the Snapdragon 801 processor.
Amazon Kindle Fire HDX 8.9 and Fire TV, based on Fire OS, are also powered by Snapdragon
processors.

Refer to the smartphones and tablets websites for the latest devices powered by Snapdragon
processors. With Adreno 4x series GPUs on the verge of being launched in commercial devices,
Snapdragon processors continue to provide graphics and gaming technology leadership.

According to Jon Peddie Research, “Qualcomm [Technologies] is clearly the largest SoC supplier”.14
For Q2 2013 and as indicated in Figure 11, QTI was the single largest GPU supplier for personal
devices, which includes smartphones, tablets, and dedicated handheld game consoles.14

14 Jon Peddie Research, Oct. 2013, “Mobile Devices and the GPUs inside”

Figure 11: Share of personal systems SoC
suppliers for Q2 2013

0014

ATI Ex. 2120
IPR2023-00922

Page 348 of 611

12
© 2014 Qualcomm Technologies, Inc. All Rights Reserved.

4.2 Scalable architecture: consistent gaming experiences across various tiers

Consumers expect immersive gaming experiences whether they own a premium or an entry-level
mobile device. Snapdragon processors are designed to support great gaming experiences across the
spectrum of device tiers. Apart from offering backwards-compatible software between different tiers,
Snapdragon processors with the scalable Adreno GPU are designed to provide consistent features and
APIs across tiers. Using APIs as an example, Adreno 3x series GPUs (and above) support OpenGL ES
3.0. Having common support of APIs and features ranging from entry-level to premium devices helps
make it easier for developers to introduce next-generation features to mass audiences, without having
to custom design for each tier.

Figure 12: Snapdragon processors with the scalable Adreno GPU are designed to
provide consistent features across tiers

Snapdragon processors are software compatible, helping both OEMs and developers to efficiently
invest and develop across multiple device types and tiers. With a consistent software stack, including
graphics drivers, devices with Snapdragon processors are designed to provide a consistent and
optimized gaming platform across various tiers.

5 Unlocking the potential of Snapdragon processors for
developers

QTI and its affiliates have a long history of technology leadership in supporting the mobile gaming
ecosystem, dating back to 2001 with the Brew™ platform. This breakthrough development platform
allowed native C/C++ games to be written “closer to the metal,” supporting higher-quality and higher-
performance games, and helped usher in some of the world’s first 3D games in mobile. Brew was also
one of the earliest monetization platforms for mobile applications, paying out more than $3 billion to
developers15.

15 https://www.brewmp.com/about

0015

ATI Ex. 2120
IPR2023-00922

Page 349 of 611

13
© 2014 Qualcomm Technologies, Inc. All Rights Reserved.

The introduction of 3G in the early 2000s enabled faster downloads of larger games, multi-player
gaming, and more robust client-server-based game designs. In addition, Qualcomm Ventures also
helped fund mobile gaming pioneers such as JAMDAT Mobile and more recently invested in companies
such as Bluestacks, Gaikai, Grand Cru, Playdek, Playnery, and TabTale.

It takes more than just great hardware to advance the mobile gaming industry. To support game
developers in producing immersive games, QTI provides comprehensive tools, extensive support, and
advanced technologies.

5.1 Supporting developers with comprehensive tools

QTI supports developers in unlocking the performance and advanced features of Snapdragon
processors by not only offering comprehensive development tools, but by also working closely with the
gaming ecosystem.

Game engine optimization — access to the latest features and reduced time-to-market: QTI
works closely with the world’s leading third-party game engine providers, such as Unity Technologies
and Epic Games, to optimize their engines for Snapdragon processors. Additionally, QTI helps expose
the latest graphics APIs and advanced features of Adreno GPUs to developers through these engines.
For example, QTI worked closely with Epic Games to optimize Unreal Engine’s advanced lighting and
post processing pipeline for Snapdragon processors.

Figure 13: Unreal Engine 4 demo showcasing optimized post-processing on Adreno GPU

QTI also worked with Unity Technologies to help accelerate the support of new features, making the
Unity Engine one of the first gaming engines to support important OpenGL ES 3.0 features like ETC2
textures, multiple render targets (MRT), and transform feedback in Unity 4.x. Unity and QTI continue
this work by helping bring new Unity 5.0 innovative features like physically based shading to
Snapdragon processors.

“Bringing Unreal Engine 4 PC AAA graphics to
mobile has enabled us to do content that
we’ve never been able to do before. A big
advantage has been our close relationship
with Qualcomm [Technologies]. Without that
close relationship we wouldn’t have been able
to reach this point.”

Niklas “Smedis” Smedberg
Senior Engine Programmer – Mobile Graphics
Epic Games

0016

ATI Ex. 2120
IPR2023-00922

Page 350 of 611

14
© 2014 Qualcomm Technologies, Inc. All Rights Reserved.

Figure 14: Unity 5 demo showcasing physically based shading technique on Adreno GPU

By using these popular game engines, which have been optimized for Snapdragon processors,
developers can focus their time on content creation.

In addition, QTI also works closely with developers to help optimize their proprietary in-house game
engines so that they run well on Snapdragon processors. In turn, these developers can then utilize their
optimized engines across their internal studios when developing mobile games.

Game development tools — developing, debugging, and optimizing games: For those who are
programming directly to the hardware and not using a third-party game engine, QTI has created (and
made available) powerful game development tools, which are designed to help debug and optimize
games, while reducing time-to-market. These tools include the Adreno SDK, Adreno Profiler, and
Trepn™ Profiler.

The Adreno SDK includes tools, emulators, libraries, documentation, samples, and tutorials. The
desktop OpenGL ES emulator is designed to eliminate the need to have a device early in the
development process. Adreno SDK supports the most common APIs such as OpenGL ES, DirectX, and
OpenCL. In addition, the Adreno SDK contains several time-saving utilities and over 100 samples and
tutorials, including 50 advanced shader effects.

The Adreno Profiler provides developers with detailed GPU utilization analysis to help them optimize
their games for faster frame rates, smoother rendering, and longer battery life. It works on commercial
devices without making changes within a game, device drivers, or builds, which helps further save
development time and reduce setup complexity.

“We’re excited to work with an innovative global
mobile technology provider such as Qualcomm
Technologies and support their incredible
Snapdragon processors, which are at the heart of
many Android and Windows mobile devices
across the globe.”

David Hegalson
CEO
Unity Technologies

Figure 15: Adreno Profiler helps
optimize games

0017

ATI Ex. 2120
IPR2023-00922

Page 351 of 611

15
© 2014 Qualcomm Technologies, Inc. All Rights Reserved.

The Trepn Profiler is designed to integrate directly into a developer’s workflow, which helps him or her
see how much power a game is consuming, pinpoint issues and quickly resolve them. Consumers
expect all day battery life, consistent performance, and a device that stays cool. In fact, battery life has
become an extremely important decision factor for consumers when buying smartphones. Managing
power consumption and remaining within the thermal envelope of mobile devices are key development
considerations. Exceeding the thermal envelope will not only heat up the device, but also throttle the
game’s frame rate, which negatively affects gameplay.

Figure 16: Trepn Profiler provides diagnostic views, such as battery power, CPU load, and GPU usage

Figure 17: BombSquad by Eric Froemling

Development devices — optimizing games for real hardware:
Mobile development platforms (MDP) powered by certain Snapdragon
processors in the form of tablets and smartphones are currently
available to game developers prior to the launch of commercial OEM
devices. These MDPs provide early access to new features of
Snapdragon processors and are designed to allow developers to
optimize their games in advance of the commercial launch of devices
with Snapdragon processors. Devices with Snapdragon processors
are available across tiers, and developers can select from a wide
range of existing commercial devices to complete final testing and
validation of their games.

“I would definitely recommend developers
work with Qualcomm [Technologies] and use
the Snapdragon tools. I know they’ve been a
big go-to for me.”

Eric Froemling

Figure 18: Snapdragon Mobile
Development Platform

0018

ATI Ex. 2120
IPR2023-00922

Page 352 of 611

16
© 2014 Qualcomm Technologies, Inc. All Rights Reserved.

Figure 19: Assassin’s Creed Pirates by Ubisoft Entertainment

5.2 Supporting the developer community

QTI can provide game developers with technical support to shorten time-to-market and improve game
quality. QTI also can provide business and marketing support to help developers promote their games
and facilitate potential business opportunities.

Technical support for developers — providing expert game optimization: Such technical support
is provided via QTI’s internal game studio, which is comprised of developers with comprehensive prior
work experience in console, PC, and mobile gaming. Support activities range from tools, training,
technical feedback on optimizations and builds (from alpha to beta to release candidates), and new
feature support.

To take advantage of the capabilities of Snapdragon processors and to extend, enhance, and
differentiate their games, QTI can help developers add full screen post-processing effects, OpenGL ES
3.0/3.1 features, and more. There is also a developer forum where developers can ask questions and
engage with the QTI team and others in the Snapdragon developer community.

Figure 20: QTI worked closely with Fenix Fire to optimize Gates of Osiris on Snapdragon

“The Qualcomm® Snapdragon™ processor has
allowed us to create a better experience in our game
Gates of Osiris because it’s allowed us to develop
faster, push our graphics, and understand how to
optimize our game to be the best it can possibly be.”

Brian McRae
CEO
Fenix Fire

“Developing on the kits is a great help for us as a
development team because it allows us to address a
wide installed base since many devices use the
same Snapdragon chipset.”

Francois Bodson
Studio Manager
Ubisoft Paris / Mobile

0019

ATI Ex. 2120
IPR2023-00922

Page 353 of 611

17
© 2014 Qualcomm Technologies, Inc. All Rights Reserved.

Business and marketing support for developers — facilitating business opportunities: QTI is
engaged with some of the world’s leading publishers and developers, from traditional console and PC
to indies. The list includes companies such as EA, Gameloft, Activision Blizzard, Ubisoft, Square Enix,
Mojang, and Take-Two Interactive. QTI also facilitates introductions for engagements with OEMs and
carriers across the global gaming ecosystem.

Throughout the year, QTI has a presence at several key mobile and gaming tradeshows, where it helps
developers obtain exposure to show attendees, press, and OEMs. In the past year, QTI participated in
shows such as CES, MWC, GDC, E3, SIGGRAPH, Unite, and many more, reaching hundreds of
thousands of attendees. In addition, QTI often features games on the latest Snapdragon development
platforms and commercial devices with Snapdragon processors.

Figure 21: Showcasing games at the QTI booth during CES 2014 (left); GDC 2013 (right)

5.3 Next-generation gaming experiences

QTI continues to push the mobile gaming industry forward by developing new and innovative
technologies.

QTI actively develops tech demos to showcase the latest Snapdragon features and advanced
capabilities. The “Swimmer” demo is a recent example of how developers can utilize OpenGL ES 3.0
APIs for advanced rendering techniques. The demo shows advanced skin rendering using subsurface
scattering techniques running optimally at 60 frames per second, at 2K resolutions.

Figure 22: QTI “Swimmer” technology demo

0020

ATI Ex. 2120
IPR2023-00922

Page 354 of 611

18
© 2014 Qualcomm Technologies, Inc. All Rights Reserved.

To help further advance the evolution of gaming, QTI and its affiliates have developed (and continue to
develop) innovative technologies that support ever-more advanced capabilities and features including
vision-based augmented reality (Qualcomm® Vuforia™), proximal peer-to-peer networking (AllJoyn™),
biometrics, and more. For example, Vuforia supports the Smart Terrain™ feature, which is designed to
provide real-time 3D mapping of a physical play area, including intelligent interaction with objects and
surfaces. With this technology, gamers can create user-generated, playable content from physical
objects by using their mobile device as a level editor. Another example of a promising new technology
that can be utilized by game designers is biometrics data from a wearable. By capturing measurements
from pulse and blood pressure sensors, gameplay can be adjusted accordingly to either reward or
penalize a player.

6 Conclusion
Consumer demand for gaming on mobile devices is growing rapidly, generating strong momentum and
opportunity. The Android platform is thriving and offers game developers a growing opportunity to
generate revenue on a global scale. QTI is helping the mobile gaming industry to take advantage of this
opportunity by solving three key challenges for developers:

• To support immersive gaming experiences within the power and thermal constraints of mobile
devices, QTI creates low-power SoCs by taking a heterogeneous computing approach and
designing an efficient SoC architecture.

• To efficiently address a sizeable portion of the Android gaming segment with minimal code
variations, QTI’s scalable architecture is designed to provide a consistent development platform
across tiers.

• To take advantage of Snapdragon processors’ capabilities and to help reduce development time
and costs, QTI offers developers a comprehensive set of tools, support, and advanced
technologies.

Snapdragon processors are purpose-built and custom designed with mobile in mind, supporting gaming
experiences from simple casual games to console-quality games, so consumers can play longer and
recharge less. This is yet another example of how QTI is once again re-inventing the mobile world we
live in.

0021

ATI Ex. 2120
IPR2023-00922

Page 355 of 611

19
© 2014 Qualcomm Technologies, Inc. All Rights Reserved.

References
Developer tools and technologies:

1. Adreno SDK: https://developer.qualcomm.com/mobile-development/maximize-hardware/mobile-
gaming-graphics-adreno/tools-and-resources

2. Adreno Profiler: https://developer.qualcomm.com/mobile-development/maximize-
hardware/mobile-gaming-graphics-adreno/tools-and-resources

3. Trepn Profiler: https://developer.qualcomm.com/mobile-development/increase-app-
performance/trepn-profiler

4. Mobile Development Platforms: https://developer.qualcomm.com/mobile-
development/development-devices/snapdragon-mobile-development-platform-mdp

5. Snapdragon SDK: https://developer.qualcomm.com/mobile-development/add-advanced-
features/snapdragon-sdk-android

6. Snapdragon LLVM: https://developer.qualcomm.com/mobile-development/increase-app-
performance/snapdragon-llvm-compiler-android

7. Snapdragon Performance Visualizer: https://developer.qualcomm.com/mobile-
development/increase-app-performance/snapdragon-performance-visualizer

Developer support:

1. Questions/feedback/contact QTI: https://developer.qualcomm.com/contact. Use the “Mobile
Gaming & Graphics Optimization (Adreno)” recipient option.

2. Adreno developer forum: https://developer.qualcomm.com/forums/qdevnet-forums/mobile-
gaming-graphics-adreno

3. Developer guide: https://developer.qualcomm.com/download/adreno-sdk.zip

SoC technologies:

1. FlexRender: http://www.qualcomm.com/media/videos/flexrender-rendered-useful

Advanced technologies:

1. Vuforia: https://developer.qualcomm.com/mobile-development/add-advanced-
features/augmented-reality-vuforia

2. AllJoyn: https://developer.qualcomm.com/mobile-development/create-connected-
experiences/peer-peer-alljoyn

Snapdragon devices:

1. Smartphones: http://www.qualcomm.com/snapdragon/smartphones
2. Tablets: http://www.qualcomm.com/snapdragon/tablets-pcs

0022

ATI Ex. 2120
IPR2023-00922

Page 356 of 611

 Page 1 of 92
Ex. 2093 - sq.v

`include "header.v" 1

//-- 2

// 3

// $Id: //depot/r400/devel/parts_lib/src/gfx/sq/sq.v#62 $ 4

// 5

// $Change: 44294 $ 6

// 7

// Copyright: Trade secret of ATI Technologies, Inc. 8

// © Copyright 2001-2002, ATI Technologies, Inc., (unpublished) 9

// 10

// All rights reserved. This notice is intended as a precaution against 11

// inadvertent publication and does not imply publication or any waiver 12

// of confidentiality. The year included in the foregoing notice is the 13

// year of creation of the work. 14

// 15

//-- 16

`include "register_addr.v" 17

`include "sq_reg.v" 18

`include "sq_defs.v" 19

`include "../sq_reg_old.v" 20

 21

module sq (/*AUTOARG*/ 22

 // Outputs 23

 SQ_SC_free_buff, SQ_SC_dec_cntr_cnt, SQ_SP_interp_prim_type, 24

 SQ_SP_interp_mode, SQ_SP_interp_ijline, SQ_SP_interp_buff_swap, 25

 Page 2 of 92
Ex. 2093 - sq.v

 SQ_SP_interp_gen_i0, SQ_SP_interp_valid, SQ_SX_interp_flat_vtx, 1

 SQ_SX_interp_flat_gouraud, SQ_SX_interp_cyl_wrap, SQ_SX_pc_ptr0, 2

 SQ_SX_pc_ptr1, SQ_SX_pc_ptr2, SQ_SX_rt_sel, SQ_VGT_rtr, 3

 SQ_SP_vsr_data, SQ_SP_vsr_double, u0_SQ_SP_vsr_valid, 4

 u1_SQ_SP_vsr_valid, u2_SQ_SP_vsr_valid, u3_SQ_SP_vsr_valid, 5

 SQ_SP_vsr_vu_valid, SQ_SP_vsr_read, SQ_CP_vs_event, 6

 SQ_CP_vs_eventid, SQ_CP_ps_event, SQ_CP_ps_eventid, SQ_TP_send, 7

 SQ_TP_instr, SQ_TP_const, SQ_TP_gpr_phase, SQ_TP_gpr_wr_addr, 8

 SQ_TP_thread_id, u0_SQ_TP_lod_correct, u0_SQ_TP_pix_mask, 9

 u1_SQ_TP_lod_correct, u1_SQ_TP_pix_mask, u2_SQ_TP_lod_correct, 10

 u2_SQ_TP_pix_mask, u3_SQ_TP_lod_correct, u3_SQ_TP_pix_mask, 11

 SQ_SP_gpr_wr_addr, u0_SQ_SP_gpr_wr_en, u1_SQ_SP_gpr_wr_en, 12

 u2_SQ_SP_gpr_wr_en, u3_SQ_SP_gpr_wr_en, SQ_SP_gpr_rd_addr, 13

 SQ_SP_gpr_rd_en, SQ_SP_gpr_phase_mux, SQ_SP_channel_mask, 14

 u0_SQ_SP_pix_mask, u1_SQ_SP_pix_mask, u2_SQ_SP_pix_mask, 15

 u3_SQ_SP_pix_mask, SQ_SP_gpr_input_mux, SQ_SP_auto_count, 16

 SQ_SP_instruct_start, SQ_SP_instruct, SQ_SP_const, SQ_SP_stall, 17

 SQ_SP_exporting, SQ_SP_exp_id, u0_SQ_SP_exp_pvalid, 18

 u1_SQ_SP_exp_pvalid, u2_SQ_SP_exp_pvalid, u3_SQ_SP_exp_pvalid, 19

 SQ_SX_pc_wr_addr, SQ_SX_pc_wr_en, SQ_SX_pc_channel_mask, 20

 SQ_SX_exp_type, SQ_SX_exp_number, SQ_SX_exp_id, SQ_SX_exp_valid, 21

 SQ_SX_exp_state, SQ_SX_free_done, SQ_SX_free_id, SQ_RBB_rd, 22

 SQ_RBB_rs, SQ_RBBM_nrtrtr, SQ_RBBM_rtr, SQ_RBBM_cntx0_busy, 23

 SQ_RBBM_cntx17_busy, SQ_CG_threshold_hi, SQ_CG_threshold_lo, 24

 // Inputs 25

 Page 3 of 92
Ex. 2093 - sq.v

 SC_SQ_data, SC_SQ_valid, VGT_SQ_vsisr_data, 1

 VGT_SQ_vsisr_continued, VGT_SQ_event, VGT_SQ_end_of_vtx_vect, 2

 VGT_SQ_indx_valid, VGT_SQ_state, VGT_SQ_send, TP_SQ_type, 3

 TP_SQ_data_rdy, TP_SQ_thread_id, TP_SQ_fetch_stall, 4

 u0_SX_SQ_exp_count_rdy, u0_SX_SQ_exp_pos_avail, 5

 u0_SX_SQ_exp_buf_avail, u1_SX_SQ_exp_count_rdy, 6

 u1_SX_SQ_exp_pos_avail, u1_SX_SQ_exp_buf_avail, 7

 u0_SP_SQ_const_addr, u0_SP_SQ_valid, u1_SP_SQ_const_addr, 8

 u1_SP_SQ_valid, u2_SP_SQ_const_addr, u2_SP_SQ_valid, 9

 u3_SP_SQ_const_addr, u3_SP_SQ_valid, u0_SP_SQ_kill_vect, 10

 u1_SP_SQ_kill_vect, u2_SP_SQ_kill_vect, u3_SP_SQ_kill_vect, 11

 RBBM_a, RBBM_wd, RBBM_we, RBBM_re, RBB_rs, RBB_rd, RBBM_be, 12

 RBBM_SQ_soft_reset, CG_SQ_pm_enb, sclk_global, srst 13

); 14

 15

 //-- 16

 // SC-SQ IJ control interface 17

 //--- 18

 input [53:0] SC_SQ_data; 19

 input [0:0] SC_SQ_valid; 20

 /* 21

 // 1st cycle fields 22

 input [0:0] SC_SQ_event; 23

 input [3:0] SC_SQ_event_id; 24

 input [2:0] SC_SQ_pc_dealloc; 25

 Page 4 of 92
Ex. 2093 - sq.v

 input [0:0] SC_SQ_new_vector; 1

 input [3:0] SC_SQ_quad_mask; 2

 input [0:0] SC_SQ_end_of_prim; 3

 input [2:0] SC_SQ_state_id; 4

 input [15:0] SC_SQ_pix_mask; 5

 input [2:0] SC_SQ_prim_type; 6

 input [10:0] SC_SQ_pc_ptr0; 7

 // 2nd cycle fields 8

 input [10:0] SC_SQ_pc_ptr1; 9

 input [10:0] SC_SQ_pc_ptr2; 10

 input [23:0] SC_SQ_lod_correct; 11

 */ 12

 13

 output [0:0] SQ_SC_free_buff; 14

 output [0:0] SQ_SC_dec_cntr_cnt; 15

 16

 17

 //--- 18

 // SQ-SP/SX Interpolator Bus interface 19

 //--- 20

 output [2:0] SQ_SP_interp_prim_type; 21

 output [0:0] SQ_SP_interp_mode; 22

 output [1:0] SQ_SP_interp_ijline; 23

 output [0:0] SQ_SP_interp_buff_swap; 24

 output [0:0] SQ_SP_interp_gen_i0; 25

ATI 2093
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 357 of 611

 Page 5 of 92
Ex. 2093 - sq.v

 output [0:0] SQ_SP_interp_valid; 1

 2

 output [1:0] SQ_SX_interp_flat_vtx; 3

 output [0:0] SQ_SX_interp_flat_gouraud; 4

 output [3:0] SQ_SX_interp_cyl_wrap; 5

 6

 7

 //--- 8

 // SQ-SX Parameter Cache Read control 9

 //-- 10

 output [10:0] SQ_SX_pc_ptr0; 11

 output [10:0] SQ_SX_pc_ptr1; 12

 output [10:0] SQ_SX_pc_ptr2; 13

 output [0:0] SQ_SX_rt_sel; 14

 15

 16

 //--- 17

 // VGT-SQ Vertex Interface 18

 //--- 19

 input [95:0] VGT_SQ_vsisr_data; 20

 input [0:0] VGT_SQ_vsisr_continued; 21

 input [0:0] VGT_SQ_event; 22

 input [0:0] VGT_SQ_end_of_vtx_vect; 23

 input [0:0] VGT_SQ_indx_valid; 24

 input [2:0] VGT_SQ_state; 25

 Page 6 of 92
Ex. 2093 - sq.v

 input [0:0] VGT_SQ_send; 1

 2

 output [0:0] SQ_VGT_rtr; 3

 4

 5

 //--- 6

 // SQ-SP Vertex Interface 7

 //--- 8

 output [95:0] SQ_SP_vsr_data; 9

 output [0:0] SQ_SP_vsr_double; 10

 output [0:0] u0_SQ_SP_vsr_valid; 11

 output [0:0] u1_SQ_SP_vsr_valid; 12

 output [0:0] u2_SQ_SP_vsr_valid; 13

 output [0:0] u3_SQ_SP_vsr_valid; 14

 output [3:0] SQ_SP_vsr_vu_valid; 15

 output [0:0] SQ_SP_vsr_read; 16

 17

 18

 //-- 19

 // SQ-CP Event Status 20

 //-- 21

 output [0:0] SQ_CP_vs_event; 22

 output [1:0] SQ_CP_vs_eventid; 23

 output [0:0] SQ_CP_ps_event; 24

 output [1:0] SQ_CP_ps_eventid; 25

 Page 7 of 92
Ex. 2093 - sq.v

 1

 2

 //--- 3

 // SQ-TP (Texture Pipe) (part of this interface is broadcast) 4

 //--- 5

 output [0:0] SQ_TP_send; 6

 output [17:0] SQ_TP_instr; 7

 output [47:0] SQ_TP_const; 8

 output [1:0] SQ_TP_gpr_phase; 9

 /* 10

 send these over 4 cycles: 11

 output [6:0] SQ_TP_gpr_wr_addr; 12

 output [0:0] SQ_TP_type; 13

 output [5:0] SQ_TP_thread_id; 14

 output [0:0] SQ_TP_end_of_group; 15

 */ 16

 output [1:0] SQ_TP_gpr_wr_addr; 17

 output [1:0] SQ_TP_thread_id; 18

 19

 output [5:0] u0_SQ_TP_lod_correct; 20

 output [3:0] u0_SQ_TP_pix_mask; 21

 output [5:0] u1_SQ_TP_lod_correct; 22

 output [3:0] u1_SQ_TP_pix_mask; 23

 output [5:0] u2_SQ_TP_lod_correct; 24

 output [3:0] u2_SQ_TP_pix_mask; 25

 Page 8 of 92
Ex. 2093 - sq.v

 output [5:0] u3_SQ_TP_lod_correct; 1

 output [3:0] u3_SQ_TP_pix_mask; 2

 3

 input [0:0] TP_SQ_type; 4

 input [0:0] TP_SQ_data_rdy; 5

 input [5:0] TP_SQ_thread_id; 6

 7

 input [0:0] TP_SQ_fetch_stall; 8

 9

 10

 //--- 11

 // SQ-SP GPR control Interface 12

 //--- 13

 output [6:0] SQ_SP_gpr_wr_addr; 14

 output [0:0] u0_SQ_SP_gpr_wr_en; 15

 output [0:0] u1_SQ_SP_gpr_wr_en; 16

 output [0:0] u2_SQ_SP_gpr_wr_en; 17

 output [0:0] u3_SQ_SP_gpr_wr_en; 18

 output [6:0] SQ_SP_gpr_rd_addr; 19

 output [0:0] SQ_SP_gpr_rd_en; 20

 output [1:0] SQ_SP_gpr_phase_mux; 21

 output [3:0] SQ_SP_channel_mask; 22

 23

 output [3:0] u0_SQ_SP_pix_mask; 24

 output [3:0] u1_SQ_SP_pix_mask; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 358 of 611

 Page 9 of 92
Ex. 2093 - sq.v

 output [3:0] u2_SQ_SP_pix_mask; 1

 output [3:0] u3_SQ_SP_pix_mask; 2

 3

 output [1:0] SQ_SP_gpr_input_mux; 4

 output [11:0] SQ_SP_auto_count; 5

 6

 7

 //--- 8

 // SQ-SP : Instruction interface 9

 //--- 10

 output [0:0] SQ_SP_instruct_start; 11

 output [20:0] SQ_SP_instruct; 12

 output [127:0] SQ_SP_const; 13

 output [0:0] SQ_SP_stall; 14

 15

 output [0:0] SQ_SP_exporting; 16

 output [0:0] SQ_SP_exp_id; 17

 output [3:0] u0_SQ_SP_exp_pvalid; 18

 output [3:0] u1_SQ_SP_exp_pvalid; 19

 output [3:0] u2_SQ_SP_exp_pvalid; 20

 output [3:0] u3_SQ_SP_exp_pvalid; 21

 22

 23

 //--- 24

 // SQ-SX Parameter Cache Write control 25

 Page 10 of 92
Ex. 2093 - sq.v

 //-- 1

 output [6:0] SQ_SX_pc_wr_addr; 2

 output [0:0] SQ_SX_pc_wr_en; 3

 output [3:0] SQ_SX_pc_channel_mask; 4

 5

 6

 //-- 7

 // SQ-SX Export Control Bus 8

 //-- 9

 output [1:0] SQ_SX_exp_type; 10

 output [1:0] SQ_SX_exp_number; 11

 output [0:0] SQ_SX_exp_id; 12

 output [0:0] SQ_SX_exp_valid; 13

 output [2:0] SQ_SX_exp_state; 14

 15

 output [0:0] SQ_SX_free_done; 16

 output [0:0] SQ_SX_free_id; 17

 18

 19

 //--- 20

 // SX-SQ Output File control 21

 //--- 22

 input [0:0] u0_SX_SQ_exp_count_rdy; 23

 input [0:0] u0_SX_SQ_exp_pos_avail; 24

 input [6:0] u0_SX_SQ_exp_buf_avail; 25

 Page 11 of 92
Ex. 2093 - sq.v

 1

 input [0:0] u1_SX_SQ_exp_count_rdy; 2

 input [0:0] u1_SX_SQ_exp_pos_avail; 3

 input [6:0] u1_SX_SQ_exp_buf_avail; 4

 5

 6

 //--- 7

 // SP-SQ: Constant Address Load 8

 //--- 9

 input [35:0] u0_SP_SQ_const_addr; 10

 input [0:0] u0_SP_SQ_valid; 11

 input [35:0] u1_SP_SQ_const_addr; 12

 input [0:0] u1_SP_SQ_valid; 13

 input [35:0] u2_SP_SQ_const_addr; 14

 input [0:0] u2_SP_SQ_valid; 15

 input [35:0] u3_SP_SQ_const_addr; 16

 input [0:0] u3_SP_SQ_valid; 17

 18

 //--- 19

 // SQ-SP Kill Vector Load 20

 //--- 21

 input [3:0] u0_SP_SQ_kill_vect; 22

 input [3:0] u1_SP_SQ_kill_vect; 23

 input [3:0] u2_SP_SQ_kill_vect; 24

 input [3:0] u3_SP_SQ_kill_vect; 25

 Page 12 of 92
Ex. 2093 - sq.v

 1

 2

 //--- 3

 // SQ-RBBM 4

 //-- 5

 output [31:0] SQ_RBB_rd; 6

 output [0:0] SQ_RBB_rs; 7

 output [0:0] SQ_RBBM_nrtrtr; 8

 output [0:0] SQ_RBBM_rtr; 9

 output [0:0] SQ_RBBM_cntx0_busy; 10

 output [0:0] SQ_RBBM_cntx17_busy; 11

 12

 13

 //--- 14

 // RBBM_SQ 15

 //--- 16

 input [14:0] RBBM_a; 17

 input [31:0] RBBM_wd; 18

 input RBBM_we; 19

 input RBBM_re; 20

 input RBB_rs; 21

 input [31:0] RBB_rd; 22

 input [3:0] RBBM_be; 23

 input [0:0] RBBM_SQ_soft_reset; 24

 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 359 of 611

 Page 13 of 92
Ex. 2093 - sq.v

 1

 //--- 2

 // MISC 3

 //--- 4

 5

 input [0:0] CG_SQ_pm_enb; 6

 output [0:0] SQ_CG_threshold_hi; 7

 output [0:0] SQ_CG_threshold_lo; 8

 9

 input [0:0] sclk_global; 10

 input [0:0] srst; 11

 12

 13

 // 14
++15
+++++++ 16

 // --- 17

 // -- Module Instantiations -- 18

 // --- 19

 // 20
++21
+++++++ 22

 23

 parameter HI = 1'b1; 24

 parameter LO = 1'b0; 25

 26

 // - wires for local registers 27

 Page 14 of 92
Ex. 2093 - sq.v

 1

 wire [(`SQ_PROGRAM_REG_COUNT_SHADING_PS_NUM_REG_SIZE * 8) - 1: 0] 2
 ps_num_reg_set; 3

 wire [(`SQ_PROGRAM_REG_COUNT_SHADING_VS_NUM_REG_SIZE * 8) - 1: 0] 4
 vs_num_reg_set; 5

 wire [(`SQ_PROGRAM_REG_COUNT_SHADING_PARAM_SHADE_SIZE * 8) - 1: 0] 6
 param_shade_set; 7

 wire [(`SQ_INST_STORE_MANAGMENT_INST_BASE_VTX_SIZE) - 1: 0] 8
 inst_base_vtx; 9

 wire [(`SQ_INST_STORE_MANAGMENT_INST_BASE_PIX_SIZE) - 1: 0] 10
 inst_base_pix; 11

 wire [(`SQ_WRAPPING_1_REG_SIZE * 8) - 1: 0] 12
 sq_wrapping_1_set; 13

 wire [(`SQ_WRAPPING_0_REG_SIZE * 8) - 1: 0] 14
 sq_wrapping_0_set; 15

 wire [(`SQ_SAMPLING_MODE_SAMPLING_MODE_SIZE * 8) - 1: 0] 16
 sampling_mode_set; 17

 wire [(`SQ_VS_EXPORT_COUNT_COUNT7_SIZE * 8) - 1: 0] 18
 vs_exp_count7_set; 19

 wire [(`SQ_IMPORTS_EXPORTS_GEN_INDEX_SIZE * 8) - 1: 0] 20
 gen_index_set; 21

 wire [(`SQ_IMPORTS_EXPORTS_PARAM_GEN_I0_SIZE * 8) - 1: 0] 22
 param_gen_i0_set; 23

 wire [(`SQ_PROGRAM_CNTL_VS_RESOURCE_SIZE * 8) -1: 0] 24
 vs_resource_set; 25

 wire [(`SQ_PROGRAM_CNTL_PS_RESOURCE_SIZE * 8) - 1: 0] ps_resource_set; 26

 27

 wire [(`SQ_PROGRAM_CNTL_VS_EXPORT_COUNT_SIZE * 8) - 1: 0] 28
vs_export_count_set; 29

 wire [(`SQ_PROGRAM_CNTL_VS_EXPORT_MODE_SIZE * 8) - 1: 0] 30
vs_export_mode_set; 31

 Page 15 of 92
Ex. 2093 - sq.v

 wire [(`SQ_PROGRAM_CNTL_PS_EXPORT_MODE_SIZE * 8) - 1: 0] 1
ps_export_mode_set; 2

 wire [(`SQ_PS_PROGRAM_BASE_SIZE * 8) - 1: 0] ps_program_base_set; 3

 wire [(`SQ_PS_PROGRAM_BASE_SIZE * 8) - 1: 0] vs_program_base_set; 4

 5

 // --- 6

 // --- 7

 // -- Vertex Input Control -- 8

 // --- 9

 // --- 10

 11

 // - interconnect wires 12

 13

 //wire [8*6-1:0] vs_num_reg_set; // connected to 14
SQ_PROGRAM_REG_COUNT_SHADING.VS_NUM_REG (6 bits) 15

 //wire [8*1-1:0] gen_index_set; // connected to SQ_IMPORTS_EXPORTS.GEN_INDEX 16
(1 bit) 17

 18

 wire [0:0] vtx_alloc_req; 19

 wire [5:0] vtx_alloc_space; 20

 wire [0:0] vtx_alloc_ack; 21

 22

 wire [0:0] vtx_dealloc_req; 23

 wire [5:0] vtx_dealloc_space; 24

 wire [0:0] vtx_dealloc_ack; 25

 26

 Page 16 of 92
Ex. 2093 - sq.v

 wire [0:0] vtx_write_gnt; 1

 wire [0:0] vtx_write_req; 2

 wire [0:0] vtx_write_busy; 3

 4

 wire [6:0] gpr_base; 5

 6

 wire [00:0] vism_ctl_pkt_rts; 7

 wire [11:0] vism_instr_ptr; 8

 wire [63:0] vism_valid_bits; 9

 wire [06:0] vism_gpr_base; 10

 wire [02:0] vism_context_id; 11

 wire [00:0] vism_resource; 12

 wire [00:0] vism_first_thread; 13

 wire [00:0] vtb_rtr; 14

 15

 wire [6:0] vi_gpr_wr_addr; 16

 wire [0:0] vi_gpr_wr_en; 17

 wire [7:0] acs_context_valid; 18

 19

 20

 // -------------------------------- 21

 // -- Vertex Input State Machine -- 22

 // -------------------------------- 23

 24

 sq_vism 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 360 of 611

 Page 17 of 92
Ex. 2093 - sq.v

 u_sq_vism 1

 (2

 // VGT Interface 3

 .i_vgt_vsisr_data (VGT_SQ_vsisr_data), 4

 .i_vgt_vsisr_double (VGT_SQ_vsisr_continued), 5

 .i_vgt_end_of_vector (VGT_SQ_end_of_vtx_vect), 6

 .i_vgt_indx_valid (VGT_SQ_indx_valid), 7

 .i_vgt_vsisr_state (VGT_SQ_state), 8

 .i_vgt_send (VGT_SQ_send), 9

 .o_vgt_rtr (SQ_VGT_rtr), 10

 11

 // SP Interface 12

 .o_sp_vsr_data (SQ_SP_vsr_data), 13

 .o_sp_vsr_double (SQ_SP_vsr_double), 14

 .o_sp_vsr_valid ({u3_SQ_SP_vsr_valid, u2_SQ_SP_vsr_valid, 15
u1_SQ_SP_vsr_valid, u0_SQ_SP_vsr_valid}), 16

 .o_sp_vsr_vu_valid (SQ_SP_vsr_vu_valid), 17

 .o_sp_vsr_read (SQ_SP_vsr_read), 18

 19

 // to output mux (currently called ais_output), then to SP 20

 .o_v_gpr_addr (vi_gpr_wr_addr), // VISM gpr write address 21

 .o_v_gpr_we (vi_gpr_wr_en), // VISM gpr write enable 22

 23

 // local register inputs 24

 .i_vs_num_reg (vs_num_reg_set), 25

 .i_gen_index (gen_index_set), 26

 Page 18 of 92
Ex. 2093 - sq.v

 .i_vs_base_set (vs_program_base_set), 1

 //.i_vs_resource_set (vs_resource_set), 2

 .i_vs_resource_set (8'b11111111), 3

 4

 // input arbiter interface 5

 .o_v_gpr_wrt_req (vtx_write_req), 6

 .i_v_gpr_wrt_grant (vtx_write_gnt), 7

 .o_vism_busy (vtx_write_busy), 8

 9

 // gpr alloc Interface 10

 .o_v_gpr_space_req (vtx_alloc_req), 11

 .o_v_gpr_space (vtx_alloc_space), 12

 .i_v_gpr_space_grant (vtx_alloc_ack), 13

 .i_v_gpr_base_addr (gpr_base), 14

 15

 // control packet to VTB 16

 .o_v_ld_cntl_pkt (vism_ctl_pkt_rts), 17

 .o_vs_first_thread (vism_first_thread), 18

 .o_vs_resource (vism_resource), 19

 .o_vs_instr_ptr (vism_instr_ptr), 20

 .o_vector_valid (vism_valid_bits), 21

 .o_v_gpr_base (vism_gpr_base), 22

 .o_vgt_state (vism_context_id), 23

 .i_vtb_rtr (vtb_rtr), 24

 .i_context_valid (acs_context_valid), 25

 Page 19 of 92
Ex. 2093 - sq.v

 .i_clk (sclk_global), 1

 .i_reset (srst) 2

); 3

 4

 5

 // --- 6

 // --- 7

 // -- Pixel Input Control -- 8

 // --- 9

 // --- 10

 11

 // - interconnect wires 12

 13

 wire [0:0] pb_rts; 14

 wire [`SQ_PB_WIDTH-1:0] pb_rd_data0; 15

 wire [`SQ_PB_WIDTH-1:0] pb_rd_data1; 16

 wire [`SQ_PB_WIDTH-1:0] pb_rd_data2; 17

 wire [`SQ_PB_WIDTH-1:0] pb_rd_data3; 18

 19

 wire [1:0] pb_max_wcnt; 20

 wire [2:0] pb_pix_state; 21

 22

 wire [0:0] pb_read_en; 23

 wire [0:0] free_buff; 24

 wire [0:0] pi_rtr; 25

 Page 20 of 92
Ex. 2093 - sq.v

 1

 wire [0:0] pix_alloc_req; 2

 wire [5:0] pix_alloc_space; 3

 wire [0:0] pix_alloc_ack; 4

 5

 wire [0:0] pix_dealloc_req; 6

 wire [5:0] pix_dealloc_space; 7

 wire [0:0] pix_dealloc_ack; 8

 9

 wire [0:0] pix_write_gnt; 10

 wire [0:0] pix_write_req; 11

 wire [0:0] pix_write_busy; 12

 13

 wire [6:0] pi_gpr_wr_addr; 14

 wire [3:0] pi_gpr_wr_en; 15

 16

 wire [00:0] pism_ctl_pkt_rts; 17

 wire [143:0] pism_lod_correct; 18

 wire [11:0] pism_instr_ptr; 19

 wire [63:0] pism_valid_bits; 20

 wire [06:0] pism_gpr_base; 21

 //wire [02:0] pism_context_id; 22

 wire [00:0] pism_resource; 23

 wire [00:0] pism_first_thread; 24

 wire [00:0] ptb_rtr; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 361 of 611

 Page 21 of 92
Ex. 2093 - sq.v

 1

 wire [0:0] pb_rd_en; 2

 3

 wire [0:0] vtx_vector_done; 4

 5

 wire [0:0] pb_event_rts; 6

 wire [3:0] pb_event_id; 7

 wire [2:0] pb_event_state; 8

 wire [2:0] pb_dealloc_cnt; 9

 wire [0:0] pb_dealloc_vld; 10

 11

 wire [1:0] gpr_phase; 12

 wire [1:0] is_phase; 13

 wire [1:0] is_subphase; 14

 15

 16

 // -------------------- 17

 // -- Pointer Buffer -- 18

 // -------------------- 19

 20

 sq_ptr_buff 21

 u_sq_ptr_buff 22

 (23

 // SC interface 24

 .SC_SQ_data (SC_SQ_data), 25

 Page 22 of 92
Ex. 2093 - sq.v

 .SC_SQ_valid (SC_SQ_valid), 1

 2

 .SQ_SC_free_buff (SQ_SC_free_buff), 3

 .SQ_SC_dec_cntr_cnt(SQ_SC_dec_cntr_cnt), 4

 5

 // inputs from PISM 6

 .pi_rtr (pi_rtr), 7

 .pi_read_en (pi_read_en), 8

 .pi_free_buff (pi_free_buff), 9

 10

 // outputs to PISM 11

 .pb_rts (pb_rts), 12

 .pb_rd_data0 (pb_rd_data0), 13

 .pb_rd_data1 (pb_rd_data1), 14

 .pb_rd_data2 (pb_rd_data2), 15

 .pb_rd_data3 (pb_rd_data3), 16

 17

 .pb_max_wcnt (pb_max_wcnt), 18

 .pb_pix_state (pb_pix_state), 19

 20

 .pb_event_rts (pb_event_rts), 21

 .pb_event_id (pb_event_id), 22

 .pb_event_state (pb_event_state), 23

 24

 .pb_dealloc_cnt (pb_dealloc_cnt), 25

 Page 23 of 92
Ex. 2093 - sq.v

 .pb_dealloc_vld (pb_dealloc_vld), 1

 2

 .vtx_vector_done (vtx_vector_done), 3

 .pix_write_busy (pix_write_busy), 4

 5

 .clk(sclk_global), 6

 .reset(srst) 7

); 8

 9

 10

 // ------------------------------- 11

 // -- Pixel Input State Machine -- 12

 // ------------------------------- 13

 14

 sq_pism 15

 u_sq_pism 16

 (17

 // pointer buffer interface 18

 .pb_rts (pb_rts), 19

 .pb_rd_data0 (pb_rd_data0), 20

 .pb_rd_data1 (pb_rd_data1), 21

 .pb_rd_data2 (pb_rd_data2), 22

 .pb_rd_data3 (pb_rd_data3), 23

 24

 .pb_max_wcnt (pb_max_wcnt), 25

 Page 24 of 92
Ex. 2093 - sq.v

 .pb_pix_state (pb_pix_state), 1

 2

 .pb_event_rts (pb_event_rts), 3

 .pb_event_id (pb_event_id), 4

 .pb_event_state (pb_event_state), 5

 6

 .pi_read_en (pi_read_en), 7

 .pi_free_buff (pi_free_buff), 8

 .pi_rtr (pi_rtr), 9

 10

 // interfaces to gpr alloc and input arb 11

 .pix_alloc_req (pix_alloc_req), 12

 .pix_alloc_space (pix_alloc_space), 13

 .pix_alloc_ack (pix_alloc_ack), 14

 .pix_alloc_base (gpr_base), 15

 16

 .pix_write_req (pix_write_req), 17

 .pix_write_busy (pix_write_busy), 18

 .pix_write_gnt (pix_write_gnt), 19

 20

 // inputs from local registers 21

 .num_reg_set (ps_num_reg_set), // connected to 22
SQ_PROGRAM_CNTL.PS_NUM_REG (6 bits) 23

 .num_param_set (vs_export_count_set), // connected to 24
SQ_PROGRAM_CNTL.VS_EXPORT_COUNT (4 bits) 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 362 of 611

 Page 25 of 92
Ex. 2093 - sq.v

 .param_shade_set (param_shade_set), // connected to 1
SQ_INTRPOLATOR_CNTL.PARAM_SHADE (16 bits) 2

 .param_gen_i0_set (param_gen_i0_set), // connected to 3
SQ_PROGRAM_CNTL.PARAM_GEN_I0 (1 bit) 4

 //.sampling_mode_set(sampling_mode_set), // connected to 5
SQ_SAMPLING_MODE.SAMPLING_MODE (1 bit) 6

 .sq_wrapping_0_set(sq_wrapping_0_set), // connected to SQ_WRAPPING_0 (32 7
bits) 8

 .sq_wrapping_1_set(sq_wrapping_1_set), // connected to SQ_WRAPPING_1 (32 9
bits) 10

 11

 .ps_program_base_set(ps_program_base_set),// connected to SQ_PS_PROGRAM.BASE 12
(12 bits) 13

 .ps_resource_set (ps_resource_set), // connected to 14
SQ_PROGRAM_CNTL.PS_RESOURCE (1 bit) 15

 16

 // pix control packet outputs to pixel thread buffer 17

 .ctl_pkt_rts_q (pism_ctl_pkt_rts), 18

 .lod_correct_q (pism_lod_correct), // state 19

 .valid_bits_q (pism_valid_bits), // state 20

 .ps_program_base_q (pism_instr_ptr), // state 21

 .gpr_base_q (pism_gpr_base), // state 22

 .ps_resource_q (pism_resource), // status: resource bit : tex=1, alu=0 23

 .first_thread_q (pism_first_thread), // status: first thread of a new state 24

 .ptb_rtr (ptb_rtr), // PTB is ready when not full OR when not doing a 25
CFS update 26

 27

 // outputs to ais_output 28

 .pix_gpr_wr_addr (pi_gpr_wr_addr), 29

 Page 26 of 92
Ex. 2093 - sq.v

 .pix_gpr_wr_en (pi_gpr_wr_en), 1

 2

 // outputs to SP interp ctl 3

 .SQ_SP_interp_prim_type (SQ_SP_interp_prim_type), 4

 .SQ_SP_interp_mode (SQ_SP_interp_mode), // ???? 5

 .SQ_SP_interp_ijline (SQ_SP_interp_ijline), 6

 .SQ_SP_interp_buff_swap (SQ_SP_interp_buff_swap), 7

 .SQ_SP_interp_gen_i0 (SQ_SP_interp_gen_i0), 8

 .SQ_SP_interp_valid (SQ_SP_interp_valid), 9

 10

 .SQ_SX_interp_flat_vtx (SQ_SX_interp_flat_vtx), 11

 .SQ_SX_interp_flat_gouraud(SQ_SX_interp_flat_gouraud), 12

 .SQ_SX_interp_cyl_wrap (SQ_SX_interp_cyl_wrap), 13

 14

 // outputs to SX param cache 15

 .SQ_SX_pc_ptr0 (SQ_SX_pc_ptr0), 16

 .SQ_SX_pc_ptr1 (SQ_SX_pc_ptr1), 17

 .SQ_SX_pc_ptr2 (SQ_SX_pc_ptr2), 18

 .SQ_SX_rt_sel (SQ_SX_rt_sel), 19

 20

 .clk(sclk_global), 21

 .reset(srst) 22

); 23

 24

 25

 Page 27 of 92
Ex. 2093 - sq.v

 // --- 1

 // --- 2

 // -- GPR Allocation and Input Arbitration -- 3

 // --- 4

 // --- 5

 6

 // -------------------- 7

 // -- GPR Allocation -- 8

 // -------------------- 9

 10

 sq_gpr_alloc 11

 u_sq_gpr_alloc 12

 (13

 .vtx_alloc_req (vtx_alloc_req), 14

 .vtx_alloc_space (vtx_alloc_space), 15

 .vtx_dealloc_req (vtx_dealloc_req), 16

 .vtx_dealloc_space(vtx_dealloc_space), 17

 18

 .pix_alloc_req (pix_alloc_req), 19

 .pix_alloc_space (pix_alloc_space), 20

 .pix_dealloc_req (pix_dealloc_req), 21

 .pix_dealloc_space(pix_dealloc_space), 22

 23

 .base_ptr (gpr_base), 24

 25

 Page 28 of 92
Ex. 2093 - sq.v

 .pix_alloc_ack (pix_alloc_ack), 1

 .pix_dealloc_ack (pix_dealloc_ack), 2

 .vtx_alloc_ack (vtx_alloc_ack), 3

 .vtx_dealloc_ack (vtx_dealloc_ack), 4

 5

 .clk(sclk_global), 6

 .reset(srst) 7

); 8

 9

 10

 // ----------------------- 11

 // -- Input Arbitration -- 12

 // ----------------------- 13

 14

 sq_input_arb 15

 u_sq_input_arb 16

 (17

 .vtx_req (vtx_write_req), 18

 .vtx_busy (vtx_write_busy), 19

 .pix_req (pix_write_req), 20

 .pix_busy (pix_write_busy), 21

 22

 .gpr_phase(gpr_phase), 23

 24

 .vtx_gnt (vtx_write_gnt), 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 363 of 611

 Page 29 of 92
Ex. 2093 - sq.v

 .vtx_sel (ia_vertex_sel), // select VISM gpr write address, enable to drive to SP 1
when 1 (select pixel if 0) 2

 .pix_gnt (pix_write_gnt), 3

 4

 .clk(sclk_global), 5

 .reset(srst) 6

); 7

 8

 9

 // --- 10

 // --- 11

 // -- Thread Buffers, Thread Arbiters, Control Flow Sequencers -- 12

 // --- 13

 // --- 14

 15

 // - interconnect wires 16

 17

 parameter TB_DEPTH = 16; 18

 parameter TB_ADDR_WIDTH = 4; 19

 20

 wire [0:0] state_read_phase; 21

 wire [1:0] cfs_phase; 22

 23

 wire [11:0] tcfs_is_read_addr; 24

 wire [11:0] acfs0_is_read_addr; 25

 wire [11:0] acfs1_is_read_addr; 26

 Page 30 of 92
Ex. 2093 - sq.v

 wire [11:0] tif_is_read_addr; 1

 wire [11:0] aif0_is_read_addr; 2

 wire [11:0] aif1_is_read_addr; 3

 4

 wire [95:0] is_read_data; 5

 6

 // 7

 wire [0:0] tcfs_update; 8

 wire [5:0] tcfs_thread_id; 9

 wire [`SQ_CFS_STATE_WIDTH-1:0]tcfs_state; 10

 wire [`SQ_STATUS_WIDTH-1:0] tcfs_status; 11

 12

 // 13

 wire [0:0] acfs0_update; 14

 wire [5:0] acfs0_thread_id; 15

 wire [`SQ_CFS_STATE_WIDTH-1:0]acfs0_state; 16

 wire [`SQ_STATUS_WIDTH-1:0] acfs0_status; 17

 18

 wire [0:0] acfs1_update; 19

 wire [5:0] acfs1_thread_id; 20

 wire [`SQ_CFS_STATE_WIDTH-1:0]acfs1_state; 21

 wire [`SQ_STATUS_WIDTH-1:0] acfs1_status; 22

 23

 wire [TB_DEPTH-1:0] vtx_tex_req_q; 24

 wire [`SQ_VTX_STATE_WIDTH-1:0] vtx_tex_state; 25

 Page 31 of 92
Ex. 2093 - sq.v

 wire [`SQ_STATUS_WIDTH-1:0] vtx_tex_status; 1

 wire [0:0] vtx_tex_winner_ack; 2

 wire [0:0] vtx_tex_state_vld; 3

 wire [TB_ADDR_WIDTH-1:0] vtx_tex_winner_q; 4

 5

 wire [TB_DEPTH-1:0] pix_tex_req_q; 6

 wire [`SQ_PIX_STATE_WIDTH-1:0] pix_tex_state; 7

 wire [`SQ_STATUS_WIDTH-1:0] pix_tex_status; 8

 wire [0:0] pix_tex_winner_ack; 9

 wire [0:0] pix_tex_state_vld; 10

 wire [TB_ADDR_WIDTH-1:0] pix_tex_winner_q; 11

 12

 wire [TB_DEPTH-1:0] vtx_alu_req_q; 13

 wire [`SQ_VTX_STATE_WIDTH-1:0] vtx_alu_state; 14

 wire [`SQ_STATUS_WIDTH-1:0] vtx_alu_status; 15

 wire [0:0] vtx_alu_winner_ack; 16

 wire [0:0] vtx_alu_state_vld; 17

 wire [TB_ADDR_WIDTH-1:0] vtx_alu_winner_q; 18

 19

 wire [TB_DEPTH-1:0] pix_alu_req_q; 20

 wire [`SQ_PIX_STATE_WIDTH-1:0] pix_alu_state; 21

 wire [`SQ_STATUS_WIDTH-1:0] pix_alu_status; 22

 wire [0:0] pix_alu_winner_ack; 23

 wire [0:0] pix_alu_state_vld; 24

 wire [TB_ADDR_WIDTH-1:0] pix_alu_winner_q; 25

 Page 32 of 92
Ex. 2093 - sq.v

 1

 wire [0:0] ais0_done; 2

 wire [0:0] ais0_thread_type; 3

 wire [5:0] ais0_thread_id; 4

 5

 wire [0:0] ais1_done; 6

 wire [0:0] ais1_thread_type; 7

 wire [5:0] ais1_thread_id; 8

 9

 wire vtx_state_change; 10

 wire [2:0] vtx_old_state; 11

 12

 wire pix_state_change; 13

 wire [2:0] pix_old_state; 14

 15

 wire [0:0] tarb_rts; 16

 wire [`SQ_STATE_WIDTH-1:0] tarb_state; 17

 wire [`SQ_STATUS_WIDTH-1:0] tarb_status; 18

 wire [0:0] tarb_thread_type; 19

 wire [0:0] tcfs_rtr; 20

 21

 wire [0:0] tcfs_rts; 22

 wire [`SQ_CTL_PKT_WIDTH-1:0] tcfs_ctl_pkt; 23

 wire [11:0] tcfs_tgt_instr_ptr; 24

 wire [11:0] tcfs_tgt_instr_cnt; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 364 of 611

 Page 33 of 92
Ex. 2093 - sq.v

 wire [0:0] tcfs_thread_type; 1

 wire [0:0] tif_rtr; 2

 3

 wire [0:0] aarb_rts0; 4

 wire [0:0] aarb_rts1; 5

 wire [`SQ_VTX_STATE_WIDTH-1:0] aarb_state; 6

 wire [`SQ_STATUS_WIDTH-1:0] aarb_status; 7

 wire [0:0] aarb_thread_type; 8

 wire [0:0] acfs0_rtr; 9

 wire [0:0] acfs1_rtr; 10

 11

 wire [0:0] acfs0_rts; 12

 wire [`SQ_VTX_CTL_PKT_WIDTH-1:0] acfs0_ctl_pkt; 13

 wire [11:0] acfs0_tgt_instr_ptr; 14

 wire [11:0] acfs0_tgt_instr_cnt; 15

 wire [0:0] aif0_rtr; 16

 17

 wire [0:0] acfs1_rts; 18

 wire [`SQ_VTX_CTL_PKT_WIDTH-1:0] acfs1_ctl_pkt; 19

 wire [11:0] acfs1_tgt_instr_ptr; 20

 wire [11:0] acfs1_tgt_instr_cnt; 21

 wire [0:0] aif1_rtr; 22

 23

 wire [6:0] param_cache_wptr_q; 24

 25

 Page 34 of 92
Ex. 2093 - sq.v

 wire [0:0] vtx_tb_busy; 1

 wire [0:0] pix_tb_busy; 2

 wire [0:0] tcfs_busy; 3

 wire [0:0] acfs0_busy; 4

 wire [0:0] acfs1_busy; 5

 wire [0:0] tif_busy; 6

 wire [0:0] tis_busy ; 7

 wire [0:0] aif0_busy; 8

 wire [0:0] aif1_busy; 9

 wire [0:0] ais0_busy; 10

 wire [0:0] ais1_busy; 11

 12

 wire [0:0] ais0_free_done; 13

 wire [0:0] ais0_free_id; 14

 wire [0:0] ais1_free_done; 15

 wire [0:0] ais1_free_id; 16

 17

 18

 // -------------------------- 19

 // -- Vertex Thread Buffer -- 20

 // -------------------------- 21

 22

 sq_thread_buff 23

 #(24

 `SQ_VTX_STATE_WIDTH, `SQ_VTX_ISM_STATE_WIDTH, 25
`SQ_CFS_STATE_WIDTH, `SQ_VTX_STATUS_WIDTH 26

 Page 35 of 92
Ex. 2093 - sq.v

) 1

 u_sq_vtx_thread_buff 2

 (3

 .thread_type_strap(HI), // a strap that tells this module if it's a vertex or 4
pixel thread buffer 5

 .state_read_phase (state_read_phase), // share read access to TB State Mem btwn the tex 6
and alu arbiters 7

 .cfs_phase (cfs_phase), // 00:alu0, 01:tex, 10:alu1, 11:tex 8

 9

 // control packet input (from ISM) - initial values for state and status 10

 .ism_rts (vism_ctl_pkt_rts), // control packet rts 11

 .ism_lod_correct (), // state - not used for VTB (PTB only) 12

 .ism_instr_ptr (vism_instr_ptr), // state 13

 .ism_valid_bits (vism_valid_bits), // state 14

 .ism_gpr_base (vism_gpr_base), // state 15

 .ism_context_id (vism_context_id), // state 16

 .ism_resource (vism_resource), // status: resource bit : tex=1, alu=0 17

 .ism_first_thread (vism_first_thread), // status: first thread of a new state 18

 .tb_rtr (vtb_rtr), // rtr when not full OR when not doing a CFS 19
update 20

 21

 // tex control flow seq update of state and status 22

 .tcfs_update (tcfs_update), // load updated status info from CFS 23

 .tcfs_thread_type (tcfs_thread_type), // 24

 .tcfs_state (tcfs_state), // state 25

 .tcfs_status (tcfs_status), // status 26

 Page 36 of 92
Ex. 2093 - sq.v

 1

 // alu control flow seq update of state and status 2

 .acfs0_update (acfs0_update), // load updated status info from CFS 3

 .acfs0_thread_type(acfs0_thread_type), // 4

 .acfs0_state (acfs0_state), // state 5

 .acfs0_status (acfs0_status), // status 6

 7

 .acfs1_update (acfs1_update), // load updated status info from CFS 8

 .acfs1_thread_type(acfs1_thread_type), // 9

 .acfs1_state (acfs1_state), // state 10

 .acfs1_status (acfs1_status), // status 11

 12

 // tex thread arbiter interface 13

 .tex_req_q (vtx_tex_req_q), // tex request from every thread in the buffer 14

 .tex_winner_q (vtx_tex_winner_q), // tex winner 15

 .tex_winner_ack (vtx_tex_winner_ack), // tex winner valid (request acknowledge) 16
from tex arbiter 17

 .tex_state_q (vtx_tex_state), // winning state read from State Mem 18

 .tex_status_q (vtx_tex_status), // winning status read from Status Regs 19

 20

 // done info from TP 21

 .TP_SQ_data_rdy (TP_SQ_data_rdy), // data ready (done) indicator from TPC 22

 .TP_SQ_type (TP_SQ_type), // the vector type: pixel=0, vertex=1 23

 .TP_SQ_thread_id (TP_SQ_thread_id), // 24

 25

 // alu thread arbiter interface 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 365 of 611

 Page 37 of 92
Ex. 2093 - sq.v

 .alu_req_q (vtx_alu_req_q), // tex request from every thread in the buffer 1

 .alu_winner_q (vtx_alu_winner_q), // alu winner 2

 .alu_winner_ack (vtx_alu_winner_ack), // alu winner valid from alu arbiter 3

 .alu_state_q (vtx_alu_state), // winning state read from State Mem 4

 .alu_status_q (vtx_alu_status), // winning status read from Status Regs 5

 6

 // done info from AIS's 7

 .ais0_done (ais0_done), // done indicator from AIS0 8

 .ais0_thread_type (ais0_thread_type), // the vector type: pixel=0 (), vertex=1 9

 .ais0_thread_id (ais0_thread_id), // 10

 .ais1_done (ais1_done), // done indicator from AIS1 11

 .ais1_thread_type (ais1_thread_type), // the vector type: pixel=0, vertex=1 12

 .ais1_thread_id (ais1_thread_id), // 13

 14

 // SX export buffer availability 15

 .u0_SX_SQ_exp_count_rdy(u0_SX_SQ_exp_count_rdy), // position available from 16
SX 17

 .u0_SX_SQ_exp_pos_avail(u0_SX_SQ_exp_pos_avail), // position available from 18
SX 19

 .u0_SX_SQ_exp_buf_avail(u0_SX_SQ_exp_buf_avail), // buffer available from SX 20
(0 to 127 2kbit buffers(), 2kbit = 32bits for 64 pixels) 21

 .u1_SX_SQ_exp_count_rdy(u1_SX_SQ_exp_count_rdy), // position available from 22
SX 23

 .u1_SX_SQ_exp_pos_avail(u1_SX_SQ_exp_pos_avail), // position available from 24
SX 25

 .u1_SX_SQ_exp_buf_avail(u1_SX_SQ_exp_buf_avail), // buffer available from SX 26
(0 to 127 2kbit buffers(), 2kbit = 32bits for 64 pixels) 27

 28

 Page 38 of 92
Ex. 2093 - sq.v

 // outputs from exit SM to constant stores and gpr alloc 1

 // - this needs to be fixed... 2

 .state_change (vtx_state_change), // a pulse high indicates that the state exiting the 3
SS has changed 4

 .old_state (vtx_old_state), // the state that has finished (because a new state has 5
emerged) 6

 .dealloc_req (vtx_dealloc_req), // request to deallocate GPRs 7

 .dealloc_ack (vtx_dealloc_ack), // the dealloc request has been acknowleged 8

 9

 .pop_thread (vtx_vector_done), // vtx shader sync output back to pix input ctl 10

 11

 .param_cache_wptr_q(param_cache_wptr_q), // from export_alloc - needed for status reg 12
request logic 13

 14

 .busy(vtx_tb_busy), // vtx TB busy 15

 .clk(sclk_global), 16

 .reset(srst) 17

); 18

 19

 20

 // ------------------------- 21

 // -- Pixel Thread Buffer -- 22

 // ------------------------- 23

 24

 sq_thread_buff 25

 #(26

 Page 39 of 92
Ex. 2093 - sq.v

 `SQ_PIX_STATE_WIDTH, `SQ_PIX_ISM_STATE_WIDTH, `SQ_CFS_STATE_WIDTH, 1
`SQ_PIX_STATUS_WIDTH 2

) 3

 u_sq_pix_thread_buff 4

 (5

 .thread_type_strap(LO), // a strap that tells this module if it's a vertex or 6
pixel thread buffer 7

 .state_read_phase (state_read_phase), // share read access to TB State Mem btwn the tex 8
and alu arbiters 9

 .cfs_phase (cfs_phase), // 00:alu0, 01:tex, 10:alu1, 11:tex 10

 11

 // control packet input (from ISM) - initial values for state and status 12

 .ism_rts (pism_ctl_pkt_rts), // control packet rts 13

 .ism_lod_correct (pism_lod_correct), // state 14

 .ism_instr_ptr (pism_instr_ptr), // state 15

 .ism_valid_bits (pism_valid_bits), // state 16

 .ism_gpr_base (pism_gpr_base), // state 17

 .ism_context_id (pb_pix_state), // state 18

 .ism_resource (pism_resource), // status: resource bit : tex=1, alu=0 19

 .ism_first_thread (pism_first_thread), // status: first thread of a new state 20

 .tb_rtr (ptb_rtr), // rtr when not full OR when not doing a CFS 21
update 22

 23

 // tex control flow seq update of state and status 24

 .tcfs_update (tcfs_update), // load updated status info from CFS 25

 .tcfs_thread_type (tcfs_thread_type), // 26

 .tcfs_state (tcfs_state), // state 27

 Page 40 of 92
Ex. 2093 - sq.v

 .tcfs_status (tcfs_status), // status 1

 2

 // alu control flow seq update of state and status 3

 .acfs0_update (acfs0_update), // load updated status info from CFS 4

 .acfs0_thread_type(acfs0_thread_type), // 5

 .acfs0_state (acfs0_state), // state 6

 .acfs0_status (acfs0_status), // status 7

 8

 .acfs1_update (acfs1_update), // load updated status info from CFS 9

 .acfs1_thread_type(acfs1_thread_type), // 10

 .acfs1_state (acfs1_state), // state 11

 .acfs1_status (acfs1_status), // status 12

 13

 // tex thread arbiter interface 14

 .tex_req_q (pix_tex_req_q), // tex request from every thread in the buffer 15

 .tex_winner_q (pix_tex_winner_q), // tex winner 16

 .tex_winner_ack (pix_tex_winner_ack), // tex winner valid (request acknowledge) 17
from tex arbiter 18

 .tex_state_q (pix_tex_state), // winning state read from State Mem 19

 .tex_status_q (pix_tex_status), // winning status read from Status Regs 20

 21

 // done info from TP 22

 .TP_SQ_data_rdy (TP_SQ_data_rdy), // data ready (done) indicator from TPC 23

 .TP_SQ_type (TP_SQ_type), // the vector type: pixel=0, vertex=1 24

 .TP_SQ_thread_id (TP_SQ_thread_id), // 25

 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 366 of 611

 Page 41 of 92
Ex. 2093 - sq.v

 // alu thread arbiter interface 1

 .alu_req_q (pix_alu_req_q), // alu req from every thread 2

 .alu_winner_q (pix_alu_winner_q), // alu winner 3

 .alu_winner_ack (pix_alu_winner_ack), // alu winner valid from alu arbiter 4

 .alu_state_q (pix_alu_state), // winning state read from State Mem 5

 .alu_status_q (pix_alu_status), // winning status read from Status Regs 6

 7

 // done info from AIS's 8

 .ais0_done (ais0_done), // done indicator from AIS0 9

 .ais0_thread_type (ais0_thread_type), // the vector type: pixel=0 (), vertex=1 10

 .ais0_thread_id (ais0_thread_id), // 11

 .ais1_done (ais1_done), // done indicator from AIS1 12

 .ais1_thread_type (ais1_thread_type), // the vector type: pixel=0, vertex=1 13

 .ais1_thread_id (ais1_thread_id), // 14

 15

 // SX export buffer availability 16

 .u0_SX_SQ_exp_count_rdy(u0_SX_SQ_exp_count_rdy), // position available from 17
SX 18

 .u0_SX_SQ_exp_pos_avail(u0_SX_SQ_exp_pos_avail), // position available from 19
SX 20

 .u0_SX_SQ_exp_buf_avail(u0_SX_SQ_exp_buf_avail), // buffer available from SX 21
(0 to 127 2kbit buffers(), 2kbit = 32bits for 64 pixels) 22

 .u1_SX_SQ_exp_count_rdy(u1_SX_SQ_exp_count_rdy), // position available from 23
SX 24

 .u1_SX_SQ_exp_pos_avail(u1_SX_SQ_exp_pos_avail), // position available from 25
SX 26

 .u1_SX_SQ_exp_buf_avail(u1_SX_SQ_exp_buf_avail), // buffer available from SX 27
(0 to 127 2kbit buffers(), 2kbit = 32bits for 64 pixels) 28

 Page 42 of 92
Ex. 2093 - sq.v

 1

 // outputs from exit SM to constant stores and gpr alloc 2

 // - this needs to be fixed... 3

 .state_change (pix_state_change), // a pulse high indicates that the state exiting the 4
SS has changed 5

 .old_state (pix_old_state), // the state that has finished (because a new state has 6
emerged) 7

 .dealloc_req (pix_dealloc_req), // request to deallocate GPRs 8

 .dealloc_ack (pix_dealloc_ack), // the dealloc request has been acknowleged 9

 10

 .pop_thread (), // no connect for pix TB 11

 12

 .param_cache_wptr_q(param_cache_wptr_q), // from export_alloc - needed for status reg 13
request logic 14

 // not used by pix TB since type must be VTX in 15
request logic 16

 17

 .busy(pix_tb_busy), // pix TB busy 18

 .clk(sclk_global), 19

 .reset(srst) 20

); 21

 22

 23

 // ---------------------------- 24

 // -- Texture Thread Arbiter -- 25

 // ---------------------------- 26

 27

 Page 43 of 92
Ex. 2093 - sq.v

 sq_thread_arb 1

 #(2

 `SQ_STATE_WIDTH, `SQ_STATUS_WIDTH 3

) 4

 u_sq_tex_thread_arb 5

 (6

 .arb_type_strap (HI), // tex = 1, alu = 0 7

 .state_read_phase (state_read_phase), // share read access to TB State Mem btwn the tex 8
and alu arbiters 9

 10

 // vertex and pixel thread buffer interface 11

 .vtx_req_q (vtx_tex_req_q), // 16 vtx_thread_buff requests 12

 .vtx_winner_q (vtx_tex_winner_q), // winning vertex thread_id sent back to Vertex 13
Thread Buffer 14

 .vtx_winner_ack (vtx_tex_winner_ack), // 15

 .vtx_state (vtx_tex_state), // state selected by winner 16

 .vtx_status (vtx_tex_status), // status selected by winner 17

 18

 .pix_req_q (pix_tex_req_q), // 16 pix_thread_buff requests 19

 .pix_winner_q (pix_tex_winner_q), // winning pixel thread_id sent back to Pixel 20
Thread Buffer 21

 .pix_winner_ack (pix_tex_winner_ack), // 22

 .pix_state (pix_tex_state), // 23

 .pix_status (pix_tex_status), // 24

 25

 // control flow sequencer interface 26

 Page 44 of 92
Ex. 2093 - sq.v

 .arb_rts0 (tarb_rts), // ready to send the winner to CFS0 1

 .arb_rts1 (), // no connect for tex thread arb 2

 .arb_state (tarb_state), // the state sent to the CFS 3

 .arb_status (tarb_status), // the status sent to the CFS 4

 .arb_thread_type (tarb_thread_type), // vtx or pix 5

 6

 .cfs_rtr0 (tcfs_rtr), // CFS0 can accept a thread 7

 .cfs_rtr1 (LO), // always tied LO for tex thread arb 8

 9

 .cfs1_enable (LO), // always tied LO for tex thread arb 10

 11

 .clk(sclk_global), 12

 .reset(srst) 13

); 14

 15

 16

 // ------------- 17

 // -- Tex CFS -- 18

 // ------------- 19

 20

 sq_ctl_flow_seq 21

 #(22

 `SQ_CTL_PKT_WIDTH, `SQ_STATE_WIDTH, `SQ_STATUS_WIDTH 23

) 24

 u_sq_tex_ctl_flow_seq 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 367 of 611

 Page 45 of 92
Ex. 2093 - sq.v

 (1

 .cfs_type_strap (2'b01), // 00:alu0, 01:tex, 10:alu1 2

 .is_phase (is_phase), // 00:CF, 01:Tex, 10:ALU, 11:CP 3

 .is_subphase (is_subphase), // 00:alu0, 01:tex, 10:alu1, 11:tex 4

 .cfs_phase (cfs_phase), // 00:alu0, 01:tex, 10:alu1, 11:tex 5

 6

 // local registers 7

 // - per chip 8

 .inst_base_vtx (inst_base_vtx), // vertex base (wrap point) 9

 .inst_base_pix (inst_base_pix), // pixel base (wrap point) 10

 // - per context 11

 .vs_program_base_set(vs_program_base_set),// connected to SQ_VS_PROGRAM.BASE 12
(12 bits) 13

 .ps_program_base_set(ps_program_base_set),// connected to SQ_PS_PROGRAM.BASE 14
(12 bits) 15

 16

 // thread arbiter interface 17

 .arb_rts (tarb_rts), // 18

 .arb_state (tarb_state), // 19

 .arb_status (tarb_status), // 20

 .arb_thread_type (tarb_thread_type), // vertex or pixel 21

 .cfs_rtr_q (tcfs_rtr), // CFS can take a new packet 22

 23

 // instruction store interface 24

 .is_read_addr_q (tcfs_is_read_addr), // instruction store read address 25

 .is_read_data_q (is_read_data), // instruction store read data 26

 Page 46 of 92
Ex. 2093 - sq.v

 1

 // interface to the thread buffer (for thread updates) 2

 .cfs_update_q (tcfs_update), // load updated status info from CFS 3

 .cfs_state (tcfs_state), // state 4

 .cfs_status (tcfs_status), // status 5

 6

 // outputs to the target instruction fetcher 7

 .cfs_rts_q (tcfs_rts), // ctl packet and ptr are valid 8

 .cfs_ctl_pkt_q (tcfs_ctl_pkt), // the control packet (lod_correct, valid_bits, 9
gpr_base, context_id) 10

 .cfs_tgt_instr_ptr_q(tcfs_tgt_instr_ptr), // the instr store address of the first target 11
instruction 12

 .cfs_tgt_instr_cnt_q(tcfs_tgt_instr_cnt), // the number of target instructions to be fetched 13

 .cfs_thread_type_q(tcfs_thread_type), // vertex or pixel 14

 //.cfs_param_ptr_q(), // param cache ptr - not needed for texture 15

 .tif_rtr (tif_rtr), // TIF can take a new packet 16

 17

 .busy(tcfs_busy), 18

 .clk(sclk_global), 19

 .reset(srst) 20

); 21

 22

 23

 // ------------------------ 24

 // -- ALU Thread Arbiter -- 25

 // ------------------------ 26

 Page 47 of 92
Ex. 2093 - sq.v

 1

 sq_thread_arb 2

 #(3

 `SQ_VTX_STATE_WIDTH, `SQ_STATUS_WIDTH 4

) 5

 u_sq_alu_thread_arb 6

 (7

 .arb_type_strap (LO), // tex = 1, alu = 0 8

 .state_read_phase (state_read_phase), // share read access to TB State Mem btwn the tex 9
and alu arbiters 10

 11

 // vertex and pixel thread buffer interface 12

 .vtx_req_q (vtx_alu_req_q), // 16 vtx_thread_buff requests 13

 .vtx_winner_q (vtx_alu_winner_q), // winning vertex thread_id sent back to Vertex 14
Thread Buffer 15

 .vtx_winner_ack (vtx_alu_winner_ack), // 16

 .vtx_state (vtx_alu_state), // state selected by winner 17

 .vtx_status (vtx_alu_status), // status selected by winner 18

 19

 .pix_req_q (pix_alu_req_q), // 16 pix_thread_buff requests 20

 .pix_winner_q (pix_alu_winner_q), // winning pixel thread_id sent back to Pixel 21
Thread Buffer 22

 .pix_winner_ack (pix_alu_winner_ack), // 23

 .pix_state (pix_alu_state), // 24

 .pix_status (pix_alu_status), // 25

 26

 Page 48 of 92
Ex. 2093 - sq.v

 // control flow sequencer interface 1

 .arb_rts0 (aarb_rts0), // ready to send the winner to CFS0 2

 .arb_rts1 (aarb_rts1), // ready to send the winner to CFS1 3

 .arb_state (aarb_state), // the state sent to the CFS 4

 .arb_status (aarb_status), // the status sent to the CFS 5

 .arb_thread_type (aarb_thread_type), // vtx or pix 6

 .cfs_rtr0 (acfs0_rtr), // CFS0 can accept a thread 7

 .cfs_rtr1 (acfs1_rtr), // CFS1 can accept a thread 8

 9

 //.cfs1_enable (LO), // enable sending packets to CFS1 10

 .cfs1_enable (HI), // enable sending packets to CFS1 11

 // (this a local register setting: SQ_FLOW_CTL.ONE_ALU) 12

 .clk(sclk_global), 13

 .reset(srst) 14

); 15

 16

 17

 // ------------------ 18

 // -- Export Alloc -- 19

 // ------------------ 20

 21

 sq_export_alloc 22

 u_sq_export_alloc 23

 (24

 // inputs from local registers 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 368 of 611

 Page 49 of 92
Ex. 2093 - sq.v

 .vs_export_count_set (vs_export_count_set), // connected to 1
SQ_PROGRAM_CNTL.VS_EXPORT_COUNT (4 bits) 2

 .vs_export_mode_set (vs_export_mode_set), // connected to 3
SQ_PROGRAM_CNTL.VS_EXPORT_MODE (3 bits) 4

 .ps_export_mode_set (ps_export_mode_set), // connected to 5
SQ_PROGRAM_CNTL.PS_EXPORT_MODE (3 bits) 6

 7

 .alu_arb_rts0 (aarb_rts0), // ready to send the winner to CFS0 8

 .alu_arb_rts1 (aarb_rts1), // ready to send the winner to CFS1 9

 .alu_arb_context_id10
 (aarb_state[`SQ_CFS_STATE_WIDTH+2:`SQ_CFS_STATE_WIDTH]), 11

 .alu_arb_status (aarb_status), // the status sent to the CFS 12

 .alu_arb_thread_type (aarb_thread_type), // vtx or pix 13

 14

 .alu0_cfs_rtr (acfs0_rtr), // ALU_CFS0 can accept a thread 15

 .alu1_cfs_rtr (acfs1_rtr), // ALU_CFS1 can accept a thread (for alu 16
cfs's) 17

 18

 .pb_dealloc_cnt (pb_dealloc_cnt), // param cache dealloc info 19

 .pb_dealloc_vld (pb_dealloc_vld), 20

 .param_cache_wptr_q (param_cache_wptr_q), 21

 22

 //.SQ_SX_exp_pix (SQ_SX_exp_pix), 23

 24

 .SQ_SX_exp_valid (SQ_SX_exp_valid), 25

 .SQ_SX_exp_type (SQ_SX_exp_type), 26

 .SQ_SX_exp_number (SQ_SX_exp_number), 27

 Page 50 of 92
Ex. 2093 - sq.v

 .SQ_SX_exp_context_id (SQ_SX_exp_state), 1

 .SQ_SX_exp_id (SQ_SX_exp_id), 2

 3

 .ais0_free_done (ais0_free_done), 4

 .ais0_free_id (ais0_free_id), 5

 .ais1_free_done (ais1_free_done), 6

 .ais1_free_id (ais1_free_id), 7

 8

 .SQ_SX_free_done (SQ_SX_free_done), 9

 .SQ_SX_free_id (SQ_SX_free_id), 10

 11

 // - export id interface 12

 .cfs0_export_id (acfs0_state[7]), // export_id that cfs0 is pushing down pipe 0 (sets 13
global export_id) 14

 .cfs_aif_xfc0 (cfs_aif_xfc0), // cfs0 to aif0 transfer complete 15

 .cfs1_export_id (acfs1_state[7]), // export_id that cfs1 is pushing down pipe 1 (sets 16
global export_id) 17

 .cfs_aif_xfc1 (cfs_aif_xfc1), // cfs1 to aif1 transfer complete 18

 19

 .global_export_id_q(global_export_id), // exp_id output to ALU CFS's 20

 21

 .clk(sclk_global), 22

 .reset(srst) 23

); 24

 25

 26

 Page 51 of 92
Ex. 2093 - sq.v

 // --------------- 1

 // -- ALU CFS 0 -- 2

 // --------------- 3

 4

 sq_ctl_flow_seq 5

 #(6

 `SQ_VTX_CTL_PKT_WIDTH, `SQ_VTX_STATE_WIDTH, `SQ_STATUS_WIDTH 7

) 8

 u0_sq_alu_ctl_flow_seq 9

 (10

 .cfs_type_strap (2'b00), // 00:alu0, 01:tex, 10:alu1 11

 12

 .is_phase (is_phase), // 00:CF, 01:Tex, 10:ALU, 11:CP 13

 .is_subphase (is_subphase), // 00:alu0, 01:tex, 10:alu1, 11:tex 14

 .cfs_phase (cfs_phase), // 00:alu0, 01:tex, 10:alu1, 11:tex 15

 16

 // local registers 17

 // - per chip 18

 .inst_base_vtx (inst_base_vtx), // vertex base (wrap point) 19

 .inst_base_pix (inst_base_pix), // pixel base (wrap point) 20

 // - per context 21

 .vs_program_base_set(vs_program_base_set),// connected to SQ_VS_PROGRAM.BASE 22
(12 bits) 23

 .ps_program_base_set(ps_program_base_set),// connected to SQ_PS_PROGRAM.BASE 24
(12 bits) 25

 26

 Page 52 of 92
Ex. 2093 - sq.v

 // thread arbiter interface 1

 .arb_rts (aarb_rts0), // 2

 .arb_state (aarb_state), // 3

 .arb_status (aarb_status), // 4

 .arb_thread_type (aarb_thread_type), // vertex or pixel 5

 .cfs_rtr_q (acfs0_rtr), // CFS can take a new packet 6

 7

 .pc_base_q (param_cache_wptr_q), // from sq_export_alloc 8

 9

 // instruction store interface 10

 .is_read_addr_q (acfs0_is_read_addr), // instruction store read address 11

 .is_read_data_q (is_read_data), // instruction store read data 12

 13

 // interface to the thread buffer (for thread updates) 14

 .cfs_update_q (acfs0_update), // load updated status info from CFS 15

 .cfs_state (acfs0_state), // state 16

 .cfs_status (acfs0_status), // status 17

 18

 // outputs to the target instruction fetcher 19

 .cfs_rts_q (acfs0_rts), // ctl packet and ptr are valid 20

 .cfs_ctl_pkt_q (acfs0_ctl_pkt), // the control packet (lod_correct, 21
valid_bits, gpr_base, context_id) 22

 .cfs_tgt_instr_ptr_q(acfs0_tgt_instr_ptr), // the instr store address of the first target 23
instruction 24

 .cfs_tgt_instr_cnt_q(acfs0_tgt_instr_cnt), // the number of target instructions to be 25
fetched 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 369 of 611

 Page 53 of 92
Ex. 2093 - sq.v

 .cfs_thread_type_q(acfs0_thread_type), // vertex or pixel 1

 .tif_rtr (aif0_rtr), // TIF can take a new packet 2

 3

 .global_export_id (global_export_id), // exp_id input from sq_exp_alloc 4

 .cfs_tif_xfc (cfs_aif_xfc0), // cfs0 to aif0 transfer complete (to sq_exp_alloc) 5

 6

 .busy(acfs0_busy), 7

 .clk(sclk_global), 8

 .reset(srst) 9

); 10

 11

 12

 // --------------- 13

 // -- ALU CFS 1 -- 14

 // --------------- 15

 16

 sq_ctl_flow_seq 17

 #(18

 `SQ_VTX_CTL_PKT_WIDTH, `SQ_VTX_STATE_WIDTH, `SQ_STATUS_WIDTH 19

) 20

 u1_sq_alu_ctl_flow_seq 21

 (22

 .cfs_type_strap (2'b10), // 00:alu0, 01:tex, 10:alu1 23

 24

 .is_phase (is_phase), // 00:CF, 01:Tex, 10:ALU, 11:CP 25

 Page 54 of 92
Ex. 2093 - sq.v

 .is_subphase (is_subphase), // 00:alu0, 01:tex, 10:alu1, 11:tex 1

 .cfs_phase (cfs_phase), // 00:alu0, 01:tex, 10:alu1, 11:tex 2

 3

 // local registers 4

 // - per chip 5

 .inst_base_vtx (inst_base_vtx), // vertex base (wrap point) 6

 .inst_base_pix (inst_base_pix), // pixel base (wrap point) 7

 // - per context 8

 .vs_program_base_set(vs_program_base_set),// connected to SQ_VS_PROGRAM.BASE 9
(12 bits) 10

 .ps_program_base_set(ps_program_base_set),// connected to SQ_PS_PROGRAM.BASE 11
(12 bits) 12

 13

 // thread arbiter interface 14

 .arb_rts (aarb_rts1), // 15

 .arb_state (aarb_state), // 16

 .arb_status (aarb_status), // 17

 .arb_thread_type (aarb_thread_type), // vertex or pixel 18

 .cfs_rtr_q (acfs1_rtr), // CFS can take a new packet 19

 20

 .pc_base_q (param_cache_wptr_q), // from sq_export_alloc 21

 22

 // instruction store interface 23

 .is_read_addr_q (acfs1_is_read_addr), // instruction store read address 24

 .is_read_data_q (is_read_data), // instruction store read data 25

 26

 Page 55 of 92
Ex. 2093 - sq.v

 // interface to the thread buffer (for thread updates) 1

 .cfs_update_q (acfs1_update), // load updated status info from CFS 2

 .cfs_state (acfs1_state), // state 3

 .cfs_status (acfs1_status), // status 4

 5

 // outputs to the target instruction fetcher 6

 .cfs_rts_q (acfs1_rts), // ctl packet and ptr are valid 7

 .cfs_ctl_pkt_q (acfs1_ctl_pkt), // the control packet (lod_correct, 8
valid_bits, gpr_base, context_id) 9

 .cfs_tgt_instr_ptr_q(acfs1_tgt_instr_ptr), // the instr store address of the first target 10
instruction 11

 .cfs_tgt_instr_cnt_q(acfs1_tgt_instr_cnt), // the number of target instructions to be 12
fetched 13

 .cfs_thread_type_q(acfs1_thread_type), // vertex or pixel 14

 .tif_rtr (aif1_rtr), // TIF can take a new packet 15

 16

 .global_export_id (global_export_id), // exp_id input from sq_exp_alloc 17

 .cfs_tif_xfc (cfs_aif_xfc1), // cfs0 to aif0 transfer complete (to sq_exp_alloc) 18

 19

 .busy(acfs1_busy), 20

 .clk(sclk_global), 21

 .reset(srst) 22

); 23

 24

 25

 // --- 26

 Page 56 of 92
Ex. 2093 - sq.v

 // --- 1

 // -- Texture Instruction Pipe -- 2

 // --- 3

 // --- 4

 5

 // - interconnect wires 6

 7

 wire [0:0] alu_phase; 8

 9

 wire [04:0] texconst_rd_addr; // texture constant store read address (logical addr - up to 10
32 consts) 11

 wire [95:0] texconst_rd_data; // texture constant store read data 12

 13

 wire [0:0] tif_instr_rts; // the target instr register is valid 14

 wire [95:0] tif_instr; // the target instruction register (TIR) 15

 wire [`SQ_CTL_PKT_WIDTH-1:0] tif_ctl_pkt; // the target control packet (pipelined from 16
reg'd input) 17

 wire [0:0] tif_last_in_group; // last instruction flag 18

 wire [0:0] tif_thread_type; // vert:1, pix:0 19

 wire [5:0] tif_thread_id; // the target thread_id (pipelined from reg'd input) 20

 21

 wire [00:0] tiq_rtr; 22

 23

 wire [02:0] tiq_context_id; 24

 wire [63:0] tiq_valid_bits; 25

 wire [95:0] tiq_lod_correct; 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 370 of 611

 Page 57 of 92
Ex. 2093 - sq.v

 wire [00:0] tiq_thread_type; 1

 wire [05:0] tiq_thread_id; 2

 wire [95:0] tiq_instr; 3

 4

 wire [0:0] tis_rtr; 5

 6

 wire [6:0] tis_gpr_rd_addr; // GPR read address for Fetch Address 7

 wire [0:0] tiq_rts; 8

 9

 10

 // ------------------------------ 11

 // -- Texture Instruction Fetch -- 12

 // ------------------------------ 13

 14

 sq_target_instr_fetch 15

 #(16

 `SQ_CTL_PKT_WIDTH // tex pipe needs LOD bits from PIX ctl pkts 17

) 18

 u_sq_tex_instr_fetch 19

 (20

 .target_strap(`SQ_TEX_STRAP), // hardwired to TEX_STRAP, 21
ALU0_STRAP, or ALU1_STRAP 22

 23

 // local registers 24

 .inst_base_vtx(inst_base_vtx), // vertex base 25

 .inst_base_pix(inst_base_pix), // pixel base 26

 Page 58 of 92
Ex. 2093 - sq.v

 1

 // cfs interface 2

 .cfs_rts (tcfs_rts), // ctl packet and ptr are valid 3

 .cfs_ctl_pkt (tcfs_ctl_pkt), // the control packet (lod for pix_tex, valid_bits, 4
gpr_base, context_id) 5

 .cfs_instr_ptr (tcfs_tgt_instr_ptr), // the Instruction Store address of the first target 6
instruction 7

 .cfs_instr_cnt (tcfs_tgt_instr_cnt), // the number of instructions to be fetched 8

 .cfs_pc_base (tcfs_state[7:1]), // the param cache base - not used by tex instr 9
pipe 10

 .cfs_thread_type (tcfs_thread_type), // vertex or pixel 11

 .cfs_thread_id (tcfs_status[21:16]), // 12

 .cfs_last_in_thread(tcfs_status[12]), // last instr in shader prog 13

 .tif_rtr (tif_rtr), // TIF can take a new packet 14

 15

 // instruction store interface 16

 .is_read_addr (tif_is_read_addr), // instruction store read address 17

 .is_read_data (is_read_data), // instruction store read data 18

 .is_phase (is_phase), // instruction store phase 19

 .alu_phase (LO), // tied low for TEX instance, to alu_phase for ALU 20
instances 21

 22

 // outputs to the target instruction decoder 23

 .tif_pc_base_q (), // the param cache base output - not connected to 24
anything... 25

 .tif_ctl_pkt_q (tif_ctl_pkt), // the target control packet (pipelined from reg'd 26
input) 27

 .tif_last_in_group_q(tif_last_in_group), // last instruction flag 28

 Page 59 of 92
Ex. 2093 - sq.v

 .tif_thread_type_q(tif_thread_type), // vert:1, pix:0 1

 .tif_thread_id_q (tif_thread_id), // the target thread_id (pipelined from reg'd input) 2

 .tif_instr_q (tif_instr), // the target instruction register (TIR) 3

 .tif_instr_rts_q (tif_instr_rts), // the target instr register is valid 4

 .tiq_rtr (tiq_rtr), // the target instr decode is ready to take the TIR 5
(and other pipeline data) 6

 7

 .busy(tif_busy), 8

 .clk(sclk_global), 9

 .reset(srst) 10

); 11

 12

 13

 // ------------------------------- 14

 // -- Texture Instruction Queue -- 15

 // ------------------------------- 16

 17

 parameter TIQ_NUM_WORDS = 4; 18

 parameter TIQ_ADDR_BITS = 2; 19

 20

 sq_tex_instr_queue 21

 // #(TIQ_NUM_WORDS, TIQ_ADDR_BITS) 22

 u_sq_tex_instr_queue 23

 (24

 .write_rts (tif_instr_rts), 25

 .write_rtr (tiq_rtr), 26

 Page 60 of 92
Ex. 2093 - sq.v

 1

 // queue inputs 2

 //write_data(), 3

 .tif_ctl_pkt_q (tif_ctl_pkt), // control packet 4

 .tif_thread_id_q (tif_thread_id), // thread_id 5

 .tif_last_instr_q (tif_last_in_group), // last instruction flag 6

 .tif_thread_type_q(tif_thread_type), // 0: pixel, 1: vertex 7

 .tir_q (tif_instr), // instruction register (TIR) 8

 9

 .read_rts (tiq_rts), 10

 .read_rtr (tis_rtr), 11

 //read_data(), // {control packet, clause num, instruction} 12

 13

 // queue outputs 14

 .tiq_last_instr (tiq_last_instr), // last instruction flag 15

 .tiq_thread_type (tiq_thread_type), // 0: pixel, 1: vertex 16

 .tiq_context_id (tiq_context_id), // context_id (from ctl packet) 17

 .tiq_valid_bits (tiq_valid_bits), // valid bits (from ctl packet) 18

 .tiq_lod_correct (tiq_lod_correct), // lod_correct bits (from ctl packet) 19

 .tiq_thread_id (tiq_thread_id), // thread_id 20

 .tiq_instr (tiq_instr), // instruction 21

 22

 .clk(sclk_global), 23

 .reset(srst) 24

); 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 371 of 611

 Page 61 of 92
Ex. 2093 - sq.v

 1

 2

 // ----------------------------------- 3

 // -- Texture Instruction Sequencer -- 4

 // ----------------------------------- 5

 6

 sq_tex_instr_seq 7

 u_sq_tex_instr_seq 8

 (9

 // TIQ interface 10

 .tiq_rts (tiq_rts), // rts from TIQ FIFO 11

 .tiq_last_instr (tiq_last_instr), // last instruction flag 12

 .tiq_thread_type (tiq_thread_type), // 0: pixel, 1: vertex 13

 .tiq_context_id (tiq_context_id), // context_id (from ctl packet) 14

 .tiq_valid_bits (tiq_valid_bits), // valid bits (from ctl packet) 15

 .tiq_lod_correct (tiq_lod_correct), // lod_correct bits (from ctl packet) 16

 .tiq_thread_id (tiq_thread_id), // thread_id 17

 .tiq_instr (tiq_instr), // instruction 18

 19

 .tis_rtr (tis_rtr), // TIQ FIFO pop 20

 21

 .gpr_phase (gpr_phase), 22

 23

 // TIS outputs to other SQ blocks 24

 .tis_gpr_rd_addr (tis_gpr_rd_addr), // GPR read address for Fetch Address: to 25
gpr_ra_output_mux 26

 Page 62 of 92
Ex. 2093 - sq.v

 .texconst_rd_addr (texconst_rd_addr), // texture constant store read address 1

 .texconst_rd_data (texconst_rd_data), // texture constant store read data 2

 3

 // outputs to TP 4

 .SQ_TP_vld (SQ_TP_send), 5

 .SQ_TP_instr (SQ_TP_instr), 6

 .SQ_TP_const (SQ_TP_const), 7

 .SQ_TP_gpr_phase (SQ_TP_gpr_phase), 8

 .SQ_TP_gpr_wr_addr(SQ_TP_gpr_wr_addr), // sends gpr_wr_addr plus type over 4 9
cycles 10

 .SQ_TP_thread_id (SQ_TP_thread_id), // sends thread_id plus end_of_group over 4 cycles 11

 12

 .u0_SQ_TP_lod_correct(u0_SQ_TP_lod_correct), 13

 .u1_SQ_TP_lod_correct(u1_SQ_TP_lod_correct), 14

 .u2_SQ_TP_lod_correct(u2_SQ_TP_lod_correct), 15

 .u3_SQ_TP_lod_correct(u3_SQ_TP_lod_correct), 16

 17

 .u0_SQ_TP_pix_mask(u0_SQ_TP_pix_mask), 18

 .u1_SQ_TP_pix_mask(u1_SQ_TP_pix_mask), 19

 .u2_SQ_TP_pix_mask(u2_SQ_TP_pix_mask), 20

 .u3_SQ_TP_pix_mask(u3_SQ_TP_pix_mask), 21

 22

 // stall 23

 .TP_SQ_fetch_stall(TP_SQ_fetch_stall), // stall input from TP 24

 25

 .busy(tis_busy), 26

 Page 63 of 92
Ex. 2093 - sq.v

 .clk(sclk_global), 1

 .reset(srst) 2

); 3

 4

 5

 // --- 6

 // --- 7

 // -- ALU Instruction Pipe 0, Pipe 1, and ALU Pipe Output Mux -- 8

 // --- 9

 // --- 10

 11

 // - interconnect wires 12

 13

 // - aif - 14

 wire [0:0] aif0_instr_rts; 15

 wire [95:0] aif0_instr; 16

 wire [`SQ_VTX_CTL_PKT_WIDTH-1:0] aif0_ctl_pkt; 17

 wire [0:0] aif0_thread_type; 18

 wire [5:0] aif0_thread_id; 19

 wire [6:0] aif0_pc_base; 20

 21

 wire aif1_instr_rts; 22

 wire [95:0] aif1_instr; 23

 wire [`SQ_VTX_CTL_PKT_WIDTH-1:0] aif1_ctl_pkt; 24

 wire [5:0] aif1_thread_id; 25

 Page 64 of 92
Ex. 2093 - sq.v

 wire [6:0] aif1_pc_base; 1

 2

 3

 // - aiq - 4

 wire [6:0] aiq0_pc_base; 5

 wire [63:0] aiq0_valid_bits; 6

 wire [101:0] aiq0_instr; 7

 8

 wire [2:0] aiq0_context_id; 9

 wire [5:0] aiq0_thread_id; 10

 11

 wire [6:0] aiq1_pc_base; 12

 wire [63:0] aiq1_valid_bits; 13

 wire [101:0] aiq1_instr; 14

 15

 wire [2:0] aiq1_context_id; 16

 wire [5:0] aiq1_thread_id; 17

 18

 // - ais - 19

 wire [0:0] ais0_acs_rd_rts; 20

 wire [8:0] ais0_acs_rd_addr; 21

 wire [0:0] ais0_instr_start; 22

 wire [0:0] ais0_instr_stall; 23

 //wire [0:0] ais0_ld_isr; 24

 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 372 of 611

 Page 65 of 92
Ex. 2093 - sq.v

 wire [0:0] ais1_acs_rd_rts; 1

 wire [8:0] ais1_acs_rd_addr; 2

 wire [0:0] ais1_instr_start; 3

 wire [0:0] ais1_instr_stall; 4

 //wire [0:0] ais1_ld_isr; 5

 6

// this next line moved before sq_vism which now uses this signal 7

// wire [7:0] acs_context_valid; 8

 9

 // 10

 wire acs_rd_rts; 11

 wire [8:0] acs_rd_addr; 12

 wire [2:0] acs_rd_context_id; 13

 wire [127:0] acs_rd_data; 14

 wire [0:0] aiq0_rts; 15

 wire [0:0] aiq1_rts; 16

 17

 wire [1:0] aif0_export_info; 18

 wire [1:0] aif1_export_info; 19

 wire [1:0] aiq0_export_info; 20

 wire [1:0] aiq1_export_info; 21

 22

 // ----------------------------- 23

 // -- ALU Instruction Fetch 0 -- 24

 // ----------------------------- 25

 Page 66 of 92
Ex. 2093 - sq.v

 1

 sq_target_instr_fetch 2

 #(3

 `SQ_VTX_CTL_PKT_WIDTH // ALU does not need lod correct bits from PIX ctl pkts 4

) 5

 u0_sq_alu_instr_fetch 6

 (7

 .target_strap (`SQ_ALU0_STRAP), // hardwired to TEX_STRAP, 8
ALU0_STRAP, or ALU1_STRAP 9

 10

 // local registers 11

 .inst_base_vtx (inst_base_vtx), // vertex base 12

 .inst_base_pix (inst_base_pix), // pixel base 13

 14

 // cfs interface 15

 .cfs_rts (acfs0_rts), // ctl packet and ptr are valid 16

 .cfs_ctl_pkt (acfs0_ctl_pkt), // the control packet (lod for pix_tex, 17
valid_bits, gpr_base, context_id) 18

 .cfs_instr_ptr (acfs0_tgt_instr_ptr), // the Instruction Store address of the first target 19
instruction 20

 .cfs_instr_cnt (acfs0_tgt_instr_cnt), // the number of instructions to be fetched 21

 .cfs_pc_base (acfs0_state[6:0]), // the param cache base (alloc'd in arbiter) 22

 .cfs_thread_type (acfs0_thread_type), // vertex or pixel 23

 .cfs_thread_id (acfs0_status[21:16]), // 24

 //.cfs_pulse_sx (acfs0_status[13]), // 25

 //.cfs_export_id (acfs0_state[7]), // export_id that cfs0 is pushing down pipe 0 (sets 26
global export_id) 27

 Page 67 of 92
Ex. 2093 - sq.v

 .cfs_export_info ({acfs0_state[7], acfs0_status[13]}), // export_info = {exp_id, pulse_sx} 1

 .cfs_last_in_thread(acfs0_status[12]), // last instr in shader prog 2

 .tif_rtr (aif0_rtr), // AIF0 can take a new packet 3

 4

 // instruction store interface 5

 .is_read_addr (aif0_is_read_addr), // instruction store read address 6

 .is_read_data (is_read_data), // instruction store read data 7

 .is_phase (is_phase), // instruction store phase 8

 .alu_phase (alu_phase), // tied low for TEX instance, to alu_phase for ALU 9
instances 10

 11

 // outputs to the target instruction decoder/queue 12

 .tif_pc_base_q (aif0_pc_base), // the target control packet (pipelined from input) 13

 .tif_ctl_pkt_q (aif0_ctl_pkt), // the target control packet (pipelined from input) 14

 .tif_export_info_q(aif0_export_info), // 15

 .tif_last_in_thread_q(aif0_last_in_thread), // last instruction flag 16

 .tif_last_in_group_q(aif0_last_in_group), // last instruction flag 17

 .tif_thread_type_q(aif0_thread_type), // 0: pixel, 1: vertex 18

 .tif_thread_id_q (aif0_thread_id), // the target thread_id (pipelined from 19
input) 20

 .tif_instr_q (aif0_instr), // the target instruction data register (TIR) 21

 .tif_instr_rts_q (aif0_instr_rts), // the target instr register is valid 22

 .tiq_rtr (aiq0_rtr), // the target instr queue is ready to take the AIR 23
(and other pipeline data) 24

 25

 .busy(aif0_busy), 26

 Page 68 of 92
Ex. 2093 - sq.v

 .clk(sclk_global), 1

 .reset(srst) 2

); 3

 4

 5

 // ----------------------------- 6

 // -- ALU Instruction Queue 0 -- 7

 // ----------------------------- 8

 9

 parameter AIQ_NUM_WORDS = 4; 10

 parameter AIQ_ADDR_BITS = 2; 11

 12

 sq_alu_instr_queue 13

 // #(AIQ_NUM_WORDS, AIQ_ADDR_BITS) 14

 u0_sq_alu_instr_queue 15

 (16

 .write_rts (aif0_instr_rts), 17

 .write_rtr (aiq0_rtr), 18

 19

 // AIQ inputs 20

 //write_data(), 21

 .aif_export_info (aif0_export_info), 22

 .aif_pc_base_q (aif0_pc_base), // param cache base 23

 .aif_last_in_thread_q(aif0_last_in_thread), // last instruction flag 24

 .aif_last_in_group_q(aif0_last_in_group), // last instruction flag 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 373 of 611

 Page 69 of 92
Ex. 2093 - sq.v

 .aif_thread_type_q(aif0_thread_type), // 0: pixel, 1: vertex 1

 .aif_ctl_pkt_q (aif0_ctl_pkt), // control packet 2

 .aif_thread_id_q (aif0_thread_id), // thread_id 3

 .aif_instr_q (aif0_instr), // instruction register (TIR) 4

 5

 .read_rts (aiq0_rts), 6

 .read_rtr (ais0_rtr), 7

 //read_data(), // {control packet, clause num, instruction} 8

 9

 // AIQ outputs 10

 .aiq_export_info (aiq0_export_info), // {exp_id, pulse_sx} 11

 .aiq_pc_base (aiq0_pc_base), // param cache base addr 12

 .aiq_last_in_thread(aiq0_last_in_thread), // last instruction flag 13

 .aiq_last_in_group(aiq0_last_in_group), // last instruction flag 14

 15

 .aiq_context_id (aiq0_context_id), // context_id (from ctl packet) 16

 .aiq_valid_bits (aiq0_valid_bits), // valid bits (from ctl packet) 17

 .aiq_thread_id (aiq0_thread_id), // thread_id 18

 .aiq_thread_type (aiq0_thread_type), // thread_id 19

 .aiq_instr (aiq0_instr), // instruction 20

 21

 .clk(sclk_global), 22

 .reset(srst) 23

); 24

 25

 Page 70 of 92
Ex. 2093 - sq.v

 1

 // --------------------------------- 2

 // -- ALU Instruction Sequencer 0 -- 3

 // --------------------------------- 4

 5

 sq_alu_instr_seq 6

 u0_sq_alu_instr_seq 7

 (8

 .alu_strap (LO), // tells whether alu0 or alu1 9

 10

 // AIQ interface 11

 .aiq_rts (aiq0_rts), // rts from AIQ FIFO 12

 .aiq_export_info (aiq0_export_info), // {exp_id, pulse_sx} 13

 .aiq_last_in_thread(aiq0_last_in_thread), // last instruction flag 14

 .aiq_last_in_group(aiq0_last_in_group), // last instruction flag 15

 .aiq_context_id (aiq0_context_id), // context_id (from ctl packet) 16

 .aiq_thread_id (aiq0_thread_id), // thread_id 17

 .aiq_thread_type (aiq0_thread_type), // thread_id 18

 .aiq_instr (aiq0_instr), // instruction 19

 20

 .ais_rtr(ais0_rtr), // AIQ FIFO pop 21

 22

 // phase inputs 23

 .gpr_phase (gpr_phase), 24

 .alu_phase (alu_phase), 25

 Page 71 of 92
Ex. 2093 - sq.v

 1

 // AIS outputs to shader seq 2

 .ais_done (ais0_done), 3

 .ais_thread_type_q(ais0_thread_type), 4

 .ais_thread_id_q (ais0_thread_id), 5

 6

 .ais_free_done (ais0_free_done), 7

 .ais_free_id_q (ais0_free_id), 8

 9

 // to AIS output module 10

 .ais_instr_start (ais0_instr_start), 11

 .ais_instr_stall (ais0_instr_stall), 12

 .ais_acs_rd_rts (ais0_acs_rd_rts), 13

 .ais_acs_rd_addr (ais0_acs_rd_addr), 14

 15

 //.aluconst_context_valid(acs_context_valid), 16

 17

 .busy(ais0_busy), 18

 .clk(sclk_global), 19

 .reset(srst) 20

); 21

 22

 23

 // ------------------------------- 24

 // -- ALU Instruction Fetch 1 -- 25

 Page 72 of 92
Ex. 2093 - sq.v

 // ------------------------------- 1

 2

 sq_target_instr_fetch 3

 #(4

 `SQ_VTX_CTL_PKT_WIDTH 5

) 6

 u1_sq_alu_instr_fetch 7

 (8

 .target_strap (`SQ_ALU1_STRAP), // hardwired to TEX_STRAP, 9
ALU0_STRAP, or ALU1_STRAP 10

 11

 // local registers 12

 .inst_base_vtx (inst_base_vtx), // vertex base 13

 .inst_base_pix (inst_base_pix), // pixel base (only in separate mode) 14

 15

 // cfs interface 16

 .cfs_rts (acfs1_rts), // ctl packet and ptr are valid 17

 .cfs_ctl_pkt (acfs1_ctl_pkt), // the control packet (lod for pix_tex, 18
valid_bits, gpr_base, context_id) 19

 .cfs_instr_ptr (acfs1_tgt_instr_ptr), // the Instruction Store address of the first target 20
instruction 21

 .cfs_instr_cnt (acfs1_tgt_instr_cnt), // the number of instructions to be fetched 22

 .cfs_pc_base (acfs1_state[6:0]), // the param cache base (alloc'd in arbiter) 23

 //.cfs_pulse_sx (acfs1_status[13]), // 24

 //.cfs_export_id (acfs1_state[7]), // export_id that cfs0 is pushing down pipe 0 (sets 25
global export_id) 26

 .cfs_export_info ({acfs1_state[7], acfs1_status[13]}), // export_info = {exp_id, pulse_sx} 27

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 374 of 611

 Page 73 of 92
Ex. 2093 - sq.v

 .cfs_thread_type (acfs1_thread_type), // vertex or pixel 1

 .cfs_thread_id (acfs1_status[21:16]), // 2

 .cfs_last_in_thread(acfs1_status[12]), // last instr in shader prog 3

 .tif_rtr (aif1_rtr), // AIF1 can take a new packet 4

 5

 // instruction store interface 6

 .is_read_addr (aif1_is_read_addr), // instruction store read address 7

 .is_read_data (is_read_data), // instruction store read data 8

 .is_phase (is_phase), // instruction store phase 9

 .alu_phase (alu_phase), // tied low for TEX instance, to alu_phase for ALU instances 10

 11

 // outputs to the target instruction decoder/queue 12

 .tif_pc_base_q (aif1_pc_base), // the target control packet (pipelined from input) 13

 .tif_ctl_pkt_q (aif1_ctl_pkt), // the target control packet (pipelined from input) 14

 .tif_export_info_q(aif1_export_info), // 15

 .tif_last_in_group_q(aif1_last_in_group), // last instruction flag 16

 .tif_last_in_thread_q(aif1_last_in_thread), // last instruction flag 17

 .tif_thread_type_q(aif1_thread_type), // 0: pixel, 1: vertex 18

 .tif_thread_id_q (aif1_thread_id), // the target thread_id (pipelined from 19
input) 20

 .tif_instr_q (aif1_instr), // the target instruction data register (TIR) 21

 .tif_instr_rts_q (aif1_instr_rts), // the target instr register is valid 22

 .tiq_rtr (aiq1_rtr), // the target instr queue is ready to take the AIR 23
(and other pipeline data) 24

 25

 .busy(aif1_busy), 26

 Page 74 of 92
Ex. 2093 - sq.v

 .clk(sclk_global), 1

 .reset(srst) 2

); 3

 4

 5

 // ----------------------------- 6

 // -- ALU Instruction Queue 1 -- 7

 // ----------------------------- 8

 9

 sq_alu_instr_queue 10

 //#(AIQ_NUM_WORDS, AIQ_ADDR_BITS) 11

 u1_sq_alu_instr_queue 12

 (13

 .write_rts (aif1_instr_rts), 14

 .write_rtr (aiq1_rtr), 15

 16

 // AIQ inputs 17

 //write_data(), 18

 .aif_export_info (aif1_export_info), // control packet 19

 .aif_pc_base_q (aif1_pc_base), // control packet 20

 .aif_last_in_thread_q(aif1_last_in_thread), // last instruction flag 21

 .aif_last_in_group_q(aif1_last_in_group), // last instruction flag 22

 .aif_ctl_pkt_q (aif1_ctl_pkt), // control packet 23

 .aif_thread_type_q(aif1_thread_type), // 0: pixel, 1: vertex 24

 .aif_thread_id_q (aif1_thread_id), // thread_id 25

 Page 75 of 92
Ex. 2093 - sq.v

 .aif_instr_q (aif1_instr), // instruction register (TIR) 1

 2

 .read_rts (aiq1_rts), 3

 .read_rtr (ais1_rtr), 4

 //read_data(), // {control packet, clause num, instruction} 5

 6

 // AIQ outputs 7

 .aiq_export_info (aiq1_export_info), // {exp_id, pulse_sx} 8

 .aiq_pc_base (aiq1_pc_base), // param cache base addr 9

 .aiq_last_in_thread(aiq1_last_in_thread), // last instruction flag 10

 .aiq_last_in_group(aiq1_last_in_group), // last instruction flag 11

 .aiq_context_id (aiq1_context_id), // context_id (from ctl packet) 12

 .aiq_valid_bits (aiq1_valid_bits), // valid bits (from ctl packet) 13

 .aiq_thread_type (aiq1_thread_type), // 0: pixel, 1: vertex 14

 .aiq_thread_id (aiq1_thread_id), // thread_id 15

 .aiq_instr (aiq1_instr), // instruction 16

 17

 .clk(sclk_global), 18

 .reset(srst) 19

); 20

 21

 22

 // --------------------------------- 23

 // -- ALU Instruction Sequencer 1 -- 24

 // --------------------------------- 25

 Page 76 of 92
Ex. 2093 - sq.v

 1

 sq_alu_instr_seq 2

 u1_sq_alu_instr_seq 3

 (4

 .alu_strap (HI), // whether ALU 0 or ALU 1 5

 6

 // AIQ interface 7

 .aiq_rts (aiq1_rts), // rts from AIQ FIFO 8

 .aiq_export_info (aiq1_export_info), // {exp_id, pulse_sx} 9

 .aiq_last_in_thread(aiq1_last_in_thread), // last instruction flag 10

 .aiq_last_in_group(aiq1_last_in_group), // last instruction flag 11

 .aiq_context_id (aiq1_context_id), // context_id (from ctl packet) 12

 .aiq_thread_id (aiq1_thread_id), // thread_id 13

 .aiq_thread_type (aiq1_thread_type), // thread type (vtx/pix) 14

 .aiq_instr (aiq1_instr), // instruction 15

 16

 .ais_rtr (ais1_rtr), // AIQ FIFO pop 17

 18

 // phase inputs 19

 .gpr_phase (gpr_phase), // GPR phase 20

 .alu_phase (alu_phase), 21

 22

 // AIS outputs to shader seq 23

 .ais_done (ais1_done), // 24

 .ais_thread_type_q(ais1_thread_type), // 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 375 of 611

 Page 77 of 92
Ex. 2093 - sq.v

 .ais_thread_id_q (ais1_thread_id), // 1

 2

 .ais_free_done (ais1_free_done), 3

 .ais_free_id_q (ais1_free_id), 4

 5

 // to AIS output module 6

 .ais_instr_start (ais1_instr_start), 7

 .ais_instr_stall (ais1_instr_stall), 8

 .ais_acs_rd_rts (ais1_acs_rd_rts), 9

 .ais_acs_rd_addr (ais1_acs_rd_addr), 10

 11

 //.aluconst_context_valid(acs_context_valid), 12

 13

 .busy(ais1_busy), 14

 .clk(sclk_global), 15

 .reset(srst) 16

); 17

 18

 19

 // --- 20

 // -- ALU Instruction Sequencer Output Mux -- 21

 // --- 22

 23

 sq_ais_output 24

 u_sq_ais_output 25

 Page 78 of 92
Ex. 2093 - sq.v

 (1

 // AIQ inputs 2

 .aiq0_export_id (aiq0_export_info[1]), // 3

 .aiq0_pc_base (aiq0_pc_base), // param cache base ptr 4

 .aiq0_valid_bits (aiq0_valid_bits), // valid bits (from ctl packet) 5

 .aiq0_context_id (aiq0_context_id), // context_id (from ctl packet) 6

 .aiq0_instr (aiq0_instr), // instruction 7

 .aiq0_gpr_rd_en (aiq0_rts), 8

 9

 .aiq1_export_id (aiq1_export_info[1]), // 10

 .aiq1_pc_base (aiq1_pc_base), 11

 .aiq1_valid_bits (aiq1_valid_bits), 12

 .aiq1_context_id (aiq1_context_id), 13

 .aiq1_instr (aiq1_instr), 14

 .aiq1_gpr_rd_en (aiq1_rts), 15

 16

 // AIS inputs 17

 .ais0_acs_rd_rts (ais0_acs_rd_rts), // alu const store read addr valid 18

 .ais0_acs_rd_addr (ais0_acs_rd_addr), // alu constant store read address (from instr) 19

 .ais0_instr_start (ais0_instr_start), // just OR these guys before reg to SP 20

 .ais0_instr_stall (ais0_instr_stall), 21

 //.ais0_ld_isr(LO), 22

 23

 .ais1_acs_rd_rts (ais1_acs_rd_rts), 24

 .ais1_acs_rd_addr (ais1_acs_rd_addr), 25

 Page 79 of 92
Ex. 2093 - sq.v

 .ais1_instr_start (ais1_instr_start), 1

 .ais1_instr_stall (ais1_instr_stall), 2

 //.ais1_ld_isr(LO), 3

 4

 // other inputs that get muxed out to the SP or SX 5

 .tis_gpr_rd_addr (tis_gpr_rd_addr), // texture fetch read address 6

 .tis_gpr_rd_en (tiq_rts), // texture fetch read enable 7

 .ia_vertex_sel (ia_vertex_sel), // select VISM gpr write address vs. PISM gpr 8
write address 9

 .vi_gpr_wr_addr (vi_gpr_wr_addr), // VISM gpr write address 10

 .vi_gpr_wr_en (vi_gpr_wr_en), // VISM gpr write enable 11

 .pi_gpr_wr_addr (pi_gpr_wr_addr), // PISM gpr write address 12

 .pi_gpr_wr_en (pi_gpr_wr_en), // PISM gpr write enable 13

 14

 // phase inputs 15

 .gpr_phase(gpr_phase), 16

 .alu_phase(alu_phase), 17

 18

 // ALU Const Store Interface 19

 .acs_rd_rts (acs_rd_rts), // alu constant store read address valid 20

 .acs_rd_addr (acs_rd_addr), // alu constant store read address 21

 .acs_rd_context_id (acs_rd_context_id), // alu constant store read state (context) 22

 .acs_rd_data (acs_rd_data), // alu constant store read data 23

 24

 // outputs to SP 25

 .SQ_SP_gpr_wr_addr(SQ_SP_gpr_wr_addr), 26

 Page 80 of 92
Ex. 2093 - sq.v

 .SQ_SP_gpr_wr_en ({u0_SQ_SP_gpr_wr_en, u1_SQ_SP_gpr_wr_en, 1
u2_SQ_SP_gpr_wr_en, u3_SQ_SP_gpr_wr_en}), 2

 .SQ_SP_gpr_rd_addr(SQ_SP_gpr_rd_addr), 3

 .SQ_SP_gpr_rd_en (SQ_SP_gpr_rd_en), 4

 .SQ_SP_gpr_phase (SQ_SP_gpr_phase_mux), 5

 .SQ_SP_gpr_input_sel(SQ_SP_gpr_input_mux), 6

 .SQ_SP_gpr_channel_mask(SQ_SP_channel_mask), 7

 8

 .SQ_SP_instr_start(SQ_SP_instruct_start), 9

 .SQ_SP_instr_stall(SQ_SP_stall), 10

 .SQ_SP_instr (SQ_SP_instruct), 11

 .SQ_SP_const (SQ_SP_const), 12

 13

 // 14

 .SQ_SP_exporting (SQ_SP_exporting), 15

 .SQ_SP_exp_id (SQ_SP_exp_id), 16

 .u0_SQ_SP_write_mask(u0_SQ_SP_pix_mask), 17

 .u1_SQ_SP_write_mask(u1_SQ_SP_pix_mask), 18

 .u2_SQ_SP_write_mask(u2_SQ_SP_pix_mask), 19

 .u3_SQ_SP_write_mask(u3_SQ_SP_pix_mask), 20

 21

 // outputs to SX 22

 .SQ_SX_pc_wr_addr (SQ_SX_pc_wr_addr), 23

 .SQ_SX_pc_wr_en (SQ_SX_pc_wr_en), 24

 .SQ_SX_pc_channel_mask(SQ_SX_pc_channel_mask), 25

 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 376 of 611

 Page 81 of 92
Ex. 2093 - sq.v

 .clk(sclk_global), 1

 .reset(srst) 2

 3

); 4

 5

 6

 // --- 7

 // --- 8

 // -- RBBM Interface, Local Registers -- 9

 // --- 10

 // --- 11

 12

 wire [31:0] rbi_data; 13

 wire [14:0] rbi_addr; 14

 wire [00:0] rbi_is_rts; 15

 wire [00:0] rbi_is_rtr; 16

 wire [00:0] rbi_tcs_rts; 17

 wire [00:0] rbi_tcs_rtr; 18

 wire [00:0] rbi_acs_rts; 19

 wire [00:0] rbi_acs_rtr; 20

 wire [00:0] rbi_draw_command; 21

 wire [15:0] sq_busy_bits = {vtx_write_busy, pix_write_busy, vtx_tb_busy, 22

 pix_tb_busy, tcfs_busy, acfs0_busy, acfs1_busy, 23

 tif_busy, tis_busy, aif0_busy, aif1_busy, 24

 ais0_busy, ais1_busy, aiq0_rts, aiq1_rts, tiq_rts}; 25

 Page 82 of 92
Ex. 2093 - sq.v

 1

 sq_rbbm_interface 2

 u_sq_rbbm_interface 3

 (4

 // RBBM 5

 .RBBM_a (RBBM_a), 6

 .RBBM_wd (RBBM_wd), 7

 .RBBM_we (RBBM_we), 8

 .RBBM_be (RBBM_be), 9

 .RBBM_re (RBBM_re), 10

 .RBBM_SQ_soft_reset(RBBM_SQ_soft_reset), 11

 .SQ_RBBM_nrtrtr (SQ_RBBM_nrtrtr), 12

 .SQ_RBBM_rtr (SQ_RBBM_rtr), 13

 .SQ_RBBM_cntx0_busy (SQ_RBBM_cntx0_busy), 14

 .SQ_RBBM_cntx17_busy (SQ_RBBM_cntx17_busy), 15

 16

 //RBBM read data daisy chain 17

 .RBB_rs_in (RBB_rs), 18

 .RBB_rs_out (SQ_RBB_rs), 19

 .RBB_rd_in (RBB_rd), 20

 .RBB_rd_out (SQ_RBB_rd), 21

 22

 // common 23

 .o_rbi_data (rbi_data), 24

 .o_rbi_addr (rbi_addr), 25

 Page 83 of 92
Ex. 2093 - sq.v

 .o_context_switch (rbi_draw_command), 1

 .i_sq_busy_bits (sq_busy_bits), 2

 // aluconst 3

 .o_aluconst_rts (rbi_acs_rts), 4

 .i_aluconst_rtr (rbi_acs_rtr), 5

 6

 // texconst 7

 .o_texconst_rts (rbi_tcs_rts), 8

 .i_texconst_rtr (rbi_tcs_rtr), 9

 10

 // instr store 11

 .o_ins_rts (rbi_is_rts), 12

 .i_ins_rtr (rbi_is_rtr), 13

 14

 // ctl flow const 15

 //.o_cfc_rts (), 16

 .i_cfc_rtr (LO), 17

 18

 // local registers 19

 //.ps_num_reg_set (ps_num_reg_set), 20

 //.vs_num_reg_set (vs_num_reg_set), 21

 //.param_shade_set (param_shade_set), 22

 23

 //.o_ps_base_set (ps_base_set), 24

 //.o_vs_base_set (vs_base_set), 25

 Page 84 of 92
Ex. 2093 - sq.v

 .o_inst_base_vtx (inst_base_vtx), 1

 .o_inst_base_pix (inst_base_pix), 2

 .o_sq_wrapping_1_set (sq_wrapping_1_set), 3

 .o_sq_wrapping_0_set (sq_wrapping_0_set), 4

 //.o_sampling_mode_set (sampling_mode_set), 5

 //.o_gen_index_set (gen_index_set), 6

 //.o_param_gen_i0_set (param_gen_i0_set), 7

 //.o_num_param_set (vs_exp_count7_set), 8

 9

 .i_clk (sclk_global), 10

 .i_reset (srst), 11

 12

 // New State Register Outputs 13

 14

 .o_vs_program_base_set (vs_program_base_set), 15

 .o_vs_program_size_set (), 16

 .o_ps_program_base_set (ps_program_base_set), 17

 .o_ps_program_size_set (), 18

 .o_sq_cf_program_size_vs_cf_size_set (), 19

 .o_sq_cf_program_size_ps_cf_size_set (), 20

 .o_interpolator_cntl_param_shade_set (param_shade_set), 21

 .o_interpolator_cntl_sampling_pattern_set(), 22

 .o_program_cntl_vs_num_reg_set (vs_num_reg_set), 23

 .o_program_cntl_ps_num_reg_set (ps_num_reg_set), 24

 .o_program_cntl_vs_resource_set (vs_resource_set), 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 377 of 611

 Page 85 of 92
Ex. 2093 - sq.v

 .o_program_cntl_ps_resource_set (ps_resource_set), 1

 .o_program_cntl_param_gen_i0_set (param_gen_i0_set), 2

 .o_program_cntl_gen_index_set (gen_index_set), 3

 .o_program_cntl_vs_export_count_set (vs_export_count_set), 4

 .o_program_cntl_vs_export_mode_set (vs_export_mode_set), 5

 .o_program_cntl_ps_export_mode_set (ps_export_mode_set), 6

 .o_wrapping_0_param_wrap_0_set (), 7

 .o_wrapping_0_param_wrap_1_set (), 8

 .o_wrapping_0_param_wrap_2_set (), 9

 .o_wrapping_0_param_wrap_3_set (), 10

 .o_wrapping_0_param_wrap_4_set (), 11

 .o_wrapping_0_param_wrap_5_set (), 12

 .o_wrapping_0_param_wrap_6_set (), 13

 .o_wrapping_0_param_wrap_7_set (), 14

 .o_wrapping_1_param_wrap_8_set (), 15

 .o_wrapping_1_param_wrap_9_set (), 16

 .o_wrapping_1_param_wrap_10_set (), 17

 .o_wrapping_1_param_wrap_11_set (), 18

 .o_wrapping_1_param_wrap_12_set (), 19

 .o_wrapping_1_param_wrap_13_set (), 20

 .o_wrapping_1_param_wrap_14_set (), 21

 .o_wrapping_1_param_wrap_15_set (), 22

 .o_vs_const_base_set (), 23

 .o_vs_const_size_set (), 24

 .o_ps_const_base_set (), 25

 Page 86 of 92
Ex. 2093 - sq.v

 .o_ps_const_size_set (), 1

 .o_context_misc_inst_pred_optimize_set(), 2

 .o_cf_rd_base_rd_base_set (), 3

 .o_provoking_vtx_provoking_vtx_set (), 4

 .o_debug_misc_0_db_prob_on_set (), 5

 .o_debug_misc_0_db_prob_break_set (), 6

 .o_debug_misc_0_db_prob_addr_set (), 7

 .o_debug_misc_0_db_prob_count_set (), 8

 .o_debug_misc_1_db_on_pix_set (), 9

 .o_debug_misc_1_db_on_vtx_set (), 10

 .o_debug_misc_1_db_inst_count_set (), 11

 .o_debug_misc_1_db_break_addr_set () 12

); 13

 14

 // --- 15

 // --- 16

 // -- Instruction Store, ALU and Texture Constant Stores -- 17

 // --- 18

 // --- 19

 20

 wire [01:0] texconst_phase; 21

 22

 // ----------------------- 23

 // -- Instruction Store -- 24

 // ----------------------- 25

 Page 87 of 92
Ex. 2093 - sq.v

 1

 sq_instruction_store 2

 u_sq_inst_store 3

 (4

 // memory access phase control 5

 .i_is_phase (is_phase), 6

 .i_is_sub_phase (is_subphase), 7

 8

 // RBI 9

 .i_rbi_data (rbi_data), 10

 .i_rbi_addr (rbi_addr[14:0]), 11

 .i_rts (rbi_is_rts), 12

 .o_rtr (rbi_is_rtr), 13

 14

 // SQ 15

 .i_tex_cf_addr (tcfs_is_read_addr), 16

 .i_alu0_cf_addr (acfs0_is_read_addr), 17

 .i_alu1_cf_addr (acfs1_is_read_addr), 18

 .i_tex_addr (tif_is_read_addr), 19

 .i_alu0_addr (aif0_is_read_addr), 20

 .i_alu1_addr (aif1_is_read_addr), 21

 22

 .o_is_data (is_read_data), 23

 24

 .i_clk (sclk_global), 25

 Page 88 of 92
Ex. 2093 - sq.v

 .i_reset (srst) 1

); 2

 3

 4

 // ---------------------------- 5

 // -- Texture Constant Store -- 6

 // ---------------------------- 7

 8

 sq_texconst_top 9

 u_sq_texconst_top 10

 (11

 // from RBI 12

 .i_data_in (rbi_data), 13

 .i_addr_in (rbi_addr[7:3]), 14

 .i_rts (rbi_tcs_rts), 15

 .o_rtr (rbi_tcs_rtr), 16

 17

 .i_context_switch_temp(rbi_draw_command), 18

 19

 // From SQ 20

 .i_sq_read_laddr (texconst_rd_addr), // this really comes directly from TIQ (now passes 21
thru TIS) 22

 .i_sq_read_context(tiq_context_id), 23

 .i_texconst_phase (texconst_phase), // two cycles for read (0,1) and two for write (2,3) 24

 .o_read_data (texconst_rd_data), 25

 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 378 of 611

 Page 89 of 92
Ex. 2093 - sq.v

 //.o_context_valid (), 1

 2

 .i_sq_context_done(pix_state_change), 3

 .i_sq_context (pix_old_state), 4

 5

 .i_clk (sclk_global), 6

 .i_reset (srst) 7

); 8

 9

 10

 // ---------------------------- 11

 // -- ALU Constant Store -- 12

 // ---------------------------- 13

 14

 sq_aluconst_top 15

 u_sq_aluconst_top 16

 (17

 // RBI interface 18

 .i_data_in (rbi_data), 19

 .i_addr_in (rbi_addr[10:4]), 20

 .i_rts (rbi_acs_rts), 21

 .o_rtr (rbi_acs_rtr), 22

 23

 .i_context_switch_temp(rbi_draw_command), 24

 25

 Page 90 of 92
Ex. 2093 - sq.v

 // AIS output read interface 1

 .i_sq_read_laddr (acs_rd_addr), // this really comes directly from TIQ (now passes thru 2
TIS) 3

 .i_sq_read_context(acs_rd_context_id), 4

 .o_read_data (acs_rd_data), 5

 6

 .o_context_valid (acs_context_valid), 7

 8

 .i_sq_context_done(pix_state_change), 9

 .i_sq_context (pix_old_state), 10

 11

 .i_clk (sclk_global), 12

 .i_reset (srst) 13

); 14

 15

 16

 // --- 17

 // --- 18

 // -- Miscellaneous -- 19

 // --- 20

 // --- 21

 22

 // ---------------------- 23

 // -- Phase Generation -- 24

 // ---------------------- 25

 26

 Page 91 of 92
Ex. 2093 - sq.v

 sq_phase_gen 1

 u_sq_phase_gen 2

 (3

 .gpr_phase (gpr_phase), 4

 .texconst_phase (texconst_phase), 5

 .is_phase (is_phase), 6

 .is_subphase (is_subphase), 7

 .alu_phase (alu_phase), 8

 .cfs_phase (cfs_phase), 9

 .state_read_phase (state_read_phase), 10

 11

 .clk (sclk_global), 12

 .reset (srst) 13

); 14

 15

/* 16

 always @(posedge sclk_global) 17

 begin 18

 $fsdbDumpMem(testbench.top.gc.shader_0.uvector0.umacc_gpr0.udum_mem.bram); 19

 end 20

*/ 21

 22

endmodule // sequencer_top 23

 24

 25

 Page 92 of 92
Ex. 2093 - sq.v

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 379 of 611

Page 1 of 34
Ex. 2094 - sq_ais_output.v

`include "header.v" 1

//-- 2

// 3

// $Id: //depot/r400/devel/parts_lib/src/gfx/sq/ais/sq_ais_output.v#16 $ 4

// 5

// $Change: 41217 $ 6

// 7

// Copyright: Trade secret of ATI Technologies, Inc. 8

// © Copyright 2001-2002, ATI Technologies, Inc., (unpublished) 9

// 10

// All rights reserved. This notice is intended as a precaution against 11

// inadvertent publication and does not imply publication or any waiver 12

// of confidentiality. The year included in the foregoing notice is the 13

// year of creation of the work. 14

// 15

//-- 16

// 17

// sq_ais_output.v 18

// 19

// - takes ALU instruction data from both AIQs 20

// - selects AIQ output to send to SP based on alu_phase 21

// - selects AIQ constant store read addr to send to ACS based on alu_phase 22

// 23

// - also takes tex instr's gpr read addr from TIQ 24

// 25

Page 2 of 34
Ex. 2094 - sq_ais_output.v

// issues: 1

// - 2

// 3

// 4

`include "sq_defs.v" 5

 6

module sq_ais_output 7

(8

 // inputs from the AIQs 9

 aiq0_export_id, // 10

 aiq0_pc_base, // param cache base 11

 aiq0_valid_bits, // valid bits (from ctl packet) 12

 aiq0_context_id, // state (context) 13

 aiq0_instr, // instruction 14

 aiq0_gpr_rd_en, // 15

 16

 aiq1_export_id, // 17

 aiq1_pc_base, // param cache base 18

 aiq1_valid_bits, // valid bits (from ctl packet) 19

 aiq1_context_id, // state (context) 20

 aiq1_instr, // instruction 21

 aiq1_gpr_rd_en, // 22

 23

 // inputs from the AISs 24

 ais0_acs_rd_rts, // alu const store read addr valid 25

Page 3 of 34
Ex. 2094 - sq_ais_output.v

 ais0_acs_rd_addr, // alu constant store read address (from instr) 1

 ais0_instr_start, // just OR these guys before reg to SP 2

 ais0_instr_stall, 3

 4

 ais1_acs_rd_rts, // alu const store read addr valid 5

 ais1_acs_rd_addr, // alu const store read addr 6

 ais1_instr_start, 7

 ais1_instr_stall, 8

 9

 // other inputs that get muxed out to the SP or SX 10

 tis_gpr_rd_addr, // texture fetch read address 11

 tis_gpr_rd_en, // texture fetch read address 12

 ia_vertex_sel, // select VISM gpr write address, enable to drive to SP when 1 (select 13
pixel if 0) 14

 vi_gpr_wr_addr, // VISM gpr write address 15

 vi_gpr_wr_en, // VISM gpr write enable 16

 pi_gpr_wr_addr, // PISM gpr write address 17

 pi_gpr_wr_en, // VISM gpr write enable 18

 19

 // phase inputs 20

 gpr_phase, // GPR phase 21

 alu_phase, // alu interleaving phase 22

 23

 // ALU Constant Store interface 24

 acs_rd_rts, // alu constant store read addr valid 25

 acs_rd_addr, // alu constant store read addr 26

Page 4 of 34
Ex. 2094 - sq_ais_output.v

 acs_rd_context_id, // alu constant store read context_id 1

 acs_rd_data, // alu constant store read data 2

 3

 // outputs to SP 4

 SQ_SP_gpr_wr_addr, 5

 SQ_SP_gpr_wr_en, 6

 SQ_SP_gpr_rd_addr, 7

 SQ_SP_gpr_rd_en, 8

 SQ_SP_gpr_phase, 9

 SQ_SP_gpr_input_sel, 10

 SQ_SP_gpr_channel_mask, 11

 12

 SQ_SP_instr_start, 13

 SQ_SP_instr_stall, 14

 SQ_SP_instr, 15

 SQ_SP_const, 16

 17

 // 18

 SQ_SP_exporting, 19

 SQ_SP_exp_id, 20

 u0_SQ_SP_write_mask, 21

 u1_SQ_SP_write_mask, 22

 u2_SQ_SP_write_mask, 23

 u3_SQ_SP_write_mask, 24

 25

ATI 2094
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 380 of 611

Page 5 of 34
Ex. 2094 - sq_ais_output.v

 // outputs to SX 1

 SQ_SX_pc_wr_addr, 2

 SQ_SX_pc_wr_en, 3

 SQ_SX_pc_channel_mask, 4

 5

 clk, 6

 reset 7

); 8

 9

 // -- parameters -- 10

 11

 parameter LO = 1'b0; 12

 parameter HI = 1'b1; 13

 parameter X = 1'bx; 14

 15

 16

 // -- 17

 // -- ios -- 18

 // -- 19

 20

 input [6:0] aiq0_pc_base; 21

 input [63:0] aiq0_valid_bits; 22

 input [2:0] aiq0_context_id; 23

 input [101:0] aiq0_instr; 24

 input [0:0] aiq0_gpr_rd_en; 25

Page 6 of 34
Ex. 2094 - sq_ais_output.v

 input [0:0] aiq0_export_id; 1

 2

 input [6:0] aiq1_pc_base; 3

 input [63:0] aiq1_valid_bits; 4

 input [2:0] aiq1_context_id; 5

 input [101:0] aiq1_instr; 6

 input [0:0] aiq1_gpr_rd_en; 7

 input [0:0] aiq1_export_id; 8

 9

 input [0:0] ais0_acs_rd_rts; 10

 input [8:0] ais0_acs_rd_addr; 11

 input [0:0] ais0_instr_start; 12

 input [0:0] ais0_instr_stall; 13

 14

 input [0:0] ais1_acs_rd_rts; 15

 input [8:0] ais1_acs_rd_addr; 16

 input [0:0] ais1_instr_start; 17

 input [0:0] ais1_instr_stall; 18

 19

 // 20

 input [6:0] tis_gpr_rd_addr; 21

 input [0:0] tis_gpr_rd_en; 22

 input [0:0] ia_vertex_sel; 23

 input [6:0] vi_gpr_wr_addr; 24

 input [0:0] vi_gpr_wr_en; 25

Page 7 of 34
Ex. 2094 - sq_ais_output.v

 input [6:0] pi_gpr_wr_addr; 1

 input [3:0] pi_gpr_wr_en; 2

 3

 4

 // 5

 input [1:0] gpr_phase; 6

 input [0:0] alu_phase; 7

 8

 // 9

 output acs_rd_rts; 10

 output [8:0] acs_rd_addr; 11

 output [2:0] acs_rd_context_id; 12

 input [127:0] acs_rd_data; 13

 14

 // 15

 output [6:0] SQ_SP_gpr_wr_addr; 16

 output [3:0] SQ_SP_gpr_wr_en; 17

 output [6:0] SQ_SP_gpr_rd_addr; 18

 output [0:0] SQ_SP_gpr_rd_en; 19

 output [1:0] SQ_SP_gpr_phase; 20

 output [1:0] SQ_SP_gpr_input_sel; 21

 output [3:0] SQ_SP_gpr_channel_mask; 22

 23

 output [0:0] SQ_SP_instr_start; 24

 output [0:0] SQ_SP_instr_stall; 25

Page 8 of 34
Ex. 2094 - sq_ais_output.v

 output [20:0] SQ_SP_instr; 1

 output [127:0] SQ_SP_const; 2

 3

 output [0:0] SQ_SP_exporting; 4

 output [0:0] SQ_SP_exp_id; 5

 output [3:0] u0_SQ_SP_write_mask; 6

 output [3:0] u1_SQ_SP_write_mask; 7

 output [3:0] u2_SQ_SP_write_mask; 8

 output [3:0] u3_SQ_SP_write_mask; 9

 10

 output [6:0] SQ_SX_pc_wr_addr; 11

 output [0:0] SQ_SX_pc_wr_en; 12

 output [3:0] SQ_SX_pc_channel_mask; 13

 14

 15

 reg [6:0] SQ_SP_gpr_wr_addr; 16

 reg [3:0] SQ_SP_gpr_wr_en; 17

 reg [6:0] SQ_SP_gpr_rd_addr; 18

 reg [0:0] SQ_SP_gpr_rd_en; 19

 reg [1:0] SQ_SP_gpr_phase; 20

 reg [1:0] SQ_SP_gpr_input_sel; 21

 reg [3:0] SQ_SP_gpr_channel_mask; 22

 23

 reg [0:0] SQ_SP_instr_start; 24

 reg [0:0] SQ_SP_instr_stall; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 381 of 611

Page 9 of 34
Ex. 2094 - sq_ais_output.v

 reg [20:0] SQ_SP_instr; 1

 reg [127:0] SQ_SP_const; 2

 3

 reg [0:0] SQ_SP_exporting; 4

 reg [0:0] SQ_SP_exp_id; 5

 reg [3:0] u0_SQ_SP_write_mask; 6

 reg [3:0] u1_SQ_SP_write_mask; 7

 reg [3:0] u2_SQ_SP_write_mask; 8

 reg [3:0] u3_SQ_SP_write_mask; 9

 10

 reg [6:0] SQ_SX_pc_wr_addr; 11

 reg [0:0] SQ_SX_pc_wr_en; 12

 reg [3:0] SQ_SX_pc_channel_mask; 13

 14

 input clk; 15

 input reset; 16

 17

 18

 // -- 19

 // -- internal signals -- 20

 // -- 21

 22

 // ISR - save this part of instruction when IQ is popped 23

 // - needed for GPR result write and exports to PC 24

 reg [7:0] isr_vector_dest_q; 25

Page 10 of 34
Ex. 2094 - sq_ais_output.v

 reg [7:0] isr_scalar_dest_q; 1

 reg [3:0] isr_vector_mask_q; 2

 reg [3:0] isr_scalar_mask_q; 3

 reg [1:0] isr_pred_sel_q; 4

 reg [6:0] isr_pc_base_q; 5

 reg [0:0] isr_instr_stall_q; 6

 7

 reg [7:0] isr_vector_dest_q1; 8

 reg [7:0] isr_scalar_dest_q1; 9

 reg [3:0] isr_vector_mask_q1; 10

 reg [3:0] isr_scalar_mask_q1; 11

 reg [1:0] isr_pred_sel_q1; 12

 reg [6:0] isr_pc_base_q1; 13

 reg [0:0] isr_instr_stall_q1; 14

 15

 //wire scalar_export; 16

 wire scalar_export_pc; 17

 //wire vector_export; 18

 wire vector_export_pc; 19

 wire export; 20

 wire export_pc; 21

 22

 23

 // -- 24

 // -- module instatiations -- 25

Page 11 of 34
Ex. 2094 - sq_ais_output.v

 // -- 1

 2

 3

 // -- 4

 // -- combinational logic -- 5

 // -- 6

 7

 // - mux ACS read addr based on alu phase 8

 // - NOTE the addr is the opposite phase since const store read starts 4 cycles before the instr 9
start 10

 11

 assign acs_rd_addr = alu_phase ? ais0_acs_rd_addr : ais1_acs_rd_addr; 12

 assign acs_rd_context_id = alu_phase ? aiq0_context_id : aiq1_context_id; 13

 //assign acs_rd_rts = alu_phase ? ais1_acs_rd_rts : ais0_acs_rd_rts; 14

 assign acs_rd_rts = ais1_acs_rd_rts | ais0_acs_rd_rts; 15

 16

 17

 // - decode ISR instruction info for GPR writeback and Param Cache Writes 18

 19

 //assign scalar_export = ~isr_pred_sel_q1[1] & isr_scalar_dest_q1[7]; 20

 //assign vector_export = ~isr_pred_sel_q1[1] & isr_vector_dest_q1[7]; 21

 //assign scalar_export = isr_scalar_dest_q1[7]; 22

 //assign vector_export = isr_scalar_dest_q1[7]; 23

 assign export = isr_scalar_dest_q1[7]; 24

 25

 assign scalar_export_pc = export & ~|(isr_scalar_dest_q1[5:4]); 26

Page 12 of 34
Ex. 2094 - sq_ais_output.v

 assign vector_export_pc = export & ~|(isr_vector_dest_q1[5:4]); 1

 2

 assign export_pc = scalar_export_pc | vector_export_pc; 3

 4

 5

 // -- 6

 // -- registers -- 7

 // -- 8

 9

 // -- 10

 // -- Instruction Input Staging Register -- 11

 // -- 12

 // - holds the instruction data from the AIQ for use by GPR and PC writes (is reloaded by 13
other thread 14

 // before GPR and PC writes occur, so relavent info must be kept here) 15

 // - need to save stall to know whether to assert WE to gprs or PC also 16

 // - must reload after every instruction even if AIS is idle to get the stall info saved 17

 // - actually need two stages here since the AIQ must be popped for the next constant access 18

 19

 always @(posedge clk) 20

 begin 21

 if (reset) 22

 begin 23

 // stall forces a NOP to the shader pipe 24

 // - all instruction bits are don't care when stall == 1, so they don't need to be reset 25

 // - stall forces WE to GPR and PC to be deasserted 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 382 of 611

Page 13 of 34
Ex. 2094 - sq_ais_output.v

 //isr_scalar_dest_q <= 0; 1

 //isr_scalar_mask_q <= 0; 2

 //isr_vector_dest_q <= 0; 3

 //isr_vector_mask_q <= 0; 4

 //isr_pred_sel_q <= 0; 5

 //isr_pc_base_q <= 0; 6

 isr_instr_stall_q <= HI; 7

 end 8

 9

 else if ((gpr_phase == 2'b11) & (alu_phase == LO)) //(ais0_ld_isr) 10

 begin 11

 isr_scalar_dest_q <= aiq0_instr[15:8]; 12

 isr_vector_dest_q <= aiq0_instr[7:0]; 13

 isr_scalar_mask_q <= aiq0_instr[23:20]; 14

 isr_vector_mask_q <= aiq0_instr[19:16]; 15

 isr_pred_sel_q <= aiq0_instr[60:59]; 16

 isr_pc_base_q <= aiq0_pc_base; 17

 isr_instr_stall_q <= ais0_instr_stall; 18

 end 19

 20

 else if ((gpr_phase == 2'b11) & (alu_phase == HI)) //(ais1_ld_isr) 21

 begin 22

 isr_scalar_dest_q <= aiq1_instr[15:8]; 23

 isr_vector_dest_q <= aiq1_instr[7:0]; 24

 isr_scalar_mask_q <= aiq1_instr[23:20]; 25

Page 14 of 34
Ex. 2094 - sq_ais_output.v

 isr_vector_mask_q <= aiq1_instr[19:16]; 1

 isr_pred_sel_q <= aiq1_instr[60:59]; 2

 isr_pc_base_q <= aiq1_pc_base; 3

 isr_instr_stall_q <= ais1_instr_stall; 4

 end 5

 6

 else 7

 begin 8

 isr_scalar_dest_q <= isr_scalar_dest_q; 9

 isr_vector_dest_q <= isr_vector_dest_q; 10

 isr_scalar_mask_q <= isr_scalar_mask_q; 11

 isr_vector_mask_q <= isr_vector_mask_q; 12

 isr_pred_sel_q <= isr_pred_sel_q; 13

 isr_pc_base_q <= isr_pc_base_q; 14

 isr_instr_stall_q <= isr_instr_stall_q; 15

 end 16

 end 17

 18

 19

 // ISR1 - need to pipe ISR0 to keep it around for the GPR/PC write 20

 21

 always @(posedge clk) 22

 begin 23

 //if (reset) 24

 //begin 25

Page 15 of 34
Ex. 2094 - sq_ais_output.v

 //isr_scalar_dest_q <= 0; 1

 //isr_scalar_mask_q <= 0; 2

 //isr_vector_dest_q <= 0; 3

 //isr_vector_mask_q <= 0; 4

 //isr_pred_sel_q <= 0; 5

 //isr_pc_base_q <= 0; 6

 //isr_instr_stall_q <= HI; 7

 //end 8

 9

 if ((gpr_phase == 2'b11)) 10

 begin 11

 isr_scalar_dest_q1 <= isr_scalar_dest_q; 12

 isr_vector_dest_q1 <= isr_vector_dest_q; 13

 isr_scalar_mask_q1 <= isr_scalar_mask_q; 14

 isr_vector_mask_q1 <= isr_vector_mask_q; 15

 isr_pred_sel_q1 <= isr_pred_sel_q; 16

 isr_pc_base_q1 <= isr_pc_base_q; 17

 isr_instr_stall_q1 <= isr_instr_stall_q; 18

 end 19

 20

 else 21

 begin 22

 isr_scalar_dest_q1 <= isr_scalar_dest_q1; 23

 isr_vector_dest_q1 <= isr_vector_dest_q1; 24

 isr_scalar_mask_q1 <= isr_scalar_mask_q1; 25

Page 16 of 34
Ex. 2094 - sq_ais_output.v

 isr_vector_mask_q1 <= isr_vector_mask_q1; 1

 isr_pred_sel_q1 <= isr_pred_sel_q1; 2

 isr_pc_base_q1 <= isr_pc_base_q1; 3

 isr_instr_stall_q1 <= isr_instr_stall_q1; 4

 end 5

 end 6

 7

 8

 // -------------------------------- 9

 // -- SP instruction, write_mask -- 10

 // -------------------------------- 11

 // - valid with instruction start 12

 13

 always @(posedge clk) 14

 begin 15

 case (gpr_phase) 16

 `SQ_SRCB_PHASE: begin 17

 case (alu_phase) 18

 LO: begin 19

 SQ_SP_instr <= {3'b000, aiq0_instr[06:00], aiq0_instr[55:48], aiq0_instr[58], 20
aiq0_instr[101:99]}; 21

 u0_SQ_SP_write_mask <= aiq0_valid_bits [3:0]; u1_SQ_SP_write_mask <= 22
aiq0_valid_bits [7:4]; 23

 u2_SQ_SP_write_mask <= aiq0_valid_bits [11:8]; u3_SQ_SP_write_mask <= 24
aiq0_valid_bits [15:12]; 25

 end 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 383 of 611

Page 17 of 34
Ex. 2094 - sq_ais_output.v

 HI: begin 1

 SQ_SP_instr <= {aiq1_instr[07:00], aiq1_instr[55:48], aiq1_instr[58], 2
aiq1_instr[101:99]}; 3

 u0_SQ_SP_write_mask <= aiq1_valid_bits [3:0]; u1_SQ_SP_write_mask <= 4
aiq1_valid_bits [7:4]; 5

 u2_SQ_SP_write_mask <= aiq1_valid_bits [11:8]; u3_SQ_SP_write_mask <= 6
aiq1_valid_bits [15:12]; 7

 end 8

 endcase 9

 end 10

 `SQ_SRCC_PHASE: begin 11

 case (alu_phase) 12

 LO: begin 13

 SQ_SP_instr <= {aiq0_instr[15:08], aiq0_instr[47:40], aiq0_instr[57], 14
aiq0_instr[98:96]}; 15

 u0_SQ_SP_write_mask <= aiq0_valid_bits [19:16]; u1_SQ_SP_write_mask <= 16
aiq0_valid_bits [23:20]; 17

 u2_SQ_SP_write_mask <= aiq0_valid_bits [27:24]; u3_SQ_SP_write_mask <= 18
aiq0_valid_bits [31:28]; 19

 end 20

 HI: begin 21

 SQ_SP_instr <= {aiq1_instr[15:08], aiq1_instr[47:40], aiq1_instr[57], 22
aiq1_instr[98:96]}; 23

 u0_SQ_SP_write_mask <= aiq1_valid_bits [19:16]; u1_SQ_SP_write_mask <= 24
aiq1_valid_bits [23:20]; 25

 u2_SQ_SP_write_mask <= aiq1_valid_bits [27:24]; u3_SQ_SP_write_mask <= 26
aiq1_valid_bits [31:28]; 27

 end 28

 endcase 29

Page 18 of 34
Ex. 2094 - sq_ais_output.v

 end 1

 `SQ_FA_PHASE: begin 2

 case (alu_phase) 3

 LO: begin 4

 SQ_SP_instr <= {aiq0_instr[23:16], aiq0_instr[39:32], aiq0_instr[56], 5
aiq0_instr[95:93]}; 6

 u0_SQ_SP_write_mask <= aiq0_valid_bits [35:32]; u1_SQ_SP_write_mask <= 7
aiq0_valid_bits [39:36]; 8

 u2_SQ_SP_write_mask <= aiq0_valid_bits [43:40]; u3_SQ_SP_write_mask <= 9
aiq0_valid_bits [47:44]; 10

 end 11

 HI: begin 12

 SQ_SP_instr <= {aiq1_instr[23:16], aiq1_instr[39:32], aiq1_instr[56], 13
aiq1_instr[95:93]}; 14

 u0_SQ_SP_write_mask <= aiq1_valid_bits [35:32]; u1_SQ_SP_write_mask <= 15
aiq1_valid_bits [39:36]; 16

 u2_SQ_SP_write_mask <= aiq1_valid_bits [43:40]; u3_SQ_SP_write_mask <= 17
aiq1_valid_bits [47:44]; 18

 end 19

 endcase 20

 end 21

 `SQ_SRCA_PHASE: begin 22

 case (alu_phase) 23

 LO: begin 24

 SQ_SP_instr <= {aiq0_instr[23:16], aiq0_instr[25:24], aiq0_instr[31:26], 25
aiq0_instr[92:88]}; 26

 u0_SQ_SP_write_mask <= aiq0_valid_bits [51:48]; u1_SQ_SP_write_mask <= 27
aiq0_valid_bits [55:52]; 28

Page 19 of 34
Ex. 2094 - sq_ais_output.v

 u2_SQ_SP_write_mask <= aiq0_valid_bits [59:56]; u3_SQ_SP_write_mask <= 1
aiq0_valid_bits [63:60]; 2

 end 3

 HI: begin 4

 SQ_SP_instr <= {aiq1_instr[23:16], aiq1_instr[25:24], aiq1_instr[31:26], 5
aiq1_instr[92:88]}; 6

 u0_SQ_SP_write_mask <= aiq1_valid_bits [51:48]; u1_SQ_SP_write_mask <= 7
aiq1_valid_bits [55:52]; 8

 u2_SQ_SP_write_mask <= aiq1_valid_bits [59:56]; u3_SQ_SP_write_mask <= 9
aiq1_valid_bits [63:60]; 10

 end 11

 endcase 12

 end 13

 endcase 14

 end 15

 16

 17

 // SQ_SP_instr_start 18

 // SQ_SP_instr_stall 19

 // SQ_SP_exporting 20

 // SQ_SP_exp_id 21

 // 22

 always @(posedge clk) 23

 begin 24

 case (alu_phase) 25

 LO: 26

 begin 27

Page 20 of 34
Ex. 2094 - sq_ais_output.v

 SQ_SP_instr_start <= ais0_instr_start; 1

 SQ_SP_instr_stall <= ais0_instr_stall; 2

 // logic for exporting = ~pred_sel[1] & (scalar_dest[7] | vector_dest[7]) 3

 // new logic for exporting = scalar_dest[7] 4

 // remove this stall mux 5

 if (ais0_instr_stall) 6

 SQ_SP_exporting <= LO; 7

 else 8

 //SQ_SP_exporting <= ~aiq0_instr[60] & (aiq0_instr[15] | aiq0_instr[7]); 9

 SQ_SP_exporting <= aiq0_instr[15]; 10

 SQ_SP_exp_id <= aiq0_export_id; // 11

 end 12

 HI: // if interleaving is disabled, need to make sure controls are not driven 13

 begin 14

 SQ_SP_instr_start <= ais1_instr_start; 15

 SQ_SP_instr_stall <= ais1_instr_stall; 16

 // remove this stall mux 17

 if (ais1_instr_stall) SQ_SP_exporting <= LO; 18

 else SQ_SP_exporting <= aiq1_instr[15]; 19

 SQ_SP_exp_id <= aiq1_export_id; // 20

 end 21

 endcase 22

 end 23

 24

 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 384 of 611

Page 21 of 34
Ex. 2094 - sq_ais_output.v

 // SQ_SP_gpr_phase 1

 // SQ_SP_gpr_input_sel 2

 // 3

 always @(posedge clk) 4

 begin 5

 SQ_SP_gpr_phase <= gpr_phase; 6

 SQ_SP_gpr_input_sel <= {ia_vertex_sel, ~ia_vertex_sel}; // 00: cnt, 01: pix, 10: vtx (fix 7
needed for count) 8

 end 9

 10

 11

 // -------------------------------------- 12

 // -- SP gpr read address, read enable -- 13

 // -------------------------------------- 14

 // - the read address comes directly from the ALU or Texture Instruction Queue (IQ) 15

 // - the read address was calculated prior to being loaded into the IQ 16

 // - the read enable is just the RTS out of the IQ 17

/* 18

 reg [0:0] aiq_gpr_rd_en; 19

 20

 always @(alu_phase or aiq0_gpr_rd_en or aiq1_gpr_rd_en) 21

 begin 22

 case (alu_phase) 23

 LO: aiq_gpr_rd_en = aiq0_gpr_rd_en; 24

 HI: aiq_gpr_rd_en = aiq1_gpr_rd_en; 25

 endcase 26

Page 22 of 34
Ex. 2094 - sq_ais_output.v

 end 1

*/ 2

 3

 always @(posedge clk) 4

 begin 5

 case (gpr_phase) 6

 `SQ_SRCA_PHASE: begin 7

 case (~alu_phase) // have to invert this to get the srcA addr in 8
a cycle early 9

 LO: SQ_SP_gpr_rd_addr <= aiq0_instr[86:80]; 10

 HI: SQ_SP_gpr_rd_addr <= aiq1_instr[86:80]; 11

 endcase 12

 case (~alu_phase) // have to invert this to get the srcA addr in 13
a cycle early 14

 LO: SQ_SP_gpr_rd_en <= aiq0_gpr_rd_en; 15

 HI: SQ_SP_gpr_rd_en <= aiq1_gpr_rd_en; 16

 endcase 17

 end 18

 `SQ_SRCB_PHASE: begin 19

 case (alu_phase) 20

 LO: SQ_SP_gpr_rd_addr <= aiq0_instr[78:72]; 21

 HI: SQ_SP_gpr_rd_addr <= aiq1_instr[78:72]; 22

 endcase 23

 case (alu_phase) 24

 LO: SQ_SP_gpr_rd_en <= aiq0_gpr_rd_en; 25

 HI: SQ_SP_gpr_rd_en <= aiq1_gpr_rd_en; 26

Page 23 of 34
Ex. 2094 - sq_ais_output.v

 endcase 1

 end 2

 `SQ_SRCC_PHASE: begin 3

 case (alu_phase) 4

 LO: SQ_SP_gpr_rd_addr <= aiq0_instr[70:64]; 5

 HI: SQ_SP_gpr_rd_addr <= aiq1_instr[70:64]; 6

 endcase 7

 case (alu_phase) 8

 LO: SQ_SP_gpr_rd_en <= aiq0_gpr_rd_en; 9

 HI: SQ_SP_gpr_rd_en <= aiq1_gpr_rd_en; 10

 endcase 11

 end 12

 `SQ_FA_PHASE: begin 13

 SQ_SP_gpr_rd_addr <= tis_gpr_rd_addr; 14

 SQ_SP_gpr_rd_en <= tis_gpr_rd_en; 15

 end 16

 endcase 17

 end 18

 19

 20

 // -- 21

 // -- SP gpr write address, write enable, channel mask -- 22

 // -- 23

 // - don't have to use alu_phase as a select here since it was used to load ISR 24

 // - the write address was calcualted prior to being loaded into the Instruction Queue 25

Page 24 of 34
Ex. 2094 - sq_ais_output.v

 1

 always @(posedge clk) 2

 begin 3

 SQ_SP_gpr_wr_en <= 0; // clear WE by default 4

 case (gpr_phase) 5

 `SQ_PS_PHASE: 6

 begin 7

 SQ_SP_gpr_wr_addr <= isr_scalar_dest_q1[6:0]; 8

 SQ_SP_gpr_channel_mask <= isr_scalar_mask_q1; 9

 //if (~scalar_export & ~isr_instr_stall_q1) 10

 if (~export & ~isr_instr_stall_q1) 11

 SQ_SP_gpr_wr_en <= 4'b1111; // assert gpr write enable when not 12
exporting and not stalling 13

 end 14

 `SQ_PV_PHASE: 15

 begin 16

 SQ_SP_gpr_wr_addr <= isr_vector_dest_q1[6:0]; 17

 SQ_SP_gpr_channel_mask <= isr_vector_mask_q1; 18

 if (~export & ~isr_instr_stall_q1) 19

 SQ_SP_gpr_wr_en <= 4'b1111; 20

 end 21

 `SQ_ID_PHASE: 22

 begin 23

 case (ia_vertex_sel) 24

 LO: begin 25

 SQ_SP_gpr_wr_addr <= pi_gpr_wr_addr; 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 385 of 611

Page 25 of 34
Ex. 2094 - sq_ais_output.v

 SQ_SP_gpr_wr_en <= pi_gpr_wr_en; 1

 end 2

 HI: begin 3

 SQ_SP_gpr_wr_addr <= vi_gpr_wr_addr; 4

 SQ_SP_gpr_wr_en <= {4{vi_gpr_wr_en}}; 5

 end 6

 endcase 7

 SQ_SP_gpr_channel_mask <= 4'b1111; 8

 end 9

 `SQ_FD_PHASE: begin 10

 SQ_SP_gpr_wr_addr <= 7'b0; 11

 SQ_SP_gpr_wr_en <= 4'b0; 12

 SQ_SP_gpr_channel_mask <= 4'b0; 13

 end 14

 endcase 15

 end 16

 17

 18

 // ------------------------------- 19

 // -- PC Write Address Register -- 20

 // ------------------------------- 21

 // - load when phase is PS (this lines up with the ISR load and IQ pop, i.e. the last cycle the 22
data 23

 // from the IQ is valid for this instruction) 24

 25

 reg [6:0] pc_wr_addr_q; 26

Page 26 of 34
Ex. 2094 - sq_ais_output.v

 reg [6:0] pc_wr_addr_q1; 1

 reg [6:0] pc_wr_addr_q2; 2

 reg pc_wr_en_q; 3

 reg pc_wr_en_q1; 4

 reg pc_wr_en_q2; 5

 reg [3:0] pc_channel_mask_q; 6

 reg [3:0] pc_channel_mask_q1; 7

 reg [3:0] pc_channel_mask_q2; 8

 9

 wire ld_pc_wr_addr = (gpr_phase == `SQ_PS_PHASE); 10

 11

 always @(posedge clk) 12

 begin 13

 case (ld_pc_wr_addr) 14

 HI: 15

 begin 16

 case (scalar_export_pc) 17

 HI: 18

 begin 19

 pc_wr_addr_q <= isr_pc_base_q1 + isr_scalar_dest_q1[5:0]; 20

 pc_channel_mask_q <= isr_scalar_mask_q1; 21

 end 22

 LO: 23

 begin 24

 pc_wr_addr_q <= isr_pc_base_q1 + isr_vector_dest_q1[5:0]; 25

Page 27 of 34
Ex. 2094 - sq_ais_output.v

 pc_channel_mask_q <= isr_vector_mask_q1; 1

 end 2

 endcase 3

 end 4

 LO: 5

 begin 6

 case (pc_wr_en_q) 7

 HI: pc_wr_addr_q <= pc_wr_addr_q + 1; 8

 LO: pc_wr_addr_q <= pc_wr_addr_q; 9

 endcase 10

 pc_channel_mask_q <= pc_channel_mask_q; 11

 end 12

 endcase // case(ld_pc_wr_addr) 13

 end 14

 15

 16

 // SX param cache write address 17

 // SX param cache write enable 18

 // SX param cache channel mask 19

 // - these guys need to be delayed 2 cycles due to the block interface delay btwn SP and SX 20

 always @(posedge clk) 21

 begin 22

 pc_wr_addr_q1 <= pc_wr_addr_q; 23

 pc_wr_addr_q2 <= pc_wr_addr_q1; 24

 SQ_SX_pc_wr_addr <= pc_wr_addr_q2; // these all need to go back to q1 ... 25

Page 28 of 34
Ex. 2094 - sq_ais_output.v

 1

 pc_wr_en_q1 <= pc_wr_en_q; 2

 pc_wr_en_q2 <= pc_wr_en_q1; 3

 SQ_SX_pc_wr_en <= pc_wr_en_q2; 4

 5

 pc_channel_mask_q1 <= pc_channel_mask_q; 6

 pc_channel_mask_q2 <= pc_channel_mask_q1; 7

 SQ_SX_pc_channel_mask <= pc_channel_mask_q2; 8

 end 9

 10

 11

 // ALU Constant Store read data 12

 13

 always @(posedge clk) 14

 begin 15

 SQ_SP_const = acs_rd_data; 16

 end 17

 18

 19

 // misc interface registers 20

/* 21

 wire ais_fetch_stall = tp_fetch_stall; // need to add the correct timing for ais_fetch_stall 22

 // why does it not go directly from TPC to SPs? 23

 always @(posedge clk) 24

 begin 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 386 of 611

Page 29 of 34
Ex. 2094 - sq_ais_output.v

 tp_fetch_stall <= TP_SQ_fetch_stall; 1

 end 2

*/ 3

 4

 5

 // -- 6

 // -- one-bit state machines -- 7

 // -- 8

 9

 // pc write enable 10

 always @(posedge clk) 11

 begin 12

 if (reset) 13

 pc_wr_en_q <= LO; 14

 else 15

 case (pc_wr_en_q) 16

 LO: 17

 // - set when loading pc_wr_addr and we're exporting to the PC and we're not 18
stalling 19

 // - ld_pc_wr_addr is asserted based on phase above for PC write addr register 20

 if (ld_pc_wr_addr & export_pc & ~isr_instr_stall_q1) 21

 pc_wr_en_q <= HI; 22

 HI: 23

 // - clear when loading pc_wr_addr and we're not exporting to the PC or we're 24
stalling 25

 if (ld_pc_wr_addr & (~export_pc | isr_instr_stall_q1)) 26

Page 30 of 34
Ex. 2094 - sq_ais_output.v

 pc_wr_en_q <= LO; 1

 endcase 2

 end 3

 4

 5

 // -- 6

 // -- state machines -- 7

 // -- 8

 9

 // Parameter Cache Write State Machine: 10

 // - load either scalar or vector param cache address 11

 // - increment param cache address based on gpr phase and whether scalar or vector is 12
exporting 13

 // to the param cache (can't both export to param cache in same instruction) 14

/* 15

 parameter PCW0 = 2'b00; 16

 parameter PCW1 = 2'b01; 17

 parameter PCW2 = 2'b10; 18

 parameter PCW3 = 2'b11; 19

 20

 reg [1:0] pcw_current_state; 21

 reg [1:0] pcw_next_state; 22

 23

 // reg'd outputs 24

 25

 // un-reg'd (combinatorial) outputs 26

Page 31 of 34
Ex. 2094 - sq_ais_output.v

 //reg inc_pc_wr_addr; 1

 //reg ld_isr; 2

 3

 // state and output registers 4

 always @(posedge clk) 5

 begin 6

 if (reset) 7

 begin 8

 pcw_current_state <= PCW0; 9

 ais_start <= LO; 10

 end 11

 else 12

 begin 13

 pcw_current_state <= pcw_next_state; 14

 ais_start <= next_ais_start; 15

 end 16

 end 17

 18

 // next state logic 19

 always @(20

 aiq_rts or gpr_phase or tp_fetch_stall or 21

 pcw_current_state 22

) 23

 begin 24

 // default assignments 25

Page 32 of 34
Ex. 2094 - sq_ais_output.v

 pcw_next_state = PCW0; 1

 next_ais_start = LO; 2

 3

 ais_rtr = LO; // this guy pops the AIQ 4

 ld_isr = LO; // this guy loads the ISR 5

 6

 case (pcw_current_state) 7

 PCW0: 8

 begin 9

 // - wait until the AIQ output is valid and the GPR read phase is at the Fetch Address 10
phase 11

 // - the GPR read addr goes from the AIQ to the output phase mux, and is selected 12

 // when phase == `SQ_FA 13

 // - the aluconst read address also goes directly from the AIQ 14

 15

 if (aiq_rts & (gpr_phase == `SQ_FA_PHASE)) 16

 begin 17

 pcw_next_state = PCW1; 18

 end 19

 end 20

 21

 PCW1: 22

 begin 23

 // - 24

 pcw_next_state = PCW2; 25

 end 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 387 of 611

Page 33 of 34
Ex. 2094 - sq_ais_output.v

 1

 PCW2: 2

 begin 3

 // - 4

 pcw_next_state = PCW3; 5

 end 6

 7

 PCW3: 8

 begin 9

 // - kick off the interface state machine 10

 // - load the TP interface data staging register 11

 // - when the TP stalls, keep sending the same instruction 12

 // - i.e. don't pop the AIQ (via ais_rtr) 13

 14

 next_ais_start = HI; 15

 ld_isr = HI; 16

 17

 if (~tp_fetch_stall) ais_rtr = HI; 18

 19

 pcw_next_state = PCW0; 20

 end 21

 22

 endcase // case(pcw_current_state) 23

 end // always @ (*) 24

 // - end aiq read state machine 25

Page 34 of 34
Ex. 2094 - sq_ais_output.v

*/ 1

 2

 3

endmodule 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 388 of 611

 Page 1 of 12
Ex. 2095 - sq_alu_instr_queue.v

`include "header.v" 1

//-- 2

// 3

// $Id: //depot/r400/devel/parts_lib/src/gfx/sq/ais/sq_alu_instr_queue.v#14 $ 4

// 5

// $Change: 41796 $ 6

// 7

// Copyright: Trade secret of ATI Technologies, Inc. 8

// © Copyright 2001-2002, ATI Technologies, Inc., (unpublished) 9

// 10

// All rights reserved. This notice is intended as a precaution against 11

// inadvertent publication and does not imply publication or any waiver 12

// of confidentiality. The year included in the foregoing notice is the 13

// year of creation of the work. 14

// 15

//-- 16

// 17

// sq_alu_instr_queue.v 18

// 19

// Alu Instruction Queue 20

// 21

// - instantiates fifo_regs and a simple fifo controller for the queue 22

// - calculates source and destination GPR addresses from gpr_base, which is part 23

// of the input ctl packet, and from offset in the instruction (absoulte mode) 24

// or from offset and loop index (relative mode) 25

 Page 2 of 12
Ex. 2095 - sq_alu_instr_queue.v

// 1

// issues: 2

// - relative mode not implemented yet 3

// - could this just be a ping-pong buffer? 4

// - does context_id_id need to go into the IQ? (currently it does, but can think of no use) 5

// 6

// 7

`include "sq_defs.v" 8

 9

module sq_alu_instr_queue 10

(11

 write_rts, 12

 write_rtr, 13

 14

 // inputs from AIF (ALU Instruction Fetch) 15

 aif_export_info, // {export_id, pulse_sx} 16

 aif_pc_base_q, // param cache base addr 17

 aif_last_in_group_q, // last instruction in series of instructions (done sent back fron ais) 18

 aif_last_in_thread_q,// last instruction in the whole shader program (no done sent back fron 19
ais) 20

 aif_thread_type_q, // vector type (0: pixel, 1: vertex) 21

 aif_thread_id_q, // thread id 22

 aif_ctl_pkt_q, // control packet (valid_bits, gpr_base, context_id) 23

 aif_instr_q, // instruction register (registered read from IS - 96 bits) 24

 25

 read_rts, 26

 Page 3 of 12
Ex. 2095 - sq_alu_instr_queue.v

 read_rtr, 1

 //read_data, // {control packet, clause num, instruction} 2

 3

 // outputs to AIS 4

 aiq_export_info, // 5

 aiq_pc_base, // 6

 aiq_last_in_group, // 7

 aiq_last_in_thread, // 8

 aiq_thread_type, // 9

 aiq_context_id, 10

 aiq_valid_bits, 11

 aiq_thread_id, 12

 aiq_instr, // instruction 13

 14

 clk, 15

 reset 16

); 17

 18

 // -- parameters -- 19

 20

 parameter NUM_WORDS = 4; 21

 parameter ADDR_BITS = 2; 22

 23

 // aiq_export_info + aiq_pc_base + aiq_last_in_group 24

 // + aiq_last_in_thread + aiq_thread_type + aiq_context + aiq_valid_bits + aiq_thread_id + 25
aiq_instr 26

 Page 4 of 12
Ex. 2095 - sq_alu_instr_queue.v

 1

 parameter DATA_BITS = 2 + 7 + 1 + 1 + 1 + 3 + 64 + 6 + 102; 2

 3

 parameter LO = 1'b0; 4

 parameter HI = 1'b1; 5

 parameter X = 1'bx; 6

 7

 8

 // -- 9

 // -- ios -- 10

 // -- 11

 12

 input write_rts; 13

 output write_rtr; 14

 15

 input [95:0] aif_instr_q; 16

 input [`SQ_VTX_CTL_PKT_WIDTH-1:0] aif_ctl_pkt_q; 17

 input [1:0] aif_export_info; 18

 input [6:0] aif_pc_base_q; 19

 input [5:0] aif_thread_id_q; 20

 input [0:0] aif_last_in_group_q; 21

 input [0:0] aif_last_in_thread_q; 22

 input [0:0] aif_thread_type_q; 23

 24

 output read_rts; 25

ATI 2095
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 389 of 611

 Page 5 of 12
Ex. 2095 - sq_alu_instr_queue.v

 input read_rtr; 1

 2

 output [1:0] aiq_export_info; 3

 output [6:0] aiq_pc_base; 4

 output [0:0] aiq_last_in_group; 5

 output [0:0] aiq_last_in_thread; 6

 output [0:0] aiq_thread_type; 7

 output [5:0] aiq_thread_id; 8

 output [63:0] aiq_valid_bits; 9

 output [2:0] aiq_context_id; 10

 output [101:0] aiq_instr; 11

 12

 input clk; 13

 input reset; 14

 15

 16

 // -- 17

 // -- internal signals -- 18

 // -- 19

 20

 wire [ADDR_BITS-1:0] write_ptr_q; 21

 wire write_en; 22

 23

 wire [ADDR_BITS-1:0] read_ptr_q; 24

 25

 Page 6 of 12
Ex. 2095 - sq_alu_instr_queue.v

 wire [DATA_BITS-1:0] write_data; 1

 wire [DATA_BITS-1:0] read_data; 2

 3

 4

 // -- 5

 // -- combinational logic -- 6

 // -- 7

 8

 wire [63:0] aif_valid_bits = aif_ctl_pkt_q[73:10]; 9

 wire [6:0] gpr_base = aif_ctl_pkt_q[9:3]; 10

 wire [2:0] aif_context_id = aif_ctl_pkt_q[2:0]; 11

 12

 wire [0:0] src_a_type = aif_instr_q[95]; 13

 wire [0:0] src_b_type = aif_instr_q[94]; 14

 wire [0:0] src_c_type = aif_instr_q[93]; 15

 16

 wire [2:0] src_a_sel = {aif_instr_q[95], aif_instr_q[87:86]}; 17

 wire [2:0] src_b_sel = {aif_instr_q[94], aif_instr_q[79:78]}; 18

 wire [2:0] src_c_sel = {aif_instr_q[93], aif_instr_q[71:70]}; 19

 20

 wire [4:0] vector_opcode = aif_instr_q[92:88]; 21

 22

 wire [7:0] src_a_offset = aif_instr_q[87:80]; 23

 wire [7:0] src_b_offset = aif_instr_q[79:72]; 24

 wire [7:0] src_c_offset = aif_instr_q[71:64]; 25

 Page 7 of 12
Ex. 2095 - sq_alu_instr_queue.v

 1

 wire [5:0] scalar_dest_offset = aif_instr_q[13:8]; 2

 wire [5:0] vector_dest_offset = aif_instr_q[5:0]; 3

 4

 wire [0:0] scalar_dest_addr_mode = aif_instr_q[14]; 5

 wire [0:0] vector_dest_addr_mode = aif_instr_q[6]; 6

 7

 wire [1:0] pred_sel = aif_instr_q[60:59]; 8

 wire [0:0] scalar_dest_pred_sel = aif_instr_q[15]; 9

 wire [0:0] vector_dest_pred_sel = aif_instr_q[7]; 10

 11

 // --> old emulator export decode 12

 //wire [0:0] scalar_export = ~pred_sel[1] & scalar_dest_pred_sel; 13

 //wire [0:0] vector_export = ~pred_sel[1] & vector_dest_pred_sel; 14

 15

 // --> new emulator export decode 16

 wire [0:0] scalar_export = aif_instr_q[15]; 17

 wire [0:0] vector_export = aif_instr_q[15]; 18

 19

 20

 // - calculate gpr read addresses (src) and gpr write addresses (dst) 21

 // - if type is "constant", just pass the C number 22

 // - if type is "register", add the gpr base 23

 // - if exporting, do not add gpr base since dest is in this case an export address 24

 25

 Page 8 of 12
Ex. 2095 - sq_alu_instr_queue.v

 wire [7:0] src_a_addr = src_a_type ? src_a_offset[5:0] + gpr_base : src_a_offset; 1

 wire [7:0] src_b_addr = src_b_type ? src_b_offset[5:0] + gpr_base : src_b_offset; 2

 wire [7:0] src_c_addr = src_c_type ? src_c_offset[5:0] + gpr_base : src_c_offset; 3

 4

 wire [6:0] scalar_dest_addr = scalar_export ? {LO, scalar_dest_offset} : scalar_dest_offset 5
+ gpr_base; 6

 wire [6:0] vector_dest_addr = vector_export ? {LO, vector_dest_offset} : 7
vector_dest_offset + gpr_base; 8

 9

 // - substitute actual gpr addresses into src and dest instruction fields 10

 // - concatenate AIF input data and gpr addresses into fifo write data 11

 12

 wire [101:0] instruction = 13

 { 14

 src_a_sel, src_b_sel, src_c_sel, 15

 vector_opcode, src_a_addr, src_b_addr, src_c_addr, 16

 aif_instr_q[63:61], pred_sel, aif_instr_q[58:16], 17

 scalar_dest_pred_sel, scalar_dest_addr, vector_dest_pred_sel, vector_dest_addr 18

 }; 19

 20

 assign write_data = {aif_export_info, aif_pc_base_q, 21

 aif_last_in_group_q, aif_last_in_thread_q, aif_thread_type_q, 22

 aif_context_id, aif_valid_bits, aif_thread_id_q, 23

 instruction}; 24

 25

 // - connect fifo read data to individual AIQ outputs 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 390 of 611

 Page 9 of 12
Ex. 2095 - sq_alu_instr_queue.v

 1

 assign aiq_export_info = read_data[DATA_BITS-1:DATA_BITS-2]; 2

 assign aiq_pc_base = read_data[DATA_BITS-1-2:DATA_BITS-2-7]; 3

 assign aiq_last_in_group = read_data[DATA_BITS-1-2-7]; 4

 assign aiq_last_in_thread = read_data[DATA_BITS-1-2-7-1]; 5

 assign aiq_thread_type = read_data[DATA_BITS-1-2-7-1-1]; 6

 assign aiq_context_id = read_data[DATA_BITS-1-2-7-1-1-1:DATA_BITS-2-7-1-1-1-3]; 7

 assign aiq_valid_bits = read_data[DATA_BITS-1-2-7-1-1-1-3:DATA_BITS-2-7-1-1-1-3-8
64]; 9

 assign aiq_thread_id = read_data[DATA_BITS-1-2-7-1-1-1-3-64:DATA_BITS-2-7-1-1-1-3-10
64-6]; 11

 assign aiq_instr = read_data[101:0]; 12

/* 13

 assign aiq_pc_base = read_data[181:175]; 14

 assign aiq_last_in_group = read_data[174]; 15

 assign aiq_last_in_thread = read_data[173]; 16

 assign aiq_thread_type = read_data[172]; 17

 assign aiq_context_id = read_data[171:169]; 18

 assign aiq_valid_bits = read_data[168:105]; 19

 assign aiq_thread_id = read_data[104:102]; 20

 assign aiq_instr = read_data[101:0]; 21

*/ 22

 // -- 23

 // -- module instatiations -- 24

 // -- 25

 26

 Page 10 of 12
Ex. 2095 - sq_alu_instr_queue.v

 // fifo control for based fifo 1

 2

 fifo_regs_ctl 3

 #(4

 NUM_WORDS, ADDR_BITS 5

) 6

 u_fifo_regs_ctl 7

 (8

 .write_rts(write_rts), // in 9

 .write_rtr(write_rtr), // out 10

 .write_ptr_q(write_ptr_q), 11

 .write_en(write_en), 12

 13

 .read_rts_q(read_rts), // out 14

 .read_rtr(read_rtr), // in 15

 .read_ptr_q(read_ptr_q), 16

 17

 //.used_slots(used_count), // out 18

 19

 .clk(clk), 20

 .reset(reset) 21

); 22

 23

 24

 // fifo storage 25

 Page 11 of 12
Ex. 2095 - sq_alu_instr_queue.v

 1

 fifo_regs 2

 #(3

 ADDR_BITS, DATA_BITS, NUM_WORDS 4

) 5

 u_fifo_regs 6

 (7

 .wr_addr(write_ptr_q), 8

 .wr_en(write_en), 9

 .wr_data(write_data), 10

 11

 .rd_addr(read_ptr_q), 12

 .rd_data(read_data), 13

 14

 .clk(clk) 15

); 16

 17

 18

 19

 // -- 20

 // -- one-bit state machines -- 21

 // -- 22

 23

 24

 25

 Page 12 of 12
Ex. 2095 - sq_alu_instr_queue.v

endmodule 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 391 of 611

 Page 1 of 18
Ex. 2096 - sq_alu_instr_seq.v

`include "header.v" 1

//-- 2

// 3

// $Id: //depot/r400/devel/parts_lib/src/gfx/sq/ais/sq_alu_instr_seq.v#13 $ 4

// 5

// $Change: 44201 $ 6

// 7

// Copyright: Trade secret of ATI Technologies, Inc. 8

// © Copyright 2001-2002, ATI Technologies, Inc., (unpublished) 9

// 10

// All rights reserved. This notice is intended as a precaution against 11

// inadvertent publication and does not imply publication or any waiver 12

// of confidentiality. The year included in the foregoing notice is the 13

// year of creation of the work. 14

// 15

//-- 16

// 17

// sq_alu_instr_seq.v 18

// 19

// - receives instruction from alu instr queue (AIQ) 20

// - sends instruction to SP on the correct phase 21

// - sends instruction to SP over four cycles 22

// 23

// issues: 24

// - 25

 Page 2 of 18
Ex. 2096 - sq_alu_instr_seq.v

// 1

// 2

`include "sq_defs.v" 3

 4

module sq_alu_instr_seq 5

(6

 alu_strap, // for alu0 vs alu1 7

 8

 // inputs from AIQ 9

 aiq_rts, // rts from AIQ FIFO 10

 aiq_export_info, // {exp_id, pulse_sx} 11

 aiq_last_in_group, // last instruction in group (but not usually the last in the shader program) 12

 aiq_last_in_thread, // last instruction in shader program 13

 aiq_context_id, // context_id 14

 aiq_thread_type, // 15

 aiq_thread_id, // 16

 aiq_instr, // instruction 17

 18

 ais_rtr, // AIQ FIFO pop 19

 20

 // phase inputs 21

 gpr_phase, // 22

 alu_phase, // 23

 24

 // interface back to thread buffers 25

 Page 3 of 18
Ex. 2096 - sq_alu_instr_seq.v

 ais_done, 1

 ais_thread_type_q, 2

 ais_thread_id_q, 3

 4

 // interface back to SX via exp_alloc 5

 ais_free_done, // export buffer dealloc to SX 6

 ais_free_id_q, // export buffer id 7

 8

 // to ais_output 9

 ais_instr_start, 10

 ais_instr_stall, 11

 //ais_ld_isr, 12

 ais_acs_rd_rts, // alu constant store read address valid 13

 ais_acs_rd_addr, // alu constant store read address (to ais_output) 14

 15

 //aluconst_context_valid, 16

 17

 busy, 18

 clk, 19

 reset 20

); 21

 22

 // -- parameters -- 23

 24

 parameter LO = 1'b0; 25

 Page 4 of 18
Ex. 2096 - sq_alu_instr_seq.v

 parameter HI = 1'b1; 1

 parameter X = 1'bx; 2

 3

 4

 // --- 5

 // -- ios -- 6

 // --- 7

 8

 input alu_strap; 9

 10

 // 11

 input [1:0] aiq_export_info; // {exp_id, pulse_sx} 12

 input [0:0] aiq_last_in_group; // last instruction flag 13

 input [0:0] aiq_last_in_thread; // last instruction flag 14

 input [0:0] aiq_thread_type; // 0: pixel, 1: vertex 15

 input [2:0] aiq_context_id; // context_id (from ctl packet) 16

 input [5:0] aiq_thread_id; // clause number 17

 input [101:0] aiq_instr; // instruction 18

 input [0:0] aiq_rts; 19

 output [0:0] ais_rtr; 20

 reg [0:0] ais_rtr; 21

 22

 // 23

 input [1:0] gpr_phase; // 24

 input [0:0] alu_phase; // 25

ATI 2096
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 392 of 611

 Page 5 of 18
Ex. 2096 - sq_alu_instr_seq.v

 1

 // 2

 output [0:0] ais_acs_rd_rts;// alu constant store read address (logical addr - up to 256 consts) 3

 reg [0:0] ais_acs_rd_rts; // alu constant store read address (logical addr - up to 256 consts) 4

 5

 // 6

 output [0:0] ais_free_done; // export buffer dealloc to SX 7

 output [0:0] ais_free_id_q; // export buffer id 8

 9

 output [0:0] ais_thread_type_q; 10

 output [5:0] ais_thread_id_q; 11

 output [0:0] ais_done; 12

 reg [0:0] ais_thread_type_q; 13

 reg [5:0] ais_thread_id_q; 14

 reg [0:0] ais_done; 15

 reg [0:0] ais_free_done; 16

 17

 // 18

 output [0:0] ais_instr_start; 19

 output [0:0] ais_instr_stall; 20

 output [8:0] ais_acs_rd_addr; // alu constant store read address (logical addr - up to 512 21
consts) 22

 23

 reg [0:0] ais_instr_start; 24

 reg [0:0] ais_instr_stall; 25

 reg [8:0] ais_acs_rd_addr; // alu constant store read address (logical addr - up to 512 consts) 26

 Page 6 of 18
Ex. 2096 - sq_alu_instr_seq.v

 1

 //input [7:0] aluconst_context_valid; 2

 3

 4

 output busy; 5

 input clk; 6

 input reset; 7

 8

 9

 // --- 10

 // -- internal signals -- 11

 // --- 12

 13

 reg [2:0] acs_current_state; 14

 reg [2:0] ais_current_state; 15

 16

 reg ais_start; 17

 18

 wire ca_fetch = ~aiq_instr[101]; 19

 wire cb_fetch = ~aiq_instr[98]; 20

 wire cc_fetch = ~aiq_instr[95]; 21

 22

 wire [8:0] ca_addr = {1'b0, aiq_instr[87:80]}; 23

 wire [8:0] cb_addr = {1'b0, aiq_instr[79:72]}; 24

 wire [8:0] cc_addr = {1'b0, aiq_instr[71:64]}; 25

 Page 7 of 18
Ex. 2096 - sq_alu_instr_seq.v

 1

 //reg [2:0] ais_state_q; 2

 3

 // --- 4

 // -- module instatiations -- 5

 // --- 6

 7

 8

 // --- 9

 // -- combinational logic -- 10

 // --- 11

 12

 wire busy = (|acs_current_state) | (|ais_current_state); 13

 14

 // - constant store valid (one bit per context from ALU Const Store) 15

 16

 //wire [0:0] aluconst_valid; 17

 18

 //assign aluconst_valid = aluconst_context_valid[aiq_context_id]; 19

 20

 // --- 21

 // -- registers -- 22

 // --- 23

 24

 // ---------------------------- 25

 Page 8 of 18
Ex. 2096 - sq_alu_instr_seq.v

 // -- Input Staging Register -- 1

 // ---------------------------- 2

 // - need to send the vector type and the thread_id back to the thread buffers when 3

 // the all the instructions we wanted to run for this thread are done (this will 4

 // cause the thread to become valid again) 5

 // - register this info in from the AIS on an AIQ pop in order to hold it until the 6

 // AIS is done 7

 8

 reg [0:0] ais_last_in_group_q; 9

 reg [0:0] ais_last_in_thread_q; 10

 reg [0:0] ais_free_id_q; 11

 reg [0:0] ais_pulse_sx_q; 12

 13

 always @(posedge clk) 14

 begin 15

 if (ais_rtr) 16

 begin 17

 ais_thread_type_q <= aiq_thread_type; 18

 ais_thread_id_q <= aiq_thread_id; 19

 //ais_context_id_q <= aiq_context_id; 20

 ais_last_in_group_q <= aiq_last_in_group; 21

 ais_last_in_thread_q <= aiq_last_in_thread; 22

 ais_free_id_q <= aiq_export_info[1]; 23

 ais_pulse_sx_q <= aiq_export_info[0]; 24

 end 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 393 of 611

 Page 9 of 18
Ex. 2096 - sq_alu_instr_seq.v

 else 1

 begin 2

 ais_thread_type_q <= ais_thread_type_q; 3

 ais_thread_id_q <= ais_thread_id_q; 4

 //ais_context_id_q <= ais_context_id_q; 5

 ais_last_in_group_q <= ais_last_in_group_q; 6

 ais_last_in_thread_q <= ais_last_in_thread_q; 7

 ais_free_id_q <= ais_free_id_q; 8

 ais_pulse_sx_q <= ais_pulse_sx_q; 9

 end 10

 end 11

 12

 13

 // --- 14

 // -- one-bit state machines -- 15

 // --- 16

 17

 18

 // --- 19

 // -- state machines -- 20

 // --- 21

 22

 // - the following two state machines work together in a staged manner (1st triggers 2nd) 23

 // - each cycles thru 8 states to match the 8 cycle transfer to the SP 24

 // 25

 Page 10 of 18
Ex. 2096 - sq_alu_instr_seq.v

 // ACS (ALU Constant Store) Read State Machine: 1

 // - assert the ACS read rts 2

 // - select the ACS read address from the 3 source addresses present in the instruction 3

 // - kick off the AIS stage 4

 // 5

 // AIS (ALU Instruction Sequencer) State Machine: 6

 // - assert instruction start 7

 // - load the ISR in the ais_output module (to hold dest write addrs after AIQ has been 8
popped) 9

 // - pop the AIQ 10

 11

 // ACS read state machine 12

 13

 parameter ACS0 = 3'b000; 14

 parameter ACS1 = 3'b001; 15

 parameter ACS2 = 3'b010; 16

 parameter ACS3 = 3'b011; 17

 parameter ACS4 = 3'b100; 18

 parameter ACS5 = 3'b101; 19

 parameter ACS6 = 3'b110; 20

 parameter ACS7 = 3'b111; 21

 22

 reg [2:0] acs_next_state; 23

 24

 // state and output registers 25

 always @(posedge clk) 26

 Page 11 of 18
Ex. 2096 - sq_alu_instr_seq.v

 begin 1

 if (reset) 2

 begin 3

 acs_current_state <= ACS0; 4

 end 5

 else 6

 begin 7

 acs_current_state <= acs_next_state; 8

 end 9

 end 10

 11

 // next state logic 12

 always @(13

 aiq_rts or gpr_phase or 14

 ca_fetch or ca_addr or cb_fetch or cb_addr or cc_fetch or cc_addr or 15

 acs_current_state 16

) 17

 begin 18

 // default assignments 19

 acs_next_state = ACS0; 20

 21

 ais_start = LO; 22

 ais_acs_rd_rts = LO; // read request valid to the alu const store 23

 ais_rtr = LO; 24

 ais_acs_rd_addr = ca_addr; 25

 Page 12 of 18
Ex. 2096 - sq_alu_instr_seq.v

 1

 case (acs_current_state) 2

 ACS0: 3

 // - start when AIQ output is valid and gpr read phase is srcB 4

 // (this phase is chosen due to ACS read latency - if latency changes, this also must 5
change) 6

 // - also need to start on the correct alu_phase (opposite of alu_strap since this is starting 7

 // 4 cycles early) 8

 begin 9

 if (aiq_rts & (gpr_phase == `SQ_SRCB_PHASE) & (alu_phase == ~alu_strap))// & 10
aluconst_valid) 11

 begin 12

 if (ca_fetch) // read first constant 13

 begin 14

 ais_acs_rd_rts = HI; 15

 ais_acs_rd_addr = ca_addr; 16

 end 17

 acs_next_state = ACS1; 18

 end 19

 end 20

 21

 ACS1: 22

 begin 23

 if (cb_fetch) 24

 begin 25

 ais_acs_rd_rts = HI; // read second constant 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 394 of 611

 Page 13 of 18
Ex. 2096 - sq_alu_instr_seq.v

 ais_acs_rd_addr = cb_addr; 1

 end 2

 acs_next_state = ACS2; 3

 end 4

 5

 ACS2: 6

 begin 7

 if (cc_fetch) 8

 begin 9

 ais_acs_rd_rts = HI; // read third constant 10

 ais_acs_rd_addr = cc_addr; 11

 end 12

 acs_next_state = ACS3; 13

 end 14

 15

 ACS3: begin acs_next_state = ACS4; end 16

 17

 ACS4: 18

 begin 19

 ais_start = HI; 20

 acs_next_state = ACS5; 21

 end 22

 23

 ACS5: begin acs_next_state = ACS6; end 24

 25

 Page 14 of 18
Ex. 2096 - sq_alu_instr_seq.v

 ACS6: begin acs_next_state = ACS7; end 1

 2

 ACS7: 3

 // - pop the AIQ 4

 begin 5

 ais_rtr = HI; 6

 acs_next_state = ACS0; 7

 end 8

 9

 endcase // case(acs_current_state) 10

 end // always @ (*) 11

 // - end acs read state machine 12

 13

 14

 // AIS state machine 15

 16

 parameter AIS0 = 3'b000; 17

 parameter AIS1 = 3'b001; 18

 parameter AIS2 = 3'b010; 19

 parameter AIS3 = 3'b011; 20

 parameter AIS4 = 3'b100; 21

 parameter AIS5 = 3'b101; 22

 parameter AIS6 = 3'b110; 23

 parameter AIS7 = 3'b111; 24

 25

 Page 15 of 18
Ex. 2096 - sq_alu_instr_seq.v

 //reg [2:0] ais_current_state; 1

 reg [2:0] ais_next_state; 2

 3

 // state and output registers 4

 always @(posedge clk) 5

 begin 6

 if (reset) 7

 begin 8

 ais_current_state <= AIS0; 9

 end 10

 else 11

 begin 12

 ais_current_state <= ais_next_state; 13

 end 14

 end 15

 16

 // next state logic 17

 always @(18

 ais_start or 19

 ais_current_state 20

) 21

 begin 22

 // default assignments 23

 ais_next_state = AIS0; 24

 25

 Page 16 of 18
Ex. 2096 - sq_alu_instr_seq.v

 ais_instr_start = LO; 1

 ais_instr_stall = LO; 2

 //ais_ld_isr = LO; 3

 ais_done = LO; 4

 ais_free_done = LO; 5

 6

 case (ais_current_state) 7

 AIS0: 8

 begin 9

 // - wait until this machine is started by the AIQ read SM 10

 ais_instr_stall = HI; 11

 if (ais_start) 12

 begin 13

 ais_instr_start = HI; 14

 ais_instr_stall = LO; 15

 ais_next_state = AIS1; 16

 end 17

 end 18

 19

 AIS1: begin ais_next_state = AIS2; end 20

 21

 AIS2: begin ais_next_state = AIS3; end 22

 23

 AIS3: begin ais_next_state = AIS4; end 24

 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 395 of 611

 Page 17 of 18
Ex. 2096 - sq_alu_instr_seq.v

 AIS4: begin ais_next_state = AIS5; end 1

 2

 AIS5: begin ais_next_state = AIS6; end 3

 4

 AIS6: begin ais_next_state = AIS7; end 5

 6

 AIS7: 7

 // - load ISR in ais_output 8

 // - send ais_done back to the thread buffers when this is the last instruction in a group of 9
alu instructions 10

 // AND it is not the LAST group of alu instructions (since thread is no longer in the 11
reservation station buffer) 12

 // - send free_done when pulse_sx is set, or this is the last instruction of a pixel shader 13
(since this 14

 // is when the pixel export is done) 15

 begin 16

 //ais_ld_isr = HI; 17

 ais_next_state = AIS0; 18

 if (ais_last_in_group_q & ~ais_last_in_thread_q) ais_done = HI; 19

 if (ais_pulse_sx_q | (ais_last_in_thread_q & ~ais_thread_type_q)) ais_free_done = HI; 20

 end 21

 22

 endcase // case(ais_current_state) 23

 end // always @ (*) 24

 // - end ais state machine 25

 26

 Page 18 of 18
Ex. 2096 - sq_alu_instr_seq.v

 1

endmodule 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 396 of 611

 Page 1 of 28
Ex. 2097 - sq_thread_arb.v

`include "header.v" 1

//-- 2

// 3

// $Id: //depot/r400/devel/parts_lib/src/gfx/sq/ca/sq_thread_arb.v#19 $ 4

// 5

// $Change: 43237 $ 6

// 7

// Copyright: Trade secret of ATI Technologies, Inc. 8

// © Copyright 2001-2002, ATI Technologies, Inc., (unpublished) 9

// 10

// All rights reserved. This notice is intended as a precaution against 11

// inadvertent publication and does not imply publication or any waiver 12

// of confidentiality. The year included in the foregoing notice is the 13

// year of creation of the work. 14

// 15

//-- 16

// 17

// sq_thread_arb.v 18

// 19

// - pick a thread from requests being sent by the Vertex and Pixel Thread Buffers 20

// - thread state and status is selected by the winner in each thread buffer and sent 21

// back to the arbiter for the final muxing (btwn vtx and pix) to the CFS 22

// 23

// issues: 24

// - 25

 Page 2 of 28
Ex. 2097 - sq_thread_arb.v

// 1

// 2

 3

`include "../misc/sq_defs.v" 4

 5

module sq_thread_arb 6

(7

 arb_type_strap, // tex = 1, alu = 0 8

 state_read_phase, // share read access between tex and alu arbs 9

 10

 // vertex and pixel thread buffer interface 11

 12

 vtx_req_q, // 16 vtx_thread_buff requests 13

 14

 vtx_winner_q, // winning vertex thread_id sent back to Vertex Thread Buffer 15

 vtx_winner_ack, // request acknowledge - indicates to TB that the winner is valid 16

 17

 vtx_state, // 18

 vtx_status, // 19

 20

 pix_req_q, // 16 pix_thread_buff requests 21

 22

 pix_winner_q, // winning pixel thread_id sent back to Pixel Thread Buffer 23

 pix_winner_ack, // 24

 25

 Page 3 of 28
Ex. 2097 - sq_thread_arb.v

 pix_state, // 1

 pix_status, // 2

 3

 // control flow sequencer interface 4

 5

 arb_rts0, // ready to send the winner to CFS0 6

 arb_rts1, // ready to send the winner to CFS1 7

 arb_state, // the state sent to the CFS 8

 arb_status, // the status sent to the CFS 9

 arb_thread_type, // vtx or pix 10

 11

 cfs_rtr0, // CFS0 can accept a thread 12

 cfs_rtr1, // CFS1 can accept a thread (for alu cfs's) 13

 14

 cfs1_enable, // enable sending packets to CFS1 (this a local register setting: 15
SQ_FLOW_CTL.ONE_ALU) 16

 17

 clk, 18

 reset 19

); 20

 21

 // -- parameters -- 22

 23

 parameter STATE_WIDTH = 8; // 24

 parameter STATUS_WIDTH = 8; // 25

 26

 Page 4 of 28
Ex. 2097 - sq_thread_arb.v

 parameter LO = 1'b0; 1

 parameter HI = 1'b1; 2

 parameter X = 1'bx; 3

 4

 5

 // --- 6

 // -- ios -- 7

 // --- 8

 9

 input [0:0] arb_type_strap; 10

 input [0:0] state_read_phase; 11

 12

 input [15:0] vtx_req_q; 13

 input [`SQ_VTX_STATE_WIDTH-1:0] vtx_state; 14

 input [`SQ_VTX_STATUS_WIDTH-1:0] vtx_status; 15

 16

 output [3:0] vtx_winner_q; 17

 output [0:0] vtx_winner_ack; 18

 19

 input [15:0] pix_req_q; 20

 input [`SQ_PIX_STATE_WIDTH-1:0] pix_state; 21

 input [`SQ_PIX_STATUS_WIDTH-1:0] pix_status; 22

 23

 output [3:0] pix_winner_q; 24

 output [0:0] pix_winner_ack; 25

ATI 2097
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 397 of 611

 Page 5 of 28
Ex. 2097 - sq_thread_arb.v

 1

 // interface to the control flow sequencer 2

 output [0:0] arb_rts0; 3

 output [0:0] arb_rts1; 4

 output [STATE_WIDTH-1:0] arb_state; 5

 output [STATUS_WIDTH-1:0] arb_status; 6

 output [0:0] arb_thread_type; 7

 input [0:0] cfs_rtr0; 8

 input [0:0] cfs_rtr1; 9

 10

 input [0:0] cfs1_enable; 11

 12

 input clk; 13

 input reset; 14

 15

 16

 // --- 17

 // -- internal signals -- 18

 // --- 19

 20

 reg [3:0] vtx_winner_q; 21

 reg [3:0] pix_winner_q; 22

 23

 reg [0:0] vtx_winner_vld_q; 24

 reg [0:0] pix_winner_vld_q; 25

 Page 6 of 28
Ex. 2097 - sq_thread_arb.v

 1

 reg [STATE_WIDTH-1:0] arb_state; 2

 reg [STATUS_WIDTH-1:0] arb_status; 3

 4

 // one bit state machine 5

 reg cfs_turn; 6

 7

 // thread_type_sm 8

 reg [0:0] type_winner; 9

 reg [0:0] vtx_winner_ack; 10

 reg [0:0] pix_winner_ack; 11

 12

 // thread_read_sm 13

 reg [0:0] ld_winner; 14

 reg [0:0] arb_rts; 15

 16

 17

 // --- 18

 // -- module instatiations -- 19

 // --- 20

 21

 22

 // --- 23

 // -- combinational logic -- 24

 // --- 25

 Page 7 of 28
Ex. 2097 - sq_thread_arb.v

 1

 // * arbiter * 2

 // - the highest thread number has the highest priority, and verts have priority over pixels 3

 // - try with loop/tree coding style 4

 5

/* 6

 wire [31:0] req_vector = {vs_req, ps_req}; 7

 reg [0:0] winner_vld; 8

 reg [4:0] winner; 9

 10

 always @(req_vector) 11

 begin 12

 casez (req_vector) 13

 32'b1???_????_????_????_????_????_????_????: begin winner_vld = HI; winner = 5'h1f; 14
end 15

 32'b01??_????_????_????_????_????_????_????: begin winner_vld = HI; winner = 5'h1e; 16
end 17

 32'b001?_????_????_????_????_????_????_????: begin winner_vld = HI; winner = 18
5'h1d; end 19

 32'b0001_????_????_????_????_????_????_????: begin winner_vld = HI; winner = 20
5'h1c; end 21

 32'b0000_1???_????_????_????_????_????_????: begin winner_vld = HI; winner = 22
5'h1b; end 23

 32'b0000_01??_????_????_????_????_????_????: begin winner_vld = HI; winner = 24
5'h1a; end 25

 32'b0000_001?_????_????_????_????_????_????: begin winner_vld = HI; winner = 26
5'h19; end 27

 32'b0000_0001_????_????_????_????_????_????: begin winner_vld = HI; winner = 28
5'h18; end 29

 Page 8 of 28
Ex. 2097 - sq_thread_arb.v

 32'b0000_0000_1???_????_????_????_????_????: begin winner_vld = HI; winner = 1
5'h17; end 2

 32'b0000_0000_01??_????_????_????_????_????: begin winner_vld = HI; winner = 3
5'h16; end 4

 32'b0000_0000_001?_????_????_????_????_????: begin winner_vld = HI; winner = 5
5'h15; end 6

 32'b0000_0000_0001_????_????_????_????_????: begin winner_vld = HI; winner = 7
5'h14; end 8

 32'b0000_0000_0000_1???_????_????_????_????: begin winner_vld = HI; winner = 9
5'h13; end 10

 32'b0000_0000_0000_01??_????_????_????_????: begin winner_vld = HI; winner = 11
5'h12; end 12

 32'b0000_0000_0000_001?_????_????_????_????: begin winner_vld = HI; winner = 13
5'h11; end 14

 32'b0000_0000_0000_0001_????_????_????_????: begin winner_vld = HI; winner = 15
5'h10; end 16

 32'b0000_0000_0000_0000_1???_????_????_????: begin winner_vld = HI; winner = 17
5'h0f; end 18

 32'b0000_0000_0000_0000_01??_????_????_????: begin winner_vld = HI; winner = 19
5'h0e; end 20

 32'b0000_0000_0000_0000_001?_????_????_????: begin winner_vld = HI; winner = 21
5'h0d; end 22

 32'b0000_0000_0000_0000_0001_????_????_????: begin winner_vld = HI; winner = 23
5'h0c; end 24

 32'b0000_0000_0000_0000_0000_1???_????_????: begin winner_vld = HI; winner = 25
5'h0b; end 26

 32'b0000_0000_0000_0000_0000_01??_????_????: begin winner_vld = HI; winner = 27
5'h0a; end 28

 32'b0000_0000_0000_0000_0000_001?_????_????: begin winner_vld = HI; winner = 29
5'h09; end 30

 32'b0000_0000_0000_0000_0000_0001_????_????: begin winner_vld = HI; winner = 31
5'h08; end 32

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 398 of 611

 Page 9 of 28
Ex. 2097 - sq_thread_arb.v

 32'b0000_0000_0000_0000_0000_0000_1???_????: begin winner_vld = HI; winner = 1
5'h07; end 2

 32'b0000_0000_0000_0000_0000_0000_01??_????: begin winner_vld = HI; winner = 3
5'h06; end 4

 32'b0000_0000_0000_0000_0000_0000_001?_????: begin winner_vld = HI; winner = 5
5'h05; end 6

 32'b0000_0000_0000_0000_0000_0000_0001_????: begin winner_vld = HI; winner = 7
5'h04; end 8

 32'b0000_0000_0000_0000_0000_0000_0000_1???: begin winner_vld = HI; winner = 9
5'h03; end 10

 32'b0000_0000_0000_0000_0000_0000_0000_01??: begin winner_vld = HI; winner = 11
5'h02; end 12

 32'b0000_0000_0000_0000_0000_0000_0000_001?: begin winner_vld = HI; winner = 13
5'h01; end 14

 32'b0000_0000_0000_0000_0000_0000_0000_0001: begin winner_vld = HI; winner = 15
5'h00; end 16

 32'b0000_0000_0000_0000_0000_0000_0000_0000: begin winner_vld = LO; winner = 17
5'h00; end // winner is really don't care here 18

 default: begin winner_vld = X; winner = {5{X}}; end 19

 endcase 20

 end // always @ (req_vector) 21

*/ 22

 23

 // - vertex request priority encoder 24

 25

 reg vtx_winner_vld; 26

 reg [3:0] vtx_winner; 27

 28

 always @(vtx_req_q) 29

 Page 10 of 28
Ex. 2097 - sq_thread_arb.v

 begin 1

 casez (vtx_req_q) 2

 16'b0000_0000_0000_0000: begin vtx_winner_vld = LO; vtx_winner = 4'hf; end 3

 16'b1000_0000_0000_0000: begin vtx_winner_vld = HI; vtx_winner = 4'hf; end 4

 16'b?100_0000_0000_0000: begin vtx_winner_vld = HI; vtx_winner = 4'he; end 5

 16'b??10_0000_0000_0000: begin vtx_winner_vld = HI; vtx_winner = 4'hd; end 6

 16'b???1_0000_0000_0000: begin vtx_winner_vld = HI; vtx_winner = 4'hc; end 7

 16'b????_1000_0000_0000: begin vtx_winner_vld = HI; vtx_winner = 4'hb; end 8

 16'b????_?100_0000_0000: begin vtx_winner_vld = HI; vtx_winner = 4'ha; end 9

 16'b????_??10_0000_0000: begin vtx_winner_vld = HI; vtx_winner = 4'h9; end 10

 16'b????_???1_0000_0000: begin vtx_winner_vld = HI; vtx_winner = 4'h8; end 11

 16'b????_????_1000_0000: begin vtx_winner_vld = HI; vtx_winner = 4'h7; end 12

 16'b????_????_?100_0000: begin vtx_winner_vld = HI; vtx_winner = 4'h6; end 13

 16'b????_????_??10_0000: begin vtx_winner_vld = HI; vtx_winner = 4'h5; end 14

 16'b????_????_???1_0000: begin vtx_winner_vld = HI; vtx_winner = 4'h4; end 15

 16'b????_????_????_1000: begin vtx_winner_vld = HI; vtx_winner = 4'h3; end 16

 16'b????_????_????_?100: begin vtx_winner_vld = HI; vtx_winner = 4'h2; end 17

 16'b????_????_????_??10: begin vtx_winner_vld = HI; vtx_winner = 4'h1; end 18

 16'b????_????_????_???1: begin vtx_winner_vld = HI; vtx_winner = 4'h0; end 19

 default: begin vtx_winner_vld = X; vtx_winner = 4'bxxxx; end 20

 endcase 21

 end 22

 23

 24

 // - pixel request priority encoder 25

 Page 11 of 28
Ex. 2097 - sq_thread_arb.v

 1

 reg pix_winner_vld; 2

 reg [3:0] pix_winner; 3

 4

 always @(pix_req_q) 5

 begin 6

 casez (pix_req_q) 7

 //16'b0000_0000_0000_0000: begin pix_winner_vld = LO; pix_winner = 4'hf; end 8

 16'b1000_0000_0000_0000: begin pix_winner_vld = HI; pix_winner = 4'hf; end 9

 16'b?100_0000_0000_0000: begin pix_winner_vld = HI; pix_winner = 4'he; end 10

 16'b??10_0000_0000_0000: begin pix_winner_vld = HI; pix_winner = 4'hd; end 11

 16'b???1_0000_0000_0000: begin pix_winner_vld = HI; pix_winner = 4'hc; end 12

 16'b????_1000_0000_0000: begin pix_winner_vld = HI; pix_winner = 4'hb; end 13

 16'b????_?100_0000_0000: begin pix_winner_vld = HI; pix_winner = 4'ha; end 14

 16'b????_??10_0000_0000: begin pix_winner_vld = HI; pix_winner = 4'h9; end 15

 16'b????_???1_0000_0000: begin pix_winner_vld = HI; pix_winner = 4'h8; end 16

 16'b????_????_1000_0000: begin pix_winner_vld = HI; pix_winner = 4'h7; end 17

 16'b????_????_?100_0000: begin pix_winner_vld = HI; pix_winner = 4'h6; end 18

 16'b????_????_??10_0000: begin pix_winner_vld = HI; pix_winner = 4'h5; end 19

 16'b????_????_???1_0000: begin pix_winner_vld = HI; pix_winner = 4'h4; end 20

 16'b????_????_????_1000: begin pix_winner_vld = HI; pix_winner = 4'h3; end 21

 16'b????_????_????_?100: begin pix_winner_vld = HI; pix_winner = 4'h2; end 22

 16'b????_????_????_??10: begin pix_winner_vld = HI; pix_winner = 4'h1; end 23

 16'b????_????_????_???1: begin pix_winner_vld = HI; pix_winner = 4'h0; end 24

 //default: begin pix_winner_vld = X; pix_winner = 4'bxxxx; end 25

 Page 12 of 28
Ex. 2097 - sq_thread_arb.v

 default: begin pix_winner_vld = LO; pix_winner = 4'bxxxx; end 1

 endcase 2

 end 3

 4

 5

 // - if cfs1 is enabled, alternate btwn rts0 and rts1 6

 // - if cfs1 is disabled, mask rts1 and always use rts0 7

 // - what is the algorithm here? really want to send the thread to the CFS that's available 8
(default 9

 // to cfs0 if both are available) 10

 // - so getting rid of forced toggle btwn cfs0 and cfs1 - remember to to comment out cfs_turn 11

 12

 //assign arb_rts0 = arb_rts & (~cfs_turn | ~cfs1_enable); 13

 //assign arb_rts1 = arb_rts & cfs_turn & cfs1_enable; 14

 15

 //wire [0:0] cfs_rtr = cfs_rtr0 | cfs_rtr1; 16

 17

 wire [0:0] send_to_cfs0 = cfs_rtr0; 18

 wire [0:0] send_to_cfs1 = ~cfs_rtr0 & cfs_rtr1 & cfs1_enable; 19

 20

 assign arb_rts0 = arb_rts & send_to_cfs0; 21

 assign arb_rts1 = arb_rts & send_to_cfs1; 22

 23

 wire [0:0] arb_xfc0 = arb_rts0 & cfs_rtr0; 24

 wire [0:0] arb_xfc1 = arb_rts1 & cfs_rtr1; 25

 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 399 of 611

 Page 13 of 28
Ex. 2097 - sq_thread_arb.v

 wire [0:0] arb_xfc = arb_xfc0 | arb_xfc1; 1

 2

 3

 // -------------------- 4

 // -- Arb Output Mux -- 5

 // -------------------- 6

 // - choose between tex state/status and pix state/status depending on overall winner 7

 // - vtx tex has no lod 8

 // - vtx alu has no lod 9

 // - pix tex does have LOD (PIX_CTL_PKT_WIDTH and CTL_PKT_WIDTH have lod) 10

 // - pix alu has no lod 11

 12

 always @(type_winner or vtx_state or pix_state) 13

 begin 14

 //arb_state = {STATE_WIDTH{LO}}; 15

 case (type_winner) 16

 HI: arb_state = vtx_state; // these are unequal - msb's get 0's by above assignment 17

 LO: arb_state = pix_state; 18

 //default: arb_state = {STATE_WIDTH{X}}; 19

 endcase 20

 end 21

 22

 always @(type_winner or vtx_status or pix_status) 23

 begin 24

 //arb_status = {STATUS_WIDTH{LO}}; 25

 Page 14 of 28
Ex. 2097 - sq_thread_arb.v

 case (type_winner) 1

 HI: arb_status = vtx_status; 2

 LO: arb_status = pix_status; 3

 //default: arb_status = {STATUS_WIDTH{X}}; 4

 endcase 5

 end 6

 7

 8

 // --- 9

 // -- registers -- 10

 // --- 11

 12

 // register the winner based on ld_winner 13

 14

 always @(posedge clk) 15

 begin 16

 if (reset) 17

 begin 18

 vtx_winner_q <= 4'h0; 19

 vtx_winner_vld_q <= LO; 20

 pix_winner_q <= 4'h0; 21

 pix_winner_vld_q <= LO; 22

 end 23

 else if (ld_winner) 24

 begin 25

 Page 15 of 28
Ex. 2097 - sq_thread_arb.v

 vtx_winner_q <= vtx_winner; 1

 vtx_winner_vld_q <= vtx_winner_vld; 2

 pix_winner_q <= pix_winner; 3

 pix_winner_vld_q <= pix_winner_vld; 4

 end 5

 else 6

 begin 7

 vtx_winner_q <= vtx_winner_q; 8

 vtx_winner_vld_q <= vtx_winner_vld_q; 9

 pix_winner_q <= pix_winner_q; 10

 pix_winner_vld_q <= pix_winner_vld_q; 11

 end 12

 end 13

 14

 15

 16

 // --- 17

 // -- one-bit state machines -- 18

 // --- 19

 20

 // cfs_turn 21

 // - just toggle when either cfs rts is asserted 22

 23

 wire toggle_turn = arb_rts0 | arb_rts1; 24

 25

 Page 16 of 28
Ex. 2097 - sq_thread_arb.v

 always @(posedge clk) 1

 begin 2

 if (reset) cfs_turn <= LO; 3

 else 4

 case (toggle_turn) 5

 HI: 6

 cfs_turn <= ~cfs_turn; 7

 LO: 8

 cfs_turn <= cfs_turn; 9

 endcase 10

 end 11

 12

 13

 // --- 14

 // -- state machines -- 15

 // --- 16

 17

 // ----------------------------------- 18

 // -- Thread Type Arb state machine -- 19

 // ----------------------------------- 20

 21

 // - arbitrates between the vertex winner and the pixel winner 22

 // - acknowledges the corresponding request 23

 // - waits until the state/status info associated with the current winner is sent to the CFS 24

 // before returning to pick a new thread type winner 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 400 of 611

 Page 17 of 28
Ex. 2097 - sq_thread_arb.v

 1

 parameter [1:0] TTA0 = 2'b00; 2

 parameter [1:0] TTA1 = 2'b01; 3

 parameter [1:0] TTA2 = 2'b10; 4

 parameter [1:0] TTA3 = 2'b11; 5

 6

 reg [1:0] tta_current_state; 7

 reg [1:0] tta_next_state; 8

 9

 // state and output registers 10

 always @(posedge clk) 11

 begin 12

 if (reset) 13

 begin 14

 tta_current_state <= TTA0; 15

 end 16

 else 17

 begin 18

 tta_current_state <= tta_next_state; 19

 end 20

 end 21

 22

 // next state logic 23

 always @(24

 state_read_phase or arb_type_strap or 25

 Page 18 of 28
Ex. 2097 - sq_thread_arb.v

 vtx_winner_vld_q or pix_winner_vld_q or 1

 arb_xfc or 2

 tta_current_state 3

) 4

 begin 5

 // default assignments 6

 tta_next_state = TTA0; 7

 type_winner = LO; 8

 vtx_winner_ack = LO; 9

 pix_winner_ack = LO; 10

 11

 case (tta_current_state) 12

 TTA0: 13

 begin 14

 // - ack is connected to TB State Mem read enable, so have to 15

 // wait until the correct phase to ack 16

 17

 if (state_read_phase == arb_type_strap) 18

 19

 if (vtx_winner_vld_q) // simply give verts the priority 20

 begin 21

 vtx_winner_ack = HI; 22

 tta_next_state = TTA1; 23

 end 24

 25

 Page 19 of 28
Ex. 2097 - sq_thread_arb.v

 else if (pix_winner_vld_q) 1

 begin 2

 pix_winner_ack = HI; 3

 tta_next_state = TTA2; 4

 end 5

 6

 end 7

 8

 TTA1: 9

 begin 10

 // - wait here until the xfer from the arb to the cfs is complete 11

 // - type_winner becomes the vector_type output to the cfs, and also 12

 // is the final mux select between vertex state and pixel state heading for the CFS 13

 14

 type_winner = HI; 15

 16

 if (arb_xfc) 17

 tta_next_state = TTA0; 18

 else 19

 tta_next_state = TTA1; 20

 end 21

 22

 TTA2: 23

 begin 24

 type_winner = LO; 25

 Page 20 of 28
Ex. 2097 - sq_thread_arb.v

 1

 if (arb_xfc) 2

 tta_next_state = TTA0; 3

 else 4

 tta_next_state = TTA2; 5

 end 6

 7

 TTA3: 8

 begin 9

 // - 10

 tta_next_state = TTA0; 11

 end 12

 13

 endcase // case(tta_current_state) 14

 end 15

 // - end thread type arb state machine 16

 17

 18

 wire [0:0] arb_thread_type = type_winner; // type is sent to CFS 19

 20

 21

 // ------------------------------- 22

 // -- Thread Read state machine -- 23

 // ------------------------------- 24

 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 401 of 611

 Page 21 of 28
Ex. 2097 - sq_thread_arb.v

 // - loads the winner register with new winner from the priority encoder 1

 // - will initiate a TB state mem read, loading the state into a TB register that is sent back here 2
to 3

 // the arbiter for final muxing between vertex and pixel (e.g. tex_winner goes to both VTB 4
and PTB, 5

 // but the state read is specific to the TB - there's both a vtx_tex_ld_state and 6
pix_tex_ld_state 7

 // - TB State Mem read is enabled when there is any active request 8

 9

 parameter [1:0] TR0 = 2'b00; 10

 parameter [1:0] TR1 = 2'b01; 11

 parameter [1:0] TR2 = 2'b10; 12

 parameter [1:0] TR3 = 2'b11; 13

 14

 reg [1:0] tr_current_state; 15

 reg [1:0] tr_next_state; 16

 17

 // state and output registers 18

 always @(posedge clk) 19

 begin 20

 if (reset) 21

 begin 22

 tr_current_state <= TR0; 23

 end 24

 else 25

 begin 26

 Page 22 of 28
Ex. 2097 - sq_thread_arb.v

 tr_current_state <= tr_next_state; 1

 end 2

 end 3

 4

 // next state logic 5

 always @(6

 vtx_winner_vld_q or pix_winner_vld_q or type_winner or 7

 state_read_phase or arb_type_strap or 8

 //cfs_rtr or 9

 arb_xfc or 10

 tr_current_state 11

) 12

 begin 13

 // default assignments 14

 tr_next_state = TR0; 15

 ld_winner = LO; 16

 arb_rts = LO; 17

 18

 case (tr_current_state) 19

 TR0: 20

 begin 21

 ld_winner = HI; 22

 23

 if (vtx_winner_vld_q | pix_winner_vld_q) 24

 begin 25

 Page 23 of 28
Ex. 2097 - sq_thread_arb.v

 ld_winner = LO; 1

 tr_next_state = TR1; 2

 end 3

 end 4

 5

 TR1: 6

 begin 7

 // - may need to wait here a cycle depending on phase 8

 // - the read data load signal is generated inside the TB - it's just a flopped ack 9

 10

 if (state_read_phase == ~arb_type_strap) 11

 begin 12

 /* 13

 if (type_winner) ld_vtb_state = HI; 14

 else ld_ptb_state = HI; 15

 */ 16

 tr_next_state = TR2; 17

 end 18

 else 19

 begin 20

 tr_next_state = TR1; 21

 end 22

 23

 end 24

 25

 Page 24 of 28
Ex. 2097 - sq_thread_arb.v

 TR2: 1

 begin 2

 // - now the TB state read should be done (reg'd out of TB), and 3

 // this module is muxing btwn vtx and pix, with the result going to the CFS 4

 // - assert the rts to the cfs until the xfer is complete 5

 6

 arb_rts = HI; 7

 8

 //if (cfs_rtr) 9

 if (arb_xfc) 10

 begin 11

 ld_winner = HI; 12

 tr_next_state = TR0; 13

 end 14

 else 15

 begin 16

 tr_next_state = TR2; 17

 end 18

 19

 end 20

 21

 TR3: 22

 begin 23

 // - this state is not used 24

 tr_next_state = TR0; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 402 of 611

 Page 25 of 28
Ex. 2097 - sq_thread_arb.v

 end 1

 2

 endcase 3

 end 4

 // - end thread read state machine 5

 6

/* 7

 // wire [0:0] tr_rts = (vtx_state_vld | pix_state_vld); 8

 9

 // arb rts 10

 // - 11

 12

 always @(posedge clk) 13

 begin 14

 if (reset) tr_rts <= LO; 15

 else 16

 case (tr_rts) 17

 LO: 18

 tr_rts <= (vtx_state_vld | pix_state_vld); 19

 HI: 20

 tr_rts <= ~cfs_rtr; 21

 endcase 22

 end 23

 24

 // ld_winner 25

 Page 26 of 28
Ex. 2097 - sq_thread_arb.v

 // - just toggle every clock - arbitration is done every other cycle 1

 // - this allows one cycle to pick and register the winner (from the vector of flopped requests), 2

 // and one cycle for the winner_q to go back and clear the request_q 3

 aarbays @(posedge clk) 4

 begin 5

 if (reset) 6

 ld_winner <= LO; 7

 else 8

 ld_winner <= ~ld_winner; 9

 end 10

 assign ld_winner = tr_current_state[1]; 11

 12

 // type select 13

 // - need to save the winner type until cfs acks the arb's rts 14

 15

 always @(posedge clk) 16

 begin 17

 if (reset) type_winner <= LO; 18

 else 19

 case (type_winner) 20

 LO: 21

 type_winner <= winner_thread_type; 22

 HI: 23

 type_winner <= ~cfs_rtr; 24

 endcase 25

 Page 27 of 28
Ex. 2097 - sq_thread_arb.v

 end 1

 2

 // - this is the ack to the thread buffer; it says the winner is valid for its current request 3

 // - ack the vtx TB when there's a vtx winner and the overall winner is vtx 4

 // - ack the pix TB when there's a pix winner and the overall winner is pix 5

 // - can't ack the request when we're stalled by the CFS 6

 // - the request, and thus the winner, will remain unchanged until the thread buff gets an ack 7

 8

 //assign vtx_winner_ack = winner_thread_type & vtx_winner_vld_q & ~tr_stall; 9

 //assign pix_winner_ack = ~winner_thread_type & pix_winner_vld_q & ~tr_stall; 10

 11

 // - determine the overall winner between vertex winner and pixel winner 12

 // - for now verts always have priority 13

 14

 wire [0:0] winner_thread_type = vtx_winner_vld_q; 15

 16

 17

 18

*/ 19

 20

 21

endmodule 22

 23

 24

 25

 Page 28 of 28
Ex. 2097 - sq_thread_arb.v

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 403 of 611

 Page 1 of 10
Ex. 2098 - sq_input_arb.v

`include "header.v" 1

//-- 2

// 3

// $Id: //depot/r400/devel/parts_lib/src/gfx/sq/ia/sq_input_arb.v#6 $ 4

// 5

// $Change: 42997 $ 6

// 7

// Copyright: Trade secret of ATI Technologies, Inc. 8

// © Copyright 2001-2002, ATI Technologies, Inc., (unpublished) 9

// 10

// All rights reserved. This notice is intended as a precaution against 11

// inadvertent publication and does not imply publication or any waiver 12

// of confidentiality. The year included in the foregoing notice is the 13

// year of creation of the work. 14

// 15

//-- 16

// 17

// sq_input_arb.v 18

// 19

// - arbitrate between vertex and pixel input to the GPRs 20

// - verts have priority over pixels 21

// 22

// issues: 23

// - 24

// 25

 Page 2 of 10
Ex. 2098 - sq_input_arb.v

// 1

`include "sq_defs.v" 2

 3

module sq_input_arb 4

(5

 vtx_req, // request from VISM 6

 vtx_busy, // busy from VISM - tells arb to keep gpr write mux set to verts 7

 pix_req, // request from PISM 8

 pix_busy, // busy from PISM - tells arb to keep gpr write mux set to pixels 9

 10

 gpr_phase, // 11

 12

 vtx_gnt, // grant back to VISM 13

 pix_gnt, // grant back to PISM 14

 15

 vtx_sel, // this goes to ais_output to select GPRs controls from VISM/PISM 16

 17

 clk, 18

 reset 19

); 20

 21

 // -- parameters -- 22

 23

 parameter LO = 1'b0; 24

 parameter HI = 1'b1; 25

 Page 3 of 10
Ex. 2098 - sq_input_arb.v

 parameter X = 1'bx; 1

 2

 3

 // --- 4

 // -- ios -- 5

 // --- 6

 7

 input [0:0] vtx_req; 8

 input [0:0] vtx_busy; 9

 input [0:0] pix_req; 10

 input [0:0] pix_busy; 11

 12

 input [1:0] gpr_phase; 13

 14

 output [0:0] vtx_gnt; 15

 output [0:0] pix_gnt; 16

 output [0:0] vtx_sel; 17

 18

 reg [0:0] vtx_gnt; 19

 reg [0:0] pix_gnt; 20

 reg [0:0] vtx_sel; 21

 22

 input clk; 23

 input reset; 24

 25

 Page 4 of 10
Ex. 2098 - sq_input_arb.v

 1

 // --- 2

 // -- internal signals -- 3

 // --- 4

 5

 6

 // --- 7

 // -- module instatiations -- 8

 // --- 9

 10

 11

 // --- 12

 // -- combinational logic -- 13

 // --- 14

 15

 16

 // --- 17

 // -- registers -- 18

 // --- 19

 20

 21

 // --- 22

 // -- one-bit state machines -- 23

 // --- 24

 25

ATI 2098
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 404 of 611

 Page 5 of 10
Ex. 2098 - sq_input_arb.v

 1

 // --- 2

 // -- state machines -- 3

 // --- 4

 5

 // input arbiter state machine 6

 // - 7

 8

 parameter IDLE = 2'b00; 9

 parameter V_XFER = 2'b01; 10

 parameter P_XFER = 2'b10; 11

 parameter UNUSED = 2'b11; 12

 13

 reg [1:0] current_state; 14

 reg [1:0] next_state; 15

 16

 reg next_vtx_gnt; 17

 reg next_vtx_sel; 18

 reg next_pix_gnt; 19

 20

 // state and output registers 21

 always @(posedge clk) 22

 begin 23

 if (reset) 24

 begin 25

 Page 6 of 10
Ex. 2098 - sq_input_arb.v

 current_state <= IDLE; 1

 vtx_gnt <= LO; 2

 vtx_sel <= LO; 3

 pix_gnt <= LO; 4

 end 5

 else 6

 begin 7

 current_state <= next_state; 8

 vtx_gnt <= next_vtx_gnt; 9

 vtx_sel <= next_vtx_sel; 10

 pix_gnt <= next_pix_gnt; 11

 end 12

 end 13

 14

 15

 // next state logic 16

 always @(17

 vtx_req or pix_req or vtx_busy or pix_busy or gpr_phase or 18

 current_state 19

) 20

 begin 21

 // default assignments 22

 next_state = IDLE; 23

 next_vtx_gnt = LO; 24

 next_pix_gnt = LO; 25

 Page 7 of 10
Ex. 2098 - sq_input_arb.v

 next_vtx_sel = LO; 1

 2

 case (current_state) 3

 IDLE: 4

 begin 5

 // - assert grants based on gpr phase 6

 // - gnt is reg'd out, so need to look for phase before the one that lines up 7

 // - the phase for pix gnt is calculated based on interp latency 8

 if (vtx_req & (gpr_phase == `SQ_ID_PHASE)) 9

 begin 10

 next_vtx_gnt = HI; 11

 next_vtx_sel = HI; 12

 next_state = V_XFER; 13

 end 14

 else if (pix_req & (gpr_phase == `SQ_PV_PHASE)) 15

 begin 16

 next_pix_gnt = HI; 17

 next_state = P_XFER; 18

 end 19

 20

 end 21

 22

 V_XFER: 23

 begin 24

 // - hold vtx_sel high while VISM is busy 25

 Page 8 of 10
Ex. 2098 - sq_input_arb.v

 if (vtx_busy) 1

 begin 2

 next_vtx_sel = HI; 3

 next_state = V_XFER; 4

 end 5

 else 6

 begin 7

 next_state = IDLE; 8

 end 9

 end 10

 11

 P_XFER: 12

 begin 13

 // - first check if there's another pix req (and no vtx req) 14

 // - if so, grant it and stay here 15

 // - otherwise continue to hold vtx_sel low while PISM is busy 16

 17

 if (pix_req & ~vtx_req & (gpr_phase == `SQ_PV_PHASE)) 18

 begin 19

 next_pix_gnt = HI; 20

 next_state = P_XFER; 21

 end 22

 else if (pix_busy) 23

 begin 24

 next_state = P_XFER; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 405 of 611

 Page 9 of 10
Ex. 2098 - sq_input_arb.v

 end 1

 else 2

 begin 3

 next_state = IDLE; 4

 end 5

 end 6

 7

 endcase // case(current_state) 8

 9

 end // always @ (*) 10

 11

 12

endmodule 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 Page 10 of 10
Ex. 2098 - sq_input_arb.v

 1

 2

 3

 4

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 406 of 611

 Page 1 of 17
Ex. 2099 - sq_instruction_store.v

`include "header.v" 1

//-- 2

// 3

// $Id: //depot/r400/devel/parts_lib/src/gfx/sq/is/sq_instruction_store.v#11 $ 4

// 5

// $Change: 41218 $ 6

// 7

// 8

// Notes: DFF library including plain dff, dff w/reset, dff w/clk enable, 9

// and dff w/reset and clk enable. Reset causes rval to be loaded 10

// into the flop 11

// Copyright: Trade secret of ATI Technologies, Inc. 12

// @ Copyright 2001-2002, ATI Technologies, Inc., (unpublished) 13

// 14

// All rights reserved. This notice is intended as a precaution against 15

// inadvertent publication and does not imply publication or any waiver 16

// of confidentiality. The year included in the foregoing notice is the 17

// year of creation of the work. 18

// 19

//-- 20

 21

 22

module sq_instruction_store 23

 (/*AUTOARG*/ 24

// Outputs 25

 Page 2 of 17
Ex. 2099 - sq_instruction_store.v

o_rtr, o_is_data, 1

// Inputs 2

i_is_phase, i_is_sub_phase, i_rbi_data, i_rbi_addr, i_rts, 3

i_tex_addr, i_alu0_addr, i_alu1_addr, i_tex_cf_addr, i_alu0_cf_addr, 4

i_alu1_cf_addr, i_clk, i_reset 5

); 6

 7

// memory access phase control 8

input [1:0] i_is_phase; 9

input [1:0] i_is_sub_phase; 10

 11

// RBI 12

input [31:0] i_rbi_data; 13

input [14:0] i_rbi_addr; 14

input i_rts; 15

output o_rtr; 16

 17

// SQ 18

input [11:0] i_tex_addr; 19

input [11:0] i_alu0_addr; 20

input [11:0] i_alu1_addr; 21

 22

input [11:0] i_tex_cf_addr; 23

input [11:0] i_alu0_cf_addr; 24

input [11:0] i_alu1_cf_addr; 25

 Page 3 of 17
Ex. 2099 - sq_instruction_store.v

 1

output [95:0] o_is_data; 2

 3

 4

// general 5

input i_clk; 6

input i_reset; 7

 8

reg [11:0] addr, d_addr; 9

 10

reg [14:0] q_rbi_addr_in, d_rbi_addr_in; 11

 12

reg [95:0] wrt_data, d_wrt_data, 13

 read_data; 14

 15

reg we, d_we, 16

 o_rtr, d_rtr; 17

 18

wire [95:0] o_is_data = read_data; 19

 20

parameter TEX_PHASE = 2'd1, 21

 ALU_PHASE = 2'd2, 22

 CP_PHASE = 2'd3, 23

 CF_PHASE = 2'd0; 24

 25

 Page 4 of 17
Ex. 2099 - sq_instruction_store.v

// Access to the is (instruction store) is divided into 4 phases: 1

// 0: texture instruction read 2

// 1: alu instruction read 3

// The alu phase alternates between phases for alu0 and alu1. 4

// 2: CP write (or read for debug) 5

// 3: control flow instruction read 6

// The control flow phase is shared for accesses by alu0, alu1 and tex 7

// controlled by is_sub_phase. 8

 9

 10

// address mux 11

always @(/*AUTOSENSE*/addr or i_alu0_addr or i_alu0_cf_addr 12

 or i_alu1_addr or i_alu1_cf_addr or i_is_phase 13

 or i_is_sub_phase or i_rbi_addr or i_rbi_data or i_rts 14

 or i_tex_addr or i_tex_cf_addr or o_rtr or q_rbi_addr_in 15

 or wrt_data) 16

 begin 17

 // default values 18

 d_addr = addr; 19

 d_rtr = 1'b0; 20

 d_we = 1'b0; 21

 d_wrt_data = wrt_data; 22

 case (i_is_phase) 23

 24

 TEX_PHASE : 25

ATI 2099
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 407 of 611

 Page 5 of 17
Ex. 2099 - sq_instruction_store.v

 begin 1

 d_addr = i_tex_addr; 2

 d_rtr = o_rtr; 3

 d_wrt_data[63:32] = i_rbi_data; 4

 d_rbi_addr_in = q_rbi_addr_in/3; 5

 end 6

 7

 ALU_PHASE : 8

 begin 9

 d_addr = i_is_sub_phase[0] ? i_alu1_addr : i_alu0_addr; 10

 d_rtr = 1'b0; 11

 d_we = o_rtr; 12

 d_wrt_data[95:64] = i_rbi_data; 13

 d_rbi_addr_in = q_rbi_addr_in; 14

 end 15

 16

 CP_PHASE : 17

 begin 18

 d_addr = q_rbi_addr_in; 19

 d_rtr = i_rts; 20

 d_wrt_data[31:0] = i_rbi_data; 21

 d_rbi_addr_in = i_rbi_addr; 22

 end 23

 24

 CF_PHASE : 25

 Page 6 of 17
Ex. 2099 - sq_instruction_store.v

 begin 1

 case (i_is_sub_phase) 2

 2'b00 : 3

 d_addr = i_alu0_cf_addr; 4

 2'b10 : 5

 d_addr = i_alu1_cf_addr; 6

 default : 7

 d_addr = i_tex_cf_addr; 8

 endcase // case(i_is_sub_phase) 9

 10

 d_rtr = o_rtr; 11

 d_wrt_data[31:0] = i_rbi_data; 12

// d_rbi_addr_in = q_rbi_addr_in/3; 13

 // FIXME 14

 // next line needs to replace h5000 with parameter value from register_addr.v 15

 d_rbi_addr_in = q_rbi_addr_in - 15'h5000; 16

 end 17

 endcase // case(i_is_phase) 18

 19

 end // always @ (... 20

 21

 22

wire [95:0] mem_read_data; 23

 24

`ifdef USE_BEHAVE_MEM 25

 Page 7 of 17
Ex. 2099 - sq_instruction_store.v

dum_mem_p2 1

 #(12, 96, 4096) 2

u0_dum_mem_p1_4096x96 3

 (4

 // Outputs 5

 .oQ (mem_read_data), 6

 // Inputs 7

 .iRCLK (i_clk), 8

 .iWCLK (i_clk), 9

 .iMER (1'b1), 10

 .iMEW (1'b1), 11

 .iWEN (we), 12

 .iWADR (d_addr), 13

 .iRADR (d_addr), 14

 .iD (wrt_data)); 15

 16

`else // !ifdef USE_BEHAVE_MEM 17

// due to the speed of this ram, it had to be split into two 2048x96 rams 18

 19

wire vdd = 1'b1; 20

wire vss = 1'b0; 21

wire [95:0] mem0_rd_data; 22

wire [95:0] mem1_rd_data; 23

 24

assign mem_read_data = d_addr[11] ? mem1_rd_data : mem0_rd_data; 25

 Page 8 of 17
Ex. 2099 - sq_instruction_store.v

 1

 2

hdsd1_2048x96cm8sw0 u0_is_ram 3

 (/*VRGIO hdsd1_2048x96cm8sw0 wrt_data mem0_rd_data d_addr null we 1'b1 null*/ 4

// READ/WRITE INTERFACE 5

 .CLK(i_clk), // Read & Write Clock 6

 .WE(we), // Write enable 7

 .OE(1'b1), // Output enable 8

// .ME(vdd), // Read enable 9

 .ME(~d_addr[11]), // Read enable 10

 .ADR0(d_addr[0]), .ADR1(d_addr[1]), .ADR2(d_addr[2]), .ADR3(d_addr[3]), // Address 11

 .ADR4(d_addr[4]), .ADR5(d_addr[5]), .ADR6(d_addr[6]), .ADR7(d_addr[7]), // Address 12

 .ADR8(d_addr[8]), .ADR9(d_addr[9]), .ADR10(d_addr[10]), // Address 13

 .D0(wrt_data[0]), .D1(wrt_data[1]), .D2(wrt_data[2]), .D3(wrt_data[3]), // Write Data 14

 .D4(wrt_data[4]), .D5(wrt_data[5]), .D6(wrt_data[6]), .D7(wrt_data[7]), // Write Data 15

 .D8(wrt_data[8]), .D9(wrt_data[9]), .D10(wrt_data[10]), .D11(wrt_data[11]), // Write Data 16

 .D12(wrt_data[12]), .D13(wrt_data[13]), .D14(wrt_data[14]), .D15(wrt_data[15]), // Write 17
Data 18

 .D16(wrt_data[16]), .D17(wrt_data[17]), .D18(wrt_data[18]), .D19(wrt_data[19]), // Write 19
Data 20

 .D20(wrt_data[20]), .D21(wrt_data[21]), .D22(wrt_data[22]), .D23(wrt_data[23]), // Write 21
Data 22

 .D24(wrt_data[24]), .D25(wrt_data[25]), .D26(wrt_data[26]), .D27(wrt_data[27]), // Write 23
Data 24

 .D28(wrt_data[28]), .D29(wrt_data[29]), .D30(wrt_data[30]), .D31(wrt_data[31]), // Write 25
Data 26

 .D32(wrt_data[32]), .D33(wrt_data[33]), .D34(wrt_data[34]), .D35(wrt_data[35]), // Write 27
Data 28

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 408 of 611

 Page 9 of 17
Ex. 2099 - sq_instruction_store.v

 .D36(wrt_data[36]), .D37(wrt_data[37]), .D38(wrt_data[38]), .D39(wrt_data[39]), // Write 1
Data 2

 .D40(wrt_data[40]), .D41(wrt_data[41]), .D42(wrt_data[42]), .D43(wrt_data[43]), // Write 3
Data 4

 .D44(wrt_data[44]), .D45(wrt_data[45]), .D46(wrt_data[46]), .D47(wrt_data[47]), // Write 5
Data 6

 .D48(wrt_data[48]), .D49(wrt_data[49]), .D50(wrt_data[50]), .D51(wrt_data[51]), // Write 7
Data 8

 .D52(wrt_data[52]), .D53(wrt_data[53]), .D54(wrt_data[54]), .D55(wrt_data[55]), // Write 9
Data 10

 .D56(wrt_data[56]), .D57(wrt_data[57]), .D58(wrt_data[58]), .D59(wrt_data[59]), // Write 11
Data 12

 .D60(wrt_data[60]), .D61(wrt_data[61]), .D62(wrt_data[62]), .D63(wrt_data[63]), // Write 13
Data 14

 .D64(wrt_data[64]), .D65(wrt_data[65]), .D66(wrt_data[66]), .D67(wrt_data[67]), // Write 15
Data 16

 .D68(wrt_data[68]), .D69(wrt_data[69]), .D70(wrt_data[70]), .D71(wrt_data[71]), // Write 17
Data 18

 .D72(wrt_data[72]), .D73(wrt_data[73]), .D74(wrt_data[74]), .D75(wrt_data[75]), // Write 19
Data 20

 .D76(wrt_data[76]), .D77(wrt_data[77]), .D78(wrt_data[78]), .D79(wrt_data[79]), // Write 21
Data 22

 .D80(wrt_data[80]), .D81(wrt_data[81]), .D82(wrt_data[82]), .D83(wrt_data[83]), // Write 23
Data 24

 .D84(wrt_data[84]), .D85(wrt_data[85]), .D86(wrt_data[86]), .D87(wrt_data[87]), // Write 25
Data 26

 .D88(wrt_data[88]), .D89(wrt_data[89]), .D90(wrt_data[90]), .D91(wrt_data[91]), // Write 27
Data 28

 .D92(wrt_data[92]), .D93(wrt_data[93]), .D94(wrt_data[94]), .D95(wrt_data[95]), // Write 29
Data 30

 .Q0(mem0_rd_data[0]), .Q1(mem0_rd_data[1]), .Q2(mem0_rd_data[2]), 31
.Q3(mem0_rd_data[3]), // Read Data 32

 Page 10 of 17
Ex. 2099 - sq_instruction_store.v

 .Q4(mem0_rd_data[4]), .Q5(mem0_rd_data[5]), .Q6(mem0_rd_data[6]), 1
.Q7(mem0_rd_data[7]), // Read Data 2

 .Q8(mem0_rd_data[8]), .Q9(mem0_rd_data[9]), .Q10(mem0_rd_data[10]), 3
.Q11(mem0_rd_data[11]), // Read Data 4

 .Q12(mem0_rd_data[12]), .Q13(mem0_rd_data[13]), .Q14(mem0_rd_data[14]), 5
.Q15(mem0_rd_data[15]), // Read Data 6

 .Q16(mem0_rd_data[16]), .Q17(mem0_rd_data[17]), .Q18(mem0_rd_data[18]), 7
.Q19(mem0_rd_data[19]), // Read Data 8

 .Q20(mem0_rd_data[20]), .Q21(mem0_rd_data[21]), .Q22(mem0_rd_data[22]), 9
.Q23(mem0_rd_data[23]), // Read Data 10

 .Q24(mem0_rd_data[24]), .Q25(mem0_rd_data[25]), .Q26(mem0_rd_data[26]), 11
.Q27(mem0_rd_data[27]), // Read Data 12

 .Q28(mem0_rd_data[28]), .Q29(mem0_rd_data[29]), .Q30(mem0_rd_data[30]), 13
.Q31(mem0_rd_data[31]), // Read Data 14

 .Q32(mem0_rd_data[32]), .Q33(mem0_rd_data[33]), .Q34(mem0_rd_data[34]), 15
.Q35(mem0_rd_data[35]), // Read Data 16

 .Q36(mem0_rd_data[36]), .Q37(mem0_rd_data[37]), .Q38(mem0_rd_data[38]), 17
.Q39(mem0_rd_data[39]), // Read Data 18

 .Q40(mem0_rd_data[40]), .Q41(mem0_rd_data[41]), .Q42(mem0_rd_data[42]), 19
.Q43(mem0_rd_data[43]), // Read Data 20

 .Q44(mem0_rd_data[44]), .Q45(mem0_rd_data[45]), .Q46(mem0_rd_data[46]), 21
.Q47(mem0_rd_data[47]), // Read Data 22

 .Q48(mem0_rd_data[48]), .Q49(mem0_rd_data[49]), .Q50(mem0_rd_data[50]), 23
.Q51(mem0_rd_data[51]), // Read Data 24

 .Q52(mem0_rd_data[52]), .Q53(mem0_rd_data[53]), .Q54(mem0_rd_data[54]), 25
.Q55(mem0_rd_data[55]), // Read Data 26

 .Q56(mem0_rd_data[56]), .Q57(mem0_rd_data[57]), .Q58(mem0_rd_data[58]), 27
.Q59(mem0_rd_data[59]), // Read Data 28

 .Q60(mem0_rd_data[60]), .Q61(mem0_rd_data[61]), .Q62(mem0_rd_data[62]), 29
.Q63(mem0_rd_data[63]), // Read Data 30

 .Q64(mem0_rd_data[64]), .Q65(mem0_rd_data[65]), .Q66(mem0_rd_data[66]), 31
.Q67(mem0_rd_data[67]), // Read Data 32

 Page 11 of 17
Ex. 2099 - sq_instruction_store.v

 .Q68(mem0_rd_data[68]), .Q69(mem0_rd_data[69]), .Q70(mem0_rd_data[70]), 1
.Q71(mem0_rd_data[71]), // Read Data 2

 .Q72(mem0_rd_data[72]), .Q73(mem0_rd_data[73]), .Q74(mem0_rd_data[74]), 3
.Q75(mem0_rd_data[75]), // Read Data 4

 .Q76(mem0_rd_data[76]), .Q77(mem0_rd_data[77]), .Q78(mem0_rd_data[78]), 5
.Q79(mem0_rd_data[79]), // Read Data 6

 .Q80(mem0_rd_data[80]), .Q81(mem0_rd_data[81]), .Q82(mem0_rd_data[82]), 7
.Q83(mem0_rd_data[83]), // Read Data 8

 .Q84(mem0_rd_data[84]), .Q85(mem0_rd_data[85]), .Q86(mem0_rd_data[86]), 9
.Q87(mem0_rd_data[87]), // Read Data 10

 .Q88(mem0_rd_data[88]), .Q89(mem0_rd_data[89]), .Q90(mem0_rd_data[90]), 11
.Q91(mem0_rd_data[91]), // Read Data 12

 .Q92(mem0_rd_data[92]), .Q93(mem0_rd_data[93]), .Q94(mem0_rd_data[94]), 13
.Q95(mem0_rd_data[95]), // Read Data 14

 // READ/WRITE TEST SIGNALS 15

 .BISTE(vss), 16

 .TWE(vss), 17

 .TOE(vss), 18

 .TME(vss), 19

 .TADR0(d_addr[0]), .TADR1(d_addr[1]), .TADR2(d_addr[2]), .TADR3(d_addr[3]), // 20
Write Test Address 21

 .TADR4(d_addr[4]), .TADR5(d_addr[5]), .TADR6(d_addr[6]), .TADR7(d_addr[7]), // 22
Write Test Address 23

 .TADR8(d_addr[8]), .TADR9(d_addr[9]), .TADR10(d_addr[10]), // Write Test Address 24

 .RM0(vss), .RM1(vss), .RM2(vss), .RM3(vss), // Read Margin 25

 .AWT(vss) 26

); 27

 28

hdsd1_2048x96cm8sw0 u1_is_ram 29

 Page 12 of 17
Ex. 2099 - sq_instruction_store.v

 (/*VRGIO hdsd1_2048x96cm8sw0 wrt_data mem1_rd_data d_addr null we 1'b1 null*/ 1

// READ/WRITE INTERFACE 2

 .CLK(i_clk), // Read & Write Clock 3

 .WE(we), // Write enable 4

 .OE(1'b1), // Output enable 5

// .ME(vdd), // Read enable 6

 .ME(d_addr[11]), // Read enable 7

 .ADR0(d_addr[0]), .ADR1(d_addr[1]), .ADR2(d_addr[2]), .ADR3(d_addr[3]), // Address 8

 .ADR4(d_addr[4]), .ADR5(d_addr[5]), .ADR6(d_addr[6]), .ADR7(d_addr[7]), // Address 9

 .ADR8(d_addr[8]), .ADR9(d_addr[9]), .ADR10(d_addr[10]), // Address 10

 .D0(wrt_data[0]), .D1(wrt_data[1]), .D2(wrt_data[2]), .D3(wrt_data[3]), // Write Data 11

 .D4(wrt_data[4]), .D5(wrt_data[5]), .D6(wrt_data[6]), .D7(wrt_data[7]), // Write Data 12

 .D8(wrt_data[8]), .D9(wrt_data[9]), .D10(wrt_data[10]), .D11(wrt_data[11]), // Write Data 13

 .D12(wrt_data[12]), .D13(wrt_data[13]), .D14(wrt_data[14]), .D15(wrt_data[15]), // Write 14
Data 15

 .D16(wrt_data[16]), .D17(wrt_data[17]), .D18(wrt_data[18]), .D19(wrt_data[19]), // Write 16
Data 17

 .D20(wrt_data[20]), .D21(wrt_data[21]), .D22(wrt_data[22]), .D23(wrt_data[23]), // Write 18
Data 19

 .D24(wrt_data[24]), .D25(wrt_data[25]), .D26(wrt_data[26]), .D27(wrt_data[27]), // Write 20
Data 21

 .D28(wrt_data[28]), .D29(wrt_data[29]), .D30(wrt_data[30]), .D31(wrt_data[31]), // Write 22
Data 23

 .D32(wrt_data[32]), .D33(wrt_data[33]), .D34(wrt_data[34]), .D35(wrt_data[35]), // Write 24
Data 25

 .D36(wrt_data[36]), .D37(wrt_data[37]), .D38(wrt_data[38]), .D39(wrt_data[39]), // Write 26
Data 27

 .D40(wrt_data[40]), .D41(wrt_data[41]), .D42(wrt_data[42]), .D43(wrt_data[43]), // Write 28
Data 29

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 409 of 611

 Page 13 of 17
Ex. 2099 - sq_instruction_store.v

 .D44(wrt_data[44]), .D45(wrt_data[45]), .D46(wrt_data[46]), .D47(wrt_data[47]), // Write 1
Data 2

 .D48(wrt_data[48]), .D49(wrt_data[49]), .D50(wrt_data[50]), .D51(wrt_data[51]), // Write 3
Data 4

 .D52(wrt_data[52]), .D53(wrt_data[53]), .D54(wrt_data[54]), .D55(wrt_data[55]), // Write 5
Data 6

 .D56(wrt_data[56]), .D57(wrt_data[57]), .D58(wrt_data[58]), .D59(wrt_data[59]), // Write 7
Data 8

 .D60(wrt_data[60]), .D61(wrt_data[61]), .D62(wrt_data[62]), .D63(wrt_data[63]), // Write 9
Data 10

 .D64(wrt_data[64]), .D65(wrt_data[65]), .D66(wrt_data[66]), .D67(wrt_data[67]), // Write 11
Data 12

 .D68(wrt_data[68]), .D69(wrt_data[69]), .D70(wrt_data[70]), .D71(wrt_data[71]), // Write 13
Data 14

 .D72(wrt_data[72]), .D73(wrt_data[73]), .D74(wrt_data[74]), .D75(wrt_data[75]), // Write 15
Data 16

 .D76(wrt_data[76]), .D77(wrt_data[77]), .D78(wrt_data[78]), .D79(wrt_data[79]), // Write 17
Data 18

 .D80(wrt_data[80]), .D81(wrt_data[81]), .D82(wrt_data[82]), .D83(wrt_data[83]), // Write 19
Data 20

 .D84(wrt_data[84]), .D85(wrt_data[85]), .D86(wrt_data[86]), .D87(wrt_data[87]), // Write 21
Data 22

 .D88(wrt_data[88]), .D89(wrt_data[89]), .D90(wrt_data[90]), .D91(wrt_data[91]), // Write 23
Data 24

 .D92(wrt_data[92]), .D93(wrt_data[93]), .D94(wrt_data[94]), .D95(wrt_data[95]), // Write 25
Data 26

 .Q0(mem1_rd_data[0]), .Q1(mem1_rd_data[1]), .Q2(mem1_rd_data[2]), 27
.Q3(mem1_rd_data[3]), // Read Data 28

 .Q4(mem1_rd_data[4]), .Q5(mem1_rd_data[5]), .Q6(mem1_rd_data[6]), 29
.Q7(mem1_rd_data[7]), // Read Data 30

 .Q8(mem1_rd_data[8]), .Q9(mem1_rd_data[9]), .Q10(mem1_rd_data[10]), 31
.Q11(mem1_rd_data[11]), // Read Data 32

 Page 14 of 17
Ex. 2099 - sq_instruction_store.v

 .Q12(mem1_rd_data[12]), .Q13(mem1_rd_data[13]), .Q14(mem1_rd_data[14]), 1
.Q15(mem1_rd_data[15]), // Read Data 2

 .Q16(mem1_rd_data[16]), .Q17(mem1_rd_data[17]), .Q18(mem1_rd_data[18]), 3
.Q19(mem1_rd_data[19]), // Read Data 4

 .Q20(mem1_rd_data[20]), .Q21(mem1_rd_data[21]), .Q22(mem1_rd_data[22]), 5
.Q23(mem1_rd_data[23]), // Read Data 6

 .Q24(mem1_rd_data[24]), .Q25(mem1_rd_data[25]), .Q26(mem1_rd_data[26]), 7
.Q27(mem1_rd_data[27]), // Read Data 8

 .Q28(mem1_rd_data[28]), .Q29(mem1_rd_data[29]), .Q30(mem1_rd_data[30]), 9
.Q31(mem1_rd_data[31]), // Read Data 10

 .Q32(mem1_rd_data[32]), .Q33(mem1_rd_data[33]), .Q34(mem1_rd_data[34]), 11
.Q35(mem1_rd_data[35]), // Read Data 12

 .Q36(mem1_rd_data[36]), .Q37(mem1_rd_data[37]), .Q38(mem1_rd_data[38]), 13
.Q39(mem1_rd_data[39]), // Read Data 14

 .Q40(mem1_rd_data[40]), .Q41(mem1_rd_data[41]), .Q42(mem1_rd_data[42]), 15
.Q43(mem1_rd_data[43]), // Read Data 16

 .Q44(mem1_rd_data[44]), .Q45(mem1_rd_data[45]), .Q46(mem1_rd_data[46]), 17
.Q47(mem1_rd_data[47]), // Read Data 18

 .Q48(mem1_rd_data[48]), .Q49(mem1_rd_data[49]), .Q50(mem1_rd_data[50]), 19
.Q51(mem1_rd_data[51]), // Read Data 20

 .Q52(mem1_rd_data[52]), .Q53(mem1_rd_data[53]), .Q54(mem1_rd_data[54]), 21
.Q55(mem1_rd_data[55]), // Read Data 22

 .Q56(mem1_rd_data[56]), .Q57(mem1_rd_data[57]), .Q58(mem1_rd_data[58]), 23
.Q59(mem1_rd_data[59]), // Read Data 24

 .Q60(mem1_rd_data[60]), .Q61(mem1_rd_data[61]), .Q62(mem1_rd_data[62]), 25
.Q63(mem1_rd_data[63]), // Read Data 26

 .Q64(mem1_rd_data[64]), .Q65(mem1_rd_data[65]), .Q66(mem1_rd_data[66]), 27
.Q67(mem1_rd_data[67]), // Read Data 28

 .Q68(mem1_rd_data[68]), .Q69(mem1_rd_data[69]), .Q70(mem1_rd_data[70]), 29
.Q71(mem1_rd_data[71]), // Read Data 30

 .Q72(mem1_rd_data[72]), .Q73(mem1_rd_data[73]), .Q74(mem1_rd_data[74]), 31
.Q75(mem1_rd_data[75]), // Read Data 32

 Page 15 of 17
Ex. 2099 - sq_instruction_store.v

 .Q76(mem1_rd_data[76]), .Q77(mem1_rd_data[77]), .Q78(mem1_rd_data[78]), 1
.Q79(mem1_rd_data[79]), // Read Data 2

 .Q80(mem1_rd_data[80]), .Q81(mem1_rd_data[81]), .Q82(mem1_rd_data[82]), 3
.Q83(mem1_rd_data[83]), // Read Data 4

 .Q84(mem1_rd_data[84]), .Q85(mem1_rd_data[85]), .Q86(mem1_rd_data[86]), 5
.Q87(mem1_rd_data[87]), // Read Data 6

 .Q88(mem1_rd_data[88]), .Q89(mem1_rd_data[89]), .Q90(mem1_rd_data[90]), 7
.Q91(mem1_rd_data[91]), // Read Data 8

 .Q92(mem1_rd_data[92]), .Q93(mem1_rd_data[93]), .Q94(mem1_rd_data[94]), 9
.Q95(mem1_rd_data[95]), // Read Data 10

 // READ/WRITE TEST SIGNALS 11

 .BISTE(vss), 12

 .TWE(vss), 13

 .TOE(vss), 14

 .TME(vss), 15

 .TADR0(d_addr[0]), .TADR1(d_addr[1]), .TADR2(d_addr[2]), .TADR3(d_addr[3]), // 16
Write Test Address 17

 .TADR4(d_addr[4]), .TADR5(d_addr[5]), .TADR6(d_addr[6]), .TADR7(d_addr[7]), // 18
Write Test Address 19

 .TADR8(d_addr[8]), .TADR9(d_addr[9]), .TADR10(d_addr[10]), // Write Test Address 20

 .RM0(vss), .RM1(vss), .RM2(vss), .RM3(vss), // Read Margin 21

 .AWT(vss) 22

); 23

`endif 24

 25

// register instantiation 26

always @(posedge i_clk) 27

 begin 28

 Page 16 of 17
Ex. 2099 - sq_instruction_store.v

 if (i_reset) 1

 begin 2

 we <= 1'b0; 3

// addr <= 12'd0; 4

 read_data <= 96'd0; 5

 o_rtr <= 1'b0; 6

 wrt_data <= 96'd0; 7

 q_rbi_addr_in <= 12'd0; 8

 end 9

 else 10

 begin 11

 we <= d_we; 12

// addr <= d_addr; 13

 read_data <= mem_read_data; 14

 o_rtr <= d_rtr; 15

 wrt_data <= d_wrt_data; 16

 q_rbi_addr_in <= d_rbi_addr_in; 17

 end 18

 end 19

 20

 21

// Local Variables: 22

// verilog-library-directories:("." "../../../common/") 23

// End: 24

 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 410 of 611

 Page 17 of 17
Ex. 2099 - sq_instruction_store.v

endmodule // sq_instruction_store 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 411 of 611

 Page 1 of 4
Ex. 2100 - sq_defs.v

`define SQ_VTX_CTL_PKT_WIDTH 88 // number of bits in the vertex control 1
packet 2

 // first:1, instr_ptr:12, resource:1, valid_bits:64, gpr_base:7, 3
context_id:3 4

`define SQ_PIX_CTL_PKT_WIDTH 184 // number of bits in the pixel control packet 5

 // first:1, base_ptr:12, resource:1, lod_correct:96, valid_bits:64, 6
gpr_base:7, context_id:3 7

`define SQ_CTL_PKT_WIDTH 184 // number of bits in the pixel control packet 8

 9

// State Mem 10

`define SQ_VTX_STATE_WIDTH 99 // ism + cfs state 11

`define SQ_PIX_STATE_WIDTH 236 // 12

`define SQ_STATE_WIDTH 236 // max of the above 13

 14

// ISM State Mem 15

`define SQ_VTX_ISM_STATE_WIDTH 74 // number of bits in the vertex thread ISM 16
state 17

 // valid_bits:64, gpr_base:7, context_id:3 (note that valid_bits will 18
move to alu_state) 19

`define SQ_PIX_ISM_STATE_WIDTH 218 // number of bits in the pixel thread state 20

 // lod_correct:144, valid_bits:64, gpr_base:7, context_id:3 21

`define SQ_ISM_STATE_WIDTH 218 // max of the above 22

 23

// CFS State Mem 24

`define SQ_VTX_CFS_STATE_WIDTH 25 // number of bits in the vertex thread CFS 25
state 26

 // instr_ptr:13, exec_cnt:4, param_ptr:7, export_id:1 27

`define SQ_PIX_CFS_STATE_WIDTH 18 // number of bits in the pixel thread state 28

 Page 2 of 4
Ex. 2100 - sq_defs.v

 // instr_ptr:13, exec_cnt:4, export_id:1 1

`define SQ_CFS_STATE_WIDTH 25 // max of the above 2

 3

//`define SQ_TEX_CFS_STATE_WIDTH 18 // number of bits in the tex thread CFS state 4

//`define SQ_ALU_CFS_STATE_WIDTH 25 // number of bits in the ALU thread state 5

 6

// Status Regs 7

`define SQ_VTX_STATUS_WIDTH 22 // number of bits in the vertex thread status 8

 // thread_id:4, status:14 9

`define SQ_PIX_STATUS_WIDTH 22 // number of bits in the pixel thread status 10

 // thread_id:4, status:14 11

`define SQ_STATUS_WIDTH 22 // max of the above 12

 13

// instruction sequencer type - compared to inst store phase and alu phase 14

`define SQ_TEX_STRAP 3'b010 // - this is what {is_phase, alu_phase} should match 15
(except that 16

`define SQ_ALU0_STRAP 3'b100 // alu_phase is also tied low on the tex instance) 17

`define SQ_ALU1_STRAP 3'b101 18

 19

// instr store phase 20

`define SQ_IS_CFS_PHASE 2'b00 21

`define SQ_IS_TEX_PHASE 2'b01 22

`define SQ_IS_ALU_PHASE 2'b10 23

`define SQ_IS_CP_PHASE 2'b11 24

 25

// instr store CFS sub phase 26

 Page 3 of 4
Ex. 2100 - sq_defs.v

`define SQ_IS_ALU0_SUBPHASE 2'b00 1

`define SQ_IS_TEX0_SUBPHASE 2'b01 2

`define SQ_IS_ALU1_SUBPHASE 2'b10 3

`define SQ_IS_TEX1_SUBPHASE 2'b11 // for tex, only care if subphase lsb == 1 4

 5

// CFS phase 6

`define SQ_CFS_ALU0_PHASE 2'b00 7

`define SQ_CFS_TEX0_PHASE 2'b01 8

`define SQ_CFS_ALU1_PHASE 2'b10 9

`define SQ_CFS_TEX1_PHASE 2'b11 // for tex, only care if phase lsb == 1 10

 11

// gpr write phase 12

`define SQ_ID_PHASE 2'b00 // Input Data gpr write phase 13

`define SQ_FD_PHASE 2'b01 // Fetch Data gpr write phase 14

`define SQ_PV_PHASE 2'b10 // Vector Result (PV) gpr write phase 15

`define SQ_PS_PHASE 2'b11 // Scalar Result (PS) gpr write phase 16

 17

// gpr read phase 18

`define SQ_SRCB_PHASE 2'b00 // source B gpr read phase 19

`define SQ_SRCC_PHASE 2'b01 // source C gpr read phase 20

`define SQ_FA_PHASE 2'b10 // fetch address gpr read phase 21

`define SQ_SRCA_PHASE 2'b11 // source A gpr read phase 22

 23

 24

`define SQ_SC_DATA_WIDTH 54 // width of the scan converter input data bus 25

 Page 4 of 4
Ex. 2100 - sq_defs.v

`define SQ_PB_WIDTH 53 // width of the pointer buffer 1

 2

// vector type: 1 = VTX, 0 = PIX 3

`define SQ_VTX 1'b1 4

`define SQ_PIX 1'b0 5

ATI 2100
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 412 of 611

 Page 1 of 49
Ex. 2101 - sq_thread_buff.v

`include "header.v" 1

//-- 2

// 3

// $Id: //depot/r400/devel/parts_lib/src/gfx/sq/ss/sq_thread_buff.v#27 $ 4

// 5

// $Change: 44010 $ 6

// 7

// Copyright: Trade secret of ATI Technologies, Inc. 8

// © Copyright 2001-2002, ATI Technologies, Inc., (unpublished) 9

// 10

// All rights reserved. This notice is intended as a precaution against 11

// inadvertent publication and does not imply publication or any waiver 12

// of confidentiality. The year included in the foregoing notice is the 13

// year of creation of the work. 14

// 15

//-- 16

// 17

// sq_thread_buff.v 18

// 19

// - this is the clause-less thread buffer (a.k.a. reservation station) 20

// - contains Thread State Memory and Thread Status Registers 21

// - each line (thread) has both a texture and an alu request output (only one can 22

// be active at a time) 23

// - tex requests go to the tex arb, and a tex_winner is returned 24

// - alu requests go to the alu arb, and a alu_winner is returned 25

 Page 2 of 49
Ex. 2101 - sq_thread_buff.v

// - the winning thread_id is used to read the State Mem and the Status Registers so that 1

// the selected thread info can be sent to the associated Control Flow Sequencer (CFS) (via the 2
arb) 3

// 4

// - the sq top level will contain two instances of the thread buffer (one for verts, on for pixels) 5

// - the tex requests from both TBs go to the tex thread arbiter, and the alu requests from both 6
TBs 7

// go to the alu thread arbiter 8

// - so there are 4 total winners from two arbiters: vtx_tex, pix_tex, vtx_alu, and pix_alu 9

// - each arbiter then does the final muxing between vtx and pix 10

// 11

// issues: 12

// - 13

// 14

// 15

 16

module sq_thread_buff 17

(18

 thread_type_strap, // a strap that tells this module if it's a vertex or pixel thread buffer 19

 state_read_phase, // share read access between tex and alu arbs 20

 cfs_phase, // share write (update) access between the tex and alu CFSs 21

 22

 // inputs from local registers 23

 num_reg_set, // connected to SQ_PROGRAM_CNTL.VS_NUM_REG (6 bits) 24
(or PS_NUM_REG) 25

 26

 Page 3 of 49
Ex. 2101 - sq_thread_buff.v

 // control packet input (from ISM) - initial values for state and status 1

 ism_rts, // control packet rts 2

 ism_lod_correct, // state (pix only) 3

 ism_instr_ptr, // state 4

 ism_valid_bits, // state 5

 ism_gpr_base, // state 6

 ism_context_id, // state 7

 ism_resource, // status: resource bit : tex=1, alu=0 8

 ism_first_thread, // status: first thread of a new state 9

 tb_rtr, // rtr when not full AND not doing a CFS update 10

 11

 // tex control flow seq update of state and status 12

 tcfs_update, // load updated status info from CFS 13

 tcfs_thread_type, // the vector type: pixel=0, vertex=1 14

 tcfs_state, // state returned from cfs 15

 tcfs_status, // status returned from cfs 16

 17

 // alu control flow seq update of state and status 18

 acfs0_update, // load updated status info from CFS 19

 acfs0_thread_type, // the vector type: pixel=0, vertex=1 20

 acfs0_state, // state returned from cfs 21

 acfs0_status, // status returned from cfs 22

 23

 acfs1_update, // load updated status info from CFS 24

 acfs1_thread_type, // the vector type: pixel=0, vertex=1 25

 Page 4 of 49
Ex. 2101 - sq_thread_buff.v

 acfs1_state, // state returned from cfs 1

 acfs1_status, // status returned from cfs 2

 3

 4

 // tex thread arbiter interface 5

 tex_req_q, // tex request from every thread in the buffer 6

 tex_winner_q, // tex winner from arbiter 7

 tex_winner_ack, // tex winner valid (request acknowledge) from tex arbiter 8

 tex_state_q, // winning state read from State Mem back to tex arbiter 9

 tex_status_q, // winning status read from Status Regs back to tex arbiter 10

 11

 TP_SQ_data_rdy, // data ready (done) indicator from TPC 12

 TP_SQ_type, // the vector type: pixel=0, vertex=1 13

 TP_SQ_thread_id, // 14

 15

 // alu thread arbiter interface 16

 alu_req_q, // alu req from every thread 17

 alu_winner_q, // alu winner from arbiter 18

 alu_winner_ack, // alu winner valid from alu arbiter 19

 alu_state_q, // winning state read from State Mem 20

 alu_status_q, // winning status read from Status Regs 21

 22

 ais0_done, // done indicator from AIS0 23

 ais0_thread_type, // the vector type: pixel=0, vertex=1 24

 ais0_thread_id, // 25

ATI 2101
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 413 of 611

 Page 5 of 49
Ex. 2101 - sq_thread_buff.v

 1

 ais1_done, // done indicator from AIS1 2

 ais1_thread_type, // the vector type: pixel=0, vertex=1 3

 ais1_thread_id, // 4

 5

 // SX export buffer availability 6

 u0_SX_SQ_exp_count_rdy,// avaliability info is valid 7

 u0_SX_SQ_exp_pos_avail,// position available from SX 8

 u0_SX_SQ_exp_buf_avail,// buffer available from SX (0 to 127 2kbit buffers(), 2kbit = 9
32bits for 64 pixels) 10

 11

 u1_SX_SQ_exp_count_rdy, 12

 u1_SX_SQ_exp_pos_avail, 13

 u1_SX_SQ_exp_buf_avail, 14

 15

 // outputs from exit SM to constant stores and gpr alloc 16

 // - this needs to be checked... 17

 state_change, // a pulse high indicates that the state exiting the SS has changed 18

 old_state, // the state that has finished (because a new state has emerged) 19

 dealloc_req, // request to deallocate GPRs 20

 dealloc_space, // number of locations to dealloc (from local gfx reg) 21

 dealloc_ack, // the dealloc request has been acknowleged 22

 23

 pop_thread, // syncs vtx shader with pix input (latter must wait for former) 24

 25

 param_cache_wptr_q, // input to status regs 26

 Page 6 of 49
Ex. 2101 - sq_thread_buff.v

 1

 busy, // TB is busy when there are any threads in the buffer 2

 clk, 3

 reset 4

); 5

 6

 7

 // -- parameters -- 8

 9

 parameter STATE_WIDTH = 8; 10

 parameter ISM_STATE_WIDTH = 8; 11

 parameter CFS_STATE_WIDTH = 8; 12

 //parameter ALU_STATE_WIDTH = 8; 13

 14

 parameter STATUS_WIDTH = 8; 15

 16

 parameter TB_DEPTH = 16; // number of locations 17

 parameter TB_ADDR_WIDTH = 4; // log2 (number of locations rounded to nearest power 18
of 2) 19

 20

 parameter TID_WIDTH = 6; // number ob bits in the thread ID 21

 22

 parameter LO = 1'b0; 23

 parameter HI = 1'b1; 24

 parameter X = 1'bx; 25

 26

 Page 7 of 49
Ex. 2101 - sq_thread_buff.v

 1

 // --- 2

 // -- ios -- 3

 // --- 4

 5

 input [0:0] thread_type_strap; 6

 input [0:0] state_read_phase; 7

 input [1:0] cfs_phase; 8

 9

 input [8*6-1:0] num_reg_set; 10

 11

 // 12

 input [00:0] ism_rts; 13

 input [143:0] ism_lod_correct; 14

 input [11:0] ism_instr_ptr; 15

 input [63:0] ism_valid_bits; 16

 input [06:0] ism_gpr_base; 17

 input [02:0] ism_context_id; 18

 input [00:0] ism_resource; 19

 input [00:0] ism_first_thread; 20

 21

 output [0:0] tb_rtr; 22

 23

 // 24

 input [0:0] tcfs_update; 25

 Page 8 of 49
Ex. 2101 - sq_thread_buff.v

 input [0:0] tcfs_thread_type; 1

 input [CFS_STATE_WIDTH-1:0] tcfs_state; 2

 input [STATUS_WIDTH-1:0] tcfs_status; 3

 4

 // 5

 input [0:0] acfs0_update; 6

 input [0:0] acfs0_thread_type; 7

 input [CFS_STATE_WIDTH-1:0] acfs0_state; 8

 input [STATUS_WIDTH-1:0] acfs0_status; 9

 10

 // 11

 input [0:0] acfs1_update; 12

 input [0:0] acfs1_thread_type; 13

 input [CFS_STATE_WIDTH-1:0] acfs1_state; 14

 input [STATUS_WIDTH-1:0] acfs1_status; 15

 16

 17

 output [TB_DEPTH-1:0] tex_req_q; 18

 output [STATE_WIDTH-1:0] tex_state_q; 19

 output [STATUS_WIDTH-1:0] tex_status_q; 20

 21

 input [TB_ADDR_WIDTH-1:0] tex_winner_q; 22

 input [0:0] tex_winner_ack; 23

 24

 input [0:0] TP_SQ_data_rdy; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 414 of 611

 Page 9 of 49
Ex. 2101 - sq_thread_buff.v

 input [0:0] TP_SQ_type; 1

 input [TID_WIDTH-1:0] TP_SQ_thread_id; 2

 3

 output [TB_DEPTH-1:0] alu_req_q; 4

 output [STATE_WIDTH-1:0] alu_state_q; 5

 output [STATUS_WIDTH-1:0] alu_status_q; 6

 7

 input [TB_ADDR_WIDTH-1:0] alu_winner_q; 8

 input [0:0] alu_winner_ack; 9

 10

 input [0:0] ais0_done; 11

 input [0:0] ais0_thread_type; 12

 input [TID_WIDTH-1:0] ais0_thread_id; 13

 14

 input [0:0] ais1_done; 15

 input [0:0] ais1_thread_type; 16

 input [TID_WIDTH-1:0] ais1_thread_id; 17

 18

 input [0:0] u0_SX_SQ_exp_count_rdy; 19

 input [0:0] u0_SX_SQ_exp_pos_avail; 20

 //tri1 [0:0] u0_SX_SQ_exp_pos_avail; 21

 input [6:0] u0_SX_SQ_exp_buf_avail; 22

 23

 input [0:0] u1_SX_SQ_exp_count_rdy; 24

 input [0:0] u1_SX_SQ_exp_pos_avail; 25

 Page 10 of 49
Ex. 2101 - sq_thread_buff.v

 //tri1 [0:0] u1_SX_SQ_exp_pos_avail; 1

 input [6:0] u1_SX_SQ_exp_buf_avail; 2

 3

 output state_change; 4

 output [2:0] old_state; 5

 output dealloc_req; 6

 output [5:0] dealloc_space; 7

 input dealloc_ack; 8

 9

 output pop_thread; 10

 input [6:0] param_cache_wptr_q; 11

 12

 output busy; 13

 14

 input clk; 15

 input reset; 16

 17

 18

 // --- 19

 // -- internal signals -- 20

 // --- 21

 22

 reg [STATE_WIDTH-1:0] tex_state_q; 23

 reg [STATUS_WIDTH-1:0] tex_status_q; 24

 reg [STATE_WIDTH-1:0] alu_state_q; 25

 Page 11 of 49
Ex. 2101 - sq_thread_buff.v

 reg [STATUS_WIDTH-1:0] alu_status_q; 1

 2

 reg [0:0] tp_done_q; 3

 reg [0:0] tp_thread_type_q; 4

 reg [TID_WIDTH-1:0] tp_thread_id_q; 5

 6

 reg [TID_WIDTH-1:0] state_head_ptr_q; 7

 reg [TID_WIDTH-1:0] state_tail_ptr_q; 8

 reg [TID_WIDTH-1:0] status_tail_ptr_q; 9

 10

 reg [TID_WIDTH:0] full_cnt_q; 11

 12

 reg [0:0] tex_winner_ack_q; 13

 reg [0:0] alu_winner_ack_q; 14

 reg [0:0] alu_winner_ack_q1; 15

 16

 reg [0:0] sx_pos_avail; 17

 reg [6:0] sx_buf_avail; 18

 19

 wire [STATUS_WIDTH-1:0] status_data_0; 20

 wire [STATUS_WIDTH-1:0] status_data_1; 21

 wire [STATUS_WIDTH-1:0] status_data_2; 22

 wire [STATUS_WIDTH-1:0] status_data_3; 23

 wire [STATUS_WIDTH-1:0] status_data_4; 24

 wire [STATUS_WIDTH-1:0] status_data_5; 25

 Page 12 of 49
Ex. 2101 - sq_thread_buff.v

 wire [STATUS_WIDTH-1:0] status_data_6; 1

 wire [STATUS_WIDTH-1:0] status_data_7; 2

 wire [STATUS_WIDTH-1:0] status_data_8; 3

 wire [STATUS_WIDTH-1:0] status_data_9; 4

 wire [STATUS_WIDTH-1:0] status_data_10; 5

 wire [STATUS_WIDTH-1:0] status_data_11; 6

 wire [STATUS_WIDTH-1:0] status_data_12; 7

 wire [STATUS_WIDTH-1:0] status_data_13; 8

 wire [STATUS_WIDTH-1:0] status_data_14; 9

 wire [STATUS_WIDTH-1:0] status_data_15; 10

 11

 reg [STATUS_WIDTH-1:0] tex_status_read_data; 12

 reg [STATUS_WIDTH-1:0] alu_status_read_data; 13

 14

 wire [0:0] cfs_update; 15

 16

 reg [0:0] sx0_exp_count_rdy_q; 17

 reg [0:0] sx0_exp_pos_avail_q; 18

 reg [6:0] sx0_exp_buf_avail_q; 19

 reg [0:0] sx1_exp_count_rdy_q; 20

 reg [0:0] sx1_exp_pos_avail_q; 21

 reg [6:0] sx1_exp_buf_avail_q; 22

 23

 reg [0:0] pos_avail_q; 24

 reg [6:0] buf_avail_q; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 415 of 611

 Page 13 of 49
Ex. 2101 - sq_thread_buff.v

 1

 reg [1:0] cfs_phase_q; 2

 3

 4

 // --- 5

 // -- combinational logic -- 6

 // --- 7

 8

 // - qualify the TP and AIS done signals with the vector type (since same done goes to both 9

 // vtx and pix thread buffers) 10

 // - the ais dones will not occur on the same cycle since they're interleaved 11

 12

 wire [0:0] qual_tp_done = tp_done_q & (tp_thread_type_q == thread_type_strap); 13

 14

 wire [0:0] qual_ais0_done = ais0_done & (ais0_thread_type == thread_type_strap); 15

 wire [0:0] qual_ais1_done = ais1_done & (ais1_thread_type == thread_type_strap); 16

 17

 wire [0:0] qual_ais_done = qual_ais0_done | qual_ais1_done; 18

 19

 wire [TID_WIDTH-1:0] ais_thread_id = ais0_done ? ais0_thread_id : ais1_thread_id; 20

 21

 22

 // - mux the thread_id/winner down from two sources to one before sending to the status bits 23

 // (to update thread_valid) 24

 // - note that tex and alu arbiters provide winner_acks on alternate cycles, so tex_winner_ack 25

 Page 14 of 49
Ex. 2101 - sq_thread_buff.v

 // and alu_winner_ack cannot occur on the same cycle 1

 2

 wire [0:0] winner_ack = tex_winner_ack | alu_winner_ack; 3

 wire [TID_WIDTH-1:0] winner = tex_winner_ack ? tex_winner_q : alu_winner_q; 4

 5

 6

 // - buffer full bit is just the MSB of the location counter 7

 8

 wire [0:0] buffer_full_q = full_cnt_q[TID_WIDTH]; 9

 10

 11

 // - rtr the ISM ctl pkt data when buffer is not full AND when not loading CFS update data 12

 // - CFS updates take priority over ISM loads 13

 // - CFS updates are coordinates by cfs_phase in the ctl flow sequencers 14

 15

 assign tb_rtr = ~buffer_full_q & ~cfs_update; 16

 17

 18

 // - busy whenever the buffer is not empty (i.e. when full count != 0) 19

 20

 wire [0:0] busy = |full_cnt_q; 21

 22

 23

 // - push a thread when there's a valid transfer from the ISM 24

 25

 Page 15 of 49
Ex. 2101 - sq_thread_buff.v

 wire [0:0] push_thread = ism_rts & tb_rtr; 1

 2

 3

 // - pop a thread when alu_status last_instr bit is set (and delayed winner ack pulses) 4

 5

 wire [0:0] pop_thread = alu_status_q[12] & alu_winner_ack_q1; 6

 7

 8

 // --------------------------- 9

 // -- State Mem connections -- 10

 // --------------------------- 11

 12

 // -------- 13

 // - read - 14

 // -------- 15

 // - state mem reads are shared btwn tex arb and alu arb (tex and alu reqs are mixed in the 16
buffer) 17

 18

 //wire [3:0] state_rd_addr = state_read_phase ? tex_winner_q : alu_winner_q; 19

 // - note: the state mem read address is the thread_id from the winning status register 20

 wire [TID_WIDTH-1:0] tex_winner_thread_id = tex_status_read_data[STATUS_WIDTH-21
1:STATUS_WIDTH-TID_WIDTH]; 22

 wire [TID_WIDTH-1:0] alu_winner_thread_id = alu_status_read_data[STATUS_WIDTH-23
1:STATUS_WIDTH-TID_WIDTH]; 24

 wire [TID_WIDTH-1:0] state_rd_addr = state_read_phase ? tex_winner_thread_id : 25
alu_winner_thread_id; 26

 27

 Page 16 of 49
Ex. 2101 - sq_thread_buff.v

 wire [0:0] tex_rd_en = tex_winner_ack & state_read_phase; 1

 wire [0:0] alu_rd_en = alu_winner_ack & ~state_read_phase; 2

 wire [0:0] state_rd_en = tex_rd_en | alu_rd_en; 3

 4

 wire [ISM_STATE_WIDTH-1:0] ism_state_rd_data; 5

 wire [CFS_STATE_WIDTH-1:0] cfs_state_rd_data; 6

 wire [STATE_WIDTH-1:0] state_rd_data; 7

 8

 // ------------- 9

 // - ISM write - 10

 // ------------- 11

 // - state mem writes are shared btwn ISM ctl_pkt loads and CFS updates from 3 CFSs 12

 // (updates have priority), and ALU Instr Seq updates 13

 // - the state mem is divided into three parts: ism_state, cfs_state, and alu_state 14

 15

 // - ism info is loaded at the tail of the buffer 16

 17

 wire [TID_WIDTH-1:0] ism_state_wr_addr = state_tail_ptr_q; 18

 wire [0:0] ism_state_wr_en = push_thread; 19

 20

 wire [ISM_STATE_WIDTH-1:0] ism_state_wr_data = 21

 { 22

 ism_lod_correct, // 144 bits - gets dropped for vertex thread buffer 23

 ism_valid_bits, // 64 bits - will get moved to alu state 24

 ism_gpr_base, // 7 bits 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 416 of 611

 Page 17 of 49
Ex. 2101 - sq_thread_buff.v

 ism_context_id // 3 bits 1

 }; 2

 3

 // ------------- 4

 // - CFS write - 5

 // ------------- 6

 // - cfs mem is written normally by cfs update, but part of cfs mem is initialized by ism load 7

 8

 // - first mux between the two ALU CFS update inputs 9

 10

 wire [0:0] acfs_update = acfs0_update | acfs1_update; // these are asserted 11
at different times 12

 wire [0:0] acfs_thread_type = cfs_phase_q[1] ? acfs1_thread_type : 13
acfs0_thread_type; 14

 wire [CFS_STATE_WIDTH-1:0] acfs_state = cfs_phase_q[1] ? acfs1_state : acfs0_state; 15

 wire [STATUS_WIDTH-1:0] acfs_status = cfs_phase_q[1] ? acfs1_status : 16
acfs0_status; 17

 18

 // - second mux between the tex and alu cfs update info 19

 // - need to swap the mux sel polarity since the update is reg'd out of the CFS and thus occurs 20

 // one cycle after its associated phase 21

 22

 wire [CFS_STATE_WIDTH-1:0] cfs_state = cfs_phase_q[0] ? tcfs_state : acfs_state; 23

 wire [STATUS_WIDTH-1:0] cfs_status = cfs_phase_q[0] ? tcfs_status : acfs_status; 24

 //wire [TID_WIDTH-1:0] cfs_thread_id = cfs_phase_q[0] ? tcfs_status[19:16] : 25
acfs_status[19:16]; 26

 //wire [0:0] cfs_thread_type = cfs_phase[0] ? tcfs_thread_type : acfs_thread_type; 27

 Page 18 of 49
Ex. 2101 - sq_thread_buff.v

 1

 assign cfs_update = (tcfs_update & (tcfs_thread_type == thread_type_strap)) | 2

 (acfs_update & (acfs_thread_type == thread_type_strap)); // asserted on 3
different cfs_phases 4

 5

 wire [12:0] cfs_instr_ptr = cfs_state[CFS_STATE_WIDTH-1:CFS_STATE_WIDTH-13];6
 7

 wire [3:0] cfs_exec_cnt = cfs_state[CFS_STATE_WIDTH-14:CFS_STATE_WIDTH-8
17]; 9

 wire [0:0] cfs_export_id = cfs_state[CFS_STATE_WIDTH-18]; 10

 wire [6:0] cfs_param_ptr = cfs_state[CFS_STATE_WIDTH-19:CFS_STATE_WIDTH-11
25]; 12

 13

 wire [TID_WIDTH-1:0] cfs_thread_id = cfs_status[STATUS_WIDTH-1:STATUS_WIDTH-14
TID_WIDTH]; 15

 // status[15] is reserved 16

 wire [0:0] cfs_alu_instr_pending = cfs_status[14]; 17

 wire [0:0] cfs_pulse_sx = cfs_status[13]; 18

 wire [0:0] cfs_last_instr = cfs_status[12]; 19

 wire [0:0] cfs_pos_allocated = cfs_status[10]; 20

 wire [1:0] cfs_alloc_type = cfs_status[9:8]; 21

 wire [3:0] cfs_alloc_size = cfs_status[7:4]; 22

 wire [0:0] cfs_tex_read_pending = cfs_status[3]; 23

 wire [0:0] cfs_serial = cfs_status[2]; 24

 wire [0:0] cfs_resource = cfs_status[1]; 25

 wire [0:0] cfs_thread_valid = cfs_status[0]; 26

 27

 Page 19 of 49
Ex. 2101 - sq_thread_buff.v

 wire [TID_WIDTH-1:0] cfs_state_wr_addr = cfs_update ? cfs_thread_id : state_tail_ptr_q; 1

 wire [0:0] cfs_state_wr_en = push_thread | cfs_update; 2

 3

 wire [12:0] instr_ptr = cfs_update ? cfs_instr_ptr : {ism_instr_ptr, LO}; // 13 bits 4

 wire [03:0] exec_cnt = cfs_update ? cfs_exec_cnt : 4'b0; // 4 bits 5

 6

 wire [CFS_STATE_WIDTH-1:0] cfs_state_wr_data = 7

 { 8

 instr_ptr, // 13 bits 9

 exec_cnt, // 4 bits 10

 cfs_export_id, // 1 bit 11

 cfs_param_ptr // 7 bits - gets dropped for pixel thread buffer 12

 }; 13

 14

 // --> note that valid bits and predicate bits will go into a separate memory - alu_state 15

 16

 17

 // ---------------------------- 18

 // -- Status Read Data Muxes -- 19

 // ---------------------------- 20

 21

 // - need one mux for the tex info, and one for the alu info (and since either can be in any line, 22
need 23

 // to mux all lines) 24

 25

 always @(tex_winner_q or 26

 Page 20 of 49
Ex. 2101 - sq_thread_buff.v

 status_data_0 or status_data_1 or status_data_2 or status_data_3 or 1

 status_data_4 or status_data_5 or status_data_6 or status_data_7 or 2

 status_data_8 or status_data_9 or status_data_10 or status_data_11 or 3

 status_data_12 or status_data_13 or status_data_14 or status_data_15 4

) 5

 begin 6

 case (tex_winner_q) 7

 4'h0: tex_status_read_data = status_data_0; 8

 4'h1: tex_status_read_data = status_data_1; 9

 4'h2: tex_status_read_data = status_data_2; 10

 4'h3: tex_status_read_data = status_data_3; 11

 4'h4: tex_status_read_data = status_data_4; 12

 4'h5: tex_status_read_data = status_data_5; 13

 4'h6: tex_status_read_data = status_data_6; 14

 4'h7: tex_status_read_data = status_data_7; 15

 4'h8: tex_status_read_data = status_data_8; 16

 4'h9: tex_status_read_data = status_data_9; 17

 4'ha: tex_status_read_data = status_data_10; 18

 4'hb: tex_status_read_data = status_data_11; 19

 4'hc: tex_status_read_data = status_data_12; 20

 4'hd: tex_status_read_data = status_data_13; 21

 4'he: tex_status_read_data = status_data_14; 22

 4'hf: tex_status_read_data = status_data_15; 23

 default: tex_status_read_data = {STATUS_WIDTH{X}}; 24

 endcase // case(tex_winner) 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 417 of 611

 Page 21 of 49
Ex. 2101 - sq_thread_buff.v

 end // always @ (tex_winner or... 1

 2

 always @(alu_winner_q or 3

 status_data_0 or status_data_1 or status_data_2 or status_data_3 or 4

 status_data_4 or status_data_5 or status_data_6 or status_data_7 or 5

 status_data_8 or status_data_9 or status_data_10 or status_data_11 or 6

 status_data_12 or status_data_13 or status_data_14 or status_data_15 7

) 8

 begin 9

 case (alu_winner_q) 10

 4'h0: alu_status_read_data = status_data_0; 11

 4'h1: alu_status_read_data = status_data_1; 12

 4'h2: alu_status_read_data = status_data_2; 13

 4'h3: alu_status_read_data = status_data_3; 14

 4'h4: alu_status_read_data = status_data_4; 15

 4'h5: alu_status_read_data = status_data_5; 16

 4'h6: alu_status_read_data = status_data_6; 17

 4'h7: alu_status_read_data = status_data_7; 18

 4'h8: alu_status_read_data = status_data_8; 19

 4'h9: alu_status_read_data = status_data_9; 20

 4'ha: alu_status_read_data = status_data_10; 21

 4'hb: alu_status_read_data = status_data_11; 22

 4'hc: alu_status_read_data = status_data_12; 23

 4'hd: alu_status_read_data = status_data_13; 24

 4'he: alu_status_read_data = status_data_14; 25

 Page 22 of 49
Ex. 2101 - sq_thread_buff.v

 4'hf: alu_status_read_data = status_data_15; 1

 default: alu_status_read_data = {STATUS_WIDTH{X}}; 2

 endcase // case(tex_winner) 3

 end // always @ (tex_winner or... 4

 5

 6

 // -------------------------- 7

 // -- Status Write Decoder -- 8

 // -------------------------- 9

 10

 // - selects status register to write initial status info from ISM 11

 12

 reg [15:0] ism_status_sel; 13

 14

 always @(push_thread or status_tail_ptr_q) 15

 begin 16

 ism_status_sel = 16'h0; 17

 if (push_thread) 18

 begin 19

 ism_status_sel[status_tail_ptr_q] = HI; 20

 end 21

 end 22

 23

 24

 // -------------------------- 25

 Page 23 of 49
Ex. 2101 - sq_thread_buff.v

 // -- Status Winner Decoder -- 1

 // -------------------------- 2

 3

 // - selects winning status register so its valid bit can be cleared (once the winning thread is 4
picked, 5

 // it becomes invalid until it has finished running its target instructions) 6

 7

 reg [15:0] winner_status_sel; 8

 9

 always @(winner_ack or winner) 10

 begin 11

 winner_status_sel = 16'h0; 12

 if (winner_ack) 13

 begin 14

 winner_status_sel[winner] = HI; 15

 end 16

 end 17

 18

 19

 // --- 20

 // -- registers -- 21

 // --- 22

 23

 // --------------------------------- 24

 // -- State Mem Head and Tail Ptr -- 25

 // --------------------------------- 26

 Page 24 of 49
Ex. 2101 - sq_thread_buff.v

 1

 // state head and tail - works like a ring 2

 3

 wire [0:0] inc_state_tail_ptr = push_thread; 4

 wire [0:0] inc_state_head_ptr = pop_thread; 5

 6

 always @(posedge clk) 7

 begin 8

 if (reset) state_tail_ptr_q <= 0; 9

 else if (inc_state_tail_ptr) state_tail_ptr_q <= state_tail_ptr_q + 1; 10

 else state_tail_ptr_q <= state_tail_ptr_q; 11

 end 12

 13

 always @(posedge clk) 14

 begin 15

 if (reset) state_head_ptr_q <= 0; 16

 else if (inc_state_head_ptr) state_head_ptr_q <= state_head_ptr_q + 1; 17

 else state_head_ptr_q <= state_head_ptr_q; 18

 end 19

 20

 21

 // -------------------------- 22

 // -- Status Regs Tail Ptr -- 23

 // -------------------------- 24

 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 418 of 611

 Page 25 of 49
Ex. 2101 - sq_thread_buff.v

 // status tail - status regs are shifted forward on a pop, so head ptr is always zero 1

 // - the reason for shifting the status regs is to keep the ordering fixed so a 2

 // simple priority encoder can be used for arbitration (i.e. the request leaving 3

 // the head of the list is wired directly to the highest priority input of the 4

 // arbiter - on a pop, the entire list is shifted up one keeping the highest 5

 // piority thread at the top of the list) 6

 // - so the tail pointer needs to be decremented on a pop, and incremented on a push 7

 8

 wire [0:0] inc_status_tail_ptr = push_thread; 9

 wire [0:0] dec_status_tail_ptr = pop_thread; 10

 11

 always @(posedge clk) 12

 begin 13

 if (reset) status_tail_ptr_q <= 0; 14

 else if (inc_status_tail_ptr) status_tail_ptr_q <= status_tail_ptr_q + 1; 15

 else if (dec_status_tail_ptr) status_tail_ptr_q <= status_tail_ptr_q - 1; 16

 else status_tail_ptr_q <= status_tail_ptr_q; 17

 end 18

 19

 20

 // ----------------------------- 21

 // -- Buffer Location Counter -- 22

 // ----------------------------- 23

 24

 always @(posedge clk) 25

 Page 26 of 49
Ex. 2101 - sq_thread_buff.v

 begin 1

 if (reset) full_cnt_q <= 0; 2

 else if (inc_state_tail_ptr) full_cnt_q <= full_cnt_q + 1; // adding a thread 3

 else if (inc_state_head_ptr) full_cnt_q <= full_cnt_q - 1; // removing a thread 4

 else full_cnt_q <= full_cnt_q; 5

 end 6

 7

 8

 // -------------------------------- 9

 // -- State Mem Output Registers -- 10

 // -------------------------------- 11

 12

 // - register state mem read data for texture and alu winner lookup 13

 14

 wire [0:0] load_tex_state = tex_winner_ack_q; 15

 16

 always @(posedge clk) 17

 begin 18

 //if (reset) tex_state_q <= 0; 19

 if (load_tex_state) tex_state_q <= state_rd_data; 20

 else tex_state_q <= tex_state_q; 21

 end 22

 23

 wire [0:0] load_alu_state = alu_winner_ack_q; 24

 25

 Page 27 of 49
Ex. 2101 - sq_thread_buff.v

 always @(posedge clk) 1

 begin 2

 if (load_alu_state) alu_state_q <= state_rd_data; 3

 else alu_state_q <= alu_state_q; 4

 end 5

 6

 7

 // ---------------------------------- 8

 // -- Status Regs Output Registers -- 9

 // ---------------------------------- 10

 11

 // - register status reg read data for texture and alu winner lookup 12

 13

 wire [0:0] load_tex_status = tex_winner_ack_q; 14

 15

 always @(posedge clk) 16

 begin 17

 if (reset) tex_status_q <= 0; 18

 else if (load_tex_status) tex_status_q <= tex_status_read_data; 19

 else tex_status_q <= tex_status_q; 20

 end 21

 22

 wire [0:0] load_alu_status = alu_winner_ack_q; 23

 24

 always @(posedge clk) 25

 Page 28 of 49
Ex. 2101 - sq_thread_buff.v

 begin 1

 if (reset) alu_status_q <= 0; 2

 else if (load_alu_status) alu_status_q <= alu_status_read_data; 3

 else alu_status_q <= alu_status_q; 4

 end 5

 6

 7

 // - register delays for tex_winner_ack and alu_winner_ack 8

 9

 always @(posedge clk) 10

 begin 11

 tex_winner_ack_q <= tex_winner_ack; 12

 alu_winner_ack_q <= alu_winner_ack; 13

 alu_winner_ack_q1 <= alu_winner_ack_q; 14

 end 15

 16

 17

 // - input registers for signals from TPC 18

 19

 always @(posedge clk) 20

 begin 21

 tp_done_q <= TP_SQ_data_rdy; 22

 tp_thread_type_q <= TP_SQ_type; 23

 tp_thread_id_q <= TP_SQ_thread_id; 24

 end 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 419 of 611

 Page 29 of 49
Ex. 2101 - sq_thread_buff.v

 1

 2

 // - register the output of the state sel muxes 3

 4

 // local gfx reg 8:1 muxes (the output is reg'd before use) 5

 6

 // --> state needs to come back from the final inst seq SM in order to do the gpr dealloc 7

 8

 parameter NUM_REG_WIDTH = 6; 9

 wire [NUM_REG_WIDTH-1:0] num_reg; 10

 reg [NUM_REG_WIDTH-1:0] num_reg_q; 11

 sq_state_mux #(NUM_REG_WIDTH) 12

 num_reg_sel (.state(3'b0), .input_set(num_reg_set), .mux_data_out(num_reg)); 13

 14

 always @(posedge clk) 15

 begin 16

 num_reg_q <= num_reg; 17

 end 18

 19

 wire [5:0] dealloc_space = num_reg_q; 20

 21

 22

 // - input register for the SX buffer availability 23

 24

 always @(posedge clk) 25

 Page 30 of 49
Ex. 2101 - sq_thread_buff.v

 begin 1

 sx0_exp_count_rdy_q <= u0_SX_SQ_exp_count_rdy; 2

 sx0_exp_pos_avail_q <= u0_SX_SQ_exp_pos_avail; 3

 sx0_exp_buf_avail_q <= u0_SX_SQ_exp_buf_avail; 4

 sx1_exp_count_rdy_q <= u1_SX_SQ_exp_count_rdy; 5

 sx1_exp_pos_avail_q <= u1_SX_SQ_exp_pos_avail; 6

 sx1_exp_buf_avail_q <= u1_SX_SQ_exp_buf_avail; 7

 end 8

 9

 // - save the availability info when valid 10

 11

 always @(posedge clk) 12

 begin 13

 if (sx0_exp_count_rdy_q | sx1_exp_count_rdy_q) 14

 begin 15

 pos_avail_q <= sx0_exp_pos_avail_q | sx1_exp_pos_avail_q; 16

 buf_avail_q <= (sx0_exp_buf_avail_q > sx1_exp_buf_avail_q) ? 17
sx0_exp_buf_avail_q : sx1_exp_buf_avail_q; 18

 end 19

 end 20

 21

 // - need to register cfs_phase since it's used for update data, and update data is reg'd out 22

 23

 always @(posedge clk) 24

 begin 25

 cfs_phase_q <= cfs_phase; 26

 Page 31 of 49
Ex. 2101 - sq_thread_buff.v

 end 1

 2

 3

 // --- 4

 // -- state machines -- 5

 // --- 6

 7

 8

 // ------------------------ 9

 // -- exit state machine -- 10

 // ------------------------ 11

 12

 // the new state is the current state, which is part of the state of the thread leaving the buffer 13

 14

 sq_exit_sm 15

 u_sq_exit_sm 16

 (17

 .new_state_rts(LO), 18

 .new_state(alu_state_q[CFS_STATE_WIDTH+2:CFS_STATE_WIDTH]), 19

 //.new_state_rtr(exit_sm_rtr), 20

 21

 .state_diff(state_change), 22

 .old_state_q(old_state), 23

 24

 .dealloc_req(dealloc_req), 25

 Page 32 of 49
Ex. 2101 - sq_thread_buff.v

 .dealloc_ack(dealloc_ack), 1

 2

 .clk(clk), 3

 .reset(reset) 4

); 5

 6

 7

 8

 // --- 9

 // -- module instatiations -- 10

 // --- 11

 12

 // ------------------ 13

 // -- State Memory -- 14

 // ------------------ 15

 16

 // - ISM State Mem 17

 18

 dum_mem_p2 19

 #(TB_ADDR_WIDTH, ISM_STATE_WIDTH, TB_DEPTH, 1) 20

 ism_state_mem 21

 (22

 .iWEN (ism_state_wr_en), 23

 .iMEW (ism_state_wr_en), 24

 .iWADR (ism_state_wr_addr[3:0]), 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 420 of 611

 Page 33 of 49
Ex. 2101 - sq_thread_buff.v

 .iD (ism_state_wr_data), 1

 .iWCLK (clk), 2

 3

 .iMER (state_rd_en), 4

 .iRADR (state_rd_addr[3:0]), 5

 .oQ (ism_state_rd_data), 6

 .iRCLK (clk) 7

); 8

 9

 // - CFS State Mem 10

 11

 dum_mem_p2 12

 #(TB_ADDR_WIDTH, CFS_STATE_WIDTH, TB_DEPTH, 1) 13

 cfs_state_mem 14

 (15

 .iWEN (cfs_state_wr_en), 16

 .iMEW (cfs_state_wr_en), 17

 .iWADR (cfs_state_wr_addr[3:0]), 18

 .iD (cfs_state_wr_data), 19

 .iWCLK (clk), 20

 21

 .iMER (state_rd_en), 22

 .iRADR (state_rd_addr[3:0]), 23

 .oQ (cfs_state_rd_data), 24

 .iRCLK (clk) 25

 Page 34 of 49
Ex. 2101 - sq_thread_buff.v

); 1

 2

 3

 assign state_rd_data = {ism_state_rd_data, cfs_state_rd_data}; 4

 5

 6

 // ---------------------- 7

 // -- Status Registers -- 8

 // ---------------------- 9

 10

 sq_status_reg #(TID_WIDTH, STATUS_WIDTH) 11

 u0_sq_status_reg 12

 (13

 .thread_type_strap(thread_type_strap), 14

 15

 .ism_load (ism_status_sel[0]), // loads ctl pkt info (and sets thread valid status 16
bit) 17

 .ism_thread_id (state_tail_ptr_q), // thread id of newly written thread (state tail ptr) 18

 .ism_resource (ism_resource), // resource bit : tex=1, alu=0 19

 .ism_first_thread (ism_first_thread), // first thread of a new state 20

 21

 .cfs_update (cfs_update), // load updated status info from CFS 22

 .cfs_thread_id (cfs_thread_id), // thread ID from CFS 23

 .cfs_alu_instr_pending(cfs_alu_instr_pending),// alu instr(s) from this thread in alu pipe 24

 .cfs_pulse_sx (cfs_pulse_sx), // pulse SX from CFS 25

 .cfs_last_instr (cfs_last_instr), // last instruction from CFS 26

 Page 35 of 49
Ex. 2101 - sq_thread_buff.v

 .cfs_pos_allocated(cfs_pos_allocated), // position allocated bit from CFS 1

 .cfs_alloc_type (cfs_alloc_type), // alloc type from CFS 2

 .cfs_alloc_size (cfs_alloc_size), // alloc size from CFS 3

 .cfs_tex_read_pending(cfs_tex_read_pending),// tex pend bit from CFS 4

 .cfs_serial (cfs_serial), // serial bit from CFS 5

 .cfs_resource (cfs_resource), // resource bit from CFS 6

 .cfs_thread_valid (cfs_thread_valid), // valid bit from CFS 7

 8

 .sx_pos_avail (pos_avail_q), // position available from SX 9

 .sx_buf_avail (buf_avail_q), // buffer available from SX (0 to 127 2kbit buffers(), 2kbit 10
= 32bits for 64 pixels) 11

 .param_cache_wptr_q (param_cache_wptr_q), 12

 13

 //.winner_ack (winner_ack), // winner is selected thread - clears thread_valid 14

 //.winner (winner), // 15

 .winner_sel (winner_status_sel[0]), // 16

 17

 .tp_done (qual_tp_done), // tp done clears tex_read_pending 18

 .tp_thread_id (tp_thread_id_q), // 19

 20

 .ais_done (qual_ais_done),// ais done sets thread_valid 21

 .ais_thread_id (ais_thread_id),// 22

 23

 .pop_thread (pop_thread), // this will shift the status regs list 24

 25

 Page 36 of 49
Ex. 2101 - sq_thread_buff.v

 .tex_req_q (tex_req_q[0]), // tex request: simply the thread_valid with resource == 1
tex 2

 .alu_req_q (alu_req_q[0]), // alu request: function of the status bits and export buffer 3
availability 4

 5

 .status_in_q (status_data_1), // the status input (for shifting) 6

 .status_out_q (status_data_0), // the status output (for shifting, and sending to 7
CFS) 8

 9

 .clk(clk), 10

 .reset(reset) 11

); 12

 13

 sq_status_reg #(TID_WIDTH, STATUS_WIDTH) 14

 u1_sq_status_reg (15

 .thread_type_strap(thread_type_strap), 16

 .ism_load(ism_status_sel[1]), .ism_thread_id(state_tail_ptr_q), 17

 .ism_resource(ism_resource), .ism_first_thread(ism_first_thread), 18

 .cfs_update(cfs_update), 19

 .cfs_thread_id(cfs_thread_id), 20

 .cfs_alu_instr_pending(cfs_alu_instr_pending), 21

 .cfs_pulse_sx(cfs_pulse_sx), 22

 .cfs_last_instr(cfs_last_instr), 23

 .cfs_pos_allocated(cfs_pos_allocated), 24

 .cfs_alloc_type(cfs_alloc_type), 25

 .cfs_alloc_size(cfs_alloc_size), 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 421 of 611

 Page 37 of 49
Ex. 2101 - sq_thread_buff.v

 .cfs_tex_read_pending(cfs_tex_read_pending), 1

 .cfs_serial(cfs_serial), 2

 .cfs_resource(cfs_resource), 3

 .cfs_thread_valid(cfs_thread_valid), 4

 .sx_pos_avail(pos_avail_q), .sx_buf_avail(buf_avail_q), 5
.param_cache_wptr_q(param_cache_wptr_q), 6

 .winner_sel (winner_status_sel[1]), 7

 .tp_done(qual_tp_done), .tp_thread_id(tp_thread_id_q), 8

 .ais_done(qual_ais_done), .ais_thread_id(ais_thread_id), .pop_thread(pop_thread), 9

 .tex_req_q(tex_req_q[1]), .alu_req_q(alu_req_q[1]), 10

 .status_in_q(status_data_2), .status_out_q(status_data_1), 11

 .clk(clk), .reset(reset) 12

); 13

 14

 sq_status_reg #(TID_WIDTH, STATUS_WIDTH) 15

 u2_sq_status_reg (16

 .thread_type_strap(thread_type_strap), 17

 .ism_load(ism_status_sel[2]), .ism_thread_id(state_tail_ptr_q), 18

 .ism_resource(ism_resource), .ism_first_thread(ism_first_thread), 19

 .cfs_update(cfs_update), .cfs_serial(cfs_serial), .cfs_resource(cfs_resource), 20
.cfs_alloc_type(cfs_alloc_type), 21

 .cfs_alloc_size(cfs_alloc_size), .cfs_pos_allocated(cfs_pos_allocated), 22
.cfs_last_instr(cfs_last_instr), 23

 .cfs_pulse_sx(cfs_pulse_sx), .cfs_thread_valid(cfs_thread_valid), 24
.cfs_tex_read_pending(cfs_tex_read_pending), 25

 .cfs_thread_id(cfs_thread_id), .cfs_alu_instr_pending(cfs_alu_instr_pending), 26

 Page 38 of 49
Ex. 2101 - sq_thread_buff.v

 .sx_pos_avail(pos_avail_q), .sx_buf_avail(buf_avail_q), 1
.param_cache_wptr_q(param_cache_wptr_q), 2

 .winner_sel (winner_status_sel[2]), 3

 .tp_done(qual_tp_done), .tp_thread_id(tp_thread_id_q), 4

 .ais_done(qual_ais_done), .ais_thread_id(ais_thread_id), .pop_thread(pop_thread), 5

 .tex_req_q(tex_req_q[2]), .alu_req_q(alu_req_q[2]), 6

 .status_in_q(status_data_3), .status_out_q(status_data_2), 7

 .clk(clk), .reset(reset) 8

); 9

 10

 sq_status_reg #(TID_WIDTH, STATUS_WIDTH) 11

 u3_sq_status_reg (12

 .thread_type_strap(thread_type_strap), 13

 .ism_load(ism_status_sel[3]), .ism_thread_id(state_tail_ptr_q), 14

 .ism_resource(ism_resource), .ism_first_thread(ism_first_thread), 15

 .cfs_update(cfs_update), .cfs_serial(cfs_serial), .cfs_resource(cfs_resource), 16
.cfs_alloc_type(cfs_alloc_type), 17

 .cfs_alloc_size(cfs_alloc_size), .cfs_pos_allocated(cfs_pos_allocated), 18
.cfs_last_instr(cfs_last_instr), 19

 .cfs_pulse_sx(cfs_pulse_sx), .cfs_thread_valid(cfs_thread_valid), 20
.cfs_tex_read_pending(cfs_tex_read_pending), 21

 .cfs_thread_id(cfs_thread_id), .cfs_alu_instr_pending(cfs_alu_instr_pending), 22

 .sx_pos_avail(pos_avail_q), .sx_buf_avail(buf_avail_q), 23
.param_cache_wptr_q(param_cache_wptr_q), 24

 .winner_sel (winner_status_sel[3]), 25

 .tp_done(qual_tp_done), .tp_thread_id(tp_thread_id_q), 26

 .ais_done(qual_ais_done), .ais_thread_id(ais_thread_id), .pop_thread(pop_thread), 27

 Page 39 of 49
Ex. 2101 - sq_thread_buff.v

 .tex_req_q(tex_req_q[3]), .alu_req_q(alu_req_q[3]), 1

 .status_in_q(status_data_4), .status_out_q(status_data_3), 2

 .clk(clk), .reset(reset) 3

); 4

 5

 sq_status_reg #(TID_WIDTH, STATUS_WIDTH) 6

 u4_sq_status_reg (7

 .thread_type_strap(thread_type_strap), 8

 .ism_load(ism_status_sel[4]), .ism_thread_id(state_tail_ptr_q), 9

 .ism_resource(ism_resource), .ism_first_thread(ism_first_thread), 10

 .cfs_update(cfs_update), .cfs_serial(cfs_serial), .cfs_resource(cfs_resource), 11
.cfs_alloc_type(cfs_alloc_type), 12

 .cfs_alloc_size(cfs_alloc_size), .cfs_pos_allocated(cfs_pos_allocated), 13
.cfs_last_instr(cfs_last_instr), 14

 .cfs_pulse_sx(cfs_pulse_sx), .cfs_thread_valid(cfs_thread_valid), 15
.cfs_tex_read_pending(cfs_tex_read_pending), 16

 .cfs_thread_id(cfs_thread_id), .cfs_alu_instr_pending(cfs_alu_instr_pending), 17

 .sx_pos_avail(pos_avail_q), .sx_buf_avail(buf_avail_q), 18
.param_cache_wptr_q(param_cache_wptr_q), 19

 .winner_sel (winner_status_sel[4]), 20

 .tp_done(qual_tp_done), .tp_thread_id(tp_thread_id_q), 21

 .ais_done(qual_ais_done), .ais_thread_id(ais_thread_id), .pop_thread(pop_thread), 22

 .tex_req_q(tex_req_q[4]), .alu_req_q(alu_req_q[4]), 23

 .status_in_q(status_data_5), .status_out_q(status_data_4), 24

 .clk(clk), .reset(reset) 25

); 26

 27

 Page 40 of 49
Ex. 2101 - sq_thread_buff.v

 sq_status_reg #(TID_WIDTH, STATUS_WIDTH) 1

 u5_sq_status_reg (2

 .thread_type_strap(thread_type_strap), 3

 .ism_load(ism_status_sel[5]), .ism_thread_id(state_tail_ptr_q), 4

 .ism_resource(ism_resource), .ism_first_thread(ism_first_thread), 5

 .cfs_update(cfs_update), .cfs_serial(cfs_serial), .cfs_resource(cfs_resource), 6
.cfs_alloc_type(cfs_alloc_type), 7

 .cfs_alloc_size(cfs_alloc_size), .cfs_pos_allocated(cfs_pos_allocated), 8
.cfs_last_instr(cfs_last_instr), 9

 .cfs_pulse_sx(cfs_pulse_sx), .cfs_thread_valid(cfs_thread_valid), 10
.cfs_tex_read_pending(cfs_tex_read_pending), 11

 .cfs_thread_id(cfs_thread_id), .cfs_alu_instr_pending(cfs_alu_instr_pending), 12

 .sx_pos_avail(pos_avail_q), .sx_buf_avail(buf_avail_q), 13
.param_cache_wptr_q(param_cache_wptr_q), 14

 .winner_sel (winner_status_sel[5]), 15

 .tp_done(qual_tp_done), .tp_thread_id(tp_thread_id_q), 16

 .ais_done(qual_ais_done), .ais_thread_id(ais_thread_id), .pop_thread(pop_thread), 17

 .tex_req_q(tex_req_q[5]), .alu_req_q(alu_req_q[5]), 18

 .status_in_q(status_data_6), .status_out_q(status_data_5), 19

 .clk(clk), .reset(reset) 20

); 21

 22

 sq_status_reg #(TID_WIDTH, STATUS_WIDTH) 23

 u6_sq_status_reg (24

 .thread_type_strap(thread_type_strap), 25

 .ism_load(ism_status_sel[6]), .ism_thread_id(state_tail_ptr_q), 26

 .ism_resource(ism_resource), .ism_first_thread(ism_first_thread), 27

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 422 of 611

 Page 41 of 49
Ex. 2101 - sq_thread_buff.v

 .cfs_update(cfs_update), .cfs_serial(cfs_serial), .cfs_resource(cfs_resource), 1
.cfs_alloc_type(cfs_alloc_type), 2

 .cfs_alloc_size(cfs_alloc_size), .cfs_pos_allocated(cfs_pos_allocated), 3
.cfs_last_instr(cfs_last_instr), 4

 .cfs_pulse_sx(cfs_pulse_sx), .cfs_thread_valid(cfs_thread_valid), 5
.cfs_tex_read_pending(cfs_tex_read_pending), 6

 .cfs_thread_id(cfs_thread_id), .cfs_alu_instr_pending(cfs_alu_instr_pending), 7

 .sx_pos_avail(pos_avail_q), .sx_buf_avail(buf_avail_q), 8
.param_cache_wptr_q(param_cache_wptr_q), 9

 .winner_sel (winner_status_sel[6]), 10

 .tp_done(qual_tp_done), .tp_thread_id(tp_thread_id_q), 11

 .ais_done(qual_ais_done), .ais_thread_id(ais_thread_id), .pop_thread(pop_thread), 12

 .tex_req_q(tex_req_q[6]), .alu_req_q(alu_req_q[6]), 13

 .status_in_q(status_data_7), .status_out_q(status_data_6), 14

 .clk(clk), .reset(reset) 15

); 16

 17

 sq_status_reg #(TID_WIDTH, STATUS_WIDTH) 18

 u7_sq_status_reg (19

 .thread_type_strap(thread_type_strap), 20

 .ism_load(ism_status_sel[7]), .ism_thread_id(state_tail_ptr_q), 21

 .ism_resource(ism_resource), .ism_first_thread(ism_first_thread), 22

 .cfs_update(cfs_update), .cfs_serial(cfs_serial), .cfs_resource(cfs_resource), 23
.cfs_alloc_type(cfs_alloc_type), 24

 .cfs_alloc_size(cfs_alloc_size), .cfs_pos_allocated(cfs_pos_allocated), 25
.cfs_last_instr(cfs_last_instr), 26

 .cfs_pulse_sx(cfs_pulse_sx), .cfs_thread_valid(cfs_thread_valid), 27
.cfs_tex_read_pending(cfs_tex_read_pending), 28

 Page 42 of 49
Ex. 2101 - sq_thread_buff.v

 .cfs_thread_id(cfs_thread_id), .cfs_alu_instr_pending(cfs_alu_instr_pending), 1

 .sx_pos_avail(pos_avail_q), .sx_buf_avail(buf_avail_q), 2
.param_cache_wptr_q(param_cache_wptr_q), 3

 .winner_sel (winner_status_sel[7]), 4

 .tp_done(qual_tp_done), .tp_thread_id(tp_thread_id_q), 5

 .ais_done(qual_ais_done), .ais_thread_id(ais_thread_id), .pop_thread(pop_thread), 6

 .tex_req_q(tex_req_q[7]), .alu_req_q(alu_req_q[7]), 7

 .status_in_q(status_data_8), .status_out_q(status_data_7), 8

 .clk(clk), .reset(reset) 9

); 10

 11

 sq_status_reg #(TID_WIDTH, STATUS_WIDTH) 12

 u8_sq_status_reg (13

 .thread_type_strap(thread_type_strap), 14

 .ism_load(ism_status_sel[8]), .ism_thread_id(state_tail_ptr_q), 15

 .ism_resource(ism_resource), .ism_first_thread(ism_first_thread), 16

 .cfs_update(cfs_update), .cfs_serial(cfs_serial), .cfs_resource(cfs_resource), 17
.cfs_alloc_type(cfs_alloc_type), 18

 .cfs_alloc_size(cfs_alloc_size), .cfs_pos_allocated(cfs_pos_allocated), 19
.cfs_last_instr(cfs_last_instr), 20

 .cfs_pulse_sx(cfs_pulse_sx), .cfs_thread_valid(cfs_thread_valid), 21
.cfs_tex_read_pending(cfs_tex_read_pending), 22

 .cfs_thread_id(cfs_thread_id), .cfs_alu_instr_pending(cfs_alu_instr_pending), 23

 .sx_pos_avail(pos_avail_q), .sx_buf_avail(buf_avail_q), 24
.param_cache_wptr_q(param_cache_wptr_q), 25

 .winner_sel (winner_status_sel[8]), 26

 .tp_done(qual_tp_done), .tp_thread_id(tp_thread_id_q), 27

 Page 43 of 49
Ex. 2101 - sq_thread_buff.v

 .ais_done(qual_ais_done), .ais_thread_id(ais_thread_id), .pop_thread(pop_thread), 1

 .tex_req_q(tex_req_q[8]), .alu_req_q(alu_req_q[8]), 2

 .status_in_q(status_data_9), .status_out_q(status_data_8), 3

 .clk(clk), .reset(reset) 4

); 5

 6

 sq_status_reg #(TID_WIDTH, STATUS_WIDTH) 7

 u9_sq_status_reg (8

 .thread_type_strap(thread_type_strap), 9

 .ism_load(ism_status_sel[9]), .ism_thread_id(state_tail_ptr_q), 10

 .ism_resource(ism_resource), .ism_first_thread(ism_first_thread), 11

 .cfs_update(cfs_update), .cfs_serial(cfs_serial), .cfs_resource(cfs_resource), 12
.cfs_alloc_type(cfs_alloc_type), 13

 .cfs_alloc_size(cfs_alloc_size), .cfs_pos_allocated(cfs_pos_allocated), 14
.cfs_last_instr(cfs_last_instr), 15

 .cfs_pulse_sx(cfs_pulse_sx), .cfs_thread_valid(cfs_thread_valid), 16
.cfs_tex_read_pending(cfs_tex_read_pending), 17

 .cfs_thread_id(cfs_thread_id), .cfs_alu_instr_pending(cfs_alu_instr_pending), 18

 .sx_pos_avail(pos_avail_q), .sx_buf_avail(buf_avail_q), 19
.param_cache_wptr_q(param_cache_wptr_q), 20

 .winner_sel (winner_status_sel[9]), 21

 .tp_done(qual_tp_done), .tp_thread_id(tp_thread_id_q), 22

 .ais_done(qual_ais_done), .ais_thread_id(ais_thread_id), .pop_thread(pop_thread), 23

 .tex_req_q(tex_req_q[9]), .alu_req_q(alu_req_q[9]), 24

 .status_in_q(status_data_10), .status_out_q(status_data_9), 25

 .clk(clk), .reset(reset) 26

); 27

 Page 44 of 49
Ex. 2101 - sq_thread_buff.v

 1

 sq_status_reg #(TID_WIDTH, STATUS_WIDTH) 2

 u10_sq_status_reg (3

 .thread_type_strap(thread_type_strap), 4

 .ism_load(ism_status_sel[10]), .ism_thread_id(state_tail_ptr_q), 5

 .ism_resource(ism_resource), .ism_first_thread(ism_first_thread), 6

 .cfs_update(cfs_update), .cfs_serial(cfs_serial), .cfs_resource(cfs_resource), 7
.cfs_alloc_type(cfs_alloc_type), 8

 .cfs_alloc_size(cfs_alloc_size), .cfs_pos_allocated(cfs_pos_allocated), 9
.cfs_last_instr(cfs_last_instr), 10

 .cfs_pulse_sx(cfs_pulse_sx), .cfs_thread_valid(cfs_thread_valid), 11
.cfs_tex_read_pending(cfs_tex_read_pending), 12

 .cfs_thread_id(cfs_thread_id), .cfs_alu_instr_pending(cfs_alu_instr_pending), 13

 .sx_pos_avail(pos_avail_q), .sx_buf_avail(buf_avail_q), 14
.param_cache_wptr_q(param_cache_wptr_q), 15

 .winner_sel (winner_status_sel[10]), 16

 .tp_done(qual_tp_done), .tp_thread_id(tp_thread_id_q), 17

 .ais_done(qual_ais_done), .ais_thread_id(ais_thread_id), .pop_thread(pop_thread), 18

 .tex_req_q(tex_req_q[10]), .alu_req_q(alu_req_q[10]), 19

 .status_in_q(status_data_11), .status_out_q(status_data_10), 20

 .clk(clk), .reset(reset) 21

); 22

 23

 sq_status_reg #(TID_WIDTH, STATUS_WIDTH) 24

 u11_sq_status_reg (25

 .thread_type_strap(thread_type_strap), 26

 .ism_load(ism_status_sel[11]), .ism_thread_id(state_tail_ptr_q), 27

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 423 of 611

 Page 45 of 49
Ex. 2101 - sq_thread_buff.v

 .ism_resource(ism_resource), .ism_first_thread(ism_first_thread), 1

 .cfs_update(cfs_update), .cfs_serial(cfs_serial), .cfs_resource(cfs_resource), 2
.cfs_alloc_type(cfs_alloc_type), 3

 .cfs_alloc_size(cfs_alloc_size), .cfs_pos_allocated(cfs_pos_allocated), 4
.cfs_last_instr(cfs_last_instr), 5

 .cfs_pulse_sx(cfs_pulse_sx), .cfs_thread_valid(cfs_thread_valid), 6
.cfs_tex_read_pending(cfs_tex_read_pending), 7

 .cfs_thread_id(cfs_thread_id), .cfs_alu_instr_pending(cfs_alu_instr_pending), 8

 .sx_pos_avail(pos_avail_q), .sx_buf_avail(buf_avail_q), 9
.param_cache_wptr_q(param_cache_wptr_q), 10

 .winner_sel (winner_status_sel[11]), 11

 .tp_done(qual_tp_done), .tp_thread_id(tp_thread_id_q), 12

 .ais_done(qual_ais_done), .ais_thread_id(ais_thread_id), .pop_thread(pop_thread), 13

 .tex_req_q(tex_req_q[11]), .alu_req_q(alu_req_q[11]), 14

 .status_in_q(status_data_12), .status_out_q(status_data_11), 15

 .clk(clk), .reset(reset) 16

); 17

 18

 sq_status_reg #(TID_WIDTH, STATUS_WIDTH) 19

 u12_sq_status_reg (20

 .thread_type_strap(thread_type_strap), 21

 .ism_load(ism_status_sel[12]), .ism_thread_id(state_tail_ptr_q), 22

 .ism_resource(ism_resource), .ism_first_thread(ism_first_thread), 23

 .cfs_update(cfs_update), .cfs_serial(cfs_serial), .cfs_resource(cfs_resource), 24
.cfs_alloc_type(cfs_alloc_type), 25

 .cfs_alloc_size(cfs_alloc_size), .cfs_pos_allocated(cfs_pos_allocated), 26
.cfs_last_instr(cfs_last_instr), 27

 Page 46 of 49
Ex. 2101 - sq_thread_buff.v

 .cfs_pulse_sx(cfs_pulse_sx), .cfs_thread_valid(cfs_thread_valid), 1
.cfs_tex_read_pending(cfs_tex_read_pending), 2

 .cfs_thread_id(cfs_thread_id), .cfs_alu_instr_pending(cfs_alu_instr_pending), 3

 .sx_pos_avail(pos_avail_q), .sx_buf_avail(buf_avail_q), 4
.param_cache_wptr_q(param_cache_wptr_q), 5

 .winner_sel (winner_status_sel[12]), 6

 .tp_done(qual_tp_done), .tp_thread_id(tp_thread_id_q), 7

 .ais_done(qual_ais_done), .ais_thread_id(ais_thread_id), .pop_thread(pop_thread), 8

 .tex_req_q(tex_req_q[12]), .alu_req_q(alu_req_q[12]), 9

 .status_in_q(status_data_13), .status_out_q(status_data_12), 10

 .clk(clk), .reset(reset) 11

); 12

 13

 sq_status_reg #(TID_WIDTH, STATUS_WIDTH) 14

 u13_sq_status_reg (15

 .thread_type_strap(thread_type_strap), 16

 .ism_load(ism_status_sel[13]), .ism_thread_id(state_tail_ptr_q), 17

 .ism_resource(ism_resource), .ism_first_thread(ism_first_thread), 18

 .cfs_update(cfs_update), .cfs_serial(cfs_serial), .cfs_resource(cfs_resource), 19
.cfs_alloc_type(cfs_alloc_type), 20

 .cfs_alloc_size(cfs_alloc_size), .cfs_pos_allocated(cfs_pos_allocated), 21
.cfs_last_instr(cfs_last_instr), 22

 .cfs_pulse_sx(cfs_pulse_sx), .cfs_thread_valid(cfs_thread_valid), 23
.cfs_tex_read_pending(cfs_tex_read_pending), 24

 .cfs_thread_id(cfs_thread_id), .cfs_alu_instr_pending(cfs_alu_instr_pending), 25

 .sx_pos_avail(pos_avail_q), .sx_buf_avail(buf_avail_q), 26
.param_cache_wptr_q(param_cache_wptr_q), 27

 .winner_sel (winner_status_sel[13]), 28

 Page 47 of 49
Ex. 2101 - sq_thread_buff.v

 .tp_done(qual_tp_done), .tp_thread_id(tp_thread_id_q), 1

 .ais_done(qual_ais_done), .ais_thread_id(ais_thread_id), .pop_thread(pop_thread), 2

 .tex_req_q(tex_req_q[13]), .alu_req_q(alu_req_q[13]), 3

 .status_in_q(status_data_14), .status_out_q(status_data_13), 4

 .clk(clk), .reset(reset) 5

); 6

 7

 sq_status_reg #(TID_WIDTH, STATUS_WIDTH) 8

 u14_sq_status_reg (9

 .thread_type_strap(thread_type_strap), 10

 .ism_load(ism_status_sel[14]), .ism_thread_id(state_tail_ptr_q), 11

 .ism_resource(ism_resource), .ism_first_thread(ism_first_thread), 12

 .cfs_update(cfs_update), .cfs_serial(cfs_serial), .cfs_resource(cfs_resource), 13
.cfs_alloc_type(cfs_alloc_type), 14

 .cfs_alloc_size(cfs_alloc_size), .cfs_pos_allocated(cfs_pos_allocated), 15
.cfs_last_instr(cfs_last_instr), 16

 .cfs_pulse_sx(cfs_pulse_sx), .cfs_thread_valid(cfs_thread_valid), 17
.cfs_tex_read_pending(cfs_tex_read_pending), 18

 .cfs_thread_id(cfs_thread_id), .cfs_alu_instr_pending(cfs_alu_instr_pending), 19

 .sx_pos_avail(pos_avail_q), .sx_buf_avail(buf_avail_q), 20
.param_cache_wptr_q(param_cache_wptr_q), 21

 .winner_sel (winner_status_sel[14]), 22

 .tp_done(qual_tp_done), .tp_thread_id(tp_thread_id_q), 23

 .ais_done(qual_ais_done), .ais_thread_id(ais_thread_id), .pop_thread(pop_thread), 24

 .tex_req_q(tex_req_q[14]), .alu_req_q(alu_req_q[14]), 25

 .status_in_q(status_data_15), .status_out_q(status_data_14), 26

 .clk(clk), .reset(reset) 27

 Page 48 of 49
Ex. 2101 - sq_thread_buff.v

); 1

 2

 sq_status_reg #(TID_WIDTH, STATUS_WIDTH) 3

 u15_sq_status_reg (4

 .thread_type_strap(thread_type_strap), 5

 .ism_load(ism_status_sel[15]), .ism_thread_id(state_tail_ptr_q), 6

 .ism_resource(ism_resource), .ism_first_thread(ism_first_thread), 7

 .cfs_update(cfs_update), .cfs_serial(cfs_serial), .cfs_resource(cfs_resource), 8
.cfs_alloc_type(cfs_alloc_type), 9

 .cfs_alloc_size(cfs_alloc_size), .cfs_pos_allocated(cfs_pos_allocated), 10
.cfs_last_instr(cfs_last_instr), 11

 .cfs_pulse_sx(cfs_pulse_sx), .cfs_thread_valid(cfs_thread_valid), 12
.cfs_tex_read_pending(cfs_tex_read_pending), 13

 .cfs_thread_id(cfs_thread_id), .cfs_alu_instr_pending(cfs_alu_instr_pending), 14

 .sx_pos_avail(pos_avail_q), .sx_buf_avail(buf_avail_q), 15
.param_cache_wptr_q(param_cache_wptr_q), 16

 .winner_sel (winner_status_sel[15]), 17

 .tp_done(qual_tp_done), .tp_thread_id(tp_thread_id_q), 18

 .ais_done(qual_ais_done), .ais_thread_id(ais_thread_id), .pop_thread(pop_thread), 19

 .tex_req_q(tex_req_q[15]), .alu_req_q(alu_req_q[15]), 20

 .status_in_q({STATUS_WIDTH{LO}}), .status_out_q(status_data_15), 21

 .clk(clk), .reset(reset) 22

); 23

 24

 25

 26

endmodule 27

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 424 of 611

 Page 49 of 49
Ex. 2101 - sq_thread_buff.v

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 425 of 611

 Page 1 of 20
Ex. 2102 - sq_target_instr_fetch.v

`include "header.v" 1

//-- 2

// 3

// $Id: //depot/r400/devel/parts_lib/src/gfx/sq/tis/sq_target_instr_fetch.v#15 $ 4

// 5

// $Change: 41796 $ 6

// 7

// Copyright: Trade secret of ATI Technologies, Inc. 8

// © Copyright 2001-2002, ATI Technologies, Inc., (unpublished) 9

// 10

// All rights reserved. This notice is intended as a precaution against 11

// inadvertent publication and does not imply publication or any waiver 12

// of confidentiality. The year included in the foregoing notice is the 13

// year of creation of the work. 14

// 15

//-- 16

// 17

// target_instr_fetch.v 18

// 19

// - loads the initial instr_ptr into the TIP register (target instruction pointer) 20

// - loads count input into TIC (target instruction counter) 21

// - reads instructions into TIR (target instruction register) 22

// - outputs TIR to decode pipe 23

// - loads other state info into an input staging register 24

// - transfers input staging register to an output staging register when ready to send 25

 Page 2 of 20
Ex. 2102 - sq_target_instr_fetch.v

// an instruction to the IQ 1

// 2

// issues: 3

// - 4

// 5

// 6

`include "sq_defs.v" 7

 8

module sq_target_instr_fetch 9

(10

 target_strap, // hardwired to TEX_STRAP, ALU0_STRAP, or ALU1_STRAP 11

 // (instr store phase compared to strap) 12

 13

 // local registers 14

 // - per chip 15

 inst_base_vtx, // vertex base 16

 inst_base_pix, // pixel base 17

 // - per context 18

 19

 // cfs interface 20

 cfs_rts, // ctl packet and ptr are valid 21

 cfs_ctl_pkt, // the control packet (lod for pix_tex, valid_bits, gpr_base, context_id) 22

 cfs_export_info, // 23

 cfs_instr_ptr, // the Instruction Store address of the first target instruction 24

 cfs_instr_cnt, // the number of instructions to be fetched 25

 Page 3 of 20
Ex. 2102 - sq_target_instr_fetch.v

 cfs_pc_base, // the param cache base (alloc'd in arbiter) 1

 cfs_thread_type, // vertex or pixel 2

 cfs_thread_id, // 3

 cfs_last_in_thread, // last_instr status bit 4

 tif_rtr, // TIF can take a new packet 5

 6

 // instruction store interface 7

 is_read_addr, // instruction store read address 8

 is_read_data, // instruction store read data 9

 is_phase, // instruction store phase 10

 alu_phase, // alu phase (alu0 and alu1 share the alu is_phase) 11

 12

 // outputs to the target instruction decoder (in the TIQ module) 13

 tif_pc_base_q, // the param cache base output 14

 tif_ctl_pkt_q, // the target control packet (pipelined from reg'd input) 15

 tif_export_info_q, // the target control packet (pipelined from reg'd input) 16

 tif_last_in_group_q, // last instruction in series of consecutive tex/alu instructions 17

 tif_last_in_thread_q,// last instruction in thread 18

 tif_thread_type_q, // vert:1, pix:0 19

 tif_thread_id_q, // the target thread id 20

 tif_instr_q, // the target instruction register (TIR) 21

 tif_instr_rts_q, // the target instr register is valid 22

 tiq_rtr, // the target instr decode is ready to take the TIR (and other pipeline data) 23

 24

 busy, 25

 Page 4 of 20
Ex. 2102 - sq_target_instr_fetch.v

 clk, 1

 reset 2

); 3

 4

 // -- parameters -- 5

 6

 parameter CTL_PKT_WIDTH = 8; // number of bits in the control packet (drop the 7
lod_correct bits on ALU side) 8

 9

 parameter VTX = `SQ_VTX; 10

 parameter PIX = `SQ_PIX; 11

 12

 parameter LO = 1'b0; 13

 parameter HI = 1'b1; 14

 parameter X = 1'bx; 15

 16

 17

 // --- 18

 // -- ios -- 19

 // --- 20

 21

 input [2:0] target_strap; 22

 23

 input [11:0] inst_base_vtx; 24

 input [11:0] inst_base_pix; 25

 26

ATI 2102
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 426 of 611

 Page 5 of 20
Ex. 2102 - sq_target_instr_fetch.v

 input cfs_rts; 1

 input [11:0] cfs_instr_ptr; 2

 input [11:0] cfs_instr_cnt; 3

 input [CTL_PKT_WIDTH-1:0] cfs_ctl_pkt; 4

 input [5:0] cfs_thread_id; 5

 input [1:0] cfs_export_info; 6

 input [6:0] cfs_pc_base; 7

 input cfs_thread_type; 8

 input cfs_last_in_thread; 9

 output tif_rtr; 10

 reg tif_rtr; 11

 12

 output [11:0] is_read_addr; 13

 input [95:0] is_read_data; 14

 input [1:0] is_phase; 15

 input [0:0] alu_phase; 16

 17

 output [95:0] tif_instr_q; 18

 reg [95:0] tif_instr_q; 19

 output [CTL_PKT_WIDTH-1:0] tif_ctl_pkt_q; 20

 reg [CTL_PKT_WIDTH-1:0] tif_ctl_pkt_q; 21

 output [5:0] tif_thread_id_q; 22

 reg [5:0] tif_thread_id_q; 23

 output [1:0] tif_export_info_q; 24

 reg [1:0] tif_export_info_q; 25

 Page 6 of 20
Ex. 2102 - sq_target_instr_fetch.v

 output [6:0] tif_pc_base_q; 1

 reg [6:0] tif_pc_base_q; 2

 output tif_instr_rts_q; 3

 reg tif_instr_rts_q; 4

 output tif_last_in_group_q; 5

 reg tif_last_in_group_q; 6

 output tif_last_in_thread_q; 7

 reg tif_last_in_thread_q; 8

 output tif_thread_type_q; 9

 reg tif_thread_type_q; 10

 11

 input tiq_rtr; 12

 13

 output busy; 14

 input clk; 15

 input reset; 16

 17

 18

 // --- 19

 // -- internal signals -- 20

 // --- 21

 22

 reg [11:0] tic_q; 23

 reg [11:0] tip_q; 24

 25

 Page 7 of 20
Ex. 2102 - sq_target_instr_fetch.v

 reg [CTL_PKT_WIDTH-1:0] isr_ctl_pkt_q; 1

 reg [1:0] isr_export_info_q; 2

 reg [6:0] isr_pc_base_q; 3

 reg [5:0] isr_thread_id_q; 4

 reg isr_thread_type_q; 5

 reg isr_last_in_thread_q; 6

 7

 reg ld_tir; 8

 reg ld_tip; 9

 reg inc_tip; 10

 reg dec_tic; 11

 reg last_in_group; 12

 13

 reg [1:0] current_state; 14

 reg [1:0] next_state; 15

 16

 reg tif_instr_rts_q1; 17

 18

 // --- 19

 // -- module instatiations -- 20

 // --- 21

 22

 23

 // --- 24

 // -- combinational logic -- 25

 Page 8 of 20
Ex. 2102 - sq_target_instr_fetch.v

 // --- 1

 2

 // ld_tir is a SM reg'd out signal 3

 wire busy = |current_state | ld_tir | tif_instr_rts_q | tif_instr_rts_q1; 4

 5

 // - just re-assign the IS read address to the TIP 6

 7

 assign is_read_addr = tip_q; 8

 9

 10

 // --- 11

 // -- registers -- 12

 // --- 13

 14

 // -------------------------------------- 15

 // -- Target Instruction Pointer (TIP) -- 16

 // -------------------------------------- 17

 // - initially loaded with instr_ptr from CFS 18

 // - inc'd by 1 to next sequential address 19

 // - wraps back to inst_base 20

 21

 wire tip_eq_end_of_mem = (tip_q == 12'hfff); 22

 wire tip_eq_pix_base = (tip_q == inst_base_pix); 23

 24

 wire vtx_wrap = (cfs_thread_type == VTX) & tip_eq_pix_base; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 427 of 611

 Page 9 of 20
Ex. 2102 - sq_target_instr_fetch.v

 wire pix_wrap = (cfs_thread_type == PIX) & tip_eq_end_of_mem; 1

 2

 always @(posedge clk) 3

 begin 4

 if (ld_tip) tip_q <= cfs_instr_ptr; 5

 else if (inc_tip) 6

 if (vtx_wrap) tip_q <= inst_base_vtx; 7

 else if (pix_wrap) tip_q <= inst_base_pix; 8

 else tip_q <= tip_q + 1; 9

 else tip_q <= tip_q; 10

 end 11

 12

 13

 // -------------------------------------- 14

 // -- Target Instruction Counter (TIC) -- 15

 // -------------------------------------- 16

 // - reset to 0 17

 // - loaded with reg'd in count at the same time TIP is loaded with the initial IS addr 18

 // - dec'd by 1 for every instruction fetched 19

 20

 always @(posedge clk) 21

 begin 22

 if (reset) tic_q <= 0; 23

 else if (ld_tip) tic_q <= cfs_instr_cnt; 24

 else if (dec_tic) tic_q <= tic_q - 1; 25

 Page 10 of 20
Ex. 2102 - sq_target_instr_fetch.v

 else tic_q <= tic_q; 1

 end 2

 3

 4

 // -------------------------------------- 5

 // -- Input Staging Register -- 6

 // -------------------------------------- 7

 // - register in control packet, vector type, and pc_base from the Arbiter 8

 // when starting a new series of instruction fetches 9

 10

 always @(posedge clk) 11

 begin 12

 if (cfs_rts & tif_rtr) 13

 begin 14

 isr_export_info_q <= cfs_export_info; 15

 isr_pc_base_q <= cfs_pc_base; 16

 isr_ctl_pkt_q <= cfs_ctl_pkt; 17

 isr_thread_type_q <= cfs_thread_type; 18

 isr_thread_id_q <= cfs_thread_id; 19

 isr_last_in_thread_q <= cfs_last_in_thread; 20

 end 21

 else 22

 begin 23

 isr_export_info_q <= isr_export_info_q; 24

 isr_pc_base_q <= isr_pc_base_q; 25

 Page 11 of 20
Ex. 2102 - sq_target_instr_fetch.v

 isr_ctl_pkt_q <= isr_ctl_pkt_q; 1

 isr_thread_type_q <= isr_thread_type_q; 2

 isr_thread_id_q <= isr_thread_id_q; 3

 isr_last_in_thread_q <= isr_last_in_thread_q; 4

 end 5

 end 6

 7

 8

 // -------------------------------------- 9

 // -- Output Staging Register -- 10

 // -------------------------------------- 11

 // - hold misc info that must be passed on to the TIQ along with the instruction that was 12
fetched from IS 13

 // - register ctl packet, type, cfs num, and last flag when loading the TIR 14

 // - this is a stallable pipeline stage - stall when TIQ is not ready (input staging register can in 15
the 16

 // mean time be loaded with new cfs data) 17

 18

 always @(posedge clk) 19

 begin 20

 if (ld_tir) 21

 begin 22

 tif_export_info_q <= isr_export_info_q; 23

 tif_pc_base_q <= isr_pc_base_q; 24

 tif_ctl_pkt_q <= isr_ctl_pkt_q; 25

 tif_last_in_group_q <= last_in_group; 26

 Page 12 of 20
Ex. 2102 - sq_target_instr_fetch.v

 tif_last_in_thread_q <= isr_last_in_thread_q; 1

 tif_thread_type_q <= isr_thread_type_q; 2

 tif_thread_id_q <= isr_thread_id_q; 3

 end 4

 else 5

 begin 6

 tif_export_info_q <= tif_export_info_q; 7

 tif_pc_base_q <= tif_pc_base_q; 8

 tif_ctl_pkt_q <= tif_ctl_pkt_q; 9

 tif_last_in_group_q <= tif_last_in_group_q; 10

 tif_last_in_thread_q <= tif_last_in_thread_q; 11

 tif_thread_type_q <= tif_thread_type_q; 12

 tif_thread_id_q <= tif_thread_id_q; 13

 end 14

 end 15

 16

 // -------------------------------------- 17

 // -- Target Instruction Register (TIR) -- 18

 // -------------------------------------- 19

 // - loaded with data read from instruction store 20

 // - the TIR is output to the target instruction queue (which does some decode in front of the 21
queue) 22

 23

 always @(posedge clk) 24

 begin 25

 if (ld_tir) tif_instr_q <= is_read_data; 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 428 of 611

 Page 13 of 20
Ex. 2102 - sq_target_instr_fetch.v

 else tif_instr_q <= tif_instr_q; 1

 end 2

 3

 4

 // --- 5

 // -- one-bit state machines -- 6

 // --- 7

 8

 // tif_instr_rts_q 9

 // - sets and clears the valid (rts) bit for the TIR 10

 // - the TIR can be valid and the TIQ not ready to take it when the next series of fetches is 11
started 12

 // (i.e. in Input Staging Reg can be reloaded while the Output Staging Reg still has the last 13

 // instruction of the previous cfs) 14

 15

 always @(posedge clk) 16

 begin 17

 if (reset) tif_instr_rts_q <= LO; 18

 else 19

 case (tif_instr_rts_q) 20

 LO: tif_instr_rts_q <= ld_tir; // - set when loading TIR 21

 HI: tif_instr_rts_q <= ~tiq_rtr; // - clear when decoder/IQ is rdy 22

 endcase 23

 end 24

 25

 // reg delayed version for busy 26

 Page 14 of 20
Ex. 2102 - sq_target_instr_fetch.v

 1

 always @(posedge clk) 2

 begin 3

 if (reset) tif_instr_rts_q1 <= LO; 4

 else tif_instr_rts_q1 <= tif_instr_rts_q; 5

 end 6

 7

 8

 // --- 9

 // -- state machines -- 10

 // --- 11

 12

 // tif state machine 13

 // - load TIP with main_base + context_base + offset when starting a series of instruction 14
fetches 15

 // - read IS using TIP as read address 16

 // - load IS read data into TIR 17

 // - decrement TIC and increment TIP with every load until count equals zero 18

 19

 parameter IDLE = 2'b00; 20

 parameter LD_TIP = 2'b01; 21

 parameter FETCH = 2'b10; 22

 parameter LD_TIR = 2'b11; 23

 24

 // reg'd outputs 25

 reg next_tif_rtr; 26

 Page 15 of 20
Ex. 2102 - sq_target_instr_fetch.v

 reg next_ld_tir; 1

 reg next_last_in_group; 2

 3

 // un-reg'd outputs 4

 //reg ld_tip; 5

 //reg inc_tip; 6

 //reg dec_tic; 7

 8

 // state and output registers 9

 always @(posedge clk) 10

 begin 11

 if (reset) 12

 begin 13

 current_state <= IDLE; 14

 tif_rtr <= HI; 15

 ld_tir <= LO; 16

 last_in_group <= LO; 17

 end 18

 else 19

 begin 20

 current_state <= next_state; 21

 tif_rtr <= next_tif_rtr; 22

 ld_tir <= next_ld_tir; 23

 last_in_group <= next_last_in_group; 24

 end 25

 Page 16 of 20
Ex. 2102 - sq_target_instr_fetch.v

 end 1

 2

 // next state logic 3

 //always @(*) 4

 always @(5

 cfs_rts or alu_phase or is_phase or target_strap or tif_instr_rts_q or tic_q or 6

 current_state 7

) 8

 begin 9

 // default assignments 10

 next_state = IDLE; 11

 next_tif_rtr = LO; 12

 next_ld_tir = LO; 13

 next_last_in_group = LO; 14

 15

 ld_tip = LO; 16

 inc_tip = LO; 17

 dec_tic = LO; 18

 19

 case (current_state) 20

 IDLE: 21

 begin 22

 // - send rdy back to the arbiter/ctl flow mgr while waiting for cfs_rts 23

 // - the inputs will be registered on cfs_rts 24

 // - kick off the state machine and deassert tif rdy on cfs_rts 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 429 of 611

 Page 17 of 20
Ex. 2102 - sq_target_instr_fetch.v

 1

 next_tif_rtr = HI; 2

 3

 if (cfs_rts) 4

 begin 5

 ld_tip = HI; 6

 next_tif_rtr = LO; 7

 next_state = FETCH; 8

 end 9

 end 10

 11

 LD_TIP: 12

 begin 13

 // - not used... 14

 // - wait one cycle for instr_ptr to be reg'd into this module 15

 //ld_tip = HI; 16

 //next_state = FETCH; 17

 end 18

 19

 FETCH: 20

 begin 21

 // - synch with instr store phase (wait until phase == hardwired type) 22

 // 23

 // {is_phase, alu_phase} type 24

 // -------------------- ---- 25

 Page 18 of 20
Ex. 2102 - sq_target_instr_fetch.v

 // 001 TEX - note that alu_phase is tied low on tex instance 1

 // 010 ALU0 2

 // 110 ALU1 3

 // 4

 // - also make sure the TIR does not still contain valid data (if it does, then we don't 5
want to 6

 // overwrite it by loading new data from the IS) 7

 8

 if (({is_phase, alu_phase} == target_strap) & (~tif_instr_rts_q)) 9

 begin 10

 inc_tip = HI; 11

 dec_tic = HI; 12

 next_state = LD_TIR; 13

 end 14

 else 15

 begin 16

 next_state = FETCH; 17

 end 18

 end 19

 20

 LD_TIR: 21

 begin 22

 // - load TIR at the end of the next cycle 23

 // - if TIC is zero, we're done; otherwise, fetch another instruction 24

 25

 next_ld_tir = HI; 26

 Page 19 of 20
Ex. 2102 - sq_target_instr_fetch.v

 1

 if (tic_q == 0) 2

 begin 3

 next_last_in_group = HI; 4

 next_tif_rtr = HI; 5

 next_state = IDLE; 6

 end 7

 else 8

 begin 9

 next_state = FETCH; 10

 end 11

 end 12

 13

 endcase // case(current_state) 14

 end // always @ (*) 15

 // - end tif state machine 16

 17

 18

 19

endmodule 20

 21

 22

 23

 24

 25

 Page 20 of 20
Ex. 2102 - sq_target_instr_fetch.v

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 430 of 611

 Page 1 of 18
Ex. 2103 - sq_export_alloc.v

`include "header.v" 1

//-- 2

// 3

// $Id: //depot/r400/devel/parts_lib/src/gfx/sq/misc/sq_export_alloc.v#13 $ 4

// 5

// $Change: 44314 $ 6

// 7

// Copyright: Trade secret of ATI Technologies, Inc. 8

// © Copyright 2001-2002, ATI Technologies, Inc., (unpublished) 9

// 10

// All rights reserved. This notice is intended as a precaution against 11

// inadvertent publication and does not imply publication or any waiver 12

// of confidentiality. The year included in the foregoing notice is the 13

// year of creation of the work. 14

// 15

//-- 16

// 17

// sq_export_alloc.v 18

// 19

// - 20

// 21

// issues: 22

// - 23

// 24

// 25

 Page 2 of 18
Ex. 2103 - sq_export_alloc.v

`include "sq_defs.v" 1

 2

module sq_export_alloc 3

(4

 // - inputs from local registers 5

 vs_export_count_set, // connected to SQ_PROGRAM_CNTL.VS_EXPORT_COUNT 6
(4 bits) 7

 vs_export_mode_set, // connected to SQ_PROGRAM_CNTL.VS_EXPORT_MODE (3 8
bits) 9

 ps_export_mode_set, // connected to SQ_PROGRAM_CNTL.PS_EXPORT_MODE (3 10
bits) 11

 12

 alu_arb_rts0,// ready to send the winner to CFS0 13

 alu_arb_rts1,// ready to send the winner to CFS1 14

 alu_arb_context_id, // the state sent to the CFS 15

 alu_arb_status, // the status sent to the CFS 16

 alu_arb_thread_type, // vtx or pix 17

 18

 alu0_cfs_rtr, // ALU_CFS0 can accept a thread 19

 alu1_cfs_rtr, // ALU_CFS1 can accept a thread (for alu cfs's) 20

 21

 pb_dealloc_cnt, // param cache dealloc info from SC via the sq_ptr_buff 22

 pb_dealloc_vld, 23

 param_cache_wptr_q, // output to SX and status regs 24

 25

 // - sx export alloc interface 26

 Page 3 of 18
Ex. 2103 - sq_export_alloc.v

 SQ_SX_exp_valid, 1

 SQ_SX_exp_type, 2

 SQ_SX_exp_number, 3

 SQ_SX_exp_context_id, 4

 SQ_SX_exp_id, 5

 6

 ais0_free_done, 7

 ais0_free_id, 8

 ais1_free_done, 9

 ais1_free_id, 10

 11

 // - sx export dealloc interface 12

 SQ_SX_free_done, 13

 SQ_SX_free_id, 14

 15

 // - export id interface 16

 cfs0_export_id, // export_id that cfs0 is pushing down pipe 0 (sets global 17
export_id) 18

 cfs_aif_xfc0,// cfs0 to aif0 transfer complete 19

 cfs1_export_id, // export_id that cfs1 is pushing down pipe 1 (sets global 20
export_id) 21

 cfs_aif_xfc1,// cfs1 to aif1 transfer complete 22

 23

 global_export_id_q, // exp_id taken on arb_xfc, toggled on exp_valid, loaded on cfs_xfc 24

 25

 clk, 26

 Page 4 of 18
Ex. 2103 - sq_export_alloc.v

 reset 1

); 2

 3

 // -- parameters -- 4

 5

 parameter LO = 1'b0; 6

 parameter HI = 1'b1; 7

 parameter X = 1'bx; 8

 9

 10

 // -- 11

 // -- ios -- 12

 // -- 13

 14

 // 15

 input [8*4-1:0] vs_export_count_set; 16

 input [8*3-1:0] vs_export_mode_set; 17

 input [8*4-1:0] ps_export_mode_set; 18

 19

 input [0:0] alu_arb_rts0; 20

 input [0:0] alu_arb_rts1; 21

 input [2:0] alu_arb_context_id; 22

 input [`SQ_STATUS_WIDTH-1:0] alu_arb_status; 23

 input [0:0] alu_arb_thread_type; 24

 input [0:0] alu0_cfs_rtr; 25

ATI 2103
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 431 of 611

 Page 5 of 18
Ex. 2103 - sq_export_alloc.v

 input [0:0] alu1_cfs_rtr; 1

 2

 input [2:0] pb_dealloc_cnt; 3

 input [0:0] pb_dealloc_vld; 4

 output [6:0] param_cache_wptr_q; 5

 6

 //output [0:0] SQ_SX_exp_pix; 7

 8

 output [0:0] SQ_SX_exp_valid; 9

 output [1:0] SQ_SX_exp_type; 10

 output [1:0] SQ_SX_exp_number; 11

 output [2:0] SQ_SX_exp_context_id; 12

 output [0:0] SQ_SX_exp_id; 13

 14

 input [0:0] ais0_free_done; 15

 input [0:0] ais0_free_id; 16

 input [0:0] ais1_free_done; 17

 input [0:0] ais1_free_id; 18

 19

 output [0:0] SQ_SX_free_done; 20

 output [0:0] SQ_SX_free_id; 21

 22

 input [0:0] cfs0_export_id; 23

 input [0:0] cfs_aif_xfc0; 24

 input [0:0] cfs1_export_id; 25

 Page 6 of 18
Ex. 2103 - sq_export_alloc.v

 input [0:0] cfs_aif_xfc1; 1

 2

 output [0:0] global_export_id_q; // exp_id taken on arb_xfc, toggled on exp_valid, loaded 3
on cfs_xfc 4

 5

 input clk; 6

 input reset; 7

 8

 9

 // -- 10

 // -- internal signals -- 11

 // -- 12

 13

 reg [0:0] exp_valid_q; // one bit state machine 14

 15

 16

 // -- 17

 // -- module instatiations -- 18

 // -- 19

 20

 parameter VS_EXPORT_COUNT_WIDTH = 4; 21

 wire [VS_EXPORT_COUNT_WIDTH-1:0] vs_export_count; 22

 reg [VS_EXPORT_COUNT_WIDTH-1:0] vs_export_count_q; 23

 sq_state_mux #(VS_EXPORT_COUNT_WIDTH) 24

 vs_export_count_sel (.state(alu_arb_context_id), .input_set(vs_export_count_set), 25
.mux_data_out(vs_export_count)); 26

 Page 7 of 18
Ex. 2103 - sq_export_alloc.v

 1

 parameter VS_EXPORT_MODE_WIDTH = 3; 2

 wire [VS_EXPORT_MODE_WIDTH-1:0] vs_export_mode; 3

 reg [VS_EXPORT_MODE_WIDTH-1:0] vs_export_mode_q; 4

 sq_state_mux #(VS_EXPORT_MODE_WIDTH) 5

 vs_export_mode_sel (.state(alu_arb_context_id), .input_set(vs_export_mode_set), 6
.mux_data_out(vs_export_mode)); 7

 8

 parameter PS_EXPORT_MODE_WIDTH = 4; 9

 wire [PS_EXPORT_MODE_WIDTH-1:0] ps_export_mode; 10

 reg [PS_EXPORT_MODE_WIDTH-1:0] ps_export_mode_q; 11

 sq_state_mux #(PS_EXPORT_MODE_WIDTH) 12

 ps_export_mode_sel (.state(alu_arb_context_id), .input_set(ps_export_mode_set), 13
.mux_data_out(ps_export_mode)); 14

 15

 always @(posedge clk) 16

 begin 17

 vs_export_count_q <= vs_export_count; 18

 vs_export_mode_q <= vs_export_mode; 19

 ps_export_mode_q <= ps_export_mode; 20

 end 21

 22

 23

 // -- 24

 // -- combinational logic -- 25

 // -- 26

 Page 8 of 18
Ex. 2103 - sq_export_alloc.v

 1

 wire [0:0] alu_arb_xfc0 = alu_arb_rts0 & alu0_cfs_rtr; 2

 wire [0:0] alu_arb_xfc1 = alu_arb_rts1 & alu1_cfs_rtr; 3

 wire [0:0] alu_arb_xfc = alu_arb_xfc0 | alu_arb_xfc1; 4

 5

 // - alloc type/size status to SX export type/number decode 6

 7

 wire [0:0] thread_type = alu_arb_thread_type; 8

 wire [1:0] alloc_type = alu_arb_status[9:8]; 9

 wire [3:0] alloc_size = alu_arb_status[7:4]; 10

 11

 wire [7:0] alloc_cmd = {thread_type, alloc_type, alloc_size, ps_export_mode_q[0]}; 12

 13

 reg [4:0] sx_exp_cmd; 14

 15

 always @(alloc_cmd) 16

 begin 17

 casez (alloc_cmd) 18

 // - vtx pos alloc 19

 8'b1_01_0000_? : sx_exp_cmd = 5'b10_00_1; 20

 8'b1_01_0001_? : sx_exp_cmd = 5'b10_01_1; 21

 22

 // - vtx pass thru 23

 8'b1_11_0011_? : sx_exp_cmd = 5'b11_00_1; 24

 8'b1_11_0111_? : sx_exp_cmd = 5'b11_01_1; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 432 of 611

 Page 9 of 18
Ex. 2103 - sq_export_alloc.v

 8'b1_11_1011_? : sx_exp_cmd = 5'b11_10_1; 1

 2

 // - pix without z 3

 8'b0_10_0000_0 : sx_exp_cmd = 5'b00_00_1; 4

 8'b0_10_0001_0 : sx_exp_cmd = 5'b00_01_1; 5

 8'b0_10_0010_0 : sx_exp_cmd = 5'b00_10_1; 6

 8'b0_10_0011_0 : sx_exp_cmd = 5'b00_11_1; 7

 8

 // - pix with z 9

 8'b0_10_0001_1 : sx_exp_cmd = 5'b01_00_1; 10

 8'b0_10_0010_1 : sx_exp_cmd = 5'b01_01_1; 11

 8'b0_10_0011_1 : sx_exp_cmd = 5'b01_10_1; 12

 8'b0_10_0100_1 : sx_exp_cmd = 5'b01_11_1; 13

 14

 // - pix pass thru 15

 8'b0_11_0011_? : sx_exp_cmd = 5'b11_00_1; 16

 8'b0_11_0111_? : sx_exp_cmd = 5'b11_01_1; 17

 8'b0_11_1011_? : sx_exp_cmd = 5'b11_10_1; 18

 19

 default: sx_exp_cmd = 5'bxxxx0; 20

 endcase 21

 end 22

 23

 //wire [0:0] exp_pix = sx_exp_cmd[5]; 24

 25

 Page 10 of 18
Ex. 2103 - sq_export_alloc.v

 wire [1:0] exp_type = sx_exp_cmd[4:3]; 1

 wire [1:0] exp_number = sx_exp_cmd[2:1]; 2

 wire [0:0] exp_valid = sx_exp_cmd[0]; 3

 4

 // also need to decode for param cache alloc 5

 6

 wire [0:0] pc_alloc = (thread_type == HI) & (alloc_type == 2'b10) & alu_arb_xfc; 7

 8

 // -- 9

 // -- registers -- 10

 // -- 11

 12

 // -- global export id -- 13

 // - toggled when ID is assigned to a thread (same as when alloc is sent to SX) 14

 // - overwritten when thread leaves the CFS and enters the ALU Instr Fetch 15

 16

 reg [0:0] global_export_id_q; 17

 18

 always @(posedge clk) 19

 begin 20

 if (reset) global_export_id_q <= LO; 21

 else if (cfs_aif_xfc0) global_export_id_q <= cfs0_export_id; 22

 else if (cfs_aif_xfc1) global_export_id_q <= cfs1_export_id; 23

 else if (exp_valid_q) global_export_id_q <= ~global_export_id_q; 24

 else global_export_id_q <= global_export_id_q; 25

 Page 11 of 18
Ex. 2103 - sq_export_alloc.v

 end 1

 2

 3

 // - reg delay arb xfc for load of SQ_SX export alloc interface output registers 4

 5

 reg [0:0] alu_arb_xfc_q; 6

 7

 always @(posedge clk) 8

 begin 9

 alu_arb_xfc_q <= alu_arb_xfc; 10

 end 11

 12

 13

 // ------------------------------- 14

 // -- param cache write pointer -- 15

 // ------------------------------- 16

 17

 // - multiply the counts by 4 (left shift 2x) since there are 16 verts per P$ line, and thus 4 lines 18
per vector 19

 // - the vs_export count ranges from 0 to 15 for 1 to 16 params, so need to add 1 to get the true 20
count 21

 22

 reg [6:0] param_cache_wptr_q; 23

 24

 wire [6:0] vs_export_count_x4 = (vs_export_count_q + 1) << 2; // 4 + 1 + 2 = 7 bits 25

 wire [4:0] pb_dealloc_cnt_x4 = pb_dealloc_cnt << 2; // 3 + 2 = 5 bits 26

 Page 12 of 18
Ex. 2103 - sq_export_alloc.v

 1

 always @(posedge clk) 2

 begin 3

 if (reset) param_cache_wptr_q <= 7'b0; 4

 else if (pc_alloc) param_cache_wptr_q <= param_cache_wptr_q + 5
vs_export_count_x4; 6

 else if (pb_dealloc_vld) param_cache_wptr_q <= param_cache_wptr_q - 7
pb_dealloc_cnt_x4; 8

 else param_cache_wptr_q <= param_cache_wptr_q; 9

 end 10

 11

 12

 // -------------------------------- 13

 // -- SQ_SX_exp output registers -- 14

 // -------------------------------- 15

 16

 //reg [0:0] SQ_SX_exp_pix; 17

 18

 reg [0:0] SQ_SX_exp_valid; 19

 reg [1:0] SQ_SX_exp_type; 20

 reg [1:0] SQ_SX_exp_number; 21

 reg [0:0] SQ_SX_exp_id; 22

 reg [2:0] SQ_SX_exp_context_id; 23

 24

 always @(posedge clk) 25

 begin 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 433 of 611

 Page 13 of 18
Ex. 2103 - sq_export_alloc.v

 1

 SQ_SX_exp_valid <= exp_valid_q; 2

 3

 if (alu_arb_xfc) 4

 begin 5

 //SQ_SX_exp_pix <= ~exp_pix; 6

 SQ_SX_exp_context_id <= alu_arb_context_id; 7

 SQ_SX_exp_id <= alu_arb_xfc1; 8

 SQ_SX_exp_type <= exp_type; 9

 SQ_SX_exp_number <= exp_number; 10

 end 11

 else 12

 begin 13

 //SQ_SX_exp_pix <= SQ_SX_exp_pix; 14

 SQ_SX_exp_context_id <= SQ_SX_exp_context_id; 15

 SQ_SX_exp_id <= SQ_SX_exp_id; 16

 SQ_SX_exp_type <= SQ_SX_exp_type; 17

 SQ_SX_exp_number <= SQ_SX_exp_number; 18

 end 19

 end 20

 21

 // - delay free done and id to line up with last cycle of data out of the SP 22

 23

 reg [0:0] SQ_SX_free_done; 24

 reg [0:0] SQ_SX_free_id; 25

 Page 14 of 18
Ex. 2103 - sq_export_alloc.v

 1

 reg [0:0] free_done_q0; 2

 reg [0:0] free_id_q0; 3

 4

 reg [0:0] free_done_q1; 5

 reg [0:0] free_id_q1; 6

 7

 reg [0:0] free_done_q2; 8

 reg [0:0] free_id_q2; 9

 10

 reg [0:0] free_done_q3; 11

 reg [0:0] free_id_q3; 12

 13

 reg [0:0] free_done_q4; 14

 reg [0:0] free_id_q4; 15

 16

 reg [0:0] free_done_q5; 17

 reg [0:0] free_id_q5; 18

 19

 reg [0:0] free_done_q6; 20

 reg [0:0] free_id_q6; 21

 22

 reg [0:0] free_done_q7; 23

 reg [0:0] free_id_q7; 24

 25

 Page 15 of 18
Ex. 2103 - sq_export_alloc.v

 reg [0:0] free_done_q8; 1

 reg [0:0] free_id_q8; 2

 3

 reg [0:0] free_done_q9; 4

 reg [0:0] free_id_q9; 5

 6

 always @(posedge clk) 7

 begin 8

 free_done_q0 <= ais0_free_done | ais1_free_done; 9

 free_done_q1 <= free_done_q0; 10

 free_done_q2 <= free_done_q1; 11

 free_done_q3 <= free_done_q2; 12

 free_done_q4 <= free_done_q3; 13

 free_done_q5 <= free_done_q4; 14

 free_done_q6 <= free_done_q5; 15

 free_done_q7 <= free_done_q6; 16

 free_done_q8 <= free_done_q7; 17

 free_done_q9 <= free_done_q8; 18

 SQ_SX_free_done <= free_done_q9; 19

 20

 free_id_q0 <= ais1_free_done ? ais1_free_id : ais0_free_id; 21

 free_id_q1 <= free_id_q0; 22

 free_id_q2 <= free_id_q1; 23

 free_id_q3 <= free_id_q2; 24

 free_id_q4 <= free_id_q3; 25

 Page 16 of 18
Ex. 2103 - sq_export_alloc.v

 free_id_q5 <= free_id_q4; 1

 free_id_q6 <= free_id_q5; 2

 free_id_q7 <= free_id_q6; 3

 free_id_q8 <= free_id_q7; 4

 free_id_q9 <= free_id_q8; 5

 SQ_SX_free_id <= free_id_q9; 6

 end 7

 8

 9

 // -- 10

 // -- one-bit state machines -- 11

 // -- 12

 13

 // exp_valid 14

 15

 always @(posedge clk) 16

 begin 17

 if (reset) 18

 exp_valid_q <= LO; 19

 else 20

 case (exp_valid_q) 21

 LO: 22

 // - set 23

 exp_valid_q <= exp_valid & alu_arb_xfc; 24

 HI: 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 434 of 611

 Page 17 of 18
Ex. 2103 - sq_export_alloc.v

 // - clear 1

 exp_valid_q <= LO; 2

 endcase 3

 end 4

 5

 // -- 6

 // -- state machines -- 7

 // -- 8

 9

 10

endmodule 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 Page 18 of 18
Ex. 2103 - sq_export_alloc.v

 1

 2

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 435 of 611

 Page 1 of 22
Ex. 2104 - vector.v

// -*- Mode: Verilog -*- 1

// Filename : vector.v 2

// Description : This module represent the implementation of the vector unit. 3

// There are 4 macc_reg modules instantiated from this module. 4

// Author : Andi Skende 5

// Created On : Wed Jan 30 15:51:38 2002 6

// Last Modified By: . 7

// Last Modified On: . 8

// Update Count : 0 9

// Status : Unknown, Use with caution! 10

 11

//`timescale 1ns / 1ps 12

 13

module vector(/*AUTOARG*/ 14

 // Outputs 15

 sp_sx_data, sp_tp_data, sp_sx_exp_dst, sp_sx_exp_pvalid, 16

 sp_sx_exporting, sp_sx_exp_alu_id, 17

 // Inputs 18

 sq_sp_instruct_start, sq_sp_instruct, sq_sp_stall, sclk, srst, 19

 sq_sp_exp_pvalid, sq_sp_exporting, sq_sp_exp_alu_id, 20

 sq_sp_wr_addr, sq_sp_gpr_rd_addr, sq_sp_gpr_phase_mux, 21

 sq_sp_channel_mask, sq_sp_pixel_mask, sq_sp_gpr_input_mux, 22

 sq_sp_mem_rd_ena, sq_sp_mem_wr_ena, sq_sp_wr_ena, iInterpolated, 23

 iAutoCount, sq_sp_constant, tp_sp_data, tp_sp_gpr_dst, 24

 tp_sp_gpr_cmask, tp_sp_data_valid, iVertexIndices 25

 Page 2 of 22
Ex. 2104 - vector.v

); 1

 2

 //--/ 3

 //Instruction Interface 4

 //--/ 5

 input [0:0] sq_sp_instruct_start; 6

 input [20:0] sq_sp_instruct; //four cycle transaction 7

 input [0:0] sq_sp_stall; //when high...execute a NOP 8

 input sclk; 9

 input srst; 10

 11

 //---// 12

 //Export controls signals 13

 //--// 14

 input [3:0] sq_sp_exp_pvalid; 15

 input [0:0] sq_sp_exporting ; 16

 input [0:0] sq_sp_exp_alu_id; 17

 18

 //export destination pointer 19

 wire [5:0] sq_sp_exp_dst; 20

 21

 //---/ 22

 //GPR read/write control interface 23

 //---/ 24

 input [6:0] sq_sp_wr_addr; 25

 Page 3 of 22
Ex. 2104 - vector.v

 input [6:0] sq_sp_gpr_rd_addr; 1

 input [1:0] sq_sp_gpr_phase_mux; 2

 input [3:0] sq_sp_channel_mask; 3

 input [3:0] sq_sp_pixel_mask; 4

 input [1:0] sq_sp_gpr_input_mux; 5

 input [0:0] sq_sp_mem_rd_ena; 6

 input [0:0] sq_sp_mem_wr_ena; 7

 input [0:0] sq_sp_wr_ena; 8

 9

 //--/ 10

 //Input Data from the top of the pipe 11

 //1. Interpolated Data 12

 //2. Vertex Indices 13

 //3. Autocount 14

 //--/ 15

 input [127:0] iInterpolated, iAutoCount,sq_sp_constant; 16

 input [127:0] tp_sp_data ; //texture data comming from the Texture Pipe/ Fetch Engine 17

 input [6:0] tp_sp_gpr_dst; //destination address into gpr(s) for texture return data 18

 input [3:0] tp_sp_gpr_cmask;//channel mask for the texture data being written into gpr(s) 19

 input [0:0] tp_sp_data_valid; 20

 input [95:0] iVertexIndices; 21

 22

 reg [6:0] q0_tp_gpr_dst, q1_tp_gpr_dst, q2_tp_gpr_dst; 23

 reg [3:0] q0_tp_gpr_cmask, q1_tp_gpr_cmask, q2_tp_gpr_cmask; 24

 reg [0:0] q0_tp_data_valid, q1_tp_data_valid, q2_tp_data_valid; 25

 Page 4 of 22
Ex. 2104 - vector.v

 1

 //---/ 2

 //Output data going out from each vector unit to the SX blocks 3

 //---/ 4

 output [127:0] sp_sx_data; 5

 reg [127:0] osp_sx_data; 6

 wire [127:0] VectorResult0,VectorResult1,VectorResult2,VectorResult3; 7

 8

 //---// 9

 //Register (GPR) data going out to the texture pipe 10

 //---// 11

 output [95:0] sp_tp_data; 12

 reg [95:0] osp_tp_data; 13

 14

 //---// 15

 //Pipelined sequencer inputs...related to export functionality 16

 //These signals are asserted at the same time as sq_sp_instruction_start 17

 //--// 18

 19

 output [5:0] sp_sx_exp_dst; 20

 output [3:0] sp_sx_exp_pvalid; 21

 output [0:0] sp_sx_exporting ; 22

 output [0:0] sp_sx_exp_alu_id; 23

 24

 //--/ 25

ATI 2104
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 436 of 611

 Page 5 of 22
Ex. 2104 - vector.v

 //There are four macc units present in a vector unit 1

 //The macc units are phased out by one cycle from each other in their execution sequence 2

 //--/ 3

 reg [0:0] q0_instruct_start, q1_instruct_start,q2_instruct_start; 4

 reg [0:0] q0_instruct_stall, q1_instruct_stall,q2_instruct_stall; 5

 reg [20:0] q0_instruct,q1_instruct,q2_instruct; 6

 reg [6:0] q0_gpr_wr_addr,q1_gpr_wr_addr,q2_gpr_wr_addr; 7

 reg [6:0] q0_gpr_rd_addr,q1_gpr_rd_addr,q2_gpr_rd_addr; 8

 reg [0:0] q0_gpr_mre,q1_gpr_mre,q2_gpr_mre; 9

 reg [0:0] q0_gpr_mwe,q1_gpr_mwe,q2_gpr_mwe; 10

 reg [0:0] q0_gpr_we,q1_gpr_we,q2_gpr_we; 11

 reg [1:0] q0_gpr_phase_mux,q1_gpr_phase_mux,q2_gpr_phase_mux; 12

 reg [1:0] q0_gpr_input_mux,q1_gpr_input_mux,q2_gpr_input_mux; 13

 reg [3:0] q0_gpr_cmask, q1_gpr_cmask,q2_gpr_cmask; 14

 15

 //--- 16

 //The outputs of the mux unit selecting between iIntepolated, iAutoCount and iVertexIndices 17

 //--- 18

 19

 reg [127:0] InputData0, InputData1, InputData2,InputData3; 20

 21

 //--- 22

 //GPR data coming from four different MACC_GPR units of the same vector unit 23

 //-- 24

 wire [127:0] RegData0, RegData1, RegData2, RegData3; 25

 Page 6 of 22
Ex. 2104 - vector.v

 1

 //-- 2

 // This data comes from the Scalar Unit 3

 //-- 4

 wire [127:0] ScalarData ; 5

 reg [127:0] q0_ScalarData, q1_ScalarData, q2_ScalarData; 6

 wire [31:0] ScalarResult; 7

 8

 //-- 9

 wire [31:0] ScalarInput0, ScalarInput1,ScalarInput2,ScalarInput3; 10

 reg [31:0] ScalarInput; 11

 reg [5:0] ScalarOpcode; 12

 wire [5:0] ScalarOpcode0, ScalarOpcode1, ScalarOpcode2,ScalarOpcode3; 13

 14

 //-- 15

 //daizy-chaining the above buses 16

 //-- 17

 18

 always@(posedge sclk) 19

 begin 20

 if(srst) 21

 begin 22

 q0_instruct_start <= 1'b0; 23

 q1_instruct_start <= 1'b0; 24

 q2_instruct_start <= 1'b0; 25

 Page 7 of 22
Ex. 2104 - vector.v

 q0_instruct_stall <= 1'b0; 1

 q1_instruct_stall <= 1'b0; 2

 q2_instruct_stall <= 1'b0; 3

 q0_instruct <= 21'b0; 4

 q1_instruct <= 21'b0; 5

 q2_instruct <= 21'b0; 6

 q0_gpr_wr_addr<= 7'b0; 7

 q1_gpr_wr_addr<= 7'b0; 8

 q2_gpr_wr_addr<= 7'b0; 9

 q0_gpr_rd_addr<= 7'b0; 10

 q1_gpr_rd_addr<= 7'b0; 11

 q2_gpr_rd_addr<= 7'b0; 12

 q0_gpr_mre <= 1'b0; 13

 q1_gpr_mre <= 1'b0; 14

 q2_gpr_mre <= 1'b0; 15

 q0_gpr_mwe <= 1'b0; 16

 q1_gpr_mwe <= 1'b0; 17

 q2_gpr_mwe <= 1'b0; 18

 q0_gpr_we <= 1'b0; 19

 q1_gpr_we <= 1'b0; 20

 q2_gpr_we <= 1'b0; 21

 q0_gpr_phase_mux <= 2'b0; 22

 q1_gpr_phase_mux <= 2'b0; 23

 q2_gpr_phase_mux <= 2'b0; 24

 q0_gpr_input_mux <= 2'b0; 25

 Page 8 of 22
Ex. 2104 - vector.v

 q1_gpr_input_mux <= 2'b0; 1

 q2_gpr_input_mux <= 2'b0; 2

 end // if (srst) 3

 else 4

 begin 5

 q0_instruct_start <= sq_sp_instruct_start; 6

 q1_instruct_start <= q0_instruct_start; 7

 q2_instruct_start <= q1_instruct_start; 8

 q0_instruct_stall <= sq_sp_stall; 9

 q1_instruct_stall <= q0_instruct_stall; 10

 q2_instruct_stall <= q1_instruct_stall; 11

 q0_instruct <= sq_sp_instruct; 12

 q1_instruct <= q0_instruct; 13

 q2_instruct <= q1_instruct; 14

 q0_gpr_wr_addr<= sq_sp_wr_addr; 15

 q1_gpr_wr_addr<= q0_gpr_wr_addr; 16

 q2_gpr_wr_addr<= q1_gpr_wr_addr; 17

 q0_gpr_rd_addr<= sq_sp_gpr_rd_addr; 18

 q1_gpr_rd_addr<= q0_gpr_rd_addr; 19

 q2_gpr_rd_addr<= q1_gpr_rd_addr; 20

 q0_gpr_mre <= sq_sp_mem_rd_ena; 21

 q1_gpr_mre <= q0_gpr_mre; 22

 q2_gpr_mre <= q1_gpr_mre; 23

 q0_gpr_mwe <= sq_sp_mem_wr_ena; 24

 q1_gpr_mwe <= q0_gpr_mwe; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 437 of 611

 Page 9 of 22
Ex. 2104 - vector.v

 q2_gpr_mwe <= q1_gpr_mwe; 1

 q0_gpr_we <= sq_sp_wr_ena; 2

 q1_gpr_we <= q0_gpr_we; 3

 q2_gpr_we <= q1_gpr_we; 4

 q0_gpr_phase_mux <= sq_sp_gpr_phase_mux; 5

 q1_gpr_phase_mux <= q0_gpr_phase_mux; 6

 q2_gpr_phase_mux <= q1_gpr_phase_mux; 7

 q0_gpr_input_mux <= sq_sp_gpr_input_mux; 8

 q1_gpr_input_mux <= q0_gpr_input_mux; 9

 q2_gpr_input_mux <= q1_gpr_input_mux; 10

 q0_gpr_cmask <= sq_sp_channel_mask; 11

 q1_gpr_cmask <= q0_gpr_cmask; 12

 q2_gpr_cmask <= q1_gpr_cmask; 13

 q0_tp_gpr_cmask <= tp_sp_gpr_cmask; 14

 q1_tp_gpr_cmask <= q0_tp_gpr_cmask; 15

 q2_tp_gpr_cmask <= q1_tp_gpr_cmask; 16

 q0_tp_gpr_dst <= tp_sp_gpr_dst; 17

 q1_tp_gpr_dst <= q0_tp_gpr_dst; 18

 q2_tp_gpr_dst <= q1_tp_gpr_dst; 19

 q0_tp_data_valid <= tp_sp_data_valid; 20

 q1_tp_data_valid <= q0_tp_data_valid; 21

 q2_tp_data_valid <= q1_tp_data_valid; 22

 end // else: !if(srst) 23

 end // always@ (posedge sclk) 24

 25

 Page 10 of 22
Ex. 2104 - vector.v

 1

 //---2
------------ 3

 //Muxing logic to select from data comming from the Interpolators(in reality more than just 4
interpolated data....there can be 5

 //also faceness and XY data), AutoCount data and Vertex Indices comming from the staging 6
registers. 7

 //Each MACC unit has its own mux logic since the controls are phased out by one cycle from 8
one MACC to the other. 9

 //---10
------------ 11

 //muxing logic for the inputs of the first MACC 12

 always @(/*AUTOSENSE*/iAutoCount or iInterpolated or iVertexIndices 13

 or sq_sp_gpr_input_mux) 14

 begin 15

 case(sq_sp_gpr_input_mux) 16

 2'b00: InputData0 = iAutoCount ; 17

 2'b01: InputData0 = iInterpolated ; 18

 2'b10: InputData0 = iVertexIndices ; 19

 default: InputData0 = iInterpolated; 20

 endcase // case(sq_sp_gpr_input_mux) 21

 end 22

 23

 //muxing logic for the inputs of the second MACC 24

 always @(/*AUTOSENSE*/iAutoCount or iInterpolated or iVertexIndices 25

 or q0_gpr_input_mux) 26

 begin 27

 Page 11 of 22
Ex. 2104 - vector.v

 case(q0_gpr_input_mux) 1

 2'b00: InputData1 = iAutoCount ; 2

 2'b01: InputData1 = iInterpolated ; 3

 2'b10: InputData1 = iVertexIndices ; 4

 default: InputData1 = iInterpolated; 5

 endcase // case(q0_gpr_input_mux) 6

 end 7

 8

 //muxing logic for the inputs of the third MACC 9

 always @(/*AUTOSENSE*/iAutoCount or iInterpolated or iVertexIndices 10

 or q1_gpr_input_mux) 11

 begin 12

 case(q1_gpr_input_mux) 13

 2'b00: InputData2 = iAutoCount ; 14

 2'b01: InputData2 = iInterpolated ; 15

 2'b10: InputData2 = iVertexIndices ; 16

 default: InputData2 = iInterpolated; 17

 endcase // case(q1_gpr_input_mux) 18

 end 19

 20

 //muxing logic for the inputs of the fourth MACC 21

 always @(/*AUTOSENSE*/iAutoCount or iInterpolated or iVertexIndices 22

 or q2_gpr_input_mux) 23

 begin 24

 case(q2_gpr_input_mux) 25

 Page 12 of 22
Ex. 2104 - vector.v

 2'b00: InputData3 = iAutoCount ; 1

 2'b01: InputData3 = iInterpolated ; 2

 2'b10: InputData3 = iVertexIndices ; 3

 default: InputData3 = iInterpolated; 4

 endcase // case(q2_gpr_input_mux) 5

 end 6

 7

 //---8
----- 9

 //muxing logic for the scalar input into the scalar unit 10

 //there's one scalar unit for each vector unit in the shader pipe 11

 //alpha channel of SrcC is used as input argument into the scalar unit only in cases of an 12
coissued instruction. 13

 //---14
--- 15

 always @(/*AUTOSENSE*/ScalarInput0 or ScalarInput1 or ScalarInput2 16

 or ScalarInput3 or sq_sp_gpr_phase_mux) 17

 begin 18

 case(sq_sp_gpr_phase_mux) 19

 2'b00: ScalarInput = ScalarInput0; 20

 2'b01: ScalarInput = ScalarInput1; 21

 2'b10: ScalarInput = ScalarInput2; 22

 2'b11: ScalarInput = ScalarInput3; 23

 default: ScalarInput = 2'bxx; 24

 endcase // case(sq_sp_gpr_phase_mux) 25

 end 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 438 of 611

 Page 13 of 22
Ex. 2104 - vector.v

 1

 always @(/*AUTOSENSE*/ScalarOpcode0 or ScalarOpcode1 2

 or ScalarOpcode2 or ScalarOpcode3 or sq_sp_gpr_phase_mux) 3

 begin 4

 case(sq_sp_gpr_phase_mux) 5

 2'b00: ScalarOpcode = ScalarOpcode0; 6

 2'b01: ScalarOpcode = ScalarOpcode1; 7

 2'b10: ScalarOpcode = ScalarOpcode2; 8

 2'b11: ScalarOpcode = ScalarOpcode3; 9

 default: ScalarOpcode = 2'bxx; 10

 endcase // case(sq_sp_gpr_phase_mux) 11

 end 12

 13

 //module scalar_lut(iAG_ME_OPCODE, iAG_ME_IN_A, iAG_ME_IN_B, iAG_ME_IN_C, 14

 // iAG_ME_ABS_A, iAG_ME_ABS_B, iAG_ME_ABS_C, iAG_ME_A_NEGATE, 15
iAG_ME_B_NEGATE 16

 // , iAG_ME_C_NEGATE, oME_RESULT, sclk); 17

 18

 //-- 19

 //Scalar Unit instantiation 20

 //-- 21

 scalar_lut uscalar(ScalarOpcode,ScalarInput, ScalarInput,ScalarInput, 22
1'b0,1'b0,1'b0,1'b0,1'b0,1'b0,ScalarResult,sclk); 23

 24

 25

 Page 14 of 22
Ex. 2104 - vector.v

 //---1
--------------------- 2

 //Instantiation of all four MACC units that create a Vector Unit 3

 //---4
-------------------- 5

 macc_gpr 6
umacc_gpr0(.oVectorOutput(VectorResult0),.oScalarInput(ScalarInput0),.oScalarOpcode(Scala7
rOpcode0),.oRegData(RegData0),.oexport_dst(sq_sp_exp_dst), 8

 9
.sq_sp_instruct(sq_sp_instruct),.sq_sp_instruct_start(sq_sp_instruct_start),.sq_sp_gpr_rd_addr(10
sq_sp_gpr_rd_addr), 11

 12
.sq_sp_gpr_wr_addr(sq_sp_wr_addr),.sq_sp_wr_ena(sq_sp_wr_ena),.sq_sp_mem_rd_ena(sq_s13
p_mem_rd_ena),.sq_sp_mem_wr_ena(sq_sp_mem_wr_ena), 14

 .sq_sp_gpr_cmask(sq_sp_channel_mask), 15

 16
.sq_sp_gpr_phase_mux(sq_sp_gpr_phase_mux),.iInterpolated(InputData0),.sq_sp_constant(sq_17
sp_constant), 18

 .iScalarData(ScalarData),.tp_sp_data(tp_sp_data), 19

 .tp_sp_gpr_dst(tp_sp_gpr_dst), 20
.tp_sp_gpr_cmask(tp_sp_gpr_cmask),.tp_sp_data_valid(tp_sp_data_valid), 21

 .sclk(sclk), .srst(srst)); 22

 23

 macc_gpr 24
umacc_gpr1(.oVectorOutput(VectorResult1),.oScalarInput(ScalarInput1),.oScalarOpcode(Scala25
rOpcode1),.oRegData(RegData1),.sq_sp_instruct(q0_instruct),.sq_sp_instruct_start(q0_instruct26
_start),.sq_sp_gpr_rd_addr(q0_gpr_rd_addr), 27

 28
.sq_sp_gpr_wr_addr(q0_gpr_wr_addr),.sq_sp_wr_ena(q0_gpr_we),.sq_sp_mem_rd_ena(q0_gp29
r_mre),.sq_sp_mem_wr_ena(q0_gpr_mwe), 30

 .sq_sp_gpr_cmask(q0_gpr_cmask), 31

 Page 15 of 22
Ex. 2104 - vector.v

 1
.sq_sp_gpr_phase_mux(q0_gpr_phase_mux),.iInterpolated(InputData1),.sq_sp_constant(sq_sp_2
constant), 3

 .iScalarData(q0_ScalarData),.tp_sp_data(tp_sp_data), 4

 .tp_sp_gpr_dst(q0_tp_gpr_dst), 5
.tp_sp_gpr_cmask(q0_tp_gpr_cmask),.tp_sp_data_valid(q0_tp_data_valid), 6

 .sclk(sclk), .srst(srst)); 7

 8

 macc_gpr 9
umacc_gpr2(.oVectorOutput(VectorResult2),.oScalarInput(ScalarInput2),.oScalarOpcode(Scala10
rOpcode2),.oRegData(RegData2),.sq_sp_instruct(q1_instruct),.sq_sp_instruct_start(q1_instruct11
_start),.sq_sp_gpr_rd_addr(q1_gpr_rd_addr), 12

 13
.sq_sp_gpr_wr_addr(q1_gpr_wr_addr),.sq_sp_wr_ena(q1_gpr_we),.sq_sp_mem_rd_ena(q1_gp14
r_mre),.sq_sp_mem_wr_ena(q1_gpr_mwe), 15

 .sq_sp_gpr_cmask(q1_gpr_cmask), 16

 17
.sq_sp_gpr_phase_mux(q1_gpr_phase_mux),.iInterpolated(InputData2),.sq_sp_constant(sq_sp_18
constant), 19

 .iScalarData(q1_ScalarData),.tp_sp_data(tp_sp_data), 20

 .tp_sp_gpr_dst(q1_tp_gpr_dst), 21
.tp_sp_gpr_cmask(q1_tp_gpr_cmask),.tp_sp_data_valid(q1_tp_data_valid), 22

 .sclk(sclk), .srst(srst)); 23

 24

 macc_gpr 25
umacc_gpr3(.oVectorOutput(VectorResult3),.oScalarInput(ScalarInput3),.oScalarOpcode(Scala26
rOpcode3),.oRegData(RegData3),.sq_sp_instruct(q2_instruct),.sq_sp_instruct_start(q2_instruct27
_start),.sq_sp_gpr_rd_addr(q2_gpr_rd_addr), 28

 29
.sq_sp_gpr_wr_addr(q2_gpr_wr_addr),.sq_sp_wr_ena(q2_gpr_we),.sq_sp_mem_rd_ena(q2_gp30
r_mre),.sq_sp_mem_wr_ena(q2_gpr_mwe), 31

 .sq_sp_gpr_cmask(q2_gpr_cmask), 32

 Page 16 of 22
Ex. 2104 - vector.v

 1
.sq_sp_gpr_phase_mux(q2_gpr_phase_mux),.iInterpolated(InputData3),.sq_sp_constant(sq_sp_2
constant), 3

 .iScalarData(q2_ScalarData),.tp_sp_data(tp_sp_data),.sclk(sclk), 4

 .tp_sp_gpr_dst(q2_tp_gpr_dst), 5
.tp_sp_gpr_cmask(q2_tp_gpr_cmask),.tp_sp_data_valid(q2_tp_data_valid), 6

 .srst(srst)); 7

 //---8
----------------------- 9

 //Muxing the gpr vector results into one final vector result conrolled by the phase_mux signal 10
or a registered version of it 11

 //---12
------------------------ 13

 14

 always @(/*AUTOSENSE*/VectorResult0 or VectorResult1 15

 or VectorResult2 or VectorResult3 or sq_sp_gpr_phase_mux) 16

 begin 17

 case(sq_sp_gpr_phase_mux) 18

 2'b00: osp_sx_data = VectorResult0; 19

 2'b01: osp_sx_data = VectorResult1; 20

 2'b10: osp_sx_data = VectorResult2; 21

 2'b11: osp_sx_data = VectorResult3; 22

 endcase // case(sq_sp_gpr_phase_mux) 23

 end 24

 25

 assign sp_sx_data = osp_sx_data; 26

 27

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 439 of 611

 Page 17 of 22
Ex. 2104 - vector.v

 //---1
----------------------- 2

 //Muxing the gpr outputs (texture data) into one 128 bit bus going out to the texture unit 3

 //---4
------------------------ 5

 always @(/*AUTOSENSE*/RegData0 or RegData1 or RegData2 or RegData3 6

 or sq_sp_gpr_phase_mux) 7

 begin 8

 case(sq_sp_gpr_phase_mux) 9

 2'b00: osp_tp_data = RegData0[95:0]; 10

 2'b01: osp_tp_data = RegData1[95:0]; 11

 2'b10: osp_tp_data = RegData2[95:0]; 12

 2'b11: osp_tp_data = RegData3[95:0]; 13

 endcase // case(sq_sp_gpr_phase_mux) 14

 end 15

 16

 assign sp_tp_data = osp_tp_data; 17

 18

 //-- 19

 //replicate the scalar result into all four channels so that it can be used as an 128-bit input 20

 //into the vector unit argument selection logic as PS (Previous Scalar Result) 21

 //--- 22

 assign ScalarData = {ScalarResult,ScalarResult,ScalarResult,ScalarResult}; 23

 24

 always @(posedge sclk) 25

 begin 26

 Page 18 of 22
Ex. 2104 - vector.v

 q0_ScalarData <= ScalarData; 1

 q1_ScalarData <= q0_ScalarData; 2

 q2_ScalarData <= q1_ScalarData; 3

 end 4

 5

 //simple pipelining to delay the sq to sx control signals (via sp) 6

 reg [3:0] 7
 q0_sq_exp_pvalid,q1_sq_exp_pvalid,q2_sq_exp_pvalid,q3_sq_exp_pvalid,q4_sq_exp_8
pvalid; 9

 reg [3:0] 10
 q5_sq_exp_pvalid,q6_sq_exp_pvalid,q7_sq_exp_pvalid,q8_sq_exp_pvalid,q9_sq_exp_11
pvalid; 12

 reg [3:0] q10_sq_exp_pvalid,q11_sq_exp_pvalid; 13

 14

 reg [0:0] 15
 q0_sq_exporting,q1_sq_exporting,q2_sq_exporting,q3_sq_exporting,q4_sq_exporting; 16

 reg [0:0] 17
 q5_sq_exporting,q6_sq_exporting,q7_sq_exporting,q8_sq_exporting,q9_sq_exporting; 18

 reg [0:0] q10_sq_exporting,q11_sq_exporting; 19

 20

 reg [0:0] 21
 q0_sq_exp_alu_id,q1_sq_exp_alu_id,q2_sq_exp_alu_id,q3_sq_exp_alu_id,q4_sq_exp_22
alu_id; 23

 reg [0:0] 24
 q5_sq_exp_alu_id,q6_sq_exp_alu_id,q7_sq_exp_alu_id,q8_sq_exp_alu_id,q9_sq_exp_25
alu_id; 26

 reg [0:0] q10_sq_exp_alu_id,q11_sq_exp_alu_id; 27

 28

 reg [5:0] q0_sq_exp_dst,q1_sq_exp_dst,q2_sq_exp_dst,q3_sq_exp_dst,q4_sq_exp_dst; 29

 reg [5:0] q5_sq_exp_dst,q6_sq_exp_dst,q7_sq_exp_dst,q8_sq_exp_dst,q9_sq_exp_dst; 30

 Page 19 of 22
Ex. 2104 - vector.v

 reg [5:0] q10_sq_exp_dst,q11_sq_exp_dst; 1

 2

 3

 always@(posedge sclk) 4

 begin 5

 if(srst) 6

 begin 7

 q0_sq_exporting <= 2'b00; 8

 q1_sq_exporting <= 2'b00; 9

 q2_sq_exporting <= 2'b00; 10

 q3_sq_exporting <= 2'b00; 11

 q4_sq_exporting <= 2'b00; 12

 q5_sq_exporting <= 2'b00; 13

 q6_sq_exporting <= 2'b00; 14

 q7_sq_exporting <= 2'b00; 15

 q8_sq_exporting <= 2'b00; 16

 q9_sq_exporting <= 2'b00; 17

 q10_sq_exporting <= 2'b00; 18

 q11_sq_exporting <= 2'b00; 19

 end 20

 else 21

 begin 22

 q0_sq_exp_pvalid <= sq_sp_exp_pvalid; 23

 q1_sq_exp_pvalid <= q0_sq_exp_pvalid; 24

 q2_sq_exp_pvalid <= q1_sq_exp_pvalid; 25

 Page 20 of 22
Ex. 2104 - vector.v

 q3_sq_exp_pvalid <= q2_sq_exp_pvalid; 1

 q4_sq_exp_pvalid <= q3_sq_exp_pvalid; 2

 q5_sq_exp_pvalid <= q4_sq_exp_pvalid; 3

 q6_sq_exp_pvalid <= q5_sq_exp_pvalid; 4

 q7_sq_exp_pvalid <= q6_sq_exp_pvalid; 5

 q8_sq_exp_pvalid <= q7_sq_exp_pvalid; 6

 q9_sq_exp_pvalid <= q8_sq_exp_pvalid; 7

 q10_sq_exp_pvalid <= q9_sq_exp_pvalid; 8

 q11_sq_exp_pvalid <= q10_sq_exp_pvalid; 9

 10

 q0_sq_exporting <= sq_sp_exporting; 11

 q1_sq_exporting <= q0_sq_exporting; 12

 q2_sq_exporting <= q1_sq_exporting; 13

 q3_sq_exporting <= q2_sq_exporting; 14

 q4_sq_exporting <= q3_sq_exporting; 15

 q5_sq_exporting <= q4_sq_exporting; 16

 q6_sq_exporting <= q5_sq_exporting; 17

 q7_sq_exporting <= q6_sq_exporting; 18

 q8_sq_exporting <= q7_sq_exporting; 19

 q9_sq_exporting <= q8_sq_exporting; 20

 q10_sq_exporting <= q9_sq_exporting; 21

 q11_sq_exporting <= q10_sq_exporting; 22

 23

 q0_sq_exp_alu_id <= sq_sp_exp_alu_id; 24

 q1_sq_exp_alu_id <= q0_sq_exp_alu_id; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 440 of 611

 Page 21 of 22
Ex. 2104 - vector.v

 q2_sq_exp_alu_id <= q1_sq_exp_alu_id; 1

 q3_sq_exp_alu_id <= q2_sq_exp_alu_id; 2

 q4_sq_exp_alu_id <= q3_sq_exp_alu_id; 3

 q5_sq_exp_alu_id <= q4_sq_exp_alu_id; 4

 q6_sq_exp_alu_id <= q5_sq_exp_alu_id; 5

 q7_sq_exp_alu_id <= q6_sq_exp_alu_id; 6

 q8_sq_exp_alu_id <= q7_sq_exp_alu_id; 7

 q9_sq_exp_alu_id <= q8_sq_exp_alu_id; 8

 q10_sq_exp_alu_id <= q9_sq_exp_alu_id; 9

 q11_sq_exp_alu_id <= q10_sq_exp_alu_id; 10

 11

 q0_sq_exp_dst <= sq_sp_exp_dst; 12

 q1_sq_exp_dst <= q0_sq_exp_dst; 13

 q2_sq_exp_dst <= q1_sq_exp_dst; 14

 q3_sq_exp_dst <= q2_sq_exp_dst; 15

 q4_sq_exp_dst <= q3_sq_exp_dst; 16

 q5_sq_exp_dst <= q4_sq_exp_dst; 17

 q6_sq_exp_dst <= q5_sq_exp_dst; 18

 q7_sq_exp_dst <= q6_sq_exp_dst; 19

 q8_sq_exp_dst <= q7_sq_exp_dst; 20

 q9_sq_exp_dst <= q8_sq_exp_dst; 21

 q10_sq_exp_dst <= q9_sq_exp_dst; 22

 q11_sq_exp_dst <= q10_sq_exp_dst; 23

 end // else: !if(srst) 24

 end // always@ (posedge sclk) 25

 Page 22 of 22
Ex. 2104 - vector.v

 1

 2

 //assigning the outputs 3

 assign sp_sx_exp_pvalid = q11_sq_exp_pvalid; 4

 assign sp_sx_exp_alu_id = q11_sq_exp_alu_id; 5

 assign sp_sx_exporting = q11_sq_exporting; 6

 assign sp_sx_exp_dst = q10_sq_exp_dst; 7

 8

endmodule // vector 9

 10

 11

 12

 13

 14

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 441 of 611

 Page 1 of 16
Ex. 2105 - macc_gpr.v

// -*- Mode: Verilog -*- 1

// Filename : macc_reg.v 2

// Description : This module represents the MACC (Multiply and Accumulate) unit plus 3

// : the corrensponding GPR (register file) module. 4

// Author : Andi Skende 5

// Created On : Fri Feb 1 15:53:03 2002 6

// Last Modified By: . 7

// Last Modified On: . 8

// Update Count : 0 9

// Status : Unknown, Use with caution! 10

 11

 12

module macc_gpr(13

 /*AUTOARG*/ 14

 // Outputs 15

 oScalarInput, oScalarOpcode, oVectorOutput, oRegData, oexport_dst, 16

 // Inputs 17

 sq_sp_instruct, sq_sp_instruct_start, sq_sp_gpr_rd_addr, 18

 sq_sp_gpr_wr_addr, sq_sp_gpr_phase_mux, sq_sp_mem_wr_ena, 19

 sq_sp_mem_rd_ena, sq_sp_wr_ena, sq_sp_gpr_cmask, iInterpolated, 20

 sq_sp_constant, iScalarData, tp_sp_data, tp_sp_gpr_dst, 21

 tp_sp_gpr_cmask, tp_sp_data_valid, sclk, srst 22

); 23

 24

 //--- 25

 Page 2 of 16
Ex. 2105 - macc_gpr.v

 //i/o declaration 1

 //For the signals coming straight from the top level without going through 2

 //any combinational logic...the signal name is preserved...but in lower case 3

 //-- 4

 input [20:0] sq_sp_instruct; 5

 input [0:0] sq_sp_instruct_start; 6

 input [6:0] sq_sp_gpr_rd_addr,sq_sp_gpr_wr_addr; 7

 input [1:0] sq_sp_gpr_phase_mux; 8

 input [0:0] sq_sp_mem_wr_ena,sq_sp_mem_rd_ena,sq_sp_wr_ena; 9

 input [3:0] sq_sp_gpr_cmask; 10

 input [127:0] iInterpolated ,sq_sp_constant,iScalarData,tp_sp_data; 11

 input [6:0] tp_sp_gpr_dst; 12

 input [3:0] tp_sp_gpr_cmask; 13

 input [0:0] tp_sp_data_valid; 14

 input [0:0] sclk,srst; 15

 16

 output [31:0] oScalarInput; 17

 output [5:0] oScalarOpcode; 18

 output [127:0] oVectorOutput; 19

 output [127:0] oRegData; //data coming out of the register files 20

 output [5:0] oexport_dst; 21

 22

 wire [127:0] RegData; //data coming out of the register files 23

 wire [127:0] VectorResult; 24

 reg [127:0] InputGPR; 25

 Page 3 of 16
Ex. 2105 - macc_gpr.v

 1

 //---2
------------------------/ 3

 //Instantiation of the macc unit which does the argument selection and input modification 4
(swizzling ...etc) 5

 //1. input for the scalar unit comes as an output from this unit and goes all the way up to 6
vector.v module where the instance of scalar unit 7

 // can be found. 8

 //2. VectorResult output is only used as an input into GPRs the Previous Vector Result is 9
not exposed at this level but stays internal 10

 // to macc.v module 11

 //---12
------------------------/ 13

 //register the output from GPRs 14

 reg [127:0] q_RegData; 15

 16

 macc 17
umacc(.oResult(VectorResult),.oScalarOpcode(oScalarOpcode),.oScalarInput(oScalarInput),.o18
ExportDst(oexport_dst), 19

 .iRegData(q_RegData),.iConstantData(sq_sp_constant),.iScalarData(iScalarData), 20

 .iInstruction(sq_sp_instruct), .iInstStart(sq_sp_instruct_start), .sclk(sclk), .srst(srst)); 21

 22

 23

 24

 //--- 25

 //We need to mask between the write controls coming from the TP and SQ 26

 //TP sends its own destination pointer and channel mask 27

 //We also get a destination pointer and channel mask from SQ 28

 Page 4 of 16
Ex. 2105 - macc_gpr.v

 //-- 1

 reg [6:0] gpr_wr_addr; 2

 reg [3:0] gpr_wr_mask; 3

 reg [0:0] gpr_wr_ena; 4

 always@(/*AUTOSENSE*/sq_sp_gpr_phase_mux or sq_sp_gpr_wr_addr 5

 or tp_sp_gpr_dst) 6

 begin 7

 case(sq_sp_gpr_phase_mux) 8

 2'b00, 9

 2'b10, 10

 2'b11: gpr_wr_addr = sq_sp_gpr_wr_addr; 11

 2'b01: gpr_wr_addr = tp_sp_gpr_dst; 12

 endcase // case(sq_sp_gpr_phase_mux) 13

 end // always@ (... 14

 15

 always@(/*AUTOSENSE*/sq_sp_gpr_cmask or sq_sp_gpr_phase_mux 16

 or tp_sp_gpr_cmask) 17

 begin 18

 case(sq_sp_gpr_phase_mux) 19

 2'b00, 20

 2'b10, 21

 2'b11: gpr_wr_mask = sq_sp_gpr_cmask; 22

 2'b01: gpr_wr_mask = tp_sp_gpr_cmask; 23

 endcase // case(sq_sp_gpr_phase_mux) 24

 end // always@ (... 25

ATI 2105
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 442 of 611

 Page 5 of 16
Ex. 2105 - macc_gpr.v

 1

 2

 wire tp_sp_wr_ena; 3

 assign tp_sp_wr_ena = tp_sp_data_valid; 4

 5

 always@(/*AUTOSENSE*/sq_sp_gpr_phase_mux or sq_sp_wr_ena 6

 or tp_sp_wr_ena) 7

 begin 8

 case(sq_sp_gpr_phase_mux) 9

 2'b00, 10

 2'b10, 11

 2'b11: gpr_wr_ena = sq_sp_wr_ena; 12

 2'b01: gpr_wr_ena = tp_sp_wr_ena; 13

 endcase // case(sq_sp_gpr_phase_mux) 14

 end // always@ (... 15

 16

 17

 //---18
------------/ 19

 //The phase mux controlling the write input port into GPRs (register file write port) 20

 //---21
------------/ 22

 always@(/*AUTOSENSE*/VectorResult or iInterpolated or iScalarData 23

 or sq_sp_gpr_phase_mux or tp_sp_data) 24

 begin 25

 case(sq_sp_gpr_phase_mux) 26

 Page 6 of 16
Ex. 2105 - macc_gpr.v

 2'b00: InputGPR = iInterpolated; 1

 2'b01: InputGPR = tp_sp_data; 2

 2'b10: InputGPR = VectorResult; 3

 2'b11: InputGPR = iScalarData; 4

 default: InputGPR = iInterpolated; 5

 endcase // case(sq_sp_gpr_phase_mux) 6

 end // always@ (... 7

 8

 9

 //-- 10

 //Behavioral model of a 128x128 Register File used to emulate GPRs 11

 //--- 12

 // dum_mem_p2 #(7,128,128) udum_mem(.iRCLK(sclk), 13

 // .iWCLK(sclk), 14

 // .iMER(sq_sp_mem_rd_ena), 15

 // .iMEW(sq_sp_mem_wr_ena), 16

 // .iWEN(sq_sp_wr_ena), 17

 // .iRADR(sq_sp_gpr_rd_addr), 18

 // .iWADR(sq_sp_gpr_wr_addr), 19

 // .iD(InputGPR), 20

 // .oQ(RegData) 21

 //); 22

 23

 wire [127:0] subword_write_mask; 24

 25

 Page 7 of 16
Ex. 2105 - macc_gpr.v

 //since the virage behavioral model does not give a better mask/pin ration than 1:1 1

 //i am generating the 32-bit-subword mask in the following fashion 2

 assign subword_write_mask[31:0] = {32{gpr_wr_mask[0]}}; 3

 assign subword_write_mask[63:32] = {32{gpr_wr_mask[1]}}; 4

 assign subword_write_mask[95:64] = {32{gpr_wr_mask[2]}}; 5

 assign subword_write_mask[127:96] = {32{gpr_wr_mask[3]}}; 6

 7

 8

`ifdef USE_BEHAVE_MEM 9

 rfsd2_128x128cm1sw8_core ugpr_mem(.QB(RegData), 10

 .ADRA_buf(gpr_wr_addr), 11

 .DA_buf(InputGPR), 12

 .WEMA_buf(subword_write_mask), 13

 .WEA_buf(gpr_wr_ena), 14

 .MEA_buf(gpr_wr_ena), 15

 .CLKA(sclk), 16

 .BISTEA(1'b0), 17

 .ADRB_buf(sq_sp_gpr_rd_addr), 18

 .OEB_buf(1'b1), 19

 .MEB_buf(sq_sp_mem_rd_ena), 20

 .CLKB(sclk), 21

 .BISTEB(1'b0), 22

 .AWTB(1'b0) 23

); 24

`else // !`ifdef USE_BEHAVE_MEM 25

 Page 8 of 16
Ex. 2105 - macc_gpr.v

 rfsd2_128x128cm2sw1 ugpr_mem 1

 (/*VRGIO rfsd2_128x128cm2sw1 InputGPR RegData gpr_wr_addr sq_sp_gpr_rd_addr 2
gpr_wr_ena sq_sp_gpr_rd_ena null*/ 3

 // READ INTERFACE 4

 .CLKB(iSCLK), // Read Clock 5

 .OEB(sq_sp_gpr_rd_ena), // Output enable 6

 .MEB(vdd), // Read enable 7

 .ADRB0(sq_sp_gpr_rd_addr[0]), .ADRB1(sq_sp_gpr_rd_addr[1]), 8
.ADRB2(sq_sp_gpr_rd_addr[2]), .ADRB3(sq_sp_gpr_rd_addr[3]), // Read Address 9

 .ADRB4(sq_sp_gpr_rd_addr[4]), .ADRB5(sq_sp_gpr_rd_addr[5]), 10
.ADRB6(sq_sp_gpr_rd_addr[6]), // Read Address 11

 .QB0(RegData[0]), .QB1(RegData[1]), .QB2(RegData[2]), .QB3(RegData[3]), // Read 12
Data 13

 .QB4(RegData[4]), .QB5(RegData[5]), .QB6(RegData[6]), .QB7(RegData[7]), // Read 14
Data 15

 .QB8(RegData[8]), .QB9(RegData[9]), .QB10(RegData[10]), .QB11(RegData[11]), // 16
Read Data 17

 .QB12(RegData[12]), .QB13(RegData[13]), .QB14(RegData[14]), .QB15(RegData[15]), // 18
Read Data 19

 .QB16(RegData[16]), .QB17(RegData[17]), .QB18(RegData[18]), .QB19(RegData[19]), // 20
Read Data 21

 .QB20(RegData[20]), .QB21(RegData[21]), .QB22(RegData[22]), .QB23(RegData[23]), // 22
Read Data 23

 .QB24(RegData[24]), .QB25(RegData[25]), .QB26(RegData[26]), .QB27(RegData[27]), // 24
Read Data 25

 .QB28(RegData[28]), .QB29(RegData[29]), .QB30(RegData[30]), .QB31(RegData[31]), // 26
Read Data 27

 .QB32(RegData[32]), .QB33(RegData[33]), .QB34(RegData[34]), .QB35(RegData[35]), // 28
Read Data 29

 .QB36(RegData[36]), .QB37(RegData[37]), .QB38(RegData[38]), .QB39(RegData[39]), // 30
Read Data 31

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 443 of 611

 Page 9 of 16
Ex. 2105 - macc_gpr.v

 .QB40(RegData[40]), .QB41(RegData[41]), .QB42(RegData[42]), .QB43(RegData[43]), // 1
Read Data 2

 .QB44(RegData[44]), .QB45(RegData[45]), .QB46(RegData[46]), .QB47(RegData[47]), // 3
Read Data 4

 .QB48(RegData[48]), .QB49(RegData[49]), .QB50(RegData[50]), .QB51(RegData[51]), // 5
Read Data 6

 .QB52(RegData[52]), .QB53(RegData[53]), .QB54(RegData[54]), .QB55(RegData[55]), // 7
Read Data 8

 .QB56(RegData[56]), .QB57(RegData[57]), .QB58(RegData[58]), .QB59(RegData[59]), // 9
Read Data 10

 .QB60(RegData[60]), .QB61(RegData[61]), .QB62(RegData[62]), .QB63(RegData[63]), // 11
Read Data 12

 .QB64(RegData[64]), .QB65(RegData[65]), .QB66(RegData[66]), .QB67(RegData[67]), // 13
Read Data 14

 .QB68(RegData[68]), .QB69(RegData[69]), .QB70(RegData[70]), .QB71(RegData[71]), // 15
Read Data 16

 .QB72(RegData[72]), .QB73(RegData[73]), .QB74(RegData[74]), .QB75(RegData[75]), // 17
Read Data 18

 .QB76(RegData[76]), .QB77(RegData[77]), .QB78(RegData[78]), .QB79(RegData[79]), // 19
Read Data 20

 .QB80(RegData[80]), .QB81(RegData[81]), .QB82(RegData[82]), .QB83(RegData[83]), // 21
Read Data 22

 .QB84(RegData[84]), .QB85(RegData[85]), .QB86(RegData[86]), .QB87(RegData[87]), // 23
Read Data 24

 .QB88(RegData[88]), .QB89(RegData[89]), .QB90(RegData[90]), .QB91(RegData[91]), // 25
Read Data 26

 .QB92(RegData[92]), .QB93(RegData[93]), .QB94(RegData[94]), .QB95(RegData[95]), // 27
Read Data 28

 .QB96(RegData[96]), .QB97(RegData[97]), .QB98(RegData[98]), .QB99(RegData[99]), // 29
Read Data 30

 .QB100(RegData[100]), .QB101(RegData[101]), .QB102(RegData[102]), 31
.QB103(RegData[103]), // Read Data 32

 Page 10 of 16
Ex. 2105 - macc_gpr.v

 .QB104(RegData[104]), .QB105(RegData[105]), .QB106(RegData[106]), 1
.QB107(RegData[107]), // Read Data 2

 .QB108(RegData[108]), .QB109(RegData[109]), .QB110(RegData[110]), 3
.QB111(RegData[111]), // Read Data 4

 .QB112(RegData[112]), .QB113(RegData[113]), .QB114(RegData[114]), 5
.QB115(RegData[115]), // Read Data 6

 .QB116(RegData[116]), .QB117(RegData[117]), .QB118(RegData[118]), 7
.QB119(RegData[119]), // Read Data 8

 .QB120(RegData[120]), .QB121(RegData[121]), .QB122(RegData[122]), 9
.QB123(RegData[123]), // Read Data 10

 .QB124(RegData[124]), .QB125(RegData[125]), .QB126(RegData[126]), 11
.QB127(RegData[127]), // Read Data 12

 // WRITE INTERFACE 13

 .CLKA(iSCLK), // Write Clock 14

 .WEA(gpr_wr_ena), // Write enable 15

 .MEA(vdd), // Memory enable 16

 .ADRA0(gpr_wr_addr[0]), .ADRA1(gpr_wr_addr[1]), .ADRA2(gpr_wr_addr[2]), 17
.ADRA3(gpr_wr_addr[3]), // Write Address 18

 .ADRA4(gpr_wr_addr[4]), .ADRA5(gpr_wr_addr[5]), .ADRA6(gpr_wr_addr[6]), // Write 19
Address 20

 .DA0(InputGPR[0]), .DA1(InputGPR[1]), .DA2(InputGPR[2]), .DA3(InputGPR[3]), // 21
Write Data 22

 .DA4(InputGPR[4]), .DA5(InputGPR[5]), .DA6(InputGPR[6]), .DA7(InputGPR[7]), // 23
Write Data 24

 .DA8(InputGPR[8]), .DA9(InputGPR[9]), .DA10(InputGPR[10]), .DA11(InputGPR[11]), 25
// Write Data 26

 .DA12(InputGPR[12]), .DA13(InputGPR[13]), .DA14(InputGPR[14]), 27
.DA15(InputGPR[15]), // Write Data 28

 .DA16(InputGPR[16]), .DA17(InputGPR[17]), .DA18(InputGPR[18]), 29
.DA19(InputGPR[19]), // Write Data 30

 .DA20(InputGPR[20]), .DA21(InputGPR[21]), .DA22(InputGPR[22]), 31
.DA23(InputGPR[23]), // Write Data 32

 Page 11 of 16
Ex. 2105 - macc_gpr.v

 .DA24(InputGPR[24]), .DA25(InputGPR[25]), .DA26(InputGPR[26]), 1
.DA27(InputGPR[27]), // Write Data 2

 .DA28(InputGPR[28]), .DA29(InputGPR[29]), .DA30(InputGPR[30]), 3
.DA31(InputGPR[31]), // Write Data 4

 .DA32(InputGPR[32]), .DA33(InputGPR[33]), .DA34(InputGPR[34]), 5
.DA35(InputGPR[35]), // Write Data 6

 .DA36(InputGPR[36]), .DA37(InputGPR[37]), .DA38(InputGPR[38]), 7
.DA39(InputGPR[39]), // Write Data 8

 .DA40(InputGPR[40]), .DA41(InputGPR[41]), .DA42(InputGPR[42]), 9
.DA43(InputGPR[43]), // Write Data 10

 .DA44(InputGPR[44]), .DA45(InputGPR[45]), .DA46(InputGPR[46]), 11
.DA47(InputGPR[47]), // Write Data 12

 .DA48(InputGPR[48]), .DA49(InputGPR[49]), .DA50(InputGPR[50]), 13
.DA51(InputGPR[51]), // Write Data 14

 .DA52(InputGPR[52]), .DA53(InputGPR[53]), .DA54(InputGPR[54]), 15
.DA55(InputGPR[55]), // Write Data 16

 .DA56(InputGPR[56]), .DA57(InputGPR[57]), .DA58(InputGPR[58]), 17
.DA59(InputGPR[59]), // Write Data 18

 .DA60(InputGPR[60]), .DA61(InputGPR[61]), .DA62(InputGPR[62]), 19
.DA63(InputGPR[63]), // Write Data 20

 .DA64(InputGPR[64]), .DA65(InputGPR[65]), .DA66(InputGPR[66]), 21
.DA67(InputGPR[67]), // Write Data 22

 .DA68(InputGPR[68]), .DA69(InputGPR[69]), .DA70(InputGPR[70]), 23
.DA71(InputGPR[71]), // Write Data 24

 .DA72(InputGPR[72]), .DA73(InputGPR[73]), .DA74(InputGPR[74]), 25
.DA75(InputGPR[75]), // Write Data 26

 .DA76(InputGPR[76]), .DA77(InputGPR[77]), .DA78(InputGPR[78]), 27
.DA79(InputGPR[79]), // Write Data 28

 .DA80(InputGPR[80]), .DA81(InputGPR[81]), .DA82(InputGPR[82]), 29
.DA83(InputGPR[83]), // Write Data 30

 .DA84(InputGPR[84]), .DA85(InputGPR[85]), .DA86(InputGPR[86]), 31
.DA87(InputGPR[87]), // Write Data 32

 Page 12 of 16
Ex. 2105 - macc_gpr.v

 .DA88(InputGPR[88]), .DA89(InputGPR[89]), .DA90(InputGPR[90]), 1
.DA91(InputGPR[91]), // Write Data 2

 .DA92(InputGPR[92]), .DA93(InputGPR[93]), .DA94(InputGPR[94]), 3
.DA95(InputGPR[95]), // Write Data 4

 .DA96(InputGPR[96]), .DA97(InputGPR[97]), .DA98(InputGPR[98]), 5
.DA99(InputGPR[99]), // Write Data 6

 .DA100(InputGPR[100]), .DA101(InputGPR[101]), .DA102(InputGPR[102]), 7
.DA103(InputGPR[103]), // Write Data 8

 .DA104(InputGPR[104]), .DA105(InputGPR[105]), .DA106(InputGPR[106]), 9
.DA107(InputGPR[107]), // Write Data 10

 .DA108(InputGPR[108]), .DA109(InputGPR[109]), .DA110(InputGPR[110]), 11
.DA111(InputGPR[111]), // Write Data 12

 .DA112(InputGPR[112]), .DA113(InputGPR[113]), .DA114(InputGPR[114]), 13
.DA115(InputGPR[115]), // Write Data 14

 .DA116(InputGPR[116]), .DA117(InputGPR[117]), .DA118(InputGPR[118]), 15
.DA119(InputGPR[119]), // Write Data 16

 .DA120(InputGPR[120]), .DA121(InputGPR[121]), .DA122(InputGPR[122]), 17
.DA123(InputGPR[123]), // Write Data 18

 .DA124(InputGPR[124]), .DA125(InputGPR[125]), .DA126(InputGPR[126]), 19
.DA127(InputGPR[127]), // Write Data 20

 // WRITE TEST SIGNALS 21

 .BISTEA(vss), 22

 .TWEA(vss), 23

 .TMEA(vss), 24

 .TADRA0(gpr_wr_addr[0]), .TADRA1(gpr_wr_addr[1]), .TADRA2(gpr_wr_addr[2]), 25
.TADRA3(gpr_wr_addr[3]), // Write Test Address 26

 .TADRA4(gpr_wr_addr[4]), .TADRA5(gpr_wr_addr[5]), .TADRA6(gpr_wr_addr[6]), // 27
Write Test Address 28

 .TDA0(InputGPR[0]), .TDA1(InputGPR[1]), .TDA2(InputGPR[2]), .TDA3(InputGPR[3]), 29
// Write Test Data 30

 .TDA4(InputGPR[4]), .TDA5(InputGPR[5]), .TDA6(InputGPR[6]), .TDA7(InputGPR[7]), 31
// Write Test Data 32

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 444 of 611

 Page 13 of 16
Ex. 2105 - macc_gpr.v

 .TDA8(InputGPR[8]), .TDA9(InputGPR[9]), .TDA10(InputGPR[10]), 1
.TDA11(InputGPR[11]), // Write Test Data 2

 .TDA12(InputGPR[12]), .TDA13(InputGPR[13]), .TDA14(InputGPR[14]), 3
.TDA15(InputGPR[15]), // Write Test Data 4

 .TDA16(InputGPR[16]), .TDA17(InputGPR[17]), .TDA18(InputGPR[18]), 5
.TDA19(InputGPR[19]), // Write Test Data 6

 .TDA20(InputGPR[20]), .TDA21(InputGPR[21]), .TDA22(InputGPR[22]), 7
.TDA23(InputGPR[23]), // Write Test Data 8

 .TDA24(InputGPR[24]), .TDA25(InputGPR[25]), .TDA26(InputGPR[26]), 9
.TDA27(InputGPR[27]), // Write Test Data 10

 .TDA28(InputGPR[28]), .TDA29(InputGPR[29]), .TDA30(InputGPR[30]), 11
.TDA31(InputGPR[31]), // Write Test Data 12

 .TDA32(InputGPR[32]), .TDA33(InputGPR[33]), .TDA34(InputGPR[34]), 13
.TDA35(InputGPR[35]), // Write Test Data 14

 .TDA36(InputGPR[36]), .TDA37(InputGPR[37]), .TDA38(InputGPR[38]), 15
.TDA39(InputGPR[39]), // Write Test Data 16

 .TDA40(InputGPR[40]), .TDA41(InputGPR[41]), .TDA42(InputGPR[42]), 17
.TDA43(InputGPR[43]), // Write Test Data 18

 .TDA44(InputGPR[44]), .TDA45(InputGPR[45]), .TDA46(InputGPR[46]), 19
.TDA47(InputGPR[47]), // Write Test Data 20

 .TDA48(InputGPR[48]), .TDA49(InputGPR[49]), .TDA50(InputGPR[50]), 21
.TDA51(InputGPR[51]), // Write Test Data 22

 .TDA52(InputGPR[52]), .TDA53(InputGPR[53]), .TDA54(InputGPR[54]), 23
.TDA55(InputGPR[55]), // Write Test Data 24

 .TDA56(InputGPR[56]), .TDA57(InputGPR[57]), .TDA58(InputGPR[58]), 25
.TDA59(InputGPR[59]), // Write Test Data 26

 .TDA60(InputGPR[60]), .TDA61(InputGPR[61]), .TDA62(InputGPR[62]), 27
.TDA63(InputGPR[63]), // Write Test Data 28

 .TDA64(InputGPR[64]), .TDA65(InputGPR[65]), .TDA66(InputGPR[66]), 29
.TDA67(InputGPR[67]), // Write Test Data 30

 .TDA68(InputGPR[68]), .TDA69(InputGPR[69]), .TDA70(InputGPR[70]), 31
.TDA71(InputGPR[71]), // Write Test Data 32

 Page 14 of 16
Ex. 2105 - macc_gpr.v

 .TDA72(InputGPR[72]), .TDA73(InputGPR[73]), .TDA74(InputGPR[74]), 1
.TDA75(InputGPR[75]), // Write Test Data 2

 .TDA76(InputGPR[76]), .TDA77(InputGPR[77]), .TDA78(InputGPR[78]), 3
.TDA79(InputGPR[79]), // Write Test Data 4

 .TDA80(InputGPR[80]), .TDA81(InputGPR[81]), .TDA82(InputGPR[82]), 5
.TDA83(InputGPR[83]), // Write Test Data 6

 .TDA84(InputGPR[84]), .TDA85(InputGPR[85]), .TDA86(InputGPR[86]), 7
.TDA87(InputGPR[87]), // Write Test Data 8

 .TDA88(InputGPR[88]), .TDA89(InputGPR[89]), .TDA90(InputGPR[90]), 9
.TDA91(InputGPR[91]), // Write Test Data 10

 .TDA92(InputGPR[92]), .TDA93(InputGPR[93]), .TDA94(InputGPR[94]), 11
.TDA95(InputGPR[95]), // Write Test Data 12

 .TDA96(InputGPR[96]), .TDA97(InputGPR[97]), .TDA98(InputGPR[98]), 13
.TDA99(InputGPR[99]), // Write Test Data 14

 .TDA100(InputGPR[100]), .TDA101(InputGPR[101]), .TDA102(InputGPR[102]), 15
.TDA103(InputGPR[103]), // Write Test Data 16

 .TDA104(InputGPR[104]), .TDA105(InputGPR[105]), .TDA106(InputGPR[106]), 17
.TDA107(InputGPR[107]), // Write Test Data 18

 .TDA108(InputGPR[108]), .TDA109(InputGPR[109]), .TDA110(InputGPR[110]), 19
.TDA111(InputGPR[111]), // Write Test Data 20

 .TDA112(InputGPR[112]), .TDA113(InputGPR[113]), .TDA114(InputGPR[114]), 21
.TDA115(InputGPR[115]), // Write Test Data 22

 .TDA116(InputGPR[116]), .TDA117(InputGPR[117]), .TDA118(InputGPR[118]), 23
.TDA119(InputGPR[119]), // Write Test Data 24

 .TDA120(InputGPR[120]), .TDA121(InputGPR[121]), .TDA122(InputGPR[122]), 25
.TDA123(InputGPR[123]), // Write Test Data 26

 .TDA124(InputGPR[124]), .TDA125(InputGPR[125]), .TDA126(InputGPR[126]), 27
.TDA127(InputGPR[127]), // Write Test Data 28

 //READ TEST SIGNALS 29

 .BISTEB(vss), 30

 .TOEB(vss), 31

 .TMEB(vss), 32

 Page 15 of 16
Ex. 2105 - macc_gpr.v

 .TADRB0(sq_sp_gpr_rd_addr[0]), .TADRB1(sq_sp_gpr_rd_addr[1]), 1
.TADRB2(sq_sp_gpr_rd_addr[2]), .TADRB3(sq_sp_gpr_rd_addr[3]), // Read Test Address 2

 .TADRB4(sq_sp_gpr_rd_addr[4]), .TADRB5(sq_sp_gpr_rd_addr[5]), 3
.TADRB6(sq_sp_gpr_rd_addr[6]), // Read Test Address 4

 .AWTB(vss) 5

); 6

`endif // !`ifdef USE_BEHAVE_MEM 7

 8

 9

 10

 always @(posedge sclk) 11

 begin 12

 q_RegData <= RegData; 13

 end 14

 15

 assign oVectorOutput = VectorResult; 16

 assign oRegData = q_RegData; 17

 18

endmodule // macc_gpr 19

 20

 21

 22

 23

 24

 25

 26

 Page 16 of 16
Ex. 2105 - macc_gpr.v

 1

 2

 3

 4

 5

 6

 7

 8

 9

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 445 of 611

 Page 1 of 100
Ex. 2106 - export_control.v

// -*- Mode: Verilog -*- 1

// Filename : export_buffer.v 2

// Description : The module implements the control for export buffers as well as the quad 3
interface between SC and SX blocks 4

// Author : Andi Skende 5

// Created On : Thu Apr 4 19:13:50 2002 6

// Last Modified By: . 7

// Last Modified On: . 8

// Update Count : 0 9

// Status : Unknown, Use with caution! 10

 11

`timescale 1ns / 1ps 12

module export_control(/*AUTOARG*/ 13

 // Outputs 14

 sx_sc_quad_rtr, sx_sq_exp_count_rdy, sx_sq_exp_pos_avail, 15

 sx_sq_exp_buf_avail, sx_rb_quad_x, sx_rb_quad_y, sx_rb_quad_mask, 16

 sx_rb_quad_type, sx_rb_quad_pixel, sx_rb_quad_index, 17

 sx_rb0_quad_send, sx_rb1_quad_send, sx_rb2_quad_send, 18

 sx_rb3_quad_send, sx_rb0_color_data, sx_rb1_color_data, 19

 sx_rb2_color_data, sx_rb3_color_data, sx_rb0_color_send, 20

 sx_rb1_color_send, sx_rb2_color_send, sx_rb3_color_send, 21

 sx_rb0_index_rtr, sx_rb1_index_rtr, sx_rb2_index_rtr, 22

 sx_rb3_index_rtr, sx_pa_send, sx_pa_data, 23

 // Inputs 24

 sc_sx_quad_x, sc_sx_quad_y, sc_sx_quad_mask, sc_sx_quad_tilex, 25

 sc_sx_quad_tiley, sc_sx_quad_send, sclk, srst, sp0_sx_exp_pvalid, 26

 Page 2 of 100
Ex. 2106 - export_control.v

 sp1_sx_exp_pvalid, sp0_sx_exp_alu_id, sp1_sx_exp_alu_id, 1

 sp0_sx_exporting, sp1_sx_exporting, sp0_sx_exp_dest, 2

 sp1_sx_exp_dest, sp0_sx_data0, sp0_sx_data1, sp0_sx_data2, 3

 sp0_sx_data3, sp1_sx_data0, sp1_sx_data1, sp1_sx_data2, 4

 sp1_sx_data3, sq_sx_exp_type, sq_sx_exp_number, sq_sx_exp_pix, 5

 sq_sx_exp_state, sq_sx_exp_id, sq_sx_exp_valid, sq_sx_free_done, 6

 sq_sx_free_id, rb0_sx_quad_rtr, rb1_sx_quad_rtr, rb2_sx_quad_rtr, 7

 rb3_sx_quad_rtr, rb0_sx_color_rtr, rb1_sx_color_rtr, 8

 rb2_sx_color_rtr, rb3_sx_color_rtr, rb0_sx_index, rb1_sx_index, 9

 rb2_sx_index, rb3_sx_index, rb0_sx_index_send, rb1_sx_index_send, 10

 rb2_sx_index_send, rb3_sx_index_send, rb0_sx_index_op, 11

 rb1_sx_index_op, rb2_sx_index_op, rb3_sx_index_op, 12

 rbbm_sx_soft_reset, rbbm_we, rbbm_wd, rbbm_a, rbbm_be, rbbm_re, 13

 rbb_rs_in, rbb_rd_in, pa_sx_req, pa_sx_sp_id, pa_sx_offset, 14

 pa_sx_aux, pa_sx_last 15

); 16

 17

 18

 input [1:0] sc_sx_quad_x; 19

 input [1:0] sc_sx_quad_y; 20

 input [31:0] sc_sx_quad_mask; 21

 input [1:0] sc_sx_quad_tilex; 22

 input sc_sx_quad_tiley; 23

 input sc_sx_quad_send; 24

 output sx_sc_quad_rtr; 25

 Page 3 of 100
Ex. 2106 - export_control.v

 input sclk,srst; 1

 2

 3

 //ANDI ???? revisit this interface 4

 input [3:0] sp0_sx_exp_pvalid, sp1_sx_exp_pvalid; //pixel valid mask 5

 input sp0_sx_exp_alu_id, sp1_sx_exp_alu_id; //isn't one of these signals 6
redundand ??? ANDI 7

 input [0:0] sp0_sx_exporting, sp1_sx_exporting; //isn't one of these signals 8
redundand ??? ANDI 9

 input [5:0] sp0_sx_exp_dest, sp1_sx_exp_dest; 10

 11

 //--// 12

 input [127:0] sp0_sx_data0,sp0_sx_data1,sp0_sx_data2,sp0_sx_data3; 13

 input [127:0] sp1_sx_data0,sp1_sx_data1,sp1_sx_data2,sp1_sx_data3; 14

 15

 //---/ 16

 //SQ to SX Control Bus 17

 //--/ 18

 input [1:0] sq_sx_exp_type; 19

 input [1:0] sq_sx_exp_number; 20

 input [0:0] sq_sx_exp_pix; 21

 input [2:0] sq_sx_exp_state; //ANDIjust a hack 22

 23

 assign sq_sx_exp_state = 3'b0; 24

 25

 input [0:0] sq_sx_exp_id; 26

 Page 4 of 100
Ex. 2106 - export_control.v

 input [0:0] sq_sx_exp_valid; //valid cycle 1

 input [0:0] sq_sx_free_done; 2

 input [0:0] sq_sx_free_id; 3

 4

 5

 //--/ 6

 //Export Buffer status control interface 7

 //--/ 8

 output sx_sq_exp_count_rdy; 9

 output sx_sq_exp_pos_avail; 10

 output [6:0] sx_sq_exp_buf_avail; 11

 12

 //--// 13

 //SX-RB interface 14

 //--// 15

 16

 //---------------------// 17

 //--Quad Interface-----// 18

 //---------------------// 19

 output [1:0] sx_rb_quad_x; 20

 output [1:0] sx_rb_quad_y; 21

 output [31:0] sx_rb_quad_mask; 22

 output [0:0] sx_rb_quad_type; 23

 output [3:0] sx_rb_quad_pixel; 24

 output [7:0] sx_rb_quad_index; 25

ATI 2106
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 446 of 611

 Page 5 of 100
Ex. 2106 - export_control.v

 output [0:0] sx_rb0_quad_send, sx_rb1_quad_send, sx_rb2_quad_send, 1
sx_rb3_quad_send; 2

 input [0:0] rb0_sx_quad_rtr, rb1_sx_quad_rtr, rb2_sx_quad_rtr, rb3_sx_quad_rtr; 3

 4

 5

 //--------------------------------------// 6

 //--Pixel Color Data interface----------// 7

 //--------------------------------------// 8

 output [127:0] sx_rb0_color_data,sx_rb1_color_data,sx_rb2_color_data,sx_rb3_color_data; 9

 output [0:0] sx_rb0_color_send,sx_rb1_color_send,sx_rb2_color_send,sx_rb3_color_send; 10

 input [0:0] rb0_sx_color_rtr,rb1_sx_color_rtr,rb2_sx_color_rtr,rb3_sx_color_rtr; 11

 12

 13

 14

 //---// 15

 //SX to RB quad index interface-------------// 16

 //--// 17

 input [7:0] rb0_sx_index,rb1_sx_index,rb2_sx_index,rb3_sx_index; 18

 input [0:0] 19
rb0_sx_index_send,rb1_sx_index_send,rb2_sx_index_send,rb3_sx_index_send; 20

 input [0:0] rb0_sx_index_op, rb1_sx_index_op, rb2_sx_index_op, rb3_sx_index_op; 21

 output [0:0] sx_rb0_index_rtr, sx_rb1_index_rtr,sx_rb2_index_rtr,sx_rb3_index_rtr; 22

 23

 24

 //--/ 25

 //CP/rbbm Interface for Real Time data and snooping state registers 26

 Page 6 of 100
Ex. 2106 - export_control.v

 //--/ 1

 //There's no rtr nrtrtr signals ...tie them high or low at the top level 2

 input rbbm_sx_soft_reset; 3

 input rbbm_we; 4

 input [31:0] rbbm_wd; 5

 input [14:0] rbbm_a; 6

 input [3:0] rbbm_be; 7

 input rbbm_re; 8

 9

 input rbb_rs_in; 10

 input [31:0] rbb_rd_in; 11

 12

 reg state_soft_reset; 13

 reg state_we; 14

 reg [31:0] state_wd; 15

 reg [14:0] state_a; 16

 reg [3:0] state_be; 17

 reg state_re; 18

 19

 reg state_rs_in; 20

 reg [31:0] state_rd_in; 21

 22

 reg state_rs_out; 23

 reg [31:0] state_rd_out; 24

 25

 Page 7 of 100
Ex. 2106 - export_control.v

 1

 //---// 2

 //PA(Primitive Assembly) - SX position export interface 3

 //---// 4

 input pa_sx_req; 5

 input pa_sx_sp_id; 6

 input [1:0] pa_sx_offset; //used to be pa_sx_export_phase 7

 input pa_sx_aux; //used to be pa_sx_2ndbuff 8

 input pa_sx_last; 9

 output sx_pa_send; 10

 output [127:0] sx_pa_data; 11

 12

 13

 reg [127:0] q0_sp0_data0, q0_sp0_data1,q0_sp0_data2,q0_sp0_data3; 14

 reg [127:0] q0_sp1_data0, q0_sp1_data1,q0_sp1_data2,q0_sp1_data3; 15

 reg [127:0] q1_sp0_data0, q1_sp0_data1,q1_sp0_data2,q1_sp0_data3; 16

 reg [127:0] q1_sp1_data0, q1_sp1_data1,q1_sp1_data2,q1_sp1_data3; 17

 18

 reg [31:0] state_import_export0,state_import_export1; 19

 reg [31:0] state_import_export2,state_import_export3; 20

 reg [31:0] state_import_export4,state_import_export5; 21

 reg [31:0] state_import_export6,state_import_export7; 22

 23

 24

 //--- 25

 Page 8 of 100
Ex. 2106 - export_control.v

 // SX - SC interface signals 1

 //-- 2

 wire sx_sc_rtr; 3

 reg q_sx_sc_rtr; 4

 5

 //--// 6

 // Register all the inputs 7

 //---// 8

 9

 always @(posedge sclk) 10

 begin 11

 if(srst) 12

 begin 13

 14

 q_sx_sc_rtr <= 1'b0; 15

 state_soft_reset <= 1'b0; 16

 state_we <= 1'b0; 17

 state_wd <= 32'b0; 18

 state_a <= 15'b0; 19

 state_be <= 4'b0; 20

 state_re <= 1'b0; 21

 state_rs_in <= 1'b0; 22

 state_rd_in <= 32'b0; 23

 state_rs_out <= 1'b0; 24

 state_rd_out <= 32'b0; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 447 of 611

 Page 9 of 100
Ex. 2106 - export_control.v

 end 1

 else 2

 begin 3

 q0_sp0_data0 <= sp0_sx_data0; 4

 q0_sp0_data1 <= sp0_sx_data1; 5

 q0_sp0_data2 <= sp0_sx_data2; 6

 q0_sp0_data3 <= sp0_sx_data3; 7

 q0_sp1_data0 <= sp1_sx_data0; 8

 q0_sp1_data1 <= sp1_sx_data1; 9

 q0_sp1_data2 <= sp1_sx_data2; 10

 q0_sp1_data3 <= sp1_sx_data3; 11

 q1_sp0_data0 <= q0_sp0_data0; 12

 q1_sp0_data1 <= q0_sp0_data1; 13

 q1_sp0_data2 <= q0_sp0_data2; 14

 q1_sp0_data3 <= q0_sp0_data3; 15

 q1_sp1_data0 <= q0_sp1_data0; 16

 q1_sp1_data1 <= q0_sp1_data1; 17

 q1_sp1_data2 <= q0_sp1_data2; 18

 q1_sp1_data3 <= q0_sp1_data3; 19

 q_sx_sc_rtr <= sx_sc_rtr; 20

 state_soft_reset <= rbbm_sx_soft_reset; 21

 state_we <= rbbm_we; 22

 state_wd <= rbbm_wd; 23

 state_a <= rbbm_a; 24

 state_be <= rbbm_be; 25

 Page 10 of 100
Ex. 2106 - export_control.v

 state_re <= rbbm_re; 1

 state_rs_in <= rbb_rs_in; 2

 state_rd_in <= rbb_rd_in; 3

 end 4

 end // always @ (posedge sclk) 5

 6

 7

 8

 9

 // The fifo below is two-quad wide to allow for double reads on the read side 10

 // For this reason, I write the fifo only every other valid cycle from the SC 11

 // Quad control/info bus from SC 12

 13

 //counts two valid quads before it writes into the skid buffer 14

 reg [0:0] quad_valid_count; 15

 16

 always @(posedge sclk) 17

 begin 18

 if(srst) 19

 begin 20

 quad_valid_count <= 2'b0; 21

 end 22

 else 23

 begin 24

 if(sc_sx_quad_send) 25

 Page 11 of 100
Ex. 2106 - export_control.v

 quad_valid_count <= quad_valid_count+1; 1

 end 2

 end // always @ (posedge sclk) 3

 4

 5

 reg [1:0] q_quad_x; 6

 reg [1:0] q_quad_y; 7

 reg [31:0] q_quad_mask; 8

 reg [1:0] q_quad_tilex; 9

 reg q_quad_tiley; 10

 reg q_quad_send; 11

 12

 always @(posedge sclk) 13

 begin 14

 if(srst) 15

 begin 16

 q_quad_x <= 2'b0; 17

 q_quad_y <= 2'b0; 18

 q_quad_mask <= 32'b0; 19

 q_quad_tilex <= 2'b0; 20

 q_quad_tiley <= 1'b0; 21

 q_quad_send <= 1'b0; 22

 end 23

 else 24

 begin 25

 Page 12 of 100
Ex. 2106 - export_control.v

 q_quad_x <= sc_sx_quad_x; 1

 q_quad_y <= sc_sx_quad_y; 2

 q_quad_mask <= sc_sx_quad_mask; 3

 q_quad_tilex <= sc_sx_quad_tilex; 4

 q_quad_tiley <= sc_sx_quad_tiley; 5

 q_quad_send <= sc_sx_quad_send; 6

 end 7

 end // always @ (posedge sclk) 8

 9

 10

 wire [38:0] quad_data; 11

 wire [38:0] q_quad_data; 12

 wire [77:0] double_quad; 13

 wire [0:0] quad_write; 14

 15

 //meaning of each bit going into quad buffer 16

 //sc_sx_quad1_x 1:0 17

 //sc_sx_quad1_y 3:2 18

 //sc_sx_quad1_mask 35:4 19

 //sc_sx_quad1_tilex 37:36 20

 //sc_sx_quad1_tiley 38 21

 //sc_sx_quad0_x 40:39 22

 //sc_sx_quad0_y 42:41 23

 //sc_sx_quad0_mask 74:43 24

 //sc_sx_quad0_tilex 76:75 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 448 of 611

 Page 13 of 100
Ex. 2106 - export_control.v

 //sc_sx_quad0_tiley 77 1

 2

 assign quad_data = 3
{sc_sx_quad_tiley,sc_sx_quad_tilex,sc_sx_quad_mask,sc_sx_quad_y,sc_sx_quad_x}; 4

 assign q_quad_data = {q_quad_tiley,q_quad_tilex,q_quad_mask,q_quad_y,q_quad_x}; 5

 assign double_quad = {q_quad_data,quad_data}; 6

 7

 //second valid quad of the pair coming from SC 8

 assign quad_write = sc_sx_quad_send & quad_valid_count; 9

 10

 assign sx_sc_quad_rtr = q_sx_sc_rtr; //do I need another register stage here ????ANDI 11

 12

 reg read_quad_cmd_rtr; 13

 wire [77:0] read_data ; 14

 15

 16

 //-- 17

 //skid buffer at SC-SX quad control/info data 18

 //-- 19

 skid_buff_top #(78,128) sc_sx_quad_skid(20

 .write_rts(quad_write), //sc is ready to send 21

 .write_rtr(sx_sc_rtr), //sx is ready to receive ...fifo not 22
yet full 23

 .write_data(double_quad), // quad info coming from sc 24

 25

 Page 14 of 100
Ex. 2106 - export_control.v

 .read_rts(read_rts), //quad command data available in 1
the buffer 2

 .read_rtr(read_quad_cmd_rtr), 3

 .read_data(read_data), 4

 5

 .clk(sclk), //clock and reset 6

 .reset(srst) 7

 8

); 9

 10

 //--- 11

 //SC-SX interface skid buffer internal read 12

 //--- 13

 14

 wire [0:0] valid_export; 15

 wire [0:0] valid_pixel_export; 16

 reg [0:0] q0_valid_export,q1_valid_export ; //we have valid exports coming out of SPs 17

 reg [0:0] q0_valid_pixel_export, 18
q1_valid_pixel_export,q2_valid_pixel_export,q3_valid_pixel_export; 19

 reg [0:0] valid_data; 20

 21

 //if there's quad data in the buffer and valid data coming from SP then pop the fifo. 22

 always @(posedge sclk) 23

 begin 24

 if(read_rts & valid_pixel_export) 25

 begin 26

 Page 15 of 100
Ex. 2106 - export_control.v

 read_quad_cmd_rtr <= 1'b1; 1

 valid_data <= q0_valid_export; 2

 end 3

 else 4

 begin 5

 read_quad_cmd_rtr <= 1'b0; 6

 valid_data <= 1'b0; 7

 end 8

 end // always @ (posedge sclk) 9

 10

 //This valid_export bit is passed through with data into the ALPHA/RGBA test logic or 11
pipeline once (depending on ALPHA/RGBA logic latency). 12

 //The output of it is than send to the read side of the skid buffer sitting at the quad interface 13
between the SX and SC... 14

 //so the respective quad info is read from the quad buffer. 15

 16

 assign valid_export = |sp0_sx_exporting; //exporing pixel or vertices vs. no exports 17

 18

 //hack for now ...ANDI 19

 //we have an export from shader pipe and this is a pixel export 20

 reg [0:0] q_exp_pix_alu0; 21

 assign valid_pixel_export = valid_export & q_exp_pix_alu0; 22

 23

 //delay the valid by one cycle to account for ALPHA/RGBA data processing logic latency 24

 always @(posedge sclk) 25

 begin 26

 Page 16 of 100
Ex. 2106 - export_control.v

 if(srst) 1

 begin 2

 q0_valid_export <= 1'b0; 3

 q1_valid_export <= 1'b0; 4

 end 5

 else 6

 begin 7

 q0_valid_export <= valid_export; 8

 q1_valid_export <= q0_valid_export; 9

 end 10

 end // always @ (posedge sclk) 11

 12

 13

 //delay the valid by one cycle to account for ALPHA/RGBA data processing logic latency 14

 always @(posedge sclk) 15

 begin 16

 if(srst) 17

 begin 18

 q0_valid_pixel_export <= 1'b0; 19

 q1_valid_pixel_export <= 1'b0; 20

 q2_valid_pixel_export <= 1'b0; 21

 q3_valid_pixel_export <= 1'b0; 22

 end 23

 else 24

 begin 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 449 of 611

 Page 17 of 100
Ex. 2106 - export_control.v

 q0_valid_pixel_export <= valid_pixel_export; 1

 q1_valid_pixel_export <= q0_valid_pixel_export; 2

 q2_valid_pixel_export <= q1_valid_pixel_export; 3

 q3_valid_pixel_export <= q2_valid_pixel_export; 4

 end 5

 end // always @ (posedge sclk) 6

 7

 8

 //Next....the quad data just read from the "quad buffer" goes into 9

 //the "detailed quad buffer" after the 32-bit mask has been modified 10

 //accordingly based on the result of the ALPHA/RGBA >1.0/0.0 test logic 11

 //The tile_x and tile_y informantion as been stripped out of the quad packet. 12

 //A two bit id has been attached based on which RB the quad belongs to. 13

 //Also, a index on where the quad resides into Export Buffer has been attached to 14

 //the "detailed quad packet" written into the "detailed quad buffer". 15

 16

 wire [6:0] export_index; 17

 wire [1:0] rb_id0,rb_id1; //used to identify which rb the quad belongs to based on the state 18
and math on tile_x and tile_y data 19

 20

 wire [1:0] tile_x0; //first quad tile coordinates 21

 wire [0:0] tile_y0; 22

 wire [1:0] tile_x1; //second quad tile coordinates 23

 wire [0:0] tile_y1; 24

 wire [3:0] rb_sys_config; 25

 26

 Page 18 of 100
Ex. 2106 - export_control.v

 //four RBs present in the current configuration ...hadwired for the time-being 1

 assign rb_sys_config = 4'b1111; 2

 3

 reg [77:0] quad_data_read ; 4

 5

 //latching the output of the quad command skid buffer before going into the quad command 6
fifo 7

 //with the modified data...modified mask and rb id added. 8

 always @(posedge sclk) 9

 begin 10

 if(read_quad_cmd_rtr) 11

 quad_data_read <= read_data; 12

 end 13

 14

 15

 16

 reg [6:0] q_export_index; 17

 always @(posedge sclk) 18

 begin 19

 q_export_index <= export_index; 20

 end 21

 22

 23

 //the meaning of each bit going into quad buffer 24

 //sc_sx_quad1_x 1:0 25

 //sc_sx_quad1_y 3:2 26

 Page 19 of 100
Ex. 2106 - export_control.v

 //sc_sx_quad1_mask 35:4 1

 //sc_sx_quad1_tilex 37:36 2

 //sc_sx_quad1_tiley 38 3

 //sc_sx_quad0_x 40:39 4

 //sc_sx_quad0_y 42:41 5

 //sc_sx_quad0_mask 74:43 6

 //sc_sx_quad0_tilex 76:75 7

 //sc_sx_quad0_tiley 77 8

 9

 10

 assign tile_x1 = quad_data_read[37:36]; 11

 assign tile_y1 = quad_data_read[38]; 12

 13

 assign tile_x0 = quad_data_read[76:75]; 14

 assign tile_y0 = quad_data_read[77]; 15

 16

 17

 //this module is used to define depending on RB/MC config, wich RB unit the current quad 18
(tile_x, tile_y) belongs to 19

 //there's a one cycle delay through the rb id calculation logic as well as the ALPHA test logic 20

 mod_rb_id urb_id0(.block_id(rb_id0), .tile_x(tile_x0), 21
.tile_y(tile_y0),.config(rb_sys_config),.sclk(sclk)); //quad 0 22

 mod_rb_id urb_id1(.block_id(rb_id1), .tile_x(tile_x1), 23
.tile_y(tile_y1),.config(rb_sys_config),.sclk(sclk)); //quad 1 24

 25

 26

 Page 20 of 100
Ex. 2106 - export_control.v

 //delay the read_data bus by one cycle to compensate for the above delay 1

 reg [77:0] q_quad_data_read; 2

 always @(posedge sclk) 3

 begin 4

 q_quad_data_read <= quad_data_read; 5

 end 6

 7

 //modify the mask based on the ALPHA/RGBA test outcome and pvalid bits. 8

 9

 10

 //rememberthe quad info out of "quad buffer" is in the following format 11

 //{iquad_tiley,iquad_tilex,iquad_mask,iquad_y,iquad_x}; 12

 //the new format going into "detailed quad buffer" will be 13
{rb_id,export_index,iquad_mask,iquad_y,iquad_x} 14

 15

 wire [91:0] detailed_quad_data; 16

 wire [7:0] export_index0, export_index1; 17

 18

 assign export_index0 = {1'b0,q_export_index[6:0]}; 19

 assign export_index1 = {1'b1,q_export_index[6:0]}; 20

 21

 //for now there's no need to register the quad_data_read by one cycle 22

 //the latency through mode_rb_id module is less than one cycle 23

 assign detailed_quad_data = {rb_id0, export_index0,quad_data_read[74:43], 24
quad_data_read[42:41],quad_data_read[40:39], 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 450 of 611

 Page 21 of 100
Ex. 2106 - export_control.v

 rb_id1, export_index1,quad_data_read[35:4], 1
quad_data_read[3:2],quad_data_read[1:0]}; 2

 3

 //writting the detailed quad data into the "detailed quad buffer" 4

 5

 wire [91:0] quad_data_rb ; 6

 wire [0:0] detailed_quad_valid; 7

 wire [0:0] read_detailed_quad; 8

 9

 10

 //---11
- 12

 //simple fifo carrying quad data (eventually sent to RBs) with the correct mask values (post 13
ALPHA test) 14

 //---15
-- 16

 skid_buff_top #(92,96,0) sx_rb_detailed_quad_data(17

 .write_rts(q1_valid_pixel_export), //modified 18
quad command data is being tranfered over from the quad buffer to 19

 //to the index fifo 20

 //.write_rtr(sx_sc_rtr), 21

 .write_data(detailed_quad_data), // quad info 22
with the modified 32 bit mask 23

 .read_rts(detailed_quad_valid), //this quad 24
data is eventually send out to RBs once all exports are in 25

 .read_rtr(read_detailed_quad), 26

 .read_data(quad_data_rb), 27

 28

 Page 22 of 100
Ex. 2106 - export_control.v

 .clk(sclk), //clock and reset 1

 .reset(srst) 2

 3

 4

); 5

 reg [0:0] exp_data_in_buff0,exp_data_in_buff1; //this bit signifies that all the export 6
data for that quad is in the Export Buffers 7

 wire [0:0] rb_ready; 8

 wire [0:0] sx_rb_quad_send; 9

 wire [1:0] sx_rb_id; 10

 wire [0:0] quad_data_ready; 11

 12

 13

 //--- 14

 //SX-RB "index" interface 15

 //reading the "detailed quad buffer" and sending the data to RBs on the quad broadcast bus. 16

 //--- 17

 assign rb_ready = rb0_sx_quad_rtr & rb0_sx_quad_rtr & rb0_sx_quad_rtr & 18
rb0_sx_quad_rtr; 19

 20

 21

 //send the index quad data to the RBs only when all the RBs are ready to receive it 22

 //and there's outstanding quads sitting in the export buffers, attributes of which have 23

 //been completly exported from SP into SX 24

 //another hack for now 25

 //assign read_detailed_quad = rb_ready & quad_data_ready ; 26

 Page 23 of 100
Ex. 2106 - export_control.v

 1

 reg [0:0] rb_quad_data_count; 2

 assign read_detailed_quad = rb_ready & rb_quad_data_count; 3

 4

 always @(posedge sclk) 5

 begin 6

 if(srst) 7

 rb_quad_data_count <= 1'b0; 8

 else if(detailed_quad_valid) 9

 rb_quad_data_count <= rb_quad_data_count + 1; 10

 end 11

 12

 wire [0:0] rb_quad_word_mux ; 13

 assign rb_quad_word_mux = rb_quad_data_count; 14

 15

 // detailed_quad_data = {rb_id0, export_index0,q_quad_data_read[74:43], 16
q_quad_data_read[42:41],q_quad_data_read[40:39], 17

 // rb_id1, export_index1,q_quad_data_read[35:4], 18
q_quad_data_read[3:2],q_quad_data_read[1:0]}; 19

 // 91:0 20

 21

 assign sx_rb_quad_send = detailed_quad_valid & rb_ready; 22

 assign sx_rb_id = (rb_quad_word_mux) ? quad_data_rb[45:44] : quad_data_rb[91:90]; 23

 24

 wire [1:0] osx_quad_x; 25

 wire [1:0] osx_quad_y; 26

 Page 24 of 100
Ex. 2106 - export_control.v

 wire [31:0] osx_quad_mask; 1

 wire [0:0] osx_quad_type; 2

 wire [3:0] osx_quad_pixel; 3

 wire [7:0] osx_quad_index; 4

 wire [0:0] osx_rb0_quad_send, osx_rb1_quad_send, osx_rb2_quad_send, 5
osx_rb3_quad_send; 6

 7

 reg [1:0] q_osx_quad_x; 8

 reg [1:0] q_osx_quad_y; 9

 reg [31:0] q_osx_quad_mask; 10

 reg [0:0] q_osx_quad_type; 11

 reg [3:0] q_osx_quad_pixel; 12

 reg [7:0] q_osx_quad_index; 13

 reg [0:0] q_osx_rb0_quad_send, q_osx_rb1_quad_send, q_osx_rb2_quad_send, 14
q_osx_rb3_quad_send; 15

 16

 assign osx_quad_x = (rb_quad_word_mux) ? quad_data_rb[1:0] :quad_data_rb[47:46] 17
; 18

 assign osx_quad_y = (rb_quad_word_mux) ? quad_data_rb[3:2] 19
:quad_data_rb[49:48]; 20

 assign osx_quad_mask = (rb_quad_word_mux) ? quad_data_rb[35:4] 21
:quad_data_rb[81:50]; 22

 assign osx_quad_index = (rb_quad_word_mux) ? quad_data_rb[43:36] 23
:quad_data_rb[89:82]; 24

 25

 assign osx_rb0_quad_send = sx_rb_quad_send & (~sx_rb_id[0]) & (~sx_rb_id[1]); 26

 assign osx_rb1_quad_send = sx_rb_quad_send & (sx_rb_id[0]) & (~sx_rb_id[1]); 27

 assign osx_rb2_quad_send = sx_rb_quad_send & (~sx_rb_id[0]) & (sx_rb_id[1]); 28

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 451 of 611

 Page 25 of 100
Ex. 2106 - export_control.v

 assign osx_rb3_quad_send = sx_rb_quad_send & (sx_rb_id[0]) & (sx_rb_id[1]); 1

 2

 //registering the outputs of SX to RB(s) interface 3

 4

 always @(posedge sclk) 5

 begin 6

 if(srst) 7

 begin 8

 q_osx_rb0_quad_send <= 1'b0; 9

 q_osx_rb1_quad_send <= 1'b0; 10

 q_osx_rb2_quad_send <= 1'b0; 11

 q_osx_rb3_quad_send <= 1'b0; 12

 13

 end 14

 else 15

 begin 16

 q_osx_quad_x <= osx_quad_x; 17

 q_osx_quad_y <= osx_quad_y; 18

 q_osx_quad_mask <= osx_quad_mask; 19

 q_osx_quad_index <= osx_quad_index; 20

 q_osx_rb0_quad_send <= osx_rb0_quad_send ; 21

 q_osx_rb1_quad_send <= osx_rb1_quad_send ; 22

 q_osx_rb2_quad_send <= osx_rb2_quad_send ; 23

 q_osx_rb3_quad_send <= osx_rb3_quad_send ; 24

 end 25

 Page 26 of 100
Ex. 2106 - export_control.v

 end // always @ (posedge sclk) 1

 2

 3

 //assigning the output signals for the SX - RB quad interface 4

 assign sx_rb_quad_x = q_osx_quad_x; 5

 assign sx_rb_quad_y = q_osx_quad_y; 6

 assign sx_rb_quad_mask = q_osx_quad_mask; 7

 //assign sx_rb_quad_type; //pixel exports vs. pass through data ???? ANDI 8

 //assign sx_rb_quad_pixel; // valid bits for the pixels ???? ANDI 9

 assign sx_rb_quad_index = q_osx_quad_index; 10

 assign sx_rb0_quad_send = q_osx_rb0_quad_send; 11

 assign sx_rb1_quad_send = q_osx_rb1_quad_send; 12

 assign sx_rb2_quad_send = q_osx_rb2_quad_send; 13

 assign sx_rb3_quad_send = q_osx_rb3_quad_send; 14

 15

 16

 17

 //--- 18

 //SQ_SX Export Control (allocation/deallocation) Bus Interfaceregistering the data 19

 //-- 20

 21

 //register the last request on thread 0 22

 reg [1:0] q_exp_type_alu0; 23

 reg [1:0] q_exp_number_alu0; 24

 reg [2:0] q_exp_state_alu0; 25

 Page 27 of 100
Ex. 2106 - export_control.v

 reg [0:0] q_exp_alu_id_alu0; 1

 reg [0:0] q_exp_pos_alu0; 2

 3

 4

 reg [0:0] q_exp_alu_id; 5

 6

 //register the last request on thread 1 7

 reg [1:0] q_exp_type_alu1; 8

 reg [1:0] q_exp_number_alu1; 9

 reg [2:0] q_exp_state_alu1; 10

 reg [0:0] q_exp_alu_id_alu1; 11

 reg [0:0] q_exp_pix_alu1; 12

 reg [0:0] q_exp_pos_alu1; 13

 14

 reg [0:0] q_exp_valid; 15

 reg [6:0] write_alu0_base_ptr, write_alu1_base_ptr; 16

 reg [6:0] alloc_wr_head_ptr,q_alloc_wr_head_ptr ; //points to where the next allocated 17
space will start 18

 reg [6:0] alloc_wr_tail_ptr ; //points to where the end of free export space is 19

 20

 21

 //point to where the next position allocation space will be when the sequencer asks for it 22

 //this value is relative to location 0x40 (64 first entries in the buffer belong to pixel data) 23

 reg [3:0] pos_wr_head_ptr,q_pos_wr_head_ptr ; 24

 reg [3:0] pos_wr_tail_ptr ; //points to where the end of free export space is 25

 26

 Page 28 of 100
Ex. 2106 - export_control.v

 wire [3:0] attr_count; 1

 reg [2:0] q_exp_attr_count_alu0, q_exp_attr_count_alu1; 2

 3

 4

 //a different write pointer for each alu thread 5

 reg [6:0] write_alu0_ptr,write_alu1_ptr; 6

 7

 8

 //decoding on what kind of type of export request we are getting(pixel vs. vertex vs. 9
memory exports) 10

 11

 wire [0:0] exporting_pixel; 12

 assign exporting_pixel = ~sq_sx_exp_type[1] & (sq_sx_exp_type[0] | 13
~sq_sx_exp_type[0]); 14

 15

 wire [0:0] exporting_position; 16

 assign exporting_position = ~sq_sx_exp_type[0] & sq_sx_exp_type[1]; 17

 18

 19

 always @(posedge sclk) 20

 begin 21

 if(srst) 22

 begin 23

 q_exp_state_alu0 <= 3'b0; 24

 q_exp_alu_id_alu0 <= 1'b0; 25

 q_exp_type_alu0 <= 2'b0; 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 452 of 611

 Page 29 of 100
Ex. 2106 - export_control.v

 q_exp_number_alu0 <= 2'b0; 1

 q_exp_pix_alu0 <= 1'b0; 2

 q_exp_pos_alu0 <= 1'b0; 3

 q_exp_state_alu1 <= 3'b0; 4

 q_exp_alu_id_alu1 <= 1'b0; 5

 q_exp_type_alu1 <= 2'b0; 6

 q_exp_number_alu1 <= 2'b0; 7

 q_exp_pix_alu1 <= 1'b0; 8

 q_exp_pos_alu1 <= 1'b0; 9

 10

 q_exp_alu_id <= 1'b0; 11

 q_exp_valid <= 1'b0; 12

 write_alu0_base_ptr <= 7'b0; 13

 write_alu1_base_ptr <= 7'b0; 14

 q_alloc_wr_head_ptr <= 7'b0; 15

 q_pos_wr_head_ptr <= 7'b0; 16

 end 17

 else 18

 begin 19

 if(sq_sx_exp_valid) 20

 begin 21

 if(sq_sx_exp_id) 22

 begin 23

 q_exp_pix_alu1 <= exporting_pixel; 24

 q_exp_pos_alu1 <= exporting_position; 25

 Page 30 of 100
Ex. 2106 - export_control.v

 q_exp_type_alu1 <= sq_sx_exp_type; 1

 q_exp_number_alu1 <= sq_sx_exp_number; 2

 q_exp_state_alu1 <= sq_sx_exp_state; 3

 q_exp_alu_id_alu1 <= sq_sx_exp_id; 4

 q_exp_attr_count_alu1 <= attr_count; 5

 6

 //for the positions, the base address is relative to base 0x40 (64 first entries 7
belong to pixels) 8

 write_alu1_base_ptr <= (exporting_pixel)? alloc_wr_head_ptr : 7'h40 + 9
pos_wr_head_ptr ; 10

 end 11

 else 12

 begin 13

 q_exp_pix_alu0 <= exporting_pixel; 14

 q_exp_pos_alu0 <= exporting_position; 15

 q_exp_type_alu0 <= sq_sx_exp_type; 16

 q_exp_number_alu0 <= sq_sx_exp_number; 17

 q_exp_state_alu0 <= sq_sx_exp_state; 18

 q_exp_alu_id_alu0 <= sq_sx_exp_id; 19

 q_exp_attr_count_alu0 <= attr_count; 20

 21

 //for the positions, the base address is relative to base 0x40 (64 first entries 22
belong to pixels) 23

 write_alu0_base_ptr <= (exporting_pixel)? alloc_wr_head_ptr: 7'h40 + 24
pos_wr_head_ptr ; 25

 end // else: !if(sq_sx_exp_alu_id) 26

 27

 Page 31 of 100
Ex. 2106 - export_control.v

 q_exp_alu_id <= sq_sx_exp_id; 1

 end // if (sq_sx_exp_valid) 2

 3

 q_exp_valid <= sq_sx_exp_valid; 4

 q_alloc_wr_head_ptr <= alloc_wr_head_ptr; 5

 q_pos_wr_head_ptr <= pos_wr_head_ptr; 6

 7

 end // else: !if(srst) 8

 end // always @ (posedge sclk) 9

 10

 11

 //---// 12

 //Export buffer space allocation and managment triggered by an allocation request coming 13
from// 14

 //SQ through the SQ-SX export control interface above--// 15

 //---// 16

 17

 18

 //there's 64 entries for pixel data and 16 permanently assigned entries for position/auxiliary 19
data 20

 parameter [7:0] BUFFER_SIZE = 8'h40; //Export buffer sizeset via the instantiation of 21
this module from the top module 22

 parameter [3:0] POS_BUFFER_SIZE = 4'hf; 23

 24

 25

 //this signal is a place holder of the state if that the current thread allocation request 26

 Page 32 of 100
Ex. 2106 - export_control.v

 //from the sequencer is assigned to 1

 wire [2:0] current_id_state; 2

 assign current_id_state = sq_sx_exp_state; 3

 4

 reg [31:0] current_attr_state; 5

 6

 always @(/*AUTOSENSE*/current_id_state or state_import_export0 7

 or state_import_export1 or state_import_export2 8

 or state_import_export3 or state_import_export4 9

 or state_import_export5 or state_import_export6 10

 or state_import_export7) 11

 begin 12

 case(current_id_state) 13

 3'h0:current_attr_state =state_import_export0; 14

 3'h1:current_attr_state =state_import_export1; 15

 3'h2:current_attr_state =state_import_export2; 16

 3'h3:current_attr_state =state_import_export3; 17

 3'h4:current_attr_state =state_import_export4; 18

 3'h5:current_attr_state =state_import_export5; 19

 3'h6:current_attr_state =state_import_export6; 20

 3'h7:current_attr_state =state_import_export7; 21

 default : current_attr_state =state_import_export0; 22

 endcase // case(current_id_state) 23

 end // always @ (... 24

 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 453 of 611

 Page 33 of 100
Ex. 2106 - export_control.v

 1

 2

 3

 //---4
-----// 5

 //Generation of the write index into the Export Buffers 6

 //Decoding the export data type based on the destination pointer coming down from SP 7

 //---8
-----// 9

 10

 11

`define COLOR0 6'h00 12

`define COLOR1 6'h01 13

`define COLOR2 6'h02 14

`define COLOR3 6'h03 15

`define COLORFOG0 6'h08 16

`define COLORFOG1 6'h09 17

`define COLORFOG2 6'h0a 18

`define COLORFOG3 6'h0b 19

`define Z_DATA 6'h3f 20

`define POSITION 6'h3e 21

`define SPRITE_EDGE 6'h3f 22

//`define NO_EXPORT 2'h0 23

`define PIXEL_EXPORT 2'h2 24

`define VERTEX_EXPORT 2'h1 25

 26

 Page 34 of 100
Ex. 2106 - export_control.v

 reg [2:0] attribute_offset, q_attribute_offset; 1

 wire [1:0] export_type; 2

 reg [0:0] position_aux, q_position_aux; 3

 4

 //00:no export 5

 //01:vertex export 6

 //10:pixel export 7

 assign export_type = (sp0_sx_exp_alu_id) ? {sp0_sx_exporting[0] & 8
q_exp_pix_alu1,sp0_sx_exporting[0] & ~q_exp_pix_alu1}: 9

 {sp0_sx_exporting[0] & q_exp_pix_alu0,sp0_sx_exporting[0] & 10
~q_exp_pix_alu0}; 11

 12

 always @(/*AUTOSENSE*/`COLOR0 or `COLOR1 or `COLOR2 or `COLOR3 13

 or `COLORFOG0 or `COLORFOG1 or `COLORFOG2 or `COLORFOG3 14

 or `PIXEL_EXPORT or `POSITION or `SPRITE_EDGE 15

 or `VERTEX_EXPORT or `Z_DATA or export_type 16

 or sp0_sx_exp_dest) 17

 begin 18

 case(export_type) 19

 `PIXEL_EXPORT: 20

 begin 21

 position_aux = 1'b0; 22

 case(sp0_sx_exp_dest) 23

 `COLOR0:attribute_offset = 3'h0; 24

 `COLOR1:attribute_offset = 3'h1; 25

 `COLOR2:attribute_offset = 3'h2; 26

 Page 35 of 100
Ex. 2106 - export_control.v

 `COLOR3:attribute_offset = 3'h3; 1

 `COLORFOG0:attribute_offset = 3'h0; 2

 `COLORFOG1:attribute_offset = 3'h1; 3

 `COLORFOG2:attribute_offset = 3'h2; 4

 `COLORFOG3:attribute_offset = 3'h3; 5

 `Z_DATA:attribute_offset = 3'h4; 6

 endcase // case(sp0_sx_exp_dest) 7

 end // case: VERTEX 8

 `VERTEX_EXPORT: 9

 begin 10

 case(sp0_sx_exp_dest) 11

 `POSITION: 12

 begin 13

 attribute_offset = 3'h0; // + count of the position vectors that have been 14
exported so far 15

 position_aux = 1'b0; 16

 end 17

 `SPRITE_EDGE: 18

 begin 19

 attribute_offset = 3'h4; //starting offset is always relative position 4 20

 position_aux = 1'b1; 21

 end 22

 endcase // case(sp0_sx_exp_dest 23

 end // case: VERTEX 24

 default : attribute_offset = 3'h0; 25

 endcase // case(sp0_sx_exporting) 26

 Page 36 of 100
Ex. 2106 - export_control.v

 end // always @ (... 1

 2

 3

 //We mantain two write counts and two write pointers ...one for each ALU thread space 4
allocated in export buffers. 5

 //Export Buffer write state machine 6

 reg [1:0] write_state,next_write_state; 7

 reg [2:0] alu0_attrib_count, alu1_attrib_count; //counts up to number of attributes for a pixel 8
(2 full quads accross two shader pipes) 9

 10

`define NO_EXPORT 2'b00 11

`define EXPORT_ALU0 2'b01 12

`define EXPORT_ALU1 2'b10 13

 14

 always @(posedge sclk) 15

 begin 16

 if(srst) 17

 begin 18

 write_state <= `NO_EXPORT; 19

 end 20

 else 21

 begin 22

 write_state <= next_write_state; 23

 end 24

 end // always @ (posedge sclk) 25

 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 454 of 611

 Page 37 of 100
Ex. 2106 - export_control.v

 1

 reg no_export_state, export_alu0_state, export_alu1_state; 2

 3

 always @(/*AUTOSENSE*/`EXPORT_ALU0 or `EXPORT_ALU1 or `NO_EXPORT 4

 or sp0_sx_exp_alu_id or valid_export or write_state) 5

 begin 6

 case(write_state) 7

 `NO_EXPORT: 8

 begin 9

 if(valid_export & (~sp0_sx_exp_alu_id)) 10

 next_write_state = `EXPORT_ALU0; 11

 else if(valid_export & sp0_sx_exp_alu_id) 12

 next_write_state = `EXPORT_ALU1; 13

 else 14

 next_write_state = `NO_EXPORT; 15

 end 16

 `EXPORT_ALU0: 17

 begin 18

 if(~valid_export) 19

 next_write_state = `NO_EXPORT; 20

 else if(valid_export & sp0_sx_exp_alu_id) 21

 next_write_state = `EXPORT_ALU1; 22

 else 23

 next_write_state = `EXPORT_ALU0; 24

 end 25

 Page 38 of 100
Ex. 2106 - export_control.v

 `EXPORT_ALU1: 1

 begin 2

 if(~valid_export) 3

 next_write_state = `NO_EXPORT; 4

 else if(valid_export & ~sp0_sx_exp_alu_id) 5

 next_write_state = `EXPORT_ALU0; 6

 else 7

 next_write_state = `EXPORT_ALU1; 8

 end 9

 default : next_write_state = `NO_EXPORT; 10

 endcase // case(write_state) 11

 end // always @ (... 12

 13

 14

 15

 //counting the number of attributes per pixel being transfered from SP into SX 16

 //when all the attributes are present in Export Bufffers, the RB "detailed quad buffer" is 17
popped 18

 //and the quad data is sent to the RB it belongs to. 19

 reg [6:0] exported_quads_count; //how many outstanding quads to be sent to RB 20

 wire exported_quad_inc; //increment the above count 21

 wire exported_quad_dec; //decrement the above count 22

 wire [1:0] quad_inc_dec; 23

 assign quad_inc_dec = {exported_quad_inc,exported_quad_dec}; 24

 assign exported_quad_dec = read_detailed_quad; 25

 26

 Page 39 of 100
Ex. 2106 - export_control.v

 always @(posedge sclk) 1

 begin 2

 if(srst) 3

 begin 4

 alu0_attrib_count <= 3'b0; 5

 alu1_attrib_count <= 3'b0; 6

 end 7

 else 8

 begin 9

 if(export_alu0_state) 10

 begin 11

 if(alu0_attrib_count >= q_exp_attr_count_alu0) 12

 begin 13

 alu0_attrib_count <= 3'b0; 14

 exp_data_in_buff0 <= 1'b1; 15

 end 16

 else 17

 begin 18

 alu0_attrib_count <= alu0_attrib_count + 1; 19

 exp_data_in_buff0 <= 1'b0; 20

 end 21

 end // if (export_alu0_state) 22

 if(export_alu1_state) 23

 begin 24

 if(alu1_attrib_count >= q_exp_attr_count_alu1) 25

 Page 40 of 100
Ex. 2106 - export_control.v

 begin 1

 alu1_attrib_count <= 3'b0; 2

 exp_data_in_buff1 <= 1'b1; 3

 4

 end 5

 else 6

 begin 7

 alu1_attrib_count <= alu1_attrib_count + 1; 8

 exp_data_in_buff1 <= 1'b0; 9

 end 10

 end // if (export_alu1_state) 11

 end // else: !if(srst) 12

 end // always @ (posedge sclk) 13

 14

 //--- 15

 16

 17

 //if any of the thread finished a given pixel...2 quads accross the 8 export buffers beloning to 18
one SX 19

 assign exported_quad_inc = exp_data_in_buff0 | exp_data_in_buff1; 20

 assign quad_data_ready = exported_quads_count > 7'b0; 21

 22

 23

 //-- 24

 //exported_quads_count process 25

 //the count below is indicating the number of quads outstanding in detailed_quad_buffer that 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 455 of 611

 Page 41 of 100
Ex. 2106 - export_control.v

 //have been completly exported into Export Buffers but not yet issued to RBs because the 1
RBs are not 2

 //ready yet 3

 always @(posedge sclk) 4

 begin 5

 if(srst) 6

 begin 7

 exported_quads_count <= 7'b0; 8

 end 9

 else 10

 begin 11

 case(quad_inc_dec) 12

 00:; //do nothing 13

 01: exported_quads_count <= exported_quads_count - 1; 14

 10: exported_quads_count <= exported_quads_count + 2; 15

 11:; //do nothing 16

 endcase // case(quad_inc_dec 17

 end // else: !if(srst) 18

 end 19

 20

 //combinational logic based on write_state current state value 21

 //-- 22

 //final index into the export buffer 23

 //this values gets sent to export_buffer logic as a write address 24

 reg q_sp0_exp_alu_id; 25

 26

 Page 42 of 100
Ex. 2106 - export_control.v

 always @(posedge sclk) 1

 begin 2

 if(srst) 3

 q_sp0_exp_alu_id <= 1'b0; 4

 else 5

 q_sp0_exp_alu_id <= sp0_sx_exp_alu_id; 6

 end 7

 assign export_index = (q_sp0_exp_alu_id) ? write_alu1_ptr:write_alu0_ptr; 8

 9

 10

 reg export_buffer_wen,export_buffer_wew; 11

 //counts the number of position export transactions comming from the SP 12

 //the count would count up to 4 if only positions, and 8 if positions + sprite/edges 13

 //64 positions would come first and then sprite/edges (if state indicates their presence) 14

 15

 reg [1:0] pos0_exp_count ; //first position thread 16

 reg [1:0] pos1_exp_count ; //second position thread 17

 wire pos0_exported, pos1_exported; 18

 reg [1:0] q_pos0_exp_count, q_pos1_exp_count; 19

 wire pos_data_ready; 20

 21

 22

 //depending on what kind of export we are dealing with (pixel vs. position) 23

 //the write_alu_ptr is calculated differently 24

 //in the case of the position data, the exports are stored sequentially in the upper 25

 Page 43 of 100
Ex. 2106 - export_control.v

 //16 entries of the export buffer. In the case of pixel exports depending on the order of the 1

 //exports the storing is not done in sequential order. Within a buffer assigned to a given thread 2

 //the colors 0-3 are stored first and then the z vector. 3

 4

 5

 //mantaining a vector count per attribute per thread. 6

 //in other word : for each attribute being exported we count up to 4 vectors of 16 (128) values 7
each 8

 //this count would go from 0 to 3. 9

 10

 reg [3:0] vector_count0; 11

 reg [3:0] vector_count1; 12

 13

 14

 //forcing the number of attributes per pixel to 1 ...hack ANDI 15

 //eventually, the number of attributes per pixel will be factored in 16

 //the sequencer allocation request once we go to the new Sequencer allocation scheme. 17

 18

 parameter [3:0] attr_exp_count = 1'b1; 19

 20

 wire [5:0] vector_wr0_offset; 21

 wire [5:0] vector_wr1_offset; 22

 23

 assign vector_wr0_offset = attr_exp_count * vector_count0; 24

 assign vector_wr1_offset = attr_exp_count * vector_count1; 25

 26

 Page 44 of 100
Ex. 2106 - export_control.v

 always @(posedge sclk) 1

 begin 2

 if(srst) 3

 vector_count0 <= 2'b00; 4

 else if((q0_valid_pixel_export | q1_valid_pixel_export) & export_alu0_state) 5

 vector_count0 <= vector_count0 + 1; 6

 end 7

 8

 always @(posedge sclk) 9

 begin 10

 if(srst) 11

 vector_count1 <= 2'b00; 12

 else if(valid_pixel_export & export_alu1_state) 13

 vector_count1 <= vector_count1 + 1; 14

 end 15

 16

 17

 reg [6:0] write_pos0_ptr, write_color0_ptr; 18

 reg [6:0] write_pos1_ptr, write_color1_ptr; 19

 20

 21

 22

 //registering the pointer values before assigning them in the case statement tied to the write 23
state machine 24

 25

 always @(posedge sclk) 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 456 of 611

 Page 45 of 100
Ex. 2106 - export_control.v

 begin 1

 if(srst) 2

 begin 3

 write_pos0_ptr <= 7'b0; 4

 write_color0_ptr <= 7'b0; 5

 write_pos1_ptr <= 7'b0; 6

 write_color1_ptr <= 7'b0; 7

 end 8

 else 9

 begin 10

 write_pos0_ptr <= write_alu0_base_ptr + q_attribute_offset + pos0_exp_count; 11

 write_color0_ptr <= write_alu0_base_ptr + q_attribute_offset + vector_wr0_offset; 12

 write_pos1_ptr <= write_alu1_base_ptr + q_attribute_offset + pos1_exp_count; 13

 write_color1_ptr <= write_alu1_base_ptr + q_attribute_offset + vector_wr1_offset; 14

 end 15

 end // always @ (posedge sclk) 16

 17

 18

 19

 always @(/*AUTOSENSE*/`EXPORT_ALU0 or `EXPORT_ALU1 or `NO_EXPORT 20

 or pos0_exp_count or pos1_exp_count or q_attribute_offset 21

 or q_exp_pix_alu0 or q_exp_pix_alu1 or vector_wr0_offset 22

 or vector_wr1_offset or write_alu0_base_ptr 23

 or write_alu1_base_ptr or write_state) 24

 begin 25

 Page 46 of 100
Ex. 2106 - export_control.v

 case(write_state) 1

 `NO_EXPORT: 2

 begin 3

 //turn off the write enables 4

 no_export_state = 1'b1; 5

 export_alu0_state = 1'b0; 6

 export_alu1_state = 1'b0; 7

 export_buffer_wen = 1'b0; 8

 export_buffer_wew = 1'b0; 9

 end 10

 `EXPORT_ALU0: 11

 begin 12

 //turn on the write enables 13

 write_alu0_ptr = (q_exp_pix_alu0) ? write_color0_ptr : write_pos0_ptr; 14

 no_export_state = 1'b0; 15

 export_alu0_state = 1'b1; 16

 export_alu1_state = 1'b0; 17

 export_buffer_wen = 1'b1; 18

 export_buffer_wew = 1'b1; 19

 end 20

 `EXPORT_ALU1: 21

 begin 22

 //turn on the write enables 23

 write_alu1_ptr = (q_exp_pix_alu1) ? write_color1_ptr: write_pos1_ptr; 24

 no_export_state = 1'b0; 25

 Page 47 of 100
Ex. 2106 - export_control.v

 export_alu0_state = 1'b0; 1

 export_alu1_state = 1'b1; 2

 export_buffer_wen = 1'b1; 3

 export_buffer_wew = 1'b1; 4

 end 5

 default : 6

 begin 7

 //turn off the write enables 8

 no_export_state = 1'b1; 9

 export_alu0_state = 1'b0; 10

 export_alu1_state = 1'b0; 11

 export_buffer_wen = 1'b0; 12

 export_buffer_wew = 1'b0; 13

 end 14

 endcase // case(write_state) 15

 end // always @ (... 16

 17

 18

 //--- 19

 //Write Pointer management for the pixel/poisition exports 20

 //-- 21

 //alloc_wr_head_ptr indicates the offset location of the next available space that 22

 //can be used by the next allocation request coming from the Sequencer 23

 //Once a given valid export allocation request comes, the value of alloc_wr_head_ptr is 24

 //incemented by buffer_size 25

 Page 48 of 100
Ex. 2106 - export_control.v

 1

 reg [7:0] buffer_size; 2

 reg [3:0] pos_buffer_size; 3

 reg exported_pos_inc; 4

 wire exported_pos_dec; 5

 reg [6:0] exported_pos_count; 6

 wire clipp_outstanding_req; 7

 wire sx_pa_req_rtr; 8

 wire [4:0] pa_req_packet; 9

 wire pa_pos_req; 10

 wire [4:0] pa_req_control; 11

 reg [4:0] q_pa_req_control; 12

 reg no_aux_buffer; 13

 14

 //deriving the size of the buffer space required for current thread allocation request coming 15
from 16

 //sequencer via SQ_SX_exp interface. 17

 18

 always@(/*AUTOSENSE*/sq_sx_exp_number or sq_sx_exp_type) 19

 begin 20

 case(sq_sx_exp_type) 21

 2'b00: //pixels...no Z 22

 begin 23

 case(sq_sx_exp_number) 24

 2'b00: buffer_size = 8'h4; 25

 2'b01: buffer_size = 8'h8; 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 457 of 611

 Page 49 of 100
Ex. 2106 - export_control.v

 2'b10: buffer_size = 8'hc; 1

 2'b11: buffer_size = 8'h10; 2

 endcase // case(sq_sx_exp_number) 3

 end 4

 2'b01: //pixels...with Z 5

 begin 6

 case(sq_sx_exp_number) 7

 2'b00:buffer_size = 8'h8; 8

 2'b01:buffer_size = 8'hc; 9

 2'b10:buffer_size = 8'h10; 10

 2'b11:buffer_size = 8'h14; 11

 endcase // case(sq_sx_exp_number) 12

 end 13

 2'b10: 14

 begin 15

 case(sq_sx_exp_number) 16

 2'b00: 17

 begin 18

 pos_buffer_size = 8'h4; 19

 no_aux_buffer = 1'b1; 20

 end 21

 2'b01: 22

 begin 23

 pos_buffer_size = 8'h8; 24

 no_aux_buffer = 1'b0; 25

 Page 50 of 100
Ex. 2106 - export_control.v

 end 1

 default: 2

 begin 3

 pos_buffer_size = 8'h4; 4

 no_aux_buffer = 1'b0; 5

 end 6

 endcase // case(sq_sx_exp_number) 7

 end 8

 2'b11: 9

 begin 10

 case(sq_sx_exp_number) 11

 2'b00:; 12

 2'b01:; 13

 2'b10:; 14

 2'b11:; 15

 endcase // case(sq_sx_exp_number) 16

 end 17

 endcase // case(sq_sx_exp_type) 18

 end // always@ (... 19

 20

 wire [2:0] colors_present; 21

 //assign colors_present = current_attr_state[3:1]; 22

 23

 assign colors_present = 2'b10; 24

 wire [0:0] z_present; 25

 Page 51 of 100
Ex. 2106 - export_control.v

 assign z_present = 1'b0; 1

 wire [2:0] pixel_size = colors_present + z_present; 2

 reg q1_exp_valid; 3

 4

 5

 always @(posedge sclk) 6

 begin 7

 if(srst) 8

 begin 9

 alloc_wr_head_ptr <= 7'b0; 10

 alloc_wr_tail_ptr <= BUFFER_SIZE; 11

 q1_exp_valid <= 1'b0; 12

 end 13

 else 14

 begin 15

 if(sq_sx_exp_valid & exporting_pixel) 16

 begin 17

 alloc_wr_head_ptr <= alloc_wr_head_ptr + buffer_size; 18

 end 19

 q1_exp_valid <= q_exp_valid; 20

 end // else: !if(srst) 21

 end // always @ (posedge sclk) 22

 23

 wire [0:0] ring_wrapped; 24

 wire [6:0] space_avail; 25

 Page 52 of 100
Ex. 2106 - export_control.v

 assign ring_wrapped = alloc_wr_head_ptr > alloc_wr_tail_ptr; 1

 assign space_avail = (ring_wrapped) ? BUFFER_SIZE - alloc_wr_head_ptr + 2
alloc_wr_tail_ptr : alloc_wr_tail_ptr -alloc_wr_head_ptr; 3

 4

 //---// 5

 //--Position Export write pointer managment 6

 //--// 7

 8

 9

 //increment vs. decrement logic for the available position data in 10

 //the position count 11

 wire [1:0] pos_inc_dec; 12

 13

 //00: do nothing 14

 //01: decrement the count of remaining position data in the position buffer 15

 //10: increment count of the available position data in the position buffer 16

 //11: do nothing 17

 assign pos_inc_dec = {exported_pos_inc,exported_pos_dec}; 18

 19

 wire pos_outstanding; 20

 assign pos_outstanding = (exported_pos_count) ? 1'b1 : 1'b0; 21

 22

 assign clipp_outstanding_req = pos_outstanding & pa_pos_req; //there's a position request 23
from Clipper/PA 24

 25

 //two separate counters,one for each position thread 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 458 of 611

 Page 53 of 100
Ex. 2106 - export_control.v

 //increment the counter if we have a position export coming down from the shader pipe 1

 2

 always @(posedge sclk) 3

 begin 4

 if(srst) 5

 begin 6

 pos0_exp_count <= 2'b0; 7

 pos1_exp_count <= 2'b0; 8

 q_position_aux <= 1'b0; 9

 q_attribute_offset <= 2'b0; 10

 end 11

 else 12

 begin 13

 q_position_aux <= position_aux; 14

 q_attribute_offset <= attribute_offset; 15

 if(q_sp0_exp_alu_id) 16

 begin 17

 if(~no_aux_buffer) 18

 begin 19

 pos1_exp_count <= (~q_exp_pix_alu1 & q0_valid_export & 20
q_position_aux) ? pos1_exp_count + 1'b1:pos1_exp_count ; 21

 exported_pos_inc <= (~q_exp_pix_alu1 & q0_valid_export & 22
q_position_aux) ? 1: 0; 23

 end 24

 else 25

 begin 26

 Page 54 of 100
Ex. 2106 - export_control.v

 pos1_exp_count <= (~q_exp_pix_alu1 & q0_valid_export) ? 1
pos1_exp_count + 1'b1:pos1_exp_count ; 2

 3

 //use to increment the position count 4

 exported_pos_inc <= (~q_exp_pix_alu1 & q0_valid_export) ? 1: 0; 5

 end // else: !if(~no_aux_buffer) 6

 end 7

 else 8

 begin 9

 if(~no_aux_buffer) 10

 begin 11

 pos0_exp_count <= (~q_exp_pix_alu0 & q0_valid_export & 12
q_position_aux) ? pos0_exp_count + 1'b1:pos0_exp_count ; 13

 exported_pos_inc <= (~q_exp_pix_alu0 & q0_valid_export & 14
q_position_aux) ? 1: 0; 15

 end 16

 else 17

 begin 18

 pos0_exp_count <= (~q_exp_pix_alu0 & q0_valid_export) ? 19
pos0_exp_count + 1'b1:pos0_exp_count ; 20

 21

 //use to increment the position count 22

 exported_pos_inc <= (~q_exp_pix_alu0 & q0_valid_export) ? 1: 0; 23

 end // else: !if(~no_aux_buffer) 24

 end 25

 end // else: !if(srst) 26

 end // always @ (posedge sclk) 27

 Page 55 of 100
Ex. 2106 - export_control.v

 1

 //--// 2

 3

 4

 //not sure on whether we need these registered versions of count ANDI ??? 5

 always @(posedge sclk) 6

 begin 7

 if(srst) 8

 begin 9

 q_pos0_exp_count <= 2'b0; 10

 q_pos1_exp_count <= 2'b0; 11

 end 12

 else 13

 begin 14

 q_pos0_exp_count <= pos0_exp_count; 15

 q_pos1_exp_count <= pos1_exp_count; 16

 end 17

 end 18

 19

 //this flags may potentially be used in the logic 20

 //but for now they only have a debug purpose 21

 reg pos_buff0_ready , pos_buff1_ready; 22

 23

 always @(posedge sclk) 24

 begin 25

 Page 56 of 100
Ex. 2106 - export_control.v

 if((q_pos0_exp_count == 2'b11)&(~pos_buff0_ready)) 1

 pos_buff0_ready <= 1'b1; 2

 else 3

 pos_buff0_ready <= 1'b0; 4

 5

 if((q_pos1_exp_count == 2'b11)&(~pos_buff1_ready)) 6

 pos_buff1_ready <= 1'b1; 7

 else 8

 pos_buff1_ready <= 1'b0; 9

 end // always @ (posedge sclk) 10

 11

 12

 assign pos_data_ready = pos_buff0_ready & pos_buff1_ready; 13

 14

 15

 always @(posedge sclk) 16

 begin 17

 if(srst) 18

 begin 19

 exported_pos_count <= 7'b0; 20

 end 21

 else 22

 begin 23

 case(pos_inc_dec) 24

 2'b00:; //do nothing 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 459 of 611

 Page 57 of 100
Ex. 2106 - export_control.v

 2'b01: exported_pos_count <= exported_pos_count - 1; 1

 2'b10: exported_pos_count <= exported_pos_count + 1; 2

 2'b11:; //do nothing 3

 endcase // case(pos_inc_dec) 4

 end // else: !if(srst) 5

 end 6

 7

 always @(posedge sclk) 8

 begin 9

 if(srst) 10

 begin 11

 pos_wr_head_ptr <= 4'h0; // location 80 ...the upper 16 locations reserved for 12
position data 13

 pos_wr_tail_ptr <= 4'hf; //last location in the position export buffer 14

 end 15

 else 16

 begin 17

 if(sq_sx_exp_valid & exporting_position) //exporting vertex positions 18

 begin 19

 pos_wr_head_ptr <= pos_wr_head_ptr + pos_buffer_size; 20

 end 21

 end // else: !if(srst) 22

 end // always @ (posedge sclk) 23

 24

 25

 //-----Export buffer status output interface to SQ------------------/ 26

 Page 58 of 100
Ex. 2106 - export_control.v

 1

 reg [0:0] oexp_count_rdy; 2

 reg [0:0] oexp_pos_avail; 3

 reg [6:0] oexp_buff_avail; 4

 5

 6

 //registering the outputs 7

 always @(posedge sclk) 8

 begin 9

 oexp_count_rdy <= q_exp_valid; 10

 oexp_buff_avail <= space_avail; 11

 end 12

 13

 assign sx_sq_exp_count_rdy = oexp_count_rdy; 14

 assign sx_sq_exp_buf_avail = oexp_buff_avail; 15

 16

 17

 //--// 18

 //State/rbbm bus decoding logic--// 19

 //--// 20

 21

 22

 23

 // SQ_IMPORTS_EXPORTS <GFXDEC0:0x043C> 32 { 24

 // PS_EXPORT_MODE 4:0 NUM DEF=2; 25

 Page 59 of 100
Ex. 2106 - export_control.v

 // VS_EXPORT_MODE 9:8 NUM DEF=0; 1

 // PARAM_GEN_I0 12:12 ALPHA { 2

 // "Take parameter 0 from the 3
Parameter Cache.", // "Generate 4
Parameter 0." 5

 // } DEF=0; 6

 // GEN_INDEX 16:16 ALPHA { 7

 // "Do not auto generate index 8
adresses.", 9

 // "Auto generate index adresses." 10

 // } DEF=0; 11

 //}; 12

 // SQ_IMPORTS_EXPORTS "Import export control" 13

 // { 14

 // PS_EXPORT_MODE "Pixel Shader exporting mode\n. 0xxxx: Normal mode\n. 1xxxx: 15
Multipass.\n If normal, 16

 // bbbz where bbb is how many color we export (0-4) and z is export z or not.\n 17
If multipass mode, 1-12 exports for color."; 18

 // VS_EXPORT_MODE "0: Position (1 vector).\n 1: Position (2 vectors).\n 2: Multipass 19
"; 20

 // PARAM_GEN_I0 "Do we overwrite or not parameter 0 with generated XYST or 21
XYxF."; 22

 // GEN_INDEX "Auto generates an address from 0 to XX. Puts the results into R0 or 1 23
for pixels shaders and R2 for vertex shaders"; 24

 // }; 25

 26

 27

// RB_ALPHA_REF "" 28

 Page 60 of 100
Ex. 2106 - export_control.v

//{ ALPHA_REF "Reference value for alpha test, which is specified in IEEE floating point 1
but stored in the RB internal format and converted back to IEEE floating point on reads. 2
Therefore, this register may read back as a different value."; 3

//}; 4

 5

// RB_ALPHA_REF <GFXDEC0:0x081C> 32 FA { 6

// ALPHA_REF 31:0 DATA_TYPE="float"; 7

//}; 8

 9

 10

 11

 12

 13

 //--// 14

 //GFX decode space values 15

 //---// 16

 parameter [3:0] gfxdec0 = 4'h8, 17

 gfxdec1 = 4'h9, 18

 gfxdec2 = 4'ha, 19

 gfxdec3 = 4'hb, 20

 gfxdec4 = 4'hc, 21

 gfxdec5 = 4'hd, 22

 gfxdec6 = 4'he, 23

 gfxdec7 = 4'hf; 24

 25

 // register offsets 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 460 of 611

 Page 61 of 100
Ex. 2106 - export_control.v

 parameter [9:0] sq_imports_exports = 10'h10F; 1

 parameter [9:0] rb_alpha_ref = 10'h207; 2

 parameter [9:0] rb_alpha_test = 10'h207; 3

 4

 //--// 5

 wire [14:0] import_export0_a; 6

 wire [14:0] import_export1_a; 7

 wire [14:0] import_export2_a; 8

 wire [14:0] import_export3_a; 9

 wire [14:0] import_export4_a; 10

 wire [14:0] import_export5_a; 11

 wire [14:0] import_export6_a; 12

 wire [14:0] import_export7_a; 13

 14

 wire [14:0] alpha_ref0_a; 15

 wire [14:0] alpha_ref1_a; 16

 wire [14:0] alpha_ref2_a; 17

 wire [14:0] alpha_ref3_a; 18

 wire [14:0] alpha_ref4_a; 19

 wire [14:0] alpha_ref5_a; 20

 wire [14:0] alpha_ref6_a; 21

 wire [14:0] alpha_ref7_a; 22

 23

 wire [14:0] alpha_test0_a; 24

 wire [14:0] alpha_test1_a; 25

 Page 62 of 100
Ex. 2106 - export_control.v

 wire [14:0] alpha_test2_a; 1

 wire [14:0] alpha_test3_a; 2

 wire [14:0] alpha_test4_a; 3

 wire [14:0] alpha_test5_a; 4

 wire [14:0] alpha_test6_a; 5

 wire [14:0] alpha_test7_a; 6

 7

 8

 //Absolute memory mapped registers for the state registers 9

 assign import_export0_a = {gfxdec0,sq_imports_exports}; 10

 assign import_export1_a = {gfxdec1,sq_imports_exports}; 11

 assign import_export2_a = {gfxdec2,sq_imports_exports}; 12

 assign import_export3_a = {gfxdec3,sq_imports_exports}; 13

 assign import_export4_a = {gfxdec4,sq_imports_exports}; 14

 assign import_export5_a = {gfxdec5,sq_imports_exports}; 15

 assign import_export6_a = {gfxdec6,sq_imports_exports}; 16

 assign import_export7_a = {gfxdec7,sq_imports_exports}; 17

 18

 assign alpha_ref0_a = {gfxdec0,rb_alpha_ref}; 19

 assign alpha_ref1_a = {gfxdec1,rb_alpha_ref}; 20

 assign alpha_ref2_a = {gfxdec2,rb_alpha_ref}; 21

 assign alpha_ref3_a = {gfxdec3,rb_alpha_ref}; 22

 assign alpha_ref4_a = {gfxdec4,rb_alpha_ref}; 23

 assign alpha_ref5_a = {gfxdec5,rb_alpha_ref}; 24

 assign alpha_ref6_a = {gfxdec6,rb_alpha_ref}; 25

 Page 63 of 100
Ex. 2106 - export_control.v

 assign alpha_ref7_a = {gfxdec7,rb_alpha_ref}; 1

 2

 assign alpha_test0_a = {gfxdec0,rb_alpha_test}; 3

 assign alpha_test1_a = {gfxdec1,rb_alpha_test}; 4

 assign alpha_test2_a = {gfxdec2,rb_alpha_test}; 5

 assign alpha_test3_a = {gfxdec3,rb_alpha_test}; 6

 assign alpha_test4_a = {gfxdec4,rb_alpha_test}; 7

 assign alpha_test5_a = {gfxdec5,rb_alpha_test}; 8

 assign alpha_test6_a = {gfxdec6,rb_alpha_test}; 9

 assign alpha_test7_a = {gfxdec7,rb_alpha_test}; 10

 11

 12

 //-- 13

 //State Registers 14

 //--- 15

// reg [31:0] state_import_export0,state_import_export1; 16

// reg [31:0] state_import_export2,state_import_export3; 17

// reg [31:0] state_import_export4,state_import_export5; 18

// reg [31:0] state_import_export6,state_import_export7; 19

 20

 reg [31:0] state_alpha_ref0; 21

 reg [31:0] state_alpha_ref1; 22

 reg [31:0] state_alpha_ref2; 23

 reg [31:0] state_alpha_ref3; 24

 reg [31:0] state_alpha_ref4; 25

 Page 64 of 100
Ex. 2106 - export_control.v

 reg [31:0] state_alpha_ref5; 1

 reg [31:0] state_alpha_ref6; 2

 reg [31:0] state_alpha_ref7; 3

 4

 reg [31:0] state_alpha_test0; 5

 reg [31:0] state_alpha_test1; 6

 reg [31:0] state_alpha_test2; 7

 reg [31:0] state_alpha_test3; 8

 reg [31:0] state_alpha_test4; 9

 reg [31:0] state_alpha_test5; 10

 reg [31:0] state_alpha_test6; 11

 reg [31:0] state_alpha_test7; 12

 13

 14

 always @(posedge sclk) 15

 begin 16

 if(state_soft_reset) 17

 begin 18

 state_import_export0 <= 32'b0; 19

 state_import_export1 <= 32'b0; 20

 state_import_export2 <= 32'b0; 21

 state_import_export3 <= 32'b0; 22

 state_import_export4 <= 32'b0; 23

 state_import_export5 <= 32'b0; 24

 state_import_export6 <= 32'b0; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 461 of 611

 Page 65 of 100
Ex. 2106 - export_control.v

 state_import_export7 <= 32'b0; 1

 state_alpha_ref0 <= 32'b0; 2

 state_alpha_ref1 <= 32'b0; 3

 state_alpha_ref2 <= 32'b0; 4

 state_alpha_ref3 <= 32'b0; 5

 state_alpha_ref4 <= 32'b0; 6

 state_alpha_ref5 <= 32'b0; 7

 state_alpha_ref6 <= 32'b0; 8

 state_alpha_ref7 <= 32'b0; 9

 state_alpha_test0 <= 32'b0; 10

 state_alpha_test1 <= 32'b0; 11

 state_alpha_test2 <= 32'b0; 12

 state_alpha_test3 <= 32'b0; 13

 state_alpha_test4 <= 32'b0; 14

 state_alpha_test5 <= 32'b0; 15

 state_alpha_test6 <= 32'b0; 16

 state_alpha_test7 <= 32'b0; 17

 18

 end 19

 else if(state_we) 20

 begin 21

 case(state_a) 22

 import_export0_a:state_import_export0 <= state_wd; 23

 import_export1_a:state_import_export1 <= state_wd; 24

 import_export2_a:state_import_export2 <= state_wd; 25

 Page 66 of 100
Ex. 2106 - export_control.v

 import_export3_a:state_import_export3 <= state_wd; 1

 import_export4_a:state_import_export4 <= state_wd; 2

 import_export5_a:state_import_export5 <= state_wd; 3

 import_export6_a:state_import_export6 <= state_wd; 4

 import_export7_a:state_import_export7 <= state_wd; 5

 alpha_ref0_a : state_alpha_ref0 <= state_wd; 6

 alpha_ref1_a : state_alpha_ref1 <= state_wd; 7

 alpha_ref2_a : state_alpha_ref2 <= state_wd; 8

 alpha_ref3_a : state_alpha_ref3 <= state_wd; 9

 alpha_ref4_a : state_alpha_ref4 <= state_wd; 10

 alpha_ref5_a : state_alpha_ref5 <= state_wd; 11

 alpha_ref6_a : state_alpha_ref6 <= state_wd; 12

 alpha_ref7_a : state_alpha_ref7 <= state_wd; 13

 alpha_test0_a : state_alpha_test0 <= state_wd; 14

 alpha_test1_a : state_alpha_test1 <= state_wd; 15

 alpha_test2_a : state_alpha_test2 <= state_wd; 16

 alpha_test3_a : state_alpha_test3 <= state_wd; 17

 alpha_test4_a : state_alpha_test4 <= state_wd; 18

 alpha_test5_a : state_alpha_test5 <= state_wd; 19

 alpha_test6_a : state_alpha_test6 <= state_wd; 20

 alpha_test7_a : state_alpha_test7 <= state_wd; 21

 endcase // case(state_a) 22

 end // if (state_we) 23

 end // always @ (posedge sclk) 24

 25

 Page 67 of 100
Ex. 2106 - export_control.v

 1

 //---// 2

 //Select Logic used to decide which contex will be used at any given time (selecting between 3
state(s) 0-7) 4

 //---// 5

 6

 reg [31:0] state_alpha_test,state_alpha_ref,state_import_export; 7

 8

 wire [2:0] current_exp_state; 9

 assign current_exp_state = (sp0_sx_exp_alu_id)? q_exp_state_alu1: q_exp_state_alu0; 10

 11

 always @(/*AUTOSENSE*/current_exp_state or state_alpha_ref0 12

 or state_alpha_ref1 or state_alpha_ref2 13

 or state_alpha_ref3 or state_alpha_ref4 14

 or state_alpha_ref5 or state_alpha_ref6 15

 or state_alpha_ref7 or state_alpha_test0 16

 or state_alpha_test1 or state_alpha_test2 17

 or state_alpha_test3 or state_alpha_test4 18

 or state_alpha_test5 or state_alpha_test6 19

 or state_alpha_test7 or state_import_export0 20

 or state_import_export1 or state_import_export2 21

 or state_import_export3 or state_import_export4 22

 or state_import_export5 or state_import_export6 23

 or state_import_export7) 24

 begin 25

 case(current_exp_state) 26

 Page 68 of 100
Ex. 2106 - export_control.v

 3'h0: 1

 begin 2

 state_alpha_test = state_alpha_test0; 3

 state_alpha_ref = state_alpha_ref0; 4

 state_import_export = state_import_export0; 5

 end 6

 3'h1: 7

 begin 8

 state_alpha_test = state_alpha_test1; 9

 state_alpha_ref = state_alpha_ref1; 10

 state_import_export = state_import_export1; 11

 end 12

 3'h2: 13

 begin 14

 state_alpha_test = state_alpha_test2; 15

 state_alpha_ref = state_alpha_ref2; 16

 state_import_export = state_import_export2; 17

 end 18

 3'h3: 19

 begin 20

 state_alpha_test = state_alpha_test3; 21

 state_alpha_ref = state_alpha_ref3; 22

 state_import_export = state_import_export3; 23

 end 24

 3'h4: 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 462 of 611

 Page 69 of 100
Ex. 2106 - export_control.v

 begin 1

 state_alpha_test = state_alpha_test4; 2

 state_alpha_ref = state_alpha_ref4; 3

 state_import_export = state_import_export4; 4

 end 5

 3'h5: 6

 begin 7

 state_alpha_test = state_alpha_test5; 8

 state_alpha_ref = state_alpha_ref5; 9

 state_import_export = state_import_export5; 10

 end 11

 3'h6: 12

 begin 13

 state_alpha_test = state_alpha_test6; 14

 state_alpha_ref = state_alpha_ref6; 15

 state_import_export = state_import_export6; 16

 end 17

 3'h7: 18

 begin 19

 state_alpha_test = state_alpha_test7; 20

 state_alpha_ref = state_alpha_ref7; 21

 state_import_export = state_import_export7; 22

 end 23

 default: 24

 begin 25

 Page 70 of 100
Ex. 2106 - export_control.v

 state_alpha_test = state_alpha_test0; 1

 state_alpha_ref = state_alpha_ref0; 2

 state_import_export = state_import_export0; 3

 end 4

 endcase // case(q_exp_state) 5

 end // always @ (... 6

 7

 8

 //---// 9

 //decoding the "attributes per pixel" state for each alu thread. 10

 //--// 11

 reg [3:0] attr_state; //attribute state 12

 always @(/*AUTOSENSE*/sq_sx_exp_state or state_import_export0 13

 or state_import_export1 or state_import_export2 14

 or state_import_export3 or state_import_export4 15

 or state_import_export5 or state_import_export6 16

 or state_import_export7) 17

 begin 18

 case(sq_sx_exp_state) 19

 3'h0:attr_state = state_import_export0[3:0]; //bbbz (0-4 color attributes + z attribute) 20

 3'h1:attr_state = state_import_export1[3:0]; 21

 3'h2:attr_state = state_import_export2[3:0]; 22

 3'h3:attr_state = state_import_export3[3:0]; 23

 3'h4:attr_state = state_import_export4[3:0]; 24

 3'h5:attr_state = state_import_export5[3:0]; 25

 Page 71 of 100
Ex. 2106 - export_control.v

 3'h6:attr_state = state_import_export6[3:0]; 1

 3'h7:attr_state = state_import_export7[3:0]; 2

 default:attr_state = state_import_export0[3:0]; 3

 endcase // case(sq_sx_exp_state) 4

 end // always @ (... 5

 6

 assign attr_count = attr_state[3:1] + attr_state[0:0]; 7

 8

 9

 //---// 10

 11

 wire [0:0] mask_pix00, mask_pix01,mask_pix02,mask_pix03; 12

 wire [0:0] discard00, discard01,discard02,discard03; 13

 14

 15

 //FIRST QUAD data processing logic 16

 17

 //first pixel of quad0 18

// alpha_color_test u00_alpha_test(.mask_out(mask_pix00), .pixel_discard(discard00), 19
.data_in(sp0_sx_data0), .alpha_test(state_alpha_test[2:0]), 20

 // .alpha_test_enable(state_alpha_test[3]), 21
.alpha_to_mask_enable(state_alpha_test[4]), .alpha_ref(state_alpha_ref), 22

 // 23
.discard_color_func(state_alpha_test[9:8]),.discard_alpha_func(state_alpha_test[11:10]), 24
.sclk(sclk)); 25

 26

 //second pixel of quad0 27

 Page 72 of 100
Ex. 2106 - export_control.v

 // alpha_color_test u01_alpha_test(.mask_out(mask_pix01), .pixel_discard(discard01), 1
.data_in(sp0_sx_data1), .alpha_test(state_alpha_test[2:0]), 2

 // .alpha_test_enable(state_alpha_test[3]), 3
.alpha_to_mask_enable(state_alpha_test[4]), .alpha_ref(state_alpha_ref), 4

 // 5
.discard_color_func(state_alpha_test[9:8]),.discard_alpha_func(state_alpha_test[11:10]), 6
.sclk(sclk)); 7

 8

 //second pixel of quad0 9

 // alpha_color_test u02_alpha_test(.mask_out(mask_pix02), .pixel_discard(discard02), 10
.data_in(sp0_sx_data2), .alpha_test(state_alpha_test[2:0]), 11

 // .alpha_test_enable(state_alpha_test[3]), 12
.alpha_to_mask_enable(state_alpha_test[4]), .alpha_ref(state_alpha_ref), 13

 // 14
.discard_color_func(state_alpha_test[9:8]),.discard_alpha_func(state_alpha_test[11:10]), 15
.sclk(sclk)); 16

 17

 //second pixel of quad0 18

 // alpha_color_test u03_alpha_test(.mask_out(mask_pix03), .pixel_discard(discard03), 19
.data_in(sp0_sx_data3), .alpha_test(state_alpha_test[2:0]), 20

 // .alpha_test_enable(state_alpha_test[3]), 21
.alpha_to_mask_enable(state_alpha_test[4]), .alpha_ref(state_alpha_ref), 22

 // 23
.discard_color_func(state_alpha_test[9:8]),.discard_alpha_func(state_alpha_test[11:10]), 24
.sclk(sclk)); 25

 26

 27

 wire [0:0] mask_pix10, mask_pix11,mask_pix12,mask_pix13; 28

 wire [0:0] discard10, discard11,discard12,discard13; 29

 30

 31

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 463 of 611

 Page 73 of 100
Ex. 2106 - export_control.v

 //SECOND QUAD data processing logic 1

 2

 //first pixel of quad1 3

 // alpha_color_test u10_alpha_test(.mask_out(mask_pix10), .pixel_discard(discard10), 4
.data_in(sp0_sx_data0), .alpha_test(state_alpha_test[2:0]), 5

 // .alpha_test_enable(state_alpha_test[3]), 6
.alpha_to_mask_enable(state_alpha_test[4]), .alpha_ref(state_alpha_ref), 7

 // 8
.discard_color_func(state_alpha_test[9:8]),.discard_alpha_func(state_alpha_test[11:10]), 9
.sclk(sclk)); 10

 11

 //second pixel of quad1 12

 // alpha_color_test u11_alpha_test(.mask_out(mask_pix11), .pixel_discard(discard11), 13
.data_in(sp0_sx_data1), .alpha_test(state_alpha_test[2:0]), 14

 // .alpha_test_enable(state_alpha_test[3]), 15
.alpha_to_mask_enable(state_alpha_test[4]), .alpha_ref(state_alpha_ref), 16

 // 17
.discard_color_func(state_alpha_test[9:8]),.discard_alpha_func(state_alpha_test[11:10]), 18
.sclk(sclk)); 19

 20

 //second pixel of quad1 21

 // alpha_color_test u12_alpha_test(.mask_out(mask_pix12), .pixel_discard(discard12), 22
.data_in(sp0_sx_data2), .alpha_test(state_alpha_test[2:0]), 23

 // .alpha_test_enable(state_alpha_test[3]), 24
.alpha_to_mask_enable(state_alpha_test[4]), .alpha_ref(state_alpha_ref), 25

 // 26
.discard_color_func(state_alpha_test[9:8]),.discard_alpha_func(state_alpha_test0[11:10]), 27
.sclk(sclk)); 28

 29

 //second pixel of quad1 30

 Page 74 of 100
Ex. 2106 - export_control.v

 // alpha_color_test u13_alpha_test(.mask_out(mask_pix13), .pixel_discard(discard13), 1
.data_in(sp0_sx_data3), .alpha_test(state_alpha_test[2:0]), 2

 // .alpha_test_enable(state_alpha_test[3]), 3
.alpha_to_mask_enable(state_alpha_test[4]), .alpha_ref(state_alpha_ref), 4

 // 5
.discard_color_func(state_alpha_test[9:8]),.discard_alpha_func(state_alpha_test[11:10]), 6
.sclk(sclk)); 7

 8

 //export buffers instatiated ...two banks of 4 128x128 register files each. 9

 10

 reg [8:0] exp_read_pointer; //final read pointer in Export Buffers //8 bits for address + 1 bit 11
for keep/discard quad 12

 reg [8:0] q_exp_read_pointer; //registered version of the above 13

 14

 reg exp_buff_read_en; 15

 reg q_exp_buff_read_en; 16

 17

 //flags representing a read request from the 5 different clients into SX (Clipper, RB0-3) 18

 reg service_rb0, service_rb1,service_rb2, service_rb3, service_clipper; 19

 reg [1:0] 20
rb0_grant_count,rb1_grant_count,rb2_grant_count,rb3_grant_count,clipper_grant_count; 21

 reg [1:0] q_rb0_grant_count,q_rb1_grant_count,q_rb2_grant_count,q_rb3_grant_count , 22
q_clipp_grant_count; 23

 reg read_valid_rb0, read_valid_rb1, read_valid_rb2, read_valid_rb3; 24

 reg q_read_valid_rb0, q_read_valid_rb1, q_read_valid_rb2, q_read_valid_rb3; 25

 26

 reg read_valid_clipp, q_read_valid_clipp; 27

 28

 Page 75 of 100
Ex. 2106 - export_control.v

 //bypassing the alpha compare and color compare 1.0/0.0 logicrevisit this logic ANDI !!!!! 1

 export_buffers uexport_buffers(2

 // Outputs 3

 .orb0_data(sx_rb0_color_data), .orb1_data(sx_rb1_color_data), 4

 .orb2_data(sx_rb2_color_data), .orb3_data(sx_rb3_color_data), 5

 6
.orb0_data_valid(sx_rb0_color_send),.orb1_data_valid(sx_rb1_color_send), 7

 8
.orb2_data_valid(sx_rb2_color_send),.orb3_data_valid(sx_rb3_color_send), 9

 .oclipp_data(sx_pa_data), .oclipp_data_valid(sx_pa_send), 10

 11

 // Inputs 12

 .iread_addr(q_exp_read_pointer[7:0]), 13

 .iwrite_addr(export_index), 14

 .ipixel_data0(q0_sp0_data0),.ipixel_data1(q0_sp0_data1), 15

 .ipixel_data2(q0_sp0_data2),.ipixel_data3(q0_sp0_data3), 16

 .ipixel_data4(q0_sp1_data0),.ipixel_data5(q0_sp1_data1), 17

 .ipixel_data6(q0_sp1_data2),.ipixel_data7(q0_sp1_data3), 18

 19
.iphase_rb0(q_rb0_grant_count),.iphase_rb1(q_rb1_grant_count), 20

 21
.iphase_rb2(q_rb2_grant_count),.iphase_rb3(q_rb3_grant_count), 22

 .iphase_clipp(q_clipp_grant_count), 23

 .sclk(sclk), 24

 .srst(srst), 25

 .imem_wen(export_buffer_wen), 26

 .imem_wew(export_buffer_wew), 27

 Page 76 of 100
Ex. 2106 - export_control.v

 .imem_re(q_exp_buff_read_en), 1

 .iread_valid_rb0(q_read_valid_rb0 & q_exp_read_pointer[8]), 2
.iread_valid_rb1(q_read_valid_rb1 & q_exp_read_pointer[8]), 3

 .iread_valid_rb2(q_read_valid_rb2 & q_exp_read_pointer[8]), 4
.iread_valid_rb3(q_read_valid_rb3 & q_exp_read_pointer[8]), 5

 .iread_valid_clipp(q_read_valid_clipp) 6

); 7

 8

 9

 10

 //---11
---------// 12

 //-----PA request position request interface skid buffer--13
------------------// 14

 //---15
---------// 16

 17

 //this the request packet from PA 18

 //pa_sp_id : which bank of SPs data should come from 19

 //pa_offset : 0-3 in the group of 4 position vectors 20

 //pa_aux : read from the auxiliary buffer 21

 //pa_last: the last position request of this specific vector ...increment the read pointer by 1 and 22
free the space 23

 24

 assign pa_req_packet = {pa_sx_sp_id,pa_sx_offset,pa_sx_aux,pa_sx_last}; 25

 26

 skid_buff_top #(5,8) pa_pos_req_buff(27

 .write_rts(pa_sx_req), 28

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 464 of 611

 Page 77 of 100
Ex. 2106 - export_control.v

 .write_rtr(sx_pa_req_rtr), 1

 .write_data(pa_req_packet), 2

 .read_rts(pa_pos_req), 3

 .read_rtr(service_clipper), 4

 .read_data(pa_req_control), 5

 .clk(sclk), 6

 .reset(srst) 7

); 8

 9

 always @(posedge sclk) 10

 begin 11

 if(srst) 12

 q_pa_req_control <= 5'b0; 13

 else if(service_clipper) 14

 q_pa_req_control <= pa_pos_req; 15

 end 16

 17

 18

 //---19
---------// 20

 //Export Buffer Read logic 21

 //---22
--------// 23

 //-- -------------// 24

 //There are four skid buffers ..one for each rb on the index interface 25

 //--// 26

 Page 78 of 100
Ex. 2106 - export_control.v

 1

 wire sx_to_rb0_index_rtr,sx_to_rb1_index_rtr,sx_to_rb2_index_rtr,sx_to_rb3_index_rtr; 2

 reg osx_rb0_index_rtr,osx_rb1_index_rtr,osx_rb2_index_rtr,osx_rb3_index_rtr; 3

 wire rb0_read_req,rb1_read_req, rb2_read_req,rb3_read_req; 4

 5

 wire rb0_color_ready, rb1_color_ready,rb2_color_ready,rb3_color_ready; 6

 7

 //there's an outstanding request for color and RB is ready to accept color data for the next four 8
cycles 9

 assign rb0_color_ready = rb0_read_req & rb0_sx_color_rtr; 10

 assign rb1_color_ready = rb1_read_req & rb1_sx_color_rtr; 11

 assign rb2_color_ready = rb2_read_req & rb2_sx_color_rtr; 12

 assign rb3_color_ready = rb3_read_req & rb3_sx_color_rtr; 13

 14

 wire [8:0] rb0_read_index, rb1_read_index, rb2_read_index, rb3_read_index; 15

 reg [8:0] q_rb0_read_index,q_rb1_read_index,q_rb2_read_index,q_rb3_read_index; 16

 17

 wire [8:0] rb0_index,rb1_index,rb2_index,rb3_index; 18

 19

 20

 assign exported_pos_dec = service_clipper; 21

 22

 assign rb0_index = {rb0_sx_index_op, rb0_sx_index}; 23

 assign rb1_index = {rb1_sx_index_op, rb1_sx_index}; 24

 assign rb2_index = {rb2_sx_index_op, rb2_sx_index}; 25

 assign rb3_index = {rb3_sx_index_op, rb3_sx_index}; 26

 Page 79 of 100
Ex. 2106 - export_control.v

 1

 2

 3

 //latching in the export read index for rb color requests 4

 always @(posedge sclk) 5

 begin 6

 if(srst) 7

 q_rb0_read_index <= 8'b0; 8

 else if(service_rb0) 9

 q_rb0_read_index <= rb0_read_index; 10

 end 11

 12

 always @(posedge sclk) 13

 begin 14

 if(srst) 15

 q_rb1_read_index <= 8'b0; 16

 else if(service_rb1) 17

 q_rb1_read_index <= rb1_read_index; 18

 end 19

 20

 always @(posedge sclk) 21

 begin 22

 if(srst) 23

 q_rb2_read_index <= 8'b0; 24

 else if(service_rb2) 25

 Page 80 of 100
Ex. 2106 - export_control.v

 q_rb2_read_index <= rb2_read_index; 1

 end 2

 3

 always @(posedge sclk) 4

 begin 5

 if(srst) 6

 q_rb3_read_index <= 8'b0; 7

 else if(service_rb3) 8

 q_rb3_read_index <= rb3_read_index; 9

 end 10

 11

 12

 skid_buff_top #(9,8) rb0_index_buff(13

 .write_rts(rb0_sx_index_send), 14

 .write_rtr(sx_to_rb0_index_rtr), 15

 .write_data(rb0_index), 16

 .read_rts(rb0_read_req), 17

 .read_rtr(service_rb0), 18

 .read_data(rb0_read_index), 19

 .clk(sclk), 20

 .reset(srst) 21

); 22

 23

 skid_buff_top #(9,8) rb1_index_buff(24

 .write_rts(rb1_sx_index_send), 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 465 of 611

 Page 81 of 100
Ex. 2106 - export_control.v

 .write_rtr(sx_to_rb1_index_rtr), 1

 .write_data(rb1_index), 2

 .read_rts(rb1_read_req), 3

 .read_rtr(service_rb1), 4

 .read_data(rb1_read_index), 5

 .clk(sclk), 6

 .reset(srst) 7

); 8

 skid_buff_top #(9,8) rb2_index_buff(9

 .write_rts(rb2_sx_index_send), 10

 .write_rtr(sx_to_rb2_index_rtr), 11

 .write_data(rb2_index), 12

 .read_rts(rb2_read_req), 13

 .read_rtr(service_rb2), 14

 .read_data(rb2_read_index), 15

 .clk(sclk), 16

 .reset(srst) 17

); 18

 skid_buff_top #(9,8) rb3_index_buff(19

 .write_rts(rb3_sx_index_send), 20

 .write_rtr(sx_to_rb3_index_rtr), 21

 .write_data(rb3_index), 22

 .read_rts(rb3_read_req), 23

 .read_rtr(service_rb3), 24

 .read_data(rb3_read_index), 25

 Page 82 of 100
Ex. 2106 - export_control.v

 .clk(sclk), 1

 .reset(srst) 2

); 3

 4

 //--- 5

 //round robin arbriter (with a timer) to service read requests from each 6

 //RB client into Export Buffers 7

 //-- 8

 9

 reg [2:0] read_state, next_read_state; 10

 reg rb0_timeup, rb1_timeup, rb2_timeup, rb3_timeup; 11

 reg clipper_timeup; 12

 13

`define READ_IDLE 3'b000 14

`define GRANT_CLIPPER 3'b001 15

`define GRANT_RB0 3'b010 16

`define GRANT_RB1 3'b011 17

`define GRANT_RB2 3'b100 18

`define GRANT_RB3 3'b101 19

 20

 always @(posedge sclk) 21

 begin 22

 if(srst) 23

 read_state <= `READ_IDLE; 24

 else 25

 Page 83 of 100
Ex. 2106 - export_control.v

 read_state <= next_read_state; 1

 end 2

 3

 wire clipp_count_inc; 4

 wire rb0_count_inc; 5

 wire rb1_count_inc; 6

 wire rb2_count_inc; 7

 wire rb3_count_inc; 8

 9

 assign clipp_count_inc = (clipper_grant_count != 2'b00) |service_clipper; 10

 assign rb0_count_inc = (rb0_grant_count != 2'b00) |service_rb0; 11

 assign rb1_count_inc = (rb1_grant_count != 2'b00) |service_rb1; 12

 assign rb2_count_inc = (rb2_grant_count != 2'b00) |service_rb2; 13

 assign rb3_count_inc = (rb3_grant_count != 2'b00) |service_rb3; 14

 15

 //time-out request service counter 16

 always @(posedge sclk) 17

 begin 18

 if(srst) 19

 begin 20

 rb0_grant_count <= 2'b0; 21

 rb1_grant_count <= 2'b0; 22

 rb2_grant_count <= 2'b0; 23

 rb3_grant_count <= 2'b0; 24

 clipper_grant_count <= 2'b0; 25

 Page 84 of 100
Ex. 2106 - export_control.v

 end 1

 else 2

 begin 3

 if(clipp_count_inc) 4

 clipper_grant_count <= clipper_grant_count + 1; 5

 if(rb0_count_inc) 6

 rb0_grant_count <= rb0_grant_count + 1; 7

 if(rb1_count_inc) 8

 rb1_grant_count <= rb1_grant_count + 1; 9

 if(rb2_count_inc) 10

 rb2_grant_count <= rb2_grant_count + 1; 11

 if(rb3_count_inc) 12

 rb3_grant_count <= rb3_grant_count + 1; 13

 end // else: !if(srst) 14

 end // always @ (posedge sclk) 15

 16

 17

 always @(posedge sclk) 18

 begin 19

 if(srst) 20

 begin 21

 q_rb0_grant_count <= 2'b0; 22

 q_rb1_grant_count <= 2'b0; 23

 q_rb2_grant_count <= 2'b0; 24

 q_rb3_grant_count <= 2'b0; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 466 of 611

 Page 85 of 100
Ex. 2106 - export_control.v

 q_clipp_grant_count <= 2'b0; 1

 q_exp_read_pointer <= 9'b0; 2

 q_exp_buff_read_en <= 1'b0; 3

 q_read_valid_clipp <= 1'b0; 4

 q_read_valid_rb0 <= 1'b0; 5

 q_read_valid_rb1 <= 1'b0; 6

 q_read_valid_rb2 <= 1'b0; 7

 q_read_valid_rb3 <= 1'b0; 8

 end 9

 else 10

 begin 11

 q_rb0_grant_count <= rb0_grant_count; 12

 q_rb1_grant_count <= rb1_grant_count; 13

 q_rb2_grant_count <= rb2_grant_count; 14

 q_rb3_grant_count <= rb3_grant_count; 15

 q_clipp_grant_count <= clipper_grant_count; 16

 q_exp_read_pointer <= exp_read_pointer; 17

 q_exp_buff_read_en <= exp_buff_read_en; 18

 q_read_valid_clipp <= read_valid_clipp; 19

 q_read_valid_rb0 <= read_valid_rb0; 20

 q_read_valid_rb1 <= read_valid_rb1; 21

 q_read_valid_rb2 <= read_valid_rb2; 22

 q_read_valid_rb3 <= read_valid_rb3; 23

 end // else: !if(srst) 24

 end // always @ (posedge sclk) 25

 Page 86 of 100
Ex. 2106 - export_control.v

 1

 2

 3

 always @(/*AUTOSENSE*/`GRANT_CLIPPER or `GRANT_RB0 or `GRANT_RB1 4

 or `GRANT_RB2 or `GRANT_RB3 or `READ_IDLE 5

 or clipp_outstanding_req or clipper_timeup 6

 or rb0_color_ready or rb0_timeup or rb1_color_ready 7

 or rb1_timeup or rb2_color_ready or rb2_timeup 8

 or rb3_color_ready or rb3_timeup or read_state) 9

 begin 10

 case(read_state) 11

 `READ_IDLE: 12

 begin 13

 if(clipp_outstanding_req & clipper_timeup) 14

 next_read_state = `GRANT_CLIPPER; 15

 else if(rb0_color_ready & rb0_timeup) 16

 next_read_state = `GRANT_RB0; 17

 else if(rb1_color_ready & rb1_timeup) 18

 next_read_state = `GRANT_RB1; 19

 else if(rb2_color_ready & rb2_timeup) 20

 next_read_state = `GRANT_RB2; 21

 else if(rb3_color_ready & rb3_timeup) 22

 next_read_state = `GRANT_RB3; 23

 else 24

 next_read_state = `READ_IDLE; 25

 Page 87 of 100
Ex. 2106 - export_control.v

 end 1

 `GRANT_CLIPPER: 2

 begin 3

 if(clipp_outstanding_req & clipper_timeup) 4

 next_read_state = `GRANT_CLIPPER; 5

 else if(rb0_color_ready & rb0_timeup) 6

 next_read_state = `GRANT_RB0; 7

 else if(rb1_color_ready & rb1_timeup) 8

 next_read_state = `GRANT_RB1; 9

 else if(rb2_color_ready & rb2_timeup) 10

 next_read_state = `GRANT_RB2; 11

 else if(rb3_color_ready & rb3_timeup) 12

 next_read_state = `GRANT_RB3; 13

 else 14

 next_read_state = `READ_IDLE; 15

 end 16

 `GRANT_RB0: 17

 begin 18

 if(clipp_outstanding_req & clipper_timeup) 19

 next_read_state = `GRANT_CLIPPER; 20

 else if(rb1_color_ready & rb1_timeup) 21

 next_read_state = `GRANT_RB1; 22

 else if(rb2_color_ready & rb2_timeup) 23

 next_read_state = `GRANT_RB2; 24

 else if(rb3_color_ready & rb3_timeup) 25

 Page 88 of 100
Ex. 2106 - export_control.v

 next_read_state = `GRANT_RB3; 1

 else 2

 next_read_state = `READ_IDLE; 3

 end 4

 `GRANT_RB1: 5

 begin 6

 if(clipp_outstanding_req & clipper_timeup) 7

 next_read_state = `GRANT_CLIPPER; 8

 else if(rb2_color_ready) 9

 next_read_state = `GRANT_RB2; 10

 else if(rb3_color_ready) 11

 next_read_state = `GRANT_RB3; 12

 else if(rb0_color_ready) 13

 next_read_state = `GRANT_RB0; 14

 else 15

 next_read_state = `READ_IDLE; 16

 end 17

 `GRANT_RB2: 18

 begin 19

 if(clipp_outstanding_req & clipper_timeup) 20

 next_read_state = `GRANT_CLIPPER; 21

 else if(rb3_color_ready & rb3_timeup) 22

 next_read_state = `GRANT_RB3; 23

 else if(rb0_color_ready & rb0_timeup) 24

 next_read_state = `GRANT_RB0; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 467 of 611

 Page 89 of 100
Ex. 2106 - export_control.v

 else if(rb1_color_ready & rb1_timeup) 1

 next_read_state = `GRANT_RB1; 2

 else 3

 next_read_state = `READ_IDLE; 4

 end 5

 `GRANT_RB3: 6

 begin 7

 if(clipp_outstanding_req & clipper_timeup) 8

 next_read_state = `GRANT_CLIPPER; 9

 else if(rb0_color_ready & rb0_timeup) 10

 next_read_state = `GRANT_RB0; 11

 else if(rb1_color_ready & rb1_timeup) 12

 next_read_state = `GRANT_RB1; 13

 else if(rb2_color_ready & rb2_timeup) 14

 next_read_state = `GRANT_RB2; 15

 else 16

 next_read_state = `READ_IDLE; 17

 end 18

 default: 19

 begin 20

 next_read_state = `READ_IDLE; 21

 end 22

 endcase // case(read_state) 23

 end // always @ (... 24

 25

 Page 90 of 100
Ex. 2106 - export_control.v

 1

 //pa_req_packet = {ipa_sp_id,ipa_offset,ipa_aux,ipa_last}; 2

 wire [7:0] pos_exp_read_ptr; 3

 reg [3:0] pos_exp_read_offset; 4

 5

 //creating the read pointer for clipper request 6

 //0x40 base offset 7

 //pos_exp_read_offset : 4 entry buffer offset (possible values are 0,4,8,C) 8

 //pa_req_control[3:2] == pa_sx_offset at the interface ...an offset within the 4-entry buffer 9

 10

 //last request for the current buffer 11

 //increment the pointer to the next buffer 12

 wire pa_req_buff_last = q_pa_req_control[0] ; 13

 14

 //updating pos_exp_read_offset 15

 //depending on the mode of export the offset increase can be by 4 or 8 16

 //when an auxiliary buffer is present increment by 8 17

 //when no auxiliary buffer ...increment by 4 18

 always @(posedge sclk) 19

 begin 20

 if(srst) 21

 begin 22

 pos_exp_read_offset <= 4'b0; 23

 end 24

 else 25

 Page 91 of 100
Ex. 2106 - export_control.v

 begin 1

 if(pa_req_buff_last) //ipa_last...move to the next buffer 2

 pos_exp_read_offset <= pos_exp_read_offset + 4; 3

 end 4

 end // always @ (posedge sclk) 5

 6

 wire pa_req_aux; 7

 assign pa_req_aux = q_pa_req_control[1]; 8

 9

 wire [1:0] pa_req_offset; 10

 assign pa_req_offset =q_pa_req_control[3:2]; 11

 12

 //0x40 is the bottom of the position export buffer 13

 //in a single (no aux buffer mode) there can be 4 buffers present in the position export buffer 14

 //at the following offsets : 0x40 , 0x44 , 0x48, 0x4c 15

 //otherwise only two buffers can fit in...at offsets 0x40 and 0x48 with their aux buffer at 0x44 16
and 0x4c respectivly 17

 18

 assign pos_exp_read_ptr[6] = 1'b1; //located at offset 0x40...the upper 16 entries of the 19
export buffer are dedicated to position data 20

 assign pos_exp_read_ptr[5:4] = 2'b00; //only 16 entries dedicated to position...use only 21
bits 3:0 22

 assign pos_exp_read_ptr[3:0] = (pa_req_aux) ? pos_exp_read_offset + pa_req_offset + 4 : 23
pos_exp_read_offset + pa_req_offset; 24

 25

 wire pa_req_sp_id; 26

 assign pa_req_sp_id = q_pa_req_control[4]; 27

 Page 92 of 100
Ex. 2106 - export_control.v

 1

 assign pos_exp_read_ptr[7] = pa_req_sp_id ; //which SP is the data coming from 2

 3

 always @(/*AUTOSENSE*/clipper_grant_count or service_clipper) 4

 begin 5

 if(service_clipper) 6

 clipper_timeup = 1'b0; 7

 else if(~clipper_grant_count[0] & ~clipper_grant_count[1]) 8

 clipper_timeup = 1'b1; 9

 else 10

 clipper_timeup = 1'b0; 11

 end 12

 13

 always @(/*AUTOSENSE*/rb0_grant_count or service_rb0) 14

 begin 15

 if(service_rb0) 16

 rb0_timeup = 1'b0; 17

 else if(~rb0_grant_count[0] & ~rb0_grant_count[1]) 18

 rb0_timeup = 1'b1; 19

 else 20

 rb0_timeup = 1'b0; 21

 end 22

 23

 always @(/*AUTOSENSE*/rb1_grant_count or service_rb1) 24

 begin 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 468 of 611

 Page 93 of 100
Ex. 2106 - export_control.v

 if(service_rb1) 1

 rb1_timeup = 1'b0; 2

 else if(~rb1_grant_count[0] & ~rb1_grant_count[1]) 3

 rb1_timeup = 1'b1; 4

 else 5

 rb1_timeup = 1'b0; 6

 end 7

 8

 always @(/*AUTOSENSE*/rb2_grant_count or service_rb2) 9

 begin 10

 if(service_rb2) 11

 rb2_timeup = 1'b0; 12

 else if(~rb2_grant_count[0] & ~rb2_grant_count[1]) 13

 rb2_timeup = 1'b1; 14

 else 15

 rb2_timeup = 1'b0; 16

 end 17

 18

 always @(/*AUTOSENSE*/rb3_grant_count or service_rb3) 19

 begin 20

 if(service_rb3) 21

 rb3_timeup = 1'b0; 22

 else if(~rb3_grant_count[0] & ~rb3_grant_count[1]) 23

 rb3_timeup = 1'b1; 24

 else 25

 Page 94 of 100
Ex. 2106 - export_control.v

 rb3_timeup = 1'b0; 1

 end 2

 3

 //combinational logic for the above state machine 4

 always @(/*AUTOSENSE*/`GRANT_CLIPPER or `GRANT_RB0 or `GRANT_RB1 5

 or `GRANT_RB2 or `GRANT_RB3 or `READ_IDLE 6

 or pos_exp_read_ptr or rb0_read_index or rb1_read_index 7

 or rb2_read_index or rb3_read_index or read_state) 8

 begin 9

 case(read_state) 10

 `READ_IDLE: 11

 begin 12

 service_rb0 = 1'b0; 13

 service_rb1 = 1'b0; 14

 service_rb2 = 1'b0; 15

 service_rb3 = 1'b0; 16

 service_clipper = 1'b0; 17

 exp_read_pointer = 9'b0; 18

 exp_buff_read_en = 1'b0; 19

 read_valid_clipp = 1'b0; 20

 read_valid_rb0 = 1'b0; 21

 read_valid_rb1 = 1'b0; 22

 read_valid_rb2 = 1'b0; 23

 read_valid_rb3 = 1'b0; 24

 end 25

 Page 95 of 100
Ex. 2106 - export_control.v

 `GRANT_CLIPPER: 1

 begin 2

 service_rb0 = 1'b0; 3

 service_rb1 = 1'b0; 4

 service_rb2 = 1'b0; 5

 service_rb3 = 1'b0; 6

 service_clipper = 1'b1; 7

 exp_read_pointer = pos_exp_read_ptr; //clipper base address ???? ANDI 8

 exp_buff_read_en = 1'b1; 9

 read_valid_clipp = 1'b1; 10

 read_valid_rb0 = 1'b0; 11

 read_valid_rb1 = 1'b0; 12

 read_valid_rb2 = 1'b0; 13

 read_valid_rb3 = 1'b0; 14

 end 15

 `GRANT_RB0: 16

 begin 17

 service_rb0 = 1'b1; 18

 service_rb1 = 1'b0; 19

 service_rb2 = 1'b0; 20

 service_rb3 = 1'b0; 21

 service_clipper = 1'b0; 22

 exp_read_pointer = rb0_read_index; 23

 exp_buff_read_en = 1'b1; 24

 read_valid_clipp = 1'b0; 25

 Page 96 of 100
Ex. 2106 - export_control.v

 read_valid_rb0 = 1'b1; 1

 read_valid_rb1 = 1'b0; 2

 read_valid_rb2 = 1'b0; 3

 read_valid_rb3 = 1'b0; 4

 end 5

 `GRANT_RB1: 6

 begin 7

 service_rb0 = 1'b0; 8

 service_rb1 = 1'b1; 9

 service_rb2 = 1'b0; 10

 service_rb3 = 1'b0; 11

 service_clipper = 1'b0; 12

 exp_read_pointer = rb1_read_index; 13

 exp_buff_read_en = 1'b1; 14

 read_valid_clipp = 1'b0; 15

 read_valid_rb0 = 1'b0; 16

 read_valid_rb1 = 1'b1; 17

 read_valid_rb2 = 1'b0; 18

 read_valid_rb3 = 1'b0; 19

 end 20

 `GRANT_RB2: 21

 begin 22

 service_rb0 = 1'b0; 23

 service_rb1 = 1'b0; 24

 service_rb2 = 1'b1; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 469 of 611

 Page 97 of 100
Ex. 2106 - export_control.v

 service_rb3 = 1'b0; 1

 service_clipper = 1'b0; 2

 exp_read_pointer = rb2_read_index; 3

 exp_buff_read_en = 1'b1; 4

 read_valid_clipp = 1'b0; 5

 read_valid_rb0 = 1'b0; 6

 read_valid_rb1 = 1'b0; 7

 read_valid_rb2 = 1'b1; 8

 read_valid_rb3 = 1'b0; 9

 end 10

 `GRANT_RB3: 11

 begin 12

 service_rb0 = 1'b0; 13

 service_rb1 = 1'b0; 14

 service_rb2 = 1'b0; 15

 service_rb3 = 1'b1; 16

 service_clipper = 1'b0; 17

 exp_read_pointer = rb3_read_index; 18

 exp_buff_read_en = 1'b1; 19

 read_valid_clipp = 1'b0; 20

 read_valid_rb0 = 1'b0; 21

 read_valid_rb1 = 1'b0; 22

 read_valid_rb2 = 1'b0; 23

 read_valid_rb3 = 1'b1; 24

 end 25

 Page 98 of 100
Ex. 2106 - export_control.v

 default: 1

 begin 2

 service_rb0 = 1'b0; 3

 service_rb1 = 1'b0; 4

 service_rb2 = 1'b0; 5

 service_rb3 = 1'b0; 6

 service_clipper = 1'b0; 7

 exp_read_pointer = 9'b0; 8

 exp_buff_read_en = 1'b0; 9

 read_valid_clipp = 1'b0; 10

 read_valid_rb0 = 1'b0; 11

 read_valid_rb1 = 1'b0; 12

 read_valid_rb2 = 1'b0; 13

 read_valid_rb3 = 1'b0; 14

 end 15

 endcase // case(read_state) 16

 end 17

 18

 19

 always@(posedge sclk) 20

 begin 21

 if(srst) 22

 begin 23

 osx_rb0_index_rtr <= 1'b0; 24

 osx_rb1_index_rtr <= 1'b0; 25

 Page 99 of 100
Ex. 2106 - export_control.v

 osx_rb2_index_rtr <= 1'b0; 1

 osx_rb3_index_rtr <= 1'b0; 2

 end 3

 else 4

 begin 5

 osx_rb0_index_rtr <= sx_to_rb0_index_rtr; 6

 osx_rb1_index_rtr <= sx_to_rb1_index_rtr; 7

 osx_rb2_index_rtr <= sx_to_rb2_index_rtr; 8

 osx_rb3_index_rtr <= sx_to_rb3_index_rtr; 9

 end // else: !if(srst) 10

 end // always@ (posedge sclk) 11

 12

 assign sx_rb0_index_rtr = osx_rb0_index_rtr; 13

 assign sx_rb1_index_rtr = osx_rb1_index_rtr; 14

 assign sx_rb2_index_rtr = osx_rb2_index_rtr; 15

 assign sx_rb3_index_rtr = osx_rb3_index_rtr; 16

 17

 18

 19

endmodule // export_control 20

 21

 22

 23

 24

 25

 Page 100 of 100
Ex. 2106 - export_control.v

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 470 of 611

 Page 1 of 30
Ex. 2107 - macc.v

// -*- Mode: Verilog -*- 1

// Filename : macc.v 2

// Description : Verilog wrapper for the MACC unit which includes the rest of the ALU 3
opcodes 4

// Author : Andi Skende 5

// Created On : Mon Oct 8 15:54:00 2001 6

// Last Modified By: . 7

// Last Modified On: . 8

// Update Count : 0 9

// Status : Unknown, Use with caution! 10

 11

 module macc(/*AUTOARG*/ 12

 // Outputs 13

 oResult, oScalarInput, oScalarOpcode, oExportDst, 14

 // Inputs 15

 iRegData, iConstantData, iScalarData, iInstruction, iInstStart, 16

 sclk, srst 17

); 18

 19

 20

 //--- 21

 //These inputs represent all the possible sources from where the MACC arguments 22

 //can be chosen from 23

 //--- 24

 input [127:0] iRegData, iConstantData, iScalarData; 25

 26

 Page 2 of 30
Ex. 2107 - macc.v

 //-- 1

 //this bus represents the ALU instruction word comming from the Sequencer 2

 //at different cycles withing the 4 cycle window, the bus content represents 3

 //different informantion as shown below. 4

 //Instruction word. The argument select part of the 5

 //instruction is send over through four cycles since 6

 //we only need one instruction every four cycles 7

 // cycle 0:SRC A Select 8

 // SRC A Argument Modifier 9

 // SRC A Swizzle 10

 // cycle 1:SRC B Select 11

 // SRC B Argument Modifier 12

 // SRC B Swizzle 13

 // cycle 2:SRC C Select 14

 // SRC C Argument Modifier 15

 // SRC C Swizzle 16

 // cycle 3:Vector Opcode 17

 // Scalar Opcode 18

 // Vector Clamp 19

 // Scalar Clamp 20

 // Vector Write Mask 21

 // Scalar Write Mask 22

 //-- 23

 24

 input [20:0] iInstruction; 25

 Page 3 of 30
Ex. 2107 - macc.v

 input [0:0] iInstStart; 1

 input sclk; 2

 input srst; 3

 4

 //--- 5

 output [127:0] oResult; 6

 output [31:0] oScalarInput; 7

 output [5:0] oScalarOpcode; 8

 output [5:0] oExportDst; //represents the destination pointer for exports 9

 10

 //ALU opcodes declared as parameters 11

 //this definition is subject to change as more 12

 //opcodes are added. for the latest definition 13

 //please refer to Shader Pipe Spec: ALU instruction definition 14

 parameter [4:0] ADD = 5'h00, 15

 MUL = 5'h01, 16

 MAX = 5'h02, 17

 MIN = 5'h03, 18

 SETE = 5'h04, 19

 SETGT = 5'h05, 20

 SETGE = 5'h06, 21

 SETNE = 5'h07, 22

 FRACT = 5'h08, 23

 TRUNC = 5'h09, 24

 FLOOR = 5'h0a, 25

 Page 4 of 30
Ex. 2107 - macc.v

 MULADD = 5'h0b, 1

 CNDE = 5'h0c, 2

 CNDGE = 5'h0d, 3

 CNDGT = 5'h0e; 4

 5

 //registering four sets of data from four different instruction transfer cycles 6

 //--- 7

 reg [20:0] q_Instruction0, q_Instruction1, q_Instruction2, q_Instruction3; 8

 9

 wire [4:0] VectorOpcode; 10

 wire [5:0] ScalarOpcode; 11

 wire [0:0] VectorClamp,ScalarClamp; 12

 wire [3:0] VectorWriteMask,ScalarWriteMask; 13

 14

 wire [31:0] MaccResult,ScalarResult; 15

 reg [31:0] MaccResultClamp; 16

 reg [31:0] q0_MaccResultClamp, q1_MaccResultClamp , q2_MaccResultClamp; 17

 reg [31:0] ResultMin; 18

 wire [31:0] ResultMaxMin; 19

 reg [31:0] ResultMax; 20

 reg [31:0] q0_ResultMaxMin, q1_ResultMaxMin, q2_ResultMaxMin, q3_ResultMaxMin; 21

 22

 //---/ 23

 //represents the previous instruction vector result 24

 //---/ 25

ATI 2107
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 471 of 611

 Page 5 of 30
Ex. 2107 - macc.v

 wire [127:0] VectorData; 1

 2

 reg [127:0] InputDataA,InputDataB,InputDataC; 3

 reg [127:0] InputData; 4

 5

 //select logic controls 6

 //--- 7

 wire [0:0] ResultClamp; 8

 wire [2:0] SrcASel,SrcBSel,SrcCSel; //select Reg vs. Vector vs. Scalar 9
vs. Constant 10

 wire [0:0] SrcANegate, SrcBNegate, SrcCNegate; // input argument modifiers 11

 wire [1:0] SrcARedSwizzle, SrcAGreenSwizzle, SrcABlueSwizzle, 12
SrcAAlphaSwizzle; 13

 wire [1:0] SrcBRedSwizzle, SrcBGreenSwizzle, SrcBBlueSwizzle, 14
SrcBAlphaSwizzle; 15

 wire [1:0] SrcCRedSwizzle, SrcCGreenSwizzle, SrcCBlueSwizzle, 16
SrcCAlphaSwizzle; 17

 reg [0:0] decode_SrcA, decode_SrcB, decode_SrcC,decode_Opcode; 18
 19

 reg [31:0] SrcAAlphaBus, SrcARedBus, SrcAGreenBus, SrcABlueBus; 20

 reg [31:0] SrcBAlphaBus, SrcBRedBus, SrcBGreenBus, SrcBBlueBus; 21

 reg [31:0] SrcCAlphaBus, SrcCRedBus, SrcCGreenBus, SrcCBlueBus; 22

 reg [31:0] SrcAAlphaBusLatch1, SrcARedBusLatch0,SrcARedBusLatch1, 23
SrcAGreenBusLatch0,SrcAGreenBusLatch1, SrcABlueBusLatch0,SrcABlueBusLatch1 ; 24

 reg [31:0] SrcBGreenBusLatch0, SrcBGreenBusLatch1, SrcBBlueBusLatch0, 25
SrcBBlueBusLatch1, SrcBRedBusLatch1, SrcBAlphaBusLatch1; 26

 reg [31:0] SrcCBlueBusLatch0, SrcCBlueBusLatch1, SrcCGreenBusLatch1, 27
SrcCRedBusLatch1, SrcCAlphaBusLatch1; 28

 Page 6 of 30
Ex. 2107 - macc.v

 reg [31:0] OperandA, OperandB, OperandC,OperandAMod, OperandBMod, 1
OperandCMod; 2

 3

 //--- 4

 //this state machine controls the four cycle GPR read/write and source sampling sequence 5

 //state machine related variables 6

 reg [1:0] alu_state, next_alu_state; 7

 parameter Opcode = 2'b11; 8

 parameter SrcA = 2'b00; 9

 parameter SrcB = 2'b01; 10

 parameter SrcC = 2'b10; 11

 parameter ONE = 32'h3f800000; 12

 parameter ZERO = 32'h00000000; 13

 parameter GT_ONE_EXP = 8'h7f; 14

 15

 //--- 16

 //state machine implementation 17

 //This state machine has four states 18

 //InstStart : first or default state 19

 //SrcA : SrcA is sampled, selecled and swizzled on its way to the first level of latches 20

 //SrcB : SrcB is sampled, selected and swizzled on its way to the first level of latches 21

 //SrcC : SrcC is sampled, selected and swizzled on its way to the first level of latches 22

 //-- 23

 24

 25

 //-------------------------------------- 26

 Page 7 of 30
Ex. 2107 - macc.v

 //registering the iInstStart event 1

 //------------------------------------- 2

 reg instruct_issued; 3

 4

 always @(posedge sclk) 5

 begin 6

 if(srst) 7

 begin 8

 instruct_issued <= 1'b0; 9

 end 10

 else if(iInstStart) 11

 begin 12

 instruct_issued <= 1'b1; 13

 end 14

 end // always @ (posedge sclk) 15

 16

 17

 //-- 18

 19

 always @(posedge sclk) 20

 begin 21

 if(srst) 22

 alu_state <= SrcA; 23

 else 24

 alu_state <= next_alu_state; 25

 Page 8 of 30
Ex. 2107 - macc.v

 end 1

 2

 always @(alu_state or iInstStart) 3

 begin 4

 case(alu_state) 5

 SrcA: 6

 begin 7

 if(iInstStart | instruct_issued) 8

 next_alu_state = SrcB; 9

 else 10

 next_alu_state = SrcA; 11

 end 12

 SrcB : 13

 next_alu_state = SrcC; 14

 SrcC: 15

 next_alu_state = Opcode; 16

 Opcode: 17

 next_alu_state = SrcA; 18

 endcase 19

 end // always @ (state) 20

 21

 //--- 22

 //the decode_* signals are used throughout the logic to mark the current state of the state 23
machine at 24

 //any cycle out of the 4 cycle window from one instruction start to another 25

 //--- 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 472 of 611

 Page 9 of 30
Ex. 2107 - macc.v

 1

 always @(alu_state) 2

 begin 3

 case (alu_state) 4

 SrcA: 5

 begin 6

 decode_SrcA = 1'b1; 7

 decode_SrcB = 1'b0; 8

 decode_SrcC = 1'b0; 9

 decode_Opcode = 1'b0; 10

 end 11

 SrcB: 12

 begin 13

 decode_SrcA = 1'b0; 14

 decode_SrcB = 1'b1; 15

 decode_SrcC = 1'b0; 16

 decode_Opcode = 1'b0; 17

 end 18

 SrcC: 19

 begin 20

 decode_SrcA = 1'b0; 21

 decode_SrcB = 1'b0; 22

 decode_SrcC = 1'b1; 23

 decode_Opcode = 1'b0; 24

 end 25

 Page 10 of 30
Ex. 2107 - macc.v

 Opcode: 1

 begin 2

 decode_SrcA = 1'b0; 3

 decode_SrcB = 1'b0; 4

 decode_SrcC = 1'b0; 5

 decode_Opcode = 1'b1; 6

 end 7

 endcase 8

 end 9

 10

 11

 //-- 12

 //--- 13

 //Registering the Instruction word (20 bits) in four consecutive cycles 14

 //-- 15

 always@(posedge sclk) 16

 if(srst) 17

 q_Instruction0 <= 21'b0; 18

 else if(decode_SrcA) 19

 q_Instruction0 <= iInstruction; 20

 21

 always@(posedge sclk) 22

 if(srst) 23

 q_Instruction1 <= 21'b0; 24

 else if(decode_SrcB) 25

 Page 11 of 30
Ex. 2107 - macc.v

 q_Instruction1 <= iInstruction; 1

 2

 always@(posedge sclk) 3

 if(srst) 4

 q_Instruction2 <= 21'b0; 5

 else if(decode_SrcC) 6

 q_Instruction2 <= iInstruction; 7

 8

 always@(posedge sclk) 9

 if(srst) 10

 q_Instruction3 <= 21'b0; 11

 else if(decode_Opcode) 12

 q_Instruction3 <= iInstruction; 13

 14

 //grabing the export destination ID. 15

 //If we are dealing with an export instruction...this value identifies which 16

 //attribute is being exported ...please refer to the shader pipe spec for more details 17

 //on this 18

 //--- 19

 assign oExportDst = q_Instruction0[17:12]; 20

 21

 //-- 22

 //decoding the instruction word into a set of select/modify signals used 23

 //for argument selection and input modification on the way to MACC unit 24

 //--- 25

 Page 12 of 30
Ex. 2107 - macc.v

 1

 assign SrcASel = q_Instruction0[2:0]; 2

 assign SrcANegate = q_Instruction0[3:3]; 3

 assign SrcAAlphaSwizzle = q_Instruction0[11:10]; 4

 assign SrcARedSwizzle = q_Instruction0[5:4]; 5

 assign SrcAGreenSwizzle = q_Instruction0[7:6]; 6

 assign SrcABlueSwizzle = q_Instruction0[9:8]; 7

 8

 assign SrcBSel = q_Instruction1[2:0]; 9

 assign SrcBNegate = q_Instruction1[3:3]; 10

 assign SrcBAlphaSwizzle = q_Instruction1[11:10]; 11

 assign SrcBRedSwizzle = q_Instruction1[5:4]; 12

 assign SrcBGreenSwizzle = q_Instruction1[7:6]; 13

 assign SrcBBlueSwizzle = q_Instruction1[9:8]; 14

 15

 16

 assign SrcCSel = q_Instruction2[2:0]; 17

 assign SrcCNegate = q_Instruction2[3:3]; 18

 assign SrcCAlphaSwizzle = q_Instruction2[11:10]; 19

 assign SrcCRedSwizzle = q_Instruction2[5:4]; 20

 assign SrcCGreenSwizzle = q_Instruction2[7:6]; 21

 assign SrcCBlueSwizzle = q_Instruction2[9:8]; 22

 23

 24

 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 473 of 611

 Page 13 of 30
Ex. 2107 - macc.v

 assign VectorOpcode = q_Instruction3[4:0]; 1

 assign ScalarOpcode = q_Instruction3[10:5]; 2

 assign VectorClamp = q_Instruction3[11:11]; 3

 assign ScalarClamp = q_Instruction3[12:12]; 4

 assign VectorWriteMask = q_Instruction3[16:13]; 5

 assign ScalarWriteMask = q_Instruction3[20:17]; 6

 7

 //--- 8

 //Argument Selectin for the three source operands going into the MACC unit 9

 //All information required for the selection logic in embedded into the ALU 10

 //Instrution Word. Please refer to the Shade Processor Spec for a delailed 11

 //definition of the select fields for the three sources 12

 //--- 13

 14

 always@(SrcASel or iConstantData or iRegData or VectorData or iScalarData) 15

 begin 16

 case(SrcASel) 17

 3'b000 : InputDataA = iConstantData; 18

 3'b100 : InputDataA = iRegData; 19

 3'b101 : InputDataA = iRegData; 20

 3'b110 : InputDataA = VectorData; 21

 3'b111 : InputDataA = iScalarData; 22

 default: InputDataA = iRegData; 23

 endcase // case(SrcASel) 24

 end // always@ (SrcASel or iConstantData or iRegData or iVectorData or iScalarData) 25

 Page 14 of 30
Ex. 2107 - macc.v

 1

 always@(SrcBSel or iConstantData or iRegData or VectorData or iScalarData) 2

 begin 3

 case(SrcBSel) 4

 3'b000 : InputDataB = iConstantData; 5

 3'b100 : InputDataB = iRegData; 6

 3'b101 : InputDataB = iRegData; 7

 3'b110 : InputDataB = VectorData; 8

 3'b111 : InputDataB = iScalarData; 9

 default: InputDataB = iRegData; 10

 endcase // case(SrcBSel) 11

 end // always@ (SrcBSel or iConstantData or iRegData or iVectorData or iScalarData) 12

 13

 always@(SrcCSel or iConstantData or iRegData or VectorData or iScalarData) 14

 begin 15

 case(SrcCSel) 16

 3'b000 : InputDataC = iConstantData; 17

 3'b100 : InputDataC = iRegData; 18

 3'b101 : InputDataC = iRegData; 19

 3'b110 : InputDataC = VectorData; 20

 3'b111 : InputDataC = iScalarData; 21

 default: InputDataC = iRegData; 22

 endcase // case(SrcCSel) 23

 end // always@ (SrcCSel or iConstantData or iRegData or iVectorData or iScalarData) 24

 //-- 25

 Page 15 of 30
Ex. 2107 - macc.v

 1

 2

 //--- 3

 //Input Modifiers ie. swizzle and negate are begin applied 4

 //-- 5

 6

 //Source A swizzling 7

 8

 always@(InputDataA or SrcAAlphaSwizzle) 9

 case(SrcAAlphaSwizzle) 10

 2'b00: SrcAAlphaBus = InputDataA[127:96]; 11

 2'b01: SrcAAlphaBus = InputDataA[95:64]; 12

 2'b10: SrcAAlphaBus = InputDataA[63:32]; 13

 2'b11: SrcAAlphaBus = InputDataA[31:0]; 14

 endcase // case(SrcAAlphaSwizzle) 15

 16

 17

 always@(InputDataA or SrcARedSwizzle) 18

 case(SrcARedSwizzle) 19

 2'b00: SrcARedBus = InputDataA[95:64]; 20

 2'b01: SrcARedBus = InputDataA[63:32]; 21

 2'b10: SrcARedBus = InputDataA[31:0]; 22

 2'b11: SrcARedBus = InputDataA[127:96]; 23

 endcase // case(SrcARedSwizzle) 24

 25

 Page 16 of 30
Ex. 2107 - macc.v

 1

 2

 always@(InputDataA or SrcAGreenSwizzle) 3

 case(SrcAGreenSwizzle) 4

 2'b00: SrcAGreenBus = InputDataA[63:32]; 5

 2'b01: SrcAGreenBus = InputDataA[31:0]; 6

 2'b10: SrcAGreenBus = InputDataA[127:96]; 7

 2'b11: SrcAGreenBus = InputDataA[95:64]; 8

 endcase // case(SrcAGreenSwizzle) 9

 10

 always@(InputDataA or SrcABlueSwizzle) 11

 case(SrcABlueSwizzle) 12

 2'b00: SrcABlueBus = InputDataA[31:0]; 13

 2'b01: SrcABlueBus = InputDataA[127:96]; 14

 2'b10: SrcABlueBus = InputDataA[95:64]; 15

 2'b11: SrcABlueBus = InputDataA[63:32]; 16

 endcase // case(SrcAGreenSwizzle) 17

 18

 //Source B swizzling 19

 20

 always@(InputDataB or SrcBAlphaSwizzle) 21

 case(SrcBAlphaSwizzle) 22

 2'b00: SrcBAlphaBus = InputDataB[127:96]; 23

 2'b01: SrcBAlphaBus = InputDataB[95:64]; 24

 2'b10: SrcBAlphaBus = InputDataB[63:32]; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 474 of 611

 Page 17 of 30
Ex. 2107 - macc.v

 2'b11: SrcBAlphaBus = InputDataB[31:0]; 1

 endcase 2

 3

 always@(InputDataB or SrcBRedSwizzle) 4

 case(SrcBRedSwizzle) 5

 2'b00: SrcBRedBus = InputDataB[95:64]; 6

 2'b01: SrcBRedBus = InputDataB[63:32]; 7

 2'b10: SrcBRedBus = InputDataB[31:0]; 8

 2'b11: SrcBRedBus = InputDataB[127:96]; 9

 endcase // case(SrcBRedSwizzle) 10

 11

 always@(InputDataB or SrcBGreenSwizzle) 12

 case(SrcBGreenSwizzle) 13

 2'b00: SrcBGreenBus = InputDataB[63:32]; 14

 2'b01: SrcBGreenBus = InputDataB[31:0]; 15

 2'b10: SrcBGreenBus = InputDataB[127:96]; 16

 2'b11: SrcBGreenBus = InputDataB[95:64]; 17

 endcase // case(SrcBGreenSwizzle) 18

 19

 20

 always@(InputDataB or SrcBBlueSwizzle) 21

 case(SrcBBlueSwizzle) 22

 2'b00: SrcBBlueBus = InputDataB[31:0]; 23

 2'b01: SrcBBlueBus = InputDataB[127:96]; 24

 2'b10: SrcBBlueBus = InputDataB[95:64]; 25

 Page 18 of 30
Ex. 2107 - macc.v

 2'b11: SrcBBlueBus = InputDataB[63:32]; 1

 endcase // case(SrcBGreenSwizzle) 2

 3

 //Source C swizzling 4

 always@(InputDataC or SrcCAlphaSwizzle) 5

 case(SrcCAlphaSwizzle) 6

 2'b00: SrcCAlphaBus = InputDataC[127:96]; 7

 2'b01: SrcCAlphaBus = InputDataC[95:64]; 8

 2'b10: SrcCAlphaBus = InputDataC[63:32]; 9

 2'b11: SrcCAlphaBus = InputDataC[31:0]; 10

 endcase 11

 12

 always@(InputDataC or SrcCRedSwizzle) 13

 case(SrcCRedSwizzle) 14

 2'b00: SrcCRedBus = InputDataC[95:64]; 15

 2'b01: SrcCRedBus = InputDataC[63:32]; 16

 2'b10: SrcCRedBus = InputDataC[31:0]; 17

 2'b11: SrcCRedBus = InputDataC[127:96]; 18

 endcase // case(SrcCRedSwizzle) 19

 20

 always@(InputDataC or SrcCGreenSwizzle) 21

 case(SrcCGreenSwizzle) 22

 2'b00: SrcCGreenBus = InputDataC[63:32]; 23

 2'b01: SrcCGreenBus = InputDataC[31:0]; 24

 2'b10: SrcCGreenBus = InputDataC[127:96]; 25

 Page 19 of 30
Ex. 2107 - macc.v

 2'b11: SrcCGreenBus = InputDataC[95:64]; 1

 endcase // case(SrcCGreenSwizzle) 2

 3

 4

 always@(InputDataC or SrcCBlueSwizzle) 5

 case(SrcCBlueSwizzle) 6

 2'b00: SrcCBlueBus = InputDataC[31:0]; 7

 2'b01: SrcCBlueBus = InputDataC[127:96]; 8

 2'b10: SrcCBlueBus = InputDataC[95:64]; 9

 2'b11: SrcCBlueBus = InputDataC[63:32]; 10

 endcase // case(SrcCGreenSwizzle) 11

 12

 13

 14

 //--- 15

 //Modeling stages for the Argument storing 16

 //--- 17

 18

 // always@(SrcAAlphaBus or decode_SrcA) 19

 // if(decode_SrcA) 20

 // SrcAAlphaBusLatch1 = SrcAAlphaBus; 21

 22

 always@(posedge sclk) 23

 if(decode_SrcB) 24

 begin 25

 Page 20 of 30
Ex. 2107 - macc.v

 SrcAAlphaBusLatch1 <= SrcAAlphaBus; 1

 SrcARedBusLatch0 <= SrcARedBus; 2

 SrcAGreenBusLatch0 <= SrcAGreenBus; 3

 SrcABlueBusLatch0 <= SrcABlueBus; 4

 end 5

 6

 always@(posedge sclk) 7

 if(decode_SrcC) 8

 begin 9

 SrcBAlphaBusLatch1 <= SrcBAlphaBus; 10

 SrcBRedBusLatch1 <= SrcBRedBus; 11

 SrcBGreenBusLatch0 <= SrcBGreenBus; 12

 SrcBBlueBusLatch0 <= SrcBBlueBus; 13

 end 14

 15

 16

 always@(posedge sclk) 17

 if(decode_Opcode) 18

 begin 19

 SrcCAlphaBusLatch1 <= SrcCAlphaBus; 20

 SrcCRedBusLatch1 <= SrcCRedBus; 21

 SrcCGreenBusLatch1 <= SrcCGreenBus; 22

 SrcCBlueBusLatch0 <= SrcCBlueBus; 23

 end 24

 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 475 of 611

 Page 21 of 30
Ex. 2107 - macc.v

 //second level of latches 1

 always@(posedge sclk) 2

 if(decode_SrcA) 3

 begin 4

 SrcARedBusLatch1 <= SrcARedBusLatch0; 5

 SrcAGreenBusLatch1 <= SrcAGreenBusLatch0; 6

 SrcABlueBusLatch1 <= SrcABlueBusLatch0; 7

 SrcBGreenBusLatch1 <= SrcBGreenBusLatch0; 8

 SrcBBlueBusLatch1 <= SrcBBlueBusLatch0; 9

 SrcCBlueBusLatch1 <= SrcCBlueBusLatch0; 10

 end 11

 12

 //-- 13

 // register the outputs from the latches into the MACC unit 14

 //--- 15

 always@(posedge sclk) 16

 begin 17

 if(decode_SrcA) 18

 OperandA <= SrcAAlphaBusLatch1; 19

 else if(decode_SrcB) 20

 OperandA <= SrcARedBusLatch1; 21

 else if(decode_SrcC) 22

 OperandA <= SrcAGreenBusLatch1; 23

 else 24

 OperandA <= SrcABlueBusLatch1; 25

 Page 22 of 30
Ex. 2107 - macc.v

 end // always@ (sclk) 1

 2

 3

 always@(posedge sclk) 4

 begin 5

 if(decode_SrcA) 6

 OperandB <= SrcBAlphaBusLatch1; 7

 else if(decode_SrcB) 8

 OperandB <= SrcBRedBusLatch1; 9

 else if(decode_SrcC) 10

 OperandB <= SrcBGreenBusLatch1; 11

 else 12

 OperandB <= SrcBBlueBusLatch1; 13

 end // always@ (sclk) 14

 15

 always@(posedge sclk) 16

 begin 17

 if(decode_SrcA) 18

 OperandC <= SrcCAlphaBusLatch1; 19

 else if(decode_SrcB) 20

 OperandC <= SrcCRedBusLatch1; 21

 else if(decode_SrcC) 22

 OperandC <= SrcCGreenBusLatch1; 23

 else 24

 OperandC <= SrcCBlueBusLatch1; 25

 Page 23 of 30
Ex. 2107 - macc.v

 end // always@ (sclk) 1

 2

 //--- 3

 //Input ModifierNEGATE. 4

 //-- 5

 always@(SrcANegate or OperandA) 6

 if(SrcANegate) 7

 OperandAMod[31:0]= {OperandA[31]^SrcANegate,OperandA[30:0]}; 8

 else 9

 OperandAMod = OperandA; 10

 11

 always@(SrcBNegate or OperandB) 12

 if(SrcBNegate) 13

 OperandBMod[31:0]= {OperandB[31]^SrcBNegate,OperandB[30:0]}; 14

 else 15

 OperandBMod = OperandB; 16

 17

 always@(SrcCNegate or OperandC) 18

 if(SrcCNegate) 19

 OperandCMod[31:0]= {OperandC[31]^SrcCNegate,OperandC[30:0]}; 20

 else 21

 OperandCMod = OperandC; 22

 //--- 23

 24

 //-- 25

 Page 24 of 30
Ex. 2107 - macc.v

 wire [1:0] opcode_mux_ctl; 1

 reg [1:0] 2
q0_opcode_mux_ctl,q1_opcode_mux_ctl,q2_opcode_mux_ctl,q3_opcode_mux_ctl,q4_opcode3
_mux_ctl; 4

 5

 //generating control signals for routing the proper path into the final result 6

 //00 : other 7

 //01 : min 8

 //10 : max 9

 10

 assign opcode_mux_ctl[0] = (VectorOpcode == MIN) ; 11

 assign opcode_mux_ctl[1] = (VectorOpcode == MAX) ; 12

 13

 14

 always @(posedge sclk) 15

 begin 16

 q0_opcode_mux_ctl <= opcode_mux_ctl; 17

 q1_opcode_mux_ctl <= q0_opcode_mux_ctl; 18

 q2_opcode_mux_ctl <= q1_opcode_mux_ctl; 19

 q3_opcode_mux_ctl <= q2_opcode_mux_ctl; 20

 q4_opcode_mux_ctl <= q3_opcode_mux_ctl; 21

 end 22

 23

 24

 //Floating point Multiply and Accumulate 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 476 of 611

 Page 25 of 30
Ex. 2107 - macc.v

 macc32 mad(OperandAMod, OperandBMod, OperandCMod, 1
VectorOpcode,MaccResult,sclk); 2

 3

 4

 //--- 5

 //some of the opcodes do not have to be implemented via the MACC unit 6

 //for example : MAX can be implemented via compares of the exponents and/or mantissas of 7

 //the two numbers assuming that the numbers are normalized 8

 //this is a separate parallel pipeline from the MACC 9

 //--- 10

 11

 //MIN or MAX 12

 //revisit this logic for the case when exp = 0 ...ANDI 13

 always @(/*AUTOSENSE*/OperandAMod or OperandBMod) 14

 begin 15

 if(OperandAMod[30:0] >= OperandBMod[30:0]) 16

 begin 17

 if(!OperandAMod[31]) 18

 begin 19

 ResultMax = OperandAMod; 20

 ResultMin = OperandBMod; 21

 end 22

 else 23

 begin 24

 ResultMax = OperandBMod; 25

 ResultMin = OperandAMod; 26

 Page 26 of 30
Ex. 2107 - macc.v

 end 1

 end // if (OperandAMod[30:0] >= OperandBMod[30:0]) 2

 else if (OperandBMod[30:0] >= OperandAMod[30:0]) 3

 begin 4

 if(!OperandBMod[31]) 5

 begin 6

 ResultMax = OperandBMod; 7

 ResultMin = OperandAMod; 8

 end 9

 else 10

 begin 11

 ResultMax = OperandAMod; 12

 ResultMin = OperandBMod; 13

 end 14

 end // if (OperandBMod[30:0] >= OperandAMod[30:0]) 15

 end // always @ (... 16

 17

 18

 //choose MIN vs. MAX 19

 assign ResultMaxMin = (opcode_mux_ctl[1]) ? ResultMax : ResultMin; 20

 21

 //delay the ResultMaxMin to match with the other path of the pipeline that goes through the 22
MACC 23

 always@(posedge sclk) 24

 begin 25

 q0_ResultMaxMin <= ResultMaxMin; 26

 Page 27 of 30
Ex. 2107 - macc.v

 q1_ResultMaxMin <= q0_ResultMaxMin; 1

 q2_ResultMaxMin <= q1_ResultMaxMin; 2

 q3_ResultMaxMin <= q2_ResultMaxMin; 3

 end 4

 5

 reg [31:0] MaccResultMux; 6

 7

 //--- 8

 //Routing the Result into MaccResultMux based on the opcode 9

 //--- 10

 always @(/*AUTOSENSE*/MaccResult or q3_ResultMaxMin 11

 or q4_opcode_mux_ctl) 12

 begin 13

 case(q4_opcode_mux_ctl) 14

 2'b00: MaccResultMux = MaccResult; 15

 2'b01: MaccResultMux = q3_ResultMaxMin; 16

 2'b10: MaccResultMux = q3_ResultMaxMin; 17

 default : MaccResultMux = MaccResult; 18

 endcase // case(opcode_mux_ctl) 19

 end 20

 21

 //-- 22

 //Clamping the result and other output modifiers 23

 always@(/*AUTOSENSE*/MaccResultMux or ResultClamp) 24

 begin 25

 Page 28 of 30
Ex. 2107 - macc.v

 if(ResultClamp) 1

 begin 2

 if(MaccResultMux[31]) 3

 MaccResultClamp = ZERO; 4

 else if(MaccResultMux[30:24] > GT_ONE_EXP) 5

 MaccResultClamp = ONE; 6

 else 7

 MaccResultClamp = MaccResultMux; 8

 end 9

 else 10

 MaccResultClamp = MaccResultMux; 11

 end // always@ (MaccResult or ResultClamp) 12

 13

 //-- 14

 //pipeline delays for the code....creating the 4 stage delay for the VectorResult 15

 //-- 16

 always@(posedge sclk) 17

 begin 18

 q0_MaccResultClamp <= MaccResultClamp; 19

 q1_MaccResultClamp <= q0_MaccResultClamp; 20

 q2_MaccResultClamp <= q1_MaccResultClamp; 21

 end 22

 23

 assign VectorData = {q2_MaccResultClamp, q1_MaccResultClamp, q0_MaccResultClamp, 24
MaccResultClamp}; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 477 of 611

 Page 29 of 30
Ex. 2107 - macc.v

 assign oResult = {q2_MaccResultClamp, q1_MaccResultClamp, q0_MaccResultClamp, 1
MaccResultClamp} ; 2

 3

 //--- 4

 //passing selected and modified OperandCMod to the input of the Scalar Unit 5

 //-- 6

 assign oScalarInput = OperandCMod; 7

 assign oScalarOpcode = ScalarOpcode; 8

 9

 10

endmodule // macc 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 Page 30 of 30
Ex. 2107 - macc.v

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 478 of 611

 Page 1 of 8
Ex. 2108 - macc32.mc

// -*- Mode: Verilog -*- 1

// Filename : macc32.mc 2

// Description : This file represents the implementation of the MACC unit (Multiply and 3
Accumulate) 4

// Author : Andi Skende 5

// Created On : Mon Jan 28 16:04:47 2002 6

// Last Modified By: . 7

// Last Modified On: . 8

// Update Count : 0 9

// Status : Unknown, Use with caution! 10

 11

module macc32(in1,in2,in3,opcode,result); 12

 directive(delay = 2400,pipeline = "on"); 13

 directive(clock = "iSCLK"); 14

 directive(multtype="booth"); 15

 directive(fatype = "fastcla"); 16

 17

 18

 //--- 19

 //declaration of the input data as 32-bit IEEE floating point with an implicit 1 as bit 24 of the 20

 //mantissa 21

 //--- 22

 input unsigned [31:0] in1; 23

 input unsigned [31:0] in2; 24

 input unsigned [31:0] in3; 25

 input unsigned [4:0] opcode; 26

 Page 2 of 8
Ex. 2108 - macc32.mc

 output unsigned [31:0] result; 1

 2

 //--- 3

 // ALU opcode list declaration 4

 //--- 5

 #define ADD 5'h00 6

 #define MUL 5'h01 7

 #define MAX 5'h02 8

 #define MIN 5'h03 9

 #define SETE 5'h04 10

 #define SETGT 5'h05 11

 #define SETGE 5'h06 12

 #define SETNE 5'h07 13

 #define FRACT 5'h08 14

 #define TRUNC 5'h09 15

 #define FLOOR 5'h0a 16

 #define MULADD 5'h0b 17

 #define CNDE 5'h0c 18

 #define CNDGE 5'h0d 19

 #define CNDGT 5'h0e 20

 21

 //declaring a couple of constants 22

 //--- 23

 wire unsigned [0:0] one = 1'h1; 24

 wire unsigned [0:0] zero = 1'h0; 25

 Page 3 of 8
Ex. 2108 - macc32.mc

 wire unsigned [31:0] one_ieee = 31'h3f800000; 1

 2

 //control signals related to opcode 3

 //--- 4

 wire unsigned [0:0] opcode_add = (opcode == ADD) ? one :zero; 5

 wire unsigned [0:0] opcode_trunc = (opcode == TRUNC) ? one : zero; 6

 wire unsigned [0:0] opcode_fract = (opcode == FRACT) ? one : zero; 7

 wire unsigned [0:0] opcode_muladd = (opcode == MULADD) ? one : zero; 8

 wire unsigned [0:0] opcode_mul = (opcode == MUL) ? one : zero; 9

 10

 //breaking the input number up into respective fields 11

 //-- 12

 wire unsigned [0:0] sign1 = in1[31]; 13

 wire unsigned [0:0] sign2 = (opcode_add) ? one_ieee[31]:in2[31]; 14

 wire unsigned [0:0] sign3 = (opcode_add) ? in2[31]:in3[31]; 15

 16

 wire unsigned [7:0] exp1 = in1[30:23]; 17

 wire unsigned [7:0] exp2 = (opcode_add) ? one_ieee[30:23]:in2[30:23]; 18

 wire unsigned [7:0] exp3 = (opcode_add) ? in2[30:23]:in3[30:23]; 19

 20

 wire unsigned [23:0] mant1_one = cat(one, in1[22:0]); 21

 wire unsigned [23:0] mant2_one = (opcode_add) ? cat(one, one_ieee[22:0]):cat(one, 22
in2[22:0]); 23

 wire unsigned [23:0] mant3_one = (opcode_add) ? cat(one, in2[22:0]): cat(one, in3[22:0]); 24

 25

 26

 Page 4 of 8
Ex. 2108 - macc32.mc

 wire signed [24:0] mant1_signed = -mant1_one; 1

 wire signed [24:0] mant1 = (sign1) ? mant1_signed : mant1_one ; 2

 wire signed [24:0] mant2_signed = -mant2_one; 3

 wire signed [24:0] mant2 = (sign2) ? mant2_signed : mant2_one ; 4

 wire signed [24:0] mant3_signed = -mant3_one; 5

 wire signed [24:0] mant3 = (sign3) ? mant3_signed : mant3_one ; 6

 7

 8

 9

 //--- 10

 // selection logic for all three paths exp, mantissa and sign based on the opcode 11

 //-- 12

 //1: muladd, mul, add 13

 //0: fraction 14

 wire unsigned [0:0] opcode_mul_add = opcode_add | opcode_muladd | opcode_mul; 15

 wire unsigned [0:0] opcode_frac_trunc = opcode_fract | opcode_trunc; 16

 //wire unsigned [1:0] opcode_sel = cat(opcode_mul_add, opcode_frac_trunc); 17

 wire unsigned [0:0] opcode_sel = opcode_mul_add; 18

 19

 //--- 20

 //calculating the exponent for in1*in2 and the exponent delta 21

 //--- 22

 23

 // if opcode == FRACT write the exp_delta with exp1 ...and the real delta for all 24

 // the other cases 25

ATI 2108
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 479 of 611

 Page 5 of 8
Ex. 2108 - macc32.mc

 wire signed [8:0] exp1_plus_exp2 = exp1 + exp2; 1

 wire signed [8:0] exp_mul = (opcode_sel) ? exp1_plus_exp2 : exp1; 2

 wire signed [8:0] exp_mul_minus_exp3 = exp_mul - exp3; 3

 wire signed [8:0] exp_delta =(opcode_sel) ? exp_mul_minus_exp3 : exp_mul; 4

 5

 //detection of whether the number (in1) is all-fraction value (number < 1) 6

 wire unsigned [0:0] fract_all_fract = (exp_delta < 127); 7

 8

 wire signed [7:0] exp_delta_unbiased = exp_delta - 127; 9

 wire unsigned [7:0] exp_delta_unsigned = - exp_delta_unbiased; 10

 wire unsigned [7:0] exp_delta_abs = (exp_delta_unbiased > 0)? exp_delta_unbiased: 11
exp_delta_unsigned; 12

 wire unsigned [0:0] exp_delta_gt_24 = (exp_delta_abs > 5'h18) ? one : zero ; //flag to avoid 13
shifting out for more than 24 positions 14

 15

 //special logic related to FRACT and TRUNC logic 16

 wire unsigned [23:0] mant_fract = mant1_one << exp_delta_abs; 17

 wire unsigned [23:0] mant_fract_unormalized = (fract_all_fract) ? mant1_one: 18
mant_fract[22:0]; 19

 20

 //-- 21

 //multiplyingin1*in2 22

 //-- 23

 wire signed [48:0] mant_in1_in2 = mant1 * mant2; 24

 wire signed [25:0] mant_in1_in2_shf = mant_in1_in2 >> 23; //andi ...no need to shift...just 25
mask out the bottom 23 bits 26

 27

 Page 6 of 8
Ex. 2108 - macc32.mc

 //-- 1

 // denormalizing of the data before addition 2

 //-- 3

 wire signed [25:0] mant_in1_in2_shf_24 = (exp_delta_gt_24) ? 26'h0 : mant_in1_in2_shf 4
>> exp_delta_abs; 5

 wire signed [25:0] mant_mul = (exp_delta > 127) ? mant_in1_in2_shf: 6
(mant_in1_in2_shf_24); 7

 wire signed [25:0] mant3_shft = (exp_delta_gt_24) ? 25'h0 : mant3 >> exp_delta_abs; 8

 wire signed [24:0] mant3_denorm = (exp_delta > 127) ? mant3_shft : mant3; 9

 10

 //--- 11

 //addition of the product result with the third argument into the macc unit 12

 //-- 13

 wire signed [26:0] mant_res = mant_mul + mant3_denorm; 14

 //--- 15

 16

 wire signed [26:0] mant_result = mant_res >> 1; 17

 wire signed [8:0] exp_mul_minus126 = exp_mul - 126; 18

 //wire signed [8:0] exp_mul_m126 = (opcode_sel) ? exp_mul_minus126 : 9'h7f; 19

 wire signed [8:0] exp2_plus1 = exp2 + 1; 20

 wire signed [8:0] exp_res = (exp_delta >= 127) ? exp_mul_minus126 : exp2_plus1; 21

 22

 wire signed [7:0] exp_fract = (fract_all_fract) ? exp1 : 8'h7f; 23

 wire signed [8:0] exp_result = (opcode_sel) ? exp_res : exp_fract; 24

 //-- 25

 wire unsigned [26:0] mant_result_neg = -mant_result; 26

 Page 7 of 8
Ex. 2108 - macc32.mc

 wire unsigned [26:0] mant_res_unsigned = (mant_res > 0) ? mant_result: mant_result_neg; 1

 2

 3

 // this mux can be larger with the other opcodes being added in time 4

 wire unsigned [23:0] mant_res_unormalized = (opcode_sel) ? mant_res_unsigned[23:0]: 5
mant_fract_unormalized; 6

 7

 wire unsigned [7:0] exp_modify = LZ(mant_res_unormalized); 8

 wire unsigned [7:0] exp_final = exp_result - exp_modify; 9

 10

 wire unsigned [0:0] sign_add_final = (mant_res > 0) ? 0:1; 11

 wire unsigned [0:0] sign_final = (opcode_sel) ? sign_add_final : sign1; 12

 13

 wire unsigned [23:0] mant_final_shifted = mant_res_unormalized << exp_modify; 14

 wire unsigned [23:0] mant_final = mant_final_shifted; 15

 16

 wire unsigned [31:0] result_temp = cat(sign_final, exp_final, mant_final[22:0]); 17

 18

 //--- 19

 //defining the delay as 4 pipeline stages 20

 //--- 21

 result = ResolveLatency(result_temp,5); 22

 //result = result_temp; 23

 24

 25

endmodule // macc32 26

 Page 8 of 8
Ex. 2108 - macc32.mc

 1

 2

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 480 of 611

 Page 1 of 25
Ex. 2109 - sx.v

// -*- Mode: Verilog -*- 1

// Filename : sx.v 2

// Description : Shader Export top level 3

// Author : Andi Skende 4

// Created On : Thu Mar 21 13:59:48 2002 5

// Last Modified By: . 6

// Last Modified On: . 7

// Update Count : 0 8

// Status : Unknown, Use with caution! 9

 10

`timescale 1ns / 1ps 11

module sx(/*AUTOARG*/ 12

 // Outputs 13

 SX_SC_quad_rtr, SX_RBB_rs_out, SX_RBB_rd_out, SX_RBBM_busy, 14

 SX_pipe_we, SX_pipe_re, SX_pipe_a, SX_pipe_wd, 15

 SX_SQ_exp_count_rdy, SX_SQ_exp_pos_avail, SX_SQ_exp_buf_avail, 16

 SX_SP_vtx_data0, SX_SP_vtx_data1, SX_SP_vtx_data2, 17

 SX_out_vtx_data0, SX_out_vtx_data1, SX_out_vtx_data2, 18

 SX_RB_quad_x, SX_RB_quad_y, SX_RB_quad_mask, SX_RB_quad_type, 19

 SX_RB_quad_pixel, SX_RB_quad_index, SX_RB0_quad_send, 20

 SX_RB1_quad_send, SX_RB2_quad_send, SX_RB3_quad_send, 21

 SX_RB0_color_data, SX_RB1_color_data, SX_RB2_color_data, 22

 SX_RB3_color_data, SX_RB0_color_send, SX_RB1_color_send, 23

 SX_RB2_color_send, SX_RB3_color_send, SX_RB0_index_rtr, 24

 SX_RB1_index_rtr, SX_RB2_index_rtr, SX_RB3_index_rtr, SX_PA_send, 25

 Page 2 of 25
Ex. 2109 - sx.v

 SX_PA_data, 1

 // Inputs 2

 CG_SX_pm_enb, SC_SX_quad_x, SC_SX_quad_y, SC_SX_quad_mask, 3

 SC_SX_quad_tilex, SC_SX_quad_tiley, SC_SX_quad_send, sclk_global, 4

 srst, SQ_SX_interp_flat_vtx, SQ_SX_interp_flat_gouraud, 5

 SQ_SX_interp_cyl_wrap, SQ_SX_pc_ptr0, SQ_SX_pc_ptr1, 6

 SQ_SX_pc_ptr2, SQ_SX_rt_sel, SQ_SX_pc_wr_en, SQ_SX_pc_wr_addr, 7

 SQ_SX_pc_channel_mask, SP0_SX_data0, SP0_SX_data1, SP0_SX_data2, 8

 SP0_SX_data3, SP1_SX_data0, SP1_SX_data1, SP1_SX_data2, 9

 SP1_SX_data3, SP0_SX_exp_pvalid, SP1_SX_exp_pvalid, 10

 SP0_SX_exp_alu_id, SP1_SX_exp_alu_id, SP0_SX_exporting, 11

 SP1_SX_exporting, SP0_SX_exp_dest, SP1_SX_exp_dest, 12

 SQ_SX_exp_type, SQ_SX_exp_number, SQ_SX_exp_state, SQ_SX_exp_id, 13

 SQ_SX_exp_valid, SQ_SX_free_done, SQ_SX_free_id, 14

 RBBM_SX_soft_reset, RBBM_we, RBBM_wd, RBBM_a, RBBM_be, RBBM_re, 15

 RBB_rs_in, RBB_rd_in, SX_in_vtx_data0, SX_in_vtx_data1, 16

 SX_in_vtx_data2, RB0_SX_quad_rtr, RB1_SX_quad_rtr, 17

 RB2_SX_quad_rtr, RB3_SX_quad_rtr, RB0_SX_color_rtr, 18

 RB1_SX_color_rtr, RB2_SX_color_rtr, RB3_SX_color_rtr, 19

 RB0_SX_index, RB1_SX_index, RB2_SX_index, RB3_SX_index, 20

 RB0_SX_index_send, RB1_SX_index_send, RB2_SX_index_send, 21

 RB3_SX_index_send, RB0_SX_index_op, RB1_SX_index_op, 22

 RB2_SX_index_op, RB3_SX_index_op, PA_SX_req, PA_SX_sp_id, 23

 PA_SX_offset, PA_SX_aux, PA_SX_last 24

); 25

 Page 3 of 25
Ex. 2109 - sx.v

 1

 //--// 2

 parameter unit_id = 1'b0; 3

 4

 5

 //---// 6

 //Power managment control interface 7

 input [0:0] CG_SX_pm_enb; 8

 9

 //---// 10

 //SC to SX Quad info interface 11

 //---// 12

 input [1:0] SC_SX_quad_x; 13

 input [1:0] SC_SX_quad_y; 14

 input [31:0] SC_SX_quad_mask; 15

 input [1:0] SC_SX_quad_tilex; 16

 input SC_SX_quad_tiley; 17

 input SC_SX_quad_send; 18

 output SX_SC_quad_rtr; 19

 input sclk_global; 20

 input srst; 21

 22

 wire sclk; 23

 assign sclk = sclk_global; 24

 25

 Page 4 of 25
Ex. 2109 - sx.v

 wire [0:0] sx_quad_rtr, q_sx_sc_quad_rtr; 1

 ati_dff_out #(1) usx_sc_quad_rtr(sclk,sx_quad_rtr,q_sx_sc_quad_rtr); 2

 3

 assign SX_SC_quad_rtr = q_sx_sc_quad_rtr; 4

 5

 wire [1:0] q_sc_sx_quad_x; 6

 wire [1:0] q_sc_sx_quad_y; 7

 wire [31:0] q_sc_sx_quad_mask; 8

 wire [1:0] q_sc_sx_quad_tilex; 9

 wire [0:0] q_sc_sx_quad_tiley; 10

 wire [0:0] q_sc_sx_quad_send; 11

 12

 ati_dff_in #(2) usc_sx_quad_x(sclk,SC_SX_quad_x,q_sc_sx_quad_x); 13

 ati_dff_in #(2) usc_sx_quad_y(sclk,SC_SX_quad_y,q_sc_sx_quad_y); 14

 ati_dff_in #(32) usc_sx_quad_mask(sclk,SC_SX_quad_mask,q_sc_sx_quad_mask); 15

 ati_dff_in #(2) usc_sx_quad_tilex(sclk,SC_SX_quad_tilex,q_sc_sx_quad_tilex); 16

 ati_dff_in #(1) usc_sx_quad_tiley(sclk,SC_SX_quad_tiley,q_sc_sx_quad_tiley); 17

 ati_dff_in #(1) usc_sx_quad_send(sclk, SC_SX_quad_send, q_sc_sx_quad_send); 18

 19

 //--/ 20

 //SQ to SX Interpolation Bus/Parameter Cache--------------------------/ 21

 //---/ 22

 input [1:0] SQ_SX_interp_flat_vtx; 23

 input [0:0] SQ_SX_interp_flat_gouraud; 24

 input [3:0] SQ_SX_interp_cyl_wrap; 25

ATI 2109
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 481 of 611

 Page 5 of 25
Ex. 2109 - sx.v

 input [10:0] SQ_SX_pc_ptr0, SQ_SX_pc_ptr1, SQ_SX_pc_ptr2; 1

 input [0:0] SQ_SX_rt_sel; 2

 input [0:0] SQ_SX_pc_wr_en; 3

 input [6:0] SQ_SX_pc_wr_addr; 4

 input [3:0] SQ_SX_pc_channel_mask; 5

 6

 //--// 7

 //Export Data Interface coming from SP going into Parameter Cache or Export Buffers 8

 //--// 9

 input [127:0] SP0_SX_data0,SP0_SX_data1,SP0_SX_data2,SP0_SX_data3; 10

 input [127:0] SP1_SX_data0,SP1_SX_data1,SP1_SX_data2,SP1_SX_data3; 11

 12

 wire [127:0] q_sp0_sx_data0, q_sp0_sx_data1, q_sp0_sx_data2, q_sp0_sx_data3; 13

 wire [127:0] q_sp1_sx_data0, q_sp1_sx_data1, q_sp1_sx_data2, q_sp1_sx_data3; 14

 15

 ati_dff_in #(128) usp0_sx_data0(sclk,SP0_SX_data0,q_sp0_sx_data0); 16

 ati_dff_in #(128) usp0_sx_data1(sclk,SP0_SX_data1,q_sp0_sx_data1); 17

 ati_dff_in #(128) usp0_sx_data2(sclk,SP0_SX_data2,q_sp0_sx_data2); 18

 ati_dff_in #(128) usp0_sx_data3(sclk,SP0_SX_data3,q_sp0_sx_data3); 19

 20

 ati_dff_in #(128) usp1_sx_data0(sclk,SP1_SX_data0,q_sp1_sx_data0); 21

 ati_dff_in #(128) usp1_sx_data1(sclk,SP1_SX_data1,q_sp1_sx_data1); 22

 ati_dff_in #(128) usp1_sx_data2(sclk,SP1_SX_data2,q_sp1_sx_data2); 23

 ati_dff_in #(128) usp1_sx_data3(sclk,SP1_SX_data3,q_sp1_sx_data3); 24

 25

 Page 6 of 25
Ex. 2109 - sx.v

 1

 input [3:0] SP0_SX_exp_pvalid, SP1_SX_exp_pvalid; //pixel valid mask 2

 input SP0_SX_exp_alu_id, SP1_SX_exp_alu_id; //isn't one of these signals 3
redundand ??? ANDI 4

 input [0:0] SP0_SX_exporting, SP1_SX_exporting; //isn't one of these signals redundand 5
??? ANDI 6

 input [5:0] SP0_SX_exp_dest, SP1_SX_exp_dest; //these are coming straight from the 7
destination pointer of the ALU instruction 8

 //SP does nothing else other than pipelining them through. 9

 10

 11

 wire [3:0] q_sp0_sx_exp_pvalid, q_sp1_sx_exp_pvalid; 12

 wire q_sp0_sx_exp_alu_id, q_sp1_sx_exp_alu_id; 13

 wire [0:0] q_sp0_sx_exporting, q_sp1_sx_exporting; 14

 wire [5:0] q_sp0_sx_exp_dest, q_sp1_sx_exp_dest; 15

 16

 17

 ati_dff_in #(4) usp0_sx_exp_pvalid(sclk,SP0_SX_exp_pvalid,q_sp0_sx_exp_pvalid); 18

 ati_dff_in #(4) usp1_sx_exp_pvalid(sclk,SP1_SX_exp_pvalid,q_sp1_sx_exp_pvalid); 19

 ati_dff_in #(1) usp0_sx_exp_alu_id(sclk,SP0_SX_exp_alu_id,q_sp0_sx_exp_alu_id); 20

 ati_dff_in #(1) usp1_sx_exp_alu_id(sclk,SP1_SX_exp_alu_id,q_sp1_sx_exp_alu_id); 21

 ati_dff_in #(1) usp0_sx_exporting(sclk,SP0_SX_exporting,q_sp0_sx_exporting); 22

 ati_dff_in #(1) usp1_sx_exporting(sclk,SP1_SX_exporting,q_sp1_sx_exporting); 23

 ati_dff_in #(6) usp0_sx_exp_dst(sclk,SP0_SX_exp_dest,q_sp0_sx_exp_dest); 24

 ati_dff_in #(6) usp1_sx_exp_dst(sclk,SP1_SX_exp_dest,q_sp1_sx_exp_dest); 25

 26

 Page 7 of 25
Ex. 2109 - sx.v

 //---/ 1

 //SQ to SX Export Control Bus 2

 //--/ 3

 input [1:0] SQ_SX_exp_type; 4

 input [1:0] SQ_SX_exp_number; 5

 input [2:0] SQ_SX_exp_state; 6

 input [0:0] SQ_SX_exp_id; 7

 input [0:0] SQ_SX_exp_valid; 8

 input [0:0] SQ_SX_free_done; 9

 input [0:0] SQ_SX_free_id; 10

 11

 wire [1:0] q_sq_sx_exp_type; 12

 wire [1:0] q_sq_sx_exp_number; 13

 wire [2:0] q_sq_sx_exp_state; 14

 wire [0:0] q_sq_sx_exp_id; 15

 wire [0:0] q_sq_sx_exp_valid; 16

 wire [0:0] q_sq_sx_free_done; 17

 wire [0:0] q_sq_sx_free_id; 18

 19

 ati_dff_in #(2) usq_sx_exp_type(sclk,SQ_SX_exp_type,q_sq_sx_exp_type); 20

 ati_dff_in #(2) usq_sx_exp_number(sclk,SQ_SX_exp_number,q_sq_sx_exp_number); 21

 ati_dff_in #(3) usq_sx_exp_state(sclk,SQ_SX_exp_state,q_sq_sx_exp_state); 22

 ati_dff_in #(1) usq_sx_exp_id(sclk,SQ_SX_exp_id,q_sq_sx_exp_id); 23

 ati_dff_in #(1) usq_sx_exp_valid(sclk,SQ_SX_exp_valid,q_sq_sx_exp_valid); 24

 ati_dff_in #(1) usq_sx_free_done(sclk,SQ_SX_free_done,q_sq_sx_free_done); 25

 Page 8 of 25
Ex. 2109 - sx.v

 ati_dff_in #(1) usq_sx_free_id(sclk,SQ_SX_free_id,q_sq_sx_free_id); 1

 2

 //--/ 3

 //CP/RBBM Interface for Real Time data and snooping state registers 4

 //--/ 5

 //There's no rtr nrtrtr signals ...tie them high or low at the top level 6

 7

 input RBBM_SX_soft_reset; 8

 input RBBM_we; 9

 input [31:0] RBBM_wd; 10

 input [14:0] RBBM_a; 11

 input [3:0] RBBM_be; 12

 input RBBM_re; 13

 input RBB_rs_in; 14

 input [31:0] RBB_rd_in; 15

 16

 wire q_rbbm_sx_soft_reset; 17

 wire q_rbbm_we; 18

 wire [31:0] q_rbbm_wd; 19

 wire [14:0] q_rbbm_a; 20

 wire [3:0] q_rbbm_be; 21

 wire q_rbbm_re; 22

 wire q_rbb_rs_in; 23

 wire [31:0] q_rbb_rd_in; 24

 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 482 of 611

 Page 9 of 25
Ex. 2109 - sx.v

 ati_dff_in #(1) urbbm_sx_soft_reset(sclk,RBBM_SX_soft_reset,q_rbbm_sx_soft_reset); 1

 2

 output SX_RBB_rs_out; 3

 output [31:0] SX_RBB_rd_out; 4

 output SX_RBBM_busy; //tie this high 5

 6

 wire sx_rbbm_busy, q_sx_rbbm_busy; 7

 8

 //ati_dff_out #(1) usx_rbb_rs_out(sclk, sx_rbb_rs_out,q_sx_rbb_rs_out); 9

 ati_dff_out #(1) usx_rbbm_busy(sclk, sx_rbbm_busy,q_sx_rbbm_busy); 10

 //ati_dff_out #(32) usx_rbb_rd_out(sclk, sx_rbb_rd_out,q_sx_rbb_rd_out); 11

 12

 13

 output [0:0] SX_pipe_we, SX_pipe_re; 14

 output [14:0] SX_pipe_a; 15

 output [31:0] SX_pipe_wd; 16

 17

 //instantiating the rbbm interface common module 18

 19

 ati_rbbm_intf urbbm_interface (20

 .sclk_reg(sclk), 21

 .rbbm_we(RBBM_we), 22

 .rbbm_re(RBBM_re), 23

 .rbbm_a(RBBM_a), 24

 .rbbm_wd(RBBM_wd), 25

 Page 10 of 25
Ex. 2109 - sx.v

 1

 //.reg_we, 2

 //.reg_re, 3

 //.reg_a, 4

 //.reg_wd, 5

 6

 .pipe_we(SX_pipe_we), 7

 .pipe_re(SX_pipe_re), 8

 .pipe_a(SX_pipe_a), 9

 .pipe_wd(SX_pipe_wd), 10

 11

 .rbbm_rs_in(RBB_rs_in), 12

 .rbbm_rd_in(RBB_rd_in), 13

 14

 .block_rs(1'b0), 15

 .block_rd(32'b0), 16

 17

 .rbbm_rs_out(SX_RBB_rs_out), 18

 .rbbm_rd_out(SX_RBB_rd_out) 19

); 20

 21

 22

 //--/ 23

 //Export Buffer status control interface 24

 //--/ 25

 Page 11 of 25
Ex. 2109 - sx.v

 output SX_SQ_exp_count_rdy; 1

 output SX_SQ_exp_pos_avail; 2

 output [6:0] SX_SQ_exp_buf_avail; 3

 4

 wire sx_sq_exp_count_rdy, q_sx_sq_exp_count_rdy; 5

 wire sx_sq_exp_pos_avail, q_sx_sq_exp_pos_avail; 6

 wire [6:0] sx_sq_exp_buf_avail, q_sx_sq_exp_buf_avail; 7

 8

 //assign SX_SQ_exp_count_rdy = q_sx_sq_exp_count_rdy; 9

 //assign SX_SQ_exp_pos_avail = q_sx_sq_exp_pos_avail; 10

 //assign SX_SQ_exp_buf_avail = q_sx_sq_exp_buf_avail; 11

 12

 13

 //hack for nowANDI 14

 assign SX_SQ_exp_pos_avail = 1'b1; 15

 assign SX_SQ_exp_buf_avail = 7'h40; 16

 assign SX_SQ_exp_count_rdy = 1'b1; 17

 18

 19

 //---// 20

 //Attribute Data into SP interpolators 21

 //--// 22

 output [127:0] SX_SP_vtx_data0; 23

 output [131:0] SX_SP_vtx_data1, SX_SP_vtx_data2; //these are (denormalized) outputs from 24
the difference engines 25

 26

 Page 12 of 25
Ex. 2109 - sx.v

 wire [127:0] sx_vtx_data0; 1

 wire [131:0] sx_vtx_data1, sx_vtx_data2; 2

 wire [127:0] q_sx_vtx_data0; 3

 wire [131:0] q_sx_vtx_data1, q_sx_vtx_data2; 4

 5

 6

 //---// 7

 //SX-SX interfaceVertex Parameter Data sharing between two SXs 8

 // FRANK ! 9

 // This is the exception we talked about 10

 //--// 11

 12

 input [127:0] SX_in_vtx_data0, SX_in_vtx_data1,SX_in_vtx_data2; 13

 output [127:0] SX_out_vtx_data0, SX_out_vtx_data1,SX_out_vtx_data2; 14

 15

 //--// 16

 //SX-RB interface 17

 //--// 18

 19

 //---------------------// 20

 //--Quad Interface-----// 21

 //---------------------// 22

 output [1:0] SX_RB_quad_x; 23

 output [1:0] SX_RB_quad_y; 24

 output [31:0] SX_RB_quad_mask; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 483 of 611

 Page 13 of 25
Ex. 2109 - sx.v

 output [0:0] SX_RB_quad_type; 1

 output [3:0] SX_RB_quad_pixel; 2

 output [7:0] SX_RB_quad_index; 3

 output [0:0] SX_RB0_quad_send, SX_RB1_quad_send, SX_RB2_quad_send, 4
SX_RB3_quad_send; 5

 6

 wire [1:0] q_sx_rb_quad_x; 7

 wire [1:0] q_sx_rb_quad_y; 8

 wire [31:0] q_sx_rb_quad_mask; 9

 wire [0:0] q_sx_rb_quad_type; 10

 wire [3:0] q_sx_rb_quad_pixel; 11

 wire [7:0] q_sx_rb_quad_index; 12

 wire [0:0] q_sx_rb0_quad_send, q_sx_rb1_quad_send, q_sx_rb2_quad_send, 13
q_sx_rb3_quad_send; 14

 15

 wire [1:0] sx_rb_quad_x; 16

 wire [1:0] sx_rb_quad_y; 17

 wire [31:0] sx_rb_quad_mask; 18

 wire [0:0] sx_rb_quad_type; 19

 wire [3:0] sx_rb_quad_pixel; 20

 wire [7:0] sx_rb_quad_index; 21

 wire [0:0] sx_rb0_quad_send, sx_rb1_quad_send, sx_rb2_quad_send, sx_rb3_quad_send; 22

 23

 24

 ati_dff_out #(2) usx_rb_quad_x(sclk, sx_rb_quad_x,q_sx_rb_quad_x); 25

 ati_dff_out #(2) usx_rb_quad_y(sclk, sx_rb_quad_y,q_sx_rb_quad_y); 26

 Page 14 of 25
Ex. 2109 - sx.v

 ati_dff_out #(32) usx_rb_quad_mask(sclk, sx_rb_quad_mask,q_sx_rb_quad_mask); 1

 ati_dff_out #(1) usx_rb_quad_type(sclk, sx_rb_quad_type,q_sx_rb_quad_type); 2

 ati_dff_out #(4) usx_rb_quad_pixel(sclk, sx_rb_quad_pixel,q_sx_rb_quad_pixel); 3

 ati_dff_out #(8) usx_rb_quad_index(sclk, sx_rb_quad_index,q_sx_rb_quad_index); 4

 ati_dff_out #(1) usx_rb0_quad_send(sclk, sx_rb0_quad_send,q_sx_rb0_quad_send); 5

 ati_dff_out #(1) usx_rb1_quad_send(sclk, sx_rb1_quad_send,q_sx_rb1_quad_send); 6

 ati_dff_out #(1) usx_rb2_quad_send(sclk, sx_rb2_quad_send,q_sx_rb2_quad_send); 7

 ati_dff_out #(1) usx_rb3_quad_send(sclk, sx_rb3_quad_send,q_sx_rb3_quad_send); 8

 9

 assign SX_RB_quad_x = q_sx_rb_quad_x; 10

 assign SX_RB_quad_y = q_sx_rb_quad_y; 11

 assign SX_RB_quad_mask = q_sx_rb_quad_mask; 12

 assign SX_RB_quad_type = q_sx_rb_quad_type; 13

 assign SX_RB_quad_pixel = q_sx_rb_quad_pixel; 14

 assign SX_RB_quad_index = q_sx_rb_quad_index; 15

 assign SX_RB0_quad_send = q_sx_rb0_quad_send; 16

 assign SX_RB1_quad_send = q_sx_rb1_quad_send; 17

 assign SX_RB2_quad_send = q_sx_rb2_quad_send; 18

 assign SX_RB3_quad_send = q_sx_rb3_quad_send; 19

 20

 21

 input [0:0] RB0_SX_quad_rtr, RB1_SX_quad_rtr, RB2_SX_quad_rtr, RB3_SX_quad_rtr; 22

 wire [0:0] q_rb0_sx_quad_rtr,q_rb1_sx_quad_rtr,q_rb2_sx_quad_rtr,q_rb3_sx_quad_rtr; 23

 24

 ati_dff_in #(1) urb0_sx_quad_rtr(sclk,RB0_SX_quad_rtr,q_rb0_sx_quad_rtr); 25

 Page 15 of 25
Ex. 2109 - sx.v

 ati_dff_in #(1) urb1_sx_quad_rtr(sclk,RB1_SX_quad_rtr,q_rb1_sx_quad_rtr); 1

 ati_dff_in #(1) urb2_sx_quad_rtr(sclk,RB2_SX_quad_rtr,q_rb2_sx_quad_rtr); 2

 ati_dff_in #(1) urb3_sx_quad_rtr(sclk,RB3_SX_quad_rtr,q_rb3_sx_quad_rtr); 3

 4

 assign SX_RB_quad_pixel = 4'b0; 5

 assign SX_RB_quad_type = 1'b0; 6

 7

 8

 //--------------------------------------// 9

 //--Pixel Color Data interface----------// 10

 //--------------------------------------// 11

 output [127:0] 12
SX_RB0_color_data,SX_RB1_color_data,SX_RB2_color_data,SX_RB3_color_data; 13

 output [0:0] 14
SX_RB0_color_send,SX_RB1_color_send,SX_RB2_color_send,SX_RB3_color_send; 15

 16

 17

 wire [127:0] sx_rb0_color_data,sx_rb1_color_data,sx_rb2_color_data,sx_rb3_color_data; 18

 wire [0:0] sx_rb0_color_send,sx_rb1_color_send,sx_rb2_color_send,sx_rb3_color_send; 19

 20

 wire [127:0] 21
q_sx_rb0_color_data,q_sx_rb1_color_data,q_sx_rb2_color_data,q_sx_rb3_color_data; 22

 wire [0:0] 23
q_sx_rb0_color_send,q_sx_rb1_color_send,q_sx_rb2_color_send,q_sx_rb3_color_send; 24

 25

 ati_dff_out #(128) usx_rb0_color_data(sclk, sx_rb0_color_data,q_sx_rb0_color_data); 26

 ati_dff_out #(128) usx_rb1_color_data(sclk, sx_rb1_color_data,q_sx_rb1_color_data); 27

 Page 16 of 25
Ex. 2109 - sx.v

 ati_dff_out #(128) usx_rb2_color_data(sclk, sx_rb2_color_data,q_sx_rb2_color_data); 1

 ati_dff_out #(128) usx_rb3_color_data(sclk, sx_rb3_color_data,q_sx_rb3_color_data); 2

 3

 ati_dff_out #(1) usx_rb0_color_send(sclk, sx_rb0_color_send,q_sx_rb0_color_send); 4

 ati_dff_out #(1) usx_rb1_color_send(sclk, sx_rb1_color_send,q_sx_rb1_color_send); 5

 ati_dff_out #(1) usx_rb2_color_send(sclk, sx_rb2_color_send,q_sx_rb2_color_send); 6

 ati_dff_out #(1) usx_rb3_color_send(sclk, sx_rb3_color_send,q_sx_rb3_color_send); 7

 8

 assign SX_RB0_color_data = q_sx_rb0_color_data; 9

 assign SX_RB1_color_data = q_sx_rb1_color_data; 10

 assign SX_RB2_color_data = q_sx_rb2_color_data; 11

 assign SX_RB3_color_data = q_sx_rb3_color_data; 12

 13

 assign SX_RB0_color_send = q_sx_rb0_color_send; 14

 assign SX_RB1_color_send = q_sx_rb1_color_send; 15

 assign SX_RB2_color_send = q_sx_rb2_color_send; 16

 assign SX_RB3_color_send = q_sx_rb3_color_send; 17

 18

 19

 input [0:0] RB0_SX_color_rtr,RB1_SX_color_rtr,RB2_SX_color_rtr,RB3_SX_color_rtr; 20

 wire [0:0] q_rb0_sx_color_rtr,q_rb1_sx_color_rtr,q_rb2_sx_color_rtr,q_rb3_sx_color_rtr; 21

 22

 ati_dff_in #(1) urb0_sx_color_rtr(sclk,RB0_SX_color_rtr,q_rb0_sx_color_rtr); 23

 ati_dff_in #(1) urb1_sx_color_rtr(sclk,RB1_SX_color_rtr,q_rb1_sx_color_rtr); 24

 ati_dff_in #(1) urb2_sx_color_rtr(sclk,RB2_SX_color_rtr,q_rb2_sx_color_rtr); 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 484 of 611

 Page 17 of 25
Ex. 2109 - sx.v

 ati_dff_in #(1) urb3_sx_color_rtr(sclk,RB3_SX_color_rtr,q_rb3_sx_color_rtr); 1

 2

 3

 //---// 4

 //SX to RB quad index interface-------------// 5

 //--// 6

 input [7:0] RB0_SX_index,RB1_SX_index,RB2_SX_index,RB3_SX_index; 7

 input [0:0] 8
RB0_SX_index_send,RB1_SX_index_send,RB2_SX_index_send,RB3_SX_index_send; 9

 input [0:0] RB0_SX_index_op, RB1_SX_index_op, RB2_SX_index_op, 10
RB3_SX_index_op; 11

 wire [7:0] q_rb0_sx_index,q_rb1_sx_index,q_rb2_sx_index,q_rb3_sx_index; 12

 wire [0:0] 13
q_rb0_sx_index_send,q_rb1_sx_index_send,q_rb2_sx_index_send,q_rb3_sx_index_send; 14

 wire [0:0] q_rb0_sx_index_op, q_rb1_sx_index_op, q_rb2_sx_index_op, 15
q_rb3_sx_index_op; 16

 17

 output [0:0] SX_RB0_index_rtr, 18
SX_RB1_index_rtr,SX_RB2_index_rtr,SX_RB3_index_rtr; 19

 20

 wire [0:0] sx_rb0_index_rtr, sx_rb1_index_rtr,sx_rb2_index_rtr,sx_rb3_index_rtr; 21

 wire [0:0] q_sx_rb0_index_rtr, 22
q_sx_rb1_index_rtr,q_sx_rb2_index_rtr,q_sx_rb3_index_rtr; 23

 24

 ati_dff_in #(1) urb0_sx_index_send(sclk, RB0_SX_index_send,q_rb0_sx_index_send); 25

 ati_dff_in #(1) urb1_sx_index_send(sclk, RB1_SX_index_send,q_rb1_sx_index_send); 26

 ati_dff_in #(1) urb2_sx_index_send(sclk, RB2_SX_index_send,q_rb2_sx_index_send); 27

 ati_dff_in #(1) urb3_sx_index_send(sclk, RB3_SX_index_send,q_rb3_sx_index_send); 28

 Page 18 of 25
Ex. 2109 - sx.v

 1

 ati_dff_in #(8) urb0_sx_index(sclk, RB0_SX_index,q_rb0_sx_index); 2

 ati_dff_in #(8) urb1_sx_index(sclk, RB1_SX_index,q_rb1_sx_index); 3

 ati_dff_in #(8) urb2_sx_index(sclk, RB2_SX_index,q_rb2_sx_index); 4

 ati_dff_in #(8) urb3_sx_index(sclk, RB3_SX_index,q_rb3_sx_index); 5

 6

 ati_dff_in #(1) urb0_sx_index_op(sclk, RB0_SX_index_op,q_rb0_sx_index_op); 7

 ati_dff_in #(1) urb1_sx_index_op(sclk, RB1_SX_index_op,q_rb1_sx_index_op); 8

 ati_dff_in #(1) urb2_sx_index_op(sclk, RB2_SX_index_op,q_rb2_sx_index_op); 9

 ati_dff_in #(1) urb3_sx_index_op(sclk, RB3_SX_index_op,q_rb3_sx_index_op); 10

 11

 ati_dff_out #(1) usx_rb0_index_rtr(sclk,sx_rb0_index_rtr, q_sx_rb0_index_rtr); 12

 ati_dff_out #(1) usx_rb1_index_rtr(sclk,sx_rb1_index_rtr, q_sx_rb1_index_rtr); 13

 ati_dff_out #(1) usx_rb2_index_rtr(sclk,sx_rb2_index_rtr, q_sx_rb2_index_rtr); 14

 ati_dff_out #(1) usx_rb3_index_rtr(sclk,sx_rb3_index_rtr, q_sx_rb3_index_rtr); 15

 16

 assign SX_RB0_index_rtr = q_sx_rb0_index_rtr; 17

 assign SX_RB1_index_rtr = q_sx_rb1_index_rtr; 18

 assign SX_RB2_index_rtr = q_sx_rb2_index_rtr; 19

 assign SX_RB3_index_rtr = q_sx_rb3_index_rtr; 20

 21

 //---// 22

 //PA(Primitive Assembly) - SX position export interface 23

 //---// 24

 input PA_SX_req; 25

 Page 19 of 25
Ex. 2109 - sx.v

 input PA_SX_sp_id; 1

 input [1:0] PA_SX_offset; //used to be PA_SX_export_phase 2

 input PA_SX_aux; //used to be PA_SX_2ndbuff 3

 input PA_SX_last; 4

 5

 wire [0:0] q_pa_sx_req; 6

 wire [0:0] q_pa_sx_sp_id; 7

 wire [1:0] q_pa_sx_offset; 8

 wire [0:0] q_pa_sx_aux; 9

 wire [0:0] q_pa_sx_last; 10

 11

 ati_dff_in #(1) upa_sx_req(sclk,PA_SX_req,q_pa_sx_req); 12

 ati_dff_in #(1) upa_sx_sp_id(sclk,PA_SX_sp_id,q_pa_sx_sp_id); 13

 ati_dff_in #(2) upa_sx_offset(sclk,PA_SX_offset,q_pa_sx_offset); 14

 ati_dff_in #(1) upa_sx_aux(sclk,PA_SX_aux,q_pa_sx_aux); 15

 ati_dff_in #(1) upa_sx_last(sclk,PA_SX_last,q_pa_sx_last); 16

 17

 output SX_PA_send; 18

 output [127:0] SX_PA_data; 19

 20

 wire sx_pa_send, q_sx_pa_send; 21

 wire [127:0] sx_pa_data, q_sx_pa_data; 22

 23

 ati_dff_out #(1) usx_pa_send(sclk,sx_pa_send, q_sx_pa_send); 24

 ati_dff_out #(128) usx_pa_data(sclk,sx_pa_data, q_sx_pa_data); 25

 Page 20 of 25
Ex. 2109 - sx.v

 1

 assign SX_PA_send = q_sx_pa_send; 2

 assign SX_PA_data = q_sx_pa_data; 3

 4

 5
//===6
== 7

 wire sx_id; 8

 assign sx_id = unit_id; 9

 10

 //...............Insert Logic........... 11

 12

 parameter_caches uparam_caches(// Outputs 13

 .SX_out_vtx_data0(SX_out_vtx_data0), 14
.SX_out_vtx_data1(SX_out_vtx_data1), .SX_out_vtx_data2(SX_out_vtx_data2), 15

 .vtx_data0(sx_vtx_data0),.vtx_data1(sx_vtx_data1), 16
.vtx_data2(sx_vtx_data2), 17

 // Inputs 18

 .SQ_SX_ptr0(SQ_SX_pc_ptr0), 19
.SQ_SX_ptr1(SQ_SX_pc_ptr1), .SQ_SX_ptr2(SQ_SX_pc_ptr2), 20
.SQ_SX_pc_wr_en(SQ_SX_pc_wr_en), 21

 22
.SQ_SX_pc_wr_addr(SQ_SX_pc_wr_addr),.SQ_SX_pc_cmask(SQ_SX_pc_channel_mask), 23
.SP_SX_data0(SP0_SX_data0), .SP_SX_data1(SP0_SX_data1), 24

 25
.SP_SX_data2(SP0_SX_data2),.SP_SX_data3(SP0_SX_data3),.SP_SX_data4(SP1_SX_data0), 26
.SP_SX_data5(SP1_SX_data1), 27

 .SP_SX_data6(SP1_SX_data2),.SP_SX_data7(SP1_SX_data3), 28
.sclk(sclk), .srst(srst), .sx_id(sx_id), .SX_in_vtx_data0(SX_in_vtx_data0), 29

 30
.SX_in_vtx_data1(SX_in_vtx_data1),.SX_in_vtx_data2(SX_in_vtx_data2), 31

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 485 of 611

 Page 21 of 25
Ex. 2109 - sx.v

.SQ_SX_interp_flat_vtx(SQ_SX_interp_flat_vtx), 1

.SQ_SX_interp_flat_gouraud(SQ_SX_interp_flat_gouraud) 2

); 3

 4

 export_control uexport_control(5

 // Outputs 6

 .sx_sc_quad_rtr(sx_quad_rtr), 7
.sx_sq_exp_count_rdy(sx_sq_exp_count_rdy), 8

 //.SX_SQ_exp_pos_avail(sx_sq_exp_pos_avail), 9

 .sx_sq_exp_buf_avail(sx_sq_exp_buf_avail), 10

 .sx_rb_quad_x(sx_rb_quad_x), .sx_rb_quad_y(sx_rb_quad_y), 11

 .sx_rb_quad_mask(sx_rb_quad_mask), 12
.sx_rb_quad_type(sx_rb_quad_type), 13

 .sx_rb_quad_pixel(sx_rb_quad_pixel), 14
.sx_rb_quad_index(sx_rb_quad_index), 15

 .sx_rb0_quad_send(sx_rb0_quad_send), 16
.sx_rb1_quad_send(sx_rb1_quad_send), 17

 18
.sx_rb2_quad_send(sx_rb2_quad_send),.sx_rb3_quad_send(sx_rb3_quad_send), 19

 .sx_rb0_color_data(sx_rb0_color_data), 20
.sx_rb1_color_data(sx_rb1_color_data), 21

 .sx_rb2_color_data(sx_rb2_color_data), 22
.sx_rb3_color_data(sx_rb3_color_data), 23

 24
.sx_rb0_color_send(sx_rb0_color_send),.sx_rb1_color_send(sx_rb1_color_send), 25

 .sx_rb2_color_send(sx_rb2_color_send), 26
.sx_rb3_color_send(sx_rb3_color_send), 27

 .sx_rb0_index_rtr(sx_rb0_index_rtr), 28
.sx_rb1_index_rtr(sx_rb1_index_rtr), 29

 30
.sx_rb2_index_rtr(sx_rb2_index_rtr),.sx_rb3_index_rtr(sx_rb3_index_rtr), 31

 Page 22 of 25
Ex. 2109 - sx.v

 .sx_pa_send(sx_pa_send), .sx_pa_data(sx_pa_data), 1

 // Inputs 2

 .sc_sx_quad_x(q_sc_sx_quad_x), 3
.sc_sx_quad_y(q_sc_sx_quad_y), 4

 .sc_sx_quad_mask(q_sc_sx_quad_mask), 5
.sc_sx_quad_tilex(q_sc_sx_quad_tilex), 6

 .sc_sx_quad_tiley(q_sc_sx_quad_tiley), 7
.sc_sx_quad_send(q_sc_sx_quad_send), 8

 .sclk(sclk), .srst(srst), 9

 10
.sp0_sx_exp_pvalid(q_sp0_sx_exp_pvalid),.sp1_sx_exp_pvalid(q_sp1_sx_exp_pvalid), 11

 .sp0_sx_exp_alu_id(q_sp0_sx_exp_alu_id), 12
.sp1_sx_exp_alu_id(q_sp1_sx_exp_alu_id), 13

 .sp0_sx_exporting(q_sp0_sx_exporting), 14
.sp1_sx_exporting(q_sp1_sx_exporting), 15

 .sp0_sx_exp_dest(q_sp0_sx_exp_dest), 16
.sp1_sx_exp_dest(q_sp1_sx_exp_dest), 17

 .sp0_sx_data0(q_sp0_sx_data0), 18
.sp0_sx_data1(q_sp0_sx_data1), 19

 .sp0_sx_data2(q_sp0_sx_data2), 20
.sp0_sx_data3(q_sp0_sx_data3), 21

 .sp1_sx_data0(q_sp1_sx_data0), 22
.sp1_sx_data1(q_sp1_sx_data1), 23

 .sp1_sx_data2(q_sp1_sx_data2), 24
.sp1_sx_data3(q_sp1_sx_data3), 25

 26
.sq_sx_exp_type(q_sq_sx_exp_type),.sq_sx_exp_number(q_sq_sx_exp_number), 27

 28
.sq_sx_exp_state(q_sq_sx_exp_state),.sq_sx_exp_id(q_sq_sx_exp_id), 29

 30
.sq_sx_exp_valid(q_sq_sx_exp_valid),.sq_sx_free_done(q_sq_sx_free_done), 31

 .sq_sx_free_id(q_sq_sx_free_id), 32

 Page 23 of 25
Ex. 2109 - sx.v

 1
.rb0_sx_quad_rtr(q_rb0_sx_quad_rtr),.rb1_sx_quad_rtr(q_rb1_sx_quad_rtr), 2

 3
.rb2_sx_quad_rtr(q_rb2_sx_quad_rtr),.rb3_sx_quad_rtr(q_rb3_sx_quad_rtr), 4

 5
.rb0_sx_color_rtr(q_rb0_sx_color_rtr),.rb1_sx_color_rtr(q_rb1_sx_color_rtr), 6

 7
.rb2_sx_color_rtr(q_rb2_sx_color_rtr),.rb3_sx_color_rtr(q_rb3_sx_color_rtr), 8

 .rb0_sx_index(q_rb0_sx_index), 9

 .rb1_sx_index(q_rb1_sx_index), 10
.rb2_sx_index(q_rb2_sx_index), 11

 .rb3_sx_index(q_rb3_sx_index), 12
.rb0_sx_index_send(q_rb0_sx_index_send), 13

 .rb1_sx_index_send(q_rb1_sx_index_send), 14
.rb2_sx_index_send(q_rb2_sx_index_send), 15

 .rb3_sx_index_send(q_rb3_sx_index_send), 16

 17
.rb0_sx_index_op(q_rb0_sx_index_op),.rb1_sx_index_op(q_rb1_sx_index_op), 18

 19
.rb2_sx_index_op(q_rb2_sx_index_op),.rb3_sx_index_op(q_rb3_sx_index_op), 20

 .rbbm_sx_soft_reset(q_rbbm_sx_soft_reset), 21

 .rbbm_we(q_rbbm_we), .rbbm_wd(q_rbbm_wd), 22

 .rbbm_a(q_rbbm_a), .rbbm_be(q_rbbm_be), 23

 .rbbm_re(q_rbbm_re), 24

 .rbb_rs_in(q_rbb_rs_in), .rbb_rd_in(q_rbb_rd_in), 25

 .pa_sx_req(q_pa_sx_req), .pa_sx_sp_id(q_pa_sx_sp_id), 26

 .pa_sx_offset(q_pa_sx_offset),.pa_sx_aux(q_pa_sx_aux), 27

 .pa_sx_last(q_pa_sx_last) 28

); 29

 Page 24 of 25
Ex. 2109 - sx.v

 1

 2

 //registering the top level IO 3

 //-- 4

 5

 ati_dff_out #(128) usx_vtx_data0(sclk, sx_vtx_data0, q_sx_vtx_data0); 6

 ati_dff_out #(132) usx_vtx_data1(sclk, sx_vtx_data1, q_sx_vtx_data1); 7

 ati_dff_out #(132) usx_vtx_data2(sclk, sx_vtx_data2, q_sx_vtx_data2); 8

 9

 assign SX_SP_vtx_data0 = q_sx_vtx_data0; 10

 assign SX_SP_vtx_data1 = q_sx_vtx_data1; 11

 assign SX_SP_vtx_data2 = q_sx_vtx_data2; 12

 13

 14

endmodule 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 486 of 611

 Page 25 of 25
Ex. 2109 - sx.v

 1

 2

 3

 4

 5

 6

 7

 8

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 487 of 611

 Page 1 of 20
Ex. 2110 - parameter_caches.v

// -*- Mode: Verilog -*- 1

// Filename : parameter_caches.v 2

// Description : This is a wrapper around 8 parameter cache memories that each SX has 3

// Author : Andi Skende 4

// Created On : Tue Mar 26 20:07:29 2002 5

// Last Modified By: . 6

// Last Modified On: . 7

// Update Count : 0 8

// Status : Unknown, Use with caution! 9

 10

`timescale 1ns / 1ps 11

module parameter_caches 12

 (/*AUTOARG*/ 13

 // Outputs 14

 SX_out_vtx_data0, SX_out_vtx_data1, SX_out_vtx_data2, vtx_data0, 15

 vtx_data1, vtx_data2, 16

 // Inputs 17

 SQ_SX_ptr0, SQ_SX_ptr1, SQ_SX_ptr2, SQ_SX_pc_wr_en, 18

 SQ_SX_pc_wr_addr, SQ_SX_pc_cmask, SP_SX_data0, SP_SX_data1, 19

 SP_SX_data2, SP_SX_data3, SP_SX_data4, SP_SX_data5, SP_SX_data6, 20

 SP_SX_data7, sclk, srst, sx_id, SQ_SX_interp_flat_vtx, 21

 SQ_SX_interp_flat_gouraud, SX_in_vtx_data0, SX_in_vtx_data1, 22

 SX_in_vtx_data2 23

); 24

 25

 Page 2 of 20
Ex. 2110 - parameter_caches.v

 1

 2

 input [10:0] SQ_SX_ptr0, SQ_SX_ptr1,SQ_SX_ptr2; 3

 input SQ_SX_pc_wr_en; 4

 input [6:0] SQ_SX_pc_wr_addr; 5

 input [3:0] SQ_SX_pc_cmask; 6

 input [127:0] 7
SP_SX_data0,SP_SX_data1,SP_SX_data2,SP_SX_data3,SP_SX_data4,SP_SX_data5,SP_SX_8
data6,SP_SX_data7; 9

 input sclk, srst; //clock and reset 10

 input sx_id; 11

 input [1:0] SQ_SX_interp_flat_vtx; 12

 input [0:0] SQ_SX_interp_flat_gouraud; 13

 14

 output [127:0] SX_out_vtx_data0 , SX_out_vtx_data1 , SX_out_vtx_data2; 15

 16

 output [127:0] vtx_data0; 17

 output [131:0] vtx_data1, vtx_data2; 18

 reg [127:0] vtx_data0_final, vtx_data1_final, vtx_data2_final; 19

 reg [127:0] q0_vtx_data0_final,q0_vtx_data1_final,q0_vtx_data2_final; 20

 reg [127:0] q1_vtx_data0_final,q2_vtx_data0_final; 21

 reg [127:0] q1_vtx_data1_final,q2_vtx_data1_final; 22

 23

 24

 25

 26

 Page 3 of 20
Ex. 2110 - parameter_caches.v

 //---// 1

 //input from the other sx-------------------------------------// 2

 //--// 3

 input [127:0] SX_in_vtx_data0, SX_in_vtx_data1, SX_in_vtx_data2; 4

 reg [127:0] other_vtx_data0, other_vtx_data1, other_vtx_data2; 5

 6

 7

 parameter [3:0] pc0_id = 4'h0, 8

 pc1_id = 4'h1, 9

 pc2_id = 4'h2, 10

 pc3_id = 4'h3, 11

 pc4_id = 4'h4, 12

 pc5_id = 4'h5, 13

 pc6_id = 4'h6, 14

 pc7_id = 4'h7; 15

 16

 parameter [3:0] pc8_id = 4'h8, 17

 pc9_id = 4'h9, 18

 pc10_id = 4'ha, 19

 pc11_id = 4'hb, 20

 pc12_id = 4'hc, 21

 pc13_id = 4'hd, 22

 pc14_id = 4'he, 23

 pc15_id = 4'hf; 24

 25

 Page 4 of 20
Ex. 2110 - parameter_caches.v

 wire [3:0] 1
sx_pc0_id,sx_pc1_id,sx_pc2_id,sx_pc3_id,sx_pc4_id,sx_pc5_id,sx_pc6_id,sx_pc7_id; 2

 3

 //---4
------- 5

 //creating an id for each of the parameter caches. 6

 //this id will be used inside the module uparam_cache_ctl to decode the read pointers into the 7
pc memory coming from SQ 8

 //---9
------- 10

 11

 assign sx_pc0_id = sx_id ? pc4_id : pc0_id; 12

 assign sx_pc1_id = sx_id ? pc5_id : pc1_id; 13

 assign sx_pc2_id = sx_id ? pc6_id : pc2_id; 14

 assign sx_pc3_id = sx_id ? pc7_id : pc3_id; 15

 assign sx_pc4_id = sx_id ? pc12_id : pc8_id; 16

 assign sx_pc5_id = sx_id ? pc13_id : pc9_id; 17

 assign sx_pc6_id = sx_id ? pc14_id : pc10_id; 18

 assign sx_pc7_id = sx_id ? pc15_id : pc11_id; 19

 20

 21

 22

 23

 wire [127:0] 24
ovtx_data0,ovtx_data1,ovtx_data2,ovtx_data3,ovtx_data4,ovtx_data5,ovtx_data6,ovtx_data7; 25

 reg [127:0] mux_vtx_data0, mux_vtx_data1, mux_vtx_data2; 26

 reg [127:0] q0_mux_vtx_data0, q0_mux_vtx_data1,q0_mux_vtx_data2; 27

ATI 2110
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 488 of 611

 Page 5 of 20
Ex. 2110 - parameter_caches.v

 reg [127:0] q1_mux_vtx_data0, q1_mux_vtx_data1,q1_mux_vtx_data2; 1

 reg [127:0] q2_mux_vtx_data0, q2_mux_vtx_data1,q2_mux_vtx_data2; 2

 reg [127:0] q3_mux_vtx_data0, q3_mux_vtx_data1,q3_mux_vtx_data2; 3

 wire [131:0] vtx_diff10, vtx_diff20; 4

 reg [127:0] q0_vtx_diff10, q0_vtx_diff20; 5

 reg [127:0] vtx_provoking; 6

 reg [127:0] vtx_flat_gouraud0, vtx_flat_gouraud1,vtx_flat_gouraud2; 7

 reg [127:0] q0_vtx_flat_gouraud0, q0_vtx_flat_gouraud1,q0_vtx_flat_gouraud2; 8

 reg [127:0] q1_vtx_flat_gouraud0, q2_vtx_flat_gouraud0; 9

 reg [127:0] q1_vtx_flat_gouraud2, q2_vtx_flat_gouraud2; 10

 reg [127:0] q1_vtx_flat_gouraud1, q2_vtx_flat_gouraud1; 11

 12

 13

 param_cache_ctl uparam_cache_ctl0(14

 .ovtx_data(ovtx_data0), 15

 .SQ_SX_ptr0(SQ_SX_ptr2),.SQ_SX_ptr1(SQ_SX_ptr0), 16
.SQ_SX_ptr2(SQ_SX_ptr1), 17

 18
.SQ_SX_pc_wr_en(SQ_SX_pc_wr_en),.SQ_SX_pc_wr_addr(SQ_SX_pc_wr_addr), 19

 20
.SQ_SX_pc_cmask(SQ_SX_pc_cmask),.SP_SX_data(SP_SX_data0), 21

 .pc_memory_id(sx_pc0_id), .sclk(sclk),.srst(srst) 22

); 23

 24

 25

 param_cache_ctl uparam_cache_ctl1(26

 Page 6 of 20
Ex. 2110 - parameter_caches.v

 .ovtx_data(ovtx_data1), 1

 .SQ_SX_ptr0(SQ_SX_ptr2),.SQ_SX_ptr1(SQ_SX_ptr0), 2
.SQ_SX_ptr2(SQ_SX_ptr1), 3

 4
.SQ_SX_pc_wr_en(SQ_SX_pc_wr_en),.SQ_SX_pc_wr_addr(SQ_SX_pc_wr_addr), 5

 6
.SQ_SX_pc_cmask(SQ_SX_pc_cmask),.SP_SX_data(SP_SX_data1), 7

 .pc_memory_id(sx_pc1_id), .sclk(sclk),.srst(srst) 8

); 9

 10

 param_cache_ctl uparam_cache_ctl2(11

 .ovtx_data(ovtx_data2), 12

 .SQ_SX_ptr0(SQ_SX_ptr2),.SQ_SX_ptr1(SQ_SX_ptr0), 13
.SQ_SX_ptr2(SQ_SX_ptr1), 14

 15
.SQ_SX_pc_wr_en(SQ_SX_pc_wr_en),.SQ_SX_pc_wr_addr(SQ_SX_pc_wr_addr), 16

 17
.SQ_SX_pc_cmask(SQ_SX_pc_cmask),.SP_SX_data(SP_SX_data2), 18

 .pc_memory_id(sx_pc2_id), .sclk(sclk),.srst(srst) 19

); 20

 param_cache_ctl uparam_cache_ctl3(21

 .ovtx_data(ovtx_data3), 22

 .SQ_SX_ptr0(SQ_SX_ptr2),.SQ_SX_ptr1(SQ_SX_ptr0), 23
.SQ_SX_ptr2(SQ_SX_ptr1), 24

 25
.SQ_SX_pc_wr_en(SQ_SX_pc_wr_en),.SQ_SX_pc_wr_addr(SQ_SX_pc_wr_addr), 26

 27
.SQ_SX_pc_cmask(SQ_SX_pc_cmask),.SP_SX_data(SP_SX_data3), 28

 .pc_memory_id(sx_pc3_id), .sclk(sclk),.srst(srst) 29

 Page 7 of 20
Ex. 2110 - parameter_caches.v

); 1

 param_cache_ctl uparam_cache_ctl4(2

 .ovtx_data(ovtx_data4), 3

 .SQ_SX_ptr0(SQ_SX_ptr2),.SQ_SX_ptr1(SQ_SX_ptr0), 4
.SQ_SX_ptr2(SQ_SX_ptr1), 5

 6
.SQ_SX_pc_wr_en(SQ_SX_pc_wr_en),.SQ_SX_pc_wr_addr(SQ_SX_pc_wr_addr), 7

 8
.SQ_SX_pc_cmask(SQ_SX_pc_cmask),.SP_SX_data(SP_SX_data4), 9

 .pc_memory_id(sx_pc4_id), .sclk(sclk),.srst(srst) 10

); 11

 param_cache_ctl uparam_cache_ctl5(12

 .ovtx_data(ovtx_data5), 13

 .SQ_SX_ptr0(SQ_SX_ptr2),.SQ_SX_ptr1(SQ_SX_ptr0), 14
.SQ_SX_ptr2(SQ_SX_ptr1), 15

 16
.SQ_SX_pc_wr_en(SQ_SX_pc_wr_en),.SQ_SX_pc_wr_addr(SQ_SX_pc_wr_addr), 17

 18
.SQ_SX_pc_cmask(SQ_SX_pc_cmask),.SP_SX_data(SP_SX_data5), 19

 .pc_memory_id(sx_pc5_id), .sclk(sclk),.srst(srst) 20

); 21

 param_cache_ctl uparam_cache_ctl6(22

 .ovtx_data(ovtx_data6), 23

 .SQ_SX_ptr0(SQ_SX_ptr2),.SQ_SX_ptr1(SQ_SX_ptr0), 24
.SQ_SX_ptr2(SQ_SX_ptr1), 25

 26
.SQ_SX_pc_wr_en(SQ_SX_pc_wr_en),.SQ_SX_pc_wr_addr(SQ_SX_pc_wr_addr), 27

 28
.SQ_SX_pc_cmask(SQ_SX_pc_cmask),.SP_SX_data(SP_SX_data6), 29

 Page 8 of 20
Ex. 2110 - parameter_caches.v

 .pc_memory_id(sx_pc6_id), .sclk(sclk),.srst(srst) 1

); 2

 param_cache_ctl uparam_cache_ctl7(3

 .ovtx_data(ovtx_data7), 4

 .SQ_SX_ptr0(SQ_SX_ptr2),.SQ_SX_ptr1(SQ_SX_ptr0), 5
.SQ_SX_ptr2(SQ_SX_ptr1), 6

 7
.SQ_SX_pc_wr_en(SQ_SX_pc_wr_en),.SQ_SX_pc_wr_addr(SQ_SX_pc_wr_addr), 8

 9
.SQ_SX_pc_cmask(SQ_SX_pc_cmask),.SP_SX_data(SP_SX_data7), 10

 .pc_memory_id(sx_pc7_id), .sclk(sclk),.srst(srst) 11

); 12

 13

//---// 14

//Selecting three vertex vectors---// 15

//---// 16

 17

 reg [3:0] vtx_sel0, vtx_sel1, vtx_sel2; 18

 reg [3:0] q0_vtx_sel0, q0_vtx_sel1, q0_vtx_sel2; 19

 reg [3:0] q1_vtx_sel0, q1_vtx_sel1, q1_vtx_sel2; 20

 reg [3:0] q2_vtx_sel0, q2_vtx_sel1, q2_vtx_sel2; 21

 reg [3:0] q3_vtx_sel0, q3_vtx_sel1, q3_vtx_sel2; 22

 23

 reg [127:0] vertex0, vertex1,vertex2; 24

 25

 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 489 of 611

 Page 9 of 20
Ex. 2110 - parameter_caches.v

 reg [1:0] flat_vtx_sel, q0_flat_vtx_sel, q1_flat_vtx_sel,q2_flat_vtx_sel,q3_flat_vtx_sel; 1

 reg [0:0] 2
flat_gouraud_sel,q0_flat_gouraud_sel,q1_flat_gouraud_sel,q2_flat_gouraud_sel,q3_flat_goura3
ud_sel; 4

 5

 6

 always @(posedge sclk) 7

 begin 8

 if(srst) 9

 begin 10

 11

 vtx_sel0<= 4'b0; 12

 vtx_sel1<= 4'b0; 13

 vtx_sel2<= 4'b0; 14

 q0_vtx_sel0<= 4'b0; 15

 q0_vtx_sel1<= 4'b0; 16

 q0_vtx_sel2<= 4'b0; 17

 q1_vtx_sel0<= 4'b0; 18

 q1_vtx_sel1<= 4'b0; 19

 q1_vtx_sel2<= 4'b0; 20

 q2_vtx_sel0<= 4'b0; 21

 q2_vtx_sel1<= 4'b0; 22

 q2_vtx_sel2<= 4'b0; 23

 q3_vtx_sel0<= 4'b0; 24

 q3_vtx_sel1<= 4'b0; 25

 q3_vtx_sel2<= 4'b0; 26

 Page 10 of 20
Ex. 2110 - parameter_caches.v

 flat_vtx_sel<= SQ_SX_interp_flat_vtx; 1

 q0_flat_vtx_sel<= 2'b0; 2

 q1_flat_vtx_sel <= 2'b0; 3

 q2_flat_vtx_sel <= 2'b0; 4

 q3_flat_vtx_sel <= 2'b0; 5

 flat_gouraud_sel <= 1'b0; 6

 q0_flat_gouraud_sel <= 1'b0; 7

 q1_flat_gouraud_sel <= 1'b0; 8

 q2_flat_gouraud_sel <= 1'b0; 9

 q3_flat_gouraud_sel <= 1'b0; 10

 end 11

 else 12

 begin 13

 vtx_sel0 <= SQ_SX_ptr0[10:7]; 14

 vtx_sel1 <= SQ_SX_ptr1[10:7]; 15

 vtx_sel2 <= SQ_SX_ptr2[10:7]; 16

 other_vtx_data0 <= SX_in_vtx_data0; 17

 other_vtx_data1 <= SX_in_vtx_data1; 18

 other_vtx_data2 <= SX_in_vtx_data2; 19

 q0_vtx_sel0 <= vtx_sel0; 20

 q0_vtx_sel1 <= vtx_sel1; 21

 q0_vtx_sel2 <= vtx_sel2; 22

 q1_vtx_sel0 <= q0_vtx_sel0; 23

 q1_vtx_sel1 <= q0_vtx_sel1; 24

 q1_vtx_sel2 <= q0_vtx_sel2; 25

 Page 11 of 20
Ex. 2110 - parameter_caches.v

 q2_vtx_sel0 <= q1_vtx_sel0 ; 1

 q2_vtx_sel1 <= q1_vtx_sel1; 2

 q2_vtx_sel2 <= q1_vtx_sel2; 3

 q3_vtx_sel0 <= q2_vtx_sel0 ; 4

 q3_vtx_sel1 <= q2_vtx_sel1; 5

 q3_vtx_sel2 <= q2_vtx_sel2; 6

 q0_mux_vtx_data0 <= mux_vtx_data0; 7

 q0_mux_vtx_data1 <= mux_vtx_data1; 8

 q0_mux_vtx_data2 <= mux_vtx_data2; 9

 q1_mux_vtx_data0 <= q0_mux_vtx_data0; 10

 q1_mux_vtx_data1 <= q0_mux_vtx_data1; 11

 q1_mux_vtx_data2 <= q0_mux_vtx_data2; 12

 q2_mux_vtx_data0 <= q1_mux_vtx_data0; 13

 q2_mux_vtx_data1 <= q1_mux_vtx_data1; 14

 q2_mux_vtx_data2 <= q1_mux_vtx_data2; 15

 q3_mux_vtx_data0 <= q2_mux_vtx_data0; 16

 q3_mux_vtx_data1 <= q2_mux_vtx_data1; 17

 q3_mux_vtx_data2 <= q2_mux_vtx_data2; 18

 q0_vtx_data0_final <= vtx_data0_final; 19

 q1_vtx_data0_final <= q0_vtx_data0_final; 20

 q2_vtx_data0_final <= q1_vtx_data0_final; 21

 q0_vtx_data1_final <= vtx_data1_final; 22

 q0_vtx_data2_final <= vtx_data2_final; 23

 q0_vtx_diff10 <= vtx_diff10; 24

 q0_vtx_diff20 <= vtx_diff20; 25

 Page 12 of 20
Ex. 2110 - parameter_caches.v

 flat_vtx_sel<= 2'b0; 1

 q0_flat_vtx_sel<=flat_vtx_sel; 2

 q1_flat_vtx_sel <= q0_flat_vtx_sel; 3

 q2_flat_vtx_sel <= q1_flat_vtx_sel; 4

 q3_flat_vtx_sel <= q2_flat_vtx_sel; 5

 flat_gouraud_sel <= SQ_SX_interp_flat_gouraud; 6

 q0_flat_gouraud_sel <= flat_gouraud_sel; 7

 q1_flat_gouraud_sel <= q0_flat_gouraud_sel; 8

 q2_flat_gouraud_sel <= q1_flat_gouraud_sel ; 9

 q3_flat_gouraud_sel <= q2_flat_gouraud_sel; 10

 q0_vtx_flat_gouraud0 <= vtx_flat_gouraud0; 11

 q0_vtx_flat_gouraud1 <= vtx_flat_gouraud1; 12

 q1_vtx_flat_gouraud1 <= q0_vtx_flat_gouraud1; 13

 q2_vtx_flat_gouraud1 <= q1_vtx_flat_gouraud1; 14

 q0_vtx_flat_gouraud2 <= vtx_flat_gouraud2; 15

 q1_vtx_flat_gouraud2 <= q0_vtx_flat_gouraud2; 16

 q2_vtx_flat_gouraud2 <= q1_vtx_flat_gouraud2; 17

 q1_vtx_flat_gouraud0 <= q0_vtx_flat_gouraud0; 18

 q2_vtx_flat_gouraud0 <= q1_vtx_flat_gouraud0; 19

 end // else: !if(srst) 20

 end // always @ (posedge sclk) 21

 22

 //-- 23

 //three 8:1 muxes used to select the vertices 24

 //the 8:1 muxes are followed by a 2:1 mux each to select from this SX data 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 490 of 611

 Page 13 of 20
Ex. 2110 - parameter_caches.v

 //or the "other" data coming from the other SX 1

 //-- 2

 always@(/*AUTOSENSE*/ovtx_data0 or ovtx_data1 or ovtx_data2 3

 or ovtx_data3 or ovtx_data4 or ovtx_data5 or ovtx_data6 4

 or ovtx_data7 or q1_vtx_sel0 or sx_pc0_id or sx_pc1_id 5

 or sx_pc2_id or sx_pc3_id or sx_pc4_id or sx_pc5_id 6

 or sx_pc6_id or sx_pc7_id) 7

 begin 8

 case(q1_vtx_sel0) 9

 sx_pc0_id:mux_vtx_data0 = ovtx_data0; 10

 sx_pc1_id:mux_vtx_data0 = ovtx_data1; 11

 sx_pc2_id:mux_vtx_data0 = ovtx_data2; 12

 sx_pc3_id:mux_vtx_data0 = ovtx_data3; 13

 sx_pc4_id:mux_vtx_data0 = ovtx_data4; 14

 sx_pc5_id:mux_vtx_data0 = ovtx_data5; 15

 sx_pc6_id:mux_vtx_data0 = ovtx_data6; 16

 sx_pc7_id:mux_vtx_data0 = ovtx_data7; 17

 default : mux_vtx_data0 = ovtx_data0; 18

 endcase // case(q0_vtx_sel0[2:0]) 19

 end // always@ (q0_vtx_sel0 or ovtx_data0 or ovtx_data1 or ovtx_data2 or.. 20

 21

 22

 always@(/*AUTOSENSE*/ovtx_data0 or ovtx_data1 or ovtx_data2 23

 or ovtx_data3 or ovtx_data4 or ovtx_data5 or ovtx_data6 24

 or ovtx_data7 or q1_vtx_sel1 or sx_pc0_id or sx_pc1_id 25

 Page 14 of 20
Ex. 2110 - parameter_caches.v

 or sx_pc2_id or sx_pc3_id or sx_pc4_id or sx_pc5_id 1

 or sx_pc6_id or sx_pc7_id) 2

 begin 3

 case(q1_vtx_sel1) 4

 sx_pc0_id:mux_vtx_data1 = ovtx_data0; 5

 sx_pc1_id:mux_vtx_data1 = ovtx_data1; 6

 sx_pc2_id:mux_vtx_data1 = ovtx_data2; 7

 sx_pc3_id:mux_vtx_data1 = ovtx_data3; 8

 sx_pc4_id:mux_vtx_data1 = ovtx_data4; 9

 sx_pc5_id:mux_vtx_data1 = ovtx_data5; 10

 sx_pc6_id:mux_vtx_data1 = ovtx_data6; 11

 sx_pc7_id:mux_vtx_data1 = ovtx_data7; 12

 default : mux_vtx_data1 = ovtx_data0; 13

 endcase // case(q1_vtx_sel1[2:0]) 14

 end // always@ (q1_vtx_sel1 or ovtx_data0 or ovtx_data1 or ovtx_data2 or... 15

 16

 always@(/*AUTOSENSE*/ovtx_data0 or ovtx_data1 or ovtx_data2 17

 or ovtx_data3 or ovtx_data4 or ovtx_data5 or ovtx_data6 18

 or ovtx_data7 or q1_vtx_sel2 or sx_pc0_id or sx_pc1_id 19

 or sx_pc2_id or sx_pc3_id or sx_pc4_id or sx_pc5_id 20

 or sx_pc6_id or sx_pc7_id) 21

 begin 22

 case(q1_vtx_sel2) 23

 sx_pc0_id:mux_vtx_data2 = ovtx_data0; 24

 sx_pc1_id:mux_vtx_data2 = ovtx_data1; 25

 Page 15 of 20
Ex. 2110 - parameter_caches.v

 sx_pc2_id:mux_vtx_data2 = ovtx_data2; 1

 sx_pc3_id:mux_vtx_data2 = ovtx_data3; 2

 sx_pc4_id:mux_vtx_data2 = ovtx_data4; 3

 sx_pc5_id:mux_vtx_data2 = ovtx_data5; 4

 sx_pc6_id:mux_vtx_data2 = ovtx_data6; 5

 sx_pc7_id:mux_vtx_data2 = ovtx_data7; 6

 default : mux_vtx_data2 = ovtx_data0; 7

 endcase // case(q1_vtx_sel2[2:0]) 8

 end // always@ (q1_vtx_sel2 or ovtx_data0 or ovtx_data1 or ovtx_data2 or... 9

 10

 wire [0:0] final_sel0; 11

 wire [0:0] final_sel1; 12

 13

 assign final_sel0 = sx_id ? 1'b1: 1'b0; 14

 assign final_sel1 = ~ final_sel0; 15

 16

 always @(/*AUTOSENSE*/final_sel0 or final_sel1 or other_vtx_data0 17

 or q0_mux_vtx_data0 or q2_vtx_sel0) 18

 begin 19

 case(q2_vtx_sel0[2]) 20

 final_sel0:vtx_data0_final = q0_mux_vtx_data0; 21

 final_sel1:vtx_data0_final = other_vtx_data0; 22

 endcase // case(q1_vtx_sel0[2]) 23

 end 24

 25

 Page 16 of 20
Ex. 2110 - parameter_caches.v

 always @(/*AUTOSENSE*/final_sel0 or final_sel1 or other_vtx_data1 1

 or q0_mux_vtx_data1 or q2_vtx_sel1) 2

 begin 3

 case(q2_vtx_sel1[2]) 4

 final_sel0:vtx_data1_final = q0_mux_vtx_data1; 5

 final_sel1:vtx_data1_final = other_vtx_data1; 6

 endcase // case(q1_vtx_sel1[2]) 7

 end 8

 9

 always @(/*AUTOSENSE*/final_sel0 or final_sel1 or other_vtx_data2 10

 or q0_mux_vtx_data2 or q2_vtx_sel2) 11

 begin 12

 case(q2_vtx_sel2[2]) 13

 final_sel0:vtx_data2_final = q0_mux_vtx_data2; 14

 final_sel1:vtx_data2_final = other_vtx_data2; 15

 endcase // case(q1_vtx_sel2[2]) 16

 end 17

 18

 19

 //-- 20

 //Flat vs. Gouraud shading vertex selection...two level muxing 21

 //-- 22

 23

 always @(/*AUTOSENSE*/q0_vtx_data0_final or q0_vtx_data1_final 24

 or q0_vtx_data2_final or q3_flat_vtx_sel) 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 491 of 611

 Page 17 of 20
Ex. 2110 - parameter_caches.v

 begin 1

 case(q3_flat_vtx_sel) 2

 2'b00:vtx_provoking = q0_vtx_data0_final; 3

 2'b01:vtx_provoking = q0_vtx_data1_final; 4

 2'b10:vtx_provoking = q0_vtx_data2_final; 5

 default: vtx_provoking = q0_vtx_data0_final; 6

 endcase // case(SQ_SP_interp_flat_vtx) 7

 end 8

 9

 always @(/*AUTOSENSE*/q0_vtx_data0_final or q3_flat_gouraud_sel 10

 or vtx_provoking) 11

 begin 12

 case(q3_flat_gouraud_sel) 13

 1'b0:vtx_flat_gouraud0 =vtx_provoking ; 14

 1'b1:vtx_flat_gouraud0 =q0_vtx_data0_final ; 15

 endcase // case(SQ_SP_interp_flat_gouraud) 16

 end 17

 18

 always @(/*AUTOSENSE*/q0_vtx_data1_final or q3_flat_gouraud_sel 19

 or vtx_provoking) 20

 begin 21

 case(q3_flat_gouraud_sel) 22

 1'b0:vtx_flat_gouraud1 =vtx_provoking ; 23

 1'b1:vtx_flat_gouraud1 =q0_vtx_data1_final ; 24

 endcase // case(SQ_SP_interp_flat_gouraud) 25

 Page 18 of 20
Ex. 2110 - parameter_caches.v

 end 1

 2

 always @(/*AUTOSENSE*/q0_vtx_data2_final or q3_flat_gouraud_sel 3

 or vtx_provoking) 4

 begin 5

 case(q3_flat_gouraud_sel) 6

 1'b0:vtx_flat_gouraud2 =vtx_provoking ; 7

 1'b1:vtx_flat_gouraud2 =q0_vtx_data2_final ; 8

 endcase // case(SQ_SP_interp_flat_gouraud) 9

 end 10

 11

 12

 //---// 13

 //Difference engine for the vertex attributes. This difference is used by the barycentric 14
interpolators 15

 //--// 16

 wire [32:0] vertex10_red, vertex10_green,vertex10_blue,vertex10_alpha; 17

 wire [32:0] vertex20_red, vertex20_green,vertex20_blue,vertex20_alpha; 18

 19

 param_sub param10_red(q0_vtx_flat_gouraud1[31:0], q0_vtx_flat_gouraud0[31:0], 20
vertex10_red, sclk); 21

 param_sub param10_green(q0_vtx_flat_gouraud1[63:32], q0_vtx_flat_gouraud0[63:32], 22
vertex10_green, sclk); 23

 param_sub param10_blue(q0_vtx_flat_gouraud1[95:64], q0_vtx_flat_gouraud0[95:64], 24
vertex10_blue, sclk); 25

 param_sub param10_alpha(q0_vtx_flat_gouraud1[127:96], q0_vtx_flat_gouraud0[127:96], 26
vertex10_alpha, sclk); 27

 Page 19 of 20
Ex. 2110 - parameter_caches.v

 1

 param_sub param20_red(q0_vtx_flat_gouraud2[31:0], q0_vtx_flat_gouraud0[31:0], 2
vertex20_red, sclk); 3

 param_sub param20_green(q0_vtx_flat_gouraud2[63:32], q0_vtx_flat_gouraud0[63:32], 4
vertex20_green, sclk); 5

 param_sub param20_blue(q0_vtx_flat_gouraud2[95:64], q0_vtx_flat_gouraud0[95:64], 6
vertex20_blue, sclk); 7

 param_sub param20_alpha(q0_vtx_flat_gouraud2[127:96], q0_vtx_flat_gouraud0[127:96], 8
vertex20_alpha, sclk); 9

 10

 11

 12

 //--- 13

 //Outputs to the other SX block 14

 //--- 15

 assign SX_out_vtx_data0 = mux_vtx_data0; 16

 assign SX_out_vtx_data1 = mux_vtx_data1; 17

 assign SX_out_vtx_data2 = mux_vtx_data2; 18

 19

 20

 //--// 21

 //Output to the SP interpolator-------------------------------// 22

 //---// 23

 24

 assign vtx_diff10 = {vertex10_alpha,vertex10_blue,vertex10_green,vertex10_red}; 25

 assign vtx_diff20 = {vertex20_alpha,vertex20_blue,vertex20_green,vertex20_red}; 26

 assign vtx_data0 = q2_vtx_flat_gouraud0; 27

 Page 20 of 20
Ex. 2110 - parameter_caches.v

 assign vtx_data1 = q0_vtx_diff10; 1

 assign vtx_data2 = q0_vtx_diff20; 2

 3

 4

 5

endmodule // parameter_caches 6

 7

 8

 9

 10

 11

 12

 13

 14

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 492 of 611

 Page 1 of 14
Ex. 2111 - param_cache_ctl.v

// -*- Mode: Verilog -*- 1

// Filename : param_cache_ctl.v 2

// Description : This module implements the read/write logic for the parameter caches 3

// Author : Andi Skende 4

// Created On : Tue Mar 26 19:57:49 2002 5

// Last Modified By: . 6

// Last Modified On: . 7

// Update Count : 0 8

// Status : Unknown, Use with caution! 9

 10

`timescale 1ns / 1ps 11

 12

module param_cache_ctl 13

 (/*AUTOARG*/ 14

 // Outputs 15

 ovtx_data, 16

 // Inputs 17

 SQ_SX_ptr0, SQ_SX_ptr1, SQ_SX_ptr2, SQ_SX_pc_wr_en, 18

 SQ_SX_pc_wr_addr, SQ_SX_pc_cmask, SP_SX_data, pc_memory_id, sclk, 19

 srst 20

); 21

 22

 23

 //-- 24

 //PC control and interpolation interface 25

 Page 2 of 14
Ex. 2111 - param_cache_ctl.v

 //-- 1

 input [10:0] SQ_SX_ptr0, SQ_SX_ptr1,SQ_SX_ptr2; 2

 input SQ_SX_pc_wr_en; 3

 input [6:0] SQ_SX_pc_wr_addr; 4

 input [3:0] SQ_SX_pc_cmask; 5

 input [127:0] SP_SX_data; 6

 input [3:0] pc_memory_id; //0...16 a different id for each instance. 7

 //The first 8 PCs 0-7 belong to SX0, while 8-15 to SX1 8

 input sclk, srst; //clock and reset 9

 10

 11

 //-- 12

 //Data out of the parameter caches 13

 //-- 14

 15

 output [127:0] ovtx_data; 16

 17

 reg [10:0] pc_ptr0, pc_ptr1,pc_ptr2; 18

 reg pc_wr_en; 19

 reg [6:0] pc_wr_addr; 20

 reg [3:0] pc_cmask; 21

 reg [127:0] vertex_data_in; 22

 wire [127:0] vertex_data_out; 23

 reg [127:0] q0_vertex_data_out; 24

 25

 Page 3 of 14
Ex. 2111 - param_cache_ctl.v

 wire [3:0] mem_id; 1

 assign mem_id = pc_memory_id; 2

 3

 always @(posedge sclk) 4

 begin 5

 if(srst) 6

 begin 7

 pc_ptr0 <= 11'b0; 8

 pc_ptr1 <= 11'b0; 9

 pc_ptr2 <= 11'b0; 10

 pc_wr_en <= 1'b0; 11

 pc_wr_addr <= 7'b0; 12

 pc_cmask <= 4'b0; 13

 vertex_data_in <= 127'b0; 14

 q0_vertex_data_out <= 127'b0; 15

 end 16

 else 17

 begin 18

 pc_ptr0 <= SQ_SX_ptr0; 19

 pc_ptr1 <= SQ_SX_ptr1; 20

 pc_ptr2 <= SQ_SX_ptr2; 21

 pc_wr_en <= SQ_SX_pc_wr_en; 22

 pc_wr_addr <= SQ_SX_pc_wr_addr; 23

 pc_cmask <= SQ_SX_pc_cmask; 24

 vertex_data_in <= SP_SX_data; 25

 Page 4 of 14
Ex. 2111 - param_cache_ctl.v

 q0_vertex_data_out <= vertex_data_out; 1

 end 2

 end // always @ (posedge sclk) 3

 4

 5

 //-- 6

 //parameter cache write address decoding 7

 //finding out whether any of the above addresses applies to this parameter cache memory 8

 //in other words if the vertex0 1 or 2 data is in this specific memory 9

 //--- 10

 11

 wire is_ptr0, is_ptr1,is_ptr2; 12

 wire [2:0] sel_ptr; 13

 14

 assign is_ptr0 = &(pc_ptr0[10:7] ^~ mem_id); 15

 assign is_ptr1 = &(pc_ptr1[10:7] ^~ mem_id); 16

 assign is_ptr2 = &(pc_ptr2[10:7] ^~ mem_id); 17

 assign sel_ptr = {is_ptr2,is_ptr1,is_ptr0}; 18

 19

 reg [6:0] pc_index; //read pointer from the Parameter caches 20

 reg [0:0] pc_rd_en; 21

 22

 always@(is_ptr0 or is_ptr1 or is_ptr2 or pc_ptr0 or pc_ptr1 or pc_ptr2 or sel_ptr) 23

 begin 24

 case(sel_ptr) 25

ATI 2111
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 493 of 611

 Page 5 of 14
Ex. 2111 - param_cache_ctl.v

 3'b000: 1

 begin 2

 pc_index = pc_ptr0; 3

 pc_rd_en = 1'b0; 4

 end 5

 3'b001: 6

 begin 7

 pc_index = pc_ptr0; 8

 pc_rd_en = 1'b1; 9

 end 10

 3'b010: 11

 begin 12

 pc_index = pc_ptr1; 13

 pc_rd_en = 1'b1; 14

 end 15

 3'b100: 16

 begin 17

 pc_index = pc_ptr2; 18

 pc_rd_en = 1'b1; 19

 end 20

 default: 21

 begin 22

 pc_index = pc_ptr0; 23

 pc_rd_en = 1'b0; 24

 end 25

 Page 6 of 14
Ex. 2111 - param_cache_ctl.v

 endcase // case(sel_ptr) 1

 end // always@ (is_ptr0 or is_ptr1 or is_ptr2 or pc_ptr0 or pc_ptr1 or pc_ptr2) 2

 3

 4

`ifdef USE_BEHAVE_MEM 5

 dum_mem_p2 #(7,128) u_pc(.iRCLK(sclk), 6

 .iWCLK(sclk), 7

 .iMER(pc_rd_en), 8

 .iMEW(pc_wr_en), 9

 .iWEN(pc_wr_en), 10

 .iRADR(pc_index), 11

 .iWADR(pc_wr_addr), 12

 .iD(vertex_data_in), 13

 .oQ(vertex_data_out) 14

); 15

`else // !`ifdef USE_BEHAVE_MEM 16

 rfsd2_128x128cm2sw0 u_pc 17

 // tp_coord_fifo_ram utp_coord_fifo_ram_0 18

 // (/*VRGIO tp_coord_fifo_ram cfifo_in cfifo_out q_cfifo_wptr q_cfifo_rptr 19
cfifo_ram_wen cfifo_ram_ren I0*/ 20

 //); 21

 (/*VRGIO rfsd2_128x128cm2sw0 vertex_data_in vertex_data_out pc_wr_addr pc_index 22
pc_wr_en pc_rd_en null*/ 23

 // READ INTERFACE 24

 .CLKB(iSCLK), // Read Clock 25

 .OEB(pc_rd_en), // Output enable 26

 Page 7 of 14
Ex. 2111 - param_cache_ctl.v

 .MEB(vdd), // Read enable 1

 .ADRB0(pc_index[0]), .ADRB1(pc_index[1]), .ADRB2(pc_index[2]), 2
.ADRB3(pc_index[3]), // Read Address 3

 .ADRB4(pc_index[4]), .ADRB5(pc_index[5]), .ADRB6(pc_index[6]), // Read Address 4

 .QB0(vertex_data_out[0]), .QB1(vertex_data_out[1]), .QB2(vertex_data_out[2]), 5
.QB3(vertex_data_out[3]), // Read Data 6

 .QB4(vertex_data_out[4]), .QB5(vertex_data_out[5]), .QB6(vertex_data_out[6]), 7
.QB7(vertex_data_out[7]), // Read Data 8

 .QB8(vertex_data_out[8]), .QB9(vertex_data_out[9]), .QB10(vertex_data_out[10]), 9
.QB11(vertex_data_out[11]), // Read Data 10

 .QB12(vertex_data_out[12]), .QB13(vertex_data_out[13]), .QB14(vertex_data_out[14]), 11
.QB15(vertex_data_out[15]), // Read Data 12

 .QB16(vertex_data_out[16]), .QB17(vertex_data_out[17]), .QB18(vertex_data_out[18]), 13
.QB19(vertex_data_out[19]), // Read Data 14

 .QB20(vertex_data_out[20]), .QB21(vertex_data_out[21]), .QB22(vertex_data_out[22]), 15
.QB23(vertex_data_out[23]), // Read Data 16

 .QB24(vertex_data_out[24]), .QB25(vertex_data_out[25]), .QB26(vertex_data_out[26]), 17
.QB27(vertex_data_out[27]), // Read Data 18

 .QB28(vertex_data_out[28]), .QB29(vertex_data_out[29]), .QB30(vertex_data_out[30]), 19
.QB31(vertex_data_out[31]), // Read Data 20

 .QB32(vertex_data_out[32]), .QB33(vertex_data_out[33]), .QB34(vertex_data_out[34]), 21
.QB35(vertex_data_out[35]), // Read Data 22

 .QB36(vertex_data_out[36]), .QB37(vertex_data_out[37]), .QB38(vertex_data_out[38]), 23
.QB39(vertex_data_out[39]), // Read Data 24

 .QB40(vertex_data_out[40]), .QB41(vertex_data_out[41]), .QB42(vertex_data_out[42]), 25
.QB43(vertex_data_out[43]), // Read Data 26

 .QB44(vertex_data_out[44]), .QB45(vertex_data_out[45]), .QB46(vertex_data_out[46]), 27
.QB47(vertex_data_out[47]), // Read Data 28

 .QB48(vertex_data_out[48]), .QB49(vertex_data_out[49]), .QB50(vertex_data_out[50]), 29
.QB51(vertex_data_out[51]), // Read Data 30

 .QB52(vertex_data_out[52]), .QB53(vertex_data_out[53]), .QB54(vertex_data_out[54]), 31
.QB55(vertex_data_out[55]), // Read Data 32

 Page 8 of 14
Ex. 2111 - param_cache_ctl.v

 .QB56(vertex_data_out[56]), .QB57(vertex_data_out[57]), .QB58(vertex_data_out[58]), 1
.QB59(vertex_data_out[59]), // Read Data 2

 .QB60(vertex_data_out[60]), .QB61(vertex_data_out[61]), .QB62(vertex_data_out[62]), 3
.QB63(vertex_data_out[63]), // Read Data 4

 .QB64(vertex_data_out[64]), .QB65(vertex_data_out[65]), .QB66(vertex_data_out[66]), 5
.QB67(vertex_data_out[67]), // Read Data 6

 .QB68(vertex_data_out[68]), .QB69(vertex_data_out[69]), .QB70(vertex_data_out[70]), 7
.QB71(vertex_data_out[71]), // Read Data 8

 .QB72(vertex_data_out[72]), .QB73(vertex_data_out[73]), .QB74(vertex_data_out[74]), 9
.QB75(vertex_data_out[75]), // Read Data 10

 .QB76(vertex_data_out[76]), .QB77(vertex_data_out[77]), .QB78(vertex_data_out[78]), 11
.QB79(vertex_data_out[79]), // Read Data 12

 .QB80(vertex_data_out[80]), .QB81(vertex_data_out[81]), .QB82(vertex_data_out[82]), 13
.QB83(vertex_data_out[83]), // Read Data 14

 .QB84(vertex_data_out[84]), .QB85(vertex_data_out[85]), .QB86(vertex_data_out[86]), 15
.QB87(vertex_data_out[87]), // Read Data 16

 .QB88(vertex_data_out[88]), .QB89(vertex_data_out[89]), .QB90(vertex_data_out[90]), 17
.QB91(vertex_data_out[91]), // Read Data 18

 .QB92(vertex_data_out[92]), .QB93(vertex_data_out[93]), .QB94(vertex_data_out[94]), 19
.QB95(vertex_data_out[95]), // Read Data 20

 .QB96(vertex_data_out[96]), .QB97(vertex_data_out[97]), .QB98(vertex_data_out[98]), 21
.QB99(vertex_data_out[99]), // Read Data 22

 .QB100(vertex_data_out[100]), .QB101(vertex_data_out[101]), 23
.QB102(vertex_data_out[102]), .QB103(vertex_data_out[103]), // Read Data 24

 .QB104(vertex_data_out[104]), .QB105(vertex_data_out[105]), 25
.QB106(vertex_data_out[106]), .QB107(vertex_data_out[107]), // Read Data 26

 .QB108(vertex_data_out[108]), .QB109(vertex_data_out[109]), 27
.QB110(vertex_data_out[110]), .QB111(vertex_data_out[111]), // Read Data 28

 .QB112(vertex_data_out[112]), .QB113(vertex_data_out[113]), 29
.QB114(vertex_data_out[114]), .QB115(vertex_data_out[115]), // Read Data 30

 .QB116(vertex_data_out[116]), .QB117(vertex_data_out[117]), 31
.QB118(vertex_data_out[118]), .QB119(vertex_data_out[119]), // Read Data 32

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 494 of 611

 Page 9 of 14
Ex. 2111 - param_cache_ctl.v

 .QB120(vertex_data_out[120]), .QB121(vertex_data_out[121]), 1
.QB122(vertex_data_out[122]), .QB123(vertex_data_out[123]), // Read Data 2

 .QB124(vertex_data_out[124]), .QB125(vertex_data_out[125]), 3
.QB126(vertex_data_out[126]), .QB127(vertex_data_out[127]), // Read Data 4

 // WRITE INTERFACE 5

 .CLKA(iSCLK), // Write Clock 6

 .WEA(pc_wr_en), // Write enable 7

 .MEA(vdd), // Memory enable 8

 .ADRA0(pc_wr_addr[0]), .ADRA1(pc_wr_addr[1]), .ADRA2(pc_wr_addr[2]), 9
.ADRA3(pc_wr_addr[3]), // Write Address 10

 .ADRA4(pc_wr_addr[4]), .ADRA5(pc_wr_addr[5]), .ADRA6(pc_wr_addr[6]), // Write 11
Address 12

 .DA0(vertex_data_in[0]), .DA1(vertex_data_in[1]), .DA2(vertex_data_in[2]), 13
.DA3(vertex_data_in[3]), // Write Data 14

 .DA4(vertex_data_in[4]), .DA5(vertex_data_in[5]), .DA6(vertex_data_in[6]), 15
.DA7(vertex_data_in[7]), // Write Data 16

 .DA8(vertex_data_in[8]), .DA9(vertex_data_in[9]), .DA10(vertex_data_in[10]), 17
.DA11(vertex_data_in[11]), // Write Data 18

 .DA12(vertex_data_in[12]), .DA13(vertex_data_in[13]), .DA14(vertex_data_in[14]), 19
.DA15(vertex_data_in[15]), // Write Data 20

 .DA16(vertex_data_in[16]), .DA17(vertex_data_in[17]), .DA18(vertex_data_in[18]), 21
.DA19(vertex_data_in[19]), // Write Data 22

 .DA20(vertex_data_in[20]), .DA21(vertex_data_in[21]), .DA22(vertex_data_in[22]), 23
.DA23(vertex_data_in[23]), // Write Data 24

 .DA24(vertex_data_in[24]), .DA25(vertex_data_in[25]), .DA26(vertex_data_in[26]), 25
.DA27(vertex_data_in[27]), // Write Data 26

 .DA28(vertex_data_in[28]), .DA29(vertex_data_in[29]), .DA30(vertex_data_in[30]), 27
.DA31(vertex_data_in[31]), // Write Data 28

 .DA32(vertex_data_in[32]), .DA33(vertex_data_in[33]), .DA34(vertex_data_in[34]), 29
.DA35(vertex_data_in[35]), // Write Data 30

 .DA36(vertex_data_in[36]), .DA37(vertex_data_in[37]), .DA38(vertex_data_in[38]), 31
.DA39(vertex_data_in[39]), // Write Data 32

 Page 10 of 14
Ex. 2111 - param_cache_ctl.v

 .DA40(vertex_data_in[40]), .DA41(vertex_data_in[41]), .DA42(vertex_data_in[42]), 1
.DA43(vertex_data_in[43]), // Write Data 2

 .DA44(vertex_data_in[44]), .DA45(vertex_data_in[45]), .DA46(vertex_data_in[46]), 3
.DA47(vertex_data_in[47]), // Write Data 4

 .DA48(vertex_data_in[48]), .DA49(vertex_data_in[49]), .DA50(vertex_data_in[50]), 5
.DA51(vertex_data_in[51]), // Write Data 6

 .DA52(vertex_data_in[52]), .DA53(vertex_data_in[53]), .DA54(vertex_data_in[54]), 7
.DA55(vertex_data_in[55]), // Write Data 8

 .DA56(vertex_data_in[56]), .DA57(vertex_data_in[57]), .DA58(vertex_data_in[58]), 9
.DA59(vertex_data_in[59]), // Write Data 10

 .DA60(vertex_data_in[60]), .DA61(vertex_data_in[61]), .DA62(vertex_data_in[62]), 11
.DA63(vertex_data_in[63]), // Write Data 12

 .DA64(vertex_data_in[64]), .DA65(vertex_data_in[65]), .DA66(vertex_data_in[66]), 13
.DA67(vertex_data_in[67]), // Write Data 14

 .DA68(vertex_data_in[68]), .DA69(vertex_data_in[69]), .DA70(vertex_data_in[70]), 15
.DA71(vertex_data_in[71]), // Write Data 16

 .DA72(vertex_data_in[72]), .DA73(vertex_data_in[73]), .DA74(vertex_data_in[74]), 17
.DA75(vertex_data_in[75]), // Write Data 18

 .DA76(vertex_data_in[76]), .DA77(vertex_data_in[77]), .DA78(vertex_data_in[78]), 19
.DA79(vertex_data_in[79]), // Write Data 20

 .DA80(vertex_data_in[80]), .DA81(vertex_data_in[81]), .DA82(vertex_data_in[82]), 21
.DA83(vertex_data_in[83]), // Write Data 22

 .DA84(vertex_data_in[84]), .DA85(vertex_data_in[85]), .DA86(vertex_data_in[86]), 23
.DA87(vertex_data_in[87]), // Write Data 24

 .DA88(vertex_data_in[88]), .DA89(vertex_data_in[89]), .DA90(vertex_data_in[90]), 25
.DA91(vertex_data_in[91]), // Write Data 26

 .DA92(vertex_data_in[92]), .DA93(vertex_data_in[93]), .DA94(vertex_data_in[94]), 27
.DA95(vertex_data_in[95]), // Write Data 28

 .DA96(vertex_data_in[96]), .DA97(vertex_data_in[97]), .DA98(vertex_data_in[98]), 29
.DA99(vertex_data_in[99]), // Write Data 30

 .DA100(vertex_data_in[100]), .DA101(vertex_data_in[101]), 31
.DA102(vertex_data_in[102]), .DA103(vertex_data_in[103]), // Write Data 32

 Page 11 of 14
Ex. 2111 - param_cache_ctl.v

 .DA104(vertex_data_in[104]), .DA105(vertex_data_in[105]), 1
.DA106(vertex_data_in[106]), .DA107(vertex_data_in[107]), // Write Data 2

 .DA108(vertex_data_in[108]), .DA109(vertex_data_in[109]), 3
.DA110(vertex_data_in[110]), .DA111(vertex_data_in[111]), // Write Data 4

 .DA112(vertex_data_in[112]), .DA113(vertex_data_in[113]), 5
.DA114(vertex_data_in[114]), .DA115(vertex_data_in[115]), // Write Data 6

 .DA116(vertex_data_in[116]), .DA117(vertex_data_in[117]), 7
.DA118(vertex_data_in[118]), .DA119(vertex_data_in[119]), // Write Data 8

 .DA120(vertex_data_in[120]), .DA121(vertex_data_in[121]), 9
.DA122(vertex_data_in[122]), .DA123(vertex_data_in[123]), // Write Data 10

 .DA124(vertex_data_in[124]), .DA125(vertex_data_in[125]), 11
.DA126(vertex_data_in[126]), .DA127(vertex_data_in[127]), // Write Data 12

 // WRITE TEST SIGNALS 13

 .BISTEA(vss), 14

 .TWEA(vss), 15

 .TMEA(vss), 16

 .TADRA0(pc_wr_addr[0]), .TADRA1(pc_wr_addr[1]), .TADRA2(pc_wr_addr[2]), 17
.TADRA3(pc_wr_addr[3]), // Write Test Address 18

 .TADRA4(pc_wr_addr[4]), .TADRA5(pc_wr_addr[5]), .TADRA6(pc_wr_addr[6]), // 19
Write Test Address 20

 .TDA0(vertex_data_in[0]), .TDA1(vertex_data_in[1]), .TDA2(vertex_data_in[2]), 21
.TDA3(vertex_data_in[3]), // Write Test Data 22

 .TDA4(vertex_data_in[4]), .TDA5(vertex_data_in[5]), .TDA6(vertex_data_in[6]), 23
.TDA7(vertex_data_in[7]), // Write Test Data 24

 .TDA8(vertex_data_in[8]), .TDA9(vertex_data_in[9]), .TDA10(vertex_data_in[10]), 25
.TDA11(vertex_data_in[11]), // Write Test Data 26

 .TDA12(vertex_data_in[12]), .TDA13(vertex_data_in[13]), .TDA14(vertex_data_in[14]), 27
.TDA15(vertex_data_in[15]), // Write Test Data 28

 .TDA16(vertex_data_in[16]), .TDA17(vertex_data_in[17]), .TDA18(vertex_data_in[18]), 29
.TDA19(vertex_data_in[19]), // Write Test Data 30

 .TDA20(vertex_data_in[20]), .TDA21(vertex_data_in[21]), .TDA22(vertex_data_in[22]), 31
.TDA23(vertex_data_in[23]), // Write Test Data 32

 Page 12 of 14
Ex. 2111 - param_cache_ctl.v

 .TDA24(vertex_data_in[24]), .TDA25(vertex_data_in[25]), .TDA26(vertex_data_in[26]), 1
.TDA27(vertex_data_in[27]), // Write Test Data 2

 .TDA28(vertex_data_in[28]), .TDA29(vertex_data_in[29]), .TDA30(vertex_data_in[30]), 3
.TDA31(vertex_data_in[31]), // Write Test Data 4

 .TDA32(vertex_data_in[32]), .TDA33(vertex_data_in[33]), .TDA34(vertex_data_in[34]), 5
.TDA35(vertex_data_in[35]), // Write Test Data 6

 .TDA36(vertex_data_in[36]), .TDA37(vertex_data_in[37]), .TDA38(vertex_data_in[38]), 7
.TDA39(vertex_data_in[39]), // Write Test Data 8

 .TDA40(vertex_data_in[40]), .TDA41(vertex_data_in[41]), .TDA42(vertex_data_in[42]), 9
.TDA43(vertex_data_in[43]), // Write Test Data 10

 .TDA44(vertex_data_in[44]), .TDA45(vertex_data_in[45]), .TDA46(vertex_data_in[46]), 11
.TDA47(vertex_data_in[47]), // Write Test Data 12

 .TDA48(vertex_data_in[48]), .TDA49(vertex_data_in[49]), .TDA50(vertex_data_in[50]), 13
.TDA51(vertex_data_in[51]), // Write Test Data 14

 .TDA52(vertex_data_in[52]), .TDA53(vertex_data_in[53]), .TDA54(vertex_data_in[54]), 15
.TDA55(vertex_data_in[55]), // Write Test Data 16

 .TDA56(vertex_data_in[56]), .TDA57(vertex_data_in[57]), .TDA58(vertex_data_in[58]), 17
.TDA59(vertex_data_in[59]), // Write Test Data 18

 .TDA60(vertex_data_in[60]), .TDA61(vertex_data_in[61]), .TDA62(vertex_data_in[62]), 19
.TDA63(vertex_data_in[63]), // Write Test Data 20

 .TDA64(vertex_data_in[64]), .TDA65(vertex_data_in[65]), .TDA66(vertex_data_in[66]), 21
.TDA67(vertex_data_in[67]), // Write Test Data 22

 .TDA68(vertex_data_in[68]), .TDA69(vertex_data_in[69]), .TDA70(vertex_data_in[70]), 23
.TDA71(vertex_data_in[71]), // Write Test Data 24

 .TDA72(vertex_data_in[72]), .TDA73(vertex_data_in[73]), .TDA74(vertex_data_in[74]), 25
.TDA75(vertex_data_in[75]), // Write Test Data 26

 .TDA76(vertex_data_in[76]), .TDA77(vertex_data_in[77]), .TDA78(vertex_data_in[78]), 27
.TDA79(vertex_data_in[79]), // Write Test Data 28

 .TDA80(vertex_data_in[80]), .TDA81(vertex_data_in[81]), .TDA82(vertex_data_in[82]), 29
.TDA83(vertex_data_in[83]), // Write Test Data 30

 .TDA84(vertex_data_in[84]), .TDA85(vertex_data_in[85]), .TDA86(vertex_data_in[86]), 31
.TDA87(vertex_data_in[87]), // Write Test Data 32

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 495 of 611

 Page 13 of 14
Ex. 2111 - param_cache_ctl.v

 .TDA88(vertex_data_in[88]), .TDA89(vertex_data_in[89]), .TDA90(vertex_data_in[90]), 1
.TDA91(vertex_data_in[91]), // Write Test Data 2

 .TDA92(vertex_data_in[92]), .TDA93(vertex_data_in[93]), .TDA94(vertex_data_in[94]), 3
.TDA95(vertex_data_in[95]), // Write Test Data 4

 .TDA96(vertex_data_in[96]), .TDA97(vertex_data_in[97]), .TDA98(vertex_data_in[98]), 5
.TDA99(vertex_data_in[99]), // Write Test Data 6

 .TDA100(vertex_data_in[100]), .TDA101(vertex_data_in[101]), 7
.TDA102(vertex_data_in[102]), .TDA103(vertex_data_in[103]), // Write Test Data 8

 .TDA104(vertex_data_in[104]), .TDA105(vertex_data_in[105]), 9
.TDA106(vertex_data_in[106]), .TDA107(vertex_data_in[107]), // Write Test Data 10

 .TDA108(vertex_data_in[108]), .TDA109(vertex_data_in[109]), 11
.TDA110(vertex_data_in[110]), .TDA111(vertex_data_in[111]), // Write Test Data 12

 .TDA112(vertex_data_in[112]), .TDA113(vertex_data_in[113]), 13
.TDA114(vertex_data_in[114]), .TDA115(vertex_data_in[115]), // Write Test Data 14

 .TDA116(vertex_data_in[116]), .TDA117(vertex_data_in[117]), 15
.TDA118(vertex_data_in[118]), .TDA119(vertex_data_in[119]), // Write Test Data 16

 .TDA120(vertex_data_in[120]), .TDA121(vertex_data_in[121]), 17
.TDA122(vertex_data_in[122]), .TDA123(vertex_data_in[123]), // Write Test Data 18

 .TDA124(vertex_data_in[124]), .TDA125(vertex_data_in[125]), 19
.TDA126(vertex_data_in[126]), .TDA127(vertex_data_in[127]), // Write Test Data 20

 //READ TEST SIGNALS 21

 .BISTEB(vss), 22

 .TOEB(vss), 23

 .TMEB(vss), 24

 .TADRB0(pc_index[0]), .TADRB1(pc_index[1]), .TADRB2(pc_index[2]), 25
.TADRB3(pc_index[3]), // Read Test Address 26

 .TADRB4(pc_index[4]), .TADRB5(pc_index[5]), .TADRB6(pc_index[6]), // Read Test 27
Address 28

 .AWTB(vss) 29

); 30

`endif // !`ifdef USE_BEHAVE_MEM 31

 Page 14 of 14
Ex. 2111 - param_cache_ctl.v

 1

 //assign the read values to the out port 2

 assign ovtx_data = q0_vertex_data_out; // the output of the parameter cache is registered 3
..??????? 4

 5

endmodule // param_cache_ctl 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 496 of 611

 Page 1 of 19
Ex. 2112 - sp.v

//Id 1

//$Change$ 2

// -*- Mode: Verilog -*- 3

// Filename : shader.v 4

// Description : This module represents the Shader Pipe unit. 5

// : There are 4 instances of this module in the chip. 6

// : Each shader pipe includes four vector units. 7

// : Each vector unit has four GPR/MAC instances and one scalar unit. 8

// Author : Andi Skende 9

// Created On : Fri Nov 16 18:48:25 2001 10

// Last Modified By: . 11

// Last Modified On: . 12

// Update Count : 0 13

// Status : Unknown, Use with caution! 14

 15

`timescale 1ns / 1ps 16

 17

module sp(/*AUTOARG*/ 18

 // Outputs 19

 SP_TP_fetch_addr0, SP_TP_fetch_addr1, SP_TP_fetch_addr2, 20

 SP_TP_fetch_addr3, SP_SX_data0, SP_SX_data1, SP_SX_data2, 21

 SP_SX_data3, SP_SQ_const_addr, SP_SQ_valid, SP_SQ_kill_vect, 22

 SP_SX_exp_pvalid, SP_SX_exporting, SP_SX_exp_alu_id, 23

 SP_SX_exp_dest, 24

 // Inputs 25

 Page 2 of 19
Ex. 2112 - sp.v

 sclk_global, srst, TP_SP_data0, TP_SP_data1, TP_SP_data2, 1

 TP_SP_data3, TP_SP_data_valid, TP_SP_gpr_dst, TP_SP_gpr_cmask, 2

 SQ_SP_instruct_start, SQ_SP_instruct, SQ_SP_stall, 3

 SQ_SP_exp_pvalid, SQ_SP_exporting, SQ_SP_exp_id, SQ_SP_const, 4

 SQ_SP_gpr_wr_addr, SQ_SP_gpr_rd_addr, SQ_SP_gpr_rd_en, 5

 SQ_SP_gpr_wr_en, SQ_SP_gpr_phase_mux, SQ_SP_channel_mask, 6

 SQ_SP_pix_mask, SQ_SP_gpr_input_mux, SQ_SP_auto_count, SC_SP_data, 7

 SC_SP_valid, SC_SP_type, SC_SP_last_quad, SQ_SP_vsr_data, 8

 SQ_SP_vsr_double, SQ_SP_vsr_valid, SQ_SP_vsr_read, 9

 SQ_SP_interp_prim_type, SQ_SP_interp_ijline, SQ_SP_interp_mode, 10

 SQ_SP_interp_valid, SQ_SP_interp_buff_swap, SQ_SP_interp_gen_i0, 11

 CG_SP_pm_enb, SX_SP_vtx_data0, SX_SP_vtx_data1, SX_SP_vtx_data2 12

); 13

 14

 15

 input sclk_global; 16

 input srst; 17

 18

 wire sclk ; 19

 assign sclk = sclk_global; 20

 //-- 21

 //SHADER(SP)-TEXTURE(TP) 22

 //These buses represent the texture fetch request data. 23

 //One 96 bit bus comming out of each vector unit....4 X 96 bits = 384 bits comming 24

 //out of each shader pipe 25

 Page 3 of 19
Ex. 2112 - sp.v

 //--- 1

 output [95:0] SP_TP_fetch_addr0, 2
SP_TP_fetch_addr1,SP_TP_fetch_addr2,SP_TP_fetch_addr3; 3

 wire [95:0] sp_fetch_addr0, sp_fetch_addr1,sp_fetch_addr2,sp_fetch_addr3; 4

 wire [95:0] q_sp_fetch_addr0, q_sp_fetch_addr1,q_sp_fetch_addr2,q_sp_fetch_addr3; 5

 6

 ati_dff_out #(96) usp_fetch_addr0(sclk,sp_fetch_addr0,q_sp_fetch_addr0); 7

 ati_dff_out #(96) usp_fetch_addr1(sclk,sp_fetch_addr1,q_sp_fetch_addr1); 8

 ati_dff_out #(96) usp_fetch_addr2(sclk,sp_fetch_addr2,q_sp_fetch_addr2); 9

 ati_dff_out #(96) usp_fetch_addr3(sclk,sp_fetch_addr3,q_sp_fetch_addr3); 10

 11

 12

 assign SP_TP_fetch_addr0 = q_sp_fetch_addr0; 13

 assign SP_TP_fetch_addr1 = q_sp_fetch_addr1; 14

 assign SP_TP_fetch_addr2 = q_sp_fetch_addr2; 15

 assign SP_TP_fetch_addr3 = q_sp_fetch_addr3; 16

 17

 //--- 18

 //SHADER(SP) - SX(SHADER EXPORT) 19

 //This interface represents pixel/parameter data being exported out of the shader pipe 20

 //into the SX block 21

 //-- 22

 output [127:0] SP_SX_data0, SP_SX_data1,SP_SX_data2,SP_SX_data3; 23

 wire [127:0] q_sp_sx_data0, q_sp_sx_data1 , q_sp_sx_data2 , q_sp_sx_data3; 24

 wire [127:0] osp_sx_data0, osp_sx_data1 , osp_sx_data2 , osp_sx_data3; 25

 26

 Page 4 of 19
Ex. 2112 - sp.v

 ati_dff_out #(128) usp_sx_data0(sclk, osp_sx_data0,q_sp_sx_data0); 1

 ati_dff_out #(128) usp_sx_data1(sclk, osp_sx_data1,q_sp_sx_data1); 2

 ati_dff_out #(128) usp_sx_data2(sclk, osp_sx_data2,q_sp_sx_data2); 3

 ati_dff_out #(128) usp_sx_data3(sclk, osp_sx_data3,q_sp_sx_data3); 4

 5

 //export data going out to SX (shader export) 6

 assign SP_SX_data0 = q_sp_sx_data0; 7

 assign SP_SX_data1 = q_sp_sx_data1; 8

 assign SP_SX_data2 = q_sp_sx_data2; 9

 assign SP_SX_data3 = q_sp_sx_data3; 10

 11

 //-- 12

 //SP-SQ constant address load. 13

 //The transfer on this interface is done via a MOVA instruction used to calculate the 14

 //address that SQ uses to access the Constant Store. 15

 //--- 16

 output [35:0] SP_SQ_const_addr; 17

 output [0:0] SP_SQ_valid ; 18

 19

 20

 //--// 21

 //Kill return interface---// 22

 //--// 23

 output [3:0] SP_SQ_kill_vect; 24

 25

ATI 2112
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 497 of 611

 Page 5 of 19
Ex. 2112 - sp.v

 //-- 1

 //TEXTURE(TP)-SHADER(SP) 2

 //This interface represents the texture fetch return data 3

 //TP_SP_dst and TP_SP_cmask represent the GPR destination of this data 4

 //and a mask value per 32 channel respectivly. 5

 //TP_SP_data* is currently defined as a 128 bit bus. 6

 //This bus will propably be reduced to 64 bit. 7

 //--- 8

 input [127:0] TP_SP_data0,TP_SP_data1,TP_SP_data2,TP_SP_data3; 9

 input [0:0] TP_SP_data_valid; 10

 input [6:0] TP_SP_gpr_dst; 11

 input [3:0] TP_SP_gpr_cmask; 12

 13

 wire [127:0] q_tp_data0, q_tp_data1,q_tp_data2,q_tp_data3; 14

 wire [6:0] q_tp_gpr_dst; 15

 wire [3:0] q_tp_gpr_cmask; 16

 wire [0:0] q_tp_data_valid; 17

 18

 //registering the inputs from Texture pipe 19

 ati_dff_in #(128) tp_data0(sclk,TP_SP_data0,q_tp_data0); 20

 ati_dff_in #(128) tp_data1(sclk,TP_SP_data1,q_tp_data1); 21

 ati_dff_in #(128) tp_data2(sclk,TP_SP_data2,q_tp_data2); 22

 ati_dff_in #(128) tp_data3(sclk,TP_SP_data3,q_tp_data3); 23

 ati_dff_in #(7) tp_gpr_dst(sclk, TP_SP_gpr_dst, q_tp_gpr_dst); 24

 ati_dff_in #(4) tp_gpr_cmask(sclk, TP_SP_gpr_cmask, q_tp_gpr_cmask); 25

 Page 6 of 19
Ex. 2112 - sp.v

 ati_dff_in #(1) tp_data_valid(sclk,TP_SP_data_valid ,q_tp_data_valid); 1

 2

 3

 4

 //--- 5

 //SEQUENCER(SQ)-SHADER(SP) 6

 //the controls needed for writting 7

 //and reading the register files(GPRs). 8

 //ALU Instruction related data is also 9

 //present in this interface 10

 //-- 11

 input [0:0] SQ_SP_instruct_start; 12

 input [20:0] SQ_SP_instruct; 13

 input [0:0] SQ_SP_stall; 14

 input [3:0] SQ_SP_exp_pvalid; 15

 input [0:0] SQ_SP_exporting ; 16

 input [0:0] SQ_SP_exp_id; 17

 18

 wire [0:0] q_sq_instruct_start; 19

 wire [20:0] q_sq_instruct; 20

 wire [0:0] q_sq_stall; 21

 wire [3:0] q_sq_exp_pvalid; 22

 wire [0:0] q_sq_exporting ; 23

 wire [0:0] q_sq_exp_alu_id; 24

 25

 Page 7 of 19
Ex. 2112 - sp.v

 1

 2

 ati_dff_in #(1) sq_instruct_start(sclk,SQ_SP_instruct_start,q_sq_instruct_start); 3

 ati_dff_in #(21) sq_instruct(sclk,SQ_SP_instruct,q_sq_instruct); 4

 ati_dff_in #(1) sq_stall(sclk,SQ_SP_stall,q_sq_stall); 5

 ati_dff_in #(4) sq_exp_pvalid(sclk,SQ_SP_exp_pvalid,q_sq_exp_pvalid); 6

 ati_dff_in #(1) sq_exporting(sclk,SQ_SP_exporting,q_sq_exporting); 7

 ati_dff_in #(1) sq_exp_alu_id(sclk,SQ_SP_exp_id,q_sq_exp_alu_id); 8

 9

 //---// 10

 //The three buses below are pipelined through and outputed to SX 11

 //---// 12

 13

 output [3:0] SP_SX_exp_pvalid; 14

 output [0:0] SP_SX_exporting ; 15

 output [0:0] SP_SX_exp_alu_id; 16

 output [5:0] SP_SX_exp_dest; 17

 18

 wire [3:0] sp_exp_pvalid; 19

 wire [0:0] sp_exporting ; 20

 wire [0:0] sp_exp_alu_id; 21

 wire [5:0] sp_exp_dst; 22

 23

 wire [3:0] q_sp_exp_pvalid; 24

 wire [0:0] q_sp_exporting ; 25

 Page 8 of 19
Ex. 2112 - sp.v

 wire [0:0] q_sp_exp_alu_id; 1

 wire [5:0] q_sp_exp_dst; 2

 3

 ati_dff_out #(4) usp_exp_pvalid(sclk,sp_exp_pvalid,q_sp_exp_pvalid); 4

 ati_dff_out #(1) usp_exporting(sclk,sp_exporting,q_sp_exporting); 5

 ati_dff_out #(1) usp_exp_alu_id(sclk,sp_exp_alu_id,q_sp_exp_alu_id); 6

 ati_dff_out #(6) usp_exp_dst(sclk,sp_exp_dst,q_sp_exp_dst); 7

 8

 assign SP_SX_exp_pvalid = q_sp_exp_pvalid; 9

 assign SP_SX_exporting = q_sp_exporting ; 10

 assign SP_SX_exp_alu_id = q_sp_exp_alu_id; 11

 assign SP_SX_exp_dest = q_sp_exp_dst; 12

 13

 //---/ 14

 //SEQUENCER(SQ)-SHADER(SP) 15

 //Constant Broadcast interface 16

 //---/ 17

 input [127:0] SQ_SP_const; 18

 wire [127:0] q_sq_const; 19

 20

 ati_dff_in #(128) sq_const(sclk,SQ_SP_const,q_sq_const); 21

 22

 23

 //--/ 24

 //SEQUENCER(SQ)-SHADER(SP) 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 498 of 611

 Page 9 of 19
Ex. 2112 - sp.v

 //GPR control and auto-counter interface 1

 //--/ 2

 input [6:0] SQ_SP_gpr_wr_addr; 3

 input [6:0] SQ_SP_gpr_rd_addr; 4

 input [0:0] SQ_SP_gpr_rd_en,SQ_SP_gpr_wr_en; //these to read/write enable 5
signals 6

 //are used to enable the TP - GPR write path also 7

 input [1:0] SQ_SP_gpr_phase_mux; //control into GPR write port 8

 input [3:0] SQ_SP_channel_mask; 9

 input [3:0] SQ_SP_pix_mask; 10

 input [1:0] SQ_SP_gpr_input_mux; 11

 input [11:0] SQ_SP_auto_count; 12

 13

 14

 wire [6:0] q_sq_gpr_wr_addr; 15

 wire [6:0] q_sq_gpr_rd_addr; 16

 wire [0:0] q_sq_gpr_rd_en,q_sq_gpr_wr_en; //these to read/write enable signals 17

 //are used to enable the TP - GPR write path also 18

 wire [1:0] q_sq_gpr_phase_mux; //control into GPR write port 19

 wire [3:0] q_sq_channel_mask; 20

 wire [3:0] q_sq_pix_mask; 21

 wire [1:0] q_sq_gpr_input_mux; 22

 wire [11:0] q_sq_auto_count; 23

 24

 25

 ati_dff_in #(7) sq_gpr_wr_addr(sclk,SQ_SP_gpr_wr_addr,q_sq_gpr_wr_addr); 26

 Page 10 of 19
Ex. 2112 - sp.v

 ati_dff_in #(7) sq_gpr_rd_addr(sclk,SQ_SP_gpr_rd_addr,q_sq_gpr_rd_addr); 1

 ati_dff_in #(1) sq_gpr_rd_en(sclk,SQ_SP_gpr_rd_en,q_sq_gpr_rd_en); 2

 ati_dff_in #(1) sq_gpr_wr_en(sclk,SQ_SP_gpr_wr_en,q_sq_gpr_wr_en); 3

 ati_dff_in #(2) sq_gpr_phase_mux(sclk,SQ_SP_gpr_phase_mux,q_sq_gpr_phase_mux); 4

 ati_dff_in #(4) sq_channel_mask(sclk,SQ_SP_channel_mask,q_sq_channel_mask); 5

 ati_dff_in #(4) sq_pix_mask(sclk,SQ_SP_pix_mask,q_sq_pix_mask); 6

 ati_dff_in #(2) sq_gpr_input_mux(sclk,SQ_SP_gpr_input_mux,q_sq_gpr_input_mux); 7

 ati_dff_in #(12) sq_auto_count(sclk,SQ_SP_auto_count,q_sq_auto_count); 8

 9

 //-- 10

 //Scan Converter (SC) - Shader Pipe (SP) 11

 //IJ interface 12

 //-- 13

 input [99:0] SC_SP_data; 14

 input [0:0] SC_SP_valid; //quad write mask 15

 input [1:0] SC_SP_type; //specifies the interpolation typecenter vs. centroid vs. XY 16

 input [0:0] SC_SP_last_quad; 17

 18

 wire [99:0] q_sc_data; 19

 wire [0:0] q_sc_valid; //quad write mask 20

 wire [1:0] q_sc_type; //specifies the interpolation typecenter vs. centroid vs. XY 21

 wire [0:0] q_sc_last_quad; 22

 23

 ati_dff_in #(100) sc_data(sclk,SC_SP_data,q_sc_data); 24

 ati_dff_in #(1) sc_valid(sclk,SC_SP_valid,q_sc_valid); 25

 Page 11 of 19
Ex. 2112 - sp.v

 ati_dff_in #(2) sc_type(sclk,SC_SP_type,q_sc_type); 1

 ati_dff_in #(1) sc_last_quad(sclk,SC_SP_last_quad,q_sc_last_quad); 2

 3

 //--// 4

 //Staging registers control interface. 5

 //---// 6

 input [95:0] SQ_SP_vsr_data; 7

 input [0:0] SQ_SP_vsr_double; 8

 input [0:0] SQ_SP_vsr_valid; 9

 input [0:0] SQ_SP_vsr_read; 10

 11

 wire [95:0] q_sq_vsr_data; 12

 wire [0:0] q_sq_vsr_double; 13

 wire [0:0] q_sq_vsr_valid; 14

 wire [0:0] q_sq_vsr_read; 15

 16

 ati_dff_in #(96) sq_vsr_data(sclk,SQ_SP_vsr_data,q_sq_vsr_data); 17

 ati_dff_in #(1) sq_vsr_double(sclk,SQ_SP_vsr_double,q_sq_vsr_double); 18

 ati_dff_in #(1) sq_vsr_valid(sclk,SQ_SP_vsr_valid,q_sq_vsr_valid); 19

 ati_dff_in #(1) sq_vsr_read(sclk,SQ_SP_vsr_read,q_sq_vsr_read); 20

 21

 //--- 22

 //SQ-SP 23

 //Interpolation control interface 24

 //--- 25

 Page 12 of 19
Ex. 2112 - sp.v

 input [2:0] SQ_SP_interp_prim_type; 1

 input [1:0] SQ_SP_interp_ijline; 2

 input [0:0] SQ_SP_interp_mode; 3

 input [0:0] SQ_SP_interp_valid; 4

 input [0:0] SQ_SP_interp_buff_swap; 5

 input [0:0] SQ_SP_interp_gen_i0 ; 6

 7

 wire [2:0] q_sq_interp_prim_type; 8

 wire [1:0] q_sq_interp_ijline; 9

 wire [0:0] q_sq_interp_mode; 10

 wire [0:0] q_sq_interp_buff_swap; 11

 wire [0:0] q_sq_interp_gen_i0 ; 12

 wire [0:0] q_sq_interp_valid; 13

 14

 ati_dff_in #(3) usq_interp_prim_type(sclk,SQ_SP_interp_prim_type,q_sq_interp_prim_type); 15

 ati_dff_in #(2) usq_interp_ijline(sclk,SQ_SP_interp_ijline,q_sq_interp_ijline); 16

 ati_dff_in #(1) usq_interp_mode(sclk,SQ_SP_interp_mode,q_sq_interp_mode); 17

 ati_dff_in #(1) 18
usq_interp_buff_swap(sclk,SQ_SP_interp_buff_swap,q_sq_interp_buff_swap); 19

 ati_dff_in #(1) usq_interp_gen_i0(sclk,SQ_SP_interp_gen_i0,q_sq_interp_gen_i0); 20

 ati_dff_in #(1) usq_interp_valid(sclk, SQ_SP_interp_valid,q_sq_interp_valid); 21

 22

 23

 //---// 24

 //Power managment control interface 25

 //---// 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 499 of 611

 Page 13 of 19
Ex. 2112 - sp.v

 input [0:0] CG_SP_pm_enb; 1

 wire [0:0] q_cg_sp_pm_enb; 2

 ati_dff_in #(1) ucg_sp_pm_enb(sclk,CG_SP_pm_enb,q_cg_sp_pm_enb); 3

 4

 //-- 5

 //SX - SP Interpolators : Parameter Cache return bus 6

 //data0 represents P0 7

 //data1 represents P1-P0 8

 //data2 represents P2-P0 9

 //remember : the difference engines are in the SX blocks 10

 //-- 11

 12

 input [127:0] SX_SP_vtx_data0; 13

 input [131:0] SX_SP_vtx_data1, SX_SP_vtx_data2; 14

 15

 wire [127:0] q_sx_vtx_data0; 16

 wire [131:0] q_sx_vtx_data1, q_sx_vtx_data2; 17

 18

 //registering the inputs 19

 20

 ati_dff_in #(128) sx_vtx_data0(sclk,SX_SP_vtx_data0,q_sx_vtx_data0); 21

 ati_dff_in #(132) sx_vtx_data1(sclk,SX_SP_vtx_data1,q_sx_vtx_data1); 22

 ati_dff_in #(132) sx_vtx_data2(sclk,SX_SP_vtx_data2,q_sx_vtx_data2); 23

 24

 25

 Page 14 of 19
Ex. 2112 - sp.v

 wire [127:0] Interpolated0, Interpolated1,Interpolated2,Interpolated3; 1

 wire [95:0] VertexIndex0, VertexIndex1,VertexIndex2, VertexIndex3; 2

 3

 4

 //---// 5

 //Interpolation Units--// 6

 //---// 7

 interpolator uinterpolator(.oInterpolated0(Interpolated0), .oInterpolated1(Interpolated1), 8

 .oInterpolated2(Interpolated2), .oInterpolated3(Interpolated3), 9

 .sx_sp_vtx_data0(q_sx_vtx_data0), 10

 11
.sx_sp_vtx_delta10(q_sx_vtx_data1),.sx_sp_vtx_delta20(q_sx_vtx_data2), 12

 13
.sq_sp_interp_ijline(q_sq_interp_ijline),.sq_sp_interp_valid(q_sq_interp_valid), 14

 .sq_sp_interp_buff_swap(q_sq_interp_buff_swap), 15

 16
.sc_sp_data(q_sc_data),.sc_sp_valid(q_sc_valid),.sq_sp_interp_mode(q_sq_interp_mode), 17

 .sc_sp_type(q_sc_type),.sc_sp_quad_last(q_sc_last_quad), 18

 .sclk(sclk),.srst(srst)); 19

 20

 21

 //--// 22

 //Vertex Indices Staging registers and Control 23

 //--// 24

 sp_vsr_ctl usp_vsr_ctl(.ovtx_index0(VertexIndex0), .ovtx_index1(VertexIndex1), 25

 .ovtx_index2(VertexIndex2), .ovtx_index3(VertexIndex3), 26

 Page 15 of 19
Ex. 2112 - sp.v

 .isq_vsr_data(q_sq_vsr_data), .isq_vsr_double(q_sq_vsr_double), 1

 .isq_vsr_valid(q_sq_vsr_valid), .isq_vsr_read(q_sq_vsr_read), 2

 .sclk(sclk),.srst(srst) 3

); 4

 5

 //--- 6

 //Instantiation of 4 Vector units (vector.v module) 7

 //--- 8

 9

 vector uvector0(//outputs 10

 .sp_sx_data(osp_sx_data0), 11

 .sp_sx_exporting(sp_exporting), 12

 .sp_sx_exp_dst(sp_exp_dst), 13

 .sp_sx_exp_alu_id(sp_exp_alu_id), 14

 .sp_sx_exp_pvalid(sp_exp_pvalid), 15

 .sp_tp_data(sp_fetch_addr0), 16

 17

 //inputs 18

 .sq_sp_instruct_start(q_sq_instruct_start), 19

 .sq_sp_instruct(q_sq_instruct),.sq_sp_stall(q_sq_stall), 20

 .sclk(sclk), .srst(srst), 21

 .sq_sp_wr_addr(q_sq_gpr_wr_addr), .sq_sp_gpr_rd_addr(q_sq_gpr_rd_addr), 22

 23
.sq_sp_mem_rd_ena(q_sq_gpr_rd_en),.sq_sp_mem_wr_ena(q_sq_gpr_wr_en),.sq_sp_wr_ena(24
q_sq_gpr_wr_en), 25

 Page 16 of 19
Ex. 2112 - sp.v

 .sq_sp_gpr_phase_mux(q_sq_gpr_phase_mux), 1
.sq_sp_channel_mask(q_sq_channel_mask), 2

 .sq_sp_pixel_mask(q_sq_pix_mask), 3
.sq_sp_gpr_input_mux(q_sq_gpr_input_mux), 4

 .iInterpolated(Interpolated0),// iAutoCount, 5

 .iVertexIndices(VertexIndex0), 6

 .sq_sp_constant(q_sq_const), 7

 .tp_sp_data(q_tp_data0),.tp_sp_gpr_dst(q_tp_gpr_dst), 8

 .tp_sp_gpr_cmask(q_tp_gpr_cmask),.tp_sp_data_valid(q_tp_data_valid), 9

 .sq_sp_exp_pvalid(q_sq_exp_pvalid), 10

 .sq_sp_exporting(q_sq_exporting), 11

 .sq_sp_exp_alu_id(q_sq_exp_alu_id) 12

); 13

 14

 15

 vector uvector1(.sp_sx_data(osp_sx_data1), 16

 .sp_tp_data(sp_fetch_addr1), 17

 .sq_sp_instruct_start(q_sq_instruct_start), 18

 .sq_sp_instruct(q_sq_instruct),.sq_sp_stall(q_sq_stall), 19

 .sclk(sclk), .srst(srst), 20

 .sq_sp_wr_addr(q_sq_gpr_wr_addr), .sq_sp_gpr_rd_addr(q_sq_gpr_rd_addr), 21

 22
.sq_sp_mem_rd_ena(q_sq_gpr_rd_en),.sq_sp_mem_wr_ena(q_sq_gpr_wr_en),.sq_sp_wr_ena(23
q_sq_gpr_wr_en), 24

 .sq_sp_gpr_phase_mux(q_sq_gpr_phase_mux), 25
.sq_sp_channel_mask(q_sq_channel_mask), 26

 .sq_sp_pixel_mask(q_sq_pix_mask), 27
.sq_sp_gpr_input_mux(q_sq_gpr_input_mux), 28

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 500 of 611

 Page 17 of 19
Ex. 2112 - sp.v

 .iInterpolated(Interpolated1),// iAutoCount, 1

 .iVertexIndices(VertexIndex1), 2

 .sq_sp_constant(q_sq_const), 3

 .tp_sp_data(q_tp_data1),.tp_sp_gpr_dst(q_tp_gpr_dst), 4

 .tp_sp_gpr_cmask(q_tp_gpr_cmask),.tp_sp_data_valid(q_tp_data_valid)); 5

 6

 vector uvector2(.sp_sx_data(osp_sx_data2), 7

 .sp_tp_data(sp_fetch_addr2), 8

 .sq_sp_instruct_start(q_sq_instruct_start), 9

 .sq_sp_instruct(q_sq_instruct),.sq_sp_stall(q_sq_stall), 10

 .sclk(sclk), .srst(srst), 11

 .sq_sp_wr_addr(q_sq_gpr_wr_addr), .sq_sp_gpr_rd_addr(q_sq_gpr_rd_addr), 12

 13
.sq_sp_mem_rd_ena(q_sq_gpr_rd_en),.sq_sp_mem_wr_ena(q_sq_gpr_wr_en),.sq_sp_wr_ena(14
q_sq_gpr_wr_en), 15

 .sq_sp_gpr_phase_mux(q_sq_gpr_phase_mux), 16
.sq_sp_channel_mask(q_sq_channel_mask), 17

 .sq_sp_pixel_mask(q_sq_pix_mask), 18
.sq_sp_gpr_input_mux(q_sq_gpr_input_mux), 19

 .iInterpolated(Interpolated2),// iAutoCount, 20

 .iVertexIndices(VertexIndex2), 21

 .sq_sp_constant(q_sq_const), 22

 .tp_sp_data(q_tp_data2),.tp_sp_gpr_dst(q_tp_gpr_dst), 23

 .tp_sp_gpr_cmask(q_tp_gpr_cmask),.tp_sp_data_valid(q_tp_data_valid)); 24

 25

 vector uvector3(.sp_sx_data(osp_sx_data3), 26

 .sp_tp_data(sp_fetch_addr3), 27

 Page 18 of 19
Ex. 2112 - sp.v

 .sq_sp_instruct_start(q_sq_instruct_start), 1

 .sq_sp_instruct(q_sq_instruct),.sq_sp_stall(q_sq_stall), 2

 .sclk(sclk), .srst(srst), 3

 .sq_sp_wr_addr(q_sq_gpr_wr_addr), .sq_sp_gpr_rd_addr(q_sq_gpr_rd_addr), 4

 5
.sq_sp_mem_rd_ena(q_sq_gpr_rd_en),.sq_sp_mem_wr_ena(q_sq_gpr_wr_en),.sq_sp_wr_ena(6
q_sq_gpr_wr_en), 7

 .sq_sp_gpr_phase_mux(q_sq_gpr_phase_mux), 8
.sq_sp_channel_mask(q_sq_channel_mask), 9

 .sq_sp_pixel_mask(q_sq_pix_mask), 10
.sq_sp_gpr_input_mux(q_sq_gpr_input_mux), 11

 .iInterpolated(Interpolated3),// iAutoCount, 12

 .iVertexIndices(VertexIndex3), 13

 .sq_sp_constant(q_sq_const), 14

 .tp_sp_data(q_tp_data3),.tp_sp_gpr_dst(q_tp_gpr_dst), 15

 .tp_sp_gpr_cmask(q_tp_gpr_cmask),.tp_sp_data_valid(q_tp_data_valid)); 16

 17

endmodule // sp 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 Page 19 of 19
Ex. 2112 - sp.v

 1

 2

 3

 4

 5

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 501 of 611

 Page 1 of 84
Ex. 2113 - export_buffers.v

// -*- Mode: Verilog -*- 1

// Filename : export_buffers.v 2

// Description : This file represent the two banks of the export buffers (8 all together) 3

// : and the data muxing at the output of the buffers into four distinct buses 4

// : one for each RB block 5

// Author : Andi Skende 6

// Created On : Tue Apr 16 17:13:53 2002 7

// Last Modified By: . 8

// Last Modified On: . 9

// Update Count : 0 10

// Status : Open issues: generate the appropriate write and read enable controls for the 11
export buffers. 12

`timescale 1ns / 1ps 13

module export_buffers(/*AUTOARG*/ 14

 // Outputs 15

 orb0_data, orb1_data, orb2_data, orb3_data, oclipp_data, 16

 orb0_data_valid, orb1_data_valid, orb2_data_valid, 17

 orb3_data_valid, oclipp_data_valid, 18

 // Inputs 19

 iread_addr, iwrite_addr, ipixel_data0, ipixel_data1, ipixel_data2, 20

 ipixel_data3, ipixel_data4, ipixel_data5, ipixel_data6, 21

 ipixel_data7, sclk, srst, imem_wen, imem_wew, imem_re, iphase_rb0, 22

 iphase_rb1, iphase_rb2, iphase_rb3, iphase_clipp, iread_valid_rb0, 23

 iread_valid_rb1, iread_valid_rb2, iread_valid_rb3, 24

 iread_valid_clipp 25

); 26

 Page 2 of 84
Ex. 2113 - export_buffers.v

 1

 2

 input [7:0] iread_addr; 3

 input [6:0] iwrite_addr; 4

 input [127:0] ipixel_data0,ipixel_data1,ipixel_data2,ipixel_data3; 5

 input [127:0] ipixel_data4,ipixel_data5,ipixel_data6,ipixel_data7; 6

 input sclk,srst; 7

 input [0:0] imem_wen, imem_wew,imem_re; 8

 9

 //we need four phase counters for each rb request so we can serialize the data back to RBs 10

 //into four consecutive cycles. 11

 input [1:0] iphase_rb0; 12

 input [1:0] iphase_rb1; 13

 input [1:0] iphase_rb2; 14

 input [1:0] iphase_rb3; 15

 input [1:0] iphase_clipp; 16

 17

 //valid read request from RBs ...stays high for four cycles. 18

 //this signal is eventually pipelined out into orb#_data_valid 19

 input [0:0] iread_valid_rb0, iread_valid_rb1,iread_valid_rb2,iread_valid_rb3; 20

 input [0:0] iread_valid_clipp; 21

 22

 23

 output [127:0] orb0_data, orb1_data, orb2_data,orb3_data; 24

 output [127:0] oclipp_data; 25

 Page 3 of 84
Ex. 2113 - export_buffers.v

 output [0:0] orb0_data_valid,orb1_data_valid,orb2_data_valid,orb3_data_valid; 1

 output [0:0] oclipp_data_valid; 2

 3

 reg [0:0] rb0_data_valid,rb1_data_valid,rb2_data_valid,rb3_data_valid; 4

 reg [0:0] clipp_data_valid; 5

 6

 7

 //export buffers bank select 8

 wire sp_bank_sel; 9

 reg q_sp_bank_sel; 10

 11

 wire sp_bank_sel0; 12

 wire sp_bank_sel1; 13

 wire sp_bank_sel2; 14

 wire sp_bank_sel3; 15

 reg q_sp_bank_sel0; 16

 reg q_sp_bank_sel1; 17

 reg q_sp_bank_sel2; 18

 reg q_sp_bank_sel3; 19

 20

 assign sp_bank_sel = iread_addr[7]; 21

 22

 assign sp_bank_sel0 = (iphase_rb0==0) ? iread_addr[7] : q_sp_bank_sel0; 23

 assign sp_bank_sel1 = (iphase_rb1==0) ? iread_addr[7] : q_sp_bank_sel1; 24

 assign sp_bank_sel2 = (iphase_rb2==0) ? iread_addr[7] : q_sp_bank_sel2; 25

 Page 4 of 84
Ex. 2113 - export_buffers.v

 assign sp_bank_sel3 = (iphase_rb3==0) ? iread_addr[7] : q_sp_bank_sel3; 1

 2

 //constants 3

 wire HIGH; 4

 wire LOW; 5

 6

 assign HIGH = 1'b1; 7

 assign LOW = ~HIGH; 8

 9

 wire [127:0] buff0_out; 10

 wire [127:0] buff1_out; 11

 wire [127:0] buff2_out; 12

 wire [127:0] buff3_out; 13

 14

 wire [127:0] buff4_out; 15

 wire [127:0] buff5_out; 16

 wire [127:0] buff6_out; 17

 wire [127:0] buff7_out; 18

 19

 reg [127:0] rb0_data, rb1_data, rb2_data,rb3_data; 20

 reg [127:0] q_rb0_data, q_rb1_data, q_rb2_data,q_rb3_data; 21

 22

 reg [127:0] bank0_data0; 23

 reg [127:0] bank0_data1; 24

 reg [127:0] bank0_data2; 25

ATI 2113
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 502 of 611

 Page 5 of 84
Ex. 2113 - export_buffers.v

 reg [127:0] bank0_data3; 1

 reg [127:0] bank0_clipp_data; 2

 reg [127:0] bank1_data0; 3

 reg [127:0] bank1_data1; 4

 reg [127:0] bank1_data2; 5

 reg [127:0] bank1_data3; 6

 reg [127:0] bank1_clipp_data; 7

 8

 9

 reg [1:0] q_phase_rb0 , q_phase_rb1 , q_phase_rb2 , q_phase_rb3; 10

 reg [1:0] q_phase_clipp; 11

 12

 reg [0:0] q0_read_valid_rb0, q1_read_valid_rb0; 13

 reg [0:0] q2_read_valid_rb0, q3_read_valid_rb0; 14

 reg [0:0] q0_read_valid_rb1, q1_read_valid_rb1; 15

 reg [0:0] q2_read_valid_rb1, q3_read_valid_rb1; 16

 reg [0:0] q0_read_valid_rb2, q1_read_valid_rb2; 17

 reg [0:0] q2_read_valid_rb2, q3_read_valid_rb2; 18

 reg [0:0] q0_read_valid_rb3, q1_read_valid_rb3; 19

 reg [0:0] q2_read_valid_rb3, q3_read_valid_rb3; 20

 reg [0:0] q0_read_valid_clipp, q1_read_valid_clipp; 21

 reg [0:0] q2_read_valid_clipp, q3_read_valid_clipp; 22

 23

 always @(posedge sclk) 24

 begin 25

 Page 6 of 84
Ex. 2113 - export_buffers.v

 q_phase_rb0 <= iphase_rb0; 1

 q_phase_rb1 <= iphase_rb1; 2

 q_phase_rb2 <= iphase_rb2; 3

 q_phase_rb3 <= iphase_rb3; 4

 q_phase_clipp <= iphase_clipp; 5

 q0_read_valid_rb0 <= iread_valid_rb0; 6

 q1_read_valid_rb0 <= q0_read_valid_rb0; 7

 q2_read_valid_rb0 <= q1_read_valid_rb0; 8

 q3_read_valid_rb0 <= q2_read_valid_rb0; 9

 q0_read_valid_rb1 <= iread_valid_rb1; 10

 q1_read_valid_rb1 <= q0_read_valid_rb1; 11

 q2_read_valid_rb1 <= q1_read_valid_rb1; 12

 q3_read_valid_rb1 <= q2_read_valid_rb1; 13

 q0_read_valid_rb2 <= iread_valid_rb2; 14

 q1_read_valid_rb2 <= q0_read_valid_rb2; 15

 q2_read_valid_rb2 <= q1_read_valid_rb2; 16

 q3_read_valid_rb2 <= q2_read_valid_rb2; 17

 q0_read_valid_rb3 <= iread_valid_rb3; 18

 q1_read_valid_rb3 <= q0_read_valid_rb3; 19

 q2_read_valid_rb3 <= q1_read_valid_rb3; 20

 q3_read_valid_rb3 <= q2_read_valid_rb3; 21

 q0_read_valid_clipp <= iread_valid_clipp; 22

 q1_read_valid_clipp <= q0_read_valid_clipp; 23

 q2_read_valid_clipp <= q1_read_valid_clipp; 24

 q3_read_valid_clipp <= q2_read_valid_clipp; 25

 Page 7 of 84
Ex. 2113 - export_buffers.v

 end 1

 2

 3

 reg [7:0] q0_read_addr, q1_read_addr,q2_read_addr; 4

 reg [0:0] q0_mem_re, q1_mem_re, q2_mem_re; 5

 6

 7

 //skewing the read enable and read address buses 8

 always @(posedge sclk) 9

 begin 10

 q0_read_addr <= iread_addr; 11

 q1_read_addr <= q0_read_addr; 12

 q2_read_addr <= q1_read_addr; 13

 q0_mem_re <= imem_re; 14

 q1_mem_re <= q0_mem_re; 15

 q2_mem_re <= q1_mem_re; 16

 end 17

 18

 19

 //skewing the write enable and write address buses so they line up with 20

 //the data bus 21

 22

 reg [6:0] q_write_addr; 23

 reg [0:0] q_mem_wew, q_mem_wen; 24

 25

 Page 8 of 84
Ex. 2113 - export_buffers.v

 always @(posedge sclk) 1

 begin 2

 q_write_addr <= iwrite_addr; 3

 q_mem_wew <= imem_wew; 4

 q_mem_wen <= imem_wen; 5

 end 6

 7

 8

 wire [6:0] read_mem_addr ; 9

 assign read_mem_addr = iread_addr[6:0]; 10

 11

`ifdef USE_BEHAVE_MEM 12

 dum_mem_p2 #(7,128) bank0_buff0(.iRCLK(sclk), 13

 .iWCLK(sclk), 14

 .iMER(imem_re), 15

 .iMEW(imem_wen), 16

 .iWEN(imem_wew), 17

 .iRADR(iread_addr[6:0]), 18

 .iWADR(iwrite_addr), 19

 .iD(ipixel_data0), 20

 .oQ(buff0_out) 21

); 22

`else // !`ifdef USE_BEHAVE_MEM 23

 24

 rfsd2_80x128cm2sw0 ubank0_buff0 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 503 of 611

 Page 9 of 84
Ex. 2113 - export_buffers.v

 (/*VRGIO rfsd2_80x128cm2sw0 ipixel_data0 buff0_out iwrite_addr iread_addr imem_wen 1
imem_re null*/ 2

 // READ INTERFACE 3

 .CLKB(iSCLK), // Read Clock 4

 .OEB(vdd), // Output enable 5

 .MEB(imem_re), // Read enable 6

 .ADRB0(iread_addr[0]), .ADRB1(iread_addr[1]), .ADRB2(iread_addr[2]), 7
.ADRB3(iread_addr[3]), // Read Address 8

 .ADRB4(iread_addr[4]), .ADRB5(iread_addr[5]), .ADRB6(iread_addr[6]), // Read 9
Address 10

 .QB0(buff0_out[0]), .QB1(buff0_out[1]), .QB2(buff0_out[2]), .QB3(buff0_out[3]), // Read 11
Data 12

 .QB4(buff0_out[4]), .QB5(buff0_out[5]), .QB6(buff0_out[6]), .QB7(buff0_out[7]), // Read 13
Data 14

 .QB8(buff0_out[8]), .QB9(buff0_out[9]), .QB10(buff0_out[10]), .QB11(buff0_out[11]), // 15
Read Data 16

 .QB12(buff0_out[12]), .QB13(buff0_out[13]), .QB14(buff0_out[14]), 17
.QB15(buff0_out[15]), // Read Data 18

 .QB16(buff0_out[16]), .QB17(buff0_out[17]), .QB18(buff0_out[18]), 19
.QB19(buff0_out[19]), // Read Data 20

 .QB20(buff0_out[20]), .QB21(buff0_out[21]), .QB22(buff0_out[22]), 21
.QB23(buff0_out[23]), // Read Data 22

 .QB24(buff0_out[24]), .QB25(buff0_out[25]), .QB26(buff0_out[26]), 23
.QB27(buff0_out[27]), // Read Data 24

 .QB28(buff0_out[28]), .QB29(buff0_out[29]), .QB30(buff0_out[30]), 25
.QB31(buff0_out[31]), // Read Data 26

 .QB32(buff0_out[32]), .QB33(buff0_out[33]), .QB34(buff0_out[34]), 27
.QB35(buff0_out[35]), // Read Data 28

 .QB36(buff0_out[36]), .QB37(buff0_out[37]), .QB38(buff0_out[38]), 29
.QB39(buff0_out[39]), // Read Data 30

 .QB40(buff0_out[40]), .QB41(buff0_out[41]), .QB42(buff0_out[42]), 31
.QB43(buff0_out[43]), // Read Data 32

 Page 10 of 84
Ex. 2113 - export_buffers.v

 .QB44(buff0_out[44]), .QB45(buff0_out[45]), .QB46(buff0_out[46]), 1
.QB47(buff0_out[47]), // Read Data 2

 .QB48(buff0_out[48]), .QB49(buff0_out[49]), .QB50(buff0_out[50]), 3
.QB51(buff0_out[51]), // Read Data 4

 .QB52(buff0_out[52]), .QB53(buff0_out[53]), .QB54(buff0_out[54]), 5
.QB55(buff0_out[55]), // Read Data 6

 .QB56(buff0_out[56]), .QB57(buff0_out[57]), .QB58(buff0_out[58]), 7
.QB59(buff0_out[59]), // Read Data 8

 .QB60(buff0_out[60]), .QB61(buff0_out[61]), .QB62(buff0_out[62]), 9
.QB63(buff0_out[63]), // Read Data 10

 .QB64(buff0_out[64]), .QB65(buff0_out[65]), .QB66(buff0_out[66]), 11
.QB67(buff0_out[67]), // Read Data 12

 .QB68(buff0_out[68]), .QB69(buff0_out[69]), .QB70(buff0_out[70]), 13
.QB71(buff0_out[71]), // Read Data 14

 .QB72(buff0_out[72]), .QB73(buff0_out[73]), .QB74(buff0_out[74]), 15
.QB75(buff0_out[75]), // Read Data 16

 .QB76(buff0_out[76]), .QB77(buff0_out[77]), .QB78(buff0_out[78]), 17
.QB79(buff0_out[79]), // Read Data 18

 .QB80(buff0_out[80]), .QB81(buff0_out[81]), .QB82(buff0_out[82]), 19
.QB83(buff0_out[83]), // Read Data 20

 .QB84(buff0_out[84]), .QB85(buff0_out[85]), .QB86(buff0_out[86]), 21
.QB87(buff0_out[87]), // Read Data 22

 .QB88(buff0_out[88]), .QB89(buff0_out[89]), .QB90(buff0_out[90]), 23
.QB91(buff0_out[91]), // Read Data 24

 .QB92(buff0_out[92]), .QB93(buff0_out[93]), .QB94(buff0_out[94]), 25
.QB95(buff0_out[95]), // Read Data 26

 .QB96(buff0_out[96]), .QB97(buff0_out[97]), .QB98(buff0_out[98]), 27
.QB99(buff0_out[99]), // Read Data 28

 .QB100(buff0_out[100]), .QB101(buff0_out[101]), .QB102(buff0_out[102]), 29
.QB103(buff0_out[103]), // Read Data 30

 .QB104(buff0_out[104]), .QB105(buff0_out[105]), .QB106(buff0_out[106]), 31
.QB107(buff0_out[107]), // Read Data 32

 Page 11 of 84
Ex. 2113 - export_buffers.v

 .QB108(buff0_out[108]), .QB109(buff0_out[109]), .QB110(buff0_out[110]), 1
.QB111(buff0_out[111]), // Read Data 2

 .QB112(buff0_out[112]), .QB113(buff0_out[113]), .QB114(buff0_out[114]), 3
.QB115(buff0_out[115]), // Read Data 4

 .QB116(buff0_out[116]), .QB117(buff0_out[117]), .QB118(buff0_out[118]), 5
.QB119(buff0_out[119]), // Read Data 6

 .QB120(buff0_out[120]), .QB121(buff0_out[121]), .QB122(buff0_out[122]), 7
.QB123(buff0_out[123]), // Read Data 8

 .QB124(buff0_out[124]), .QB125(buff0_out[125]), .QB126(buff0_out[126]), 9
.QB127(buff0_out[127]), // Read Data 10

 // WRITE INTERFACE 11

 .CLKA(iSCLK), // Write Clock 12

 .WEA(imem_wen), // Write enable 13

 .MEA(vdd), // Memory enable 14

 .ADRA0(iwrite_addr[0]), .ADRA1(iwrite_addr[1]), .ADRA2(iwrite_addr[2]), 15
.ADRA3(iwrite_addr[3]), // Write Address 16

 .ADRA4(iwrite_addr[4]), .ADRA5(iwrite_addr[5]), .ADRA6(iwrite_addr[6]), // Write 17
Address 18

 .DA0(ipixel_data0[0]), .DA1(ipixel_data0[1]), .DA2(ipixel_data0[2]), 19
.DA3(ipixel_data0[3]), // Write Data 20

 .DA4(ipixel_data0[4]), .DA5(ipixel_data0[5]), .DA6(ipixel_data0[6]), 21
.DA7(ipixel_data0[7]), // Write Data 22

 .DA8(ipixel_data0[8]), .DA9(ipixel_data0[9]), .DA10(ipixel_data0[10]), 23
.DA11(ipixel_data0[11]), // Write Data 24

 .DA12(ipixel_data0[12]), .DA13(ipixel_data0[13]), .DA14(ipixel_data0[14]), 25
.DA15(ipixel_data0[15]), // Write Data 26

 .DA16(ipixel_data0[16]), .DA17(ipixel_data0[17]), .DA18(ipixel_data0[18]), 27
.DA19(ipixel_data0[19]), // Write Data 28

 .DA20(ipixel_data0[20]), .DA21(ipixel_data0[21]), .DA22(ipixel_data0[22]), 29
.DA23(ipixel_data0[23]), // Write Data 30

 .DA24(ipixel_data0[24]), .DA25(ipixel_data0[25]), .DA26(ipixel_data0[26]), 31
.DA27(ipixel_data0[27]), // Write Data 32

 Page 12 of 84
Ex. 2113 - export_buffers.v

 .DA28(ipixel_data0[28]), .DA29(ipixel_data0[29]), .DA30(ipixel_data0[30]), 1
.DA31(ipixel_data0[31]), // Write Data 2

 .DA32(ipixel_data0[32]), .DA33(ipixel_data0[33]), .DA34(ipixel_data0[34]), 3
.DA35(ipixel_data0[35]), // Write Data 4

 .DA36(ipixel_data0[36]), .DA37(ipixel_data0[37]), .DA38(ipixel_data0[38]), 5
.DA39(ipixel_data0[39]), // Write Data 6

 .DA40(ipixel_data0[40]), .DA41(ipixel_data0[41]), .DA42(ipixel_data0[42]), 7
.DA43(ipixel_data0[43]), // Write Data 8

 .DA44(ipixel_data0[44]), .DA45(ipixel_data0[45]), .DA46(ipixel_data0[46]), 9
.DA47(ipixel_data0[47]), // Write Data 10

 .DA48(ipixel_data0[48]), .DA49(ipixel_data0[49]), .DA50(ipixel_data0[50]), 11
.DA51(ipixel_data0[51]), // Write Data 12

 .DA52(ipixel_data0[52]), .DA53(ipixel_data0[53]), .DA54(ipixel_data0[54]), 13
.DA55(ipixel_data0[55]), // Write Data 14

 .DA56(ipixel_data0[56]), .DA57(ipixel_data0[57]), .DA58(ipixel_data0[58]), 15
.DA59(ipixel_data0[59]), // Write Data 16

 .DA60(ipixel_data0[60]), .DA61(ipixel_data0[61]), .DA62(ipixel_data0[62]), 17
.DA63(ipixel_data0[63]), // Write Data 18

 .DA64(ipixel_data0[64]), .DA65(ipixel_data0[65]), .DA66(ipixel_data0[66]), 19
.DA67(ipixel_data0[67]), // Write Data 20

 .DA68(ipixel_data0[68]), .DA69(ipixel_data0[69]), .DA70(ipixel_data0[70]), 21
.DA71(ipixel_data0[71]), // Write Data 22

 .DA72(ipixel_data0[72]), .DA73(ipixel_data0[73]), .DA74(ipixel_data0[74]), 23
.DA75(ipixel_data0[75]), // Write Data 24

 .DA76(ipixel_data0[76]), .DA77(ipixel_data0[77]), .DA78(ipixel_data0[78]), 25
.DA79(ipixel_data0[79]), // Write Data 26

 .DA80(ipixel_data0[80]), .DA81(ipixel_data0[81]), .DA82(ipixel_data0[82]), 27
.DA83(ipixel_data0[83]), // Write Data 28

 .DA84(ipixel_data0[84]), .DA85(ipixel_data0[85]), .DA86(ipixel_data0[86]), 29
.DA87(ipixel_data0[87]), // Write Data 30

 .DA88(ipixel_data0[88]), .DA89(ipixel_data0[89]), .DA90(ipixel_data0[90]), 31
.DA91(ipixel_data0[91]), // Write Data 32

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 504 of 611

 Page 13 of 84
Ex. 2113 - export_buffers.v

 .DA92(ipixel_data0[92]), .DA93(ipixel_data0[93]), .DA94(ipixel_data0[94]), 1
.DA95(ipixel_data0[95]), // Write Data 2

 .DA96(ipixel_data0[96]), .DA97(ipixel_data0[97]), .DA98(ipixel_data0[98]), 3
.DA99(ipixel_data0[99]), // Write Data 4

 .DA100(ipixel_data0[100]), .DA101(ipixel_data0[101]), .DA102(ipixel_data0[102]), 5
.DA103(ipixel_data0[103]), // Write Data 6

 .DA104(ipixel_data0[104]), .DA105(ipixel_data0[105]), .DA106(ipixel_data0[106]), 7
.DA107(ipixel_data0[107]), // Write Data 8

 .DA108(ipixel_data0[108]), .DA109(ipixel_data0[109]), .DA110(ipixel_data0[110]), 9
.DA111(ipixel_data0[111]), // Write Data 10

 .DA112(ipixel_data0[112]), .DA113(ipixel_data0[113]), .DA114(ipixel_data0[114]), 11
.DA115(ipixel_data0[115]), // Write Data 12

 .DA116(ipixel_data0[116]), .DA117(ipixel_data0[117]), .DA118(ipixel_data0[118]), 13
.DA119(ipixel_data0[119]), // Write Data 14

 .DA120(ipixel_data0[120]), .DA121(ipixel_data0[121]), .DA122(ipixel_data0[122]), 15
.DA123(ipixel_data0[123]), // Write Data 16

 .DA124(ipixel_data0[124]), .DA125(ipixel_data0[125]), .DA126(ipixel_data0[126]), 17
.DA127(ipixel_data0[127]), // Write Data 18

 // WRITE TEST SIGNALS 19

 .BISTEA(vss), 20

 .TWEA(vss), // Test write enable 21

 .TMEA(vss), // Test memory enable 22

 .TADRA0(iwrite_addr[0]), .TADRA1(iwrite_addr[1]), .TADRA2(iwrite_addr[2]), 23
.TADRA3(iwrite_addr[3]), // Write Test Address 24

 .TADRA4(iwrite_addr[4]), .TADRA5(iwrite_addr[5]), .TADRA6(iwrite_addr[6]), // Write 25
Test Address 26

 .TDA0(ipixel_data0[0]), .TDA1(ipixel_data0[1]), .TDA2(ipixel_data0[2]), 27
.TDA3(ipixel_data0[3]), // Write Test Data 28

 .TDA4(ipixel_data0[4]), .TDA5(ipixel_data0[5]), .TDA6(ipixel_data0[6]), 29
.TDA7(ipixel_data0[7]), // Write Test Data 30

 .TDA8(ipixel_data0[8]), .TDA9(ipixel_data0[9]), .TDA10(ipixel_data0[10]), 31
.TDA11(ipixel_data0[11]), // Write Test Data 32

 Page 14 of 84
Ex. 2113 - export_buffers.v

 .TDA12(ipixel_data0[12]), .TDA13(ipixel_data0[13]), .TDA14(ipixel_data0[14]), 1
.TDA15(ipixel_data0[15]), // Write Test Data 2

 .TDA16(ipixel_data0[16]), .TDA17(ipixel_data0[17]), .TDA18(ipixel_data0[18]), 3
.TDA19(ipixel_data0[19]), // Write Test Data 4

 .TDA20(ipixel_data0[20]), .TDA21(ipixel_data0[21]), .TDA22(ipixel_data0[22]), 5
.TDA23(ipixel_data0[23]), // Write Test Data 6

 .TDA24(ipixel_data0[24]), .TDA25(ipixel_data0[25]), .TDA26(ipixel_data0[26]), 7
.TDA27(ipixel_data0[27]), // Write Test Data 8

 .TDA28(ipixel_data0[28]), .TDA29(ipixel_data0[29]), .TDA30(ipixel_data0[30]), 9
.TDA31(ipixel_data0[31]), // Write Test Data 10

 .TDA32(ipixel_data0[32]), .TDA33(ipixel_data0[33]), .TDA34(ipixel_data0[34]), 11
.TDA35(ipixel_data0[35]), // Write Test Data 12

 .TDA36(ipixel_data0[36]), .TDA37(ipixel_data0[37]), .TDA38(ipixel_data0[38]), 13
.TDA39(ipixel_data0[39]), // Write Test Data 14

 .TDA40(ipixel_data0[40]), .TDA41(ipixel_data0[41]), .TDA42(ipixel_data0[42]), 15
.TDA43(ipixel_data0[43]), // Write Test Data 16

 .TDA44(ipixel_data0[44]), .TDA45(ipixel_data0[45]), .TDA46(ipixel_data0[46]), 17
.TDA47(ipixel_data0[47]), // Write Test Data 18

 .TDA48(ipixel_data0[48]), .TDA49(ipixel_data0[49]), .TDA50(ipixel_data0[50]), 19
.TDA51(ipixel_data0[51]), // Write Test Data 20

 .TDA52(ipixel_data0[52]), .TDA53(ipixel_data0[53]), .TDA54(ipixel_data0[54]), 21
.TDA55(ipixel_data0[55]), // Write Test Data 22

 .TDA56(ipixel_data0[56]), .TDA57(ipixel_data0[57]), .TDA58(ipixel_data0[58]), 23
.TDA59(ipixel_data0[59]), // Write Test Data 24

 .TDA60(ipixel_data0[60]), .TDA61(ipixel_data0[61]), .TDA62(ipixel_data0[62]), 25
.TDA63(ipixel_data0[63]), // Write Test Data 26

 .TDA64(ipixel_data0[64]), .TDA65(ipixel_data0[65]), .TDA66(ipixel_data0[66]), 27
.TDA67(ipixel_data0[67]), // Write Test Data 28

 .TDA68(ipixel_data0[68]), .TDA69(ipixel_data0[69]), .TDA70(ipixel_data0[70]), 29
.TDA71(ipixel_data0[71]), // Write Test Data 30

 .TDA72(ipixel_data0[72]), .TDA73(ipixel_data0[73]), .TDA74(ipixel_data0[74]), 31
.TDA75(ipixel_data0[75]), // Write Test Data 32

 Page 15 of 84
Ex. 2113 - export_buffers.v

 .TDA76(ipixel_data0[76]), .TDA77(ipixel_data0[77]), .TDA78(ipixel_data0[78]), 1
.TDA79(ipixel_data0[79]), // Write Test Data 2

 .TDA80(ipixel_data0[80]), .TDA81(ipixel_data0[81]), .TDA82(ipixel_data0[82]), 3
.TDA83(ipixel_data0[83]), // Write Test Data 4

 .TDA84(ipixel_data0[84]), .TDA85(ipixel_data0[85]), .TDA86(ipixel_data0[86]), 5
.TDA87(ipixel_data0[87]), // Write Test Data 6

 .TDA88(ipixel_data0[88]), .TDA89(ipixel_data0[89]), .TDA90(ipixel_data0[90]), 7
.TDA91(ipixel_data0[91]), // Write Test Data 8

 .TDA92(ipixel_data0[92]), .TDA93(ipixel_data0[93]), .TDA94(ipixel_data0[94]), 9
.TDA95(ipixel_data0[95]), // Write Test Data 10

 .TDA96(ipixel_data0[96]), .TDA97(ipixel_data0[97]), .TDA98(ipixel_data0[98]), 11
.TDA99(ipixel_data0[99]), // Write Test Data 12

 .TDA100(ipixel_data0[100]), .TDA101(ipixel_data0[101]), .TDA102(ipixel_data0[102]), 13
.TDA103(ipixel_data0[103]), // Write Test Data 14

 .TDA104(ipixel_data0[104]), .TDA105(ipixel_data0[105]), .TDA106(ipixel_data0[106]), 15
.TDA107(ipixel_data0[107]), // Write Test Data 16

 .TDA108(ipixel_data0[108]), .TDA109(ipixel_data0[109]), .TDA110(ipixel_data0[110]), 17
.TDA111(ipixel_data0[111]), // Write Test Data 18

 .TDA112(ipixel_data0[112]), .TDA113(ipixel_data0[113]), .TDA114(ipixel_data0[114]), 19
.TDA115(ipixel_data0[115]), // Write Test Data 20

 .TDA116(ipixel_data0[116]), .TDA117(ipixel_data0[117]), .TDA118(ipixel_data0[118]), 21
.TDA119(ipixel_data0[119]), // Write Test Data 22

 .TDA120(ipixel_data0[120]), .TDA121(ipixel_data0[121]), .TDA122(ipixel_data0[122]), 23
.TDA123(ipixel_data0[123]), // Write Test Data 24

 .TDA124(ipixel_data0[124]), .TDA125(ipixel_data0[125]), .TDA126(ipixel_data0[126]), 25
.TDA127(ipixel_data0[127]), // Write Test Data 26

 //READ TEST SIGNALS 27

 .BISTEB(vss), 28

 .TOEB(vss), 29

 .TMEB(vss), 30

 .TADRB0(iread_addr[0]), .TADRB1(iread_addr[1]), .TADRB2(iread_addr[2]), 31
.TADRB3(iread_addr[3]), // Read Test Address 32

 Page 16 of 84
Ex. 2113 - export_buffers.v

 .TADRB4(iread_addr[4]), .TADRB5(iread_addr[5]), .TADRB6(iread_addr[6]), // Read 1
Test Address 2

 .AWTB(vss) 3

); 4

 5

`endif // !`ifdef USE_BEHAVE_MEM 6

 7

 8

 wire [6:0] q0_read_mem_addr; 9

 assign q0_read_mem_addr = q0_read_addr[6:0]; 10

 11

`ifdef USE_BEHAVE_MEM 12

 13

 dum_mem_p2 #(7,128) bank0_buff1(.iRCLK(sclk), 14

 .iWCLK(sclk), 15

 .iMER(q0_mem_re), 16

 .iMEW(imem_wen), 17

 .iWEN(imem_wew), 18

 .iRADR(q0_read_addr[6:0]), 19

 .iWADR(iwrite_addr), 20

 .iD(ipixel_data1), 21

 .oQ(buff1_out) 22

); 23

`else // !`ifdef USE_BEHAVE_MEM 24

 rfsd2_80x128cm2sw0 ubank0_buff1 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 505 of 611

 Page 17 of 84
Ex. 2113 - export_buffers.v

 (/*VRGIO rfsd2_80x128cm2sw0 ipixel_data1 buff0_out iwrite_addr q0_read_addr 1
imem_wen q0_mem_re null*/ 2

 // READ INTERFACE 3

 .CLKB(iSCLK), // Read Clock 4

 .OEB(vdd), // Output enable 5

 .MEB(q0_mem_re), // Read enable 6

 .ADRB0(q0_read_addr[0]), .ADRB1(q0_read_addr[1]), .ADRB2(q0_read_addr[2]), 7
.ADRB3(q0_read_addr[3]), // Read Address 8

 .ADRB4(q0_read_addr[4]), .ADRB5(q0_read_addr[5]), .ADRB6(q0_read_addr[6]), // 9
Read Address 10

 .QB0(buff0_out[0]), .QB1(buff0_out[1]), .QB2(buff0_out[2]), .QB3(buff0_out[3]), // Read 11
Data 12

 .QB4(buff0_out[4]), .QB5(buff0_out[5]), .QB6(buff0_out[6]), .QB7(buff0_out[7]), // Read 13
Data 14

 .QB8(buff0_out[8]), .QB9(buff0_out[9]), .QB10(buff0_out[10]), .QB11(buff0_out[11]), // 15
Read Data 16

 .QB12(buff0_out[12]), .QB13(buff0_out[13]), .QB14(buff0_out[14]), 17
.QB15(buff0_out[15]), // Read Data 18

 .QB16(buff0_out[16]), .QB17(buff0_out[17]), .QB18(buff0_out[18]), 19
.QB19(buff0_out[19]), // Read Data 20

 .QB20(buff0_out[20]), .QB21(buff0_out[21]), .QB22(buff0_out[22]), 21
.QB23(buff0_out[23]), // Read Data 22

 .QB24(buff0_out[24]), .QB25(buff0_out[25]), .QB26(buff0_out[26]), 23
.QB27(buff0_out[27]), // Read Data 24

 .QB28(buff0_out[28]), .QB29(buff0_out[29]), .QB30(buff0_out[30]), 25
.QB31(buff0_out[31]), // Read Data 26

 .QB32(buff0_out[32]), .QB33(buff0_out[33]), .QB34(buff0_out[34]), 27
.QB35(buff0_out[35]), // Read Data 28

 .QB36(buff0_out[36]), .QB37(buff0_out[37]), .QB38(buff0_out[38]), 29
.QB39(buff0_out[39]), // Read Data 30

 .QB40(buff0_out[40]), .QB41(buff0_out[41]), .QB42(buff0_out[42]), 31
.QB43(buff0_out[43]), // Read Data 32

 Page 18 of 84
Ex. 2113 - export_buffers.v

 .QB44(buff0_out[44]), .QB45(buff0_out[45]), .QB46(buff0_out[46]), 1
.QB47(buff0_out[47]), // Read Data 2

 .QB48(buff0_out[48]), .QB49(buff0_out[49]), .QB50(buff0_out[50]), 3
.QB51(buff0_out[51]), // Read Data 4

 .QB52(buff0_out[52]), .QB53(buff0_out[53]), .QB54(buff0_out[54]), 5
.QB55(buff0_out[55]), // Read Data 6

 .QB56(buff0_out[56]), .QB57(buff0_out[57]), .QB58(buff0_out[58]), 7
.QB59(buff0_out[59]), // Read Data 8

 .QB60(buff0_out[60]), .QB61(buff0_out[61]), .QB62(buff0_out[62]), 9
.QB63(buff0_out[63]), // Read Data 10

 .QB64(buff0_out[64]), .QB65(buff0_out[65]), .QB66(buff0_out[66]), 11
.QB67(buff0_out[67]), // Read Data 12

 .QB68(buff0_out[68]), .QB69(buff0_out[69]), .QB70(buff0_out[70]), 13
.QB71(buff0_out[71]), // Read Data 14

 .QB72(buff0_out[72]), .QB73(buff0_out[73]), .QB74(buff0_out[74]), 15
.QB75(buff0_out[75]), // Read Data 16

 .QB76(buff0_out[76]), .QB77(buff0_out[77]), .QB78(buff0_out[78]), 17
.QB79(buff0_out[79]), // Read Data 18

 .QB80(buff0_out[80]), .QB81(buff0_out[81]), .QB82(buff0_out[82]), 19
.QB83(buff0_out[83]), // Read Data 20

 .QB84(buff0_out[84]), .QB85(buff0_out[85]), .QB86(buff0_out[86]), 21
.QB87(buff0_out[87]), // Read Data 22

 .QB88(buff0_out[88]), .QB89(buff0_out[89]), .QB90(buff0_out[90]), 23
.QB91(buff0_out[91]), // Read Data 24

 .QB92(buff0_out[92]), .QB93(buff0_out[93]), .QB94(buff0_out[94]), 25
.QB95(buff0_out[95]), // Read Data 26

 .QB96(buff0_out[96]), .QB97(buff0_out[97]), .QB98(buff0_out[98]), 27
.QB99(buff0_out[99]), // Read Data 28

 .QB100(buff0_out[100]), .QB101(buff0_out[101]), .QB102(buff0_out[102]), 29
.QB103(buff0_out[103]), // Read Data 30

 .QB104(buff0_out[104]), .QB105(buff0_out[105]), .QB106(buff0_out[106]), 31
.QB107(buff0_out[107]), // Read Data 32

 Page 19 of 84
Ex. 2113 - export_buffers.v

 .QB108(buff0_out[108]), .QB109(buff0_out[109]), .QB110(buff0_out[110]), 1
.QB111(buff0_out[111]), // Read Data 2

 .QB112(buff0_out[112]), .QB113(buff0_out[113]), .QB114(buff0_out[114]), 3
.QB115(buff0_out[115]), // Read Data 4

 .QB116(buff0_out[116]), .QB117(buff0_out[117]), .QB118(buff0_out[118]), 5
.QB119(buff0_out[119]), // Read Data 6

 .QB120(buff0_out[120]), .QB121(buff0_out[121]), .QB122(buff0_out[122]), 7
.QB123(buff0_out[123]), // Read Data 8

 .QB124(buff0_out[124]), .QB125(buff0_out[125]), .QB126(buff0_out[126]), 9
.QB127(buff0_out[127]), // Read Data 10

 // WRITE INTERFACE 11

 .CLKA(iSCLK), // Write Clock 12

 .WEA(imem_wen), // Write enable 13

 .MEA(vdd), // Memory enable 14

 .ADRA0(iwrite_addr[0]), .ADRA1(iwrite_addr[1]), .ADRA2(iwrite_addr[2]), 15
.ADRA3(iwrite_addr[3]), // Write Address 16

 .ADRA4(iwrite_addr[4]), .ADRA5(iwrite_addr[5]), .ADRA6(iwrite_addr[6]), // Write 17
Address 18

 .DA0(ipixel_data1[0]), .DA1(ipixel_data1[1]), .DA2(ipixel_data1[2]), 19
.DA3(ipixel_data1[3]), // Write Data 20

 .DA4(ipixel_data1[4]), .DA5(ipixel_data1[5]), .DA6(ipixel_data1[6]), 21
.DA7(ipixel_data1[7]), // Write Data 22

 .DA8(ipixel_data1[8]), .DA9(ipixel_data1[9]), .DA10(ipixel_data1[10]), 23
.DA11(ipixel_data1[11]), // Write Data 24

 .DA12(ipixel_data1[12]), .DA13(ipixel_data1[13]), .DA14(ipixel_data1[14]), 25
.DA15(ipixel_data1[15]), // Write Data 26

 .DA16(ipixel_data1[16]), .DA17(ipixel_data1[17]), .DA18(ipixel_data1[18]), 27
.DA19(ipixel_data1[19]), // Write Data 28

 .DA20(ipixel_data1[20]), .DA21(ipixel_data1[21]), .DA22(ipixel_data1[22]), 29
.DA23(ipixel_data1[23]), // Write Data 30

 .DA24(ipixel_data1[24]), .DA25(ipixel_data1[25]), .DA26(ipixel_data1[26]), 31
.DA27(ipixel_data1[27]), // Write Data 32

 Page 20 of 84
Ex. 2113 - export_buffers.v

 .DA28(ipixel_data1[28]), .DA29(ipixel_data1[29]), .DA30(ipixel_data1[30]), 1
.DA31(ipixel_data1[31]), // Write Data 2

 .DA32(ipixel_data1[32]), .DA33(ipixel_data1[33]), .DA34(ipixel_data1[34]), 3
.DA35(ipixel_data1[35]), // Write Data 4

 .DA36(ipixel_data1[36]), .DA37(ipixel_data1[37]), .DA38(ipixel_data1[38]), 5
.DA39(ipixel_data1[39]), // Write Data 6

 .DA40(ipixel_data1[40]), .DA41(ipixel_data1[41]), .DA42(ipixel_data1[42]), 7
.DA43(ipixel_data1[43]), // Write Data 8

 .DA44(ipixel_data1[44]), .DA45(ipixel_data1[45]), .DA46(ipixel_data1[46]), 9
.DA47(ipixel_data1[47]), // Write Data 10

 .DA48(ipixel_data1[48]), .DA49(ipixel_data1[49]), .DA50(ipixel_data1[50]), 11
.DA51(ipixel_data1[51]), // Write Data 12

 .DA52(ipixel_data1[52]), .DA53(ipixel_data1[53]), .DA54(ipixel_data1[54]), 13
.DA55(ipixel_data1[55]), // Write Data 14

 .DA56(ipixel_data1[56]), .DA57(ipixel_data1[57]), .DA58(ipixel_data1[58]), 15
.DA59(ipixel_data1[59]), // Write Data 16

 .DA60(ipixel_data1[60]), .DA61(ipixel_data1[61]), .DA62(ipixel_data1[62]), 17
.DA63(ipixel_data1[63]), // Write Data 18

 .DA64(ipixel_data1[64]), .DA65(ipixel_data1[65]), .DA66(ipixel_data1[66]), 19
.DA67(ipixel_data1[67]), // Write Data 20

 .DA68(ipixel_data1[68]), .DA69(ipixel_data1[69]), .DA70(ipixel_data1[70]), 21
.DA71(ipixel_data1[71]), // Write Data 22

 .DA72(ipixel_data1[72]), .DA73(ipixel_data1[73]), .DA74(ipixel_data1[74]), 23
.DA75(ipixel_data1[75]), // Write Data 24

 .DA76(ipixel_data1[76]), .DA77(ipixel_data1[77]), .DA78(ipixel_data1[78]), 25
.DA79(ipixel_data1[79]), // Write Data 26

 .DA80(ipixel_data1[80]), .DA81(ipixel_data1[81]), .DA82(ipixel_data1[82]), 27
.DA83(ipixel_data1[83]), // Write Data 28

 .DA84(ipixel_data1[84]), .DA85(ipixel_data1[85]), .DA86(ipixel_data1[86]), 29
.DA87(ipixel_data1[87]), // Write Data 30

 .DA88(ipixel_data1[88]), .DA89(ipixel_data1[89]), .DA90(ipixel_data1[90]), 31
.DA91(ipixel_data1[91]), // Write Data 32

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 506 of 611

 Page 21 of 84
Ex. 2113 - export_buffers.v

 .DA92(ipixel_data1[92]), .DA93(ipixel_data1[93]), .DA94(ipixel_data1[94]), 1
.DA95(ipixel_data1[95]), // Write Data 2

 .DA96(ipixel_data1[96]), .DA97(ipixel_data1[97]), .DA98(ipixel_data1[98]), 3
.DA99(ipixel_data1[99]), // Write Data 4

 .DA100(ipixel_data1[100]), .DA101(ipixel_data1[101]), .DA102(ipixel_data1[102]), 5
.DA103(ipixel_data1[103]), // Write Data 6

 .DA104(ipixel_data1[104]), .DA105(ipixel_data1[105]), .DA106(ipixel_data1[106]), 7
.DA107(ipixel_data1[107]), // Write Data 8

 .DA108(ipixel_data1[108]), .DA109(ipixel_data1[109]), .DA110(ipixel_data1[110]), 9
.DA111(ipixel_data1[111]), // Write Data 10

 .DA112(ipixel_data1[112]), .DA113(ipixel_data1[113]), .DA114(ipixel_data1[114]), 11
.DA115(ipixel_data1[115]), // Write Data 12

 .DA116(ipixel_data1[116]), .DA117(ipixel_data1[117]), .DA118(ipixel_data1[118]), 13
.DA119(ipixel_data1[119]), // Write Data 14

 .DA120(ipixel_data1[120]), .DA121(ipixel_data1[121]), .DA122(ipixel_data1[122]), 15
.DA123(ipixel_data1[123]), // Write Data 16

 .DA124(ipixel_data1[124]), .DA125(ipixel_data1[125]), .DA126(ipixel_data1[126]), 17
.DA127(ipixel_data1[127]), // Write Data 18

 // WRITE TEST SIGNALS 19

 .BISTEA(vss), 20

 .TWEA(vss), // Test write enable 21

 .TMEA(vss), // Test memory enable 22

 .TADRA0(iwrite_addr[0]), .TADRA1(iwrite_addr[1]), .TADRA2(iwrite_addr[2]), 23
.TADRA3(iwrite_addr[3]), // Write Test Address 24

 .TADRA4(iwrite_addr[4]), .TADRA5(iwrite_addr[5]), .TADRA6(iwrite_addr[6]), // Write 25
Test Address 26

 .TDA0(ipixel_data1[0]), .TDA1(ipixel_data1[1]), .TDA2(ipixel_data1[2]), 27
.TDA3(ipixel_data1[3]), // Write Test Data 28

 .TDA4(ipixel_data1[4]), .TDA5(ipixel_data1[5]), .TDA6(ipixel_data1[6]), 29
.TDA7(ipixel_data1[7]), // Write Test Data 30

 .TDA8(ipixel_data1[8]), .TDA9(ipixel_data1[9]), .TDA10(ipixel_data1[10]), 31
.TDA11(ipixel_data1[11]), // Write Test Data 32

 Page 22 of 84
Ex. 2113 - export_buffers.v

 .TDA12(ipixel_data1[12]), .TDA13(ipixel_data1[13]), .TDA14(ipixel_data1[14]), 1
.TDA15(ipixel_data1[15]), // Write Test Data 2

 .TDA16(ipixel_data1[16]), .TDA17(ipixel_data1[17]), .TDA18(ipixel_data1[18]), 3
.TDA19(ipixel_data1[19]), // Write Test Data 4

 .TDA20(ipixel_data1[20]), .TDA21(ipixel_data1[21]), .TDA22(ipixel_data1[22]), 5
.TDA23(ipixel_data1[23]), // Write Test Data 6

 .TDA24(ipixel_data1[24]), .TDA25(ipixel_data1[25]), .TDA26(ipixel_data1[26]), 7
.TDA27(ipixel_data1[27]), // Write Test Data 8

 .TDA28(ipixel_data1[28]), .TDA29(ipixel_data1[29]), .TDA30(ipixel_data1[30]), 9
.TDA31(ipixel_data1[31]), // Write Test Data 10

 .TDA32(ipixel_data1[32]), .TDA33(ipixel_data1[33]), .TDA34(ipixel_data1[34]), 11
.TDA35(ipixel_data1[35]), // Write Test Data 12

 .TDA36(ipixel_data1[36]), .TDA37(ipixel_data1[37]), .TDA38(ipixel_data1[38]), 13
.TDA39(ipixel_data1[39]), // Write Test Data 14

 .TDA40(ipixel_data1[40]), .TDA41(ipixel_data1[41]), .TDA42(ipixel_data1[42]), 15
.TDA43(ipixel_data1[43]), // Write Test Data 16

 .TDA44(ipixel_data1[44]), .TDA45(ipixel_data1[45]), .TDA46(ipixel_data1[46]), 17
.TDA47(ipixel_data1[47]), // Write Test Data 18

 .TDA48(ipixel_data1[48]), .TDA49(ipixel_data1[49]), .TDA50(ipixel_data1[50]), 19
.TDA51(ipixel_data1[51]), // Write Test Data 20

 .TDA52(ipixel_data1[52]), .TDA53(ipixel_data1[53]), .TDA54(ipixel_data1[54]), 21
.TDA55(ipixel_data1[55]), // Write Test Data 22

 .TDA56(ipixel_data1[56]), .TDA57(ipixel_data1[57]), .TDA58(ipixel_data1[58]), 23
.TDA59(ipixel_data1[59]), // Write Test Data 24

 .TDA60(ipixel_data1[60]), .TDA61(ipixel_data1[61]), .TDA62(ipixel_data1[62]), 25
.TDA63(ipixel_data1[63]), // Write Test Data 26

 .TDA64(ipixel_data1[64]), .TDA65(ipixel_data1[65]), .TDA66(ipixel_data1[66]), 27
.TDA67(ipixel_data1[67]), // Write Test Data 28

 .TDA68(ipixel_data1[68]), .TDA69(ipixel_data1[69]), .TDA70(ipixel_data1[70]), 29
.TDA71(ipixel_data1[71]), // Write Test Data 30

 .TDA72(ipixel_data1[72]), .TDA73(ipixel_data1[73]), .TDA74(ipixel_data1[74]), 31
.TDA75(ipixel_data1[75]), // Write Test Data 32

 Page 23 of 84
Ex. 2113 - export_buffers.v

 .TDA76(ipixel_data1[76]), .TDA77(ipixel_data1[77]), .TDA78(ipixel_data1[78]), 1
.TDA79(ipixel_data1[79]), // Write Test Data 2

 .TDA80(ipixel_data1[80]), .TDA81(ipixel_data1[81]), .TDA82(ipixel_data1[82]), 3
.TDA83(ipixel_data1[83]), // Write Test Data 4

 .TDA84(ipixel_data1[84]), .TDA85(ipixel_data1[85]), .TDA86(ipixel_data1[86]), 5
.TDA87(ipixel_data1[87]), // Write Test Data 6

 .TDA88(ipixel_data1[88]), .TDA89(ipixel_data1[89]), .TDA90(ipixel_data1[90]), 7
.TDA91(ipixel_data1[91]), // Write Test Data 8

 .TDA92(ipixel_data1[92]), .TDA93(ipixel_data1[93]), .TDA94(ipixel_data1[94]), 9
.TDA95(ipixel_data1[95]), // Write Test Data 10

 .TDA96(ipixel_data1[96]), .TDA97(ipixel_data1[97]), .TDA98(ipixel_data1[98]), 11
.TDA99(ipixel_data1[99]), // Write Test Data 12

 .TDA100(ipixel_data1[100]), .TDA101(ipixel_data1[101]), .TDA102(ipixel_data1[102]), 13
.TDA103(ipixel_data1[103]), // Write Test Data 14

 .TDA104(ipixel_data1[104]), .TDA105(ipixel_data1[105]), .TDA106(ipixel_data1[106]), 15
.TDA107(ipixel_data1[107]), // Write Test Data 16

 .TDA108(ipixel_data1[108]), .TDA109(ipixel_data1[109]), .TDA110(ipixel_data1[110]), 17
.TDA111(ipixel_data1[111]), // Write Test Data 18

 .TDA112(ipixel_data1[112]), .TDA113(ipixel_data1[113]), .TDA114(ipixel_data1[114]), 19
.TDA115(ipixel_data1[115]), // Write Test Data 20

 .TDA116(ipixel_data1[116]), .TDA117(ipixel_data1[117]), .TDA118(ipixel_data1[118]), 21
.TDA119(ipixel_data1[119]), // Write Test Data 22

 .TDA120(ipixel_data1[120]), .TDA121(ipixel_data1[121]), .TDA122(ipixel_data1[122]), 23
.TDA123(ipixel_data1[123]), // Write Test Data 24

 .TDA124(ipixel_data1[124]), .TDA125(ipixel_data1[125]), .TDA126(ipixel_data1[126]), 25
.TDA127(ipixel_data1[127]), // Write Test Data 26

 //READ TEST SIGNALS 27

 .BISTEB(vss), 28

 .TOEB(vss), 29

 .TMEB(vss), 30

 .TADRB0(q0_read_addr[0]), .TADRB1(q0_read_addr[1]), .TADRB2(q0_read_addr[2]), 31
.TADRB3(q0_read_addr[3]), // Read Test Address 32

 Page 24 of 84
Ex. 2113 - export_buffers.v

 .TADRB4(q0_read_addr[4]), .TADRB5(q0_read_addr[5]), .TADRB6(q0_read_addr[6]), // 1
Read Test Address 2

 .AWTB(vss) 3

); 4

`endif // !`ifdef USE_BEHAVE_MEM 5

 6

 7

 8

 wire [6:0] q1_read_mem_addr; 9

 assign q1_read_mem_addr = q1_read_addr[6:0]; 10

 11

`ifdef USE_BEHAVE_MEM 12

 dum_mem_p2 #(7,128) bank0_buff2(.iRCLK(sclk), 13

 .iWCLK(sclk), 14

 .iMER(q1_mem_re), 15

 .iMEW(imem_wen), 16

 .iWEN(imem_wew), 17

 .iRADR(q1_read_addr[6:0]), 18

 .iWADR(iwrite_addr), 19

 .iD(ipixel_data2), 20

 .oQ(buff2_out) 21

); 22

`else // !`ifdef USE_BEHAVE_MEM 23

 rfsd2_80x128cm2sw0 ubank0_buff2 24

 (/*VRGIO rfsd2_80x128cm2sw0 ipixel_data2 buff2_out iwrite_addr q1_read_addr 25
imem_wen q1_mem_re null*/ 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 507 of 611

 Page 25 of 84
Ex. 2113 - export_buffers.v

 // READ INTERFACE 1

 .CLKB(iSCLK), // Read Clock 2

 .OEB(vdd), // Output enable 3

 .MEB(q1_mem_re), // Read enable 4

 .ADRB0(q1_read_addr[0]), .ADRB1(q1_read_addr[1]), .ADRB2(q1_read_addr[2]), 5
.ADRB3(q1_read_addr[3]), // Read Address 6

 .ADRB4(q1_read_addr[4]), .ADRB5(q1_read_addr[5]), .ADRB6(q1_read_addr[6]), // 7
Read Address 8

 .QB0(buff2_out[0]), .QB1(buff2_out[1]), .QB2(buff2_out[2]), .QB3(buff2_out[3]), // Read 9
Data 10

 .QB4(buff2_out[4]), .QB5(buff2_out[5]), .QB6(buff2_out[6]), .QB7(buff2_out[7]), // Read 11
Data 12

 .QB8(buff2_out[8]), .QB9(buff2_out[9]), .QB10(buff2_out[10]), .QB11(buff2_out[11]), // 13
Read Data 14

 .QB12(buff2_out[12]), .QB13(buff2_out[13]), .QB14(buff2_out[14]), 15
.QB15(buff2_out[15]), // Read Data 16

 .QB16(buff2_out[16]), .QB17(buff2_out[17]), .QB18(buff2_out[18]), 17
.QB19(buff2_out[19]), // Read Data 18

 .QB20(buff2_out[20]), .QB21(buff2_out[21]), .QB22(buff2_out[22]), 19
.QB23(buff2_out[23]), // Read Data 20

 .QB24(buff2_out[24]), .QB25(buff2_out[25]), .QB26(buff2_out[26]), 21
.QB27(buff2_out[27]), // Read Data 22

 .QB28(buff2_out[28]), .QB29(buff2_out[29]), .QB30(buff2_out[30]), 23
.QB31(buff2_out[31]), // Read Data 24

 .QB32(buff2_out[32]), .QB33(buff2_out[33]), .QB34(buff2_out[34]), 25
.QB35(buff2_out[35]), // Read Data 26

 .QB36(buff2_out[36]), .QB37(buff2_out[37]), .QB38(buff2_out[38]), 27
.QB39(buff2_out[39]), // Read Data 28

 .QB40(buff2_out[40]), .QB41(buff2_out[41]), .QB42(buff2_out[42]), 29
.QB43(buff2_out[43]), // Read Data 30

 .QB44(buff2_out[44]), .QB45(buff2_out[45]), .QB46(buff2_out[46]), 31
.QB47(buff2_out[47]), // Read Data 32

 Page 26 of 84
Ex. 2113 - export_buffers.v

 .QB48(buff2_out[48]), .QB49(buff2_out[49]), .QB50(buff2_out[50]), 1
.QB51(buff2_out[51]), // Read Data 2

 .QB52(buff2_out[52]), .QB53(buff2_out[53]), .QB54(buff2_out[54]), 3
.QB55(buff2_out[55]), // Read Data 4

 .QB56(buff2_out[56]), .QB57(buff2_out[57]), .QB58(buff2_out[58]), 5
.QB59(buff2_out[59]), // Read Data 6

 .QB60(buff2_out[60]), .QB61(buff2_out[61]), .QB62(buff2_out[62]), 7
.QB63(buff2_out[63]), // Read Data 8

 .QB64(buff2_out[64]), .QB65(buff2_out[65]), .QB66(buff2_out[66]), 9
.QB67(buff2_out[67]), // Read Data 10

 .QB68(buff2_out[68]), .QB69(buff2_out[69]), .QB70(buff2_out[70]), 11
.QB71(buff2_out[71]), // Read Data 12

 .QB72(buff2_out[72]), .QB73(buff2_out[73]), .QB74(buff2_out[74]), 13
.QB75(buff2_out[75]), // Read Data 14

 .QB76(buff2_out[76]), .QB77(buff2_out[77]), .QB78(buff2_out[78]), 15
.QB79(buff2_out[79]), // Read Data 16

 .QB80(buff2_out[80]), .QB81(buff2_out[81]), .QB82(buff2_out[82]), 17
.QB83(buff2_out[83]), // Read Data 18

 .QB84(buff2_out[84]), .QB85(buff2_out[85]), .QB86(buff2_out[86]), 19
.QB87(buff2_out[87]), // Read Data 20

 .QB88(buff2_out[88]), .QB89(buff2_out[89]), .QB90(buff2_out[90]), 21
.QB91(buff2_out[91]), // Read Data 22

 .QB92(buff2_out[92]), .QB93(buff2_out[93]), .QB94(buff2_out[94]), 23
.QB95(buff2_out[95]), // Read Data 24

 .QB96(buff2_out[96]), .QB97(buff2_out[97]), .QB98(buff2_out[98]), 25
.QB99(buff2_out[99]), // Read Data 26

 .QB100(buff2_out[100]), .QB101(buff2_out[101]), .QB102(buff2_out[102]), 27
.QB103(buff2_out[103]), // Read Data 28

 .QB104(buff2_out[104]), .QB105(buff2_out[105]), .QB106(buff2_out[106]), 29
.QB107(buff2_out[107]), // Read Data 30

 .QB108(buff2_out[108]), .QB109(buff2_out[109]), .QB110(buff2_out[110]), 31
.QB111(buff2_out[111]), // Read Data 32

 Page 27 of 84
Ex. 2113 - export_buffers.v

 .QB112(buff2_out[112]), .QB113(buff2_out[113]), .QB114(buff2_out[114]), 1
.QB115(buff2_out[115]), // Read Data 2

 .QB116(buff2_out[116]), .QB117(buff2_out[117]), .QB118(buff2_out[118]), 3
.QB119(buff2_out[119]), // Read Data 4

 .QB120(buff2_out[120]), .QB121(buff2_out[121]), .QB122(buff2_out[122]), 5
.QB123(buff2_out[123]), // Read Data 6

 .QB124(buff2_out[124]), .QB125(buff2_out[125]), .QB126(buff2_out[126]), 7
.QB127(buff2_out[127]), // Read Data 8

 // WRITE INTERFACE 9

 .CLKA(iSCLK), // Write Clock 10

 .WEA(imem_wen), // Write enable 11

 .MEA(vdd), // Memory enable 12

 .ADRA0(iwrite_addr[0]), .ADRA1(iwrite_addr[1]), .ADRA2(iwrite_addr[2]), 13
.ADRA3(iwrite_addr[3]), // Write Address 14

 .ADRA4(iwrite_addr[4]), .ADRA5(iwrite_addr[5]), .ADRA6(iwrite_addr[6]), // Write 15
Address 16

 .DA0(ipixel_data2[0]), .DA1(ipixel_data2[1]), .DA2(ipixel_data2[2]), 17
.DA3(ipixel_data2[3]), // Write Data 18

 .DA4(ipixel_data2[4]), .DA5(ipixel_data2[5]), .DA6(ipixel_data2[6]), 19
.DA7(ipixel_data2[7]), // Write Data 20

 .DA8(ipixel_data2[8]), .DA9(ipixel_data2[9]), .DA10(ipixel_data2[10]), 21
.DA11(ipixel_data2[11]), // Write Data 22

 .DA12(ipixel_data2[12]), .DA13(ipixel_data2[13]), .DA14(ipixel_data2[14]), 23
.DA15(ipixel_data2[15]), // Write Data 24

 .DA16(ipixel_data2[16]), .DA17(ipixel_data2[17]), .DA18(ipixel_data2[18]), 25
.DA19(ipixel_data2[19]), // Write Data 26

 .DA20(ipixel_data2[20]), .DA21(ipixel_data2[21]), .DA22(ipixel_data2[22]), 27
.DA23(ipixel_data2[23]), // Write Data 28

 .DA24(ipixel_data2[24]), .DA25(ipixel_data2[25]), .DA26(ipixel_data2[26]), 29
.DA27(ipixel_data2[27]), // Write Data 30

 .DA28(ipixel_data2[28]), .DA29(ipixel_data2[29]), .DA30(ipixel_data2[30]), 31
.DA31(ipixel_data2[31]), // Write Data 32

 Page 28 of 84
Ex. 2113 - export_buffers.v

 .DA32(ipixel_data2[32]), .DA33(ipixel_data2[33]), .DA34(ipixel_data2[34]), 1
.DA35(ipixel_data2[35]), // Write Data 2

 .DA36(ipixel_data2[36]), .DA37(ipixel_data2[37]), .DA38(ipixel_data2[38]), 3
.DA39(ipixel_data2[39]), // Write Data 4

 .DA40(ipixel_data2[40]), .DA41(ipixel_data2[41]), .DA42(ipixel_data2[42]), 5
.DA43(ipixel_data2[43]), // Write Data 6

 .DA44(ipixel_data2[44]), .DA45(ipixel_data2[45]), .DA46(ipixel_data2[46]), 7
.DA47(ipixel_data2[47]), // Write Data 8

 .DA48(ipixel_data2[48]), .DA49(ipixel_data2[49]), .DA50(ipixel_data2[50]), 9
.DA51(ipixel_data2[51]), // Write Data 10

 .DA52(ipixel_data2[52]), .DA53(ipixel_data2[53]), .DA54(ipixel_data2[54]), 11
.DA55(ipixel_data2[55]), // Write Data 12

 .DA56(ipixel_data2[56]), .DA57(ipixel_data2[57]), .DA58(ipixel_data2[58]), 13
.DA59(ipixel_data2[59]), // Write Data 14

 .DA60(ipixel_data2[60]), .DA61(ipixel_data2[61]), .DA62(ipixel_data2[62]), 15
.DA63(ipixel_data2[63]), // Write Data 16

 .DA64(ipixel_data2[64]), .DA65(ipixel_data2[65]), .DA66(ipixel_data2[66]), 17
.DA67(ipixel_data2[67]), // Write Data 18

 .DA68(ipixel_data2[68]), .DA69(ipixel_data2[69]), .DA70(ipixel_data2[70]), 19
.DA71(ipixel_data2[71]), // Write Data 20

 .DA72(ipixel_data2[72]), .DA73(ipixel_data2[73]), .DA74(ipixel_data2[74]), 21
.DA75(ipixel_data2[75]), // Write Data 22

 .DA76(ipixel_data2[76]), .DA77(ipixel_data2[77]), .DA78(ipixel_data2[78]), 23
.DA79(ipixel_data2[79]), // Write Data 24

 .DA80(ipixel_data2[80]), .DA81(ipixel_data2[81]), .DA82(ipixel_data2[82]), 25
.DA83(ipixel_data2[83]), // Write Data 26

 .DA84(ipixel_data2[84]), .DA85(ipixel_data2[85]), .DA86(ipixel_data2[86]), 27
.DA87(ipixel_data2[87]), // Write Data 28

 .DA88(ipixel_data2[88]), .DA89(ipixel_data2[89]), .DA90(ipixel_data2[90]), 29
.DA91(ipixel_data2[91]), // Write Data 30

 .DA92(ipixel_data2[92]), .DA93(ipixel_data2[93]), .DA94(ipixel_data2[94]), 31
.DA95(ipixel_data2[95]), // Write Data 32

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 508 of 611

 Page 29 of 84
Ex. 2113 - export_buffers.v

 .DA96(ipixel_data2[96]), .DA97(ipixel_data2[97]), .DA98(ipixel_data2[98]), 1
.DA99(ipixel_data2[99]), // Write Data 2

 .DA100(ipixel_data2[100]), .DA101(ipixel_data2[101]), .DA102(ipixel_data2[102]), 3
.DA103(ipixel_data2[103]), // Write Data 4

 .DA104(ipixel_data2[104]), .DA105(ipixel_data2[105]), .DA106(ipixel_data2[106]), 5
.DA107(ipixel_data2[107]), // Write Data 6

 .DA108(ipixel_data2[108]), .DA109(ipixel_data2[109]), .DA110(ipixel_data2[110]), 7
.DA111(ipixel_data2[111]), // Write Data 8

 .DA112(ipixel_data2[112]), .DA113(ipixel_data2[113]), .DA114(ipixel_data2[114]), 9
.DA115(ipixel_data2[115]), // Write Data 10

 .DA116(ipixel_data2[116]), .DA117(ipixel_data2[117]), .DA118(ipixel_data2[118]), 11
.DA119(ipixel_data2[119]), // Write Data 12

 .DA120(ipixel_data2[120]), .DA121(ipixel_data2[121]), .DA122(ipixel_data2[122]), 13
.DA123(ipixel_data2[123]), // Write Data 14

 .DA124(ipixel_data2[124]), .DA125(ipixel_data2[125]), .DA126(ipixel_data2[126]), 15
.DA127(ipixel_data2[127]), // Write Data 16

 // WRITE TEST SIGNALS 17

 .BISTEA(vss), 18

 .TWEA(vss), // Test write enable 19

 .TMEA(vss), // Test memory enable 20

 .TADRA0(iwrite_addr[0]), .TADRA1(iwrite_addr[1]), .TADRA2(iwrite_addr[2]), 21
.TADRA3(iwrite_addr[3]), // Write Test Address 22

 .TADRA4(iwrite_addr[4]), .TADRA5(iwrite_addr[5]), .TADRA6(iwrite_addr[6]), // Write 23
Test Address 24

 .TDA0(ipixel_data2[0]), .TDA1(ipixel_data2[1]), .TDA2(ipixel_data2[2]), 25
.TDA3(ipixel_data2[3]), // Write Test Data 26

 .TDA4(ipixel_data2[4]), .TDA5(ipixel_data2[5]), .TDA6(ipixel_data2[6]), 27
.TDA7(ipixel_data2[7]), // Write Test Data 28

 .TDA8(ipixel_data2[8]), .TDA9(ipixel_data2[9]), .TDA10(ipixel_data2[10]), 29
.TDA11(ipixel_data2[11]), // Write Test Data 30

 .TDA12(ipixel_data2[12]), .TDA13(ipixel_data2[13]), .TDA14(ipixel_data2[14]), 31
.TDA15(ipixel_data2[15]), // Write Test Data 32

 Page 30 of 84
Ex. 2113 - export_buffers.v

 .TDA16(ipixel_data2[16]), .TDA17(ipixel_data2[17]), .TDA18(ipixel_data2[18]), 1
.TDA19(ipixel_data2[19]), // Write Test Data 2

 .TDA20(ipixel_data2[20]), .TDA21(ipixel_data2[21]), .TDA22(ipixel_data2[22]), 3
.TDA23(ipixel_data2[23]), // Write Test Data 4

 .TDA24(ipixel_data2[24]), .TDA25(ipixel_data2[25]), .TDA26(ipixel_data2[26]), 5
.TDA27(ipixel_data2[27]), // Write Test Data 6

 .TDA28(ipixel_data2[28]), .TDA29(ipixel_data2[29]), .TDA30(ipixel_data2[30]), 7
.TDA31(ipixel_data2[31]), // Write Test Data 8

 .TDA32(ipixel_data2[32]), .TDA33(ipixel_data2[33]), .TDA34(ipixel_data2[34]), 9
.TDA35(ipixel_data2[35]), // Write Test Data 10

 .TDA36(ipixel_data2[36]), .TDA37(ipixel_data2[37]), .TDA38(ipixel_data2[38]), 11
.TDA39(ipixel_data2[39]), // Write Test Data 12

 .TDA40(ipixel_data2[40]), .TDA41(ipixel_data2[41]), .TDA42(ipixel_data2[42]), 13
.TDA43(ipixel_data2[43]), // Write Test Data 14

 .TDA44(ipixel_data2[44]), .TDA45(ipixel_data2[45]), .TDA46(ipixel_data2[46]), 15
.TDA47(ipixel_data2[47]), // Write Test Data 16

 .TDA48(ipixel_data2[48]), .TDA49(ipixel_data2[49]), .TDA50(ipixel_data2[50]), 17
.TDA51(ipixel_data2[51]), // Write Test Data 18

 .TDA52(ipixel_data2[52]), .TDA53(ipixel_data2[53]), .TDA54(ipixel_data2[54]), 19
.TDA55(ipixel_data2[55]), // Write Test Data 20

 .TDA56(ipixel_data2[56]), .TDA57(ipixel_data2[57]), .TDA58(ipixel_data2[58]), 21
.TDA59(ipixel_data2[59]), // Write Test Data 22

 .TDA60(ipixel_data2[60]), .TDA61(ipixel_data2[61]), .TDA62(ipixel_data2[62]), 23
.TDA63(ipixel_data2[63]), // Write Test Data 24

 .TDA64(ipixel_data2[64]), .TDA65(ipixel_data2[65]), .TDA66(ipixel_data2[66]), 25
.TDA67(ipixel_data2[67]), // Write Test Data 26

 .TDA68(ipixel_data2[68]), .TDA69(ipixel_data2[69]), .TDA70(ipixel_data2[70]), 27
.TDA71(ipixel_data2[71]), // Write Test Data 28

 .TDA72(ipixel_data2[72]), .TDA73(ipixel_data2[73]), .TDA74(ipixel_data2[74]), 29
.TDA75(ipixel_data2[75]), // Write Test Data 30

 .TDA76(ipixel_data2[76]), .TDA77(ipixel_data2[77]), .TDA78(ipixel_data2[78]), 31
.TDA79(ipixel_data2[79]), // Write Test Data 32

 Page 31 of 84
Ex. 2113 - export_buffers.v

 .TDA80(ipixel_data2[80]), .TDA81(ipixel_data2[81]), .TDA82(ipixel_data2[82]), 1
.TDA83(ipixel_data2[83]), // Write Test Data 2

 .TDA84(ipixel_data2[84]), .TDA85(ipixel_data2[85]), .TDA86(ipixel_data2[86]), 3
.TDA87(ipixel_data2[87]), // Write Test Data 4

 .TDA88(ipixel_data2[88]), .TDA89(ipixel_data2[89]), .TDA90(ipixel_data2[90]), 5
.TDA91(ipixel_data2[91]), // Write Test Data 6

 .TDA92(ipixel_data2[92]), .TDA93(ipixel_data2[93]), .TDA94(ipixel_data2[94]), 7
.TDA95(ipixel_data2[95]), // Write Test Data 8

 .TDA96(ipixel_data2[96]), .TDA97(ipixel_data2[97]), .TDA98(ipixel_data2[98]), 9
.TDA99(ipixel_data2[99]), // Write Test Data 10

 .TDA100(ipixel_data2[100]), .TDA101(ipixel_data2[101]), .TDA102(ipixel_data2[102]), 11
.TDA103(ipixel_data2[103]), // Write Test Data 12

 .TDA104(ipixel_data2[104]), .TDA105(ipixel_data2[105]), .TDA106(ipixel_data2[106]), 13
.TDA107(ipixel_data2[107]), // Write Test Data 14

 .TDA108(ipixel_data2[108]), .TDA109(ipixel_data2[109]), .TDA110(ipixel_data2[110]), 15
.TDA111(ipixel_data2[111]), // Write Test Data 16

 .TDA112(ipixel_data2[112]), .TDA113(ipixel_data2[113]), .TDA114(ipixel_data2[114]), 17
.TDA115(ipixel_data2[115]), // Write Test Data 18

 .TDA116(ipixel_data2[116]), .TDA117(ipixel_data2[117]), .TDA118(ipixel_data2[118]), 19
.TDA119(ipixel_data2[119]), // Write Test Data 20

 .TDA120(ipixel_data2[120]), .TDA121(ipixel_data2[121]), .TDA122(ipixel_data2[122]), 21
.TDA123(ipixel_data2[123]), // Write Test Data 22

 .TDA124(ipixel_data2[124]), .TDA125(ipixel_data2[125]), .TDA126(ipixel_data2[126]), 23
.TDA127(ipixel_data2[127]), // Write Test Data 24

 //READ TEST SIGNALS 25

 .BISTEB(vss), 26

 .TOEB(vss), 27

 .TMEB(vss), 28

 .TADRB0(q1_read_addr[0]), .TADRB1(q1_read_addr[1]), .TADRB2(q1_read_addr[2]), 29
.TADRB3(q1_read_addr[3]), // Read Test Address 30

 .TADRB4(q1_read_addr[4]), .TADRB5(q1_read_addr[5]), .TADRB6(q1_read_addr[6]), // 31
Read Test Address 32

 Page 32 of 84
Ex. 2113 - export_buffers.v

 .AWTB(vss) 1

); 2

 3

`endif // !`ifdef USE_BEHAVE_MEM 4

 5

 6

 7

 wire [6:0] q2_read_mem_addr; 8

 assign q2_read_mem_addr = q2_read_addr[6:0]; 9

 10

 11

`ifdef USE_BEHAVE_MEM 12

 dum_mem_p2 #(7,128) bank0_buff3(.iRCLK(sclk), 13

 .iWCLK(sclk), 14

 .iMER(q2_mem_re), 15

 .iMEW(imem_wen), 16

 .iWEN(imem_wew), 17

 .iRADR(q2_read_addr[6:0]), 18

 .iWADR(iwrite_addr), 19

 .iD(ipixel_data3), 20

 .oQ(buff3_out) 21

); 22

`else // !`ifdef USE_BEHAVE_MEM 23

 rfsd2_80x128cm2sw0 ubank0_buff3 24

 (/*VRGIO rfsd2_80x128cm2sw0 ipixel_data3 buff3_out iwrite_addr q2_read_addr 25
imem_wen q2_mem_re null*/ 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 509 of 611

 Page 33 of 84
Ex. 2113 - export_buffers.v

 // READ INTERFACE 1

 .CLKB(iSCLK), // Read Clock 2

 .OEB(vdd), // Output enable 3

 .MEB(q2_mem_re), // Read enable 4

 .ADRB0(q2_read_addr[0]), .ADRB1(q2_read_addr[1]), .ADRB2(q2_read_addr[2]), 5
.ADRB3(q2_read_addr[3]), // Read Address 6

 .ADRB4(q2_read_addr[4]), .ADRB5(q2_read_addr[5]), .ADRB6(q2_read_addr[6]), // 7
Read Address 8

 .QB0(buff3_out[0]), .QB1(buff3_out[1]), .QB2(buff3_out[2]), .QB3(buff3_out[3]), // Read 9
Data 10

 .QB4(buff3_out[4]), .QB5(buff3_out[5]), .QB6(buff3_out[6]), .QB7(buff3_out[7]), // Read 11
Data 12

 .QB8(buff3_out[8]), .QB9(buff3_out[9]), .QB10(buff3_out[10]), .QB11(buff3_out[11]), // 13
Read Data 14

 .QB12(buff3_out[12]), .QB13(buff3_out[13]), .QB14(buff3_out[14]), 15
.QB15(buff3_out[15]), // Read Data 16

 .QB16(buff3_out[16]), .QB17(buff3_out[17]), .QB18(buff3_out[18]), 17
.QB19(buff3_out[19]), // Read Data 18

 .QB20(buff3_out[20]), .QB21(buff3_out[21]), .QB22(buff3_out[22]), 19
.QB23(buff3_out[23]), // Read Data 20

 .QB24(buff3_out[24]), .QB25(buff3_out[25]), .QB26(buff3_out[26]), 21
.QB27(buff3_out[27]), // Read Data 22

 .QB28(buff3_out[28]), .QB29(buff3_out[29]), .QB30(buff3_out[30]), 23
.QB31(buff3_out[31]), // Read Data 24

 .QB32(buff3_out[32]), .QB33(buff3_out[33]), .QB34(buff3_out[34]), 25
.QB35(buff3_out[35]), // Read Data 26

 .QB36(buff3_out[36]), .QB37(buff3_out[37]), .QB38(buff3_out[38]), 27
.QB39(buff3_out[39]), // Read Data 28

 .QB40(buff3_out[40]), .QB41(buff3_out[41]), .QB42(buff3_out[42]), 29
.QB43(buff3_out[43]), // Read Data 30

 .QB44(buff3_out[44]), .QB45(buff3_out[45]), .QB46(buff3_out[46]), 31
.QB47(buff3_out[47]), // Read Data 32

 Page 34 of 84
Ex. 2113 - export_buffers.v

 .QB48(buff3_out[48]), .QB49(buff3_out[49]), .QB50(buff3_out[50]), 1
.QB51(buff3_out[51]), // Read Data 2

 .QB52(buff3_out[52]), .QB53(buff3_out[53]), .QB54(buff3_out[54]), 3
.QB55(buff3_out[55]), // Read Data 4

 .QB56(buff3_out[56]), .QB57(buff3_out[57]), .QB58(buff3_out[58]), 5
.QB59(buff3_out[59]), // Read Data 6

 .QB60(buff3_out[60]), .QB61(buff3_out[61]), .QB62(buff3_out[62]), 7
.QB63(buff3_out[63]), // Read Data 8

 .QB64(buff3_out[64]), .QB65(buff3_out[65]), .QB66(buff3_out[66]), 9
.QB67(buff3_out[67]), // Read Data 10

 .QB68(buff3_out[68]), .QB69(buff3_out[69]), .QB70(buff3_out[70]), 11
.QB71(buff3_out[71]), // Read Data 12

 .QB72(buff3_out[72]), .QB73(buff3_out[73]), .QB74(buff3_out[74]), 13
.QB75(buff3_out[75]), // Read Data 14

 .QB76(buff3_out[76]), .QB77(buff3_out[77]), .QB78(buff3_out[78]), 15
.QB79(buff3_out[79]), // Read Data 16

 .QB80(buff3_out[80]), .QB81(buff3_out[81]), .QB82(buff3_out[82]), 17
.QB83(buff3_out[83]), // Read Data 18

 .QB84(buff3_out[84]), .QB85(buff3_out[85]), .QB86(buff3_out[86]), 19
.QB87(buff3_out[87]), // Read Data 20

 .QB88(buff3_out[88]), .QB89(buff3_out[89]), .QB90(buff3_out[90]), 21
.QB91(buff3_out[91]), // Read Data 22

 .QB92(buff3_out[92]), .QB93(buff3_out[93]), .QB94(buff3_out[94]), 23
.QB95(buff3_out[95]), // Read Data 24

 .QB96(buff3_out[96]), .QB97(buff3_out[97]), .QB98(buff3_out[98]), 25
.QB99(buff3_out[99]), // Read Data 26

 .QB100(buff3_out[100]), .QB101(buff3_out[101]), .QB102(buff3_out[102]), 27
.QB103(buff3_out[103]), // Read Data 28

 .QB104(buff3_out[104]), .QB105(buff3_out[105]), .QB106(buff3_out[106]), 29
.QB107(buff3_out[107]), // Read Data 30

 .QB108(buff3_out[108]), .QB109(buff3_out[109]), .QB110(buff3_out[110]), 31
.QB111(buff3_out[111]), // Read Data 32

 Page 35 of 84
Ex. 2113 - export_buffers.v

 .QB112(buff3_out[112]), .QB113(buff3_out[113]), .QB114(buff3_out[114]), 1
.QB115(buff3_out[115]), // Read Data 2

 .QB116(buff3_out[116]), .QB117(buff3_out[117]), .QB118(buff3_out[118]), 3
.QB119(buff3_out[119]), // Read Data 4

 .QB120(buff3_out[120]), .QB121(buff3_out[121]), .QB122(buff3_out[122]), 5
.QB123(buff3_out[123]), // Read Data 6

 .QB124(buff3_out[124]), .QB125(buff3_out[125]), .QB126(buff3_out[126]), 7
.QB127(buff3_out[127]), // Read Data 8

 // WRITE INTERFACE 9

 .CLKA(iSCLK), // Write Clock 10

 .WEA(imem_wen), // Write enable 11

 .MEA(vdd), // Memory enable 12

 .ADRA0(iwrite_addr[0]), .ADRA1(iwrite_addr[1]), .ADRA2(iwrite_addr[2]), 13
.ADRA3(iwrite_addr[3]), // Write Address 14

 .ADRA4(iwrite_addr[4]), .ADRA5(iwrite_addr[5]), .ADRA6(iwrite_addr[6]), // Write 15
Address 16

 .DA0(ipixel_data3[0]), .DA1(ipixel_data3[1]), .DA2(ipixel_data3[2]), 17
.DA3(ipixel_data3[3]), // Write Data 18

 .DA4(ipixel_data3[4]), .DA5(ipixel_data3[5]), .DA6(ipixel_data3[6]), 19
.DA7(ipixel_data3[7]), // Write Data 20

 .DA8(ipixel_data3[8]), .DA9(ipixel_data3[9]), .DA10(ipixel_data3[10]), 21
.DA11(ipixel_data3[11]), // Write Data 22

 .DA12(ipixel_data3[12]), .DA13(ipixel_data3[13]), .DA14(ipixel_data3[14]), 23
.DA15(ipixel_data3[15]), // Write Data 24

 .DA16(ipixel_data3[16]), .DA17(ipixel_data3[17]), .DA18(ipixel_data3[18]), 25
.DA19(ipixel_data3[19]), // Write Data 26

 .DA20(ipixel_data3[20]), .DA21(ipixel_data3[21]), .DA22(ipixel_data3[22]), 27
.DA23(ipixel_data3[23]), // Write Data 28

 .DA24(ipixel_data3[24]), .DA25(ipixel_data3[25]), .DA26(ipixel_data3[26]), 29
.DA27(ipixel_data3[27]), // Write Data 30

 .DA28(ipixel_data3[28]), .DA29(ipixel_data3[29]), .DA30(ipixel_data3[30]), 31
.DA31(ipixel_data3[31]), // Write Data 32

 Page 36 of 84
Ex. 2113 - export_buffers.v

 .DA32(ipixel_data3[32]), .DA33(ipixel_data3[33]), .DA34(ipixel_data3[34]), 1
.DA35(ipixel_data3[35]), // Write Data 2

 .DA36(ipixel_data3[36]), .DA37(ipixel_data3[37]), .DA38(ipixel_data3[38]), 3
.DA39(ipixel_data3[39]), // Write Data 4

 .DA40(ipixel_data3[40]), .DA41(ipixel_data3[41]), .DA42(ipixel_data3[42]), 5
.DA43(ipixel_data3[43]), // Write Data 6

 .DA44(ipixel_data3[44]), .DA45(ipixel_data3[45]), .DA46(ipixel_data3[46]), 7
.DA47(ipixel_data3[47]), // Write Data 8

 .DA48(ipixel_data3[48]), .DA49(ipixel_data3[49]), .DA50(ipixel_data3[50]), 9
.DA51(ipixel_data3[51]), // Write Data 10

 .DA52(ipixel_data3[52]), .DA53(ipixel_data3[53]), .DA54(ipixel_data3[54]), 11
.DA55(ipixel_data3[55]), // Write Data 12

 .DA56(ipixel_data3[56]), .DA57(ipixel_data3[57]), .DA58(ipixel_data3[58]), 13
.DA59(ipixel_data3[59]), // Write Data 14

 .DA60(ipixel_data3[60]), .DA61(ipixel_data3[61]), .DA62(ipixel_data3[62]), 15
.DA63(ipixel_data3[63]), // Write Data 16

 .DA64(ipixel_data3[64]), .DA65(ipixel_data3[65]), .DA66(ipixel_data3[66]), 17
.DA67(ipixel_data3[67]), // Write Data 18

 .DA68(ipixel_data3[68]), .DA69(ipixel_data3[69]), .DA70(ipixel_data3[70]), 19
.DA71(ipixel_data3[71]), // Write Data 20

 .DA72(ipixel_data3[72]), .DA73(ipixel_data3[73]), .DA74(ipixel_data3[74]), 21
.DA75(ipixel_data3[75]), // Write Data 22

 .DA76(ipixel_data3[76]), .DA77(ipixel_data3[77]), .DA78(ipixel_data3[78]), 23
.DA79(ipixel_data3[79]), // Write Data 24

 .DA80(ipixel_data3[80]), .DA81(ipixel_data3[81]), .DA82(ipixel_data3[82]), 25
.DA83(ipixel_data3[83]), // Write Data 26

 .DA84(ipixel_data3[84]), .DA85(ipixel_data3[85]), .DA86(ipixel_data3[86]), 27
.DA87(ipixel_data3[87]), // Write Data 28

 .DA88(ipixel_data3[88]), .DA89(ipixel_data3[89]), .DA90(ipixel_data3[90]), 29
.DA91(ipixel_data3[91]), // Write Data 30

 .DA92(ipixel_data3[92]), .DA93(ipixel_data3[93]), .DA94(ipixel_data3[94]), 31
.DA95(ipixel_data3[95]), // Write Data 32

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 510 of 611

 Page 37 of 84
Ex. 2113 - export_buffers.v

 .DA96(ipixel_data3[96]), .DA97(ipixel_data3[97]), .DA98(ipixel_data3[98]), 1
.DA99(ipixel_data3[99]), // Write Data 2

 .DA100(ipixel_data3[100]), .DA101(ipixel_data3[101]), .DA102(ipixel_data3[102]), 3
.DA103(ipixel_data3[103]), // Write Data 4

 .DA104(ipixel_data3[104]), .DA105(ipixel_data3[105]), .DA106(ipixel_data3[106]), 5
.DA107(ipixel_data3[107]), // Write Data 6

 .DA108(ipixel_data3[108]), .DA109(ipixel_data3[109]), .DA110(ipixel_data3[110]), 7
.DA111(ipixel_data3[111]), // Write Data 8

 .DA112(ipixel_data3[112]), .DA113(ipixel_data3[113]), .DA114(ipixel_data3[114]), 9
.DA115(ipixel_data3[115]), // Write Data 10

 .DA116(ipixel_data3[116]), .DA117(ipixel_data3[117]), .DA118(ipixel_data3[118]), 11
.DA119(ipixel_data3[119]), // Write Data 12

 .DA120(ipixel_data3[120]), .DA121(ipixel_data3[121]), .DA122(ipixel_data3[122]), 13
.DA123(ipixel_data3[123]), // Write Data 14

 .DA124(ipixel_data3[124]), .DA125(ipixel_data3[125]), .DA126(ipixel_data3[126]), 15
.DA127(ipixel_data3[127]), // Write Data 16

 // WRITE TEST SIGNALS 17

 .BISTEA(vss), 18

 .TWEA(vss), // Test write enable 19

 .TMEA(vss), // Test memory enable 20

 .TADRA0(iwrite_addr[0]), .TADRA1(iwrite_addr[1]), .TADRA2(iwrite_addr[2]), 21
.TADRA3(iwrite_addr[3]), // Write Test Address 22

 .TADRA4(iwrite_addr[4]), .TADRA5(iwrite_addr[5]), .TADRA6(iwrite_addr[6]), // Write 23
Test Address 24

 .TDA0(ipixel_data3[0]), .TDA1(ipixel_data3[1]), .TDA2(ipixel_data3[2]), 25
.TDA3(ipixel_data3[3]), // Write Test Data 26

 .TDA4(ipixel_data3[4]), .TDA5(ipixel_data3[5]), .TDA6(ipixel_data3[6]), 27
.TDA7(ipixel_data3[7]), // Write Test Data 28

 .TDA8(ipixel_data3[8]), .TDA9(ipixel_data3[9]), .TDA10(ipixel_data3[10]), 29
.TDA11(ipixel_data3[11]), // Write Test Data 30

 .TDA12(ipixel_data3[12]), .TDA13(ipixel_data3[13]), .TDA14(ipixel_data3[14]), 31
.TDA15(ipixel_data3[15]), // Write Test Data 32

 Page 38 of 84
Ex. 2113 - export_buffers.v

 .TDA16(ipixel_data3[16]), .TDA17(ipixel_data3[17]), .TDA18(ipixel_data3[18]), 1
.TDA19(ipixel_data3[19]), // Write Test Data 2

 .TDA20(ipixel_data3[20]), .TDA21(ipixel_data3[21]), .TDA22(ipixel_data3[22]), 3
.TDA23(ipixel_data3[23]), // Write Test Data 4

 .TDA24(ipixel_data3[24]), .TDA25(ipixel_data3[25]), .TDA26(ipixel_data3[26]), 5
.TDA27(ipixel_data3[27]), // Write Test Data 6

 .TDA28(ipixel_data3[28]), .TDA29(ipixel_data3[29]), .TDA30(ipixel_data3[30]), 7
.TDA31(ipixel_data3[31]), // Write Test Data 8

 .TDA32(ipixel_data3[32]), .TDA33(ipixel_data3[33]), .TDA34(ipixel_data3[34]), 9
.TDA35(ipixel_data3[35]), // Write Test Data 10

 .TDA36(ipixel_data3[36]), .TDA37(ipixel_data3[37]), .TDA38(ipixel_data3[38]), 11
.TDA39(ipixel_data3[39]), // Write Test Data 12

 .TDA40(ipixel_data3[40]), .TDA41(ipixel_data3[41]), .TDA42(ipixel_data3[42]), 13
.TDA43(ipixel_data3[43]), // Write Test Data 14

 .TDA44(ipixel_data3[44]), .TDA45(ipixel_data3[45]), .TDA46(ipixel_data3[46]), 15
.TDA47(ipixel_data3[47]), // Write Test Data 16

 .TDA48(ipixel_data3[48]), .TDA49(ipixel_data3[49]), .TDA50(ipixel_data3[50]), 17
.TDA51(ipixel_data3[51]), // Write Test Data 18

 .TDA52(ipixel_data3[52]), .TDA53(ipixel_data3[53]), .TDA54(ipixel_data3[54]), 19
.TDA55(ipixel_data3[55]), // Write Test Data 20

 .TDA56(ipixel_data3[56]), .TDA57(ipixel_data3[57]), .TDA58(ipixel_data3[58]), 21
.TDA59(ipixel_data3[59]), // Write Test Data 22

 .TDA60(ipixel_data3[60]), .TDA61(ipixel_data3[61]), .TDA62(ipixel_data3[62]), 23
.TDA63(ipixel_data3[63]), // Write Test Data 24

 .TDA64(ipixel_data3[64]), .TDA65(ipixel_data3[65]), .TDA66(ipixel_data3[66]), 25
.TDA67(ipixel_data3[67]), // Write Test Data 26

 .TDA68(ipixel_data3[68]), .TDA69(ipixel_data3[69]), .TDA70(ipixel_data3[70]), 27
.TDA71(ipixel_data3[71]), // Write Test Data 28

 .TDA72(ipixel_data3[72]), .TDA73(ipixel_data3[73]), .TDA74(ipixel_data3[74]), 29
.TDA75(ipixel_data3[75]), // Write Test Data 30

 .TDA76(ipixel_data3[76]), .TDA77(ipixel_data3[77]), .TDA78(ipixel_data3[78]), 31
.TDA79(ipixel_data3[79]), // Write Test Data 32

 Page 39 of 84
Ex. 2113 - export_buffers.v

 .TDA80(ipixel_data3[80]), .TDA81(ipixel_data3[81]), .TDA82(ipixel_data3[82]), 1
.TDA83(ipixel_data3[83]), // Write Test Data 2

 .TDA84(ipixel_data3[84]), .TDA85(ipixel_data3[85]), .TDA86(ipixel_data3[86]), 3
.TDA87(ipixel_data3[87]), // Write Test Data 4

 .TDA88(ipixel_data3[88]), .TDA89(ipixel_data3[89]), .TDA90(ipixel_data3[90]), 5
.TDA91(ipixel_data3[91]), // Write Test Data 6

 .TDA92(ipixel_data3[92]), .TDA93(ipixel_data3[93]), .TDA94(ipixel_data3[94]), 7
.TDA95(ipixel_data3[95]), // Write Test Data 8

 .TDA96(ipixel_data3[96]), .TDA97(ipixel_data3[97]), .TDA98(ipixel_data3[98]), 9
.TDA99(ipixel_data3[99]), // Write Test Data 10

 .TDA100(ipixel_data3[100]), .TDA101(ipixel_data3[101]), .TDA102(ipixel_data3[102]), 11
.TDA103(ipixel_data3[103]), // Write Test Data 12

 .TDA104(ipixel_data3[104]), .TDA105(ipixel_data3[105]), .TDA106(ipixel_data3[106]), 13
.TDA107(ipixel_data3[107]), // Write Test Data 14

 .TDA108(ipixel_data3[108]), .TDA109(ipixel_data3[109]), .TDA110(ipixel_data3[110]), 15
.TDA111(ipixel_data3[111]), // Write Test Data 16

 .TDA112(ipixel_data3[112]), .TDA113(ipixel_data3[113]), .TDA114(ipixel_data3[114]), 17
.TDA115(ipixel_data3[115]), // Write Test Data 18

 .TDA116(ipixel_data3[116]), .TDA117(ipixel_data3[117]), .TDA118(ipixel_data3[118]), 19
.TDA119(ipixel_data3[119]), // Write Test Data 20

 .TDA120(ipixel_data3[120]), .TDA121(ipixel_data3[121]), .TDA122(ipixel_data3[122]), 21
.TDA123(ipixel_data3[123]), // Write Test Data 22

 .TDA124(ipixel_data3[124]), .TDA125(ipixel_data3[125]), .TDA126(ipixel_data3[126]), 23
.TDA127(ipixel_data3[127]), // Write Test Data 24

 //READ TEST SIGNALS 25

 .BISTEB(vss), 26

 .TOEB(vss), 27

 .TMEB(vss), 28

 .TADRB0(q2_read_addr[0]), .TADRB1(q2_read_addr[1]), .TADRB2(q2_read_addr[2]), 29
.TADRB3(q2_read_addr[3]), // Read Test Address 30

 .TADRB4(q2_read_addr[4]), .TADRB5(q2_read_addr[5]), .TADRB6(q2_read_addr[6]), // 31
Read Test Address 32

 Page 40 of 84
Ex. 2113 - export_buffers.v

 .AWTB(vss) 1

); 2

 3

`endif // !`ifdef USE_BEHAVE_MEM 4

 5

 6

`ifdef USE_BEHAVE_MEM 7

 dum_mem_p2 #(7,128) bank1_buff0(.iRCLK(sclk), 8

 .iWCLK(sclk), 9

 .iMER(imem_re), 10

 .iMEW(imem_wen), 11

 .iWEN(imem_wew), 12

 .iRADR(iread_addr[6:0]), 13

 .iWADR(iwrite_addr), 14

 .iD(ipixel_data4), 15

 .oQ(buff4_out) 16

); 17

`else // !`ifdef USE_BEHAVE_MEM 18

 19

 rfsd2_80x128cm2sw0 ubank1_buff0 20

 (/*VRGIO rfsd2_80x128cm2sw0 ipixel_data4 buff4_out iwrite_addr iread_addr imem_wen 21
imem_re null*/ 22

 // READ INTERFACE 23

 .CLKB(iSCLK), // Read Clock 24

 .OEB(vdd), // Output enable 25

 .MEB(imem_re), // Read enable 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 511 of 611

 Page 41 of 84
Ex. 2113 - export_buffers.v

 .ADRB0(iread_addr[0]), .ADRB1(iread_addr[1]), .ADRB2(iread_addr[2]), 1
.ADRB3(iread_addr[3]), // Read Address 2

 .ADRB4(iread_addr[4]), .ADRB5(iread_addr[5]), .ADRB6(iread_addr[6]), // Read 3
Address 4

 .QB0(buff4_out[0]), .QB1(buff4_out[1]), .QB2(buff4_out[2]), .QB3(buff4_out[3]), // Read 5
Data 6

 .QB4(buff4_out[4]), .QB5(buff4_out[5]), .QB6(buff4_out[6]), .QB7(buff4_out[7]), // Read 7
Data 8

 .QB8(buff4_out[8]), .QB9(buff4_out[9]), .QB10(buff4_out[10]), .QB11(buff4_out[11]), // 9
Read Data 10

 .QB12(buff4_out[12]), .QB13(buff4_out[13]), .QB14(buff4_out[14]), 11
.QB15(buff4_out[15]), // Read Data 12

 .QB16(buff4_out[16]), .QB17(buff4_out[17]), .QB18(buff4_out[18]), 13
.QB19(buff4_out[19]), // Read Data 14

 .QB20(buff4_out[20]), .QB21(buff4_out[21]), .QB22(buff4_out[22]), 15
.QB23(buff4_out[23]), // Read Data 16

 .QB24(buff4_out[24]), .QB25(buff4_out[25]), .QB26(buff4_out[26]), 17
.QB27(buff4_out[27]), // Read Data 18

 .QB28(buff4_out[28]), .QB29(buff4_out[29]), .QB30(buff4_out[30]), 19
.QB31(buff4_out[31]), // Read Data 20

 .QB32(buff4_out[32]), .QB33(buff4_out[33]), .QB34(buff4_out[34]), 21
.QB35(buff4_out[35]), // Read Data 22

 .QB36(buff4_out[36]), .QB37(buff4_out[37]), .QB38(buff4_out[38]), 23
.QB39(buff4_out[39]), // Read Data 24

 .QB40(buff4_out[40]), .QB41(buff4_out[41]), .QB42(buff4_out[42]), 25
.QB43(buff4_out[43]), // Read Data 26

 .QB44(buff4_out[44]), .QB45(buff4_out[45]), .QB46(buff4_out[46]), 27
.QB47(buff4_out[47]), // Read Data 28

 .QB48(buff4_out[48]), .QB49(buff4_out[49]), .QB50(buff4_out[50]), 29
.QB51(buff4_out[51]), // Read Data 30

 .QB52(buff4_out[52]), .QB53(buff4_out[53]), .QB54(buff4_out[54]), 31
.QB55(buff4_out[55]), // Read Data 32

 Page 42 of 84
Ex. 2113 - export_buffers.v

 .QB56(buff4_out[56]), .QB57(buff4_out[57]), .QB58(buff4_out[58]), 1
.QB59(buff4_out[59]), // Read Data 2

 .QB60(buff4_out[60]), .QB61(buff4_out[61]), .QB62(buff4_out[62]), 3
.QB63(buff4_out[63]), // Read Data 4

 .QB64(buff4_out[64]), .QB65(buff4_out[65]), .QB66(buff4_out[66]), 5
.QB67(buff4_out[67]), // Read Data 6

 .QB68(buff4_out[68]), .QB69(buff4_out[69]), .QB70(buff4_out[70]), 7
.QB71(buff4_out[71]), // Read Data 8

 .QB72(buff4_out[72]), .QB73(buff4_out[73]), .QB74(buff4_out[74]), 9
.QB75(buff4_out[75]), // Read Data 10

 .QB76(buff4_out[76]), .QB77(buff4_out[77]), .QB78(buff4_out[78]), 11
.QB79(buff4_out[79]), // Read Data 12

 .QB80(buff4_out[80]), .QB81(buff4_out[81]), .QB82(buff4_out[82]), 13
.QB83(buff4_out[83]), // Read Data 14

 .QB84(buff4_out[84]), .QB85(buff4_out[85]), .QB86(buff4_out[86]), 15
.QB87(buff4_out[87]), // Read Data 16

 .QB88(buff4_out[88]), .QB89(buff4_out[89]), .QB90(buff4_out[90]), 17
.QB91(buff4_out[91]), // Read Data 18

 .QB92(buff4_out[92]), .QB93(buff4_out[93]), .QB94(buff4_out[94]), 19
.QB95(buff4_out[95]), // Read Data 20

 .QB96(buff4_out[96]), .QB97(buff4_out[97]), .QB98(buff4_out[98]), 21
.QB99(buff4_out[99]), // Read Data 22

 .QB100(buff4_out[100]), .QB101(buff4_out[101]), .QB102(buff4_out[102]), 23
.QB103(buff4_out[103]), // Read Data 24

 .QB104(buff4_out[104]), .QB105(buff4_out[105]), .QB106(buff4_out[106]), 25
.QB107(buff4_out[107]), // Read Data 26

 .QB108(buff4_out[108]), .QB109(buff4_out[109]), .QB110(buff4_out[110]), 27
.QB111(buff4_out[111]), // Read Data 28

 .QB112(buff4_out[112]), .QB113(buff4_out[113]), .QB114(buff4_out[114]), 29
.QB115(buff4_out[115]), // Read Data 30

 .QB116(buff4_out[116]), .QB117(buff4_out[117]), .QB118(buff4_out[118]), 31
.QB119(buff4_out[119]), // Read Data 32

 Page 43 of 84
Ex. 2113 - export_buffers.v

 .QB120(buff4_out[120]), .QB121(buff4_out[121]), .QB122(buff4_out[122]), 1
.QB123(buff4_out[123]), // Read Data 2

 .QB124(buff4_out[124]), .QB125(buff4_out[125]), .QB126(buff4_out[126]), 3
.QB127(buff4_out[127]), // Read Data 4

 // WRITE INTERFACE 5

 .CLKA(iSCLK), // Write Clock 6

 .WEA(imem_wen), // Write enable 7

 .MEA(vdd), // Memory enable 8

 .ADRA0(iwrite_addr[0]), .ADRA1(iwrite_addr[1]), .ADRA2(iwrite_addr[2]), 9
.ADRA3(iwrite_addr[3]), // Write Address 10

 .ADRA4(iwrite_addr[4]), .ADRA5(iwrite_addr[5]), .ADRA6(iwrite_addr[6]), // Write 11
Address 12

 .DA0(ipixel_data4[0]), .DA1(ipixel_data4[1]), .DA2(ipixel_data4[2]), 13
.DA3(ipixel_data4[3]), // Write Data 14

 .DA4(ipixel_data4[4]), .DA5(ipixel_data4[5]), .DA6(ipixel_data4[6]), 15
.DA7(ipixel_data4[7]), // Write Data 16

 .DA8(ipixel_data4[8]), .DA9(ipixel_data4[9]), .DA10(ipixel_data4[10]), 17
.DA11(ipixel_data4[11]), // Write Data 18

 .DA12(ipixel_data4[12]), .DA13(ipixel_data4[13]), .DA14(ipixel_data4[14]), 19
.DA15(ipixel_data4[15]), // Write Data 20

 .DA16(ipixel_data4[16]), .DA17(ipixel_data4[17]), .DA18(ipixel_data4[18]), 21
.DA19(ipixel_data4[19]), // Write Data 22

 .DA20(ipixel_data4[20]), .DA21(ipixel_data4[21]), .DA22(ipixel_data4[22]), 23
.DA23(ipixel_data4[23]), // Write Data 24

 .DA24(ipixel_data4[24]), .DA25(ipixel_data4[25]), .DA26(ipixel_data4[26]), 25
.DA27(ipixel_data4[27]), // Write Data 26

 .DA28(ipixel_data4[28]), .DA29(ipixel_data4[29]), .DA30(ipixel_data4[30]), 27
.DA31(ipixel_data4[31]), // Write Data 28

 .DA32(ipixel_data4[32]), .DA33(ipixel_data4[33]), .DA34(ipixel_data4[34]), 29
.DA35(ipixel_data4[35]), // Write Data 30

 .DA36(ipixel_data4[36]), .DA37(ipixel_data4[37]), .DA38(ipixel_data4[38]), 31
.DA39(ipixel_data4[39]), // Write Data 32

 Page 44 of 84
Ex. 2113 - export_buffers.v

 .DA40(ipixel_data4[40]), .DA41(ipixel_data4[41]), .DA42(ipixel_data4[42]), 1
.DA43(ipixel_data4[43]), // Write Data 2

 .DA44(ipixel_data4[44]), .DA45(ipixel_data4[45]), .DA46(ipixel_data4[46]), 3
.DA47(ipixel_data4[47]), // Write Data 4

 .DA48(ipixel_data4[48]), .DA49(ipixel_data4[49]), .DA50(ipixel_data4[50]), 5
.DA51(ipixel_data4[51]), // Write Data 6

 .DA52(ipixel_data4[52]), .DA53(ipixel_data4[53]), .DA54(ipixel_data4[54]), 7
.DA55(ipixel_data4[55]), // Write Data 8

 .DA56(ipixel_data4[56]), .DA57(ipixel_data4[57]), .DA58(ipixel_data4[58]), 9
.DA59(ipixel_data4[59]), // Write Data 10

 .DA60(ipixel_data4[60]), .DA61(ipixel_data4[61]), .DA62(ipixel_data4[62]), 11
.DA63(ipixel_data4[63]), // Write Data 12

 .DA64(ipixel_data4[64]), .DA65(ipixel_data4[65]), .DA66(ipixel_data4[66]), 13
.DA67(ipixel_data4[67]), // Write Data 14

 .DA68(ipixel_data4[68]), .DA69(ipixel_data4[69]), .DA70(ipixel_data4[70]), 15
.DA71(ipixel_data4[71]), // Write Data 16

 .DA72(ipixel_data4[72]), .DA73(ipixel_data4[73]), .DA74(ipixel_data4[74]), 17
.DA75(ipixel_data4[75]), // Write Data 18

 .DA76(ipixel_data4[76]), .DA77(ipixel_data4[77]), .DA78(ipixel_data4[78]), 19
.DA79(ipixel_data4[79]), // Write Data 20

 .DA80(ipixel_data4[80]), .DA81(ipixel_data4[81]), .DA82(ipixel_data4[82]), 21
.DA83(ipixel_data4[83]), // Write Data 22

 .DA84(ipixel_data4[84]), .DA85(ipixel_data4[85]), .DA86(ipixel_data4[86]), 23
.DA87(ipixel_data4[87]), // Write Data 24

 .DA88(ipixel_data4[88]), .DA89(ipixel_data4[89]), .DA90(ipixel_data4[90]), 25
.DA91(ipixel_data4[91]), // Write Data 26

 .DA92(ipixel_data4[92]), .DA93(ipixel_data4[93]), .DA94(ipixel_data4[94]), 27
.DA95(ipixel_data4[95]), // Write Data 28

 .DA96(ipixel_data4[96]), .DA97(ipixel_data4[97]), .DA98(ipixel_data4[98]), 29
.DA99(ipixel_data4[99]), // Write Data 30

 .DA100(ipixel_data4[100]), .DA101(ipixel_data4[101]), .DA102(ipixel_data4[102]), 31
.DA103(ipixel_data4[103]), // Write Data 32

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 512 of 611

 Page 45 of 84
Ex. 2113 - export_buffers.v

 .DA104(ipixel_data4[104]), .DA105(ipixel_data4[105]), .DA106(ipixel_data4[106]), 1
.DA107(ipixel_data4[107]), // Write Data 2

 .DA108(ipixel_data4[108]), .DA109(ipixel_data4[109]), .DA110(ipixel_data4[110]), 3
.DA111(ipixel_data4[111]), // Write Data 4

 .DA112(ipixel_data4[112]), .DA113(ipixel_data4[113]), .DA114(ipixel_data4[114]), 5
.DA115(ipixel_data4[115]), // Write Data 6

 .DA116(ipixel_data4[116]), .DA117(ipixel_data4[117]), .DA118(ipixel_data4[118]), 7
.DA119(ipixel_data4[119]), // Write Data 8

 .DA120(ipixel_data4[120]), .DA121(ipixel_data4[121]), .DA122(ipixel_data4[122]), 9
.DA123(ipixel_data4[123]), // Write Data 10

 .DA124(ipixel_data4[124]), .DA125(ipixel_data4[125]), .DA126(ipixel_data4[126]), 11
.DA127(ipixel_data4[127]), // Write Data 12

 // WRITE TEST SIGNALS 13

 .BISTEA(vss), 14

 .TWEA(vss), // Test write enable 15

 .TMEA(vss), // Test memory enable 16

 .TADRA0(iwrite_addr[0]), .TADRA1(iwrite_addr[1]), .TADRA2(iwrite_addr[2]), 17
.TADRA3(iwrite_addr[3]), // Write Test Address 18

 .TADRA4(iwrite_addr[4]), .TADRA5(iwrite_addr[5]), .TADRA6(iwrite_addr[6]), // Write 19
Test Address 20

 .TDA0(ipixel_data4[0]), .TDA1(ipixel_data4[1]), .TDA2(ipixel_data4[2]), 21
.TDA3(ipixel_data4[3]), // Write Test Data 22

 .TDA4(ipixel_data4[4]), .TDA5(ipixel_data4[5]), .TDA6(ipixel_data4[6]), 23
.TDA7(ipixel_data4[7]), // Write Test Data 24

 .TDA8(ipixel_data4[8]), .TDA9(ipixel_data4[9]), .TDA10(ipixel_data4[10]), 25
.TDA11(ipixel_data4[11]), // Write Test Data 26

 .TDA12(ipixel_data4[12]), .TDA13(ipixel_data4[13]), .TDA14(ipixel_data4[14]), 27
.TDA15(ipixel_data4[15]), // Write Test Data 28

 .TDA16(ipixel_data4[16]), .TDA17(ipixel_data4[17]), .TDA18(ipixel_data4[18]), 29
.TDA19(ipixel_data4[19]), // Write Test Data 30

 .TDA20(ipixel_data4[20]), .TDA21(ipixel_data4[21]), .TDA22(ipixel_data4[22]), 31
.TDA23(ipixel_data4[23]), // Write Test Data 32

 Page 46 of 84
Ex. 2113 - export_buffers.v

 .TDA24(ipixel_data4[24]), .TDA25(ipixel_data4[25]), .TDA26(ipixel_data4[26]), 1
.TDA27(ipixel_data4[27]), // Write Test Data 2

 .TDA28(ipixel_data4[28]), .TDA29(ipixel_data4[29]), .TDA30(ipixel_data4[30]), 3
.TDA31(ipixel_data4[31]), // Write Test Data 4

 .TDA32(ipixel_data4[32]), .TDA33(ipixel_data4[33]), .TDA34(ipixel_data4[34]), 5
.TDA35(ipixel_data4[35]), // Write Test Data 6

 .TDA36(ipixel_data4[36]), .TDA37(ipixel_data4[37]), .TDA38(ipixel_data4[38]), 7
.TDA39(ipixel_data4[39]), // Write Test Data 8

 .TDA40(ipixel_data4[40]), .TDA41(ipixel_data4[41]), .TDA42(ipixel_data4[42]), 9
.TDA43(ipixel_data4[43]), // Write Test Data 10

 .TDA44(ipixel_data4[44]), .TDA45(ipixel_data4[45]), .TDA46(ipixel_data4[46]), 11
.TDA47(ipixel_data4[47]), // Write Test Data 12

 .TDA48(ipixel_data4[48]), .TDA49(ipixel_data4[49]), .TDA50(ipixel_data4[50]), 13
.TDA51(ipixel_data4[51]), // Write Test Data 14

 .TDA52(ipixel_data4[52]), .TDA53(ipixel_data4[53]), .TDA54(ipixel_data4[54]), 15
.TDA55(ipixel_data4[55]), // Write Test Data 16

 .TDA56(ipixel_data4[56]), .TDA57(ipixel_data4[57]), .TDA58(ipixel_data4[58]), 17
.TDA59(ipixel_data4[59]), // Write Test Data 18

 .TDA60(ipixel_data4[60]), .TDA61(ipixel_data4[61]), .TDA62(ipixel_data4[62]), 19
.TDA63(ipixel_data4[63]), // Write Test Data 20

 .TDA64(ipixel_data4[64]), .TDA65(ipixel_data4[65]), .TDA66(ipixel_data4[66]), 21
.TDA67(ipixel_data4[67]), // Write Test Data 22

 .TDA68(ipixel_data4[68]), .TDA69(ipixel_data4[69]), .TDA70(ipixel_data4[70]), 23
.TDA71(ipixel_data4[71]), // Write Test Data 24

 .TDA72(ipixel_data4[72]), .TDA73(ipixel_data4[73]), .TDA74(ipixel_data4[74]), 25
.TDA75(ipixel_data4[75]), // Write Test Data 26

 .TDA76(ipixel_data4[76]), .TDA77(ipixel_data4[77]), .TDA78(ipixel_data4[78]), 27
.TDA79(ipixel_data4[79]), // Write Test Data 28

 .TDA80(ipixel_data4[80]), .TDA81(ipixel_data4[81]), .TDA82(ipixel_data4[82]), 29
.TDA83(ipixel_data4[83]), // Write Test Data 30

 .TDA84(ipixel_data4[84]), .TDA85(ipixel_data4[85]), .TDA86(ipixel_data4[86]), 31
.TDA87(ipixel_data4[87]), // Write Test Data 32

 Page 47 of 84
Ex. 2113 - export_buffers.v

 .TDA88(ipixel_data4[88]), .TDA89(ipixel_data4[89]), .TDA90(ipixel_data4[90]), 1
.TDA91(ipixel_data4[91]), // Write Test Data 2

 .TDA92(ipixel_data4[92]), .TDA93(ipixel_data4[93]), .TDA94(ipixel_data4[94]), 3
.TDA95(ipixel_data4[95]), // Write Test Data 4

 .TDA96(ipixel_data4[96]), .TDA97(ipixel_data4[97]), .TDA98(ipixel_data4[98]), 5
.TDA99(ipixel_data4[99]), // Write Test Data 6

 .TDA100(ipixel_data4[100]), .TDA101(ipixel_data4[101]), .TDA102(ipixel_data4[102]), 7
.TDA103(ipixel_data4[103]), // Write Test Data 8

 .TDA104(ipixel_data4[104]), .TDA105(ipixel_data4[105]), .TDA106(ipixel_data4[106]), 9
.TDA107(ipixel_data4[107]), // Write Test Data 10

 .TDA108(ipixel_data4[108]), .TDA109(ipixel_data4[109]), .TDA110(ipixel_data4[110]), 11
.TDA111(ipixel_data4[111]), // Write Test Data 12

 .TDA112(ipixel_data4[112]), .TDA113(ipixel_data4[113]), .TDA114(ipixel_data4[114]), 13
.TDA115(ipixel_data4[115]), // Write Test Data 14

 .TDA116(ipixel_data4[116]), .TDA117(ipixel_data4[117]), .TDA118(ipixel_data4[118]), 15
.TDA119(ipixel_data4[119]), // Write Test Data 16

 .TDA120(ipixel_data4[120]), .TDA121(ipixel_data4[121]), .TDA122(ipixel_data4[122]), 17
.TDA123(ipixel_data4[123]), // Write Test Data 18

 .TDA124(ipixel_data4[124]), .TDA125(ipixel_data4[125]), .TDA126(ipixel_data4[126]), 19
.TDA127(ipixel_data4[127]), // Write Test Data 20

 //READ TEST SIGNALS 21

 .BISTEB(vss), 22

 .TOEB(vss), 23

 .TMEB(vss), 24

 .TADRB0(iread_addr[0]), .TADRB1(iread_addr[1]), .TADRB2(iread_addr[2]), 25
.TADRB3(iread_addr[3]), // Read Test Address 26

 .TADRB4(iread_addr[4]), .TADRB5(iread_addr[5]), .TADRB6(iread_addr[6]), // Read 27
Test Address 28

 .AWTB(vss) 29

); 30

 31

 Page 48 of 84
Ex. 2113 - export_buffers.v

`endif // !`ifdef USE_BEHAVE_MEM 1

 2

`ifdef USE_BEHAVE_MEM 3

 dum_mem_p2 #(7,128) bank1_buff1(.iRCLK(sclk), 4

 .iWCLK(sclk), 5

 .iMER(q0_mem_re), 6

 .iMEW(imem_wen), 7

 .iWEN(imem_wew), 8

 .iRADR(q0_read_addr[6:0]), 9

 .iWADR(iwrite_addr), 10

 .iD(ipixel_data5), 11

 .oQ(buff5_out) 12

); 13

`else // !`ifdef USE_BEHAVE_MEM 14

 rfsd2_80x128cm2sw0 ubank1_buff1 15

 (/*VRGIO rfsd2_80x128cm2sw0 ipixel_data5 buff5_out iwrite_addr q0_read_addr 16
imem_wen q0_mem_re null*/ 17

 // READ INTERFACE 18

 .CLKB(iSCLK), // Read Clock 19

 .OEB(vdd), // Output enable 20

 .MEB(q0_mem_re), // Read enable 21

 .ADRB0(q0_read_addr[0]), .ADRB1(q0_read_addr[1]), .ADRB2(q0_read_addr[2]), 22
.ADRB3(q0_read_addr[3]), // Read Address 23

 .ADRB4(q0_read_addr[4]), .ADRB5(q0_read_addr[5]), .ADRB6(q0_read_addr[6]), // 24
Read Address 25

 .QB0(buff5_out[0]), .QB1(buff5_out[1]), .QB2(buff5_out[2]), .QB3(buff5_out[3]), // Read 26
Data 27

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 513 of 611

 Page 49 of 84
Ex. 2113 - export_buffers.v

 .QB4(buff5_out[4]), .QB5(buff5_out[5]), .QB6(buff5_out[6]), .QB7(buff5_out[7]), // Read 1
Data 2

 .QB8(buff5_out[8]), .QB9(buff5_out[9]), .QB10(buff5_out[10]), .QB11(buff5_out[11]), // 3
Read Data 4

 .QB12(buff5_out[12]), .QB13(buff5_out[13]), .QB14(buff5_out[14]), 5
.QB15(buff5_out[15]), // Read Data 6

 .QB16(buff5_out[16]), .QB17(buff5_out[17]), .QB18(buff5_out[18]), 7
.QB19(buff5_out[19]), // Read Data 8

 .QB20(buff5_out[20]), .QB21(buff5_out[21]), .QB22(buff5_out[22]), 9
.QB23(buff5_out[23]), // Read Data 10

 .QB24(buff5_out[24]), .QB25(buff5_out[25]), .QB26(buff5_out[26]), 11
.QB27(buff5_out[27]), // Read Data 12

 .QB28(buff5_out[28]), .QB29(buff5_out[29]), .QB30(buff5_out[30]), 13
.QB31(buff5_out[31]), // Read Data 14

 .QB32(buff5_out[32]), .QB33(buff5_out[33]), .QB34(buff5_out[34]), 15
.QB35(buff5_out[35]), // Read Data 16

 .QB36(buff5_out[36]), .QB37(buff5_out[37]), .QB38(buff5_out[38]), 17
.QB39(buff5_out[39]), // Read Data 18

 .QB40(buff5_out[40]), .QB41(buff5_out[41]), .QB42(buff5_out[42]), 19
.QB43(buff5_out[43]), // Read Data 20

 .QB44(buff5_out[44]), .QB45(buff5_out[45]), .QB46(buff5_out[46]), 21
.QB47(buff5_out[47]), // Read Data 22

 .QB48(buff5_out[48]), .QB49(buff5_out[49]), .QB50(buff5_out[50]), 23
.QB51(buff5_out[51]), // Read Data 24

 .QB52(buff5_out[52]), .QB53(buff5_out[53]), .QB54(buff5_out[54]), 25
.QB55(buff5_out[55]), // Read Data 26

 .QB56(buff5_out[56]), .QB57(buff5_out[57]), .QB58(buff5_out[58]), 27
.QB59(buff5_out[59]), // Read Data 28

 .QB60(buff5_out[60]), .QB61(buff5_out[61]), .QB62(buff5_out[62]), 29
.QB63(buff5_out[63]), // Read Data 30

 .QB64(buff5_out[64]), .QB65(buff5_out[65]), .QB66(buff5_out[66]), 31
.QB67(buff5_out[67]), // Read Data 32

 Page 50 of 84
Ex. 2113 - export_buffers.v

 .QB68(buff5_out[68]), .QB69(buff5_out[69]), .QB70(buff5_out[70]), 1
.QB71(buff5_out[71]), // Read Data 2

 .QB72(buff5_out[72]), .QB73(buff5_out[73]), .QB74(buff5_out[74]), 3
.QB75(buff5_out[75]), // Read Data 4

 .QB76(buff5_out[76]), .QB77(buff5_out[77]), .QB78(buff5_out[78]), 5
.QB79(buff5_out[79]), // Read Data 6

 .QB80(buff5_out[80]), .QB81(buff5_out[81]), .QB82(buff5_out[82]), 7
.QB83(buff5_out[83]), // Read Data 8

 .QB84(buff5_out[84]), .QB85(buff5_out[85]), .QB86(buff5_out[86]), 9
.QB87(buff5_out[87]), // Read Data 10

 .QB88(buff5_out[88]), .QB89(buff5_out[89]), .QB90(buff5_out[90]), 11
.QB91(buff5_out[91]), // Read Data 12

 .QB92(buff5_out[92]), .QB93(buff5_out[93]), .QB94(buff5_out[94]), 13
.QB95(buff5_out[95]), // Read Data 14

 .QB96(buff5_out[96]), .QB97(buff5_out[97]), .QB98(buff5_out[98]), 15
.QB99(buff5_out[99]), // Read Data 16

 .QB100(buff5_out[100]), .QB101(buff5_out[101]), .QB102(buff5_out[102]), 17
.QB103(buff5_out[103]), // Read Data 18

 .QB104(buff5_out[104]), .QB105(buff5_out[105]), .QB106(buff5_out[106]), 19
.QB107(buff5_out[107]), // Read Data 20

 .QB108(buff5_out[108]), .QB109(buff5_out[109]), .QB110(buff5_out[110]), 21
.QB111(buff5_out[111]), // Read Data 22

 .QB112(buff5_out[112]), .QB113(buff5_out[113]), .QB114(buff5_out[114]), 23
.QB115(buff5_out[115]), // Read Data 24

 .QB116(buff5_out[116]), .QB117(buff5_out[117]), .QB118(buff5_out[118]), 25
.QB119(buff5_out[119]), // Read Data 26

 .QB120(buff5_out[120]), .QB121(buff5_out[121]), .QB122(buff5_out[122]), 27
.QB123(buff5_out[123]), // Read Data 28

 .QB124(buff5_out[124]), .QB125(buff5_out[125]), .QB126(buff5_out[126]), 29
.QB127(buff5_out[127]), // Read Data 30

 // WRITE INTERFACE 31

 .CLKA(iSCLK), // Write Clock 32

 Page 51 of 84
Ex. 2113 - export_buffers.v

 .WEA(imem_wen), // Write enable 1

 .MEA(vdd), // Memory enable 2

 .ADRA0(iwrite_addr[0]), .ADRA1(iwrite_addr[1]), .ADRA2(iwrite_addr[2]), 3
.ADRA3(iwrite_addr[3]), // Write Address 4

 .ADRA4(iwrite_addr[4]), .ADRA5(iwrite_addr[5]), .ADRA6(iwrite_addr[6]), // Write 5
Address 6

 .DA0(ipixel_data5[0]), .DA1(ipixel_data5[1]), .DA2(ipixel_data5[2]), 7
.DA3(ipixel_data5[3]), // Write Data 8

 .DA4(ipixel_data5[4]), .DA5(ipixel_data5[5]), .DA6(ipixel_data5[6]), 9
.DA7(ipixel_data5[7]), // Write Data 10

 .DA8(ipixel_data5[8]), .DA9(ipixel_data5[9]), .DA10(ipixel_data5[10]), 11
.DA11(ipixel_data5[11]), // Write Data 12

 .DA12(ipixel_data5[12]), .DA13(ipixel_data5[13]), .DA14(ipixel_data5[14]), 13
.DA15(ipixel_data5[15]), // Write Data 14

 .DA16(ipixel_data5[16]), .DA17(ipixel_data5[17]), .DA18(ipixel_data5[18]), 15
.DA19(ipixel_data5[19]), // Write Data 16

 .DA20(ipixel_data5[20]), .DA21(ipixel_data5[21]), .DA22(ipixel_data5[22]), 17
.DA23(ipixel_data5[23]), // Write Data 18

 .DA24(ipixel_data5[24]), .DA25(ipixel_data5[25]), .DA26(ipixel_data5[26]), 19
.DA27(ipixel_data5[27]), // Write Data 20

 .DA28(ipixel_data5[28]), .DA29(ipixel_data5[29]), .DA30(ipixel_data5[30]), 21
.DA31(ipixel_data5[31]), // Write Data 22

 .DA32(ipixel_data5[32]), .DA33(ipixel_data5[33]), .DA34(ipixel_data5[34]), 23
.DA35(ipixel_data5[35]), // Write Data 24

 .DA36(ipixel_data5[36]), .DA37(ipixel_data5[37]), .DA38(ipixel_data5[38]), 25
.DA39(ipixel_data5[39]), // Write Data 26

 .DA40(ipixel_data5[40]), .DA41(ipixel_data5[41]), .DA42(ipixel_data5[42]), 27
.DA43(ipixel_data5[43]), // Write Data 28

 .DA44(ipixel_data5[44]), .DA45(ipixel_data5[45]), .DA46(ipixel_data5[46]), 29
.DA47(ipixel_data5[47]), // Write Data 30

 .DA48(ipixel_data5[48]), .DA49(ipixel_data5[49]), .DA50(ipixel_data5[50]), 31
.DA51(ipixel_data5[51]), // Write Data 32

 Page 52 of 84
Ex. 2113 - export_buffers.v

 .DA52(ipixel_data5[52]), .DA53(ipixel_data5[53]), .DA54(ipixel_data5[54]), 1
.DA55(ipixel_data5[55]), // Write Data 2

 .DA56(ipixel_data5[56]), .DA57(ipixel_data5[57]), .DA58(ipixel_data5[58]), 3
.DA59(ipixel_data5[59]), // Write Data 4

 .DA60(ipixel_data5[60]), .DA61(ipixel_data5[61]), .DA62(ipixel_data5[62]), 5
.DA63(ipixel_data5[63]), // Write Data 6

 .DA64(ipixel_data5[64]), .DA65(ipixel_data5[65]), .DA66(ipixel_data5[66]), 7
.DA67(ipixel_data5[67]), // Write Data 8

 .DA68(ipixel_data5[68]), .DA69(ipixel_data5[69]), .DA70(ipixel_data5[70]), 9
.DA71(ipixel_data5[71]), // Write Data 10

 .DA72(ipixel_data5[72]), .DA73(ipixel_data5[73]), .DA74(ipixel_data5[74]), 11
.DA75(ipixel_data5[75]), // Write Data 12

 .DA76(ipixel_data5[76]), .DA77(ipixel_data5[77]), .DA78(ipixel_data5[78]), 13
.DA79(ipixel_data5[79]), // Write Data 14

 .DA80(ipixel_data5[80]), .DA81(ipixel_data5[81]), .DA82(ipixel_data5[82]), 15
.DA83(ipixel_data5[83]), // Write Data 16

 .DA84(ipixel_data5[84]), .DA85(ipixel_data5[85]), .DA86(ipixel_data5[86]), 17
.DA87(ipixel_data5[87]), // Write Data 18

 .DA88(ipixel_data5[88]), .DA89(ipixel_data5[89]), .DA90(ipixel_data5[90]), 19
.DA91(ipixel_data5[91]), // Write Data 20

 .DA92(ipixel_data5[92]), .DA93(ipixel_data5[93]), .DA94(ipixel_data5[94]), 21
.DA95(ipixel_data5[95]), // Write Data 22

 .DA96(ipixel_data5[96]), .DA97(ipixel_data5[97]), .DA98(ipixel_data5[98]), 23
.DA99(ipixel_data5[99]), // Write Data 24

 .DA100(ipixel_data5[100]), .DA101(ipixel_data5[101]), .DA102(ipixel_data5[102]), 25
.DA103(ipixel_data5[103]), // Write Data 26

 .DA104(ipixel_data5[104]), .DA105(ipixel_data5[105]), .DA106(ipixel_data5[106]), 27
.DA107(ipixel_data5[107]), // Write Data 28

 .DA108(ipixel_data5[108]), .DA109(ipixel_data5[109]), .DA110(ipixel_data5[110]), 29
.DA111(ipixel_data5[111]), // Write Data 30

 .DA112(ipixel_data5[112]), .DA113(ipixel_data5[113]), .DA114(ipixel_data5[114]), 31
.DA115(ipixel_data5[115]), // Write Data 32

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 514 of 611

 Page 53 of 84
Ex. 2113 - export_buffers.v

 .DA116(ipixel_data5[116]), .DA117(ipixel_data5[117]), .DA118(ipixel_data5[118]), 1
.DA119(ipixel_data5[119]), // Write Data 2

 .DA120(ipixel_data5[120]), .DA121(ipixel_data5[121]), .DA122(ipixel_data5[122]), 3
.DA123(ipixel_data5[123]), // Write Data 4

 .DA124(ipixel_data5[124]), .DA125(ipixel_data5[125]), .DA126(ipixel_data5[126]), 5
.DA127(ipixel_data5[127]), // Write Data 6

 // WRITE TEST SIGNALS 7

 .BISTEA(vss), 8

 .TWEA(vss), // Test write enable 9

 .TMEA(vss), // Test memory enable 10

 .TADRA0(iwrite_addr[0]), .TADRA1(iwrite_addr[1]), .TADRA2(iwrite_addr[2]), 11
.TADRA3(iwrite_addr[3]), // Write Test Address 12

 .TADRA4(iwrite_addr[4]), .TADRA5(iwrite_addr[5]), .TADRA6(iwrite_addr[6]), // Write 13
Test Address 14

 .TDA0(ipixel_data5[0]), .TDA1(ipixel_data5[1]), .TDA2(ipixel_data5[2]), 15
.TDA3(ipixel_data5[3]), // Write Test Data 16

 .TDA4(ipixel_data5[4]), .TDA5(ipixel_data5[5]), .TDA6(ipixel_data5[6]), 17
.TDA7(ipixel_data5[7]), // Write Test Data 18

 .TDA8(ipixel_data5[8]), .TDA9(ipixel_data5[9]), .TDA10(ipixel_data5[10]), 19
.TDA11(ipixel_data5[11]), // Write Test Data 20

 .TDA12(ipixel_data5[12]), .TDA13(ipixel_data5[13]), .TDA14(ipixel_data5[14]), 21
.TDA15(ipixel_data5[15]), // Write Test Data 22

 .TDA16(ipixel_data5[16]), .TDA17(ipixel_data5[17]), .TDA18(ipixel_data5[18]), 23
.TDA19(ipixel_data5[19]), // Write Test Data 24

 .TDA20(ipixel_data5[20]), .TDA21(ipixel_data5[21]), .TDA22(ipixel_data5[22]), 25
.TDA23(ipixel_data5[23]), // Write Test Data 26

 .TDA24(ipixel_data5[24]), .TDA25(ipixel_data5[25]), .TDA26(ipixel_data5[26]), 27
.TDA27(ipixel_data5[27]), // Write Test Data 28

 .TDA28(ipixel_data5[28]), .TDA29(ipixel_data5[29]), .TDA30(ipixel_data5[30]), 29
.TDA31(ipixel_data5[31]), // Write Test Data 30

 .TDA32(ipixel_data5[32]), .TDA33(ipixel_data5[33]), .TDA34(ipixel_data5[34]), 31
.TDA35(ipixel_data5[35]), // Write Test Data 32

 Page 54 of 84
Ex. 2113 - export_buffers.v

 .TDA36(ipixel_data5[36]), .TDA37(ipixel_data5[37]), .TDA38(ipixel_data5[38]), 1
.TDA39(ipixel_data5[39]), // Write Test Data 2

 .TDA40(ipixel_data5[40]), .TDA41(ipixel_data5[41]), .TDA42(ipixel_data5[42]), 3
.TDA43(ipixel_data5[43]), // Write Test Data 4

 .TDA44(ipixel_data5[44]), .TDA45(ipixel_data5[45]), .TDA46(ipixel_data5[46]), 5
.TDA47(ipixel_data5[47]), // Write Test Data 6

 .TDA48(ipixel_data5[48]), .TDA49(ipixel_data5[49]), .TDA50(ipixel_data5[50]), 7
.TDA51(ipixel_data5[51]), // Write Test Data 8

 .TDA52(ipixel_data5[52]), .TDA53(ipixel_data5[53]), .TDA54(ipixel_data5[54]), 9
.TDA55(ipixel_data5[55]), // Write Test Data 10

 .TDA56(ipixel_data5[56]), .TDA57(ipixel_data5[57]), .TDA58(ipixel_data5[58]), 11
.TDA59(ipixel_data5[59]), // Write Test Data 12

 .TDA60(ipixel_data5[60]), .TDA61(ipixel_data5[61]), .TDA62(ipixel_data5[62]), 13
.TDA63(ipixel_data5[63]), // Write Test Data 14

 .TDA64(ipixel_data5[64]), .TDA65(ipixel_data5[65]), .TDA66(ipixel_data5[66]), 15
.TDA67(ipixel_data5[67]), // Write Test Data 16

 .TDA68(ipixel_data5[68]), .TDA69(ipixel_data5[69]), .TDA70(ipixel_data5[70]), 17
.TDA71(ipixel_data5[71]), // Write Test Data 18

 .TDA72(ipixel_data5[72]), .TDA73(ipixel_data5[73]), .TDA74(ipixel_data5[74]), 19
.TDA75(ipixel_data5[75]), // Write Test Data 20

 .TDA76(ipixel_data5[76]), .TDA77(ipixel_data5[77]), .TDA78(ipixel_data5[78]), 21
.TDA79(ipixel_data5[79]), // Write Test Data 22

 .TDA80(ipixel_data5[80]), .TDA81(ipixel_data5[81]), .TDA82(ipixel_data5[82]), 23
.TDA83(ipixel_data5[83]), // Write Test Data 24

 .TDA84(ipixel_data5[84]), .TDA85(ipixel_data5[85]), .TDA86(ipixel_data5[86]), 25
.TDA87(ipixel_data5[87]), // Write Test Data 26

 .TDA88(ipixel_data5[88]), .TDA89(ipixel_data5[89]), .TDA90(ipixel_data5[90]), 27
.TDA91(ipixel_data5[91]), // Write Test Data 28

 .TDA92(ipixel_data5[92]), .TDA93(ipixel_data5[93]), .TDA94(ipixel_data5[94]), 29
.TDA95(ipixel_data5[95]), // Write Test Data 30

 .TDA96(ipixel_data5[96]), .TDA97(ipixel_data5[97]), .TDA98(ipixel_data5[98]), 31
.TDA99(ipixel_data5[99]), // Write Test Data 32

 Page 55 of 84
Ex. 2113 - export_buffers.v

 .TDA100(ipixel_data5[100]), .TDA101(ipixel_data5[101]), .TDA102(ipixel_data5[102]), 1
.TDA103(ipixel_data5[103]), // Write Test Data 2

 .TDA104(ipixel_data5[104]), .TDA105(ipixel_data5[105]), .TDA106(ipixel_data5[106]), 3
.TDA107(ipixel_data5[107]), // Write Test Data 4

 .TDA108(ipixel_data5[108]), .TDA109(ipixel_data5[109]), .TDA110(ipixel_data5[110]), 5
.TDA111(ipixel_data5[111]), // Write Test Data 6

 .TDA112(ipixel_data5[112]), .TDA113(ipixel_data5[113]), .TDA114(ipixel_data5[114]), 7
.TDA115(ipixel_data5[115]), // Write Test Data 8

 .TDA116(ipixel_data5[116]), .TDA117(ipixel_data5[117]), .TDA118(ipixel_data5[118]), 9
.TDA119(ipixel_data5[119]), // Write Test Data 10

 .TDA120(ipixel_data5[120]), .TDA121(ipixel_data5[121]), .TDA122(ipixel_data5[122]), 11
.TDA123(ipixel_data5[123]), // Write Test Data 12

 .TDA124(ipixel_data5[124]), .TDA125(ipixel_data5[125]), .TDA126(ipixel_data5[126]), 13
.TDA127(ipixel_data5[127]), // Write Test Data 14

 //READ TEST SIGNALS 15

 .BISTEB(vss), 16

 .TOEB(vss), 17

 .TMEB(vss), 18

 .TADRB0(q0_read_addr[0]), .TADRB1(q0_read_addr[1]), .TADRB2(q0_read_addr[2]), 19
.TADRB3(q0_read_addr[3]), // Read Test Address 20

 .TADRB4(q0_read_addr[4]), .TADRB5(q0_read_addr[5]), .TADRB6(q0_read_addr[6]), // 21
Read Test Address 22

 .AWTB(vss) 23

); 24

 25

`endif // !`ifdef USE_BEHAVE_MEM 26

 27

 28

`ifdef USE_BEHAVE_MEM 29

 Page 56 of 84
Ex. 2113 - export_buffers.v

 dum_mem_p2 #(7,128) bank1_buff2(.iRCLK(sclk), 1

 .iWCLK(sclk), 2

 .iMER(q1_mem_re), 3

 .iMEW(imem_wen), 4

 .iWEN(imem_wew), 5

 .iRADR(q1_read_addr[6:0]), 6

 .iWADR(iwrite_addr), 7

 .iD(ipixel_data6), 8

 .oQ(buff6_out) 9

); 10

`else // !`ifdef USE_BEHAVE_MEM 11

 rfsd2_80x128cm2sw0 ubank1_buff2 12

 (/*VRGIO rfsd2_80x128cm2sw0 ipixel_data6 buff6_out iwrite_addr q1_read_addr 13
imem_wen q1_mem_re null*/ 14

 // READ INTERFACE 15

 .CLKB(iSCLK), // Read Clock 16

 .OEB(vdd), // Output enable 17

 .MEB(q1_mem_re), // Read enable 18

 .ADRB0(q1_read_addr[0]), .ADRB1(q1_read_addr[1]), .ADRB2(q1_read_addr[2]), 19
.ADRB3(q1_read_addr[3]), // Read Address 20

 .ADRB4(q1_read_addr[4]), .ADRB5(q1_read_addr[5]), .ADRB6(q1_read_addr[6]), // 21
Read Address 22

 .QB0(buff6_out[0]), .QB1(buff6_out[1]), .QB2(buff6_out[2]), .QB3(buff6_out[3]), // Read 23
Data 24

 .QB4(buff6_out[4]), .QB5(buff6_out[5]), .QB6(buff6_out[6]), .QB7(buff6_out[7]), // Read 25
Data 26

 .QB8(buff6_out[8]), .QB9(buff6_out[9]), .QB10(buff6_out[10]), .QB11(buff6_out[11]), // 27
Read Data 28

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 515 of 611

 Page 57 of 84
Ex. 2113 - export_buffers.v

 .QB12(buff6_out[12]), .QB13(buff6_out[13]), .QB14(buff6_out[14]), 1
.QB15(buff6_out[15]), // Read Data 2

 .QB16(buff6_out[16]), .QB17(buff6_out[17]), .QB18(buff6_out[18]), 3
.QB19(buff6_out[19]), // Read Data 4

 .QB20(buff6_out[20]), .QB21(buff6_out[21]), .QB22(buff6_out[22]), 5
.QB23(buff6_out[23]), // Read Data 6

 .QB24(buff6_out[24]), .QB25(buff6_out[25]), .QB26(buff6_out[26]), 7
.QB27(buff6_out[27]), // Read Data 8

 .QB28(buff6_out[28]), .QB29(buff6_out[29]), .QB30(buff6_out[30]), 9
.QB31(buff6_out[31]), // Read Data 10

 .QB32(buff6_out[32]), .QB33(buff6_out[33]), .QB34(buff6_out[34]), 11
.QB35(buff6_out[35]), // Read Data 12

 .QB36(buff6_out[36]), .QB37(buff6_out[37]), .QB38(buff6_out[38]), 13
.QB39(buff6_out[39]), // Read Data 14

 .QB40(buff6_out[40]), .QB41(buff6_out[41]), .QB42(buff6_out[42]), 15
.QB43(buff6_out[43]), // Read Data 16

 .QB44(buff6_out[44]), .QB45(buff6_out[45]), .QB46(buff6_out[46]), 17
.QB47(buff6_out[47]), // Read Data 18

 .QB48(buff6_out[48]), .QB49(buff6_out[49]), .QB50(buff6_out[50]), 19
.QB51(buff6_out[51]), // Read Data 20

 .QB52(buff6_out[52]), .QB53(buff6_out[53]), .QB54(buff6_out[54]), 21
.QB55(buff6_out[55]), // Read Data 22

 .QB56(buff6_out[56]), .QB57(buff6_out[57]), .QB58(buff6_out[58]), 23
.QB59(buff6_out[59]), // Read Data 24

 .QB60(buff6_out[60]), .QB61(buff6_out[61]), .QB62(buff6_out[62]), 25
.QB63(buff6_out[63]), // Read Data 26

 .QB64(buff6_out[64]), .QB65(buff6_out[65]), .QB66(buff6_out[66]), 27
.QB67(buff6_out[67]), // Read Data 28

 .QB68(buff6_out[68]), .QB69(buff6_out[69]), .QB70(buff6_out[70]), 29
.QB71(buff6_out[71]), // Read Data 30

 .QB72(buff6_out[72]), .QB73(buff6_out[73]), .QB74(buff6_out[74]), 31
.QB75(buff6_out[75]), // Read Data 32

 Page 58 of 84
Ex. 2113 - export_buffers.v

 .QB76(buff6_out[76]), .QB77(buff6_out[77]), .QB78(buff6_out[78]), 1
.QB79(buff6_out[79]), // Read Data 2

 .QB80(buff6_out[80]), .QB81(buff6_out[81]), .QB82(buff6_out[82]), 3
.QB83(buff6_out[83]), // Read Data 4

 .QB84(buff6_out[84]), .QB85(buff6_out[85]), .QB86(buff6_out[86]), 5
.QB87(buff6_out[87]), // Read Data 6

 .QB88(buff6_out[88]), .QB89(buff6_out[89]), .QB90(buff6_out[90]), 7
.QB91(buff6_out[91]), // Read Data 8

 .QB92(buff6_out[92]), .QB93(buff6_out[93]), .QB94(buff6_out[94]), 9
.QB95(buff6_out[95]), // Read Data 10

 .QB96(buff6_out[96]), .QB97(buff6_out[97]), .QB98(buff6_out[98]), 11
.QB99(buff6_out[99]), // Read Data 12

 .QB100(buff6_out[100]), .QB101(buff6_out[101]), .QB102(buff6_out[102]), 13
.QB103(buff6_out[103]), // Read Data 14

 .QB104(buff6_out[104]), .QB105(buff6_out[105]), .QB106(buff6_out[106]), 15
.QB107(buff6_out[107]), // Read Data 16

 .QB108(buff6_out[108]), .QB109(buff6_out[109]), .QB110(buff6_out[110]), 17
.QB111(buff6_out[111]), // Read Data 18

 .QB112(buff6_out[112]), .QB113(buff6_out[113]), .QB114(buff6_out[114]), 19
.QB115(buff6_out[115]), // Read Data 20

 .QB116(buff6_out[116]), .QB117(buff6_out[117]), .QB118(buff6_out[118]), 21
.QB119(buff6_out[119]), // Read Data 22

 .QB120(buff6_out[120]), .QB121(buff6_out[121]), .QB122(buff6_out[122]), 23
.QB123(buff6_out[123]), // Read Data 24

 .QB124(buff6_out[124]), .QB125(buff6_out[125]), .QB126(buff6_out[126]), 25
.QB127(buff6_out[127]), // Read Data 26

 // WRITE INTERFACE 27

 .CLKA(iSCLK), // Write Clock 28

 .WEA(imem_wen), // Write enable 29

 .MEA(vdd), // Memory enable 30

 .ADRA0(iwrite_addr[0]), .ADRA1(iwrite_addr[1]), .ADRA2(iwrite_addr[2]), 31
.ADRA3(iwrite_addr[3]), // Write Address 32

 Page 59 of 84
Ex. 2113 - export_buffers.v

 .ADRA4(iwrite_addr[4]), .ADRA5(iwrite_addr[5]), .ADRA6(iwrite_addr[6]), // Write 1
Address 2

 .DA0(ipixel_data6[0]), .DA1(ipixel_data6[1]), .DA2(ipixel_data6[2]), 3
.DA3(ipixel_data6[3]), // Write Data 4

 .DA4(ipixel_data6[4]), .DA5(ipixel_data6[5]), .DA6(ipixel_data6[6]), 5
.DA7(ipixel_data6[7]), // Write Data 6

 .DA8(ipixel_data6[8]), .DA9(ipixel_data6[9]), .DA10(ipixel_data6[10]), 7
.DA11(ipixel_data6[11]), // Write Data 8

 .DA12(ipixel_data6[12]), .DA13(ipixel_data6[13]), .DA14(ipixel_data6[14]), 9
.DA15(ipixel_data6[15]), // Write Data 10

 .DA16(ipixel_data6[16]), .DA17(ipixel_data6[17]), .DA18(ipixel_data6[18]), 11
.DA19(ipixel_data6[19]), // Write Data 12

 .DA20(ipixel_data6[20]), .DA21(ipixel_data6[21]), .DA22(ipixel_data6[22]), 13
.DA23(ipixel_data6[23]), // Write Data 14

 .DA24(ipixel_data6[24]), .DA25(ipixel_data6[25]), .DA26(ipixel_data6[26]), 15
.DA27(ipixel_data6[27]), // Write Data 16

 .DA28(ipixel_data6[28]), .DA29(ipixel_data6[29]), .DA30(ipixel_data6[30]), 17
.DA31(ipixel_data6[31]), // Write Data 18

 .DA32(ipixel_data6[32]), .DA33(ipixel_data6[33]), .DA34(ipixel_data6[34]), 19
.DA35(ipixel_data6[35]), // Write Data 20

 .DA36(ipixel_data6[36]), .DA37(ipixel_data6[37]), .DA38(ipixel_data6[38]), 21
.DA39(ipixel_data6[39]), // Write Data 22

 .DA40(ipixel_data6[40]), .DA41(ipixel_data6[41]), .DA42(ipixel_data6[42]), 23
.DA43(ipixel_data6[43]), // Write Data 24

 .DA44(ipixel_data6[44]), .DA45(ipixel_data6[45]), .DA46(ipixel_data6[46]), 25
.DA47(ipixel_data6[47]), // Write Data 26

 .DA48(ipixel_data6[48]), .DA49(ipixel_data6[49]), .DA50(ipixel_data6[50]), 27
.DA51(ipixel_data6[51]), // Write Data 28

 .DA52(ipixel_data6[52]), .DA53(ipixel_data6[53]), .DA54(ipixel_data6[54]), 29
.DA55(ipixel_data6[55]), // Write Data 30

 .DA56(ipixel_data6[56]), .DA57(ipixel_data6[57]), .DA58(ipixel_data6[58]), 31
.DA59(ipixel_data6[59]), // Write Data 32

 Page 60 of 84
Ex. 2113 - export_buffers.v

 .DA60(ipixel_data6[60]), .DA61(ipixel_data6[61]), .DA62(ipixel_data6[62]), 1
.DA63(ipixel_data6[63]), // Write Data 2

 .DA64(ipixel_data6[64]), .DA65(ipixel_data6[65]), .DA66(ipixel_data6[66]), 3
.DA67(ipixel_data6[67]), // Write Data 4

 .DA68(ipixel_data6[68]), .DA69(ipixel_data6[69]), .DA70(ipixel_data6[70]), 5
.DA71(ipixel_data6[71]), // Write Data 6

 .DA72(ipixel_data6[72]), .DA73(ipixel_data6[73]), .DA74(ipixel_data6[74]), 7
.DA75(ipixel_data6[75]), // Write Data 8

 .DA76(ipixel_data6[76]), .DA77(ipixel_data6[77]), .DA78(ipixel_data6[78]), 9
.DA79(ipixel_data6[79]), // Write Data 10

 .DA80(ipixel_data6[80]), .DA81(ipixel_data6[81]), .DA82(ipixel_data6[82]), 11
.DA83(ipixel_data6[83]), // Write Data 12

 .DA84(ipixel_data6[84]), .DA85(ipixel_data6[85]), .DA86(ipixel_data6[86]), 13
.DA87(ipixel_data6[87]), // Write Data 14

 .DA88(ipixel_data6[88]), .DA89(ipixel_data6[89]), .DA90(ipixel_data6[90]), 15
.DA91(ipixel_data6[91]), // Write Data 16

 .DA92(ipixel_data6[92]), .DA93(ipixel_data6[93]), .DA94(ipixel_data6[94]), 17
.DA95(ipixel_data6[95]), // Write Data 18

 .DA96(ipixel_data6[96]), .DA97(ipixel_data6[97]), .DA98(ipixel_data6[98]), 19
.DA99(ipixel_data6[99]), // Write Data 20

 .DA100(ipixel_data6[100]), .DA101(ipixel_data6[101]), .DA102(ipixel_data6[102]), 21
.DA103(ipixel_data6[103]), // Write Data 22

 .DA104(ipixel_data6[104]), .DA105(ipixel_data6[105]), .DA106(ipixel_data6[106]), 23
.DA107(ipixel_data6[107]), // Write Data 24

 .DA108(ipixel_data6[108]), .DA109(ipixel_data6[109]), .DA110(ipixel_data6[110]), 25
.DA111(ipixel_data6[111]), // Write Data 26

 .DA112(ipixel_data6[112]), .DA113(ipixel_data6[113]), .DA114(ipixel_data6[114]), 27
.DA115(ipixel_data6[115]), // Write Data 28

 .DA116(ipixel_data6[116]), .DA117(ipixel_data6[117]), .DA118(ipixel_data6[118]), 29
.DA119(ipixel_data6[119]), // Write Data 30

 .DA120(ipixel_data6[120]), .DA121(ipixel_data6[121]), .DA122(ipixel_data6[122]), 31
.DA123(ipixel_data6[123]), // Write Data 32

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 516 of 611

 Page 61 of 84
Ex. 2113 - export_buffers.v

 .DA124(ipixel_data6[124]), .DA125(ipixel_data6[125]), .DA126(ipixel_data6[126]), 1
.DA127(ipixel_data6[127]), // Write Data 2

 // WRITE TEST SIGNALS 3

 .BISTEA(vss), 4

 .TWEA(vss), // Test write enable 5

 .TMEA(vss), // Test memory enable 6

 .TADRA0(iwrite_addr[0]), .TADRA1(iwrite_addr[1]), .TADRA2(iwrite_addr[2]), 7
.TADRA3(iwrite_addr[3]), // Write Test Address 8

 .TADRA4(iwrite_addr[4]), .TADRA5(iwrite_addr[5]), .TADRA6(iwrite_addr[6]), // Write 9
Test Address 10

 .TDA0(ipixel_data6[0]), .TDA1(ipixel_data6[1]), .TDA2(ipixel_data6[2]), 11
.TDA3(ipixel_data6[3]), // Write Test Data 12

 .TDA4(ipixel_data6[4]), .TDA5(ipixel_data6[5]), .TDA6(ipixel_data6[6]), 13
.TDA7(ipixel_data6[7]), // Write Test Data 14

 .TDA8(ipixel_data6[8]), .TDA9(ipixel_data6[9]), .TDA10(ipixel_data6[10]), 15
.TDA11(ipixel_data6[11]), // Write Test Data 16

 .TDA12(ipixel_data6[12]), .TDA13(ipixel_data6[13]), .TDA14(ipixel_data6[14]), 17
.TDA15(ipixel_data6[15]), // Write Test Data 18

 .TDA16(ipixel_data6[16]), .TDA17(ipixel_data6[17]), .TDA18(ipixel_data6[18]), 19
.TDA19(ipixel_data6[19]), // Write Test Data 20

 .TDA20(ipixel_data6[20]), .TDA21(ipixel_data6[21]), .TDA22(ipixel_data6[22]), 21
.TDA23(ipixel_data6[23]), // Write Test Data 22

 .TDA24(ipixel_data6[24]), .TDA25(ipixel_data6[25]), .TDA26(ipixel_data6[26]), 23
.TDA27(ipixel_data6[27]), // Write Test Data 24

 .TDA28(ipixel_data6[28]), .TDA29(ipixel_data6[29]), .TDA30(ipixel_data6[30]), 25
.TDA31(ipixel_data6[31]), // Write Test Data 26

 .TDA32(ipixel_data6[32]), .TDA33(ipixel_data6[33]), .TDA34(ipixel_data6[34]), 27
.TDA35(ipixel_data6[35]), // Write Test Data 28

 .TDA36(ipixel_data6[36]), .TDA37(ipixel_data6[37]), .TDA38(ipixel_data6[38]), 29
.TDA39(ipixel_data6[39]), // Write Test Data 30

 .TDA40(ipixel_data6[40]), .TDA41(ipixel_data6[41]), .TDA42(ipixel_data6[42]), 31
.TDA43(ipixel_data6[43]), // Write Test Data 32

 Page 62 of 84
Ex. 2113 - export_buffers.v

 .TDA44(ipixel_data6[44]), .TDA45(ipixel_data6[45]), .TDA46(ipixel_data6[46]), 1
.TDA47(ipixel_data6[47]), // Write Test Data 2

 .TDA48(ipixel_data6[48]), .TDA49(ipixel_data6[49]), .TDA50(ipixel_data6[50]), 3
.TDA51(ipixel_data6[51]), // Write Test Data 4

 .TDA52(ipixel_data6[52]), .TDA53(ipixel_data6[53]), .TDA54(ipixel_data6[54]), 5
.TDA55(ipixel_data6[55]), // Write Test Data 6

 .TDA56(ipixel_data6[56]), .TDA57(ipixel_data6[57]), .TDA58(ipixel_data6[58]), 7
.TDA59(ipixel_data6[59]), // Write Test Data 8

 .TDA60(ipixel_data6[60]), .TDA61(ipixel_data6[61]), .TDA62(ipixel_data6[62]), 9
.TDA63(ipixel_data6[63]), // Write Test Data 10

 .TDA64(ipixel_data6[64]), .TDA65(ipixel_data6[65]), .TDA66(ipixel_data6[66]), 11
.TDA67(ipixel_data6[67]), // Write Test Data 12

 .TDA68(ipixel_data6[68]), .TDA69(ipixel_data6[69]), .TDA70(ipixel_data6[70]), 13
.TDA71(ipixel_data6[71]), // Write Test Data 14

 .TDA72(ipixel_data6[72]), .TDA73(ipixel_data6[73]), .TDA74(ipixel_data6[74]), 15
.TDA75(ipixel_data6[75]), // Write Test Data 16

 .TDA76(ipixel_data6[76]), .TDA77(ipixel_data6[77]), .TDA78(ipixel_data6[78]), 17
.TDA79(ipixel_data6[79]), // Write Test Data 18

 .TDA80(ipixel_data6[80]), .TDA81(ipixel_data6[81]), .TDA82(ipixel_data6[82]), 19
.TDA83(ipixel_data6[83]), // Write Test Data 20

 .TDA84(ipixel_data6[84]), .TDA85(ipixel_data6[85]), .TDA86(ipixel_data6[86]), 21
.TDA87(ipixel_data6[87]), // Write Test Data 22

 .TDA88(ipixel_data6[88]), .TDA89(ipixel_data6[89]), .TDA90(ipixel_data6[90]), 23
.TDA91(ipixel_data6[91]), // Write Test Data 24

 .TDA92(ipixel_data6[92]), .TDA93(ipixel_data6[93]), .TDA94(ipixel_data6[94]), 25
.TDA95(ipixel_data6[95]), // Write Test Data 26

 .TDA96(ipixel_data6[96]), .TDA97(ipixel_data6[97]), .TDA98(ipixel_data6[98]), 27
.TDA99(ipixel_data6[99]), // Write Test Data 28

 .TDA100(ipixel_data6[100]), .TDA101(ipixel_data6[101]), .TDA102(ipixel_data6[102]), 29
.TDA103(ipixel_data6[103]), // Write Test Data 30

 .TDA104(ipixel_data6[104]), .TDA105(ipixel_data6[105]), .TDA106(ipixel_data6[106]), 31
.TDA107(ipixel_data6[107]), // Write Test Data 32

 Page 63 of 84
Ex. 2113 - export_buffers.v

 .TDA108(ipixel_data6[108]), .TDA109(ipixel_data6[109]), .TDA110(ipixel_data6[110]), 1
.TDA111(ipixel_data6[111]), // Write Test Data 2

 .TDA112(ipixel_data6[112]), .TDA113(ipixel_data6[113]), .TDA114(ipixel_data6[114]), 3
.TDA115(ipixel_data6[115]), // Write Test Data 4

 .TDA116(ipixel_data6[116]), .TDA117(ipixel_data6[117]), .TDA118(ipixel_data6[118]), 5
.TDA119(ipixel_data6[119]), // Write Test Data 6

 .TDA120(ipixel_data6[120]), .TDA121(ipixel_data6[121]), .TDA122(ipixel_data6[122]), 7
.TDA123(ipixel_data6[123]), // Write Test Data 8

 .TDA124(ipixel_data6[124]), .TDA125(ipixel_data6[125]), .TDA126(ipixel_data6[126]), 9
.TDA127(ipixel_data6[127]), // Write Test Data 10

 //READ TEST SIGNALS 11

 .BISTEB(vss), 12

 .TOEB(vss), 13

 .TMEB(vss), 14

 .TADRB0(q1_read_addr[0]), .TADRB1(q1_read_addr[1]), .TADRB2(q1_read_addr[2]), 15
.TADRB3(q1_read_addr[3]), // Read Test Address 16

 .TADRB4(q1_read_addr[4]), .TADRB5(q1_read_addr[5]), .TADRB6(q1_read_addr[6]), // 17
Read Test Address 18

 .AWTB(vss) 19

); 20

 21

`endif // !`ifdef USE_BEHAVE_MEM 22

 23

`ifdef USE_BEHAVE_MEM 24

 dum_mem_p2 #(7,128) bank1_buff3(.iRCLK(sclk), 25

 .iWCLK(sclk), 26

 .iMER(q2_mem_re), 27

 .iMEW(imem_wen), 28

 Page 64 of 84
Ex. 2113 - export_buffers.v

 .iWEN(imem_wew), 1

 .iRADR(q2_read_addr[6:0]), 2

 .iWADR(iwrite_addr), 3

 .iD(ipixel_data7), 4

 .oQ(buff7_out) 5

); 6

`else // !`ifdef USE_BEHAVE_MEM 7

 rfsd2_80x128cm2sw0 ubank1_buff3 8

 (/*VRGIO rfsd2_80x128cm2sw0 ipixel_data7 buff7_out iwrite_addr q2_read_addr 9
imem_wen q2_mem_re null*/ 10

 // READ INTERFACE 11

 .CLKB(iSCLK), // Read Clock 12

 .OEB(vdd), // Output enable 13

 .MEB(q2_mem_re), // Read enable 14

 .ADRB0(q2_read_addr[0]), .ADRB1(q2_read_addr[1]), .ADRB2(q2_read_addr[2]), 15
.ADRB3(q2_read_addr[3]), // Read Address 16

 .ADRB4(q2_read_addr[4]), .ADRB5(q2_read_addr[5]), .ADRB6(q2_read_addr[6]), // 17
Read Address 18

 .QB0(buff7_out[0]), .QB1(buff7_out[1]), .QB2(buff7_out[2]), .QB3(buff7_out[3]), // Read 19
Data 20

 .QB4(buff7_out[4]), .QB5(buff7_out[5]), .QB6(buff7_out[6]), .QB7(buff7_out[7]), // Read 21
Data 22

 .QB8(buff7_out[8]), .QB9(buff7_out[9]), .QB10(buff7_out[10]), .QB11(buff7_out[11]), // 23
Read Data 24

 .QB12(buff7_out[12]), .QB13(buff7_out[13]), .QB14(buff7_out[14]), 25
.QB15(buff7_out[15]), // Read Data 26

 .QB16(buff7_out[16]), .QB17(buff7_out[17]), .QB18(buff7_out[18]), 27
.QB19(buff7_out[19]), // Read Data 28

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 517 of 611

 Page 65 of 84
Ex. 2113 - export_buffers.v

 .QB20(buff7_out[20]), .QB21(buff7_out[21]), .QB22(buff7_out[22]), 1
.QB23(buff7_out[23]), // Read Data 2

 .QB24(buff7_out[24]), .QB25(buff7_out[25]), .QB26(buff7_out[26]), 3
.QB27(buff7_out[27]), // Read Data 4

 .QB28(buff7_out[28]), .QB29(buff7_out[29]), .QB30(buff7_out[30]), 5
.QB31(buff7_out[31]), // Read Data 6

 .QB32(buff7_out[32]), .QB33(buff7_out[33]), .QB34(buff7_out[34]), 7
.QB35(buff7_out[35]), // Read Data 8

 .QB36(buff7_out[36]), .QB37(buff7_out[37]), .QB38(buff7_out[38]), 9
.QB39(buff7_out[39]), // Read Data 10

 .QB40(buff7_out[40]), .QB41(buff7_out[41]), .QB42(buff7_out[42]), 11
.QB43(buff7_out[43]), // Read Data 12

 .QB44(buff7_out[44]), .QB45(buff7_out[45]), .QB46(buff7_out[46]), 13
.QB47(buff7_out[47]), // Read Data 14

 .QB48(buff7_out[48]), .QB49(buff7_out[49]), .QB50(buff7_out[50]), 15
.QB51(buff7_out[51]), // Read Data 16

 .QB52(buff7_out[52]), .QB53(buff7_out[53]), .QB54(buff7_out[54]), 17
.QB55(buff7_out[55]), // Read Data 18

 .QB56(buff7_out[56]), .QB57(buff7_out[57]), .QB58(buff7_out[58]), 19
.QB59(buff7_out[59]), // Read Data 20

 .QB60(buff7_out[60]), .QB61(buff7_out[61]), .QB62(buff7_out[62]), 21
.QB63(buff7_out[63]), // Read Data 22

 .QB64(buff7_out[64]), .QB65(buff7_out[65]), .QB66(buff7_out[66]), 23
.QB67(buff7_out[67]), // Read Data 24

 .QB68(buff7_out[68]), .QB69(buff7_out[69]), .QB70(buff7_out[70]), 25
.QB71(buff7_out[71]), // Read Data 26

 .QB72(buff7_out[72]), .QB73(buff7_out[73]), .QB74(buff7_out[74]), 27
.QB75(buff7_out[75]), // Read Data 28

 .QB76(buff7_out[76]), .QB77(buff7_out[77]), .QB78(buff7_out[78]), 29
.QB79(buff7_out[79]), // Read Data 30

 .QB80(buff7_out[80]), .QB81(buff7_out[81]), .QB82(buff7_out[82]), 31
.QB83(buff7_out[83]), // Read Data 32

 Page 66 of 84
Ex. 2113 - export_buffers.v

 .QB84(buff7_out[84]), .QB85(buff7_out[85]), .QB86(buff7_out[86]), 1
.QB87(buff7_out[87]), // Read Data 2

 .QB88(buff7_out[88]), .QB89(buff7_out[89]), .QB90(buff7_out[90]), 3
.QB91(buff7_out[91]), // Read Data 4

 .QB92(buff7_out[92]), .QB93(buff7_out[93]), .QB94(buff7_out[94]), 5
.QB95(buff7_out[95]), // Read Data 6

 .QB96(buff7_out[96]), .QB97(buff7_out[97]), .QB98(buff7_out[98]), 7
.QB99(buff7_out[99]), // Read Data 8

 .QB100(buff7_out[100]), .QB101(buff7_out[101]), .QB102(buff7_out[102]), 9
.QB103(buff7_out[103]), // Read Data 10

 .QB104(buff7_out[104]), .QB105(buff7_out[105]), .QB106(buff7_out[106]), 11
.QB107(buff7_out[107]), // Read Data 12

 .QB108(buff7_out[108]), .QB109(buff7_out[109]), .QB110(buff7_out[110]), 13
.QB111(buff7_out[111]), // Read Data 14

 .QB112(buff7_out[112]), .QB113(buff7_out[113]), .QB114(buff7_out[114]), 15
.QB115(buff7_out[115]), // Read Data 16

 .QB116(buff7_out[116]), .QB117(buff7_out[117]), .QB118(buff7_out[118]), 17
.QB119(buff7_out[119]), // Read Data 18

 .QB120(buff7_out[120]), .QB121(buff7_out[121]), .QB122(buff7_out[122]), 19
.QB123(buff7_out[123]), // Read Data 20

 .QB124(buff7_out[124]), .QB125(buff7_out[125]), .QB126(buff7_out[126]), 21
.QB127(buff7_out[127]), // Read Data 22

 // WRITE INTERFACE 23

 .CLKA(iSCLK), // Write Clock 24

 .WEA(imem_wen), // Write enable 25

 .MEA(vdd), // Memory enable 26

 .ADRA0(iwrite_addr[0]), .ADRA1(iwrite_addr[1]), .ADRA2(iwrite_addr[2]), 27
.ADRA3(iwrite_addr[3]), // Write Address 28

 .ADRA4(iwrite_addr[4]), .ADRA5(iwrite_addr[5]), .ADRA6(iwrite_addr[6]), // Write 29
Address 30

 .DA0(ipixel_data7[0]), .DA1(ipixel_data7[1]), .DA2(ipixel_data7[2]), 31
.DA3(ipixel_data7[3]), // Write Data 32

 Page 67 of 84
Ex. 2113 - export_buffers.v

 .DA4(ipixel_data7[4]), .DA5(ipixel_data7[5]), .DA6(ipixel_data7[6]), 1
.DA7(ipixel_data7[7]), // Write Data 2

 .DA8(ipixel_data7[8]), .DA9(ipixel_data7[9]), .DA10(ipixel_data7[10]), 3
.DA11(ipixel_data7[11]), // Write Data 4

 .DA12(ipixel_data7[12]), .DA13(ipixel_data7[13]), .DA14(ipixel_data7[14]), 5
.DA15(ipixel_data7[15]), // Write Data 6

 .DA16(ipixel_data7[16]), .DA17(ipixel_data7[17]), .DA18(ipixel_data7[18]), 7
.DA19(ipixel_data7[19]), // Write Data 8

 .DA20(ipixel_data7[20]), .DA21(ipixel_data7[21]), .DA22(ipixel_data7[22]), 9
.DA23(ipixel_data7[23]), // Write Data 10

 .DA24(ipixel_data7[24]), .DA25(ipixel_data7[25]), .DA26(ipixel_data7[26]), 11
.DA27(ipixel_data7[27]), // Write Data 12

 .DA28(ipixel_data7[28]), .DA29(ipixel_data7[29]), .DA30(ipixel_data7[30]), 13
.DA31(ipixel_data7[31]), // Write Data 14

 .DA32(ipixel_data7[32]), .DA33(ipixel_data7[33]), .DA34(ipixel_data7[34]), 15
.DA35(ipixel_data7[35]), // Write Data 16

 .DA36(ipixel_data7[36]), .DA37(ipixel_data7[37]), .DA38(ipixel_data7[38]), 17
.DA39(ipixel_data7[39]), // Write Data 18

 .DA40(ipixel_data7[40]), .DA41(ipixel_data7[41]), .DA42(ipixel_data7[42]), 19
.DA43(ipixel_data7[43]), // Write Data 20

 .DA44(ipixel_data7[44]), .DA45(ipixel_data7[45]), .DA46(ipixel_data7[46]), 21
.DA47(ipixel_data7[47]), // Write Data 22

 .DA48(ipixel_data7[48]), .DA49(ipixel_data7[49]), .DA50(ipixel_data7[50]), 23
.DA51(ipixel_data7[51]), // Write Data 24

 .DA52(ipixel_data7[52]), .DA53(ipixel_data7[53]), .DA54(ipixel_data7[54]), 25
.DA55(ipixel_data7[55]), // Write Data 26

 .DA56(ipixel_data7[56]), .DA57(ipixel_data7[57]), .DA58(ipixel_data7[58]), 27
.DA59(ipixel_data7[59]), // Write Data 28

 .DA60(ipixel_data7[60]), .DA61(ipixel_data7[61]), .DA62(ipixel_data7[62]), 29
.DA63(ipixel_data7[63]), // Write Data 30

 .DA64(ipixel_data7[64]), .DA65(ipixel_data7[65]), .DA66(ipixel_data7[66]), 31
.DA67(ipixel_data7[67]), // Write Data 32

 Page 68 of 84
Ex. 2113 - export_buffers.v

 .DA68(ipixel_data7[68]), .DA69(ipixel_data7[69]), .DA70(ipixel_data7[70]), 1
.DA71(ipixel_data7[71]), // Write Data 2

 .DA72(ipixel_data7[72]), .DA73(ipixel_data7[73]), .DA74(ipixel_data7[74]), 3
.DA75(ipixel_data7[75]), // Write Data 4

 .DA76(ipixel_data7[76]), .DA77(ipixel_data7[77]), .DA78(ipixel_data7[78]), 5
.DA79(ipixel_data7[79]), // Write Data 6

 .DA80(ipixel_data7[80]), .DA81(ipixel_data7[81]), .DA82(ipixel_data7[82]), 7
.DA83(ipixel_data7[83]), // Write Data 8

 .DA84(ipixel_data7[84]), .DA85(ipixel_data7[85]), .DA86(ipixel_data7[86]), 9
.DA87(ipixel_data7[87]), // Write Data 10

 .DA88(ipixel_data7[88]), .DA89(ipixel_data7[89]), .DA90(ipixel_data7[90]), 11
.DA91(ipixel_data7[91]), // Write Data 12

 .DA92(ipixel_data7[92]), .DA93(ipixel_data7[93]), .DA94(ipixel_data7[94]), 13
.DA95(ipixel_data7[95]), // Write Data 14

 .DA96(ipixel_data7[96]), .DA97(ipixel_data7[97]), .DA98(ipixel_data7[98]), 15
.DA99(ipixel_data7[99]), // Write Data 16

 .DA100(ipixel_data7[100]), .DA101(ipixel_data7[101]), .DA102(ipixel_data7[102]), 17
.DA103(ipixel_data7[103]), // Write Data 18

 .DA104(ipixel_data7[104]), .DA105(ipixel_data7[105]), .DA106(ipixel_data7[106]), 19
.DA107(ipixel_data7[107]), // Write Data 20

 .DA108(ipixel_data7[108]), .DA109(ipixel_data7[109]), .DA110(ipixel_data7[110]), 21
.DA111(ipixel_data7[111]), // Write Data 22

 .DA112(ipixel_data7[112]), .DA113(ipixel_data7[113]), .DA114(ipixel_data7[114]), 23
.DA115(ipixel_data7[115]), // Write Data 24

 .DA116(ipixel_data7[116]), .DA117(ipixel_data7[117]), .DA118(ipixel_data7[118]), 25
.DA119(ipixel_data7[119]), // Write Data 26

 .DA120(ipixel_data7[120]), .DA121(ipixel_data7[121]), .DA122(ipixel_data7[122]), 27
.DA123(ipixel_data7[123]), // Write Data 28

 .DA124(ipixel_data7[124]), .DA125(ipixel_data7[125]), .DA126(ipixel_data7[126]), 29
.DA127(ipixel_data7[127]), // Write Data 30

 // WRITE TEST SIGNALS 31

 .BISTEA(vss), 32

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 518 of 611

 Page 69 of 84
Ex. 2113 - export_buffers.v

 .TWEA(vss), // Test write enable 1

 .TMEA(vss), // Test memory enable 2

 .TADRA0(iwrite_addr[0]), .TADRA1(iwrite_addr[1]), .TADRA2(iwrite_addr[2]), 3
.TADRA3(iwrite_addr[3]), // Write Test Address 4

 .TADRA4(iwrite_addr[4]), .TADRA5(iwrite_addr[5]), .TADRA6(iwrite_addr[6]), // Write 5
Test Address 6

 .TDA0(ipixel_data7[0]), .TDA1(ipixel_data7[1]), .TDA2(ipixel_data7[2]), 7
.TDA3(ipixel_data7[3]), // Write Test Data 8

 .TDA4(ipixel_data7[4]), .TDA5(ipixel_data7[5]), .TDA6(ipixel_data7[6]), 9
.TDA7(ipixel_data7[7]), // Write Test Data 10

 .TDA8(ipixel_data7[8]), .TDA9(ipixel_data7[9]), .TDA10(ipixel_data7[10]), 11
.TDA11(ipixel_data7[11]), // Write Test Data 12

 .TDA12(ipixel_data7[12]), .TDA13(ipixel_data7[13]), .TDA14(ipixel_data7[14]), 13
.TDA15(ipixel_data7[15]), // Write Test Data 14

 .TDA16(ipixel_data7[16]), .TDA17(ipixel_data7[17]), .TDA18(ipixel_data7[18]), 15
.TDA19(ipixel_data7[19]), // Write Test Data 16

 .TDA20(ipixel_data7[20]), .TDA21(ipixel_data7[21]), .TDA22(ipixel_data7[22]), 17
.TDA23(ipixel_data7[23]), // Write Test Data 18

 .TDA24(ipixel_data7[24]), .TDA25(ipixel_data7[25]), .TDA26(ipixel_data7[26]), 19
.TDA27(ipixel_data7[27]), // Write Test Data 20

 .TDA28(ipixel_data7[28]), .TDA29(ipixel_data7[29]), .TDA30(ipixel_data7[30]), 21
.TDA31(ipixel_data7[31]), // Write Test Data 22

 .TDA32(ipixel_data7[32]), .TDA33(ipixel_data7[33]), .TDA34(ipixel_data7[34]), 23
.TDA35(ipixel_data7[35]), // Write Test Data 24

 .TDA36(ipixel_data7[36]), .TDA37(ipixel_data7[37]), .TDA38(ipixel_data7[38]), 25
.TDA39(ipixel_data7[39]), // Write Test Data 26

 .TDA40(ipixel_data7[40]), .TDA41(ipixel_data7[41]), .TDA42(ipixel_data7[42]), 27
.TDA43(ipixel_data7[43]), // Write Test Data 28

 .TDA44(ipixel_data7[44]), .TDA45(ipixel_data7[45]), .TDA46(ipixel_data7[46]), 29
.TDA47(ipixel_data7[47]), // Write Test Data 30

 .TDA48(ipixel_data7[48]), .TDA49(ipixel_data7[49]), .TDA50(ipixel_data7[50]), 31
.TDA51(ipixel_data7[51]), // Write Test Data 32

 Page 70 of 84
Ex. 2113 - export_buffers.v

 .TDA52(ipixel_data7[52]), .TDA53(ipixel_data7[53]), .TDA54(ipixel_data7[54]), 1
.TDA55(ipixel_data7[55]), // Write Test Data 2

 .TDA56(ipixel_data7[56]), .TDA57(ipixel_data7[57]), .TDA58(ipixel_data7[58]), 3
.TDA59(ipixel_data7[59]), // Write Test Data 4

 .TDA60(ipixel_data7[60]), .TDA61(ipixel_data7[61]), .TDA62(ipixel_data7[62]), 5
.TDA63(ipixel_data7[63]), // Write Test Data 6

 .TDA64(ipixel_data7[64]), .TDA65(ipixel_data7[65]), .TDA66(ipixel_data7[66]), 7
.TDA67(ipixel_data7[67]), // Write Test Data 8

 .TDA68(ipixel_data7[68]), .TDA69(ipixel_data7[69]), .TDA70(ipixel_data7[70]), 9
.TDA71(ipixel_data7[71]), // Write Test Data 10

 .TDA72(ipixel_data7[72]), .TDA73(ipixel_data7[73]), .TDA74(ipixel_data7[74]), 11
.TDA75(ipixel_data7[75]), // Write Test Data 12

 .TDA76(ipixel_data7[76]), .TDA77(ipixel_data7[77]), .TDA78(ipixel_data7[78]), 13
.TDA79(ipixel_data7[79]), // Write Test Data 14

 .TDA80(ipixel_data7[80]), .TDA81(ipixel_data7[81]), .TDA82(ipixel_data7[82]), 15
.TDA83(ipixel_data7[83]), // Write Test Data 16

 .TDA84(ipixel_data7[84]), .TDA85(ipixel_data7[85]), .TDA86(ipixel_data7[86]), 17
.TDA87(ipixel_data7[87]), // Write Test Data 18

 .TDA88(ipixel_data7[88]), .TDA89(ipixel_data7[89]), .TDA90(ipixel_data7[90]), 19
.TDA91(ipixel_data7[91]), // Write Test Data 20

 .TDA92(ipixel_data7[92]), .TDA93(ipixel_data7[93]), .TDA94(ipixel_data7[94]), 21
.TDA95(ipixel_data7[95]), // Write Test Data 22

 .TDA96(ipixel_data7[96]), .TDA97(ipixel_data7[97]), .TDA98(ipixel_data7[98]), 23
.TDA99(ipixel_data7[99]), // Write Test Data 24

 .TDA100(ipixel_data7[100]), .TDA101(ipixel_data7[101]), .TDA102(ipixel_data7[102]), 25
.TDA103(ipixel_data7[103]), // Write Test Data 26

 .TDA104(ipixel_data7[104]), .TDA105(ipixel_data7[105]), .TDA106(ipixel_data7[106]), 27
.TDA107(ipixel_data7[107]), // Write Test Data 28

 .TDA108(ipixel_data7[108]), .TDA109(ipixel_data7[109]), .TDA110(ipixel_data7[110]), 29
.TDA111(ipixel_data7[111]), // Write Test Data 30

 .TDA112(ipixel_data7[112]), .TDA113(ipixel_data7[113]), .TDA114(ipixel_data7[114]), 31
.TDA115(ipixel_data7[115]), // Write Test Data 32

 Page 71 of 84
Ex. 2113 - export_buffers.v

 .TDA116(ipixel_data7[116]), .TDA117(ipixel_data7[117]), .TDA118(ipixel_data7[118]), 1
.TDA119(ipixel_data7[119]), // Write Test Data 2

 .TDA120(ipixel_data7[120]), .TDA121(ipixel_data7[121]), .TDA122(ipixel_data7[122]), 3
.TDA123(ipixel_data7[123]), // Write Test Data 4

 .TDA124(ipixel_data7[124]), .TDA125(ipixel_data7[125]), .TDA126(ipixel_data7[126]), 5
.TDA127(ipixel_data7[127]), // Write Test Data 6

 //READ TEST SIGNALS 7

 .BISTEB(vss), 8

 .TOEB(vss), 9

 .TMEB(vss), 10

 .TADRB0(q2_read_addr[0]), .TADRB1(q2_read_addr[1]), .TADRB2(q2_read_addr[2]), 11
.TADRB3(q2_read_addr[3]), // Read Test Address 12

 .TADRB4(q2_read_addr[4]), .TADRB5(q2_read_addr[5]), .TADRB6(q2_read_addr[6]), // 13
Read Test Address 14

 .AWTB(vss) 15

); 16

 17

`endif // !`ifdef USE_BEHAVE_MEM 18

 19

 //--// 20

 21

 always @(posedge sclk) 22

 begin 23

 if(srst) 24

 begin 25

 q_sp_bank_sel <= 1'b0; 26

 end 27

 Page 72 of 84
Ex. 2113 - export_buffers.v

 else 1

 begin 2

 q_sp_bank_sel <= sp_bank_sel; 3

 q_sp_bank_sel0 <= sp_bank_sel0; 4

 q_sp_bank_sel1 <= sp_bank_sel1; 5

 q_sp_bank_sel2 <= sp_bank_sel2; 6

 q_sp_bank_sel3 <= sp_bank_sel3; 7

 end // else: !if() 8

 end // always @ (posedge sclk) 9

 10

 11

 12

 13

 14

 //buffer 0 4x1 mux 15

 always @(/*AUTOSENSE*/buff0_out or buff1_out or buff2_out 16

 or buff3_out or q_phase_rb0) 17

 begin 18

 case(q_phase_rb0) 19

 2'b00:bank0_data0 = buff0_out; 20

 2'b01:bank0_data0 = buff1_out; 21

 2'b10:bank0_data0 = buff2_out; 22

 2'b11:bank0_data0 = buff3_out; 23

 default:bank0_data0 = buff0_out; 24

 endcase // case(q_phase_rb0) 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 519 of 611

 Page 73 of 84
Ex. 2113 - export_buffers.v

 end // always @ (... 1

 2

 //buffer 1 4x1 mux 3

 always @(/*AUTOSENSE*/buff0_out or buff1_out or buff2_out 4

 or buff3_out or q_phase_rb1) 5

 begin 6

 case(q_phase_rb1) 7

 2'b00:bank0_data1 = buff0_out; 8

 2'b01:bank0_data1 = buff1_out; 9

 2'b10:bank0_data1 = buff2_out; 10

 2'b11:bank0_data1 = buff3_out; 11

 default:bank0_data1 = buff0_out; 12

 endcase // case(q_phase_rb1) 13

 end // always @ (... 14

 15

 16

 //buffer 2 4x1 mux 17

 always @(/*AUTOSENSE*/buff0_out or buff1_out or buff2_out 18

 or buff3_out or q_phase_rb2) 19

 begin 20

 case(q_phase_rb2) 21

 2'b00:bank0_data2 = buff0_out; 22

 2'b01:bank0_data2 = buff1_out; 23

 2'b10:bank0_data2 = buff2_out; 24

 2'b11:bank0_data2 = buff3_out; 25

 Page 74 of 84
Ex. 2113 - export_buffers.v

 default:bank0_data2 = buff2_out; 1

 endcase // case(q_phase_rb2) 2

 end // always @ (... 3

 4

 5

 //buffer 3 4x1 mux 6

 always @(/*AUTOSENSE*/buff0_out or buff1_out or buff2_out 7

 or buff3_out or q_phase_rb3) 8

 begin 9

 case(q_phase_rb3) 10

 2'b00:bank0_data3 = buff0_out; 11

 2'b01:bank0_data3 = buff1_out; 12

 2'b10:bank0_data3 = buff2_out; 13

 2'b11:bank0_data3 = buff3_out; 14

 default:bank0_data3 = buff0_out; 15

 endcase // case(q_phase_rb3) 16

 end // always @ (... 17

 18

 19

 //buffer 4 4x1 mux 20

 always @(/*AUTOSENSE*/buff4_out or buff5_out or buff6_out 21

 or buff7_out or q_phase_rb0) 22

 begin 23

 case(q_phase_rb0) 24

 2'b00:bank1_data0 = buff4_out; 25

 Page 75 of 84
Ex. 2113 - export_buffers.v

 2'b01:bank1_data0 = buff5_out; 1

 2'b10:bank1_data0 = buff6_out; 2

 2'b11:bank1_data0 = buff7_out; 3

 default:bank1_data0 = buff4_out; 4

 endcase // case(q_phase_rb0) 5

 end // always @ (... 6

 7

 8

 //buffer 5 4x1 mux 9

 always @(/*AUTOSENSE*/buff4_out or buff5_out or buff6_out 10

 or buff7_out or q_phase_rb1) 11

 begin 12

 case(q_phase_rb1) 13

 2'b00:bank1_data1 = buff4_out; 14

 2'b01:bank1_data1 = buff5_out; 15

 2'b10:bank1_data1 = buff6_out; 16

 2'b11:bank1_data1 = buff7_out; 17

 default:bank1_data1 = buff4_out; 18

 endcase // case(q_phase_rb1) 19

 end // always @ (... 20

 21

 //buffer 6 4x1 mux 22

 always @(/*AUTOSENSE*/buff4_out or buff5_out or buff6_out 23

 or buff7_out or q_phase_rb2) 24

 begin 25

 Page 76 of 84
Ex. 2113 - export_buffers.v

 case(q_phase_rb2) 1

 2'b00:bank1_data2 = buff4_out; 2

 2'b01:bank1_data2 = buff5_out; 3

 2'b10:bank1_data2 = buff6_out; 4

 2'b11:bank1_data2 = buff7_out; 5

 default:bank1_data2 = buff4_out; 6

 endcase // case(q_phase_rb2) 7

 end // always @ (... 8

 9

 //buffer 7 4x1 mux 10

 always @(/*AUTOSENSE*/buff4_out or buff5_out or buff6_out 11

 or buff7_out or q_phase_rb3) 12

 begin 13

 case(q_phase_rb3) 14

 2'b00:bank1_data3 = buff4_out; 15

 2'b01:bank1_data3 = buff5_out; 16

 2'b10:bank1_data3 = buff6_out; 17

 2'b11:bank1_data3 = buff7_out; 18

 default:bank1_data3 = buff4_out; 19

 endcase // case(q_phase_rb3) 20

 end // always @ (... 21

 22

 //clipper data from bank0 (sp0) 23

 always @(/*AUTOSENSE*/buff0_out or buff1_out or buff2_out 24

 or buff3_out or q_phase_clipp) 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 520 of 611

 Page 77 of 84
Ex. 2113 - export_buffers.v

 begin 1

 case(q_phase_clipp) 2

 2'b00:bank0_clipp_data = buff0_out; 3

 2'b01:bank0_clipp_data = buff1_out; 4

 2'b10:bank0_clipp_data = buff2_out; 5

 2'b11:bank0_clipp_data = buff3_out; 6

 default:bank0_clipp_data = buff0_out; 7

 endcase // case(q_phase_clipp) 8

 end // always @ (... 9

 10

 //clipper data from bank1 (sp1) 11

 always @(/*AUTOSENSE*/buff4_out or buff5_out or buff6_out 12

 or buff7_out or q_phase_clipp) 13

 begin 14

 case(q_phase_clipp) 15

 2'b00:bank1_clipp_data = buff4_out; 16

 2'b01:bank1_clipp_data = buff5_out; 17

 2'b10:bank1_clipp_data = buff6_out; 18

 2'b11:bank1_clipp_data = buff7_out; 19

 default:bank0_clipp_data = buff4_out; 20

 endcase // case(q_phase_clipp) 21

 end // always @ (... 22

 23

 24

 25

 Page 78 of 84
Ex. 2113 - export_buffers.v

 1

 2

 reg [127:0] clipp_data; 3

 4

 5

 //final mux selecting between left and right banks of the export buffers (sp0 vs. sp1) 6

 always @(/*AUTOSENSE*/bank0_clipp_data or bank1_clipp_data 7

 or q_sp_bank_sel) 8

 begin 9

 case(q_sp_bank_sel) 10

 1'b0:clipp_data=bank0_clipp_data; 11

 1'b1:clipp_data=bank1_clipp_data; 12

 endcase // case(q_sp_bank_sel) 13

 end 14

 15

 //four outputs ...one for each RB 16

 17

 always @(/*AUTOSENSE*/bank0_data0 or bank1_data0 or q_sp_bank_sel0) 18

 begin 19

 case(q_sp_bank_sel0) 20

 1'b0:rb0_data=bank0_data0; 21

 1'b1:rb0_data=bank1_data0; 22

 endcase // case(q_sp_bank_sel0) 23

 end 24

 always @(/*AUTOSENSE*/bank0_data1 or bank1_data1 or q_sp_bank_sel1) 25

 Page 79 of 84
Ex. 2113 - export_buffers.v

 begin 1

 case(q_sp_bank_sel1) 2

 1'b0:rb1_data=bank0_data1; 3

 1'b1:rb1_data=bank1_data1; 4

 endcase // case(q_sp_bank_sel1) 5

 end 6

 always @(/*AUTOSENSE*/bank0_data2 or bank1_data2 or q_sp_bank_sel2) 7

 begin 8

 case(q_sp_bank_sel2) 9

 1'b0:rb2_data=bank0_data2; 10

 1'b1:rb2_data=bank1_data2; 11

 endcase // case(q_sp_bank_sel2) 12

 end 13

 always @(/*AUTOSENSE*/bank0_data3 or bank1_data3 or q_sp_bank_sel3) 14

 begin 15

 case(q_sp_bank_sel3) 16

 1'b0:rb3_data=bank0_data3; 17

 1'b1:rb3_data=bank1_data3; 18

 endcase // case(q_sp_bank_sel3) 19

 end 20

 21

 22

 //generating the data valid for the export buffer read over four cycles 23

 always @(/*AUTOSENSE*/q0_read_valid_clipp or q1_read_valid_clipp 24

 or q2_read_valid_clipp or q3_read_valid_clipp 25

 Page 80 of 84
Ex. 2113 - export_buffers.v

 or q_phase_clipp) 1

 begin 2

 case(q_phase_clipp) 3

 2'b00:clipp_data_valid = q0_read_valid_clipp; 4

 2'b01:clipp_data_valid = q1_read_valid_clipp; 5

 2'b10:clipp_data_valid = q2_read_valid_clipp; 6

 2'b11:clipp_data_valid = q3_read_valid_clipp; 7

 default:clipp_data_valid = q0_read_valid_clipp; 8

 endcase // case(q_phase_clipp) 9

 end // always @ (... 10

 11

 12

 //generating the data valid for the export buffer read over four cycles 13

 always @(/*AUTOSENSE*/q0_read_valid_rb0 or q1_read_valid_rb0 14

 or q2_read_valid_rb0 or q3_read_valid_rb0 or q_phase_rb0) 15

 begin 16

 case(q_phase_rb0) 17

 2'b00:rb0_data_valid = q0_read_valid_rb0; 18

 2'b01:rb0_data_valid = q1_read_valid_rb0; 19

 2'b10:rb0_data_valid = q2_read_valid_rb0; 20

 2'b11:rb0_data_valid = q3_read_valid_rb0; 21

 default:rb0_data_valid = q0_read_valid_rb0; 22

 endcase // case(q_phase_rb0) 23

 end // always @ (... 24

 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 521 of 611

 Page 81 of 84
Ex. 2113 - export_buffers.v

 1

 //generating the data valid for the export buffer read over four cycles 2

 always @(/*AUTOSENSE*/q0_read_valid_rb1 or q1_read_valid_rb1 3

 or q2_read_valid_rb1 or q3_read_valid_rb1 or q_phase_rb1) 4

 begin 5

 case(q_phase_rb1) 6

 2'b00:rb1_data_valid = q0_read_valid_rb1; 7

 2'b01:rb1_data_valid = q1_read_valid_rb1; 8

 2'b10:rb1_data_valid = q2_read_valid_rb1; 9

 2'b11:rb1_data_valid = q3_read_valid_rb1; 10

 default:rb1_data_valid = q0_read_valid_rb1; 11

 endcase // case(q_phase_rb1) 12

 end // always @ (... 13

 14

 //generating the data valid for the export buffer read over four cycles 15

 always @(/*AUTOSENSE*/q0_read_valid_rb2 or q1_read_valid_rb2 16

 or q2_read_valid_rb2 or q3_read_valid_rb2 or q_phase_rb2) 17

 begin 18

 case(q_phase_rb2) 19

 2'b00:rb2_data_valid = q0_read_valid_rb2; 20

 2'b01:rb2_data_valid = q1_read_valid_rb2; 21

 2'b10:rb2_data_valid = q2_read_valid_rb2; 22

 2'b11:rb2_data_valid = q3_read_valid_rb2; 23

 default:rb2_data_valid = q0_read_valid_rb2; 24

 endcase // case(q_phase_rb2) 25

 Page 82 of 84
Ex. 2113 - export_buffers.v

 end // always @ (... 1

 2

 3

 //generating the data valid for the export buffer read over four cycles 4

 always @(/*AUTOSENSE*/q0_read_valid_rb3 or q1_read_valid_rb3 5

 or q2_read_valid_rb3 or q3_read_valid_rb3 or q_phase_rb3) 6

 begin 7

 case(q_phase_rb3) 8

 2'b00:rb3_data_valid = q0_read_valid_rb3; 9

 2'b01:rb3_data_valid = q1_read_valid_rb3; 10

 2'b10:rb3_data_valid = q2_read_valid_rb3; 11

 2'b11:rb3_data_valid = q3_read_valid_rb3; 12

 default:rb3_data_valid = q0_read_valid_rb3; 13

 endcase // case(q_phase_rb3) 14

 end // always @ (... 15

 16

 17

 18

 reg [127:0] q_clipp_data; 19

 reg q_clipp_data_valid; 20

 reg q_rb0_data_valid , q_rb1_data_valid, q_rb2_data_valid, q_rb3_data_valid; 21

 22

 always @(posedge sclk) 23

 begin 24

 q_rb0_data <= rb0_data; 25

 Page 83 of 84
Ex. 2113 - export_buffers.v

 q_rb0_data_valid <= rb0_data_valid; 1

 q_rb1_data <= rb1_data; 2

 q_rb1_data_valid <= rb1_data_valid; 3

 q_rb2_data <= rb2_data; 4

 q_rb2_data_valid <= rb2_data_valid; 5

 q_rb3_data <= rb3_data; 6

 q_rb3_data_valid <= rb3_data_valid; 7

 q_clipp_data <= clipp_data; 8

 q_clipp_data_valid <= clipp_data_valid; 9

 end 10

 11

 assign orb0_data = q_rb0_data; 12

 assign orb1_data = q_rb1_data; 13

 assign orb2_data = q_rb2_data; 14

 assign orb3_data = q_rb3_data; 15

 assign oclipp_data = q_clipp_data; 16

 17

 assign orb0_data_valid = q_rb0_data_valid; 18

 assign orb1_data_valid = q_rb1_data_valid; 19

 assign orb2_data_valid = q_rb2_data_valid; 20

 assign orb3_data_valid = q_rb3_data_valid; 21

 assign oclipp_data_valid = q_clipp_data_valid; 22

 23

endmodule // export_buffers 24

 25

 Page 84 of 84
Ex. 2113 - export_buffers.v

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 522 of 611

 Page 1 of 63
Ex. 2114 - pa.v

`include "header.v" 1

// -*- mode: verilog -*- 2

// filename : pa.v 3

// description : pa top block 4

// author : mike mantor 5

// created on : sunday march 17 2002 6

// last modified by: . 7

// last modified on: . 8

// update count : 0 9

// status : initial 10

//-- 11

// 12

// $id: //depot/r400/devel/parts_lib/src/gfx/pa/pa.v#34 $ 13

// 14

// $change: 32279 $ 15

// 16

// 17

// copyright: trade secret of ati technologies, inc. 18

// © copyright 2001-2002, ati technologies, inc., (unpublished) 19

// 20

// all rights reserved. this notice is intended as a precaution against 21

// inadvertent publication and does not imply publication or any waiver 22

// of confidentiality. the year included in the foregoing notice is the 23

// year of creation of the work. 24

// 25

 Page 2 of 63
Ex. 2114 - pa.v

//-- 1

module pa (2

 // --- 3

 // chip signals 4

 // --- 5

 sclk_global, 6

 srst, 7

 RBBM_PA_soft_reset, //primitive assembly soft reset 8

 CG_PA_pm_enb, 9

 RBBM_regclk_active, 10

 // --- 11

 // interface to the register bus (rbbm) 12

 // --- 13

 RBBM_a, // address 14

 RBBM_we, // write enable 15

 RBBM_wd, // write data 16

 RBBM_re, // read enable 17

 RBB_rs_in, // read strobe daisy chain in 18

 RBB_rs_out, // read strobe daisy chain out 19

 RBB_rd_in, // read data daisy chain in 20

 RBB_rd_out, // read data daisy chain out 21

 //PA_RBBM_nrtrtr, // non-real-time ready-to-receive 22

 PA_RBBM_busy, // busy signal reported to pa 23

 PA_a, // register address for daisy chain out 24

 PA_we, // register we for daisy chain out 25

 Page 3 of 63
Ex. 2114 - pa.v

 PA_wd, // register wd for daisy chain out 1

 PA_re, // register we for daisy chain out 2

 // --- 3

 // interface to rom 4

 // --- 5

 ROM_SP0_disable, 6

 ROM_SP1_disable, 7

 ROM_SP2_disable, 8

 ROM_SP3_disable, 9

 // --- 10

 // interface to vgt -- per vertex 11

 // --- 12

 VGT_PA_clip_v_vec_size, // number of vertices in current vector 13

 VGT_PA_clip_v_state, // state select 14

 VGT_PA_clip_v_send, // ready-to-send 15

 PA_VGT_clip_v_rtr, // ready-to-receive 16

 // --- 17

 // interface to vgt -- per primitive 18

 // --- 19

 VGT_PA_clip_p_indx0, // internal vertex index 0 20

 VGT_PA_clip_p_indx1, // internal vertex index 1 21

 VGT_PA_clip_p_indx2, // internal vertex index 2 22

 VGT_PA_clip_p_edge_flags, // edge flags 23

 VGT_PA_clip_p_eop, // end-of-packet for state synchronization 24

 VGT_PA_clip_p_null_prim, 25

 Page 4 of 63
Ex. 2114 - pa.v

 VGT_PA_clip_p_dealloc, // deallocation bits 1

 VGT_PA_clip_p_new_vtx_vect, // primitive contains vtx that was the first vtx in a vertex 2
vector process 3

 VGT_PA_clip_p_send, // ready-to-send 4

 PA_VGT_clip_p_rtr, // ready-to-receive 5

 // --- 6

 // interface to vgt -- per state 7

 // --- 8

 VGT_PA_clip_s_type, // clipper prim type. this is a sub-set of the input prim types. 9

 VGT_PA_clip_s_event, // event 10

 VGT_PA_clip_s_state, // state select 11

 VGT_PA_clip_s_send, // ready-to-send 12

 PA_VGT_clip_s_rtr, // ready-to-receive 13

 // --- 14

 // interface to the shader export 0 block 15

 // --- 16

 u0_SX_PA_send, 17

 u0_SX_PA_data, 18

 u0_PA_SX_req, 19

 u0_PA_SX_sp_id, 20

 u0_PA_SX_offset, 21

 u0_PA_SX_aux, 22

 u0_PA_SX_last, 23

 // --- 24

 // interface to the shader export 1 block 25

 // --- 26

ATI 2114
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 523 of 611

 Page 5 of 63
Ex. 2114 - pa.v

 u1_SX_PA_send, 1

 u1_SX_PA_data, 2

 u1_PA_SX_req, 3

 u1_PA_SX_sp_id, 4

 u1_PA_SX_offset, 5

 u1_PA_SX_aux, 6

 u1_PA_SX_last, 7

 // --- 8

 // interface to the scan converter 9

 // --- 10

 PA_SC_p0, 11

 PA_SC_p1, 12

 PA_SC_p2, 13

 PA_SC_p3, 14

 PA_SC_p4, 15

 PA_SC_xy0, 16

 PA_SC_xy1, 17

 PA_SC_xy2, 18

 PA_SC_zminmax, 19

 PA_SC_cntl, 20

 PA_SC_phase, 21

 PA_SC_valid, 22

 PA_SC_v0_indx, 23

 SC_PA_earlyfrz 24

); 25

 Page 6 of 63
Ex. 2114 - pa.v

 1

//`include "PA_clip_pkg.v" 2

 3

 // *********************************** 4

 // i/o definitions 5

 // *********************************** 6

 // chip signals 7

 input sclk_global; 8

 input srst; 9

 input RBBM_PA_soft_reset; 10

 input CG_PA_pm_enb; 11

 input RBBM_regclk_active; 12

 // interface to the register bus (rbbm) 13

 input [16:2] RBBM_a; 14

 input RBBM_we; 15

 input [31:0] RBBM_wd; 16

 input RBBM_re; 17

 input RBB_rs_in; 18

 output RBB_rs_out; 19

 input [31:0] RBB_rd_in; 20

 output [31:0] RBB_rd_out; 21

 //output PA_RBBM_nrtrtr; 22

 output PA_RBBM_busy; 23

 output [16:2] PA_a; 24

 output PA_we; 25

 Page 7 of 63
Ex. 2114 - pa.v

 output [31:0] PA_wd; 1

 output PA_re; 2

 // interface to rom 3

 input ROM_SP0_disable; 4

 input ROM_SP1_disable; 5

 input ROM_SP2_disable; 6

 input ROM_SP3_disable; 7

 // interface to vgt -- per vertex 8

 input [5:0] VGT_PA_clip_v_vec_size; 9

 input [2:0] VGT_PA_clip_v_state; 10

 input VGT_PA_clip_v_send; 11

 output PA_VGT_clip_v_rtr; 12

 // interface to vgt -- per primitive 13

 input [5:0] VGT_PA_clip_p_indx0; 14

 input [5:0] VGT_PA_clip_p_indx1; 15

 input [5:0] VGT_PA_clip_p_indx2; 16

 input [2:0] VGT_PA_clip_p_edge_flags; 17

 input VGT_PA_clip_p_eop; 18

 input VGT_PA_clip_p_null_prim; 19

 input [2:0] VGT_PA_clip_p_dealloc; 20

 input VGT_PA_clip_p_new_vtx_vect; 21

 input VGT_PA_clip_p_send; 22

 output PA_VGT_clip_p_rtr; 23

 // interface to vgt -- per state 24

 input [3:0] VGT_PA_clip_s_type; 25

 Page 8 of 63
Ex. 2114 - pa.v

 input VGT_PA_clip_s_event; 1

 input [2:0] VGT_PA_clip_s_state; 2

 input VGT_PA_clip_s_send; 3

 output PA_VGT_clip_s_rtr; 4

 // interface to shader export east/0 sp0,2 5

 input u0_SX_PA_send; 6

 input [127:0] u0_SX_PA_data; 7

 output u0_PA_SX_req; 8

 output u0_PA_SX_sp_id; 9

 output [1:0] u0_PA_SX_offset; 10

 output u0_PA_SX_aux; 11

 output u0_PA_SX_last; 12

 // interface to shader export west/1 sp1,3 13

 input u1_SX_PA_send; 14

 input [127:0] u1_SX_PA_data; 15

 output u1_PA_SX_req; 16

 output u1_PA_SX_sp_id; 17

 output [1:0] u1_PA_SX_offset; 18

 output u1_PA_SX_aux; 19

 output u1_PA_SX_last; 20

 // interface to scan converter 21

 output [17:0] PA_SC_xy0; 22

 output [17:0] PA_SC_xy1; 23

 output [17:0] PA_SC_xy2; 24

 output [31:0] PA_SC_p0; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 524 of 611

 Page 9 of 63
Ex. 2114 - pa.v

 output [39:0] PA_SC_p1; 1

 output [31:0] PA_SC_p2; 2

 output [31:0] PA_SC_p3; 3

 output [31:0] PA_SC_p4; 4

 output [13:0] PA_SC_zminmax; 5

 output [29:0] PA_SC_cntl; 6

 output [1:0] PA_SC_phase; 7

 output PA_SC_valid; 8

 output [1:0] PA_SC_v0_indx; 9

 input SC_PA_earlyfrz; 10

 11

 // clock gating internal wire 12

 wire sclk; 13

 wire sclk_reg; 14

 wire sclk_pa; 15

 16

 wire pa_srst; 17

 wire pa_hard_srst; 18

 wire pa_soft_srst; 19

 wire cg_blk_gated_clk_override; 20

 wire regclk_active; 21

 wire reg_clk_en; 22

 wire pa_clk_en; 23

 24

 wire SC_PA_earlyfrz_q; 25

 Page 10 of 63
Ex. 2114 - pa.v

 1

 2

 // rbbm interface wires 3

 wire [16:2] RBBM_a_q1; 4

 wire RBBM_we_q1; 5

 wire [31:0] RBBM_wd_q1; 6

 wire RBBM_re_q1; 7

 wire rbiu_block_rs; 8

 wire [31:0] rbiu_block_rd; 9

 wire rbiu_ag_dx_clip_sp_def_sel; 10

 wire [3:0] rbiu_ag_ucp0_sel; 11

 wire [3:0] rbiu_ag_ucp1_sel; 12

 wire [3:0] rbiu_ag_ucp2_sel; 13

 wire [3:0] rbiu_ag_ucp3_sel; 14

 wire [3:0] rbiu_ag_ucp4_sel; 15

 wire [3:0] rbiu_ag_ucp5_sel; 16

 wire [3:0] rbiu_ag_gb_sel; 17

 wire [3:0] rbiu_ag_pntsz_sel; 18

 19

 wire rbiu_ag_cpy; 20

 wire [31:0] ag_rbiu_rdata; 21

 22

 wire rbiu_cl_dx_clip_sp_def_sel; 23

 wire rbiu_cl_status_sel; 24

 wire rbiu_cl_cpy; 25

 Page 11 of 63
Ex. 2114 - pa.v

 wire [31:0] cl_rbiu_rdata; 1

 2

 wire rbiu_ccg_expcntmd_sel; 3

 4

 wire rbiu_ccg_cpy; 5

 wire [31:0] ccg_rbiu_rdata; 6

 7

 wire rbiu_vte_cpy; 8

 wire rbiu_vte_xscale_sel; 9

 wire rbiu_vte_xoffset_sel; 10

 wire rbiu_vte_yscale_sel; 11

 wire rbiu_vte_yoffset_sel; 12

 wire rbiu_vte_zscale_sel; 13

 wire rbiu_vte_zoffset_sel; 14

 wire rbiu_vte_cntl_sel; 15

 wire rbiu_vte_vtx_cntl_sel; 16

 wire rbiu_vte_window_offset_sel; 17

 wire rbiu_vte_window_offset_en_sel; 18

 wire rbiu_vte_persp_corr_dis_sel; 19

 wire [31:0] vte_rbiu_rdata; 20

 21

 wire rbiu_su_imp_exp_sel; 22

 wire rbiu_su_draw_init_sel; 23

 wire rbiu_su_expand_lw_sel; 24

 wire rbiu_su_status_sel; 25

 Page 12 of 63
Ex. 2114 - pa.v

 wire rbiu_su_point_size_sel; 1

 wire rbiu_su_point_min_max_sel; 2

 wire rbiu_su_line_cntl_sel; 3

 wire rbiu_su_sc_mode_cntl_sel; 4

 wire rbiu_su_cpy; 5

 wire [31:0] su_rbiu_rdata; 6

 7

 // setup unit wires 8

 // i/o for clip interface 9

 wire [31:0] clip_su_pt_size; 10

 wire [17:0] clip_su_x0; 11

 wire [17:0] clip_su_x1; 12

 wire [17:0] clip_su_x2; 13

 wire [17:0] clip_su_y0; 14

 wire [17:0] clip_su_y1; 15

 wire [17:0] clip_su_y2; 16

 wire [31:0] clip_su_z0; 17

 wire [31:0] clip_su_z1; 18

 wire [31:0] clip_su_z2; 19

 wire [31:0] clip_su_w0; 20

 wire [31:0] clip_su_w1; 21

 wire [31:0] clip_su_w2; 22

 wire [0:0] clip_su_ef0; 23

 wire [0:0] clip_su_ef1; 24

 wire [0:0] clip_su_ef2; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 525 of 611

 Page 13 of 63
Ex. 2114 - pa.v

 wire [31:0] clip_su_i0; 1

 wire [31:0] clip_su_i1; 2

 wire [31:0] clip_su_i2; 3

 wire [31:0] clip_su_j0; 4

 wire [31:0] clip_su_j1; 5

 wire [31:0] clip_su_j2; 6

 wire [31:0] clip_su_k0; 7

 wire [31:0] clip_su_k1; 8

 wire [31:0] clip_su_k2; 9

 wire [10:0] clip_su_attr_indx0; 10

 wire [10:0] clip_su_attr_indx1; 11

 wire [10:0] clip_su_attr_indx2; 12

 wire [2:0] clip_su_type; 13

 wire [2:0] clip_su_st_indx; 14

 wire [2:0] clip_su_dealloc_slot; 15

 wire [0:0] clip_su_null_prim; 16

 wire [0:0] clip_su_clipped; 17

 wire [0:0] clip_su_fpov; 18

 wire [0:0] clip_su_eop; 19

 wire [0:0] clip_su_event; 20

 wire [3:0] clip_su_event_id; 21

 wire [0:0] clip_su_rts; 22

 wire [0:0] clip_su_baryc_rts; 23

 wire [0:0] su_clip_rtr; 24

 wire [0:0] su_clip_baryc_rtr; 25

 Page 14 of 63
Ex. 2114 - pa.v

 // ========================== 1

 // wires for common rbiu bus 2

 // ========================== 3

 wire rbiu_we; 4

 wire rbiu_re; 5

 wire [2:0] rbiu_waddr; 6

 wire [2:0] rbiu_raddr; 7

 wire [31:0] rbiu_wdata; 8

 // ========================== 9

 // wires for registered input 10

 // ========================== 11

 wire [46:0] VGT_PA_input_data; 12

 wire [46:0] VGT_PA_input_data_q; 13

 wire [5:0] VGT_PA_clip_v_vec_size_q; 14

 wire [2:0] VGT_PA_clip_v_state_q; 15

 wire VGT_PA_clip_v_send_q; 16

 wire [5:0] VGT_PA_clip_p_indx0_q; 17

 wire [5:0] VGT_PA_clip_p_indx1_q; 18

 wire [5:0] VGT_PA_clip_p_indx2_q; 19

 wire [2:0] VGT_PA_clip_p_edge_flags_q; 20

 wire VGT_PA_clip_p_eop_q; 21

 wire VGT_PA_clip_p_null_prim_q; 22

 wire [2:0] VGT_PA_clip_p_dealloc_q; 23

 wire VGT_PA_clip_p_new_vtx_vect_q; 24

 wire VGT_PA_clip_p_send_q; 25

 Page 15 of 63
Ex. 2114 - pa.v

 wire [3:0] VGT_PA_clip_s_type_q; 1

 wire VGT_PA_clip_s_event_q; 2

 wire [2:0] VGT_PA_clip_s_state_q; 3

 wire VGT_PA_clip_s_send_q; 4

 // ========================== 5

 // wires for registered output 6

 // ========================== 7

 wire [2:0] PA_VGT_output_data; 8

 wire [2:0] PA_VGT_output_data_q; 9

 wire PA_VGT_clip_v_d; 10

 wire PA_VGT_clip_p_d; 11

 wire PA_VGT_clip_s_d; 12

 wire [17:0] PA_SC_xy0_d; 13

 wire [17:0] PA_SC_xy1_d; 14

 wire [17:0] PA_SC_xy2_d; 15

 wire [31:0] PA_SC_p0_d; 16

 wire [39:0] PA_SC_p1_d; 17

 wire [31:0] PA_SC_p2_d; 18

 wire [31:0] PA_SC_p3_d; 19

 wire [31:0] PA_SC_p4_d; 20

 wire [13:0] PA_SC_zminmax_d; 21

 wire [29:0] PA_SC_cntl_d; 22

 wire [1:0] PA_SC_phase_d; 23

 wire PA_SC_valid_d; 24

 wire [1:0] PA_SC_v0_indx_d; 25

 Page 16 of 63
Ex. 2114 - pa.v

 1

 wire [17:0] PA_SC_xy0_q; 2

 wire [17:0] PA_SC_xy1_q; 3

 wire [17:0] PA_SC_xy2_q; 4

 wire [31:0] PA_SC_p0_q; 5

 wire [39:0] PA_SC_p1_q; 6

 wire [31:0] PA_SC_p2_q; 7

 wire [31:0] PA_SC_p3_q; 8

 wire [31:0] PA_SC_p4_q; 9

 wire [13:0] PA_SC_zminmax_q; 10

 wire [29:0] PA_SC_cntl_q; 11

 wire [1:0] PA_SC_phase_q; 12

 wire PA_SC_valid_q; 13

 wire [1:0] PA_SC_v0_indx_q; 14

 wire su_busy; 15

 16

 wire u0_PA_SX_req_d; 17

 wire u0_PA_SX_sp_id_d; 18

 wire [1:0] u0_PA_SX_offset_d; 19

 wire u0_PA_SX_aux_d; 20

 wire u0_PA_SX_last_d; 21

 wire u1_PA_SX_req_d; 22

 wire u1_PA_SX_sp_id_d; 23

 wire [1:0] u1_PA_SX_offset_d; 24

 wire u1_PA_SX_aux_d; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 526 of 611

 Page 17 of 63
Ex. 2114 - pa.v

 wire u1_PA_SX_last_d; 1

 2

 wire u0_PA_SX_req_q; 3

 wire u0_PA_SX_sp_id_q; 4

 wire [1:0] u0_PA_SX_offset_q; 5

 wire u0_PA_SX_aux_q; 6

 wire u0_PA_SX_last_q; 7

 8

 wire u1_PA_SX_req_q; 9

 wire u1_PA_SX_sp_id_q; 10

 wire [1:0] u1_PA_SX_offset_q; 11

 wire u1_PA_SX_aux_q; 12

 wire u1_PA_SX_last_q; 13

 14

 // shader export interface/clip code generator wires 15

 wire [128:0] SX0_PA_input_data; 16

 wire [128:0] SX0_PA_input_data_q; 17

 wire SX0_PA_input_data_write; 18

 wire [127:0] SX0_PA_input_data_wrdata; 19

 20

 wire [128:0] SX1_PA_input_data; 21

 wire [128:0] SX1_PA_input_data_q; 22

 wire SX1_PA_input_data_write; 23

 wire [127:0] SX1_PA_input_data_wrdata; 24

 25

 Page 18 of 63
Ex. 2114 - pa.v

 1

 // ========================== 2

 // wires for pa_sxifccg 3

 // ========================== 4

 wire [1:0] cl_ccg_outsm_clr_orig_vertices; 5

 wire cl_ccg_ccgen_to_clipcc_fifo_full; 6

 wire arb_ccg_xfc; 7

 wire ccg_ag_pos_mem_we; 8

 wire [5:0] ccg_ag_pntsz_mem_wraddr; 9

 wire [5:0] ccg_ag_pos_mem_wraddr; 10

 wire [127:0] ccg_ag_pos_pntsz_mem_wrdata; 11

 wire ccg_ag_pntsz_mem_we; 12

 wire [31:0] ccg_ag_pntsz_mem_wrdata; 13

 wire [17-1:0] ccg_cl_wrdata; 14

 wire ccg_cl_write; 15

 wire [15:0] ccg_arb_data; 16

 wire [7-1:0] cl_ccg_state0; 17

 wire [7-1:0] cl_ccg_state1; 18

 wire [7-1:0] cl_ccg_state2; 19

 wire [7-1:0] cl_ccg_state3; 20

 wire [7-1:0] cl_ccg_state4; 21

 wire [7-1:0] cl_ccg_state5; 22

 wire [7-1:0] cl_ccg_state6; 23

 wire [7-1:0] cl_ccg_state7; 24

 wire [6:0] ccg_rbiu_rdata_26_downto_20; 25

 Page 19 of 63
Ex. 2114 - pa.v

 wire [7-1:0] sxif_state0; 1

 wire [7-1:0] sxif_state1; 2

 wire [7-1:0] sxif_state2; 3

 wire [7-1:0] sxif_state3; 4

 wire [7-1:0] sxif_state4; 5

 wire [7-1:0] sxif_state5; 6

 wire [7-1:0] sxif_state6; 7

 wire [7-1:0] sxif_state7; 8

 9

 // ========================== 10

 // wires for pa_clipper 11

 // ========================== 12

 //wire [clip_state_width-1:0] clip_st_w_data; 13

 //wire [14-1:0] clip_st_w_data; 14

 //wire clip_st_sel; 15

 wire arb_cl_xfc; 16

 wire [5:0] ag_cl_vertex_store_indx; 17

 wire [1:0] ag_cl_valid_bit_set; 18

 wire [3:0] ag_cl_user_clip_indx; 19

 wire ag_cl_vv_cc_test; 20

 wire ag_cl_ucp_cc_test; 21

 wire ag_cl_bcc_cc_test; 22

 wire ag_cl_ps_ucp_cc_test; 23

 wire ag_cl_ps_engh_test; 24

 wire cl_arb_ve_valid; 25

 Page 20 of 63
Ex. 2114 - pa.v

 wire [29:0] cl_arb_data; 1

 wire vmb_cl_rei_r0vld; 2

 wire vmb_cl_rei_r1vld; 3

 wire cl_rei_clear_result; 4

 wire clipper_busy; 5

 wire ag_cl_pntsz_mem_blocked; 6

 wire [31:0] ag_cl_pntsz_mem_rdata; 7

 wire cl_ag_pntsz_mem_re; 8

 wire [5:0] cl_ag_pntsz_mem_raddr; 9

 wire clip_to_ag_point_buf_re; 10

 wire [5:0] clip_to_ag_point_buf_raddr; 11

 wire [31:0] ag_to_clip_point_size; 12

 13

 // ========================== 14

 // wires for PA_ag 15

 // ========================== 16

 wire [2:0] ag_ve_opcode; 17

 wire [31:0] ag_ve_in_a0; 18

 wire [31:0] ag_ve_in_a1; 19

 wire [31:0] ag_ve_in_a2; 20

 wire [31:0] ag_ve_in_a3; 21

 wire [31:0] ag_ve_in_b0; 22

 wire [31:0] ag_ve_in_b1; 23

 wire [31:0] ag_ve_in_b2; 24

 wire [31:0] ag_ve_in_b3; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 527 of 611

 Page 21 of 63
Ex. 2114 - pa.v

 wire ag_ve_a_is_wwww; 1

 wire ag_ve_broadcast_x; 2

 wire ag_ve_abs_a; 3

 wire ag_ve_abs_b; 4

 wire ag_ve_abs_c; 5

 wire ag_ve_ax_negate; 6

 wire ag_ve_ay_negate; 7

 wire ag_ve_az_negate; 8

 wire ag_ve_aw_negate; 9

 wire ag_ve_bx_negate; 10

 wire ag_ve_by_negate; 11

 wire ag_ve_bz_negate; 12

 wire ag_ve_bw_negate; 13

 wire ag_ve_cx_negate; 14

 wire ag_ve_cy_negate; 15

 wire ag_ve_cz_negate; 16

 wire ag_ve_cw_negate; 17

 wire ag_ve_bcc_flat_tst; 18

 wire [2:0] ag_ve_out_mem_sel; 19

 wire [5:0] ag_ve_out_addr; 20

 wire [3:0] ag_ve_out_we; 21

 wire ag_ve_accum_sel; 22

 wire [3:0] ag_ve_pre_accum_we; 23

 wire [9:0] vmb_ve_tst_rtn_stat; 24

 wire [5:0] ve_waddr; 25

 Page 22 of 63
Ex. 2114 - pa.v

 wire [3:0] ve_veoc_vector_back_we; 1

 wire [3:0] ve_cliptemp_vector_we; 2

 wire [127:0] ve_wdata; 3

 4

 // ========================== 5

 // wires for PA_ag 6

 // ========================== 7

 wire [2:0] ag_vte_opcode; 8

 wire [2:0] ag_vte_st_indx; 9

 wire [1:0] ag_vte_vertex_store_indx; 10

 11

 // ========================== 12

 // wires for PA_vte 13

 // ========================== 14

 wire [1:0] vte_vertex_store_indx; 15

 wire [2:0] vte_opcode; 16

 wire [127:0] vte_d; 17

 wire [31:0] vte_rcp_d; 18

 wire vte_rcp_rts; 19

 wire vcm_rcp_rei_xfc; 20

 wire [31:0] vcm_rcp_rei_d; 21

 22

 reg pa_sc_valid; 23

 wire set_PA_RBBM_busy; 24

 wire PA_RBBM_busy_d; 25

 Page 23 of 63
Ex. 2114 - pa.v

 reg [3:0] PA_RBBM_busy_delay; 1

 reg PA_RBBM_busy_reg; 2

 wire vcm_rcp_rei_rtr; 3

 wire [31:0] vmc_rei_rcp_d; 4

 wire vmc_rei_rcp_rts; 5

 wire [31:0] rei_sc_r0data; 6

 wire [31:0] rei_sc_r1data; 7

 8

 9

//== 10

// pick off part of position data 11

//== 12

 assign ccg_ag_pntsz_mem_wrdata = ccg_ag_pos_pntsz_mem_wrdata[31:0]; 13

 14

 assign ccg_rbiu_rdata = {5'h0, ccg_rbiu_rdata_26_downto_20, 20'h0}; 15

 16

//== 17

// create sclk and interface to clock gating logic 18

//== 19

 //create sclk by registering sclk_global 20

 ati_master_clock_permanent uati_master_clock_permanent(21

 .clk_in(sclk_global), 22

 .clk_out(sclk) 23

); 24

 25

 Page 24 of 63
Ex. 2114 - pa.v

 // register the perm clk gate override signal 1

 ati_dff_in #(1) uati_dff_in_pm_en(2

 .clk(sclk), 3

 .d(CG_PA_pm_enb), 4

 .q(cg_blk_gated_clk_override) 5

); 6

 7

 // create registered clock enable signals based on active signals 8

 ati_dff_in #(1) uati_dff_in_regclk_active(9

 .clk(sclk), 10

 .d(RBBM_regclk_active), 11

 .q(regclk_active) 12

); 13

 14

 // duplicate the function of the PA_SC_valid flop 15

 always @(posedge sclk_pa) begin 16

 if (SC_PA_earlyfrz_q == 'h1) begin 17

 pa_sc_valid <= PA_SC_valid_d; 18

 end 19

 end 20

 21

 // busy signal generation 22

 assign set_PA_RBBM_busy = VGT_PA_clip_p_send_q | 23

 VGT_PA_clip_s_send_q | 24

 VGT_PA_clip_v_send_q | 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 528 of 611

 Page 25 of 63
Ex. 2114 - pa.v

 clipper_busy | 1

 su_busy | 2

 pa_sc_valid; 3

 4

 always @(posedge sclk_pa) begin 5

 if (srst) begin 6

 PA_RBBM_busy_delay <= 'h0; 7

 end 8

 else begin 9

 PA_RBBM_busy_delay <= {PA_RBBM_busy_delay[2:0], set_PA_RBBM_busy}; 10

 end 11

 end 12

 13

 assign PA_RBBM_busy_d = PA_RBBM_busy_delay != 'h0; 14

 15

 16

 //this enable would be intiated by RBBM_regclk_active and held high in the 17

 //block as long as necessary to ensure all data could be read 18

 assign reg_clk_en = regclk_active | PA_RBBM_busy; 19

 20

 //this active signal would be a collection of request from external blocks that require 21

 //the block clocks to be enabled along with internal busy signals that require the clocks 22

 //to stay on 23

 assign pa_clk_en = !cg_blk_gated_clk_override | PA_RBBM_busy; 24

 25

 Page 26 of 63
Ex. 2114 - pa.v

 1

 //generate the sclk_reg clock tree 2

 ati_master_clock_gater uati_master_clock_gater_sclk_reg (3

 .clk_in(sclk_global), 4

 .clk(sclk), 5

 .en(reg_clk_en), 6

 .pm_enb(cg_blk_gated_clk_override), 7

 .clk_out(sclk_reg) 8

); 9

 10

 //generate sclk_sc clock tree 11

 ati_master_clock_gater uati_master_clock_gater_sc_clk (12

 .clk_in(sclk_global), 13

 .clk(sclk), 14

 .en(pa_clk_en), 15

 .pm_enb(cg_blk_gated_clk_override), 16

 .clk_out(sclk_pa) 17

); 18

//== 19

// instantiate common rbbm interface block 20

//== 21

 //rbbm interface register 22

 ati_rbbm_intf uati_rbbm_intf(23

 .sclk_reg(sclk_reg), 24

 .rbbm_we(RBBM_we), 25

 Page 27 of 63
Ex. 2114 - pa.v

 .rbbm_re(RBBM_re), 1

 .rbbm_a(RBBM_a), 2

 .rbbm_wd(RBBM_wd), 3

 .reg_we(RBBM_we_q1), 4

 .reg_re(RBBM_re_q1), 5

 .reg_a(RBBM_a_q1), 6

 .reg_wd(RBBM_wd_q1), 7

 .pipe_we(PA_we), 8

 .pipe_re(PA_re), 9

 .pipe_a(PA_a), 10

 .pipe_wd(PA_wd), 11

 .rbbm_rs_in(RBB_rs_in), 12

 .rbbm_rd_in(RBB_rd_in), 13

 .block_rs(rbiu_block_rs), 14

 .block_rd(rbiu_block_rd), 15

 .rbbm_rs_out(RBB_rs_out), 16

 .rbbm_rd_out(RBB_rd_out) 17

); 18

 19

//== 20

// create hard and soft reset signal 21

//== 22

 //register input reset 23

 ati_dff_in #(1) uati_dff_in_pa_hard_srst(24

 .clk(sclk), 25

 Page 28 of 63
Ex. 2114 - pa.v

 .d(srst), 1

 .q(pa_hard_srst) 2

); 3

 4

 //register input soft resets 5

 ati_dff_in #(1) uati_dff_in_pa_soft_srst(6

 .clk(sclk), 7

 .d(RBBM_PA_soft_reset), 8

 .q(pa_soft_srst) 9

); 10

 11

 //use this in the block for the srst everywhere except 12

 //state storage that can only get reset by a hard reset 13

 assign pa_srst = pa_soft_srst | pa_hard_srst; 14

 15

// =================== 16

// register outputs 17

// =================== 18

 ati_dff_out #(3) uVGT_PA_out_intf(19

 .clk(sclk_pa), 20

 .d(PA_VGT_output_data), 21

 .q(PA_VGT_output_data_q) 22

); 23

 24

 ati_dff_en_out #(32) uPA_SC_out0(25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 529 of 611

 Page 29 of 63
Ex. 2114 - pa.v

 .clk(sclk_pa), 1

 .en(SC_PA_earlyfrz_q), 2

 .d(PA_SC_p0_d), 3

 .q(PA_SC_p0_q) 4

); 5

 6

 ati_dff_en_out #(40) uPA_SC_out1(7

 .clk(sclk_pa), 8

 .en(SC_PA_earlyfrz_q), 9

 .d(PA_SC_p1_d), 10

 .q(PA_SC_p1_q) 11

); 12

 13

 ati_dff_en_out #(32) uPA_SC_out2(14

 .clk(sclk_pa), 15

 .en(SC_PA_earlyfrz_q), 16

 .d(PA_SC_p2_d), 17

 .q(PA_SC_p2_q) 18

); 19

 20

 ati_dff_en_out #(32) uPA_SC_out3(21

 .clk(sclk_pa), 22

 .en(SC_PA_earlyfrz_q), 23

 .d(PA_SC_p3_d), 24

 .q(PA_SC_p3_q) 25

 Page 30 of 63
Ex. 2114 - pa.v

); 1

 2

 ati_dff_en_out #(32) uPA_SC_out4(3

 .clk(sclk_pa), 4

 .en(SC_PA_earlyfrz_q), 5

 .d(PA_SC_p4_d), 6

 .q(PA_SC_p4_q) 7

); 8

 9

 ati_dff_en_out #(54) uPA_SC_out5(10

 .clk(sclk_pa), 11

 .en(SC_PA_earlyfrz_q), 12

 .d({PA_SC_xy2_d,PA_SC_xy1_d,PA_SC_xy0_d}), 13

 .q({PA_SC_xy2_q,PA_SC_xy1_q,PA_SC_xy0_q}) 14

); 15

 16

 ati_dff_en_out #(49) uPA_SC_out6(17

 .clk(sclk_pa), 18

 .en(SC_PA_earlyfrz_q), 19

 20
.d({PA_SC_v0_indx_d,PA_SC_valid_d,PA_SC_cntl_d,PA_SC_phase_d,PA_SC_zminmax_d}21
), 22

 23
.q({PA_SC_v0_indx_q,PA_SC_valid_q,PA_SC_cntl_q,PA_SC_phase_q,PA_SC_zminmax_q}24
) 25

); 26

 27

 Page 31 of 63
Ex. 2114 - pa.v

 // ===================== 1

 // u0_PA_SX 2

 // ===================== 3

 4

 ati_dff_out #(6) uPA_SX0_data_out (5

 .clk(sclk_pa), 6

 .d({u0_PA_SX_req_d, 7

 u0_PA_SX_sp_id_d, 8

 u0_PA_SX_offset_d, 9

 u0_PA_SX_aux_d, 10

 u0_PA_SX_last_d}), 11

 .q({u0_PA_SX_req_q, 12

 u0_PA_SX_sp_id_q, 13

 u0_PA_SX_offset_q, 14

 u0_PA_SX_aux_q, 15

 u0_PA_SX_last_q}) 16

); 17

 18

 // ===================== 19

 // u1_PA_SX 20

 // ===================== 21

 22

 ati_dff_out #(6) uPA_SX1_data_out (23

 .clk(sclk_pa), 24

 .d({u1_PA_SX_req_d, 25

 Page 32 of 63
Ex. 2114 - pa.v

 u1_PA_SX_sp_id_d, 1

 u1_PA_SX_offset_d, 2

 u1_PA_SX_aux_d, 3

 u1_PA_SX_last_d}), 4

 .q({u1_PA_SX_req_q, 5

 u1_PA_SX_sp_id_q, 6

 u1_PA_SX_offset_q, 7

 u1_PA_SX_aux_q, 8

 u1_PA_SX_last_q}) 9

); 10

 11

 // ===================== 12

 // PA_RBBM_busy 13

 // ===================== 14

 ati_dff_out #(1) uPA_RBBM_busy (15

 .clk(sclk_pa), 16

 .d(PA_RBBM_busy_d), 17

 .q(PA_RBBM_busy) 18

); 19

 20

 // =================== 21

 // register inputs 22

 // =================== 23

 ati_dff_in #(47) uVGT_PA_in_inft(24

 .clk(sclk_pa), 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 530 of 611

 Page 33 of 63
Ex. 2114 - pa.v

 .d(VGT_PA_input_data), 1

 .q(VGT_PA_input_data_q) 2

); 3

 4

 ati_dff_in #(129) uu0_SX_PA_data_inft(5

 .clk(sclk_pa), 6

 .d(SX0_PA_input_data), 7

 .q(SX0_PA_input_data_q) 8

); 9

 10

 ati_dff_in #(129) uu1_SX_PA_data_inft(11

 .clk(sclk_pa), 12

 .d(SX1_PA_input_data), 13

 .q(SX1_PA_input_data_q) 14

); 15

 16

 assign u0_PA_SX_req = u0_PA_SX_req_q; 17

 assign u0_PA_SX_sp_id = u0_PA_SX_sp_id_q; 18

 assign u0_PA_SX_offset = u0_PA_SX_offset_q; 19

 assign u0_PA_SX_aux = u0_PA_SX_aux_q; 20

 assign u0_PA_SX_last = u0_PA_SX_last_q; 21

 assign u1_PA_SX_req = u1_PA_SX_req_q; 22

 assign u1_PA_SX_sp_id = u1_PA_SX_sp_id_q; 23

 assign u1_PA_SX_offset = u1_PA_SX_offset_q; 24

 assign u1_PA_SX_aux = u1_PA_SX_aux_q; 25

 Page 34 of 63
Ex. 2114 - pa.v

 assign u1_PA_SX_last = u1_PA_SX_last_q; 1

 assign PA_SC_v0_indx = PA_SC_v0_indx_q; 2

 assign PA_SC_valid = PA_SC_valid_q; 3

 assign PA_SC_cntl = PA_SC_cntl_q; 4

 assign PA_SC_phase = PA_SC_phase_q; 5

 assign PA_SC_zminmax = PA_SC_zminmax_q; 6

 assign PA_SC_xy0 = PA_SC_xy0_q; 7

 assign PA_SC_xy1 = PA_SC_xy1_q; 8

 assign PA_SC_xy2 = PA_SC_xy2_q; 9

 assign PA_SC_p0 = PA_SC_p0_q; 10

 assign PA_SC_p1 = PA_SC_p1_q; 11

 assign PA_SC_p2 = PA_SC_p2_q; 12

 assign PA_SC_p3 = PA_SC_p3_q; 13

 assign PA_SC_p4 = PA_SC_p4_q; 14

 15

 assign {VGT_PA_clip_v_vec_size_q, // [46:41] 16

 VGT_PA_clip_v_state_q, // [40:38] 17

 VGT_PA_clip_v_send_q, // [37] 18

 VGT_PA_clip_p_indx0_q, // [36:31] 19

 VGT_PA_clip_p_indx1_q, // [30:25] 20

 VGT_PA_clip_p_indx2_q, // [24:19] 21

 VGT_PA_clip_p_edge_flags_q, // [18:16] 22

 VGT_PA_clip_p_eop_q, // [15] 23

 VGT_PA_clip_p_null_prim_q, // [14] 24

 VGT_PA_clip_p_dealloc_q, // [13:11] 25

 Page 35 of 63
Ex. 2114 - pa.v

 VGT_PA_clip_p_new_vtx_vect_q, // [10] 1

 VGT_PA_clip_p_send_q, // [9] 2

 VGT_PA_clip_s_event_q, // [8] 3

 VGT_PA_clip_s_type_q, // [7:4] 4

 VGT_PA_clip_s_state_q, // [3:1] 5

 VGT_PA_clip_s_send_q} // [0] 6

 = VGT_PA_input_data_q; 7

 8

 assign VGT_PA_input_data = {VGT_PA_clip_v_vec_size, // [46:41] 9

 VGT_PA_clip_v_state, // [40:38] 10

 VGT_PA_clip_v_send, // [37] 11

 VGT_PA_clip_p_indx0, // [36:31] 12

 VGT_PA_clip_p_indx1, // [30:25] 13

 VGT_PA_clip_p_indx2, // [24:19] 14

 VGT_PA_clip_p_edge_flags, // [18:16] 15

 VGT_PA_clip_p_eop, // [15] 16

 VGT_PA_clip_p_null_prim, // [14] 17

 VGT_PA_clip_p_dealloc, // [13:11] 18

 VGT_PA_clip_p_new_vtx_vect,// [10] 19

 VGT_PA_clip_p_send, // [9] 20

 VGT_PA_clip_s_event, // [8] 21

 VGT_PA_clip_s_type, // [7:4] 22

 VGT_PA_clip_s_state, // [3:1] 23

 VGT_PA_clip_s_send}; // [0] 24

 25

 Page 36 of 63
Ex. 2114 - pa.v

 assign PA_VGT_clip_v_rtr = PA_VGT_output_data_q[2]; 1

 assign PA_VGT_clip_p_rtr = PA_VGT_output_data_q[1]; 2

 assign PA_VGT_clip_s_rtr = PA_VGT_output_data_q[0]; 3

 4

 assign PA_VGT_output_data = {PA_VGT_clip_v_d, 5

 PA_VGT_clip_p_d, 6

 PA_VGT_clip_s_d}; 7

 8

 assign SX0_PA_input_data = {u0_SX_PA_send, 9

 u0_SX_PA_data}; 10

 11

 assign {SX0_PA_input_data_write, 12

 SX0_PA_input_data_wrdata} = SX0_PA_input_data_q; 13

 14

 assign SX1_PA_input_data = {u1_SX_PA_send, 15

 u1_SX_PA_data}; 16

 17

 assign {SX1_PA_input_data_write, 18

 SX1_PA_input_data_wrdata} = SX1_PA_input_data_q; 19

 20

 21

 //register pipe freeze signal before using it 22

 ati_dff_in #(1) uati_dff_in_earlyfrz(23

 .clk(sclk_pa), 24

 .d(SC_PA_earlyfrz), 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 531 of 611

 Page 37 of 63
Ex. 2114 - pa.v

 .q(SC_PA_earlyfrz_q) 1

); 2

 3

// rbbm interface 4

pa_rbiu upa_rbiu (5

 // chip signals 6

 .CG_PA_sclk_reg(sclk_reg), 7

 // interface to the global register bus (rbbm) 8

 .RBBM_a_q1(RBBM_a_q1), // address 9

 .RBBM_we_q1(RBBM_we_q1), // write enable 10

 .RBBM_wd_q1(RBBM_wd_q1), // write data 11

 .RBBM_re_q1(RBBM_re_q1), // read enable 12

 // rbbm read data daisy chain 13

 .rbiu_block_rs(rbiu_block_rs), // read strobe daisy chain out 14

 .rbiu_block_rd(rbiu_block_rd), // read data daisy chain in 15

 // common rbiu interface to vte,su,ccg,cl,ag 16

 .rbiu_we(rbiu_we), 17

 .rbiu_re(rbiu_re), 18

 .rbiu_waddr(rbiu_waddr), 19

 .rbiu_raddr(rbiu_raddr), 20

 .rbiu_wdata(rbiu_wdata), 21

 // interface to ag 22

 .ag_rbiu_rdata(ag_rbiu_rdata), 23

 .rbiu_ag_cpy(rbiu_ag_cpy), 24

 .rbiu_ag_dx_clip_sp_def_sel(rbiu_ag_dx_clip_sp_def_sel), 25

 Page 38 of 63
Ex. 2114 - pa.v

 .rbiu_ag_ucp0_sel(rbiu_ag_ucp0_sel), 1

 .rbiu_ag_ucp1_sel(rbiu_ag_ucp1_sel), 2

 .rbiu_ag_ucp2_sel(rbiu_ag_ucp2_sel), 3

 .rbiu_ag_ucp3_sel(rbiu_ag_ucp3_sel), 4

 .rbiu_ag_ucp4_sel(rbiu_ag_ucp4_sel), 5

 .rbiu_ag_ucp5_sel(rbiu_ag_ucp5_sel), 6

 .rbiu_ag_gb_sel(rbiu_ag_gb_sel), 7

 .rbiu_ag_pntsz_sel(rbiu_ag_pntsz_sel), 8

 // interface to cl 9

 .cl_rbiu_rdata(cl_rbiu_rdata), 10

 .rbiu_cl_cpy(rbiu_cl_cpy), 11

 .rbiu_cl_dx_clip_sp_def_sel(rbiu_cl_dx_clip_sp_def_sel), 12

 .rbiu_cl_status_sel(rbiu_cl_status_sel), 13

 // interface to ccg 14

 .ccg_rbiu_rdata(ccg_rbiu_rdata), 15

 .rbiu_ccg_cpy(rbiu_ccg_cpy), 16

 .rbiu_ccg_expcntmd_sel(rbiu_ccg_expcntmd_sel), 17

 // interface to vte 18

 .vte_rbiu_rdata(vte_rbiu_rdata), 19

 .rbiu_vte_cpy(rbiu_vte_cpy), 20

 .rbiu_vte_xscale_sel(rbiu_vte_xscale_sel), 21

 .rbiu_vte_xoffset_sel(rbiu_vte_xoffset_sel), 22

 .rbiu_vte_yscale_sel(rbiu_vte_yscale_sel), 23

 .rbiu_vte_yoffset_sel(rbiu_vte_yoffset_sel), 24

 .rbiu_vte_zscale_sel(rbiu_vte_zscale_sel), 25

 Page 39 of 63
Ex. 2114 - pa.v

 .rbiu_vte_zoffset_sel(rbiu_vte_zoffset_sel), 1

 .rbiu_vte_cntl_sel(rbiu_vte_cntl_sel), 2

 .rbiu_vte_vtx_cntl_sel(rbiu_vte_vtx_cntl_sel), 3

 .rbiu_vte_window_offset_sel(rbiu_vte_window_offset_sel), 4

 .rbiu_vte_window_offset_en_sel(rbiu_vte_window_offset_en_sel), 5

 .rbiu_vte_persp_corr_dis_sel(rbiu_vte_persp_corr_dis_sel), 6

 // interface to su 7

 .su_rbiu_rdata(su_rbiu_rdata), 8

 .rbiu_su_cpy(rbiu_su_cpy), 9

 .rbiu_su_expand_lw_sel(rbiu_su_expand_lw_sel), 10

 .rbiu_su_imp_exp_sel(rbiu_su_imp_exp_sel), 11

 .rbiu_su_draw_init_sel(rbiu_su_draw_init_sel), 12

 .rbiu_su_status_sel(rbiu_su_status_sel), 13

 .rbiu_su_point_size_sel(rbiu_su_point_size_sel), 14

 .rbiu_su_point_min_max_sel(rbiu_su_point_min_max_sel), 15

 .rbiu_su_line_cntl_sel(rbiu_su_line_cntl_sel), 16

 .rbiu_su_sc_mode_cntl_sel(rbiu_su_sc_mode_cntl_sel) 17

); 18

 19

pa_ag 20

upa_ag 21

 (22

 .sclk (sclk_pa), 23

 .srst (srst), 24

 25

 Page 40 of 63
Ex. 2114 - pa.v

 .rbiu_ag_dx_clip_sp_def_sel (rbiu_ag_dx_clip_sp_def_sel), 1

 .rbiu_ag_ucp0_sel (rbiu_ag_ucp0_sel), 2

 .rbiu_ag_ucp1_sel (rbiu_ag_ucp1_sel), 3

 .rbiu_ag_ucp2_sel (rbiu_ag_ucp2_sel), 4

 .rbiu_ag_ucp3_sel (rbiu_ag_ucp3_sel), 5

 .rbiu_ag_ucp4_sel (rbiu_ag_ucp4_sel), 6

 .rbiu_ag_ucp5_sel (rbiu_ag_ucp5_sel), 7

 .rbiu_ag_gb_sel (rbiu_ag_gb_sel), 8

 .rbiu_ag_pntsz_sel (rbiu_ag_pntsz_sel), 9

 10

 .rbiu_we (rbiu_we), 11

 .rbiu_wa (rbiu_waddr), 12

 .rbiu_wd (rbiu_wdata), 13

 .rbiu_cpy (rbiu_su_cpy), 14

 .rbiu_re (rbiu_re), 15

 .ag_rbiu_rd (ag_rbiu_rdata), 16

 17

 .ccg_to_arb_data (ccg_arb_data), 18

 .arb_ccg_xfc (arb_ccg_xfc), 19

 20

 .clip_ve_valid (cl_arb_ve_valid), 21

 .clip_to_arb_data (cl_arb_data), 22

 .arb_clip_xfc (arb_cl_xfc), 23

 24

 .clip_to_ag_point_buf_re (clip_to_ag_point_buf_re), 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 532 of 611

 Page 41 of 63
Ex. 2114 - pa.v

 .clip_to_ag_point_buf_raddr (clip_to_ag_point_buf_raddr), 1

 .ag_to_clip_point_size (ag_to_clip_point_size), 2

 3

 .pos_pntsz_ag_mem_data (ccg_ag_pos_pntsz_mem_wrdata), 4

 .pos_mem_waddr (ccg_ag_pos_mem_wraddr), 5

 .pntsz_mem_waddr (ccg_ag_pntsz_mem_wraddr), 6

 .pos_mem_we (ccg_ag_pos_mem_we), 7

 .pntsz_mem_we (ccg_ag_pntsz_mem_we), 8

 9

 .inv_ret_sc_data ({rei_sc_r1data,rei_sc_r0data}), 10

 11

 .ve_cliptemp_vector_we (ve_cliptemp_vector_we), 12

 .ve_veoc_vector_back_we (ve_veoc_vector_back_we), 13

 .ve_waddr (ve_waddr), 14

 .ve_wdata (ve_wdata), 15

 16

 .agve_dly_valid_op (), 17

 .agve_dly_vertex_store_indx (ag_cl_vertex_store_indx), 18

 .agve_dly_valid_bit_set (ag_cl_valid_bit_set), 19

 .agve_dly_user_clip_indx (ag_cl_user_clip_indx), 20

 .agve_dly_vv_cc_test (ag_cl_vv_cc_test), 21

 .agve_dly_ucp_cc_test (ag_cl_ucp_cc_test), 22

 .agve_dly_bcc_cc_test (ag_cl_bcc_cc_test), 23

 .agve_dly_ps_ucp_cc_test (ag_cl_ps_ucp_cc_test), 24

 .agve_dly_ps_engh_test (ag_cl_ps_engh_test), 25

 Page 42 of 63
Ex. 2114 - pa.v

 1

 .ag_vte_opcode (ag_vte_opcode), 2

 .ag_vte_st_indx (ag_vte_st_indx), 3

 .ag_vte_vertex_store_indx (ag_vte_vertex_store_indx), 4

 5

 .ag_ve_opcode (ag_ve_opcode), 6

 .ag_ve_in_a0 (ag_ve_in_a0), 7

 .ag_ve_in_a1 (ag_ve_in_a1), 8

 .ag_ve_in_a2 (ag_ve_in_a2), 9

 .ag_ve_in_a3 (ag_ve_in_a3), 10

 .ag_ve_in_b0 (ag_ve_in_b0), 11

 .ag_ve_in_b1 (ag_ve_in_b1), 12

 .ag_ve_in_b2 (ag_ve_in_b2), 13

 .ag_ve_in_b3 (ag_ve_in_b3), 14

 .ag_ve_a_is_wwww (ag_ve_a_is_wwww), 15

 .ag_ve_broadcast_x (ag_ve_broadcast_x), 16

 .ag_ve_abs_a (ag_ve_abs_a), 17

 .ag_ve_abs_b (ag_ve_abs_b), 18

 .ag_ve_abs_c (ag_ve_abs_c), 19

 .ag_ve_ax_negate (ag_ve_ax_negate), 20

 .ag_ve_ay_negate (ag_ve_ay_negate), 21

 .ag_ve_az_negate (ag_ve_az_negate), 22

 .ag_ve_aw_negate (ag_ve_aw_negate), 23

 .ag_ve_bx_negate (ag_ve_bx_negate), 24

 .ag_ve_by_negate (ag_ve_by_negate), 25

 Page 43 of 63
Ex. 2114 - pa.v

 .ag_ve_bz_negate (ag_ve_bz_negate), 1

 .ag_ve_bw_negate (ag_ve_bw_negate), 2

 .ag_ve_cx_negate (ag_ve_cx_negate), 3

 .ag_ve_cy_negate (ag_ve_cy_negate), 4

 .ag_ve_cz_negate (ag_ve_cz_negate), 5

 .ag_ve_cw_negate (ag_ve_cw_negate), 6

 .ag_ve_bcc_flat_tst (ag_ve_bcc_flat_tst), 7

 .ag_ve_out_mem_sel (ag_ve_out_mem_sel), 8

 .ag_ve_out_addr (ag_ve_out_addr), 9

 .ag_ve_out_we (ag_ve_out_we), 10

 .ag_ve_accum_sel (ag_ve_accum_sel), 11

 .ag_ve_pre_accum_we (ag_ve_pre_accum_we) 12

); 13

 14

pa_cl_ve 15

upa_cl_ve 16

 (17

 .iag_ve_opcode (ag_ve_opcode), 18

 .iag_ve_in_a0 (ag_ve_in_a0), 19

 .iag_ve_in_a1 (ag_ve_in_a1), 20

 .iag_ve_in_a2 (ag_ve_in_a2), 21

 .iag_ve_in_a3 (ag_ve_in_a3), 22

 .iag_ve_in_b0 (ag_ve_in_b0), 23

 .iag_ve_in_b1 (ag_ve_in_b1), 24

 .iag_ve_in_b2 (ag_ve_in_b2), 25

 Page 44 of 63
Ex. 2114 - pa.v

 .iag_ve_in_b3 (ag_ve_in_b3), 1

 .iag_ve_a_is_wwww (ag_ve_a_is_wwww), 2

 .iag_ve_broadcast_x (ag_ve_broadcast_x), 3

 .iag_ve_abs_a (ag_ve_abs_a), 4

 .iag_ve_abs_b (ag_ve_abs_b), 5

 .iag_ve_abs_c (ag_ve_abs_c), 6

 .iag_ve_ax_negate (ag_ve_ax_negate), 7

 .iag_ve_ay_negate (ag_ve_ay_negate), 8

 .iag_ve_az_negate (ag_ve_az_negate), 9

 .iag_ve_aw_negate (ag_ve_aw_negate), 10

 .iag_ve_bx_negate (ag_ve_bx_negate), 11

 .iag_ve_by_negate (ag_ve_by_negate), 12

 .iag_ve_bz_negate (ag_ve_bz_negate), 13

 .iag_ve_bw_negate (ag_ve_bw_negate), 14

 .iag_ve_cx_negate (ag_ve_cx_negate), 15

 .iag_ve_cy_negate (ag_ve_cy_negate), 16

 .iag_ve_cz_negate (ag_ve_cz_negate), 17

 .iag_ve_cw_negate (ag_ve_cw_negate), 18

 .iag_ve_bcc_flat_tst (ag_ve_bcc_flat_tst), 19

 .iag_ve_out_mem_sel (ag_ve_out_mem_sel), 20

 .iag_ve_out_addr (ag_ve_out_addr), 21

 .iag_ve_out_we (ag_ve_out_we), 22

 .iag_ve_accum_sel (ag_ve_accum_sel), 23

 .iag_ve_pre_accum_we (ag_ve_pre_accum_we), 24

 .ovmb_ve_tst_rtn_stat (vmb_ve_tst_rtn_stat), 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 533 of 611

 Page 45 of 63
Ex. 2114 - pa.v

 .ove_waddr (ve_waddr), 1

 .ove_veoc_vector_back_we (ve_veoc_vector_back_we), 2

 .ove_cliptemp_vector_we (ve_cliptemp_vector_we), 3

 .ove_inverse_we (ve_inverse_we), 4

 .ove_wdata (ve_wdata), 5

 .isclk (sclk_pa) 6

); 7

 8

pa_vte 9

upa_vte 10

 (11

 .rbiu_vte_wdata (rbiu_wdata), 12

 .rbiu_vte_waddr (rbiu_waddr), 13

 .rbiu_vte_raddr (rbiu_raddr), 14

 .rbiu_vte_we (rbiu_we), 15

 .rbiu_vte_re (rbiu_re), 16

 .rbiu_vte_cpy (rbiu_vte_cpy), 17

 .rbiu_vte_xscale_sel (rbiu_vte_xscale_sel), 18

 .rbiu_vte_xoffset_sel (rbiu_vte_xoffset_sel), 19

 .rbiu_vte_yscale_sel (rbiu_vte_yscale_sel), 20

 .rbiu_vte_yoffset_sel (rbiu_vte_yoffset_sel), 21

 .rbiu_vte_zscale_sel (rbiu_vte_zscale_sel), 22

 .rbiu_vte_zoffset_sel (rbiu_vte_zoffset_sel), 23

 .rbiu_vte_cntl_sel (rbiu_vte_cntl_sel), 24

 .rbiu_vte_vtx_cntl_sel (rbiu_vte_vtx_cntl_sel), 25

 Page 46 of 63
Ex. 2114 - pa.v

 .rbiu_vte_window_offset_sel (rbiu_vte_window_offset_sel), 1

 .rbiu_vte_window_offset_en_sel (rbiu_vte_window_offset_en_sel), 2

 .rbiu_vte_persp_corr_dis_sel (rbiu_vte_persp_corr_dis_sel), 3

 .ag_vte_ix (ag_ve_in_a0), 4

 .ag_vte_jy (ag_ve_in_a1), 5

 .ag_vte_z (ag_ve_in_a2), 6

 .ag_vte_w (ag_ve_in_a3), 7

 .ag_vte_negate_ix (ag_ve_ax_negate), 8

 .ag_vte_negate_jy (ag_ve_ay_negate), 9

 .ag_vte_negate_z (ag_ve_az_negate), 10

 .ag_vte_negate_w (ag_ve_aw_negate), 11

 .ag_vte_vertex_store_indx (ag_vte_vertex_store_indx), 12

 .ag_vte_opcode (ag_vte_opcode), 13

 .ag_vte_st_indx (ag_vte_st_indx), 14

 .rcp_d (vcm_rcp_rei_d), 15

 .rcp_a (vcm_rcp_rei_a), 16

 .rcp_xfc (vcm_rcp_rei_xfc), 17

 .vte_rcp_d (vte_rcp_d), 18

 .vte_rbiu_rdata (vte_rbiu_rdata), 19

 .vte_rcp_rts (vte_rcp_rts), 20

 .vte_d (vte_d), 21

 .vte_opcode (vte_opcode), 22

 .vte_vertex_store_indx (vte_vertex_store_indx), 23

 .vte_busy (vte_busy), 24

 .srst (srst), 25

 Page 47 of 63
Ex. 2114 - pa.v

 .sclk (sclk_pa) 1

); 2

 3

pa_cl_rei 4

upa_cl_rei 5

 (6

 .isc_wdata0 (ve_wdata[31:0]), 7

 .isc_rei_we (ve_inverse_we), 8

 9

 .ovmc_rei_rcp_d (vmc_rei_rcp_d), 10

 .ovmc_rei_rcp_rts (vmc_rei_rcp_rts), 11

 .ivcm_rcp_rei_rtr (vcm_rcp_rei_rtr), 12

 13

 .ivcm_rcp_rei_d (vcm_rcp_rei_d), 14

 .ivcm_rcp_rei_a ({vcm_rcp_rei_a,1'b0}), 15

 .ivcm_rcp_rei_xfc (vcm_rcp_rei_xfc), 16

 17

 .ovmb_cl_rei_r0vld (vmb_cl_rei_r0vld), 18

 .ovmb_cl_rei_r1vld (vmb_cl_rei_r1vld), 19

 .ivbm_cl_rei_r0r1clr (cl_rei_clear_result), 20

 21

 .orei_sc_r0data (rei_sc_r0data), 22

 .orei_sc_r1data (rei_sc_r1data), 23

 24

 .isrst (srst), 25

 Page 48 of 63
Ex. 2114 - pa.v

 .isclk (sclk_pa) 1

); 2

 3

pa_cl_rcpeng 4

upa_cl_rcpeng 5

 (6

 .ireset (srst), 7

 8

 .iport1_rts (vte_rcp_rts), 9

 .iport1_sign (vte_rcp_d[31]), 10

 .iport1_exp (vte_rcp_d[30:23]), 11

 .iport1_mant (vte_rcp_d[22:0]), 12

 13

 .iport2_rts (vmc_rei_rcp_rts), 14

 .iport2_sign (vmc_rei_rcp_d[31]), 15

 .iport2_exp (vmc_rei_rcp_d[30:23]), 16

 .iport2_mant (vmc_rei_rcp_d[22:0]), 17

 18

 .oport2_rtr (vcm_rcp_rei_rtr), 19

 20

 .oout_xfc (vcm_rcp_rei_xfc), 21

 .oout_recip_sign (vcm_rcp_rei_d[31]), 22

 .oout_recip_exp (vcm_rcp_rei_d[30:23]), 23

 .oout_recip_mant (vcm_rcp_rei_d[22:0]), 24

 .oout_sel (vcm_rcp_rei_a), 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 534 of 611

 Page 49 of 63
Ex. 2114 - pa.v

 1

 .orcp_busy (), 2

 3

 .idbug_muxsel (6'h0), 4

 .odbug_data_out (), 5

 6

 .isclk (sclk_pa) 7

); 8

 9

 10

// shader export interface and clip code generator 11

pa_sxifccg 12

upa_sxifccg 13

 (14

 /// 15

 // inputs 16

 /// 17

 // clock and reset 18

 .clk (sclk_pa), 19

 .reset (srst), 20

 21

 // ati_state_storage (sxif) 22

 .isxif_st_w_data (rbiu_wdata[26:20]), 23

 .isxif_st_w_addr (rbiu_waddr), 24

 .isxif_st_we (rbiu_we), 25

 Page 50 of 63
Ex. 2114 - pa.v

 .isxif_st_r_addr (rbiu_raddr), 1

 .isxif_st_re (rbiu_re), 2

 .isxif_st_sel (rbiu_ccg_expcntmd_sel), 3

 .isxif_st_cpy (rbiu_ccg_cpy), 4

 5

 // vgt_to_ccgen fifo 6

 .ivgt_to_ccgen_fifo_write (VGT_PA_clip_v_send_q), 7

 .ivgt_to_ccgen_fifo_active_verts (VGT_PA_clip_v_vec_size_q), 8

 .ivgt_to_ccgen_fifo_state_var_indx (VGT_PA_clip_v_state_q), 9

 10

 // sx0 receive fifo 11

 .isx0_receive_fifo_write (SX0_PA_input_data_write), 12

 .isx0_receive_fifo_wrdata (SX0_PA_input_data_wrdata), 13

 14

 // sx1 receive fifo 15

 .isx1_receive_fifo_write (SX1_PA_input_data_write), 16

 .isx1_receive_fifo_wrdata (SX1_PA_input_data_wrdata), 17

 18

 // ccg state 19

 .iccg_state0 (cl_ccg_state0), 20

 .iccg_state1 (cl_ccg_state1), 21

 .iccg_state2 (cl_ccg_state2), 22

 .iccg_state3 (cl_ccg_state3), 23

 .iccg_state4 (cl_ccg_state4), 24

 .iccg_state5 (cl_ccg_state5), 25

 Page 51 of 63
Ex. 2114 - pa.v

 .iccg_state6 (cl_ccg_state6), 1

 .iccg_state7 (cl_ccg_state7), 2

 3

 // ccgen_to_clipcc/clip 4

 .ioutsm_clr_orig_vertices (cl_ccg_outsm_clr_orig_vertices), 5

 .iccgen_to_clipcc_fifo_full (cl_ccg_ccgen_to_clipcc_fifo_full), 6

 7

 // arbiter 8

 .iarb_to_ccgen_xfc (arb_ccg_xfc), 9

 10

 11

 /// 12

 // outputs 13

 /// 14

 // state 15

 .osxif_st_r_data (ccg_rbiu_rdata_26_downto_20), 16

 17

 // state to clipper 18

 .osxif_state0 (sxif_state0), 19

 .osxif_state1 (sxif_state1), 20

 .osxif_state2 (sxif_state2), 21

 .osxif_state3 (sxif_state3), 22

 .osxif_state4 (sxif_state4), 23

 .osxif_state5 (sxif_state5), 24

 .osxif_state6 (sxif_state6), 25

 Page 52 of 63
Ex. 2114 - pa.v

 .osxif_state7 (sxif_state7), 1

 2

 // vgt_to_ccgen fifo 3

 .ovgt_to_ccgen_fifo_notfull (PA_VGT_clip_v_d), 4

 5

 // sx0, request 6

 .opa_to_sx0_req (u0_PA_SX_req_d), 7

 .opa_to_sx0_sp_id (u0_PA_SX_sp_id_d), 8

 .opa_to_sx0_offset (u0_PA_SX_offset_d), 9

 .opa_to_sx0_aux (u0_PA_SX_aux_d), 10

 .opa_to_sx0_last (u0_PA_SX_last_d), 11

 12

 // sx1, request 13

 .opa_to_sx1_req (u1_PA_SX_req_d), 14

 .opa_to_sx1_sp_id (u1_PA_SX_sp_id_d), 15

 .opa_to_sx1_offset (u1_PA_SX_offset_d), 16

 .opa_to_sx1_aux (u1_PA_SX_aux_d), 17

 .opa_to_sx1_last (u1_PA_SX_last_d), 18

 19

 // position memory 20

 .oposition_write (ccg_ag_pos_mem_we), 21

 .oposition_wraddr (ccg_ag_pos_mem_wraddr), 22

 .oposition_wrdata (ccg_ag_pos_pntsz_mem_wrdata), 23

 24

 // point memory 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 535 of 611

 Page 53 of 63
Ex. 2114 - pa.v

 .opoint_write (ccg_ag_pntsz_mem_we), 1

 .opoint_wraddr (ccg_ag_pntsz_mem_wraddr), 2

 .opoint_wrdata (ccg_ag_pntsz_mem_wrdata), 3

 4

 // ccgen_to_clipcc/clip 5

 .occgen_to_clipcc_data (ccg_cl_wrdata), 6

 .occgen_to_clipcc_write (ccg_cl_write), 7

 8

 // arbiter 9

 .occgen_to_arb_data (ccg_arb_data) 10

); 11

 12

// temp connections 13

assign ag_cl_pntsz_mem_blocked = 'h0; 14

assign ag_cl_pntsz_mem_rdata = 'h0; 15

 16

// clipper 17

pa_clipper 18

upa_clipper 19

 (20

 /// 21

 // inputs 22

 /// 23

 // clock and reset 24

 .clk (sclk_pa), 25

 Page 54 of 63
Ex. 2114 - pa.v

 .reset (srst), 1

 2

 // ati_state_storage 3

 .ist_w_data (rbiu_wdata), 4

 .ist_w_addr (rbiu_waddr), 5

 .ist_we (rbiu_we), 6

 .ist_r_addr (rbiu_raddr), 7

 .ist_re (rbiu_re), 8

 .ist_cpy (rbiu_cl_cpy), 9

 .ist_sel (rbiu_cl_dx_clip_sp_def_sel), 10

 11

 // state from sxif 12

 .isxif_state0 (sxif_state0), 13

 .isxif_state1 (sxif_state1), 14

 .isxif_state2 (sxif_state2), 15

 .isxif_state3 (sxif_state3), 16

 .isxif_state4 (sxif_state4), 17

 .isxif_state5 (sxif_state5), 18

 .isxif_state6 (sxif_state6), 19

 .isxif_state7 (sxif_state7), 20

 21

 // ccg 22

 .iccgen_to_clipcc_fifo_write (ccg_cl_write), 23

 .iccgen_to_clipcc_fifo_wrdata (ccg_cl_wrdata), 24

 25

 Page 55 of 63
Ex. 2114 - pa.v

 // vgt_to_clips 1

 .ivgt_to_clips_fifo_write (VGT_PA_clip_s_send_q), 2

 .ivgt_to_clips_fifo_event (VGT_PA_clip_s_event_q), 3

 .ivgt_to_clips_fifo_prim_type (VGT_PA_clip_s_type_q), 4

 .ivgt_to_clips_fifo_state_var_indx (VGT_PA_clip_s_state_q), 5

 6

 // vgt_to_clipp 7

 .ivgt_to_clipp_fifo_write (VGT_PA_clip_p_send_q), 8

 .ivgt_to_clipp_fifo_null_primitive (VGT_PA_clip_p_null_prim_q), 9

 .ivgt_to_clipp_fifo_first_prim_of_slot (VGT_PA_clip_p_new_vtx_vect_q), 10

 .ivgt_to_clipp_fifo_deallocate_slot (VGT_PA_clip_p_dealloc_q), 11

 .ivgt_to_clipp_fifo_end_of_packet (VGT_PA_clip_p_eop_q), 12

 .ivgt_to_clipp_fifo_edge_flag (VGT_PA_clip_p_edge_flags_q), 13

 .ivgt_to_clipp_fifo_vertex_store_indx_0 (VGT_PA_clip_p_indx0_q), 14

 .ivgt_to_clipp_fifo_vertex_store_indx_1 (VGT_PA_clip_p_indx1_q), 15

 .ivgt_to_clipp_fifo_vertex_store_indx_2 (VGT_PA_clip_p_indx2_q), 16

 17

 // reciprocal engine 18

 .iinv_to_clip_data_valid_0 (vmb_cl_rei_r0vld), 19

 .iinv_to_clip_data_valid_1 (vmb_cl_rei_r1vld), 20

 21

 //arbiter 22

 .ive_xfc (arb_cl_xfc), 23

 24

 // clip_to_ga 25

 Page 56 of 63
Ex. 2114 - pa.v

 .iclip_to_ga_fifo_notfull (su_clip_rtr), 1

 .iclip_ga_bc_fifo_notfull (su_clip_baryc_rtr), 2

 3

 // from vte 4

 .ivte_out_vertex_store_indx (vte_vertex_store_indx), 5

 .ivte_out_opcode (vte_opcode), 6

 .ivte_out_vector_data (vte_d), 7

 8

 // from ag-ve delay 9

 .iag_ve_out_vertex_store_indx (ag_cl_vertex_store_indx[3:0]), 10

 .iag_ve_out_valid_bit_set (ag_cl_valid_bit_set), 11

 .iag_ve_out_user_clip_indx (ag_cl_user_clip_indx), 12

 .iag_ve_out_vv_cc_test (ag_cl_vv_cc_test), 13

 .iag_ve_out_ucp_cc_test (ag_cl_ucp_cc_test), 14

 .iag_ve_out_bcc_cc_test (ag_cl_bcc_cc_test), 15

 .iag_ve_out_ps_ucp_cc_test (ag_cl_ps_ucp_cc_test), 16

 .iag_ve_out_ps_engh_test (ag_cl_ps_engh_test), 17

 18

 // from vector engine 19

 .ive_out_test_rtn_status (vmb_ve_tst_rtn_stat), 20

 21

 // from ag point size memory 22

 .iag_to_clip_point_size (ag_to_clip_point_size), 23

 24

 /// 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 536 of 611

 Page 57 of 63
Ex. 2114 - pa.v

 // outputs 1

 /// 2

 // state 3

 .ost_r_data (cl_rbiu_rdata), 4

 5

 // vgt_to_clips 6

 .ovgt_to_clips_fifo_notfull (PA_VGT_clip_s_d), 7

 8

 // vgt_to_clipp 9

 .ovgt_to_clipp_fifo_notfull (PA_VGT_clip_p_d), 10

 11

 // to ccg 12

 .occgen_to_clipcc_fifo_full (cl_ccg_ccgen_to_clipcc_fifo_full), 13

 .occg_state0 (cl_ccg_state0), 14

 .occg_state1 (cl_ccg_state1), 15

 .occg_state2 (cl_ccg_state2), 16

 .occg_state3 (cl_ccg_state3), 17

 .occg_state4 (cl_ccg_state4), 18

 .occg_state5 (cl_ccg_state5), 19

 .occg_state6 (cl_ccg_state6), 20

 .occg_state7 (cl_ccg_state7), 21

 22

 // to ccgen 23

 .ooutsm_clr_orig_vertices (cl_ccg_outsm_clr_orig_vertices), 24

 25

 Page 58 of 63
Ex. 2114 - pa.v

 // to clip_to_ga fifo 1

 .oclip_to_ga_fifo_write (clip_su_rts), 2

 .oclip_to_ga_point_size (clip_su_pt_size), 3

 .oclip_to_ga_position_x_0 (clip_su_x0), 4

 .oclip_to_ga_position_x_1 (clip_su_x1), 5

 .oclip_to_ga_position_x_2 (clip_su_x2), 6

 .oclip_to_ga_position_y_0 (clip_su_y0), 7

 .oclip_to_ga_position_y_1 (clip_su_y1), 8

 .oclip_to_ga_position_y_2 (clip_su_y2), 9

 .oclip_to_ga_position_z_0 (clip_su_z0), 10

 .oclip_to_ga_position_z_1 (clip_su_z1), 11

 .oclip_to_ga_position_z_2 (clip_su_z2), 12

 .oclip_to_ga_position_w_0 (clip_su_w0), 13

 .oclip_to_ga_position_w_1 (clip_su_w1), 14

 .oclip_to_ga_position_w_2 (clip_su_w2), 15

 .oclip_to_ga_edge_flag_0 (clip_su_ef0), 16

 .oclip_to_ga_edge_flag_1 (clip_su_ef1), 17

 .oclip_to_ga_edge_flag_2 (clip_su_ef2), 18

 .oclip_to_ga_param_cache_indx_0 (clip_su_attr_indx0), 19

 .oclip_to_ga_param_cache_indx_1 (clip_su_attr_indx1), 20

 .oclip_to_ga_param_cache_indx_2 (clip_su_attr_indx2), 21

 .oclip_to_ga_prim_type (clip_su_type), 22

 .oclip_to_ga_state_var_indx (clip_su_st_indx), 23

 .oclip_to_ga_deallocate_slot (clip_su_dealloc_slot), 24

 .oclip_to_ga_null_primitive (clip_su_null_prim), 25

 Page 59 of 63
Ex. 2114 - pa.v

 .oclip_to_ga_clipped_prim (clip_su_clipped), 1

 .oclip_to_ga_first_prim_of_slot (clip_su_fpov), 2

 .oclip_to_ga_end_of_packet (clip_su_eop), 3

 .oclip_to_ga_event (clip_su_event), 4

 .oclip_to_ga_event_id (clip_su_event_id), 5

 6

 .oclip_ga_bc_fifo_write (clip_su_baryc_rts), 7

 .oclip_ga_bc_baryc_coord_x_0 (clip_su_i0), 8

 .oclip_ga_bc_baryc_coord_x_1 (clip_su_i1), 9

 .oclip_ga_bc_baryc_coord_x_2 (clip_su_i2), 10

 .oclip_ga_bc_baryc_coord_y_0 (clip_su_j0), 11

 .oclip_ga_bc_baryc_coord_y_1 (clip_su_j1), 12

 .oclip_ga_bc_baryc_coord_y_2 (clip_su_j2), 13

 .oclip_ga_bc_baryc_coord_z_0 (clip_su_k0), 14

 .oclip_ga_bc_baryc_coord_z_1 (clip_su_k1), 15

 .oclip_ga_bc_baryc_coord_z_2 (clip_su_k2), 16

 17

 // arbiter 18

 .oclip_to_arb_data_ve_valid (cl_arb_ve_valid), 19

 .oclip_to_arb_data (cl_arb_data), 20

 21

 // reciprocal engine 22

 .oclip_to_inv_data_reset_valids (cl_rei_clear_result), 23

 24

 // ag point size memory 25

 Page 60 of 63
Ex. 2114 - pa.v

 .oclip_to_ag_point_buf_re (clip_to_ag_point_buf_re), 1

 .oclip_to_ag_point_buf_raddr (clip_to_ag_point_buf_raddr), 2

 3

 // busy 4

 .oclipper_busy (clipper_busy) 5

); 6

 7

// temp connections until clipper has these 8

//assign clip_su_k0 = 32'h00000000; 9

//assign clip_su_k1 = 32'h00000000; 10

//assign clip_su_k2 = 32'h00000000; 11

//assign clip_su_baryc_rts = 1'b0; 12

 13

// setup unit 14

pa_su upa_su (15

 // outputs 16

 17

 .PA_SC_p0_d(PA_SC_p0_d), 18

 .PA_SC_p1_d(PA_SC_p1_d), 19

 .PA_SC_p2_d(PA_SC_p2_d), 20

 .PA_SC_p3_d(PA_SC_p3_d), 21

 .PA_SC_p4_d(PA_SC_p4_d), 22

 .PA_SC_xy0_d(PA_SC_xy0_d), 23

 .PA_SC_xy1_d(PA_SC_xy1_d), 24

 .PA_SC_xy2_d(PA_SC_xy2_d), 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 537 of 611

 Page 61 of 63
Ex. 2114 - pa.v

 .PA_SC_zminmax_d(PA_SC_zminmax_d), 1

 .PA_SC_cntl_d(PA_SC_cntl_d), 2

 .PA_SC_valid_d(PA_SC_valid_d), 3

 .PA_SC_phase_d(PA_SC_phase_d), 4

 .PA_SC_v0_indx_d(PA_SC_v0_indx_d), 5

 .su_clip_rtr(su_clip_rtr), 6

 .su_clip_baryc_rtr(su_clip_baryc_rtr), 7

 .su_rbiu_rdata(su_rbiu_rdata), 8

 // inputs 9

 .srst(srst), 10

 .sclk(sclk_pa), 11

 .rbiu_su_wdata(rbiu_wdata), 12

 .rbiu_su_we(rbiu_we), 13

 .rbiu_su_re(rbiu_re), 14

 .rbiu_su_waddr(rbiu_waddr), 15

 .rbiu_su_raddr(rbiu_raddr), 16

 .rbiu_su_cpy(rbiu_su_cpy), 17

 .rbiu_su_expand_lw_sel(rbiu_su_expand_lw_sel), 18

 .rbiu_su_imp_exp_sel(rbiu_su_imp_exp_sel), 19

 .rbiu_su_draw_init_sel(rbiu_su_draw_init_sel), 20

 .rbiu_su_status_sel(rbiu_su_status_sel), 21

 .rbiu_su_point_size_sel(rbiu_su_point_size_sel), 22

 .rbiu_su_point_min_max_sel(rbiu_su_point_min_max_sel), 23

 .rbiu_su_line_cntl_sel(rbiu_su_line_cntl_sel), 24

 .rbiu_su_sc_mode_cntl_sel(rbiu_su_sc_mode_cntl_sel), 25

 Page 62 of 63
Ex. 2114 - pa.v

 .SC_PA_earlyfrz_q(SC_PA_earlyfrz_q), 1

 .su_busy(su_busy), 2

 .clip_su_pt_size(clip_su_pt_size), 3

 .clip_su_x0(clip_su_x0), 4

 .clip_su_x1(clip_su_x1), 5

 .clip_su_x2(clip_su_x2), 6

 .clip_su_y0(clip_su_y0), 7

 .clip_su_y1(clip_su_y1), 8

 .clip_su_y2(clip_su_y2), 9

 .clip_su_z0(clip_su_z0), 10

 .clip_su_z1(clip_su_z1), 11

 .clip_su_z2(clip_su_z2), 12

 .clip_su_w0(clip_su_w0), 13

 .clip_su_w1(clip_su_w1), 14

 .clip_su_w2(clip_su_w2), 15

 .clip_su_ef0(clip_su_ef0), 16

 .clip_su_ef1(clip_su_ef1), 17

 .clip_su_ef2(clip_su_ef2), 18

 .clip_su_i0(clip_su_i0), 19

 .clip_su_i1(clip_su_i1), 20

 .clip_su_i2(clip_su_i2), 21

 .clip_su_j0(clip_su_j0), 22

 .clip_su_j1(clip_su_j1), 23

 .clip_su_j2(clip_su_j2), 24

 .clip_su_k0(clip_su_k0), 25

 Page 63 of 63
Ex. 2114 - pa.v

 .clip_su_k1(clip_su_k1), 1

 .clip_su_k2(clip_su_k2), 2

 .clip_su_attr_indx0(clip_su_attr_indx0), 3

 .clip_su_attr_indx1(clip_su_attr_indx1), 4

 .clip_su_attr_indx2(clip_su_attr_indx2), 5

 .clip_su_type(clip_su_type), 6

 .clip_su_st_indx(clip_su_st_indx), 7

 .clip_su_dealloc_slot(clip_su_dealloc_slot), 8

 .clip_su_null_prim(clip_su_null_prim), 9

 .clip_su_clipped(clip_su_clipped), 10

 .clip_su_fpov(clip_su_fpov), 11

 .clip_su_eop(clip_su_eop), 12

 .clip_su_event(clip_su_event), 13

 .clip_su_event_id(clip_su_event_id), 14

 .clip_su_rts(clip_su_rts), 15

 .clip_su_baryc_rts(clip_su_baryc_rts) 16

); 17

 18

endmodule // pa 19

 20

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 538 of 611

 Page 1 of 123
Ex. 2115 - pa_ag.v

`include "header.v" 1

//-- 2

// 3

// $Id: //depot/r400/devel/parts_lib/src/gfx/pa/pa_ag.v#19 $ 4

// 5

// $Change: 43657 $ 6

// 7

// 8

// Notes: This file is the pa_ag address generator 9

// 10

// Copyright: Trade secret of ATI Technologies, Inc. 11

// © Copyright 2001-2002, ATI Technologies, Inc., (unpublished) 12

// 13

// All rights reserved. This notice is intended as a precaution against 14

// inadvertent publication and does not imply publication or any waiver 15

// of confidentiality. The year included in the foregoing notice is the 16

// year of creation of the work. 17

// 18

//-- 19

 20

 21

module pa_ag (22

 sclk, srst, 23

 24

 rbiu_ag_dx_clip_sp_def_sel, 25

 Page 2 of 123
Ex. 2115 - pa_ag.v

 rbiu_ag_ucp0_sel, 1

 rbiu_ag_ucp1_sel, 2

 rbiu_ag_ucp2_sel, 3

 rbiu_ag_ucp3_sel, 4

 rbiu_ag_ucp4_sel, 5

 rbiu_ag_ucp5_sel, 6

 rbiu_ag_gb_sel, 7

 rbiu_ag_pntsz_sel, 8

 9

 rbiu_we, 10

 rbiu_wa, 11

 rbiu_wd, 12

 rbiu_cpy, 13

 rbiu_re, 14

 ag_rbiu_rd, 15

 16

 ccg_to_arb_data, 17

 arb_ccg_xfc, 18

 19

 clip_ve_valid, 20

 clip_to_arb_data, 21

 arb_clip_xfc, 22

 23

 clip_to_ag_point_buf_re, 24

 clip_to_ag_point_buf_raddr, 25

 Page 3 of 123
Ex. 2115 - pa_ag.v

 ag_to_clip_point_size, 1

 2

 pos_pntsz_ag_mem_data, 3

 pos_mem_waddr, 4

 pntsz_mem_waddr, 5

 pos_mem_we, 6

 pntsz_mem_we, 7

 8

 inv_ret_sc_data, 9

 10

 ve_cliptemp_vector_we, 11

 ve_veoc_vector_back_we, 12

 ve_waddr, 13

 ve_wdata, 14

 15

 agve_dly_valid_op, 16

 agve_dly_vertex_store_indx, 17

 agve_dly_valid_bit_set, 18

 agve_dly_user_clip_indx, 19

 agve_dly_vv_cc_test, 20

 agve_dly_ucp_cc_test, 21

 agve_dly_bcc_cc_test, 22

 agve_dly_ps_ucp_cc_test, 23

 agve_dly_ps_engh_test, 24

 25

 Page 4 of 123
Ex. 2115 - pa_ag.v

// ag_vte_ix, ag_vte_jy, 1

// ag_vte_z, ag_vte_w, 2

// ag_vte_negate_ix, ag_vte_negate_jy, 3

// ag_vte_negate_z, ag_vte_negate_w, 4

 ag_vte_opcode, 5

 ag_vte_st_indx, 6

 ag_vte_vertex_store_indx, 7

 8

 ag_ve_opcode, 9

 ag_ve_in_a0, ag_ve_in_a1, ag_ve_in_a2, ag_ve_in_a3, 10

 ag_ve_in_b0, ag_ve_in_b1, ag_ve_in_b2, ag_ve_in_b3, 11

 ag_ve_a_is_wwww, ag_ve_broadcast_x, 12

 ag_ve_abs_a, ag_ve_abs_b, ag_ve_abs_c, 13

 ag_ve_ax_negate, ag_ve_ay_negate, ag_ve_az_negate, ag_ve_aw_negate, 14

 ag_ve_bx_negate, ag_ve_by_negate, ag_ve_bz_negate, ag_ve_bw_negate, 15

 ag_ve_cx_negate, ag_ve_cy_negate, ag_ve_cz_negate, ag_ve_cw_negate, 16

 ag_ve_bcc_flat_tst, ag_ve_out_mem_sel, ag_ve_out_addr, 17

 ag_ve_out_we, ag_ve_accum_sel, ag_ve_pre_accum_we 18

); 19

 20

`include "pa_ag_pkg.v" 21

 22

// ************ PARAMETERS ************************** 23

parameter u0_clptmp_ADDR_WIDTH = 6; 24

parameter u0_clptmp_DATA_WIDTH = 32; 25

ATI 2115
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 539 of 611

 Page 5 of 123
Ex. 2115 - pa_ag.v

parameter u0_clptmp_WORDS = 35; 1

parameter u0_clptmp_DEBUG = 0; 2

parameter u1_clptmp_ADDR_WIDTH = 6; 3

parameter u1_clptmp_DATA_WIDTH = 32; 4

parameter u1_clptmp_WORDS = 35; 5

parameter u1_clptmp_DEBUG = 0; 6

parameter u2_clptmp_ADDR_WIDTH = 6; 7

parameter u2_clptmp_DATA_WIDTH = 32; 8

parameter u2_clptmp_WORDS = 35; 9

parameter u2_clptmp_DEBUG = 0; 10

parameter u3_clptmp_ADDR_WIDTH = 6; 11

parameter u3_clptmp_DATA_WIDTH = 32; 12

parameter u3_clptmp_WORDS = 35; 13

parameter u3_clptmp_DEBUG = 0; 14

parameter u_pntsz_ADDR_WIDTH = 6; 15

parameter u_pntsz_DATA_WIDTH = 32; 16

parameter u_pntsz_WORDS = 64; 17

parameter u_pntsz_DEBUG = 0; 18

parameter u_pos_ADDR_WIDTH = 6; 19

parameter u_pos_DATA_WIDTH = 128; 20

parameter u_pos_WORDS = 64; 21

parameter u_pos_DEBUG = 0; 22

parameter u0_stve_ADDR_WIDTH = 6; 23

parameter u0_stve_DATA_WIDTH = 32; 24

parameter u0_stve_WORDS = 64; 25

 Page 6 of 123
Ex. 2115 - pa_ag.v

parameter u0_stve_DEBUG = 0; 1

parameter u1_stve_ADDR_WIDTH = 6; 2

parameter u1_stve_DATA_WIDTH = 32; 3

parameter u1_stve_WORDS = 64; 4

parameter u1_stve_DEBUG = 0; 5

parameter u2_stve_ADDR_WIDTH = 6; 6

parameter u2_stve_DATA_WIDTH = 32; 7

parameter u2_stve_WORDS = 64; 8

parameter u2_stve_DEBUG = 0; 9

parameter u3_stve_ADDR_WIDTH = 6; 10

parameter u3_stve_DATA_WIDTH = 32; 11

parameter u3_stve_WORDS = 64; 12

parameter u3_stve_DEBUG = 0; 13

 14

// ************ System stuff ************************** 15

input sclk; 16

input srst; 17

 18

// ************ State interface *********************** 19

input rbiu_ag_dx_clip_sp_def_sel; 20

input [3:0] rbiu_ag_ucp0_sel; 21

input [3:0] rbiu_ag_ucp1_sel; 22

input [3:0] rbiu_ag_ucp2_sel; 23

input [3:0] rbiu_ag_ucp3_sel; 24

input [3:0] rbiu_ag_ucp4_sel; 25

 Page 7 of 123
Ex. 2115 - pa_ag.v

input [3:0] rbiu_ag_ucp5_sel; 1

 2

input [3:0] rbiu_ag_gb_sel; 3

input [3:0] rbiu_ag_pntsz_sel; 4

 5

input rbiu_we; 6

input [2:0] rbiu_wa; 7

input [31:0] rbiu_wd; 8

input rbiu_cpy; 9

input rbiu_re; 10

output [31:0] ag_rbiu_rd; 11

 12

 13

// ************ interface with the ccg **************** 14

input [15:0] ccg_to_arb_data; //Data from the ccg 15

output arb_ccg_xfc; 16

 17

// ************ interface with the clipper ************ 18

input clip_ve_valid; 19

input [29:0] clip_to_arb_data; 20

output arb_clip_xfc; 21

 22

input clip_to_ag_point_buf_re; 23

input [5:0] clip_to_ag_point_buf_raddr; 24

output [31:0] ag_to_clip_point_size; 25

 Page 8 of 123
Ex. 2115 - pa_ag.v

 1

// ********* position and pntsz mem ******************** 2

input [127:0] pos_pntsz_ag_mem_data; 3

input [5:0] pos_mem_waddr; 4

input [5:0] pntsz_mem_waddr; 5

input pos_mem_we; 6

input pntsz_mem_we; 7

 8

// *********** interface with reciprocal engine ******** 9

input [63:0] inv_ret_sc_data; 10

 11

// ********** interface with ve output ***************** 12

input [3:0] ve_cliptemp_vector_we; 13

input [3:0] ve_veoc_vector_back_we; 14

input [5:0] ve_waddr; 15

input [127:0] ve_wdata; 16

 17

// ************ Ouputs to the pa_cl_ve***************** 18

output [2:0] ag_ve_opcode; 19

output [31:0] ag_ve_in_a0; 20

output [31:0] ag_ve_in_a1; 21

output [31:0] ag_ve_in_a2; 22

output [31:0] ag_ve_in_a3; 23

output [31:0] ag_ve_in_b0; 24

output [31:0] ag_ve_in_b1; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 540 of 611

 Page 9 of 123
Ex. 2115 - pa_ag.v

output [31:0] ag_ve_in_b2; 1

output [31:0] ag_ve_in_b3; 2

output ag_ve_a_is_wwww; 3

output ag_ve_broadcast_x; 4

output ag_ve_abs_a; 5

output ag_ve_abs_b; 6

output ag_ve_abs_c; 7

output ag_ve_ax_negate; 8

output ag_ve_ay_negate; 9

output ag_ve_az_negate; 10

output ag_ve_aw_negate; 11

output ag_ve_bx_negate; 12

output ag_ve_by_negate; 13

output ag_ve_bz_negate; 14

output ag_ve_bw_negate; 15

output ag_ve_cx_negate; 16

output ag_ve_cy_negate; 17

output ag_ve_cz_negate; 18

output ag_ve_cw_negate; 19

output ag_ve_bcc_flat_tst; 20

output [2:0] ag_ve_out_mem_sel; 21

output [5:0] ag_ve_out_addr; 22

output [3:0] ag_ve_out_we; 23

output ag_ve_accum_sel; 24

output [3:0] ag_ve_pre_accum_we; 25

 Page 10 of 123
Ex. 2115 - pa_ag.v

 1

// ************ Ouputs from the delay pipe ********************** 2

output agve_dly_valid_op; 3

output [5:0] agve_dly_vertex_store_indx; 4

output [1:0] agve_dly_valid_bit_set; 5

output [3:0] agve_dly_user_clip_indx; 6

output agve_dly_vv_cc_test; 7

output agve_dly_ucp_cc_test; 8

output agve_dly_bcc_cc_test; 9

output agve_dly_ps_ucp_cc_test; 10

output agve_dly_ps_engh_test; 11

 12

// ************ Ouputs to the pa_vte********************** 13

//output [31:0] ag_vte_ix; // i/x Vector Data 14

//output [31:0] ag_vte_jy; // j/y Vector Data 15

//output [31:0] ag_vte_w; // w Vector Data 16

//output [31:0] ag_vte_z; // z Vector Data 17

//output [0:0] ag_vte_negate_ix; // Negate i/x Vector Data 18

//output [0:0] ag_vte_negate_jy; // Negated j/y Vector Data 19

//output [0:0] ag_vte_negate_w; // Negate w Vector Data 20

//output [0:0] ag_vte_negate_z; // Nagate z Vector Data 21

output [1:0] ag_vte_vertex_store_indx; 22

output [2:0] ag_vte_opcode; // Opcode 23

output [2:0] ag_vte_st_indx; // Context ID 24

 25

 Page 11 of 123
Ex. 2115 - pa_ag.v

//** 1

// Declare and map internal ccg interface signal names 2

reg ccg_ve_cc_valid; 3

reg ccg_ve_valid; 4

reg [1:0] ccg_sm_state_indx; 5

reg [2:0] ccg_state_var_indx; 6

reg [5:0] ccg_vertex_store_indx; 7

reg [2:0] ccg_ve_ucp_indx; 8

 9

// Declare and map internal clipper interface signal names 10

reg [3:0] clip_plane_indx; 11

reg [5:0] clip_dst_vertex_indx; 12

reg [6:0] clip_src_vertex_indx; 13

reg clip_src_vertex_type; 14

reg clip_ve_ucp_valid; 15

reg [6:0] clip_sm_state_indx; 16

reg [2:0] clip_state_var_indx; 17

 18

// ve_veoc_vector_back read port signal declarations 19

reg ve_veoc_vector_back_re; 20

reg ve_veoc_vector_back_re_r1; 21

reg [5:0] ve_veoc_vector_back_raddr; 22

wire [127:0] ve_veoc_vector_back_rdata; 23

reg [127:0] ve_veoc_vector_back_rdata_r2; 24

 25

 Page 12 of 123
Ex. 2115 - pa_ag.v

// pos read port signal declarations 1

reg pos_re; 2

reg pos_re_r1; 3

reg [5:0] pos_raddr; 4

wire [127:0] pos_rdata; 5

reg [127:0] pos_rdata_r2; 6

 7

// pntsz read port signal declarations 8

reg pntsz_re; 9

reg pntsz_re_r1; 10

reg [5:0] pntsz_raddr; 11

wire [31:0] pntsz_rdata; 12

reg [31:0] pntsz_rdata_r2; 13

 14

// stve read port signal declarations 15

reg stve_re_r0; 16

reg stve_re_r1; 17

reg [5:0] stve_raddr; 18

wire [127:0] stve_rdata; 19

reg [127:0] stve_rdata_r2; 20

reg nxt_stve_re; 21

reg [5:3] nxt_state_type; 22

reg [5:3] state_type_r0; 23

 24

// stve write port signal declarations 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 541 of 611

 Page 13 of 123
Ex. 2115 - pa_ag.v

reg [5:0] stve_wa; 1

reg [3:0] stve_we; 2

 3

// ag signal declarations 4

reg [2:0] nxt_arb_state_var_indx; 5

reg [2:0] arb_state_var_indx_r0; 6

reg [2:0] arb_ucp_indx; 7

reg [127:0] ve_cliptemp_vec; 8

 9

// State storage signal declarations 10

wire dx_clip_space_def; 11

wire agrd_dx_clip_space_def; 12

 13

wire [2:0] ucp0_rd_off; 14

wire nxt_ucp0_write_after_cpy; 15

reg ucp0_write_after_cpy; 16

wire [2:0] nxt_ucp0_write_ptr; 17

reg [2:0] ucp0_write_ptr; 18

wire [2:0] agrd_ucp0_write_ptr; 19

 20

wire [2:0] ucp1_rd_off; 21

wire nxt_ucp1_write_after_cpy; 22

reg ucp1_write_after_cpy; 23

wire [2:0] nxt_ucp1_write_ptr; 24

reg [2:0] ucp1_write_ptr; 25

 Page 14 of 123
Ex. 2115 - pa_ag.v

wire [2:0] agrd_ucp1_write_ptr; 1

 2

wire [2:0] ucp2_rd_off; 3

wire nxt_ucp2_write_after_cpy; 4

reg ucp2_write_after_cpy; 5

wire [2:0] nxt_ucp2_write_ptr; 6

reg [2:0] ucp2_write_ptr; 7

wire [2:0] agrd_ucp2_write_ptr; 8

 9

wire [2:0] ucp3_rd_off; 10

wire nxt_ucp3_write_after_cpy; 11

reg ucp3_write_after_cpy; 12

wire [2:0] nxt_ucp3_write_ptr; 13

reg [2:0] ucp3_write_ptr; 14

wire [2:0] agrd_ucp3_write_ptr; 15

 16

wire [2:0] ucp4_rd_off; 17

wire nxt_ucp4_write_after_cpy; 18

reg ucp4_write_after_cpy; 19

wire [2:0] nxt_ucp4_write_ptr; 20

reg [2:0] ucp4_write_ptr; 21

wire [2:0] agrd_ucp4_write_ptr; 22

 23

wire [2:0] ucp5_rd_off; 24

wire nxt_ucp5_write_after_cpy; 25

 Page 15 of 123
Ex. 2115 - pa_ag.v

reg ucp5_write_after_cpy; 1

wire [2:0] nxt_ucp5_write_ptr; 2

reg [2:0] ucp5_write_ptr; 3

wire [2:0] agrd_ucp5_write_ptr; 4

 5

wire [2:0] gb_rd_off; 6

wire nxt_gb_write_after_cpy; 7

reg gb_write_after_cpy; 8

wire [2:0] nxt_gb_write_ptr; 9

reg [2:0] gb_write_ptr; 10

wire [2:0] agrd_gb_write_ptr; 11

 12

wire [2:0] pntsz_rd_off; 13

wire nxt_pntsz_write_after_cpy; 14

reg pntsz_write_after_cpy; 15

wire [2:0] nxt_pntsz_write_ptr; 16

reg [2:0] pntsz_write_ptr; 17

wire [2:0] agrd_pntsz_write_ptr; 18

 19

//CCG decode results 20

reg [2:0] ccg_vte_opcode; 21

reg [2:0] ccg_vte_st_indx; 22

 23

reg [2:0] ccg_ve_opcode; 24

reg [1:0] ccg_ve_a_memsel; 25

 Page 16 of 123
Ex. 2115 - pa_ag.v

reg [1:0] ccg_ve_b_memsel; 1

reg [2:0] ccg_ve_ax_select; 2

reg [2:0] ccg_ve_ay_select; 3

reg [2:0] ccg_ve_az_select; 4

reg [2:0] ccg_ve_aw_select; 5

reg [2:0] ccg_ve_bx_select; 6

reg [2:0] ccg_ve_by_select; 7

reg [2:0] ccg_ve_bz_select; 8

reg [2:0] ccg_ve_bw_select; 9

reg ccg_ve_a_is_wwww; 10

reg ccg_ve_broadcast_x; 11

reg ccg_ve_abs_a; 12

reg ccg_ve_abs_b; 13

reg ccg_ve_abs_c; 14

reg ccg_ve_ax_negate; 15

reg ccg_ve_ay_negate; 16

reg ccg_ve_az_negate; 17

reg ccg_ve_aw_negate; 18

reg ccg_ve_bx_negate; 19

reg ccg_ve_by_negate; 20

reg ccg_ve_bz_negate; 21

reg ccg_ve_bw_negate; 22

reg ccg_ve_cx_negate; 23

reg ccg_ve_cy_negate; 24

reg ccg_ve_cz_negate; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 542 of 611

 Page 17 of 123
Ex. 2115 - pa_ag.v

reg ccg_ve_cw_negate; 1

reg ccg_ve_bcc_flat_tst; 2

reg [2:0] ccg_ve_out_mem_sel; 3

reg [5:0] ccg_ve_out_addr; 4

reg [3:0] ccg_ve_out_we; 5

reg ccg_ve_accum_sel; 6

reg [3:0] ccg_ve_pre_acc_we; 7

 8

reg [5:0] ccg_agve_dly_vertex_store_indx; 9

reg [1:0] ccg_agve_dly_valid_bit_set; 10

reg [3:0] ccg_agve_dly_user_clip_indx; 11

reg ccg_agve_dly_vv_cc_test; 12

reg ccg_agve_dly_ucp_cc_test; 13

reg ccg_agve_dly_bcc_cc_test; 14

reg ccg_agve_dly_ps_ucp_cc_test; 15

reg ccg_agve_dly_ps_engh_test; 16

 17

reg [1:0] get_baryc_a_memsel; 18

reg [2:0] get_baryc_ax_select; 19

reg [2:0] get_baryc_ay_select; 20

reg [2:0] get_baryc_az_select; 21

reg get_baryc_ax_negate; 22

reg get_baryc_cx_negate; 23

 24

reg [1:0] get_pos_a_memsel; 25

 Page 18 of 123
Ex. 2115 - pa_ag.v

 1

reg [1:0] get_clipdist_a_memsel; 2

reg [2:0] get_clipdist_a_select; 3

 4

//CLIPPER decode results 5

reg [2:0] clip_vte_opcode; 6

reg [2:0] clip_vte_st_indx; 7

 8

reg [2:0] clip_ve_opcode; 9

reg [1:0] clip_ve_a_memsel; 10

reg [1:0] clip_ve_b_memsel; 11

reg [2:0] clip_ve_ax_select; 12

reg [2:0] clip_ve_ay_select; 13

reg [2:0] clip_ve_az_select; 14

reg [2:0] clip_ve_aw_select; 15

reg [2:0] clip_ve_bx_select; 16

reg [2:0] clip_ve_by_select; 17

reg [2:0] clip_ve_bz_select; 18

reg [2:0] clip_ve_bw_select; 19

reg clip_ve_a_is_wwww; 20

reg clip_ve_broadcast_x; 21

reg clip_ve_abs_a; 22

reg clip_ve_abs_b; 23

reg clip_ve_abs_c; 24

reg clip_ve_ax_negate; 25

 Page 19 of 123
Ex. 2115 - pa_ag.v

reg clip_ve_ay_negate; 1

reg clip_ve_az_negate; 2

reg clip_ve_aw_negate; 3

reg clip_ve_bx_negate; 4

reg clip_ve_by_negate; 5

reg clip_ve_bz_negate; 6

reg clip_ve_bw_negate; 7

reg clip_ve_cx_negate; 8

reg clip_ve_cy_negate; 9

reg clip_ve_cz_negate; 10

reg clip_ve_cw_negate; 11

reg clip_ve_bcc_flat_tst; 12

reg [2:0] clip_ve_out_mem_sel; 13

reg [5:0] clip_ve_out_addr; 14

reg [3:0] clip_ve_out_we; 15

reg clip_ve_accum_sel; 16

reg [3:0] clip_ve_pre_acc_we; 17

 18

reg [5:0] clip_agve_dly_vertex_store_indx; 19

reg [1:0] clip_agve_dly_valid_bit_set; 20

reg [3:0] clip_agve_dly_user_clip_indx; 21

reg clip_agve_dly_vv_cc_test; 22

reg clip_agve_dly_ucp_cc_test; 23

reg clip_agve_dly_bcc_cc_test; 24

reg clip_agve_dly_ps_ucp_cc_test; 25

 Page 20 of 123
Ex. 2115 - pa_ag.v

reg clip_agve_dly_ps_engh_test; 1

 2

 3

 4

// arbiter mux of control 5

reg [2:0] arbsel_vte_opcode; 6

reg [2:0] arbsel_vte_st_indx; 7

reg [2:0] arbsel_ve_opcode; 8

reg [1:0] arbsel_ve_a_memsel; 9

reg [1:0] arbsel_ve_b_memsel; 10

reg [2:0] arbsel_ve_ax_select; 11

reg [2:0] arbsel_ve_ay_select; 12

reg [2:0] arbsel_ve_az_select; 13

reg [2:0] arbsel_ve_aw_select; 14

reg [2:0] arbsel_ve_bx_select; 15

reg [2:0] arbsel_ve_by_select; 16

reg [2:0] arbsel_ve_bz_select; 17

reg [2:0] arbsel_ve_bw_select; 18

reg arbsel_ve_a_is_wwww; 19

reg arbsel_ve_broadcast_x; 20

reg arbsel_ve_abs_a; 21

reg arbsel_ve_abs_b; 22

reg arbsel_ve_abs_c; 23

reg arbsel_ve_ax_negate; 24

reg arbsel_ve_ay_negate; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 543 of 611

 Page 21 of 123
Ex. 2115 - pa_ag.v

reg arbsel_ve_az_negate; 1

reg arbsel_ve_aw_negate; 2

reg arbsel_ve_bx_negate; 3

reg arbsel_ve_by_negate; 4

reg arbsel_ve_bz_negate; 5

reg arbsel_ve_bw_negate; 6

reg arbsel_ve_cx_negate; 7

reg arbsel_ve_cy_negate; 8

reg arbsel_ve_cz_negate; 9

reg arbsel_ve_cw_negate; 10

reg arbsel_ve_bcc_flat_tst; 11

reg [2:0] arbsel_ve_out_mem_sel; 12

reg [5:0] arbsel_ve_out_addr; 13

reg [3:0] arbsel_ve_out_we; 14

reg arbsel_ve_accum_sel; 15

reg [3:0] arbsel_ve_pre_acc_we; 16

 17

reg [5:0] arbsel_agve_dly_vertex_store_indx; 18

reg [1:0] arbsel_agve_dly_valid_bit_set; 19

reg [3:0] arbsel_agve_dly_user_clip_indx; 20

reg arbsel_agve_dly_vv_cc_test; 21

reg arbsel_agve_dly_ucp_cc_test; 22

reg arbsel_agve_dly_bcc_cc_test; 23

reg arbsel_agve_dly_ps_ucp_cc_test; 24

reg arbsel_agve_dly_ps_engh_test; 25

 Page 22 of 123
Ex. 2115 - pa_ag.v

 1

reg agve_valid_op; 2

 3

//Declare AG_R0 register items 4

reg ccg_xfc_r0; 5

reg ccg_ve_cc_valid_r0; 6

reg [1:0] ccg_sm_state_indx_r0; 7

reg [2:0] ccg_state_var_indx_r0; 8

reg [5:0] ccg_vertex_store_indx_r0; 9

reg [2:0] ccg_ve_ucp_indx_r0; 10

 11

reg clip_xfc_r0; 12

reg [3:0] clip_plane_indx_r0; 13

reg [5:0] clip_dst_vertex_indx_r0; 14

reg [6:0] clip_src_vertex_indx_r0; 15

reg clip_src_vertex_type_r0; 16

reg clip_ve_ucp_valid_r0; 17

reg [6:0] clip_sm_state_indx_r0; 18

reg [2:0] clip_state_var_indx_r0; 19

 20

//Declare AG_R1 register items 21

reg ccg_xfc_r1; 22

//CCG R1 Delay 23

reg [2:0] ccg_vte_opcode_r1; 24

reg [2:0] ccg_vte_st_indx_r1; 25

 Page 23 of 123
Ex. 2115 - pa_ag.v

reg [2:0] ccg_ve_opcode_r1; 1

reg [1:0] ccg_ve_a_memsel_r1; 2

reg [1:0] ccg_ve_b_memsel_r1; 3

reg [2:0] ccg_ve_ax_select_r1; 4

reg [2:0] ccg_ve_ay_select_r1; 5

reg [2:0] ccg_ve_az_select_r1; 6

reg [2:0] ccg_ve_aw_select_r1; 7

reg [2:0] ccg_ve_bx_select_r1; 8

reg [2:0] ccg_ve_by_select_r1; 9

reg [2:0] ccg_ve_bz_select_r1; 10

reg [2:0] ccg_ve_bw_select_r1; 11

reg ccg_ve_a_is_wwww_r1; 12

reg ccg_ve_broadcast_x_r1; 13

reg ccg_ve_abs_a_r1; 14

reg ccg_ve_abs_b_r1; 15

reg ccg_ve_abs_c_r1; 16

reg ccg_ve_ax_negate_r1; 17

reg ccg_ve_ay_negate_r1; 18

reg ccg_ve_az_negate_r1; 19

reg ccg_ve_aw_negate_r1; 20

reg ccg_ve_bx_negate_r1; 21

reg ccg_ve_by_negate_r1; 22

reg ccg_ve_bz_negate_r1; 23

reg ccg_ve_bw_negate_r1; 24

reg ccg_ve_cx_negate_r1; 25

 Page 24 of 123
Ex. 2115 - pa_ag.v

reg ccg_ve_cy_negate_r1; 1

reg ccg_ve_cz_negate_r1; 2

reg ccg_ve_cw_negate_r1; 3

reg ccg_ve_bcc_flat_tst_r1; 4

reg [2:0] ccg_ve_out_mem_sel_r1; 5

reg [5:0] ccg_ve_out_addr_r1; 6

reg [3:0] ccg_ve_out_we_r1; 7

reg ccg_ve_accum_sel_r1; 8

reg [3:0] ccg_ve_pre_acc_we_r1; 9

 10

reg [5:0] ccg_agve_dly_vertex_store_indx_r1; 11

reg [1:0] ccg_agve_dly_valid_bit_set_r1; 12

reg [3:0] ccg_agve_dly_user_clip_indx_r1; 13

reg ccg_agve_dly_vv_cc_test_r1; 14

reg ccg_agve_dly_ucp_cc_test_r1; 15

reg ccg_agve_dly_bcc_cc_test_r1; 16

reg ccg_agve_dly_ps_ucp_cc_test_r1; 17

reg ccg_agve_dly_ps_engh_test_r1; 18

 19

reg clip_xfc_r1; 20

//CLIPPER R1 Delay 21

reg [2:0] clip_vte_opcode_r1; 22

reg [2:0] clip_vte_st_indx_r1; 23

reg [2:0] clip_ve_opcode_r1; 24

reg [1:0] clip_ve_a_memsel_r1; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 544 of 611

 Page 25 of 123
Ex. 2115 - pa_ag.v

reg [1:0] clip_ve_b_memsel_r1; 1

reg [2:0] clip_ve_ax_select_r1; 2

reg [2:0] clip_ve_ay_select_r1; 3

reg [2:0] clip_ve_az_select_r1; 4

reg [2:0] clip_ve_aw_select_r1; 5

reg [2:0] clip_ve_bx_select_r1; 6

reg [2:0] clip_ve_by_select_r1; 7

reg [2:0] clip_ve_bz_select_r1; 8

reg [2:0] clip_ve_bw_select_r1; 9

reg clip_ve_a_is_wwww_r1; 10

reg clip_ve_broadcast_x_r1; 11

reg clip_ve_abs_a_r1; 12

reg clip_ve_abs_b_r1; 13

reg clip_ve_abs_c_r1; 14

reg clip_ve_ax_negate_r1; 15

reg clip_ve_ay_negate_r1; 16

reg clip_ve_az_negate_r1; 17

reg clip_ve_aw_negate_r1; 18

reg clip_ve_bx_negate_r1; 19

reg clip_ve_by_negate_r1; 20

reg clip_ve_bz_negate_r1; 21

reg clip_ve_bw_negate_r1; 22

reg clip_ve_cx_negate_r1; 23

reg clip_ve_cy_negate_r1; 24

reg clip_ve_cz_negate_r1; 25

 Page 26 of 123
Ex. 2115 - pa_ag.v

reg clip_ve_cw_negate_r1; 1

reg clip_ve_bcc_flat_tst_r1; 2

reg [2:0] clip_ve_out_mem_sel_r1; 3

reg [5:0] clip_ve_out_addr_r1; 4

reg [3:0] clip_ve_out_we_r1; 5

reg clip_ve_accum_sel_r1; 6

reg [3:0] clip_ve_pre_acc_we_r1; 7

 8

reg [5:0] clip_agve_dly_vertex_store_indx_r1; 9

reg [1:0] clip_agve_dly_valid_bit_set_r1; 10

reg [3:0] clip_agve_dly_user_clip_indx_r1; 11

reg clip_agve_dly_vv_cc_test_r1; 12

reg clip_agve_dly_ucp_cc_test_r1; 13

reg clip_agve_dly_bcc_cc_test_r1; 14

reg clip_agve_dly_ps_ucp_cc_test_r1; 15

reg clip_agve_dly_ps_engh_test_r1; 16

 17

//Declare AG_R1 register items 18

reg [2:0] vte_opcode_r2; 19

reg [2:0] vte_st_indx_r2; 20

reg [2:0] ve_opcode_r2; 21

reg [1:0] ve_a_memsel_r2; 22

reg [1:0] ve_b_memsel_r2; 23

reg [2:0] ve_ax_select_r2; 24

reg [2:0] ve_ay_select_r2; 25

 Page 27 of 123
Ex. 2115 - pa_ag.v

reg [2:0] ve_az_select_r2; 1

reg [2:0] ve_aw_select_r2; 2

reg [2:0] ve_bx_select_r2; 3

reg [2:0] ve_by_select_r2; 4

reg [2:0] ve_bz_select_r2; 5

reg [2:0] ve_bw_select_r2; 6

reg ve_a_is_wwww_r2; 7

reg ve_broadcast_x_r2; 8

reg ve_abs_a_r2; 9

reg ve_abs_b_r2; 10

reg ve_abs_c_r2; 11

reg ve_ax_negate_r2; 12

reg ve_ay_negate_r2; 13

reg ve_az_negate_r2; 14

reg ve_aw_negate_r2; 15

reg ve_bx_negate_r2; 16

reg ve_by_negate_r2; 17

reg ve_bz_negate_r2; 18

reg ve_bw_negate_r2; 19

reg ve_cx_negate_r2; 20

reg ve_cy_negate_r2; 21

reg ve_cz_negate_r2; 22

reg ve_cw_negate_r2; 23

reg ve_bcc_flat_tst_r2; 24

reg [2:0] ve_out_mem_sel_r2; 25

 Page 28 of 123
Ex. 2115 - pa_ag.v

reg [5:0] ve_out_addr_r2; 1

reg [3:0] ve_out_we_r2; 2

reg ve_accum_sel_r2; 3

reg [3:0] ve_pre_acc_we_r2; 4

 5

reg [5:0] agve_dly_vertex_store_indx_r2; 6

reg [1:0] agve_dly_valid_bit_set_r2; 7

reg [3:0] agve_dly_user_clip_indx_r2; 8

reg agve_dly_vv_cc_test_r2; 9

reg agve_dly_ucp_cc_test_r2; 10

reg agve_dly_bcc_cc_test_r2; 11

reg agve_dly_ps_ucp_cc_test_r2; 12

reg agve_dly_ps_engh_test_r2; 13

 14

//Declare AG_R3 output register items 15

 16

reg [2:0] ag_vte_opcode; 17

reg [2:0] ag_vte_st_indx; 18

reg [1:0] ag_vte_vertex_store_indx; 19

reg [2:0] ag_ve_opcode; 20

reg [31:0] ag_ve_in_a0; 21

reg [31:0] ag_ve_in_a1; 22

reg [31:0] ag_ve_in_a2; 23

reg [31:0] ag_ve_in_a3; 24

reg [31:0] ag_ve_in_b0; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 545 of 611

 Page 29 of 123
Ex. 2115 - pa_ag.v

reg [31:0] ag_ve_in_b1; 1

reg [31:0] ag_ve_in_b2; 2

reg [31:0] ag_ve_in_b3; 3

reg ag_ve_a_is_wwww; 4

reg ag_ve_broadcast_x; 5

reg ag_ve_abs_a; 6

reg ag_ve_abs_b; 7

reg ag_ve_abs_c; 8

reg ag_ve_ax_negate; 9

reg ag_ve_ay_negate; 10

reg ag_ve_az_negate; 11

reg ag_ve_aw_negate; 12

reg ag_ve_bx_negate; 13

reg ag_ve_by_negate; 14

reg ag_ve_bz_negate; 15

reg ag_ve_bw_negate; 16

reg ag_ve_cx_negate; 17

reg ag_ve_cy_negate; 18

reg ag_ve_cz_negate; 19

reg ag_ve_cw_negate; 20

reg ag_ve_bcc_flat_tst; 21

reg [2:0] ag_ve_out_mem_sel; 22

reg [5:0] ag_ve_out_addr; 23

reg [3:0] ag_ve_out_we; 24

reg ag_ve_accum_sel; 25

 Page 30 of 123
Ex. 2115 - pa_ag.v

reg [3:0] ag_ve_pre_accum_we; 1

 2

reg [127:0] amem_sel_data; 3

reg [127:0] bmem_sel_data; 4

wire [31:0] agswz_ve_in_a0; 5

wire [31:0] agswz_ve_in_a1; 6

wire [31:0] agswz_ve_in_a2; 7

wire [31:0] agswz_ve_in_a3; 8

wire [31:0] agswz_ve_in_b0; 9

wire [31:0] agswz_ve_in_b1; 10

wire [31:0] agswz_ve_in_b2; 11

wire [31:0] agswz_ve_in_b3; 12

 13

reg agve_dly_valid_op_r3; 14

reg [5:0] agve_dly_vertex_store_indx_r3; 15

reg [1:0] agve_dly_valid_bit_set_r3; 16

reg [3:0] agve_dly_user_clip_indx_r3; 17

reg agve_dly_vv_cc_test_r3; 18

reg agve_dly_ucp_cc_test_r3; 19

reg agve_dly_bcc_cc_test_r3; 20

reg agve_dly_ps_ucp_cc_test_r3; 21

reg agve_dly_ps_engh_test_r3; 22

 23

//delay pipe 24

reg [17:0] agve_dly0; 25

 Page 31 of 123
Ex. 2115 - pa_ag.v

reg [17:0] agve_dly1; 1

reg [17:0] agve_dly2; 2

reg [17:0] agve_dly3; 3

reg [17:0] agve_dly4; 4

reg [17:0] agve_dly5; 5

 6

reg agve_dly_valid_op; 7

reg [5:0] agve_dly_vertex_store_indx; 8

reg [1:0] agve_dly_valid_bit_set; 9

reg [3:0] agve_dly_user_clip_indx; 10

reg agve_dly_vv_cc_test; 11

reg agve_dly_ucp_cc_test; 12

reg agve_dly_bcc_cc_test; 13

reg agve_dly_ps_ucp_cc_test; 14

reg agve_dly_ps_engh_test; 15

 16

//** 17

// Combinational logic 18

//** 19

 20

//map ccg and clip controller signals to broken out names 21

always @(ccg_to_arb_data or 22

 clip_to_arb_data) 23

 begin 24

 {ccg_ve_cc_valid, 25

 Page 32 of 123
Ex. 2115 - pa_ag.v

 ccg_ve_valid, 1

 ccg_sm_state_indx, 2

 ccg_state_var_indx, 3

 ccg_vertex_store_indx, 4

 ccg_ve_ucp_indx} = ccg_to_arb_data ; 5

 6

 {clip_plane_indx, 7

 clip_dst_vertex_indx, 8

 clip_src_vertex_indx, 9

 clip_src_vertex_type, 10

 clip_ve_ucp_valid, 11

 clip_sm_state_indx, 12

 clip_state_var_indx} = clip_to_arb_data ; 13

 end 14

 15

//maintain state dirty bits 16

assign nxt_ucp0_write_after_cpy = dirty(srst, rbiu_cpy, rbiu_ag_ucp0_sel); 17

assign nxt_ucp1_write_after_cpy = dirty(srst, rbiu_cpy, rbiu_ag_ucp1_sel); 18

assign nxt_ucp2_write_after_cpy = dirty(srst, rbiu_cpy, rbiu_ag_ucp2_sel); 19

assign nxt_ucp3_write_after_cpy = dirty(srst, rbiu_cpy, rbiu_ag_ucp3_sel); 20

assign nxt_ucp4_write_after_cpy = dirty(srst, rbiu_cpy, rbiu_ag_ucp4_sel); 21

assign nxt_ucp5_write_after_cpy = dirty(srst, rbiu_cpy, rbiu_ag_ucp5_sel); 22

assign nxt_gb_write_after_cpy = dirty(srst, rbiu_cpy, rbiu_ag_gb_sel); 23

assign nxt_pntsz_write_after_cpy = dirty(srst, rbiu_cpy, rbiu_ag_pntsz_sel); 24

 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 546 of 611

 Page 33 of 123
Ex. 2115 - pa_ag.v

//maintain state next write ptr's 1

assign nxt_ucp0_write_ptr = stwtptr(srst, rbiu_cpy, ucp0_write_after_cpy, ucp0_write_ptr); 2

assign nxt_ucp1_write_ptr = stwtptr(srst, rbiu_cpy, ucp1_write_after_cpy, ucp1_write_ptr); 3

assign nxt_ucp2_write_ptr = stwtptr(srst, rbiu_cpy, ucp2_write_after_cpy, ucp2_write_ptr); 4

assign nxt_ucp3_write_ptr = stwtptr(srst, rbiu_cpy, ucp3_write_after_cpy, ucp3_write_ptr); 5

assign nxt_ucp4_write_ptr = stwtptr(srst, rbiu_cpy, ucp4_write_after_cpy, ucp4_write_ptr); 6

assign nxt_ucp5_write_ptr = stwtptr(srst, rbiu_cpy, ucp5_write_after_cpy, ucp5_write_ptr); 7

assign nxt_gb_write_ptr = stwtptr(srst, rbiu_cpy, gb_write_after_cpy, gb_write_ptr); 8

assign nxt_pntsz_write_ptr = stwtptr(srst, rbiu_cpy, pntsz_write_after_cpy, pntsz_write_ptr); 9

 10

//select and assemble state mem write address 11

always @(rbiu_ag_ucp0_sel or ucp0_write_ptr or 12

 rbiu_ag_ucp1_sel or ucp1_write_ptr or 13

 rbiu_ag_ucp2_sel or ucp2_write_ptr or 14

 rbiu_ag_ucp3_sel or ucp3_write_ptr or 15

 rbiu_ag_ucp4_sel or ucp4_write_ptr or 16

 rbiu_ag_ucp5_sel or ucp5_write_ptr or 17

 rbiu_ag_gb_sel or gb_write_ptr or 18

 rbiu_ag_pntsz_sel or pntsz_write_ptr) 19

 begin 20

 stve_wa = 6'b000000; 21

 stve_we = 4'b0000; 22

 if (rbiu_ag_ucp0_sel) begin 23

 stve_wa = {3'b000, ucp0_write_ptr }; 24

 stve_we = rbiu_ag_ucp0_sel; 25

 Page 34 of 123
Ex. 2115 - pa_ag.v

 end if (rbiu_ag_ucp1_sel)begin 1

 stve_wa = {3'b001, ucp1_write_ptr }; 2

 stve_we = rbiu_ag_ucp1_sel; 3

 end if (rbiu_ag_ucp2_sel)begin 4

 stve_wa = {3'b010, ucp2_write_ptr }; 5

 stve_we = rbiu_ag_ucp2_sel; 6

 end if (rbiu_ag_ucp3_sel)begin 7

 stve_wa = {3'b011, ucp3_write_ptr }; 8

 stve_we = rbiu_ag_ucp3_sel; 9

 end if (rbiu_ag_ucp4_sel)begin 10

 stve_wa = {3'b100, ucp4_write_ptr }; 11

 stve_we = rbiu_ag_ucp4_sel; 12

 end if (rbiu_ag_ucp5_sel)begin 13

 stve_wa = {3'b101, ucp5_write_ptr }; 14

 stve_we = rbiu_ag_ucp5_sel; 15

 end if (rbiu_ag_gb_sel)begin 16

 stve_wa = {3'b110, gb_write_ptr }; 17

 stve_we = rbiu_ag_gb_sel; 18

 end if (rbiu_ag_pntsz_sel)begin 19

 stve_wa = {3'b111, pntsz_write_ptr }; 20

 stve_we = rbiu_ag_pntsz_sel; 21

 end 22

 end 23

 24

//Arbiter logic 25

 Page 35 of 123
Ex. 2115 - pa_ag.v

assign {arb_clip_xfc, arb_ccg_xfc} = arb(srst, clip_ve_valid, ccg_ve_valid); 1

 2

//Arbiter generation of intermediate stve raddr 3

always @(clip_ve_valid or 4

 clip_state_var_indx or 5

 clip_plane_indx or 6

 clip_sm_state_indx or 7

 ccg_ve_valid or 8

 ccg_state_var_indx or 9

 ccg_ve_ucp_indx or 10

 ccg_sm_state_indx) 11

 begin 12

 nxt_stve_re = 1'b0; 13

 nxt_state_type[5:3] = 3'b000; 14

 nxt_arb_state_var_indx = 3'b000; 15

 arb_ucp_indx = 3'b000; 16

 17

 if (clip_ve_valid == 1'b1) begin 18

 nxt_arb_state_var_indx = clip_state_var_indx; 19

 arb_ucp_indx = clip_plane_indx; 20

 21

 //need to add clipper read address for stve 22

 if ((clip_sm_state_indx == SMC_PS_CULL_RADIUS_VPORT) || 23

 (clip_sm_state_indx == SMC_PS_XY_RADIUS_VPORT)) begin 24

 nxt_stve_re = clip_ve_valid; 25

 Page 36 of 123
Ex. 2115 - pa_ag.v

 nxt_state_type[5:3] = PNTSZ; 1

 end else if (clip_sm_state_indx == SMC_CLIP_DIST_VV) begin 2

 nxt_stve_re = clip_ve_valid; 3

 nxt_state_type[5:3] = GB; 4

 end else if ((clip_sm_state_indx == SMC_CLIP_DIST_UCP) || 5

 (clip_sm_state_indx == SMC_PS_CLIP_DIST_UCP) || 6

 (clip_sm_state_indx == SMC_PS_UCP_DIST_UL) || 7

 (clip_sm_state_indx == SMC_PS_UCP_DIST_UR) || 8

 (clip_sm_state_indx == SMC_PS_UCP_DIST_LR) || 9

 (clip_sm_state_indx == SMC_PS_UCP_DIST_LL)) begin 10

 nxt_stve_re = clip_ve_valid; 11

 nxt_state_type[5:3] = clip_plane_indx; 12

 end 13

 end else begin //ccg wins arbitration 14

 nxt_arb_state_var_indx = ccg_state_var_indx; 15

 arb_ucp_indx = ccg_ve_ucp_indx; 16

 if(ccg_sm_state_indx == SMCC_EMPTY) begin 17

 nxt_stve_re = ccg_ve_valid; 18

 nxt_state_type[5:3] = GB; //guard band lookup 19

 end else begin 20

 nxt_stve_re = ccg_ve_valid; 21

 nxt_state_type[5:3] = ccg_ve_ucp_indx; 22

 end 23

 24

 end 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 547 of 611

 Page 37 of 123
Ex. 2115 - pa_ag.v

 end 1

 2

//determine the final stve_raddr 3

always @(state_type_r0 or ucp0_rd_off or ucp1_rd_off or ucp2_rd_off or ucp3_rd_off or 4

 ucp4_rd_off or ucp5_rd_off or ucp1_rd_off or gb_rd_off or pntsz_rd_off) 5

 begin 6

 case (state_type_r0) 7

 UCP0 : begin stve_raddr = {UCP0, ucp0_rd_off }; end 8

 UCP1 : begin stve_raddr = {UCP1, ucp1_rd_off }; end 9

 UCP2 : begin stve_raddr = {UCP2, ucp2_rd_off }; end 10

 UCP3 : begin stve_raddr = {UCP3, ucp3_rd_off }; end 11

 UCP4 : begin stve_raddr = {UCP4, ucp4_rd_off }; end 12

 UCP5 : begin stve_raddr = {UCP5, ucp5_rd_off }; end 13

 GB : begin stve_raddr = {GB, gb_rd_off }; end 14

 PNTSZ: begin stve_raddr = {PNTSZ,pntsz_rd_off}; end 15

 endcase 16

 end 17

 18

//determine the POS and PNTSZ read addr 19

always @(ccg_xfc_r0 or 20

 ccg_vertex_store_indx_r0 or 21

 clip_xfc_r0 or 22

 clip_sm_state_indx_r0 or 23

 clip_src_vertex_indx_r0 or 24

 clip_to_ag_point_buf_re or 25

 Page 38 of 123
Ex. 2115 - pa_ag.v

 clip_to_ag_point_buf_raddr) 1

 begin 2

 pos_re = ccg_xfc_r0; 3

 pos_raddr = ccg_vertex_store_indx_r0; 4

 pntsz_re = 0; 5

 pntsz_raddr = clip_src_vertex_indx_r0[5:0]; 6

 7

 if (ccg_xfc_r0) begin 8

 pos_re = 1; 9

 pos_raddr = ccg_vertex_store_indx_r0; 10

 pntsz_re = 0; 11

 pntsz_raddr = clip_src_vertex_indx_r0[5:0]; 12

 end 13

 else if (clip_xfc_r0) begin 14

 pos_re = 1; 15

 pos_raddr = clip_src_vertex_indx_r0[5:0]; 16

 pntsz_re = 1; 17

 pntsz_raddr = clip_src_vertex_indx_r0[5:0]; 18

 end 19

 else if (clip_to_ag_point_buf_re) begin 20

 pos_re = 0; 21

 pos_raddr = clip_src_vertex_indx_r0[5:0]; 22

 pntsz_re = 1; 23

 pntsz_raddr = clip_to_ag_point_buf_raddr; 24

 end 25

 Page 39 of 123
Ex. 2115 - pa_ag.v

 end 1

 2

//determine the ve_veoc_vector_back memory read addr 3

always @(clip_xfc_r0 or 4

 clip_sm_state_indx_r0 or 5

 clip_src_vertex_indx_r0 or 6

 clip_dst_vertex_indx_r0 or 7

 clip_src_vertex_type_r0) 8

 begin 9

 ve_veoc_vector_back_re = clip_xfc_r0; 10

 ve_veoc_vector_back_raddr = 5'b00000; 11

 12

 case (clip_sm_state_indx_r0) 13

 14

 SMC_OUTPUT_FIRST_BARYC_0, 15

 SMC_OUTPUT_FIRST_BARYC_1, 16

 SMC_OUTPUT_FIRST_BARYC_2, 17

 SMC_OUTPUT_REST_BARYC, 18

 SMC_T_BLEND_PREV_ABC_0, 19

 SMC_T_BLEND_CURR_ABC_0, 20

 SMC_T_BLEND_PREV_ABC_1, 21

 SMC_T_BLEND_CURR_ABC_1 : begin 22

 ve_veoc_vector_back_re = clip_xfc_r0; 23

 // GetBarycCoord subroutine 24

 ve_veoc_vector_back_raddr = { 2'b00, 25

 Page 40 of 123
Ex. 2115 - pa_ag.v

 clip_src_vertex_indx_r0[3:0] }; 1

 end 2

 3

 SMC_OUTPUT_FIRST_CLIP_POS_0, 4

 SMC_OUTPUT_FIRST_CLIP_POS_1, 5

 SMC_OUTPUT_FIRST_CLIP_POS_2, 6

 SMC_OUTPUT_REST_CLIP_POS, 7

 SMC_T_BLEND_PREV_POS_0, 8

 SMC_T_BLEND_CURR_POS_0, 9

 SMC_T_BLEND_PREV_POS_1, 10

 SMC_T_BLEND_CURR_POS_1, 11

 SMC_CLIP_DIST_VV, 12

 SMC_CLIP_DIST_UCP : begin 13

 ve_veoc_vector_back_re = clip_xfc_r0; 14

 // GetPosition subroutine 15

 if(clip_src_vertex_type_r0==1'b1) begin 16

 ve_veoc_vector_back_raddr = { 2'b01, 17

 clip_src_vertex_indx_r0[3:0] }; 18

 end else begin 19

 case (clip_src_vertex_indx_r0[1:0]) 20

 PS_VERT_UL : begin 21

 ve_veoc_vector_back_raddr = VEOC_PS_POS_VERT_UL; 22

 end 23

 PS_VERT_UR : begin 24

 ve_veoc_vector_back_raddr = VEOC_PS_POS_VERT_UR; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 548 of 611

 Page 41 of 123
Ex. 2115 - pa_ag.v

 end 1

 PS_VERT_LL : begin 2

 ve_veoc_vector_back_raddr = VEOC_PS_POS_VERT_LL; 3

 end 4

 PS_VERT_LR : begin 5

 ve_veoc_vector_back_raddr = VEOC_PS_POS_VERT_LR; 6

 end 7

 2'bxx : begin 8

 ve_veoc_vector_back_raddr = 6'bxxxxxx; 9

 end 10

 endcase 11

 end 12

 end 13

 14

 SMC_EDGE_DISTANCE_0, 15

 SMC_EDGE_DISTANCE_1, 16

 SMC_CLIP_T_FACTOR_PREV_0, 17

 SMC_CLIP_T_FACTOR_CURR_0, 18

 SMC_CLIP_T_FACTOR_PREV_1, 19

 SMC_CLIP_T_FACTOR_CURR_1 : begin 20

 // GetClipDist subroutine 21

 ve_veoc_vector_back_re = clip_xfc_r0; 22

 if(clip_src_vertex_type_r0==1'b1) begin 23

 ve_veoc_vector_back_raddr = { 2'b00, 24

 clip_src_vertex_indx_r0[3:0] }; 25

 Page 42 of 123
Ex. 2115 - pa_ag.v

 end else begin 1

 ve_veoc_vector_back_raddr = VEOC_CLIP_DIST_ORIG; 2

 end 3

 // end GetClipDist 4

 end 5

 6

 SMC_PS_UCP_DIST_UL : begin 7

 ve_veoc_vector_back_raddr = VEOC_PS_POS_VERT_UL; 8

 end 9

 10

 SMC_PS_UCP_DIST_UR : begin 11

 ve_veoc_vector_back_raddr = VEOC_PS_POS_VERT_UR; 12

 end 13

 14

 SMC_PS_UCP_DIST_LL : begin 15

 ve_veoc_vector_back_raddr = VEOC_PS_POS_VERT_LL; 16

 end 17

 18

 SMC_PS_UCP_DIST_LR : begin 19

 ve_veoc_vector_back_raddr = VEOC_PS_POS_VERT_LR; 20

 end 21

 22

 SMC_PS_ENGH_TEST : begin 23

 ve_veoc_vector_back_raddr = VEOC_CLIP_DIST_ORIG; 24

 end 25

 Page 43 of 123
Ex. 2115 - pa_ag.v

 1

 endcase 2

 end 3

 4

// CCG_DECODE 5

always @(ccg_state_var_indx_r0 or 6

 ccg_ve_ucp_indx_r0 or 7

 ccg_ve_cc_valid_r0 or 8

 ccg_vertex_store_indx_r0 or 9

 ccg_sm_state_indx_r0 or 10

 ccg_xfc_r0 or 11

 dx_clip_space_def) 12

 begin 13

 14

 ccg_vte_opcode = VTE_NO_OP; 15

 ccg_ve_opcode = VECTOR_NO_OP; 16

 ccg_ve_a_memsel = VEA_MEMSEL_VEOC_VE; 17

 ccg_ve_b_memsel = VEB_MEMSEL_STVE_VE; 18

 ccg_ve_ax_select = SRC_SELECT_FORCE_0; 19

 ccg_ve_ay_select = SRC_SELECT_FORCE_0; 20

 ccg_ve_az_select = SRC_SELECT_FORCE_0; 21

 ccg_ve_aw_select = SRC_SELECT_FORCE_0; 22

 ccg_ve_bx_select = SRC_SELECT_FORCE_0; 23

 ccg_ve_by_select = SRC_SELECT_FORCE_0; 24

 ccg_ve_bz_select = SRC_SELECT_FORCE_0; 25

 Page 44 of 123
Ex. 2115 - pa_ag.v

 ccg_ve_bw_select = SRC_SELECT_FORCE_0; 1

 ccg_ve_a_is_wwww = 1'b0; 2

 ccg_ve_broadcast_x = 1'b0; 3

 ccg_ve_abs_a = 1'b0; 4

 ccg_ve_abs_b = 1'b0; 5

 ccg_ve_abs_c = 1'b0; 6

 ccg_ve_ax_negate = 1'b0; 7

 ccg_ve_ay_negate = 1'b0; 8

 ccg_ve_az_negate = 1'b0; 9

 ccg_ve_aw_negate = 1'b0; 10

 ccg_ve_bx_negate = 1'b0; 11

 ccg_ve_by_negate = 1'b0; 12

 ccg_ve_bz_negate = 1'b0; 13

 ccg_ve_bw_negate = 1'b0; 14

 ccg_ve_cx_negate = 1'b0; 15

 ccg_ve_cy_negate = 1'b0; 16

 ccg_ve_cz_negate = 1'b0; 17

 ccg_ve_cw_negate = 1'b0; 18

 ccg_ve_bcc_flat_tst = 1'b0; 19

 ccg_ve_out_mem_sel = 3'b0; 20

 ccg_ve_out_addr = 5'b00000; 21

 ccg_ve_out_we = 4'b0000; 22

 ccg_ve_accum_sel = 1'b0; 23

 ccg_ve_pre_acc_we = 4'b0000; 24

 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 549 of 611

 Page 45 of 123
Ex. 2115 - pa_ag.v

 ccg_agve_dly_vertex_store_indx = ccg_vertex_store_indx_r0; 1

 ccg_agve_dly_valid_bit_set = 2'b0; 2

 ccg_agve_dly_user_clip_indx = 4'b0; 3

 ccg_agve_dly_vv_cc_test = 1'b0; 4

 ccg_agve_dly_ucp_cc_test = 1'b0; 5

 ccg_agve_dly_bcc_cc_test = 1'b0; 6

 ccg_agve_dly_ps_ucp_cc_test = 1'b0; 7

 ccg_agve_dly_ps_engh_test = 1'b0; 8

 9

 ccg_vte_st_indx = ccg_state_var_indx_r0; 10

 11

 if (ccg_xfc_r0 == 1'b1) begin 12

 case (ccg_sm_state_indx_r0) 13

 SMCC_EMPTY : begin 14

 if (dx_clip_space_def) begin 15

 ccg_ve_opcode = VE_CLIP_CODE_VV_Z0W; 16

 end else begin 17

 ccg_ve_opcode = VE_CLIP_CODE_VV_ZWW; 18

 end 19

 ccg_vte_opcode = VTE_ORIG_POS; 20

 ccg_ve_a_is_wwww = 1'b1; 21

 ccg_agve_dly_vv_cc_test = 1'b1; 22

 if(ccg_ve_cc_valid_r0) begin 23

 ccg_agve_dly_valid_bit_set = CC_VALID; 24

 end 25

 Page 46 of 123
Ex. 2115 - pa_ag.v

 ccg_ve_a_memsel = VEA_MEMSEL_POS_BUF_VE; 1

 ccg_ve_ax_select = SRC_SELECT_X; 2

 ccg_ve_ay_select = SRC_SELECT_Y; 3

 ccg_ve_az_select = SRC_SELECT_Z; 4

 ccg_ve_aw_select = SRC_SELECT_W; 5

 ccg_ve_b_memsel = VEB_MEMSEL_STVE_VE; 6

 ccg_ve_bx_select = SRC_SELECT_X; 7

 ccg_ve_by_select = SRC_SELECT_Y; 8

 ccg_ve_bz_select = SRC_SELECT_Z; 9

 ccg_ve_bw_select = SRC_SELECT_W; 10

 end 11

 12

 SMCC_CLIP_CODE_UCP: begin 13

 ccg_ve_opcode = VE_DOT_PRODUCT; 14

 ccg_ve_a_memsel = VEA_MEMSEL_POS_BUF_VE; 15

 ccg_ve_ax_select = SRC_SELECT_X; 16

 ccg_ve_ay_select = SRC_SELECT_Y; 17

 ccg_ve_az_select = SRC_SELECT_Z; 18

 ccg_ve_aw_select = SRC_SELECT_W; 19

 ccg_ve_b_memsel = VEB_MEMSEL_STVE_VE; 20

 ccg_ve_bx_select = SRC_SELECT_X; 21

 ccg_ve_by_select = SRC_SELECT_Y; 22

 ccg_ve_bz_select = SRC_SELECT_Z; 23

 ccg_ve_bw_select = SRC_SELECT_W; 24

 if(ccg_ve_cc_valid_r0) begin 25

 Page 47 of 123
Ex. 2115 - pa_ag.v

 ccg_agve_dly_valid_bit_set = CC_VALID; 1

 end 2

 ccg_agve_dly_user_clip_indx = ccg_ve_ucp_indx_r0; 3

 ccg_agve_dly_ucp_cc_test = 1'b1; 4

 end 5

 6

 default; 7

 endcase 8

 end 9

 end 10

 11

//CLIP_DECODE 12

always @(clip_plane_indx_r0 or 13

 clip_dst_vertex_indx_r0 or 14

 clip_src_vertex_indx_r0 or 15

 clip_src_vertex_type_r0 or 16

 clip_ve_ucp_valid_r0 or 17

 clip_sm_state_indx_r0 or 18

 clip_state_var_indx_r0 or 19

 dx_clip_space_def) 20

 begin 21

 22

 clip_vte_opcode = VTE_NO_OP; 23

 clip_vte_st_indx = 2'b0; 24

 clip_ve_opcode = VECTOR_NO_OP; 25

 Page 48 of 123
Ex. 2115 - pa_ag.v

 clip_ve_a_memsel = VEA_MEMSEL_VEOC_VE; 1

 clip_ve_b_memsel = VEB_MEMSEL_STVE_VE; 2

 clip_ve_ax_select = SRC_SELECT_FORCE_0; 3

 clip_ve_ay_select = SRC_SELECT_FORCE_0; 4

 clip_ve_az_select = SRC_SELECT_FORCE_0; 5

 clip_ve_aw_select = SRC_SELECT_FORCE_0; 6

 clip_ve_bx_select = SRC_SELECT_FORCE_0; 7

 clip_ve_by_select = SRC_SELECT_FORCE_0; 8

 clip_ve_bz_select = SRC_SELECT_FORCE_0; 9

 clip_ve_bw_select = SRC_SELECT_FORCE_0; 10

 clip_ve_a_is_wwww = 1'b0; 11

 clip_ve_broadcast_x = 1'b0; 12

 clip_ve_abs_a = 1'b0; 13

 clip_ve_abs_b = 1'b0; 14

 clip_ve_abs_c = 1'b0; 15

 clip_ve_ax_negate = 1'b0; 16

 clip_ve_ay_negate = 1'b0; 17

 clip_ve_az_negate = 1'b0; 18

 clip_ve_aw_negate = 1'b0; 19

 clip_ve_bx_negate = 1'b0; 20

 clip_ve_by_negate = 1'b0; 21

 clip_ve_bz_negate = 1'b0; 22

 clip_ve_bw_negate = 1'b0; 23

 clip_ve_cx_negate = 1'b0; 24

 clip_ve_cy_negate = 1'b0; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 550 of 611

 Page 49 of 123
Ex. 2115 - pa_ag.v

 clip_ve_cz_negate = 1'b0; 1

 clip_ve_cw_negate = 1'b0; 2

 clip_ve_bcc_flat_tst = 1'b0; 3

 clip_ve_out_mem_sel = 3'b0; 4

 clip_ve_out_addr = 5'b00000; 5

 clip_ve_out_we = 4'b0000; 6

 clip_ve_accum_sel = 1'b0; 7

 clip_ve_pre_acc_we = 4'b0000; 8

 9

 clip_agve_dly_vertex_store_indx = 6'b000000; 10

 clip_agve_dly_valid_bit_set = 2'b0; 11

 clip_agve_dly_user_clip_indx = 4'b0; 12

 clip_agve_dly_vv_cc_test = 1'b0; 13

 clip_agve_dly_ucp_cc_test = 1'b0; 14

 clip_agve_dly_bcc_cc_test = 1'b0; 15

 clip_agve_dly_ps_ucp_cc_test = 1'b0; 16

 clip_agve_dly_ps_engh_test = 1'b0; 17

 18

 // GetBarycCoord subroutine 19

 get_baryc_a_memsel = VEA_MEMSEL_ZERO_FLT; 20

 get_baryc_ax_select = SRC_SELECT_FORCE_0; 21

 get_baryc_ay_select = SRC_SELECT_FORCE_0; 22

 get_baryc_az_select = SRC_SELECT_FORCE_0; 23

 get_baryc_ax_negate = 1'b0; 24

 get_baryc_cx_negate = 1'b0; 25

 Page 50 of 123
Ex. 2115 - pa_ag.v

 1

 if(clip_src_vertex_type_r0==1'b1) begin 2

 get_baryc_ax_select = SRC_SELECT_X; 3

 get_baryc_ay_select = SRC_SELECT_Y; 4

 get_baryc_az_select = SRC_SELECT_Z; 5

 get_baryc_a_memsel = VEA_MEMSEL_VEOC_VE; 6

 end else if(clip_src_vertex_type_r0==1'b0) begin 7

 case(clip_src_vertex_indx_r0[1:0]) 8

 2'b00: begin 9

 get_baryc_ax_select = SRC_SELECT_FORCE_1; 10

 get_baryc_ay_select = SRC_SELECT_FORCE_0; 11

 get_baryc_az_select = SRC_SELECT_FORCE_0; 12

 end 13

 2'b01: begin 14

 get_baryc_ax_select = SRC_SELECT_FORCE_0; 15

 get_baryc_ay_select = SRC_SELECT_FORCE_1; 16

 get_baryc_az_select = SRC_SELECT_FORCE_0; 17

 end 18

 2'b10: begin 19

 get_baryc_ax_select = SRC_SELECT_FORCE_0; 20

 get_baryc_ay_select = SRC_SELECT_FORCE_0; 21

 get_baryc_az_select = SRC_SELECT_FORCE_1; 22

 end 23

 2'b11: begin 24

 get_baryc_ax_select = SRC_SELECT_FORCE_1; 25

 Page 51 of 123
Ex. 2115 - pa_ag.v

 get_baryc_ax_negate = 1'b1; 1

 get_baryc_cx_negate = 1'b1; 2

 get_baryc_ay_select = SRC_SELECT_FORCE_1; 3

 get_baryc_az_select = SRC_SELECT_FORCE_1; 4

 end 5

 default: begin 6

 get_baryc_a_memsel = 2'bxx; 7

 get_baryc_ax_select = 3'bxxx; 8

 get_baryc_ay_select = 3'bxxx; 9

 get_baryc_az_select = 3'bxxx; 10

 get_baryc_ax_negate = 1'bx; 11

 get_baryc_cx_negate = 1'bx; 12

 end 13

 endcase 14

 end else begin 15

 get_baryc_a_memsel = 2'bxx; 16

 get_baryc_ax_select = 3'bxxx; 17

 get_baryc_ay_select = 3'bxxx; 18

 get_baryc_az_select = 3'bxxx; 19

 get_baryc_ax_negate = 1'bx; 20

 get_baryc_cx_negate = 1'bx; 21

 end 22

 // end GetBarycCoord subroutine 23

 24

 // GetPosition subroutine 25

 Page 52 of 123
Ex. 2115 - pa_ag.v

 if((clip_src_vertex_type_r0==1'b1) || 1

 (clip_src_vertex_indx_r0[6]==1'b1)) begin 2

 get_pos_a_memsel = VEA_MEMSEL_VEOC_VE; 3

 end else if((clip_src_vertex_type_r0==1'b0) && 4

 (clip_src_vertex_indx_r0[6]==1'b0)) begin 5

 get_pos_a_memsel = VEA_MEMSEL_POS_BUF_VE; 6

 end else begin 7

 get_pos_a_memsel = 2'bxx; 8

 end 9

 // end GetPosition subroutine 10

 11

 // GetClipDist subroutine 12

 get_clipdist_a_memsel = VEA_MEMSEL_VEOC_VE; 13

 if(clip_src_vertex_type_r0==1'b1) begin 14

 get_clipdist_a_select = SRC_SELECT_W; 15

 end else if(clip_src_vertex_type_r0==1'b0) begin 16

 case(clip_src_vertex_indx_r0[1:0]) 17

 2'b00 : begin 18

 get_clipdist_a_select = SRC_SELECT_X; 19

 end 20

 2'b01 : begin 21

 get_clipdist_a_select = SRC_SELECT_Y; 22

 end 23

 2'b10 : begin 24

 get_clipdist_a_select = SRC_SELECT_Z; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 551 of 611

 Page 53 of 123
Ex. 2115 - pa_ag.v

 end 1

 default : begin 2

 get_clipdist_a_select = 3'bxxx; 3

 end 4

 endcase 5

 end else begin 6

 get_clipdist_a_select = 3'bxxx; 7

 end 8

 // end GetPosition subroutine 9

 10

 case (clip_sm_state_indx_r0) 11

 12

 SMC_OUTPUT_FIRST_BARYC_0, 13

 SMC_OUTPUT_FIRST_BARYC_1, 14

 SMC_OUTPUT_FIRST_BARYC_2, 15

 SMC_OUTPUT_REST_BARYC : begin 16

 if (clip_ve_ucp_valid_r0) begin 17

 clip_vte_opcode = VTE_BC_NO_W; 18

 end else begin 19

 clip_vte_opcode = VTE_BC_MULT_W; 20

 end 21

 // GetBarycCoord 22

 clip_ve_a_memsel = get_baryc_a_memsel; 23

 clip_ve_ax_select = get_baryc_ax_select; 24

 clip_ve_ay_select = get_baryc_ay_select; 25

 Page 54 of 123
Ex. 2115 - pa_ag.v

 clip_ve_az_select = get_baryc_az_select; 1

 clip_ve_ax_negate = get_baryc_ax_negate; 2

 clip_ve_cx_negate = get_baryc_cx_negate; 3

 // end GetBarycCoord 4

 clip_agve_dly_vertex_store_indx = clip_dst_vertex_indx_r0; 5

 end 6

 7

 SMC_OUTPUT_FIRST_CLIP_POS_0, 8

 SMC_OUTPUT_FIRST_CLIP_POS_1, 9

 SMC_OUTPUT_FIRST_CLIP_POS_2, 10

 SMC_OUTPUT_REST_CLIP_POS : begin 11

 clip_vte_opcode = VTE_CLIP_POS; 12

 clip_ve_ax_select = SRC_SELECT_X; 13

 clip_ve_ay_select = SRC_SELECT_Y; 14

 clip_ve_az_select = SRC_SELECT_Z; 15

 clip_ve_aw_select = SRC_SELECT_W; 16

 clip_ve_a_memsel = get_pos_a_memsel; 17

 clip_agve_dly_vertex_store_indx = clip_dst_vertex_indx_r0; 18

 end 19

 20

 SMC_T_BLEND_PREV_ABC_0: begin 21

 clip_ve_opcode = VE_MULTIPLY; 22

 clip_ve_pre_acc_we = 4'b0111; 23

 // GetBarycCoord 24

 clip_ve_a_memsel = get_baryc_a_memsel; 25

 Page 55 of 123
Ex. 2115 - pa_ag.v

 clip_ve_ax_select = get_baryc_ax_select; 1

 clip_ve_ay_select = get_baryc_ay_select; 2

 clip_ve_az_select = get_baryc_az_select; 3

 clip_ve_ax_negate = get_baryc_ax_negate; 4

 clip_ve_cx_negate = get_baryc_cx_negate; 5

 // end GetBarycCoord 6

 clip_ve_bx_select = SRC_SELECT_X; 7

 clip_ve_by_select = SRC_SELECT_X; 8

 clip_ve_bz_select = SRC_SELECT_X; 9

 clip_ve_bw_select = SRC_SELECT_FORCE_0; 10

 clip_ve_b_memsel = VEB_MEMSEL_CLIPTEMP_VEC; 11

 end 12

 13

 SMC_T_BLEND_CURR_ABC_0: begin 14

 clip_ve_opcode = VE_MULTIPLY_ADD; 15

 clip_ve_out_we = 4'b0111; 16

 clip_ve_accum_sel = ACCUM_SEL_PRE_ACCUM; 17

 clip_ve_bcc_flat_tst = 1'b1; 18

 // GetBarycCoord 19

 clip_ve_a_memsel = get_baryc_a_memsel; 20

 clip_ve_ax_select = get_baryc_ax_select; 21

 clip_ve_ay_select = get_baryc_ay_select; 22

 clip_ve_az_select = get_baryc_az_select; 23

 clip_ve_ax_negate = get_baryc_ax_negate; 24

 clip_ve_cx_negate = get_baryc_cx_negate; 25

 Page 56 of 123
Ex. 2115 - pa_ag.v

 // end GetBarycCoord 1

 clip_ve_bx_select = SRC_SELECT_Y; 2

 clip_ve_by_select = SRC_SELECT_Y; 3

 clip_ve_bz_select = SRC_SELECT_Y; 4

 clip_ve_bw_select = SRC_SELECT_FORCE_0; 5

 clip_ve_out_mem_sel = VE_OUT_VEOC_VECTOR_BACK; 6

 clip_ve_out_addr = clip_dst_vertex_indx_r0; 7

 clip_ve_b_memsel = VEB_MEMSEL_CLIPTEMP_VEC; 8

 end 9

 10

 SMC_T_BLEND_PREV_ABC_1: begin 11

 clip_ve_opcode = VE_MULTIPLY; 12

 clip_ve_pre_acc_we = 4'b0111; 13

 // GetBarycCoord 14

 clip_ve_a_memsel = get_baryc_a_memsel; 15

 clip_ve_ax_select = get_baryc_ax_select; 16

 clip_ve_ay_select = get_baryc_ay_select; 17

 clip_ve_az_select = get_baryc_az_select; 18

 clip_ve_ax_negate = get_baryc_ax_negate; 19

 clip_ve_cx_negate = get_baryc_cx_negate; 20

 // end GetBarycCoord 21

 clip_ve_bx_select = SRC_SELECT_Z; 22

 clip_ve_by_select = SRC_SELECT_Z; 23

 clip_ve_bz_select = SRC_SELECT_Z; 24

 clip_ve_bw_select = SRC_SELECT_FORCE_0; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 552 of 611

 Page 57 of 123
Ex. 2115 - pa_ag.v

 clip_ve_b_memsel = VEB_MEMSEL_CLIPTEMP_VEC; 1

 end 2

 3

 SMC_T_BLEND_CURR_ABC_1: begin 4

 clip_ve_opcode = VE_MULTIPLY_ADD; 5

 clip_ve_out_we = 4'b0111; 6

 clip_ve_accum_sel = ACCUM_SEL_PRE_ACCUM; 7

 clip_ve_bcc_flat_tst = 1'b1; 8

 // GetBarycCoord 9

 clip_ve_a_memsel = get_baryc_a_memsel; 10

 clip_ve_ax_select = get_baryc_ax_select; 11

 clip_ve_ay_select = get_baryc_ay_select; 12

 clip_ve_az_select = get_baryc_az_select; 13

 clip_ve_ax_negate = get_baryc_ax_negate; 14

 clip_ve_cx_negate = get_baryc_cx_negate; 15

 // end GetBarycCoord 16

 clip_ve_bx_select = SRC_SELECT_W; 17

 clip_ve_by_select = SRC_SELECT_W; 18

 clip_ve_bz_select = SRC_SELECT_W; 19

 clip_ve_bw_select = SRC_SELECT_FORCE_0; 20

 clip_ve_out_mem_sel = VE_OUT_VEOC_VECTOR_BACK; 21

 clip_ve_out_addr = clip_dst_vertex_indx_r0; 22

 clip_ve_b_memsel = VEB_MEMSEL_CLIPTEMP_VEC; 23

 end 24

 25

 Page 58 of 123
Ex. 2115 - pa_ag.v

 SMC_T_BLEND_PREV_POS_0: begin 1

 clip_ve_opcode = VE_MULTIPLY; 2

 clip_ve_pre_acc_we = 4'b1111; 3

 clip_ve_ax_select = SRC_SELECT_X; 4

 clip_ve_ay_select = SRC_SELECT_Y; 5

 clip_ve_az_select = SRC_SELECT_Z; 6

 clip_ve_aw_select = SRC_SELECT_W; 7

 // GetPosition 8

 clip_ve_a_memsel = get_pos_a_memsel; 9

 // end GetPosition 10

 clip_ve_bx_select = SRC_SELECT_X; 11

 clip_ve_by_select = SRC_SELECT_X; 12

 clip_ve_bz_select = SRC_SELECT_X; 13

 clip_ve_bw_select = SRC_SELECT_X; 14

 clip_ve_b_memsel = VEB_MEMSEL_CLIPTEMP_VEC; 15

 end 16

 17

 SMC_T_BLEND_CURR_POS_0: begin 18

 clip_ve_opcode = VE_MULTIPLY_ADD; 19

 clip_ve_out_we = 4'b1111; 20

 clip_ve_accum_sel = ACCUM_SEL_PRE_ACCUM; 21

 clip_ve_bcc_flat_tst = 1'b1; 22

 clip_ve_ax_select = SRC_SELECT_X; 23

 clip_ve_ay_select = SRC_SELECT_Y; 24

 clip_ve_az_select = SRC_SELECT_Z; 25

 Page 59 of 123
Ex. 2115 - pa_ag.v

 clip_ve_aw_select = SRC_SELECT_W; 1

 // GetPosition 2

 clip_ve_a_memsel = get_pos_a_memsel; 3

 // end GetPosition 4

 clip_ve_bx_select = SRC_SELECT_Y; 5

 clip_ve_by_select = SRC_SELECT_Y; 6

 clip_ve_bz_select = SRC_SELECT_Y; 7

 clip_ve_bw_select = SRC_SELECT_Y; 8

 clip_ve_out_mem_sel = VE_OUT_VEOC_VECTOR_BACK; 9

 clip_ve_out_addr = { 2'b01, 10

 clip_dst_vertex_indx_r0[3:0] }; 11

 clip_ve_b_memsel = VEB_MEMSEL_CLIPTEMP_VEC; 12

 end 13

 14

 SMC_T_BLEND_PREV_POS_1: begin 15

 clip_ve_opcode = VE_MULTIPLY; 16

 clip_ve_pre_acc_we = 4'b1111; 17

 clip_ve_ax_select = SRC_SELECT_X; 18

 clip_ve_ay_select = SRC_SELECT_Y; 19

 clip_ve_az_select = SRC_SELECT_Z; 20

 clip_ve_aw_select = SRC_SELECT_W; 21

 // GetPosition 22

 clip_ve_a_memsel = get_pos_a_memsel; 23

 // end GetPosition 24

 clip_ve_bx_select = SRC_SELECT_Z; 25

 Page 60 of 123
Ex. 2115 - pa_ag.v

 clip_ve_by_select = SRC_SELECT_Z; 1

 clip_ve_bz_select = SRC_SELECT_Z; 2

 clip_ve_bw_select = SRC_SELECT_Z; 3

 clip_ve_b_memsel = VEB_MEMSEL_CLIPTEMP_VEC; 4

 end 5

 6

 SMC_T_BLEND_CURR_POS_1: begin 7

 clip_ve_opcode = VE_MULTIPLY_ADD; 8

 clip_ve_out_we = 4'b1111; 9

 clip_ve_accum_sel = ACCUM_SEL_PRE_ACCUM; 10

 clip_ve_bcc_flat_tst = 1'b1; 11

 clip_ve_ax_select = SRC_SELECT_X; 12

 clip_ve_ay_select = SRC_SELECT_Y; 13

 clip_ve_az_select = SRC_SELECT_Z; 14

 clip_ve_aw_select = SRC_SELECT_W; 15

 // GetPosition 16

 clip_ve_a_memsel = get_pos_a_memsel; 17

 // end GetPosition 18

 clip_ve_bx_select = SRC_SELECT_W; 19

 clip_ve_by_select = SRC_SELECT_W; 20

 clip_ve_bz_select = SRC_SELECT_W; 21

 clip_ve_bw_select = SRC_SELECT_W; 22

 clip_ve_bw_select = SRC_SELECT_W; 23

 clip_ve_out_mem_sel = VE_OUT_VEOC_VECTOR_BACK; 24

 clip_ve_out_addr = { 2'b01, 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 553 of 611

 Page 61 of 123
Ex. 2115 - pa_ag.v

 clip_dst_vertex_indx_r0[3:0] }; 1

 clip_ve_b_memsel = VEB_MEMSEL_CLIPTEMP_VEC; 2

 end 3

 4

 SMC_EDGE_DISTANCE_0: begin 5

 clip_ve_opcode = VE_MULTIPLY; 6

 clip_ve_pre_acc_we = 4'b0001; 7

 clip_ve_abs_a = 1'b1; 8

 // GetClipDist 9

 clip_ve_ax_select = get_clipdist_a_select; 10

 clip_ve_a_memsel = get_clipdist_a_memsel; 11

 // end GetClipDist 12

 clip_ve_bx_select = SRC_SELECT_FORCE_1; 13

 end 14

 15

 SMC_EDGE_DISTANCE_1: begin 16

 clip_ve_opcode = VE_MULTIPLY_ADD; 17

 clip_ve_out_mem_sel = VE_OUT_INVERSE; 18

 clip_ve_out_we = 4'b0001; 19

 clip_ve_accum_sel = ACCUM_SEL_PRE_ACCUM; 20

 clip_ve_abs_a = 1'b1; 21

 // GetClipDist 22

 clip_ve_ax_select = get_clipdist_a_select; 23

 clip_ve_a_memsel = get_clipdist_a_memsel; 24

 // end GetClipDist 25

 Page 62 of 123
Ex. 2115 - pa_ag.v

 clip_ve_bx_select = SRC_SELECT_FORCE_1; 1

 end 2

 3

 SMC_CLIP_T_FACTOR_PREV_0: begin 4

 clip_ve_opcode = VE_MULTIPLY; 5

 clip_ve_out_mem_sel = VE_OUT_CLIPTEMP_VECTOR; 6

 clip_ve_out_we = 4'b0001; 7

 clip_ve_abs_a = 1'b1; 8

 // GetClipDist 9

 clip_ve_ax_select = get_clipdist_a_select; 10

 clip_ve_a_memsel = get_clipdist_a_memsel; 11

 // end GetClipDist 12

 clip_ve_bx_select = SRC_SELECT_X; 13

 clip_ve_b_memsel = VEB_MEMSEL_INV_RET_SC; 14

 end 15

 16

 SMC_CLIP_T_FACTOR_CURR_0: begin 17

 clip_ve_opcode = VE_MULTIPLY; 18

 clip_ve_out_mem_sel = VE_OUT_CLIPTEMP_VECTOR; 19

 clip_ve_out_we = 4'b0010; 20

 clip_ve_abs_a = 1'b1; 21

 // GetClipDist 22

 clip_ve_ay_select = get_clipdist_a_select; 23

 clip_ve_a_memsel = get_clipdist_a_memsel; 24

 // end GetClipDist 25

 Page 63 of 123
Ex. 2115 - pa_ag.v

 clip_ve_by_select = SRC_SELECT_X; 1

 clip_ve_b_memsel = VEB_MEMSEL_INV_RET_SC; 2

 end 3

 4

 SMC_CLIP_T_FACTOR_PREV_1: begin 5

 clip_ve_opcode = VE_MULTIPLY; 6

 clip_ve_out_mem_sel = VE_OUT_CLIPTEMP_VECTOR; 7

 clip_ve_out_we = 4'b0100; 8

 clip_ve_abs_a = 1'b1; 9

 // GetClipDist 10

 clip_ve_az_select = get_clipdist_a_select; 11

 clip_ve_a_memsel = get_clipdist_a_memsel; 12

 // end GetClipDist 13

 clip_ve_bz_select = SRC_SELECT_Y; 14

 clip_ve_b_memsel = VEB_MEMSEL_INV_RET_SC; 15

 end 16

 17

 SMC_CLIP_T_FACTOR_CURR_1: begin 18

 clip_ve_opcode = VE_MULTIPLY; 19

 clip_ve_out_mem_sel = VE_OUT_CLIPTEMP_VECTOR; 20

 clip_ve_out_we = 4'b1000; 21

 clip_ve_abs_a = 1'b1; 22

 // GetClipDist 23

 clip_ve_aw_select = get_clipdist_a_select; 24

 clip_ve_a_memsel = get_clipdist_a_memsel; 25

 Page 64 of 123
Ex. 2115 - pa_ag.v

 // end GetClipDist 1

 clip_ve_bw_select = SRC_SELECT_Y; 2

 clip_ve_b_memsel = VEB_MEMSEL_INV_RET_SC; 3

 end 4

 5

 SMC_CLIP_DIST_VV: begin 6

 clip_ve_opcode = VE_MULTIPLY_ADD; 7

 clip_ve_a_is_wwww = 1'b1; 8

 clip_ve_broadcast_x = 1'b1; 9

 clip_ve_out_mem_sel = VE_OUT_VEOC_VECTOR_BACK; 10

 if (clip_src_vertex_type_r0) begin 11

 clip_ve_out_we = 4'b1000; 12

 clip_agve_dly_bcc_cc_test = 1'b1; 13

 clip_agve_dly_vertex_store_indx = clip_dst_vertex_indx_r0; 14

 clip_ve_out_addr = { 2'b00, 15

 clip_dst_vertex_indx_r0[3:0] }; 16

 end else begin 17

 case(clip_dst_vertex_indx_r0[1:0]) 18

 2'b00 : begin 19

 clip_ve_out_we = 4'b0001; 20

 end 21

 2'b01 : begin 22

 clip_ve_out_we = 4'b0010; 23

 end 24

 2'b10 : begin 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 554 of 611

 Page 65 of 123
Ex. 2115 - pa_ag.v

 clip_ve_out_we = 4'b0100; 1

 end 2

 default : begin 3

 clip_ve_out_we = 4'bxxxx; 4

 end 5

 endcase 6

 clip_ve_out_addr = VEOC_CLIP_DIST_ORIG; 7

 end 8

 case(clip_plane_indx_r0[2:0]) 9

 CC_CLIP_FAR, 10

 CC_CLIP_RIGHT, 11

 CC_CLIP_TOP : begin 12

 clip_ve_cx_negate = 1'b1; 13

 end 14

 CC_CLIP_NEAR, 15

 CC_CLIP_LEFT, 16

 CC_CLIP_BOTTOM : begin 17

 clip_ve_cx_negate = 1'b0; 18

 end 19

 default : begin 20

 clip_ve_cx_negate = 1'bx; 21

 end 22

 endcase 23

 case(clip_plane_indx_r0[2:0]) 24

 CC_CLIP_NEAR : begin 25

 Page 66 of 123
Ex. 2115 - pa_ag.v

 if(dx_clip_space_def) begin 1

 clip_ve_bx_select = SRC_SELECT_FORCE_0; 2

 end else begin 3

 clip_ve_bx_select = SRC_SELECT_FORCE_1; 4

 end 5

 clip_ve_ax_select = SRC_SELECT_Z; 6

 end 7

 CC_CLIP_FAR : begin 8

 clip_ve_bx_select = SRC_SELECT_FORCE_1; 9

 clip_ve_ax_select = SRC_SELECT_Z; 10

 end 11

 CC_CLIP_LEFT, 12

 CC_CLIP_RIGHT : begin 13

 clip_ve_bx_select = SRC_SELECT_X; 14

 clip_ve_ax_select = SRC_SELECT_X; 15

 end 16

 CC_CLIP_BOTTOM, 17

 CC_CLIP_TOP : begin 18

 clip_ve_bx_select = SRC_SELECT_Y; 19

 clip_ve_ax_select = SRC_SELECT_Y; 20

 end 21

 default : begin 22

 clip_ve_bx_select = 3'bxxx; 23

 clip_ve_ax_select = 3'bxxx; 24

 end 25

 Page 67 of 123
Ex. 2115 - pa_ag.v

 endcase 1

 clip_ve_aw_select = SRC_SELECT_W; 2

 // GetPosition 3

 clip_ve_a_memsel = get_pos_a_memsel; 4

 // end GetPosition 5

 clip_ve_b_memsel = VEB_MEMSEL_STVE_VE; 6

 end 7

 8

 SMC_CLIP_DIST_UCP: begin 9

 clip_ve_opcode = VE_DOT_PRODUCT; 10

 clip_ve_out_mem_sel = VE_OUT_VEOC_VECTOR_BACK; 11

 if (clip_src_vertex_type_r0) begin 12

 clip_ve_out_we = 4'b1000; 13

 clip_agve_dly_bcc_cc_test = 1'b1; 14

 clip_agve_dly_vertex_store_indx = clip_dst_vertex_indx_r0; 15

 clip_ve_out_addr = { 2'b00, 16

 clip_dst_vertex_indx_r0[3:0] }; 17

 end else begin 18

 case(clip_dst_vertex_indx_r0[1:0]) 19

 2'b00 : begin 20

 clip_ve_out_we = 4'b0001; 21

 end 22

 2'b01 : begin 23

 clip_ve_out_we = 4'b0010; 24

 end 25

 Page 68 of 123
Ex. 2115 - pa_ag.v

 2'b10 : begin 1

 clip_ve_out_we = 4'b0100; 2

 end 3

 default : begin 4

 clip_ve_out_we = 4'bxxxx; 5

 end 6

 endcase 7

 clip_ve_out_addr = VEOC_CLIP_DIST_ORIG; 8

 end 9

 clip_ve_ax_select = SRC_SELECT_X; 10

 clip_ve_ay_select = SRC_SELECT_Y; 11

 clip_ve_az_select = SRC_SELECT_Z; 12

 clip_ve_aw_select = SRC_SELECT_W; 13

 clip_ve_bx_select = SRC_SELECT_X; 14

 clip_ve_by_select = SRC_SELECT_Y; 15

 clip_ve_bz_select = SRC_SELECT_Z; 16

 clip_ve_bw_select = SRC_SELECT_W; 17

 clip_agve_dly_user_clip_indx = clip_plane_indx_r0; 18

 // GetPosition 19

 clip_ve_a_memsel = get_pos_a_memsel; 20

 // end GetPosition 21

 clip_ve_b_memsel = VEB_MEMSEL_STVE_VE; 22

 end 23

 24

 SMC_PS_CULL_RADIUS_VPORT: begin 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 555 of 611

 Page 69 of 123
Ex. 2115 - pa_ag.v

 clip_ve_opcode = VE_MULTIPLY; 1

 clip_ve_out_mem_sel = VE_OUT_CLIPTEMP_VECTOR; 2

 clip_ve_out_we = 4'b0010; 3

 clip_ve_a_memsel = VEA_MEMSEL_POS_BUF_VE; 4

 clip_ve_b_memsel = VEB_MEMSEL_STVE_VE; 5

 clip_ve_ay_select = SRC_SELECT_W; 6

 clip_ve_by_select = SRC_SELECT_W; 7

 end 8

 9

 SMC_PS_CULL_RADIUS_W: begin 10

 clip_ve_opcode = VE_MULTIPLY; 11

 clip_ve_out_mem_sel = VE_OUT_VEOC_VECTOR_BACK; 12

 clip_ve_out_addr = VEOC_CLIP_DIST_ORIG; 13

 clip_ve_out_we = 4'b0010; 14

 clip_ve_a_memsel = VEA_MEMSEL_POINT_BUF_SC; 15

 clip_ve_b_memsel = VEB_MEMSEL_CLIPTEMP_VEC; 16

 clip_ve_ay_select = SRC_SELECT_X; 17

 clip_ve_by_select = SRC_SELECT_Y; 18

 end 19

 20

 SMC_PS_CLIP_DIST_UCP: begin 21

 clip_ve_opcode = VE_DOT_PRODUCT; 22

 clip_ve_ax_select = SRC_SELECT_X; 23

 clip_ve_ay_select = SRC_SELECT_Y; 24

 clip_ve_az_select = SRC_SELECT_Z; 25

 Page 70 of 123
Ex. 2115 - pa_ag.v

 clip_ve_aw_select = SRC_SELECT_W; 1

 clip_ve_bx_select = SRC_SELECT_X; 2

 clip_ve_by_select = SRC_SELECT_Y; 3

 clip_ve_bz_select = SRC_SELECT_Z; 4

 clip_ve_bw_select = SRC_SELECT_W; 5

 clip_ve_a_memsel = VEA_MEMSEL_POS_BUF_VE; 6

 clip_ve_b_memsel = VEB_MEMSEL_STVE_VE; 7

 clip_ve_out_mem_sel = VE_OUT_VEOC_VECTOR_BACK; 8

 clip_ve_out_addr = VEOC_CLIP_DIST_ORIG; 9

 clip_ve_out_we = 4'b0001; 10

 end 11

 12

 SMC_PS_XY_RADIUS_VPORT: begin 13

 clip_ve_opcode = VE_MULTIPLY; 14

 clip_ve_a_memsel = VEA_MEMSEL_POS_BUF_VE; 15

 clip_ve_b_memsel = VEB_MEMSEL_STVE_VE; 16

 clip_ve_ax_select = SRC_SELECT_W; 17

 clip_ve_ay_select = SRC_SELECT_W; 18

 clip_ve_bx_select = SRC_SELECT_X; 19

 clip_ve_by_select = SRC_SELECT_Y; 20

 clip_ve_out_mem_sel = VE_OUT_CLIPTEMP_VECTOR; 21

 clip_ve_out_we = 4'b0011; 22

 end 23

 24

 SMC_PS_XY_RADIUS_W: begin 25

 Page 71 of 123
Ex. 2115 - pa_ag.v

 clip_ve_opcode = VE_MULTIPLY; 1

 clip_ve_a_memsel = VEA_MEMSEL_POINT_BUF_SC; 2

 clip_ve_b_memsel = VEB_MEMSEL_CLIPTEMP_VEC; 3

 clip_ve_ax_select = SRC_SELECT_X; 4

 clip_ve_ay_select = SRC_SELECT_X; 5

 clip_ve_bx_select = SRC_SELECT_X; 6

 clip_ve_by_select = SRC_SELECT_Y; 7

 clip_ve_out_mem_sel = VE_OUT_CLIPTEMP_VECTOR; 8

 clip_ve_out_we = 4'b0011; 9

 end 10

 11

 SMC_PS_POS_UL: begin 12

 clip_ve_opcode = VE_ADD; 13

 clip_ve_a_memsel = VEA_MEMSEL_POS_BUF_VE; 14

 clip_ve_b_memsel = VEB_MEMSEL_CLIPTEMP_VEC; 15

 clip_ve_ax_select = SRC_SELECT_X; 16

 clip_ve_ay_select = SRC_SELECT_Y; 17

 clip_ve_az_select = SRC_SELECT_Z; 18

 clip_ve_aw_select = SRC_SELECT_W; 19

 clip_ve_bx_select = SRC_SELECT_X; 20

 clip_ve_by_select = SRC_SELECT_Y; 21

 clip_ve_bx_negate = 1'b1; 22

 clip_ve_out_mem_sel = VE_OUT_VEOC_VECTOR_BACK; 23

 clip_ve_out_addr = VEOC_PS_POS_VERT_UL; 24

 clip_ve_out_we = 4'b1111; 25

 Page 72 of 123
Ex. 2115 - pa_ag.v

 end 1

 2

 SMC_PS_POS_UR: begin 3

 clip_ve_opcode = VE_ADD; 4

 clip_ve_a_memsel = VEA_MEMSEL_POS_BUF_VE; 5

 clip_ve_b_memsel = VEB_MEMSEL_CLIPTEMP_VEC; 6

 clip_ve_ax_select = SRC_SELECT_X; 7

 clip_ve_ay_select = SRC_SELECT_Y; 8

 clip_ve_az_select = SRC_SELECT_Z; 9

 clip_ve_aw_select = SRC_SELECT_W; 10

 clip_ve_bx_select = SRC_SELECT_X; 11

 clip_ve_by_select = SRC_SELECT_Y; 12

 clip_ve_out_mem_sel = VE_OUT_VEOC_VECTOR_BACK; 13

 clip_ve_out_addr = VEOC_PS_POS_VERT_UR; 14

 clip_ve_out_we = 4'b1111; 15

 end 16

 17

 SMC_PS_POS_LR: begin 18

 clip_ve_opcode = VE_ADD; 19

 clip_ve_a_memsel = VEA_MEMSEL_POS_BUF_VE; 20

 clip_ve_b_memsel = VEB_MEMSEL_CLIPTEMP_VEC; 21

 clip_ve_ax_select = SRC_SELECT_X; 22

 clip_ve_ay_select = SRC_SELECT_Y; 23

 clip_ve_az_select = SRC_SELECT_Z; 24

 clip_ve_aw_select = SRC_SELECT_W; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 556 of 611

 Page 73 of 123
Ex. 2115 - pa_ag.v

 clip_ve_bx_select = SRC_SELECT_X; 1

 clip_ve_by_select = SRC_SELECT_Y; 2

 clip_ve_by_negate = 1'b1; 3

 clip_ve_out_mem_sel = VE_OUT_VEOC_VECTOR_BACK; 4

 clip_ve_out_addr = VEOC_PS_POS_VERT_LR; 5

 clip_ve_out_we = 4'b1111; 6

 end 7

 8

 SMC_PS_POS_LL: begin 9

 clip_ve_opcode = VE_ADD; 10

 clip_ve_a_memsel = VEA_MEMSEL_POS_BUF_VE; 11

 clip_ve_b_memsel = VEB_MEMSEL_CLIPTEMP_VEC; 12

 clip_ve_ax_select = SRC_SELECT_X; 13

 clip_ve_ay_select = SRC_SELECT_Y; 14

 clip_ve_az_select = SRC_SELECT_Z; 15

 clip_ve_aw_select = SRC_SELECT_W; 16

 clip_ve_bx_select = SRC_SELECT_X; 17

 clip_ve_by_select = SRC_SELECT_Y; 18

 clip_ve_bx_negate = 1'b1; 19

 clip_ve_by_negate = 1'b1; 20

 clip_ve_out_mem_sel = VE_OUT_VEOC_VECTOR_BACK; 21

 clip_ve_out_addr = VEOC_PS_POS_VERT_LL; 22

 clip_ve_out_we = 4'b1111; 23

 end 24

 25

 Page 74 of 123
Ex. 2115 - pa_ag.v

 SMC_PS_UCP_DIST_UL: begin 1

 clip_ve_opcode = VE_DOT_PRODUCT; 2

 clip_ve_a_memsel = VEA_MEMSEL_VEOC_VE; 3

 clip_ve_b_memsel = VEB_MEMSEL_STVE_VE; 4

 clip_ve_ax_select = SRC_SELECT_X; 5

 clip_ve_ay_select = SRC_SELECT_Y; 6

 clip_ve_az_select = SRC_SELECT_Z; 7

 clip_ve_aw_select = SRC_SELECT_W; 8

 clip_ve_bx_select = SRC_SELECT_X; 9

 clip_ve_by_select = SRC_SELECT_Y; 10

 clip_ve_bz_select = SRC_SELECT_Z; 11

 clip_ve_bw_select = SRC_SELECT_W; 12

 clip_agve_dly_ps_ucp_cc_test = 1'b1; 13

 clip_agve_dly_vertex_store_indx = { 4'b0000, 14

 PS_VERT_UL }; 15

 clip_agve_dly_user_clip_indx = clip_plane_indx_r0; 16

 end 17

 18

 SMC_PS_UCP_DIST_UR: begin 19

 clip_ve_opcode = VE_DOT_PRODUCT; 20

 clip_ve_a_memsel = VEA_MEMSEL_VEOC_VE; 21

 clip_ve_b_memsel = VEB_MEMSEL_STVE_VE; 22

 clip_ve_ax_select = SRC_SELECT_X; 23

 clip_ve_ay_select = SRC_SELECT_Y; 24

 clip_ve_az_select = SRC_SELECT_Z; 25

 Page 75 of 123
Ex. 2115 - pa_ag.v

 clip_ve_aw_select = SRC_SELECT_W; 1

 clip_ve_bx_select = SRC_SELECT_X; 2

 clip_ve_by_select = SRC_SELECT_Y; 3

 clip_ve_bz_select = SRC_SELECT_Z; 4

 clip_ve_bw_select = SRC_SELECT_W; 5

 clip_agve_dly_ps_ucp_cc_test = 1'b1; 6

 clip_agve_dly_vertex_store_indx = { 4'b0000, 7

 PS_VERT_UR }; 8

 clip_agve_dly_user_clip_indx = clip_plane_indx_r0; 9

 end 10

 11

 SMC_PS_UCP_DIST_LR: begin 12

 clip_ve_opcode = VE_DOT_PRODUCT; 13

 clip_ve_a_memsel = VEA_MEMSEL_VEOC_VE; 14

 clip_ve_b_memsel = VEB_MEMSEL_STVE_VE; 15

 clip_ve_ax_select = SRC_SELECT_X; 16

 clip_ve_ay_select = SRC_SELECT_Y; 17

 clip_ve_az_select = SRC_SELECT_Z; 18

 clip_ve_aw_select = SRC_SELECT_W; 19

 clip_ve_bx_select = SRC_SELECT_X; 20

 clip_ve_by_select = SRC_SELECT_Y; 21

 clip_ve_bz_select = SRC_SELECT_Z; 22

 clip_ve_bw_select = SRC_SELECT_W; 23

 clip_agve_dly_ps_ucp_cc_test = 1'b1; 24

 clip_agve_dly_vertex_store_indx = { 4'b0000, 25

 Page 76 of 123
Ex. 2115 - pa_ag.v

 PS_VERT_LR }; 1

 clip_agve_dly_user_clip_indx = clip_plane_indx_r0; 2

 end 3

 4

 SMC_PS_UCP_DIST_LL: begin 5

 clip_ve_opcode = VE_DOT_PRODUCT; 6

 clip_ve_a_memsel = VEA_MEMSEL_VEOC_VE; 7

 clip_ve_b_memsel = VEB_MEMSEL_STVE_VE; 8

 clip_ve_ax_select = SRC_SELECT_X; 9

 clip_ve_ay_select = SRC_SELECT_Y; 10

 clip_ve_az_select = SRC_SELECT_Z; 11

 clip_ve_aw_select = SRC_SELECT_W; 12

 clip_ve_bx_select = SRC_SELECT_X; 13

 clip_ve_by_select = SRC_SELECT_Y; 14

 clip_ve_bz_select = SRC_SELECT_Z; 15

 clip_ve_bw_select = SRC_SELECT_W; 16

 clip_agve_dly_ps_ucp_cc_test = 1'b1; 17

 clip_agve_dly_vertex_store_indx = { 4'b0000, 18

 PS_VERT_LL }; 19

 clip_agve_dly_user_clip_indx = clip_plane_indx_r0; 20

 if (clip_ve_ucp_valid_r0) begin 21

 clip_agve_dly_valid_bit_set = VE_PS_UCP_VALID; 22

 end 23

 end 24

 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 557 of 611

 Page 77 of 123
Ex. 2115 - pa_ag.v

 SMC_PS_ENGH_TEST: begin 1

 clip_ve_opcode = VE_CLIP_CODE_VV_ZWW; 2

 clip_ve_a_is_wwww = 1'b1; 3

 clip_agve_dly_ps_engh_test = 1'b1; 4

 clip_agve_dly_user_clip_indx = clip_plane_indx_r0; 5

 clip_agve_dly_vertex_store_indx = clip_src_vertex_indx_r0; 6

 clip_ve_az_select = SRC_SELECT_X; 7

 clip_ve_aw_select = SRC_SELECT_Y; 8

 clip_ve_a_memsel = VEA_MEMSEL_VEOC_VE; 9

 if (clip_ve_ucp_valid_r0) begin 10

 clip_agve_dly_valid_bit_set = VE_PS_ENGH_VALID; 11

 end 12

 end 13

 14

 default; 15

 endcase 16

 end 17

 18

//Arbiter selection of CCG or CLIP command 19

always @(20

 ccg_vte_opcode_r1 or 21

 ccg_vte_st_indx_r1 or 22

 ccg_ve_opcode_r1 or 23

 ccg_ve_a_memsel_r1 or 24

 ccg_ve_b_memsel_r1 or 25

 Page 78 of 123
Ex. 2115 - pa_ag.v

 ccg_ve_ax_select_r1 or 1

 ccg_ve_ay_select_r1 or 2

 ccg_ve_az_select_r1 or 3

 ccg_ve_aw_select_r1 or 4

 ccg_ve_bx_select_r1 or 5

 ccg_ve_by_select_r1 or 6

 ccg_ve_bz_select_r1 or 7

 ccg_ve_bw_select_r1 or 8

 ccg_ve_a_is_wwww_r1 or 9

 ccg_ve_broadcast_x_r1 or 10

 ccg_ve_abs_a_r1 or 11

 ccg_ve_abs_b_r1 or 12

 ccg_ve_abs_c_r1 or 13

 ccg_ve_ax_negate_r1 or 14

 ccg_ve_ay_negate_r1 or 15

 ccg_ve_az_negate_r1 or 16

 ccg_ve_aw_negate_r1 or 17

 ccg_ve_bx_negate_r1 or 18

 ccg_ve_by_negate_r1 or 19

 ccg_ve_bz_negate_r1 or 20

 ccg_ve_bw_negate_r1 or 21

 ccg_ve_cx_negate_r1 or 22

 ccg_ve_cy_negate_r1 or 23

 ccg_ve_cz_negate_r1 or 24

 ccg_ve_cw_negate_r1 or 25

 Page 79 of 123
Ex. 2115 - pa_ag.v

 ccg_ve_bcc_flat_tst_r1 or 1

 ccg_ve_out_mem_sel_r1 or 2

 ccg_ve_out_addr_r1 or 3

 ccg_ve_out_we_r1 or 4

 ccg_ve_accum_sel_r1 or 5

 ccg_ve_pre_acc_we_r1 or 6

 ccg_agve_dly_vertex_store_indx_r1 or 7

 ccg_agve_dly_valid_bit_set_r1 or 8

 ccg_agve_dly_user_clip_indx_r1 or 9

 ccg_agve_dly_vv_cc_test_r1 or 10

 ccg_agve_dly_ucp_cc_test_r1 or 11

 ccg_agve_dly_bcc_cc_test_r1 or 12

 ccg_agve_dly_ps_ucp_cc_test_r1 or 13

 ccg_agve_dly_ps_engh_test_r1 or 14

 15

 clip_xfc_r1 or 16

 clip_vte_opcode_r1 or 17

 clip_vte_st_indx_r1 or 18

 clip_ve_opcode_r1 or 19

 clip_ve_a_memsel_r1 or 20

 clip_ve_b_memsel_r1 or 21

 clip_ve_ax_select_r1 or 22

 clip_ve_ay_select_r1 or 23

 clip_ve_az_select_r1 or 24

 clip_ve_aw_select_r1 or 25

 Page 80 of 123
Ex. 2115 - pa_ag.v

 clip_ve_bx_select_r1 or 1

 clip_ve_by_select_r1 or 2

 clip_ve_bz_select_r1 or 3

 clip_ve_bw_select_r1 or 4

 clip_ve_a_is_wwww_r1 or 5

 clip_ve_broadcast_x_r1 or 6

 clip_ve_abs_a_r1 or 7

 clip_ve_abs_b_r1 or 8

 clip_ve_abs_c_r1 or 9

 clip_ve_ax_negate_r1 or 10

 clip_ve_ay_negate_r1 or 11

 clip_ve_az_negate_r1 or 12

 clip_ve_aw_negate_r1 or 13

 clip_ve_bx_negate_r1 or 14

 clip_ve_by_negate_r1 or 15

 clip_ve_bz_negate_r1 or 16

 clip_ve_bw_negate_r1 or 17

 clip_ve_cx_negate_r1 or 18

 clip_ve_cy_negate_r1 or 19

 clip_ve_cz_negate_r1 or 20

 clip_ve_cw_negate_r1 or 21

 clip_ve_bcc_flat_tst_r1 or 22

 clip_ve_out_mem_sel_r1 or 23

 clip_ve_out_addr_r1 or 24

 clip_ve_out_we_r1 or 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 558 of 611

 Page 81 of 123
Ex. 2115 - pa_ag.v

 clip_ve_accum_sel_r1 or 1

 clip_ve_pre_acc_we_r1 or 2

 clip_agve_dly_vertex_store_indx_r1 or 3

 clip_agve_dly_valid_bit_set_r1 or 4

 clip_agve_dly_user_clip_indx_r1 or 5

 clip_agve_dly_vv_cc_test_r1 or 6

 clip_agve_dly_ucp_cc_test_r1 or 7

 clip_agve_dly_bcc_cc_test_r1 or 8

 clip_agve_dly_ps_ucp_cc_test_r1 or 9

 clip_agve_dly_ps_engh_test_r1 10

) 11

 begin 12

 13

 arbsel_vte_opcode <= ccg_vte_opcode_r1; 14

 arbsel_vte_st_indx <= ccg_vte_st_indx_r1; 15

 arbsel_ve_opcode <= ccg_ve_opcode_r1; 16

 arbsel_ve_a_memsel <= ccg_ve_a_memsel_r1; 17

 arbsel_ve_b_memsel <= ccg_ve_b_memsel_r1; 18

 arbsel_ve_ax_select <= ccg_ve_ax_select_r1; 19

 arbsel_ve_ay_select <= ccg_ve_ay_select_r1; 20

 arbsel_ve_az_select <= ccg_ve_az_select_r1; 21

 arbsel_ve_aw_select <= ccg_ve_aw_select_r1; 22

 arbsel_ve_bx_select <= ccg_ve_bx_select_r1; 23

 arbsel_ve_by_select <= ccg_ve_by_select_r1; 24

 arbsel_ve_bz_select <= ccg_ve_bz_select_r1; 25

 Page 82 of 123
Ex. 2115 - pa_ag.v

 arbsel_ve_bw_select <= ccg_ve_bw_select_r1; 1

 arbsel_ve_a_is_wwww <= ccg_ve_a_is_wwww_r1; 2

 arbsel_ve_broadcast_x <= ccg_ve_broadcast_x_r1; 3

 arbsel_ve_abs_a <= ccg_ve_abs_a_r1; 4

 arbsel_ve_abs_b <= ccg_ve_abs_b_r1; 5

 arbsel_ve_abs_c <= ccg_ve_abs_c_r1; 6

 arbsel_ve_ax_negate <= ccg_ve_ax_negate_r1; 7

 arbsel_ve_ay_negate <= ccg_ve_ay_negate_r1; 8

 arbsel_ve_az_negate <= ccg_ve_az_negate_r1; 9

 arbsel_ve_aw_negate <= ccg_ve_aw_negate_r1; 10

 arbsel_ve_bx_negate <= ccg_ve_bx_negate_r1; 11

 arbsel_ve_by_negate <= ccg_ve_by_negate_r1; 12

 arbsel_ve_bz_negate <= ccg_ve_bz_negate_r1; 13

 arbsel_ve_bw_negate <= ccg_ve_bw_negate_r1; 14

 arbsel_ve_cx_negate <= ccg_ve_cx_negate_r1; 15

 arbsel_ve_cy_negate <= ccg_ve_cy_negate_r1; 16

 arbsel_ve_cz_negate <= ccg_ve_cz_negate_r1; 17

 arbsel_ve_cw_negate <= ccg_ve_cw_negate_r1; 18

 arbsel_ve_bcc_flat_tst <= ccg_ve_bcc_flat_tst_r1; 19

 arbsel_ve_out_mem_sel <= ccg_ve_out_mem_sel_r1; 20

 arbsel_ve_out_addr <= ccg_ve_out_addr_r1; 21

 arbsel_ve_out_we <= ccg_ve_out_we_r1; 22

 arbsel_ve_accum_sel <= ccg_ve_accum_sel_r1; 23

 arbsel_ve_pre_acc_we <= ccg_ve_pre_acc_we_r1; 24

 arbsel_agve_dly_vertex_store_indx <= ccg_agve_dly_vertex_store_indx_r1; 25

 Page 83 of 123
Ex. 2115 - pa_ag.v

 arbsel_agve_dly_valid_bit_set <= ccg_agve_dly_valid_bit_set_r1; 1

 arbsel_agve_dly_user_clip_indx <= ccg_agve_dly_user_clip_indx_r1; 2

 arbsel_agve_dly_vv_cc_test <= ccg_agve_dly_vv_cc_test_r1; 3

 arbsel_agve_dly_ucp_cc_test <= ccg_agve_dly_ucp_cc_test_r1; 4

 arbsel_agve_dly_bcc_cc_test <= ccg_agve_dly_bcc_cc_test_r1; 5

 arbsel_agve_dly_ps_ucp_cc_test <= ccg_agve_dly_ps_ucp_cc_test_r1; 6

 arbsel_agve_dly_ps_engh_test <= ccg_agve_dly_ps_engh_test_r1; 7

 if (clip_xfc_r1) begin 8

 arbsel_vte_opcode <= clip_vte_opcode_r1; 9

 arbsel_vte_st_indx <= clip_vte_st_indx_r1; 10

 arbsel_ve_opcode <= clip_ve_opcode_r1; 11

 arbsel_ve_a_memsel <= clip_ve_a_memsel_r1; 12

 arbsel_ve_b_memsel <= clip_ve_b_memsel_r1; 13

 arbsel_ve_ax_select <= clip_ve_ax_select_r1; 14

 arbsel_ve_ay_select <= clip_ve_ay_select_r1; 15

 arbsel_ve_az_select <= clip_ve_az_select_r1; 16

 arbsel_ve_aw_select <= clip_ve_aw_select_r1; 17

 arbsel_ve_bx_select <= clip_ve_bx_select_r1; 18

 arbsel_ve_by_select <= clip_ve_by_select_r1; 19

 arbsel_ve_bz_select <= clip_ve_bz_select_r1; 20

 arbsel_ve_bw_select <= clip_ve_bw_select_r1; 21

 arbsel_ve_a_is_wwww <= clip_ve_a_is_wwww_r1; 22

 arbsel_ve_broadcast_x <= clip_ve_broadcast_x_r1; 23

 arbsel_ve_abs_a <= clip_ve_abs_a_r1; 24

 arbsel_ve_abs_b <= clip_ve_abs_b_r1; 25

 Page 84 of 123
Ex. 2115 - pa_ag.v

 arbsel_ve_abs_c <= clip_ve_abs_c_r1; 1

 arbsel_ve_ax_negate <= clip_ve_ax_negate_r1; 2

 arbsel_ve_ay_negate <= clip_ve_ay_negate_r1; 3

 arbsel_ve_az_negate <= clip_ve_az_negate_r1; 4

 arbsel_ve_aw_negate <= clip_ve_aw_negate_r1; 5

 arbsel_ve_bx_negate <= clip_ve_bx_negate_r1; 6

 arbsel_ve_by_negate <= clip_ve_by_negate_r1; 7

 arbsel_ve_bz_negate <= clip_ve_bz_negate_r1; 8

 arbsel_ve_bw_negate <= clip_ve_bw_negate_r1; 9

 arbsel_ve_cx_negate <= clip_ve_cx_negate_r1; 10

 arbsel_ve_cy_negate <= clip_ve_cy_negate_r1; 11

 arbsel_ve_cz_negate <= clip_ve_cz_negate_r1; 12

 arbsel_ve_cw_negate <= clip_ve_cw_negate_r1; 13

 arbsel_ve_bcc_flat_tst <= clip_ve_bcc_flat_tst_r1; 14

 arbsel_ve_out_mem_sel <= clip_ve_out_mem_sel_r1; 15

 arbsel_ve_out_addr <= clip_ve_out_addr_r1; 16

 arbsel_ve_out_we <= clip_ve_out_we_r1; 17

 arbsel_ve_accum_sel <= clip_ve_accum_sel_r1; 18

 arbsel_ve_pre_acc_we <= clip_ve_pre_acc_we_r1; 19

 arbsel_agve_dly_vertex_store_indx <= clip_agve_dly_vertex_store_indx_r1; 20

 arbsel_agve_dly_valid_bit_set <= clip_agve_dly_valid_bit_set_r1; 21

 arbsel_agve_dly_user_clip_indx <= clip_agve_dly_user_clip_indx_r1; 22

 arbsel_agve_dly_vv_cc_test <= clip_agve_dly_vv_cc_test_r1; 23

 arbsel_agve_dly_ucp_cc_test <= clip_agve_dly_ucp_cc_test_r1; 24

 arbsel_agve_dly_bcc_cc_test <= clip_agve_dly_bcc_cc_test_r1; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 559 of 611

 Page 85 of 123
Ex. 2115 - pa_ag.v

 arbsel_agve_dly_ps_ucp_cc_test <= clip_agve_dly_ps_ucp_cc_test_r1; 1

 arbsel_agve_dly_ps_engh_test <= clip_agve_dly_ps_engh_test_r1; 2

 end 3

 end 4

 5

always @(ve_a_memsel_r2 or 6

 ve_veoc_vector_back_rdata_r2 or 7

 pos_rdata_r2 or 8

 pntsz_rdata_r2) 9

 begin 10

 amem_sel_data = 128'h0; 11

 12

 case(ve_a_memsel_r2) 13

 VEA_MEMSEL_VEOC_VE: begin 14

 amem_sel_data = ve_veoc_vector_back_rdata_r2; 15

 end 16

 VEA_MEMSEL_POS_BUF_VE: begin 17

 amem_sel_data = pos_rdata_r2; 18

 end 19

 VEA_MEMSEL_POINT_BUF_SC: begin 20

 amem_sel_data = pntsz_rdata_r2; 21

 end 22

 VEA_MEMSEL_ZERO_FLT: begin 23

 amem_sel_data = 128'h0; 24

 end 25

 Page 86 of 123
Ex. 2115 - pa_ag.v

 default; 1

 endcase 2

 end 3

 4

always @(ve_b_memsel_r2 or 5

 stve_rdata_r2 or 6

 ve_cliptemp_vec or 7

 inv_ret_sc_data) 8

 begin 9

 bmem_sel_data = 128'h0; 10

 11

 case(ve_b_memsel_r2) 12

 VEB_MEMSEL_STVE_VE: begin 13

 bmem_sel_data = stve_rdata_r2; 14

 end 15

 VEB_MEMSEL_CLIPTEMP_VEC: begin 16

 bmem_sel_data = ve_cliptemp_vec; 17

 end 18

 VEB_MEMSEL_INV_RET_SC: begin 19

 bmem_sel_data = {64'h0,inv_ret_sc_data}; 20

 end 21

 VEB_MEMSEL_ZERO_FLT: begin 22

 bmem_sel_data = 128'h0; 23

 end 24

 default; 25

 Page 87 of 123
Ex. 2115 - pa_ag.v

 endcase 1

 end 2

 3

//swizzle data 4

assign agswz_ve_in_a0 = swizzle(ve_ax_select_r2, amem_sel_data); 5

assign agswz_ve_in_a1 = swizzle(ve_ay_select_r2, amem_sel_data); 6

assign agswz_ve_in_a2 = swizzle(ve_az_select_r2, amem_sel_data); 7

assign agswz_ve_in_a3 = swizzle(ve_aw_select_r2, amem_sel_data); 8

assign agswz_ve_in_b0 = swizzle(ve_bx_select_r2, bmem_sel_data); 9

assign agswz_ve_in_b1 = swizzle(ve_by_select_r2, bmem_sel_data); 10

assign agswz_ve_in_b2 = swizzle(ve_bz_select_r2, bmem_sel_data); 11

assign agswz_ve_in_b3 = swizzle(ve_bw_select_r2, bmem_sel_data); 12

 13

always @(ve_opcode_r2) 14

 begin 15

 agve_valid_op = (ve_opcode_r2!=0); 16

 end 17

 18

 19

//** 20

// Synchronous Section 21

//** 22

 23

//register 24

always @(posedge sclk) 25

 Page 88 of 123
Ex. 2115 - pa_ag.v

 begin 1

 clip_xfc_r0 <= arb_clip_xfc; 2

 3

 //register ccg values for decode purposes 4

 ccg_xfc_r0 <= arb_ccg_xfc; 5

 ccg_state_var_indx_r0 <= ccg_state_var_indx; 6

 ccg_ve_ucp_indx_r0 <= ccg_ve_ucp_indx; 7

 ccg_ve_cc_valid_r0 <= ccg_ve_cc_valid; 8

 ccg_vertex_store_indx_r0 <= ccg_vertex_store_indx; 9

 ccg_sm_state_indx_r0 <= ccg_sm_state_indx; 10

 11

 clip_plane_indx_r0 <= clip_plane_indx; 12

 clip_dst_vertex_indx_r0 <= clip_dst_vertex_indx; 13

 clip_src_vertex_indx_r0 <= clip_src_vertex_indx; 14

 clip_src_vertex_type_r0 <= clip_src_vertex_type; 15

 clip_ve_ucp_valid_r0 <= clip_ve_ucp_valid; 16

 clip_sm_state_indx_r0 <= clip_sm_state_indx; 17

 clip_state_var_indx_r0 <= clip_state_var_indx; 18

 19

 arb_state_var_indx_r0 <= nxt_arb_state_var_indx; 20

 stve_re_r0 <= nxt_stve_re; 21

 state_type_r0 <= nxt_state_type; 22

 23

 //Implement the ve_cliptemp_vector register 24

 if (ve_cliptemp_vector_we[0] == 1'b1) begin 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 560 of 611

 Page 89 of 123
Ex. 2115 - pa_ag.v

 ve_cliptemp_vec[31:0] <= ve_wdata[31:0]; 1

 end 2

 if (ve_cliptemp_vector_we[1] == 1'b1) begin 3

 ve_cliptemp_vec[63:32] <= ve_wdata[63:32]; 4

 end 5

 if (ve_cliptemp_vector_we[2] == 1'b1) begin 6

 ve_cliptemp_vec[95:64] <= ve_wdata[95:64]; 7

 end 8

 if (ve_cliptemp_vector_we[3] == 1'b1) begin 9

 ve_cliptemp_vec[127:96] <= ve_wdata[127:96]; 10

 end 11

 12

 //maintian state management ptr's and dirty bits 13

 ucp0_write_ptr <= nxt_ucp0_write_ptr; 14

 ucp0_write_after_cpy <= nxt_ucp0_write_after_cpy; 15

 ucp1_write_ptr <= nxt_ucp1_write_ptr; 16

 ucp1_write_after_cpy <= nxt_ucp1_write_after_cpy; 17

 ucp2_write_ptr <= nxt_ucp2_write_ptr; 18

 ucp2_write_after_cpy <= nxt_ucp2_write_after_cpy; 19

 ucp3_write_ptr <= nxt_ucp3_write_ptr; 20

 ucp3_write_after_cpy <= nxt_ucp3_write_after_cpy; 21

 ucp4_write_ptr <= nxt_ucp4_write_ptr; 22

 ucp4_write_after_cpy <= nxt_ucp4_write_after_cpy; 23

 ucp5_write_ptr <= nxt_ucp5_write_ptr; 24

 ucp5_write_after_cpy <= nxt_ucp5_write_after_cpy; 25

 Page 90 of 123
Ex. 2115 - pa_ag.v

 gb_write_ptr <= nxt_gb_write_ptr; 1

 gb_write_after_cpy <= nxt_gb_write_after_cpy; 2

 pntsz_write_ptr <= nxt_pntsz_write_ptr; 3

 pntsz_write_after_cpy <= nxt_pntsz_write_after_cpy; 4

 5

 //AG_R1 register 6

 clip_xfc_r1 <= clip_xfc_r0; 7

 clip_ve_opcode_r1 <= clip_ve_opcode; 8

 9

 ccg_xfc_r1 <= ccg_xfc_r0; 10

 ccg_ve_opcode_r1 <= ccg_ve_opcode; 11

 //CCG Decode R1 Delay 12

 ccg_vte_opcode_r1 <= ccg_vte_opcode; 13

 ccg_vte_st_indx_r1 <= ccg_vte_st_indx; 14

 ccg_ve_opcode_r1 <= ccg_ve_opcode; 15

 ccg_ve_a_memsel_r1 <= ccg_ve_a_memsel; 16

 ccg_ve_b_memsel_r1 <= ccg_ve_b_memsel; 17

 ccg_ve_ax_select_r1 <= ccg_ve_ax_select; 18

 ccg_ve_ay_select_r1 <= ccg_ve_ay_select; 19

 ccg_ve_az_select_r1 <= ccg_ve_az_select; 20

 ccg_ve_aw_select_r1 <= ccg_ve_aw_select; 21

 ccg_ve_bx_select_r1 <= ccg_ve_bx_select; 22

 ccg_ve_by_select_r1 <= ccg_ve_by_select; 23

 ccg_ve_bz_select_r1 <= ccg_ve_bz_select; 24

 ccg_ve_bw_select_r1 <= ccg_ve_bw_select; 25

 Page 91 of 123
Ex. 2115 - pa_ag.v

 ccg_ve_a_is_wwww_r1 <= ccg_ve_a_is_wwww; 1

 ccg_ve_broadcast_x_r1 <= ccg_ve_broadcast_x; 2

 ccg_ve_abs_a_r1 <= ccg_ve_abs_a; 3

 ccg_ve_abs_b_r1 <= ccg_ve_abs_b; 4

 ccg_ve_abs_c_r1 <= ccg_ve_abs_c; 5

 ccg_ve_ax_negate_r1 <= ccg_ve_ax_negate; 6

 ccg_ve_ay_negate_r1 <= ccg_ve_ay_negate; 7

 ccg_ve_az_negate_r1 <= ccg_ve_az_negate; 8

 ccg_ve_aw_negate_r1 <= ccg_ve_aw_negate; 9

 ccg_ve_bx_negate_r1 <= ccg_ve_bx_negate; 10

 ccg_ve_by_negate_r1 <= ccg_ve_by_negate; 11

 ccg_ve_bz_negate_r1 <= ccg_ve_bz_negate; 12

 ccg_ve_bw_negate_r1 <= ccg_ve_bw_negate; 13

 ccg_ve_cx_negate_r1 <= ccg_ve_cx_negate; 14

 ccg_ve_cy_negate_r1 <= ccg_ve_cy_negate; 15

 ccg_ve_cz_negate_r1 <= ccg_ve_cz_negate; 16

 ccg_ve_cw_negate_r1 <= ccg_ve_cw_negate; 17

 ccg_ve_bcc_flat_tst_r1 <= ccg_ve_bcc_flat_tst; 18

 ccg_ve_out_mem_sel_r1 <= ccg_ve_out_mem_sel; 19

 ccg_ve_out_addr_r1 <= ccg_ve_out_addr; 20

 ccg_ve_out_we_r1 <= ccg_ve_out_we; 21

 ccg_ve_accum_sel_r1 <= ccg_ve_accum_sel; 22

 ccg_ve_pre_acc_we_r1 <= ccg_ve_pre_acc_we; 23

 ccg_agve_dly_vertex_store_indx_r1 <= ccg_agve_dly_vertex_store_indx; 24

 ccg_agve_dly_valid_bit_set_r1 <= ccg_agve_dly_valid_bit_set; 25

 Page 92 of 123
Ex. 2115 - pa_ag.v

 ccg_agve_dly_user_clip_indx_r1 <= ccg_agve_dly_user_clip_indx; 1

 ccg_agve_dly_vv_cc_test_r1 <= ccg_agve_dly_vv_cc_test; 2

 ccg_agve_dly_ucp_cc_test_r1 <= ccg_agve_dly_ucp_cc_test; 3

 ccg_agve_dly_bcc_cc_test_r1 <= ccg_agve_dly_bcc_cc_test; 4

 ccg_agve_dly_ps_ucp_cc_test_r1 <= ccg_agve_dly_ps_ucp_cc_test; 5

 ccg_agve_dly_ps_engh_test_r1 <= ccg_agve_dly_ps_engh_test; 6

 //CLIPPER Decode R1 Delay 7

 clip_vte_opcode_r1 <= clip_vte_opcode; 8

 clip_vte_st_indx_r1 <= clip_vte_st_indx; 9

 clip_ve_opcode_r1 <= clip_ve_opcode; 10

 clip_ve_a_memsel_r1 <= clip_ve_a_memsel; 11

 clip_ve_b_memsel_r1 <= clip_ve_b_memsel; 12

 clip_ve_ax_select_r1 <= clip_ve_ax_select; 13

 clip_ve_ay_select_r1 <= clip_ve_ay_select; 14

 clip_ve_az_select_r1 <= clip_ve_az_select; 15

 clip_ve_aw_select_r1 <= clip_ve_aw_select; 16

 clip_ve_bx_select_r1 <= clip_ve_bx_select; 17

 clip_ve_by_select_r1 <= clip_ve_by_select; 18

 clip_ve_bz_select_r1 <= clip_ve_bz_select; 19

 clip_ve_bw_select_r1 <= clip_ve_bw_select; 20

 clip_ve_a_is_wwww_r1 <= clip_ve_a_is_wwww; 21

 clip_ve_broadcast_x_r1 <= clip_ve_broadcast_x; 22

 clip_ve_abs_a_r1 <= clip_ve_abs_a; 23

 clip_ve_abs_b_r1 <= clip_ve_abs_b; 24

 clip_ve_abs_c_r1 <= clip_ve_abs_c; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 561 of 611

 Page 93 of 123
Ex. 2115 - pa_ag.v

 clip_ve_ax_negate_r1 <= clip_ve_ax_negate; 1

 clip_ve_ay_negate_r1 <= clip_ve_ay_negate; 2

 clip_ve_az_negate_r1 <= clip_ve_az_negate; 3

 clip_ve_aw_negate_r1 <= clip_ve_aw_negate; 4

 clip_ve_bx_negate_r1 <= clip_ve_bx_negate; 5

 clip_ve_by_negate_r1 <= clip_ve_by_negate; 6

 clip_ve_bz_negate_r1 <= clip_ve_bz_negate; 7

 clip_ve_bw_negate_r1 <= clip_ve_bw_negate; 8

 clip_ve_cx_negate_r1 <= clip_ve_cx_negate; 9

 clip_ve_cy_negate_r1 <= clip_ve_cy_negate; 10

 clip_ve_cz_negate_r1 <= clip_ve_cz_negate; 11

 clip_ve_cw_negate_r1 <= clip_ve_cw_negate; 12

 clip_ve_bcc_flat_tst_r1 <= clip_ve_bcc_flat_tst; 13

 clip_ve_out_mem_sel_r1 <= clip_ve_out_mem_sel; 14

 clip_ve_out_addr_r1 <= clip_ve_out_addr; 15

 clip_ve_out_we_r1 <= clip_ve_out_we; 16

 clip_ve_accum_sel_r1 <= clip_ve_accum_sel; 17

 clip_ve_pre_acc_we_r1 <= clip_ve_pre_acc_we; 18

 clip_agve_dly_vertex_store_indx_r1 <= clip_agve_dly_vertex_store_indx; 19

 clip_agve_dly_valid_bit_set_r1 <= clip_agve_dly_valid_bit_set; 20

 clip_agve_dly_user_clip_indx_r1 <= clip_agve_dly_user_clip_indx; 21

 clip_agve_dly_vv_cc_test_r1 <= clip_agve_dly_vv_cc_test; 22

 clip_agve_dly_ucp_cc_test_r1 <= clip_agve_dly_ucp_cc_test; 23

 clip_agve_dly_bcc_cc_test_r1 <= clip_agve_dly_bcc_cc_test; 24

 clip_agve_dly_ps_ucp_cc_test_r1 <= clip_agve_dly_ps_ucp_cc_test; 25

 Page 94 of 123
Ex. 2115 - pa_ag.v

 clip_agve_dly_ps_engh_test_r1 <= clip_agve_dly_ps_engh_test; 1

 2

 pos_re_r1 <= pos_re; 3

 pntsz_re_r1 <= pntsz_re; 4

 ve_veoc_vector_back_re_r1 <= ve_veoc_vector_back_re; 5

 stve_re_r1 <= stve_re_r0; 6

 7

 //AG_R2 register 8

 vte_opcode_r2 <= arbsel_vte_opcode; 9

 vte_st_indx_r2 <= arbsel_vte_st_indx; 10

 ve_opcode_r2 <= arbsel_ve_opcode; 11

 ve_a_memsel_r2 <= arbsel_ve_a_memsel; 12

 ve_b_memsel_r2 <= arbsel_ve_b_memsel; 13

 ve_ax_select_r2 <= arbsel_ve_ax_select; 14

 ve_ay_select_r2 <= arbsel_ve_ay_select; 15

 ve_az_select_r2 <= arbsel_ve_az_select; 16

 ve_aw_select_r2 <= arbsel_ve_aw_select; 17

 ve_bx_select_r2 <= arbsel_ve_bx_select; 18

 ve_by_select_r2 <= arbsel_ve_by_select; 19

 ve_bz_select_r2 <= arbsel_ve_bz_select; 20

 ve_bw_select_r2 <= arbsel_ve_bw_select; 21

 ve_a_is_wwww_r2 <= arbsel_ve_a_is_wwww; 22

 ve_broadcast_x_r2 <= arbsel_ve_broadcast_x; 23

 ve_abs_a_r2 <= arbsel_ve_abs_a; 24

 ve_abs_b_r2 <= arbsel_ve_abs_b; 25

 Page 95 of 123
Ex. 2115 - pa_ag.v

 ve_abs_c_r2 <= arbsel_ve_abs_c; 1

 ve_ax_negate_r2 <= arbsel_ve_ax_negate; 2

 ve_ay_negate_r2 <= arbsel_ve_ay_negate; 3

 ve_az_negate_r2 <= arbsel_ve_az_negate; 4

 ve_aw_negate_r2 <= arbsel_ve_aw_negate; 5

 ve_bx_negate_r2 <= arbsel_ve_bx_negate; 6

 ve_by_negate_r2 <= arbsel_ve_by_negate; 7

 ve_bz_negate_r2 <= arbsel_ve_bz_negate; 8

 ve_bw_negate_r2 <= arbsel_ve_bw_negate; 9

 ve_cx_negate_r2 <= arbsel_ve_cx_negate; 10

 ve_cy_negate_r2 <= arbsel_ve_cy_negate; 11

 ve_cz_negate_r2 <= arbsel_ve_cz_negate; 12

 ve_cw_negate_r2 <= arbsel_ve_cw_negate; 13

 ve_bcc_flat_tst_r2 <= arbsel_ve_bcc_flat_tst; 14

 ve_out_mem_sel_r2 <= arbsel_ve_out_mem_sel; 15

 ve_out_addr_r2 <= arbsel_ve_out_addr; 16

 ve_out_we_r2 <= arbsel_ve_out_we; 17

 ve_accum_sel_r2 <= arbsel_ve_accum_sel; 18

 ve_pre_acc_we_r2 <= arbsel_ve_pre_acc_we; 19

 agve_dly_vertex_store_indx_r2 <= arbsel_agve_dly_vertex_store_indx; 20

 agve_dly_valid_bit_set_r2 <= arbsel_agve_dly_valid_bit_set; 21

 agve_dly_user_clip_indx_r2 <= arbsel_agve_dly_user_clip_indx; 22

 agve_dly_vv_cc_test_r2 <= arbsel_agve_dly_vv_cc_test; 23

 agve_dly_ucp_cc_test_r2 <= arbsel_agve_dly_ucp_cc_test; 24

 agve_dly_bcc_cc_test_r2 <= arbsel_agve_dly_bcc_cc_test; 25

 Page 96 of 123
Ex. 2115 - pa_ag.v

 agve_dly_ps_ucp_cc_test_r2 <= arbsel_agve_dly_ps_ucp_cc_test; 1

 agve_dly_ps_engh_test_r2 <= arbsel_agve_dly_ps_engh_test; 2

 3

 if (pos_re_r1) begin 4

 pos_rdata_r2 <= pos_rdata; 5

 end 6

 if(pntsz_re_r1) begin 7

 pntsz_rdata_r2 <= pntsz_rdata; 8

 end 9

 if(ve_veoc_vector_back_re_r1) begin 10

 ve_veoc_vector_back_rdata_r2 <= ve_veoc_vector_back_rdata; 11

 end 12

 if(stve_re_r1) begin 13

 stve_rdata_r2 <= stve_rdata; 14

 end 15

 16

 17

 //AG_R3 outup register 18

 ag_vte_opcode <= vte_opcode_r2; 19

 ag_vte_st_indx <= vte_st_indx_r2; 20

 ag_vte_vertex_store_indx <= agve_dly_vertex_store_indx_r2[1:0]; 21

 22

 ag_ve_opcode <= ve_opcode_r2; 23

 24

 ag_ve_in_a0 <= agswz_ve_in_a0; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 562 of 611

 Page 97 of 123
Ex. 2115 - pa_ag.v

 ag_ve_in_a1 <= agswz_ve_in_a1; 1

 ag_ve_in_a2 <= agswz_ve_in_a2; 2

 ag_ve_in_a3 <= agswz_ve_in_a3; 3

 ag_ve_in_b0 <= agswz_ve_in_b0; 4

 ag_ve_in_b1 <= agswz_ve_in_b1; 5

 ag_ve_in_b2 <= agswz_ve_in_b2; 6

 ag_ve_in_b3 <= agswz_ve_in_b3; 7

 8

 ag_ve_a_is_wwww <= ve_a_is_wwww_r2; 9

 ag_ve_broadcast_x <= ve_broadcast_x_r2; 10

 ag_ve_abs_a <= ve_abs_a_r2; 11

 ag_ve_abs_b <= ve_abs_b_r2; 12

 ag_ve_abs_c <= ve_abs_c_r2; 13

 ag_ve_ax_negate <= ve_ax_negate_r2; 14

 ag_ve_ay_negate <= ve_ay_negate_r2; 15

 ag_ve_az_negate <= ve_az_negate_r2; 16

 ag_ve_aw_negate <= ve_aw_negate_r2; 17

 ag_ve_bx_negate <= ve_bx_negate_r2; 18

 ag_ve_by_negate <= ve_by_negate_r2; 19

 ag_ve_bz_negate <= ve_bz_negate_r2; 20

 ag_ve_bw_negate <= ve_bw_negate_r2; 21

 ag_ve_cx_negate <= ve_cx_negate_r2; 22

 ag_ve_cy_negate <= ve_cy_negate_r2; 23

 ag_ve_cz_negate <= ve_cz_negate_r2; 24

 ag_ve_cw_negate <= ve_cw_negate_r2; 25

 Page 98 of 123
Ex. 2115 - pa_ag.v

 ag_ve_bcc_flat_tst <= ve_bcc_flat_tst_r2; 1

 ag_ve_out_mem_sel <= ve_out_mem_sel_r2; 2

 ag_ve_out_addr <= ve_out_addr_r2; 3

 ag_ve_out_we <= ve_out_we_r2; 4

 ag_ve_accum_sel <= ve_accum_sel_r2; 5

 ag_ve_pre_accum_we <= ve_pre_acc_we_r2; 6

 7

 agve_dly_valid_op_r3 <= agve_valid_op; 8

 agve_dly_vertex_store_indx_r3 <= agve_dly_vertex_store_indx_r2; 9

 agve_dly_valid_bit_set_r3 <= agve_dly_valid_bit_set_r2; 10

 agve_dly_user_clip_indx_r3 <= agve_dly_user_clip_indx_r2; 11

 agve_dly_vv_cc_test_r3 <= agve_dly_vv_cc_test_r2; 12

 agve_dly_ucp_cc_test_r3 <= agve_dly_ucp_cc_test_r2; 13

 agve_dly_bcc_cc_test_r3 <= agve_dly_bcc_cc_test_r2; 14

 agve_dly_ps_ucp_cc_test_r3 <= agve_dly_ps_ucp_cc_test_r2; 15

 agve_dly_ps_engh_test_r3 <= agve_dly_ps_engh_test_r2; 16

 17

 18

 agve_dly0 <= { agve_dly_valid_op_r3, 19

 agve_dly_vertex_store_indx_r3, 20

 agve_dly_valid_bit_set_r3, 21

 agve_dly_user_clip_indx_r3, 22

 agve_dly_vv_cc_test_r3, 23

 agve_dly_ucp_cc_test_r3, 24

 agve_dly_bcc_cc_test_r3, 25

 Page 99 of 123
Ex. 2115 - pa_ag.v

 agve_dly_ps_ucp_cc_test_r3, 1

 agve_dly_ps_engh_test_r3 }; 2

 3

 agve_dly1 <= agve_dly0; 4

 agve_dly2 <= agve_dly1; 5

 agve_dly3 <= agve_dly2; 6

 agve_dly4 <= agve_dly3; 7

 agve_dly5 <= agve_dly4; 8

 9

//add latencey matching stages here 10

 11

 { agve_dly_valid_op, 12

 agve_dly_vertex_store_indx, 13

 agve_dly_valid_bit_set, 14

 agve_dly_user_clip_indx, 15

 agve_dly_vv_cc_test, 16

 agve_dly_ucp_cc_test, 17

 agve_dly_bcc_cc_test, 18

 agve_dly_ps_ucp_cc_test, 19

 agve_dly_ps_engh_test } <= agve_dly5; 20

 end 21

 22

assign ag_to_clip_point_size = pntsz_rdata_r2; 23

 24

 25

 Page 100 of 123
Ex. 2115 - pa_ag.v

 1

//** 2

// Functions 3

//** 4

 5

// Function implementation of arb 6

function [1:0] arb; 7

 input srst; 8

 input arb_clip_ve_valid; 9

 input arb_ccg_ve_valid; 10

 reg arb_nxt_clip_xfc; 11

 reg arb_nxt_ccg_xfc; 12

 begin 13

 if ((arb_clip_ve_valid == 1'b1) && (srst == 1'b0)) begin 14

 arb_nxt_ccg_xfc = 1'b0; 15

 arb_nxt_clip_xfc = 1'b1; 16

 end else if ((arb_ccg_ve_valid == 1'b1) && (srst == 1'b0)) begin 17

 arb_nxt_ccg_xfc = 1'b1; 18

 arb_nxt_clip_xfc = 1'b0; 19

 end else begin 20

 arb_nxt_ccg_xfc = 1'b0; 21

 arb_nxt_clip_xfc = 1'b0; 22

 end 23

 arb = {arb_nxt_clip_xfc, arb_nxt_ccg_xfc}; 24

 end 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 563 of 611

 Page 101 of 123
Ex. 2115 - pa_ag.v

endfunction 1

 2

// Function implementation of dirty bit 3

function [0:0] dirty; 4

 input srst; 5

 input rbiu_cpy; 6

 input [3:0] sel; 7

 reg nxt_write_after_cpy; 8

 begin 9

 if (srst || rbiu_cpy) begin 10

 nxt_write_after_cpy = 1'b0; 11

 end else if (|sel) begin 12

 nxt_write_after_cpy = 1'b1; 13

 end 14

 dirty = nxt_write_after_cpy; 15

 end 16

endfunction 17

 18

// Function implementation of state write ptr stwtptr 19

function [2:0] stwtptr; 20

 input srst; 21

 input rbiu_cpy; 22

 input write_after_cpy; 23

 input [2:0] cur_write_ptr; 24

 reg [2:0] nxt_write_ptr; 25

 Page 102 of 123
Ex. 2115 - pa_ag.v

 begin 1

 if (srst) begin 2

 nxt_write_ptr = 3'b000; 3

 end else if (write_after_cpy && rbiu_cpy) begin 4

 nxt_write_ptr = cur_write_ptr + 3'b001; 5

 end else begin 6

 nxt_write_ptr = cur_write_ptr; 7

 end 8

 stwtptr = nxt_write_ptr; 9

 end 10

endfunction 11

 12

function [31:0] swizzle; 13

 input [2:0] ve_swizzle_select; 14

 input [127:0] mem_sel_data; 15

 reg [31:0] swizzled_data; 16

 begin 17

 swizzled_data= 32'h0; 18

 19

 case(ve_swizzle_select) 20

 SRC_SELECT_X: begin 21

 swizzled_data = mem_sel_data[31:0]; 22

 end 23

 SRC_SELECT_Y: begin 24

 swizzled_data = mem_sel_data[63:32]; 25

 Page 103 of 123
Ex. 2115 - pa_ag.v

 end 1

 SRC_SELECT_Z: begin 2

 swizzled_data = mem_sel_data[95:64]; 3

 end 4

 SRC_SELECT_W: begin 5

 swizzled_data = mem_sel_data[127:96]; 6

 end 7

 SRC_SELECT_FORCE_0: begin 8

 swizzled_data = 32'h0; 9

 end 10

 SRC_SELECT_FORCE_1: begin 11

 swizzled_data = 32'h3f800000; 12

 end 13

 default; 14

 endcase 15

 swizzle = swizzled_data; 16

 end 17

endfunction 18

 19

//***20
*** 21

// State Storage Instantiation 22

//***23
*** 24

ati_1rp_state_storage #(1) ustate_storage_reg_dx_clip (25

 .w_data(rbiu_wd[19]), 26

 Page 104 of 123
Ex. 2115 - pa_ag.v

 .r_data(agrd_dx_clip_space_def), 1

 .st_data(dx_clip_space_def), 2

 .st_indx(arb_state_var_indx_r0), 3

 .w_addr(rbiu_wa), //context 4

 .r_addr(rbiu_wd[2:0]), 5

 .we(rbiu_we), 6

 .re(rbiu_re), 7

 .sel(rbiu_ag_dx_clip_sp_def_sel), 8

 .cpy(rbiu_cpy), 9

 .clk(sclk)); 10

 11

ati_1rp_state_storage #(3) ustate_storage_reg_ucp0 (12

 .w_data(ucp0_write_ptr), 13

 .r_data(agrd_ucp0_write_ptr), 14

 .st_data(ucp0_rd_off), 15

 .st_indx(arb_state_var_indx_r0), 16

 .w_addr(rbiu_wa), //context 17

 .r_addr(rbiu_wd[2:0]), 18

 .we(rbiu_we), 19

 .re(rbiu_re), 20

 .sel(|rbiu_ag_ucp0_sel), 21

 .cpy(rbiu_cpy), 22

 .clk(sclk)); 23

 24

ati_1rp_state_storage #(3) ustate_storage_reg_ucp1 (25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 564 of 611

 Page 105 of 123
Ex. 2115 - pa_ag.v

 .w_data(ucp1_write_ptr), 1

 .r_data(agrd_ucp1_write_ptr), 2

 .st_data(ucp1_rd_off), 3

 .st_indx(arb_state_var_indx_r0), 4

 .w_addr(rbiu_wa), //context 5

 .r_addr(rbiu_wd[2:0]), 6

 .we(rbiu_we), 7

 .re(rbiu_re), 8

 .sel(|rbiu_ag_ucp1_sel), 9

 .cpy(rbiu_cpy), 10

 .clk(sclk)); 11

 12

ati_1rp_state_storage #(3) ustate_storage_reg_ucp2 (13

 .w_data(ucp2_write_ptr), 14

 .r_data(agrd_ucp2_write_ptr), 15

 .st_data(ucp2_rd_off), 16

 .st_indx(arb_state_var_indx_r0), 17

 .w_addr(rbiu_wa), //context 18

 .r_addr(rbiu_wd[2:0]), 19

 .we(rbiu_we), 20

 .re(rbiu_re), 21

 .sel(|rbiu_ag_ucp2_sel), 22

 .cpy(rbiu_cpy), 23

 .clk(sclk)); 24

 25

 Page 106 of 123
Ex. 2115 - pa_ag.v

ati_1rp_state_storage #(3) ustate_storage_reg_ucp3 (1

 .w_data(ucp3_write_ptr), 2

 .r_data(agrd_ucp3_write_ptr), 3

 .st_data(ucp3_rd_off), 4

 .st_indx(arb_state_var_indx_r0), 5

 .w_addr(rbiu_wa), //context 6

 .r_addr(rbiu_wd[2:0]), 7

 .we(rbiu_we), 8

 .re(rbiu_re), 9

 .sel(|rbiu_ag_ucp3_sel), 10

 .cpy(rbiu_cpy), 11

 .clk(sclk)); 12

 13

ati_1rp_state_storage #(3) ustate_storage_reg_ucp4 (14

 .w_data(ucp4_write_ptr), 15

 .r_data(agrd_ucp4_write_ptr), 16

 .st_data(ucp4_rd_off), 17

 .st_indx(arb_state_var_indx_r0), 18

 .w_addr(rbiu_wa), //context 19

 .r_addr(rbiu_wd[2:0]), 20

 .we(rbiu_we), 21

 .re(rbiu_re), 22

 .sel(|rbiu_ag_ucp4_sel), 23

 .cpy(rbiu_cpy), 24

 .clk(sclk)); 25

 Page 107 of 123
Ex. 2115 - pa_ag.v

 1

ati_1rp_state_storage #(3) ustate_storage_reg_ucp5 (2

 .w_data(ucp5_write_ptr), 3

 .r_data(agrd_ucp5_write_ptr), 4

 .st_data(ucp5_rd_off), 5

 .st_indx(arb_state_var_indx_r0), 6

 .w_addr(rbiu_wa), //context 7

 .r_addr(rbiu_wd[2:0]), 8

 .we(rbiu_we), 9

 .re(rbiu_re), 10

 .sel(|rbiu_ag_ucp5_sel), 11

 .cpy(rbiu_cpy), 12

 .clk(sclk)); 13

 14

ati_1rp_state_storage #(3) ustate_storage_reg_gb (15

 .w_data(gb_write_ptr), 16

 .r_data(agrd_gb_write_ptr), 17

 .st_data(gb_rd_off), 18

 .st_indx(arb_state_var_indx_r0), 19

 .w_addr(rbiu_wa), //context 20

 .r_addr(rbiu_wd[2:0]), 21

 .we(rbiu_we), 22

 .re(rbiu_re), 23

 .sel(|rbiu_ag_gb_sel), 24

 .cpy(rbiu_cpy), 25

 Page 108 of 123
Ex. 2115 - pa_ag.v

 .clk(sclk)); 1

 2

ati_1rp_state_storage #(3) ustate_storage_reg_pntsz (3

 .w_data(pntsz_write_ptr), 4

 .r_data(agrd_pntsz_write_ptr), 5

 .st_data(pntsz_rd_off), 6

 .st_indx(arb_state_var_indx_r0), 7

 .w_addr(rbiu_wa), //context 8

 .r_addr(rbiu_wd[2:0]), 9

 .we(rbiu_we), 10

 .re(rbiu_re), 11

 .sel(|rbiu_ag_pntsz_sel), 12

 .cpy(rbiu_cpy), 13

 .clk(sclk)); 14

 15

 16

 17

//***18
*** 19

// Memory Instantiation 20

//***21
*** 22

`ifdef USE_BEHAVE_MEM 23

 24

// Instantiate the cliptemp memory as 25

// 4 35d by 32w to create 35d x 128w 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 565 of 611

 Page 109 of 123
Ex. 2115 - pa_ag.v

dum_mem_p2 #(1

u0_clptmp_ADDR_WIDTH , 2

u0_clptmp_DATA_WIDTH , 3

u0_clptmp_WORDS , 4

u0_clptmp_DEBUG 5

) 6

u0_clptmp_dum_mem_p2 (7

 .iRCLK(sclk), 8

 .iWCLK(sclk), 9

 .iMER(ve_veoc_vector_back_re), 10

 .iMEW(ve_veoc_vector_back_we[0]), 11

 .iWEN(ve_veoc_vector_back_we[0]), 12

 .iRADR(ve_veoc_vector_back_raddr), 13

 .iWADR(ve_waddr), 14

 .iD(ve_wdata[31:0]), 15

 .oQ(ve_veoc_vector_back_rdata[31:0])); 16

 17

dum_mem_p2 #(18

u1_clptmp_ADDR_WIDTH , 19

u1_clptmp_DATA_WIDTH , 20

u1_clptmp_WORDS , 21

u1_clptmp_DEBUG 22

) 23

u1_clptmp_dum_mem_p2 (24

 .iRCLK(sclk), 25

 Page 110 of 123
Ex. 2115 - pa_ag.v

 .iWCLK(sclk), 1

 .iMER(ve_veoc_vector_back_re), 2

 .iMEW(ve_veoc_vector_back_we[1]), 3

 .iWEN(ve_veoc_vector_back_we[1]), 4

 .iRADR(ve_veoc_vector_back_raddr), 5

 .iWADR(ve_waddr), 6

 .iD(ve_wdata[63:32]), 7

 .oQ(ve_veoc_vector_back_rdata[63:32])); 8

 9

dum_mem_p2 #(10

u2_clptmp_ADDR_WIDTH , 11

u2_clptmp_DATA_WIDTH , 12

u2_clptmp_WORDS , 13

u2_clptmp_DEBUG 14

) 15

u2_clptmp_dum_mem_p2 (16

 .iRCLK(sclk), 17

 .iWCLK(sclk), 18

 .iMER(ve_veoc_vector_back_re), 19

 .iMEW(ve_veoc_vector_back_we[2]), 20

 .iWEN(ve_veoc_vector_back_we[2]), 21

 .iRADR(ve_veoc_vector_back_raddr), 22

 .iWADR(ve_waddr), 23

 .iD(ve_wdata[95:64]), 24

 .oQ(ve_veoc_vector_back_rdata[95:64])); 25

 Page 111 of 123
Ex. 2115 - pa_ag.v

 1

dum_mem_p2 #(2

u3_clptmp_ADDR_WIDTH , 3

u3_clptmp_DATA_WIDTH , 4

u3_clptmp_WORDS , 5

u3_clptmp_DEBUG 6

) 7

u3_clptmp_dum_mem_p2 (8

 .iRCLK(sclk), 9

 .iWCLK(sclk), 10

 .iMER(ve_veoc_vector_back_re), 11

 .iMEW(ve_veoc_vector_back_we[3]), 12

 .iWEN(ve_veoc_vector_back_we[3]), 13

 .iRADR(ve_veoc_vector_back_raddr), 14

 .iWADR(ve_waddr), 15

 .iD(ve_wdata[127:96]), 16

 .oQ(ve_veoc_vector_back_rdata[127:96])); 17

 18

// Instantiate the pntsz memory 19

// 1 64d x 32w 20

dum_mem_p2 #(21

u_pntsz_ADDR_WIDTH , 22

u_pntsz_DATA_WIDTH , 23

u_pntsz_WORDS , 24

u_pntsz_DEBUG 25

 Page 112 of 123
Ex. 2115 - pa_ag.v

) 1

u_pntsz_dum_mem_p2 (2

 .iRCLK(sclk), 3

 .iWCLK(sclk), 4

 .iMER(pntsz_re), 5

 .iMEW(pntsz_mem_we), 6

 .iWEN(pntsz_mem_we), 7

 .iRADR(pntsz_raddr), 8

 .iWADR(pntsz_mem_waddr), 9

 .iD(pos_pntsz_ag_mem_data[31:0]), 10

 .oQ(pntsz_rdata)); 11

 12

// Instantiate the position memory 13

// 1 64d x 128w 14

dum_mem_p2 #(15

u_pos_ADDR_WIDTH , 16

u_pos_DATA_WIDTH , 17

u_pos_WORDS , 18

u_pos_DEBUG 19

) 20

u_pos_dum_mem_p2 (21

 .iRCLK(sclk), 22

 .iWCLK(sclk), 23

 .iMER(pos_re), 24

 .iMEW(pos_mem_we), 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 566 of 611

 Page 113 of 123
Ex. 2115 - pa_ag.v

 .iWEN(pos_mem_we), 1

 .iRADR(pos_raddr), 2

 .iWADR(pos_mem_waddr), 3

 .iD(pos_pntsz_ag_mem_data), 4

 .oQ(pos_rdata)); 5

 6

// Instantiate the state for ucp,gb,pntsz memory as 7

// 4 64d by 32w to create 64d x 128w 8

dum_mem_p2 #(9

u0_stve_ADDR_WIDTH , 10

u0_stve_DATA_WIDTH , 11

u0_stve_WORDS , 12

u0_stve_DEBUG 13

) 14

u0_stve_dum_mem_p2 (15

 .iRCLK(sclk), 16

 .iWCLK(sclk), 17

 .iMER(stve_re_r0), 18

 .iMEW(stve_we[0]), 19

 .iWEN(stve_we[0]), 20

 .iRADR(stve_raddr), 21

 .iWADR(stve_wa), 22

 .iD(rbiu_wd), 23

 .oQ(stve_rdata[31:0])); 24

 25

 Page 114 of 123
Ex. 2115 - pa_ag.v

dum_mem_p2 #(1

u1_stve_ADDR_WIDTH , 2

u1_stve_DATA_WIDTH , 3

u1_stve_WORDS , 4

u1_stve_DEBUG 5

) 6

u1_stve_dum_mem_p2 (7

 .iRCLK(sclk), 8

 .iWCLK(sclk), 9

 .iMER(stve_re_r0), 10

 .iMEW(stve_we[1]), 11

 .iWEN(stve_we[1]), 12

 .iRADR(stve_raddr), 13

 .iWADR(stve_wa), 14

 .iD(rbiu_wd), 15

 .oQ(stve_rdata[63:32])); 16

 17

dum_mem_p2 #(18

u2_stve_ADDR_WIDTH , 19

u2_stve_DATA_WIDTH , 20

u2_stve_WORDS , 21

u2_stve_DEBUG 22

) 23

u2_stve_dum_mem_p2 (24

 .iRCLK(sclk), 25

 Page 115 of 123
Ex. 2115 - pa_ag.v

 .iWCLK(sclk), 1

 .iMER(stve_re_r0), 2

 .iMEW(stve_we[2]), 3

 .iWEN(stve_we[2]), 4

 .iRADR(stve_raddr), 5

 .iWADR(stve_wa), 6

 .iD(rbiu_wd), 7

 .oQ(stve_rdata[95:64])); 8

 9

dum_mem_p2 #(10

u3_stve_ADDR_WIDTH , 11

u3_stve_DATA_WIDTH , 12

u3_stve_WORDS , 13

u3_stve_DEBUG 14

) 15

u3_stve_dum_mem_p2 (16

 .iRCLK(sclk), 17

 .iWCLK(sclk), 18

 .iMER(stve_re_r0), 19

 .iMEW(stve_we[3]), 20

 .iWEN(stve_we[3]), 21

 .iRADR(stve_raddr), 22

 .iWADR(stve_wa), 23

 .iD(rbiu_wd), 24

 .oQ(stve_rdata[127:96])); 25

 Page 116 of 123
Ex. 2115 - pa_ag.v

`else 1

dum_mem_syn_stub #(2

u0_clptmp_ADDR_WIDTH , 3

u0_clptmp_DATA_WIDTH , 4

u0_clptmp_WORDS , 5

u0_clptmp_DEBUG 6

) 7

u0_clptmp_dum_mem_p2 (8

 .iRCLK(sclk), 9

 .iWCLK(sclk), 10

 .iMER(ve_veoc_vector_back_re), 11

 .iMEW(ve_veoc_vector_back_we[0]), 12

 .iWEN(ve_veoc_vector_back_we[0]), 13

 .iRADR(ve_veoc_vector_back_raddr), 14

 .iWADR(ve_waddr), 15

 .iD(ve_wdata[31:0]), 16

 .oQ(ve_veoc_vector_back_rdata[31:0])); 17

 18

dum_mem_syn_stub #(19

u1_clptmp_ADDR_WIDTH , 20

u1_clptmp_DATA_WIDTH , 21

u1_clptmp_WORDS , 22

u1_clptmp_DEBUG 23

) 24

u1_clptmp_dum_mem_p2 (25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 567 of 611

 Page 117 of 123
Ex. 2115 - pa_ag.v

 .iRCLK(sclk), 1

 .iWCLK(sclk), 2

 .iMER(ve_veoc_vector_back_re), 3

 .iMEW(ve_veoc_vector_back_we[1]), 4

 .iWEN(ve_veoc_vector_back_we[1]), 5

 .iRADR(ve_veoc_vector_back_raddr), 6

 .iWADR(ve_waddr), 7

 .iD(ve_wdata[63:32]), 8

 .oQ(ve_veoc_vector_back_rdata[63:32])); 9

 10

dum_mem_syn_stub #(11

u2_clptmp_ADDR_WIDTH , 12

u2_clptmp_DATA_WIDTH , 13

u2_clptmp_WORDS , 14

u2_clptmp_DEBUG 15

) 16

u2_clptmp_dum_mem_p2 (17

 .iRCLK(sclk), 18

 .iWCLK(sclk), 19

 .iMER(ve_veoc_vector_back_re), 20

 .iMEW(ve_veoc_vector_back_we[2]), 21

 .iWEN(ve_veoc_vector_back_we[2]), 22

 .iRADR(ve_veoc_vector_back_raddr), 23

 .iWADR(ve_waddr), 24

 .iD(ve_wdata[95:64]), 25

 Page 118 of 123
Ex. 2115 - pa_ag.v

 .oQ(ve_veoc_vector_back_rdata[95:64])); 1

 2

dum_mem_syn_stub #(3

u3_clptmp_ADDR_WIDTH , 4

u3_clptmp_DATA_WIDTH , 5

u3_clptmp_WORDS , 6

u3_clptmp_DEBUG 7

) 8

u3_clptmp_dum_mem_p2 (9

 .iRCLK(sclk), 10

 .iWCLK(sclk), 11

 .iMER(ve_veoc_vector_back_re), 12

 .iMEW(ve_veoc_vector_back_we[3]), 13

 .iWEN(ve_veoc_vector_back_we[3]), 14

 .iRADR(ve_veoc_vector_back_raddr), 15

 .iWADR(ve_waddr), 16

 .iD(ve_wdata[127:96]), 17

 .oQ(ve_veoc_vector_back_rdata[127:96])); 18

 19

// Instantiate the pntsz memory 20

// 1 64d x 32w 21

dum_mem_syn_stub #(22

u_pntsz_ADDR_WIDTH , 23

u_pntsz_DATA_WIDTH , 24

u_pntsz_WORDS , 25

 Page 119 of 123
Ex. 2115 - pa_ag.v

u_pntsz_DEBUG 1

) 2

u_pntsz_dum_mem_p2 (3

 .iRCLK(sclk), 4

 .iWCLK(sclk), 5

 .iMER(pntsz_re), 6

 .iMEW(pntsz_mem_we), 7

 .iWEN(pntsz_mem_we), 8

 .iRADR(pntsz_raddr), 9

 .iWADR(pntsz_mem_waddr), 10

 .iD(pos_pntsz_ag_mem_data[31:0]), 11

 .oQ(pntsz_rdata)); 12

 13

// Instantiate the position memory 14

// 1 64d x 128w 15

dum_mem_syn_stub #(16

u_pos_ADDR_WIDTH , 17

u_pos_DATA_WIDTH , 18

u_pos_WORDS , 19

u_pos_DEBUG 20

) 21

u_pos_dum_mem_p2 (22

 .iRCLK(sclk), 23

 .iWCLK(sclk), 24

 .iMER(pos_re), 25

 Page 120 of 123
Ex. 2115 - pa_ag.v

 .iMEW(pos_mem_we), 1

 .iWEN(pos_mem_we), 2

 .iRADR(pos_raddr), 3

 .iWADR(pos_mem_waddr), 4

 .iD(pos_pntsz_ag_mem_data), 5

 .oQ(pos_rdata)); 6

 7

// Instantiate the state for ucp,gb,pntsz memory as 8

// 4 64d by 32w to create 64d x 128w 9

dum_mem_syn_stub #(10

u0_stve_ADDR_WIDTH , 11

u0_stve_DATA_WIDTH , 12

u0_stve_WORDS , 13

u0_stve_DEBUG 14

) 15

u0_stve_dum_mem_p2 (16

 .iRCLK(sclk), 17

 .iWCLK(sclk), 18

 .iMER(stve_re_r0), 19

 .iMEW(stve_we[0]), 20

 .iWEN(stve_we[0]), 21

 .iRADR(stve_raddr), 22

 .iWADR(stve_wa), 23

 .iD(rbiu_wd), 24

 .oQ(stve_rdata[31:0])); 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 568 of 611

 Page 121 of 123
Ex. 2115 - pa_ag.v

 1

dum_mem_syn_stub #(2

u1_stve_ADDR_WIDTH , 3

u1_stve_DATA_WIDTH , 4

u1_stve_WORDS , 5

u1_stve_DEBUG 6

) 7

u1_stve_dum_mem_p2 (8

 .iRCLK(sclk), 9

 .iWCLK(sclk), 10

 .iMER(stve_re_r0), 11

 .iMEW(stve_we[1]), 12

 .iWEN(stve_we[1]), 13

 .iRADR(stve_raddr), 14

 .iWADR(stve_wa), 15

 .iD(rbiu_wd), 16

 .oQ(stve_rdata[63:32])); 17

 18

dum_mem_syn_stub #(19

u2_stve_ADDR_WIDTH , 20

u2_stve_DATA_WIDTH , 21

u2_stve_WORDS , 22

u2_stve_DEBUG 23

) 24

u2_stve_dum_mem_p2 (25

 Page 122 of 123
Ex. 2115 - pa_ag.v

 .iRCLK(sclk), 1

 .iWCLK(sclk), 2

 .iMER(stve_re_r0), 3

 .iMEW(stve_we[2]), 4

 .iWEN(stve_we[2]), 5

 .iRADR(stve_raddr), 6

 .iWADR(stve_wa), 7

 .iD(rbiu_wd), 8

 .oQ(stve_rdata[95:64])); 9

 10

dum_mem_syn_stub #(11

u3_stve_ADDR_WIDTH , 12

u3_stve_DATA_WIDTH , 13

u3_stve_WORDS , 14

u3_stve_DEBUG 15

) 16

u3_stve_dum_mem_p2 (17

 .iRCLK(sclk), 18

 .iWCLK(sclk), 19

 .iMER(stve_re_r0), 20

 .iMEW(stve_we[3]), 21

 .iWEN(stve_we[3]), 22

 .iRADR(stve_raddr), 23

 .iWADR(stve_wa), 24

 .iD(rbiu_wd), 25

 Page 123 of 123
Ex. 2115 - pa_ag.v

 .oQ(stve_rdata[127:96])); 1

 2

`endif 3

 4

endmodule 5

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 569 of 611

 Page 1 of 29
Ex. 2116 - pa_sxifccg.v

//%%%1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2

// Project: R400 3

// File: pa_sxifccg.v 4

// 5

// Description: 6

// sxif/ccg top level 7

// 8

//%%%9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 10

// 11

// Trade secret of ATI Technologies, Inc. 12

// Copyright 2002, ATI Technologies, Inc., (unpublished) 13

// 14

// All rights reserved. This notice is intended as a precaution against 15

// inadvertent publication and does not imply publication or any waiver 16

// of confidentiality. The year included in the foregoing notice is the 17

// year of creation of the work. 18

//%%%19
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 20

 21

`include "header.v" 22

 23

module 24

pa_sxifccg 25

 (26

 Page 2 of 29
Ex. 2116 - pa_sxifccg.v

 /// 1

 // INPUTS 2

 /// 3

 // global 4

 clk, 5

 reset, 6

 7

 // ati_state_storage (sxif) 8

 isxif_st_w_data, 9

 isxif_st_w_addr, 10

 isxif_st_we, 11

 isxif_st_r_addr, 12

 isxif_st_re, 13

 isxif_st_sel, 14

 isxif_st_cpy, 15

 16

 // vgt_to_ccgen fifo 17

 ivgt_to_ccgen_fifo_write, 18

 ivgt_to_ccgen_fifo_active_verts, 19

 ivgt_to_ccgen_fifo_state_var_indx, 20

 21

 // sx0, receive 22

 isx0_receive_fifo_write, 23

 isx0_receive_fifo_wrdata, 24

 25

 Page 3 of 29
Ex. 2116 - pa_sxifccg.v

 // sx1, receive 1

 isx1_receive_fifo_write, 2

 isx1_receive_fifo_wrdata, 3

 4

 // ccg state 5

 iccg_state0, 6

 iccg_state1, 7

 iccg_state2, 8

 iccg_state3, 9

 iccg_state4, 10

 iccg_state5, 11

 iccg_state6, 12

 iccg_state7, 13

 14

 // ccgen_to_clipcc/clip 15

 ioutsm_clr_orig_vertices, 16

 iccgen_to_clipcc_fifo_full, 17

 18

 // arbiter 19

 iarb_to_ccgen_xfc, 20

 21

 22

 /// 23

 // OUTPUTS 24

 /// 25

 Page 4 of 29
Ex. 2116 - pa_sxifccg.v

 // state 1

 osxif_st_r_data, 2

 3

 // state to clipper 4

 osxif_state0, 5

 osxif_state1, 6

 osxif_state2, 7

 osxif_state3, 8

 osxif_state4, 9

 osxif_state5, 10

 osxif_state6, 11

 osxif_state7, 12

 13

 // vgt_to_ccgen fifo 14

 ovgt_to_ccgen_fifo_notfull, 15

 16

 // sx0, request 17

 opa_to_sx0_req, 18

 opa_to_sx0_sp_id, 19

 opa_to_sx0_offset, 20

 opa_to_sx0_aux, 21

 opa_to_sx0_last, 22

 23

 // sx1, request 24

 opa_to_sx1_req, 25

ATI 2116
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 570 of 611

 Page 5 of 29
Ex. 2116 - pa_sxifccg.v

 opa_to_sx1_sp_id, 1

 opa_to_sx1_offset, 2

 opa_to_sx1_aux, 3

 opa_to_sx1_last, 4

 5

 // position memory 6

 oposition_write, 7

 oposition_wraddr, 8

 oposition_wrdata, 9

 10

 // point memory 11

 opoint_write, 12

 opoint_wraddr, 13

 opoint_wrdata, 14

 15

 // ccgen_to_clipcc/clip 16

 occgen_to_clipcc_data, 17

 occgen_to_clipcc_write, 18

 19

 // arbiter 20

 occgen_to_arb_data 21

); 22

 23

`include "pa_clip_pkg.v" 24

 25

 Page 6 of 29
Ex. 2116 - pa_sxifccg.v

/// 1

// INPUT DECLARATIONS 2

/// 3

// global 4

input clk; 5

input reset; 6

// ati_state_storage (sxif) 7

input [SXIF_STATE_WIDTH-1:0] isxif_st_w_data; 8

input [2:0] isxif_st_w_addr; 9

input isxif_st_we; 10

input [2:0] isxif_st_r_addr; 11

input isxif_st_re; 12

input isxif_st_sel; 13

input isxif_st_cpy; 14

// vgt_to_ccgen fifo 15

input ivgt_to_ccgen_fifo_write; 16

input [5:0] ivgt_to_ccgen_fifo_active_verts; 17

input [2:0] ivgt_to_ccgen_fifo_state_var_indx; 18

// sx0, receive 19

input isx0_receive_fifo_write; 20

input [SX_RECEIVE_FIFO_WIDTH-1:0] isx0_receive_fifo_wrdata; 21

// sx1, receive 22

input isx1_receive_fifo_write; 23

input [SX_RECEIVE_FIFO_WIDTH-1:0] isx1_receive_fifo_wrdata; 24

 25

 Page 7 of 29
Ex. 2116 - pa_sxifccg.v

// ccg state 1

input [CCG_STATE_WIDTH-1:0] iccg_state0; 2

input [CCG_STATE_WIDTH-1:0] iccg_state1; 3

input [CCG_STATE_WIDTH-1:0] iccg_state2; 4

input [CCG_STATE_WIDTH-1:0] iccg_state3; 5

input [CCG_STATE_WIDTH-1:0] iccg_state4; 6

input [CCG_STATE_WIDTH-1:0] iccg_state5; 7

input [CCG_STATE_WIDTH-1:0] iccg_state6; 8

input [CCG_STATE_WIDTH-1:0] iccg_state7; 9

// ccgen_to_clipcc/clip 10

input [1:0] ioutsm_clr_orig_vertices; 11

input iccgen_to_clipcc_fifo_full; 12

// arbiter 13

input iarb_to_ccgen_xfc; 14

 15

/// 16

// OUTPUT DECLARATIONS 17

/// 18

// state 19

output [SXIF_STATE_WIDTH-1:0] osxif_st_r_data; 20

// state to clipper 21

output [SXIF_STATE_WIDTH-1:0] osxif_state0; 22

output [SXIF_STATE_WIDTH-1:0] osxif_state1; 23

output [SXIF_STATE_WIDTH-1:0] osxif_state2; 24

output [SXIF_STATE_WIDTH-1:0] osxif_state3; 25

 Page 8 of 29
Ex. 2116 - pa_sxifccg.v

output [SXIF_STATE_WIDTH-1:0] osxif_state4; 1

output [SXIF_STATE_WIDTH-1:0] osxif_state5; 2

output [SXIF_STATE_WIDTH-1:0] osxif_state6; 3

output [SXIF_STATE_WIDTH-1:0] osxif_state7; 4

// vgt_to_ccgen fifo 5

output ovgt_to_ccgen_fifo_notfull; 6

// sx0, request 7

output opa_to_sx0_req; 8

output opa_to_sx0_sp_id; 9

output [1:0] opa_to_sx0_offset; 10

output opa_to_sx0_aux; 11

output opa_to_sx0_last; 12

// sx1, request 13

output opa_to_sx1_req; 14

output opa_to_sx1_sp_id; 15

output [1:0] opa_to_sx1_offset; 16

output opa_to_sx1_aux; 17

output opa_to_sx1_last; 18

// position memory 19

output oposition_write; 20

output [5:0] oposition_wraddr; 21

output [127:0] oposition_wrdata; 22

// point memory 23

output opoint_write; 24

output [5:0] opoint_wraddr; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 571 of 611

 Page 9 of 29
Ex. 2116 - pa_sxifccg.v

output [31:0] opoint_wrdata; 1

 2

// ccgen_to_clipcc/clip 3

output [CCGEN_TO_CLIPCC_FIFO_WIDTH-1:0] occgen_to_clipcc_data; 4

output occgen_to_clipcc_write; 5

// arbiter 6

output [15:0] occgen_to_arb_data; 7

 8

 9

/// 10

// SIGNAL DECLARATIONS 11

/// 12

// INPUTS 13

// ati_state_storage (sxif) 14

reg [SXIF_STATE_WIDTH-1:0] sxif_st_w_data; 15

reg [2:0] sxif_st_w_addr; 16

reg sxif_st_we; 17

reg [2:0] sxif_st_r_addr; 18

reg sxif_st_re; 19

reg sxif_st_sel; 20

reg sxif_st_cpy; 21

// vgt_to_ccgen fifo 22

reg vgt_to_ccgen_fifo_write; 23

reg [VGT_TO_CCGEN_FIFO_WIDTH-1:0] vgt_to_ccgen_fifo_wrdata; 24

// sx0, receive 25

 Page 10 of 29
Ex. 2116 - pa_sxifccg.v

reg sx0_receive_fifo_write; 1

reg [SX_RECEIVE_FIFO_WIDTH-1:0] sx0_receive_fifo_wrdata; 2

// sx1, receive 3

reg sx1_receive_fifo_write; 4

reg [SX_RECEIVE_FIFO_WIDTH-1:0] sx1_receive_fifo_wrdata; 5

 6

// ccg state 7

reg [CCG_STATE_WIDTH-1:0] ccg_state0; 8

reg [CCG_STATE_WIDTH-1:0] ccg_state1; 9

reg [CCG_STATE_WIDTH-1:0] ccg_state2; 10

reg [CCG_STATE_WIDTH-1:0] ccg_state3; 11

reg [CCG_STATE_WIDTH-1:0] ccg_state4; 12

reg [CCG_STATE_WIDTH-1:0] ccg_state5; 13

reg [CCG_STATE_WIDTH-1:0] ccg_state6; 14

reg [CCG_STATE_WIDTH-1:0] ccg_state7; 15

// ccgen_to_clipcc/clip 16

reg [1:0] outsm_clr_orig_vertices; 17

reg ccgen_to_clipcc_fifo_full; 18

// arbiter 19

reg arb_to_ccgen_xfc; 20

 21

// OUTPUTS 22

// state 23

wire [SXIF_STATE_WIDTH-1:0] sxif_st_r_data; 24

// vertex_fifo (debug) 25

 Page 11 of 29
Ex. 2116 - pa_sxifccg.v

wire [VERTEX_FIFO_WIDTH-1:0] vertex_fifo_wrdata; 1

wire vertex_fifo_write; 2

// vgt_to_ccgen fifo 3

wire vgt_to_ccgen_fifo_full; 4

// sx0, receive 5

wire sx0_receive_fifo_full; 6

// sx0, request 7

wire pa_to_sx0_write; 8

wire [5:0] pa_to_sx0_wrdata; 9

// sx1, receive 10

wire sx1_receive_fifo_full; 11

// sx1, request 12

wire pa_to_sx1_write; 13

wire [5:0] pa_to_sx1_wrdata; 14

// position memory 15

wire position_write; 16

wire [5:0] position_wraddr; 17

wire [127:0] position_wrdata; 18

// point memory 19

wire point_write; 20

wire [5:0] point_wraddr; 21

wire [31:0] point_wrdata; 22

// sx_pending_fifo (debug) 23

wire sx_pending_fifo_write; 24

wire [17:0] sx_pending_fifo_wrdata; 25

 Page 12 of 29
Ex. 2116 - pa_sxifccg.v

 1

// ccgen_to_clipcc/clip 2

wire [CCGEN_TO_CLIPCC_FIFO_WIDTH-1:0] ccgen_to_clipcc_data; 3

wire ccgen_to_clipcc_write; 4

// arbiter 5

wire [15:0] ccgen_to_arb_data; 6

 7

 8

// LOCAL 9

wire [VGT_TO_CCGEN_FIFO_WIDTH-1:0] vgt_to_ccgen_fifo_rddata; 10

wire vgt_to_ccgen_fifo_empty; 11

wire vgt_to_ccgen_fifo_busy_nc; 12

wire vgt_to_ccgen_fifo_advanceread; 13

wire [127:0] sx0_receive_fifo_rddata; 14

wire [127:0] sx1_receive_fifo_rddata; 15

wire sx0_receive_fifo_empty; 16

wire sx1_receive_fifo_empty; 17

wire sx0_receive_fifo_busy_nc; 18

wire sx1_receive_fifo_busy_nc; 19

wire sx0_receive_fifo_advanceread; 20

wire sx1_receive_fifo_advanceread; 21

wire vertex_fifo_full; 22

wire [VERTEX_FIFO_WIDTH-1:0] vertex_fifo_rddata; 23

wire vertex_fifo_empty; 24

wire vertex_fifo_busy_nc; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 572 of 611

 Page 13 of 29
Ex. 2116 - pa_sxifccg.v

wire vertex_fifo_advanceread; 1

wire [6:0] available_positions; 2

wire decrement_available_positions; 3

wire [SXIF_STATE_WIDTH-1:0] sxif_st_data0; 4

wire [SXIF_STATE_WIDTH-1:0] sxif_st_data1; 5

wire [SXIF_STATE_WIDTH-1:0] sxif_st_data2; 6

wire [SXIF_STATE_WIDTH-1:0] sxif_st_data3; 7

wire [SXIF_STATE_WIDTH-1:0] sxif_st_data4; 8

wire [SXIF_STATE_WIDTH-1:0] sxif_st_data5; 9

wire [SXIF_STATE_WIDTH-1:0] sxif_st_data6; 10

wire [SXIF_STATE_WIDTH-1:0] sxif_st_data7; 11

 12

/// 13

// MAP INPUTS 14

/// 15

always @(16

 // ati_state_storage (sxif) 17

 isxif_st_w_data or 18

 isxif_st_w_addr or 19

 isxif_st_we or 20

 isxif_st_r_addr or 21

 isxif_st_re or 22

 isxif_st_sel or 23

 isxif_st_cpy or 24

 // vgt_to_ccgen fifo 25

 Page 14 of 29
Ex. 2116 - pa_sxifccg.v

 ivgt_to_ccgen_fifo_write or 1

 ivgt_to_ccgen_fifo_active_verts or 2

 ivgt_to_ccgen_fifo_state_var_indx or 3

 // sx0 4

 isx0_receive_fifo_write or 5

 isx0_receive_fifo_wrdata or 6

 // sx1 7

 isx1_receive_fifo_write or 8

 isx1_receive_fifo_wrdata or 9

 // vertex fifo/ccg 10

 11

 // ccg state 12

 iccg_state0 or 13

 iccg_state1 or 14

 iccg_state2 or 15

 iccg_state3 or 16

 iccg_state4 or 17

 iccg_state5 or 18

 iccg_state6 or 19

 iccg_state7 or 20

 21

 // ccgen_to_clipcc/clip 22

 ioutsm_clr_orig_vertices or 23

 iccgen_to_clipcc_fifo_full or 24

 25

 Page 15 of 29
Ex. 2116 - pa_sxifccg.v

 // arbiter 1

 iarb_to_ccgen_xfc 2

) begin : proc000 3

 // ati_state_storage 4

 sxif_st_w_data = isxif_st_w_data; 5

 sxif_st_w_addr = isxif_st_w_addr; 6

 sxif_st_we = isxif_st_we; 7

 sxif_st_r_addr = isxif_st_r_addr; 8

 sxif_st_re = isxif_st_re; 9

 sxif_st_sel = isxif_st_sel; 10

 sxif_st_cpy = isxif_st_cpy; 11

 12

 // vgt_to_ccgen fifo 13

 vgt_to_ccgen_fifo_write = ivgt_to_ccgen_fifo_write; 14

 vgt_to_ccgen_fifo_wrdata = {ivgt_to_ccgen_fifo_active_verts, 15

 ivgt_to_ccgen_fifo_state_var_indx}; 16

 // sx0 17

 sx0_receive_fifo_write = isx0_receive_fifo_write; 18

 sx0_receive_fifo_wrdata = isx0_receive_fifo_wrdata; 19

 // sx1 20

 sx1_receive_fifo_write = isx1_receive_fifo_write; 21

 sx1_receive_fifo_wrdata = isx1_receive_fifo_wrdata; 22

 23

 // ccg state 24

 ccg_state0 = iccg_state0; 25

 Page 16 of 29
Ex. 2116 - pa_sxifccg.v

 ccg_state1 = iccg_state1; 1

 ccg_state2 = iccg_state2; 2

 ccg_state3 = iccg_state3; 3

 ccg_state4 = iccg_state4; 4

 ccg_state5 = iccg_state5; 5

 ccg_state6 = iccg_state6; 6

 ccg_state7 = iccg_state7; 7

 8

 // ccgen_to_clipcc/clip 9

 outsm_clr_orig_vertices = ioutsm_clr_orig_vertices; 10

 ccgen_to_clipcc_fifo_full = iccgen_to_clipcc_fifo_full; 11

 12

 // arbiter 13

 arb_to_ccgen_xfc = iarb_to_ccgen_xfc; 14

end 15

 16

 17

/// 18

// MAP OUTPUTS 19

/// 20

// state 21

assign osxif_st_r_data = sxif_st_r_data; 22

 23

// state to clipper 24

assign osxif_state0 = sxif_st_data0; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 573 of 611

 Page 17 of 29
Ex. 2116 - pa_sxifccg.v

assign osxif_state1 = sxif_st_data1; 1

assign osxif_state2 = sxif_st_data2; 2

assign osxif_state3 = sxif_st_data3; 3

assign osxif_state4 = sxif_st_data4; 4

assign osxif_state5 = sxif_st_data5; 5

assign osxif_state6 = sxif_st_data6; 6

assign osxif_state7 = sxif_st_data7; 7

 8

// vgt_to_ccgen fifo 9

assign ovgt_to_ccgen_fifo_notfull = ~vgt_to_ccgen_fifo_full; 10

// sx0, request 11

assign {opa_to_sx0_req, 12

 opa_to_sx0_sp_id, 13

 opa_to_sx0_offset, 14

 opa_to_sx0_aux, 15

 opa_to_sx0_last} = pa_to_sx0_wrdata; 16

// sx1, request 17

assign {opa_to_sx1_req, 18

 opa_to_sx1_sp_id, 19

 opa_to_sx1_offset, 20

 opa_to_sx1_aux, 21

 opa_to_sx1_last} = pa_to_sx1_wrdata; 22

// position memory 23

assign oposition_write = position_write; 24

assign oposition_wraddr = position_wraddr; 25

 Page 18 of 29
Ex. 2116 - pa_sxifccg.v

assign oposition_wrdata = position_wrdata; 1

// point memory 2

assign opoint_write = point_write; 3

assign opoint_wraddr = point_wraddr; 4

assign opoint_wrdata = point_wrdata; 5

 6

// ccgen_to_clipcc/clip 7

assign occgen_to_clipcc_data = ccgen_to_clipcc_data; 8

assign occgen_to_clipcc_write = ccgen_to_clipcc_write; 9

// arbiter 10

assign occgen_to_arb_data = ccgen_to_arb_data; 11

 12

 13

/// 14

// vgt_to_ccgen fifo 15

/// 16

ati_fifo_top 17

#(18

 VGT_TO_CCGEN_FIFO_WIDTH, 19

 VGT_TO_CCGEN_FIFO_POINTER_SIZE, 20

 VGT_TO_CCGEN_FIFO_DEPTH, 21

 VGT_TO_CCGEN_FIFO_SKID_WORDS 22

) 23

uvgt_to_ccgen_fifo 24

 (25

 Page 19 of 29
Ex. 2116 - pa_sxifccg.v

 .write_data (vgt_to_ccgen_fifo_wrdata), 1

 .we (vgt_to_ccgen_fifo_write), 2

 .full (vgt_to_ccgen_fifo_full), 3

 .read_data (vgt_to_ccgen_fifo_rddata), 4

 .empty (vgt_to_ccgen_fifo_empty), 5

 .busy (vgt_to_ccgen_fifo_busy_nc), 6

 .re (vgt_to_ccgen_fifo_advanceread), 7

 .clk (clk), 8

 .reset (reset) 9

); 10

 11

 12

/// 13

// sx0 receive fifo 14

/// 15

ati_fifo_top 16

#(17

 SX_RECEIVE_FIFO_WIDTH, 18

 SX_RECEIVE_FIFO_POINTER_SIZE, 19

 SX_RECEIVE_FIFO_DEPTH, 20

 SX_RECEIVE_FIFO_SKID_WORDS 21

) 22

usx0_receive_fifo 23

 (24

 .write_data (sx0_receive_fifo_wrdata), 25

 Page 20 of 29
Ex. 2116 - pa_sxifccg.v

 .we (sx0_receive_fifo_write), 1

 .full (sx0_receive_fifo_full), 2

 .read_data (sx0_receive_fifo_rddata), 3

 .empty (sx0_receive_fifo_empty), 4

 .busy (sx0_receive_fifo_busy_nc), 5

 .re (sx0_receive_fifo_advanceread), 6

 .clk (clk), 7

 .reset (reset) 8

); 9

 10

 11

/// 12

// sx1 receive fifo 13

/// 14

ati_fifo_top 15

#(16

 SX_RECEIVE_FIFO_WIDTH, 17

 SX_RECEIVE_FIFO_POINTER_SIZE, 18

 SX_RECEIVE_FIFO_DEPTH, 19

 SX_RECEIVE_FIFO_SKID_WORDS 20

) 21

usx1_receive_fifo 22

 (23

 .write_data (sx1_receive_fifo_wrdata), 24

 .we (sx1_receive_fifo_write), 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 574 of 611

 Page 21 of 29
Ex. 2116 - pa_sxifccg.v

 .full (sx1_receive_fifo_full), 1

 .read_data (sx1_receive_fifo_rddata), 2

 .empty (sx1_receive_fifo_empty), 3

 .busy (sx1_receive_fifo_busy_nc), 4

 .re (sx1_receive_fifo_advanceread), 5

 .clk (clk), 6

 .reset (reset) 7

); 8

 9

 10

/// 11

// vertex_fifo fifo 12

/// 13

ati_fifo_top 14

#(15

 VERTEX_FIFO_WIDTH, 16

 VERTEX_FIFO_POINTER_SIZE, 17

 VERTEX_FIFO_DEPTH, 18

 VERTEX_FIFO_SKID_WORDS 19

) 20

uvertex_fifo 21

 (22

 .write_data (vertex_fifo_wrdata), 23

 .we (vertex_fifo_write), 24

 .full (vertex_fifo_full), 25

 Page 22 of 29
Ex. 2116 - pa_sxifccg.v

 .read_data (vertex_fifo_rddata), 1

 .empty (vertex_fifo_empty), 2

 .busy (vertex_fifo_busy_nc), 3

 .re (vertex_fifo_advanceread), 4

 .clk (clk), 5

 .reset (reset) 6

); 7

 8

/// 9

// ati_8rp_state_storage 10

/// 11

ati_8rp_state_storage 12

#(13

 SXIF_STATE_WIDTH, 14

 SXIF_STATES 15

) 16

uati_8rp_state_storage 17

 (18

 .st_data0 (sxif_st_data0), 19

 .st_data1 (sxif_st_data1), 20

 .st_data2 (sxif_st_data2), 21

 .st_data3 (sxif_st_data3), 22

 .st_data4 (sxif_st_data4), 23

 .st_data5 (sxif_st_data5), 24

 .st_data6 (sxif_st_data6), 25

 Page 23 of 29
Ex. 2116 - pa_sxifccg.v

 .st_data7 (sxif_st_data7), 1

 .r_data (sxif_st_r_data), 2

 .w_data (sxif_st_w_data), 3

 .w_addr (sxif_st_w_addr), 4

 .r_addr (sxif_st_r_addr), 5

 .we (sxif_st_we), 6

 .re (sxif_st_re), 7

 .sel (sxif_st_sel), 8

 .cpy (sxif_st_cpy), 9

 .clk (clk) 10

); 11

 12

 13

 14

/// 15

// sxif state machine 16

/// 17

pa_ccg_sxifsm 18

upa_ccg_sxifsm 19

 (20

 /// 21

 // GLOBAL SIGNALS 22

 /// 23

 .clk (clk), 24

 .reset (reset), 25

 Page 24 of 29
Ex. 2116 - pa_sxifccg.v

 1

 /// 2

 // INPUTS 3

 /// 4

 // vgt_to_ccgen fifo 5

 .ivgt_to_ccgen_fifo_empty (vgt_to_ccgen_fifo_empty), 6

 .ivgt_to_ccgen_fifo_rddata (vgt_to_ccgen_fifo_rddata), 7

 8

 // state 9

 .isxif_state0 (sxif_st_data0), 10

 .isxif_state1 (sxif_st_data1), 11

 .isxif_state2 (sxif_st_data2), 12

 .isxif_state3 (sxif_st_data3), 13

 .isxif_state4 (sxif_st_data4), 14

 .isxif_state5 (sxif_st_data5), 15

 .isxif_state6 (sxif_st_data6), 16

 .isxif_state7 (sxif_st_data7), 17

 18

 // vertex_fifo 19

 .ivertex_fifo_full (vertex_fifo_full), 20

 .ivertex_fifo_advanceread (vertex_fifo_advanceread), 21

 22

 // ccg 23

 .iavailable_positions (available_positions), 24

 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 575 of 611

 Page 25 of 29
Ex. 2116 - pa_sxifccg.v

 // sx_to_pa_0 1

 .isx_to_pa_empty_0 (sx0_receive_fifo_empty), 2

 .isx_to_pa_vector_0 (sx0_receive_fifo_rddata), 3

 4

 // sx_to_pa_1 5

 .isx_to_pa_empty_1 (sx1_receive_fifo_empty), 6

 .isx_to_pa_vector_1 (sx1_receive_fifo_rddata), 7

 8

 9

 /// 10

 // OUTPUTS 11

 /// 12

 // vgt_to_ccgen fifo 13

 .ovgt_to_ccgen_fifo_advanceread (vgt_to_ccgen_fifo_advanceread), 14

 15

 // pa_to_sx0 16

 .opa_to_sx0_write (pa_to_sx0_write), 17

 .opa_to_sx0_wrdata (pa_to_sx0_wrdata), 18

 19

 // pa_to_sx1 20

 .opa_to_sx1_write (pa_to_sx1_write), 21

 .opa_to_sx1_wrdata (pa_to_sx1_wrdata), 22

 23

 // position memory 24

 .omem_position_write (position_write), 25

 Page 26 of 29
Ex. 2116 - pa_sxifccg.v

 .omem_position_wraddr (position_wraddr), 1

 .omem_position_wrdata (position_wrdata), 2

 3

 // point memory 4

 .omem_point_write (point_write), 5

 .omem_point_wraddr (point_wraddr), 6

 .omem_point_wrdata (point_wrdata), 7

 8

 // ccg 9

 .odecrement_available_positions (decrement_available_positions), 10

 11

 // vertex_fifo 12

 .overtex_fifo_write (vertex_fifo_write), 13

 .overtex_fifo_wrdata (vertex_fifo_wrdata), 14

 15

 // sx_to_pa_0 16

 .osx_to_pa_advanceread_0 (sx0_receive_fifo_advanceread), 17

 18

 // sx_to_pa_1 19

 .osx_to_pa_advanceread_1 (sx1_receive_fifo_advanceread), 20

 21

 // debug only 22

 .osx_pending_fifo_write (sx_pending_fifo_write), 23

 .osx_pending_fifo_wrdata (sx_pending_fifo_wrdata) 24

); 25

 Page 27 of 29
Ex. 2116 - pa_sxifccg.v

 1

 2

pa_ccg_ccgsm 3

upa_ccg_ccgsm 4

 (5

 /// 6

 // COMMON 7

 /// 8

 .clk (clk), 9

 .reset (reset), 10

 11

 /// 12

 // INPUTS 13

 /// 14

 // vertex fifo 15

 .ivertex_fifo_empty (vertex_fifo_empty), 16

 .ivertex_fifo_rd_data (vertex_fifo_rddata), 17

 18

 // state 19

 .iccg_state0 (ccg_state0), 20

 .iccg_state1 (ccg_state1), 21

 .iccg_state2 (ccg_state2), 22

 .iccg_state3 (ccg_state3), 23

 .iccg_state4 (ccg_state4), 24

 .iccg_state5 (ccg_state5), 25

 Page 28 of 29
Ex. 2116 - pa_sxifccg.v

 .iccg_state6 (ccg_state6), 1

 .iccg_state7 (ccg_state7), 2

 3

 // clipper 4

 .ioutsm_clr_orig_vertices (outsm_clr_orig_vertices), 5

 6

 // arbiter 7

 .iarb_to_ccgen_xfc (arb_to_ccgen_xfc), 8

 9

 // ccgen_to_clipcc 10

 .iccgen_to_clipcc_fifo_full (ccgen_to_clipcc_fifo_full), 11

 12

 // sxif 13

 .idecrement_available_positions (decrement_available_positions), 14

 15

 /// 16

 // OUTPUTS 17

 /// 18

 // vertex fifo 19

 .overtex_fifo_advanceread (vertex_fifo_advanceread), 20

 21

 // ccgen_to_clipcc 22

 .occgen_to_clipcc_data (ccgen_to_clipcc_data), 23

 .occgen_to_clipcc_write (ccgen_to_clipcc_write), 24

 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 576 of 611

 Page 29 of 29
Ex. 2116 - pa_sxifccg.v

 // sxif 1

 .oavailable_positions (available_positions), 2

 3

 // arbiter 4

 .occgen_to_arb_data (ccgen_to_arb_data) 5

); 6

 7

 8

 9

endmodule 10

 11

 12

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 577 of 611

 Page 1 of 48
Ex. 2117 - pa_ccg_sxifsm.v

//%%%1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2

// Project: R400 3

// File: pa_ccg_sxifsm.v 4

// 5

// Description: 6

// sx to pa interface 7

// 8

//%%%9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 10

// 11

// Trade secret of ATI Technologies, Inc. 12

// Copyright 2002, ATI Technologies, Inc., (unpublished) 13

// 14

// All rights reserved. This notice is intended as a precaution against 15

// inadvertent publication and does not imply publication or any waiver 16

// of confidentiality. The year included in the foregoing notice is the 17

// year of creation of the work. 18

//%%%19
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 20

 21

`include "header.v" 22

 23

module 24

pa_ccg_sxifsm 25

 (26

 Page 2 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 /// 1

 // GLOBAL SIGNALS 2

 /// 3

 clk, 4

 reset, 5

 6

 /// 7

 // INPUTS 8

 /// 9

 // vgt_to_ccgen fifo 10

 ivgt_to_ccgen_fifo_empty, 11

 ivgt_to_ccgen_fifo_rddata, 12

 13

 // state 14

 isxif_state0, 15

 isxif_state1, 16

 isxif_state2, 17

 isxif_state3, 18

 isxif_state4, 19

 isxif_state5, 20

 isxif_state6, 21

 isxif_state7, 22

 23

 // vertex_fifo 24

 ivertex_fifo_full, 25

 Page 3 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 ivertex_fifo_advanceread, 1

 2

 // ccg 3

 iavailable_positions, 4

 5

 // sx_to_pa_0 6

 isx_to_pa_empty_0, 7

 isx_to_pa_vector_0, 8

 9

 // sx_to_pa_1 10

 isx_to_pa_empty_1, 11

 isx_to_pa_vector_1, 12

 13

 14

 /// 15

 // OUTPUTS 16

 /// 17

 // vgt_to_ccgen fifo 18

 ovgt_to_ccgen_fifo_advanceread, 19

 20

 // pa_to_sx0 21

 opa_to_sx0_write, 22

 opa_to_sx0_wrdata, 23

 24

 // pa_to_sx1 25

 Page 4 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 opa_to_sx1_write, 1

 opa_to_sx1_wrdata, 2

 3

 // position memory 4

 omem_position_write, 5

 omem_position_wraddr, 6

 omem_position_wrdata, 7

 8

 // point memory 9

 omem_point_write, 10

 omem_point_wraddr, 11

 omem_point_wrdata, 12

 13

 // ccg 14

 odecrement_available_positions, 15

 16

 // vertex_fifo 17

 overtex_fifo_write, 18

 overtex_fifo_wrdata, 19

 20

 // sx_to_pa_0 21

 osx_to_pa_advanceread_0, 22

 23

 // sx_to_pa_1 24

 osx_to_pa_advanceread_1, 25

ATI 2117
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 578 of 611

 Page 5 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 1

 // debug only 2

 osx_pending_fifo_write, 3

 osx_pending_fifo_wrdata 4

); 5

 6

`include "pa_clip_pkg.v" 7

 8

/// 9

// INPUT DECLARATIONS 10

/// 11

// global 12

input clk; 13

input reset; 14

 15

// vgt_to_ccgen fifo 16

input ivgt_to_ccgen_fifo_empty; 17

input [VGT_TO_CCGEN_FIFO_WIDTH-1:0] ivgt_to_ccgen_fifo_rddata; 18

 19

// state 20

input [SXIF_STATE_WIDTH-1:0] isxif_state0; 21

input [SXIF_STATE_WIDTH-1:0] isxif_state1; 22

input [SXIF_STATE_WIDTH-1:0] isxif_state2; 23

input [SXIF_STATE_WIDTH-1:0] isxif_state3; 24

input [SXIF_STATE_WIDTH-1:0] isxif_state4; 25

 Page 6 of 48
Ex. 2117 - pa_ccg_sxifsm.v

input [SXIF_STATE_WIDTH-1:0] isxif_state5; 1

input [SXIF_STATE_WIDTH-1:0] isxif_state6; 2

input [SXIF_STATE_WIDTH-1:0] isxif_state7; 3

 4

// vertex_fifo 5

input ivertex_fifo_full; 6

input ivertex_fifo_advanceread; 7

 8

// ccg 9

input [6:0] iavailable_positions; 10

 11

// sx_to_pa_0 12

input isx_to_pa_empty_0; 13

input [127:0] isx_to_pa_vector_0; 14

 15

// sx_to_pa_1 16

input isx_to_pa_empty_1; 17

input [127:0] isx_to_pa_vector_1; 18

 19

/// 20

// OUTPUT DECLARATIONS 21

/// 22

// vgt_to_ccgen fifo 23

output ovgt_to_ccgen_fifo_advanceread; 24

 25

 Page 7 of 48
Ex. 2117 - pa_ccg_sxifsm.v

// pa_to_sx_0 1

output opa_to_sx0_write; 2

output [5:0] opa_to_sx0_wrdata; 3

 4

// pa_to_sx_1 5

output opa_to_sx1_write; 6

output [5:0] opa_to_sx1_wrdata; 7

 8

// position memory 9

output omem_position_write; 10

output [5:0] omem_position_wraddr; 11

output [127:0] omem_position_wrdata; 12

 13

// point memory 14

output omem_point_write; 15

output [5:0] omem_point_wraddr; 16

output [31:0] omem_point_wrdata; 17

 18

// ccg 19

output odecrement_available_positions; 20

 21

// vertex_fifo 22

output overtex_fifo_write; 23

output [VERTEX_FIFO_WIDTH-1:0] overtex_fifo_wrdata; 24

 25

 Page 8 of 48
Ex. 2117 - pa_ccg_sxifsm.v

// sx_to_pa_0 1

output osx_to_pa_advanceread_0; 2

 3

// sx_to_pa_1 4

output osx_to_pa_advanceread_1; 5

 6

// debug only 7

output osx_pending_fifo_write; 8

output [17:0] osx_pending_fifo_wrdata; 9

 10

/// 11

// SIGNAL DECLARATIONS 12

/// 13

// inputs 14

// vgt_to_ccgen fifo 15

reg vgt_to_ccgen_fifo_empty; 16

reg [6:0] vgt_to_ccgen_active_verts; 17

reg [2:0] vgt_to_ccgen_state_var_indx; 18

// state 19

reg [SXIF_STATE_WIDTH-1:0] sxif_state0; 20

reg [SXIF_STATE_WIDTH-1:0] sxif_state1; 21

reg [SXIF_STATE_WIDTH-1:0] sxif_state2; 22

reg [SXIF_STATE_WIDTH-1:0] sxif_state3; 23

reg [SXIF_STATE_WIDTH-1:0] sxif_state4; 24

reg [SXIF_STATE_WIDTH-1:0] sxif_state5; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 579 of 611

 Page 9 of 48
Ex. 2117 - pa_ccg_sxifsm.v

reg [SXIF_STATE_WIDTH-1:0] sxif_state6; 1

reg [SXIF_STATE_WIDTH-1:0] sxif_state7; 2

// vertex_fifo 3

reg vertex_fifo_full; 4

reg vertex_fifo_advanceread; 5

// ccg 6

reg [6:0] available_positions; 7

// sx_to_pa 8

reg [1:0] sx_to_pa_empty; 9

reg [127:0] sx_to_pa_vector[0:1]; 10

 11

// outputs 12

// vgt_to_ccgen fifo 13

reg vgt_to_ccgen_fifo_advanceread; 14

// pa_to_sx 15

reg pa_to_sx_write[0:1]; 16

reg pa_to_sx_req[0:1]; 17

reg pa_to_sx_sp_id[0:1]; 18

reg [1:0] pa_to_sx_offset[0:1]; 19

reg pa_to_sx_aux[0:1]; 20

reg pa_to_sx_last[0:1]; 21

// position memory 22

reg tcl_scratch_mem_position_write; 23

reg [5:0] position_address; 24

reg [127:0] tcl_scratch_mem_position_data; 25

 Page 10 of 48
Ex. 2117 - pa_ccg_sxifsm.v

// point memory 1

reg tcl_scratch_mem_point_write; 2

reg [5:0] point_address; 3

reg [31:0] tcl_scratch_mem_point_data; 4

// ccg 5

reg decrement_available_positions; 6

// vertex_fifo 7

reg vertex_fifo_write; 8

reg [10:0] vertex_fifo_wr_param_cache_indx; 9

reg [2:0] vertex_fifo_wr_state_var_indx; 10

reg vertex_fifo_wr_edge_flag; 11

reg vertex_fifo_wr_kill_flag; 12

// sx_to_pa 13

reg [1:0] sx_to_pa_advanceread; 14

// debug only 15

reg sx_pending_fifo_write; 16

reg [17:0] sx_pending_fifo_wrdata; 17

 18

// local 19

reg [4:0] statevar_bits_vert_param_cache_size; 20

reg statevar_bits_use_vtx_point_size; 21

reg statevar_bits_sxpa_aux_vector; 22

reg statevar_bits_use_vtx_edge_flag; 23

reg statevar_bits_use_vtx_kill_flag; 24

reg [5:0] next_sx_request_indx; 25

 Page 11 of 48
Ex. 2117 - pa_ccg_sxifsm.v

reg [5:0] sx_request_indx; 1

reg [1:0] pasx_req_cnt[0:1]; 2

reg [1:0] next_sx_sent; 3

reg [1:0] sx_sent; 4

reg [1:0] increment_pasx_req_cnt; 5

reg [1:0] decrement_pasx_req_cnt; 6

reg sx_pending_wr_sx_sel; 7

reg sx_pending_wr_sp_id; 8

reg sx_pending_wr_aux_sel; 9

reg sx_pending_wr_aux_inc; 10

reg [6:0] sx_pending_wr_pci; 11

reg [3:0] sx_pending_wr_req_mask; 12

reg [2:0] sx_pending_wr_state_var_indx; 13

reg [1:0] sx_pending_fifo_wraddr; 14

reg [17:0] sx_pending_fifo_rddata; 15

reg [1:0] sx_pending_fifo_rdaddr; 16

reg [2:0] sx_pending_fifo_contents; 17

reg [17:0] sx_pending_fifo[0:3]; 18

reg sx_pending_fifo_empty; 19

reg sx_pending_fifo_full; 20

reg sx_pending_fifo_advanceread; 21

reg next_sx_pending_rd_sx_sel; 22

reg next_sx_pending_rd_sp_id; 23

reg next_sx_pending_rd_aux_sel; 24

reg next_sx_pending_rd_aux_inc; 25

 Page 12 of 48
Ex. 2117 - pa_ccg_sxifsm.v

reg [6:0] next_sx_pending_rd_pci; 1

reg [3:0] next_sx_pending_rd_req_mask; 2

reg [2:0] next_sx_pending_rd_state_var_indx; 3

reg initial_sx_pending_rd_sx_sel; 4

reg initial_sx_pending_rd_sp_id; 5

reg initial_sx_pending_rd_aux_sel; 6

reg initial_sx_pending_rd_aux_inc; 7

reg [6:0] initial_sx_pending_rd_pci; 8

reg [3:0] initial_sx_pending_rd_req_mask; 9

reg [2:0] initial_sx_pending_rd_state_var_indx; 10

reg sx_pending_rd_sx_sel; 11

reg sx_pending_rd_sp_id; 12

reg sx_pending_rd_aux_sel; 13

reg sx_pending_rd_aux_inc; 14

reg [6:0] sx_pending_rd_pci; 15

reg [3:0] sx_pending_rd_req_mask; 16

reg [2:0] sx_pending_rd_state_var_indx; 17

reg next_aux_sel; 18

reg aux_sel; 19

reg [6:0] next_param_cache_base; 20

reg [6:0] param_cache_base; 21

reg next_sx_aux; 22

reg sx_aux; 23

reg [2:0] next_sx_receive_indx; 24

reg [2:0] sx_receive_indx; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 580 of 611

 Page 13 of 48
Ex. 2117 - pa_ccg_sxifsm.v

reg next_sx_pending_advance; 1

reg sx_pending_advance; 2

reg [5:0] next_point_address; 3

reg [5:0] next_position_address; 4

reg [3:0] vertex_fifo_entriesavailable; 5

reg next_pa_to_sx_write[0:1]; 6

reg next_pa_to_sx_req[0:1]; 7

reg next_pa_to_sx_sp_id[0:1]; 8

reg [1:0] next_pa_to_sx_offset[0:1]; 9

reg next_pa_to_sx_aux[0:1]; 10

reg next_pa_to_sx_last[0:1]; 11

reg [2:0] request_side_vs_export_mode; 12

reg [3:0] request_side_vs_export_count; 13

reg [2:0] receive_side_vs_export_mode; 14

 15

// local variables 16

reg [SXIF_STATE_WIDTH-1:0] var80_sxif_state; 17

reg [SXIF_STATE_WIDTH-1:0] var85_sxif_state; 18

reg [5:0] var00_vgt_to_ccgen_active_verts; 19

reg var100_sx_sel; 20

reg var100_sp_id; 21

reg [1:0] var100_offset; 22

reg [6:0] var100_pci; 23

reg [7:0] var100_remaining_positions; 24

reg var100_sx_all_sent; 25

 Page 14 of 48
Ex. 2117 - pa_ccg_sxifsm.v

reg [2:0] var300_sx_pending_fifo_contents; 1

reg [2:0] var400_next_sx_receive_indx; 2

reg var400_ignore_this_cycle; 3

reg var400_sx_sel; 4

reg var400_vector_write; 5

reg var400_first_vector_write; 6

reg var400_last_vector_write; 7

reg [2:0] var400_vector_wr_cnt; 8

reg var400_next_sx_pending_rd_sx_sel; 9

reg var400_next_sx_pending_rd_sp_id; 10

reg var400_next_sx_pending_rd_aux_sel; 11

reg var400_next_sx_pending_rd_aux_inc; 12

reg [6:0] var400_next_sx_pending_rd_pci; 13

reg [3:0] var400_next_sx_pending_rd_req_mask; 14

reg [2:0] var400_next_sx_pending_rd_state_var_indx; 15

reg [1:0] var480_next_pasx_req_cnt_0; 16

reg [1:0] var480_next_pasx_req_cnt_1; 17

reg [3:0] var600_vertex_fifo_entriesavailable; 18

reg [127:0] var400_sx_to_pa_vector_var400_sx_sel; 19

reg [31:0] var400_sx_to_pa_vector_y_var400_sx_sel; 20

reg [31:0] var400_sx_to_pa_vector_z_var400_sx_sel; 21

 22

// for-loop variables 23

integer indx100; 24

integer indx400; 25

 Page 15 of 48
Ex. 2117 - pa_ccg_sxifsm.v

integer indx477; 1

 2

/// 3

// map inputs 4

/// 5

always @(6

 ivgt_to_ccgen_fifo_empty or 7

 ivgt_to_ccgen_fifo_rddata or 8

 isxif_state0 or 9

 isxif_state1 or 10

 isxif_state2 or 11

 isxif_state3 or 12

 isxif_state4 or 13

 isxif_state5 or 14

 isxif_state6 or 15

 isxif_state7 or 16

 ivertex_fifo_full or 17

 ivertex_fifo_advanceread or 18

 iavailable_positions or 19

 isx_to_pa_empty_0 or 20

 isx_to_pa_empty_1 or 21

 isx_to_pa_vector_0 or 22

 isx_to_pa_vector_1 or 23

 var00_vgt_to_ccgen_active_verts 24

) begin : proc00 25

 Page 16 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 1

 // vgt_to_ccgen fifo 2

 vgt_to_ccgen_fifo_empty = ivgt_to_ccgen_fifo_empty; 3

 {var00_vgt_to_ccgen_active_verts, 4

 vgt_to_ccgen_state_var_indx} = ivgt_to_ccgen_fifo_rddata; 5

 vgt_to_ccgen_active_verts = {1'b0, var00_vgt_to_ccgen_active_verts}; 6

 if (var00_vgt_to_ccgen_active_verts == 'h0) begin 7

 vgt_to_ccgen_active_verts = VERTICES_PER_SLOT; 8

 end 9

 10

 // state 11

 sxif_state0 = isxif_state0; 12

 sxif_state1 = isxif_state1; 13

 sxif_state2 = isxif_state2; 14

 sxif_state3 = isxif_state3; 15

 sxif_state4 = isxif_state4; 16

 sxif_state5 = isxif_state5; 17

 sxif_state6 = isxif_state6; 18

 sxif_state7 = isxif_state7; 19

 20

 // vertex_fifo 21

 vertex_fifo_full = ivertex_fifo_full; 22

 vertex_fifo_advanceread = ivertex_fifo_advanceread; 23

 24

 // ccg 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 581 of 611

 Page 17 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 available_positions = iavailable_positions; 1

 2

 // sx_to_pa_0 3

 sx_to_pa_empty[0] = isx_to_pa_empty_0; 4

 sx_to_pa_vector[0] = isx_to_pa_vector_0; 5

 6

 // sx_to_pa_1 7

 sx_to_pa_empty[1] = isx_to_pa_empty_1; 8

 sx_to_pa_vector[1] = isx_to_pa_vector_1; 9

end 10

 11

 12

/// 13

// map outputs 14

/// 15

// vgt_to_ccgen fifo 16

assign ovgt_to_ccgen_fifo_advanceread = vgt_to_ccgen_fifo_advanceread; 17

 18

// pa_to_sx 0 19

assign opa_to_sx0_write = pa_to_sx_write[0]; 20

assign opa_to_sx0_wrdata = {pa_to_sx_req[0], 21

 pa_to_sx_sp_id[0], 22

 pa_to_sx_offset[0], 23

 pa_to_sx_aux[0], 24

 pa_to_sx_last[0]}; 25

 Page 18 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 1

// pa_to_sx 1 2

assign opa_to_sx1_write = pa_to_sx_write[1]; 3

assign opa_to_sx1_wrdata = {pa_to_sx_req[1], 4

 pa_to_sx_sp_id[1], 5

 pa_to_sx_offset[1], 6

 pa_to_sx_aux[1], 7

 pa_to_sx_last[1]}; 8

 9

// position memory 10

assign omem_position_write = tcl_scratch_mem_position_write; 11

assign omem_position_wraddr = position_address; 12

assign omem_position_wrdata = tcl_scratch_mem_position_data; 13

 14

// point memory 15

assign omem_point_write = tcl_scratch_mem_point_write; 16

assign omem_point_wraddr = point_address; 17

assign omem_point_wrdata = tcl_scratch_mem_point_data; 18

 19

// ccg 20

assign odecrement_available_positions = decrement_available_positions; 21

 22

// vertex_fifo 23

assign overtex_fifo_write = vertex_fifo_write; 24

assign overtex_fifo_wrdata = {vertex_fifo_wr_param_cache_indx, 25

 Page 19 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 vertex_fifo_wr_state_var_indx, 1

 vertex_fifo_wr_edge_flag, 2

 vertex_fifo_wr_kill_flag}; 3

 4

// sx_to_pa 5

assign osx_to_pa_advanceread_0 = sx_to_pa_advanceread[0]; 6

assign osx_to_pa_advanceread_1 = sx_to_pa_advanceread[1]; 7

 8

// debug only 9

assign osx_pending_fifo_write = sx_pending_fifo_write; 10

assign osx_pending_fifo_wrdata = sx_pending_fifo_wrdata; 11

 12

/// 13

// state mux, request side 14

/// 15

always @(16

 sxif_state0 or 17

 sxif_state1 or 18

 sxif_state2 or 19

 sxif_state3 or 20

 sxif_state4 or 21

 sxif_state5 or 22

 sxif_state6 or 23

 sxif_state7 or 24

 vgt_to_ccgen_state_var_indx 25

 Page 20 of 48
Ex. 2117 - pa_ccg_sxifsm.v

) begin : proc80 1

 case(vgt_to_ccgen_state_var_indx) 2

 0 : var80_sxif_state = sxif_state0; 3

 1 : var80_sxif_state = sxif_state1; 4

 2 : var80_sxif_state = sxif_state2; 5

 3 : var80_sxif_state = sxif_state3; 6

 4 : var80_sxif_state = sxif_state4; 7

 5 : var80_sxif_state = sxif_state5; 8

 6 : var80_sxif_state = sxif_state6; 9

 7 : var80_sxif_state = sxif_state7; 10

 default : var80_sxif_state = sxif_state0; 11

 endcase 12

 13

 request_side_vs_export_mode = var80_sxif_state[6:4]; 14

 request_side_vs_export_count = var80_sxif_state[3:0]; 15

end 16

 17

/// 18

// state mux, receive side 19

/// 20

always @(21

 sxif_state0 or 22

 sxif_state1 or 23

 sxif_state2 or 24

 sxif_state3 or 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 582 of 611

 Page 21 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 sxif_state4 or 1

 sxif_state5 or 2

 sxif_state6 or 3

 sxif_state7 or 4

 next_sx_pending_rd_state_var_indx 5

) begin : proc85 6

 case(next_sx_pending_rd_state_var_indx) 7

 0 : var85_sxif_state = sxif_state0; 8

 1 : var85_sxif_state = sxif_state1; 9

 2 : var85_sxif_state = sxif_state2; 10

 3 : var85_sxif_state = sxif_state3; 11

 4 : var85_sxif_state = sxif_state4; 12

 5 : var85_sxif_state = sxif_state5; 13

 6 : var85_sxif_state = sxif_state6; 14

 7 : var85_sxif_state = sxif_state7; 15

 default : var85_sxif_state = sxif_state0; 16

 endcase 17

 18

 receive_side_vs_export_mode = var85_sxif_state[6:4]; 19

end 20

 21

/// 22

// decode request side state 23

/// 24

always @(25

 Page 22 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 request_side_vs_export_mode or 1

 request_side_vs_export_count 2

) begin : proc90 3

 4

 statevar_bits_vert_param_cache_size = request_side_vs_export_count + 1; 5

 6

 if ((request_side_vs_export_mode != 0) && 7

 (request_side_vs_export_mode != 7)) begin 8

 statevar_bits_sxpa_aux_vector = 'h1; 9

 end 10

 else begin 11

 statevar_bits_sxpa_aux_vector = 'h0; 12

 end 13

end 14

 15

/// 16

// decode receive side state 17

/// 18

always @(19

 receive_side_vs_export_mode 20

) begin : proc95 21

 if ((receive_side_vs_export_mode == 2) || 22

 (receive_side_vs_export_mode == 5)) begin 23

 statevar_bits_use_vtx_point_size = 'h1; 24

 end 25

 Page 23 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 else begin 1

 statevar_bits_use_vtx_point_size = 'h0; 2

 end 3

 4

 if ((receive_side_vs_export_mode == 3) || 5

 (receive_side_vs_export_mode == 6)) begin 6

 statevar_bits_use_vtx_edge_flag = 'h1; 7

 end 8

 else begin 9

 statevar_bits_use_vtx_edge_flag = 'h0; 10

 end 11

 12

 if ((receive_side_vs_export_mode == 4) || 13

 (receive_side_vs_export_mode == 5) || 14

 (receive_side_vs_export_mode == 6)) begin 15

 statevar_bits_use_vtx_kill_flag = 'h1; 16

 end 17

 else begin 18

 statevar_bits_use_vtx_kill_flag = 'h0; 19

 end 20

end 21

 22

/// 23

// PaSxRequest 24

/// 25

 Page 24 of 48
Ex. 2117 - pa_ccg_sxifsm.v

always @(1

 aux_sel or 2

 next_sx_request_indx or 3

 pa_to_sx_last[0] or 4

 pa_to_sx_last[1] or 5

 param_cache_base or 6

 pasx_req_cnt[0] or 7

 pasx_req_cnt[1] or 8

 statevar_bits_sxpa_aux_vector or 9

 statevar_bits_vert_param_cache_size or 10

 sx_aux or 11

 sx_request_indx or 12

 sx_sent or 13

 var100_offset or 14

 var100_pci or 15

 var100_remaining_positions or 16

 var100_sp_id or 17

 var100_sx_sel or 18

 vgt_to_ccgen_active_verts or 19

 vgt_to_ccgen_fifo_empty or 20

 vgt_to_ccgen_state_var_indx 21

) begin : proc100 22

 // init variables 23

 var100_sx_sel = 'h0; 24

 var100_sp_id = 'h0; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 583 of 611

 Page 25 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 var100_offset = 'h0; 1

 var100_pci = param_cache_base + (var100_offset * statevar_bits_vert_param_cache_size); 2

 var100_remaining_positions = 'h0; 3

 var100_sx_all_sent = 'h1; 4

 5

 // defaults 6

 increment_pasx_req_cnt[0] = 'h0; 7

 increment_pasx_req_cnt[1] = 'h0; 8

 next_pa_to_sx_req[0] = 'h0; 9

 next_pa_to_sx_sp_id[0] = 'h0; 10

 next_pa_to_sx_offset[0] = 'h0; 11

 next_pa_to_sx_aux[0] = 'h0; 12

 next_pa_to_sx_last[0] = 'h0; 13

 next_pa_to_sx_write[0] = 'h0; 14

 next_pa_to_sx_req[1] = 'h0; 15

 next_pa_to_sx_sp_id[1] = 'h0; 16

 next_pa_to_sx_offset[1] = 'h0; 17

 next_pa_to_sx_aux[1] = 'h0; 18

 next_pa_to_sx_last[1] = 'h0; 19

 next_pa_to_sx_write[1] = 'h0; 20

 next_aux_sel = aux_sel; 21

 vgt_to_ccgen_fifo_advanceread = 'h0; 22

 next_sx_request_indx = sx_request_indx; 23

 next_param_cache_base = param_cache_base; 24

 next_sx_aux = sx_aux; 25

 Page 26 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 sx_pending_fifo_write = 'h0; 1

 sx_pending_wr_sx_sel = 'h0; 2

 sx_pending_wr_sp_id = 'h0; 3

 sx_pending_wr_aux_sel = 'h0; 4

 sx_pending_wr_aux_inc = 'h0; 5

 sx_pending_wr_pci = 'h0; 6

 sx_pending_wr_req_mask = 'hf; 7

 sx_pending_wr_state_var_indx = vgt_to_ccgen_state_var_indx; 8

 next_sx_sent[0] = sx_sent[0]; 9

 next_sx_sent[1] = sx_sent[1]; 10

 11

 if (vgt_to_ccgen_fifo_empty == 'h0) begin 12

 var100_sx_sel = sx_request_indx[SX_SEL_BIT]; 13

 var100_sp_id = sx_request_indx[SP_ID_BIT]; 14

 var100_offset = sx_request_indx[OFFSET_HI_BIT:OFFSET_LO_BIT]; 15

 16

 var100_pci = param_cache_base + (var100_offset * statevar_bits_vert_param_cache_size); 17

 18

 if (pasx_req_cnt[var100_sx_sel] < ACTIVE_PASX_REQUESTS) begin 19

 increment_pasx_req_cnt[var100_sx_sel] = 'h1; 20

 21

 var100_remaining_positions = vgt_to_ccgen_active_verts - sx_request_indx; 22

 if (var100_remaining_positions[7] == 'h1) begin 23

 var100_remaining_positions = 'h0; 24

 end 25

 Page 27 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 1

 sx_pending_wr_sx_sel = var100_sx_sel; 2

 sx_pending_wr_sp_id = var100_sp_id; 3

 sx_pending_wr_aux_sel = aux_sel; 4

 5

 sx_pending_wr_aux_inc = 'h0; 6

 if (statevar_bits_sxpa_aux_vector == 'h0) begin 7

 sx_pending_wr_aux_inc = 'h1; 8

 end 9

 10

 sx_pending_wr_pci = var100_pci; 11

 12

 case(var100_remaining_positions) 13

 0 : begin 14

 sx_pending_wr_req_mask = 'h0; 15

 end 16

 17

 1 : begin 18

 sx_pending_wr_req_mask = 'h1; 19

 end 20

 21

 2 : begin 22

 sx_pending_wr_req_mask = 'h3; 23

 end 24

 25

 Page 28 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 3 : begin 1

 sx_pending_wr_req_mask = 'h7; 2

 end 3

 4

 default : begin 5

 sx_pending_wr_req_mask = 'hf; 6

 end 7

 endcase 8

 9

 sx_pending_wr_state_var_indx = vgt_to_ccgen_state_var_indx; 10

 11

 sx_pending_fifo_write = 'h1; 12

 13

 next_pa_to_sx_req[var100_sx_sel] = 'h1; 14

 next_pa_to_sx_sp_id[var100_sx_sel] = var100_sp_id; 15

 next_pa_to_sx_offset[var100_sx_sel] = var100_offset; 16

 next_pa_to_sx_aux[var100_sx_sel] = sx_aux; 17

 18

 next_pa_to_sx_last[var100_sx_sel] = 'h0; 19

 if (var100_remaining_positions <= VECTORS_PER_SX_REQUEST_SET) begin 20

 next_pa_to_sx_last[var100_sx_sel] = 'h1; 21

 end 22

 23

 next_pa_to_sx_write[var100_sx_sel] = 'h1; 24

 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 584 of 611

 Page 29 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 var100_sx_all_sent = 'h1; 1

 for (indx100 = 0; indx100 < PASX_INTERFACES; indx100 = indx100 + 1) begin 2

 var100_sx_all_sent = var100_sx_all_sent & ((var100_sx_sel == indx100) | 3
(sx_sent[indx100] == 'h1)); 4

 end 5

 6

 if ((aux_sel == 'h1) || 7

 (statevar_bits_sxpa_aux_vector == 'h0)) begin 8

 next_aux_sel = 'h0; 9

 10

 if ((var100_remaining_positions <= VECTORS_PER_SX_REQUEST) && 11
(var100_sx_all_sent == 'h1)) begin 12

 vgt_to_ccgen_fifo_advanceread = 'h1; 13

 14

 next_sx_request_indx = 'h0; 15

 16

 next_param_cache_base = param_cache_base + 17

 (statevar_bits_vert_param_cache_size * US_ALU_VE_MEMORIES); 18

 19

 for (indx100 = 0; indx100 < PASX_INTERFACES; indx100 = indx100 + 1) begin 20

 next_sx_sent[indx100] = 'h0; 21

 end 22

 end 23

 else begin 24

 next_sx_request_indx = next_sx_request_indx + VECTORS_PER_SX_REQUEST; 25

 next_sx_sent[var100_sx_sel] = 'h1; 26

 Page 30 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 end 1

 end 2

 else begin 3

 next_aux_sel = 'h1; 4

 end 5

 6

 if (next_pa_to_sx_last[var100_sx_sel] == 'h1) begin 7

 next_sx_aux = 'h0; 8

 end 9

 else if (statevar_bits_sxpa_aux_vector == 'h1) begin 10

 next_sx_aux = ~sx_aux; 11

 end 12

 end 13

 end 14

end 15

 16

/// 17

// sx_pending_fifo_wrdata 18

/// 19

always @(20

 sx_pending_wr_sx_sel or 21

 sx_pending_wr_sp_id or 22

 sx_pending_wr_aux_sel or 23

 sx_pending_wr_aux_inc or 24

 sx_pending_wr_pci or 25

 Page 31 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 sx_pending_wr_req_mask or 1

 sx_pending_wr_state_var_indx 2

) begin : proc200 3

 sx_pending_fifo_wrdata = { 4

 sx_pending_wr_sx_sel, 5

 sx_pending_wr_sp_id, 6

 sx_pending_wr_aux_sel, 7

 sx_pending_wr_aux_inc, 8

 sx_pending_wr_pci, 9

 sx_pending_wr_req_mask, 10

 sx_pending_wr_state_var_indx 11

 }; 12

end 13

 14

 15

/// 16

// sx_pending fifo 17

/// 18

always @(posedge clk) begin : proc300 19

 if (reset == 'h1) begin 20

 sx_pending_fifo_wraddr <= 'h0; 21

 sx_pending_fifo_rdaddr <= 'h0; 22

 sx_pending_fifo_contents <= 'h0; 23

 end 24

 else begin 25

 Page 32 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 var300_sx_pending_fifo_contents = sx_pending_fifo_contents; 1

 2

 if (sx_pending_fifo_write == 'h1) begin 3

 sx_pending_fifo[sx_pending_fifo_wraddr] <= sx_pending_fifo_wrdata; 4

 sx_pending_fifo_wraddr <= sx_pending_fifo_wraddr + 'h1; 5

 var300_sx_pending_fifo_contents = var300_sx_pending_fifo_contents + 'h1; 6

 end 7

 8

 if (sx_pending_fifo_advanceread == 'h1) begin 9

 sx_pending_fifo_rdaddr <= sx_pending_fifo_rdaddr + 'h1; 10

 var300_sx_pending_fifo_contents = var300_sx_pending_fifo_contents - 'h1; 11

 end 12

 13

 if ((var300_sx_pending_fifo_contents == (SX_PENDING_FIFO_DEPTH-1)) || 14

 (var300_sx_pending_fifo_contents == SX_PENDING_FIFO_DEPTH)) begin 15

 sx_pending_fifo_full <= 'h1; 16

 end 17

 else begin 18

 sx_pending_fifo_full <= 'h0; 19

 end 20

 21

 if (var300_sx_pending_fifo_contents == 'h0) begin 22

 sx_pending_fifo_empty <= 'h1; 23

 end 24

 else begin 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 585 of 611

 Page 33 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 sx_pending_fifo_empty <= 'h0; 1

 end 2

 3

 sx_pending_fifo_contents <= var300_sx_pending_fifo_contents; 4

 end 5

end 6

 7

 8

/// 9

// sx_pending fifo read mux 10

/// 11

always @(12

 sx_pending_fifo[0] or 13

 sx_pending_fifo[1] or 14

 sx_pending_fifo[2] or 15

 sx_pending_fifo[3] or 16

 sx_pending_fifo_rdaddr 17

) begin : proc340 18

 sx_pending_fifo_rddata = sx_pending_fifo[sx_pending_fifo_rdaddr]; 19

end 20

 21

/// 22

// sx_pending_wr_sx_sel 23

// sx_pending_wr_sp_id 24

// sx_pending_wr_aux_sel 25

 Page 34 of 48
Ex. 2117 - pa_ccg_sxifsm.v

// sx_pending_wr_aux_inc 1

// sx_pending_wr_pci 2

// sx_pending_wr_req_mask 3

// sx_pending_wr_state_var_indx 4

/// 5

always @(6

 sx_pending_fifo_rddata 7

) begin : proc360 8

 {initial_sx_pending_rd_sx_sel, 9

 initial_sx_pending_rd_sp_id, 10

 initial_sx_pending_rd_aux_sel, 11

 initial_sx_pending_rd_aux_inc, 12

 initial_sx_pending_rd_pci, 13

 initial_sx_pending_rd_req_mask, 14

 initial_sx_pending_rd_state_var_indx} = sx_pending_fifo_rddata; 15

end 16

 17

/// 18

// PaSxReceive 19

/// 20

always @(21

 initial_sx_pending_rd_sx_sel or 22

 initial_sx_pending_rd_sp_id or 23

 initial_sx_pending_rd_aux_sel or 24

 initial_sx_pending_rd_aux_inc or 25

 Page 35 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 initial_sx_pending_rd_pci or 1

 initial_sx_pending_rd_req_mask or 2

 initial_sx_pending_rd_state_var_indx or 3

 next_point_address or 4

 next_sx_pending_advance or 5

 next_sx_pending_rd_req_mask or 6

 next_sx_receive_indx or 7

 point_address or 8

 position_address or 9

 statevar_bits_use_vtx_point_size or 10

 statevar_bits_use_vtx_edge_flag or 11

 statevar_bits_use_vtx_kill_flag or 12

 sx_pending_advance or 13

 sx_pending_fifo_empty or 14

 sx_pending_rd_aux_inc or 15

 sx_pending_rd_aux_sel or 16

 sx_pending_rd_pci or 17

 sx_pending_rd_req_mask or 18

 sx_pending_rd_sp_id or 19

 sx_pending_rd_state_var_indx or 20

 sx_pending_rd_sx_sel or 21

 sx_receive_indx or 22

 sx_to_pa_empty or 23

 sx_to_pa_vector[0] or 24

 sx_to_pa_vector[1] or 25

 Page 36 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 tcl_scratch_mem_position_data or 1

 available_positions or 2

 var400_first_vector_write or 3

 var400_last_vector_write or 4

 var400_sx_sel or 5

 var400_vector_wr_cnt or 6

 var400_vector_write or 7

 vertex_fifo_entriesavailable or 8

 vertex_fifo_full 9

) begin : proc400 10

 11

 // init variables 12

 var400_sx_sel = 'h0; 13

 var400_vector_write = 'h0; 14

 var400_first_vector_write = 'h0; 15

 var400_last_vector_write = 'h0; 16

 var400_vector_wr_cnt = 'h0; 17

 var400_next_sx_pending_rd_sx_sel = sx_pending_rd_sx_sel; 18

 var400_next_sx_pending_rd_sp_id = sx_pending_rd_sp_id; 19

 var400_next_sx_pending_rd_aux_sel = sx_pending_rd_aux_sel; 20

 var400_next_sx_pending_rd_aux_inc = sx_pending_rd_aux_inc; 21

 var400_next_sx_pending_rd_pci = sx_pending_rd_pci; 22

 var400_next_sx_pending_rd_req_mask = sx_pending_rd_req_mask; 23

 var400_next_sx_pending_rd_state_var_indx = sx_pending_rd_state_var_indx; 24

 var400_ignore_this_cycle = 'h0; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 586 of 611

 Page 37 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 var400_next_sx_receive_indx = sx_receive_indx; 1

 2

 // defaults 3

 next_sx_receive_indx = sx_receive_indx; 4

 next_sx_pending_advance = sx_pending_advance; 5

 sx_pending_fifo_advanceread = 'h0; 6

 decrement_pasx_req_cnt[0] = 'h0; 7

 decrement_pasx_req_cnt[1] = 'h0; 8

 tcl_scratch_mem_point_write = 'h0; 9

 tcl_scratch_mem_position_write = 'h0; 10

 next_position_address = position_address; 11

 next_point_address = point_address; 12

 decrement_available_positions = 'h0; 13

 vertex_fifo_write = 'h0; 14

 vertex_fifo_wr_param_cache_indx = 'h0; 15

 vertex_fifo_wr_state_var_indx = 'h0; 16

 vertex_fifo_wr_edge_flag = 'h0; 17

 vertex_fifo_wr_kill_flag = 'h0; 18

 sx_to_pa_advanceread[0] = 'h0; 19

 sx_to_pa_advanceread[1] = 'h0; 20

 //tcl_scratch_mem_position_data = sx_to_pa_vector[0]; 21

 //tcl_scratch_mem_point_data = 22
tcl_scratch_mem_position_data[VECTORX_HIGH:VECTORX_LOW]; 23

 tcl_scratch_mem_position_data = 'h0; 24

 tcl_scratch_mem_point_data = 'h0; 25

 next_sx_pending_rd_sx_sel = sx_pending_rd_sx_sel; 26

 Page 38 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 next_sx_pending_rd_sp_id = sx_pending_rd_sp_id; 1

 next_sx_pending_rd_aux_sel = sx_pending_rd_aux_sel; 2

 next_sx_pending_rd_aux_inc = sx_pending_rd_aux_inc; 3

 next_sx_pending_rd_pci = sx_pending_rd_pci; 4

 next_sx_pending_rd_req_mask = sx_pending_rd_req_mask; 5

 next_sx_pending_rd_state_var_indx = sx_pending_rd_state_var_indx; 6

 7

 var400_ignore_this_cycle = 'h0; 8

 if (sx_receive_indx == VECTORS_PER_SX_REQUEST) begin 9

 if (sx_pending_fifo_empty == 'h0) begin 10

 var400_next_sx_pending_rd_sx_sel = initial_sx_pending_rd_sx_sel; 11

 var400_next_sx_pending_rd_sp_id = initial_sx_pending_rd_sp_id; 12

 var400_next_sx_pending_rd_aux_sel = initial_sx_pending_rd_aux_sel; 13

 var400_next_sx_pending_rd_aux_inc = initial_sx_pending_rd_aux_inc; 14

 var400_next_sx_pending_rd_pci = initial_sx_pending_rd_pci; 15

 var400_next_sx_pending_rd_req_mask = initial_sx_pending_rd_req_mask; 16

 var400_next_sx_pending_rd_state_var_indx = initial_sx_pending_rd_state_var_indx; 17

 18

 var400_next_sx_receive_indx = 'h0; 19

 next_sx_pending_advance = 'h1; 20

 end 21

 else begin 22

 var400_ignore_this_cycle = 'h1; 23

 end 24

 end 25

 Page 39 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 1

 if (var400_ignore_this_cycle == 'h0) begin 2

 var400_sx_sel = var400_next_sx_pending_rd_sx_sel; 3

 4

 var400_vector_write = 5
var400_next_sx_pending_rd_req_mask[var400_next_sx_receive_indx[1:0]]; 6

 7

 var400_first_vector_write = var400_vector_write & ~var400_next_sx_pending_rd_aux_sel; 8

 var400_last_vector_write = var400_vector_write & 9

 (var400_next_sx_pending_rd_aux_sel | 10
var400_next_sx_pending_rd_aux_inc); 11

 12

 if (next_sx_pending_advance == 'h1) begin 13

 var400_vector_wr_cnt = 'h0; 14

 for (indx400 = 0; indx400 < VECTORS_PER_SX_REQUEST; indx400=indx400+1) begin 15

 if (var400_next_sx_pending_rd_req_mask[indx400] == 'h1) begin 16

 var400_vector_wr_cnt = var400_vector_wr_cnt + 'h1; 17

 end 18

 end 19

 20

 if ((sx_to_pa_empty[var400_sx_sel] == 'h0) && 21

 ((var400_first_vector_write == 'h0) || (var400_vector_wr_cnt <= available_positions)) 22
&& 23

 ((var400_last_vector_write == 'h0) || (var400_vector_wr_cnt <= 24
vertex_fifo_entriesavailable))) begin 25

 sx_pending_fifo_advanceread = 'h1; 26

 decrement_pasx_req_cnt[var400_sx_sel] = 'h1; 27

 Page 40 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 next_sx_pending_advance = 'h0; 1

 end 2

 end 3

 4

 if ((sx_to_pa_empty[var400_sx_sel] == 'h1) || 5

 ((var400_first_vector_write == 'h1) && (available_positions == 'h0)) || 6

 ((var400_last_vector_write == 'h1) && (vertex_fifo_full == 'h1))) begin 7

 // do nothing this clock 8

 end 9

 else begin 10

 sx_to_pa_advanceread[var400_sx_sel] = 'h1; 11

 12

 if (var400_vector_write == 'h1) begin 13

 14

 vertex_fifo_wr_edge_flag = 'h0; 15

 vertex_fifo_wr_kill_flag = 'h0; 16

 17

 if (var400_next_sx_pending_rd_aux_sel == 'h1) begin 18

 if (statevar_bits_use_vtx_point_size == 'h1) begin 19

 tcl_scratch_mem_point_write = 'h1; 20

 tcl_scratch_mem_position_data = sx_to_pa_vector[var400_sx_sel]; 21

 tcl_scratch_mem_point_data = 22
tcl_scratch_mem_position_data[VECTORX_HIGH:VECTORX_LOW]; 23

 end 24

 25

 var400_sx_to_pa_vector_var400_sx_sel = sx_to_pa_vector[var400_sx_sel]; 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 587 of 611

 Page 41 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 var400_sx_to_pa_vector_y_var400_sx_sel = 1
var400_sx_to_pa_vector_var400_sx_sel[VECTORY_HIGH:VECTORY_LOW]; 2

 var400_sx_to_pa_vector_z_var400_sx_sel = 3
var400_sx_to_pa_vector_var400_sx_sel[VECTORZ_HIGH:VECTORZ_LOW]; 4

 5

 if (statevar_bits_use_vtx_edge_flag == 'h1) begin 6

 vertex_fifo_wr_edge_flag = var400_sx_to_pa_vector_y_var400_sx_sel[0]; 7

 end 8

 9

 vertex_fifo_wr_kill_flag = 'h0; 10

 if (statevar_bits_use_vtx_kill_flag == 'h1) begin 11

 if (var400_sx_to_pa_vector_z_var400_sx_sel[30:0] != 'h0) begin 12

 vertex_fifo_wr_kill_flag = 'h1; 13

 end 14

 end 15

 16

 end 17

 else begin 18

 tcl_scratch_mem_position_write = 'h1; 19

 next_position_address = next_position_address + 'h1; 20

 tcl_scratch_mem_position_data = sx_to_pa_vector[var400_sx_sel]; 21

 decrement_available_positions = 'h1; 22

 end 23

 24

 if ((var400_next_sx_pending_rd_aux_sel == 'h1) || 25

 (var400_next_sx_pending_rd_aux_inc == 'h1)) begin 26

 Page 42 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 next_point_address = next_point_address + 'h1; 1

 2

 vertex_fifo_wr_param_cache_indx = {var400_next_sx_pending_rd_sp_id, 3

 var400_sx_sel, 4

 var400_next_sx_receive_indx[1:0], 5

 var400_next_sx_pending_rd_pci}; 6

 vertex_fifo_wr_state_var_indx = var400_next_sx_pending_rd_state_var_indx; 7

 vertex_fifo_write = 'h1; 8

 end 9

 10

 var400_next_sx_pending_rd_req_mask[var400_next_sx_receive_indx[1:0]] = 'h0; 11

 end 12

 13

 var400_next_sx_receive_indx = var400_next_sx_receive_indx + 'h1; 14

 end 15

 end 16

 17

 next_sx_pending_rd_sx_sel = var400_next_sx_pending_rd_sx_sel; 18

 next_sx_pending_rd_sp_id = var400_next_sx_pending_rd_sp_id; 19

 next_sx_pending_rd_aux_sel = var400_next_sx_pending_rd_aux_sel; 20

 next_sx_pending_rd_aux_inc = var400_next_sx_pending_rd_aux_inc; 21

 next_sx_pending_rd_pci = var400_next_sx_pending_rd_pci; 22

 next_sx_pending_rd_req_mask = var400_next_sx_pending_rd_req_mask; 23

 next_sx_pending_rd_state_var_indx = var400_next_sx_pending_rd_state_var_indx; 24

 next_sx_receive_indx = var400_next_sx_receive_indx; 25

 Page 43 of 48
Ex. 2117 - pa_ccg_sxifsm.v

end 1

 2

 3

/// 4

// sx_pending_rd 5

/// 6

always @(posedge clk) begin : proc475 7

 if (reset == 'h1) begin 8

 sx_pending_rd_sx_sel = 'h0; 9

 sx_pending_rd_sp_id = 'h0; 10

 sx_pending_rd_aux_sel = 'h0; 11

 sx_pending_rd_aux_inc = 'h0; 12

 sx_pending_rd_pci = 'h0; 13

 sx_pending_rd_req_mask = 'h0; 14

 sx_pending_rd_state_var_indx = 'h0; 15

 end 16

 else begin 17

 sx_pending_rd_sx_sel = next_sx_pending_rd_sx_sel; 18

 sx_pending_rd_sp_id = next_sx_pending_rd_sp_id; 19

 sx_pending_rd_aux_sel = next_sx_pending_rd_aux_sel; 20

 sx_pending_rd_aux_inc = next_sx_pending_rd_aux_inc; 21

 sx_pending_rd_pci = next_sx_pending_rd_pci; 22

 sx_pending_rd_req_mask = next_sx_pending_rd_req_mask; 23

 sx_pending_rd_state_var_indx = next_sx_pending_rd_state_var_indx; 24

 end 25

 Page 44 of 48
Ex. 2117 - pa_ccg_sxifsm.v

end 1

 2

/// 3

// pa_to_sx output register 4

/// 5

always @(posedge clk) begin : proc477 6

 if (reset == 'h1) begin 7

 for (indx477 = 0; indx477 < PASX_INTERFACES; indx477 = indx477 + 1) begin 8

 pa_to_sx_write[indx477] <= 'h0; 9

 pa_to_sx_req[indx477] <= 'h0; 10

 pa_to_sx_sp_id[indx477] <= 'h0; 11

 pa_to_sx_offset[indx477] <= 'h0; 12

 pa_to_sx_aux[indx477] <= 'h0; 13

 pa_to_sx_last[indx477] <= 'h0; 14

 end 15

 end 16

 else begin 17

 for (indx477 = 0; indx477 < PASX_INTERFACES; indx477 = indx477 + 1) begin 18

 pa_to_sx_write[indx477] <= next_pa_to_sx_write[indx477]; 19

 pa_to_sx_req[indx477] <= next_pa_to_sx_req[indx477]; 20

 pa_to_sx_sp_id[indx477] <= next_pa_to_sx_sp_id[indx477]; 21

 pa_to_sx_offset[indx477] <= next_pa_to_sx_offset[indx477]; 22

 pa_to_sx_aux[indx477] <= next_pa_to_sx_aux[indx477]; 23

 pa_to_sx_last[indx477] <= next_pa_to_sx_last[indx477]; 24

 end 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 588 of 611

 Page 45 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 end 1

end 2

 3

/// 4

// pasx_req_cnt 5

/// 6

always @(posedge clk) begin : proc480 7

 if (reset == 'h1) begin 8

 pasx_req_cnt[0] <= 'h0; 9

 pasx_req_cnt[1] <= 'h0; 10

 end 11

 else begin 12

 var480_next_pasx_req_cnt_0 = pasx_req_cnt[0]; 13

 var480_next_pasx_req_cnt_1 = pasx_req_cnt[1]; 14

 15

 if (increment_pasx_req_cnt[0] == 'h1) begin 16

 var480_next_pasx_req_cnt_0 = var480_next_pasx_req_cnt_0 + 'h1; 17

 end 18

 19

 if (decrement_pasx_req_cnt[0] == 'h1) begin 20

 var480_next_pasx_req_cnt_0 = var480_next_pasx_req_cnt_0 - 'h1; 21

 end 22

 23

 if (increment_pasx_req_cnt[1] == 'h1) begin 24

 var480_next_pasx_req_cnt_1 = var480_next_pasx_req_cnt_1 + 'h1; 25

 Page 46 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 end 1

 2

 if (decrement_pasx_req_cnt[1] == 'h1) begin 3

 var480_next_pasx_req_cnt_1 = var480_next_pasx_req_cnt_1 - 'h1; 4

 end 5

 6

 pasx_req_cnt[0] <= var480_next_pasx_req_cnt_0; 7

 pasx_req_cnt[1] <= var480_next_pasx_req_cnt_1; 8

 end 9

end 10

 11

/// 12

// registers 13

/// 14

always @(posedge clk) begin : proc500 15

 if (reset == 'h1) begin 16

 sx_request_indx <= 'h0; 17

 aux_sel <= 'h0; 18

 param_cache_base <= 'h0; 19

 sx_aux <= 'h0; 20

 sx_sent[0] <= 'h0; 21

 sx_sent[1] <= 'h0; 22

 23

 sx_receive_indx <= VECTORS_PER_SX_REQUEST; 24

 sx_pending_advance <= 'h0; 25

 Page 47 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 position_address <= 'h0; 1

 point_address <= 'h0; 2

 end 3

 else begin 4

 sx_request_indx <= next_sx_request_indx; 5

 aux_sel <= next_aux_sel; 6

 param_cache_base <= next_param_cache_base; 7

 sx_aux <= next_sx_aux; 8

 sx_sent[0] <= next_sx_sent[0]; 9

 sx_sent[1] <= next_sx_sent[1]; 10

 11

 sx_receive_indx <= next_sx_receive_indx; 12

 sx_pending_advance <= next_sx_pending_advance; 13

 position_address <= next_position_address; 14

 point_address <= next_point_address; 15

 end 16

end 17

 18

/// 19

// copy part of the control to the vertex fifo to get 20

// the number of entries available 21

/// 22

always @(posedge clk) begin : proc600 23

 if (reset == 'h1) begin 24

 vertex_fifo_entriesavailable <= VERTEX_FIFO_DEPTH + 1; 25

 Page 48 of 48
Ex. 2117 - pa_ccg_sxifsm.v

 end 1

 else begin 2

 var600_vertex_fifo_entriesavailable = vertex_fifo_entriesavailable; 3

 4

 if (vertex_fifo_write == 'h1) begin 5

 var600_vertex_fifo_entriesavailable = var600_vertex_fifo_entriesavailable - 'h1; 6

 end 7

 8

 if (vertex_fifo_advanceread == 'h1) begin 9

 var600_vertex_fifo_entriesavailable = var600_vertex_fifo_entriesavailable + 'h1; 10

 end 11

 12

 vertex_fifo_entriesavailable <= var600_vertex_fifo_entriesavailable; 13

 end 14

end 15

 16

endmodule 17

 18

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 589 of 611

 Page 1 of 87
Ex. 2118 - sc.v

`include "header.v" 1

`include "sc_header.v" 2

// -*- Mode: Verilog -*- 3

// Filename : sc.v 4

// Description : SC top block 5

// Author : Mike Mantor 6

// Created On : Sunday March 17 2002 7

// Last Modified By: . 8

// Last Modified On: . 9

// Update Count : 0 10

// Status : Initial 11

 12

//-- 13

// 14

// $Id: //depot/r400/devel/parts_lib/src/gfx/sc/sc.v#50 $ 15

// 16

// $Change: 43702 $ 17

// 18

// 19

// Copyright: Trade secret of ATI Technologies, Inc. 20

// © Copyright 2001-2002, ATI Technologies, Inc., (unpublished) 21

// 22

// All rights reserved. This notice is intended as a precaution against 23

// inadvertent publication and does not imply publication or any waiver 24

// of confidentiality. The year included in the foregoing notice is the 25

 Page 2 of 87
Ex. 2118 - sc.v

// year of creation of the work. 1

// 2

//-- 3

module sc (4

 // --- 5

 // Chip Signals 6

 // --- 7

 sclk_global, 8

 srst, 9

 RBBM_SC_soft_reset, 10

 ROM_SP0_disable, 11

 ROM_SP1_disable, 12

 ROM_SP2_disable, 13

 ROM_SP3_disable, 14

 15

 CG_SC_pm_enb, 16

 RBBM_regclk_active, // Clock gating intiator 17

 18

 // --- 19

 // Interface to the Global Register Bus (RBBM) 20

 // --- 21

 RBBM_a, // address 22

 RBBM_we, // write enable 23

 RBBM_wd, // write data 24

 RBBM_re, // read enable 25

 Page 3 of 87
Ex. 2118 - sc.v

 RBB_rs_in, // read strobe daisy chain in 1

 RBB_rs_out, // read strobe daisy chain out 2

 RBB_rd_in, // read data daisy chain in 3

 RBB_rd_out, // read data daisy chain out 4

 5

 6

 SC_RBBM_cntx0_busy, // 7

 SC_RBBM_cntx17_busy, // 8

 9

 SC_a, // address 10

 SC_we, // write enable 11

 SC_wd, // write data 12

 SC_re, // read enable 13

 // --- 14

 // Interface to the CP 15

 // --- 16

 CP_SC_wc_inc, //Increment write confirm counter 17

 SC_CP_wc_dec, //Decrement write confirm counter 18

 SC_CP_vq_snd, //VisQuerry send visibility flag 19

 SC_CP_vq_index, //VisQuerry index to identify one of 64 VQ flags 20

 SC_CP_vq_discard, //VisQuerry 0=>keep, 1=>Discard 21

 SC_CP_mp_snd, //Sc is sending the multi-pass command now 22

 SC_CP_mp_loop, //0=>Continue 1=>Loop 23

 // --- 24

 // Interface to the PA Setup Unit 25

 Page 4 of 87
Ex. 2118 - sc.v

 // --- 1

 PA_SC_p0, 2

 PA_SC_p1, 3

 PA_SC_p2, 4

 PA_SC_p3, 5

 PA_SC_p4, 6

 PA_SC_xy0, 7

 PA_SC_xy1, 8

 PA_SC_xy2, 9

 PA_SC_zminmax, 10

 PA_SC_cntl, 11

 PA_SC_phase, 12

 PA_SC_v0_indx, 13

 PA_SC_valid, 14

 SC_PA_earlyfrz, 15

 // --- 16

 // Interface to the render central coarse tile 17

 // --- 18

 SC_RC_coarse_event, //need to determine what field will carry id when its an event 19

 SC_RC_coarse_tilex, 20

 SC_RC_coarse_tiley, 21

 SC_RC_coarse_minz, 22

 SC_RC_coarse_maxz, 23

 SC_RC_coarse_zplane, 24

 SC_RC_coarse_mask, 25

ATI 2118
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 590 of 611

 Page 5 of 87
Ex. 2118 - sc.v

 SC_RC_coarse_back, 1

 SC_RC_coarse_state, 2

 SC_RC_coarse_send, 3

 RC_SC_coarse_rtr, 4

 SC_RC_coarse_covered, 5

 // --- 6

 // Interface to the render central hier mask 7

 // --- 8

 RC_SC_hier_mask, 9

 RC_SC_hier_rb_id, 10

 RC_SC_hier_split, 11

 RC_SC_hier_send, 12

 SC_RC_hier_rtr, 13

 // --- 14

 // Interface to the render central detailed mask 15

 // --- 16

 SC_RC_detail_mask, 17

 SC_RC_detail_send, 18

 RC_SC_detail_rtr, 19

 // --- 20

 // Interface to the shader export block SX0 21

 // --- 22

 u0_SC_SX_quad_x, 23

 u0_SC_SX_quad_y, 24

 u0_SC_SX_quad_mask, 25

 Page 6 of 87
Ex. 2118 - sc.v

 u0_SC_SX_quad_tilex, 1

 u0_SC_SX_quad_tiley, 2

 u0_SC_SX_quad_rb_id, 3

 u0_SC_SX_quad_split, 4

 u0_SC_SX_quad_send, 5

 u0_SX_SC_quad_rtr, 6

 // --- 7

 // Interface to the shader export block SX1 8

 // --- 9

 u1_SC_SX_quad_x, 10

 u1_SC_SX_quad_y, 11

 u1_SC_SX_quad_mask, 12

 u1_SC_SX_quad_tilex, 13

 u1_SC_SX_quad_tiley, 14

 u1_SC_SX_quad_rb_id, 15

 u1_SC_SX_quad_split, 16

 u1_SC_SX_quad_send, 17

 u1_SX_SC_quad_rtr, 18

 // --- 19

 // Interface to the shader sequencer 20

 // --- 21

 SC_SQ_data, // 22

 SC_SQ_valid, 23

 SQ_SC_free_buff, // 24

 SQ_SC_dec_cntr_cnt, // 25

 Page 7 of 87
Ex. 2118 - sc.v

 1

 // --- 2

 // Interface to shader pipes 3

 // --- 4

 u0_SC_SP_data, 5

 u0_SC_SP_type, 6

 u0_SC_SP_last_quad, 7

 u0_SC_SP_valid, 8

 9

 u1_SC_SP_data, 10

 u1_SC_SP_type, 11

 u1_SC_SP_last_quad, 12

 u1_SC_SP_valid, 13

 14

 u2_SC_SP_data, 15

 u2_SC_SP_type, 16

 u2_SC_SP_last_quad, 17

 u2_SC_SP_valid, 18

 19

 u3_SC_SP_data, 20

 u3_SC_SP_type, 21

 u3_SC_SP_last_quad, 22

 u3_SC_SP_valid 23

 24

); 25

 Page 8 of 87
Ex. 2118 - sc.v

 1

 // *********************************** 2

 // I/O Definitions 3

 // *********************************** 4

 // Chip Signals 5

 input sclk_global; 6

 input srst; 7

 input RBBM_SC_soft_reset; 8

 input ROM_SP0_disable; 9

 input ROM_SP1_disable; 10

 input ROM_SP2_disable; 11

 input ROM_SP3_disable; 12

 13

 input CG_SC_pm_enb; 14

 input RBBM_regclk_active; // Clock gating intiator 15

 16

 // Interface to the Register Bus (RBBM) 17

 input [16:2] RBBM_a; 18

 input RBBM_we; 19

 input [31:0] RBBM_wd; 20

 input RBBM_re; 21

 input RBB_rs_in; 22

 output RBB_rs_out; 23

 input [31:0] RBB_rd_in; 24

 output [31:0] RBB_rd_out; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 591 of 611

 Page 9 of 87
Ex. 2118 - sc.v

 1

 output SC_RBBM_cntx0_busy; // 2

 output SC_RBBM_cntx17_busy; // 3

 4

 // Registered out for possible daisy chaining of Rbbm bus 5

 output [16:2] SC_a; 6

 output SC_we; 7

 output [31:0] SC_wd; 8

 output SC_re; 9

 // --- 10

 // Interface to the CP 11

 // --- 12

 input CP_SC_wc_inc; //Increment write confirm counter 13

 output SC_CP_wc_dec; //Decrement write confirm counter 14

 output SC_CP_vq_snd; //VisQuerry send visibility flag 15

 output [5:0] SC_CP_vq_index; //VisQuerry index to identify one of 64 VQ flags 16

 output SC_CP_vq_discard; //VisQuerry 0=>keep, 1=>Discard 17

 output SC_CP_mp_snd; //Sc is sending the multi-pass command now 18

 output SC_CP_mp_loop; //0=>Continue 1=>Loop 19

 // --- 20

 // Interface to the PA Setup Unit 21

 // --- 22

 input [17:0] PA_SC_xy0; 23

 input [17:0] PA_SC_xy1; 24

 input [17:0] PA_SC_xy2; 25

 Page 10 of 87
Ex. 2118 - sc.v

 input [31:0] PA_SC_p0; 1

 input [39:0] PA_SC_p1; 2

 input [31:0] PA_SC_p2; 3

 input [31:0] PA_SC_p3; 4

 input [31:0] PA_SC_p4; 5

 input [13:0] PA_SC_zminmax; 6

 input [29:0] PA_SC_cntl; 7

 input [1:0] PA_SC_phase; 8

 input [1:0] PA_SC_v0_indx; 9

 input PA_SC_valid; 10

 output SC_PA_earlyfrz; 11

 // --- 12

 // Interface to Render Central Coarse Tile 13

 // --- 14

 output SC_RC_coarse_event; 15

 output [9:0] SC_RC_coarse_tilex; 16

 output [9:0] SC_RC_coarse_tiley; 17

 output [13:0] SC_RC_coarse_minz; 18

 output [13:0] SC_RC_coarse_maxz; 19

 output [95:0] SC_RC_coarse_zplane; 20

 output [15:0] SC_RC_coarse_mask; 21

 output SC_RC_coarse_back; 22

 output [2:0] SC_RC_coarse_state; 23

 output SC_RC_coarse_send; 24

 output SC_RC_coarse_covered; 25

 Page 11 of 87
Ex. 2118 - sc.v

 input RC_SC_coarse_rtr; 1

 //-- 2

 // Interface to Render Central Hier Kill 3

 //-- 4

 input [15:0] RC_SC_hier_mask; 5

 input [1:0] RC_SC_hier_rb_id; 6

 input RC_SC_hier_split; 7

 input RC_SC_hier_send; 8

 output SC_RC_hier_rtr; 9

 //-- 10

 // Interface to Render Central Detail Quad Mask 11

 //-- 12

 output [15:0] SC_RC_detail_mask; 13

 output SC_RC_detail_send; 14

 input RC_SC_detail_rtr; 15

 // --- 16

 // Interface to the shader export block SX0 17

 // --- 18

 output [1:0] u0_SC_SX_quad_x; 19

 output [1:0] u0_SC_SX_quad_y; 20

 output [31:0] u0_SC_SX_quad_mask; 21

 output [1:0] u0_SC_SX_quad_tilex; 22

 output u0_SC_SX_quad_tiley; 23

 output [1:0] u0_SC_SX_quad_rb_id; 24

 output u0_SC_SX_quad_split; 25

 Page 12 of 87
Ex. 2118 - sc.v

 output u0_SC_SX_quad_send; 1

 input u0_SX_SC_quad_rtr; 2

 // --- 3

 // Interface to the shader export block SX1 4

 // --- 5

 output [1:0] u1_SC_SX_quad_x; 6

 output [1:0] u1_SC_SX_quad_y; 7

 output [31:0] u1_SC_SX_quad_mask; 8

 output [1:0] u1_SC_SX_quad_tilex; 9

 output u1_SC_SX_quad_tiley; 10

 output [1:0] u1_SC_SX_quad_rb_id; 11

 output u1_SC_SX_quad_split; 12

 output u1_SC_SX_quad_send; 13

 input u1_SX_SC_quad_rtr; 14

 // --- 15

 // Interface to the shader sequencer 16

 // --- 17

 input SQ_SC_free_buff; //used to synchronize SP and SQ interface 18

 input SQ_SC_dec_cntr_cnt; //to prevent SQ request queue from overflowing 19

 output [`SC_SQ_DATA_WIDTH-1:0] SC_SQ_data; //This data bus has a 1st clk and 20
2nd clock definition 21

 output SC_SQ_valid; //Data at the output is valid and assumed sampled at next 22
clock 23

 // --- 24

 // Interface to the shader pipe SP0 25

 // --- 26

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 592 of 611

 Page 13 of 87
Ex. 2118 - sc.v

 output [99:0] u0_SC_SP_data; 1

 output [1:0] u0_SC_SP_type; 2

 output u0_SC_SP_last_quad; 3

 output u0_SC_SP_valid; 4

 // --- 5

 // Interface to the shader pipe SP1 6

 // --- 7

 output [99:0] u1_SC_SP_data; 8

 output [1:0] u1_SC_SP_type; 9

 output u1_SC_SP_last_quad; 10

 output u1_SC_SP_valid; 11

 // --- 12

 // Interface to the shader pipe SP2 13

 // --- 14

 output [99:0] u2_SC_SP_data; 15

 output [1:0] u2_SC_SP_type; 16

 output u2_SC_SP_last_quad; 17

 output u2_SC_SP_valid; 18

 // --- 19

 // Interface to the shader pipe SP3 20

 // --- 21

 output [99:0] u3_SC_SP_data; 22

 output [1:0] u3_SC_SP_type; 23

 output u3_SC_SP_last_quad; 24

 output u3_SC_SP_valid; 25

 Page 14 of 87
Ex. 2118 - sc.v

 1

 2

 //** 3

 // Internal Signal definitions 4

 //** 5

 6

 7

 wire sclk; 8

 wire sclk_reg; 9

 wire sclk_sc; 10

 11

 wire sc_srst; 12

 wire sc_hard_srst; 13

 wire sc_soft_srst; 14

 15

 wire cg_blk_gated_clk_override; 16

 17

 wire regclk_active; 18

 wire reg_clk_en; 19

 20

 wire sc_clk_en; 21

 22

 wire [16:2] reg_a; 23

 wire reg_we; 24

 wire [31:0] reg_wd; 25

 Page 15 of 87
Ex. 2118 - sc.v

 wire reg_re; 1

 2

 wire sc_rs; 3

 wire [31:0] sc_rd; 4

 5

 //wire su_earlyfrz; 6

 7

 8

 wire st_msaa_enable; 9

 wire [3:0] st_msaa_num_samples; 10

 wire st_scissor_en; 11

 wire st_draw_zero_length_line; 12

 wire st_window_offset_disable; 13

 wire [13:0] st_window_scissor_x_min; 14

 wire [13:0] st_window_scissor_x_max; 15

 wire [13:0] st_window_scissor_y_min; 16

 wire [13:0] st_window_scissor_y_max; 17

 wire [14:0] st_x_offset; 18

 wire [14:0] st_y_offset; 19

 wire st_bres_cntl_en; 20

 wire [7:0] st_bres_cntl_reg; 21

 22

 wire [31:0] st_aa_mask; 23

 wire st_output_screen_xy; 24

 wire st_line_stipple_enable; 25

 Page 16 of 87
Ex. 2118 - sc.v

 wire st_jss_enable; 1

 wire [1:0] st_jss_x_dim; 2

 wire [1:0] st_jss_y_dim; 3

 wire [3:0] st_max_sample_dist; 4

 wire [3:0] st_jss_sample0_sel; 5

 wire [3:0] st_jss_sample1_sel; 6

 wire [3:0] st_jss_sample2_sel; 7

 wire [3:0] st_jss_sample3_sel; 8

 wire [3:0] st_jss_sample4_sel; 9

 wire [3:0] st_jss_sample5_sel; 10

 wire [3:0] st_jss_sample6_sel; 11

 wire [3:0] st_jss_sample7_sel; 12

 wire [3:0] st_jss_sample8_sel; 13

 wire [3:0] st_jss_sample9_sel; 14

 wire [3:0] st_jss_sample10_sel; 15

 wire [3:0] st_jss_sample11_sel; 16

 wire [3:0] st_jss_sample12_sel; 17

 wire [3:0] st_jss_sample13_sel; 18

 wire [3:0] st_jss_sample14_sel; 19

 wire [3:0] st_jss_sample15_sel; 20

 wire [3:0] st_msaa_urc_samp_offset_x; 21

 wire [3:0] st_msaa_urc_samp_offset_y; 22

 wire [3:0] st_msaa_llc_samp_offset_x; 23

 wire [3:0] st_msaa_llc_samp_offset_y; 24

 wire [3:0] st_msaa_lrc_samp_offset_x; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 593 of 611

 Page 17 of 87
Ex. 2118 - sc.v

 wire [3:0] st_msaa_lrc_samp_offset_y; 1

 wire [3:0] st_sample_0_x; 2

 wire [3:0] st_sample_0_y; 3

 wire [3:0] st_sample_1_x; 4

 wire [3:0] st_sample_1_y; 5

 wire [3:0] st_sample_2_x; 6

 wire [3:0] st_sample_2_y; 7

 wire [3:0] st_sample_3_x; 8

 wire [3:0] st_sample_3_y; 9

 wire [3:0] st_sample_4_x; 10

 wire [3:0] st_sample_4_y; 11

 wire [3:0] st_sample_5_x; 12

 wire [3:0] st_sample_5_y; 13

 wire [3:0] st_sample_6_x; 14

 wire [3:0] st_sample_6_y; 15

 wire [3:0] st_sample_7_x; 16

 wire [3:0] st_sample_7_y; 17

 wire [3:0] st_sample_8_x; 18

 wire [3:0] st_sample_8_y; 19

 wire [3:0] st_sample_9_x; 20

 wire [3:0] st_sample_9_y; 21

 wire [3:0] st_sample_10_x; 22

 wire [3:0] st_sample_10_y; 23

 wire [3:0] st_sample_11_x; 24

 wire [3:0] st_sample_11_y; 25

 Page 18 of 87
Ex. 2118 - sc.v

 wire [3:0] st_sample_12_x; 1

 wire [3:0] st_sample_12_y; 2

 wire [3:0] st_sample_13_x; 3

 wire [3:0] st_sample_13_y; 4

 wire [3:0] st_sample_14_x; 5

 wire [3:0] st_sample_14_y; 6

 wire [3:0] st_sample_15_x; 7

 wire [3:0] st_sample_15_y; 8

// wire [127:0] st_aa_offset_tbl; 9

 wire [15:0] st_line_pattern; 10

 wire [7:0] st_repeat_count; 11

 wire [3:0] st_pattern_start; 12

 wire st_pattern_bit_order; 13

 wire st_auto_reset_enable; 14

 wire [3:0] st_current_ptr; 15

 wire [7:0] st_current_count; 16

 wire st_cliprect_enable; 17

 wire [13:0] st_cliprect_0_x_min; 18

 wire [13:0] st_cliprect_0_y_min; 19

 wire [13:0] st_cliprect_0_x_max; 20

 wire [13:0] st_cliprect_0_y_max; 21

 wire [13:0] st_cliprect_1_x_min; 22

 wire [13:0] st_cliprect_1_y_min; 23

 wire [13:0] st_cliprect_1_x_max; 24

 wire [13:0] st_cliprect_1_y_max; 25

 Page 19 of 87
Ex. 2118 - sc.v

 wire [13:0] st_cliprect_2_x_min; 1

 wire [13:0] st_cliprect_2_y_min; 2

 wire [13:0] st_cliprect_2_x_max; 3

 wire [13:0] st_cliprect_2_y_max; 4

 wire [13:0] st_cliprect_3_x_min; 5

 wire [13:0] st_cliprect_3_y_min; 6

 wire [13:0] st_cliprect_3_x_max; 7

 wire [13:0] st_cliprect_3_y_max; 8

 wire [15:0] st_clip_rule; 9

 wire st_poly_offset_front_enable; 10

 wire st_poly_offset_back_enable; 11

 wire st_poly_offset_para_enable; 12

 wire [31:0] st_poly_offset_front_offset; 13

 wire [31:0] st_poly_offset_back_offset; 14

 wire [31:0] st_poly_offset_front_scale; 15

 wire [31:0] st_poly_offset_back_scale; 16

 17

 wire st_iter_msaa_enable; 18

 wire [3:0] st_iter_msaa_num_samples; 19

 wire st_iter_jss_enable; 20

 21

 wire [270:0] pa_sc_inputs; 22

 wire [270:0] pa_sc_inputs_reg; 23

 24

 wire [29:0] cntl_in; 25

 Page 20 of 87
Ex. 2118 - sc.v

 wire [13:0] zminmax_in; 1

 wire [31:0] p0_in; 2

 wire [39:0] p1_in; 3

 wire [31:0] p2_in; 4

 wire [31:0] p3_in; 5

 wire [31:0] p4_in; 6

 wire valid_in; 7

 wire [1:0] v0_indx_in; 8

 wire [1:0] phase_in; 9

 wire event_in; 10

 wire [3:0] event_id_in; 11

 wire [17:0] xy0_in; 12

 wire [17:0] xy1_in; 13

 wire [17:0] xy2_in; 14

 15

 wire [31:0] RBIU_wdata; // Register Write Data 16

 wire RBIU_we; 17

 wire RBIU_re; 18

 wire [2:0] RBIU_waddr; 19

 wire [2:0] RBIU_raddr; 20

 wire RBIU_cpy; 21

 wire RBIU_PIPE_susc_cntl_sel; 22

 wire RBIU_PIPE_sq_context_misc_sel; 23

 wire RBIU_PIPE_window_offset_sel; 24

 wire RBIU_PIPE_aa_config_sel; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 594 of 611

 Page 21 of 87
Ex. 2118 - sc.v

 wire RBIU_PIPE_aa_mask_sel; 1

 wire RBIU_PIPE_jss_sample_sel_0_sel; 2

 wire RBIU_PIPE_jss_sample_sel_1_sel; 3

// wire RBIU_PIPE_msaa_2x2_offset_sel; 4

// wire RBIU_PIPE_aa_offset_tbl_0_sel; 5

// wire RBIU_PIPE_aa_offset_tbl_1_sel; 6

// wire RBIU_PIPE_aa_offset_tbl_2_sel; 7

// wire RBIU_PIPE_aa_offset_tbl_3_sel; 8

 wire RBIU_PIPE_line_stipple_sel; 9

 wire RBIU_PIPE_line_stipple_state_sel; 10

 wire RBIU_PIPE_line_cntl_sel; 11

 wire RBIU_PIPE_window_scissor_tl_sel; 12

 wire RBIU_PIPE_window_scissor_br_sel; 13

 wire RBIU_PIPE_screen_scissor_tl_sel; 14

 wire RBIU_PIPE_screen_scissor_br_sel; 15

 wire RBIU_PIPE_cliprect_0_tl_sel; 16

 wire RBIU_PIPE_cliprect_0_br_sel; 17

 wire RBIU_PIPE_cliprect_1_tl_sel; 18

 wire RBIU_PIPE_cliprect_1_br_sel; 19

 wire RBIU_PIPE_cliprect_2_tl_sel; 20

 wire RBIU_PIPE_cliprect_2_br_sel; 21

 wire RBIU_PIPE_cliprect_3_tl_sel; 22

 wire RBIU_PIPE_cliprect_3_br_sel; 23

 wire RBIU_PIPE_cliprect_rule_sel; 24

 wire RBIU_PIPE_poly_offset_front_scale_sel; 25

 Page 22 of 87
Ex. 2118 - sc.v

 wire RBIU_PIPE_poly_offset_front_offset_sel; 1

 wire RBIU_PIPE_poly_offset_back_scale_sel; 2

 wire RBIU_PIPE_poly_offset_back_offset_sel; 3

 wire [31:0] PIPE_RBIU_rdata; 4

 5

 wire sr_prim_we; 6

 wire sr_z_we; 7

 wire sr_pipe_valid; 8

 wire sr_event; 9

 wire [3:0] sr_event_id; 10

 wire sr_null_prim; 11

 wire [2:0] sr_dealloc_slot; 12

 wire sr_first_prim_of_slot; 13

 wire sr_end_of_pkt; 14

 wire sr_back_face; 15

 wire [1:0] sr_provoking_vertex; 16

 wire sr_x_major; 17

 wire sr_start_in_diamond; 18

 wire sr_end_in_diamond; 19

 wire [2:0] sr_prim_type; 20

 wire [1:0] sr_phase; 21

 wire [2:0] sr_state_var_indx; 22

 wire [2:0] qpp_state_var_indx; 23

 wire [17:0] sr_v0; 24

 wire [17:0] sr_v1; 25

 Page 23 of 87
Ex. 2118 - sc.v

 wire [17:0] sr_v2; 1

 wire [17:0] sr_ref_x; 2

 wire [17:0] sr_ref_y; 3

 wire [31:0] sr_i0; 4

 wire [31:0] sr_ix; 5

 wire [31:0] sr_iy; 6

 wire [31:0] sr_j0; 7

 wire [31:0] sr_jx; 8

 wire [31:0] sr_jy; 9

 wire [31:0] sr_w0; 10

 wire [31:0] sr_wx; 11

 wire [31:0] sr_wy; 12

 wire [10:0] sr_param_cache_indx0; 13

 wire [10:0] sr_param_cache_indx1; 14

 wire [10:0] sr_param_cache_indx2; 15

 wire sr_null_prim_zff; 16

 wire sr_zy_max_zff; 17

 wire sr_back_face_zff; 18

 wire [2:0] sr_prim_type_zff; 19

 wire sr_polymode_zff; 20

 wire [2:0] sr_state_var_indx_zff; 21

 wire [17:0] sr_ref_x_zff; 22

 wire [17:0] sr_ref_y_zff; 23

 wire [31:0] sr_z0_zff; 24

 wire [39:0] sr_zx_zff; 25

 Page 24 of 87
Ex. 2118 - sc.v

 wire [39:0] sr_zy_zff; 1

 wire [13:0] sr_z_min_zff; 2

 wire [13:0] sr_z_max_zff; 3

 wire sr_cntx0_busy; 4

 wire sr_cntx1to7_busy; 5

 6

 wire prim_ff_re; 7

 wire prim_ff_full; 8

 wire prim_ff_empty; 9

 wire [`SC_PRIM_INTERP_WIDTH -1:0] prim_ff_wr_data; 10

 wire [`SC_PRIM_INTERP_WIDTH -1:0] prim_ff_rd_data; 11

 wire z_ff_re; 12

 wire z_ff_full; 13

 wire z_ff_empty; 14

 wire [`SC_ZDATA_WIDTH -1:0] z_ff_wr_data; 15

 wire [`SC_ZDATA_WIDTH -1:0] z_ff_rd_data; 16

 wire tile_ff_re; 17

 wire tile_ff_full; 18

 wire tile_ff_empty; 19

 wire [`SC_TILEDATA_WIDTH -1:0] tile_ff_wr_data; 20

// wire [171:0] tile_ff_rd_data; 21

 22

 wire pipe_rts; 23

 wire [1:0] pipe_phase; 24

 wire event_flag; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 595 of 611

 Page 25 of 87
Ex. 2118 - sc.v

 wire [3:0] event_id; 1

 wire [36:0] e0; 2

 wire [31:0] e0_y; 3

 wire [18:0] e0_dx; 4

 wire [18:0] e0_dy; 5

 wire [36:0] e1; 6

 wire [31:0] e1_x; 7

 wire [18:0] e1_dx; 8

 wire [18:0] e1_dy; 9

 wire [36:0] e2; 10

 wire [31:0] e2_x; 11

 wire [18:0] e2_dx; 12

 wire [18:0] e2_dy; 13

 wire x_dir; 14

 wire [12:0] x_start; 15

 wire [12:0] x_end; 16

 wire y_dir; 17

 wire [12:0] y_start; 18

 wire [12:0] y_end; 19

 wire [3:0] bb_fract_bits; 20

 wire pass_empty_prim; 21

 wire cw_event; 22

 wire [3:0] cw_event_id; 23

 wire [3:0] cw_bb_fract_bits; 24

 wire cw_pass_empty_prim; 25

 Page 26 of 87
Ex. 2118 - sc.v

 wire [36:0] cw_e0; 1

 wire [31:0] cw_e0y; 2

 wire [18:0] cw_dxe0; 3

 wire [18:0] cw_dye0; 4

 wire [36:0] cw_e1; 5

 wire [31:0] cw_e1x; 6

 wire [18:0] cw_dxe1; 7

 wire [18:0] cw_dye1; 8

 wire [36:0] cw_e2; 9

 wire [31:0] cw_e2x; 10

 wire [18:0] cw_dxe2; 11

 wire [18:0] cw_dye2; 12

 wire cw_xdir; 13

 wire [9:0] cw_tilex; 14

 wire [2:0] cw_xmin; 15

 wire [2:0] cw_xmax; 16

 wire cw_ydir; 17

 wire cw_xmajor ; 18

 wire [9:0] cw_tiley; 19

 wire [2:0] cw_ymin; 20

 wire [2:0] cw_ymax; 21

 wire cw_last_tile; 22

 wire cw_tile_valid; 23

 wire pipe_freeze_b_early; 24

 wire pipe_freeze_b_dly; 25

 Page 27 of 87
Ex. 2118 - sc.v

 wire pipe_freeze_b_dly1; 1

 wire qmsk_z_freeze_b; 2

 wire qm_last_tile; 3

 wire qm_event; 4

 wire [3:0] qm_event_id; 5

 wire qm_xdir; 6

 wire qm_ydir; 7

 wire [9:0] qm_tilex; 8

 wire [9:0] qm_tiley; 9

 wire [1:0] qm_tilex_m3; 10

 wire [1:0] qm_tiley_m3; 11

 wire [2:0] qm_xmin; 12

 wire [2:0] qm_xmax; 13

 wire [2:0] qm_ymin; 14

 wire [2:0] qm_ymax; 15

 wire [3:0] qm_bb_fract_bits; 16

 wire qm_z_mask_needed; 17

 wire [36:0] qm_e0; 18

 wire [36:0] qm_e1; 19

 wire [36:0] qm_e2; 20

 wire [18:0] qm_dxe0; 21

 wire [18:0] qm_dye0; 22

 wire [18:0] qm_dxe1; 23

 wire [18:0] qm_dye1; 24

 wire [18:0] qm_dxe2; 25

 Page 28 of 87
Ex. 2118 - sc.v

 wire [18:0] qm_dye2; 1

 wire [15:0] qm_quadmask; 2

 wire qm_quadmask_valid; 3

 4

 wire [`SC_PRIM_INTERP_WIDTH -1:0] qpp_prim_data; 5

 wire qpp_fpos_early; 6

 wire qpp_last_qdpair_of_prim; 7

 wire qpp_q0_last_of_tile; 8

 wire qpp_q0_zmask_needed; 9

 wire qpp_q0_qhit; 10

 wire [9:0] qpp_q0_tilex; 11

 wire [9:0] qpp_q0_tiley; 12

 wire [1:0] qpp_q0_quadx; 13

 wire [1:0] qpp_q0_quady; 14

 wire [1:0] qpp_q0_rb_id; 15

 wire qpp_q0_split; 16

 wire [7:0] qpp_q0_ulc_sample_mask; 17

 wire [7:0] qpp_q0_urc_sample_mask; 18

 wire [7:0] qpp_q0_llc_sample_mask; 19

 wire [7:0] qpp_q0_lrc_sample_mask; 20

 wire [2:0] qpp_q0_ulc_cntrmost_sample_id; 21

 wire [2:0] qpp_q0_urc_cntrmost_sample_id; 22

 wire [2:0] qpp_q0_llc_cntrmost_sample_id; 23

 wire [2:0] qpp_q0_lrc_cntrmost_sample_id; 24

 wire qpp_q1_last_of_tile; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 596 of 611

 Page 29 of 87
Ex. 2118 - sc.v

 wire qpp_q1_zmask_needed; 1

 wire qpp_q1_qhit; 2

 wire [9:0] qpp_q1_tilex; 3

 wire [9:0] qpp_q1_tiley; 4

 wire [1:0] qpp_q1_quadx; 5

 wire [1:0] qpp_q1_rb_id; 6

 wire qpp_q1_split; 7

 wire [1:0] qpp_q1_quady; 8

 wire [7:0] qpp_q1_ulc_sample_mask; 9

 wire [7:0] qpp_q1_urc_sample_mask; 10

 wire [7:0] qpp_q1_llc_sample_mask; 11

 wire [7:0] qpp_q1_lrc_sample_mask; 12

 wire [2:0] qpp_q1_ulc_cntrmost_sample_id; 13

 wire [2:0] qpp_q1_urc_cntrmost_sample_id; 14

 wire [2:0] qpp_q1_llc_cntrmost_sample_id; 15

 wire [2:0] qpp_q1_lrc_cntrmost_sample_id; 16

 17

 wire zff_null_prim; 18

 wire zff_zy_max; 19

 wire zff_back_face; 20

 wire [2:0] zff_prim_type; 21

 wire zff_polymode; 22

 wire [2:0] zff_state_var_indx; 23

 wire [17:0] zff_ref_x; 24

 wire [17:0] zff_ref_y; 25

 Page 30 of 87
Ex. 2118 - sc.v

 wire [13:0] zff_z_min; 1

 wire [13:0] zff_z_max; 2

 wire [31:0] zff_z0; 3

 wire [39:0] zff_zx; 4

 wire [39:0] zff_zy; 5

 6

 wire rc_event; 7

 wire [9:0] rc_tilex; 8

 wire [9:0] rc_tiley; 9

 wire [13:0] rc_minz; 10

 wire [13:0] rc_maxz; 11

 wire [95:0] rc_zplane; 12

 wire [15:0] rc_mask; 13

 wire rc_back; 14

 wire [2:0] rc_state; 15

 wire rc_send; 16

 wire rc_covered; 17

 wire rc_rtr; 18

 wire rc_hier_rtr; 19

 wire [15:0] rc_in_hier_mask; 20

 wire [1:0] rc_in_rb_id; 21

 wire rc_in_split; 22

 wire rc_in_hier_send; 23

 24

 wire qdpkr_in_fz; 25

 Page 31 of 87
Ex. 2118 - sc.v

 1

 //Signals for the sc_rc detailed z interface 2

 wire detail_mask_accum_rdy; 3

 wire detail_hit_0; 4

 wire detail_lqt_0; 5

 wire detail_hit_1; 6

 wire detail_lqt_1; 7

 wire [15:0] detail_mask; 8

 wire detail_mask_valid; 9

 wire rdy_for_detail_mask; 10

 11

 //Signals between the packer and iterator 12

 wire [`SC_QD_DATA_WIDTH-1:0] pkr_qd0; 13

 wire [`SC_QD_DATA_WIDTH-1:0] pkr_qd1; 14

 wire [`SC_QD_DATA_WIDTH-1:0] pkr_qd2; 15

 wire [`SC_QD_DATA_WIDTH-1:0] pkr_qd3; 16

 wire pkr_qdhit0; 17

 wire pkr_qdhit1; 18

 wire pkr_qdhit2; 19

 wire pkr_qdhit3; 20

 wire [`SC_PRIM_INTERP_WIDTH -1:0] pkr_primdata; 21

 wire pkr_ds_one_clk_command; 22

 wire pkr_ds_end_of_prim; 23

 wire pkr_ds_end_of_vector; 24

 wire pkr_send_row; 25

 Page 32 of 87
Ex. 2118 - sc.v

 wire [2:0] pkr_sv_indx; 1

 2

 wire pkr_cntx0_busy; 3

 wire pkr_cntx1to7_busy; 4

 wire pkr_iter_cntx0_busy; 5

 wire pkr_iter_cntx1to7_busy; 6

 7

 wire iterator_input_fz; 8

 wire [2:0] iterator_sv_indx; 9

 wire [1:0] iterator_SX0_quad_x; 10

 wire [1:0] iterator_SX0_quad_y; 11

 wire [31:0] iterator_SX0_quad_mask; 12

 wire [1:0] iterator_SX0_quad_tilex; 13

 wire iterator_SX0_quad_tiley; 14

 wire [1:0] iterator_SX0_quad_rb_id; 15

 wire iterator_SX0_quad_split; 16

 wire iterator_SX0_quad_send; 17

 wire SX0_iterator_quad_rtr; 18

 wire [1:0] iterator_SX1_quad_x; 19

 wire [1:0] iterator_SX1_quad_y; 20

 wire [31:0] iterator_SX1_quad_mask; 21

 wire [1:0] iterator_SX1_quad_tilex; 22

 wire iterator_SX1_quad_tiley; 23

 wire [1:0] iterator_SX1_quad_rb_id; 24

 wire iterator_SX1_quad_split; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 597 of 611

 Page 33 of 87
Ex. 2118 - sc.v

 wire iterator_SX1_quad_send; 1

 wire SX1_iterator_quad_rtr; 2

 wire SQ_iterator_free_buff; 3

 wire SQ_iterator_dec_cntr_cnt; 4

 wire [`SC_SQ_DATA_WIDTH-1:0] iterator_SQ_data; 5

 wire iterator_SQ_valid; 6

 wire [99:0] iterator_SP0_data; 7

 wire [1:0] iterator_SP0_type; 8

 wire iterator_SP0_last_quad; 9

 wire iterator_SP0_valid; 10

 wire [99:0] iterator_SP1_data; 11

 wire [1:0] iterator_SP1_type; 12

 wire iterator_SP1_last_quad; 13

 wire iterator_SP1_valid; 14

 wire [99:0] iterator_SP2_data; 15

 wire [1:0] iterator_SP2_type; 16

 wire iterator_SP2_last_quad; 17

 wire iterator_SP2_valid; 18

 wire [99:0] iterator_SP3_data; 19

 wire [1:0] iterator_SP3_type; 20

 wire iterator_SP3_last_quad; 21

 22

 wire rt_set_cntx0_busy; 23

 wire cntx0_decr; 24

 wire cntx1to7_decr; 25

 Page 34 of 87
Ex. 2118 - sc.v

 1

 2

 3

 4

 5

 //create sclk 6

 ati_master_clock_permanent uati_master_clock_permanent(7

 .clk_in(sclk_global), 8

 .clk_out(sclk) 9

); 10

 11

 ati_dff_in #(1) uati_dff_in_pm_en(12

 .clk(sclk), 13

 .d(CG_SC_pm_enb), 14

 .q(cg_blk_gated_clk_override) 15

); 16

 17

 //create clock enable signals based on active signals 18

 ati_dff_in #(1) uati_dff_in_regclk_active(19

 .clk(sclk), 20

 .d(RBBM_regclk_active), 21

 .q(regclk_active) 22

); 23

 24

 //This enable would be intiated by rbbm_regclk_active and held high in the 25

 Page 35 of 87
Ex. 2118 - sc.v

 //block as long as necessary to ensure all data could be read 1

 assign reg_clk_en = regclk_active | SC_RBBM_cntx0_busy | SC_RBBM_cntx17_busy; 2

 3

 //This active signal would be a collection of request from external blocks that require 4

 //the block clocks to be enabled along with internal busy signals that require the clocks 5

 //to stay on 6

 assign sc_clk_en = !cg_blk_gated_clk_override | RBBM_regclk_active | 7
SC_RBBM_cntx0_busy | SC_RBBM_cntx17_busy; 8

 9

 10

 //Generate the sclk_reg clock tree 11

 ati_master_clock_gater uati_master_clock_gater_sclk_reg (12

 .clk_in(sclk_global), 13

 .clk(sclk), 14

 .en(reg_clk_en), 15

 .pm_enb(cg_blk_gated_clk_override), 16

 .clk_out(sclk_reg) 17

); 18

 19

 //Generate sclk_sc clock tree 20

 ati_master_clock_gater uati_master_clock_gater_sc_clk (21

 .clk_in(sclk_global), 22

 .clk(sclk), 23

 .en(sc_clk_en), 24

 .pm_enb(cg_blk_gated_clk_override), 25

 .clk_out(sclk_sc) 26

 Page 36 of 87
Ex. 2118 - sc.v

); 1

 2

 //RBBM Interface register 3

 ati_rbbm_intf uati_rbbm_intf(4

 .sclk_reg(sclk_reg), 5

 .rbbm_we(RBBM_we), 6

 .rbbm_re(RBBM_re), 7

 .rbbm_a(RBBM_a), 8

 .rbbm_wd(RBBM_wd), 9

 .reg_we(reg_we), 10

 .reg_re(reg_re), 11

 .reg_a(reg_a), 12

 .reg_wd(reg_wd), 13

 .pipe_we(SC_we), 14

 .pipe_re(SC_re), 15

 .pipe_a(SC_a), 16

 .pipe_wd(SC_wd), 17

 .rbbm_rs_in(RBB_rs_in), 18

 .rbbm_rd_in(RBB_rd_in), 19

 .block_rs(sc_rs), 20

 .block_rd(sc_rd), 21

 .rbbm_rs_out(RBB_rs_out), 22

 .rbbm_rd_out(RBB_rd_out) 23

); 24

 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 598 of 611

 Page 37 of 87
Ex. 2118 - sc.v

 1

 //register input reset 2

 ati_dff_in #(1) uati_dff_in_sc_hard_srst(3

 .clk(sclk), 4

 .d(srst), 5

 .q(sc_hard_srst) 6

); 7

 8

 //register input soft resets 9

 ati_dff_in #(1) uati_dff_in_sc_soft_srst(10

 .clk(sclk), 11

 .d(RBBM_SC_soft_reset), 12

 .q(sc_soft_srst) 13

); 14

 15

 //use this in the block for the srst everywhere except 16

 //state storage that can only get reset by a hard reset 17

 assign sc_srst = sc_soft_srst | sc_hard_srst; 18

 19

 20

 //register block outputs using the ati_dff_out or ati_dff_en_out 21

 ati_dff_out #(1) uati_dff_out_earlyfrz(22

 .clk(sclk_sc), 23

 //.d(su_earlyfrz), 24

 .d(pipe_freeze_b_early), 25

 Page 38 of 87
Ex. 2118 - sc.v

 .q(SC_PA_earlyfrz) 1

); 2

 3

 4

 5

 6

 7

//-- 8

// Register inputs 9

//-- 10

 11

 sc_interface_regs usc_interface_regs(12

 .clk(sclk_sc), 13

 .en(pipe_freeze_b_dly), 14

 .pa_sc_inputs(pa_sc_inputs), 15

 .pa_sc_inputs_reg(pa_sc_inputs_reg), 16

 .RC_SC_coarse_rtr(RC_SC_coarse_rtr), 17

 .rc_rtr(rc_rtr), 18

 .RC_SC_hier_send(RC_SC_hier_send), 19

 .rc_in_hier_send(rc_in_hier_send), 20

 .RC_SC_hier_mask(RC_SC_hier_mask), 21

 .rc_in_hier_mask(rc_in_hier_mask), 22

 .RC_SC_hier_rb_id(RC_SC_hier_rb_id), 23

 .rc_in_rb_id(rc_in_rb_id), 24

 .RC_SC_hier_split(RC_SC_hier_split), 25

 Page 39 of 87
Ex. 2118 - sc.v

 .rc_in_split(rc_in_split), 1

 .u0_SX_SC_quad_rtr(u0_SX_SC_quad_rtr), 2

 .SX0_iterator_quad_rtr(SX0_iterator_quad_rtr), 3

 .u1_SX_SC_quad_rtr(u1_SX_SC_quad_rtr), 4

 .SX1_iterator_quad_rtr(SX1_iterator_quad_rtr), 5

 .SQ_SC_free_buff(SQ_SC_free_buff), 6

 .SQ_iterator_free_buff(SQ_iterator_free_buff), 7

 .SQ_SC_dec_cntr_cnt(SQ_SC_dec_cntr_cnt), 8

 .SQ_iterator_dec_cntr_cnt(SQ_iterator_dec_cntr_cnt), 9

 .rc_event(rc_event), 10

 .SC_RC_coarse_event(SC_RC_coarse_event), 11

 .rc_tilex(rc_tilex), 12

 .SC_RC_coarse_tilex(SC_RC_coarse_tilex), 13

 .rc_tiley(rc_tiley), 14

 .SC_RC_coarse_tiley(SC_RC_coarse_tiley), 15

 .rc_minz(rc_minz), 16

 .SC_RC_coarse_minz(SC_RC_coarse_minz), 17

 .rc_maxz(rc_maxz), 18

 .SC_RC_coarse_maxz(SC_RC_coarse_maxz), 19

 .rc_zplane(rc_zplane), 20

 .SC_RC_coarse_zplane(SC_RC_coarse_zplane), 21

 .rc_mask(rc_mask), 22

 .SC_RC_coarse_mask(SC_RC_coarse_mask), 23

 .rc_back(rc_back), 24

 .SC_RC_coarse_back(SC_RC_coarse_back), 25

 Page 40 of 87
Ex. 2118 - sc.v

 .rc_state(rc_state), 1

 .SC_RC_coarse_state(SC_RC_coarse_state), 2

 .rc_covered(rc_covered), 3

 .SC_RC_coarse_covered(SC_RC_coarse_covered), 4

 .rc_send(rc_send), 5

 .SC_RC_coarse_send(SC_RC_coarse_send), 6

 .rc_hier_rtr(rc_hier_rtr), 7

 .SC_RC_hier_rtr(SC_RC_hier_rtr), 8

 .detail_mask_valid(detail_mask_valid), 9

 .SC_RC_detail_send(SC_RC_detail_send), 10

 .detail_mask(detail_mask), 11

 .SC_RC_detail_mask(SC_RC_detail_mask), 12

 .iterator_SX0_quad_x(iterator_SX0_quad_x), 13

 .u0_SC_SX_quad_x(u0_SC_SX_quad_x), 14

 .iterator_SX0_quad_y(iterator_SX0_quad_y), 15

 .u0_SC_SX_quad_y(u0_SC_SX_quad_y), 16

 .iterator_SX0_quad_mask(iterator_SX0_quad_mask), 17

 .u0_SC_SX_quad_mask(u0_SC_SX_quad_mask), 18

 .iterator_SX0_quad_tilex(iterator_SX0_quad_tilex), 19

 .u0_SC_SX_quad_tilex(u0_SC_SX_quad_tilex), 20

 .iterator_SX0_quad_tiley(iterator_SX0_quad_tiley), 21

 .u0_SC_SX_quad_tiley(u0_SC_SX_quad_tiley), 22

 23

 .iterator_SX0_quad_rb_id(iterator_SX0_quad_rb_id), 24

 .u0_SC_SX_quad_rb_id(u0_SC_SX_quad_rb_id), 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 599 of 611

 Page 41 of 87
Ex. 2118 - sc.v

 .iterator_SX0_quad_split(iterator_SX0_quad_split), 1

 .u0_SC_SX_quad_split(u0_SC_SX_quad_split), 2

 3

 .iterator_SX0_quad_send(iterator_SX0_quad_send), 4

 .u0_SC_SX_quad_send(u0_SC_SX_quad_send), 5

 .iterator_SX1_quad_x(iterator_SX1_quad_x), 6

 .u1_SC_SX_quad_x(u1_SC_SX_quad_x), 7

 .iterator_SX1_quad_y(iterator_SX1_quad_y), 8

 .u1_SC_SX_quad_y(u1_SC_SX_quad_y), 9

 .iterator_SX1_quad_mask(iterator_SX1_quad_mask), 10

 .u1_SC_SX_quad_mask(u1_SC_SX_quad_mask), 11

 .iterator_SX1_quad_tilex(iterator_SX1_quad_tilex), 12

 .u1_SC_SX_quad_tilex(u1_SC_SX_quad_tilex), 13

 .iterator_SX1_quad_tiley(iterator_SX1_quad_tiley), 14

 .u1_SC_SX_quad_tiley(u1_SC_SX_quad_tiley), 15

 16

 .iterator_SX1_quad_rb_id(iterator_SX1_quad_rb_id), 17

 .u1_SC_SX_quad_rb_id(u1_SC_SX_quad_rb_id), 18

 .iterator_SX1_quad_split(iterator_SX1_quad_split), 19

 .u1_SC_SX_quad_split(u1_SC_SX_quad_split), 20

 21

 .iterator_SX1_quad_send(iterator_SX1_quad_send), 22

 .u1_SC_SX_quad_send(u1_SC_SX_quad_send), 23

 .iterator_SQ_data(iterator_SQ_data), 24

 .SC_SQ_data(SC_SQ_data), 25

 Page 42 of 87
Ex. 2118 - sc.v

 .iterator_SQ_valid(iterator_SQ_valid), 1

 .SC_SQ_valid(SC_SQ_valid), 2

 .iterator_SP0_data(iterator_SP0_data), 3

 .u0_SC_SP_data(u0_SC_SP_data), 4

 .iterator_SP0_type(iterator_SP0_type), 5

 .u0_SC_SP_type(u0_SC_SP_type), 6

 .iterator_SP0_last_quad(iterator_SP0_last_quad), 7

 .u0_SC_SP_last_quad(u0_SC_SP_last_quad), 8

 .iterator_SP0_valid(iterator_SP0_valid), 9

 .u0_SC_SP_valid(u0_SC_SP_valid), 10

 .iterator_SP1_data(iterator_SP1_data), 11

 .u1_SC_SP_data(u1_SC_SP_data), 12

 .iterator_SP1_type(iterator_SP1_type), 13

 .u1_SC_SP_type(u1_SC_SP_type), 14

 .iterator_SP1_last_quad(iterator_SP1_last_quad), 15

 .u1_SC_SP_last_quad(u1_SC_SP_last_quad), 16

 .iterator_SP1_valid(iterator_SP1_valid), 17

 .u1_SC_SP_valid(u1_SC_SP_valid), 18

 .iterator_SP2_data(iterator_SP2_data), 19

 .u2_SC_SP_data(u2_SC_SP_data), 20

 .iterator_SP2_type(iterator_SP2_type), 21

 .u2_SC_SP_type(u2_SC_SP_type), 22

 .iterator_SP2_last_quad(iterator_SP2_last_quad), 23

 .u2_SC_SP_last_quad(u2_SC_SP_last_quad), 24

 .iterator_SP2_valid(iterator_SP2_valid), 25

 Page 43 of 87
Ex. 2118 - sc.v

 .u2_SC_SP_valid(u2_SC_SP_valid), 1

 .iterator_SP3_data(iterator_SP3_data), 2

 .u3_SC_SP_data(u3_SC_SP_data), 3

 .iterator_SP3_type(iterator_SP3_type), 4

 .u3_SC_SP_type(u3_SC_SP_type), 5

 .iterator_SP3_last_quad(iterator_SP3_last_quad), 6

 .u3_SC_SP_last_quad(u3_SC_SP_last_quad), 7

 .iterator_SP3_valid(iterator_SP3_valid), 8

 .u3_SC_SP_valid(u3_SC_SP_valid), 9

 .sr_cntx0_busy(sr_cntx0_busy), 10

 .SC_RBBM_cntx0_busy(SC_RBBM_cntx0_busy), 11

 .sr_cntx1to7_busy(sr_cntx1to7_busy), 12

 .SC_RBBM_cntx17_busy(SC_RBBM_cntx17_busy), 13

 .RC_SC_detail_rtr(RC_SC_detail_rtr), 14

 .rdy_for_detail_mask(rdy_for_detail_mask) 15

); 16

 17

//-- 18

// RBBM Interface 19

//-- 20

 sc_rbiu usc_rbiu (21

 // Chip Signals 22

 .iSCLK_REG(sclk_reg), 23

 // Interface to the Global Register Bus (RBBM) 24

 .iRBBM_a_q1(reg_a), // address 25

 Page 44 of 87
Ex. 2118 - sc.v

 .iRBBM_we_q1(reg_we), // write enable 1

 .iRBBM_wd_q1(reg_wd), // write data 2

 .iRBBM_re_q1(reg_re), // read enable 3

 // RBBM read data daisy chain 4

 .oRBIU_block_rs(sc_rs), // read strobe daisy chain out 5

 .oRBIU_block_rd(sc_rd), // read data daisy chain out 6

 // Interface to sc_pipe 7

 .oRBIU_we(RBIU_we), 8

 .oRBIU_re(RBIU_re), 9

 .oRBIU_waddr(RBIU_waddr), 10

 .oRBIU_raddr(RBIU_raddr), 11

 .oRBIU_wdata(RBIU_wdata), 12

 .iPIPE_RBIU_rdata(PIPE_RBIU_rdata), 13

 .oRBIU_cpy(RBIU_cpy), 14

 .oRBIU_PIPE_susc_cntl_sel(RBIU_PIPE_susc_cntl_sel), 15

 .oRBIU_PIPE_sq_context_misc(RBIU_PIPE_sq_context_misc_sel), 16

 .oRBIU_PIPE_window_offset_sel(RBIU_PIPE_window_offset_sel), 17

 .oRBIU_PIPE_aa_config_sel(RBIU_PIPE_aa_config_sel), 18

 .oRBIU_PIPE_aa_mask_sel(RBIU_PIPE_aa_mask_sel), 19

 .oRBIU_PIPE_jss_sample_sel_0_sel(RBIU_PIPE_jss_sample_sel_0_sel), 20

 .oRBIU_PIPE_jss_sample_sel_1_sel(RBIU_PIPE_jss_sample_sel_1_sel), 21

// .oRBIU_PIPE_msaa_2x2_offset_sel(RBIU_PIPE_msaa_2x2_offset_sel), 22

// .oRBIU_PIPE_aa_offset_tbl_0_sel(RBIU_PIPE_aa_offset_tbl_0_sel), 23

// .oRBIU_PIPE_aa_offset_tbl_1_sel(RBIU_PIPE_aa_offset_tbl_1_sel), 24

// .oRBIU_PIPE_aa_offset_tbl_2_sel(RBIU_PIPE_aa_offset_tbl_2_sel), 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 600 of 611

 Page 45 of 87
Ex. 2118 - sc.v

// .oRBIU_PIPE_aa_offset_tbl_3_sel(RBIU_PIPE_aa_offset_tbl_3_sel), 1

 .oRBIU_PIPE_line_stipple_sel(RBIU_PIPE_line_stipple_sel), 2

 .oRBIU_PIPE_line_stipple_state_sel(RBIU_PIPE_line_stipple_state_sel), 3

 .oRBIU_PIPE_line_cntl_sel(RBIU_PIPE_line_cntl_sel), 4

 .oRBIU_PIPE_window_scissor_tl_sel(RBIU_PIPE_window_scissor_tl_sel), 5

 .oRBIU_PIPE_window_scissor_br_sel(RBIU_PIPE_window_scissor_br_sel), 6

 .oRBIU_PIPE_screen_scissor_tl_sel(RBIU_PIPE_screen_scissor_tl_sel), 7

 .oRBIU_PIPE_screen_scissor_br_sel(RBIU_PIPE_screen_scissor_br_sel), 8

 .oRBIU_PIPE_cliprect_0_tl_sel(RBIU_PIPE_cliprect_0_tl_sel), 9

 .oRBIU_PIPE_cliprect_0_br_sel(RBIU_PIPE_cliprect_0_br_sel), 10

 .oRBIU_PIPE_cliprect_1_tl_sel(RBIU_PIPE_cliprect_1_tl_sel), 11

 .oRBIU_PIPE_cliprect_1_br_sel(RBIU_PIPE_cliprect_1_br_sel), 12

 .oRBIU_PIPE_cliprect_2_tl_sel(RBIU_PIPE_cliprect_2_tl_sel), 13

 .oRBIU_PIPE_cliprect_2_br_sel(RBIU_PIPE_cliprect_2_br_sel), 14

 .oRBIU_PIPE_cliprect_3_tl_sel(RBIU_PIPE_cliprect_3_tl_sel), 15

 .oRBIU_PIPE_cliprect_3_br_sel(RBIU_PIPE_cliprect_3_br_sel), 16

 .oRBIU_PIPE_cliprect_rule_sel(RBIU_PIPE_cliprect_rule_sel), 17

 .oRBIU_PIPE_poly_offset_front_scale_sel(RBIU_PIPE_poly_offset_front_scale_sel), 18

 .oRBIU_PIPE_poly_offset_front_offset_sel(RBIU_PIPE_poly_offset_front_offset_sel), 19

 .oRBIU_PIPE_poly_offset_back_scale_sel(RBIU_PIPE_poly_offset_back_scale_sel), 20

 .oRBIU_PIPE_poly_offset_back_offset_sel(RBIU_PIPE_poly_offset_back_offset_sel), 21

 .oRBIU_PIPE_rt_set_cntx0_busy(rt_set_cntx0_busy) 22

); 23

 24

//-- 25

 Page 46 of 87
Ex. 2118 - sc.v

// Instantiate blocks 1

//-- 2

 3

 sc_state usc_state (4

 .iSRST(sc_srst), 5

 .iSCLK(sclk_sc), 6

 .iRBIU_wdata(RBIU_wdata), 7

 .iRBIU_we(RBIU_we), 8

 .iRBIU_re(RBIU_re), 9

 .iRBIU_waddr(RBIU_waddr), 10

 .iRBIU_raddr(RBIU_raddr), 11

 .iRBIU_cpy(RBIU_cpy), 12

 .iRBIU_PIPE_susc_cntl_sel(RBIU_PIPE_susc_cntl_sel), 13

 .iRBIU_PIPE_sq_context_misc_sel(RBIU_PIPE_sq_context_misc_sel), 14

 .iRBIU_PIPE_window_offset_sel(RBIU_PIPE_window_offset_sel), 15

 .iRBIU_PIPE_aa_config_sel(RBIU_PIPE_aa_config_sel), 16

 .iRBIU_PIPE_aa_mask_sel(RBIU_PIPE_aa_mask_sel), 17

 .iRBIU_PIPE_jss_sample_sel_0_sel(RBIU_PIPE_jss_sample_sel_0_sel), 18

 .iRBIU_PIPE_jss_sample_sel_1_sel(RBIU_PIPE_jss_sample_sel_1_sel), 19

// .iRBIU_PIPE_msaa_2x2_offset_sel(RBIU_PIPE_msaa_2x2_offset_sel), 20

// .iRBIU_PIPE_aa_offset_tbl_0_sel(RBIU_PIPE_aa_offset_tbl_0_sel), 21

// .iRBIU_PIPE_aa_offset_tbl_1_sel(RBIU_PIPE_aa_offset_tbl_1_sel), 22

// .iRBIU_PIPE_aa_offset_tbl_2_sel(RBIU_PIPE_aa_offset_tbl_2_sel), 23

// .iRBIU_PIPE_aa_offset_tbl_3_sel(RBIU_PIPE_aa_offset_tbl_3_sel), 24

 .iRBIU_PIPE_line_stipple_sel(RBIU_PIPE_line_stipple_sel), 25

 Page 47 of 87
Ex. 2118 - sc.v

 .iRBIU_PIPE_line_stipple_state_sel(RBIU_PIPE_line_stipple_state_sel), 1

 .iRBIU_PIPE_line_cntl_sel(RBIU_PIPE_line_cntl_sel), 2

 .iRBIU_PIPE_window_scissor_tl_sel(RBIU_PIPE_window_scissor_tl_sel), 3

 .iRBIU_PIPE_window_scissor_br_sel(RBIU_PIPE_window_scissor_br_sel), 4

 .iRBIU_PIPE_screen_scissor_tl_sel(RBIU_PIPE_screen_scissor_tl_sel), 5

 .iRBIU_PIPE_screen_scissor_br_sel(RBIU_PIPE_screen_scissor_br_sel), 6

 .iRBIU_PIPE_cliprect_0_tl_sel(RBIU_PIPE_cliprect_0_tl_sel), 7

 .iRBIU_PIPE_cliprect_0_br_sel(RBIU_PIPE_cliprect_0_br_sel), 8

 .iRBIU_PIPE_cliprect_1_tl_sel(RBIU_PIPE_cliprect_1_tl_sel), 9

 .iRBIU_PIPE_cliprect_1_br_sel(RBIU_PIPE_cliprect_1_br_sel), 10

 .iRBIU_PIPE_cliprect_2_tl_sel(RBIU_PIPE_cliprect_2_tl_sel), 11

 .iRBIU_PIPE_cliprect_2_br_sel(RBIU_PIPE_cliprect_2_br_sel), 12

 .iRBIU_PIPE_cliprect_3_tl_sel(RBIU_PIPE_cliprect_3_tl_sel), 13

 .iRBIU_PIPE_cliprect_3_br_sel(RBIU_PIPE_cliprect_3_br_sel), 14

 .iRBIU_PIPE_cliprect_rule_sel(RBIU_PIPE_cliprect_rule_sel), 15

 .iRBIU_PIPE_poly_offset_front_scale_sel(RBIU_PIPE_poly_offset_front_scale_sel), 16

 .iRBIU_PIPE_poly_offset_front_offset_sel(RBIU_PIPE_poly_offset_front_offset_sel), 17

 .iRBIU_PIPE_poly_offset_back_scale_sel(RBIU_PIPE_poly_offset_back_scale_sel), 18

 .iRBIU_PIPE_poly_offset_back_offset_sel(RBIU_PIPE_poly_offset_back_offset_sel), 19

 .iSTATE_VAR_INDX(sr_state_var_indx), 20

 .iSTATE_VAR_INDX_DLY(3'b000), 21

 .iZ_SV_INDX(zff_state_var_indx), 22

 .iQPP_SV_INDX(qpp_state_var_indx), 23

 .iPKR_SV_INDX(pkr_sv_indx), 24

 .iITER_SV_INDX(iterator_sv_indx), 25

 Page 48 of 87
Ex. 2118 - sc.v

 1

 .oPIPE_RBIU_rdata(PIPE_RBIU_rdata), 2

 .oST_MSAA_ENABLE(st_msaa_enable), 3

 .oST_ITER_MSAA_ENABLE(st_iter_msaa_enable), 4

 .oST_AA_MASK(st_aa_mask), 5

 .oST_MSAA_NUM_SAMPLES(st_msaa_num_samples), 6

 .oST_ITER_MSAA_NUM_SAMPLES(st_iter_msaa_num_samples), 7

// .oST_SCISSOR_EN(st_scissor_en), 8

// .oST_DRAW_ZERO_LENGTH_LINE(st_draw_zero_length_line), 9

 .oST_WINDOW_OFFSET_DISABLE(st_window_offset_disable), 10

 .oST_WINDOW_SCISSOR_X_MIN(st_window_scissor_x_min), 11

 .oST_WINDOW_SCISSOR_X_MAX(st_window_scissor_x_max), 12

 .oST_WINDOW_SCISSOR_Y_MIN(st_window_scissor_y_min), 13

 .oST_WINDOW_SCISSOR_Y_MAX(st_window_scissor_y_max), 14

 .oST_SCREEN_SCISSOR_X_MIN(), 15

 .oST_SCREEN_SCISSOR_X_MAX(), 16

 .oST_SCREEN_SCISSOR_Y_MIN(), 17

 .oST_SCREEN_SCISSOR_Y_MAX(), 18

 .oST_X_OFFSET(st_x_offset), 19

 .oST_Y_OFFSET(st_y_offset), 20

 .oST_BRES_CNTL_EN(st_bres_cntl_en), 21

 .oST_BRES_CNTL_REG(st_bres_cntl_reg), 22

 23

 .oST_OUTPUT_SCREEN_XY(st_output_screen_xy), 24

 .oST_LINE_STIPPLE_ENABLE(st_line_stipple_enable), 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 601 of 611

 Page 49 of 87
Ex. 2118 - sc.v

 .oST_JSS_ENABLE(st_jss_enable), 1

 .oST_ITER_JSS_ENABLE(st_iter_jss_enable), 2

 .oST_JSS_X_DIM(st_jss_x_dim), 3

 .oST_JSS_Y_DIM(st_jss_y_dim), 4

 .oST_MAX_SAMPLE_DIST(st_max_sample_dist), 5

 .oST_JSS_SAMPLE0_SEL(st_jss_sample0_sel), 6

 .oST_JSS_SAMPLE1_SEL(st_jss_sample1_sel), 7

 .oST_JSS_SAMPLE2_SEL(st_jss_sample2_sel), 8

 .oST_JSS_SAMPLE3_SEL(st_jss_sample3_sel), 9

 .oST_JSS_SAMPLE4_SEL(st_jss_sample4_sel), 10

 .oST_JSS_SAMPLE5_SEL(st_jss_sample5_sel), 11

 .oST_JSS_SAMPLE6_SEL(st_jss_sample6_sel), 12

 .oST_JSS_SAMPLE7_SEL(st_jss_sample7_sel), 13

 .oST_JSS_SAMPLE8_SEL(st_jss_sample8_sel), 14

 .oST_JSS_SAMPLE9_SEL(st_jss_sample9_sel), 15

 .oST_JSS_SAMPLE10_SEL(st_jss_sample10_sel), 16

 .oST_JSS_SAMPLE11_SEL(st_jss_sample11_sel), 17

 .oST_JSS_SAMPLE12_SEL(st_jss_sample12_sel), 18

 .oST_JSS_SAMPLE13_SEL(st_jss_sample13_sel), 19

 .oST_JSS_SAMPLE14_SEL(st_jss_sample14_sel), 20

 .oST_JSS_SAMPLE15_SEL(st_jss_sample15_sel), 21

// .oST_MSAA_URC_SAMP_OFFSET_X(st_msaa_urc_samp_offset_x), 22

// .oST_MSAA_URC_SAMP_OFFSET_Y(st_msaa_urc_samp_offset_y), 23

// .oST_MSAA_LLC_SAMP_OFFSET_X(st_msaa_llc_samp_offset_x), 24

// .oST_MSAA_LLC_SAMP_OFFSET_Y(st_msaa_llc_samp_offset_y), 25

 Page 50 of 87
Ex. 2118 - sc.v

// .oST_MSAA_LRC_SAMP_OFFSET_X(st_msaa_lrc_samp_offset_x), 1

// .oST_MSAA_LRC_SAMP_OFFSET_Y(st_msaa_lrc_samp_offset_y), 2

 .oST_SAMPLE_0_X(st_sample_0_x), 3

 .oST_SAMPLE_0_Y(st_sample_0_y), 4

 .oST_SAMPLE_1_X(st_sample_1_x), 5

 .oST_SAMPLE_1_Y(st_sample_1_y), 6

 .oST_SAMPLE_2_X(st_sample_2_x), 7

 .oST_SAMPLE_2_Y(st_sample_2_y), 8

 .oST_SAMPLE_3_X(st_sample_3_x), 9

 .oST_SAMPLE_3_Y(st_sample_3_y), 10

 .oST_SAMPLE_4_X(st_sample_4_x), 11

 .oST_SAMPLE_4_Y(st_sample_4_y), 12

 .oST_SAMPLE_5_X(st_sample_5_x), 13

 .oST_SAMPLE_5_Y(st_sample_5_y), 14

 .oST_SAMPLE_6_X(st_sample_6_x), 15

 .oST_SAMPLE_6_Y(st_sample_6_y), 16

 .oST_SAMPLE_7_X(st_sample_7_x), 17

 .oST_SAMPLE_7_Y(st_sample_7_y), 18

 .oST_SAMPLE_8_X(st_sample_8_x), 19

 .oST_SAMPLE_8_Y(st_sample_8_y), 20

 .oST_SAMPLE_9_X(st_sample_9_x), 21

 .oST_SAMPLE_9_Y(st_sample_9_y), 22

 .oST_SAMPLE_10_X(st_sample_10_x), 23

 .oST_SAMPLE_10_Y(st_sample_10_y), 24

 .oST_SAMPLE_11_X(st_sample_11_x), 25

 Page 51 of 87
Ex. 2118 - sc.v

 .oST_SAMPLE_11_Y(st_sample_11_y), 1

 .oST_SAMPLE_12_X(st_sample_12_x), 2

 .oST_SAMPLE_12_Y(st_sample_12_y), 3

 .oST_SAMPLE_13_X(st_sample_13_x), 4

 .oST_SAMPLE_13_Y(st_sample_13_y), 5

 .oST_SAMPLE_14_X(st_sample_14_x), 6

 .oST_SAMPLE_14_Y(st_sample_14_y), 7

 .oST_SAMPLE_15_X(st_sample_15_x), 8

 .oST_SAMPLE_15_Y(st_sample_15_y), 9

 .oST_LINE_PATTERN(st_line_pattern), 10

 .oST_REPEAT_COUNT(st_repeat_count), 11

// .oST_PATTERN_START(st_pattern_start), 12

 .oST_PATTERN_BIT_ORDER(st_pattern_bit_order), 13

 .oST_AUTO_RESET_ENABLE(st_auto_reset_enable), 14

 .oST_CURRENT_PTR(st_current_ptr), 15

 .oST_CURRENT_COUNT(st_current_count), 16

 .oST_CLIPRECT_ENABLE(st_cliprect_enable), 17

 .oST_CLIPRECT_0_X_MIN(st_cliprect_0_x_min), 18

 .oST_CLIPRECT_0_Y_MIN(st_cliprect_0_y_min), 19

 .oST_CLIPRECT_0_X_MAX(st_cliprect_0_x_max), 20

 .oST_CLIPRECT_0_Y_MAX(st_cliprect_0_y_max), 21

 .oST_CLIPRECT_1_X_MIN(st_cliprect_1_x_min), 22

 .oST_CLIPRECT_1_Y_MIN(st_cliprect_1_y_min), 23

 .oST_CLIPRECT_1_X_MAX(st_cliprect_1_x_max), 24

 .oST_CLIPRECT_1_Y_MAX(st_cliprect_1_y_max), 25

 Page 52 of 87
Ex. 2118 - sc.v

 .oST_CLIPRECT_2_X_MIN(st_cliprect_2_x_min), 1

 .oST_CLIPRECT_2_Y_MIN(st_cliprect_2_y_min), 2

 .oST_CLIPRECT_2_X_MAX(st_cliprect_2_x_max), 3

 .oST_CLIPRECT_2_Y_MAX(st_cliprect_2_y_max), 4

 .oST_CLIPRECT_3_X_MIN(st_cliprect_3_x_min), 5

 .oST_CLIPRECT_3_Y_MIN(st_cliprect_3_y_min), 6

 .oST_CLIPRECT_3_X_MAX(st_cliprect_3_x_max), 7

 .oST_CLIPRECT_3_Y_MAX(st_cliprect_3_y_max), 8

 .oST_CLIP_RULE(st_clip_rule), 9

 .oST_POLY_OFFSET_PARA_ENABLE(st_poly_offset_para_enable), 10

 .oST_POLY_OFFSET_BACK_ENABLE(st_poly_offset_back_enable), 11

 .oST_POLY_OFFSET_FRONT_ENABLE(st_poly_offset_front_enable), 12

 .oST_POLY_OFFSET_FRONT_SCALE(st_poly_offset_front_scale), 13

 .oST_POLY_OFFSET_FRONT_OFFSET(st_poly_offset_front_offset), 14

 .oST_POLY_OFFSET_BACK_SCALE(st_poly_offset_back_scale), 15

 .oST_POLY_OFFSET_BACK_OFFSET(st_poly_offset_back_offset), 16

 .oST_SEND_CENTERS(st_send_centers), 17

 .oST_SEND_CENTROIDS(st_send_centroids) 18

); 19

 20

 sc_stage_reg usc_stage_reg(21

 .iSRST(sc_srst), 22

 .iSCLK(sclk_sc), 23

 .iFREEZE_B(pipe_freeze_b_dly), 24

 .iFREEZE1_B(pipe_freeze_b_dly1), 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 602 of 611

 Page 53 of 87
Ex. 2118 - sc.v

 .iVALID(valid_in), 1

 .iPHASE(phase_in), 2

 .iP0(p0_in), 3

 .iP1(p1_in), 4

 .iP2(p2_in), 5

 .iP3(p3_in), 6

 .iP4(p4_in), 7

 .iXY0(xy0_in), 8

 .iXY1(xy1_in), 9

 .iXY2(xy2_in), 10

 .iZMINMAX(zminmax_in), 11

 .iCNTL(cntl_in), 12

 .iV0_INDX(v0_indx_in), 13

 .iRT_SET_CNTX0_BUSY(rt_set_cntx0_busy), 14

 .iCNTX0_DECR(cntx0_decr), 15

 .iCNTX1TO7_DECR(cntx1to7_decr), 16

 .iPKR_ITER_CNTX0_BUSY(pkr_iter_cntx0_busy), 17

 .iPKR_ITER_CNTX1TO7_BUSY(pkr_iter_cntx1to7_busy), 18

 19

 .oPRIM_WE(sr_prim_we), 20

 .oZ_WE(sr_z_we), 21

 .oPIPE_VALID(sr_pipe_valid), 22

 .oEVENT(sr_event), 23

 .oEVENT_ID(sr_event_id), 24

 .oNULL_PRIM(sr_null_prim), 25

 Page 54 of 87
Ex. 2118 - sc.v

 .oDEALLOC_SLOT(sr_dealloc_slot), 1

 .oFIRST_PRIM_OF_SLOT(sr_first_prim_of_slot), 2

 .oEND_OF_PKT(sr_end_of_pkt), 3

 .oBACK_FACE(sr_back_face), 4

 .oPROVOKING_VERTEX(sr_provoking_vertex), 5

 .oX_MAJOR(sr_x_major), 6

 .oSTART_IN_DIAMOND(sr_start_in_diamond), 7

 .oEND_IN_DIAMOND(sr_end_in_diamond), 8

 .oPRIM_TYPE(sr_prim_type), 9

 .oPHASE(sr_phase), 10

 .oSTATE_VAR_INDX(sr_state_var_indx), 11

 .oV0(sr_v0), 12

 .oV1(sr_v1), 13

 .oV2(sr_v2), 14

 .oREF_X(sr_ref_x), 15

 .oREF_Y(sr_ref_y), 16

 .oI0(sr_i0), 17

 .oIX(sr_ix), 18

 .oIY(sr_iy), 19

 .oJ0(sr_j0), 20

 .oJX(sr_jx), 21

 .oJY(sr_jy), 22

 .oW0(sr_w0), 23

 .oWX(sr_wx), 24

 .oWY(sr_wy), 25

 Page 55 of 87
Ex. 2118 - sc.v

 .oPARAM_CACHE_INDX0(sr_param_cache_indx0), 1

 .oPARAM_CACHE_INDX1(sr_param_cache_indx1), 2

 .oPARAM_CACHE_INDX2(sr_param_cache_indx2), 3

 .oNULL_PRIM_ZFF(sr_null_prim_zff), 4

 .oZY_MAX_ZFF(sr_zy_max_zff), 5

 .oBACK_FACE_ZFF(sr_back_face_zff), 6

 .oPRIM_TYPE_ZFF(sr_prim_type_zff), 7

 .oPOLYMODE_ZFF(sr_polymode_zff), 8

 .oSTATE_VAR_INDX_ZFF(sr_state_var_indx_zff), 9

 .oREF_X_ZFF(sr_ref_x_zff), 10

 .oREF_Y_ZFF(sr_ref_y_zff), 11

 .oZ0_ZFF(sr_z0_zff), 12

 .oZX_ZFF(sr_zx_zff), 13

 .oZY_ZFF(sr_zy_zff), 14

 .oZ_MIN_ZFF(sr_z_min_zff), 15

 .oZ_MAX_ZFF(sr_z_max_zff), 16

 .oCNTX0_BUSY(sr_cntx0_busy), 17

 .oCNTX1TO7_BUSY(sr_cntx1to7_busy) 18

); 19

 20

 21

 sc_primfifo usc_primfifo(22

 .we(sr_prim_we), 23

 .re(prim_ff_re), 24

 .full(prim_ff_full), 25

 Page 56 of 87
Ex. 2118 - sc.v

 .empty(prim_ff_empty), 1

 .busy(), 2

 .write_data(prim_ff_wr_data), 3

 .read_data(prim_ff_rd_data), 4

 .clk(sclk_sc), 5

 .reset(sc_srst) 6

); 7

 8

 9

 sc_zfifo usc_zfifo(10

 .we(sr_z_we), 11

 .re(z_ff_re), 12

 .full(z_ff_full), 13

 .empty(z_ff_empty), 14

 .busy(), 15

 .write_data(z_ff_wr_data), 16

 .read_data(z_ff_rd_data), 17

 .clk(sclk_sc), 18

 .reset(sc_srst) 19

); 20

 21

 22

 assign st_scissor_en = 1'b1; 23

 24

 sc_pipe usc_pipe(25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 603 of 611

 Page 57 of 87
Ex. 2118 - sc.v

 .iPIPE_FREEZE_B(pipe_freeze_b_dly), 1

 .iSCLK(sclk_sc), 2

 .iSRST(sc_srst), 3

 .iPIPE_RTS(sr_pipe_valid), 4

 .iPIPE_PHASE(sr_phase), 5

 .iEVENT(sr_event), 6

 .iEVENT_ID(sr_event_id), 7

 .iX_MAJOR(sr_x_major), 8

 .iSTART_IN_DIAMOND(sr_start_in_diamond), 9

 .iEND_IN_DIAMOND(sr_end_in_diamond), 10

 .iNULL_PRIM(sr_null_prim), 11

 .iPRIM_TYPE(sr_prim_type), 12

 .iV0(sr_v0), 13

 .iV1(sr_v1), 14

 .iV2(sr_v2), 15

 .iV0_EARLY(xy0_in), 16

 .iV1_EARLY(xy1_in), 17

 .iST_MSAA_ENABLE(st_msaa_enable), 18

 .iST_JSS_ENABLE(st_jss_enable), 19

 .iST_MAX_SAMPLE_DIST(st_max_sample_dist), 20

 .iST_LINE_STIPPLE_ENABLE(st_line_stipple_enable), 21

 .iST_SCISSOR_EN(st_scissor_en), 22

 .iST_DRAW_ZERO_LENGTH_LINE(st_draw_zero_length_line), 23

 .iST_X_MIN(st_window_scissor_x_min), 24

 .iST_X_MAX(st_window_scissor_x_max), 25

 Page 58 of 87
Ex. 2118 - sc.v

 .iST_Y_MIN(st_window_scissor_y_min), 1

 .iST_Y_MAX(st_window_scissor_y_max), 2

 .iST_X_OFFSET(st_x_offset), 3

 .iST_Y_OFFSET(st_y_offset), 4

 .iST_BRES_CNTL_EN(st_bres_cntl_en), 5

 .iST_BRES_CNTL_REG(st_bres_cntl_reg), 6

 7

 .oPIPE_RTS(pipe_rts), 8

 .oPIPE_PHASE(pipe_phase), 9

 .oEVENT(event_flag), 10

 .oEVENT_ID(event_id), 11

 .oE0(e0), 12

 .oE0_Y(e0_y), 13

 .oE0_DX(e0_dx), 14

 .oE0_DY(e0_dy), 15

 .oE1(e1), 16

 .oE1_X(e1_x), 17

 .oE1_DX(e1_dx), 18

 .oE1_DY(e1_dy), 19

 .oE2(e2), 20

 .oE2_X(e2_x), 21

 .oE2_DX(e2_dx), 22

 .oE2_DY(e2_dy), 23

 .oX_DIR(x_dir), 24

 .oX_START(x_start), 25

 Page 59 of 87
Ex. 2118 - sc.v

 .oX_END(x_end), 1

 .oY_DIR(y_dir), 2

 .oY_START(y_start), 3

 .oY_END(y_end), 4

 .oBB_FRACT_BITS(bb_fract_bits), 5

 .oPASS_EMPTY_PRIM(pass_empty_prim) 6

); 7

 8

 9

 sc_coarse_walker usc_coarse_walker(10

 .iSCLK(sclk_sc), 11

 .iSRST(sc_srst), 12

 .iPIPE_RTS(pipe_rts), 13

 .iPIPE_PHASE(pipe_phase), 14

 .iEVENT(event_flag), 15

 .iEVENT_ID(event_id), 16

 .iBB_FRACT_BITS(bb_fract_bits), 17

 .iPASS_EMPTY_PRIM(pass_empty_prim), 18

 .iE0(e0), 19

 .iE0_Y(e0_y), 20

 .iE0_DX(e0_dx), 21

 .iE0_DY(e0_dy), 22

 .iE1(e1), 23

 .iE1_X(e1_x), 24

 .iE1_DX(e1_dx), 25

 Page 60 of 87
Ex. 2118 - sc.v

 .iE1_DY(e1_dy), 1

 .iE2(e2), 2

 .iE2_X(e2_x), 3

 .iE2_DX(e2_dx), 4

 .iE2_DY(e2_dy), 5

 .iX_DIR(x_dir), 6

 .iX_START(x_start), 7

 .iX_END(x_end), 8

 .iY_DIR(y_dir), 9

 .iY_START(y_start), 10

 .iY_END(y_end), 11

 .iQMASK_FF_ALM_FULL(tile_ff_full), 12

 .iRC_RTR(rc_rtr), 13

 14

 .oEVENT(cw_event), 15

 .oEVENT_ID(cw_event_id), 16

 .oBB_FRACT_BITS(cw_bb_fract_bits), 17

 .oPASS_EMPTY_PRIM(cw_pass_empty_prim), 18

 .oE0(cw_e0), 19

 .oE0_Y(cw_e0y), 20

 .oE0_DX(cw_dxe0), 21

 .oE0_DY(cw_dye0), 22

 .oE1(cw_e1), 23

 .oE1_X(cw_e1x), 24

 .oE1_DX(cw_dxe1), 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 604 of 611

 Page 61 of 87
Ex. 2118 - sc.v

 .oE1_DY(cw_dye1), 1

 .oE2(cw_e2), 2

 .oE2_X(cw_e2x), 3

 .oE2_DX(cw_dxe2), 4

 .oE2_DY(cw_dye2), 5

 .oX_DIR(cw_xdir), 6

 .oX_CURR(cw_tilex), 7

 .oX_MIN(cw_xmin), 8

 .oX_MAX(cw_xmax), 9

 .oY_DIR(cw_ydir), 10

 .oY_CURR(cw_tiley), 11

 .oY_MIN(cw_ymin), 12

 .oY_MAX(cw_ymax), 13

 .oLAST_TILE_OF_PRIM(cw_last_tile), 14

 .oZ_FF_RD_EN(z_ff_re), 15

 .oPRIM_RTS(cw_tile_valid), 16

 .oPIPE_FREEZE_B_EARLY(pipe_freeze_b_early), 17

 .oPIPE_FREEZE_B_DLY(pipe_freeze_b_dly), 18

 .oPIPE_FREEZE_B_DLY1(pipe_freeze_b_dly1), 19

 .oQMSK_Z_FREEZE_B(qmsk_z_freeze_b) 20

); 21

 22

 // rwr - tmp drivers until sigs are driven 23

 assign cw_xmajor = 1'b0; 24

 25

 Page 62 of 87
Ex. 2118 - sc.v

 sc_quadmask usc_quadmask(1

 .iSCLK(sclk_sc), 2

 .freezeb(qmsk_z_freeze_b), 3

 .tile_valid(cw_tile_valid), 4

 .event_in(cw_event), 5

 .event_id_in(cw_event_id), 6

 .last_tile_in(cw_last_tile), 7

 .pass_empty_prim_in(cw_pass_empty_prim), 8

 .xdir_in(cw_xdir), 9

 .ydir_in(cw_ydir), 10

 .xmajor_in(cw_xmajor), 11

 .tilex_in(cw_tilex), 12

 .tiley_in(cw_tiley), 13

 .xmin_in(cw_xmin), 14

 .xmax_in(cw_xmax), 15

 .ymin_in(cw_ymin), 16

 .ymax_in(cw_ymax), 17

 .bb_fract_bits_in(cw_bb_fract_bits), 18

 .e0y(cw_e0y), 19

 .e1x(cw_e1x), 20

 .e2x(cw_e2x), 21

 .dxe0_in(cw_dxe0), 22

 .dye0_in(cw_dye0), 23

 .dxe1_in(cw_dxe1), 24

 .dye1_in(cw_dye1), 25

 Page 63 of 87
Ex. 2118 - sc.v

 .dxe2_in(cw_dxe2), 1

 .dye2_in(cw_dye2), 2

 .e0_in(cw_e0), 3

 .e1_in(cw_e1), 4

 .e2_in(cw_e2), 5

 6

 .last_tile_out(qm_last_tile), 7

 .event_out(qm_event), 8

 .event_id_out(qm_event_id), 9

 .xdir_out(qm_xdir), 10

 .ydir_out(qm_ydir), 11

 .xmajor_out(qm_xmajor), 12

 .tilex_out(qm_tilex), 13

 .tiley_out(qm_tiley), 14

 .tilex_m3_out(qm_tilex_m3), 15

 .tiley_m3_out(qm_tiley_m3), 16

 .xmin_out(qm_xmin), 17

 .xmax_out(qm_xmax), 18

 .ymin_out(qm_ymin), 19

 .ymax_out(qm_ymax), 20

 .bb_fract_bits_out(qm_bb_fract_bits), 21

 .z_mask_needed_out(qm_z_mask_needed), 22

 .e0_out(qm_e0), 23

 .e1_out(qm_e1), 24

 .e2_out(qm_e2), 25

 Page 64 of 87
Ex. 2118 - sc.v

 .dxe0_out(qm_dxe0), 1

 .dye0_out(qm_dye0), 2

 .dxe1_out(qm_dxe1), 3

 .dye1_out(qm_dye1), 4

 .dxe2_out(qm_dxe2), 5

 .dye2_out(qm_dye2), 6

 .quadmask_out(qm_quadmask), 7

 .quadmask_valid(qm_quadmask_valid) 8

); 9

 10

 11

 sc_z_interp usc_z_interp(12

 .iSCLK(sclk_sc), 13

 .iSRST(sc_srst), 14

 .iFREEZE_B(qmsk_z_freeze_b), 15

 .iZ0(zff_z0), 16

 .iZX(zff_zx), 17

 .iZY(zff_zy), 18

 .iZ_MIN(zff_z_min), 19

 .iZ_MAX(zff_z_max), 20

 .iREF_X(zff_ref_x), 21

 .iREF_Y(zff_ref_y), 22

 .iZY_MAX(zff_zy_max), 23

 .iBACK_FACE(zff_back_face), 24

 .iPRIM_TYPE(zff_prim_type), 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 605 of 611

 Page 65 of 87
Ex. 2118 - sc.v

 .iPOLYMODE(zff_polymode), 1

 .iNULL_PRIM(zff_null_prim), 2

 .iSTATE_ID(zff_state_var_indx), 3

 .iST_OFFSET_FRONT_EN(st_poly_offset_front_enable), 4

 .iST_OFFSET_BACK_EN(st_poly_offset_back_enable), 5

 .iST_OFFSET_PARA_EN(st_poly_offset_para_enable), 6

 .iST_OFFSET_FRONT(st_poly_offset_front_offset), 7

 .iST_OFFSET_BACK(st_poly_offset_back_offset), 8

 .iST_SCALE_FRONT(st_poly_offset_front_scale), 9

 .iST_SCALE_BACK(st_poly_offset_back_scale), 10

 11

 12

 .iEVENT(qm_event), 13

 .iEVENT_ID(qm_event_id), 14

 .iTILEX(qm_tilex), 15

 .iTILEY(qm_tiley), 16

 .iMASK(qm_quadmask), 17

 .iQM_VALID(qm_quadmask_valid), 18

 .iZ_MASK_NEEDED(qm_z_mask_needed), 19

 20

 .oEVENT(rc_event), 21

 .oTILEX(rc_tilex), 22

 .oTILEY(rc_tiley), 23

 .oMINZ(rc_minz), 24

 .oMAXZ(rc_maxz), 25

 Page 66 of 87
Ex. 2118 - sc.v

 .oZPLANE(rc_zplane), 1

 .oMASK(rc_mask), 2

 .oBACK(rc_back), 3

 .oSTATE_ID(rc_state), 4

 .oCOVERED(rc_covered), 5

 .oVALID(rc_send) 6

); 7

 8

 // !!!! rwr - tmp drivers until test can be updated 9

 wire [13:0] tmp_st_cliprect_0_x_min = 'b0; 10

 wire [13:0] tmp_st_cliprect_0_y_min = 'b0; 11

 wire [13:0] tmp_st_cliprect_0_x_max = 'b0; 12

 wire [13:0] tmp_st_cliprect_0_y_max = 'b0; 13

 wire [13:0] tmp_st_cliprect_1_x_min = 'b0; 14

 wire [13:0] tmp_st_cliprect_1_y_min = 'b0; 15

 wire [13:0] tmp_st_cliprect_1_x_max = 'b0; 16

 wire [13:0] tmp_st_cliprect_1_y_max = 'b0; 17

 wire [13:0] tmp_st_cliprect_2_x_min = 'b0; 18

 wire [13:0] tmp_st_cliprect_2_y_min = 'b0; 19

 wire [13:0] tmp_st_cliprect_2_x_max = 'b0; 20

 wire [13:0] tmp_st_cliprect_2_y_max = 'b0; 21

 wire [13:0] tmp_st_cliprect_3_x_min = 'b0; 22

 wire [13:0] tmp_st_cliprect_3_y_min = 'b0; 23

 wire [13:0] tmp_st_cliprect_3_x_max = 'b0; 24

 wire [13:0] tmp_st_cliprect_3_y_max = 'b0; 25

 Page 67 of 87
Ex. 2118 - sc.v

 1

 wire [2:0] tmp_st_msaa_urc_samp_offset_x = 'b0; 2

 wire [2:0] tmp_st_msaa_urc_samp_offset_y = 'b0; 3

 wire [2:0] tmp_st_msaa_llc_samp_offset_x = 'b0; 4

 wire [2:0] tmp_st_msaa_llc_samp_offset_y = 'b0; 5

 wire [2:0] tmp_st_msaa_lrc_samp_offset_x = 'b0; 6

 wire [2:0] tmp_st_msaa_lrc_samp_offset_y = 'b0; 7

 8

 wire [127:0] tmp_st_aa_offset_tbl = 'b0; 9

 10

 11

 sc_qdpr_proc usc_qdpr_proc(12

 .iSCLK(sclk_sc), 13

 .iSRST(sc_srst), 14

 15

 .iPRIM_FIFO_EMPTY(prim_ff_empty), 16

 .iINTERP_PRIM_DATA(prim_ff_rd_data), 17

 .oPRIM_FIFO_ADVANCE(prim_ff_re), 18

 .oCNTX0_DECR(cntx0_decr), 19

 .oCNTX1TO7_DECR(cntx1to7_decr), 20

 21

 .iQM_QUADMASK_VALID(qm_quadmask_valid), 22

 .iQM_DATA(tile_ff_wr_data), 23

 .oTILEDATA_FIFO_FULL(tile_ff_full), 24

 25

 Page 68 of 87
Ex. 2118 - sc.v

 .iRC_SC_HIER_MASK(rc_in_hier_mask), 1

 .iRC_SC_RB_ID(rc_in_rb_id), 2

 .iRC_SC_SPLIT(rc_in_split), 3

 .iRC_SC_HIER_SEND(rc_in_hier_send), 4

 .oSC_RC_HIER_RTR(rc_hier_rtr), 5

 6

 .iFREEZE(qdpkr_in_fz), 7

 8

 .oQPP_SV_INDX(qpp_state_var_indx), 9

 .iSV_MSAA_ENABLE(st_msaa_enable), 10

 .iSV_JSS_ENABLE(st_jss_enable), 11

 .iSV_MSAA_NUM_SAMPLES(st_msaa_num_samples[2:0]), 12

 .iSV_AA_MASK(st_aa_mask), 13

 .iSV_JSS_X_DIM(st_jss_x_dim), 14

 .iSV_JSS_Y_DIM(st_jss_y_dim), 15

 .iSV_JSS_SAMPLE_SEL({st_jss_sample0_sel[2:0], 16

 st_jss_sample1_sel[2:0], 17

 st_jss_sample2_sel[2:0], 18

 st_jss_sample3_sel[2:0], 19

 st_jss_sample4_sel[2:0], 20

 st_jss_sample5_sel[2:0], 21

 st_jss_sample6_sel[2:0], 22

 st_jss_sample7_sel[2:0], 23

 st_jss_sample8_sel[2:0], 24

 st_jss_sample9_sel[2:0], 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 606 of 611

 Page 69 of 87
Ex. 2118 - sc.v

 st_jss_sample10_sel[2:0], 1

 st_jss_sample11_sel[2:0], 2

 st_jss_sample12_sel[2:0], 3

 st_jss_sample13_sel[2:0], 4

 st_jss_sample14_sel[2:0], 5

 st_jss_sample15_sel[2:0]}), 6

 .iSV_CLIPRECT_ENABLE(st_cliprect_enable), 7

 .iSV_CLIPRECT_RULE(st_clip_rule), 8

 .iSV_CLIPRECT_0_XMIN(tmp_st_cliprect_0_x_min), 9

 .iSV_CLIPRECT_0_YMIN(tmp_st_cliprect_0_y_min), 10

 .iSV_CLIPRECT_0_XMAX(tmp_st_cliprect_0_x_max), 11

 .iSV_CLIPRECT_0_YMAX(tmp_st_cliprect_0_y_max), 12

 .iSV_CLIPRECT_1_XMIN(tmp_st_cliprect_1_x_min), 13

 .iSV_CLIPRECT_1_YMIN(tmp_st_cliprect_1_y_min), 14

 .iSV_CLIPRECT_1_XMAX(tmp_st_cliprect_1_x_max), 15

 .iSV_CLIPRECT_1_YMAX(tmp_st_cliprect_1_y_max), 16

 .iSV_CLIPRECT_2_XMIN(tmp_st_cliprect_2_x_min), 17

 .iSV_CLIPRECT_2_YMIN(tmp_st_cliprect_2_y_min), 18

 .iSV_CLIPRECT_2_XMAX(tmp_st_cliprect_2_x_max), 19

 .iSV_CLIPRECT_2_YMAX(tmp_st_cliprect_2_y_max), 20

 .iSV_CLIPRECT_3_XMIN(tmp_st_cliprect_3_x_min), 21

 .iSV_CLIPRECT_3_YMIN(tmp_st_cliprect_3_y_min), 22

 .iSV_CLIPRECT_3_XMAX(tmp_st_cliprect_3_x_max), 23

 .iSV_CLIPRECT_3_YMAX(tmp_st_cliprect_3_y_max), 24

 25

 Page 70 of 87
Ex. 2118 - sc.v

 .oQPP_PRIM_DATA(qpp_prim_data), 1

 .oQPP_FPOS_EARLY(qpp_fpos_early), 2

 3

 .oQPP_LAST_QDPAIR_OF_PRIM(qpp_last_qdpair_of_prim), 4

 5

 .oQPP_Q0_LAST_OF_TILE(qpp_q0_last_of_tile), 6

 .oQPP_Q0_ZMASK_NEEDED(qpp_q0_zmask_needed), 7

 .oQPP_Q0_QHIT(qpp_q0_qhit), 8

 .oQPP_Q0_TILEX(qpp_q0_tilex), 9

 .oQPP_Q0_TILEY(qpp_q0_tiley), 10

 .oQPP_Q0_QUADX(qpp_q0_quadx), 11

 .oQPP_Q0_QUADY(qpp_q0_quady), 12

 .oQPP_Q0_RB_ID(qpp_q0_rb_id), 13

 .oQPP_Q0_SPLIT(qpp_q0_split), 14

 .oQPP_Q0_ULC_SAMPLE_MASK(qpp_q0_ulc_sample_mask), 15

 .oQPP_Q0_URC_SAMPLE_MASK(qpp_q0_urc_sample_mask), 16

 .oQPP_Q0_LLC_SAMPLE_MASK(qpp_q0_llc_sample_mask), 17

 .oQPP_Q0_LRC_SAMPLE_MASK(qpp_q0_lrc_sample_mask), 18

 .oQPP_Q0_ULC_CNTRMOST_SAMPLE_ID(qpp_q0_ulc_cntrmost_sample_id), 19

 .oQPP_Q0_URC_CNTRMOST_SAMPLE_ID(qpp_q0_urc_cntrmost_sample_id), 20

 .oQPP_Q0_LLC_CNTRMOST_SAMPLE_ID(qpp_q0_llc_cntrmost_sample_id), 21

 .oQPP_Q0_LRC_CNTRMOST_SAMPLE_ID(qpp_q0_lrc_cntrmost_sample_id), 22

 23

 .oQPP_Q1_LAST_OF_TILE(qpp_q1_last_of_tile), 24

 .oQPP_Q1_ZMASK_NEEDED(qpp_q1_zmask_needed), 25

 Page 71 of 87
Ex. 2118 - sc.v

 .oQPP_Q1_QHIT(qpp_q1_qhit), 1

 .oQPP_Q1_TILEX(qpp_q1_tilex), 2

 .oQPP_Q1_TILEY(qpp_q1_tiley), 3

 .oQPP_Q1_QUADX(qpp_q1_quadx), 4

 .oQPP_Q1_QUADY(qpp_q1_quady), 5

 .oQPP_Q1_RB_ID(qpp_q1_rb_id), 6

 .oQPP_Q1_SPLIT(qpp_q1_split), 7

 .oQPP_Q1_ULC_SAMPLE_MASK(qpp_q1_ulc_sample_mask), 8

 .oQPP_Q1_URC_SAMPLE_MASK(qpp_q1_urc_sample_mask), 9

 .oQPP_Q1_LLC_SAMPLE_MASK(qpp_q1_llc_sample_mask), 10

 .oQPP_Q1_LRC_SAMPLE_MASK(qpp_q1_lrc_sample_mask), 11

 .oQPP_Q1_ULC_CNTRMOST_SAMPLE_ID(qpp_q1_ulc_cntrmost_sample_id), 12

 .oQPP_Q1_URC_CNTRMOST_SAMPLE_ID(qpp_q1_urc_cntrmost_sample_id), 13

 .oQPP_Q1_LLC_CNTRMOST_SAMPLE_ID(qpp_q1_llc_cntrmost_sample_id), 14

 .oQPP_Q1_LRC_CNTRMOST_SAMPLE_ID(qpp_q1_lrc_cntrmost_sample_id) 15

); 16

 17

 wire [`SC_QD_DATA_WIDTH-1:0] qd0_data; 18

 wire [`SC_QD_DATA_WIDTH-1:0] qd1_data; 19

 20

 assign qd0_data[`SC_QD_TILEX] = qpp_q0_tilex; 21

 assign qd0_data[`SC_QD_TILEY] = qpp_q0_tiley; 22

 assign qd0_data[`SC_QD_QUADX] = qpp_q0_quadx; 23

 assign qd0_data[`SC_QD_QUADY] = qpp_q0_quady; 24

 assign qd0_data[`SC_QD_RB_ID] = qpp_q0_rb_id; 25

 Page 72 of 87
Ex. 2118 - sc.v

 assign qd0_data[`SC_QD_SPLIT] = qpp_q0_split; 1

 assign qd0_data[`SC_QD_ULC_SAMPLE_MASK] = qpp_q0_ulc_sample_mask; 2

 assign qd0_data[`SC_QD_URC_SAMPLE_MASK] = qpp_q0_urc_sample_mask; 3

 assign qd0_data[`SC_QD_LLC_SAMPLE_MASK] = qpp_q0_llc_sample_mask; 4

 assign qd0_data[`SC_QD_LRC_SAMPLE_MASK] = qpp_q0_lrc_sample_mask; 5

 assign qd0_data[`SC_QD_ULC_CNTRMOST_SAMPLE_ID] = 6
qpp_q0_ulc_cntrmost_sample_id; 7

 assign qd0_data[`SC_QD_URC_CNTRMOST_SAMPLE_ID] = 8
qpp_q0_urc_cntrmost_sample_id; 9

 assign qd0_data[`SC_QD_LLC_CNTRMOST_SAMPLE_ID] = 10
qpp_q0_llc_cntrmost_sample_id; 11

 assign qd0_data[`SC_QD_LRC_CNTRMOST_SAMPLE_ID] = 12
qpp_q0_lrc_cntrmost_sample_id; 13

 14

 assign qd1_data[`SC_QD_TILEX] = qpp_q1_tilex; 15

 assign qd1_data[`SC_QD_TILEY] = qpp_q1_tiley; 16

 assign qd1_data[`SC_QD_QUADX] = qpp_q1_quadx; 17

 assign qd1_data[`SC_QD_QUADY] = qpp_q1_quady; 18

 assign qd1_data[`SC_QD_RB_ID] = qpp_q1_rb_id; 19

 assign qd1_data[`SC_QD_SPLIT] = qpp_q1_split; 20

 assign qd1_data[`SC_QD_ULC_SAMPLE_MASK] = qpp_q1_ulc_sample_mask; 21

 assign qd1_data[`SC_QD_URC_SAMPLE_MASK] = qpp_q1_urc_sample_mask; 22

 assign qd1_data[`SC_QD_LLC_SAMPLE_MASK] = qpp_q1_llc_sample_mask; 23

 assign qd1_data[`SC_QD_LRC_SAMPLE_MASK] = qpp_q1_lrc_sample_mask; 24

 assign qd1_data[`SC_QD_ULC_CNTRMOST_SAMPLE_ID] = 25
qpp_q1_ulc_cntrmost_sample_id; 26

 assign qd1_data[`SC_QD_URC_CNTRMOST_SAMPLE_ID] = 27
qpp_q1_urc_cntrmost_sample_id; 28

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 607 of 611

 Page 73 of 87
Ex. 2118 - sc.v

 assign qd1_data[`SC_QD_LLC_CNTRMOST_SAMPLE_ID] = 1
qpp_q1_llc_cntrmost_sample_id; 2

 assign qd1_data[`SC_QD_LRC_CNTRMOST_SAMPLE_ID] = 3
qpp_q1_lrc_cntrmost_sample_id; 4

 5

 6

 sc_packer usc_packer(7

 .sclk(sclk_sc), 8

 .srst(sc_srst), 9

 10

 .sp0_disable(ROM_SP0_disable), 11

 .sp1_disable(ROM_SP1_disable), 12

 .sp2_disable(ROM_SP2_disable), 13

 .sp3_disable(ROM_SP3_disable), 14

 15

 .qd0_hit(qpp_q0_qhit), 16

 .qd0_lqt(qpp_q0_last_of_tile), 17

 .qd0_zneeded(qpp_q0_zmask_needed), 18

 .qd0_data(qd0_data), 19

 20

 .qd1_hit(qpp_q1_qhit), 21

 .qd1_lqt(qpp_q1_last_of_tile), 22

 .qd1_zneeded(qpp_q1_zmask_needed), 23

 .qd1_data(qd1_data), 24

 25

 .last_qdpair_of_prim(qpp_last_qdpair_of_prim), 26

 Page 74 of 87
Ex. 2118 - sc.v

 .early_fpos(qpp_fpos_early), 1

 .primdata(qpp_prim_data), 2

 3

 .iterator_input_fz(iterator_input_fz), 4

 .detail_mask_accum_rdy(detail_mask_accum_rdy), 5

 6

 //outputs 7

 .qdpkr_in_fz(qdpkr_in_fz), 8

 .pkr_qd0(pkr_qd0), 9

 .pkr_qd1(pkr_qd1), 10

 .pkr_qd2(pkr_qd2), 11

 .pkr_qd3(pkr_qd3), 12

 .pkr_qdhit0(pkr_qdhit0), 13

 .pkr_qdhit1(pkr_qdhit1), 14

 .pkr_qdhit2(pkr_qdhit2), 15

 .pkr_qdhit3(pkr_qdhit3), 16

 .pkr_primdata(pkr_primdata), 17

 .pkr_ds_one_clk_command(pkr_ds_one_clk_command), 18

 .pkr_ds_end_of_prim(pkr_ds_end_of_prim), 19

 .pkr_ds_end_of_vector(pkr_ds_end_of_vector), 20

 .pkr_send_row(pkr_send_row), 21

 22

 .pkr_sv_indx(pkr_sv_indx), 23

 .pkr_cntx0_busy(pkr_cntx0_busy), 24

 .pkr_cntx1to7_busy(pkr_cntx1to7_busy), 25

 Page 75 of 87
Ex. 2118 - sc.v

 1

 //control signals to the detail mask accumulater 2

 .detail_hit_0(detail_hit_0), 3

 .detail_lqt_0(detail_lqt_0), 4

 .detail_hit_1(detail_hit_1), 5

 .detail_lqt_1(detail_lqt_1) 6

); 7

 8

 9

 sc_detail_mask_accum usc_detail_mask_accum (10

 .iSCLK(sclk_sc), 11

 .iSRST(sc_srst), 12

 13

 .oRDY_FOR_TILE_DATA(detail_mask_accum_rdy), 14

 15

 .iX_0(qd0_data[`SC_QD_QUADX]), 16

 .iY_0(qd0_data[`SC_QD_QUADY]), 17

 .iHIT_0(detail_hit_0), 18

 .iEOT_0(detail_lqt_0), 19

 20

 .iX_1(qd1_data[`SC_QD_QUADX]), 21

 .iY_1(qd1_data[`SC_QD_QUADY]), 22

 .iHIT_1(detail_hit_1), 23

 .iEOT_1(detail_lqt_1), 24

 25

 Page 76 of 87
Ex. 2118 - sc.v

 .oDETAIL_MASK(detail_mask), 1

 2

 .oDETAIL_MASK_VALID(detail_mask_valid), 3

 .iRDY_FOR_DETAIL_MASK(rdy_for_detail_mask) 4

); 5

 6

 sc_iter usc_iter (7

 .sclk(sclk_sc), 8

 .srst(sc_srst), 9

 .st_send_centers(st_send_centers), 10

 .st_send_centroids(st_send_centroids), 11

 .st_output_screen_xy(st_output_screen_xy), 12

 .st_iter_msaa_enable(st_iter_msaa_enable), 13

 .st_iter_msaa_num_samples(st_iter_msaa_num_samples), 14

 .st_iter_jss_enable(st_iter_jss_enable), 15

 16

 .pkr_qd0(pkr_qd0), 17

 .pkr_qd1(pkr_qd1), 18

 .pkr_qd2(pkr_qd2), 19

 .pkr_qd3(pkr_qd3), 20

 .pkr_qdhit0(pkr_qdhit0), 21

 .pkr_qdhit1(pkr_qdhit1), 22

 .pkr_qdhit2(pkr_qdhit2), 23

 .pkr_qdhit3(pkr_qdhit3), 24

 .pkr_primdata(pkr_primdata), 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 608 of 611

 Page 77 of 87
Ex. 2118 - sc.v

 .pkr_ds_one_clk_command(pkr_ds_one_clk_command), 1

 .pkr_ds_end_of_prim(pkr_ds_end_of_prim), 2

 .pkr_ds_end_of_vector(pkr_ds_end_of_vector), 3

 .pkr_send_row(pkr_send_row), 4

 5

 .pkr_cntx0_busy(pkr_cntx0_busy), 6

 .pkr_cntx1to7_busy(pkr_cntx1to7_busy), 7

 .pkr_iter_cntx0_busy(pkr_iter_cntx0_busy), 8

 .pkr_iter_cntx1to7_busy(pkr_iter_cntx1to7_busy), 9

 10

 .iterator_sv_indx(iterator_sv_indx), 11

 .iterator_input_fz(iterator_input_fz), 12

 .iterator_SX0_quad_x(iterator_SX0_quad_x), 13

 .iterator_SX0_quad_y(iterator_SX0_quad_y), 14

 .iterator_SX0_quad_mask(iterator_SX0_quad_mask), 15

 .iterator_SX0_quad_tilex(iterator_SX0_quad_tilex), 16

 .iterator_SX0_quad_tiley(iterator_SX0_quad_tiley), 17

 .iterator_SX0_quad_rb_id(iterator_SX0_quad_rb_id), 18

 .iterator_SX0_quad_split(iterator_SX0_quad_split), 19

 .iterator_SX0_quad_send(iterator_SX0_quad_send), 20

 .SX0_iterator_quad_rtr(SX0_iterator_quad_rtr), 21

 22

 .iterator_SX1_quad_x(iterator_SX1_quad_x), 23

 .iterator_SX1_quad_y(iterator_SX1_quad_y), 24

 .iterator_SX1_quad_mask(iterator_SX1_quad_mask), 25

 Page 78 of 87
Ex. 2118 - sc.v

 .iterator_SX1_quad_tilex(iterator_SX1_quad_tilex), 1

 .iterator_SX1_quad_tiley(iterator_SX1_quad_tiley), 2

 .iterator_SX1_quad_rb_id(iterator_SX1_quad_rb_id), 3

 .iterator_SX1_quad_split(iterator_SX1_quad_split), 4

 .iterator_SX1_quad_send(iterator_SX1_quad_send), 5

 .SX1_iterator_quad_rtr(SX1_iterator_quad_rtr), 6

 7

 .iterator_SQ_data(iterator_SQ_data), 8

 .iterator_SQ_valid(iterator_SQ_valid), 9

 .SQ_iterator_free_buff(SQ_iterator_free_buff), 10

 .SQ_iterator_dec_cntr_cnt(SQ_iterator_dec_cntr_cnt), 11

 12

 .iterator_SP0_data(iterator_SP0_data), 13

 .iterator_SP0_type(iterator_SP0_type), 14

 .iterator_SP0_last_quad(iterator_SP0_last_quad), 15

 .iterator_SP0_valid(iterator_SP0_valid), 16

 17

 .iterator_SP1_data(iterator_SP1_data), 18

 .iterator_SP1_type(iterator_SP1_type), 19

 .iterator_SP1_last_quad(iterator_SP1_last_quad), 20

 .iterator_SP1_valid(iterator_SP1_valid), 21

 22

 .iterator_SP2_data(iterator_SP2_data), 23

 .iterator_SP2_type(iterator_SP2_type), 24

 .iterator_SP2_last_quad(iterator_SP2_last_quad), 25

 Page 79 of 87
Ex. 2118 - sc.v

 .iterator_SP2_valid(iterator_SP2_valid), 1

 2

 .iterator_SP3_data(iterator_SP3_data), 3

 .iterator_SP3_type(iterator_SP3_type), 4

 .iterator_SP3_last_quad(iterator_SP3_last_quad), 5

 .iterator_SP3_valid(iterator_SP3_valid) 6

); 7

 8

//-- 9

// Assign statements 10

//-- 11

 12

// Concatenate inputs to register them 13

 assign pa_sc_inputs = {PA_SC_valid, // [270] 14

 PA_SC_v0_indx, // [269:268] 15

 PA_SC_cntl, // [267:238] 16

 PA_SC_phase, // [237:236] 17

 PA_SC_zminmax, // [235:222] 18

 PA_SC_xy0, // [221:204] 19

 PA_SC_xy1, // [203:186] 20

 PA_SC_xy2, // [185:168] 21

 PA_SC_p0, // [167:136] 22

 PA_SC_p1, // [135:96] 23

 PA_SC_p2, // [95:64] 24

 PA_SC_p3, // [63:32] 25

 Page 80 of 87
Ex. 2118 - sc.v

 PA_SC_p4}; // [31:0] 1

 2

// Assign registered inputs for use in sc_stage_reg 3

 assign valid_in = pa_sc_inputs_reg[270]; 4

 assign v0_indx_in = pa_sc_inputs_reg[269:268]; 5

 assign cntl_in = pa_sc_inputs_reg[267:238]; 6

 assign phase_in = pa_sc_inputs_reg[237:236]; 7

 assign zminmax_in = pa_sc_inputs_reg[235:222]; 8

 assign xy0_in = pa_sc_inputs_reg[221:204]; 9

 assign xy1_in = pa_sc_inputs_reg[203:186]; 10

 assign xy2_in = pa_sc_inputs_reg[185:168]; 11

 assign p0_in = pa_sc_inputs_reg[167:136]; 12

 assign p1_in = pa_sc_inputs_reg[135:96]; 13

 assign p2_in = pa_sc_inputs_reg[95:64]; 14

 assign p3_in = pa_sc_inputs_reg[63:32]; 15

 assign p4_in = pa_sc_inputs_reg[31:0]; 16

 17

// Concatenate some of outputs of sc_stage_reg to create write data for 18

// primitive fifo. 19

 assign prim_ff_wr_data[`SC_PI_EVENT] = sr_event; 20

 assign prim_ff_wr_data[`SC_PI_EVENTID] = sr_event_id; 21

 assign prim_ff_wr_data[`SC_PI_DEALLOCATE_SLOT] = sr_dealloc_slot; 22

 assign prim_ff_wr_data[`SC_PI_FIRST_PRIM_OF_SLOT] = sr_first_prim_of_slot; 23

 assign prim_ff_wr_data[`SC_PI_END_OF_PACKET] = sr_end_of_pkt; 24

 assign prim_ff_wr_data[`SC_PI_BACK_FACE] = sr_back_face; 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 609 of 611

 Page 81 of 87
Ex. 2118 - sc.v

 assign prim_ff_wr_data[`SC_PI_PROVOKING_VERT] = sr_provoking_vertex; 1

 assign prim_ff_wr_data[`SC_PI_STATE] = sr_state_var_indx; 2

 assign prim_ff_wr_data[`SC_PI_TYPE] = sr_prim_type; 3

 assign prim_ff_wr_data[`SC_PI_V0X] = sr_ref_x; 4

 assign prim_ff_wr_data[`SC_PI_V0Y] = sr_ref_y; 5

 assign prim_ff_wr_data[`SC_PI_PC_PTR0] = sr_param_cache_indx0; 6

 assign prim_ff_wr_data[`SC_PI_PC_PTR1] = sr_param_cache_indx1; 7

 assign prim_ff_wr_data[`SC_PI_PC_PTR2] = sr_param_cache_indx2; 8

 assign prim_ff_wr_data[`SC_PI_IW0] = sr_i0; 9

 assign prim_ff_wr_data[`SC_PI_IW_DX] = sr_ix; 10

 assign prim_ff_wr_data[`SC_PI_IW_DY] = sr_iy; 11

 assign prim_ff_wr_data[`SC_PI_JW0] = sr_j0; 12

 assign prim_ff_wr_data[`SC_PI_JW_DX] = sr_jx; 13

 assign prim_ff_wr_data[`SC_PI_JW_DY] = sr_jy; 14

 assign prim_ff_wr_data[`SC_PI_INVW0] = sr_w0; 15

 assign prim_ff_wr_data[`SC_PI_INVW_DX] = sr_wx; 16

 assign prim_ff_wr_data[`SC_PI_INVW_DY] = sr_wy; 17

 18

// assign prim_ff_wr_data = {sr_event_id, // [372:369] 4 19

// sr_dealloc_slot, // [368] 1 20

// sr_first_prim_of_slot, // [367] 1 21

// sr_end_of_pkt, // [366] 1 22

// sr_back_face, // [365] 1 23

// sr_provoking_vertex, // [364:363] 2 24

// sr_state_var_indx, // [362:360] 3 25

 Page 82 of 87
Ex. 2118 - sc.v

// sr_prim_type, // [359:357] 3 1

// sr_ref_x, // [356:339] 18 2

// sr_ref_y, // [338:321] 18 3

// sr_param_cache_indx0, // [320:310] 11 4

// sr_param_cache_indx1, // [309:297] 11 5

// sr_param_cache_indx2, // [298:288] 11 6

// sr_i0, // [287:256] 32 7

// sr_ix, // [255:224] 32 8

// sr_iy, // [223:192] 32 9

// sr_j0, // [191:160] 32 10

// sr_jx, // [159:128] 32 11

// sr_jy, // [127:96] 32 12

// sr_w0, // [95:64] 32 13

// sr_wx, // [63:32] 32 14

// sr_wy}; // [31:0] 32 15

 // total = 373 bits 16

 17

// Concatenate some of outputs of sc_stage_reg to create write data for Z fifo. 18

 assign z_ff_wr_data[`SC_ZD_NULL_PRIM] = sr_null_prim_zff; 19

 assign z_ff_wr_data[`SC_ZD_ZY_MAX] = sr_zy_max_zff; 20

 assign z_ff_wr_data[`SC_ZD_BACK_FACE] = sr_back_face_zff; 21

 assign z_ff_wr_data[`SC_ZD_PRIM_TYPE] = sr_prim_type_zff; 22

 assign z_ff_wr_data[`SC_ZD_POLYMODE] = sr_polymode_zff; 23

 assign z_ff_wr_data[`SC_ZD_STATE_INDX] = sr_state_var_indx_zff; 24

 assign z_ff_wr_data[`SC_ZD_REF_X] = sr_ref_x_zff; 25

 Page 83 of 87
Ex. 2118 - sc.v

 assign z_ff_wr_data[`SC_ZD_REF_Y] = sr_ref_y_zff; 1

 assign z_ff_wr_data[`SC_ZD_Z_MIN] = sr_z_min_zff; 2

 assign z_ff_wr_data[`SC_ZD_Z_MAX] = sr_z_max_zff; 3

 assign z_ff_wr_data[`SC_ZD_Z0] = sr_z0_zff; 4

 assign z_ff_wr_data[`SC_ZD_ZX] = sr_zx_zff; 5

 assign z_ff_wr_data[`SC_ZD_ZY] = sr_zy_zff; 6

 7

// assign z_ff_wr_data = {sr_polymode, // [171] 1 8

// sr_state_var_indx, // [170:168] 3 9

// sr_ref_x, // [167:150] 18 10

// sr_ref_y, // [149:132] 18 11

// sr_z_min, // [131:118] 14 12

// sr_z_max, // [117:104] 14 13

// sr_z0, // [103:72] 32 14

// sr_zx, // [71:36] 36 15

// sr_zy}; // [35:0] 36 16

 // total = 172 bits 17

 18

// Concatenate outputs of sc_quadmask to create write data for tile fifo. 19

 assign tile_ff_wr_data[`SC_TD_LAST_TILE] = qm_last_tile; 20

 assign tile_ff_wr_data[`SC_TD_ZMASK_NEEDED] = qm_z_mask_needed; 21

 assign tile_ff_wr_data[`SC_TD_EVENT] = qm_event; 22

 assign tile_ff_wr_data[`SC_TD_XMIN] = qm_xmin; 23

 assign tile_ff_wr_data[`SC_TD_XMAX] = qm_xmax; 24

 assign tile_ff_wr_data[`SC_TD_YMIN] = qm_ymin; 25

 Page 84 of 87
Ex. 2118 - sc.v

 assign tile_ff_wr_data[`SC_TD_YMAX] = qm_ymax; 1

 assign tile_ff_wr_data[`SC_TD_BBFRACTBITS] = qm_bb_fract_bits; 2

 assign tile_ff_wr_data[`SC_TD_XDIR] = qm_xdir; 3

 assign tile_ff_wr_data[`SC_TD_YDIR] = qm_ydir; 4

 assign tile_ff_wr_data[`SC_TD_TILEX] = qm_tilex; 5

 assign tile_ff_wr_data[`SC_TD_TILEY] = qm_tiley; 6

 assign tile_ff_wr_data[`SC_TD_TILEX_M3] = qm_tilex_m3; 7

 assign tile_ff_wr_data[`SC_TD_TILEY_M3] = qm_tiley_m3; 8

 assign tile_ff_wr_data[`SC_TD_XMAJOR] = qm_xmajor; 9

 assign tile_ff_wr_data[`SC_TD_E0_SAMPLE] = qm_e0; 10

 assign tile_ff_wr_data[`SC_TD_E1_SAMPLE] = qm_e1; 11

 assign tile_ff_wr_data[`SC_TD_E2_SAMPLE] = qm_e2; 12

 assign tile_ff_wr_data[`SC_TD_E0_DX] = qm_dxe0; 13

 assign tile_ff_wr_data[`SC_TD_E0_DY] = qm_dye0; 14

 assign tile_ff_wr_data[`SC_TD_E1_DX] = qm_dxe1; 15

 assign tile_ff_wr_data[`SC_TD_E1_DY] = qm_dye1; 16

 assign tile_ff_wr_data[`SC_TD_E2_DX] = qm_dxe2; 17

 assign tile_ff_wr_data[`SC_TD_E2_DY] = qm_dye2; 18

 assign tile_ff_wr_data[`SC_TD_STIPPLE_MASK] = 8'b11111111; 19

 20

// assign tile_ff_wr_data = {qm_last_tile, // [265] 1 21

// qm_event, // [264] 1 22

// qm_xdir, // [263] 1 23

// qm_ydir, // [262] 1 24

// qm_z_mask_needed, // [261] 1 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 610 of 611

 Page 85 of 87
Ex. 2118 - sc.v

// qm_bb_fract_bits, // [260:257] 4 1

// qm_tilex, // [256:247] 10 2

// qm_tiley, // [246:237] 10 3

// qm_xmin, // [236:234] 3 4

// qm_xmax, // [233:231] 3 5

// qm_ymin, // [230:228] 3 6

// qm_ymax, // [227:225] 3 7

// qm_e0, // [224:188] 37 8

// qm_e1, // [187:151] 37 9

// qm_e2, // [150:114] 37 10

// qm_dxe0, // [113:95] 19 11

// qm_dye0, // [94:76] 19 12

// qm_dxe1, // [75:57] 19 13

// qm_dye1, // [56:38] 19 14

// qm_dxe2, // [37:19] 19 15

// qm_dye2}; // [18:0] 19 16

 // total = 266 bits 17

// Assign read data of z fifo 18

 assign zff_null_prim = z_ff_rd_data[`SC_ZD_NULL_PRIM]; 19

 assign zff_zy_max = z_ff_rd_data[`SC_ZD_ZY_MAX]; 20

 assign zff_back_face = z_ff_rd_data[`SC_ZD_BACK_FACE]; 21

 assign zff_prim_type = z_ff_rd_data[`SC_ZD_PRIM_TYPE]; 22

 assign zff_polymode = z_ff_rd_data[`SC_ZD_POLYMODE]; 23

 assign zff_state_var_indx = z_ff_rd_data[`SC_ZD_STATE_INDX]; 24

 assign zff_ref_x = z_ff_rd_data[`SC_ZD_REF_X]; 25

 Page 86 of 87
Ex. 2118 - sc.v

 assign zff_ref_y = z_ff_rd_data[`SC_ZD_REF_Y]; 1

 assign zff_z_min = z_ff_rd_data[`SC_ZD_Z_MIN]; 2

 assign zff_z_max = z_ff_rd_data[`SC_ZD_Z_MAX]; 3

 assign zff_z0 = z_ff_rd_data[`SC_ZD_Z0]; 4

 assign zff_zx = z_ff_rd_data[`SC_ZD_ZX]; 5

 assign zff_zy = z_ff_rd_data[`SC_ZD_ZY]; 6

 7

 8

 9

// Group aa sample offsets 10

// assign st_aa_offset_tbl = { 11

// st_sample_15_y, 12

// st_sample_15_x, 13

// st_sample_14_y, 14

// st_sample_14_x, 15

// st_sample_13_y, 16

// st_sample_13_x, 17

// st_sample_12_y, 18

// st_sample_12_x, 19

// st_sample_11_y, 20

// st_sample_11_x, 21

// st_sample_10_y, 22

// st_sample_10_x, 23

// st_sample_9_y, 24

// st_sample_9_x, 25

 Page 87 of 87
Ex. 2118 - sc.v

// st_sample_8_y, 1

// st_sample_8_x, 2

// st_sample_7_y, 3

// st_sample_7_x, 4

// st_sample_6_y, 5

// st_sample_6_x, 6

// st_sample_5_y, 7

// st_sample_5_x, 8

// st_sample_4_y, 9

// st_sample_4_x, 10

// st_sample_3_y, 11

// st_sample_3_x, 12

// st_sample_2_y, 13

// st_sample_2_x, 14

// st_sample_1_y, 15

// st_sample_1_x, 16

// st_sample_0_y, 17

// st_sample_0_x 18

// }; 19

 20

endmodule // sc 21

 22

PROTECTIVE ORDER MATERIAL

ATI Ex. 2120
IPR2023-00922

Page 611 of 611

