

ORIGINATE DATE

7 May, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 9

Exhibit 2007.doc �� 9252 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 04:03 PM

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SEQ

Version 0.1

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: D:\Perforce\r400\arch\doc\gfx\MC\R400 MemCtl.doc
Current Intranet Search Title: R400 Memory Controller Architectural Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2007
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922
Page 1 of 1898

ORIGINATE DATE

7 May, 2001

EDIT DATE

4 September, 2015

R400 Memory Controller
Architectural Specification

PAGE

2 of 9

Exhibit 2007.doc �� 9252 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 04:03 PM

Table Of Contents

1. OVERVIEW ... 3
1.1 Top Level Block Diagram 4
2. TEXTURE ARBITRATION 7
3. ALU ARBITRATION 8
4. INPUT INTERFACE 8
4.1 Rasterizer to Register File (interpolated
data) 8
4.2 Texture Unit to Register File (texture
return) .. 8

4.3 ALU Unit to Register File (ALU op
result) ... 8
4.4 Scalar Unit to Register File (Scalar op
result) ... 8
5. OUTPUT INTERFACE 8
5.1 Sequencer to Shader Engine Bus 8
5.2 Shader Engine to Texture Unit Bus 9
6. OPEN ISSUES 9

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922
Page 2 of 1898

ORIGINATE DATE

7 May, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 9

Exhibit 2007.doc �� 9252 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 04:03 PM

1. Overview
The sequencer first arbitrates between vectors of 16 vertices that arrive directly from primitive assembly and vectors
of 8 quads (32 pixels) that are generated in the raster engine.

The vertex or pixel program specifies how many GPR’s it needs to execute. The sequencer will not start the next
vector until the needed space is available.

The sequencer is based on the R300 design. It chooses an ALU clause and a texture clause to execute, and execute
all of the instructions in a clause before looking for a new clause of the same type. Each vector will have eight texture
and eight alu clauses, but clauses do not need to contain instructions. A vector of pixels or vertices ping-pongs along
the sequencer FIFO, bouncing from texture reservation station to alu reservation station. A FIFO exists between each
reservation stage, holding up vectors until the vector currently occupying a reservation station has left. A vector at a
reservation station can be chosen to execute. The sequencer looks at all eight alu reservation stations to choose an
alu clause to execute and all eight texture stations to choose a texture clause to execute. The arbitrator will give
priority to clauses/reservation stations closer to the top of the pipeline. It will not execute an alu clause until the
texture fetches initiated by the previous texture clause have completed.

To support the shader pipe the raster engine also contains the shader instruction cache and constant store.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922
Page 3 of 1898

ORIGINATE DATE

7 May, 2001

EDIT DATE

4 September, 2015

R400 Memory Controller
Architectural Specification

PAGE

4 of 9

Exhibit 2007.doc �� 9252 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 04:03 PM

1.1 Top Level Block Diagram

vertex/pixel vector arbitrator

Possible delay for available GPR’s

FIFO
Texture clause 0
reservation station

Texture clause 1
reservation station

FIFO
ALU clause 0
reservation station

FIFO

Texture clause 2
reservation station

Texture clause 3
reservation station

FIFO
ALU clause 1
reservation station

FIFO

FIFO
ALU clause 2
reservation station

FIFO

FIFO
ALU clause 3
reservation station

FIFO
Texture clause 4
reservation station

Texture clause 5
reservation station

FIFO
ALU clause 4
reservation station

FIFO

Texture clause 6
reservation station

Texture clause 7
reservation station

FIFO
ALU clause 5
reservation station

FIFO

FIFO
ALU clause 6
reservation station

FIFO

FIFO
ALU clause 7
reservation station

texture arbitrator

texture arbitrator

The rasterizer always checks the vertices FIFO first and if allowed by the sequencer sends the data to the shader. If
the vertex FIFO is empty then, the rasterizer takes the first entry of the pixel FIFO (a vector of 32 pixels) and sends it
to the interpolators. Then the sequencer takes control of the packet.

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the registers to store the interpolatoted values and temporaries. Following this, the input state machine stacks the
packet in the first FIFO.

On receipt of a command, the level 0 texture machine issues a texure request and corresponding register address for
the texture address (ta). A small command (tcmd) is passed to the texture system identifying the current level number

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922
Page 4 of 1898

ORIGINATE DATE

7 May, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 9

Exhibit 2007.doc �� 9252 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 04:03 PM

(0) as well as the register set being used. One texture request is sent every 4 clocks causing the texturing of four
2x2s worth of data.

Uppon recept of the return data (identified by the tcmd containing the level number 0), the level 0 texture machine
issues a register address for the return value (td). Then, it puts the finished packet in FIFO 1.

On receipt of a command, the level 0 ALU machine issues a complete set of level 0 shader instructions. For each
instruction, the state machine generates 3 source addresses, one destination address (2 cycles later) and an
instruction id wich is used to index into the instruction store. Once the last instruction as been issued, the packet is
put into FIFO 2. Note that in the case of a pixel packet, the two vectors of 16 pixels are interleaved in order to hide the
latency of the ALUs (8 cycles).

All other level process in the same way until the packet finally reaches the last ALU machine (8). On completion of the
level 8 ALU clause, a valid bit is sent to the Render Backend wich picks up the color data. This requires that the last
instruction writes to the output register – a condition that is almost always true. If the packet was a vertex packet,
instead of sending the valid bit to the RB, it is sent to the PA, which picks up the data a puts it into the vertex store.

Only one ALU state machine may have access to the SRAM address bus or the instruction decode bus at one time.
Similarly, only one texture state machine may have access to the SRAM address bus at one time. Arbitration is
performed by two arbitrer blocks (one for the ALU state machines and one for the texture state machines). The
arbitrers always favor the higher number state machines, preventing a bunch of half finished jobs from clogging up
the SRAMS.

Each state machine maintains an address pointer specifying where the 16 (or 32) entries vector is located in the
SRAM (the texture machine has two pointers one for the read address and one for the write). Upon completion of its
job, the address pointer is incremented by a predefined amount equal to the total number of registers required by the
shading code. A comparison of the address pointer for the first state machine in the chain (the input state machine),
and the last machine in the chain (the level 8 ALU machine), gives an indication of how much unallocated SRAM
memory is available. When this number falls below a preset watermark, the input state machine will stall the rasterizer
preventing new data from entering the chain.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922
Page 5 of 1898

ORIGINATE DATE

7 May, 2001

EDIT DATE

4 September, 2015

R400 Memory Controller
Architectural Specification

PAGE

6 of 9

Exhibit 2007.doc �� 9252 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 04:03 PM

Register File
512x128 (built as 4 128x128 or 16 128x32

Operand mux

4x32
128 bit data

4 32 bit MAC units
128 bit scalar/vector

ALU
control from RE

control from RE

constants from RE

interpolated data from RE

Address to texure
or vertex parameter data to RE through texture block
or pixel data to RB through texture block

data returned from texture fetch

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922
Page 6 of 1898

ORIGINATE DATE

7 May, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 9

Exhibit 2007.doc �� 9252 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 04:03 PM

pipeline stage

MAC

MAC

MAC

instruction

instruction

pipeline stage

MAC

pipeline stage

pipeline stage

instruction

Register File

Register File

Register File

Register File

Scalar Unit

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

data from RE

data from RE

data from RE

data from RE

texture fetch return

texture fetch return

texture fetch return

texture fetch return

address to texture

address to texture

address to texture

address to texture

constants from RE

constants from RE

constants from RE

constants from RE

scalar operand input/ scalar result output

2. Texture Arbitration
The texture arbitration logic chooses one of the 8 potentially pending texture clauses to be executed. The choice is
made by looking at the fifos from 8 to 0 and picking the first one ready to execute. Once chosen, the clause state
machine will send one 2x2 texture fetch per 4 clocks until all the texture fetch instructions of the clause are sent. This
means that there cannot be any dependencies between two texture fetches of the same clause.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922
Page 7 of 1898

ORIGINATE DATE

7 May, 2001

EDIT DATE

4 September, 2015

R400 Memory Controller
Architectural Specification

PAGE

8 of 9

Exhibit 2007.doc �� 9252 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 04:03 PM

3. ALU Arbitration
ALU arbitration proceeds in almost the same way than texture arbitration. The ALU arbitration logic chooses one of
the 8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 8 to 0 and
picking the first one ready to execute. If the packet chosen is a packet of vertices, the state machine issues one
instruction every 4 clocks until the clause is finished. This means that the compiler has to insert nops between two
dependent successive instructions. If the packet is a pixel packet it is made out of two sub-vectors of 16. Thus the
state machine issues the first instruction for the first sub-vector and then, 4 clocks later, the first instruction of the
second sub-vector and so on until the clause is finished. Proceeding this way hides the latency of 8 clocks of the
ALUs.

4. Input Interface

4.1 Rasterizer to Register File (interpolated data)
Name Direction bits Description
SND SEQSP 1 High when sending data
Interpolated data SEQSP 512 512 bits transferred every 4 cycles

4.2 Texture Unit to Register File (texture return)
Name Direction bits Description
SND SEQTU 1 High when sending data
Texture colors TUSP 512 512 bits transferred every 4 cycles

4.3 ALU Unit to Register File (ALU op result)
Name Direction bits Description
SND SEQSP 1 High when sending data
Blend result ALU SPSP 512 512 bits transferred every 4 cycles
Write Mask SPSP 16 The four write masks

4.4 Scalar Unit to Register File (Scalar op result)
Name Direction bits Description
SND SEQSP 1 High when sending data
Scalar result SPSP 512 512 bits transferred every 4 cycles
Write Mask SPSP 16 The four write masks

5. Output Interface

5.1 Sequencer to Shader Engine Bus
This is a bus that sends the instruction and constant data to all 4 Sub-Engines of the Shader. Because a new
instruction is needed only every 4 clocks, the width of the bus is divided by 4 and both constants and instruction
are sent over those 4 clocks.

Name Direction Bits Description
Instruction Start SEQ-> SP 1 High on first cycle of transfer
Constant 0 SEQ-> SP 32 128 bits transferred over 4 cycles, alpha first…blue last
Constant 1 SEQ-> SP 32 128 bits transferred over 4 cycles, alpha first…blue last
Instruction SEQ-> SP 40 160 bits transferred over 4 cycles

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922
Page 8 of 1898

ORIGINATE DATE

7 May, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 9

Exhibit 2007.doc �� 9252 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 04:03 PM

5.2 Shader Engine to Texture Unit Bus
One quad’s worth of addresses is transferred to Texture Unit every clock. These are sourced fro a different pixel
within each of the sub-engines repeating every 4 clocks. The register file index to read must precede the data by
2 clocks. The Read address associated with Quad 0 must be sent 1 clock after the Instruction Start signal is sent,
so that data is read 3 clocks after the Instruction Start.

One Quad’s worth of Texture Data may be written to the Register File every clock. These are directed to a
different pixel of the sub-engines repeating every 4 clocks. The register file index to write must accompany the
data. Data and Index associated with the Quad 0 must be sent 3 clocks after the Instruction Start signal is sent.

Name Direction Bits Description
Tex_Read_Register_Inde
x

SEQ->SP 8 Index into Register Files for reading Texture Address

Tex_RegFile_Read_Data SP->TEX 512 4 Texture Addresses read from the Register File
Tex_Write_Register_Index SEQ->SP 8 Index into Register file for write of returned Texture

Data

6. Open issues
There is currently an issue with constants. If the constants are not the same for the whole vector of vertices, we don’t
have the bandwith from the texture store to feed the ALUs. Two solutions exists for this problem:

1) Let the compiler handle the case and put those instructions in a texture clause so we can use the
bandwith there to operate. This requires a significant amount of temporary storeage in the register store.

2) Waterfall down the pipe allowing only at a given time the vertices having the same constants to operate in
parralel. This might in the worst case slow us down by a factor of 16.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922
Page 9 of 1898

ORIGINATE DATE

7 May, 2001

EDIT DATE

8 September, 20153
September 201513

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 16

Exhibit 2009.docR400_Sequencer.doc �� 16178 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/08/15 01:03
PM08/13/01 03:17 PM07/13/01 02:10 PM

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SEQ

Version 0.32

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\arch\doc\gfx\RE\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2009
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 10 of 1898

ORIGINATE DATE

7 May, 2001

EDIT DATE

8 September, 20153
September 201513

R400 Sequencer Specification PAGE

2 of 16

Exhibit 2009.docR400_Sequencer.doc �� 16178 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/08/15 01:03
PM08/13/01 03:17 PM07/13/01 02:10 PM

Table Of Contents

1. OVERVIEW ... 3
1.1 Top Level Block Diagram 4
1.2 Data Flow graph 87
1.3 Control Graph 1110
2. INTERPOLATED DATA BUS 1110
3. INSTRUCTION STORE 1110
4. CONSTANT STORE 1211
5. LOOPING AND BRANCHES 1211
6. REGISTER FILE ALLOCATION ... 1211
7. TEXTURE ARBITRATION 1312
8. ALU ARBITRATION 1312
9. HANDLING STALLS 1413
10. CONTENT OF THE RESERVATION
STATION FIFOS 1413
11. THE OUTPUT FILE (RB FIFO AND
PARAMETER CACHE) 1413

12. INTERFACES 1413

12.1 External Interfaces 1413

12.1.1 Sequencer to Shader
Engine Bus .. 1413

12.1.2 Shader Engine to Output
File 1413

12.1.3 Shader Engine to Texture
Unit Bus (Fast Bus) 1514

12.1.4 Sequencer to Texture Unit bus
(Slow Bus) 1514

12.1.5 Shader Engine to RE/PA Bus
 1514

12.1.6 PA to sequencer 1514
13. OPEN ISSUES 1614
1. OVERVIEW ... 3
1.1 Top Level Block Diagram 4
2. TEXTURE ARBITRATION 9
3. ALU ARBITRATION 9
4. HANDLING STALLS 10
5. CONTENT OF THE RESERVATION
STATION FIFOS .. 10

6. INTERFACES 10

6.1 External Interfaces 10

6.1.1 Sequencer to Shader Engine
Bus 10

6.1.2 Shader Engine to Output File
 10

6.1.3 Shader Engine to Texture Unit
Bus (Fast Bus) 10

6.1.4 Sequencer to Texture Unit bus
(Slow Bus) ... 11

6.1.5 Shader Engine to RE/PA Bus ... 11
7. OPEN ISSUES 11

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 11 of 1898

ORIGINATE DATE

7 May, 2001

EDIT DATE

8 September, 20153
September 201513

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 16

Exhibit 2009.docR400_Sequencer.doc �� 16178 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/08/15 01:03
PM08/13/01 03:17 PM07/13/01 02:10 PM

1. Overview
The sequencer first arbitrates between vectors of 16 (maybe 32) vertices that arrive directly from primitive assembly
and vectors of 84 quads (16 pixels) (32 pixels) that are generated in the raster engine.

The vertex or pixel program specifies how many GPR’s it needs to execute. The sequencer will not start the next
vector until the needed space is available.

The sequencer is based on the R300 design. It chooses an two ALU clauses and a texture clause to execute, and
executes all of the instructions in aa clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight texture and eight ALU clauses, but clauses
do not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing
from texture reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up
vectors until the vector currently occupying a reservation station has left. A vector at a reservation station can be
chosen to execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and
all eight texture stations to choose a texture clause to execute. The arbitrator will give priority to clauses/reservation
stations closer to the top bottom of the pipeline. It will not execute an alu clause until the texture fetches initiated by
the previous texture clause have completed. There are two separate sets of reservation stations, one for pixel vectors
and one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the raster engine also contains the shader instruction cache and constant store. There
are only one constant store for the whole chip and one instruction store. These will be shared among the four shader
pipes.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 12 of 1898

ORIGINATE DATE

7 May, 2001

EDIT DATE

8 September, 20153
September 201513

R400 Sequencer Specification PAGE

4 of 16

Exhibit 2009.docR400_Sequencer.doc �� 16178 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/08/15 01:03
PM08/13/01 03:17 PM07/13/01 02:10 PM

1.1 Top Level Block Diagram

vertex/pixel vector arbitrator

Possible delay for available GPR’s

FIFO
Texture clause 0
reservation station

Texture clause 1
reservation station

FIFO
ALU clause 0
reservation station

FIFO

Texture clause 2
reservation station

Texture clause 3
reservation station

FIFO
ALU clause 1
reservation station

FIFO

FIFO
ALU clause 2
reservation station

FIFO

FIFO
ALU clause 3
reservation station

FIFO
Texture clause 4
reservation station

Texture clause 5
reservation station

FIFO
ALU clause 4
reservation station

FIFO

Texture clause 6
reservation station

Texture clause 7
reservation station

FIFO
ALU clause 5
reservation station

FIFO

FIFO
ALU clause 6
reservation station

FIFO

FIFO
ALU clause 7
reservation station

texture arbitrator

texture arbitrator

There are two sets of the above figure, one for vertices and one for pixels.

The rasterizer always checks the vertices FIFO first and if allowed by the sequencer sends the data to the shader. If
the vertex FIFO is empty then, the rasterizer takes the first entry of the pixel FIFO (a vector of 32 16 pixels) and
sends it to the interpolators. Then the sequencer takes control of the packet. The packet consists of 3 bits of state, 6-
7 bits for the base address of the Shader program and some information on the coverage to determine texture LOD.
All other information (2x2 adresses) is put in a FIFO (one for the pixels and one for the vertices) and retrieved when
the packet finishes its last clause.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 13 of 1898

ORIGINATE DATE

7 May, 2001

EDIT DATE

8 September, 20153
September 201513

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 16

Exhibit 2009.docR400_Sequencer.doc �� 16178 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/08/15 01:03
PM08/13/01 03:17 PM07/13/01 02:10 PM

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the registers to store the interpolated values and temporaries. Following this, the input state machine stacks the
packet in the first FIFO.

On receipt of a command, the level 0 texture machine issues a texure request and corresponding register address for
the texture address (ta). A small command (tcmd) is passed to the texture system identifying the current level number
(0) as well as the register set being usedwrite address for the texture return data. One texture request is sent every 4
clocks causing the texturing of four 2x2s worth of data (or 16 vertices). Once all the requests are sent the packet is
put in FIFO 1.

Upon recept of the return data (identified by the tcmd containing the level number 0), the level 0 texture machine
issues a register address for the return value (td). Then, it increments the counter of FIFO one 1 to signify to the ALU
1 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO counter and then issues a
complete set of level 0 shader instructions. For each instruction, the state machine generates 3 source addresses,
one destination address (2 3 cycles later) and an instruction id wich is used to index into the instruction store. Once
the last instruction as been issued, the packet is put into FIFO 2. Note that in the case of a pixel packet, the two
vectors of 16 pixels are consecutive in order to hide the latency of the ALUs (8 cycles).

There will always be two active ALU clauses at any given time (and two arbitrers) In this case, the instructions of a
vector are interleaved with the instructions of the other vector. One arbitrer will arbitrate over the odd clock cycles and
the other one will arbitrate over the even clock cycles. The only constraints between the two arbitrers is that they are
not allowed to pick the same clause number as they other one is currently working on if the packet os of the same
type.

If the packet is a vertex packet, upon reaching ALU clause 4, it can export the position if the position is ready. So the
arbitrer must prevent ALU clause 4 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, the location where the vertex data is to be put is also sent (parameter data pointers).

All other level process in the same way until the packet finally reaches the last ALU machine (8). On completion of the
level 8 ALU clause, a valid bit is sent to the Render Backend which picks up the color data. This requires that the last
instruction writes to the output register – a condition that is almost always true. If the packet was a vertex packet,
instead of sending the valid bit to the RB, it is sent to the PA, which picks up the data and puts it into the vertex store
so it can know that the data present in the parameter store is valid.

Only one two ALU state machine may have access to the SRAMregister file address bus or the instruction decode
bus at one time. Similarly, only one texture state machine may have access to the SRAMregister file address bus at
one time. Arbitration is performed by two three arbitrer blocks (one two for the ALU state machines and one for the
texture state machines). The arbitrers always favor the higher number state machines, preventing a bunch of half
finished jobs from clogging up the SRAMregister Sfiles.

Each state machine maintains an address pointer specifying where the 16 (or 32) entries vector is located in the
SRAMregister file (the texture machine has two pointers one for the read address and one for the write). Upon
completion of its job, the address pointer is incremented by a predefined amount equal to the total number of
registers required by the shading code. A comparison of the address pointer for the first state machine in the chain
(the input state machine), and the last machine in the chain (the level 8 ALU machine), gives an indication of how
much unallocated SRAMregister file memory is available

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 14 of 1898

ORIGINATE DATE

7 May, 2001

EDIT DATE

8 September, 20153
September 201513

R400 Sequencer Specification PAGE

6 of 16

Exhibit 2009.docR400_Sequencer.doc �� 16178 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/08/15 01:03
PM08/13/01 03:17 PM07/13/01 02:10 PM

Register File
512x128 (built as 4 128x128 or 16 128x32

Operand mux

4x32
128 bit data

4 32 bit MAC units
128 bit scalar/vector

ALU
control from RE

control from RE

constants from RE

interpolated data from RE

Address to texure
or vertex parameter data to RE through texture block
or pixel data to RB through texture block

data returned from texture fetch

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 15 of 1898

ORIGINATE DATE

7 May, 2001

EDIT DATE

8 September, 20153
September 201513

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 16

Exhibit 2009.docR400_Sequencer.doc �� 16178 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/08/15 01:03
PM08/13/01 03:17 PM07/13/01 02:10 PM

MAC

MAC

MAC

MAC

Register File

Register File

Register File

Register File

co
ns

ta
nt

s
fr

o
m

 R
E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
nt

s
fr

om
 R

E

S
ca

la
r

U
ni

t

te

xt
ur

e
d

at
a/

pr
im

iti
ve

 d
at

a
fr

om
 R

E
 in

to
 t

he
 r

eg
is

te
r

fil
es

texture request

texture request

texture request

texture request

te
xt

ur
e

ad
dr

es
s

te
xt

ur
e

d
at

a

pr
im

iti
ve

 d
a

ta
fr

om
 R

E

Mux

Mux

scalar input/output

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 16 of 1898

ORIGINATE DATE

7 May, 2001

EDIT DATE

8 September, 20153
September 201513

R400 Sequencer Specification PAGE

8 of 16

Exhibit 2009.docR400_Sequencer.doc �� 16178 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/08/15 01:03
PM08/13/01 03:17 PM07/13/01 02:10 PM

1.2 Data Flow graph

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 17 of 1898

ORIGINATE DATE

7 May, 2001

EDIT DATE

8 September, 20153
September 201513

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 16

Exhibit 2009.docR400_Sequencer.doc �� 16178 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/08/15 01:03
PM08/13/01 03:17 PM07/13/01 02:10 PM

MAC

MAC

MAC

MAC

Register File

co
ns

ta
nt

s
fr

om
 R

E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
nt

s
fr

om
 R

E

S
ca

la
r

U
ni

t

texture request

texture request

texture request

texture request

te
xt

ur
e

ad
dr

es
s

tex tur e d
ata

pr im
it ive da

ta f rom
 R

E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 18 of 1898

ORIGINATE DATE

7 May, 2001

EDIT DATE

8 September, 20153
September 201513

R400 Sequencer Specification PAGE

10 of 16

Exhibit 2009.docR400_Sequencer.doc �� 16178 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/08/15 01:03
PM08/13/01 03:17 PM07/13/01 02:10 PM

REGISTER FILE
INSTRUCTION
STORE/CACHE

CONSTANT
STORE

ALU TEXTUREALUALU ALU
SCALAR

ALU

OPERAND MUX

Interpolated
data / Vertex indexes

T
O

 R
B

/P
A

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 19 of 1898

ORIGINATE DATE

7 May, 2001

EDIT DATE

8 September, 20153
September 201513

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 16

Exhibit 2009.docR400_Sequencer.doc �� 16178 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/08/15 01:03
PM08/13/01 03:17 PM07/13/01 02:10 PM

1.3 Control Graph

SEQ

TX SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1 CST2 A B C WrVec

WrAddrWrScal

OF

WrAddr

RdAddr
PA/RB

IS CST

In green is represented the Texture control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
Since each of the register file is actually physically divided (one 32x128 per MAC) and we don’t have the place to hold
a maximum size vector of vertices in the parameter buffer, we need to interpolate on a parameter basis rather than on
a quad basis. So the order to the register file will be:

Q0P0 Q1P0 Q2P0 Q3P0 Q0P1 Q1P1 Q2P1 Q3P2 Q0P3 Q1P3 …

3. Instruction Store
There is going to be only one instruction store for the whole chip. It may contain up to 2000 instructions of 96 bits
each. The instruction store is loaded by the sequencer using the memory hub. The read bandwith from this store is
24 bits/clock/pipe. To achieve this this instruction store is likely to be broken up into 4 blocks. An ALU instruction
section (1R/1W) split in two and a texture section (1R/1W) also split in two. The bandwith out of those memories is 96
bits/clock.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 20 of 1898

ORIGINATE DATE

7 May, 2001

EDIT DATE

8 September, 20153
September 201513

R400 Sequencer Specification PAGE

12 of 16

Exhibit 2009.docR400_Sequencer.doc �� 16178 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/08/15 01:03
PM08/13/01 03:17 PM07/13/01 02:10 PM

4. Constant Store
The constant store is managed by the CP. The sequencer is aware of where the constants are using a remaping
table also managed by the CP. A likely size for the constant store is 512x128 bits. The constant store is also planned
to be shared. The read BW from the constant store is 512/4 bits/clock/pipe and the write bandwith is 32/4 bits/clock.

5. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. However, it is
still unclear if we plan on supporting data dependent branches or not.

6. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to VERTEX_REG_SIZE for vertices and 256-
VERTEX_REG_SIZE for pixels.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 21 of 1898

ORIGINATE DATE

7 May, 2001

EDIT DATE

8 September, 20153
September 201513

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 16

Exhibit 2009.docR400_Sequencer.doc �� 16178 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/08/15 01:03
PM08/13/01 03:17 PM07/13/01 02:10 PM

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary as allowed
to move again.

2.7. Texture Arbitration
The texture arbitration logic chooses one of the 8 potentially pending texture clauses to be executed. The choice is
made by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state
machine will send one 2x2 texture fetch per clock (or 4 fetches in one clock every 4 clocks) until all the texture fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two texture fetches
of the same clause.

The arbitrator will not wait for the texture fetches to return prior to selecting another clause for execution. The texture
pipe will be able to handle up to 100X(?) in flight texture fetches and thus there can be a fair number of active clauses
waiting for their texture return data.

3.8. ALU Arbitration
ALU arbitration proceeds in almost the same way than texture arbitration. The ALU arbitration logic chooses one of
the 8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and
picking the first one ready to executeexecute. If the packet chosen is a packet of vertices, the state machine issues
one instruction every 4 clocks until the clause is finished. This means that the compiler has to insert nops between
two dependent successive instructions. If the packet is a pixel packet it is made out of two sub-vectors of 16. Thus the
state machine issues the first instruction for the first sub-vector and then, 4 clocks later, the first instruction of the
second sub-vector and so on until the clause is finished. . There are two ALU arbitrers, one for the even clocks and

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 22 of 1898

ORIGINATE DATE

7 May, 2001

EDIT DATE

8 September, 20153
September 201513

R400 Sequencer Specification PAGE

14 of 16

Exhibit 2009.docR400_Sequencer.doc �� 16178 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/08/15 01:03
PM08/13/01 03:17 PM07/13/01 02:10 PM

one for the odd clocks. For exemple, here is the sequencing of two interleaved ALU clauses (E and O stands for Even
and Odd):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…
 Proceeding this way hides the latency of 8 clocks of the ALUs.

4.9. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic to select the last clause (this way nothing
can exit the shader pipe until there is place in the output file. If we have the ability to export at any clausethe packet is
a vertex packet and the position buffer is full (POS_FULL) then the sequencer also prevents a thread to enter the
exporting clause (4?). The sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full
and thus the ALU arbitrer will be able read this signal and act accordingly by not preventing exporting clauses to
proceed.

5.10. Content of the reservation station FIFOs
3 bits of Render State and 6-7 bits for the base address of the instruction store and some bits for LOD correction.
Every other information (such as the coverage mask, quad address, etc.) is put in a FIFO and is retrieved when the
quad exits the shader pipe to enter in the output file buffer. Since pixels and vertices are kept in order in the shader
pipe, we only need two fifos (one for vertices and one for pixels) deep enough to cover the shader pipe latency. This
size will be determined later when we will know the size of the small fifos between the reservation stations.

6.11. The Output File (RB FIFO and Parameter Cache)
The output file is where program results are exported when the pixel/vertex shader finishes. It constists of a 512x128
memory cell that is statically divided between pixels and vertices. Each section is a regular FIFO. The output file has
1 write port and 1 read port. The sequencer is responsible for managing the addresses of this output file and for
stalling the shader pipe should this output file fill up. The management is done by keeping the tail and head pointers
of each sections (pixels and vertices) and incrementing them using a simple RoundRobin allocation policy. The
sequencer must also arbitrate between the PA and the RB for the use of the read port. This arbitration will either be
priority based or just interleaved evenly (1 read every 2 clocks for each of the blocks).

7.12. Interfaces

7.112.1 External Interfaces

7.1.112.1.1 Sequencer to Shader Engine Bus
This is a bus that sends the instruction and constant data to all 4 Sub-Engines of the Shader. Because a new instruction
is needed only every 4 clocks, the width of the bus is divided by 4 and both constants and instruction are sent over
those 4 clocks.

Name Direction Bits Description
Instruction Start SEQ-> SP 1 High on first cycle of transfer
Constant 0 SEQ-> SP 32 128 bits transferred over 4 cycles, alpha first…blue last
Constant 1 SEQ-> SP 32 128 bits transferred over 4 cycles, alpha first…blue last
Instruction SEQ-> SP 30 120 bits transferred over 4 cycles (order TBD) ?

7.1.212.1.2 Shader Engine to Output File
Every clock each Sub-Engine can output 128 bits of ‘vector’ data and 32 bits of ‘scalar’ data to an output file (?). This
data will be compressed into 128 bits total prior to storage in output file.

Name Direction Bits Description
UL_Vector_Out SP-> OF 128 Vector Data out

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 23 of 1898

ORIGINATE DATE

7 May, 2001

EDIT DATE

8 September, 20153
September 201513

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 16

Exhibit 2009.docR400_Sequencer.doc �� 16178 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/08/15 01:03
PM08/13/01 03:17 PM07/13/01 02:10 PM

UL_Scalar_Out SP-> OF 32 Vector Data out
UR_Vector_Out SP-> OF 128 Vector Data out
UR_Scalar_Out SP-> OF 32 Vector Data out

Name Direction Bits Description
LL_Vector_Out SP-> OF 128 Vector Data out
LL_Scalar_Out SP-> OF 32 Vector Data out
LR_Vector_Out SP-> OF 128 Vector Data out
LR_Scalar_Out SP-> OF 32 Vector Data out

7.1.312.1.3 Shader Engine to Texture Unit Bus (Fast Bus)
One quad’s worth of addresses is transferred to Texture Unit every clock. These are sourced from a different pixel
within each of the sub-engines repeating every 4 clocks. The register fileregister file index to read must precede the
data by 2 clocks. The Read address associated with Quad 0 must be sent 1 clock after the Instruction Start signal is
sent, so that data is read 3 clocks after the Instruction Start.

One Quad’s worth of Texture Data may be written to the Register FileRegister file every clock. These are directed to a
different pixel of the sub-engines repeating every 4 clocks. The register fileregister file index to write must accompany
the data. Data and Index associated with the Quad 0 must be sent 3 clocks after the Instruction Start signal is sent.

Name Direction Bits Description
Tex_Read_Register_Index SEQ->SP 8 Index into Register FileRegister files for reading Texture

Address
Tex_RegFile_Read_Data SP->TEX 512 4 Texture Addresses read from the Register FileRegister

file
Tex_Write_Register_Index SEQ->TEX 8 Index into Register fileRegister file for write of returned

Texture Data

7.1.412.1.4 Sequencer to Texture Unit bus (Slow Bus)

Once every four clock, the texture unit sends to the sequencer on wich clause it is now working and if the data in the
registers is ready or not. This way the sequencer can update the texture counters for the reservation station fifos. The
sequencer also provides the intruction and constants for the texture fetch to execute and the address in the register
fileregister file where to write the texture return data.

Name Direction Bits Description
Tex_Ready TEX→ SEQ 1 Data ready
Tex_Clause_Num TEX→ SEQ 3 Clause number
Tex_cst SEQ→TEX ? Texture constants X bits sent over 4 clocks
Tex_Inst SEQ→TEX ? Texture fetch instruction X bits sent over 4 clocks

7.1.512.1.5 Shader Engine to RE/PA Bus
Name Direction Bits Description
Interpolator_Register_Index SEQ->SP 8 Index into Register FileRegister files for write of

Interpolator/Index Data
Interpolator_Write_Mask SEQ->SP 1 Write Mask. The same write mask is used for all 4 pixels
Interpolator_Write_Data RE/PA->SP 512 4 interpolated vectors or vectors of indices

12.1.6 PA to sequencer
Name Direction Bits Description
Adress PA→SEQ ? Dealocation adress sent by the PA telling the Sequencer

that it is now possible to free this space in the parameter
buffer. This token is a pointer in the parameter cache and
4 bits to tell the size wich is to be freed up.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted

Formatted

Formatted

Formatted

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 24 of 1898

ORIGINATE DATE

7 May, 2001

EDIT DATE

8 September, 20153
September 201513

R400 Sequencer Specification PAGE

16 of 16

Exhibit 2009.docR400_Sequencer.doc �� 16178 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/08/15 01:03
PM08/13/01 03:17 PM07/13/01 02:10 PM

8.13. Open issues
There is currently an issue with constants. If the constants are not the same for the whole vector of vertices, we don’t
have the bandwith from the texture store to feed the ALUs. Two solutions exists for this problem:

1) Let the compiler handle the case and put those instructions in a texture clause so we can use the
bandwith there to operate. This requires a significant amount of temporary storage in the register store.

2) Waterfall down the pipe allowing only at a given time the vertices having the same constants to operate in
parrallel. This might in the worst case slow us down by a factor of 16.

Need to do some testing on the size of the register fileregister file as well as on the register fileregister file allocation
method (dynamic VS static).

Ability to export at any clause?

Saving power?

Are we working on 32 vertices at a time or 16?

Size of the fifo containing the information of a vector of pixels/vertices. And size of the fifos before the reservation
stations.

Sequencer Instruction memory, and constant memory.

Arbitration policy for the output file.

Loops and branches.

The parameter cache may end up in the PA rather than in the RS. Parameter cache management thus may change.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 25 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 201524
August 20016 August

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 20

Exhibit 2010.docR400_Sequencer.doc �� 25584 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SEQ

Version 0.42

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\arch\doc\gfx\RE\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2010
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 26 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 201524
August 20016 August

R400 Sequencer Specification PAGE

2 of 20

Exhibit 2010.docR400_Sequencer.doc �� 25584 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

Table Of Contents

1. OVERVIEW 43
1.1 Top Level Block Diagram 54
1.2 Data Flow graph 97
1.3 Control Graph 1210
2. INTERPOLATED DATA BUS 1210
3. INSTRUCTION STORE 1210
4. CONSTANT STORE 1311
5. LOOPING AND BRANCHES 1311
6. REGISTER FILE ALLOCATION ... 1311
7. TEXTURE ARBITRATION 1412
8. ALU ARBITRATION 1412
9. HANDLING STALLS 1513
10. CONTENT OF THE RESERVATION
STATION FIFOS 1513
11. THE OUTPUT FILE (RB FIFO AND
PARAMETER CACHE) 1513

12. INTERFACES 1513

12.1 External Interfaces 1513

12.1.1 Sequencer to Shader
Engine Bus .. 1513

12.1.2 Shader Engine to Output
File 1513

12.1.3 Shader Engine to Texture
Unit Bus (Fast Bus) 1614

12.1.4 Sequencer to Texture Unit bus
(Slow Bus) 1614

12.1.5 Shader Engine to RE/PA Bus
 1614

12.1.6 PA? to sequencer 1614
13. EXAMPLES OF PROGRAM
EXECUTIONS .. 1714

13.1.1 Sequencer Control of a Vector
of Vertices 1714

13.1.2 Sequencer Control of a Vector
of Pixels 1816

13.1.3 Notes 1917
14. OPEN ISSUES 1917
1. OVERVIEW ... 3
1.1 Top Level Block Diagram 4
1.2 Data Flow graph 7
1.3 Control Graph 10

2. INTERPOLATED DATA BUS 10
3. INSTRUCTION STORE 10
4. CONSTANT STORE 11
5. LOOPING AND BRANCHES 11
6. REGISTER FILE ALLOCATION 11
7. TEXTURE ARBITRATION 12
8. ALU ARBITRATION 12
9. HANDLING STALLS 13
10. CONTENT OF THE RESERVATION
STATION FIFOS .. 13
11. THE OUTPUT FILE (RB FIFO AND
PARAMETER CACHE) 13

12. INTERFACES 13

12.1 External Interfaces 13

12.1.1 Sequencer to Shader
Engine Bus .. 13

12.1.2 Shader Engine to Output
File 13

12.1.3 Shader Engine to Texture
Unit Bus (Fast Bus) 14

12.1.4 Sequencer to Texture Unit bus
(Slow Bus) 14

12.1.5 Shader Engine to RE/PA Bus 14

12.1.6 PA to sequencer 14
13. OPEN ISSUES 14
1. OVERVIEW ... 3
1.1 Top Level Block Diagram 4
2. TEXTURE ARBITRATION 9
3. ALU ARBITRATION 9
4. HANDLING STALLS 10
5. CONTENT OF THE RESERVATION
STATION FIFOS .. 10

6. INTERFACES 10

6.1 External Interfaces 10

6.1.1 Sequencer to Shader Engine
Bus 10

6.1.2 Shader Engine to Output File
 10

6.1.3 Shader Engine to Texture Unit
Bus (Fast Bus) 10

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 27 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 201524
August 20016 August

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 20

Exhibit 2010.docR400_Sequencer.doc �� 25584 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

6.1.4 Sequencer to Texture Unit bus
(Slow Bus) ... 11

6.1.5 Shader Engine to RE/PA Bus .. 11

7. OPEN ISSUES 11

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 28 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 201524
August 20016 August

R400 Sequencer Specification PAGE

4 of 20

Exhibit 2010.docR400_Sequencer.doc �� 25584 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

1. Overview
The sequencer first arbitrates between vectors of 16 (maybe 32) vertices that arrive directly from primitive assembly
and vectors of 84 quads (16 pixels) (32 pixels) that are generated in the raster engine.

The vertex or pixel program specifies how many GPR’s it needs to execute. The sequencer will not start the next
vector until the needed space is available.

The sequencer is based on the R300 design. It chooses an two ALU clauses and a texture clause to execute, and
executes all of the instructions in aa clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight texture and eight ALU clauses, but clauses
do not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing
from texture reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up
vectors until the vector currently occupying a reservation station has left. A vector at a reservation station can be
chosen to execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and
all eight texture stations to choose a texture clause to execute. The arbitrator will give priority to clauses/reservation
stations closer to the top bottom of the pipeline. It will not execute an alu clause until the texture fetches initiated by
the previous texture clause have completed. There are two separate sets of reservation stations, one for pixel vectors
and one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the raster engine also contains the shader instruction cache and constant store. There
are only one constant store for the whole chip and one instruction store. These will be shared among the four shader
pipes.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 29 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 201524
August 20016 August

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 20

Exhibit 2010.docR400_Sequencer.doc �� 25584 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

1.1 Top Level Block Diagram

vertex/pixel vector arbitrator

Possible delay for available GPR’s

FIFO
Texture clause 0
reservation station

Texture clause 1
reservation station

FIFO
ALU clause 0
reservation station

FIFO

Texture clause 2
reservation station

Texture clause 3
reservation station

FIFO
ALU clause 1
reservation station

FIFO

FIFO
ALU clause 2
reservation station

FIFO

FIFO
ALU clause 3
reservation station

FIFO
Texture clause 4
reservation station

Texture clause 5
reservation station

FIFO
ALU clause 4
reservation station

FIFO

Texture clause 6
reservation station

Texture clause 7
reservation station

FIFO
ALU clause 5
reservation station

FIFO

FIFO
ALU clause 6
reservation station

FIFO

FIFO
ALU clause 7
reservation station

texture arbitrator

texture arbitrator

There are two sets of the above figure, one for vertices and one for pixels.

The rasterizer always checks the vertices FIFO first and if allowed by the sequencer sends the data to the shader. If
the vertex FIFO is empty then, the rasterizer takes the first entry of the pixel FIFO (a vector of 32 16 pixels) and
sends it to the interpolators. Then the sequencer takes control of the packet. The packet consists of 3 bits of state, 6-
7 bits for the base address of the Shader program and some information on the coverage to determine texture LOD.
All other information (2x2 adresses) is put in a FIFO (one for the pixels and one for the vertices) and retrieved when
the packet finishes its last clause.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 30 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 201524
August 20016 August

R400 Sequencer Specification PAGE

6 of 20

Exhibit 2010.docR400_Sequencer.doc �� 25584 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the registers to store the interpolated values and temporaries. Following this, the input state machine stacks the
packet in the first FIFO.

On receipt of a command, the level 0 texture machine issues a texure request and corresponding register address for
the texture address (ta). A small command (tcmd) is passed to the texture system identifying the current level number
(0) as well as the register set being usedwrite address for the texture return data. One texture request is sent every 4
clocks causing the texturing of four 2x2s worth of data (or 16 vertices). Once all the requests are sent the packet is
put in FIFO 1.

Upon recept of the return data (identified by the tcmd containing the level number 0), the level 0 texture machine
issues a register address for the return value (td), the texture unit writes the data to the register file using the write
address that was provided by the level 0 texture machine and sends the clause number (0) to the level 0 texture state
machine to signify that the write is done and thus the data is ready. Then, the level 0 texture machine it increments
the counter of FIFO one 1 to signify to the ALU 1 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO counter and then issues a
complete set of level 0 shader instructions. For each instruction, the state machine generates 3 source addresses,
one destination address (2 3 cycles later) and an instruction id wich is used to index into the instruction store. Once
the last instruction as been issued, the packet is put into FIFO 2. Note that in the case of a pixel packet, the two
vectors of 16 pixels are consecutive in order to hide the latency of the ALUs (8 cycles).

There will always be two active ALU clauses at any given time (and two arbitrers) In this case, the
instructions of a vector are interleaved with the instructions of the other vector. One arbitrer will arbitrate
over the odd clock cycles and the other one will arbitrate over the even clock cycles. The only constraints
between the two arbitrers is that they are not allowed to pick the same clause number as they other one is
currently working on if the packet os of the same type.

If the packet is a vertex packet, upon reaching ALU clause 4, it can export the position if the position is ready. So the
arbitrer must prevent ALU clause 4 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, the location where the vertex data is to be put is also sent (parameter data pointers).

All other level process in the same way until the packet finally reaches the last ALU machine (8). On completion of the
level 8 ALU clause, a valid bit is sent to the Render Backend which picks up the color data. This requires that the last
instruction writes to the output register – a condition that is almost always true. If the packet was a vertex packet,
instead of sending the valid bit to the RB, it is sent to the PA, which picks up the data and puts it into the vertex store
so it can know that the data present in the parameter store is valid.

Only one two ALU state machine may have access to the SRAMregister file address bus or the instruction decode
bus at one time. Similarly, only one texture state machine may have access to the SRAMregister file address bus at
one time. Arbitration is performed by two three arbitrer blocks (one two for the ALU state machines and one for the
texture state machines). The arbitrers always favor the higher number state machines, preventing a bunch of half
finished jobs from clogging up the SRAMregister Sfiles.

Each state machine maintains an address pointer specifying where the 16 (or 32) entries vector is located in the
SRAMregister file (the texture machine has two pointers one for the read address and one for the write). Upon
completion of its job, the address pointer is incremented by a predefined amount equal to the total number of
registers required by the shading code. A comparison of the address pointer for the first state machine in the chain
(the input state machine), and the last machine in the chain (the level 8 ALU machine), gives an indication of how
much unallocated SRAMregister file memory is available

Formatted

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 31 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 201524
August 20016 August

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 20

Exhibit 2010.docR400_Sequencer.doc �� 25584 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

Register File
512x128 (built as 4 128x128 or 16 128x32

Operand mux

4x32
128 bit data

4 32 bit MAC units
128 bit scalar/vector

ALU
control from RE

control from RE

constants from RE

interpolated data from RE

Address to texure
or vertex parameter data to RE through texture block
or pixel data to RB through texture block

data returned from texture fetch

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 32 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 201524
August 20016 August

R400 Sequencer Specification PAGE

8 of 20

Exhibit 2010.docR400_Sequencer.doc �� 25584 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

MAC

MAC

MAC

MAC

Register File

Register File

Register File

Register File

co
ns

ta
nt

s
fr

o
m

 R
E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
nt

s
fr

om
 R

E

S
ca

la
r

U
ni

t

te

xt
ur

e
d

at
a/

pr
im

iti
ve

 d
at

a
fr

om
 R

E
 in

to
 t

he
 r

eg
is

te
r

fil
es

texture request

texture request

texture request

texture request

te
xt

ur
e

ad
dr

es
s

te
xt

ur
e

d
at

a

pr
im

iti
ve

 d
a

ta
fr

om
 R

E

Mux

Mux

scalar input/output

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 33 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 201524
August 20016 August

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 20

Exhibit 2010.docR400_Sequencer.doc �� 25584 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

1.2 Data Flow graph

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 34 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 201524
August 20016 August

R400 Sequencer Specification PAGE

10 of 20

Exhibit 2010.docR400_Sequencer.doc �� 25584 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

MAC

MAC

MAC

MAC

Register File

co
ns

ta
nt

s
fr

om
 R

E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
nt

s
fr

om
 R

E

S
ca

la
r

U
ni

t

texture request

texture request

texture request

texture request

te
xt

ur
e

ad
dr

es
s

tex tur e d
ata

pr im
it ive da

ta f rom
 R

E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 35 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 201524
August 20016 August

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 20

Exhibit 2010.docR400_Sequencer.doc �� 25584 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

REGISTER FILE
INSTRUCTION
STORE/CACHE

CONSTANT
STORE

ALU TEXTUREALUALU ALU
SCALAR

ALU

OPERAND MUX

Interpolated
data / Vertex indexes

T
O

 R
B

/P
A

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 36 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 201524
August 20016 August

R400 Sequencer Specification PAGE

12 of 20

Exhibit 2010.docR400_Sequencer.doc �� 25584 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

1.3 Control Graph

SEQ

TX SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1 CST2 A B C WrVec

WrAddrWrScal

OF

WrAddr

RdAddr
PA/RB

IS CST

In green is represented the Texture control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
Since each of the register file is actually physically divided (one 128x128 per MAC) and we don’t have the place to
hold a maximum size vector of vertices in the parameter buffer, we need to interpolate on a parameter basis rather
than on a quad basis. So the order to the register file will be:

Q0P0 Q1P0 Q2P0 Q3P0 Q0P1 Q1P1 Q2P1 Q3P1 Q0P2 Q1P2 …

3. Instruction Store
There is going to be only one instruction store for the whole chip. It may contain up to 2000 instructions of 96 bits
each.

{ISSUE : The instruction store is loaded by the sequencer using the memory hub ?}.

 The read bandwith from this store is 24 bits/clock/pipe. To achieve this this instruction store is likely to be broken up
into 4 blocks. An ALU instruction section (1R/1W) split in two and a texture section (1R/1W) also split in two. The
bandwith out of those memories is 96 bits/clock.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 37 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 201524
August 20016 August

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 20

Exhibit 2010.docR400_Sequencer.doc �� 25584 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

4. Constant Store
The constant store is managed by the CP. The sequencer is aware of where the constants are using a remaping
table also managed by the CP. A likely size for the constant store is 512x128 bits. The constant store is also planned
to be shared. The read BW from the constant store is 512/4 bits/clock/pipe and the write bandwith is 32/4 bits/clock.

5. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. However, it is
still unclear if we plan on supporting data dependent branches or not.

6. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to VERTEX_REG_SIZE for vertices and 256-
VERTEX_REG_SIZE for pixels.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 38 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 201524
August 20016 August

R400 Sequencer Specification PAGE

14 of 20

Exhibit 2010.docR400_Sequencer.doc �� 25584 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary as allowed
moving again.

2.7. Texture Arbitration
The texture arbitration logic chooses one of the 8 potentially pending texture clauses to be executed. The choice is
made by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state
machine will send one 2x2 texture fetch per clock (or 4 fetches in one clock every 4 clocks) until all the texture fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two texture fetches
of the same clause.

The arbitrator will not wait for the texture fetches to return prior to selecting another clause for execution. The texture
pipe will be able to handle up to 100X(?) in flight texture fetches and thus there can be a fair number of active clauses
waiting for their texture return data.

3.8. ALU Arbitration
ALU arbitration proceeds in almost the same way than texture arbitration. The ALU arbitration logic chooses one of
the 8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and
picking the first one ready to executeexecute. If the packet chosen is a packet of vertices, the state machine issues
one instruction every 4 clocks until the clause is finished. This means that the compiler has to insert nops between
two dependent successive instructions. If the packet is a pixel packet it is made out of two sub-vectors of 16. Thus the
state machine issues the first instruction for the first sub-vector and then, 4 clocks later, the first instruction of the
second sub-vector and so on until the clause is finished. . There are two ALU arbitrers, one for the even clocks and

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 39 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 201524
August 20016 August

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 20

Exhibit 2010.docR400_Sequencer.doc �� 25584 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

one for the odd clocks. For exemple, here is the sequencing of two interleaved ALU clauses (E and O stands for Even
and Odd):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…
 Proceeding this way hides the latency of 8 clocks of the ALUs.

4.9. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic to select the last clause (this way nothing
can exit the shader pipe until there is place in the output file. If we have the ability to export at any clausethe packet is
a vertex packet and the position buffer is full (POS_FULL) then the sequencer also prevents a thread to enter the
exporting clause (4?). The sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full
and thus the ALU arbitrer will be able read this signal and act accordingly by not preventing exporting clauses to
proceed.

5.10. Content of the reservation station FIFOs
3 bits of Render State and 6-7 bits for the base address of the instruction store and some bits for LOD correction.
Every other information (such as the coverage mask, quad address, etc.) is put in a FIFO and is retrieved when the
quad exits the shader pipe to enter in the output file buffer. Since pixels and vertices are kept in order in the shader
pipe, we only need two fifos (one for vertices and one for pixels) deep enough to cover the shader pipe latency. This
size will be determined later when we will know the size of the small fifos between the reservation stations.

6.11. The Output File (RB FIFO and Parameter Cache)
The output file is where program results are exported when the pixel/vertex shader finishes. It constists of a 512x128
memory cell that is statically divided between pixels and vertices. Each section is a regular FIFO. The output file has
1 write port and 1 read port. The sequencer is responsible for managing the addresses of this output file and for
stalling the shader pipe should this output file fill up. The management is done by keeping the tail and head pointers
of each sections (pixels and vertices) and incrementing them using a simple RoundRobin allocation policy. The
sequencer must also arbitrate between the PA and the RB for the use of the read port. This arbitration will either be
priority based or just interleaved evenly (1 read every 2 clocks for each of the blocks).

7.12. Interfaces

7.112.1 External Interfaces

7.1.112.1.1 Sequencer to Shader Engine Bus
This is a bus that sends the instruction and constant data to all 4 Sub-Engines of the Shader. Because a new instruction
is needed only every 4 clocks, the width of the bus is divided by 4 and both constants and instruction are sent over
those 4 clocks.

Name Direction Bits Description
Instruction Start SEQ-> SP 1 High on first cycle of transfer
Constant 0 SEQ-> SP 32 128 bits transferred over 4 cycles, alpha first…blue last
Constant 1 SEQ-> SP 32 128 bits transferred over 4 cycles, alpha first…blue last
Instruction SEQ-> SP 30 120 bits transferred over 4 cycles (order TBD) ?

7.1.212.1.2 Shader Engine to Output File
Every clock each Sub-Engine can output 128 bits of ‘vector’ data and 32 bits of ‘scalar’ data to an output file (?). This
data will be compressed into 128 bits total prior to storage in output file.

Name Direction Bits Description
UL_Vector_Out SP-> OF 128 Vector Data out

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 40 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 201524
August 20016 August

R400 Sequencer Specification PAGE

16 of 20

Exhibit 2010.docR400_Sequencer.doc �� 25584 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

UL_Scalar_Out SP-> OF 32 Vector Data out
UR_Vector_Out SP-> OF 128 Vector Data out
UR_Scalar_Out SP-> OF 32 Vector Data out

Name Direction Bits Description
LL_Vector_Out SP-> OF 128 Vector Data out
LL_Scalar_Out SP-> OF 32 Vector Data out
LR_Vector_Out SP-> OF 128 Vector Data out
LR_Scalar_Out SP-> OF 32 Vector Data out

7.1.312.1.3 Shader Engine to Texture Unit Bus (Fast Bus)
One quad’s worth of addresses is transferred to Texture Unit every clock. These are sourced from a different pixel
within each of the sub-engines repeating every 4 clocks. The register fileregister file index to read must precede the
data by 2 clocks. The Read address associated with Quad 0 must be sent 1 clock after the Instruction Start signal is
sent, so that data is read 3 clocks after the Instruction Start.

One Quad’s worth of Texture Data may be written to the Register FileRegister file every clock. These are directed to a
different pixel of the sub-engines repeating every 4 clocks. The register fileregister file index to write must accompany
the data. Data and Index associated with the Quad 0 must be sent 3 clocks after the Instruction Start signal is sent.

Name Direction Bits Description
Tex_Read_Register_Index SEQ->SP 8 Index into Register FileRegister files for reading Texture

Address
Tex_RegFile_Read_Data SP->TEX 512 4 Texture Addresses read from the Register FileRegister

file
Tex_Write_Register_Index SEQ->TEX 8 Index into Register fileRegister file for write of returned

Texture Data

7.1.412.1.4 Sequencer to Texture Unit bus (Slow Bus)

Once every four clock, the texture unit sends to the sequencer on wich clause it is now working and if the data in the
registers is ready or not. This way the sequencer can update the texture counters for the reservation station fifos. The
sequencer also provides the intruction and constants for the texture fetch to execute and the address in the register
fileregister file where to write the texture return data.

Name Direction Bits Description
Tex_Ready TEX→ SEQ 1 Data ready
Tex_Clause_Num TEX→ SEQ 3 Clause number
Tex_cst SEQ→TEX ? Texture constants X bits sent over 4 clocks
Tex_Inst SEQ→TEX ? Texture fetch instruction X bits sent over 4 clocks

7.1.512.1.5 Shader Engine to RE/PA Bus
Name Direction Bits Description
Interpolator_Register_Index SEQ->SP 8 Index into Register FileRegister files for write of

Interpolator/Index Data
Interpolator_Write_Mask SEQ->SP 1 Write Mask. The same write mask is used for all 4 pixels
Interpolator_Write_Data RE/PA->SP 512 4 interpolated vectors or vectors of indices

12.1.6 PA? to sequencer
Name Direction Bits Description
Adress PA→SEQ ? Dealocation adress sent by the PA telling the Sequencer

that it is now possible to free this space in the parameter
buffer. This token is a pointer in the parameter cache and
4 bits to tell the size wich is to be freed up.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted

Formatted

Formatted

Formatted

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 41 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 201524
August 20016 August

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 20

Exhibit 2010.docR400_Sequencer.doc �� 25584 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

13. Examples of program executions

13.1.1 Sequencer Control of a Vector of Vertices

1. PA sends a vector of 16 vertices (actually vertex indices – 32 bits/index for 512 bit total) to the RE’s Vertex FIFO
 state pointer as well as tag into position cache is sent along with vertices
 space was allocated in the position cache for transformed position before the vector was sent
 also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
 The vertex program is assumed to be loaded when we receive the vertex vector.

 the SEQ then accesses the IS base for this shader using the local state pointer (provided to all
sequencers by the RBBM when the CP is done loading the program)

2. SEQ arbitrates between the Pixel FIFO and the Vertex FIFO – basically the Vertex FIFO always has priority
 at this point the vector is removed from the Vertex FIFO
 the arbitrer is not going to select a vector to be transformed if the parameter cache is full unless the pipe as

nothing else to do (ie no pixels are in the pixel fifo).

3. SEQ allocates space in the SP register file for index data plus GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
 SEQ will not send vertex data until space in the register file has been allocated

4. SEQ sends the vector to the SP register file over the RE_SP interface (which has a bandwidth of 512 bits/cycle)
 the 16 vertex indices are sent to the 16 register files over 4 cycles

 RF0 of SU0, SU1, SU2, and SU3 is written the first cycle
 RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
 RF2 of SU0, SU1, SU2, and SU3 is written the third cycle
 RF3 of SU0, SU1, SU2, and SU3 is written the fourth cycle

 the index is written to the least significant 32 bits (floating point format?) (what about compound indices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, z)

5. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
texture state machine 0, or TSM0 FIFO)
 the control packet contains the state pointer, the tag to the position cache and a register file base pointer.

6. TSM0 accepts the control packet and fetches the instructions for texture clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

7. all instructions of texture clause 0 are issued by TSM0

8. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for requests made to the Texture Unit to complete; it passes the register file write index

for the texture data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data to the register files, it increments a counter that is associated with ASM0

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

9. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

10. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of texture state machine 1, or TSM1 FIFO)

11. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 position can be exported in ALU clause 3 (or 4?); the data (and the tag) is sent over a position bus (which is

shared with all four shader pipes) back to the PA’s position cache
 A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
 there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 42 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 201524
August 20016 August

R400 Sequencer Specification PAGE

18 of 20

Exhibit 2010.docR400_Sequencer.doc �� 25584 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

 the ASM arbiter will prevent a packet from starting an exporting clause if the position export FIFO is full
 parameter data is exported in clause 7 (as well as position data if it was not exported earlier)

 parameter data is sent to the Parameter Cache over a dedicated bus
 the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space when there is no

longer a need for the parameters (it is told by the PA when using a token).
 the ASM arbiter will prevent a packet from starting on ASM7 if the parameter cache (or the position buffer

if position is being exported) is full

12. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

13.1.2 Sequencer Control of a Vector of Pixels

1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

 At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

2. the RE’s Parameter Buffer is loaded from the Parameter Cache before the SEQ takes control of the vector
 after the HZ culling stage a request is made by the RE to send parameter data to the Parameter buffer
 the Parameter buffer is wide enough to source 3 vertices worth of a particular parameter in one cycle
 at this moment the right sequencer will free up the parameter store locations not used anymore using

the token provided by the PA.

3. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
 the state pointer and the LOD correction bits are also placed in the Pixel FIF0
 the Pixel FIFO is wide enough to source one quad’s worth of barycentrics per cycle

4. SEQ arbitrates between Pixel FIFO and Vertex FIFO – when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

5. SEQ allocates space in the SP register file for all the GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
 SEQ will not allow interpolated data to be sent to the shader until space in the register file has been allocated

6. SEQ control starts with the interpolation of parameters (up to 16 per thread) by sending the barycentric
coordinates from the Pixel FIFO and the parameters from the Parameter Buffer to the interpolator
 P0i, P0j, and P0k (the value of P0 at each vertex) are loaded into the interpolator from the Parameter buffer
 Q0 i, j, and k are loaded into the interpolator from the Pixel FIFO
 The interpolator then generates the parameter value for each pixel in Q0 (Q0P0)
 P0i, P0j, and P0k are sent to the interpolator for Q1 only if Q1 is from a different primitive; if Q1 is

from the same primitive as Q0, then the P0i, P0j, and P0k values loaded for Q0 are held by the
interpolator and reused for Q1
 a “different_prim” control bit is passed with the barycentric data for each quad in the Pixel FIFO

that indicates whether new parameter data needs to be loaded into the interpolator
 Q1 i, j, and k are then loaded into the interpolator from the Pixel FIFO
 The interpolator then generates the parameter value for each pixel in Q1 (Q1P0)
 Q2P0 and Q3P0 are generated in a similar manner
 The next set of parameter data - P1i, P1j, and P1k - is then loaded into the interpolator
 Q0 i, j, and k now must be re-read from the Pixel FIFO – this means that the output of the Pixel FIFO loops

through the top four entries on each read command until at the end a final “block_pop” signal is asserted,
causing the top four sets of barycentric coordinates to finally be removed

 so the order of parameter info generated is Q0P0, Q1P0, Q2P0, Q3P0, Q0P1, Q1P1, etc.

7. SEQ controls the transfer of interpolated data to the SP register file over the RE_SP interface (which has a
bandwidth of 512 bits/cycle)
 16 pixels worth of interpolated parameter data is sent to the 16 register files over 4 cycles

 RF0 of SU0, SU1, SU2, and SU3 is written with Q0P0 the first cycle
 RF1 of SU0, SU1, SU2, and SU3 is written with Q1P0 second cycle
 RF2 of SU0, SU1, SU2, and SU3 is written with Q2P0 third cycle
 RF3 of SU0, SU1, SU2, and SU3 is written with Q3P0 fourth cycle

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 43 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 201524
August 20016 August

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 20

Exhibit 2010.docR400_Sequencer.doc �� 25584 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

8. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
texture state machine 0, or TSM0 FIFO)
 note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
 the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
 all other informations (such as quad address for example) travels in a separate FIFO

9. TSM0 accepts the control packet and fetches the instructions for texture clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

10. all instructions of texture clause 0 are issued by TSM0

11. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for texture requests made to the Texture Unit to complete; it passes the register file write

index for the texture data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data for a particular clause to the register files, it increments a counter that is

associated with the ASM0 FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

12. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

13. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of texture state machine 1, or TSM1 FIFO)

14. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 pixel data is exported in the last ALU clause (clause 7)

 it is sent to an output FIFO where it will be picked up by the render backend
 the ASM arbiter will prevent a packet from starting on ASM7 if the output FIFO is full

15. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

13.1.3 Notes

16. the state machines and arbitrers will operate ahead of time so that they will be able to immediately start the real
threads or stall.

17. the register file base pointer for a vector needs to travel with the vector through the reservation stations, but the
instruction store base pointer does not – this is because the RF pointer is different for all threads, but the IS
pointer is only different for each state and thus can be accessed via the state pointer

18. Waterfalling, parameter buffer allocation, loops and branches and parameter cache de-allocation still needs to
be specked out.

8.14. Open issues
There is currently an issue with constants. If the constants are not the same for the whole vector of vertices, we don’t
have the bandwith from the texture store to feed the ALUs. Two solutions exists for this problem:

1) Let the compiler handle the case and put those instructions in a texture clause so we can use the
bandwith there to operate. This requires a significant amount of temporary storage in the register store.

2) Waterfall down the pipe allowing only at a given time the vertices having the same constants to operate in
parrallel. This might in the worst case slow us down by a factor of 16.

Need to do some testing on the size of the register fileregister file as well as on the register fileregister file allocation
method (dynamic VS static).

Ability to export at any clause?

Saving power?

Are we working on 32 vertices at a time or 16?

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 44 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 201524
August 20016 August

R400 Sequencer Specification PAGE

20 of 20

Exhibit 2010.docR400_Sequencer.doc �� 25584 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

Size of the fifo containing the information of a vector of pixels/vertices. And size of the fifos before the reservation
stations.

Sequencer Instruction memory, and constant memory.

Arbitration policy for the output file.

Loops and branches.

The parameter cache may end up in the PA rather than in the RS. Parameter cache management thus may change.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 45 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SEQ

Version 0.52

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\arch\doc\gfx\RE\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2011
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 46 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

R400 Sequencer Specification PAGE

2 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

Table Of Contents

1. OVERVIEW 43
1.1 Top Level Block Diagram 54
1.2 Data Flow graph 97
1.3 Control Graph 1210
2. INTERPOLATED DATA BUS 1210
3. INSTRUCTION STORE 1210
4. CONSTANT STORE 1311
5. LOOPING AND BRANCHES 1311
6. REGISTER FILE ALLOCATION ... 1311
7. TEXTURE ARBITRATION 1412
8. ALU ARBITRATION 1412
9. HANDLING STALLS 1513
10. CONTENT OF THE RESERVATION
STATION FIFOS 1513
11. THE OUTPUT FILE (RB FIFO AND
PARAMETER CACHE) 1513

12. INTERFACES 1513

12.1 External Interfaces 1513

12.1.1 Sequencer to Shader
Engine Bus .. 1513

12.1.2 Shader Engine to Output
File 1513

12.1.3 Shader Engine to Texture
Unit Bus (Fast Bus) 1614

12.1.4 Sequencer to Texture Unit bus
(Slow Bus) 1614

12.1.5 Shader Engine to RE/PA Bus
 1614

12.1.6 PA? to sequencer 1614
13. EXAMPLES OF PROGRAM
EXECUTIONS .. 1714

13.1.1 Sequencer Control of a Vector
of Vertices 1714

13.1.2 Sequencer Control of a Vector
of Pixels 1816

13.1.3 Notes 1917
14. OPEN ISSUES 2617
1. OVERVIEW ... 3
1.1 Top Level Block Diagram 4
1.2 Data Flow graph 7
1.3 Control Graph 10

2. INTERPOLATED DATA BUS 10
3. INSTRUCTION STORE 10
4. CONSTANT STORE 11
5. LOOPING AND BRANCHES 11
6. REGISTER FILE ALLOCATION 11
7. TEXTURE ARBITRATION 12
8. ALU ARBITRATION 12
9. HANDLING STALLS 13
10. CONTENT OF THE RESERVATION
STATION FIFOS .. 13
11. THE OUTPUT FILE (RB FIFO AND
PARAMETER CACHE) 13

12. INTERFACES 13

12.1 External Interfaces 13

12.1.1 Sequencer to Shader
Engine Bus .. 13

12.1.2 Shader Engine to Output
File 13

12.1.3 Shader Engine to Texture
Unit Bus (Fast Bus) 14

12.1.4 Sequencer to Texture Unit bus
(Slow Bus) 14

12.1.5 Shader Engine to RE/PA Bus 14

12.1.6 PA to sequencer 14
13. OPEN ISSUES 14
1. OVERVIEW ... 3
1.1 Top Level Block Diagram 4
2. TEXTURE ARBITRATION 9
3. ALU ARBITRATION 9
4. HANDLING STALLS 10
5. CONTENT OF THE RESERVATION
STATION FIFOS .. 10

6. INTERFACES 10

6.1 External Interfaces 10

6.1.1 Sequencer to Shader Engine
Bus 10

6.1.2 Shader Engine to Output File
 10

6.1.3 Shader Engine to Texture Unit
Bus (Fast Bus) 10

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 47 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

6.1.4 Sequencer to Texture Unit bus
(Slow Bus) ... 11

6.1.5 Shader Engine to RE/PA Bus .. 11

7. OPEN ISSUES 11

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.4 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 48 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

R400 Sequencer Specification PAGE

4 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

1. Overview
The sequencer first arbitrates between vectors of 16 (maybe 32) vertices that arrive directly from primitive assembly
and vectors of 84 quads (16 pixels) (32 pixels) that are generated in the raster engine.

The vertex or pixel program specifies how many GPR’s it needs to execute. The sequencer will not start the next
vector until the needed space is available.

The sequencer is based on the R300 design. It chooses an two ALU clauses and a texture clause to execute, and
executes all of the instructions in aa clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight texture and eight ALU clauses, but clauses
do not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing
from texture reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up
vectors until the vector currently occupying a reservation station has left. A vector at a reservation station can be
chosen to execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and
all eight texture stations to choose a texture clause to execute. The arbitrator will give priority to clauses/reservation
stations closer to the top bottom of the pipeline. It will not execute an alu clause until the texture fetches initiated by
the previous texture clause have completed. There are two separate sets of reservation stations, one for pixel vectors
and one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the raster engine also contains the shader instruction cache and constant store. There
are only one constant store for the whole chip and one instruction store. These will be shared among the four shader
pipes.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 49 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

1.1 Top Level Block Diagram

vertex/pixel vector arbitrator

Possible delay for available GPR’s

FIFO
Texture clause 0
reservation station

Texture clause 1
reservation station

FIFO
ALU clause 0
reservation station

FIFO

Texture clause 2
reservation station

Texture clause 3
reservation station

FIFO
ALU clause 1
reservation station

FIFO

FIFO
ALU clause 2
reservation station

FIFO

FIFO
ALU clause 3
reservation station

FIFO
Texture clause 4
reservation station

Texture clause 5
reservation station

FIFO
ALU clause 4
reservation station

FIFO

Texture clause 6
reservation station

Texture clause 7
reservation station

FIFO
ALU clause 5
reservation station

FIFO

FIFO
ALU clause 6
reservation station

FIFO

FIFO
ALU clause 7
reservation station

texture arbitrator

texture arbitrator

There are two sets of the above figure, one for vertices and one for pixels.

The rasterizer always checks the vertices FIFO first and if allowed by the sequencer sends the data to the shader. If
the vertex FIFO is empty then, the rasterizer takes the first entry of the pixel FIFO (a vector of 32 16 pixels) and
sends it to the interpolators. Then the sequencer takes control of the packet. The packet consists of 3 bits of state, 6-
7 bits for the base address of the Shader program and some information on the coverage to determine texture LOD.
All other information (2x2 adresses) is put in a FIFO (one for the pixels and one for the vertices) and retrieved when
the packet finishes its last clause.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 50 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

R400 Sequencer Specification PAGE

6 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the registers to store the interpolated values and temporaries. Following this, the input state machine stacks the
packet in the first FIFO.

On receipt of a command, the level 0 texture machine issues a texure request and corresponding register address for
the texture address (ta). A small command (tcmd) is passed to the texture system identifying the current level number
(0) as well as the register set being usedwrite address for the texture return data. One texture request is sent every 4
clocks causing the texturing of four 2x2s worth of data (or 16 vertices). Once all the requests are sent the packet is
put in FIFO 1.

Upon recept of the return data (identified by the tcmd containing the level number 0), the level 0 texture machine
issues a register address for the return value (td), the texture unit writes the data to the register file using the write
address that was provided by the level 0 texture machine and sends the clause number (0) to the level 0 texture state
machine to signify that the write is done and thus the data is ready. Then, the level 0 texture machine it increments
the counter of FIFO one 1 to signify to the ALU 1 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO counter and then issues a
complete set of level 0 shader instructions. For each instruction, the state machine generates 3 source addresses,
one destination address (2 3 cycles later) and an instruction id wich is used to index into the instruction store. Once
the last instruction as been issued, the packet is put into FIFO 2. Note that in the case of a pixel packet, the two
vectors of 16 pixels are consecutive in order to hide the latency of the ALUs (8 cycles).

There will always be two active ALU clauses at any given time (and two arbitrers) In this case, the
instructions of a vector are interleaved with the instructions of the other vector. One arbitrer will arbitrate
over the odd clock cycles and the other one will arbitrate over the even clock cycles. The only constraints
between the two arbitrers is that they are not allowed to pick the same clause number as they other one is
currently working on if the packet os of the same type.

If the packet is a vertex packet, upon reaching ALU clause 4, it can export the position if the position is ready. So the
arbitrer must prevent ALU clause 4 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, the location where the vertex data is to be put is also sent (parameter data pointers).

All other level process in the same way until the packet finally reaches the last ALU machine (8). On completion of the
level 8 ALU clause, a valid bit is sent to the Render Backend which picks up the color data. This requires that the last
instruction writes to the output register – a condition that is almost always true. If the packet was a vertex packet,
instead of sending the valid bit to the RB, it is sent to the PA, which picks up the data and puts it into the vertex store
so it can know that the data present in the parameter store is valid.

Only one two ALU state machine may have access to the SRAMregister file address bus or the instruction decode
bus at one time. Similarly, only one texture state machine may have access to the SRAMregister file address bus at
one time. Arbitration is performed by two three arbitrer blocks (one two for the ALU state machines and one for the
texture state machines). The arbitrers always favor the higher number state machines, preventing a bunch of half
finished jobs from clogging up the SRAMregister Sfiles.

Each state machine maintains an address pointer specifying where the 16 (or 32) entries vector is located in the
SRAMregister file (the texture machine has two pointers one for the read address and one for the write). Upon
completion of its job, the address pointer is incremented by a predefined amount equal to the total number of
registers required by the shading code. A comparison of the address pointer for the first state machine in the chain
(the input state machine), and the last machine in the chain (the level 8 ALU machine), gives an indication of how
much unallocated SRAMregister file memory is available

Formatted

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 51 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

Register File
512x128 (built as 4 128x128 or 16 128x32

Operand mux

4x32
128 bit data

4 32 bit MAC units
128 bit scalar/vector

ALU
control from RE

control from RE

constants from RE

interpolated data from RE

Address to texure
or vertex parameter data to RE through texture block
or pixel data to RB through texture block

data returned from texture fetch

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 52 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

R400 Sequencer Specification PAGE

8 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

MAC

MAC

MAC

MAC

Register File

Register File

Register File

Register File

co
ns

ta
nt

s
fr

o
m

 R
E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
nt

s
fr

om
 R

E

S
ca

la
r

U
ni

t

te

xt
ur

e
d

at
a/

pr
im

iti
ve

 d
at

a
fr

om
 R

E
 in

to
 t

he
 r

eg
is

te
r

fil
es

texture request

texture request

texture request

texture request

te
xt

ur
e

ad
dr

es
s

te
xt

ur
e

d
at

a

pr
im

iti
ve

 d
a

ta
fr

om
 R

E

Mux

Mux

scalar input/output

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 53 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

1.2 Data Flow graph

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 54 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

R400 Sequencer Specification PAGE

10 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

MAC

MAC

MAC

MAC

Register File

co
ns

ta
nt

s
fr

om
 R

E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
nt

s
fr

om
 R

E

S
ca

la
r

U
ni

t

texture request

texture request

texture request

texture request

te
xt

ur
e

ad
dr

es
s

tex tur e d
ata

pr im
it ive da

ta f rom
 R

E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 55 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

REGISTER FILE
INSTRUCTION
STORE/CACHE

CONSTANT
STORE

ALU TEXTUREALUALU ALU
SCALAR

ALU

OPERAND MUX

Interpolated
data / Vertex indexes

T
O

 R
B

/P
A

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 56 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

R400 Sequencer Specification PAGE

12 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

1.3 Control Graph

SEQ

TX SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1 CST2 A B C WrVec

WrAddrWrScal

OF

WrAddr

RdAddr
PA/RB

IS CST

In green is represented the Texture control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
Since each of the register file is actually physically divided (one 128x128 per MAC) and we don’t have the place to
hold a maximum size vector of vertices in the parameter buffer, we need to interpolate on a parameter basis rather
than on a quad basis. So the order to the register file will be:

Q0P0 Q1P0 Q2P0 Q3P0 Q0P1 Q1P1 Q2P1 Q3P1 Q0P2 Q1P2 …

3. Instruction Store
There is going to be only one instruction store for the whole chip. It may contain up to 2000 instructions of 96 bits
each.

{ISSUE : The instruction store is loaded by the sequencer using the memory hub ?}.

 The read bandwith from this store is 24 bits/clock/pipe. To achieve this this instruction store is likely to be broken up
into 4 blocks. An ALU instruction section (1R/1W) split in two and a texture section (1R/1W) also split in two. The
bandwith out of those memories is 96 bits/clock.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 57 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

4. Constant Store
The constant store is managed by the CP. The sequencer is aware of where the constants are using a remaping
table also managed by the CP. A likely size for the constant store is 512x128 bits. The constant store is also planned
to be shared. The read BW from the constant store is 512/4 bits/clock/pipe and the write bandwith is 32/4 bits/clock.

5. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. However, it is
still unclear if we plan on supporting data dependent branches or not.

6. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to VERTEX_REG_SIZE for vertices and 256-
VERTEX_REG_SIZE for pixels.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 58 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

R400 Sequencer Specification PAGE

14 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary as allowed
moving again.

2.7. Texture Arbitration
The texture arbitration logic chooses one of the 8 potentially pending texture clauses to be executed. The choice is
made by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state
machine will send one 2x2 texture fetch per clock (or 4 fetches in one clock every 4 clocks) until all the texture fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two texture fetches
of the same clause.

The arbitrator will not wait for the texture fetches to return prior to selecting another clause for execution. The texture
pipe will be able to handle up to 100X(?) in flight texture fetches and thus there can be a fair number of active clauses
waiting for their texture return data.

3.8. ALU Arbitration
ALU arbitration proceeds in almost the same way than texture arbitration. The ALU arbitration logic chooses one of
the 8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and
picking the first one ready to executeexecute. If the packet chosen is a packet of vertices, the state machine issues
one instruction every 4 clocks until the clause is finished. This means that the compiler has to insert nops between
two dependent successive instructions. If the packet is a pixel packet it is made out of two sub-vectors of 16. Thus the
state machine issues the first instruction for the first sub-vector and then, 4 clocks later, the first instruction of the
second sub-vector and so on until the clause is finished. . There are two ALU arbitrers, one for the even clocks and

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 59 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

one for the odd clocks. For exemple, here is the sequencing of two interleaved ALU clauses (E and O stands for Even
and Odd):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…
 Proceeding this way hides the latency of 8 clocks of the ALUs.

4.9. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic to select the last clause (this way nothing
can exit the shader pipe until there is place in the output file. If we have the ability to export at any clausethe packet is
a vertex packet and the position buffer is full (POS_FULL) then the sequencer also prevents a thread to enter the
exporting clause (4?). The sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full
and thus the ALU arbitrer will be able read this signal and act accordingly by not preventing exporting clauses to
proceed.

5.10. Content of the reservation station FIFOs
3 bits of Render State and 6-7 bits for the base address of the instruction store and some bits for LOD correction.
Every other information (such as the coverage mask, quad address, etc.) is put in a FIFO and is retrieved when the
quad exits the shader pipe to enter in the output file buffer. Since pixels and vertices are kept in order in the shader
pipe, we only need two fifos (one for vertices and one for pixels) deep enough to cover the shader pipe latency. This
size will be determined later when we will know the size of the small fifos between the reservation stations.

6.11. The Output File (RB FIFO and Parameter Cache)
The output file is where program results are exported when the pixel/vertex shader finishes. It constists of a 512x128
memory cell that is statically divided between pixels and vertices. Each section is a regular FIFO. The output file has
1 write port and 1 read port. The sequencer is responsible for managing the addresses of this output file and for
stalling the shader pipe should this output file fill up. The management is done by keeping the tail and head pointers
of each sections (pixels and vertices) and incrementing them using a simple RoundRobin allocation policy. The
sequencer must also arbitrate between the PA and the RB for the use of the read port. This arbitration will either be
priority based or just interleaved evenly (1 read every 2 clocks for each of the blocks).

7.12. Interfaces

7.112.1 External Interfaces

7.1.112.1.1 Sequencer to Shader Engine Bus
This is a bus that sends the instruction and constant data to all 4 Sub-Engines of the Shader. Because a new instruction
is needed only every 4 clocks, the width of the bus is divided by 4 and both constants and instruction are sent over
those 4 clocks.

Name Direction Bits Description
Instruction Start SEQ-> SP 1 High on first cycle of transfer
Constant 0 SEQ-> SP 32 128 bits transferred over 4 cycles, alpha first…blue last
Constant 1 SEQ-> SP 32 128 bits transferred over 4 cycles, alpha first…blue last
Instruction SEQ-> SP 30 120 bits transferred over 4 cycles (order TBD) ?

7.1.212.1.2 Shader Engine to Output File
Every clock each Sub-Engine can output 128 bits of ‘vector’ data and 32 bits of ‘scalar’ data to an output file (?). This
data will be compressed into 128 bits total prior to storage in output file.

Name Direction Bits Description
UL_Vector_Out SP-> OF 128 Vector Data out

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 60 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

R400 Sequencer Specification PAGE

16 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

UL_Scalar_Out SP-> OF 32 Vector Data out
UR_Vector_Out SP-> OF 128 Vector Data out
UR_Scalar_Out SP-> OF 32 Vector Data out

Name Direction Bits Description
LL_Vector_Out SP-> OF 128 Vector Data out
LL_Scalar_Out SP-> OF 32 Vector Data out
LR_Vector_Out SP-> OF 128 Vector Data out
LR_Scalar_Out SP-> OF 32 Vector Data out

7.1.312.1.3 Shader Engine to Texture Unit Bus (Fast Bus)
One quad’s worth of addresses is transferred to Texture Unit every clock. These are sourced from a different pixel
within each of the sub-engines repeating every 4 clocks. The register fileregister file index to read must precede the
data by 2 clocks. The Read address associated with Quad 0 must be sent 1 clock after the Instruction Start signal is
sent, so that data is read 3 clocks after the Instruction Start.

One Quad’s worth of Texture Data may be written to the Register FileRegister file every clock. These are directed to a
different pixel of the sub-engines repeating every 4 clocks. The register fileregister file index to write must accompany
the data. Data and Index associated with the Quad 0 must be sent 3 clocks after the Instruction Start signal is sent.

Name Direction Bits Description
Tex_Read_Register_Index SEQ->SP 8 Index into Register FileRegister files for reading Texture

Address
Tex_RegFile_Read_Data SP->TEX 512 4 Texture Addresses read from the Register FileRegister

file
Tex_Write_Register_Index SEQ->TEX 8 Index into Register fileRegister file for write of returned

Texture Data

7.1.412.1.4 Sequencer to Texture Unit bus (Slow Bus)

Once every four clock, the texture unit sends to the sequencer on wich clause it is now working and if the data in the
registers is ready or not. This way the sequencer can update the texture counters for the reservation station fifos. The
sequencer also provides the intruction and constants for the texture fetch to execute and the address in the register
fileregister file where to write the texture return data.

Name Direction Bits Description
Tex_Ready TEX→ SEQ 1 Data ready
Tex_Clause_Num TEX→ SEQ 3 Clause number
Tex_cst SEQ→TEX ? Texture constants X bits sent over 4 clocks
Tex_Inst SEQ→TEX ? Texture fetch instruction X bits sent over 4 clocks

7.1.512.1.5 Shader Engine to RE/PA Bus
Name Direction Bits Description
Interpolator_Register_Index SEQ->SP 8 Index into Register FileRegister files for write of

Interpolator/Index Data
Interpolator_Write_Mask SEQ->SP 1 Write Mask. The same write mask is used for all 4 pixels
Interpolator_Write_Data RE/PA->SP 512 4 interpolated vectors or vectors of indices

12.1.6 PA? to sequencer
Name Direction Bits Description
Adress PA→SEQ ? Dealocation adress sent by the PA telling the Sequencer

that it is now possible to free this space in the parameter
buffer. This token is a pointer in the parameter cache and
4 bits to tell the size wich is to be freed up.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted

Formatted

Formatted

Formatted

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 61 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

13. Examples of program executions

13.1.1 Sequencer Control of a Vector of Vertices

1. PA sends a vector of 16 vertices (actually vertex indices – 32 bits/index for 512 bit total) to the RE’s Vertex FIFO
 state pointer as well as tag into position cache is sent along with vertices
 space was allocated in the position cache for transformed position before the vector was sent
 also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
 The vertex program is assumed to be loaded when we receive the vertex vector.

 the SEQ then accesses the IS base for this shader using the local state pointer (provided to all
sequencers by the RBBM when the CP is done loading the program)

2. SEQ arbitrates between the Pixel FIFO and the Vertex FIFO – basically the Vertex FIFO always has priority
 at this point the vector is removed from the Vertex FIFO
 the arbitrer is not going to select a vector to be transformed if the parameter cache is full unless the pipe as

nothing else to do (ie no pixels are in the pixel fifo).

3. SEQ allocates space in the SP register file for index data plus GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
 SEQ will not send vertex data until space in the register file has been allocated

4. SEQ sends the vector to the SP register file over the RE_SP interface (which has a bandwidth of 512 bits/cycle)
 the 16 vertex indices are sent to the 16 register files over 4 cycles

 RF0 of SU0, SU1, SU2, and SU3 is written the first cycle
 RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
 RF2 of SU0, SU1, SU2, and SU3 is written the third cycle
 RF3 of SU0, SU1, SU2, and SU3 is written the fourth cycle

 the index is written to the least significant 32 bits (floating point format?) (what about compound indices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, z)

5. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
texture state machine 0, or TSM0 FIFO)
 the control packet contains the state pointer, the tag to the position cache and a register file base pointer.

6. TSM0 accepts the control packet and fetches the instructions for texture clause 0 from the global instruction
store TSM0 was first selected by the TSM arbiter before it could start

7. all instructions of texture clause 0 are issued by TSM0

8. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for requests made to the Texture Unit to complete; it passes the register file write index

for the texture data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data to the register files, it increments a counter that is associated with ASM0

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

9. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

10. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of texture state machine 1, or TSM1 FIFO)

11. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 position can be exported in ALU clause 3 (or 4?); the data (and the tag) is sent over a position bus (which is

shared with all four shader pipes) back to the PA’s position cache
 A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
 there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 62 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

R400 Sequencer Specification PAGE

18 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

 the ASM arbiter will prevent a packet from starting an exporting clause if the position export FIFO is full
 parameter data is exported in clause 7 (as well as position data if it was not exported earlier)

 parameter data is sent to the Parameter Cache over a dedicated bus
 the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space when there is

no longer a need for the parameters (it is told by the PA when using a token).
 the ASM arbiter will prevent a packet from starting on ASM7 if the parameter cache (or the position

buffer if position is being exported) is full

12. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

13.1.2 Sequencer Control of a Vector of Pixels

1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

 At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be
read.

2. the RE’s Parameter Buffer is loaded from the Parameter Cache before the SEQ takes control of the vector
 after the HZ culling stage a request is made by the RE to send parameter data to the Parameter buffer
 the Parameter buffer is wide enough to source 3 vertices worth of a particular parameter in one cycle
 at this moment the right sequencer will free up the parameter store locations not used anymore

using the token provided by the PA.

3. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
 the state pointer and the LOD correction bits are also placed in the Pixel FIF0
 the Pixel FIFO is wide enough to source one quad’s worth of barycentrics per cycle

4. SEQ arbitrates between Pixel FIFO and Vertex FIFO – when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

5. SEQ allocates space in the SP register file for all the GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
 SEQ will not allow interpolated data to be sent to the shader until space in the register file has been allocated

6. SEQ control starts with the interpolation of parameters (up to 16 per thread) by sending the barycentric
coordinates from the Pixel FIFO and the parameters from the Parameter Buffer to the interpolator
 P0i, P0j, and P0k (the value of P0 at each vertex) are loaded into the interpolator from the Parameter buffer
 Q0 i, j, and k are loaded into the interpolator from the Pixel FIFO
 The interpolator then generates the parameter value for each pixel in Q0 (Q0P0)
 P0i, P0j, and P0k are sent to the interpolator for Q1 only if Q1 is from a different primitive; if Q1 is

from the same primitive as Q0, then the P0i, P0j, and P0k values loaded for Q0 are held by the
interpolator and reused for Q1
 a “different_prim” control bit is passed with the barycentric data for each quad in the Pixel FIFO

that indicates whether new parameter data needs to be loaded into the interpolator
 Q1 i, j, and k are then loaded into the interpolator from the Pixel FIFO
 The interpolator then generates the parameter value for each pixel in Q1 (Q1P0)
 Q2P0 and Q3P0 are generated in a similar manner
 The next set of parameter data - P1i, P1j, and P1k - is then loaded into the interpolator
 Q0 i, j, and k now must be re-read from the Pixel FIFO – this means that the output of the Pixel FIFO loops

through the top four entries on each read command until at the end a final “block_pop” signal is asserted,
causing the top four sets of barycentric coordinates to finally be removed

 so the order of parameter info generated is Q0P0, Q1P0, Q2P0, Q3P0, Q0P1, Q1P1, etc.

7. SEQ controls the transfer of interpolated data to the SP register file over the RE_SP interface (which has a
bandwidth of 512 bits/cycle)
 16 pixels worth of interpolated parameter data is sent to the 16 register files over 4 cycles

 RF0 of SU0, SU1, SU2, and SU3 is written with Q0P0 the first cycle
 RF1 of SU0, SU1, SU2, and SU3 is written with Q1P0 second cycle
 RF2 of SU0, SU1, SU2, and SU3 is written with Q2P0 third cycle
 RF3 of SU0, SU1, SU2, and SU3 is written with Q3P0 fourth cycle

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 63 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

8. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
texture state machine 0, or TSM0 FIFO)
 note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
 the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
 all other informations (such as quad address for example) travels in a separate FIFO

9. TSM0 accepts the control packet and fetches the instructions for texture clause 0 from the global instruction
store TSM0 was first selected by the TSM arbiter before it could start

10. all instructions of texture clause 0 are issued by TSM0

11. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for texture requests made to the Texture Unit to complete; it passes the register file write

index for the texture data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data for a particular clause to the register files, it increments a counter that is

associated with the ASM0 FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

12. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

13. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of texture state machine 1, or TSM1 FIFO)

14. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 pixel data is exported in the last ALU clause (clause 7)

 it is sent to an output FIFO where it will be picked up by the render backend
 the ASM arbiter will prevent a packet from starting on ASM7 if the output FIFO is full

15. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

13.1.3 Notes

16. the state machines and arbitrers will operate ahead of time so that they will be able to immediately start the real
threads or stall.

17. the register file base pointer for a vector needs to travel with the vector through the reservation stations, but the
instruction store base pointer does not – this is because the RF pointer is different for all threads, but the IS
pointer is only different for each state and thus can be accessed via the state pointer

18. Waterfalling, parameter buffer allocation, loops and branches and parameter cache de-allocation still needs to
be specked out.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 64 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

R400 Sequencer Specification PAGE

20 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM08/13/01 03:17 PM07/13/01 02:10 PM

14. Timing Diagrams

14.1 MAC 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 65 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM08/13/01 03:17 PM07/13/01 02:10 PM

1 1312111098765432 17161514

Timing Diagram 1: Sequencer to Shader Pipe 0, Shader Unit 0, MAC 0

0

RF0_read_data

SEQ_SP_instruction

srcA srcB srcC TC

mac0_vector_result a r g b

PVRF0 write cycle PSTDID

SEQ_SP_instr_start

PV PSTDIDPV PSTDID

SEQ_SP_phase

mac0_cycle_count 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

PV PSTDID

SEQ_SP_read_addr

I0_0 I0_1 I0_2 I0_3

srcA srcB srcC TCsrcA srcB srcC TC srcA srcB srcC TC srcA srcB srcC TC srcA

RE_SP_data[511:384] ID ID ID ID

SEQ_SP_constant0 C0_0 C0_1 C0_2 C0_3

SEQ_SP_constant1 C1_0 C1_1 C1_2 C1_3

mac0_phase

SEQ_SP_write_addr PV PS-IDPV PS-IDPV PS-IDPV PS-ID

14.2 Sequencer to Shader Pipe
Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 66 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

R400 Sequencer Specification PAGE

22 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM08/13/01 03:17 PM07/13/01 02:10 PM

1 1312111098765432 17161514

Timing Diagram 2: RE Interpolator to Shader Pipe Data Transfer

0

SEQ_SP_write_addr

PMB_INT_data P0

PXF_INT_data Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3

P1 P0'

Q0' Q1" Q2" Q3" Q0'

P1'

RE_SP_data

ID ID ID ID

Q0P0 Q1P0 Q2P0 Q3P0 Q0P1 Q1P1 Q2P1 Q3P1 Q0P0' Q1P0" Q2P0" Q3P0" Q0P1'

PXF_SEQ_rts

RE_SP_valid

P0" P1"P1' P1' x x

Q1" Q2" Q3"

PXF_SEQ_new_prim

P1 P1 P1 P0' P0' P0'P0

Q0

x

x

SEQ_INT_px_load

SEQ_INT_pm_load

SEQ_PXF_vector_pop

SEQ_PXF_rtr

INT_quad_reg Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3 Q0' Q1" Q2" Q3" Q0' Q1" Q2" Q3"xx

INT_param_reg P0 P1 P0' P1'P0" P1"xx P0 P0 P0 P1 P1 P1 P0" P0" P1" P1"

SEQ_SP_phase

mac0_phase

mac1_phase

mac2_phase

mac3_phase

PVRF0 write cycle PSTDIDPV PSTDIDPV PSTDIDPV PSTDID

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 67 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM08/13/01 03:17 PM07/13/01 02:10 PM

14.3 Sequencer to Texture Pipe
1 1312111098765432 17161514

Timing Diagram 3: Sequencer - Texture Unit Interface and Texture Unit - Shader Pipe Data Transfer

0

RF0_read_data

SEQ_TX_instruction I0_0 I0_1 I0_2 I0_3

srcA srcB srcC TC

SEQ_TX_instr_start

SEQ_TX_clause

SEQ_TX_write_addr

0

r4

SEQ_TX_last

SEQ_TX_phase

srcA srcB srcC TC srcA srcB srcC TC srcA srcB

I1_0 I1_1 I1_2 I1_3

0

r5

TX_SEQ_clause

TX_SEQ_done

TX_SP_data T0_0 T0_1 T0_2 T0_3 T1_0 T1_1 T1_2 T1_3

0

TX_SP_write_addr r4 r5

SEQ_SP_read_addr TC TC TC TC

SP_TX_tc

TX_SP_valid

SEQ_SP_phase

TC

tx_phase

srcB srcC

TC

PVRF0 write cycle

PS

TDIDPV PSTDIDPV PSTDIDPV PSTDID

SEQ_SP_write_addr PV PS-IDPV PS-IDPV PS-IDPV PS-ID

PS PS

ID

TC0 TC1 TC2 TC3 TC0 TC1 TC2 TC3 TC0 TC1 TC2 TC3 TC0 TC1 TC2

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 68 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

R400 Sequencer Specification PAGE

24 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

14.4 Timing diagrams explanations

The numbering of the four shader pipes, the four shader units, and the four MACs is from left to right and from 0 to 3.
So for example the most significant 512 bits of a SP goes to SU0 and the least significant 512 bits go to SU3; within
SU0, the most significant 128 bits go to MAC0 and the least significant 128 bits go to MAC3.
The following assumptions are made:

1. all block to block signals are register to register
2. for register file reads, the RF read data is available in the MAC one clock after a RF read address is

registered into the MAC (this is the same as saying the read data is valid out of the RF two clocks after the
address is asserted on the SEQ to SP interface)

14.4.1 Timing Diagram 1: Sequencer to Shader Pipe 0, Shader Unit 0, MAC 0
This diagram shows the basics of the Sequencer to Shader Pipe interface. For simplicity only the timing relative to
MAC0 is shown. The timing for MAC1 is one clock later than MAC0, MAC2 one clock later than MAC1, etc. This
means that most of the signals need to be delayed in the SP by one cycle for MAC1, two cycles for MAC2, and three
cycles for MAC3.
SEQ_SP_constant0: Constant 0 (128 bits over 4 cycles). Pipelined in SP for other MACs.
SEQ_SP_constant1: Constant 1 (128 bits over 4 cycles). Pipelined in SP for other MACs.
SEQ_SP_read_addr: Register File Read Address (8 bits). Pipelined in SP for other MACs.
SEQ_SP_phase: This signal syncs the data transfer to the RF from the RE, as well as defining the order of all writes
into the RF. It is asserted during the cycle that interpolated data (ID) is valid on the RE_SP_ID bus. Pipelined in SP
for other MACs.
RE_SP_ID[511:384]: This is the most significant 128 bits of the RE_SP_data interface (meaning that this MAC0 is in
SU0).
SEQ_SP_instruction: 96 bits of instruction are sent over 4 cycles. Pipelined in SP for other MACs.
SEQ_SP_instr_start: control bit that signals the first cycle of the instruction transfer. Pipelined in SP for other MACs.
mac0_phase: registered version of SEQ_SP_phase used in MAC0 (this may not be he actual signal name).
mac0_cycle_count: a counter inside the MAC that keeps track of the RF write cycles; 0 here corresponds to the
cycle RE interpolated data is written (this may not be he actual signal name).
RF0_read_data: data that is read out of MAC0’s register file (this may not be he actual signal name).
mac0_vector_result: the 32-bit output of the vector ALU (PV is built up over 4 cycles) (this may not be he actual
signal name).
SEQ_SP_write_addr: Register File Write Address (8 bits). Note that the SEQ does not send the Texture Data write
address over this bus. Pipelined in SP for other MACs.
RF0 write cycle: the cycles allocated to the different write sources (ID = Interpolated Data, TD = Texture Data, PV =
Previous Vector, PS = Previous Scalar) (not a signal – just a reference point on the diagram).

14.4.2 Timing Diagram 2: RE Interpolator to Shader Pipe Data Transfer
This diagram shows how pixel data (barycentric coordinates i, j, and k) is sent from the Pixel FIFO to the interpolator
under SEQ control, and how parameter data (for each vertex) is also sent to the interpolator under SEQ control. The
output of the Interpolator is then shown being sent over the RE_SP interface.
PXF_SEQ_rts: Indicates that the output of the pixel FIFO is valid.
PXF_SEQ_new_prim: The current output of the Pixel FIFO is from a different primitive that the previous output. Tells
the SEQ that new parameter info must be fetched (if its not from a new prim, then new parameter data is not needed).
PXF_INT_data: Data output of the Pixel FIFO – goes to the Interpolator.
SEQ_PXF_rtr: Indicates that the current Pixel FIFO output will be taken by the Interpolator (driven by SEQ). Then
next quad of data will be driven the next cycle.
SEQ_PXF_vector_pop: SEQ tells the Pixel FIFO to pop a vector of pixels (otherwise RTRs cause the data to be
cycled between the four quads).

PMB_INT_data: Data from the Parameter Buffer to the Interpolator. (Note that the control of the parameter buffer is
TBD).

SEQ_INT_pm_load: controls the loading of parameter data into the Interpolator.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 69 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

INT_param_reg: register in the Interpolator that holds the per-vertex parameter data while the per-pixel parameters
are generated for one or more quads (may not be the actual signal name).
SEQ_INT_px_load: controls the loading of pixel data into the Interpolator.
INT_quad_reg: : register in the Interpolator that holds one quad’s worth of pixel data(may not be the actual signal
name).

SEQ_SP_phase: see above under TD1.
SEQ_SP_write_addr: see above under TD1.
RE_SP_valid: Interpolator Data Valid – indicates that the SP should write the ID on the appropriate cycle.
RE_SP_data: Data from the RE interpolator to the SP.
RF0 write cycle: see above under TD1.
mac*_phase: see above under TD1. These phase signals help to show the timing offset between the MACs. Note
also that each Shader Unit has a set of these signals (all with the same timing).

14.4.3 Timing Diagram 3: Sequencer - Texture Unit Interface and Texture Unit -
Shader Pipe Data Transfer
This diagram starts with the texture coordinate read from the register file and its transfer to the TX. The instruction
transfer is then shown, followed by the texture data transfer to the shader pipe.
SEQ_SP_read_addr: see above. Here shows the cycle that the texture coordinate read address is asserted.
RF0_read_addr: see above.
SP_TX_tc: Texture coordinate data sent from the shader pipe to the texture unit.
SEQ_TX_instr_start: Asserted on the first cycle of a SEQ to TX instruction transfer.
SEQ_TX_instruction: 96 bits of texture instruction transferred over 4 cycles.
SEQ_TX_clause: the clause number associated with this instruction.
SEQ_TX_write_addr: RF write index used by TX for returned texture data.
SEQ_TX_last: indicates that this is the last texture instruction of a clause.
SEQ_TX_phase: syncs the texture data write. Note that it is asserted early enough to be registered into TX and still
allow TX to source the texture data to the SP on the correct cycle.

tx_phase: the phase signal after being registered into TX.
TX_SP_write_addr: RF write index for texture data.
TX_SP_valid: indicates that valid texture data is being driven to the SP.
TX_SP_data: the texture data.
TX_SEQ_clause: the clause number associated with the texture data.
TX_SEQ_done: indicates to the SEQ that the texture data transfer is complete for the clause number that is on the
TX_SEQ_clause bus.

SEQ_SP_phase: see above under TD1 - shown here for reference.
SEQ_SP_write_addr: see above under TD1- shown here for reference.
RF0 write cycle: see above under TD1- shown here for reference.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 70 of 1898

ORIGINATE DATE

14 August, 200114
August 20017 May

EDIT DATE

4 September, 20157
September 20016

R400 Sequencer Specification PAGE

26 of 26

Exhibit 2011.docR400_Sequencer.doc �� 31302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:48
PM08/13/01 03:17 PM07/13/01 02:10 PM

8.15. Open issues
There is currently an issue with constants. If the constants are not the same for the whole vector of vertices, we don’t
have the bandwith from the texture store to feed the ALUs. Two solutions exists for this problem:

1) Let the compiler handle the case and put those instructions in a texture clause so we can use the
bandwith there to operate. This requires a significant amount of temporary storage in the register store.

2) Waterfall down the pipe allowing only at a given time the vertices having the same constants to operate in
parrallel. This might in the worst case slow us down by a factor of 16.

Need to do some testing on the size of the register fileregister file as well as on the register fileregister file allocation
method (dynamic VS static).

Ability to export at any clause?

Saving power?

Are we working on 32 vertices at a time or 16?

Size of the fifo containing the information of a vector of pixels/vertices. And size of the fifos before the reservation
stations.

Sequencer Instruction memory, and constant memory.

Arbitration policy for the output file.

Loops and branches.

The parameter cache may end up in the PA rather than in the RS. Parameter cache management thus may change.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 71 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SEQ

Version 0.65

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\arch\doc\gfx\RE\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2012
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 72 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

R400 Sequencer Specification PAGE

2 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

Table Of Contents

1. OVERVIEW 43
1.1 Top Level Block Diagram 65
1.2 Data Flow graph 97
1.3 Control Graph 118
2. INTERPOLATED DATA BUS 118
3. INSTRUCTION STORE 1411
4. SEQUENCER INSTRUCTIONS 1411
5. CONSTANT STORE 1411
6. LOOPING AND BRANCHES 1411
6.1 Data dependant predicate instructions
 1611
6.2 Register file indexing 1712
7. REGISTER FILE ALLOCATION ... 1712
8. TEXTURE ARBITRATION 1813
9. ALU ARBITRATION 1813
10. HANDLING STALLS 1914
11. CONTENT OF THE RESERVATION
STATION FIFOS 1914
12. THE OUTPUT FILE (RB FIFO AND
PARAMETER CACHE) 1914
13. REGISTERS 1914

14. INTERFACES 2014

14.1 External Interfaces 2014

14.1.1 Sequencer to Shader
Engine Bus .. 2014

14.1.2 Shader Engine to Output
File 2015

14.1.3 Shader Engine to Texture
Unit Bus (Fast Bus) 2015

14.1.4 Sequencer to Texture Unit bus
(Slow Bus) 2215

14.1.5 Shader Engine to RE/PA Bus
 2215

14.1.6 PA? to sequencer 2216
15. EXAMPLES OF PROGRAM
EXECUTIONS .. 2216

15.1.1 Sequencer Control of a Vector
of Vertices 2216

15.1.2 Sequencer Control of a Vector
of Pixels 2317

15.1.3 Notes 2518

16. OPEN ISSUES 3119
1. OVERVIEW ... 3
1.1 Top Level Block Diagram 5
1.2 Data Flow graph 7
1.3 Control Graph 10
2. INTERPOLATED DATA BUS 10
3. INSTRUCTION STORE 13
4. CONSTANT STORE 13
5. LOOPING AND BRANCHES 13
6. REGISTER FILE ALLOCATION 13
7. TEXTURE ARBITRATION 14
8. ALU ARBITRATION 14
9. HANDLING STALLS 15
10. CONTENT OF THE RESERVATION
STATION FIFOS .. 15
11. THE OUTPUT FILE (RB FIFO AND
PARAMETER CACHE) 15

12. INTERFACES 15

12.1 External Interfaces 15

12.1.1 Sequencer to Shader
Engine Bus .. 15

12.1.2 Shader Engine to Output
File 15

12.1.3 Shader Engine to Texture
Unit Bus (Fast Bus) 16

12.1.4 Sequencer to Texture Unit bus
(Slow Bus) 16

12.1.5 Shader Engine to RE/PA Bus 16

12.1.6 PA? to sequencer 16
13. EXAMPLES OF PROGRAM
EXECUTIONS .. 16

13.1.1 Sequencer Control of a Vector
of Vertices 16

13.1.2 Sequencer Control of a Vector
of Pixels 18

13.1.3 Notes 18
14. OPEN ISSUES 20
1. OVERVIEW ... 3
1.1 Top Level Block Diagram 4
1.2 Data Flow graph 7
1.3 Control Graph 10

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 73 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

2. INTERPOLATED DATA BUS 10
3. INSTRUCTION STORE 10
4. CONSTANT STORE 11
5. LOOPING AND BRANCHES 11
6. REGISTER FILE ALLOCATION 11
7. TEXTURE ARBITRATION 12
8. ALU ARBITRATION 12
9. HANDLING STALLS 13
10. CONTENT OF THE RESERVATION
STATION FIFOS .. 13
11. THE OUTPUT FILE (RB FIFO AND
PARAMETER CACHE) 13

12. INTERFACES 13

12.1 External Interfaces 13

12.1.1 Sequencer to Shader
Engine Bus .. 13

12.1.2 Shader Engine to Output
File 13

12.1.3 Shader Engine to Texture
Unit Bus (Fast Bus) 14

12.1.4 Sequencer to Texture Unit bus
(Slow Bus) 14

12.1.5 Shader Engine to RE/PA Bus 14

12.1.6 PA? to sequencer 14
13. EXAMPLES OF PROGRAM
EXECUTIONS .. 14

13.1.1 Sequencer Control of a Vector
of Vertices 14

13.1.2 Sequencer Control of a Vector
of Pixels 16

13.1.3 Notes 17
14. OPEN ISSUES 17

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.4 5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 74 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

R400 Sequencer Specification PAGE

4 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

1. Overview
The sequencer first arbitrates between vectors of 16 64 vertices that arrive directly from primitive assembly and
vectors of 4 16 quads (16 64 pixels) that are generated in the raster engine.

The vertex or pixel program specifies how many GPR’s it needs to execute. The sequencer will not start the next
vector until the needed space is available.

The sequencer is based on the R300 design. It chooses two ALU clauses and a texture clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight texture and eight ALU clauses, but clauses
do not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing
from texture reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up
vectors until the vector currently occupying a reservation station has left. A vector at a reservation station can be
chosen to execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and
all eight texture stations to choose a texture clause to execute. The arbitrator will give priority to clauses/reservation
stations closer to the bottom of the pipeline. It will not execute an alu clause until the texture fetches initiated by the
previous texture clause have completed. There are two separate sets of reservation stations, one for pixel vectors
and one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the raster engine also contains the shader instruction cache and constant store. There
are only one constant store for the whole chip and one instruction store. These will be shared among the four shader
pipes. The four shader pipes also execute the same instuction thus there is only one sequencer for the whole chip.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 75 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:49 PM08/13/01 03:17 PM

SEQ

RE

SPSPSPCSTORETSTATE

TX

TEX INST

ALU INST
IJ CONTROL

IJ
CONTROL

CST
ADDR

ALU
INST

 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/QUAD
ADDRESSES

SP

ALU INST

TU INST
ADDR

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

TU INST

ALU INST

INTER INTER INTER INTER

IJ CROSSBAR

2 QUADS IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC
 POINTERS

PARAM
DATA

R/W ADDR

Vertex indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

IJ CONTROL

4 - write mask
2- RB ID(*4)

6- LOD correction (*4)
2- Fvtx (provoking vertex)

7- PPtro
7- PPtr1
7- PPtr2

1- EOVect
1- Dealloc (pcache)

8?- State ptr
1- Sprite

4- Valid (*4)
1- Null

1- EO prim
1- F/B face

1 - Stippled line

VERTEX
CONTROL

Stipple
Tex

Coords

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 76 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

R400 Sequencer Specification PAGE

6 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

1.1 Top Level Block Diagram

vertex/pixel vector arbitrator

Possible delay for available GPR’s

FIFO
Texture clause 0
reservation station

Texture clause 1
reservation station

FIFO
ALU clause 0
reservation station

FIFO

Texture clause 2
reservation station

Texture clause 3
reservation station

FIFO
ALU clause 1
reservation station

FIFO

FIFO
ALU clause 2
reservation station

FIFO

FIFO
ALU clause 3
reservation station

FIFO
Texture clause 4
reservation station

Texture clause 5
reservation station

FIFO
ALU clause 4
reservation station

FIFO

Texture clause 6
reservation station

Texture clause 7
reservation station

FIFO
ALU clause 5
reservation station

FIFO

FIFO
ALU clause 6
reservation station

FIFO

FIFO
ALU clause 7
reservation station

texture arbitrator

texture arbitrator

There are two sets of the above figure, one for vertices and one for pixels.

The rasterizer always checks the vertices FIFO first and if allowed by the sequencer sends the data to the shader. If
the vertex FIFO is empty then, the rasterizer takes the first entry of the pixel FIFO (a vector of 16 64 pixels) and
sends it to the interpolators. Then the sequencer takes control of the packet. The packet consists of 3 20 bits of state,
6-7 bits for the base address of the Shader program and some information on the coverage to determine texture
LOD. All other information (2x2 adresses) is put in a FIFO (one for the pixels and one for the vertices) and retrieved
when the packet finishes its last clause.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 77 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

{Issue: How many bits of state exactly?}

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the registers to store the interpolated values and temporaries. Following this, the input state machine stacks the
packet in the first FIFO.

On receipt of a command, the level 0 texture machine issues a texure request and corresponding register address for
the texture address (ta). A small command (tcmd) is passed to the texture system identifying the current level number
(0) as well as the register write address for the texture return data. One texture request is sent every 4 clocks causing
the texturing of four sixteen 2x2s worth of data (or 16 64 vertices). Once all the requests are sent the packet is put in
FIFO 1.

Upon recept of the return data, the texture unit writes the data to the register file using the write address that was
provided by the level 0 texture machine and sends the clause number (0) to the level 0 texture state machine to
signify that the write is done and thus the data is ready. Then, the level 0 texture machine increments the counter of
FIFO 1 to signify to the ALU 1 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO counter and then issues a
complete set of level 0 shader instructions. For each instruction, the state machine generates 3 source addresses,
one destination address (3 cycles later) and an instruction. Once the last instruction as been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbitrers). One arbitrer will arbitrate
over the odd clock cycles and the other one will arbitrate over the even clock cycles. The only constraints
between the two arbitrers is that they are not allowed to pick the same clause number as they other one is
currently working on if the packet os of the same type.

If the packet is a vertex packet, upon reaching ALU clause 4, it can export the position if the position is ready. So the
arbitrer must prevent ALU clause 4 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, the location where the vertex data is to be put is also sent (parameter data pointers).

All other level process in the same way until the packet finally reaches the last ALU machine (8). On completion of the
level 8 ALU clause, a valid bit is sent to the Render Backend which picks up the color data. This requires that the last
instruction writes to the output register – a condition that is almost always true. If the packet was a vertex packet,
instead of sending the valid bit to the RB, it is sent to the PA so it can know that the data present in the parameter
store is valid.

Only two ALU state machine may have access to the register file address bus or the instruction decode bus at one
time. Similarly, only one texture state machine may have access to the register file address bus at one time.
Arbitration is performed by three arbitrer blocks (two for the ALU state machines and one for the texture state
machines). The arbitrers always favor the higher number state machines, preventing a bunch of half finished jobs
from clogging up the register files.

Each state machine maintains an address pointer specifying where the 16 entries vector is located in the register file
(the texture machine has two pointers one for the read address and one for the write). Upon completion of its job, the
address pointer is incremented by a predefined amount equal to the total number of registers required by the shading
code. A comparison of the address pointer for the first state machine in the chain (the input state machine), and the
last machine in the chain (the level 8 ALU machine), gives an indication of how much unallocated register file memory
is available

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 78 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

R400 Sequencer Specification PAGE

8 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

Register File
512x128 (built as 4 128x128 or 16 128x32

Operand mux

4x32
128 bit data

4 32 bit MAC units
128 bit scalar/vector

ALU
control from RE

control from RE

constants from RE

interpolated data from RE

Address to texure
or vertex parameter data to RE through texture block
or pixel data to RB through texture block

data returned from texture fetch

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 79 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

1.2 Data Flow graph

MAC

MAC

MAC

MAC

Register File

co
ns

ta
nt

s
fr

om
 R

E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
nt

s
fr

om
 R

E

S
ca

la
r

U
n

it

texture request

texture request

texture request

texture request

te
xt

ur
e

ad
dr

es
s

te xtu re d
ata

p rim
i tive da

ta f rom
 R

E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 80 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

R400 Sequencer Specification PAGE

10 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

REGISTER FILE
INSTRUCTION
STORE/CACHE

CONSTANT
STORE

ALU TEXTUREALUALU ALU
SCALAR

ALU

OPERAND MUX

Interpolated
data / Vertex indexes

T
O

 R
B

/P
A

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 81 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

1.3 Control Graph

SEQ

TX SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

OF

WrAddr

RdAddr
PA/RB

IS CST

CST IDX

In green is represented the Texture control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 82 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

R400 Sequencer Specification PAGE

12 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x64 bits)

IJs buffer (ping-pong buffer)
(27 bits * 2 (IJ) + 8 bits * 6 (delta IJs)+4 exp

bits*6)* 16 (quads) * 2 (double-buffered)
4032 bits

32 x 126

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

64

27*2+8*6+6*4 for IJs

To RB

IJ CONTROL

4 - write mask
2- RB ID(*4)

6- LOD correction (*4)
2- Fvtx (provoking vertex)

7- PPtro
7- PPtr1
7- PPtr2

1- EOVect
1- Dealloc (pcache)

8- State ptr
1- Sprite

4- Valid (*4)
1- Null

1- EO prim
1- F/B face

1 - Stippled line

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 83 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:49 PM08/13/01 03:17 PM

SP0

SP1

SP2

SP3

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

T19

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P0 P1

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 84 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

R400 Sequencer Specification PAGE

14 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

Above is an example of a tile we might receive. The IJ information is packed in the IJ buffer 2 quads at a time. The
sequencer allows at any given time as many as four quads to interpolate a parameter. They all have to come from the
same primitive. Then the sequencer controls the write mask to the register to write the valid data in.Since each of the
register file is actually physically divided (one 128x128 per MAC) and we don’t have the place to hold a maximum
size vector of vertices in the parameter buffer, we need to interpolate on a parameter basis rather than on a quad
basis. So the order to the register file will be:

Q0P0 Q1P0 Q2P0 Q3P0 Q0P1 Q1P1 Q2P1 Q3P1 Q0P2 Q1P2 …

3. Instruction Store
There is going to be only one instruction store for the whole chip. It may will contain up to 20040960 instructions of 96
bits each. There is also going to be a control instruction store of 256x32.

{ISSUE : The instruction store is loaded by the sequencer using the memory hub ?}.

 The read bandwith from this store is 24 96*2 bits/ 4 clocks (48 bits/clock)/pipe. To achieve this this instruction store is
likely to be broken up into 4 blocks. An ALU instruction section (1R/1W) split in two and a texture section (1R/1W)
also split in two. The bandwith out of those memories is 96 48 bits/clock. It is likely to be a 1R/1W port memory; we
use 2 clocks to load the ALU instruction and 2 clocks to load the Texture instruction.

4. Sequencer Instructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS).

4.5. Constant Store
The constant store is managed by the CP. The sequencer is aware of where the constants are using a remaping
table also managed by the CP. A likely size for the constant store is 512x128 bits. The constant store is also planned
to be shared. The read BW from the constant store is 128512/4 bits/clock/pipe and the write bandwith is 32/4
bits/clock.

In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed convertion, there is a latency of 4 clocks (1 instruction)
between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

5.6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program. The control program has 4 instructions:

6.1 The controlling state.
As per Dx9 the following state is available for control flow:

Boolean[15:0]

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 85 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

loop_count[7:0][7:0]
In addition:

loop_start [7:0] [7:0]
loop_step [7:0] [7:0]
 Exist to give more control to the controlling program.

We will extend that in the R400 to:
Boolean[31:0]
Loop_count[7:0][15:0]
Loop_Start[7:0] [15:0]
Loop_End[7:0] [15:0]

6.2 The Control Flow Program
The R300 uses a match method for control flow: The shader is executed, and at every instruction its address is
compared with addresses (or address?) in a control table. The “event” in the control table can redirect operations in
the program. I believe that this method has increased area and complexity when the program size is increased.

The Method I prefer is a “control program”
The control program has four basic instructions:
Execute
Conditional_execute
Loop_start
Loop_end

Execute, causes the specified number of instructions in instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified number of instructions in instruction
store to be executed.
Loop_start resets the corresponding loop counter to the start value.
Loop_end increments (decrements?) the loop counter and jumps back the specified number of instructions if the loop
end condition is not met.

if we try and fit the control flow instructions into 32 bit words, the following instructions are possible choices:

Execute
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 instruction_count Reserved Address

Execute up to 4K instructions at the specified address in the instruction memory.

Conditional Execute
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 Boolean

0: = 0
1: = 1
2,3:NA

Instruction_count Address

if the specified boolean (6 bits can address 64 booleans) meets the specified condition then execute the specified
instructions (up to 64 instructions)

Conditional Execute Predicates
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 Reserved =0

0: = 0
1: = 1
2,3:NA

Instruction_count Address

Check the OR of all current predicate bits. If OR matches the condition execute the specified number of instructions.

Loop_Start
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 86 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

R400 Sequencer Specification PAGE

16 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

0 0 1 0 Loop ID

Initialize the specified loop

Loop_End
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 Reserved (must = 0) Start Address Reserved

(must = 0)
Loop ID

if the loop condition of the current loop is not met, then branch back to the specified address in the control flow
program. Note that jumping back to the loop_start results in an infinite loop, the jump should be to loop_start+1.

the way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

The basic model is as follows:

The render state defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located

The control program can be up to 256 instructions in size. (There is an offset added to the address from the render
state before accessing the control flow program memory to allow for multiple programs resident at the same time)

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution)

The addresses from the control program are added to another offset to allow for multiple programs resident at the
same time.

Under this model, all subroutine calls must be inlined into the control program.

6.3 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETGT - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE0 – SETE0
 PRED_SETE1 – SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain the 64 bit predicate vector and use it to control the write masking (two sets for interleaved operation). This
predicate is not maintained across clause boundaries.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For exemple, the instruction :

 P0_ADD R0,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 87 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

6.4 Register file indexing
Because we can have loops in texture clause, we need to be able to index into the register file in order to retrieve the
data created in a texture clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls :

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_counter and this becomes our new address that we give to the shader
pipe.However, it is still unclear if we plan on supporting data dependent branches or not.

6.7. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to VERTEX_REG_SIZE for vertices and 256-
VERTEX_REG_SIZE for pixels.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 88 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

R400 Sequencer Specification PAGE

18 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary as is
allowed to movinge again.

7.8. Texture Arbitration
The texture arbitration logic chooses one of the 8 potentially pending texture clauses to be executed. The choice is
made by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state
machine will send one 2x2 texture fetch per clock (or 4 fetches in one clock every 4 clocks) until all the texture fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two texture fetches
of the same clause.

The arbitrator will not wait for the texture fetches to return prior to selecting another clause for execution. The texture
pipe will be able to handle up to X(?) in flight texture fetches and thus there can be a fair number of active clauses
waiting for their texture return data.

8.9. ALU Arbitration
ALU arbitration proceeds in almost the same way than texture arbitration. The ALU arbitration logic chooses one of
the 8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and
picking the first one ready to execute. There are two ALU arbitrers, one for the even clocks and one for the odd
clocks. For exemple, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…
 Proceeding this way hides the latency of 8 clocks of the ALUs.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 89 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

9.10. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic to select the last clause (this way nothing
can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position buffer is
full (POS_FULL) then the sequencer also prevents a thread to enter the exporting clause (4?). The sequencer will set
the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbitrer will be able read
this signal and act accordingly by not preventing exporting clauses to proceed.

10.11. Content of the reservation station FIFOs
3 bits of Render State 6-7 bits for the base address of the instruction store, and some bits for LOD correction and
coverage mask information in order to fetch texture for only valid pixels. Every other information (such as the
coverage mask, quad address, etc.) is put in a FIFO and is retrieved when the quad exits the shader pipe to enter in
the output file buffer. Since pixels and vertices are kept in order in the shader pipe, we only need two fifos (one for
vertices and one for pixels) deep enough to cover the shader pipe latency. This size will be determined later when we
will know the size of the small fifos between the reservation stations.

11.12. The Output File (RB FIFO and Parameter Cache)
The output file is where program results are exported when the pixel/vertex shader finishes. It constists of a 512x128
memory cell that is statically divided between pixels and vertices. The output file has 1 write port and 1 read port. The
sequencer is responsible for managing the addresses of this output file and for stalling the shader pipe should this
output file fill up. The management is done by keeping the tail and head pointers of each sections (pixels and
vertices) and incrementing them using a simple RoundRobin allocation policy. The sequencer must also arbitrate
between the PA and the RB for the use of the read port. This arbitration will either be priority based or just interleaved
evenly (1 read every 2 clocks for each of the blocks).

13. Registers
DYNAMIC_REG Dynamic allocation (pixel/vertex) of the register file on or off.
VERTEX_REG_SIZE What portion of the register file is reserved for vertices (static allocation only)
PIXEL_MIN_SIZE Minimal size of the register file's pixel portion (dynamic only)
VERTEX_MIN_SIZE Minimal size of the register file's vertex portion (dynamic only)
Vshader_fetch[7:0][7:0] eight 8 bit pointers to the location where each clauses control program is located
Vshader_alu[7:0][7:0] eight 8 bit pointers to the location where each clauses control program is located
Pshader_fetch[7:0][7:0] eight 8 bit pointers to the location where each clauses control program is located
Pshader_alu[7:0][7:0] eight 8 bit pointers to the location where each clauses control program is located
PSHADER base pointer for the pixel shader
VSHADER base pointer for the vertex shader
PCNTLSHADER base pointer for the pixel control program
VCNTLSHADER base pointer for the vertex control program
VWRAP wrap point for the vertex shader instruction store
PWRAP wrap point for the pixel shader instruction store
REG_ALLOC_PIX number of registers to allocate for pixel shader programs
REG_ALLOC_VERT number of registers to allocate for vertex shader programs
PARAM_MASK[0…16] parameter mask to specify wich parameters the pixel shader
FLAT_GOUR[0…16] wich parameters are to be gouraud shaded
GEN_TEX[0….16] for wich parameters do we need to generate tex coords.
CYL_WRAP[0…64] for wich vertices do we do the cyl wrapping.
P_EXPORT number of exports for pixel shader
V_EXPORT number of exports for vertex shader (also the number of interpolated parameters)
V_EXPORT_LOC Vertex shader exporting to RB or the PCACHE

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 90 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

R400 Sequencer Specification PAGE

20 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

12.14. Interfaces

12.114.1 External Interfaces

12.1.114.1.1 Sequencer to Shader Engine BusPA/SC to RE : IJ bus
This is a bus that sends the instruction and constant data to all 4 Sub-Engines of the Shader. Because a new instruction
is needed only every 4 clocks, the width of the bus is divided by 4 and both constants and instruction are sent over
those 4 clocks. This is a bus that sends the IJ information to the IJ fifos on the top of each shader pipe. At the same
time the control information goes to the sequencer

Name Direction Bits Description
Instruction StartIJs SEQ-> SPPA→RE 164 High on first cycle of transferIJ information sent over 2

clocks

12.1.2

12.1.2Shader Engine to Output File
Every clock each Sub-Engine can output 128 bits of ‘vector’ data and 32 bits of ‘scalar’ data to an output file (?). This
data will be compressed into 128 bits total prior to storage in output file.

14.1.2 PA/SC to SEQ : IJ Control bus
This is the control information sent to the sequencer in order to control the IJ fifos and all other information needed to
execute a shader program on the sent pixels.

Name Direction Bits Description
Write Mask PA→SEQ(RE) 4 Quad Write mask left to right
RB_ID PA→SEQ(RE) 8 RB id for each quad sent 2 bits per quad
LOD_CORRECT PA→SEQ(RE) 24 LOD correction per quad (6 bits per quad)
FVTX PA→SEQ(RE) 2 Provoking vertex for flat shading
PPTR0 PA→SEQ(RE) 11 P Store pointer for vertex 0
PPRT1 PA→SEQ(RE) 11 P Store pointer for vertex 1
PPTR2 PA→SEQ(RE) 11 P Store pointer for vertex 2
E_OFF_VECTOR PA→SEQ(RE) 1 End of the vector
DEALLOC PA→SEQ(RE) 1 Deallocation token for the P Store
STATE PA→SEQ(RE) 21 State/constant pointer (6*3+3)
SPRITE PA→SEQ(RE) 1 Need to generate tex cords
VALID PA→SEQ(RE) 16 Valid bits for all pixels
NULL PA→SEQ(RE) 1 Null Primitive (for deallocation purposes)
E_OFF_PRIM PA→SEQ(RE) 1 End Of the primitive
FBFACE PA→SEQ(RE) 1 Front face = 1, back face = 0
STIPPLE_LINE PA→SEQ(RE) 1 Stippled line need to load tex cords from alternate

buffer
RTRn SEQ→PA 1 Stalls the PA in n clocks
RTS PA→SEQ(RE) 1 PA ready to send data

14.1.3 PA/SC to RE : Vertex Bus
Name Direction Bits Description

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 91 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

14.1.4 PA/SC to SEQ : Vertex Control Bus
Name Direction Bits Description
STATE PA→SEQ 21 Render State (6*3+3 for constants)

14.1.5 CP to SEQ : Constant store load
Name Direction Bits Description
Constant Address CP→SEQ 8 Address of the block of 4 constants
Constant Data CP→SEQ 512 Data sent over X clocks
Remap Address CP→SEQ 10 Remaping address write address
Remap Data pointer CP→SEQ 8 Remaping pointer

14.1.6 CP to SEQ : Texture State store load
Name Direction Bits Description
Constant Address CP→SEQ 8 Address of the block of 4 state constants
Constant Data CP→SEQ 512 Data sent over X clocks
Remap Address CP→SEQ 10 Remaping address write address
Remap Data pointer CP→SEQ 8 Remaping pointer

14.1.7 CP to SEQ : Control State store load
Name Direction Bits Description

14.1.8 MH to SEQ: Instruction store Load
Name Direction Bits Description
Instruction address MH→SEQ 12 Instruction address
Instruction MH→SEQ 96 Instruction X times
Control Instruction address MH→SEQ 8 Pointer to the instruction store
Control Instruction MH→SEQ 32 Control Instruction X times

14.1.9 OB to RB : Pixel read from RBs
Name Direction Bits Description
Pixel Data OB→RB 128 2 pixels (or ½ quad)
Quad Address OB→RB 20 XY address 10 bits per

14.1.10 SP to PA/SC : Position return bus
Name Direction Bits Description
Position return SP→PA 128 Position data or sprite size
Position Buffer pointer SP→PA 7? Pointer to the position cache
Parameter cache pointer SP→PA 11 Pointer where the data will be in the parameter cache

12.1.314.1.11 Shader Engine to Texture Unit Bus (Fast Bus)
One Four quad’s worth of addresses is transferred to Texture Unit every clock. These are sourced from a different pixel
within each of the sub-engines repeating every 4 clocks. The register file index to read must precede the data by 2
clocks. The Read address associated with Quad 0 must be sent 1 clock after the Instruction Start signal is sent, so that
data is read 3 clocks after the Instruction Start.

OneFour Quad’s worth of Texture Data may be written to the Register file every clock. These are directed to a different
pixel of the sub-engines repeating every 4 clocks. The register file index to write must accompany the data. Data and
Index associated with the Quad 0 must be sent 3 clocks after the Instruction Start signal is sent.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 92 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

R400 Sequencer Specification PAGE

22 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

Name Direction Bits Description
Tex_Read_Register_Index SEQ->SP 8 Index into Register files for reading Texture Address
Tex_RegFile_Read_Data SP->TEX 5122048 4 16 Texture Addresses read from the Register file
Tex_Write_Register_Index SEQ->TEX 8 Index into Register file for write of returned Texture

Data

12.1.414.1.12 Sequencer to Texture Unit bus (Slow Bus)

Once every four clock, the texture unit sends to the sequencer on wich clause it is now working and if the data in the
registers is ready or not. This way the sequencer can update the texture counters for the reservation station fifos. The
sequencer also provides the intruction and constants for the texture fetch to execute and the address in the register
file where to write the texture return data.

Name Direction Bits Description
Tex_Ready TEX→ SEQ 1 Data ready
Tex_Clause_Num TEX→ SEQ 3 Clause number
Tex_cst SEQ→TEX ?10 Texture constants Xstate address 10 bits sent over 4

clocks
Tex_Inst SEQ→TEX ?12 Texture fetch instruction Xaddress 12 bits sent over 4

clocks

12.1.5 Shader Engine to RE/PA Bus

12.1.6 PA? to sequencer

13.15. Examples of program executions

13.1.115.1.1 Sequencer Control of a Vector of Vertices

1. PA sends a vector of 16 64 vertices (actually vertex indices – 32 bits/index for 512 2048 bit total) to the RE’s
Vertex FIFO
 state pointer as well as tag into position cache is sent along with vertices
 space was allocated in the position cache for transformed position before the vector was sent
 also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
 The vertex program is assumed to be loaded when we receive the vertex vector.

 the SEQ then accesses the IS base for this shader using the local state pointer (provided to all
sequencers by the RBBM when the CP is done loading the program)

2. SEQ arbitrates between the Pixel FIFO and the Vertex FIFO – basically the Vertex FIFO always has priority
 at this point the vector is removed from the Vertex FIFO
 the arbitrer is not going to select a vector to be transformed if the parameter cache is full unless the pipe as

nothing else to do (ie no pixels are in the pixel fifo).

3. SEQ allocates space in the SP register file for index data plus GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
 SEQ will not send vertex data until space in the register file has been allocated

4. SEQ sends the vector to the SP register file over the RE_SP interface (which has a bandwidth of 512 2048
bits/cycle)
 the 16 64 vertex indices are sent to the 16 64 register files over 4 cycles

 RF0 of SU0, SU1, SU2, and SU3 is written the first cycle
 RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
 RF2 of SU0, SU1, SU2, and SU3 is written the third cycle

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 93 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

 RF3 of SU0, SU1, SU2, and SU3 is written the fourth cycle
 the index is written to the least significant 32 bits (floating point format?) (what about compound indices)

of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, z)

5. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
texture state machine 0, or TSM0 FIFO)
 the control packet contains the state pointer, the tag to the position cache and a register file base pointer.

6. TSM0 accepts the control packet and fetches the instructions for texture clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

7. all instructions of texture clause 0 are issued by TSM0

8. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for requests made to the Texture Unit to complete; it passes the register file write index

for the texture data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data to the register files, it increments a counter that is associated with ASM0

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

9. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

10. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of texture state machine 1, or TSM1 FIFO)

11. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 position can be exported in ALU clause 3 (or 4?); the data (and the tag) is sent over a position bus (which is

shared with all four shader pipes) back to the PA’s position cache
 A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
 there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA
 the ASM arbiter will prevent a packet from starting an exporting clause if the position export FIFO is full

 parameter data is exported in clause 7 (as well as position data if it was not exported earlier)
 parameter data is sent to the Parameter Cache over a dedicated bus
 the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space when there is no

longer a need for the parameters (it is told by the PA when using a token).
 the ASM arbiter will prevent a packet from starting on ASM7 if the parameter cache (or the position buffer

if position is being exported) is full

12. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

13.1.215.1.2 Sequencer Control of a Vector of Pixels

1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

 At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

2.the RE’s Parameter Buffer is loaded from the Parameter Cache before the SEQ takes control of the vector
after the HZ culling stage a request is made by the RE to send parameter data to the Parameter buffer
the Parameter buffer is wide enough to source 3 vertices worth of a particular parameter in one cycle
at this moment the right sequencer will free up the parameter store locations not used anymore using

the token provided by the PA.

3.2. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
 the state pointer and the LOD correction bits are also placed in the Pixel FIF0
 the Pixel FIFO is wide enough to source one four quad’s worth of barycentrics per cycle

4.3. SEQ arbitrates between Pixel FIFO and Vertex FIFO – when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

5.4. SEQ allocates space in the SP register file for all the GPRs used by the program

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 94 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

R400 Sequencer Specification PAGE

24 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

 the number of GPRs required by the program is stored in a local state register, which is accessed using the
state pointer

 SEQ will not allow interpolated data to be sent to the shader until space in the register file has been allocated

6.SEQ control starts with the interpolation of parameters (up to 16 per thread) by sending the barycentric coordinates
from the Pixel FIFO and the parameters from the Parameter Buffer to the interpolator
P0i, P0j, and P0k (the value of P0 at each vertex) are loaded into the interpolator from the Parameter buffer
Q0 i, j, and k are loaded into the interpolator from the Pixel FIFO
The interpolator then generates the parameter value for each pixel in Q0 (Q0P0)
P0i, P0j, and P0k are sent to the interpolator for Q1 only if Q1 is from a different primitive; if Q1 is from

the same primitive as Q0, then the P0i, P0j, and P0k values loaded for Q0 are held by the interpolator
and reused for Q1
a “different_prim” control bit is passed with the barycentric data for each quad in the Pixel FIFO that

indicates whether new parameter data needs to be loaded into the interpolator
Q1 i, j, and k are then loaded into the interpolator from the Pixel FIFO
The interpolator then generates the parameter value for each pixel in Q1 (Q1P0)
Q2P0 and Q3P0 are generated in a similar manner
The next set of parameter data - P1i, P1j, and P1k - is then loaded into the interpolator
Q0 i, j, and k now must be re-read from the Pixel FIFO – this means that the output of the Pixel FIFO loops

through the top four entries on each read command until at the end a final “block_pop” signal is asserted,
causing the top four sets of barycentric coordinates to finally be removed

so the order of parameter info generated is Q0P0, Q1P0, Q2P0, Q3P0, Q0P1, Q1P1, etc.

7.5. SEQ controls the transfer of interpolated data to the SP register file over the RE_SP interface (which has a
bandwidth of 512 2048 bits/cycle). See interpolated data bus diagrams for details.
16 pixels worth of interpolated parameter data is sent to the 16 register files over 4 cycles

RF0 of SU0, SU1, SU2, and SU3 is written with Q0P0 the first cycle
RF1 of SU0, SU1, SU2, and SU3 is written with Q1P0 second cycle
RF2 of SU0, SU1, SU2, and SU3 is written with Q2P0 third cycle
RF3 of SU0, SU1, SU2, and SU3 is written with Q3P0 fourth cycle

8.6. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
texture state machine 0, or TSM0 FIFO)
 note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
 the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
 all other informations (such as quad address for example) travels in a separate FIFO

9.7. TSM0 accepts the control packet and fetches the instructions for texture clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

10.8. all instructions of texture clause 0 are issued by TSM0

11.9. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or
ASM0 FIFO)
 TSM0 does not wait for texture requests made to the Texture Unit to complete; it passes the register file write

index for the texture data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data for a particular clause to the register files, it increments a counter that is

associated with the ASM0 FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

12.10. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

13.11. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of texture state machine 1, or TSM1 FIFO)

14.12. the control packet continues to travel down the path of reservation stations until all clauses have been
executed
 pixel data is exported in the last ALU clause (clause 7)

 it is sent to an output FIFO where it will be picked up by the render backend
 the ASM arbiter will prevent a packet from starting on ASM7 if the output FIFO is full

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 95 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

15.13. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

13.1.315.1.3 Notes

16.14. the state machines and arbitrers will operate ahead of time so that they will be able to immediately start the
real threads or stall.

17.15. the register file base pointer for a vector needs to travel with the vector through the reservation stations, but
the instruction store base pointer does not – this is because the RF pointer is different for all threads, but the IS
pointer is only different for each state and thus can be accessed via the state pointer

16. Waterfalling, parameter buffer allocation, loops and branches and parameter cache de-allocation still needs to
be specked out.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 96 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

R400 Sequencer Specification PAGE

26 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

14. Timing Diagrams

14.1 MAC 0

1 1312111098765432 17161514

Timing Diagram 1: Sequencer to Shader Pipe 0, Shader Unit 0, MAC 0

0

RF0_read_data

SEQ_SP_instruction

srcA srcB srcC TC

mac0_vector_result a r g b

PVRF0 write cycle PSTDID

SEQ_SP_instr_start

PV PSTDIDPV PSTDID

SEQ_SP_phase

mac0_cycle_count 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

PV PSTDID

SEQ_SP_read_addr

I0_0 I0_1 I0_2 I0_3

srcA srcB srcC TCsrcA srcB srcC TC srcA srcB srcC TC srcA srcB srcC TC srcA

RE_SP_data[511:384] ID ID ID ID

SEQ_SP_constant0 C0_0 C0_1 C0_2 C0_3

SEQ_SP_constant1 C1_0 C1_1 C1_2 C1_3

mac0_phase

SEQ_SP_write_addr PV PS-IDPV PS-IDPV PS-IDPV PS-ID

14.2 Sequencer to Shader Pipe
Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 97 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

1 1312111098765432 17161514

Timing Diagram 2: RE Interpolator to Shader Pipe Data Transfer

0

SEQ_SP_write_addr

PMB_INT_data P0

PXF_INT_data Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3

P1 P0'

Q0' Q1" Q2" Q3" Q0'

P1'

RE_SP_data

ID ID ID ID

Q0P0 Q1P0 Q2P0 Q3P0 Q0P1 Q1P1 Q2P1 Q3P1 Q0P0' Q1P0" Q2P0" Q3P0" Q0P1'

PXF_SEQ_rts

RE_SP_valid

P0" P1"P1' P1' x x

Q1" Q2" Q3"

PXF_SEQ_new_prim

P1 P1 P1 P0' P0' P0'P0

Q0

x

x

SEQ_INT_px_load

SEQ_INT_pm_load

SEQ_PXF_vector_pop

SEQ_PXF_rtr

INT_quad_reg Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3 Q0' Q1" Q2" Q3" Q0' Q1" Q2" Q3"xx

INT_param_reg P0 P1 P0' P1'P0" P1"xx P0 P0 P0 P1 P1 P1 P0" P0" P1" P1"

SEQ_SP_phase

mac0_phase

mac1_phase

mac2_phase

mac3_phase

PVRF0 write cycle PSTDIDPV PSTDIDPV PSTDIDPV PSTDID

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 98 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

R400 Sequencer Specification PAGE

28 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

14.3 Sequencer to Texture Pipe
1 1312111098765432 17161514

Timing Diagram 3: Sequencer - Texture Unit Interface and Texture Unit - Shader Pipe Data Transfer

0

RF0_read_data

SEQ_TX_instruction I0_0 I0_1 I0_2 I0_3

srcA srcB srcC TC

SEQ_TX_instr_start

SEQ_TX_clause

SEQ_TX_write_addr

0

r4

SEQ_TX_last

SEQ_TX_phase

srcA srcB srcC TC srcA srcB srcC TC srcA srcB

I1_0 I1_1 I1_2 I1_3

0

r5

TX_SEQ_clause

TX_SEQ_done

TX_SP_data T0_0 T0_1 T0_2 T0_3 T1_0 T1_1 T1_2 T1_3

0

TX_SP_write_addr r4 r5

SEQ_SP_read_addr TC TC TC TC

SP_TX_tc

TX_SP_valid

SEQ_SP_phase

TC

tx_phase

srcB srcC

TC

PVRF0 write cycle

PS

TDIDPV PSTDIDPV PSTDIDPV PSTDID

SEQ_SP_write_addr PV PS-IDPV PS-IDPV PS-IDPV PS-ID

PS PS

ID

TC0 TC1 TC2 TC3 TC0 TC1 TC2 TC3 TC0 TC1 TC2 TC3 TC0 TC1 TC2

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 99 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

14.4 Timing diagrams explanations

The numbering of the four shader pipes, the four shader units, and the four MACs is from left to right and from 0 to 3.
So for example the most significant 512 bits of a SP goes to SU0 and the least significant 512 bits go to SU3; within
SU0, the most significant 128 bits go to MAC0 and the least significant 128 bits go to MAC3.
The following assumptions are made:

1.all block to block signals are register to register
2.for register file reads, the RF read data is available in the MAC one clock after a RF read address is registered

into the MAC (this is the same as saying the read data is valid out of the RF two clocks after the address is
asserted on the SEQ to SP interface)

14.4.1 Timing Diagram 1: Sequencer to Shader Pipe 0, Shader Unit 0, MAC 0
This diagram shows the basics of the Sequencer to Shader Pipe interface. For simplicity only the timing relative to
MAC0 is shown. The timing for MAC1 is one clock later than MAC0, MAC2 one clock later than MAC1, etc. This
means that most of the signals need to be delayed in the SP by one cycle for MAC1, two cycles for MAC2, and three
cycles for MAC3.
SEQ_SP_constant0: Constant 0 (128 bits over 4 cycles). Pipelined in SP for other MACs.
SEQ_SP_constant1: Constant 1 (128 bits over 4 cycles). Pipelined in SP for other MACs.
SEQ_SP_read_addr: Register File Read Address (8 bits). Pipelined in SP for other MACs.
SEQ_SP_phase: This signal syncs the data transfer to the RF from the RE, as well as defining the order of all writes
into the RF. It is asserted during the cycle that interpolated data (ID) is valid on the RE_SP_ID bus. Pipelined in SP
for other MACs.
RE_SP_ID[511:384]: This is the most significant 128 bits of the RE_SP_data interface (meaning that this MAC0 is in
SU0).
SEQ_SP_instruction: 96 bits of instruction are sent over 4 cycles. Pipelined in SP for other MACs.
SEQ_SP_instr_start: control bit that signals the first cycle of the instruction transfer. Pipelined in SP for other MACs.
mac0_phase: registered version of SEQ_SP_phase used in MAC0 (this may not be he actual signal name).
mac0_cycle_count: a counter inside the MAC that keeps track of the RF write cycles; 0 here corresponds to the
cycle RE interpolated data is written (this may not be he actual signal name).
RF0_read_data: data that is read out of MAC0’s register file (this may not be he actual signal name).
mac0_vector_result: the 32-bit output of the vector ALU (PV is built up over 4 cycles) (this may not be he actual
signal name).
SEQ_SP_write_addr: Register File Write Address (8 bits). Note that the SEQ does not send the Texture Data write
address over this bus. Pipelined in SP for other MACs.
RF0 write cycle: the cycles allocated to the different write sources (ID = Interpolated Data, TD = Texture Data, PV =
Previous Vector, PS = Previous Scalar) (not a signal – just a reference point on the diagram).

14.4.2 Timing Diagram 2: RE Interpolator to Shader Pipe Data Transfer
This diagram shows how pixel data (barycentric coordinates i, j, and k) is sent from the Pixel FIFO to the interpolator
under SEQ control, and how parameter data (for each vertex) is also sent to the interpolator under SEQ control. The
output of the Interpolator is then shown being sent over the RE_SP interface.
PXF_SEQ_rts: Indicates that the output of the pixel FIFO is valid.
PXF_SEQ_new_prim: The current output of the Pixel FIFO is from a different primitive that the previous output. Tells
the SEQ that new parameter info must be fetched (if its not from a new prim, then new parameter data is not needed).
PXF_INT_data: Data output of the Pixel FIFO – goes to the Interpolator.
SEQ_PXF_rtr: Indicates that the current Pixel FIFO output will be taken by the Interpolator (driven by SEQ). Then
next quad of data will be driven the next cycle.
SEQ_PXF_vector_pop: SEQ tells the Pixel FIFO to pop a vector of pixels (otherwise RTRs cause the data to be
cycled between the four quads).

PMB_INT_data: Data from the Parameter Buffer to the Interpolator. (Note that the control of the parameter buffer is
TBD).

SEQ_INT_pm_load: controls the loading of parameter data into the Interpolator.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 100 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

R400 Sequencer Specification PAGE

30 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

INT_param_reg: register in the Interpolator that holds the per-vertex parameter data while the per-pixel parameters
are generated for one or more quads (may not be the actual signal name).
SEQ_INT_px_load: controls the loading of pixel data into the Interpolator.
INT_quad_reg: : register in the Interpolator that holds one quad’s worth of pixel data(may not be the actual signal
name).

SEQ_SP_phase: see above under TD1.
SEQ_SP_write_addr: see above under TD1.
RE_SP_valid: Interpolator Data Valid – indicates that the SP should write the ID on the appropriate cycle.
RE_SP_data: Data from the RE interpolator to the SP.
RF0 write cycle: see above under TD1.
mac*_phase: see above under TD1. These phase signals help to show the timing offset between the MACs. Note
also that each Shader Unit has a set of these signals (all with the same timing).

14.4.3 Timing Diagram 3: Sequencer - Texture Unit Interface and Texture Unit -
Transfer
This diagram starts with the texture coordinate read from the register file and its transfer to the TX. The instruction
transfer is then shown, followed by the texture data transfer to the shader pipe.
SEQ_SP_read_addr: see above. Here shows the cycle that the texture coordinate read address is asserted.
RF0_read_addr: see above.
SP_TX_tc: Texture coordinate data sent from the shader pipe to the texture unit.
SEQ_TX_instr_start: Asserted on the first cycle of a SEQ to TX instruction transfer.
SEQ_TX_instruction: 96 bits of texture instruction transferred over 4 cycles.
SEQ_TX_clause: the clause number associated with this instruction.
SEQ_TX_write_addr: RF write index used by TX for returned texture data.
SEQ_TX_last: indicates that this is the last texture instruction of a clause.
SEQ_TX_phase: syncs the texture data write. Note that it is asserted early enough to be registered into TX and still
allow TX to source the texture data to the SP on the correct cycle.

tx_phase: the phase signal after being registered into TX.
TX_SP_write_addr: RF write index for texture data.
TX_SP_valid: indicates that valid texture data is being driven to the SP.
TX_SP_data: the texture data.
TX_SEQ_clause: the clause number associated with the texture data.
TX_SEQ_done: indicates to the SEQ that the texture data transfer is complete for the clause number that is on the
TX_SEQ_clause bus.

SEQ_SP_phase: see above under TD1 - shown here for reference.
SEQ_SP_write_addr: see above under TD1- shown here for reference.
RF0 write cycle: see above under TD1- shown here for reference.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 101 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20153
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of 31

Exhibit 2012.docR400_Sequencer.docR400_Sequencer.doc �� 32166 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:49 PM08/13/01 03:17 PM

15.16. Open issues
There is currently an issue with constants. If the constants are not the same for the whole vector of vertices, we don’t
have the bandwith from the texture store to feed the ALUs. Two solutions exists for this problem:

1) Let the compiler handle the case and put those instructions in a texture clause so we can use the
bandwith there to operate. This requires a significant amount of temporary storage in the register store.

2) Waterfall down the pipe allowing only at a given time the vertices having the same constants to operate in
parrallel. This might in the worst case slow us down by a factor of 16.

Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

Size of the fifo containing the information of a vector of pixels/vertices. And size of the fifos before the reservation
stations.

Sequencer Instruction memory, and constant memory.

Arbitration policy for the output file.

Loops and branches.

The parameter cache may end up in the PA rather than in the RS. Parameter cache management thus may change.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 102 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SEQ

Version 0.75

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\arch\doc\gfx\RE\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2013
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 103 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

R400 Sequencer Specification PAGE

2 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

Table Of Contents

1. OVERVIEW 54
1.1 Top Level Block Diagram 76
1.2 Data Flow graph 108
1.3 Control Graph 129
2. INTERPOLATED DATA BUS 129
3. INSTRUCTION STORE 1512
4. SEQUENCER INSTRUCTIONS 1512
5. CONSTANT STORE 1512
6. LOOPING AND BRANCHES 1512
6.1 The controlling state. 1512
6.2 The Control Flow Program 1613
6.3 Data dependant predicate instructions
 1714
6.4 Register file indexing 1814
7. REGISTER FILE ALLOCATION ... 1815
8. TEXTURE ARBITRATION 1916
9. ALU ARBITRATION 1916
10. HANDLING STALLS 2017
11. CONTENT OF THE RESERVATION
STATION FIFOS 2017
12. THE OUTPUT FILE....................... 2017
13. THE PARAMETER CACHE 2117
14. VERTEX POSITION EXPORTING 2117
15. REGISTERS 2117

16. INTERFACES 2218

16.1 External Interfaces 2218

16.1.1 PA/SC to RE : IJ bus 2218

16.1.2 PA/SC to SEQ : IJ Control
bus 2218

16.1.3 PA/SC to RE : Vertex Bus . 2318

16.1.4 PA/SC to SEQ : Vertex Control
Bus 2318

16.1.5 CP to SEQ : Constant store
load 2319

16.1.6 CP to SEQ : Texture State store
load 2319

16.1.7 CP to SEQ : Control State store
load 2319

16.1.8 MH to SEQ: Instruction store
Load 2319

16.1.9 SP to RB : Pixel read from RBs
 2419

16.1.10 SP to PA/SC : Position return
bus 2419

16.1.11 Shader Engine to Texture
Unit Bus (Fast Bus) 2419

16.1.12 Sequencer to Texture Unit bus
(Slow Bus) 2420

17. INTERNAL INTERFACES 2520
18. EXAMPLES OF PROGRAM
EXECUTIONS .. 2520

18.1.1 Sequencer Control of a Vector
of Vertices 2520

18.1.2 Sequencer Control of a Vector
of Pixels 2621

18.1.3 Notes 2722
19. OPEN ISSUES 3323
1. OVERVIEW ... 3
1.1 Top Level Block Diagram 5
1.2 Data Flow graph 7
1.3 Control Graph 8
2. INTERPOLATED DATA BUS 8
3. INSTRUCTION STORE 11
4. SEQUENCER INSTRUCTIONS 11
5. CONSTANT STORE 11
6. LOOPING AND BRANCHES 11
6.1 Data dependant predicate instructions
 11
6.2 Register file indexing 12
7. REGISTER FILE ALLOCATION 12
8. TEXTURE ARBITRATION 13
9. ALU ARBITRATION 13
10. HANDLING STALLS 14
11. CONTENT OF THE RESERVATION
STATION FIFOS .. 14
12. THE OUTPUT FILE (RB FIFO AND
PARAMETER CACHE) 14
13. REGISTERS 14

14. INTERFACES 14

14.1 External Interfaces 14

14.1.1 Sequencer to Shader
Engine Bus .. 14

14.1.2 Shader Engine to Output
File 15

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 104 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

14.1.3 Shader Engine to Texture
Unit Bus (Fast Bus) 15

14.1.4 Sequencer to Texture Unit bus
(Slow Bus) 15

14.1.5 Shader Engine to RE/PA Bus 15

14.1.6 PA? to sequencer 16
15. EXAMPLES OF PROGRAM
EXECUTIONS .. 16

15.1.1 Sequencer Control of a Vector
of Vertices 16

15.1.2 Sequencer Control of a Vector
of Pixels 17

15.1.3 Notes 18
16. OPEN ISSUES 19
1. OVERVIEW ... 3
1.1 Top Level Block Diagram 5
1.2 Data Flow graph 7
1.3 Control Graph 10
2. INTERPOLATED DATA BUS 10
3. INSTRUCTION STORE 13
4. CONSTANT STORE 13
5. LOOPING AND BRANCHES 13
6. REGISTER FILE ALLOCATION 13
7. TEXTURE ARBITRATION 14
8. ALU ARBITRATION 14
9. HANDLING STALLS 15
10. CONTENT OF THE RESERVATION
STATION FIFOS .. 15
11. THE OUTPUT FILE (RB FIFO AND
PARAMETER CACHE) 15

12. INTERFACES 15

12.1 External Interfaces 15

12.1.1 Sequencer to Shader
Engine Bus .. 15

12.1.2 Shader Engine to Output
File 15

12.1.3 Shader Engine to Texture
Unit Bus (Fast Bus) 16

12.1.4 Sequencer to Texture Unit bus
(Slow Bus) 16

12.1.5 Shader Engine to RE/PA Bus 16

12.1.6 PA? to sequencer 16
13. EXAMPLES OF PROGRAM
EXECUTIONS .. 16

13.1.1 Sequencer Control of a Vector
of Vertices 16

13.1.2 Sequencer Control of a Vector
of Pixels 18

13.1.3 Notes 18
14. OPEN ISSUES 20
1. OVERVIEW ... 3
1.1 Top Level Block Diagram 4
1.2 Data Flow graph 7
1.3 Control Graph 10
2. INTERPOLATED DATA BUS 10
3. INSTRUCTION STORE 10
4. CONSTANT STORE 11
5. LOOPING AND BRANCHES 11
6. REGISTER FILE ALLOCATION 11
7. TEXTURE ARBITRATION 12
8. ALU ARBITRATION 12
9. HANDLING STALLS 13
10. CONTENT OF THE RESERVATION
STATION FIFOS .. 13
11. THE OUTPUT FILE (RB FIFO AND
PARAMETER CACHE) 13

12. INTERFACES 13

12.1 External Interfaces 13

12.1.1 Sequencer to Shader
Engine Bus .. 13

12.1.2 Shader Engine to Output
File 13

12.1.3 Shader Engine to Texture
Unit Bus (Fast Bus) 14

12.1.4 Sequencer to Texture Unit bus
(Slow Bus) 14

12.1.5 Shader Engine to RE/PA Bus 14

12.1.6 PA? to sequencer 14
13. EXAMPLES OF PROGRAM
EXECUTIONS .. 14

13.1.1 Sequencer Control of a Vector
of Vertices 14

13.1.2 Sequencer Control of a Vector
of Pixels 16

13.1.3 Notes 17
14. OPEN ISSUES 17

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 105 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

R400 Sequencer Specification PAGE

4 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.4 5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 106 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

1. Overview
The sequencer first arbitrates between vectors of 16 64 vertices that arrive directly from primitive assembly and
vectors of 4 16 quads (16 64 pixels) that are generated in the raster engine.

The vertex or pixel program specifies how many GPR’s it needs to execute. The sequencer will not start the next
vector until the needed space is available.

The sequencer is based on the R300 design. It chooses two ALU clauses and a texture clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight texture and eight ALU clauses, but clauses
do not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing
from texture reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up
vectors until the vector currently occupying a reservation station has left. A vector at a reservation station can be
chosen to execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and
all eight texture stations to choose a texture clause to execute. The arbitrator will give priority to clauses/reservation
stations closer to the bottom of the pipeline. It will not execute an alu clause until the texture fetches initiated by the
previous texture clause have completed. There are two separate sets of reservation stations, one for pixel vectors
and one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the raster engine also contains the shader instruction cache and constant store. There
are only one constant store for the whole chip and one instruction store. These will be shared among the four shader
pipes. The four shader pipes also execute the same instuction thus there is only one sequencer for the whole chip.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 107 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

R400 Sequencer Specification PAGE

6 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

SEQ

RE

SPSPSPCSTORETSTATE

TX

TEX INST

ALU INST
IJ CONTROL

IJ
CONTROL

CST
ADDR

ALU
INST

 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/QUAD
ADDRESSES

SP

ALU INST

TU INST
ADDR

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

TU INST

ALU INST

INTER INTER INTER INTER

IJ CROSSBAR

2 QUADS IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC
 POINTERS

PARAM
DATA

R/W ADDR

Vertex indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

IJ CONTROL

4 - write mask
2- RB ID(*4)

6- LOD correction (*4)
2- Fvtx (provoking vertex)

7- PPtro
7- PPtr1
7- PPtr2

1- EOVect
1- Dealloc (pcache)

8?- State ptr
1- Sprite

4- Valid (*4)
1- Null

1- EO prim
1- F/B face

1 - Stippled line

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

INST
LOAD

MH

CONSTANT
LOAD

CPSTATE LOAD

FULL

TX ADDR

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 108 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

1.1 Top Level Block Diagram

vertex/pixel vector arbitrator

Possible delay for available GPR’s

FIFO
Texture clause 0
reservation station

Texture clause 1
reservation station

FIFO
ALU clause 0
reservation station

FIFO

Texture clause 2
reservation station

Texture clause 3
reservation station

FIFO
ALU clause 1
reservation station

FIFO

FIFO
ALU clause 2
reservation station

FIFO

FIFO
ALU clause 3
reservation station

FIFO
Texture clause 4
reservation station

Texture clause 5
reservation station

FIFO
ALU clause 4
reservation station

FIFO

Texture clause 6
reservation station

Texture clause 7
reservation station

FIFO
ALU clause 5
reservation station

FIFO

FIFO
ALU clause 6
reservation station

FIFO

FIFO
ALU clause 7
reservation station

texture arbitrator

texture arbitrator

There are two sets of the above figure, one for vertices and one for pixels.

The rasterizer always checks the vertices FIFO first and if allowed by the sequencer sends the data to the shader. If
the vertex FIFO is empty then, the rasterizer takes the first entry of the pixel FIFO (a vector of 16 64 pixels) and
sends it to the interpolators. Then the sequencer takes control of the packet. The packet consists of 3 21 bits of state,
6-7 bits for the base address of the Shader program and some information on the coverage to determine texture
LOD. All other information (2x2 adresses) is put in a FIFO (one for the pixels and one for the vertices) and retrieved
when the packet finishes its last clause.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 109 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

R400 Sequencer Specification PAGE

8 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the registers to store the interpolated values and temporaries. Following this, the input state machine stacks the
packet in the first FIFO.

On receipt of a command, the level 0 texture machine issues a texure request and corresponding register address for
the texture address (ta). A small command (tcmd) is passed to the texture system identifying the current level number
(0) as well as the register write address for the texture return data. One texture request is sent every 4 clocks causing
the texturing of four sixteen 2x2s worth of data (or 16 64 vertices). Once all the requests are sent the packet is put in
FIFO 1.

Upon recept of the return data, the texture unit writes the data to the register file using the write address that was
provided by the level 0 texture machine and sends the clause number (0) to the level 0 texture state machine to
signify that the write is done and thus the data is ready. Then, the level 0 texture machine increments the counter of
FIFO 1 to signify to the ALU 1 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO counter and then issues a
complete set of level 0 shader instructions. For each instruction, the state machine generates 3 source addresses,
one destination address (3 cycles later) and an instruction. Once the last instruction as been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbitrers). One arbitrer will arbitrate
over the odd clock cycles and the other one will arbitrate over the even clock cycles. The only constraints
between the two arbitrers is that they are not allowed to pick the same clause number as they other one is
currently working on if the packet os of the same type.

If the packet is a vertex packet, upon reaching ALU clause 4, it can export the position if the position is ready. So the
arbitrer must prevent ALU clause 4 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, the location where the vertex data is to be put is also sent (parameter data pointers).

All other level process in the same way until the packet finally reaches the last ALU machine (8). On completion of the
level 8 ALU clause, a valid bit is sent to the Render Backend which picks up the color data. This requires that the last
instruction writes to the output register – a condition that is almost always true. If the packet was a vertex packet,
instead of sending the valid bit to the RB, it is sent to the PA so it can know that the data present in the parameter
store is valid.

Only two ALU state machine may have access to the register file address bus or the instruction decode bus at one
time. Similarly, only one texture state machine may have access to the register file address bus at one time.
Arbitration is performed by three arbitrer blocks (two for the ALU state machines and one for the texture state
machines). The arbitrers always favor the higher number state machines, preventing a bunch of half finished jobs
from clogging up the register files.

Each state machine maintains an address pointer specifying where the 16 entries vector is located in the register file
(the texture machine has two pointers one for the read address and one for the write). Upon completion of its job, the
address pointer is incremented by a predefined amount equal to the total number of registers required by the shading
code. A comparison of the address pointer for the first state machine in the chain (the input state machine), and the
last machine in the chain (the level 8 ALU machine), gives an indication of how much unallocated register file memory
is available

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 110 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

Register File
512x128 (built as 4 128x128 or 16 128x32

Operand mux

4x32
128 bit data

4 32 bit MAC units
128 bit scalar/vector

ALU
control from RE

control from RE

constants from RE

interpolated data from RE

Address to texure
or vertex parameter data to RE through texture block
or pixel data to RB through texture block

data returned from texture fetch

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 111 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

R400 Sequencer Specification PAGE

10 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

1.2 Data Flow graph

MAC

MAC

MAC

MAC

Register File

co
ns

ta
nt

s
fr

om
 R

E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
nt

s
fr

om
 R

E

S
ca

la
r

U
n

it

texture request

texture request

texture request

texture request

te
xt

ur
e

ad
dr

es
s

te xtu re d
ata

p rim
i tive da

ta f rom
 R

E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 112 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

REGISTER FILE
INSTRUCTION
STORE/CACHE

CONSTANT
STORE

ALU TEXTUREALUALU ALU
SCALAR

ALU

OPERAND MUX

Interpolated
data / Vertex indexes

T
O

 R
B

/P
A

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 113 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

R400 Sequencer Specification PAGE

12 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

1.3 Control Graph

SEQ

TX SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

OF

WrAddr

RdAddr
PA/RB

IS CST

CST IDX

In green is represented the Texture control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 114 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x64 bits)

IJs buffer (ping-pong buffer)
(27 bits * 2 (IJ) + 8 bits * 6 (delta IJs)+4 exp

bits*6)* 16 (quads) * 2 (double-buffered)
4032 bits

32 x 126

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

64

27*2+8*6+6*4 for IJs

To RB

IJ CONTROL

4 - write mask
2- RB ID(*4)

6- LOD correction (*4)
2- Fvtx (provoking vertex)

7- PPtro
7- PPtr1
7- PPtr2

1- EOVect
1- Dealloc (pcache)

8- State ptr
1- Sprite

4- Valid (*4)
1- Null

1- EO prim
1- F/B face

1 - Stippled line

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 115 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

R400 Sequencer Specification PAGE

14 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

SP0

SP1

SP2

SP3

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

T19

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P0 P1

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 116 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

Above is an example of a tile we might receive. The IJ information is packed in the IJ buffer 2 quads at a time. The
sequencer allows at any given time as many as four quads to interpolate a parameter. They all have to come from the
same primitive. Then the sequencer controls the write mask to the register to write the valid data in.Since each of the
register file is actually physically divided (one 128x128 per MAC) and we don’t have the place to hold a maximum
size vector of vertices in the parameter buffer, we need to interpolate on a parameter basis rather than on a quad
basis. So the order to the register file will be:

Q0P0 Q1P0 Q2P0 Q3P0 Q0P1 Q1P1 Q2P1 Q3P1 Q0P2 Q1P2 …

3. Instruction Store
There is going to be only one instruction store for the whole chip. It may will contain up to 20040960 instructions of 96
bits each. There is also going to be a control instruction store of size 256(512?)x32.

{ISSUE : The instruction store is loaded by the sequencer using the memory hub ?}.

 The read bandwith from this store is 24 96*2 bits/ 4 clocks (48 bits/clock)/pipe. To achieve this this instruction store is
likely to be broken up into 4 blocks. An ALU instruction section (1R/1W) split in two and a texture section (1R/1W)
also split in two. The bandwith out of those memories is 96 bits/clock.It is likely to be a 1R/1W port memory; we use 2
clocks to load the ALU instruction and 2 clocks to load the Texture instruction.

4. Sequencer Instructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS).

4.5. Constant Store
The constant store is managed by the CP. The sequencer is aware of where the constants are using a remaping
table also managed by the CP. A likely size for the constant store is 512x128 bits. The constant store is also planned
to be shared. The read BW from the constant store is 128512/4 bits/clock/pipe and the write bandwith is 32/4
bits/clock.

In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed convertion, there is a latency of 4 clocks (1 instruction)
between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

5.6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program. The control program has 4(5) instructions:

6.1 The controlling state.
As per Dx9 the following state is available for control flow:

Boolean[15:0]

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 117 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

R400 Sequencer Specification PAGE

16 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

loop_count[7:0][7:0]
In addition:

loop_start [7:0] [7:0]
loop_step [7:0] [7:0]
 Exist to give more control to the controlling program.

We will extend that in the R400 to:
Boolean[31:0]
Loop_count[7:0][15:0]
Loop_Start[7:0] [15:0]
Loop_End[7:0] [15:0]

{ISSUE: How is the controlling state loaded and how many contexts do we have?}

6.2 The Control Flow Program
The R300 uses a match method for control flow: The shader is executed, and at every instruction its address is
compared with addresses (or address?) in a control table. The “event” in the control table can redirect operations in
the program.

The Method chosen for the R400 is a “control program”. The control program has four basic instructions:

Execute
Conditional_execute (Conditional Execute Predicates)
Loop_start
Loop_end

Execute, causes the specified number of instructions in instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified number of instructions in instruction
store to be executed.
Loop_start resets the corresponding loop counter to the start value.
Loop_end increments (decrements?) the loop counter and jumps back the specified number of instructions if the loop
end condition is not met.

if we try and fit the control flow instructions into 32 bit words, the following instructions are possible choices:

Execute
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 instruction_count Reserved Address

Execute up to 4K instructions at the specified address in the instruction memory.

Conditional Execute
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 Boolean

0: = 0
1: = 1
2,3:NA

Instruction_count Address

if the specified boolean (6 bits can address 64 booleans) meets the specified condition then execute the specified
instructions (up to 64 instructions)

Conditional Execute Predicates
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 Reserved =0

0: = 0
1: = 1
2,3:NA

Instruction_count Address

Check the OR of all current predicate bits. If OR matches the condition execute the specified number of instructions.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 118 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

Loop_Start
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 Loop ID

Initialize the specified loop

Loop_End
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 Reserved (must = 0) Start Address Reserved

(must = 0)
Loop ID

If the loop condition of the current loop is not met, then branch back to the specified address in the control flow
program. Note that jumping back to the loop_start results in an infinite loop, the jump should be to loop_start+1.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

The basic model is as follows:

The render state defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located

The control program can be up to 256 instructions in size. (There is an offset added to the address from the render
state before accessing the control flow program memory to allow for multiple programs resident at the same time)

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The control program is the only program aware of the clause
boundaries.

The addresses from the control program are added to another offset to allow for multiple programs resident at the
same time.

Under this model, all subroutine calls must be inlined into the control program.

6.3 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETGT - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE0 – SETE0
 PRED_SETE1 – SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain the 64 bit predicate vector and use it to control the write masking (two sets for interleaved operation). This
predicate is not maintained across clause boundaries.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For exemple, the instruction :

 P0_ADD R0,R1,R2

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 119 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

R400 Sequencer Specification PAGE

18 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

6.4 Register file indexing
Because we can have loops in texture clause, we need to be able to index into the register file in order to retrieve the
data created in a texture clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls :

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_counter and this becomes our new address that we give to the shader
pipe.However, it is still unclear if we plan on supporting data dependent branches or not.

6.7. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to VERTEX_REG_SIZE for vertices and 256-
VERTEX_REG_SIZE for pixels.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 120 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary as is
allowed to movinge again.

7.8. Texture Arbitration
The texture arbitration logic chooses one of the 8 potentially pending texture clauses to be executed. The choice is
made by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state
machine will send one 2x2 texture fetch per clock (or 4 fetches in one clock every 4 clocks) until all the texture fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two texture fetches
of the same clause.

The arbitrator will not wait for the texture fetches to return prior to selecting another clause for execution. The texture
pipe will be able to handle up to X(?) in flight texture fetches and thus there can be a fair number of active clauses
waiting for their texture return data.

8.9. ALU Arbitration
ALU arbitration proceeds in almost the same way than texture arbitration. The ALU arbitration logic chooses one of
the 8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and
picking the first one ready to execute. There are two ALU arbitrers, one for the even clocks and one for the odd
clocks. For exemple, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…
 Proceeding this way hides the latency of 8 clocks of the ALUs.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 121 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

R400 Sequencer Specification PAGE

20 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

9.10. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic to select the last clause (this way nothing
can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position buffer is
full (POS_FULL) then the sequencer also prevents a thread to enter the exporting clause (4?). The sequencer will set
the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbitrer will be able read
this signal and act accordingly by not preventing exporting clauses to proceed.

10.11. Content of the reservation station FIFOs
3 bits of Render State 6-7 bits for the base address of the instruction store, and some bits for LOD correction and
coverage mask information in order to fetch texture for only valid pixels. Every other information (such as the
coverage mask, quad address, etc.) is put in a FIFO and is retrieved when the quad exits the shader pipe to enter in
the output file buffer. Since pixels and vertices are kept in order in the shader pipe, we only need two fifos (one for
vertices and one for pixels) deep enough to cover the shader pipe latency. This size will be determined later when we
will know the size of the small fifos between the reservation stations.

11.12. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. For this reason
only ONE concurrent program can be of clause 8 (exporting clause) the other program MUST not. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

13. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel’s parameters are
always interpolated at full 24x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming P0 is the interpolated parameter at Pixel 0 having the barycentric coordinates I(0), J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at V0 (interpolated with I), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

)(*03)(*0303

)(*02)(*0202

)(*01)(*0101

)(*)0()(*)0(0

)0()3(03

)0()3(03

)0()2(02

)0()2(02

)0()1(01

)0()1(01

CBJCAIPP

CBJCAIPP

CBJCAIPP

CBJCAICP

JJJ

III

JJJ

III

JJJ

III

P0 is computed at full 24x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no
visual degradation of the image was seen using this scheme.

P0

P2

P1

P3

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 122 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 24x24 yielding 8 bits (IJs): 6
Subtracts 24x24 (Parameters): 2
Adds: 8

FORMAT OF P0’s IJ : Mantissa 23 Exp 4 for I
 Mantissa 23 Exp 4 for J

FORMAT of Deltas (x3): Mantissa 8 Exp 4 for I
 Mantissa 8 Exp 4 for J

Total number of bits : 23*2 + 8*6 + 4*8 = 126 (rounded up on the bus to 128)

14. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories.(RB FIFO and
Parameter Cache)

15. The output file is where program results are exported when the
pixel/vertex shader finishes. It constists of a 512x128 memory cell
that is statically divided between pixels and vertices. The output file
has 1 write port and 1 read port. The sequencer is responsible for
managing the addresses of this output file and for stalling the shader
pipe should this output file fill up. The management is done by
keeping the tail and head pointers of each sections (pixels and
vertices) and incrementing them using a simple RoundRobin
allocation policy. The sequencer must also arbitrate between the PA
and the RB for the use of the read port. This arbitration will either be
priority based or just interleaved evenly (1 read every 2 clocks for
each of the blocks).Vertex position exporting
On clause 4 (or 5) the vertex shader can export to the PA both the vertex position and the point sprite. It can also do
so at clause 8 if not done at clause 4. The export is done by putting the exported position back into the GPRs. Then
using the texture port in an opportunistic manner, 16 positions are put into a FIFO (16x128) in order (left to right). This
fifo drains 128 bits per clock to the PA and once empty is filled up again with sprite sizes (if any). The process is
repeated 4 times. The sequencer must make sure that the program doesn’t enter ALU clause 5 (it can enter texture
clause 5) because the registers can be reused at this point. The sequencer must also make sure not to dealocate an
exporting program before it is done exporting data. Along with the position is exported a pointer to the parameter
cache where the data will be once the vertex shader exports.

16. Registers
DYNAMIC_REG Dynamic allocation (pixel/vertex) of the register file on or off.
VERTEX_REG_SIZE What portion of the register file is reserved for vertices (static allocation only)
PIXEL_MIN_SIZE Minimal size of the register file's pixel portion (dynamic only)
VERTEX_MIN_SIZE Minimal size of the register file's vertex portion (dynamic only)
Vshader_fetch[7:0][7:0] eight 8 bit pointers to the location where each clauses control program is located
Vshader_alu[7:0][7:0] eight 8 bit pointers to the location where each clauses control program is located
Pshader_fetch[7:0][7:0] eight 8 bit pointers to the location where each clauses control program is located

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 123 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

R400 Sequencer Specification PAGE

22 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

Pshader_alu[7:0][7:0] eight 8 bit pointers to the location where each clauses control program is located
PSHADER base pointer for the pixel shader
VSHADER base pointer for the vertex shader
PCNTLSHADER base pointer for the pixel control program
VCNTLSHADER base pointer for the vertex control program
VWRAP wrap point for the vertex shader instruction store
PWRAP wrap point for the pixel shader instruction store
REG_ALLOC_PIX number of registers to allocate for pixel shader programs
REG_ALLOC_VERT number of registers to allocate for vertex shader programs
PARAM_MASK[0…16] parameter mask to specify wich parameters the pixel shader
FLAT_GOUR[0…16] wich parameters are to be gouraud shaded
GEN_TEX[0….16] for wich parameters do we need to generate tex coords.
CYL_WRAP[0…64] for wich vertices do we do the cyl wrapping.
P_EXPORT number of exports for pixel shader
V_EXPORT number of exports for vertex shader (also the number of interpolated parameters for

pixel shaders)
V_EXPORT_LOC Vertex shader exporting to RB or the PCACHE

12.17. Interfaces

12.117.1 External Interfaces

12.1.117.1.1 Sequencer to Shader Engine BusPA/SC to RE : IJ bus
This is a bus that sends the instruction and constant data to all 4 Sub-Engines of the Shader. Because a new instruction
is needed only every 4 clocks, the width of the bus is divided by 4 and both constants and instruction are sent over
those 4 clocks. This is a bus that sends the IJ information to the IJ fifos on the top of each shader pipe. At the same
time the control information goes to the sequencer

Name Direction Bits Description
Instruction StartIJs SEQ-> SPPA→RE 164 High on first cycle of transferIJ information sent over 2

clocks

12.1.2

12.1.2Shader Engine to Output File
Every clock each Sub-Engine can output 128 bits of ‘vector’ data and 32 bits of ‘scalar’ data to an output file (?). This
data will be compressed into 128 bits total prior to storage in output file.

17.1.2 PA/SC to SEQ : IJ Control bus
This is the control information sent to the sequencer in order to control the IJ fifos and all other information needed to
execute a shader program on the sent pixels.

Name Direction Bits Description
Write Mask PA→SEQ(RE) 4 Quad Write mask left to right
RB_ID PA→SEQ(RE) 8 RB id for each quad sent 2 bits per quad
LOD_CORRECT PA→SEQ(RE) 24 LOD correction per quad (6 bits per quad)
FVTX PA→SEQ(RE) 2 Provoking vertex for flat shading
PPTR0 PA→SEQ(RE) 11 P Store pointer for vertex 0
PPRT1 PA→SEQ(RE) 11 P Store pointer for vertex 1
PPTR2 PA→SEQ(RE) 11 P Store pointer for vertex 2
E_OFF_VECTOR PA→SEQ(RE) 1 End of the vector

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 124 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

DEALLOC PA→SEQ(RE) 1 Deallocation token for the P Store
STATE PA→SEQ(RE) 21 State/constant pointer (6*3+3)
SPRITE PA→SEQ(RE) 1 Need to generate tex cords
VALID PA→SEQ(RE) 16 Valid bits for all pixels
NULL PA→SEQ(RE) 1 Null Primitive (for PC deallocation purposes)
E_OFF_PRIM PA→SEQ(RE) 1 End Of the primitive
FBFACE PA→SEQ(RE) 1 Front face = 1, back face = 0
STIPPLE_LINE PA→SEQ(RE) 1 Stippled line need to load tex cords from alternate

buffer
RTRn SEQ→PA 1 Stalls the PA in n clocks
RTS PA→SEQ(RE) 1 PA ready to send data
QuadX PA→SEQ(RE) 40 Quad X address 10 bits per quad
QuadY PA→SEQ(RE) 40 Quad Y address 10 bits per quad

17.1.3 PA/SC to RE : Vertex Bus
Name Direction Bits Description
Vertex indexes PA→RE 32 Pointers of indexes

17.1.4 PA/SC to SEQ : Vertex Control Bus
Name Direction Bits Description
STATE PA→SEQ 21 Render State (6*3+3 for constants)
Position Cache Pointer PA→SEQ 7 Pointer to the position cache
Write Mask PA→SEQ 64? Which vertices are valid
E_OFF_VECTOR PA→SEQ 1 End of the vector

17.1.5 CP to SEQ : Constant store load
Name Direction Bits Description
Constant Address CP→SEQ 8 Address of the block of 4 constants
Constant Data CP→SEQ 512 Data sent over 4 clocks
Remap Address CP→SEQ 10 Remaping address write address
Remap Data pointer CP→SEQ 8 Remaping pointer

17.1.6 CP to SEQ : Texture State store load
Name Direction Bits Description
Constant Address CP→SEQ 8 Address of the block of 4 state constants
Constant Data CP→SEQ 512 Data sent over 4 clocks
Remap Address CP→SEQ 10 Remaping address write address
Remap Data pointer CP→SEQ 8 Remaping pointer

17.1.7 CP to SEQ : Control State store load
Name Direction Bits Description
{ISSUE: How,Who and what is the size of this bus?}

17.1.8 MH to SEQ: Instruction store Load
Name Direction Bits Description
Instruction address MH→SEQ 12 Instruction address
Instruction MH→SEQ 96 Instruction X times
Control Instruction address MH→SEQ 9 Pointer to the control instruction store
Control Instruction MH→SEQ 32 Control Instruction X times

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 125 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

R400 Sequencer Specification PAGE

24 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

17.1.9 SP to RB : Pixel read from RBs
Name Direction Bits Description
Pixel Data SP→RB 256 2 pixels (or ½ quad)
Quad Address SP→RB 20 XY address 10 bits per

Only one exporting clause (7) can be selected at any given time.

17.1.10 SP to PA/SC : Position return bus
Name Direction Bits Description
Position return SP→PA 128 Position data or sprite size
Position Buffer pointer SP→PA 7 Pointer to the position cache
Parameter cache pointer SP→PA 11 Pointer where the data will be in the parameter cache

For point sprites and position exports the size and position are interleaved on a 16 x 16 basis. We export 16 positions
then 16 point sprite sizes. The registers are taken until the next ALU clause where they are going to be available
again. Thus the sequencer has to make sure that we finished exporting data before allowing the program in the next
ALU clause.

12.1.317.1.11 Shader Engine to Texture Unit Bus (Fast Bus)
One Four quad’s worth of addresses is transferred to Texture Unit every clock. These are sourced from a different pixel
within each of the sub-engines repeating every 4 clocks. The register file index to read must precede the data by 2
clocks. The Read address associated with Quad 0 must be sent 1 clock after the Instruction Start signal is sent, so that
data is read 3 clocks after the Instruction Start.

OneFour Quad’s worth of Texture Data may be written to the Register file every clock. These are directed to a different
pixel of the sub-engines repeating every 4 clocks. The register file index to write must accompany the data. Data and
Index associated with the Quad 0 must be sent 3 clocks after the Instruction Start signal is sent.

Name Direction Bits Description
Tex_Read_Register_Index SEQ->SP 87 Index into Register files for reading Texture Address
Tex_RegFile_Read_Data SP->TEX 5122048 4 16 Texture Addresses read from the Register file
Tex_Write_Register_Index SEQ->TEX 87 Index into Register file for write of returned Texture

Data

12.1.417.1.12 Sequencer to Texture Unit bus (Slow Bus)

Once every four clock, the texture unit sends to the sequencer on wich clause it is now working and if the data in the
registers is ready or not. This way the sequencer can update the texture counters for the reservation station fifos. The
sequencer also provides the intruction and constants for the texture fetch to execute and the address in the register
file where to write the texture return data.

Name Direction Bits Description
Tex_Ready TEX→ SEQ 1 Data ready
Tex_Clause_Num TEX→ SEQ 3 Clause number
Tex_cst SEQ→TEX ?10 Texture constants Xstate address 10 bits sent over 4

clocks
Tex_Inst SEQ→TEX ?12 Texture fetch instruction Xaddress 12 bits sent over 4

clocks
EO_CLAUSE SEQ→TEX 1 Last instruction of the clause
PHASE SEQ→TEX 1 Write phase signal

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 126 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

18. Internal interfaces

12.1.5 Shader Engine to RE/PA Bus

12.1.6 PA? to sequencer

13.19. Examples of program executions

13.1.119.1.1 Sequencer Control of a Vector of Vertices

1. PA sends a vector of 16 64 vertices (actually vertex indices – 32 bits/index for 512 2048 bit total) to the RE’s
Vertex FIFO
 state pointer as well as tag into position cache is sent along with vertices
 space was allocated in the position cache for transformed position before the vector was sent
 also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
 The vertex program is assumed to be loaded when we receive the vertex vector.

 the SEQ then accesses the IS base for this shader using the local state pointer (provided to all
sequencers by the RBBM when the CP is done loading the program)

2. SEQ arbitrates between the Pixel FIFO and the Vertex FIFO – basically the Vertex FIFO always has priority
 at this point the vector is removed from the Vertex FIFO
 the arbitrer is not going to select a vector to be transformed if the parameter cache is full unless the pipe as

nothing else to do (ie no pixels are in the pixel fifo).

3. SEQ allocates space in the SP register file for index data plus GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
 SEQ will not send vertex data until space in the register file has been allocated

4. SEQ sends the vector to the SP register file over the RE_SP interface (which has a bandwidth of 512 2048
bits/cycle)
 the 16 64 vertex indices are sent to the 16 64 register files over 4 cycles

 RF0 of SU0, SU1, SU2, and SU3 is written the first cycle
 RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
 RF2 of SU0, SU1, SU2, and SU3 is written the third cycle
 RF3 of SU0, SU1, SU2, and SU3 is written the fourth cycle

 the index is written to the least significant 32 bits (floating point format?) (what about compound indices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, z)

5. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
texture state machine 0, or TSM0 FIFO)
 the control packet contains the state pointer, the tag to the position cache and a register file base pointer.

6. TSM0 accepts the control packet and fetches the instructions for texture clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

7. all instructions of texture clause 0 are issued by TSM0

8. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for requests made to the Texture Unit to complete; it passes the register file write index

for the texture data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data to the register files, it increments a counter that is associated with ASM0

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 127 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

R400 Sequencer Specification PAGE

26 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

9. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

10. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of texture state machine 1, or TSM1 FIFO)

11. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 position can be exported in ALU clause 3 (or 4?); the data (and the tag) is sent over a position bus (which is

shared with all four shader pipes) back to the PA’s position cache
 A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
 there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA
 the ASM arbiter will prevent a packet from starting an exporting clause if the position export FIFO is full

 parameter data is exported in clause 7 (as well as position data if it was not exported earlier)
 parameter data is sent to the Parameter Cache over a dedicated bus
 the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space when there is no

longer a need for the parameters (it is told by the PA when using a token).
 the ASM arbiter will prevent a packet from starting on ASM7 if the parameter cache (or the position buffer

if position is being exported) is full

12. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

13.1.219.1.2 Sequencer Control of a Vector of Pixels

1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

 At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

2.the RE’s Parameter Buffer is loaded from the Parameter Cache before the SEQ takes control of the vector
after the HZ culling stage a request is made by the RE to send parameter data to the Parameter buffer
the Parameter buffer is wide enough to source 3 vertices worth of a particular parameter in one cycle
at this moment the right sequencer will free up the parameter store locations not used anymore using

the token provided by the PA.

3.2. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
 the state pointer and the LOD correction bits are also placed in the Pixel FIF0
 the Pixel FIFO is wide enough to source one four quad’s worth of barycentrics per cycle

4.3. SEQ arbitrates between Pixel FIFO and Vertex FIFO – when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

5.4. SEQ allocates space in the SP register file for all the GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
 SEQ will not allow interpolated data to be sent to the shader until space in the register file has been allocated

6.SEQ control starts with the interpolation of parameters (up to 16 per thread) by sending the barycentric coordinates
from the Pixel FIFO and the parameters from the Parameter Buffer to the interpolator
P0i, P0j, and P0k (the value of P0 at each vertex) are loaded into the interpolator from the Parameter buffer
Q0 i, j, and k are loaded into the interpolator from the Pixel FIFO
The interpolator then generates the parameter value for each pixel in Q0 (Q0P0)
P0i, P0j, and P0k are sent to the interpolator for Q1 only if Q1 is from a different primitive; if Q1 is from

the same primitive as Q0, then the P0i, P0j, and P0k values loaded for Q0 are held by the interpolator
and reused for Q1
a “different_prim” control bit is passed with the barycentric data for each quad in the Pixel FIFO that

indicates whether new parameter data needs to be loaded into the interpolator
Q1 i, j, and k are then loaded into the interpolator from the Pixel FIFO
The interpolator then generates the parameter value for each pixel in Q1 (Q1P0)
Q2P0 and Q3P0 are generated in a similar manner
The next set of parameter data - P1i, P1j, and P1k - is then loaded into the interpolator

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 128 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

Q0 i, j, and k now must be re-read from the Pixel FIFO – this means that the output of the Pixel FIFO loops
through the top four entries on each read command until at the end a final “block_pop” signal is asserted,
causing the top four sets of barycentric coordinates to finally be removed

so the order of parameter info generated is Q0P0, Q1P0, Q2P0, Q3P0, Q0P1, Q1P1, etc.

7.5. SEQ controls the transfer of interpolated data to the SP register file over the RE_SP interface (which has a
bandwidth of 512 2048 bits/cycle). See interpolated data bus diagrams for details.
16 pixels worth of interpolated parameter data is sent to the 16 register files over 4 cycles

RF0 of SU0, SU1, SU2, and SU3 is written with Q0P0 the first cycle
RF1 of SU0, SU1, SU2, and SU3 is written with Q1P0 second cycle
RF2 of SU0, SU1, SU2, and SU3 is written with Q2P0 third cycle
RF3 of SU0, SU1, SU2, and SU3 is written with Q3P0 fourth cycle

8.6. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
texture state machine 0, or TSM0 FIFO)
 note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
 the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
 all other informations (such as quad address for example) travels in a separate FIFO

9.7. TSM0 accepts the control packet and fetches the instructions for texture clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

10.8. all instructions of texture clause 0 are issued by TSM0

11.9. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or
ASM0 FIFO)
 TSM0 does not wait for texture requests made to the Texture Unit to complete; it passes the register file write

index for the texture data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data for a particular clause to the register files, it increments a counter that is

associated with the ASM0 FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

12.10. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

13.11. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of texture state machine 1, or TSM1 FIFO)

14.12. the control packet continues to travel down the path of reservation stations until all clauses have been
executed
 pixel data is exported in the last ALU clause (clause 7)

 it is sent to an output FIFO where it will be picked up by the render backend
 the ASM arbiter will prevent a packet from starting on ASM7 if the output FIFO is full

15.13. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

13.1.319.1.3 Notes

16.14. the state machines and arbitrers will operate ahead of time so that they will be able to immediately start the
real threads or stall.

17.15. the register file base pointer for a vector needs to travel with the vector through the reservation stations, but
the instruction store base pointer does not – this is because the RF pointer is different for all threads, but the IS
pointer is only different for each state and thus can be accessed via the state pointer

16. Waterfalling, parameter buffer allocation, loops and branches and parameter cache de-allocation still needs to
be specked out.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 129 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

R400 Sequencer Specification PAGE

28 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

14. Timing Diagrams

14.1 MAC 0

1 1312111098765432 17161514

Timing Diagram 1: Sequencer to Shader Pipe 0, Shader Unit 0, MAC 0

0

RF0_read_data

SEQ_SP_instruction

srcA srcB srcC TC

mac0_vector_result a r g b

PVRF0 write cycle PSTDID

SEQ_SP_instr_start

PV PSTDIDPV PSTDID

SEQ_SP_phase

mac0_cycle_count 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

PV PSTDID

SEQ_SP_read_addr

I0_0 I0_1 I0_2 I0_3

srcA srcB srcC TCsrcA srcB srcC TC srcA srcB srcC TC srcA srcB srcC TC srcA

RE_SP_data[511:384] ID ID ID ID

SEQ_SP_constant0 C0_0 C0_1 C0_2 C0_3

SEQ_SP_constant1 C1_0 C1_1 C1_2 C1_3

mac0_phase

SEQ_SP_write_addr PV PS-IDPV PS-IDPV PS-IDPV PS-ID

14.2 Sequencer to Shader Pipe
Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 130 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

1 1312111098765432 17161514

Timing Diagram 2: RE Interpolator to Shader Pipe Data Transfer

0

SEQ_SP_write_addr

PMB_INT_data P0

PXF_INT_data Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3

P1 P0'

Q0' Q1" Q2" Q3" Q0'

P1'

RE_SP_data

ID ID ID ID

Q0P0 Q1P0 Q2P0 Q3P0 Q0P1 Q1P1 Q2P1 Q3P1 Q0P0' Q1P0" Q2P0" Q3P0" Q0P1'

PXF_SEQ_rts

RE_SP_valid

P0" P1"P1' P1' x x

Q1" Q2" Q3"

PXF_SEQ_new_prim

P1 P1 P1 P0' P0' P0'P0

Q0

x

x

SEQ_INT_px_load

SEQ_INT_pm_load

SEQ_PXF_vector_pop

SEQ_PXF_rtr

INT_quad_reg Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3 Q0' Q1" Q2" Q3" Q0' Q1" Q2" Q3"xx

INT_param_reg P0 P1 P0' P1'P0" P1"xx P0 P0 P0 P1 P1 P1 P0" P0" P1" P1"

SEQ_SP_phase

mac0_phase

mac1_phase

mac2_phase

mac3_phase

PVRF0 write cycle PSTDIDPV PSTDIDPV PSTDIDPV PSTDID

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 131 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

R400 Sequencer Specification PAGE

30 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

14.3 Sequencer to Texture Pipe
1 1312111098765432 17161514

Timing Diagram 3: Sequencer - Texture Unit Interface and Texture Unit - Shader Pipe Data Transfer

0

RF0_read_data

SEQ_TX_instruction I0_0 I0_1 I0_2 I0_3

srcA srcB srcC TC

SEQ_TX_instr_start

SEQ_TX_clause

SEQ_TX_write_addr

0

r4

SEQ_TX_last

SEQ_TX_phase

srcA srcB srcC TC srcA srcB srcC TC srcA srcB

I1_0 I1_1 I1_2 I1_3

0

r5

TX_SEQ_clause

TX_SEQ_done

TX_SP_data T0_0 T0_1 T0_2 T0_3 T1_0 T1_1 T1_2 T1_3

0

TX_SP_write_addr r4 r5

SEQ_SP_read_addr TC TC TC TC

SP_TX_tc

TX_SP_valid

SEQ_SP_phase

TC

tx_phase

srcB srcC

TC

PVRF0 write cycle

PS

TDIDPV PSTDIDPV PSTDIDPV PSTDID

SEQ_SP_write_addr PV PS-IDPV PS-IDPV PS-IDPV PS-ID

PS PS

ID

TC0 TC1 TC2 TC3 TC0 TC1 TC2 TC3 TC0 TC1 TC2 TC3 TC0 TC1 TC2

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 132 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

14.4 Timing diagrams explanations

The numbering of the four shader pipes, the four shader units, and the four MACs is from left to right and from 0 to 3.
So for example the most significant 512 bits of a SP goes to SU0 and the least significant 512 bits go to SU3; within
SU0, the most significant 128 bits go to MAC0 and the least significant 128 bits go to MAC3.
The following assumptions are made:

1.all block to block signals are register to register
2.for register file reads, the RF read data is available in the MAC one clock after a RF read address is registered

into the MAC (this is the same as saying the read data is valid out of the RF two clocks after the address is
asserted on the SEQ to SP interface)

14.4.1 Timing Diagram 1: Sequencer to Shader Pipe 0, Shader Unit 0, MAC 0
This diagram shows the basics of the Sequencer to Shader Pipe interface. For simplicity only the timing relative to
MAC0 is shown. The timing for MAC1 is one clock later than MAC0, MAC2 one clock later than MAC1, etc. This
means that most of the signals need to be delayed in the SP by one cycle for MAC1, two cycles for MAC2, and three
cycles for MAC3.
SEQ_SP_constant0: Constant 0 (128 bits over 4 cycles). Pipelined in SP for other MACs.
SEQ_SP_constant1: Constant 1 (128 bits over 4 cycles). Pipelined in SP for other MACs.
SEQ_SP_read_addr: Register File Read Address (8 bits). Pipelined in SP for other MACs.
SEQ_SP_phase: This signal syncs the data transfer to the RF from the RE, as well as defining the order of all writes
into the RF. It is asserted during the cycle that interpolated data (ID) is valid on the RE_SP_ID bus. Pipelined in SP
for other MACs.
RE_SP_ID[511:384]: This is the most significant 128 bits of the RE_SP_data interface (meaning that this MAC0 is in
SU0).
SEQ_SP_instruction: 96 bits of instruction are sent over 4 cycles. Pipelined in SP for other MACs.
SEQ_SP_instr_start: control bit that signals the first cycle of the instruction transfer. Pipelined in SP for other MACs.
mac0_phase: registered version of SEQ_SP_phase used in MAC0 (this may not be he actual signal name).
mac0_cycle_count: a counter inside the MAC that keeps track of the RF write cycles; 0 here corresponds to the
cycle RE interpolated data is written (this may not be he actual signal name).
RF0_read_data: data that is read out of MAC0’s register file (this may not be he actual signal name).
mac0_vector_result: the 32-bit output of the vector ALU (PV is built up over 4 cycles) (this may not be he actual
signal name).
SEQ_SP_write_addr: Register File Write Address (8 bits). Note that the SEQ does not send the Texture Data write
address over this bus. Pipelined in SP for other MACs.
RF0 write cycle: the cycles allocated to the different write sources (ID = Interpolated Data, TD = Texture Data, PV =
Previous Vector, PS = Previous Scalar) (not a signal – just a reference point on the diagram).

14.4.2 Timing Diagram 2: RE Interpolator to Shader Pipe Data Transfer
This diagram shows how pixel data (barycentric coordinates i, j, and k) is sent from the Pixel FIFO to the interpolator
under SEQ control, and how parameter data (for each vertex) is also sent to the interpolator under SEQ control. The
output of the Interpolator is then shown being sent over the RE_SP interface.
PXF_SEQ_rts: Indicates that the output of the pixel FIFO is valid.
PXF_SEQ_new_prim: The current output of the Pixel FIFO is from a different primitive that the previous output. Tells
the SEQ that new parameter info must be fetched (if its not from a new prim, then new parameter data is not needed).
PXF_INT_data: Data output of the Pixel FIFO – goes to the Interpolator.
SEQ_PXF_rtr: Indicates that the current Pixel FIFO output will be taken by the Interpolator (driven by SEQ). Then
next quad of data will be driven the next cycle.
SEQ_PXF_vector_pop: SEQ tells the Pixel FIFO to pop a vector of pixels (otherwise RTRs cause the data to be
cycled between the four quads).

PMB_INT_data: Data from the Parameter Buffer to the Interpolator. (Note that the control of the parameter buffer is
TBD).

SEQ_INT_pm_load: controls the loading of parameter data into the Interpolator.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 133 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

R400 Sequencer Specification PAGE

32 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

INT_param_reg: register in the Interpolator that holds the per-vertex parameter data while the per-pixel parameters
are generated for one or more quads (may not be the actual signal name).
SEQ_INT_px_load: controls the loading of pixel data into the Interpolator.
INT_quad_reg: : register in the Interpolator that holds one quad’s worth of pixel data(may not be the actual signal
name).

SEQ_SP_phase: see above under TD1.
SEQ_SP_write_addr: see above under TD1.
RE_SP_valid: Interpolator Data Valid – indicates that the SP should write the ID on the appropriate cycle.
RE_SP_data: Data from the RE interpolator to the SP.
RF0 write cycle: see above under TD1.
mac*_phase: see above under TD1. These phase signals help to show the timing offset between the MACs. Note
also that each Shader Unit has a set of these signals (all with the same timing).

14.4.3 Timing Diagram 3: Sequencer - Texture Unit Interface and Texture Unit -
Shader Pipe Data Transfer
This diagram starts with the texture coordinate read from the register file and its transfer to the TX. The instruction
transfer is then shown, followed by the texture data transfer to the shader pipe.
SEQ_SP_read_addr: see above. Here shows the cycle that the texture coordinate read address is asserted.
RF0_read_addr: see above.
SP_TX_tc: Texture coordinate data sent from the shader pipe to the texture unit.
SEQ_TX_instr_start: Asserted on the first cycle of a SEQ to TX instruction transfer.
SEQ_TX_instruction: 96 bits of texture instruction transferred over 4 cycles.
SEQ_TX_clause: the clause number associated with this instruction.
SEQ_TX_write_addr: RF write index used by TX for returned texture data.
SEQ_TX_last: indicates that this is the last texture instruction of a clause.
SEQ_TX_phase: syncs the texture data write. Note that it is asserted early enough to be registered into TX and still
allow TX to source the texture data to the SP on the correct cycle.

tx_phase: the phase signal after being registered into TX.
TX_SP_write_addr: RF write index for texture data.
TX_SP_valid: indicates that valid texture data is being driven to the SP.
TX_SP_data: the texture data.
TX_SEQ_clause: the clause number associated with the texture data.
TX_SEQ_done: indicates to the SEQ that the texture data transfer is complete for the clause number that is on the
TX_SEQ_clause bus.

SEQ_SP_phase: see above under TD1 - shown here for reference.
SEQ_SP_write_addr: see above under TD1- shown here for reference.
RF0 write cycle: see above under TD1- shown here for reference.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 134 of 1898

ORIGINATE DATE

24 September, 200124
September 200114

EDIT DATE

4 September, 20155
October 200124

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

33 of 33

Exhibit 2013.docR400_Sequencer.docR400_Sequencer.doc �� 35011 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***
 09/04/15 12:50 PM10/05/01 10:28 AM08/13/01 03:17 PM

15.20. Open issues
There is currently an issue with constants. If the constants are not the same for the whole vector of vertices, we don’t
have the bandwith from the texture store to feed the ALUs. Two solutions exists for this problem:

1) Let the compiler handle the case and put those instructions in a texture clause so we can use the
bandwith there to operate. This requires a significant amount of temporary storage in the register store.

2) Waterfall down the pipe allowing only at a given time the vertices having the same constants to operate in
parrallel. This might in the worst case slow us down by a factor of 16.

Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

Size of the fifo containing the information of a vector of pixels/vertices. And size of the fifos before the reservation
stations.

Sequencer Instruction memory, and constant memory.

Arbitration policy for the output file.

Loops and branches.

The parameter cache may end up in the PA rather than in the RS. Parameter cache management thus may change.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 135 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015 October

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:51
PM10/05/01 10:28 AM

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SEQ

Version 0.87

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\arch\doc\gfx\RE\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2014
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 136 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015

R400 Sequencer Specification PAGE

2 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:51
PM10/05/01 10:28 AM

Table Of Contents

1. OVERVIEW ... 4
1.1 Top Level Block Diagram 6
1.2 Data Flow graph .. 8
1.3 Control Graph ... 9
2. INTERPOLATED DATA BUS 9
3. INSTRUCTION STORE 12
4. SEQUENCER INSTRUCTIONS 12
5. CONSTANT STORE....................................... 12
6. LOOPING AND BRANCHES 12
6.1 The controlling state.. 12
6.2 The Control Flow Program 13
6.3 Data dependant predicate instructions 15
6.4 Register file indexing................................... 1615
7. REGISTER FILE ALLOCATION 16
8. FETCH ARBITRATION 1817
9. ALU ARBITRATION 1817
10. HANDLING STALLS 1817
11. CONTENT OF THE RESERVATION STATION
FIFOS 1817
12. THE OUTPUT FILE 1817
13. IJ FORMAT ... 1917
14. THE PARAMETER CACHE 1918
15. VERTEX POSITION EXPORTING 1918
16. REAL TIME COMMANDS 2018
17. REGISTERS ... 2019
18. INTERFACES ... 2019
18.1 External Interfaces 2019

18.1.1 PA/SC to RE : IJ bus 2019
18.1.2 PA/SC to SEQ : IJ Control bus 2119
18.1.3 VGT to RE : Vertex Bus 2120
18.1.4 VGT to SEQ : Vertex Control Bus 2120
18.1.5 CP to SEQ : Constant store load . 2120
18.1.6 CP to SEQ : Fetch State store load
 2220
18.1.7 CP to SEQ : Control State store load
 2221
18.1.8 MH to SEQ: Instruction store Load
 2221
18.1.9 SP to RB : Pixel read from RBs 2221
18.1.10 SEQ to RB : Control bus 2221
18.1.11 RB to SEQ : Output file control 2221
18.1.12 SP to RB : Position return bus...... 2321
18.1.13 Shader Engine to Fetch Unit Bus (Fast
Bus) 2322
18.1.14 Sequencer to Fetch Unit bus (Slow
Bus) 2322

19. INTERNAL INTERFACES 2322
20. EXAMPLES OF PROGRAM EXECUTIONS
 2322

20.1.1 Sequencer Control of a Vector of
Vertices 2322
20.1.2 Sequencer Control of a Vector of
Pixels 2523
20.1.3 Notes .. 2524

21. OPEN ISSUES .. 2624
1. OVERVIEW ... 4
1.1 Top Level Block Diagram 6
1.2 Data Flow graph .. 8
1.3 Control Graph ... 9
2. INTERPOLATED DATA BUS 9
3. INSTRUCTION STORE 12
4. SEQUENCER INSTRUCTIONS 12
5. CONSTANT STORE 12
6. LOOPING AND BRANCHES 12
6.1 The controlling state. 12
6.2 The Control Flow Program 13
6.3 Data dependant predicate instructions 14
6.4 Register file indexing 14
7. REGISTER FILE ALLOCATION 15
8. FETCH ARBITRATION 16
9. ALU ARBITRATION 16
10. HANDLING STALLS 16
11. CONTENT OF THE RESERVATION STATION
FIFOS 16
12. THE OUTPUT FILE .. 16
13. IJ FORMAT ... 16
14. THE PARAMETER CACHE 17
15. VERTEX POSITION EXPORTING 17
16. REAL TIME COMMANDS 18
17. REGISTERS ... 18
18. INTERFACES ... 18
18.1 External Interfaces 18

18.1.1 PA/SC to RE : IJ bus 18
18.1.2 PA/SC to SEQ : IJ Control bus 18
18.1.3 PA/SC to RE : Vertex Bus 19
18.1.4 PA/SC to SEQ : Vertex Control Bus . 19
18.1.5 CP to SEQ : Constant store load 19
18.1.6 CP to SEQ : Fetch State store load .. 19
18.1.7 CP to SEQ : Control State store load
 20
18.1.8 MH to SEQ: Instruction store Load .. 20
18.1.9 SP to RB : Pixel read from RBs 20
18.1.10 SEQ to RB : Control bus 20
18.1.11 SP to PA/SC : Position return bus 20
18.1.12 Shader Engine to Fetch Unit Bus (Fast
Bus) 20
18.1.13 Sequencer to Fetch Unit bus (Slow
Bus) 20

19. INTERNAL INTERFACES 21
20. EXAMPLES OF PROGRAM EXECUTIONS .. 21

20.1.1 Sequencer Control of a Vector of
Vertices 21
20.1.2 Sequencer Control of a Vector of
Pixels 22
20.1.3 Notes .. 23

21. OPEN ISSUES .. 23
1. OVERVIEW ... 4
1.1 Top Level Block Diagram 6

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 137 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015 October

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:51
PM10/05/01 10:28 AM

1.2 Data Flow graph .. 8
1.3 Control Graph ... 9
2. INTERPOLATED DATA BUS 9
3. INSTRUCTION STORE 12
4. SEQUENCER INSTRUCTIONS 12
5. CONSTANT STORE....................................... 12
6. LOOPING AND BRANCHES 12
6.1 The controlling state.. 12
6.2 The Control Flow Program 13
6.3 Data dependant predicate instructions 14
6.4 Register file indexing....................................... 14
7. REGISTER FILE ALLOCATION 15
8. TEXTURE ARBITRATION 16
9. ALU ARBITRATION 16
10. HANDLING STALLS 17
11. CONTENT OF THE RESERVATION STATION
FIFOS 17
12. THE OUTPUT FILE .. 17
13. THE PARAMETER CACHE 17
14. VERTEX POSITION EXPORTING 17
15. REGISTERS ... 17
16. INTERFACES ... 18
16.1 External Interfaces 18

16.1.1 PA/SC to RE : IJ bus 18

16.1.2 PA/SC to SEQ : IJ Control bus 18
16.1.3 PA/SC to RE : Vertex Bus 18
16.1.4 PA/SC to SEQ : Vertex Control Bus . 18
16.1.5 CP to SEQ : Constant store load 19
16.1.6 CP to SEQ : Texture State store load
 19
16.1.7 CP to SEQ : Control State store load
 19
16.1.8 MH to SEQ: Instruction store Load .. 19
16.1.9 SP to RB : Pixel read from RBs 19
16.1.10 SP to PA/SC : Position return bus 19
16.1.11 Shader Engine to Texture Unit Bus
(Fast Bus) 19
16.1.12 Sequencer to Texture Unit bus (Slow
Bus) 20

17. INTERNAL INTERFACES 20
18. EXAMPLES OF PROGRAM EXECUTIONS .. 20

18.1.1 Sequencer Control of a Vector of
Vertices 20
18.1.2 Sequencer Control of a Vector of
Pixels 21
18.1.3 Notes .. 22

19. OPEN ISSUES .. 23

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

 Changed the control flow method to be more
flexible. Also updated the external interfaces.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 138 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015

R400 Sequencer Specification PAGE

4 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:51
PM10/05/01 10:28 AM

1. Overview
The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the raster engine.

The vertex or pixel program specifies how many GPR’s it needs to execute. The sequencer will not start the next
vector until the needed space is available.

The sequencer is based on the R300 design. It chooses two ALU clauses and a texturefetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight texturefetch and eight ALU clauses, but
clauses do not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO,
bouncing from texturefetch reservation station to alu reservation station. A FIFO exists between each reservation
stage, holding up vectors until the vector currently occupying a reservation station has left. A vector at a reservation
station can be chosen to execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to
execute and all eight texturefetch stations to choose a texturefetch clause to execute. The arbitrator will give priority
to clauses/reservation stations closer to the bottom of the pipeline. It will not execute an alu clause until the
texturefetch fetches initiated by the previous texturefetch clause have completed. There are two separate sets of
reservation stations, one for pixel vectors and one for vertices vectors. This way a pixel can pass a vertex and a
vertex can pass a pixel.

To support the shader pipe the raster engine also contains the shader instruction cache and constant store. There
are only one constant store for the whole chip and one instruction store. These will be shared among the four shader
pipes. The four shader pipes also execute the same instuction thus there is only one sequencer for the whole chip.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 139 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015 October

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:51 PM10/05/01 10:28 AM

SEQ

RE

SPSPSPCSTOREFETCH STATE

FETCH
ENGINE

FETCH INST

ALU INST
IJ CONTROL

IJ
CONTROL

CST
ADDR

ALU
INST

 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/QUAD
ADDRESSES

SP

ALU INST

TU INST
ADDR

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

TU INST

ALU INST

INTER INTER INTER INTER

IJ CROSSBAR

2 QUADS IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC READ
 POINTERS

PARAM
DATA

R/W ADDR

Vertex indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

IJ CONTROL

4 - write mask
2- RB ID(*4)

6- LOD correction (*4)
2- Fvtx (provoking vertex)

7- PPtro
7- PPtr1
7- PPtr2

1- EOVect
1- Dealloc (pcache)

8?- State ptr
1- Sprite

4- Valid (*4)
1- Null

1- EO prim
1- F/B face

1 - Stippled line

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

INST
LOAD

MH

CONSTANT
LOAD

CPSTATE LOAD

TX ADDR

PC Write
Address

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 140 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015

R400 Sequencer Specification PAGE

6 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:51
PM10/05/01 10:28 AM

1.1 Top Level Block Diagram

vertex/pixel vector arbitrator

Possible delay for available GPR’s

FIFO
Texture clause 0
reservation station

Texture clause 1
reservation station

FIFO
ALU clause 0
reservation station

FIFO

Texture clause 2
reservation station

Texture clause 3
reservation station

FIFO
ALU clause 1
reservation station

FIFO

FIFO
ALU clause 2
reservation station

FIFO

FIFO
ALU clause 3
reservation station

FIFO
Texture clause 4
reservation station

Texture clause 5
reservation station

FIFO
ALU clause 4
reservation station

FIFO

Texture clause 6
reservation station

Texture clause 7
reservation station

FIFO
ALU clause 5
reservation station

FIFO

FIFO
ALU clause 6
reservation station

FIFO

FIFO
ALU clause 7
reservation station

texture arbitrator

texture arbitrator

There are two sets of the above figure, one for vertices and one for pixels.

The rasterizer always checks the vertices FIFO first and if allowed by the sequencer sends the data to the shader. If
the vertex FIFO is empty then, the rasterizer takes the first entry of the pixel FIFO (a vector of 64 pixels) and sends it
to the interpolators. Then the sequencer takes control of the packet. The packet consists of 21 bits of state, 6-7 bits
for the base address of the Shader program and some information on the coverage to determine texturefetch LOD.
All other information (2x2 adresses) is put in a FIFO (one for the pixels and one for the vertices) and retrieved when
the packet finishes its last clause.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 141 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015 October

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:51
PM10/05/01 10:28 AM

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the registers to store the interpolated values and temporaries. Following this, the input state machine stacks the
packet in the first FIFO.

On receipt of a command, the level 0 texturefetch machine issues a texure request and corresponding register
address for the texturefetch address (ta). A small command (tcmd) is passed to the texturefetch system identifying
the current level number (0) as well as the register write address for the texturefetch return data. One texturefetch
request is sent every 4 clocks causing the texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the
requests are sent the packet is put in FIFO 1.

Upon recept of the return data, the texturefetch unit writes the data to the register file using the write address that was
provided by the level 0 texturefetch machine and sends the clause number (0) to the level 0 texturefetch state
machine to signify that the write is done and thus the data is ready. Then, the level 0 texturefetch machine increments
the counter of FIFO 1 to signify to the ALU 1 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO counter and then issues a
complete set of level 0 shader instructions. For each instruction, the state machine generates 3 source addresses,
one destination address (3 cycles later) and an instruction. Once the last instruction as been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbitrers). One arbitrer will arbitrate
over the odd clock cycles and the other one will arbitrate over the even clock cycles. The only constraints
between the two arbitrers is that they are not allowed to pick the same clause number as they other one is
currently working on if the packet os of the same type.

If the packet is a vertex packet, upon reaching ALU clause 4, it can export the position if the position is ready. So the
arbitrer must prevent ALU clause 4 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, the location where the vertex data is to be put is also sent (parameter data pointers).

All other level process in the same way until the packet finally reaches the last ALU machine (8). On completion of the
level 8 ALU clause, a valid bit is sent to the Render Backend which picks up the color data. This requires that the last
instruction writes to the output register – a condition that is almost always true. If the packet was a vertex packet,
instead of sending the valid bit to the RB, it is sent to the PA so it can know that the data present in the parameter
store is valid.

Only two ALU state machine may have access to the register file address bus or the instruction decode bus at one
time. Similarly, only one texturefetch state machine may have access to the register file address bus at one time.
Arbitration is performed by three arbitrer blocks (two for the ALU state machines and one for the texturefetch state
machines). The arbitrers always favor the higher number state machines, preventing a bunch of half finished jobs
from clogging up the register files.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 142 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015

R400 Sequencer Specification PAGE

8 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:51
PM10/05/01 10:28 AM

1.2 Data Flow graph

MAC

MAC

MAC

MAC

Register File

co
ns

ta
nt

s
fr

om
 R

E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
nt

s
fr

om
 R

E

S
ca

la
r

U
n

it

texture request

texture request

texture request

texture request

te
xt

ur
e

ad
dr

es
s

te xtu re d
ata

p rim
i tive da

ta f rom
 R

E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 143 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015 October

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:51
PM10/05/01 10:28 AM

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

SEQ

FETCH SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

OF

WrAddr

RdAddr
PA/RB

IS CST

CST IDX

In green is represented the TextureFetch control interface, in red the ALU control interface, in blue the
Interpolated/Vector control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 144 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015

R400 Sequencer Specification PAGE

10 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:51
PM10/05/01 10:28 AM

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x64 bits)

IJs buffer (ping-pong buffer)
(27 bits * 2 (IJ) + 8 bits * 6 (delta IJs)+4 exp

bits*6)* 16 (quads) * 2 (double-buffered)
4032 bits

32 x 126

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

64

27*2+8*6+6*4 for IJs

To RB

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 145 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015 October

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:51 PM10/05/01 10:28 AM

SP0

SP1

SP2

SP3

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

T19

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P0 P1

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 146 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015

R400 Sequencer Specification PAGE

12 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:51
PM10/05/01 10:28 AM

Above is an example of a tile we might receive. The IJ information is packed in the IJ buffer 2 quads at a time. The
sequencer allows at any given time as many as four quads to interpolate a parameter. They all have to come from the
same primitive. Then the sequencer controls the write mask to the register to write the valid data in.

3. Instruction Store
There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.
There is also going to be a control instruction store of size 256(512?)x32.

{ISSUE : The instruction store is loaded by the sequencer using the memory hub ?}.

 The read bandwith from this store is 96*2 bits/ 4 clocks (48 bits/clock). It is likely to be a 1R/1W port memory; we use
2 1 clocks to load the ALU instruction, and 12 clocks to load the TextureFetch instruction, 1 clock to load 2 control
flow instructions and 1 clock to write instructions.

4. Sequencer Instructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS).

5. Constant Store
The constant store is managed by the CP. The sequencer is aware of where the constants are using a remaping
table also managed by the CP. A likely size for the constant store is 512x128 bits. The constant store is also planned
to be shared. The read BW from the constant store is 128 bits/clock and the write bandwith is 32/4 bits/clock.

In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed convertion, there is a latency of 4 clocks (1 instruction)
between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program. The control program has 4(5) instructions:

6.1 The controlling state.
As per Dx9 the following state is available for control flow:

Boolean[15:0]
loop_count[7:0][7:0]

In addition:
loop_start [7:0] [7:0]
loop_step [7:0] [7:0]
 Exist to give more control to the controlling program.

We will extend that in the R400 to:

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 147 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015 October

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:51
PM10/05/01 10:28 AM

Boolean[25531:0]
Loop_count[7:0][15:0]
Loop_Start[7:0] [15:0]
Loop_End[7:0] [15:0]

{ISSUE: How is the controlling state loaded and how many contexts do we have?}

6.2 The Control Flow Program
The R300 uses a match method for control flow: The shader is executed, and at every instruction its address is
compared with addresses (or address?) in a control table. The “event” in the control table can redirect operations in
the program.

The Method chosen for the R400 is a “control program”. The control program has four ten basic instructions:

Execute
Conditional_execute
(Conditional_ Executee_ Predicates)
Conditional_execute_or_Jump
Conditional_jump
Call
Return
Loop_start
Loop_end
End_of_clause

Execute, causes the specified number of instructions in instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified number of instructions in instruction
store to be executed.
Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified number of instructions.
Call jumps to an address and pushes the IP counter on the stack. On the return instruction, the IP is poped from the
stack.
Conditional_execute_or_Jump executes a block of instructions or jumps to an address is the condition is not met.
Conditional_execute_Predicates executes a block of instructions if all bits in the predicate vectors meet the condition.
End_of_clause marks the end of a clause.
Conditional_jumps jumps to an address if the condition is met. if the loop end condition is not met.

if we try and fit the control flow instructions into 32 bit words, the following instructions are possible choices:We have
to fit instructions into 48 bits in order to be able to put two control flow instruction per line in the instruction store.

Execute
47 46… 42 41 … 24 23 … 12 11 … 0

Addressing 00001 RESERVED Instruction _count Exec Address

Execute up to 4K 4k instructions at the specified address in the instruction memory.

Conditionnal_Execute_or_Jump
47 46 … 42 41 … 34 33 32 … 21 20 … 12 11 … 0

Addressing 00010 Booleans Condition Jump
address

Instruction_count Exec Address

Iif the specified boolean (68 bits can address 64256 booleans) meets the specified condition then execute the
specified instructions (up to 64 512 instructions) or if the condition is not met jump to the jump address in the control
flow program. This MUST be a forward jump.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 148 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015

R400 Sequencer Specification PAGE

14 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:51
PM10/05/01 10:28 AM

Conditionnal_Execute
47 46 … 42 41 … 34 33 32 … 21 20 … 12 11 … 0

Addressing 00011 Boolean address Condition RESERVED Instruction_count Exec Address

If the specified boolean (8 bits can address 256 booleans) meets the specified condition then execute the specified
instructions (up to 512 instructions)

Conditionnal_Execute_Predicates
47 46 … 42 41 … 38 37 36 … 21 20 … 12 11 … 0

Addressing 00100 Predicate vector Condition RESERVED Instruction_count Exec Address

Check the OR of all current predicate bits. If OR matches the condition execute the specified number of instructions.

Initialize the specified loop

If the loop condition of the current loop is not met, then branch back to the specified address in the control flow
program. Note that jumping back to the loop_start results in an infinite loop, the jump should be to loop_start+1.

Loop_Start
47 46 … 42 41 … 16 15 … 4 3 … 0

Addressing

00101 RESERVED Jump address Loop ID

Loop Start. Compares the loop count with the end value. If loop condition not met jump to the address. Forward jump
only. Also computes the index value.

Loop_End
47 46 … 42 41 … 16 15 … 4 3 … 0

Addressing

00111 RESERVED Start address Loop ID

Loop end. Increments the counter by one and jumps BACK only to the start of the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Call
47 46 … 42 41…12

11 … 0

Addressing

01000 RESERVED

Address

Jumps to the specified address and pushes the IP counter on the stack.

Return
47 46 … 42

41 … 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 149 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015 October

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:51
PM10/05/01 10:28 AM

Addressing

01001 RESERVED

Pops the topmost address from the stack and jumps to that address.

Conditionnal_Jump
47 46 … 42 41 … 34 33 32 … 12 11 … 0

Addressing

01010 Boolean address Condition RESERVED Address

If condition met, jumps to the address. FORWARD jump only allowed.

End_of_Clause
47 46 … 42 41 … 0

Addressing

01011

RESERVED

Marks the end of a clause.

To prevent infinite loops, we will keep 9 bits loop counters instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start is going to break the loop. The sequencer will keep
a loop index value of 17 bits. This will be updated everytime we loop and can only be used to index the constant store
and the register file. The way to compute this value is:

 Index = Loop_counter*Loop_iterator + Loop_init.

The basic model is as follows:

The render state defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located

The control program can be up to 256 instructions in size. (There is an offset added to the address from the render
state before accessing the control flow program memory to allow for multiple programs resident at the same time)

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The control program is the only program aware of the clause
boundaries.

The addresses from the control program are added to another offset to allow for multiple programs resident at the
same time.

Under this model, all subroutine calls must be inlined into the control program.

6.3 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the result is 'exported' to the sequencer.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 150 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015

R400 Sequencer Specification PAGE

16 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:51
PM10/05/01 10:28 AM

PRED_SETGT_# - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE0_# – SETE0
 PRED_SETE1_# – SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain the4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking (two sets for interleaved operation). This predicate is not maintained
across clause boundaries. The # sign is used to specify wich predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For exemple, the instruction :

 P0_ADD_# R0,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

6.4 Register file indexing
Because we can have loops in texturefetch clause, we need to be able to index into the register file in order to
retrieve the data created in a texturefetch clause loop and use it into an ALU clause. The instruction will include the
base address for register indexing and the instruction will contain these controls :

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_counterloop_index and this becomes our new address that we give to the
shader pipe.

7. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to VERTEX_REG_SIZE for vertices and 256-
VERTEX_REG_SIZE for pixels.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 151 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015 October

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:51
PM10/05/01 10:28 AM

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 152 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015

R400 Sequencer Specification PAGE

18 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:51
PM10/05/01 10:28 AM

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again.

8. TextureFetch Arbitration
The texturefetch arbitration logic chooses one of the 8 potentially pending texturefetch clauses to be executed. The
choice is made by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause
state machine will send one 2x2 texture fetch per clock (or 4 fetches in one clock every 4 clocks) until all the texture
fetch instructions of the clause are sent. This means that there cannot be any dependencies between two texture
fetches of the same clause.

The arbitrator will not wait for the texture fetches to return prior to selecting another clause for execution. The
texturefetch pipe will be able to handle up to X(?) in flight texture fetches and thus there can be a fair number of
active clauses waiting for their texturefetch return data.

9. ALU Arbitration
ALU arbitration proceeds in almost the same way than texturefetch arbitration. The ALU arbitration logic chooses one
of the 8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and
picking the first one ready to execute. There are two ALU arbitrers, one for the even clocks and one for the odd
clocks. For exemple, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets
of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…
 Proceeding this way hides the latency of 8 clocks of the ALUs.

10. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic to select the last clause (this way nothing
can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position buffer is
full (POS_FULL) then the sequencer also prevents a thread to enter the exporting clause (4?). The sequencer will set
the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbitrer will be able read
this signal and act accordingly by not preventing exporting clauses to proceed.

11. Content of the reservation station FIFOs
3 bits of Render State 6-7 bits for the base address of the instruction store, some bits for LOD correction and
coverage mask information in order to fetch texturefetch for only valid pixels. Every other information (such as the
coverage mask, quad address, etc.) is put in a FIFO and is retrieved when the quad exits the shader pipe to enter in
the output file buffer. Since pixels and vertices are kept in order in the shader pipe, we only need two fifos (one for
vertices and one for pixels) deep enough to cover the shader pipe latency. This size will be determined later when we
will know the size of the small fifos between the reservation stations.

12. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. For this reason
only ONE concurrent program can be of clause 8 (exporting clause) the other program MUST not. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 153 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015 October

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:51
PM10/05/01 10:28 AM

13. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel’s parameters are
always interpolated at full 1924x24 mantissa precision. Then the result of the interpolation along with the difference in
IJ in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming P0 is the interpolated parameter at Pixel 0 having the barycentric coordinates I(0), J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at V0 (interpolated with I), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

)(*03)(*0303

)(*02)(*0202

)(*01)(*0101

)(*)0()(*)0(0

)0()3(03

)0()3(03

)0()2(02

)0()2(02

)0()1(01

)0()1(01

CBJCAIPP

CBJCAIPP

CBJCAIPP

CBJCAICP

JJJ

III

JJJ

III

JJJ

III

P0 is computed at full 1924x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no
visual degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 24x24 yielding 8 bits (IJs): 6
Subtracts 24x24 19x24 (Parameters): 2
Adds: 8

FORMAT OF P0’s IJ : Mantissa 2319 Exp 4 for I + Sign
 Mantissa 2319 Exp 4 for J + Sign

FORMAT of Deltas (x3): Mantissa 8 Exp 4 for I + Sign
 Mantissa 8 Exp 4 for J + Sign

Total number of bits : 1923*2 + 8*6 + 4*8 + 4*2 = 126 (rounded up on the bus to 128)

14. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories.

15. Vertex position exporting
On clause 4 (or 5) the vertex shader can export to the PA both the vertex position and the point sprite. It can also do
so at clause 8 if not done at clause 4. The export is done by putting the exported position back into the GPRs. Then
using the texture port in an opportunistic manner, 16 positions are put into a FIFO (16x128) in order (left to right). This
fifo drains 128 bits per clock to the PA and once empty is filled up again with sprite sizes (if any). The process is

P0

P2

P1

P3

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 154 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015

R400 Sequencer Specification PAGE

20 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:51
PM10/05/01 10:28 AM

repeated 4 times. The sequencer must make sure that the program doesn’t enter ALU clause 5 (it can enter texture
clause 5) because the registers can be reused at this point. The sequencer must also make sure not to dealocate an
exporting program before it is done exporting data. Along with the position is exported a pointer to the parameter
cache where the data will be once the vertex shader exports. The storage needed to perform the position export is at
least 64x128 memories for the position and 64x32 memories for the sprite size. It is going to be taken in the pixel
output fifo.

16. Real time commands
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem I see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16.

16.17. Registers
DYNAMIC_REG Dynamic allocation (pixel/vertex) of the register file on or off.
VERTEX_REG_SIZE What portion of the register file is reserved for vertices (static allocation only)
PIXEL_MIN_SIZE Minimal size of the register file's pixel portion (dynamic only)
VERTEX_MIN_SIZE Minimal size of the register file's vertex portion (dynamic only)
Vshader_fetch[711:0][7:0] eight 8 12 bit pointers to the location where each clauses control program is located
Vshader_alu[711:0][7:0] eight 8 12 bit pointers to the location where each clauses control program is located
Pshader_fetch[711:0][7:0] eight 8 12 bit pointers to the location where each clauses control program is located
Pshader_alu[711:0][7:0] eight 8 12 bit pointers to the location where each clauses control program is located
PSHADER base pointer for the pixel shader
VSHADER base pointer for the vertex shader
PCNTLSHADER base pointer for the pixel control program
VCNTLSHADER base pointer for the vertex control program
VWRAP wrap point for the vertex shader instruction store
PWRAP wrap point for the pixel shader instruction store
REG_ALLOC_PIX number of registers to allocate for pixel shader programs
REG_ALLOC_VERT number of registers to allocate for vertex shader programs
PARAM_MASK[0…16] parameter mask to specify wich how parameters maps in the pixel shader
FLAT_GOUR[0…16] wich parameters are to be gouraud shaded
GEN_TEX[0….16] for wich parameters do we need to generate tex coords.
CYL_WRAP[0…64] for wich vertices parameters (and channels (xyzw)) do we do the cyl wrapping.
P_EXPORT number of exports for pixel shader
V_EXPORT number of exports for vertex shader (also the number of interpolated parameters for

pixel shaders)
V_EXPORT_LOC Vertex shader exporting to RB or the PCACHE
ARBITRATION_policy policy of the arbitration between vetexes and pixels

17.18. Interfaces

17.118.1 External Interfaces

17.1.118.1.1 PA/SC to RE : IJ bus
This is a bus that sends the IJ information to the IJ fifos on the top of each shader pipe. At the same time the control
information goes to the sequencer

Name Direction Bits Description

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 155 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015 October

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:51
PM10/05/01 10:28 AM

IJs PA→RE 634 IJ information sent over 2 clocks
Mask PA→RE 1 Write Mask

17.1.218.1.2 PA/SC to SEQ : IJ Control bus
This is the control information sent to the sequencer in order to control the IJ fifos and all other information needed to
execute a shader program on the sent pixels.

Name Direction Bits Description
Write Mask PA→SEQ(RE) 4 Quad Write mask left to right
RB_ID PA→SEQ(RE) 8 RB id for each quad sent 2 bits per quad
LOD_CORRECT PA→SEQ(RE) 24 LOD correction per quad (6 bits per quad)
FVTX PA→SEQ(RE) 2 Provoking vertex for flat shading
PPTR0 PA→SEQ(RE) 11 P Store pointer for vertex 0
PPRT1 PA→SEQ(RE) 11 P Store pointer for vertex 1
PPTR2 PA→SEQ(RE) 11 P Store pointer for vertex 2
E_OFF_VECTOR PA→SEQ(RE) 1 End of the vector
DEALLOC PA→SEQ(RE) 1 Deallocation token for the P Store
STATE PA→SEQ(RE) 21 State/constant pointer (6*3+3)
VALID PA→SEQ(RE) 16 Valid bits for all pixels
NULL PA→SEQ(RE) 1 Null Primitive (for PC deallocation purposes)
E_OFF_PRIM PA→SEQ(RE) 1 End Of the primitive
FBFACE PA→SEQ(RE) 1 Front face = 1, back face = 0
STIPPLE_LINETYPE PA→SEQ(RE) 31 Stippled line and Real time command need to load tex

cords from alternate buffer
000 : Normal
001 : Stippled line
011 : Real Time
100 : Line AA
101 : Point AA
110 : Sprite

RTRn SEQ→PA 1 Stalls the PA in n clocks
RTS PA→SEQ(RE) 1 PA ready to send data
QuadX PA→SEQ(RE) 408 Quad X address 10 2 bits per quad
QuadY PA→SEQ(RE) 408 Quad Y address 10 2 bits per quad

17.1.318.1.3 PA/SVGTC to RE : Vertex Bus
Name Direction Bits Description
Vertex indexes VGTPA→RE 32128 Pointers of indexes or HOS surface information
EOF_vector VGT→RE 1 End of the vector
 Inputs_vert VGT→RE 1 0: Normal 128 bits per vert

1: double 256 bits per vert

17.1.418.1.4 VGTPA/SC to SEQ : Vertex Control Bus
Name Direction Bits Description
STATE VGTPA→SEQ 21 Render State (6*3+3 for constants)
Write MaskVert counter VGTPA→SEQ 64?6 Which vertices are valid
 Inputs_vert VGT→SEQ 1 0: Normal 128 bits per vert

1: double 256 bits per vert
This information needs to be sent over 64 clocks.

17.1.518.1.5 CP to SEQ : Constant store load
Name Direction Bits Description
Constant Address CP→SEQ 8 Address of the block of 4 constants

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 156 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015

R400 Sequencer Specification PAGE

22 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:51
PM10/05/01 10:28 AM

Constant Data CP→SEQ 512 Data sent over 4 clocks
Remap Address CP→SEQ 10 Remaping address write address
Remap Data pointer CP→SEQ 8 Remaping pointer

17.1.618.1.6 CP to SEQ : TextureFetch State store load
Name Direction Bits Description
Constant Address CP→SEQ 8 Address of the block of 4 state constants
Constant Data CP→SEQ 512 Data sent over 4 clocks
Remap Address CP→SEQ 10 Remaping address write address
Remap Data pointer CP→SEQ 8 Remaping pointer

17.1.718.1.7 CP to SEQ : Control State store load
Name Direction Bits Description
{ISSUE: How,Who and what is the size of this bus?}

17.1.818.1.8 MH to SEQ: Instruction store Load
Name Direction Bits Description
Instruction address MH→SEQ 12 Instruction address
Instruction MH→SEQ 96 Instruction X times
Control Instruction address MH→SEQ 9 Pointer to the control instruction store
Control Instruction MH→SEQ 32 Control Instruction X times

17.1.918.1.9 SP to RB : Pixel read from RBs
Name Direction Bits Description
Pixel DataExport_data SP→RB 25664 2 pixels (or ½ quad)a pair of 32 bits channel values
ExportID SP→RB 9 0cvvvvhqq: Vertex data vvvv 0-15 from first or second

clause (c=0 or 1), XY or ZW components (h=0 or 1), quad
0-3 in the shader (qq= 0-3)
1cbbkttqq: Pixel data for buffer bb (0-3) from first or
second clause (0-1) killed or not (k=1 or 0) quad 0-3 in
the shader and data is RG (tt=0), BA (tt=1) or Z (tt=2)

ExportMask SP→RB 2 Specifies whether to write low, high or both 32 bit words.
If export mask is 00 data is invalid

ExportLast SP→RB 1 Last export instruction of the clause

18.1.10 SEQ to RB : Control bus
Name Direction Bits Description
Type SEQ→RB 1 0: Pixel

1: Vertex
Interleaving SEQ→RB 1 0: first interleaved clause

1: second interleaved clause
Export_size SEQ→RB 4 0 thru 16 parameters exported for vertexes (vvvv) OR

(bbzs) 1-4 color buffers (bb), two component (s=0) or 4
component colors (s=1) with z (z=1) or without z (z=0)

Valid SEQ→RB 1 Data valid

Only one exporting clause (7) can be selected at any given time.

18.1.11 RB to SEQ : Output file control
Name Direction Bits Description
Buff_Full RB→SEQ 1 Set if full

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 157 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015 October

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:51
PM10/05/01 10:28 AM

Avail_size RB→SEQ 6 Size available in output buffers (in 32bits increments)

17.1.1018.1.12 SP to PA/SCRB : Position return bus
Name Direction Bits Description
Position return SP→PARB 128 Position data or sprite size (per clock)
Parameter cache pointer SP→PARB 11 Pointer where the data will be in the parameter cache for

each vertex

For point sprites and position exports the size and position are interleaved on a 16 x 16 basis. We export 161
positions then 16 1 point sprite sizes. The storage used is of 64x128 bits for position and 64x32 bits for sprite size, it
is taken from the output buffer. Additionnally,if needed the edge flags are packed into the bits of the sprite sizes.The
registers are taken until the next ALU clause where they are going to be available again. Thus the sequencer has to
make sure that we finished exporting data before allowing the program in the next ALU clause.

17.1.1118.1.13 Shader Engine to TextureFetch Unit Bus (Fast Bus)
Four quad’s worth of addresses is transferred to TextureFetch Unit every clock. These are sourced from a different pixel
within each of the sub-engines repeating every 4 clocks. The register file index to read must precede the data by 2
clocks. The Read address associated with Quad 0 must be sent 1 clock after the Instruction Start signal is sent, so that
data is read 3 clocks after the Instruction Start.

Four Quad’s worth of TextureFetch Data may be written to the Register file every clock. These are directed to a
different pixel of the sub-engines repeating every 4 clocks. The register file index to write must accompany the data.
Data and Index associated with the Quad 0 must be sent 3 clocks after the Instruction Start signal is sent.

Name Direction Bits Description
Tex_Read_Register_Index SEQ->SP 7 Index into Register files for reading TextureFetch Address
Tex_RegFile_Read_Data SP->TEX 2048 16 TextureFetch Addresses read from the Register file
Tex_Write_Register_Index SEQ->TEX 7 Index into Register file for write of returned TextureFetch

Data

17.1.1218.1.14 Sequencer to TextureFetch Unit bus (Slow Bus)

Once every four clock, the texturefetch unit sends to the sequencer on wich clause it is now working and if the data in
the registers is ready or not. This way the sequencer can update the texturefetch counters for the reservation station
fifos. The sequencer also provides the intruction and constants for the texture fetch to execute and the address in the
register file where to write the texturefetch return data.

Name Direction Bits Description
Tex_Ready TEX→ SEQ 1 Data ready
Tex_Clause_Num TEX→ SEQ 3 Clause number
Tex_cst SEQ→TEX 10 TextureFetch state address 10 bits sent over 4 clocks
Tex_Inst SEQ→TEX 12 Texture fFetch instruction address 12 bits sent over 4

clocks
EO_CLAUSE SEQ→TEX 1 Last instruction of the clause
PHASE SEQ→TEX 1 Write phase signal

18.19. Internal interfaces

19.20. Examples of program executions

19.1.120.1.1 Sequencer Control of a Vector of Vertices

1. PA sends a vector of 64 vertices (actually vertex indices – 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO
 state pointer as well as tag into position cache is sent along with vertices
 space was allocated in the position cache for transformed position before the vector was sent

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 158 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015

R400 Sequencer Specification PAGE

24 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:51
PM10/05/01 10:28 AM

 also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex
shader program (using the MH?)

 The vertex program is assumed to be loaded when we receive the vertex vector.
 the SEQ then accesses the IS base for this shader using the local state pointer (provided to all

sequencers by the RBBM when the CP is done loading the program)

2. SEQ arbitrates between the Pixel FIFO and the Vertex FIFO – basically the Vertex FIFO always has priority
 at this point the vector is removed from the Vertex FIFO
 the arbitrer is not going to select a vector to be transformed if the parameter cache is full unless the pipe as

nothing else to do (ie no pixels are in the pixel fifo).

3. SEQ allocates space in the SP register file for index data plus GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
 SEQ will not send vertex data until space in the register file has been allocated

4. SEQ sends the vector to the SP register file over the RE_SP interface (which has a bandwidth of 2048 bits/cycle)
 the 64 vertex indices are sent to the 64 register files over 4 cycles

 RF0 of SU0, SU1, SU2, and SU3 is written the first cycle
 RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
 RF2 of SU0, SU1, SU2, and SU3 is written the third cycle
 RF3 of SU0, SU1, SU2, and SU3 is written the fourth cycle

 the index is written to the least significant 32 bits (floating point format?) (what about compound indices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, z)

5. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
texturefetch state machine 0, or TSM0 FIFO)
 the control packet contains the state pointer, the tag to the position cache and a register file base pointer.

6. TSM0 accepts the control packet and fetches the instructions for texturefetch clause 0 from the global instruction
store
 TSM0 was first selected by the TSM arbiter before it could start

7. all instructions of texturefetch clause 0 are issued by TSM0

8. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for requests made to the TextureFetch Unit to complete; it passes the register file write

index for the texturefetch data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data to the register files, it increments a counter that is associated with ASM0

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

9. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

10. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of texturefetch state machine 1, or TSM1 FIFO)

11. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 position can be exported in ALU clause 3 (or 4?); the data (and the tag) is sent over a position bus (which is

shared with all four shader pipes) back to the PA’s position cache
 A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
 there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA
 the ASM arbiter will prevent a packet from starting an exporting clause if the position export FIFO is full

 parameter data is exported in clause 7 (as well as position data if it was not exported earlier)
 parameter data is sent to the Parameter Cache over a dedicated bus
 the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space when there is no

longer a need for the parameters (it is told by the PA when using a token).
 the ASM arbiter will prevent a packet from starting on ASM7 if the parameter cache (or the position buffer

if position is being exported) is full

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 159 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015 October

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:51
PM10/05/01 10:28 AM

12. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

19.1.220.1.2 Sequencer Control of a Vector of Pixels

1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

 At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

2. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
 the state pointer and the LOD correction bits are also placed in the Pixel FIF0
 the Pixel FIFO is wide enough to source four quad’s worth of barycentrics per cycle

3. SEQ arbitrates between Pixel FIFO and Vertex FIFO – when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

4. SEQ allocates space in the SP register file for all the GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
 SEQ will not allow interpolated data to be sent to the shader until space in the register file has been allocated

5. SEQ controls the transfer of interpolated data to the SP register file over the RE_SP interface (which has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagrams for details.

6. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
texturefetch state machine 0, or TSM0 FIFO)
 note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
 the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
 all other informations (such as quad address for example) travels in a separate FIFO

7. TSM0 accepts the control packet and fetches the instructions for texturefetch clause 0 from the global instruction
store
 TSM0 was first selected by the TSM arbiter before it could start

8. all instructions of texturefetch clause 0 are issued by TSM0

9. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for texturefetch requests made to the TextureFetch Unit to complete; it passes the

register file write index for the texturefetch data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data for a particular clause to the register files, it increments a counter that is

associated with the ASM0 FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

10. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

11. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of texturefetch state machine 1, or TSM1 FIFO)

12. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 pixel data is exported in the last ALU clause (clause 7)

 it is sent to an output FIFO where it will be picked up by the render backend
 the ASM arbiter will prevent a packet from starting on ASM7 if the output FIFO is full

13. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

19.1.320.1.3 Notes

14. the state machines and arbitrers will operate ahead of time so that they will be able to immediately start the real
threads or stall.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 160 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201517
October 20015

R400 Sequencer Specification PAGE

26 of 26

Exhibit 2014.docR400_Sequencer.doc �� 37948 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:51
PM10/05/01 10:28 AM

15. the register file base pointer for a vector needs to travel with the vector through the reservation stations, but the
instruction store base pointer does not – this is because the RF pointer is different for all threads, but the IS
pointer is only different for each state and thus can be accessed via the state pointer

16. Waterfalling, parameter buffer allocation, loops and branches and parameter cache de-allocation still needs to
be specked out.

20.21. Open issues
There is currently an issue with constants. If the constants are not the same for the whole vector of vertices, we don’t
have the bandwith from the texturefetch store to feed the ALUs. Two solutions exists for this problem:

1) Let the compiler handle the case and put those instructions in a texturefetch clause so we can use the
bandwith there to operate. This requires a significant amount of temporary storage in the register store.

2) Waterfall down the pipe allowing only at a given time the vertices having the same constants to operate in
parrallel. This might in the worst case slow us down by a factor of 16.

Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

Size of the fifo containing the information of a vector of pixels/vertices. And size of the fifos before the reservation
stations.

Loops and branches.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 161 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/18/01 09:57 AM10/05/01 10:28 AM

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SEQ

Version 0.98

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\arch\doc\gfx\RE\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2015
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 162 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

R400 Sequencer Specification PAGE

2 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/18/01 09:57 AM10/05/01 10:28 AM

Table Of Contents

1. OVERVIEW ... 43
1.1 Top Level Block Diagram 65
1.2 Data Flow graph .. 87
1.3 Control Graph ... 98
2. INTERPOLATED DATA BUS 98
3. INSTRUCTION STORE 1211
4. SEQUENCER INSTRUCTIONS 1211
5. CONSTANT STORE................................... 1211
6. LOOPING AND BRANCHES 1211
6.1 The controlling state.................................... 1211
6.2 The Control Flow Program 1312
6.3 Data dependant predicate instructions 1614
6.4 Register file indexing................................... 1714
7. REGISTER FILE ALLOCATION 1715
8. FETCH ARBITRATION 181616
9. ALU ARBITRATION 181616
10. HANDLING STALLS 191716
11. CONTENT OF THE RESERVATION STATION
FIFOS 191716
12. THE OUTPUT FILE 191716
13. IJ FORMAT ... 191716
14. THE PARAMETER CACHE 201817
15. VERTEX POSITION EXPORTING 201817
16. REAL TIME COMMANDS 201817
17. REGISTERS ... 211818
18. INTERFACES ... 211918
18.1 External Interfaces 211918

18.1.1 PA/SC to RE : IJ bus 211918
18.1.2 PA/SC to SEQ : IJ Control bus . 221918

18.1.3 VGT to RE : Vertex Bus222019
18.1.4 VGT to SEQ : Vertex Control Bus
 222019
18.1.5 CP to SEQ : Constant store load
 222019
18.1.6 CP to SEQ : Fetch State store load
 222019
18.1.7 CP to SEQ : Control State store load
 232020
18.1.8 MH to SEQ: Instruction store Load
 232020
18.1.9 SP to RB : Pixel read from RBs 232020
18.1.10 SEQ to RB : Control bus232020
18.1.11 RB to SEQ : Output file control .232120
18.1.12 SP to RB : Position return bus ..232120
18.1.13 Shader Engine to Fetch Unit Bus (Fast
Bus) 242121
18.1.14 Sequencer to Fetch Unit bus (Slow
Bus) 242121

19. INTERNAL INTERFACES242221
20. EXAMPLES OF PROGRAM EXECUTIONS
 242221

20.1.1 Sequencer Control of a Vector of
Vertices 242221
20.1.2 Sequencer Control of a Vector of
Pixels 262322
20.1.3 Notes ..262423

21. OPEN ISSUES ..272423

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

 Changed the control flow method to be more
flexible. Also updated the external interfaces.

Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

 Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 163 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/18/01 09:57 AM10/05/01 10:28 AM

the conditional_execute_or_jump. Added debug
registers.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 164 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

R400 Sequencer Specification PAGE

4 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/18/01 09:57 AM10/05/01 10:28 AM

1. Overview
The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the raster engine.

The vertex or pixel program specifies how many GPR’s it needs to execute. The sequencer will not start the next
vector until the needed space is available.

The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause until the fetch fetches initiated by the previous
fetch clause have completed. There are two separate sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the raster engine also contains the shader instruction cache and constant store. There
are only one constant store for the whole chip and one instruction store. These will be shared among the four shader
pipes. The four shader pipes also execute the same instuction thus there is only one sequencer for the whole chip.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 165 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:52 PM10/18/01 09:57 AM10/05/01 10:28 AM

SEQ

RE

SPSPSPCSTOREFETCH STATE

FETCH
ENGINE

FETCH INST

ALU INST
IJ CONTROL

IJ
CONTROL

CST
ADDR

ALU
INST

 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/QUAD
ADDRESSES

SP

ALU INST

TU INST
ADDR

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

TU INST

ALU INST

INTER INTER INTER INTER

IJ CROSSBAR

2 QUADS IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC READ
 POINTERS

PARAM
DATA

R/W ADDR

Vertex indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

IJ CONTROL

4 - write mask
2- RB ID(*4)

6- LOD correction (*4)
2- Fvtx (provoking vertex)

7- PPtro
7- PPtr1
7- PPtr2

1- EOVect
1- Dealloc (pcache)

8?- State ptr
1- Sprite

4- Valid (*4)
1- Null

1- EO prim
1- F/B face

1 - Stippled line

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

INST
LOAD

MH

CONSTANT
LOAD

CPSTATE LOAD

TX ADDR

PC Write
Address

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 166 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

R400 Sequencer Specification PAGE

6 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/18/01 09:57 AM10/05/01 10:28 AM

1.1 Top Level Block Diagram

vertex/pixel vector arbitrator

Possible delay for available GPR’s

FIFO
Texture clause 0
reservation station

Texture clause 1
reservation station

FIFO
ALU clause 0
reservation station

FIFO

Texture clause 2
reservation station

Texture clause 3
reservation station

FIFO
ALU clause 1
reservation station

FIFO

FIFO
ALU clause 2
reservation station

FIFO

FIFO
ALU clause 3
reservation station

FIFO
Texture clause 4
reservation station

Texture clause 5
reservation station

FIFO
ALU clause 4
reservation station

FIFO

Texture clause 6
reservation station

Texture clause 7
reservation station

FIFO
ALU clause 5
reservation station

FIFO

FIFO
ALU clause 6
reservation station

FIFO

FIFO
ALU clause 7
reservation station

texture arbitrator

texture arbitrator

There are two sets of the above figure, one for vertices and one for pixels.

The rasterizer always checks the vertices FIFO first and if allowed by the sequencer sends the data to the shader. If
the vertex FIFO is empty then, the rasterizer takes the first entry of the pixel FIFO (a vector of 64 pixels) and sends it
to the interpolators. Then the sequencer takes control of the packet. The packet consists of 21 bits of state, 6-7 bits
for the base address of the Shader program and some information on the coverage to determine fetch LOD plus
other various small state bits. All other information (2x2 adresses) is put in a FIFO (one for the pixels and one for the
vertices) and retrieved when the packet finishes its last clause.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 167 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/18/01 09:57 AM10/05/01 10:28 AM

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the registers to store the interpolated values and temporaries. Following this, the input state machine stacks the
packet in the first FIFO.

On receipt of a command, the level 0 fetch machine issues a texure request and corresponding register address for
the fetch address (ta). A small command (tcmd) is passed to the fetch system identifying the current level number (0)
as well as the register write address for the fetch return data. One fetch request is sent every 4 clocks causing the
texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the requests are sent the packet is put in FIFO 1.

Upon recept of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level 0 fetch machine and sends the clause number (0) to the level 0 fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU 1 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO counter and then issues a
complete set of level 0 shader instructions. For each instruction, the state machine generates 3 source addresses,
one destination address (3 cycles later) and an instruction. Once the last instruction as been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbitrers). One arbitrer will arbitrate
over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the two arbitrers is that they are not allowed to pick the same
clause number as they other one is currently working on if the packet os of the same type.

If the packet is a vertex packet, upon reaching ALU clause 34, it can export the position if the position is ready. So the
arbitrer must prevent ALU clause 34 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, the location where the vertex data is to be put is also sent (parameter data pointers).

A special case is for HOS surfaces wich can export 12 parameters per clause to the output buffer. If the output buffer
is full or doesn’t have enough space the sequencer will prevent such a vertex group to enter an exporting clause.

All other level process in the same way until the packet finally reaches the last ALU machine (8). On completion of the
level 8 ALU clause, a valid bit is sent to the Render Backend which picks up the color data. This requires that the last
instruction writes to the output register – a condition that is almost always true. If the packet was a vertex packet,
instead of sending the valid bit to the RB, it is sent to the PA so it can know that the data present in the parameter
store is valid.

Only two ALU state machine may have access to the register file address bus or the instruction decode bus at one
time. Similarly, only one fetch state machine may have access to the register file address bus at one time. Arbitration
is performed by three arbitrer blocks (two for the ALU state machines and one for the fetch state machines). The
arbitrers always favor the higher number state machines, preventing a bunch of half finished jobs from clogging up
the register files.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 168 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

R400 Sequencer Specification PAGE

8 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/18/01 09:57 AM10/05/01 10:28 AM

1.2 Data Flow graph

MAC

MAC

MAC

MAC

Register File

co
ns

ta
nt

s
fr

om
 R

E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
nt

s
fr

om
 R

E

S
ca

la
r

U
n

it

texture request

texture request

texture request

texture request

te
xt

ur
e

ad
dr

es
s

te xtu re d
ata

p rim
i tive da

ta f rom
 R

E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 169 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/18/01 09:57 AM10/05/01 10:28 AM

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

SEQ

FETCH SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

OF

WrAddr

RdAddr
PA/RB

IS CST

CST IDX

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 170 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

R400 Sequencer Specification PAGE

10 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/18/01 09:57 AM10/05/01 10:28 AM

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x64 bits)

IJs buffer (ping-pong buffer)
(27 bits * 2 (IJ) + 8 bits * 6 (delta IJs)+4 exp

bits*6)* 16 (quads) * 2 (double-buffered)
4032 bits

32 x 126

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

64

27*2+8*6+6*4 for IJs

To RB

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 171 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:52 PM10/18/01 09:57 AM10/05/01 10:28 AM

SP0

SP1

SP2

SP3

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

T19

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P0 P1

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 172 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

R400 Sequencer Specification PAGE

12 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/18/01 09:57 AM10/05/01 10:28 AM

Above is an example of a tile we might receive. The IJ information is packed in the IJ buffer 2 quads at a time. The
sequencer allows at any given time as many as four quads to interpolate a parameter. They all have to come from the
same primitive. Then the sequencer controls the write mask to the register to write the valid data in.

3. Instruction Store
There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.
There is also going to be a control instruction store of size 256(512?)x32.

{ISSUE : The instruction store is loaded by the sequencer using the memory hub ?}.

 The read bandwith from this store is 96*2 bits/ 4 clocks (48 bits/clock). It is likely to be a 1 port memory; we use 1
clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1 clock to load 2 control flow instructions and
1 clock to write instructions.

4. Sequencer Instructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS).

5. Constant Store
The constant store is managed by the CP. The sequencer is aware of where the constants are using a remaping
table also managed by the CP. A likely size for the constant store is 512x128 bits. The constant store is also planned
to be shared. The read BW from the constant store is 128 bits/clock and the write bandwith is 32/4 bits/clock.

In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed convertion, there is a latency of 4 clocks (1 instruction)
between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program. The control program has 4(5) instructions:

6.1 The controlling state.
As per Dx9 the following state is available for control flow:

Boolean[15:0]
loop_count[7:0][7:0]

In addition:
loop_start [7:0] [7:0]
loop_step [7:0] [7:0]
 Exist to give more control to the controlling program.

We will extend that in the R400 to:

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 173 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/18/01 09:57 AM10/05/01 10:28 AM

Boolean[255:0]
Loop_count[7:0][15:0]
Loop_Start[7:0] [15:0] times 2 (one for constant,registert)
Loop_Step[7:0] [15:0] times 2 (one for constant,register)
Loop_End[7:0] [15:0]

{ISSUE: How is the controlling state loaded and how many contexts do we have?}

We have a stack of 4 elements for calling subroutines and 4 loop counters to allow for nested loops.

We also keep 8 predicate vectors and 8 AND/OR sets of 3 bits. These bits can be 0: all 0s, 1: all ones and 11: mixed.

6.2 The Control Flow Program
The R300 uses a match method for control flow: The shader is executed, and at every instruction its address is
compared with addresses (or address?) in a control table. The “event” in the control table can redirect operations in
the program.

The Method chosen for the R400 is a “control program”. The control program has ten basic instructions:

Execute
Conditional_execute
Conditional_Execute_Predicates
Conditional_execute_or_Jump
Conditional_jump
Call
Return
Loop_start
Loop_end
End_of_clause

Execute, causes the specified number of instructions in instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified number of instructions in instruction
store to be executed.
Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified number of instructions.
Call jumps to an address and pushes the IP counter on the stack. On the return instruction, the IP is poped from the
stack.
Conditional_execute_or_Jump executes a block of instructions or jumps to an address is the condition is not met.
Conditional_execute_Predicates executes a block of instructions if all bits in the predicate vectors meet the condition.
End_of_clause marks the end of a clause.
Conditional_jumps jumps to an address if the condition is met.
NOP is a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSES. Thus the compiler must insert NOPs where
needed to align the jumps on even CFP addresses.

Also if the jump is logically bigger than 4096 we break the program and set the debug registers.

We have to fit instructions into 48 bits in order to be able to put two control flow instruction per line in the instruction
store.

Execute
47 46… 42 41 … 24 23 … 12 11 … 0

Addressing 00001 RESERVED Instruction _count Exec Address

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 174 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

R400 Sequencer Specification PAGE

14 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/18/01 09:57 AM10/05/01 10:28 AM

Execute up to 4k instructions at the specified address in the instruction memory.

Conditionnal_Execute_or_JumpNOP
47 46 … 42 41 … 34

33
32 … 21
20 … 12

11 … 041 … 0
Addressing 00010 Booleans

Condition
Jump address

Instruction_count
Exec AddressRESERVED

If the specified boolean (8 bits can address 256 booleans) meets the specified condition then execute the specified
instructions (up to 512 instructions) or if the condition is not met jump to the jump address in the control flow program.
This MUST be a forward jump.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 175 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/18/01 09:57 AM10/05/01 10:28 AM

Conditionnal_Execute

47 46 … 42 41 … 34 33 32 … 241 203 … 12 11 … 0
Addressing 00011 Boolean address Condition RESERVED Instruction_count Exec Address

If the specified boolean (8 bits can address 256 booleans) meets the specified condition then execute the specified
instructions (up to 4k512 instructions)

Conditionnal_Execute_Predicates
47 46 … 42 41 … 38 37 36 … 241 203 … 12 11 … 0

Addressing 00100 Predicate vector Condition RESERVED Instruction_count Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions.

Loop_Start
47 46 … 42 41 … 16 15 … 4 3 … 0

Addressing

00101 RESERVED Jump address Loop ID

Loop Start. Compares the loop count with the end value. If loop condition not met jump to the address. Forward jump
only. Also computes the index value.

Loop_End
47 46 … 42 41 … 16 15 … 4 3 … 0

Addressing

00111 RESERVED Start address Loop ID

Loop end. Increments the counter by one and jumps BACK only to the start of the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Call
47 46 … 42 41…12 11 … 0

Addressing

01000 RESERVED Address

Jumps to the specified address and pushes the IP counter on the stack.

Return
47 46 … 42 41 … 0

Addressing

01001 RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump
47 46 … 42 41 … 34 33 32 … 12 11 … 0

Addressing

01010 Boolean address Condition RESERVED Address

If condition met, jumps to the address. FORWARD jump only allowed.

End_of_Clause
47 46 … 42 41 … 0

Addressing

01011 RESERVED

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 176 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

R400 Sequencer Specification PAGE

16 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/18/01 09:57 AM10/05/01 10:28 AM

Marks the end of a clause.

To prevent infinite loops, we will keep 9 bits loop counters instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start is going to break the loop and set de debug
registers. The sequencer will keep a two loop indexes values of 17 bits:
 IC index for constant indexing (9 bits)
 IR index for register file indexing (7 bits)
. This will be updated everytime we loop and can only be used to index the constant store and the register file. The
way to compute this value is:

 Index = Loop_counter*Loop_iterator + Loop_init.

The IC for constant is going to return 0 if it is out of the constant range. The IR index is going to break the program if
the index exeeds the number of requested registers.

The basic model is as follows:

The render state defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The control program is the only program aware of the clause
boundaries.

6.3 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE0_# – SETE0
 PRED_SETE1_# – SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify wich predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For exemple, the instruction :

 P0_ADD_# R0,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 177 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/18/01 09:57 AM10/05/01 10:28 AM

6.4 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls :

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

7. HOS surfaces
HOS surfaces are able to export from any clause but to memory ONLY. If they want to export to the parameter cache
they have to do it in the last clause (7). They can also export position in clause 3. The buffer they want to export into
must be specified in the “exports” field of the state registers.

7.8. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to VERTEX_REG_SIZE for vertices and 256-
VERTEX_REG_SIZE for pixels.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 178 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

R400 Sequencer Specification PAGE

18 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/18/01 09:57 AM10/05/01 10:28 AM

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again.

8.9. Fetch Arbitration
The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

9.10. ALU Arbitration
ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbitrers, one for the even clocks and one for the odd clocks. For
exemple, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…
 Proceeding this way hides the latency of 8 clocks of the ALUs.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 179 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/18/01 09:57 AM10/05/01 10:28 AM

10.11. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic to select the last clause (this way nothing
can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position buffer is
full (POS_FULL) then the sequencer also prevents a thread to enter the exporting clause (4?). The sequencer will set
the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbitrer will be able read
this signal and act accordingly by not preventing exporting clauses to proceed.

11.12. Content of the reservation station FIFOs
3 21 bits of Render State 6-77 bits for the base address of the instruction GPRsstore, some bits for LOD correction
and coverage mask information in order to fetch fetch for only valid pixels, quad address and 1 bit to specify if the
vector is of pixels or vertices. Every other information (such as the coverage mask, quad address, etc.) is put in a
FIFO and is retrieved when the quad exits the shader pipe to enter in the output file buffer. Since pixels and vertices
are kept in order in the shader pipe, we only need two fifos (one for vertices and one for pixels) deep enough to cover
the shader pipe latency. This size will be determined later when we will know the size of the small fifos between the
reservation stations.

For texture clauses, 3 bits * 4 are going to be kept. These are the AND/OR of the predicate vectors. 0 for all 0s, 1 for
all ones and MIXED.

12.13. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. For this reason
only ONE concurrent program can be of clause 8 (exporting clause) the other program MUST not. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

13.14. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel’s parameters are
always interpolated at full 19x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming P0 is the interpolated parameter at Pixel 0 having the barycentric coordinates I(0), J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at V0 (interpolated with I), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 180 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

R400 Sequencer Specification PAGE

20 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/18/01 09:57 AM10/05/01 10:28 AM

)(*03)(*0303

)(*02)(*0202

)(*01)(*0101

)(*)0()(*)0(0

)0()3(03

)0()3(03

)0()2(02

)0()2(02

)0()1(01

)0()1(01

CBJCAIPP

CBJCAIPP

CBJCAIPP

CBJCAICP

JJJ

III

JJJ

III

JJJ

III

P0 is computed at 19x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF P0’s IJ : Mantissa 19 Exp 4 for I + Sign
 Mantissa 19 Exp 4 for J + Sign

FORMAT of Deltas (x3): Mantissa 8 Exp 4 for I + Sign
 Mantissa 8 Exp 4 for J + Sign

Total number of bits : 19*2 + 8*6 + 4*8 + 4*2 = 126

14.15. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories.

15.16. Vertex position exporting
On clause 4 (or 5) the vertex shader can export to the PA both the vertex position and the point sprite. It can also do
so at clause 8 if not done at clause 4. Along with the position is exported a pointer to the parameter cache where the
data will be once the vertex shader exports. The storage needed to perform the position export is at least 64x128
memories for the position and 64x32 memories for the sprite size. It is going to be taken in the pixel output fifo.

16.17. Real time commands
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem I see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16.

P0

P2

P1

P3

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 181 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/18/01 09:57 AM10/05/01 10:28 AM

17.18. Registers
DYNAMIC_REG Dynamic allocation (pixel/vertex) of the register file on or off.
VERTEX_REG_SIZE What portion of the register file is reserved for vertices (static allocation only)
PIXEL_MIN_SIZE Minimal size of the register file's pixel portion (dynamic only)
VERTEX_MIN_SIZE Minimal size of the register file's vertex portion (dynamic only)
Vshader_fetch[11:0][7:0] eight 12 bit pointers to the location where each clauses control program is located
Vshader_alu[11:0][7:0] eight 12 bit pointers to the location where each clauses control program is located
Pshader_fetch[11:0][7:0] eight 12 bit pointers to the location where each clauses control program is located
Pshader_alu[11:0][7:0] eight 12 bit pointers to the location where each clauses control program is located
PSHADER base pointer for the pixel shader
VSHADER base pointer for the vertex shader
VWRAP wrap point for the vertex shader instruction store
PWRAP wrap point for the pixel shader instruction store
REG_ALLOC_PIX number of registers to allocate for pixel shader programs
REG_ALLOC_VERT number of registers to allocate for vertex shader programs
PARAM_MASK[0…16] parameter mask to specify how parameters maps in the pixel shader
FLAT_GOUR[0…16] wich parameters are to be gouraud shaded
GEN_TEX[0….16] for wich parameters do we need to generate tex coords.
CYL_WRAP[0…64] for wich parameters (and channels (xyzw)) do we do the cyl wrapping.
P_EXPORT[8] number of exports for pixel shader
V_EXPORT[8] number of exports for vertex shader for each clause. All numbers relate to the output

buffer exports but for V_EXPORT[7] than can relate to the PC if Exports[7] is set to
00000.(also the number of interpolated parameters for pixel shaders)

V_EXPORT_LOC Vertex shader exporting to RB or the PCACHE
ARBITRATION_policy policy of the arbitration between vetexes and pixels
Exports[8][6] Wich clause is exporting to the output buffer and what is it exporting.
 000000 : Not exporting (or exporting only to the PC)
 000001 : Exporting position (1)
 000010 : Exporting position (2)
 (1)00100 : Exporting RG
 (1)01000 : Exporting BA
 (1)10000 : Exporting Z
 If MSB set pixel shader exporting linear to memory not to Frame Buffer.
CST_SIZE_P Size of the constant store for pixels
CST_SIZE_V Size of the constant store for vertexes

19. DEBUG registers
PROB_ADDR instruction address where the first problem occurred
PROB_COUNT number of problems encountered during the execution of the program

18.20. Interfaces

18.120.1 External Interfaces

18.1.120.1.1 PA/SC to RE : IJ bus
This is a bus that sends the IJ information to the IJ fifos on the top of each shader pipe. At the same time the control
information goes to the sequencer

Name Direction Bits Description
IJs PA→RE 63 IJ information sent over 2 clocks
Mask PA→RE 1 Write Mask

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 182 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

R400 Sequencer Specification PAGE

22 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/18/01 09:57 AM10/05/01 10:28 AM

18.1.220.1.2 PA/SC to SEQ : IJ Control bus
This is the control information sent to the sequencer in order to control the IJ fifos and all other information needed to
execute a shader program on the sent pixels.

Name Direction Bits Description
Write Mask PA→SEQ(RE) 4 Quad Write mask left to right
RB_ID PA→SEQ(RE) 8 RB id for each quad sent 2 bits per quad
LOD_CORRECT PA→SEQ(RE) 24 LOD correction per quad (6 bits per quad)
FVTX PA→SEQ(RE) 2 Provoking vertex for flat shading
PPTR0 PA→SEQ(RE) 11 P Store pointer for vertex 0
PPRT1 PA→SEQ(RE) 11 P Store pointer for vertex 1
PPTR2 PA→SEQ(RE) 11 P Store pointer for vertex 2
E_OFF_VECTOR PA→SEQ(RE) 1 End of the vector
DEALLOC PA→SEQ(RE) 1 Deallocation token for the P Store
STATE PA→SEQ(RE) 21 State/constant pointer (6*3+3)
VALID PA→SEQ(RE) 16 Valid bits for all pixels
NULL PA→SEQ(RE) 1 Null Primitive (for PC deallocation purposes)
E_OFF_PRIM PA→SEQ(RE) 1 End Of the primitive
FBFACE PA→SEQ(RE) 1 Front face = 1, back face = 0
TYPE PA→SEQ(RE) 3 Stippled line and Real time command need to load tex

cords from alternate buffer
000 : Normal
001 : Stippled line
011 : Real Time
100 : Line AA
101 : Point AA
110 : Sprite

RTRn SEQ→PA 1 Stalls the PA in n clocks
RTS PA→SEQ(RE) 1 PA ready to send data
QuadX PA→SEQ(RE) 8 Quad X address 2 bits per quad
QuadY PA→SEQ(RE) 8 Quad Y address 2 bits per quad

18.1.320.1.3 VGT to RE : Vertex Bus
Name Direction Bits Description
Vertex indexes VGT→RE 128 Pointers of indexes or HOS surface information
EOF_vector VGT→RE 1 End of the vector
 Inputs_vert VGT→RE 1 0: Normal 128 bits per vert

1: double 256 bits per vert
STATE VGT→SEQ 21 Render State (6*3+3 for constants)

18.1.4VGT to SEQ : Vertex Control Bus
This information needs to be sent over 64 clocks.

18.1.520.1.4 CP to SEQ : Constant store load
Name Direction Bits Description
Constant Address CP→SEQ 8 Address of the block of 4 constants
Constant Data CP→SEQ 512 Data sent over 4 clocks
Remap Address CP→SEQ 10 Remaping address write address
Remap Data pointer CP→SEQ 8 Remaping pointer

18.1.620.1.5 CP to SEQ : Fetch State store load
Name Direction Bits Description
Constant Address CP→SEQ 8 Address of the block of 4 state constants

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 183 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/18/01 09:57 AM10/05/01 10:28 AM

Constant Data CP→SEQ 512 Data sent over 4 clocks
Remap Address CP→SEQ 10 Remaping address write address
Remap Data pointer CP→SEQ 8 Remaping pointer

18.1.720.1.6 CP to SEQ : Control State store load
Name Direction Bits Description
{ISSUE: How,Who and what is the size of this bus?}

18.1.820.1.7 MH to SEQ: Instruction store Load
Name Direction Bits Description
Instruction address MH→SEQ 12 Instruction address
Instruction MH→SEQ 96 Instruction X times
Control Instruction address MH→SEQ 9 Pointer to the control instruction store
Control Instruction MH→SEQ 32 Control Instruction X times

18.1.920.1.8 SP to RB : Pixel read from RBs
Name Direction Bits Description
Export_data SP→RB 64 a pair of 32 bits channel values
ExportID SP→RB 9 0cvvvvhqq: Vertex data vvvv 0-15 from first or second

clause (c=0 or 1), XY or ZW components (h=0 or 1), quad
0-3 in the shader (qq= 0-3)
1cbbkttqq: Pixel data for buffer bb (0-3) from first or
second clause (0-1) killed or not (k=1 or 0) quad 0-3 in the
shader and data is RG (tt=0), BA (tt=1) or Z (tt=2)

ExportMask SP→RB 2 Specifies whether to write low, high or both 32 bit words. If
export mask is 00 data is invalid

ExportLast SP→RB 1 Last export instruction of the clause

18.1.1020.1.9 SEQ to RB : Control bus
Name Direction Bits Description
Type SEQ→RB 1 0: Pixel

1: Vertex
Interleaving SEQ→RB 1 0: first interleaved clause

1: second interleaved clause
Export_size SEQ→RB 4 0 thru 16 parameters exported for vertexes (vvvv) OR

(bbzs) 1-4 color buffers (bb), two component (s=0) or 4
component colors (s=1) with z (z=1) or without z (z=0)

Valid SEQ→RB 1 Data valid

Only one exporting clause (7) can be selected at any given time.

18.1.1120.1.10 RB to SEQ : Output file control
Name Direction Bits Description
Buff_Full RB→SEQ 1 Set if full
Avail_size RB→SEQ 6 Size available in output buffers (in 32bits increments)

18.1.1220.1.11 SP to RB : Position return bus
Name Direction Bits Description
Position return SP→RB 128 Position data or sprite size (per clock)
Parameter cache pointer SP→RB 11 Pointer where the data will be in the parameter cache for

each vertex

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 184 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

R400 Sequencer Specification PAGE

24 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/18/01 09:57 AM10/05/01 10:28 AM

For point sprites and position exports the size and position are interleaved on a 16 x 16 basis. We export 1 position
then 1 point sprite sizes. The storage used is of 64x128 bits for position and 64x32 bits for sprite size, it is taken from
the output buffer. Additionnally,if needed the edge flags are packed into the bits of the sprite sizes.

18.1.1320.1.12 Shader Engine to Fetch Unit Bus (Fast Bus)
Four quad’s worth of addresses is transferred to Fetch Unit every clock. These are sourced from a different pixel within
each of the sub-engines repeating every 4 clocks. The register file index to read must precede the data by 2 clocks. The
Read address associated with Quad 0 must be sent 1 clock after the Instruction Start signal is sent, so that data is read
3 clocks after the Instruction Start.

Four Quad’s worth of Fetch Data may be written to the Register file every clock. These are directed to a different pixel
of the sub-engines repeating every 4 clocks. The register file index to write must accompany the data. Data and Index
associated with the Quad 0 must be sent 3 clocks after the Instruction Start signal is sent.

Name Direction Bits Description
Tex_Read_Register_Index SEQ->SP 7 Index into Register files for reading Fetch Address
Tex_RegFile_Read_Data SP->TEX 2048 16 Fetch Addresses read from the Register file
Tex_Write_Register_Index SEQ->TEX 7 Index into Register file for write of returned Fetch Data

18.1.1420.1.13 Sequencer to Fetch Unit bus (Slow Bus)

Once every four clock, the fetch unit sends to the sequencer on wich clause it is now working and if the data in the
registers is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos. The
sequencer also provides the intruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

Name Direction Bits Description
Tex_Ready TEX→ SEQ 1 Data ready
Tex_Clause_Num TEX→ SEQ 3 Clause number
Tex_cst SEQ→TEX 10 Fetch state address 10 bits sent over 4 clocks
Tex_Inst SEQ→TEX 12 Fetch instruction address 12 bits sent over 4 clocks
EO_CLAUSE SEQ→TEX 1 Last instruction of the clause
PHASE SEQ→TEX 1 Write phase signal

19.21. Internal interfaces

21.1.1 RE to SEQ : Vertex Control Bus
Name Direction Bits Description
STATE VGT→SEQ 21 Render State (6*3+3 for constants)
Vert counter VGT→SEQ 6 Which vertices are valid
 Inputs_vert VGT→SEQ 1 0: Normal 128 bits per vert

1: double 256 bits per vert
This information needs to be sent over 64 clocks.

20.22. Examples of program executions

20.1.122.1.1 Sequencer Control of a Vector of Vertices

1. PA sends a vector of 64 vertices (actually vertex indices – 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO
 state pointer as well as tag into position cache is sent along with vertices
 space was allocated in the position cache for transformed position before the vector was sent
 also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
 The vertex program is assumed to be loaded when we receive the vertex vector.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 185 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/18/01 09:57 AM10/05/01 10:28 AM

 the SEQ then accesses the IS base for this shader using the local state pointer (provided to all
sequencers by the RBBM when the CP is done loading the program)

2. SEQ arbitrates between the Pixel FIFO and the Vertex FIFO – basically the Vertex FIFO always has priority
 at this point the vector is removed from the Vertex FIFO
 the arbitrer is not going to select a vector to be transformed if the parameter cache is full unless the pipe as

nothing else to do (ie no pixels are in the pixel fifo).

3. SEQ allocates space in the SP register file for index data plus GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
 SEQ will not send vertex data until space in the register file has been allocated

4. SEQ sends the vector to the SP register file over the RE_SP interface (which has a bandwidth of 2048 bits/cycle)
 the 64 vertex indices are sent to the 64 register files over 4 cycles

 RF0 of SU0, SU1, SU2, and SU3 is written the first cycle
 RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
 RF2 of SU0, SU1, SU2, and SU3 is written the third cycle
 RF3 of SU0, SU1, SU2, and SU3 is written the fourth cycle

 the index is written to the least significant 32 bits (floating point format?) (what about compound indices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, z)

5. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSM0 FIFO)
 the control packet contains the state pointer, the tag to the position cache and a register file base pointer.

6. TSM0 accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

7. all instructions of fetch clause 0 are issued by TSM0

8. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for requests made to the Fetch Unit to complete; it passes the register file write index for

the fetch data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data to the register files, it increments a counter that is associated with ASM0

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

9. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

10. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

11. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 position can be exported in ALU clause 3 (or 4?); the data (and the tag) is sent over a position bus (which is

shared with all four shader pipes) back to the PA’s position cache
 A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
 there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA
 the ASM arbiter will prevent a packet from starting an exporting clause if the position export FIFO is full

 parameter data is exported in clause 7 (as well as position data if it was not exported earlier)
 parameter data is sent to the Parameter Cache over a dedicated bus
 the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space when there is no

longer a need for the parameters (it is told by the PA when using a token).
 the ASM arbiter will prevent a packet from starting on ASM7 if the parameter cache (or the position buffer

if position is being exported) is full

12. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 186 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

R400 Sequencer Specification PAGE

26 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/18/01 09:57 AM10/05/01 10:28 AM

20.1.222.1.2 Sequencer Control of a Vector of Pixels

1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

 At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

2. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
 the state pointer and the LOD correction bits are also placed in the Pixel FIF0
 the Pixel FIFO is wide enough to source four quad’s worth of barycentrics per cycle

3. SEQ arbitrates between Pixel FIFO and Vertex FIFO – when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

4. SEQ allocates space in the SP register file for all the GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
 SEQ will not allow interpolated data to be sent to the shader until space in the register file has been allocated

5. SEQ controls the transfer of interpolated data to the SP register file over the RE_SP interface (which has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagrams for details.

6. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSM0 FIFO)
 note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
 the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
 all other informations (such as quad address for example) travels in a separate FIFO

7. TSM0 accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

8. all instructions of fetch clause 0 are issued by TSM0

9. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for fetch requests made to the Fetch Unit to complete; it passes the register file write

index for the fetch data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data for a particular clause to the register files, it increments a counter that is

associated with the ASM0 FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

10. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

11. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

12. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 pixel data is exported in the last ALU clause (clause 7)

 it is sent to an output FIFO where it will be picked up by the render backend
 the ASM arbiter will prevent a packet from starting on ASM7 if the output FIFO is full

13. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

20.1.322.1.3 Notes

14. the state machines and arbitrers will operate ahead of time so that they will be able to immediately start the real
threads or stall.

15. the register file base pointer for a vector needs to travel with the vector through the reservation stations, but the
instruction store base pointer does not – this is because the RF pointer is different for all threads, but the IS
pointer is only different for each state and thus can be accessed via the state pointer

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 187 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
October 200117

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 27

Exhibit 2015.docR400_Sequencer.doc �� 39737 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/18/01 09:57 AM10/05/01 10:28 AM

16. Waterfalling, parameter buffer allocation, loops and branches and parameter cache de-allocation still needs to
be specked out.

21.23. Open issues
There is currently an issue with constants. If the constants are not the same for the whole vector of vertices, we don’t
have the bandwith from the fetch store to feed the ALUs. Two solutions exists for this problem:

1) Let the compiler handle the case and put those instructions in a fetch clause so we can use the bandwith
there to operate. This requires a significant amount of temporary storage in the register store.

2) Waterfall down the pipe allowing only at a given time the vertices having the same constants to operate in
parrallel. This might in the worst case slow us down by a factor of 16.

Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

Size of the fifo containing the information of a vector of pixels/vertices. And size of the fifos before the reservation
stations.

Loops and branches.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 188 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SEQ

Version 0.91.0

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\arch\doc\gfx\RE\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2016
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 189 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

R400 Sequencer Specification PAGE

2 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

Table Of Contents

1. OVERVIEW ... 4
1.1 Top Level Block Diagram 6
1.2 Data Flow graph .. 8
1.3 Control Graph ... 9
2. INTERPOLATED DATA BUS 9
3. INSTRUCTION STORE 12
4. SEQUENCER INSTRUCTIONS 12
5. CONSTANT STORE....................................... 12
6. LOOPING AND BRANCHES 12
6.1 The controlling state.. 12
6.2 The Control Flow Program 13
6.3 Data dependant predicate instructions 16
6.4 Register file indexing................................... 1716
7. HOS SURFACES ... 17
8. REGISTER FILE ALLOCATION 17
9. FETCH ARBITRATION 18
10. ALU ARBITRATION 18
11. HANDLING STALLS 19
12. CONTENT OF THE RESERVATION STATION
FIFOS 19
13. THE OUTPUT FILE .. 19
14. IJ FORMAT ... 19
15. THE PARAMETER CACHE 20
16. VERTEX POSITION EXPORTING 20
17. REAL TIME COMMANDS 20
18. REGISTERS ... 2120
18.1 Control ... 2120
18.2 Context .. 21
19. DEBUG REGISTERS 2221
20. INTERFACES ... 2221
20.1 External Interfaces 2221

20.1.1 PA/SC to RE : IJ bus 2221
20.1.2 PA/SC to SEQ : IJ Control bus 2221
20.1.3 VGT to RE : Vertex Bus 2322
20.1.4 CP to SEQ : Constant store load . 2322
20.1.5 CP to SEQ : Fetch State store load
 2322
20.1.6 CP to SEQ : Control State store load
 2322
20.1.7 MH to SEQ: Instruction store Load
 2322
20.1.8 SP to RB : Pixel read from RBs 23
20.1.9 SEQ to RB : Control bus 2423
20.1.10 RB to SEQ : Output file control 2423
20.1.11 SP to RB : Position return bus...... 2523
20.1.12 Shader Engine to Fetch Unit Bus (Fast
Bus) 2524
20.1.13 Sequencer to Fetch Unit bus (Slow
Bus) 2524

21. INTERNAL INTERFACES 2524
21.1.1 RE to SEQ : Vertex Control Bus ... 2524

22. EXAMPLES OF PROGRAM EXECUTIONS
 2624

22.1.1 Sequencer Control of a Vector of
Vertices 2624
22.1.2 Sequencer Control of a Vector of
Pixels 2725
22.1.3 Notes .. 2826

23. OPEN ISSUES .. 2826
1. OVERVIEW ... 3
1.1 Top Level Block Diagram 5
1.2 Data Flow graph .. 7
1.3 Control Graph ... 8
2. INTERPOLATED DATA BUS 8
3. INSTRUCTION STORE 11
4. SEQUENCER INSTRUCTIONS 11
5. CONSTANT STORE 11
6. LOOPING AND BRANCHES 11
6.1 The controlling state. 11
6.2 The Control Flow Program 12
6.3 Data dependant predicate instructions 14
6.4 Register file indexing 14
7. REGISTER FILE ALLOCATION 15
8. FETCH ARBITRATION 16
9. ALU ARBITRATION 16
10. HANDLING STALLS 17
11. CONTENT OF THE RESERVATION STATION
FIFOS 17
12. THE OUTPUT FILE .. 17
13. IJ FORMAT ... 17
14. THE PARAMETER CACHE 18
15. VERTEX POSITION EXPORTING 18
16. REAL TIME COMMANDS 18
17. REGISTERS ... 18
18. INTERFACES ... 19
18.1 External Interfaces 19

18.1.1 PA/SC to RE : IJ bus 19
18.1.2 PA/SC to SEQ : IJ Control bus 19
18.1.3 VGT to RE : Vertex Bus 20
18.1.4 VGT to SEQ : Vertex Control Bus 20
18.1.5 CP to SEQ : Constant store load 20
18.1.6 CP to SEQ : Fetch State store load .. 20
18.1.7 CP to SEQ : Control State store load
 20
18.1.8 MH to SEQ: Instruction store Load .. 20
18.1.9 SP to RB : Pixel read from RBs 20
18.1.10 SEQ to RB : Control bus 20
18.1.11 RB to SEQ : Output file control 21
18.1.12 SP to RB : Position return bus 21
18.1.13 Shader Engine to Fetch Unit Bus (Fast
Bus) 21
18.1.14 Sequencer to Fetch Unit bus (Slow
Bus) 21

19. INTERNAL INTERFACES 22
20. EXAMPLES OF PROGRAM EXECUTIONS .. 22

20.1.1 Sequencer Control of a Vector of
Vertices 22

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 190 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

20.1.2 Sequencer Control of a Vector of
Pixels 23
20.1.3 Notes .. 24

21. OPEN ISSUES .. 24

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

 Changed the control flow method to be more
flexible. Also updated the external interfaces.

Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

 Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001

 Refined interfaces to RB. Added state registers.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 191 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

R400 Sequencer Specification PAGE

4 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

1. Overview
The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the raster engine.

The vertex or pixel program specifies how many GPR’s it needs to execute. The sequencer will not start the next
vector until the needed space is available.

The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause until the fetch fetches initiated by the previous
fetch clause have completed. There are two separate sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the raster engine also contains the shader instruction cache and constant store. There
are only one constant store for the whole chip and one instruction store. These will be shared among the four shader
pipes. The four shader pipes also execute the same instuction thus there is only one sequencer for the whole chip.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 192 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:52 PM10/19/01 01:40 PM10/18/01 09:57 AM

SEQ

RE

SPSPSPCSTOREFETCH STATE

FETCH
ENGINE

FETCH INST

ALU INST
IJ CONTROL

IJ
CONTROL

CST
ADDR

ALU
INST

 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/QUAD
ADDRESSES

SP

ALU INST

TU INST
ADDR

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

TU INST

ALU INST

INTER INTER INTER INTER

IJ CROSSBAR

2 QUADS IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC READ
 POINTERS

PARAM
DATA

R/W ADDR

Vertex indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

IJ CONTROL

4 - write mask
2- RB ID(*4)

6- LOD correction (*4)
2- Fvtx (provoking vertex)

7- PPtro
7- PPtr1
7- PPtr2

1- EOVect
1- Dealloc (pcache)

8?- State ptr
1- Sprite

4- Valid (*4)
1- Null

1- EO prim
1- F/B face

1 - Stippled line

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

INST
LOAD

MH

CONSTANT
LOAD

CPSTATE LOAD

TX ADDR

PC Write
Address

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 193 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

R400 Sequencer Specification PAGE

6 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

1.1 Top Level Block Diagram

vertex/pixel vector arbitrator

Possible delay for available GPR’s

FIFO
Texture clause 0
reservation station

Texture clause 1
reservation station

FIFO
ALU clause 0
reservation station

FIFO

Texture clause 2
reservation station

Texture clause 3
reservation station

FIFO
ALU clause 1
reservation station

FIFO

FIFO
ALU clause 2
reservation station

FIFO

FIFO
ALU clause 3
reservation station

FIFO
Texture clause 4
reservation station

Texture clause 5
reservation station

FIFO
ALU clause 4
reservation station

FIFO

Texture clause 6
reservation station

Texture clause 7
reservation station

FIFO
ALU clause 5
reservation station

FIFO

FIFO
ALU clause 6
reservation station

FIFO

FIFO
ALU clause 7
reservation station

texture arbitrator

texture arbitrator

There are two sets of the above figure, one for vertices and one for pixels.

The rasterizer always checks the vertices FIFO first and if allowed by the sequencer sends the data to the shader. If
the vertex FIFO is empty then, the rasterizer takes the first entry of the pixel FIFO (a vector of 64 pixels) and sends it
to the interpolators. Then the sequencer takes control of the packetDepending on the arbitration state, the sequencer
will either choose a vertex or a pixel packet. The control packet consists of 21 bits of state, 6-7 bits for the base
address of the Shader program and some information on the coverage to determine fetch LOD plus other various
small state bits.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 194 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the registers to store the interpolated values and temporaries. Following this, the input state machine stacks the
packet in the first FIFO.

On receipt of a command, the level 0 fetch machine issues a texure request and corresponding register address for
the fetch address (ta). A small command (tcmd) is passed to the fetch system identifying the current level number (0)
as well as the register write address for the fetch return data. One fetch request is sent every 4 clocks causing the
texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the requests are sent the packet is put in FIFO 1.

Upon recept of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level 0 fetch machine and sends the clause number (0) to the level 0 fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU 1 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO counter and then issues a
complete set of level 0 shader instructions. For each instruction, the state machine generates 3 source addresses,
one destination address (3 cycles later) and an instruction. Once the last instruction as been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbitrers). One arbitrer will arbitrate
over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the two arbitrers is that they are not allowed to pick the same
clause number as they other one is currently working on if the packet os is not of the same type (render
state).

If the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbitrer must prevent ALU clause 3 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, the location where the vertex data is to be put is also sent (parameter data pointers).

{ISSUE: How do we handle parameter cache pointers (computed, semi-computed or not computed)?}

A special case is for HOS surfaces wich can export 12 parameters per last 6 clauses to the output buffer. If the output
buffer is full or doesn’t have enough space the sequencer will prevent such a vertex group to enter an exporting
clause.

Regular pixel and vertex shaders can export 12 parameters to memory from the last clause only (7).

All other level process in the same way until the packet finally reaches the last ALU machine (87). On completion of
the level 8 7 ALU clause, a valid bit is sent to the Render Backend which picks up the color data. This requires that
the last instruction writes to the output register – a condition that is almost always true. If the packet was a vertex
packet, instead of sending the valid bit to the RB, it is sent to the PA so it can know that the data present in the
parameter store is valid.

Only two ALU state machine may have access to the register file address bus or the instruction decode bus at one
time. Similarly, only one fetch state machine may have access to the register file address bus at one time. Arbitration
is performed by three arbitrer blocks (two for the ALU state machines and one for the fetch state machines). The
arbitrers always favor the higher number state machines, preventing a bunch of half finished jobs from clogging up
the register files.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 195 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

R400 Sequencer Specification PAGE

8 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

1.2 Data Flow graph

MAC

MAC

MAC

MAC

Register File

co
ns

ta
nt

s
fr

om
 R

E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
nt

s
fr

om
 R

E

S
ca

la
r

U
n

it

texture request

texture request

texture request

texture request

te
xt

ur
e

ad
dr

es
s

te xtu re d
ata

p rim
i tive da

ta f rom
 R

E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 196 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

SEQ

FETCH SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

OF

WrAddr

RdAddr
PA/RB

IS CST

CST IDX

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 197 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

R400 Sequencer Specification PAGE

10 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x64 bits)

IJs buffer (ping-pong buffer)
(27 bits * 2 (IJ) + 8 bits * 6 (delta IJs)+4 exp

bits*6)* 16 (quads) * 2 (double-buffered)
4032 bits

32 x 126

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

64

27*2+8*6+6*4 for IJs

To RB

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 198 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:52 PM10/19/01 01:40 PM10/18/01 09:57 AM

SP0

SP1

SP2

SP3

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

T19

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P0 P1

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 199 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

R400 Sequencer Specification PAGE

12 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

Above is an example of a tile we might receive. The IJ information is packed in the IJ buffer 2 quads at a time. The
sequencer allows at any given time as many as four quads to interpolate a parameter. They all have to come from the
same primitive. Then the sequencer controls the write mask to the register to write the valid data in.

3. Instruction Store
There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.
There is also going to be a control instruction store of size 256(512?)x32.

{ISSUE : The instruction store is loaded by the sequencer using the memory hub ?}.

 The read bandwith from this store is 96*2 bits/ 4 clocks (48 bits/clock). It is likely to be a 1 port memory; we use 1
clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1 clock to load 2 control flow instructions and
1 clock to write instructions.

4. Sequencer Instructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS).

5. Constant Store
The constant store is managed by the CP. The sequencer is aware of where the constants are using a remaping
table also managed by the CP. A likely size for the constant store is 512x128 bits. The constant store is also planned
to be shared. The read BW from the constant store is 128 bits/clock and the write bandwith is 32/4 bits/clock.

In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed convertion, there is a latency of 4 clocks (1 instruction)
between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
As per Dx9 the following state is available for control flow:

Boolean[15:0]
loop_count[7:0][7:0]

In addition:
loop_start [7:0] [7:0]
loop_step [7:0] [7:0]
 Exist to give more control to the controlling program.

We will extend that in the R400 to:

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 200 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

Boolean[255:0]
Loop_count[7:0][15:0]
Loop_Start[7:0] [15:0] times 2 (one for constant,registert)
Loop_Step[7:0] [15:0] times 2 (one for constant,register)
Loop_End[7:0] [15:0]

{ISSUE: How is the controlling state loaded and how many contexts do we have?}

We have a stack of 4 elements for calling subroutines and 4 loop counters to allow for nested loops.

We also keep 8 predicate vectors and 8 AND/OR sets of 3 bits. These bits can be 0: all 0s, 1: all ones and 11: mixed.

6.2 The Control Flow Program
The R300 uses a match method for control flow: The shader is executed, and at every instruction its address is
compared with addresses (or address?) in a control table. The “event” in the control table can redirect operations in
the program.

The Method chosen for the R400 is a “control program”. The control program has ten basic instructions:

Execute
Conditional_execute
Conditional_Execute_Predicates
Conditional_execute_or_Jump
Conditional_jump
Call
Return
Loop_start
Loop_end
End_of_clause

Execute, causes the specified number of instructions in instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified number of instructions in instruction
store to be executed.
Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified number of instructions.
Call jumps to an address and pushes the IP counter on the stack. On the return instruction, the IP is poped from the
stack.
Conditional_execute_or_Jump executes a block of instructions or jumps to an address is the condition is not met.
Conditional_execute_Predicates executes a block of instructions if all bits in the predicate vectors meet the condition.
End_of_clause marks the end of a clause.
Conditional_jumps jumps to an address if the condition is met.
NOP is a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSES. Thus the compiler must insert NOPs where
needed to align the jumps on even CFP addresses.

Also if the jump is logically bigger than 4096 pshader_cntl_size (or vshader_cntl_size) we break the program (clause)
and set the debug registers. If an execute or conditional_execute is lower than cntl_size or bigger than size we also
break the program (clause) and set the debug registers.

We have to fit instructions into 48 bits in order to be able to put two control flow instruction per line in the instruction
store.

Execute
47 46… 42 41 … 24 23 … 12 11 … 0

Addressing 00001 RESERVED Instruction _count Exec Address

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 201 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

R400 Sequencer Specification PAGE

14 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

Execute up to 4k instructions at the specified address in the instruction memory.

NOP
47 46 … 42 41 … 0

Addressing 00010 RESERVED

If the specified boolean (8 bits can address 256 booleans) meets the specified condition then execute the specified
instructions (up to 512 instructions) or if the condition is not met jump to the jump address in the control flow program.
This MUST be a forward jump.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 202 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

Conditionnal_Execute

47 46 … 42 41 … 34 33 32 … 24 23 … 12 11 … 0
Addressing 00011 Boolean address Condition RESERVED Instruction_count Exec Address

If the specified boolean (8 bits can address 256 booleans) meets the specified condition then execute the specified
instructions (up to 4k instructions)

Conditionnal_Execute_Predicates
47 46 … 42 41 … 38 37 36 … 24 23 … 12 11 … 0

Addressing 00100 Predicate vector Condition RESERVED Instruction_count Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions.

Loop_Start
47 46 … 42 41 … 16 15 … 4 3 … 0

Addressing

00101 RESERVED Jump address Loop ID

Loop Start. Compares the loop count with the end value. If loop condition not met jump to the address. Forward jump
only. Also computes the index value.

Loop_End
47 46 … 42 41 … 16 15 … 4 3 … 0

Addressing

00111 RESERVED Start address Loop ID

Loop end. Increments the counter by one and jumps BACK only to the start of the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Call
47 46 … 42 41…12 11 … 0

Addressing

01000 RESERVED Address

Jumps to the specified address and pushes the IP counter on the stack.

Return
47 46 … 42 41 … 0

Addressing

01001 RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump
47 46 … 42 41 … 34 33 32 … 132 12 11 … 0

Addressing

01010 Boolean address Condition RESERVED FW only Address

If condition met, jumps to the address. FORWARD jump only allowed if bit 12 set. Bit 12 is only an optimization for the
compiler and should NOT be exposed to the API.

End_of_Clause
47 46 … 42 41 … 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 203 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

R400 Sequencer Specification PAGE

16 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

Addressing

01011 RESERVED

Marks the end of a clause.

To prevent infinite loops, we will keep 9 bits loop counters instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start is going to break the loop and set de debug
registers. The sequencer will keep two loop indexes values:
 IC index for constant indexing (9 bits)
 IR index for register file indexing (7 bits)
 This will be updated everytime we loop and can only be used to index the constant store and the register file. The
way to compute this value is:

 Index = Loop_counter*Loop_iterator + Loop_init.

The IC for constant is going to return 0 if it is out of the constant range. The IR index is going to break the program if
the index exeeds the number of requested registers.

The basic model is as follows:

The render state defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The control program is the only program aware of the clause
boundaries.

6.3 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE0_# – SETE0
 PRED_SETE1_# – SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify wich predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For exemple, the instruction :instruction:

 P0_ADD_# R0,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 204 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

6.4 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls :

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

7. Pixel Kill Mask
A vector of 64 bits is kept per group of pixels/vertices. Its purpose is to optimize the texture fetch requests and allow
the shader pipe to kill pixels using the following instructions:

MASK_SETE
 MASK_SETGT
 MASK_SETGTE

However, if the driver sets the kill_vector_on register to 0 (don’t use) then the 64 bit kill mask becomes the 5th
predicate vector and is kept across clause boundaries (thus allowing predicated instructions to be used in texture
clauses). In this mode, the sequencer is going to send all 1s to the RBs for coverage mask information.

7.8. HOS surfaces
HOS surfaces are able to export from any the 6 last clauses but to memory ONLY. If they want to export to the
parameter cache they have to do it in the last clause (7). They can also export position in clause 3. The buffer they
want to export into must be specified in the “exports” field of the state registers.

8.9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to VERTEX_REG_SIZE for vertices and 256-
VERTEX_REG_SIZE for pixels.

Formatted: Bullets and Numbering

Formatted

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 205 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

R400 Sequencer Specification PAGE

18 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again.

9.10. Fetch Arbitration
The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

10.11. ALU Arbitration
ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbitrers, one for the even clocks and one for the odd clocks. For
exemple, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…
 Proceeding this way hides the latency of 8 clocks of the ALUs.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 206 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

11.12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic to select the last clause (this way nothing
can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position buffer is
full (POS_FULL) then the sequencer also prevents a thread to enter the exporting clause (4?). The sequencer will set
the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbitrer will be able read
this signal and act accordingly by not preventing exporting clauses to proceed.

12.13. Content of the reservation station FIFOs
21 bits of Render State 7 bits for the base address of the GPRs, some bits for LOD correction and coverage mask
information in order to fetch fetch for only valid pixels, quad address and 1 bit to specify if the vector is of pixels or
vertices. Since pixels and vertices are kept in order in the shader pipe, we only need two fifos (one for vertices and
one for pixels) deep enough to cover the shader pipe latency. This size will be determined later when we will know
the size of the small fifos between the reservation stations.

For texture clauses, 3 bits * 4 are going to be kept. These are the AND/OR of the predicate vectors. 0 for all 0s, 1 for
all ones and MIXED.

13.14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. For this reason
only ONE concurrent program can be of clause 8 (exporting clause) the other program MUST not. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

14.15. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel’s parameters are
always interpolated at full 19x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming P0 is the interpolated parameter at Pixel 0 having the barycentric coordinates I(0), J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at V0 (interpolated with I), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

)(*03)(*0303

)(*02)(*0202

)(*01)(*0101

)(*)0()(*)0(0

)0()3(03

)0()3(03

)0()2(02

)0()2(02

)0()1(01

)0()1(01

CBJCAIPP

CBJCAIPP

CBJCAIPP

CBJCAICP

JJJ

III

JJJ

III

JJJ

III

P0

P2

P1

P3

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 207 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

R400 Sequencer Specification PAGE

20 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

P0 is computed at 19x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF P0’s IJ : Mantissa 19 Exp 4 for I + Sign
 Mantissa 19 Exp 4 for J + Sign

FORMAT of Deltas (x3): Mantissa 8 Exp 4 for I + Sign
 Mantissa 8 Exp 4 for J + Sign

Total number of bits : 19*2 + 8*6 + 4*8 + 4*2 = 126

15.16. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories.

16.17. Vertex position exporting
On clause 4 (or 5) the vertex shader can export to the PA both the vertex position and the point sprite. It can also do
so at clause 8 if not done at clause 4. Along with the position is exported a pointer to the parameter cache where the
data will be once the vertex shader exports. The storage needed to perform the position export is at least 64x128
memories for the position and 64x32 memories for the sprite size. It is going to be taken in the pixel output fifo.

18. Exporting Arbitration
Here are the rules for co-issuing exporting ALU clauses.

1) Position exports and position exports cannot be co-issued.
2) Position exports and memory exports cannot be co-issued.
3) Position exports and Z/Color exports cannot be co-issued.
4) Memory exports and Z/Color exports cannot be co-issued.
5) Memory exports and memory exports cannot be co-issued.
6) Z/color exports and Z/color exports cannot be co-issued.
7) Parameter exports and Z/Color exports CAN be co-issued.
8) Parameter exports and parameter exports CAN be co-issued.
1)9) Parameter exports and memory exports CAN be co-issued.

17.19. Real time commands
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem I see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 208 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

18.20. Registers

20.1 Control
DYNAMIC_REG Dynamic allocation (pixel/vertex) of the register file on or off.
VERTEX_REG_SIZE What portion of the register file is reserved for vertices (static allocation only)
PIXEL_MIN_SIZE Minimal size of the register file's pixel portion (dynamic only)
VERTEX_MIN_SIZE Minimal size of the register file's vertex portion (dynamic only)
ARBITRATION_policy policy of the arbitration between vetexes and pixels
CST_SIZE_P Size of the constant store for pixels
CST_SIZE_V Size of the constant store for vertexes
INST_STOR_ALLOC interleaved, separate, interleaved+shared,separate+shared
VWRAP wrap point for the vertex shader instruction store
PWRAP wrap point for the pixel shader instruction store
NO_INTERLEAVE debug state register. Only allows one program at a time into the GPRs

18.120.2 Context
Vshader_fetch[117:0][7:0] eight 12 8 bit pointers to the location where each clauses control program is located
Vshader_alu[117:0][7:0] eight 12 8 bit pointers to the location where each clauses control program is located
Pshader_fetch[117:0][7:0] eight 12 8 bit pointers to the location where each clauses control program is located
Pshader_alu[117:0][7:0] eight 12 8 bit pointers to the location where each clauses control program is located
PSHADER base pointer for the pixel shader
VSHADER base pointer for the vertex shader
Vshader_cntl_size size of the vertex shader (# of instructions in control program/2)
Pshader_cntl_size size of the pixel shader (# of instructions in control program/2)
Pshader_size size of the pixel shader (cntl+instructions)
Vshader_size size of the vertex shader (cntl+instructions)
VWRAP wrap point for the vertex shader instruction store
PWRAP wrap point for the pixel shader instruction store
REG_ALLOC_PIX number of registers to allocate for pixel shader programs
REG_ALLOC_VERT number of registers to allocate for vertex shader programs
PARAM_MASK[0…16] parameter mask to specify how parameters maps in the pixel shader
FLAT_GOUR[0…165] wich parameters are to be gouraud shaded
GEN_TEX[0….16] for wich parameters do we need to generate tex coords.Do we generate
texture coordinates for 1st parameter or not
CYL_WRAP[0…6463] for wich parameters (and channels (xyzw)) do we do the cyl wrapping.
P_export_mode 0xxxx : Normal mode
 1xxxx : Multipass mode
 If normal, bbbz where bbb is how many colors (0-4) and z is export z or not
 If multipass 1-12 exports for color.
vshader_export_mask wich of the last 6 ALU clauses is exporting
vshader_export_mode 0: position (1 vector), 1: position (2 vectors), 3:multipass
vshader_export_count[6] # of interpolated parameters exported in clause 7 OR
 # of exported vectors to memory per clause in multipass mode (per clause)

kill_vector_on use the mask kill vector to kill pixels and optimize texture pipe fetches OR use it as

the fifth predicate vector wich is the only predicate vector kept across clause
boundaries.

P_EXPORT[8] number of exports for pixel shader
V_EXPORT[8] number of exports for vertex shader for each clause. All numbers relate to the output

buffer exports but for V_EXPORT[7] than can relate to the PC if Exports[7] is set to
00000.

ARBITRATION_policy policy of the arbitration between vetexes and pixels
Exports[8][6] Wich clause is exporting to the output buffer and what is it exporting.

 000000 : Not exporting (or exporting only to the PC)
 000001 : Exporting position (1)
 000010 : Exporting position (2)
 (1)00100 : Exporting RG

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 209 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

R400 Sequencer Specification PAGE

22 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

 (1)01000 : Exporting BA
 (1)10000 : Exporting Z

 If MSB set pixel shader exporting linear to memory not to Frame Buffer.
CST_SIZE_P Size of the constant store for pixels
CST_SIZE_V Size of the constant store for vertexes

19.21. DEBUG registers
PROB_ADDR instruction address where the first problem occurred
PROB_COUNT number of problems encountered during the execution of the program

20.22. Interfaces

20.122.1 External Interfaces

20.1.122.1.1 PA/SC to RE SP0 : IJ bus
This is a bus that sends the IJ information to the IJ fifos on the top of each shader pipe. At the same time the control
information goes to the sequencer. There are 4 of these buses over the whole chip (SP0 thru 3)

Name Direction Bits Description
IJs PA→RESP0 63 IJ information sent over 2 clocks
Mask PA→RESP0 1 Write Mask

20.1.222.1.2 PA/SC to SEQ : IJ Control bus
This is the control information sent to the sequencer in order to control the IJ fifos and all other information needed to
execute a shader program on the sent pixels.

Name Direction Bits Description
Write Mask PA→SEQ(RE)SP) 4 Quad Write mask left to right
RB_ID PA→SEQ(SP)PA→SEQ(RE

)
8 RB id for each quad sent 2 bits per quad

LOD_CORRECT PA→SEQ(SP)PA→SEQ(RE
)

24 LOD correction per quad (6 bits per quad)

FVTX PA→SEQ(SP)PA→SEQ(RE
)

2 Provoking vertex for flat shading

PPTR0 PA→SEQ(SP)PA→SEQ(RE
)

11 P Store pointer for vertex 0

PPRT1 PA→SEQ(SP)PA→SEQ(RE
)

11 P Store pointer for vertex 1

PPTR2 PA→SEQ(SP)PA→SEQ(RE
)

11 P Store pointer for vertex 2

E_OFF_VECTOR PA→SEQ(SP)PA→SEQ(RE
)

1 End of the vector

DEALLOC PA→SEQ(SP)PA→SEQ(RE
)

1 Deallocation token for the P Store

STATE PA→SEQ(SP)PA→SEQ(RE
)

21 State/constant pointer (6*3+3)

VALID PA→SEQ(SP)PA→SEQ(RE
)

16 Valid bits for all pixels

NULL PA→SEQ(SP)PA→SEQ(RE
)

1 Null Primitive (for PC deallocation purposes)

E_OFF_PRIM PA→SEQ(SP)PA→SEQ(RE
)

1 End Of the primitive

FBFACE PA→SEQ(SP)PA→SEQ(RE 1 Front face = 1, back face = 0

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 210 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

)
TYPE PA→SEQ(SP)PA→SEQ(RE

)
3 Stippled line and Real time command need to

load tex cords from alternate buffer
000 : Normal
001 : Stippled line
011 : Real Time
100 : Line AA
101 : Point AA
110 : Sprite

RTRn SEQ→PA 1 Stalls the PA in n clocks
RTS PA→SEQ(SP)PA→SEQ(RE

)
1 PA ready to send data

20.1.322.1.3 VGT to RE SP : Vertex Bus
Name Direction Bits Description
Vertex indexes VGT→RE 128 Pointers of indexes or HOS surface information
EOF_vector VGT→RE 1 End of the vector
 Inputs_vert VGT→RE 1 0: Normal 128 bits per vert

1: double 256 bits per vert
STATE VGT→SEQ 21 Render State (6*3+3 for constants)

20.1.422.1.4 CP to SEQ : Constant store load
Name Direction Bits Description
Constant Address CP→SEQ 8 Address of the block of 4 constants
Constant Data CP→SEQ 512 Data sent over 4 clocks
Remap Address CP→SEQ 10 Remaping address write address
Remap Data pointer CP→SEQ 8 Remaping pointer

20.1.522.1.5 CP to SEQ : Fetch State store load
Name Direction Bits Description
Constant Address CP→SEQ 8 Address of the block of 4 state constants
Constant Data CP→SEQ 512 Data sent over 4 clocks
Remap Address CP→SEQ 10 Remaping address write address
Remap Data pointer CP→SEQ 8 Remaping pointer

20.1.622.1.6 CP to SEQ : Control State store load
Name Direction Bits Description
{ISSUE: How,Who and what is the size of this bus?}

20.1.722.1.7 MH to SEQ: Instruction store Load
Name Direction Bits Description
Instruction address MH→SEQ 12 Instruction address
Instruction MH→SEQ 96 Instruction X times
Control Instruction address MH→SEQ 9 Pointer to the control instruction store
Control Instruction MH→SEQ 32 Control Instruction X times
{ISSUE: CP or MH?}

20.1.822.1.8 SP to RB : Pixel read from RBs
Name Direction Bits Description
Export_data SP→RB 64*16 32a pairs of 32 bits channel values
ExportIDShader_Dest SP→RB 94 Specifies one of the of up to 12 export

destinations0cvvvvhqq: Vertex data vvvv 0-15 from first
or second clause (c=0 or 1), XY or ZW components (h=0

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 211 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

R400 Sequencer Specification PAGE

24 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

or 1), quad 0-3 in the shader (qq= 0-3)
1cbbkttqq: Pixel data for buffer bb (0-3) from first or
second clause (0-1) killed or not (k=1 or 0) quad 0-3 in
the shader and data is RG (tt=0), BA (tt=1) or Z (tt=2)

Shader_CountExportMask SP→RB 23 Each set of four pixels or vectors is exported over
eight clocks. This field specifies where the SP is in that
sequence.Specifies whether to write low, high or both 32
bit words. If export mask is 00 data is invalid

Shader_LastExportLast SP→RB 1 The current export clause is over (true for one clock)
The last export instruction creates *two* cycles to the
RB. This needs to be set on or after the last RB cycle
that is produced by the last export instruction, but
before the first RB cycle of the first export instruction
of the next clause.Last export instruction of the clause

Shader_PixelValid SP→RB 4x4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color buffers).
4x4 because 16 pixels are computed per clock

Shader_WordValid SP→RB 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

20.1.922.1.9 SEQ to RB : Control bus
Name Direction Bits Description
Export_PixelType SEQ→RB 1 10: Pixel

10: Vertex
Export_SENDInterleaving SEQ→RB 1 Raised to indicate that the SQ is starting an export0:

first interleaved clause
1: second interleaved clause

Export_ClauseExport_size SEQ→RB 43 Clause number, which is needed for vertex clauses0
thru 16 parameters exported for vertexes (vvvv) OR
(bbzs) 1-4 color buffers (bb), two component (s=0) or 4
component colors (s=1) with z (z=1) or without z (z=0)

Export_StateValid SEQ→RB 121? State ID, which is needed for vertex clausesData valid

These fields are sent synchronously with SP export data, described in SP→RB interface

{ISSUE: Where are the PC pointers}Only one exporting clause (7) can be selected at any given time.

20.1.1022.1.10 RB to SEQ : Output file control
Name Direction Bits Description
Export_RTSBuff_Full RB→SEQ 1 Raised by RB to indicate that the following two fields

reflect the result of the most recent exportSet if full
Export_PositionAvail_size RB→SEQ 16 Specifies whether there is room for another

position.Size available in output buffers (in 32bits
increments)

Export_Buffer RB→SEQ 7 Specifies the space availble in the output buffers.
0: buffers are full
1: 2K-bits available (32-bits for each of the 64
pixels in a clause)
...
64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 212 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

20.1.1122.1.11 SP to RB : Position return bus
Name Direction Bits Description
Position return SP→RB 128 Position data or sprite size (per clock)
Parameter cache pointer SP→RB 11 Pointer where the data will be in the parameter cache for

each vertex

For point sprites and position exports the size and position are interleaved on a 16 x 16 basis. We export 1 position
then 1 point sprite sizes. The storage used is of 64x128 bits for position and 64x32 bits for sprite size, it is taken from
the output buffer. Additionnally,if needed the edge flags are packed into the bits of the sprite sizes.

20.1.1222.1.12 Shader Engine to Fetch Unit Bus (Fast Bus)
Four quad’s worth of addresses is transferred to Fetch Unit every clock. These are sourced from a different pixel within
each of the sub-engines repeating every 4 clocks. The register file index to read must precede the data by 2 clocks. The
Read address associated with Quad 0 must be sent 1 clock after the Instruction Start signal is sent, so that data is read
3 clocks after the Instruction Start.

Four Quad’s worth of Fetch Data may be written to the Register file every clock. These are directed to a different pixel
of the sub-engines repeating every 4 clocks. The register file index to write must accompany the data. Data and Index
associated with the Quad 0 must be sent 3 clocks after the Instruction Start signal is sent.

Name Direction Bits Description
Tex_RegFile_Read_Data SP->TEX 2048 16 Fetch Addresses read from the Register file
Tex_RegFile_Write _Data TEX→SP 2048 16 texture results

20.1.1322.1.13 Sequencer to Fetch Unit bus (Slow Bus)

Once every four clock, the fetch unit sends to the sequencer on wich clause it is now working and if the data in the
registers is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos. The
sequencer also provides the intruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

Name Direction Bits Description
Tex_Ready TEX→ SEQ 1 Data ready
Tex_Clause_Num TEX→ SEQ 3 Clause number
Tex_cst SEQ→TEX 10 Fetch state address 10 bits sent over 4 clocks
Tex_Inst SEQ→TEX 12 Fetch instruction address 12 bits sent over 4 clocks
EO_CLAUSE SEQ→TEX 1 Last instruction of the clause
PHASE SEQ→TEX 1 Write phase signal
LOD CORRECT SEQ→TEX 96 LOD correct 3 bits per comp 2 components per quad * 16

quads
Mask SEQ→TEX 64 Pixel mask 1 bit per pixel
Tex_Clause_Num SEQ→TEX 3 Clause number
Tex_Write_Register_Index SEQ->TEX 7 Index into Register file for write of returned Fetch Data
Tex_Read_Register_Index SEQ->SP 7 Index into Register files for reading Fetch Address

(internal)

21.23. Internal interfaces

21.1.123.1.1 RE to SEQ : Vertex Control Bus
Name Direction Bits Description
STATE VGT→SEQ 21 Render State (6*3+3 for constants)
Vert counter VGT→SEQ 6 Which vertices are valid
 Inputs_vert VGT→SEQ 1 0: Normal 128 bits per vert

1: double 256 bits per vert
This information is sent over 4 clocks.s information needs to be sent over 64 clocks.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 213 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

R400 Sequencer Specification PAGE

26 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

22.24. Examples of program executions

22.1.124.1.1 Sequencer Control of a Vector of Vertices

1. PA sends a vector of 64 vertices (actually vertex indices – 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO
 state pointer as well as tag into position cache is sent along with vertices
 space was allocated in the position cache for transformed position before the vector was sent
 also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
 The vertex program is assumed to be loaded when we receive the vertex vector.

 the SEQ then accesses the IS base for this shader using the local state pointer (provided to all
sequencers by the RBBM when the CP is done loading the program)

2. SEQ arbitrates between the Pixel FIFO and the Vertex FIFO – basically the Vertex FIFO always has priority
 at this point the vector is removed from the Vertex FIFO
 the arbitrer is not going to select a vector to be transformed if the parameter cache is full unless the pipe as

nothing else to do (ie no pixels are in the pixel fifo).

3. SEQ allocates space in the SP register file for index data plus GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
 SEQ will not send vertex data until space in the register file has been allocated

4. SEQ sends the vector to the SP register file over the RE_SP interface (which has a bandwidth of 2048 bits/cycle)
 the 64 vertex indices are sent to the 64 register files over 4 cycles

 RF0 of SU0, SU1, SU2, and SU3 is written the first cycle
 RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
 RF2 of SU0, SU1, SU2, and SU3 is written the third cycle
 RF3 of SU0, SU1, SU2, and SU3 is written the fourth cycle

 the index is written to the least significant 32 bits (floating point format?) (what about compound indices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, z)

5. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSM0 FIFO)
 the control packet contains the state pointer, the tag to the position cache and a register file base pointer.

6. TSM0 accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

7. all instructions of fetch clause 0 are issued by TSM0

8. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for requests made to the Fetch Unit to complete; it passes the register file write index for

the fetch data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data to the register files, it increments a counter that is associated with ASM0

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

9. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

10. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

11. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 position can be exported in ALU clause 3 (or 4?); the data (and the tag) is sent over a position bus (which is

shared with all four shader pipes) back to the PA’s position cache
 A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
 there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 214 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

 the ASM arbiter will prevent a packet from starting an exporting clause if the position export FIFO is full
 parameter data is exported in clause 7 (as well as position data if it was not exported earlier)

 parameter data is sent to the Parameter Cache over a dedicated bus
 the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space when there is no

longer a need for the parameters (it is told by the PA when using a token).
 the ASM arbiter will prevent a packet from starting on ASM7 if the parameter cache (or the position buffer

if position is being exported) is full

12. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

22.1.224.1.2 Sequencer Control of a Vector of Pixels

1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

 At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

2. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
 the state pointer and the LOD correction bits are also placed in the Pixel FIF0
 the Pixel FIFO is wide enough to source four quad’s worth of barycentrics per cycle

3. SEQ arbitrates between Pixel FIFO and Vertex FIFO – when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

4. SEQ allocates space in the SP register file for all the GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
 SEQ will not allow interpolated data to be sent to the shader until space in the register file has been allocated

5. SEQ controls the transfer of interpolated data to the SP register file over the RE_SP interface (which has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagrams for details.

6. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSM0 FIFO)
 note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
 the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
 all other informations (such as quad address for example) travels in a separate FIFO

7. TSM0 accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

8. all instructions of fetch clause 0 are issued by TSM0

9. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for fetch requests made to the Fetch Unit to complete; it passes the register file write

index for the fetch data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data for a particular clause to the register files, it increments a counter that is

associated with the ASM0 FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

10. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

11. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

12. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 pixel data is exported in the last ALU clause (clause 7)

 it is sent to an output FIFO where it will be picked up by the render backend
 the ASM arbiter will prevent a packet from starting on ASM7 if the output FIFO is full

13. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 215 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201526
October 200119

R400 Sequencer Specification PAGE

28 of 28

Exhibit 2016.docR400_Sequencer.doc �� 42015 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:52
PM10/19/01 01:40 PM10/18/01 09:57 AM

22.1.324.1.3 Notes

14. Tthe state machines and arbitrers will operate ahead of time so that they will be able to immediately start the real
threads or stall.

15. Tthe register file base pointer for a vector needs to travel with the vector through the reservation stations, but the
instruction store base pointer does not – this is because the RF pointer is different for all threads, but the IS
pointer is only different for each state and thus can be accessed via the state pointer

16. Waterfalling , parameter buffer allocation, loops and branches and parameter cache de-allocation still needs to
be specked out.

23.25. Open issues
There is currently an issue with constants. If the constants are not the same for the whole vector of vertices, we don’t
have the bandwith from the fetch store to feed the ALUs. Two solutions exists for this problem:

1) Let the compiler handle the case and put those instructions in a fetch clause so we can use the bandwith
there to operate. This requires a significant amount of temporary storage in the register store.

2) Waterfall down the pipe allowing only at a given time the vertices having the same constants to operate in
parrallel. This might in the worst case slow us down by a factor of 16.

Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

Size of the fifo containing the information of a vector of pixels/vertices. And size of the fifos before the reservation
stations.

Loops and branches.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 216 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SEQ

Version 1.10

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\arch\doc\gfx\RE\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2017
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 217 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

R400 Sequencer Specification PAGE

2 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

Table Of Contents

1. OVERVIEW ... 54
1.1 Top Level Block Diagram 76
1.2 Data Flow graph .. 98
1.3 Control Graph ... 109
2. INTERPOLATED DATA BUS 109
3. INSTRUCTION STORE 1312
4. SEQUENCER INSTRUCTIONS 1312
5. CONSTANT STORE................................... 1312
6. LOOPING AND BRANCHES 1312
6.1 The controlling state.................................... 1312
6.2 The Control Flow Program 1413
6.3 Data dependant predicate instructions 1715
6.4 HW Detection of PV,PS 1816
6.5 Register file indexing................................... 1816
6.6 Predicated Instruction support for Texture
clauses ... 1816
6.7 Debugging the Shaders 1816

6.7.1 Method 1: Debugging registers 1816
6.7.2 Method 2: Exporting the values in the
GPRs (12) 1917
6.7.3 Method 3: Selective export of a 32 bit
Dword. 1917

7. PIXEL KILL MASK 2018
8. HOS SURFACES 2018
9. REGISTER FILE ALLOCATION 2018
10. FETCH ARBITRATION 2219
11. ALU ARBITRATION 2219
12. HANDLING STALLS 2320
13. CONTENT OF THE RESERVATION STATION
FIFOS 2320
14. THE OUTPUT FILE 2320
15. IJ FORMAT ... 2320
16. THE PARAMETER CACHE 2421
17. VERTEX POSITION EXPORTING 2421
18. EXPORTING ARBITRATION 2421
19. REAL TIME COMMANDS 2421
20. REGISTERS ... 2522
20.1 Control ... 2522
20.2 Context .. 2522
21. DEBUG REGISTERS 2522
21.1 Control ... 2522
21.2 Context .. 2622
22. INTERFACES ... 2623
22.1 External Interfaces 2623

22.1.1 PA/SC to SP0 : IJ bus 2623
22.1.2 PA/SC to SEQ : IJ Control bus 2623
22.1.3 SEQ to SP0 : Interpolator bus 2623
22.1.4 SEQ to SP0 : Parameter Cache bus
 2724
22.1.5 SEQ to SX0 : Parameter Cache Mux
control Bus 2724
22.1.6 SX0 to SP0 : Parameter Cache Return
bus 2724
22.1.7 VGT to SP0/SEQ : Vertex Bus 2724

22.1.8 CP to SEQ : Constant store load .. 2724
22.1.9 CP to SEQ : Fetch State store load
 2724
22.1.10 CP to SEQ : Control State store load
 2824
22.1.11 MH to SEQ: Instruction store Load
 2825
22.1.12 SP0 to SX0 : Pixel read from RBs 2825
22.1.13 SEQ to SX0 : Control bus 2825
22.1.14 SX0 to SEQ : Output file control ... 2825
22.1.15 SP0 to SX0 : Position return bus .. 2926
22.1.16 Shader Engine to Fetch Unit Bus (Fast
Bus) 2926
22.1.17 Sequencer to Fetch Unit bus (Slow
Bus) 2926

23. EXAMPLES OF PROGRAM EXECUTIONS
 3026

23.1.1 Sequencer Control of a Vector of
Vertices 3026
23.1.2 Sequencer Control of a Vector of
Pixels 3127
23.1.3 Notes .. 3228

24. OPEN ISSUES .. 3228
1. OVERVIEW ... 4
1.1 Top Level Block Diagram 6
1.2 Data Flow graph .. 8
1.3 Control Graph ... 9
2. INTERPOLATED DATA BUS 9
3. INSTRUCTION STORE 12
4. SEQUENCER INSTRUCTIONS 12
5. CONSTANT STORE 12
6. LOOPING AND BRANCHES 12
6.1 The controlling state. 12
6.2 The Control Flow Program 13
6.3 Data dependant predicate instructions 16
6.4 Register file indexing 16
7. PIXEL KILL MASK ... 17
8. HOS SURFACES ... 17
9. REGISTER FILE ALLOCATION 17
10. FETCH ARBITRATION 18
11. ALU ARBITRATION 18
12. HANDLING STALLS 19
13. CONTENT OF THE RESERVATION STATION
FIFOS 19
14. THE OUTPUT FILE .. 19
15. IJ FORMAT ... 19
16. THE PARAMETER CACHE 20
17. VERTEX POSITION EXPORTING 20
18. EXPORTING ARBITRATION 20
19. REAL TIME COMMANDS 20
20. REGISTERS ... 20
20.1 Control ... 20
20.2 Context .. 21
21. DEBUG REGISTERS 21

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 218 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

22. INTERFACES ... 21
22.1 External Interfaces 21

22.1.1 PA/SC to SP0 : IJ bus 21
22.1.2 PA/SC to SEQ : IJ Control bus 22
22.1.3 VGT to SP : Vertex Bus 22
22.1.4 CP to SEQ : Constant store load 22
22.1.5 CP to SEQ : Fetch State store load . 22
22.1.6 CP to SEQ : Control State store load
 23
22.1.7 MH to SEQ: Instruction store Load .. 23
22.1.8 SP to RB : Pixel read from RBs 23
22.1.9 SEQ to RB : Control bus 23
22.1.10 RB to SEQ : Output file control 23
22.1.11 SP to RB : Position return bus.......... 24
22.1.12 Shader Engine to Fetch Unit Bus (Fast
Bus) 24
22.1.13 Sequencer to Fetch Unit bus (Slow
Bus) 24

23. INTERNAL INTERFACES 24
23.1.1 RE to SEQ : Vertex Control Bus 24

24. EXAMPLES OF PROGRAM EXECUTIONS .. 25
24.1.1 Sequencer Control of a Vector of
Vertices 25
24.1.2 Sequencer Control of a Vector of
Pixels 26
24.1.3 Notes .. 27

25. OPEN ISSUES .. 27
1. OVERVIEW ... 4
1.1 Top Level Block Diagram 6
1.2 Data Flow graph .. 8
1.3 Control Graph ... 9
2. INTERPOLATED DATA BUS 9
3. INSTRUCTION STORE 12
4. SEQUENCER INSTRUCTIONS 12
5. CONSTANT STORE....................................... 12
6. LOOPING AND BRANCHES 12
6.1 The controlling state.. 12
6.2 The Control Flow Program 13
6.3 Data dependant predicate instructions 16
6.4 Register file indexing....................................... 16
7. HOS SURFACES ... 17
8. REGISTER FILE ALLOCATION 17

9. FETCH ARBITRATION 18
10. ALU ARBITRATION 18
11. HANDLING STALLS 19
12. CONTENT OF THE RESERVATION STATION
FIFOS 19
13. THE OUTPUT FILE .. 19
14. IJ FORMAT ... 19
15. THE PARAMETER CACHE 20
16. VERTEX POSITION EXPORTING 20
17. REAL TIME COMMANDS 20
18. REGISTERS ... 20
18.1 Control ... 20
18.2 Context .. 21
19. DEBUG REGISTERS 21
20. INTERFACES ... 21
20.1 External Interfaces 21

20.1.1 PA/SC to RE : IJ bus 21
20.1.2 PA/SC to SEQ : IJ Control bus 21
20.1.3 VGT to RE : Vertex Bus 22
20.1.4 CP to SEQ : Constant store load 22
20.1.5 CP to SEQ : Fetch State store load .. 22
20.1.6 CP to SEQ : Control State store load
 22
20.1.7 MH to SEQ: Instruction store Load .. 22
20.1.8 SP to RB : Pixel read from RBs 23
20.1.9 SEQ to RB : Control bus 23
20.1.10 RB to SEQ : Output file control 23
20.1.11 SP to RB : Position return bus 23
20.1.12 Shader Engine to Fetch Unit Bus (Fast
Bus) 24
20.1.13 Sequencer to Fetch Unit bus (Slow
Bus) 24

21. INTERNAL INTERFACES 24
21.1.1 RE to SEQ : Vertex Control Bus 24

22. EXAMPLES OF PROGRAM EXECUTIONS .. 24
22.1.1 Sequencer Control of a Vector of
Vertices 24
22.1.2 Sequencer Control of a Vector of
Pixels 25
22.1.3 Notes .. 26

23. OPEN ISSUES .. 26

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 219 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

R400 Sequencer Specification PAGE

4 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

 Changed the control flow method to be more
flexible. Also updated the external interfaces.

Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

 Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001

 Refined interfaces to RB. Added state registers.

Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

 Added SEQ→SP0 interfaces. Changed delta
precision. Changed VGT→SP0 interface. Debug
Methods added.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 220 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

1. Overview
The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the raster engine.

The vertex or pixel program specifies how many GPR’s it needs to execute. The sequencer will not start the next
vector until the needed space is available.

The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause until the fetch fetches initiated by the previous
fetch clause have completed. There are two separate sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the raster engine also contains the shader instruction cache and constant store. There
are only one constant store for the whole chip and one instruction store. These will be shared among the four shader
pipes. The four shader pipes also execute the same instuction thus there is only one sequencer for the whole chip.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 221 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

R400 Sequencer Specification PAGE

6 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:53 PM10/19/01 01:40 PM

SEQ

RE

SPSPSPCSTOREFETCH STATE

FETCH
ENGINE

FETCH INST

ALU INST
IJ CONTROL

IJ
CONTROL

CST
ADDR

ALU
INST

 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/QUAD
ADDRESSES

SP

ALU INST

TU INST
ADDR

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

TU INST

ALU INST

INTER INTER INTER INTER

IJ CROSSBAR

2 QUADS IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC READ
 POINTERS

PARAM
DATA

R/W ADDR

Vertex indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

IJ CONTROL

4 - write mask
2- RB ID(*4)

6- LOD correction (*4)
2- Fvtx (provoking vertex)

7- PPtro
7- PPtr1
7- PPtr2

1- EOVect
1- Dealloc (pcache)

8?- State ptr
1- Sprite

4- Valid (*4)
1- Null

1- EO prim
1- F/B face

1 - Stippled line

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

INST
LOAD

MH

CONSTANT
LOAD

CPSTATE LOAD

TX ADDR

PC Write
Address

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 222 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

1.1 Top Level Block Diagram

vertex/pixel vector arbitrator

Possible delay for available GPR’s

FIFO
Texture clause 0
reservation station

Texture clause 1
reservation station

FIFO
ALU clause 0
reservation station

FIFO

Texture clause 2
reservation station

Texture clause 3
reservation station

FIFO
ALU clause 1
reservation station

FIFO

FIFO
ALU clause 2
reservation station

FIFO

FIFO
ALU clause 3
reservation station

FIFO
Texture clause 4
reservation station

Texture clause 5
reservation station

FIFO
ALU clause 4
reservation station

FIFO

Texture clause 6
reservation station

Texture clause 7
reservation station

FIFO
ALU clause 5
reservation station

FIFO

FIFO
ALU clause 6
reservation station

FIFO

FIFO
ALU clause 7
reservation station

texture arbitrator

texture arbitrator

There are two sets of the above figure, one for vertices and one for pixels.

Depending on the arbitration state, the sequencer will either choose a vertex or a pixel packet. The control packet
consists of 21 bits of state, 6-7 bits for the base address of the Shader program and some information on the
coverage to determine fetch LOD plus other various small state bits.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 223 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

R400 Sequencer Specification PAGE

8 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the registers to store the interpolated values and temporaries. Following this, the input state machine stacks the
packet in the first FIFO.

On receipt of a command, the level 0 fetch machine issues a texure request and corresponding register address for
the fetch address (ta). A small command (tcmd) is passed to the fetch system identifying the current level number (0)
as well as the register write address for the fetch return data. One fetch request is sent every 4 clocks causing the
texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the requests are sent the packet is put in FIFO 1.

Upon recept of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level 0 fetch machine and sends the clause number (0) to the level 0 fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU 1 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO counter and then issues a
complete set of level 0 shader instructions. For each instruction, the state machine generates 3 source addresses,
one destination address (3 cycles later) and an instruction. Once the last instruction as been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbitrers). One arbitrer will arbitrate
over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the two arbitrers is that they are not allowed to pick the same
clause number as the other one is currently working on if the packet is not of the same type (render state).

If the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbitrer must prevent ALU clause 3 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, the location where the vertex data is to be put is also sent (parameter data pointers).

{ISSUE: How do we handle parameter cache pointers (computed, semi-computed or not computed)?}

A special case is for HOS surfaces wich can export 12 parameters per last 6 clauses to the output buffer. If the output
buffer is full or doesn’t have enough space the sequencer will prevent such a vertex group to enter an exporting
clause.

Regular pixel and vertex shaders can export 12 parameters to memory from the last clause only (7).

All other level process in the same way until the packet finally reaches the last ALU machine (7). On completion of the
level 7 ALU clause, a valid bit is sent to the Render Backend which picks up the color data. This requires that the last
instruction writes to the output register – a condition that is almost always true. If the packet was a vertex packet,
instead of sending the valid bit to the RB, it is sent to the PA so it can know that the data present in the parameter
store is valid.

Only two ALU state machine may have access to the register file address bus or the instruction decode bus at one
time. Similarly, only one fetch state machine may have access to the register file address bus at one time. Arbitration
is performed by three arbitrer blocks (two for the ALU state machines and one for the fetch state machines). The
arbitrers always favor the higher number state machines, preventing a bunch of half finished jobs from clogging up
the register files.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 224 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

1.2 Data Flow graph

MAC

MAC

MAC

MAC

Register File

co
ns

ta
nt

s
fr

om
 R

E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
nt

s
fr

om
 R

E

S
ca

la
r

U
n

it

texture request

texture request

texture request

texture request

te
xt

ur
e

ad
dr

es
s

te xtu re d
ata

p rim
i tive da

ta f rom
 R

E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 225 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

R400 Sequencer Specification PAGE

10 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

SEQ

FETCH SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

OF

WrAddr

RdAddr
PA/RB

IS CST

CST IDX

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 226 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x64 bits)

IJs buffer (ping-pong buffer)
(27 bits * 2 (IJ) + 8 bits * 6 (delta IJs)+4 exp

bits*6)* 16 (quads) * 2 (double-buffered)
4032 bits

32 x 126

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

64

27*2+8*6+6*4 for IJs

To RB

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 227 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

R400 Sequencer Specification PAGE

12 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:53 PM10/19/01 01:40 PM

SP0

SP1

SP2

SP3

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

T19

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P0 P1

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 228 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

Above is an example of a tile we might receive. The IJ information is packed in the IJ buffer 2 quads at a time. The
sequencer allows at any given time as many as four quads to interpolate a parameter. They all have to come from the
same primitive. Then the sequencer controls the write mask to the register to write the valid data in.

3. Instruction Store
There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.
There is also going to be a control instruction store of size 256(512?)x32.

{ISSUE : The instruction store is loaded by the sequencer using the memory hub ?}.

 The read bandwith from this store is 96*2 bits/ 4 clocks (48 bits/clock). It is likely to be a 1 port memory; we use 1
clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1 clock to load 2 control flow instructions and
1 clock to write instructions.

4. Sequencer Instructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS).

5. Constant Store
The constant store is managed by the CP. The sequencer is aware of where the constants are using a remaping
table also managed by the CP. A likely size for the constant store is 512x128 bits. The constant store is also planned
to be shared. The read BW from the constant store is 128 bits/clock and the write bandwith is 32/4 bits/clock.

In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed convertion, there is a latency of 4 clocks (1 instruction)
between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
As per Dx9 the following state is available for control flow:

Boolean[15:0]
loop_count[7:0][7:0]

In addition:
loop_start [7:0] [7:0]
loop_step [7:0] [7:0]
 Exist to give more control to the controlling program.

We will extend that in the R400 to:

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 229 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

R400 Sequencer Specification PAGE

14 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

Boolean[255:0]
Loop_count[7:0][15:0]
Loop_Start[7:0] [15:0] times 2 (one for constant,registert)
Loop_Step[7:0] [15:0] times 2 (one for constant,register)
Loop_End[7:0] [15:0]

{ISSUE: How is the controlling state loaded and how many contexts do we have?}

We have a stack of 4 elements for calling subroutines and 4 loop counters to allow for nested loops.

We also keep 8 predicate vectors and 8 AND/OR sets of 3 bits. These bits can be 0: all 0s, 1: all ones and 11: mixed.

6.2 The Control Flow Program
The R300 uses a match method for control flow: The shader is executed, and at every instruction its address is
compared with addresses (or address?) in a control table. The “event” in the control table can redirect operations in
the program.

The Method chosen for the R400 is a “control program”. The control program has ten basic instructions:

Execute
Conditional_execute
Conditional_Execute_Predicates
Conditional_execute_or_Jump
Conditional_jump
Call
Return
Loop_start
Loop_end
End_of_clause
NOP

Execute, causes the specified number of instructions in instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified number of instructions in instruction
store to be executed.
Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified number of instructions.
Call jumps to an address and pushes the IP counter on the stack. On the return instruction, the IP is poped from the
stack.
Conditional_execute_or_Jump executes a block of instructions or jumps to an address is the condition is not met.
Conditional_execute_Predicates executes a block of instructions if all bits in the predicate vectors meet the condition.
End_of_clause marks the end of a clause.
Conditional_jumps jumps to an address if the condition is met.
NOP is a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSES. Thus the compiler must insert NOPs where
needed to align the jumps on even CFP addresses.

Also if the jump is logically bigger than pshader_cntl_size (or vshader_cntl_size) we break the program (clause) and
set the debug registers. If an execute or conditional_execute is lower than cntl_size or bigger than size we also break
the program (clause) and set the debug registers.

We have to fit instructions into 48 bits in order to be able to put two control flow instruction per line in the instruction
store.

Execute
47 46… 42 41 … 24 23 … 12 11 … 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 230 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

Addressing 00001 RESERVED Instruction _count Exec Address

Execute up to 4k instructions at the specified address in the instruction memory.

NOP
47 46 … 42 41 … 0

Addressing 00010 RESERVED

If the specified boolean (8 bits can address 256 booleans) meets the specified condition then execute the specified
instructions (up to 512 instructions) or if the condition is not met jump to the jump address in the control flow program.
This MUST be a forward jump.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 231 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

R400 Sequencer Specification PAGE

16 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

Conditionnal_Execute

47 46 … 42 41 … 34 33 32 … 24 23 … 12 11 … 0
Addressing 00011 Boolean address Condition RESERVED Instruction_count Exec Address

If the specified boolean (8 bits can address 256 booleans) meets the specified condition then execute the specified
instructions (up to 4k instructions)

Conditionnal_Execute_Predicates
47 46 … 42 41 … 38 37 36 … 24 23 … 12 11 … 0

Addressing 00100 Predicate vector Condition RESERVED Instruction_count Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions.

Loop_Start
47 46 … 42 41 … 16 15 … 4 3 … 0

Addressing

00101 RESERVED Jump address Loop ID

Loop Start. Compares the loop count with the end value. If loop condition not met jump to the address. Forward jump
only. Also computes the index value.

Loop_End
47 46 … 42 41 … 16 15 … 4 3 … 0

Addressing

00111 RESERVED Start address Loop ID

Loop end. Increments the counter by one and jumps BACK only to the start of the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Call
47 46 … 42 41…12 11 … 0

Addressing

01000 RESERVED Address

Jumps to the specified address and pushes the IP counter on the stack.

Return
47 46 … 42 41 … 0

Addressing

01001 RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump
47 46 … 42 41 … 34 33 32 … 13 12 11 … 0

Addressing

01010 Boolean address Condition RESERVED FW only Address

If condition met, jumps to the address. FORWARD jump only allowed if bit 12 set. Bit 12 is only an optimization for the
compiler and should NOT be exposed to the API.

End_of_Clause
47 46 … 42 41 … 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 232 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

Addressing

01011 RESERVED

Marks the end of a clause.

To prevent infinite loops, we will keep 9 bits loop counters instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start is going to break the loop and set de debug
registers. The sequencer will keep two loop indexes values:
 IC index for constant indexing (9 bits)
 IR index for register file indexing (7 bits)
 This will be updated everytimeevery time we loop and can only be used to index the constant store and the register
file. The way to compute this value is:

 Index = Loop_counter*Loop_iterator + Loop_init.

The IC for constant is going to return 0 if it is out of the constant range. The IR index is going to break the program if
the index exeedsexceeds the number of requested registers.

The basic model is as follows:

The render state defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located

A pointer value of FF means that the clause doesn’t contain any instructions.

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The control program is the only program aware of the clause
boundaries.

6.3 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE0_# – SETE0
 PRED_SETE1_# – SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify wichwhich predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For exempleexample, the instruction:

 P0_ADD_# R0,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 233 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

R400 Sequencer Specification PAGE

18 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

6.4 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

6.46.5 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls :controls:

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

6.6 Predicated Instruction support for Texture clauses
For texture clauses, we support the following optimization: we keep 1 bit (thus 4 bits for the four predicate vectors)
per predicate vector in the reservation stations. A value of 1 means that one ore more elements in the vector have a
value of one (thus we have to do the texture fetches for the whole vector. A value of 0 means that no elements in the
vector have his predicate bit set and we can thus skip over the texture fetch.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 3 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow
- jump error
 relative jump address > size of the control flow program
 relative jump address > length of the shader program
- constant overflow
- register overflow
- call stack
 call with stack full
 return with stack empty

With two of the errors, a jump error or a register overflow will cause the program to break. In this case, a break
means that a clause will halt execution, but allowing further clauses to be executed.

With the other errors, program can continue to run, potentially to worst-case limits.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 234 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

If indexing outside of the constant range, causing an overflow error, the hardware is specified to return the value with
an index of 0. This could be exploited to generate error tokens, by reserving and initializing the 0th register (or
constant) for errors.

6.7.2 Method 2: Exporting the values in the GPRs (12)
The sequencer will have a count register and an address register for this mode and 3 bits per clause specifying the
execution mode for each clause. The modes can be :

1) Normal
2) Debug Kill
3) Debug Addr
4) Debug Count

Under the normal mode execution follows the normal course. Under the kill mode, all control flow instructions are
executed but all normal shader instructions of the clause are replaced by NOPs. Only debug_export instructions of
clause 7 will be executed under the debug kill setting. Under the two other modes, normal execution is done until we
reach an address specified by the address register or an instruction count (useful for loops) specified by the count
register. After we have hit the address or the count we change to the kill mode for the rest of the clause.

6.7.3 Method 3: Selective export of a 32 bit Dword.
The third debug option will be mainly used for HW debug. For this mode, the sequencer will keep the following control
debug registers: Shader_pipe (6 bits), Mode(1 bit), Dword_select (3 bits), clause_+count (16 bits?),address (12 bits)
Vector_number (8 bits), Render_state (21 bits). The shader pipe register selects a shader pipe amongst the 64, the
dword_select selects a channel (0…3 of vector or scalar), the clause_+count selects at which clause and which
count we export, the Render_state specifies which render state is concerned, the Vector_number specifies which
vector is concerned and the mode selects count export, or address export.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 235 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

R400 Sequencer Specification PAGE

20 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

Flag Select is a combination of Shader_pipe, clause_+count, address, Vector_number and render_state. It is only
active for 1 shader pipe at a time and for 1 vector of a given state. The driver is responsible to reset the output
register to 0 before executing a given program.

7. Pixel Kill Mask
A vector of 64 bits is kept per group of pixels/vertices. Its purpose is to optimize the texture fetch requests and allow
the shader pipe to kill pixels using the following instructions:

MASK_SETE
 MASK_SETGT
 MASK_SETGTE

However, if the driver sets the kill_vector_on register to 0 (don’t use) then the 64 bit kill mask becomes the 5th
predicate vector and is kept across clause boundaries (thus allowing predicated instructions to be used in texture
clauses). In this mode, the sequencer is going to send all 1s to the RBs for coverage mask information.

8. HOS surfaces
HOS surfaces are able to export from the 6 last clauses but to memory ONLY. If they want to export to the parameter
cache they have to do it in the last clause (7). They can also export position in clause 3. The buffer they want to
export into must be specified in the “exports” field of the state registers.

9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between

MUX

Vector Engines Scalar Engine

GPR

DWord_Select

Flag Select

From left SU
To right SU

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 236 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

pixels and vertices is allowed to move, in the static case it is fixed to VERTEX_REG_SIZE for vertices and 256-
VERTEX_REG_SIZE for pixels.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 237 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

R400 Sequencer Specification PAGE

22 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again.

10. Fetch Arbitration
The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration
ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbitrers, one for the even clocks and one for the odd clocks. For
exemple, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…
 Proceeding this way hides the latency of 8 clocks of the ALUs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 238 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic to select the last clause (this way nothing
can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position buffer is
full (POS_FULL) then the sequencer also prevents a thread to enter the exporting clause (4?). The sequencer will set
the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbitrer will be able read
this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs
21 bits of Render State 7 bits for the base address of the GPRs, some bits for LOD correction and coverage mask
information in order to fetch fetch for only valid pixels, quad address and 1 bit to specify if the vector is of pixels or
vertices. Since pixels and vertices are kept in order in the shader pipe, we only need two fifos (one for vertices and
one for pixels) deep enough to cover the shader pipe latency. This size will be determined later when we will know
the size of the small fifos between the reservation stations.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. For this reason
only ONE concurrent program can be of clause 8 (exporting clause) the other program MUST not. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel’s parameters are
always interpolated at full 19x24 20x24 mantissa precision. Then the result of the interpolation along with the
difference in IJ in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is
how we do it:

Assuming P0 is the interpolated parameter at Pixel 0 having the barycentric coordinates I(0), J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at V0 (interpolated with I), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

)(*03)(*0303

)(*02)(*0202

)(*01)(*0101

)(*)0()(*)0(0

)0()3(03

)0()3(03

)0()2(02

)0()2(02

)0()1(01

)0()1(01

CBJCAIPP

CBJCAIPP

CBJCAIPP

CBJCAICP

JJJ

III

JJJ

III

JJJ

III

P0 is computed at 19x24 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no
visual degradation of the image was seen using this scheme.

P0

P2

P1

P3

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 239 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

R400 Sequencer Specification PAGE

24 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF P0’s IJ : Mantissa 19 20 Exp 4 for I + Sign
 Mantissa 19 20 Exp 4 for J + Sign

FORMAT of Deltas (x3): Mantissa 8 Exp 4 for I + Sign
 Mantissa 8 Exp 4 for J + Sign

Total number of bits : 19*2 + 8*6 + 4*8 + 4*2 = 128

The Deltas have a leading 1, the Full precision IJs don’t. This means that in the case of the deltas we MUST be able
to shift 8 right (exponent value of 0 means number = 0, exponent value of 1 means shift right 8). This means that the
maximum range for the IJs (Full precision) is +/- 64 and the range for the Deltas is +/- 128.6

16. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories.

17. Vertex position exporting
On clause 4 (or 5) the vertex shader can export to the PA both the vertex position and the point sprite. It can also do
so at clause 8 if not done at clause 4. Along with the position is exported a pointer to the parameter cache where the
data will be once the vertex shader exports. The storage needed to perform the position export is at least 64x128
memories for the position and 64x32 memories for the sprite size. It is going to be taken in the pixel output fifo.

18. Exporting Arbitration
Here are the rules for co-issuing exporting ALU clauses.

1) Position exports and position exports cannot be co-issued.
2) Position exports and memory exports cannot be co-issued.
3) Position exports and Z/Color exports cannot be co-issued.
4) Memory exports and Z/Color exports cannot be co-issued.
5) Memory exports and memory exports cannot be co-issued.
6) Z/color exports and Z/color exports cannot be co-issued.
7) Parameter exports and Z/Color exports CAN be co-issued.
8) Parameter exports and parameter exports CAN be co-issued.
9) Parameter exports and memory exports CAN be co-issued.

19. Real time commands
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem I see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 240 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

20. Registers

20.1 Control
DYNAMIC_REG Dynamic allocation (pixel/vertex) of the register file on or off.
VERTEX_REG_SIZE What portion of the register file is reserved for vertices (static allocation only)
PIXEL_MIN_SIZE Minimal size of the register file's pixel portion (dynamic only)
VERTEX_MIN_SIZE Minimal size of the register file's vertex portion (dynamic only)
ARBITRATION_policy policy of the arbitration between vetexesvertexes and pixels
CST_SIZE_P Size of the constant store for pixels
CST_SIZE_V Size of the constant store for vertexes
INST_STOR_ALLOC interleaved, separate, interleaved+shared,separate+shared
VWRAPPWRAP wrapstart point for the vertexpixel shader instruction store (vertex shader

always starts at 0)
PWRAPSHAREDWRAP wrapstart point for the pixel shadershared instruction store
RTWRAP start point for the RT instruction store (RT always ends at the end of the IM)
NO_INTERLEAVE debug state register. Only allows one program at a time into the GPRs

20.2 Context
Vshader_fetch[7:0][7:0] eight 8 bit pointers to the location where each clauses control program is located
Vshader_alu[7:0][7:0] eight 8 bit pointers to the location where each clauses control program is located
Pshader_fetch[7:0][7:0] eight 8 bit pointers to the location where each clauses control program is located
Pshader_alu[7:0][7:0] eight 8 bit pointers to the location where each clauses control program is located
PSHADER base pointer for the pixel shader
VSHADER base pointer for the vertex shader
Vshader_cntl_size size of the vertex shader (# of instructions in control program/2)
Pshader_cntl_size size of the pixel shader (# of instructions in control program/2)
Pshader_size size of the pixel shader (cntl+instructions)
Vshader_size size of the vertex shader (cntl+instructions)
REG_ALLOC_PIX number of registers to allocate for pixel shader programs
REG_ALLOC_VERT number of registers to allocate for vertex shader programs
FLAT_GOUR[0…15] wichwhich parameters are to be gouraud shaded
GEN_TEX Do we generate texture coordinates for 1st parameter or not
CYL_WRAP[0…63] for wichwhich parameters (and channels (xyzw)) do we do the cyl wrapping.

P_export_mode 0xxxx : Normal mode
 1xxxx : Multipass mode
 If normal, bbbz where bbb is how many colors (0-4) and z is export z or not
 If multipass 1-12 exports for color.
vshader_export_mask wichwhich of the last 6 ALU clauses is exporting
vshader_export_mode 0: position (1 vector), 1: position (2 vectors), 3:multipass
vshader_export_count[6] # of interpolated parameters exported in clause 7 OR
 # of exported vectors to memory per clause in multipass mode (per clause)
kill_vector_on use the mask kill vector to kill pixels and optimize texture pipe fetches OR use it as

the fifth predicate vector wichwhich is the only predicate vector kept across clause
boundaries.

21. DEBUG registers

21.1 Control
Shader_pipe # of the shader pipe for method 3 (0…64)
Count_+clause instruction count and clause number for method 3
Dword_select channel select for method 3

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 241 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

R400 Sequencer Specification PAGE

26 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

Mode operating mode for method 3
Rstate render state method 3 is operating on
Vector_count vector number the method 3 will export

21.2 Context
PROB_ADDR instruction address where the first problem occurred
PROB_COUNT number of problems encountered during the execution of the program
Count instruction counter for debug method 2
Clause_mode[3] clause mode for debug method 2

22. Interfaces

22.1 External Interfaces

22.1.1 PA/SC to SP0 : IJ bus
This is a bus that sends the IJ information to the IJ fifos on the top of each shader pipe. At the same time the control
information goes to the sequencer. There are 4 of these buses over the whole chip (SP0 thru 3)

Name Direction Bits Description
IJs PA→SP0 643 IJ information sent over 2 clocks
Mask PA→SP0 1 Write Mask

22.1.2 PA/SC to SEQ : IJ Control bus
This is the control information sent to the sequencer in order to control the IJ fifos and all other information needed to
execute a shader program on the sent pixels.

Name Direction Bits Description
Write Mask PA→SEQ(SP) 4 Quad Write mask left to right
LOD_CORRECT PA→SEQ(SP) 24 LOD correction per quad (6 bits per quad)
FVTX PA→SEQ(SP) 2 Provoking vertex for flat shading
PPTR0 PA→SEQ(SP) 11 P Store pointer for vertex 0
PPRT1 PA→SEQ(SP) 11 P Store pointer for vertex 1
PPTR2 PA→SEQ(SP) 11 P Store pointer for vertex 2
E_OFF_VECTOR PA→SEQ(SP) 1 End of the vector
DEALLOC PA→SEQ(SP) 1 Deallocation token for the P Store
STATE PA→SEQ(SP) 21 State/constant pointer (6*3+3)
VALID PA→SEQ(SP) 16 Valid bits for all pixels
NULL PA→SEQ(SP) 1 Null Primitive (for PC deallocation purposes)
E_OFF_PRIM PA→SEQ(SP) 1 End Of the primitive
FBFACE PA→SEQ(SP) 1 Front face = 1, back face = 0
TYPE PA→SEQ(SP) 3 Stippled line and Real time command need to load tex

cords from alternate buffer
000 : Normal
001 : Stippled line
011 : Real Time
100 : Line AA
101 : Point AA
110 : Sprite

RTRn SEQ→PA 1 Stalls the PA in n clocks
RTS PA→SEQ(SP) 1 PA ready to send data

22.1.3 SEQ to SP0 : Interpolator bus
Name Direction Bits Description
TYPE SEQ→SP0 3 Type of the primitive

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 242 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

000 : Normal
001 : Stippled line/Poly
011 : Real Time
100 : Line AA
101 : Point AA
110 : Sprite

FVTX SEQ→SP0 2 Provoking vertex for flat shading
FLAT_GOURAUD SEQ→SP0 1 Flat or gouraud shading
CYL_WRAP SEQ→SP0 4 Wich parameter needs to be cylindrical wrapped
Inter_Write_Register_Index SEQ→SP0 7 Index into Register file for write of Interpolated data
Write_Mask SEQ→SP0 4 Quad Write mask left to right
IJ_Line number SEQ→SP0 2 Line in the IJ buffer to use to interpolate
Swap_Buffers SEQ→SP0 1 Swap the IJ buffers at the end of the interpolation
Param_0 SEQ→SP0 1 We are interpolating parameter 0

22.1.4 SEQ to SP0 : Parameter Cache bus
Name Direction Bits Description
Ptr1 SEQ→SP0 7 Pointer of PC (7 LSBs of Pointer)
Ptr2 SEQ→SP0 7 Pointer of PC (7 LSBs of Pointer)
Ptr3 SEQ→SP0 7 Pointer of PC (7 LSBs of Pointer)

22.1.5 SEQ to SX0 : Parameter Cache Mux control Bus
Name Direction Bits Description
Mux1 SEQ→SX0 4 Mux control for PC (4 MSbs of Pointer)
Mux2 SEQ→SX0 4 Mux control for PC (4 MSbs of Pointer)
Mux3 SEQ→SX0 4 Mux control for PC (4 MSbs of Pointer)

22.1.6 SX0 to SP0 : Parameter Cache Return bus
Name Direction Bits Description
Vtx_data_1 SX0→SP0 128 Vertex data to interpolate
Vtx_data_2 SX0→SP0 128 Vertex data to interpolate
Vtx_data_3 SX0→SP0 128 Vertex data to interpolate

22.1.322.1.7 VGT to SP0/SEQ : Vertex Bus
Name Direction Bits Description
Vertex indexes VGT→RESP0 128 Pointers of indexes or HOS surface information
EOF_vector VGT→RESP0/SEQ 1 End of the vector
 Inputs_vert VGT→RESP0/SEQ 1 0: Normal 128 bits per vert

1: double 256 bits per vert
STATE VGT→SEQ 21 Render State (6*3+3 for constants)

22.1.422.1.8 CP to SEQ : Constant store load
Name Direction Bits Description
Constant Address CP→SEQ 8 Address of the block of 4 constants
Constant Data CP→SEQ 512 Data sent over 4 clocks
Remap Address CP→SEQ 10 Remaping address write address
Remap Data pointer CP→SEQ 8 Remaping pointer

22.1.522.1.9 CP to SEQ : Fetch State store load
Name Direction Bits Description
Constant Address CP→SEQ 8 Address of the block of 4 state constants
Constant Data CP→SEQ 512 Data sent over 4 clocks
Remap Address CP→SEQ 10 Remaping address write address

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 243 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

R400 Sequencer Specification PAGE

28 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

Remap Data pointer CP→SEQ 8 Remaping pointer

22.1.622.1.10 CP to SEQ : Control State store load
Name Direction Bits Description
Constant Address CP→SEQ ?
Constant Data CP→SEQ ?
{ISSUE: How,Who and what is the size of this bus?}

22.1.722.1.11 MH to SEQ: Instruction store Load
Name Direction Bits Description
Instruction address MH→SEQ 12 Instruction address
Instruction MH→SEQ 96 Instruction X times
Control Instruction address MH→SEQ 9 Pointer to the control instruction store
Control Instruction MH→SEQ 32 Control Instruction X times
{ISSUE: CP or MH?}

22.1.822.1.12 SP0 to RB SX0 : Pixel read from RBs
Name Direction Bits Description
Export_data SP0→RBSX0 64*16 32 pairs of 32 bits channel values
Shader_Dest SP0→SX0SP→RB 4 Specifies one of the of up to 12 export destinations
Shader_Count SP0→SX0SP→RB 3 Each set of four pixels or vectors is exported over

eight clocks. This field specifies where the SP is in that
sequence.

Shader_Last SP0→SX0SP→RB 1 The current export clause is over (true for one clock)
The last export instruction creates *two* cycles to the
RB. This needs to be set on or after the last RB cycle
that is produced by the last export instruction, but
before the first RB cycle of the first export instruction
of the next clause.

Shader_PixelValid SP0→SX0SP→RB 4x4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color buffers).
4x4 because 16 pixels are computed per clock

Shader_WordValid SP0→SX0SP→RB 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

22.1.922.1.13 SEQ to RB SX0 : Control bus
Name Direction Bits Description
Export_Pixel SEQ→RBSX0 1 1: Pixel

0: Vertex
Export_SEND SEQ→SX0SEQ→RB 1 Raised to indicate that the SQ is starting an export
Export_Clause SEQ→SX0SEQ→RB 3 Clause number, which is needed for vertex clauses
Export_State SEQ→SX0SEQ→RB 21? State ID, which is needed for vertex clauses

These fields are sent synchronously with SP export data, described in SP0→RB SX0 interface
{ISSUE: Where are the PC pointers}

22.1.1022.1.14 RB SX0 to SEQ : Output file control
Name Direction Bits Description
Export_RTS RBSX0→SEQ 1 Raised by RB SX0 to indicate that the following two

fields reflect the result of the most recent export
Export_Position SX0→SEQRB→SEQ 1 Specifies whether there is room for another position.
Export_Buffer SX0→SEQRB→SEQ 7 Specifies the space availble in the output buffers.

0: buffers are full

Formatted: Bullets and Numbering

Formatted

Formatted

Formatted

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 244 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

1: 2K-bits available (32-bits for each of the 64
pixels in a clause)
...
64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

22.1.1122.1.15 SP0 to RB SX0 : Position return bus
Name Direction Bits Description
Position return SP0→RBSX0 128 Position data or sprite size (per clock)

For point sprites and position exports the size and position are interleaved on a 16 x 16 basis. We export 1 position
then 1 point sprite sizes. The storage used is of 64x128 bits for position and 64x32 bits for sprite size, it is taken from
the output buffer. Additionnally,if needed the edge flags are packed into the bits of the sprite sizes.

22.1.1222.1.16 Shader Engine to Fetch Unit Bus (Fast Bus)
Four quad’s worth of addresses is transferred to Fetch Unit every clock. These are sourced from a different pixel within
each of the sub-engines repeating every 4 clocks. The register file index to read must precede the data by 2 clocks. The
Read address associated with Quad 0 must be sent 1 clock after the Instruction Start signal is sent, so that data is read
3 clocks after the Instruction Start.

Four Quad’s worth of Fetch Data may be written to the Register file every clock. These are directed to a different pixel
of the sub-engines repeating every 4 clocks. The register file index to write must accompany the data. Data and Index
associated with the Quad 0 must be sent 3 clocks after the Instruction Start signal is sent.

Name Direction Bits Description
Tex_RegFile_Read_Data SP->TEX 2048 16 Fetch Addresses read from the Register file
Tex_RegFile_Write _Data TEX→SP 2048 16 texture results

22.1.1322.1.17 Sequencer to Fetch Unit bus (Slow Bus)

Once every four clock, the fetch unit sends to the sequencer on wich clause it is now working and if the data in the
registers is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos. The
sequencer also provides the intruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

Name Direction Bits Description
Tex_Ready TEX→ SEQ 1 Data ready
Tex_Clause_Num TEX→ SEQ 3 Clause number
Tex_cst SEQ→TEX 10 Fetch state address 10 bits sent over 4 clocks
Tex_Inst SEQ→TEX 12 Fetch instruction address 12 bits sent over 4 clocks
EO_CLAUSE SEQ→TEX 1 Last instruction of the clause
PHASE SEQ→TEX 1 Write phase signal
LOD CORRECT SEQ→TEX 96 LOD correct 3 bits per comp 2 components per quad * 16

quads
Mask SEQ→TEX 64 Pixel mask 1 bit per pixel
Tex_Clause_Num SEQ→TEX 3 Clause number
Tex_Write_Register_Index SEQ->TEX 7 Index into Register file for write of returned Fetch Data
Tex_Read_Register_Index SEQ->SP 7 Index into Register files for reading Fetch Address

(internal)

23. Internal interfaces

23.1.1 RE to SEQ : Vertex Control Bus
This information is sent over 4 clocks.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 245 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

R400 Sequencer Specification PAGE

30 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

24.23. Examples of program executions

24.1.123.1.1 Sequencer Control of a Vector of Vertices

1. PA sends a vector of 64 vertices (actually vertex indices – 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO
 state pointer as well as tag into position cache is sent along with vertices
 space was allocated in the position cache for transformed position before the vector was sent
 also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
 The vertex program is assumed to be loaded when we receive the vertex vector.

 the SEQ then accesses the IS base for this shader using the local state pointer (provided to all
sequencers by the RBBM when the CP is done loading the program)

2. SEQ arbitrates between the Pixel FIFO and the Vertex FIFO – basically the Vertex FIFO always has priority
 at this point the vector is removed from the Vertex FIFO
 the arbitrer is not going to select a vector to be transformed if the parameter cache is full unless the pipe as

nothing else to do (ie no pixels are in the pixel fifo).

3. SEQ allocates space in the SP register file for index data plus GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
 SEQ will not send vertex data until space in the register file has been allocated

4. SEQ sends the vector to the SP register file over the RE_SP interface (which has a bandwidth of 2048 bits/cycle)
 the 64 vertex indices are sent to the 64 register files over 4 cycles

 RF0 of SU0, SU1, SU2, and SU3 is written the first cycle
 RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
 RF2 of SU0, SU1, SU2, and SU3 is written the third cycle
 RF3 of SU0, SU1, SU2, and SU3 is written the fourth cycle

 the index is written to the least significant 32 bits (floating point format?) (what about compound indices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, z)

5. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSM0 FIFO)
 the control packet contains the state pointer, the tag to the position cache and a register file base pointer.

6. TSM0 accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

7. all instructions of fetch clause 0 are issued by TSM0

8. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for requests made to the Fetch Unit to complete; it passes the register file write index for

the fetch data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data to the register files, it increments a counter that is associated with ASM0

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

9. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

10. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

11. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 position can be exported in ALU clause 3 (or 4?); the data (and the tag) is sent over a position bus (which is

shared with all four shader pipes) back to the PA’s position cache
 A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
 there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 246 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

 the ASM arbiter will prevent a packet from starting an exporting clause if the position export FIFO is full
 parameter data is exported in clause 7 (as well as position data if it was not exported earlier)

 parameter data is sent to the Parameter Cache over a dedicated bus
 the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space when there is no

longer a need for the parameters (it is told by the PA when using a token).
 the ASM arbiter will prevent a packet from starting on ASM7 if the parameter cache (or the position buffer

if position is being exported) is full

12. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

24.1.223.1.2 Sequencer Control of a Vector of Pixels

1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

 At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

2. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
 the state pointer and the LOD correction bits are also placed in the Pixel FIF0
 the Pixel FIFO is wide enough to source four quad’s worth of barycentrics per cycle

3. SEQ arbitrates between Pixel FIFO and Vertex FIFO – when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

4. SEQ allocates space in the SP register file for all the GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
 SEQ will not allow interpolated data to be sent to the shader until space in the register file has been allocated

5. SEQ controls the transfer of interpolated data to the SP register file over the RE_SP interface (which has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagrams for details.

6. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSM0 FIFO)
 note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
 the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
 all other informations (such as quad address for example) travels in a separate FIFO

7. TSM0 accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

8. all instructions of fetch clause 0 are issued by TSM0

9. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for fetch requests made to the Fetch Unit to complete; it passes the register file write

index for the fetch data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data for a particular clause to the register files, it increments a counter that is

associated with the ASM0 FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

10. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

11. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

12. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 pixel data is exported in the last ALU clause (clause 7)

 it is sent to an output FIFO where it will be picked up by the render backend
 the ASM arbiter will prevent a packet from starting on ASM7 if the output FIFO is full

13. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 247 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
November 200126

R400 Sequencer Specification PAGE

32 of 32

Exhibit 2017.docR400_Sequencer.doc �� 46659 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:53
PM10/19/01 01:40 PM

24.1.323.1.3 Notes

14. The state machines and arbitrers will operate ahead of time so that they will be able to immediately start the real
threads or stall.

15. The register file base pointer for a vector needs to travel with the vector through the reservation stations, but the
instruction store base pointer does not – this is because the RF pointer is different for all threads, but the IS
pointer is only different for each state and thus can be accessed via the state pointer

16. Waterfalling still needs to be specked out.

25.24. Open issues
There is currently an issue with constants. If the constants are not the same for the whole vector of vertices, we don’t
have the bandwith from the fetch store to feed the ALUs. Two solutions exists for this problem:

1) Let the compiler handle the case and put those instructions in a fetch clause so we can use the bandwith
there to operate. This requires a significant amount of temporary storage in the register store.

2) Waterfall down the pipe allowing only at a given time the vertices having the same constants to operate in
parrallel. This might in the worst case slow us down by a factor of 16.

Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 248 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SEQ

Version 1.21

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\arch\doc\gfx\RE\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2018
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 249 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

R400 Sequencer Specification PAGE

2 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

Table Of Contents

1. OVERVIEW ... 4
1.1 Top Level Block Diagram 6
1.2 Data Flow graph .. 8
1.3 Control Graph ... 9
2. INTERPOLATED DATA BUS 9
3. INSTRUCTION STORE 12
4. SEQUENCER INSTRUCTIONS 1412
5. CONSTANT STORE................................... 1412
6. LOOPING AND BRANCHES 1412
6.1 The controlling state.................................... 1412
6.2 The Control Flow Program 1513
6.3 Data dependant predicate instructions 1715
6.4 HW Detection of PV,PS 181516
6.5 Register file indexing................................... 1816
6.6 Predicated Instruction support for Texture
clauses ... 1816
6.7 Debugging the Shaders 1816

6.7.1 Method 1: Debugging registers 1816
6.7.2 Method 2: Exporting the values in the
GPRs (12) 191717
6.7.3 Method 3: Selective export of a 32 bit
Dword. 191717

7. PIXEL KILL MASK 201718
8. HOS SURFACES 201718
9. REGISTER FILE ALLOCATION 201718
10. FETCH ARBITRATION 211819
11. ALU ARBITRATION 211819
12. HANDLING STALLS 221920
13. CONTENT OF THE RESERVATION STATION
FIFOS 221920
14. THE OUTPUT FILE 221920
15. IJ FORMAT ... 221920
16. THE PARAMETER CACHE 232021
17. VERTEX POSITION EXPORTING 232021
18. EXPORTING ARBITRATION 232021
19. REAL TIME COMMANDS 232021
20. REGISTERS ... 242122
20.1 Control ... 242122
20.2 Context .. 242122
21. DEBUG REGISTERS 252222
21.1 Control ... 252222

21.2 Context ..252222
22. INTERFACES ...252223
22.1 External Interfaces252223

22.1.1 PA/SC to SP0 : IJ bus252223
22.1.2 PA/SC to SEQ : IJ Control bus .262223
22.1.3 SEQ to SP0 : Interpolator bus ..262323
22.1.4 SEQ to SP0 : Parameter Cache bus
 272324
22.1.5 SEQ to SX0 : Parameter Cache Mux
control Bus 272324
22.1.6 SX0 to SP0 : Parameter Cache Return
bus 272324
22.1.7 VGT to SP0/SEQ : Vertex Bus .282324
22.1.8 CP to SEQ : Constant store load
 282424
22.1.9 CP to SEQ : Fetch State store load
 282424
22.1.10 CP to SEQ : Control State store load
 282424
22.1.11 MH to SEQ: Instruction store Load
 282425
22.1.12 SP0 to SX0 : Pixel read from RBs
 282425
22.1.13 SEQ to SX0 : Control bus292425
22.1.14 SX0 to SEQ : Output file control
 292425
22.1.15 SP0 to SX0 : Position return bus
 302526
22.1.16 Shader Engine to Fetch Unit Bus (Fast
Bus) 302526
22.1.17 Sequencer to Fetch Unit bus (Slow
Bus) 302526

23. EXAMPLES OF PROGRAM EXECUTIONS
 312526

23.1.1 Sequencer Control of a Vector of
Vertices 322626
23.1.2 Sequencer Control of a Vector of
Pixels 342727
23.1.3 Notes ..342828

24. OPEN ISSUES ..352828

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 250 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

flow of pixels/vertices in the sequencer.
Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

 Changed the control flow method to be more
flexible. Also updated the external interfaces.

Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

 Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001

 Refined interfaces to RB. Added state registers.

Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

 Added SEQ→SP0 interfaces. Changed delta
precision. Changed VGT→SP0 interface. Debug
Methods added.

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001

 Interfaces greatly refined. Cleaned up the spec.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 251 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

R400 Sequencer Specification PAGE

4 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

1. Overview
The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the raster engine.

The vertex or pixel program specifies how many GPR’s it needs to execute. The sequencer will not start the next
vector until the needed space is available.

The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause until the fetch fetches initiated by the previous
fetch clause have completed. There are two separate sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the raster engine also contains the shader instruction cache and constant store. There
are only one constant store for the whole chip and one instruction store. These will be shared among the four shader
pipes. The four shader pipes also execute the same instuctioninstruction thus there is only one sequencer for the
whole chip.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 252 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:54 PM11/16/01 10:17 AM10/19/01 01:40 PM

SEQ

RE

SPSPSPCSTOREFETCH STATE

FETCH
ENGINE

INST STORE

IJ CONTROL

IJ
CONTROL

CST
ADDR

INST
 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/QUAD
ADDRESSES

SP

ALU INST

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

INST

INTER INTER INTER INTER

IJ CROSSBAR

2 QUADS IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC READ
 POINTERS

PARAM
DATA

R/W ADDR

Vertex indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

IJ CONTROL

4 - write mask
2- RB ID(*4)

6- LOD correction (*4)
2- Fvtx (provoking vertex)

7- PPtro
7- PPtr1
7- PPtr2

1- EOVect
1- Dealloc (pcache)

8?- State ptr
1- Sprite

4- Valid (*4)
1- Null

1- EO prim
1- F/B face

1 - Stippled line

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

CP

CONSTANT
LOAD

CPSTATE LOAD

TX ADDR

PC Write
Address

TEX INST

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 253 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

R400 Sequencer Specification PAGE

6 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

1.1 Top Level Block Diagram

vertex/pixel vector arbitrator

Possible delay for available GPR’s

FIFO
Texture clause 0
reservation station

Texture clause 1
reservation station

FIFO
ALU clause 0
reservation station

FIFO

Texture clause 2
reservation station

Texture clause 3
reservation station

FIFO
ALU clause 1
reservation station

FIFO

FIFO
ALU clause 2
reservation station

FIFO

FIFO
ALU clause 3
reservation station

FIFO
Texture clause 4
reservation station

Texture clause 5
reservation station

FIFO
ALU clause 4
reservation station

FIFO

Texture clause 6
reservation station

Texture clause 7
reservation station

FIFO
ALU clause 5
reservation station

FIFO

FIFO
ALU clause 6
reservation station

FIFO

FIFO
ALU clause 7
reservation station

texture arbitrator

texture arbitrator

There are two sets of the above figure, one for vertices and one for pixels.

Depending on the arbitration state, the sequencer will either choose a vertex or a pixel packet. The control packet
consists of 213 bits of state, 6-7 bits for the base address of the Shader program and some information on the
coverage to determine fetch LOD plus other various small state bits.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 254 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the registers to store the interpolated values and temporaries. Following this, the input state machine stacks the
packet in the first FIFO.

On receipt of a command, the level 0 fetch machine issues a texuretexture request and corresponding register
address for the fetch address (ta). A small command (tcmd) is passed to the fetch system identifying the current level
number (0) as well as the register write address for the fetch return data. One fetch request is sent every 4 clocks
causing the texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the requests are sent the packet is put in
FIFO 1.

Upon recept of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level 0 fetch machine and sends the clause number (0) to the level 0 fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU 1 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO counter and then issues a
complete set of level 0 shader instructions. For each instruction, the state machine generates 3 source addresses,
one destination address (3 cycles later) and an instruction. Once the last instruction as been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbitrersarbiters). One arbitrerarbiter
will arbitrate over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even
instructions (4 clocks cycles). The only constraints between the two arbitrersarbiters is that they are not
allowed to pick the same clause number as the other one is currently working on if the packet is not of the
same type (render state).

If the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbitrerarbiter must prevent ALU clause 3 to be selected if the positional buffer is full (or can’t be accessed). Along
with the positional data, the location where the vertex data is to be put is also sent (parameter data pointers).

{ISSUE: How do we handle parameter cache pointers (computed, semi-computed or not computed)?}

A special case is for HOS surfaces wich can export 12 parameters per last 6 clauses to the output buffer. If the output
buffer is full or doesn’t have enough space the sequencer will prevent such a vertex group to enter an exporting
clause.

Regular pixel and vertex shaders can export 12 parameters to memory from the last clause only (7).

All other level process in the same way until the packet finally reaches the last ALU machine (7). On completion of the
level 7 ALU clause, a valid bit is sent to the Render Backend which picks up the color data. This requires that the last
instruction writes to the output register – a condition that is almost always true. If the packet was a vertex packet,
instead of sending the valid bit to the RB, it is sent to the PA so it can know that the data present in the parameter
store is valid.

Only two ALU state machine may have access to the register file address bus or the instruction decode bus at one
time. Similarly, only one fetch state machine may have access to the register file address bus at one time. Arbitration
is performed by three arbitrerarbiter blocks (two for the ALU state machines and one for the fetch state machines).
The arbitrersarbiters always favor the higher number state machines, preventing a bunch of half finished jobs from
clogging up the register files.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 255 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

R400 Sequencer Specification PAGE

8 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

1.2 Data Flow graph

MAC

MAC

MAC

MAC

Register File

co
ns

ta
nt

s
fr

om
 R

E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
nt

s
fr

om
 R

E

S
ca

la
r

U
n

it

texture request

texture request

texture request

texture request

te
xt

ur
e

ad
dr

es
s

te xtu re d
ata

p rim
i tive da

ta f rom
 R

E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 256 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

SEQ

FETCH SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

OF

WrAddrIS CST

CST IDX

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 257 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

R400 Sequencer Specification PAGE

10 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x64 bits)

IJs buffer (ping-pong buffer)
(28 bits * 2 (IJ) + 8 bits * 6 (delta IJs)+4 exp

bits*6)* 16 (quads) * 2 (double-buffered)
4096 bits

32 x 128

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

64

To RB

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2

768 bits
32x24

FIX-FLOAT + EXPANSiON

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 258 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:54 PM11/16/01 10:17 AM10/19/01 01:40 PM

SP
0

SP
1

SP
2

SP
3

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-
11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

T19

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P0 P1

T20 T21 T22 T23

XY VTX

XY
0-3

XY
4-7

XY
8-
11

XY
12-
15

XY
16-
19

XY
20-
23

XY
24-
27

XY
28-
31

XY
32-
35

XY
36-
39

XY
40-
43

XY
44-
47

XY
48-
51

XY
52-
55

XY
56-
59

XY
60-
63

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 259 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

R400 Sequencer Specification PAGE

12 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

Above is an example of a tile we might receive. The IJ information is packed in the IJ buffer 2 quads at a time. The
sequencer allows at any given time as many as four quads to interpolate a parameter. They all have to come from the
same primitive. Then the sequencer controls the write mask to the register to write the valid data in.

3. Instruction Store
There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.
There is also going to be a control instruction store of size 256(512?)x32.

{ISSUE : The instruction store is loaded by the sequencer using the memory hub ?}.

 The read bandwith from this store is 96*2 bits/ 4 clocks (48 bits/clock). It is likely to be a 1 port memory; we use 1
clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1 clock to load 2 control flow instructions and
1 clock to write instructions.

The instruction store is loaded by the CP thru the INSTRUCTION_DATA, INSTRUCTION_INDEX_PORT control
registers. The INSTRUCTION_INDEX_PORT is auto-incremented on both reads and writes to the
INSTRUCTION_DATA register.

The next picture shows the various modes the CP can load the memory. The Sequencer has to keep track of the
loading modes in order to wrap around the correct boundaries. The MSB of the INSTRUCTION_INDEX_PORT
register contains the packet type for the sequencer to know where it must wrap around. The wrap around points are
arbitrary and they are specified in the VERTEX_SHADER_BASE and PIXEL_SHADER_BASE registers.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 260 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:54 PM11/16/01 10:17 AM10/19/01 01:40 PM

R400 CP's Views of Instruction Memory Updated: 11/14/2001
John A. Carey

0

4095

Real-Time &
Shared Code

VERTEX_SHADER_BASE

PIXEL_SHADER_BASE

VS Code A

VS Code B

VS Code C

PS Code A

PS Code B

PS Code C

CP writes code start
addresses to
appropriate Sub-
Blocks so Sequencer
knows where to start
executing the code.

MODE 0 - Dual Ring
0

4095

Real-Time &
Shared Code

VERTEX_SHADER_BASE

VS Code A

VS Code B

VS Code C

PS Code A

PS Code B

PS Code C

MODE 1 - Single Ring

CP writes code start
addresses to
appropriate Sub-
Blocks so Sequencer
knows where to start
executing the code.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 261 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

R400 Sequencer Specification PAGE

14 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

4. Sequencer Instructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS).

5. Constant Stores
The constant store is managed by the CP. The sequencer is aware of where the constants are using a remaping
table also managed by the CP. A likely size for the constant store is 512x128 1024x128 bits. The constant store is
also planned to be shared. The read BW from the constant store is 128 bits/clock and the write bandwith is 32/4
bits/clock.

In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed convertion, there is a latency of 4 clocks (1 instruction)
between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

The texture state is also kept in a similar memory. The size of this memory is 192x128. Which lets us load a texture
state in ????

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a state change.

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
As per Dx9 the following state is available for control flow:

Boolean[15:0]
loop_count[7:0][7:0]

In addition:
loop_start [7:0] [7:0]
loop_step [7:0] [7:0]
 Exist to give more control to the controlling program.

We will extend that in the R400 to:
Boolean[255:0]
Loop_count[7:0][15:0]
Loop_Start[7:0] [15:0] times 2 3 (one for constant,registert1, register2)
Loop_Step[7:0] [15:0] times 2 3 (one for constant, registert1, register2register)
Loop_End[7:0] [15:0]

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 262 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

{ISSUE: How is the controlling state loaded and how many contexts do we have?}

We have a stack of 4 elements for calling subroutines and 4 loop counters to allow for nested loops.

6.2 The Control Flow Program
The R300 uses a match method for control flow: The shader is executed, and at every instruction its address is
compared with addresses (or address?) in a control table. The “event” in the control table can redirect operations in
the program.

The Method chosen for the R400 is a “control program”. The control program has ten basic instructions:

Execute
Conditional_execute
Conditional_Execute_Predicates
Conditional_jump
Call
Return
Loop_start
Loop_end
End_of_clause
NOP

Execute, causes the specified number of instructions in instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified number of instructions in instruction
store to be executed.
Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified number of instructions.
Call jumps to an address and pushes the IP counter on the stack. On the return instruction, the IP is poped from the
stack.
Conditional_execute_or_Jump executes a block of instructions or jumps to an address is the condition is not met.
Conditional_execute_Predicates executes a block of instructions if all bits in the predicate vectors meet the condition.
End_of_clause marks the end of a clause.
Conditional_jumps jumps to an address if the condition is met.
NOP is a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSES. Thus the compiler must insert NOPs where
needed to align the jumps on even CFP addresses.

Also if the jump is logically bigger than pshader_cntl_size (or vshader_cntl_size) we break the program (clause) and
set the debug registers. If an execute or conditional_execute is lower than cntl_size or bigger than size we also break
the program (clause) and set the debug registers.

We have to fit instructions into 48 bits in order to be able to put two control flow instruction per line in the instruction
store.

Execute
47 46… 42 41 … 24 23 … 12 11 … 0

Addressing 00001 RESERVED Instruction _count Exec Address

Execute up to 4k instructions at the specified address in the instruction memory.

NOP
47 46 … 42 41 … 0

Addressing 00010 RESERVED

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 263 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

R400 Sequencer Specification PAGE

16 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

If the specified boolean (8 bits can address 256 booleans) meets the specified condition then execute the specified
instructions (up to 512 instructions) or if the condition is not met jump to the jump address in the control flow program.
This MUST be a forward jump.This is a regular NOP.

Conditionnal_Execute
47 46 … 42 41 … 34 33 32 … 24 23 … 12 11 … 0

Addressing 00011 Boolean address Condition RESERVED Instruction_count Exec Address

If the specified boolean (8 bits can address 256 booleans) meets the specified condition then execute the specified
instructions (up to 4k instructions)

Conditionnal_Execute_Predicates
47 46 … 42 41 … 38 37 36 … 24 23 … 12 11 … 0

Addressing 00100 Predicate vector Condition RESERVED Instruction_count Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid.

Loop_Start
47 46 … 42 41 … 16 15 … 4 3 … 0

Addressing

00101 RESERVED Jump address Loop ID

Loop Start. Compares the loop count with the end value. If loop condition not met jump to the address. Forward jump
only. Also computes the index value.

Loop_End
47 46 … 42 41 … 16 15 … 4 3 … 0

Addressing

00111 RESERVED Start address Loop ID

Loop end. Increments the counter by one and jumps BACK only to the start of the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Call
47 46 … 42 41…12 11 … 0

Addressing

01000 RESERVED Address

Jumps to the specified address and pushes the IP counter on the stack.

Return
47 46 … 42 41 … 0

Addressing

01001 RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump
47 46 … 42 41 … 34 33 32 … 13 12 11 … 0

Addressing

01010 Boolean address Condition RESERVED FW only Address

If condition met, jumps to the address. FORWARD jump only allowed if bit 12 set. Bit 12 is only an optimization for the
compiler and should NOT be exposed to the API.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 264 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

End_of_Clause
47 46 … 42 41 … 0

Addressing

01011 RESERVED

Marks the end of a clause.

To prevent infinite loops, we will keep 9 bits loop counters instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start instruction is going to break the loop and set thde
debug registers. The sequencer will keep two loop indexes values:
 IC index for constant indexing (9 bits)
 IR index for register file indexing (7 bits)
 This will be updated every time we loop and can only be used to index the constant store and the register file. The
way to compute this value is:

 Index = Loop_counter*Loop_iterator + Loop_init.

The IC for constant is going to return 0 if it is out of the constant range. The IR index is going to break the program if
the index exceeds the number of requested registers.

The basic model is as follows:

The render state defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located

A pointer value of FF means that the clause doesn’t contain any instructions.

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The control program is the only program aware of the clause
boundaries.

6.3 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE0_# – SETE0
 PRED_SETE1_# – SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

 P0_ADD_# R0,R1,R2

Formatted

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 265 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

R400 Sequencer Specification PAGE

18 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

6.4 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

6.5 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

The sequencer is going to keep a loop index computed as such:

 Index = Loop_counter*Loop_iterator + Loop_init.

The index is going to return 0 if it is out of the range.

6.6 Predicated Instruction support for Texture clauses
For texture clauses, we support the following optimization: we keep 1 bit (thus 4 bits for the four predicate vectors)
per predicate vector in the reservation stations. A value of 1 means that one ore more elements in the vector have a
value of one (thus we have to do the texture fetches for the whole vector. A value of 0 means that no elements in the
vector have his predicate bit set and we can thus skip over the texture fetch. We have to make sure the invalid
pixels aren’t considered with this optimization.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 3 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow
- jump error
 relative jump address > size of the control flow program
 relative jump address > length of the shader program

Formatted

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 266 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

- constant overflow
- register overflow
- call stack
 call with stack full
 return with stack empty

With two of the errors, a jump error or a register overflow will cause the program to break. In this case, a break
means that a clause will halt execution, but allowing further clauses to be executed.

With the other errors, program can continue to run, potentially to worst-case limits.

If indexing outside of the constant range, causing an overflow error, the hardware is specified to return the value with
an index of 0. This could be exploited to generate error tokens, by reserving and initializing the 0th register (or
constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs (12)
The sequencer will have a count register and an address register for this mode and 3 bits per clause specifying the
execution mode for each clause. The modes can be :

1) Normal
2) Debug Kill
3) Debug Addr + Count

4)Debug Count
Under the normal mode execution follows the normal course. Under the kill mode, all control flow instructions are
executed but all normal shader instructions of the clause are replaced by NOPs. Only debug_export instructions of
clause 7 will be executed under the debug kill setting. Under the two other modes, normal execution is done until we
reach an address specified by the address register or and instruction count (useful for loops) specified by the count
register. After we have hit the address or the count we change to the kill mode for the rest of the clause After we have
hit the instruction n times (n=count) we switch the clause to the kill mode..

6.7.3 Method 3: Selective export of a 32 bit Dword.
The third debug option will be mainly used for HW debug. For this mode, the sequencer will keep the following control
debug registers: Shader_pipe (6 bits), Mode(1 bit), Dword_select (3 bits), clause_+count (16 bits?),address (12 bits)
Vector_number (8 bits), Render_state (21 bits). The shader pipe register selects a shader pipe amongst the 64, the
dword_select selects a channel (0…3 of vector or scalar), the clause_+count selects at which clause and which
count we export, the Render_state specifies which render state is concerned, the Vector_number specifies which
vector is concerned and the mode selects count export, or address export.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 267 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

R400 Sequencer Specification PAGE

20 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

Flag Select is a combination of Shader_pipe, clause_+count, address, Vector_number and render_state. It is only
active for 1 shader pipe at a time and for 1 vector of a given state. The driver is responsible to reset the output
register to 0 before executing a given program.

7. Pixel Kill Mask
A vector of 64 bits is kept per group of pixels/vertices. Its purpose is to optimize the texture fetch requests and allow
the shader pipe to kill pixels using the following instructions:

MASK_SETE
 MASK_SETGT
 MASK_SETGTE

8. HOS surfaces
HOS surfaces are able to export from the 6 last clauses but to memory ONLY. If they want to export to the parameter
cache they have to do it in the last clause (7). They can also export position in clause 3.

9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to VERTEX_REG_SIZE for vertices and 256-
VERTEX_REG_SIZE for pixels.

MUX

Vector Engines Scalar Engine

GPR

DWord_Select

Flag Select

From left SU
To right SU

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 268 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again.

10. Fetch Arbitration
The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration
ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbitrers, one for the even clocks and one for the odd clocks. For
exemple, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…
 Proceeding this way hides the latency of 8 clocks of the ALUs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 269 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

R400 Sequencer Specification PAGE

22 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic to select the last clause (this way nothing
can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position buffer is
full (POS_FULL) then the sequencer also prevents a thread to enter the exporting clause (43?). The sequencer will
set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbitrerarbiter will be
able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs
21 bits of Render State 7 bits for the base address of the GPRs, some bits for LOD correction and coverage mask
information in order to fetch fetch for only valid pixels, quad address and 1 bit to specify if the vector is of pixels or
vertices. Since pixels and vertices are kept in order in the shader pipe, we only need two fifos (one for vertices and
one for pixels) deep enough to cover the shader pipe latency. This size will be determined later when we will know
the size of the small fifos between the reservation stations.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. For this reason
only ONE concurrent program can be of clause 8 (exporting clause) the other program MUST not. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel’s parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming P0 is the interpolated parameter at Pixel 0 having the barycentric coordinates I(0), J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at V0 (interpolated with I), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

)(*03)(*0303

)(*02)(*0202

)(*01)(*0101

)(*)0()(*)0(0

)0()3(03

)0()3(03

)0()2(02

)0()2(02

)0()1(01

)0()1(01

CBJCAIPP

CBJCAIPP

CBJCAIPP

CBJCAICP

JJJ

III

JJJ

III

JJJ

III

P0 is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2

P0

P2

P1

P3

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 270 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF P0’s IJ : Mantissa 20 Exp 4 for I + Sign
 Mantissa 20 Exp 4 for J + Sign

FORMAT of Deltas (x3): Mantissa 8 Exp 4 for I + Sign
 Mantissa 8 Exp 4 for J + Sign

Total number of bits : 19*2 + 8*6 + 4*8 + 4*2 = 128

The Deltas have a leading 1, the Full precision IJs don’t. This means that in the case of the deltas we MUST be able
to shift 8 right (exponent value of 0 means number = 0, exponent value of 1 means shift right 8). This means that the
maximum range for the IJs (Full precision) is +/- 64 and the range for the Deltas is +/- 128.

16. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories.

17. Vertex position exporting
On clause 4 (or 5)3 the vertex shader can export to the PA both the vertex position and the point sprite. It can also do
so at clause 8 7 if not done at clause 43. Along with the position is exported a pointer to the parameter cache where
the data will be once the vertex shader exports. The storage needed to perform the position export is at least 64x128
memories for the position and 64x32 memories for the sprite size. It is going to be taken in the pixel output fifo from
the SX blocks.

18. Exporting Arbitration
Here are the rules for co-issuing exporting ALU clauses.

1) Position exports and position exports cannot be co-issued.
2) Position exports and memory exports cannot be co-issued.
3) Position exports and Z/Color exports cannot be co-issued.
4) Memory exports and Z/Color exports cannot be co-issued.
5) Memory exports and memory exports cannot be co-issued.
6) Z/color exports and Z/color exports cannot be co-issued.
7) Parameter exports and Z/Color exports CAN be co-issued.
8) Parameter exports and parameter exports CAN be co-issued.
9) Parameter exports and memory exports CAN be co-issued.

19. Real time commands
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem I see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map microsoft'sMicrosoft’s high priority stream to
the realtime stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32
vectors of parameters instead of 16.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 271 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

R400 Sequencer Specification PAGE

24 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

20. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

21. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix→float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap.

20.22. Registers

20.122.1 Control
DYNAMIC_REG Dynamic allocation (pixel/vertex) of the register file on or off.
VERTEX_REG_SIZE What portion of the register file is reserved for vertices (static allocation only)
PIXEL_MIN_SIZE Minimal size of the register file's pixel portion (dynamic only)
VERTEX_MIN_SIZE Minimal size of the register file's vertex portion (dynamic only)
ARBITRATION_policy policy of the arbitration between vertexes and pixels
CST_SIZE_P Size of the constant store for pixels
CST_SIZE_V Size of the constant store for vertexes
INST_STOR_ALLOC interleaved, separate, interleaved+shared,separate+shared
VERTEX_WRAP start point for the vertex instruction store (RT always ends at vertex_wrap and

Begins at 0)
PIXEL_WRAP start point for the pixel shader instruction store (vertex shader always starts

at 0)
SHAREDWRAP start point for the shared instruction store
RTWRAP start point for the RT instruction store (RT always ends at the end of the IM)
NO_INTERLEAVE debug state register. Only allows one program at a time into the GPRs
NO_INTERLEAVE_ALU debug state register. Only allows one ALU program at a time to be executed (instead

of 2)
NO_PRED_OPTIMIZE turns off the predicate bit optimization (conditional_execute_predicates is always

executed.
INSTRUCTION_INDEX
_PORT This is where the CP puts the base address of the instruction writes and type (auto-

incremented on reads/writes)
INSTRUCTION_DATA This is where the CP puts the actual data going to the instruction memory
CONSTANT_DATA This is where the CP puts constant data

20.222.2 Context
Vshader_fetch[7:0][7:0] eight 8 bit pointers to the location where each clauses control program is located
Vshader_alu[7:0][7:0] eight 8 bit pointers to the location where each clauses control program is located
Pshader_fetch[7:0][7:0] eight 8 bit pointers to the location where each clauses control program is located
Pshader_alu[7:0][7:0] eight 8 bit pointers to the location where each clauses control program is located
PSHADER base pointer for the pixel shader
VSHADER base pointer for the vertex shader
Vshader_cntl_size size of the vertex shader (# of instructions in control program/2)
Pshader_cntl_size size of the pixel shader (# of instructions in control program/2)
Pshader_size size of the pixel shader (cntl+instructions)
Vshader_size size of the vertex shader (cntl+instructions)
REG_ALLOC_PIX number of registers to allocate for pixel shader programs
REG_ALLOC_VERT number of registers to allocate for vertex shader programs
FLAT_GOUR[0…15] which parameters are to be gouraud shaded
CYL_WRAP[0…63] for which parameters (and channels (xyzw)) do we do the cyl wrapping.
P_export_mode 0xxxx : Normal mode

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 272 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

 1xxxx : Multipass mode
 If normal, bbbz where bbb is how many colors (0-4) and z is export z or not
 If multipass 1-12 exports for color.
vshader_export_mask which of the last 6 ALU clauses is exporting
vshader_export_mode 0: position (1 vector), 1: position (2 vectors), 3:multipass
vshader_export_count[6] # of interpolated parameters exported in clause 7 OR
 # of exported vectors to memory per clause in multipass mode (per clause)
Control_Flow 24 Dwords that contain the control flow constants.kill_vector_on use the mask kill

vector to kill pixels and optimize texture pipe fetches OR use it as the fifth predicate
vector which is the only predicate vector kept across clause boundaries.

21.23. DEBUG registers

21.1 Control
Shader_pipe # of the shader pipe for method 3 (0…64)
Count_+clause instruction count and clause number for method 3
Dword_select channel select for method 3
Mode operating mode for method 3
Rstate render state method 3 is operating on
Vector_count vector number the method 3 will export

21.223.1 Context
PROB_ADDR instruction address where the first problem occurred
PROB_COUNT number of problems encountered during the execution of the program
Count instruction counter for debug method 2
Addr break address for method number 2
Clause_mode[3] clause mode for debug method 2

22.24. Interfaces

22.124.1 External Interfaces
Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ→SPx it means that SQ is going to broadcast the same information to all SP instances.

22.1.124.1.1 PA/SC to SP0 : IJ bus
This is a bus that sends the IJ information to the IJ fifos on the top of each shader pipe. At the same time the control
information goes to the sequencer. There are 4 of these buses over the whole chip (SP0 thru 3)

Name Direction Bits Description
IJsSC_SP0_data PASC→SP0 64 IJ information sent over 2 clocks (or XY info sent over 1

clock in the lower 24 LSBs of the interface)
MaskSC_SP0_q_wr_mask PASC→SP0 1 Write Mask
SC_SP0_dest SC→SP0 1 Controls the write destination (XY buffer, IJ buffer)
SC_SP1_data SC→SP1 64 IJ information sent over 2 clocks (or XY info sent over 1

clock in the lower 24 LSBs of the interface)
SC_SP1_q_wr_mask SC→SP1 1 Write Mask
SC_SP1_dest SC→SP1 1 Controls the write destination (XY buffer, IJ buffer)
SC_SP2_data SC→SP2 64 IJ information sent over 2 clocks (or XY info sent over 1

clock in the lower 24 LSBs of the interface)
SC_SP2_q_wr_mask SC→SP2 1 Write Mask
SC_SP2_dest SC→SP2 1 Controls the write destination (XY buffer, IJ buffer)
SC_SP3_data SC→SP3 64 IJ information sent over 2 clocks (or XY info sent over 1

clock in the lower 24 LSBs of the interface)
SC_SP3_q_wr_mask SC→SP3 1 Write Mask
SC_SP3_dest SC→SP3 1 Controls the write destination (XY buffer, IJ buffer)

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 273 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

R400 Sequencer Specification PAGE

26 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

22.1.224.1.2 PA/SC to SEQ : IJ Control bus
This is the control information sent to the sequencer in order to control the IJ fifos and all other information needed to
execute a shader program on the sent pixels. This information is sent over 2 clocks, if SENDXY is asserted the next
control packet is going to be ignored and XY information is going to be sent on the IJ bus (for the quads that where
just sent).

Name Direction Bits Description
Write MaskSC_SQ_q_wr_mask PASC→SEQ(SP) 4 Quad Write mask left to right
LOD_CORRECTSC_SQ_lod_correct SC→SQPA→SEQ(SP

)
24 LOD correction per quad (6 bits per quad)

FVTXSC_SQ_flat_vertex SC→SQPA→SEQ(SP
)

2 Provoking vertex for flat shading

PPTR0SC_SQ_param_ptr0 SC→SQPA→SEQ(SP
)

11 P Store pointer for vertex 0

SC_SQ_param_ptr1PPRT1 SC→SQPA→SEQ(SP
)

11 P Store pointer for vertex 1

SC_SQ_param_ptr2PPTR2 SC→SQPA→SEQ(SP
)

11 P Store pointer for vertex 2

SCE_OFF_VECTOR_SQ_end_of_vec
t

SC→SQPA→SEQ(SP
)

1 End of the vector

DEALLOCSC_SQ_store_dealloc SC→SQPA→SEQ(SP
)

1 Deallocation token for the P Store

STATESC_SQ_state SC→SQPA→SEQ(SP
)

213 State/constant pointer (6*3+3)

VALIDSC_SQ_valid_pixel SC→SQPA→SEQ(SP
)

16 Valid bits for all pixels

NULLSC_SQ_null_prim SC→SQPA→SEQ(SP
)

1 Null Primitive (for PC deallocation
purposes)

SC_SQ_end_of_primE_OFF_PRIM SC→SQPA→SEQ(SP
)

1 End Of the primitive

FBFACESC_SQ_fbface SC→SQPA→SEQ(SP
)

1 Front face = 1, back face = 0

SC_SQ_send_xy SC→SQ 1 Sending XY information [XY information is
going to be sent on the next clock]

TYPESC_SQ_prim_type SC→SQPA→SEQ(SP
)

3 Stippled line and Real time command need
to load tex cords from alternate buffer
000 : Normal
001 : Stippled line
011 : Real Time
100 : Line AA
101 : Point AA
110 : Sprite

SC_SQ_RTRn SEQ→PASQ→SC 1 Stalls the PA in n clocks
SC_SQ_RTS PASC→SEQ(SP)SQ 1 PASC ready to send data

22.1.324.1.3 SEQ to SP0 : Interpolator bus
Name Direction Bits Description
TYPESQ_SPx_interp_prim_type SEQ→SPx0 3 Type of the primitive

000 : Normal
001 : Stippled line/Poly
011 : Real Time
100 : Line AA
101 : Point AA
110 : Sprite

FVTXSQ_SPx_interp_flat_vtx SEQ→SP0x 2 Provoking vertex for flat shading

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 274 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

FLAT_GOURAUDSQ_SPx_interp_flat_gourau
d

SEQ→SP0x 1 Flat or gouraud shading

SQ_SPx_interp_cyl_wrapCYL_WRAP SEQ→SP0x 4 Wich parameter needs to be cylindrical
wrapped

SQ_SPx_interp_ijlineIJ_Line number SEQ→SPx0 2 Line in the IJ/XY buffer to use to
interpolate

SQ_SPx_interp_buff_swapSwap_Buffers SEQ→SP0x 1 Swap the IJ/XY buffers at the end of the
interpolation

SQ_SPx_interp_ij_xy SQ→SPx 1 Read from the IJ buffer or from the XY
buffer

SQ_SPx_interp_param0Param_0 SEQ→SP0x 1 We are interpolating parameter 0

22.1.424.1.4 SEQ to SP0 : Parameter Cache Read control bus
The four following interfaces (SQ→SP, SQ→SX,SP→SX and SX→Interpolators) are all SYNCHRONIZED together.

Name Direction Bits Description
SQ_SPx_Pptr01 SEQ→SPx0 79 Pointer of PC (7 LSBs of Pointer)
SQ_SPx_Pptr12 SEQ→SPxP0 79 Pointer of PC (7 LSBs of Pointer)
SQ_SPx_Pptr32 SEQ→SPx0 97 Pointer of PC (7 LSBs of Pointer)
SQ_SP0_read_ena SQ→SP0 4 Read enables for the 4 memories in the SP0
SQ_SP1_read_ena SQ→SP1 4 Read enables for the 4 memories in the SP1
SQ_SP2_read_ena SQ→SP2 4 Read enables for the 4 memories in the SP2
SQ_SP3_read_ena SQ→SP3 4 Read enables for the 4 memories in the SP3

22.1.524.1.5 SEQ to SX0 : Parameter Cache Mux control Bus
Name Direction Bits Description
SQ_SXx_Mmux01 SEQ→SXx0 4 Mux control for PC (4 MSbs of Pointer)
SQ_SXx_Mmux21 SEQ→SXx0 4 Mux control for PC (4 MSbs of Pointer)
SQ_SXx_Mmux32 SEQ→SXx0 4 Mux control for PC (4 MSbs of Pointer)

24.1.6 SP to SX: Parameter data
Name Direction Bits Description
SP0_SX0_data0 SP0→SX0 128 Parameter data 0
SP0_SX0_data1 SP0→SX0 128 Parameter data 1
SP0_SX0_data2 SP0→SX0 128 Parameter data 2
SP0_SX0_data3 SP0→SX0 128 Parameter data 3
SP1_SX1_data0 SP1→SX1 128 Parameter data 0
SP1_SX1_data1 SP1→SX1 128 Parameter data 1
SP1_SX1_data2 SP1→SX1 128 Parameter data 2
SP1_SX1_data3 SP1→SX1 128 Parameter data 3
SP2_SX0_data0 SP2→SX0 128 Parameter data 0
SP2_SX0_data1 SP2→SX0 128 Parameter data 1
SP2_SX0_data2 SP2→SX0 128 Parameter data 2
SP2_SX0_data3 SP2→SX0 128 Parameter data 3
SP3_SX1_data0 SP3→SX1 128 Parameter data 0
SP3_SX1_data1 SP3→SX1 128 Parameter data 1
SP3_SX1_data2 SP3→SX1 128 Parameter data 2
SP3_SX1_data3 SP3→SX1 128 Parameter data 3

22.1.624.1.7 SX0 to SP0 Interpolators: Parameter Cache Return bus
Name Direction Bits Description
SXx_SPx_Vvtx_data_10 SXx0→SPx0 128 Vertex data to interpolate
SXx_SPx_Vvtx_data_21 SXx0→SPx0 128 Vertex data to interpolate
SXx_SPx_Vvtx_data_32 SXx0→SPx0 128 Vertex data to interpolate

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 275 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

R400 Sequencer Specification PAGE

28 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

22.1.724.1.8 VGT to SP00/SEQ : Vertex Bus
Name Direction Bits Description
VGT_SP0_vrtx_indexesVertex
indexes

VGT→SP0 128 Pointers of indexes or HOS surface information

VGT_SP0_end_of_vectEOF_vector VGT→SP0/SEQ 1 End of the vector
VGT_SP0_vrtx_format Inputs_vert VGT→SP0/SEQ 1 0: Normal 128 bits per vert

1: double 256 bits per vert
VGT_SQ_end_of_vect VGT→SQ 1 End of the vector
VGT_SQ_vrtx_format VGT→SQ 1 0: Normal 128 bits per vert

1: double 256 bits per vert
VGT_SQ_stateSTATE VGT→SEQ 213 Render State (6*3+3 for constants)

22.1.8 CP to SEQ : Constant store load

22.1.9CP to SEQ : Fetch State store load

22.1.10CP to SEQ : Control State store load
{ISSUE: How,Who and what is the size of this bus?}

22.1.11 MH to SEQ: Instruction store Load

24.1.9 SEQ to CP: State report
Name Direction Bits Description
SQ_CP_vrtx_ state SEQ→CP 3 Oldest vertex state still in the pipe
SQ_CP_pix_state SEQ→CP 3 Oldest pixel state still in the pipe

{ISSUE: CP or MH?}

22.1.1224.1.10 SP0 to SX0 : Pixel/Vertex read from RBswrite to SX

Name Direction Bits Description
SP0_SX0_Export_data SP0→SX0 64*16256 432 pairss of 32 bits channel values
SP0_SX0_Shader_Dest SP0→SX0 4 Specifies one of the of up to 12 export destinations
SP1_SX1_Export_data SP1→SX1 256 4 pairs of 32 bits channel values
SP1_SX1_Shader_Dest SP1→SX1 4 Specifies one of the of up to 12 export destinations
SP2_SX0_Export_data SP2→SX0 256 4 pairs of 32 bits channel values
SP2_SX0_Shader_Dest SP2→SX0 4 Specifies one of the of up to 12 export destinations
SP3_SX1_Export_data SP3→SX1 256 4 pairs of 32 bits channel values
SP3_SX1_Shader_Dest SP3→SX1 4 Specifies one of the of up to 12 export destinations
SPx_SXx_Shader_Count SP0→SX0 3 Each set of four pixels or vectors is exported over

eight clocks. This field specifies where the SP is in
that sequence.

SPx_SXx_Shader_Last SP0→SX0 1 The current export clause is over (true for one
clock)
The last export instruction creates *two* cycles to
the RB. This needs to be set on or after the last RB
cycle that is produced by the last export instruction,
but before the first RB cycle of the first export
instruction of the next clause.Asserted on the first
shader count of the last export of the clause

SP0_SX0_Shader_PixelValid SP0→SX0 4x4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 276 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

SP0_SX0_Shader_WordValid SP0→SX0 2 Specifies whether to write low and/or high 32-bit
word of the 64-bit export data from each of the 16
pixels or vectors

SP1_SX1_Shader_PixelValid SP1→SX1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SP1_SX1_Shader_WordValid SP1→SX1 2 Specifies whether to write low and/or high 32-bit
word of the 64-bit export data from each of the 16
pixels or vectors

SP2_SX0_Shader_PixelValid SP2→SX0 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SP2_SX0_Shader_WordValid SP2→SX0 2 Specifies whether to write low and/or high 32-bit
word of the 64-bit export data from each of the 16
pixels or vectors

SP3_SX1_Shader_PixelValid SP3→SX1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SP3_SX1_Shader_WordValid SP3→SX1 2 Specifies whether to write low and/or high 32-bit
word of the 64-bit export data from each of the 16
pixels or vectors

22.1.1324.1.11 SEQ to SXX0 : Control bus
Name Direction Bits Description
SQ_SXx_Export_Pixel SEQ→SXx0 1 1: Pixel

0: Vertex
SQ_SXx_Export_SEND SEQ→SXx0 1 Raised to indicate that the SQ is starting an export
SQ_SXx_Export_Clause SEQ→SXx0 3 Clause number, which is needed for vertex clauses
SQ_SXx_Export_State SEQ→SXx0 21?3 State ID, which is needed for vertex clauses

These fields are sent synchronously with SP export data, described in SP0→SX0 interface
{ISSUE: Where are the PC pointers}

22.1.1424.1.12 SX0 to SEQ : Output file control
Name Direction Bits Description
SXx_SQ_Export_RTScount_rd
y

SX0SXx→SEQ 1 Raised by SX0 to indicate that the following two fields
reflect the result of the most recent export

SXx_SQ_Export_Position SXx0→SEQ 1 Specifies whether there is room for another position.
SXx_SQ_Export_Buffer SX0x→SEQ 7 Specifies the space availbleavailable in the output

buffers.
0: buffers are full
1: 2K-bits available (32-bits for each of the 64
pixels in a clause)
...
64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 277 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

R400 Sequencer Specification PAGE

30 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

22.1.15 SP0 to SX0 : Position return bus

22.1.1624.1.13 Shader Engine to Fetch Unit Bus (Fast Bus)
Four quad’s worth of addresses is transferred to Fetch Unit every clock. These are sourced from a different pixel within
each of the sub-engines repeating every 4 clocks. The register file index to read must precede the data by 2 clocks. The
Read address associated with Quad 0 must be sent 1 clock after the Instruction Start signal is sent, so that data is read
3 clocks after the Instruction Start.

Four Quad’s worth of Fetch Data may be written to the Register file every clock. These are directed to a different pixel
of the sub-engines repeating every 4 clocks. The register file index to write must accompany the data. Data and Index
associated with the Quad 0 must be sent 3 clocks after the Instruction Start signal is sent.

Name Direction Bits Description
Tex_RegFile_Read_DataSP0_TP0_fetch_addr SP0->TEXP0 2048512 16 4 Fetch Addresses read from the

Register file
Tex_RegFile_Write _DataTP0_SP0_data TP0EX→SP0 2048512 16 4 texture results
SP1_TP1_fetch_addr SP1->TP1 512 4 Fetch Addresses read from the

Register file
TP1_SP1_data TP1→SP1 512 4 texture results
SP2_TP2_fetch_addr SP2->TP2 512 4 Fetch Addresses read from the

Register file
TP2_SP2_data TP2→SP2 512 4 texture results
SP3_TP3_fetch_addr SP3->TP3 512 4 Fetch Addresses read from the

Register file
TP3_SP3_data TP3→SP3 512 4 texture results
TPx_SPx_gpr_dst TPx→SPx 7 Write address into the gprs
TPx_SPx_gpr_cmask TPx→SPx 4 Channel mask

22.1.1724.1.14 Sequencer to Fetch Unit bus (Slow Bus)

Once every four clock, the fetch unit sends to the sequencer on wichwhich clause it is now working and if the data in
the registers is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos.
The sequencer also provides the intructioninstruction and constants for the fetch to execute and the address in the
register file where to write the fetch return data.

Name Direction Bits Description
Tex_ReadyTPx_SQ_data_rdy TEXPx→ SEQ 1 Data ready
TPx_SQ_clause_numTex_Clause_Num TEXPx→ SEQ 3 Clause number
SQ_TPx_constTex_cst SEQ→TEXPx 1064 Fetch state address 10 bits sent

over 4 clocks
Tex_InstSQ_TPx_instuct SEQ→TEXPx 1224 Fetch instruction address 12 bits

sent over 4 clocks
SQ_TPx_end_of_clauseEO_CLAUSE SEQ→TEXPx 1 Last instruction of the clause
PHASESQ_TPx_phase SEQ→TEXPx 12 Write phase signal
SQ_TP0_lod_correctLOD CORRECT SEQ→TEXP0 696 LOD correct 3 bits per comp 2

components per quad * 16 quads
MaskSQ_TP0_pmask SEQ→TEXP0 644 Pixel mask 1 bit per pixel
SQ_TP1_lod_correct SQ→TP1 6 LOD correct 3 bits per comp 2

components per quad quads
SQ_TP1_pmask SQ→TP1 4 Pixel mask 1 bit per pixel
SQ_TP2_lod_correct SQ→TP2 6 LOD correct 3 bits per comp 2

components per quad quads
SQ_TP2_pmask SQ→TP2 4 Pixel mask 1 bit per pixel
SQ_TP3_lod_correct SQ→TP3 6 LOD correct 3 bits per comp 2

components per quad quads
SQ_TP3_pmask SQ→TP3 4 Pixel mask 1 bit per pixel
Tex_Clause_NumSQ_TPx_clause_num SEQ→TEXPx 3 Clause number
Tex_Write_Register_IndexSQ_TPx_write_gpr_index SEQ->TEXPx 7 Index into Register file for write of

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 278 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

returned Fetch Data

24.1.15 Sequencer to SP: GPR control
Name Direction Bits Description
SQ_SPx_gpr_wr_addr SQ→SPx 7 Write address
SQ_SPx_gpr_rd_addr SQ→SPx 7 Read address
SQ_SPx_gpr_re_addr SQ→SPx 1 Read Enable
SQ_SPx_gpr_we_addr SQ→SPx 1 Write Enable
SQ_SPx_gpr_phase_mux SQ→SPx 2 The phase mux
SQ_SPx_gpr_channel_mask SQ→SPx 4 The channel mask
SQ_SP0_gpr_pixel_mask SQ→SP0 4 The pixel mask
SQ_SP1_gpr_pixel_mask SQ→SP1 4 The pixel mask
SQ_SP2_gpr_pixel_mask SQ→SP2 4 The pixel mask
SQ_SP3_gpr_pixel_mask SQ→SP3 4 The pixel mask

24.1.16 Sequencer to SPx: Parameter cache write control
Name Direction Bits Description
SQ_SPx_pc_wr_addr SQ→SPx 7 Write address
SQ_SPx_pc_we_addr SQ→SPx 1 Write Enable
SQ_SPx_pc_phase_mux SQ→SPx 1 The output selector mux (gpr vs parameter cache)

24.1.17 Sequencer to SPx: Instructions
Name Direction Bits Description
SQ_SPx_instruct_start SQ→SPx 1 Instruction start
SQ_SP_instruct SQ→SPx 20 Instruction sent over 4 clocks
SQ_SPx_stall SQ→SPx 1 Stall signal
SQ_SPx_Shader_Count SQ→SPx 3 Each set of four pixels or vectors is exported over

eight clocks. This field specifies where the SP is in
that sequence.

SQ_SPx_Shader_Last SQ→SPx 1 Asserted on the first shader count of the last export
of the clause

SQ_SP0_Shader_PixelValid SQ→SP0 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP0_Shader_WordValid SQ→SP0 2 Specifies whether to write low and/or high 32-bit
word of the 64-bit export data from each of the 16
pixels or vectors

SQ_SP1_Shader_PixelValid SQ→SP1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP1_Shader_WordValid SQ→SP1 2 Specifies whether to write low and/or high 32-bit
word of the 64-bit export data from each of the 16
pixels or vectors

SQ_SP2_Shader_PixelValid SQ→SP2 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP2_Shader_WordValid SQ→SP2 2 Specifies whether to write low and/or high 32-bit
word of the 64-bit export data from each of the 16
pixels or vectors

SQ_SP3_Shader_PixelValid SQ→SP3 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP3_Shader_WordValid SQ→SP3 2 Specifies whether to write low and/or high 32-bit

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 279 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

R400 Sequencer Specification PAGE

32 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

word of the 64-bit export data from each of the 16
pixels or vectors

24.1.18 SP to Sequencer: Constant address load
Name Direction Bits Description
SP0_SQ_const_addr SP0→SQ 36 Constant address load to the sequencer
SP0_SQ_valid SP0→SQ 1 Data valid
SP1_SQ_const_addr SP1→SQ 36 Constant address load to the sequencer
SP1_SQ_valid SP1→SQ 1 Data valid
SP2_SQ_const_addr SP2→SQ 36 Constant address load to the sequencer
SP2_SQ_valid SP2→SQ 1 Data valid
SP3_SQ_const_addr SP3→SQ 36 Constant address load to the sequencer
SP3_SQ_valid SP3→SQ 1 Data valid

24.1.19 Sequencer to SPx: constant broadcast
Name Direction Bits Description
SQ_SPx_constant SQ→SPx 128 Constant broadcast

24.1.20 SP0 to Sequencer: Kill vector load
Name Direction Bits Description
SP0_SQ_kill_vect SP0→SQ 4 Kill vector load
SP1_SQ_kill_vect SP1→SQ 4 Kill vector load
SP2_SQ_kill_vect SP2→SQ 4 Kill vector load
SP3_SQ_kill_vect SP3→SQ 4 Kill vector load

24.1.21 SQ to CP: RBBM bus
Name Direction Bits Description
SQ_RBB_rs SQ→CP 1 Read Strobe
SQ_RBB_rd SQ→CP 32 Read Data
SQ_RBBM_nrtrtr SQ→CP 1 Optional
SQ_RBBM_rtr SQ→CP 1 Real-Time (Optional)

24.1.22 CP to SQ: RBBM bus
Name Direction Bits Description
rbbm_we CP→SQ 1 Write Enable
rbbm_a CP→SQ 18 Address -- Upper Extent is TBD
rbbm_wd CP→SQ 32 Data
rbbm_be CP→SQ 4 Byte Enables
rbbm_re CP→SQ 1 Read Enable
rbb_rs0 CP→SQ 1 Read Return Strobe 0
rbb_rs1 CP→SQ 1 Read Return Strobe 1
rbb_rd0 CP→SQ 32 Read Data 0
rbb_rd1 CP→SQ 32 Read Data 0
RBBM_SQ_soft_reset CP→SQ 1 Soft Reset

23.25. Examples of program executions

23.1.125.1.1 Sequencer Control of a Vector of Vertices

1. PA sends a vector of 64 vertices (actually vertex indices – 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO
 state pointer as well as tag into position cache is sent along with vertices
 space was allocated in the position cache for transformed position before the vector was sent

Formatted: Bullets and Numbering

Formatted

Formatted

Formatted

Formatted

Formatted: Bullets and Numbering

Formatted

Formatted

Formatted

Formatted

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 280 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

33 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

 also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex
shader program (using the MH?)

 The vertex program is assumed to be loaded when we receive the vertex vector.
 the SEQ then accesses the IS base for this shader using the local state pointer (provided to all

sequencers by the RBBM when the CP is done loading the program)

2. SEQ arbitrates between the Pixel FIFO and the Vertex FIFO – basically the Vertex FIFO always has priority
 at this point the vector is removed from the Vertex FIFO
 the arbitrerarbiter is not going to select a vector to be transformed if the parameter cache is full unless the

pipe as nothing else to do (ie no pixels are in the pixel fifo).

3. SEQ allocates space in the SP register file for index data plus GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
 SEQ will not send vertex data until space in the register file has been allocated

4. SEQ sends the vector to the SP register file over the RE_SP interface (which has a bandwidth of 2048 bits/cycle)
 the 64 vertex indices are sent to the 64 register files over 4 cycles

 RF0 of SU0, SU1, SU2, and SU3 is written the first cycle
 RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
 RF2 of SU0, SU1, SU2, and SU3 is written the third cycle
 RF3 of SU0, SU1, SU2, and SU3 is written the fourth cycle

 the index is written to the least significant 32 bits (floating point format?) (what about compound indices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, z)

5. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSM0 FIFO)
 the control packet contains the state pointer, the tag to the position cache and a register file base pointer.

6. TSM0 accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

7. all instructions of fetch clause 0 are issued by TSM0

8. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for requests made to the Fetch Unit to complete; it passes the register file write index for

the fetch data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data to the register files, it increments a counter that is associated with ASM0

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

9. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

10. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

11. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 position can be exported in ALU clause 3 (or 4?); the data (and the tag) is sent over a position bus (which is

shared with all four shader pipes) back to the PA’s position cache
 A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
 there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA
 the ASM arbiter will prevent a packet from starting an exporting clause if the position export FIFO is full

 parameter data is exported in clause 7 (as well as position data if it was not exported earlier)
 parameter data is sent to the Parameter Cache over a dedicated bus
 the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space when there is no

longer a need for the parameters (it is told by the PA when using a token).
 the ASM arbiter will prevent a packet from starting on ASM7 if the parameter cache (or the position buffer

if position is being exported) is full

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 281 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

R400 Sequencer Specification PAGE

34 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

12. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

23.1.225.1.2 Sequencer Control of a Vector of Pixels

1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

 At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

2. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
 the state pointer and the LOD correction bits are also placed in the Pixel FIF0
 the Pixel FIFO is wide enough to source four quad’s worth of barycentrics per cycle

3. SEQ arbitrates between Pixel FIFO and Vertex FIFO – when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

4. SEQ allocates space in the SP register file for all the GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
 SEQ will not allow interpolated data to be sent to the shader until space in the register file has been allocated

5. SEQ controls the transfer of interpolated data to the SP register file over the RE_SP interface (which has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagrams for details.

6. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSM0 FIFO)
 note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
 the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
 all other informationsinformation (such as quad address for example) travels in a separate FIFO

7. TSM0 accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

8. all instructions of fetch clause 0 are issued by TSM0

9. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for fetch requests made to the Fetch Unit to complete; it passes the register file write

index for the fetch data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data for a particular clause to the register files, it increments a counter that is

associated with the ASM0 FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

10. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

11. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

12. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 pixel data is exported in the last ALU clause (clause 7)

 it is sent to an output FIFO where it will be picked up by the render backend
 the ASM arbiter will prevent a packet from starting on ASM7 if the output FIFO is full

13. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

23.1.325.1.3 Notes

14. The state machines and arbitrersarbiters will operate ahead of time so that they will be able to immediately start
the real threads or stall.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 282 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
November 20017

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

35 of 35

Exhibit 2018.docR400_Sequencer.doc �� 53168 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:54
PM11/16/01 10:17 AM10/19/01 01:40 PM

15. The register file base pointer for a vector needs to travel with the vector through the reservation stations, but the
instruction store base pointer does not – this is because the RF pointer is different for all threads, but the IS
pointer is only different for each state and thus can be accessed via the state pointer

16. Waterfalling still needs to be specked out.

24.26. Open issues
There is currently an issue with constants. If the constants are not the same for the whole vector of vertices, we don’t
have the bandwithbandwidth from the fetch store to feed the ALUs. Two solutions exists for this problem:

1) Let the compiler handle the case and put those instructions in a fetch clause so we can use the
bandwithbandwidth there to operate. This requires a significant amount of temporary storage in the
register store.

2) Waterfall down the pipe allowing only at a given time the vertices having the same constants to operate in
parrallelparallel. This might in the worst case slow us down by a factor of 16.

Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 283 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SEQ

Version 1.43

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location:
 C:\perforce\r400\doc_lib\design\blocks\sq\R400_Sequencer.docC:\perforce\r400\
doc lib\parts\sq\R400 Sequencer docC:\perforce\r400\arch\doc\gfx\RE\R400 Sequencer doc

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2020
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 284 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

R400 Sequencer Specification PAGE

2 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

Table Of Contents

1. OVERVIEW ... 64
1.1 Top Level Block Diagram 86
1.2 Data Flow graph .. 108
1.3 Control Graph ... 119
2. INTERPOLATED DATA BUS 119
3. INSTRUCTION STORE 1412
4. SEQUENCER INSTRUCTIONS 1614
5. CONSTANT STORES 1614
5.1 Memory organizations 1614
5.2 Management of the remaping tables 1614
5.3 Constant Store Indexing 1614
5.4... 1714
5.5 Real Time Commands 1715
6. LOOPING AND BRANCHES 1715
6.1 The controlling state.................................... 1715
6.2 The Control Flow Program 1815
6.3 Data dependant predicate instructions 2118
6.4 HW Detection of PV,PS 2118
6.5 Register file indexing................................... 2118
6.6 Predicated Instruction support for Texture
clauses ... 2219
6.7 Debugging the Shaders 2219

6.7.1 Method 1: Debugging registers 2219
6.7.2 Method 2: Exporting the values in the
GPRs (12) 2220

7. PIXEL KILL MASK 2320
8. MULTIPASS VERTEX SHADERS (HOS) .. 2320
9. REGISTER FILE ALLOCATION 2320
10. FETCH ARBITRATION 2421
11. ALU ARBITRATION 2421
12. HANDLING STALLS 2522
13. CONTENT OF THE RESERVATION STATION
FIFOS 2522
14. THE OUTPUT FILE 2522
15. IJ FORMAT ... 2522
15.1 Interpolation of constant attributes 2623
16. THE PARAMETER CACHE 2623
17. VERTEX POSITION EXPORTING 2623
18. EXPORTING ARBITRATION 2623
19. EXPORT TYPES .. 2724
19.1 Vertex Shading .. 2724
19.2 Pixel Shading .. 2724
20. SPECIAL INTERPOLATION MODES 2724
20.1 Real time commands 2724
20.2 Sprites/ XY screen coordinates/ FB
information ... 2825
20.3 Auto generated counters 2825

20.3.1 Vertex shaders 2825
20.3.2 Pixel shaders 2825

21. STATE MANAGEMENT 2926
22. XY ADDRESS IMPORTS 2926
22.1 Vertex indexes imports 2926
23. REGISTERS ... 2926
23.1 Control ... 2926

23.2 Context .. 3027
24. DEBUG REGISTERS 3128
24.1 Context .. 3128
25. INTERFACES ... 3128
25.1 External Interfaces 3128

25.1.1 SC to SP : IJ bus 3128
25.1.2 SC to SQ : IJ Control bus 3228
25.1.3 SQ to SC: Vertex/Pixel shader
synchronization bus Error! Bookmark not
defined.29
25.1.4 SQ to SP: Interpolator bus 3229
25.1.5 SQ to SP: GPR Input Mux select . 3329
25.1.6 SQ to SPx: Parameter cache write
control 3330
25.1.7 SQ to SP: Parameter Cache Read
control bus 3330
25.1.8 SQ to SX: Parameter Cache Mux
control Bus 3330
25.1.9 SP to SX: Parameter data 3330
25.1.10 SX to Interpolators: Parameter Cache
Return bus 3430
25.1.11 SQ to SP0: Staging Register Data
 3431
25.1.12 PA to SQ : Vertex interface 3431
25.1.13 SQ to CP: State report 3734
25.1.14 SP to SX : Pixel/Vertex write to SX
 3734
25.1.15 SQ to SX: Control bus 3734
25.1.16 SX to SQ : Output file control 3835
25.1.17 Shader Engine to Fetch Unit Bus . 3835
25.1.18 Sequencer to Fetch Unit bus 3835
25.1.19 Sequencer to SP: GPR control..... 3936
25.1.20 Sequencer to SPx: Instructions 3936
25.1.21 SP to Sequencer: Constant address
load 4037
25.1.22 Sequencer to SPx: constant broadcast
 4037
25.1.23 SP0 to Sequencer: Kill vector load
 4037
25.1.24 SQ to CP: RBBM bus 4037
25.1.25 CP to SQ: RBBM bus 4037

26. EXAMPLES OF PROGRAM EXECUTIONS
 4137

26.1.1 Sequencer Control of a Vector of
Vertices 4137
26.1.2 Sequencer Control of a Vector of
Pixels 4238
26.1.3 Notes .. 4339

27. OPEN ISSUES .. 4340
1. OVERVIEW ... 4
1.1 Top Level Block Diagram 6
1.2 Data Flow graph .. 8
1.3 Control Graph ... 9
2. INTERPOLATED DATA BUS 9

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 285 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

3. INSTRUCTION STORE 12
4. SEQUENCER INSTRUCTIONS 14
5. CONSTANT STORES 14
6. LOOPING AND BRANCHES 15
6.1 The controlling state.. 15
6.2 The Control Flow Program 15
6.3 Data dependant predicate instructions 18
6.4 HW Detection of PV,PS 18
6.5 Register file indexing....................................... 18
6.6 Predicated Instruction support for Texture
clauses ... 19
6.7 Debugging the Shaders 19

6.7.1 Method 1: Debugging registers 19
6.7.2 Method 2: Exporting the values in the
GPRs (12) 19

7. PIXEL KILL MASK ... 20
8. HOS SURFACES ... 20
9. REGISTER FILE ALLOCATION 20
10. FETCH ARBITRATION 21
11. ALU ARBITRATION 21
12. HANDLING STALLS 22
13. CONTENT OF THE RESERVATION STATION
FIFOS 22
14. THE OUTPUT FILE .. 22
15. IJ FORMAT ... 22
16. THE PARAMETER CACHE 23
17. VERTEX POSITION EXPORTING 23
18. EXPORTING ARBITRATION 23
19. SPECIAL INTERPOLATION MODES 24
19.1 Real time commands 24
19.2 Sprites/ XY screen coordinates/ FB
information ... 24
20. STATE MANAGEMENT 25
21. XY ADDRESS IMPORTS 25
22. REGISTERS ... 25
22.1 Control ... 25
22.2 Context .. 25
23. DEBUG REGISTERS 26
23.1 Context .. 26
24. INTERFACES ... 26
24.1 External Interfaces 26

24.1.1 SC to SP : IJ bus 27
24.1.2 SC to SEQ : IJ Control bus 27
24.1.3 SQ to SP: Interpolator bus 28
24.1.4 Sequencer to SPx: Parameter cache
write control 28
24.1.5 SQ to SP: Parameter Cache Read
control bus 28
24.1.6 SQ to SX: Parameter Cache Mux
control Bus 29
24.1.7 SP to SX: Parameter data 29
24.1.8 SX to Interpolators: Parameter Cache
Return bus 29
24.1.9 VGT to SP0/SQ : Vertex Bus 29
24.1.10 SEQ to CP: State report 33
24.1.11 SP to SX : Pixel/Vertex write to SX .. 33
24.1.12 SQ to SX: Control bus 33
24.1.13 SX to SQ : Output file control 34

24.1.14 Shader Engine to Fetch Unit Bus 34
24.1.15 Sequencer to Fetch Unit bus 34
24.1.16 Sequencer to SP: GPR control......... 35
24.1.17 Sequencer to SPx: Instructions 35
24.1.18 SP to Sequencer: Constant address
load 36
24.1.19 Sequencer to SPx: constant broadcast
 36
24.1.20 SP0 to Sequencer: Kill vector load ... 36
24.1.21 SQ to CP: RBBM bus 36
24.1.22 CP to SQ: RBBM bus 36

25. EXAMPLES OF PROGRAM EXECUTIONS .. 36
25.1.1 Sequencer Control of a Vector of
Vertices 36
25.1.2 Sequencer Control of a Vector of
Pixels 37
25.1.3 Notes .. 38

26. OPEN ISSUES .. 39
1. OVERVIEW ... 4
1.1 Top Level Block Diagram 6
1.2 Data Flow graph .. 8
1.3 Control Graph ... 9
2. INTERPOLATED DATA BUS 9
3. INSTRUCTION STORE 12
4. SEQUENCER INSTRUCTIONS 12
5. CONSTANT STORE 12
6. LOOPING AND BRANCHES 12
6.1 The controlling state. 12
6.2 The Control Flow Program 13
6.3 Data dependant predicate instructions 15
6.4 HW Detection of PV,PS 15
6.5 Register file indexing 16
6.6 Predicated Instruction support for Texture
clauses ... 16
6.7 Debugging the Shaders 16

6.7.1 Method 1: Debugging registers 16
6.7.2 Method 2: Exporting the values in the
GPRs (12) 17
6.7.3 Method 3: Selective export of a 32 bit
Dword. 17

7. PIXEL KILL MASK ... 17
8. HOS SURFACES ... 17
9. REGISTER FILE ALLOCATION 17
10. FETCH ARBITRATION 18
11. ALU ARBITRATION 18
12. HANDLING STALLS 19
13. CONTENT OF THE RESERVATION STATION
FIFOS 19
14. THE OUTPUT FILE .. 19
15. IJ FORMAT ... 19
16. THE PARAMETER CACHE 20
17. VERTEX POSITION EXPORTING 20
18. EXPORTING ARBITRATION 20
19. REAL TIME COMMANDS 20
20. REGISTERS ... 21
20.1 Control ... 21
20.2 Context .. 21
21. DEBUG REGISTERS 22

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 286 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

R400 Sequencer Specification PAGE

4 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

21.1 Control ... 22
21.2 Context .. 22
22. INTERFACES ... 22
22.1 External Interfaces 22

22.1.1 PA/SC to SP0 : IJ bus 22
22.1.2 PA/SC to SEQ : IJ Control bus 22
22.1.3 SEQ to SP0 : Interpolator bus 23
22.1.4 SEQ to SP0 : Parameter Cache bus 23
22.1.5 SEQ to SX0 : Parameter Cache Mux
control Bus 23
22.1.6 SX0 to SP0 : Parameter Cache Return
bus 23
22.1.7 VGT to SP0/SEQ : Vertex Bus 23
22.1.8 CP to SEQ : Constant store load 24
22.1.9 CP to SEQ : Fetch State store load . 24
22.1.10 CP to SEQ : Control State store load
 24

22.1.11 MH to SEQ: Instruction store Load .. 24
22.1.12 SP0 to SX0 : Pixel read from RBs 24
22.1.13 SEQ to SX0 : Control bus 24
22.1.14 SX0 to SEQ : Output file control 24
22.1.15 SP0 to SX0 : Position return bus 25
22.1.16 Shader Engine to Fetch Unit Bus (Fast
Bus) 25
22.1.17 Sequencer to Fetch Unit bus (Slow
Bus) 25

23. EXAMPLES OF PROGRAM EXECUTIONS .. 25
23.1.1 Sequencer Control of a Vector of
Vertices 26
23.1.2 Sequencer Control of a Vector of
Pixels 27
23.1.3 Notes .. 28

24. OPEN ISSUES .. 28

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 287 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

 Changed the control flow method to be more
flexible. Also updated the external interfaces.

Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

 Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001

 Refined interfaces to RB. Added state registers.

Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

 Added SEQ→SP0 interfaces. Changed delta
precision. Changed VGT→SP0 interface. Debug
Methods added.

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001

 Interfaces greatly refined. Cleaned up the spec.

Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001

 Added the different interpolation modes.

Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

 Added the auto incrementing counters. Changed
the VGT→SQ interface. Added content on constant
management. Updated registers.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 288 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

R400 Sequencer Specification PAGE

6 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

1. Overview
The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause until the fetch fetches initiated by the previous
fetch clause have completed. There are two separate sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 289 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:56 PM12/05/01 04:59 PM11/16/01 10:17 AM

SEQ

RE

SPSPSPCSTOREFETCH STATE

FETCH
ENGINE

INST STORE

IJ CONTROL

IJ
CONTROL

CST
ADDR

INST
 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/QUAD
ADDRESSES

SP

ALU INST

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

INST

INTER INTER INTER INTER

IJ CROSSBAR

2 QUADS IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC READ
 POINTERS

PARAM
DATA

R/W ADDR

Vertex indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

CP

CONSTANT
LOAD

CPSTATE LOAD

TX ADDR

PC Write
Address

TEX INST

CF
CONSTANTS

CONSTANT
LOAD

CF Read

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 290 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

R400 Sequencer Specification PAGE

8 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

1.1 Top Level Block Diagram

vertex/pixel vector arbitrator

Possible delay for available GPR’s

FIFO
Texture clause 0
reservation station

Texture clause 1
reservation station

FIFO
ALU clause 0
reservation station

FIFO

Texture clause 2
reservation station

Texture clause 3
reservation station

FIFO
ALU clause 1
reservation station

FIFO

FIFO
ALU clause 2
reservation station

FIFO

FIFO
ALU clause 3
reservation station

FIFO
Texture clause 4
reservation station

Texture clause 5
reservation station

FIFO
ALU clause 4
reservation station

FIFO

Texture clause 6
reservation station

Texture clause 7
reservation station

FIFO
ALU clause 5
reservation station

FIFO

FIFO
ALU clause 6
reservation station

FIFO

FIFO
ALU clause 7
reservation station

texture arbitrator

texture arbitrator

There are two sets of the above figure, one for vertices and one for pixels.

Depending on the arbitration state, the sequencer will either choose a vertex or a pixel packet. The control packet
consists of 3 bits of state, 7 bits for the base address of the Shader program and some information on the coverage to
determine fetch LOD plus other various small state bits.

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the registers to store the interpolated values and temporaries. Following this, the barycentric coordinates (and XY

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 291 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

screen position if needed) are sent to the interpolator buffers which are going to use these barycentric coordinates to
interpolate the parameters and place the interpolated values into the GPRs. Then, the input state machine stacks the
packet in the first FIFO.

On receipt of a command, the level 0 fetch machine issues a texture request and corresponding register address for
the fetch address (ta). A small command (tcmd) is passed to the fetch system identifying the current level number (0)
as well as the register write address for the fetch return data. One fetch request is sent every 4 clocks causing the
texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the requests are sent the packet is put in FIFO 1.

Upon receipt of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level 0 fetch machine and sends the clause number (0) to the level 0 fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU 1 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO counter and then issues a
complete set of level 0 shader instructions. For each instruction, the state machine generates 3 source addresses,
one destination address (3 cycles later) and an instruction. Once the last instruction as been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbiters). One arbiter will arbitrate
over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the two arbiters is that they are not allowed to pick the same
clause number as the other one is currently working on if the packet is not of the same type (render state).

If the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbiter must prevent ALU clause 3 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, if needed the sprite size and/or edge flags can also be sent.

{ISSUE: How do we handle parameter cache pointers (computed, semi-computed or not computed)?}

A special case is for multipass vertex shaders whichshaders, which can export 12 parameters per last 6 clauses to
the output buffer. If the output buffer is full or doesn’t have enough space the sequencer will prevent such a vertex
group to enter an exporting clause.

Multipass pixel shaders can export 12 parameters to memory from the last clause only (7).

All other level process in the same way until the packet finally reaches the last ALU machine (7). Upon completion of
a vertex shader, a bit is sent to the SC to let it know that it can begin sending pixels of this group to the sequencer.

Only two ALU state machine may have access to the register file address bus or the instruction decode bus at one
time. Similarly, only one fetch state machine may have access to the register file address bus at one time. Arbitration
is performed by three arbiter blocks (two for the ALU state machines and one for the fetch state machines). The
arbiters always favor the higher number state machines, preventing a bunch of half finished jobs from clogging up the
register files.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 292 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

R400 Sequencer Specification PAGE

10 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

1.2 Data Flow graph

MAC

MAC

MAC

MAC

Register File

co
ns

ta
nt

s
fr

om
 R

E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
nt

s
fr

om
 R

E

S
ca

la
r

U
n

it

texture request

texture request

texture request

texture request

te
xt

ur
e

ad
dr

es
s

te xtu re d
ata

p rim
i tive da

ta f rom
 R

E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 293 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

SEQ

FETCH SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

OF

WrAddrIS CST

CST IDX

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 294 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

R400 Sequencer Specification PAGE

12 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x64 bits)

IJs buffer (ping-pong buffer)
(28 bits * 2 (IJ) + 8 bits * 6 (delta IJs)+4 exp

bits*6)* 16 (quads) * 2 (double-buffered)
4096 bits

32 x 128

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

64

To RB

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2

768 bits
32x24

FIX-FLOAT + EXPANSiON

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 295 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:56 PM12/05/01 04:59 PM11/16/01 10:17 AM

SP
0

SP
1

SP
2

SP
3

T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-
11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P1 P2

T20 T21 T22 T23

VTX

T0 T1 T2 T3

XY

XY
0-3

XY
4-7

XY
8-
11

XY
12-
15

XY
16-
19

XY
20-
23

XY
24-
27

XY
28-
31

XY
32-
35

XY
36-
39

XY
40-
43

XY
44-
47

XY
48-
51

XY
52-
55

XY
56-
59

XY
60-
63

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 296 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

R400 Sequencer Specification PAGE

14 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

Above is an example of a tile we might receive. The IJ information is packed in the IJ buffer 2 quads at a time. The
sequencer allows at any given time as many as four quads to interpolate a parameter. They all have to come from the
same primitive. Then the sequencer controls the write mask to the register to write the valid data in.

3. Instruction Store
There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the INST_DATAINSTRUCTION_DATA, INST_INDEX_PORT
INSTRUCTION_INDEX_PORT control registers. The INST_INDEX_PORTINSTRUCTION_INDEX_PORT is auto-
incremented on both reads and writes to the INST_DATAINSTRUCTION_DATA register.

The next picture shows the various modes the CP can load the memory. The Sequencer has to keep track of the
loading modes in order to wrap around the correct boundaries. The MSB of the INST_INDEX_PORT
INSTRUCTION_INDEX_PORT register contains the packet type for the sequencer to know where it must wrap
around. The wrap around points are arbitrary and they are specified in the VERTEX_SHADERVS_BASE and
PIXEL_SHADERX_BASE registers.

For the Real time commands the story is quite the same but for some small differences. The CP will use the
INST_INDEX_PORT_RT and INST_DATA_RT register pair instead of the regular ones and there are no wrap around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 297 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:56 PM12/05/01 04:59 PM11/16/01 10:17 AM

R400 CP's Views of Instruction Memory Updated: 11/14/2001
John A. Carey

0

4095

Real-Time &
Shared Code

VERTEX_SHADER_BASE

PIXEL_SHADER_BASE

VS Code A

VS Code B

VS Code C

PS Code A

PS Code B

PS Code C

CP writes code start
addresses to
appropriate Sub-
Blocks so Sequencer
knows where to start
executing the code.

MODE 0 - Dual Ring
0

4095

Real-Time &
Shared Code

VERTEX_SHADER_BASE

VS Code A

VS Code B

VS Code C

PS Code A

PS Code B

PS Code C

MODE 1 - Single Ring

CP writes code start
addresses to
appropriate Sub-
Blocks so Sequencer
knows where to start
executing the code.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 298 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

R400 Sequencer Specification PAGE

16 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

4. Sequencer Instructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS).

5. Constant Stores

5.1 Memory organizations
The sequencer is aware of where the constants are using a remaping table. A likely size for the ALU constant store is
1024x128 bits. The read BW from the ALU constant store is 128 bits/clock and the write bandwidth is 32 bits/clock
(directed by the CP bus size not by memory ports)32/4 bits/clock.

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the remaping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants.

The texture state is also kept in a similar memory. The size of this memory is 192x128. The memory thus holds 128
texture states (192 bits per state). The logical size exposed 32 different states total, which are going to be shared
between the pixel and the vertex shader. The size of the remaping table to for the texture state memory is 16 lines
(each line addresses 2 texture state lines in the real memory). The write granularity is 2 texture state lines (or 384
bits). The driver sends 512 bits but the CP ignores the top 128 bits. It thus takes 12 clocks to write the two texture
states.

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a state change. Its size is 256*32 because it must hold 8 copies of the 32 dwords
of control flow constants.

The CP is loading the constant store using the CONST_DATA and CONST_ADDR registers. It does so by writing to
the CONST_ADDR register the logical address for the constant block it wants to update and then writes 16 times to
the CONST_DATA register. The CONST_ADDR is auto-incremented on both reads and writes to the CONST_DATA
register.

5.2 Management of the remaping tables
The sequencer is responsible to manage two remaping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its remaping tables to a
new one. We have 8 different remaping tables we can use concurrently. More details and a diagram to come….

5.15.3 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)
between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 299 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

5.4

5.5 Real Time Commands
The real time commands constants are written by the CP using the CONST_DATA_RT and CONST_ADDR_RT
registers. It works is the same way than when dealing with regular constant loads BUT in this case the CP is not
sending a logical address but rather a physical address and the reads are not passing thru the remaping table but are
directly read from the memory. The boundary between the two zones is defined by the CONST_EO_RT control
register.

CONST_EO_RT

RT SECTON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table)

The texture state is also kept in a similar memory. The size of this memory is 192x128. Which lets us load a texture
state in 2 clocks. The memory thus holds 96 texture states (2*128 bits per state)

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a state change. Its size is 192*32 because it must hold 8 copies of the 24 dwords
of control flow constants.

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:
As per Dx9 the following state is available for control flow:

Boolean[15:0]
loop_count[7:0][7:0]

In addition:

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 300 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

R400 Sequencer Specification PAGE

18 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

loop_start [7:0] [7:0]
loop_step [7:0] [7:0]
 Exist to give more control to the controlling program.

We will extend that in the R400 to:
Boolean[255256:0]
Loop_count[7:0][31:031:0]
Loop_Start[7:0] [[31:031:0]
Loop_Step[7:0] [31:31:0]
Loop_End[7:0] [31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested callings of subroutines and 4 loop counters to allow for nested loops.

6.2 The Control Flow Program
The R300 uses a match method for control flow: The shader is executed, and at every instruction its address is
compared with addresses (or address?) in a control table. The “event” in the control table can redirect operations in
the program.
The basic model is as follows:

The render state defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located

A pointer value of FF means that the clause doesn’t contain any instructions.

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The control program is the only program aware of the clause
boundaries.

The Method chosen for the R400 is a “control program”. The control program has ten eleven basic instructions:

Execute
Conditional_execute
Conditional_Execute_Predicates
Conditional_jump
Call
Return
Loop_start
Loop_end
End_of_clause
Conditional_End_of_clause
NOP

Execute, causes the specified number of instructions in instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified number of instructions in instruction
store to be executed.
Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified number of instructions.
Call jumps to an address and pushes the IP counter on the stack. On the return instruction, the IP is popped from the
stack.
Conditional_execute_or_Jump executes a block of instructions or jumps to an address is the condition is not met.
Conditional_execute_Predicates executes a block of instructions if all bits in the predicate vectors meet the condition.
End_of_clause marks the end of a clause.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 301 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

Conditional_End_of_clause marks the end of a clause if the condition is met.
Conditional_jumps jumps to an address if the condition is met.
NOP is a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSES. Thus the compiler must insert NOPs where
needed to align the jumps on even CFP addresses.

Also if the jump is logically bigger than pshader_cntl_size (or vshader_cntl_size) we break the program (clause) and
set the debug registers. If an execute or conditional_execute is lower than cntl_size or bigger than size we also break
the program (clause) and set the debug registers.

We have to fit instructions into 48 bits in order to be able to put two control flow instruction per line in the instruction
store.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

Execute
47 46… 42 41 … 24 23 … 12 11 … 0

Addressing 00001 RESERVED Instruction
_count

Exec Address

Execute up to 4k instructions at the specified address in the instruction memory.

NOP
47 46 … 42 41 … 0

Addressing 00010 RESERVED

This is a regular NOP.

Conditionnal_Execute

47 46 … 42 4141 … 34 40 … 33 3332 32 31 … 24 23 … 12 11 … 0
Addressing 00011 RESERVED

Boolean
address

Boolean
address

Condition RESERVED Instruction
_count

Exec Address

If the specified boolean (8 bits can address 256 booleans) meets the specified condition then execute the specified
instructions (up to 4k instructions)

Conditionnal_Execute_Predicates
47 46 … 42 41 … 35 41 34 …

3833
3732 36 31 … 24 23 … 12 11 … 0

Addressing 00100 RESERVED Predicate
vector

Condition RESERVED Instruction_
count

Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid.

Loop_Start
47 46 … 42 41 … 17 16 … 516 … 12 4 … 011 … 0

Addressing

00101 RESERVED Jump
addressloop ID

Loop IDJump
address

Loop Start. Compares the loop count with the end value. If loop condition not met jump to the address. Forward jump
only. Also computes the index value.

Loop_End
47 46 … 42 41 … 17 16 … 512 4 … 011 … 0

Formatted

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 302 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

R400 Sequencer Specification PAGE

20 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

Addressing

00111 RESERVED Start
addressloop ID

Loop IDstart
address

Loop end. Increments the counter by one and jumps BACK only to the start of the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Call
47 46 … 42 41…12 11 … 0

Addressing

01000 RESERVED Jump
addressAddres

s

Jumps to the specified address and pushes the IP counter on the stack.

Return
47 46 … 42 41 … 0

Addressing

01001 RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump
47 46 … 42 4141 … 34 40 … 33 3332 32 … 1331 1230 … 12 11 … 0

Addressing

01010 RESERVED
Boolean
address

Boolean
address

Condition FW
onlyRESE

RVED

RESERVEDFW
only

Jump
addressAddres

s

If condition met, jumps to the address. FORWARD jump only allowed if bit 12 31 set. Bit 12 31 is only an optimization
for the compiler and should NOT be exposed to the API.

Conditional_End_of_Clause
47 46 … 42 4141 … 34 40 … 33 3332 32 31 … 0

Addressing

01011 RESERVED
Boolean
address

Boolean
address

Condition RESERVED

This is an optimization in the case of very short shaders (where the control flow instruction can’t be hidden anymore
and thus are not free. In this case, if the condition is met, the clause is ended, else we continue the execution of the
clause.

End_of_Clause
47 46 … 42 41 … 0

 Addressing 01011 RESERVED

Marks the end of a clause.

To prevent infinite loops, we will keep 9 bits loop counters instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start instruction is going to break the loop and set the
debug registers.

The basic model is as follows:

The render state defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 303 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

A pointer value of FF means that the clause doesn’t contain any instructions.

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The control program is the only program aware of the clause
boundaries.

6.3 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETNE_# - similar to SETNE except that the result is 'exported' to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE0_# – SETE0
 PRED_SETE1_# – SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

 P0_ADD_# R0,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

6.4 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

6.5 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 304 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

R400 Sequencer Specification PAGE

22 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

The sequencer is going to keep a loop index computed as such:

 Index = Loop_counter*Loop_iterator + Loop_init.

The index is going to return 0 if it is out of the range.

6.6 Predicated Instruction support for Texture clauses
For texture clauses, we support the following optimization: we keep 1 bit (thus 4 bits for the four predicate vectors)
per predicate vector in the reservation stations. A value of 1 means that one ore more elements in the vector have a
value of one (thus we have to do the texture fetches for the whole vector. A value of 0 means that no elements in the
vector have his predicate bit set and we can thus skip over the texture fetch. We have to make sure the invalid
pixels aren’t considered with this optimization.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow
- jump error
 relative jump address > size of the control flow program
 relative jump address > length of the shader program
- constant overflow
- register overflow
- call stack
 call with stack full
 return with stack empty

With two of the errors, a jump error or a register overflow will cause the program to break. In this case, a break
means that a clause will halt execution, but allowing further clauses to be executed.

With the other errors, program can continue to run, potentially to worst-case limits.

If indexing outside of the constant range, causing an overflow error, the hardware is specified to return the value with
an index of 0. This could be exploited to generate error tokens, by reserving and initializing the 0th register (or
constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs (12)
The sequencer will have a count register and an address register for this mode and 3 bits per clause specifying the
execution mode for each clause. The modes can be :

1) Normal
2) Debug Kill
3) Debug Addr + Count

Under the normal mode execution follows the normal course. Under the kill mode, all control flow instructions are
executed but all normal shader instructions of the clause are replaced by NOPs. Only debug_export instructions of
clause 7 will be executed under the debug kill setting. Under the other mode, normal execution is done until we reach
an address specified by the address register and instruction count (useful for loops) specified by the count register.
After we have hit the instruction n times (n=count) we switch the clause to the kill mode.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 305 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

Under the debug mode (debug kill OR debug Addr + count), it is assumed that clause 7 is always exporting 12 debug
vectors and that all other exports to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by
the sequencer (even if they occur before the address stated by the ADDR debug register).

7. Pixel Kill Mask
A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE

 MASK_SETGT
 MASK_SETGTE

8. HOS surfacesMultipass vertex shaders (HOS)
HOSMultipass vertex shaders surfaces are able to export from the 6 last clauses but to memory ONLY. If they want
to export to the parameter cache they have to do it in the last clause (7). They can also export position in clause 3.

9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to VERTEX_REG_SIZE for vertices and 256-
VERTEX_REG_SIZE for pixels.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 306 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

R400 Sequencer Specification PAGE

24 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again.

10. Fetch Arbitration
The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration
ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbitrers, one for the even clocks and one for the odd clocks. For
exemple, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…
 Proceeding this way hides the latency of 8 clocks of the ALUs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 307 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic to select the last clause (this way nothing
can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position buffer is
full (POS_FULL) then the sequencer also prevents a thread to enter the exporting clause (3?). The sequencer will set
the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter will be able read
this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs
21 3 bits of Render State 7 bits for the base address of the GPRs, some bits for LOD correction and coverage mask
information in order to fetch fetch for only valid pixels, quad address and 1 bit to specify if the vector is of pixels or
vertices. Since pixels and vertices are kept in order in the shader pipe, we only need two fifos (one for vertices and
one for pixels) deep enough to cover the shader pipe latency. This size will be determined later when we will know
the size of the small fifos between the reservation stations.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel’s parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming P0 is the interpolated parameter at Pixel 0 having the barycentric coordinates I(0), J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at V0 (interpolated with I), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

)(*03)(*0303

)(*02)(*0202

)(*01)(*0101

)(*)0()(*)0(0

)0()3(03

)0()3(03

)0()2(02

)0()2(02

)0()1(01

)0()1(01

CBJCAIPP

CBJCAIPP

CBJCAIPP

CBJCAICP

JJJ

III

JJJ

III

JJJ

III

P0 is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6

P0

P2

P1

P3

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 308 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

R400 Sequencer Specification PAGE

26 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF P0’s IJ : Mantissa 20 Exp 4 for I + Sign
 Mantissa 20 Exp 4 for J + Sign

FORMAT of Deltas (x3): Mantissa 8 Exp 4 for I + Sign
 Mantissa 8 Exp 4 for J + Sign

Total number of bits : 1920*2 + 8*6 + 4*8 + 4*28*6 + 4*8 + 4*2 = 128

The Deltas have a leading 1, the Full precision IJs don’t. This means that in the case of the deltas we MUST be able
to shift 8 right (exponent value of 0 means number = 0, exponent value of 1 means shift right 88). This means that the
maximum range for the IJs (Full precision) is +/- 634 and the range for the Deltas is +/- 1287.

15.1 Interpolation of constant attributes
Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

We start with the premise that if A = B and B = C and C = A, then P0,1,2,3 = A. Since one or more of the IJ terms
may be zero, so we extend this to:

if (A=B and B=C and C=A)
 P0,1,2,3 = A;
else if ((I = 0) or (J = 0)) and
 ((J = 0) or (1-I-J = 0)) and
 ((1-J-I = 0) or (I = 0))) {
 if(I != 0) {
 P0 = A;
 } else if(J != 0) {
 P0 = B;
 } else {
 P0 = C;
 }
 //rest of the quad interpolated normally
}
else
{
 normal interpolation
}

16. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories.

17. Vertex position exporting
On clause 3 the vertex shader can export to the PA both the vertex position and the point sprite. It can also do so at
clause 7 if not done at clause 3. The storage needed to perform the position export is at least 64x128 memories for
the position and 64x32 memories for the sprite size. It is going to be taken in the pixel output fifo from the SX blocks.
The clause where the position export occurs is specified by the EXPORT_LATE register. If turned on, it means that
the export is going to occur at ALU clause 7 if unset position export occurs at clause 3.

18. Exporting Arbitration
Here are the rules for co-issuing exporting ALU clauses.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 309 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

1) Position exports and position exports cannot be co-issued.
2) Position exports and memory exports cannot be co-issued.
3) Position exports and Z/Color exports cannot be co-issued.
4) Memory exports and Z/Color exports cannot be co-issued.
5) Memory exports and memory exports cannot be co-issued.
6) Z/color exports and Z/color exports cannot be co-issued.
7) Parameter exports and Z/Color exports CAN be co-issued.
8) Parameter exports and parameter exports CAN be co-issued.
9) Parameter exports and memory exports CAN be co-issued.

19. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

19.1 Vertex Shading
 0:15 - 16 parameter cache
 16:31 - Empty (Reserved?)
 32:43 - 12 vertex exports to the frame buffer and index
 44:47 - Empty
 48:59 - 12 debug export (interpret as normal vertex export)
 60 - export addressing mode
 61 - Empty
 62 - sprite size export that goes with position export
 (point_h,point_w,edgeflag,misc)
 63 - position

19.2 Pixel Shading
 0 - Color for buffer 0 (primary)
 1 - Color for buffer 1
 2 - Color for buffer 2
 3 - Color for buffer 3
 4:7 - Empty
 8 - Buffer 0 Color/Fog (primary)
 9 - Buffer 1 Color/Fog
 10 - Buffer 2 Color/Fog
 11 - Buffer 3 Color/Fog
 12:15 - Empty
 16:31 - Empty (Reserved?)
 32:43 - 12 exports for multipass pixel shaders.
 44:47 - Empty
 48:59 - 12 debug exports (interpret as normal pixel export)
 60 - export addressing mode
 61:62 - Empty
 63 - Z for primary buffer (Z exported to 'alpha' component)

19.20. Special Interpolation modes

19.120.1 Real time commands
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 310 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

R400 Sequencer Specification PAGE

28 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem I see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft’s high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This mode is triggered by the primitive type: REAL TIME.

19.220.2 Sprites/ XY screen coordinates/ FB information
When working with sprites, one may want to overwrite the parameter 0 with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_I0 register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control registers. Here is a list of all the modes and how they
interact together:

Gen_st is a bit taken from the interface between the SC and the SQ. This is the MSB of the primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to be read
from the GEN_S and GEN_T state registers instead of being read from the parameter cachegenerated between 0
and 1.

Param_Gen_I0 disable, snd_xy disable, no gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy disable, gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy enable, no gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy enable, gen_st – I0 = No modification
Param_Gen_I0 enable, snd_xy disable, no gen_st – I0 = garbage, garbage, garbage, faceness
Param_Gen_I0 enable, snd_xy disable, gen_st – I0 = garbage, garbage, s, t
Param_Gen_I0 enable, snd_xy enable, no gen_st – I0 = screen x, screen y, garbage, faceness
Param_Gen_I0 enable, snd_xy enable, gen_st – I0 = screen x, screen y, s, t

20.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1st pass data to memory and then use the count to retrieve the data on the 2nd pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. While there is only one
count broadcast to the registers, the LSB are hardwired to specific values making the index different for all elements
in the vector.

20.3.1 Vertex shaders
In the case of vertex shaders, if GEN_INDEX is set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

20.3.2 Pixel shaders
In the case of pixel shaders, if GEN_INDEX is set, the data will be put in the x field of the 2nd register (I1.x).

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted

Formatted

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 311 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

AUTO
COUNT

STG 0

STG1

INTERPOLATORS

GPR0

AUTO COUNT 000000

MUX

The Auto Count Value is
broadcast to all GPRs. It is

loaded into a register wich has
its LSBs hardwired to the

GPR number (0 thru 63). Then
if GEN_INDEX is high, the
mux selects the auto-count

value and it is loaded into the
GPRs to be either used to

retrieve data using the TP or
sent to the SX for the RB to

use it to write the data to
memory

20.21. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

21.22. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix→float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 20.219.2 for details on how to control the interpolation in this mode.

22.1 Vertex indexes imports
In order to import vertex indexes, we have 64x2x96 staging registers. These are loaded one at a time by the VGT
block. They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

22.23. Registers

22.123.1 Control
DYNAMIC_REG_DYNAMIC Dynamic allocation (pixel/vertex) of the register file on or off.
VERTEX_REG_SIZE What portion of the register file is reserved for vertices (static allocation only)
REG_SIZE_PIXPIXEL_MIN_SIZE SMinimal size of the register file's pixel portion (minimal size when

dynamic allocation turned on) (dynamic only)
REG_SIZE_VTX VERTEX_MIN_SIZE Minimal sSize of the register file's vertex portion (minimal

size when dynamic allocation turned on) (dynamic only)
ARBITRATION_policyPOLICY policy of the arbitration between vertexes and pixels
INST_STORE_ALLOC interleaved, separate
VERTEX_BASEINST_BASE_VTX start point for the vertex instruction store (RT always ends at

vertex_base and

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 312 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

R400 Sequencer Specification PAGE

30 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

Begins at 0)
PIXEL_BASEINST_BASE_PIX start point for the pixel shader instruction store
NO_INTERLEAVEONE_THREAD debug state register. Only allows one program at a time into the

GPRs
NO_INTERLEAVE_ALUONE_ALU debug state register. Only allows one ALU program at a time to be executed

(instead of 2)
INSTRUCTION_INDEX
_PORT This is where the CP puts the base address of the instruction writes and type (auto-

incremented on reads/writes)
INSTRUCTION_DATA This is where the CP puts the actual data going to the instruction memory
CONSTANT_DATA This is where the CP puts constant data (32 bits)
CONSTANT_ADDR This is where the CP puts the logical constant address (9 bits)
INSTRUCTION_INDEX
PORT_RT This is where the CP puts the base address of the instruction writes and type for

Real Time (auto-incremented on reads/writes)
INSTRUCTION_DATA_RT This is where the CP puts the actual data going to the instruction memory for

Real Time
CONSTANT_DATA_RT This is where the CP puts constant data for Real Time (32 bits)
CONSTANT_ADDR_RT This is where the CP puts the logical constant address for Real Time (9 bits)
CONSTANT_EO_RT This is the size of the space reserved for real time in the constant store (from 0 to

CONSTANT_EO_RT). The remaping table operates on the rest of the memory
EXPORT_LATE Controls whether or not we are exporting position from clause 3. If set, position

exports occur at clause 7.

22.223.2 Context
Vshader_fetch[7:0][7:0]VS_FETCH_{0…7} eight 8 bit pointers to the location where each clauses

control program is located
Vshader_alu[7:0][7:0]VS_ALU_{0…7} eight 8 bit pointers to the location where each clauses

control program is located
PS_FETCH_{0…7} Pshader_fetch[7:0][7:0] eight 8 bit pointers to the location where each clauses control

program is located
PS_ALU_{0…7} Pshader_alu[7:0][7:0] eight 8 bit pointers to the location where each clauses control

program is located
PSHADERPS_BASE base pointer for the pixel shader in the instruction store
VSHADERVS_BASE base pointer for the vertex shader in the instruction store
Vshader_cntl_sizeVS_CF_SIZE size of the vertex shader (# of instructions in control program/2)
Pshader_cntl_sizePS_CF_SIZE size of the pixel shader (# of instructions in control program/2)
Pshader_sizePS_SIZE size of the pixel shader (cntl+instructions)
Vshader_sizeVS_SIZE size of the vertex shader (cntl+instructions)
REG_ALLOC_PIXPS_NUM_REG number of registers to allocate for pixel shader programs
REG_ALLOC_VERTVS_NUM_REG number of registers to allocate for vertex shader programs
FLAT_GOUR[0…15]PARAM_SHADE One 16 bit register specifying which parameters are to be

gouraud shaded (0 = flat, 1 = gouraud)
CYL_WRAP[0…63] PARAM_WRAP 64 bits: for which parameters (and channels (xyzw)) do we

do the cyl wrapping (0=linear, 1=cylindrical).
P_export_modePS_EXPORT_MODE 0xxxx : Normal mode
 1xxxx : Multipass mode
 If normal, bbbz where bbb is how many colors (0-4) and z is export z or not
 If multipass 1-12 exports for color.
vshader_export_maskVS_EXPORT_MASK which of the last 6 ALU clauses is exporting (multipass only)
vshader_export_modeVS_EXPORT_MODE 0: position (1 vector), 1: position (2 vectors), 3:multipass
vshader_export_count[6]VS_EXPORT
COUNT{0…6} Six 4 bit counters representing the ## of interpolated parameters exported in

clause 7 (located in VS_EXPORT_COUNT_6) OR
 # of exported vectors to memory per clause in multipass mode (per clause)
Control_Flow 24 Dwords that contain the control flow constants.
PARAM_GEN_T Max Value interpolated in the T coordinate field (sprites)
GEN_S Max Value interpolated in the S coordinate field (sprites)

Formatted

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 313 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

GEN_I0 Do we overwrite or not the parameter 0 with XY data and generated T and S values
GEN_INDEX Auto generates an address from 0 to XX. Puts the results into R1 for pixel shaders

and R3 for vertex shaders
CONST_BASE_VTXVTX_CST_BASE (9 bits) Logical Base address for the constants of the Vertex shader
PIX_CST_BASECONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader
PIX_CST_SIZECONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
VTX_CST_SIZECONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Turns on the predicate bit optimization (if of, conditional_execute_predicates is

always executed).
CF_BOOLEANS 256 boolean bits
CF_LOOP_COUNT 32x8 bit counters (number of times we traverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in index computation)

23.24. DEBUG registers

23.124.1 Context
DB_PROB_ADDR instruction address where the first problem occurred
DB_PROB_COUNT number of problems encountered during the execution of the program
CountDB_INST_COUNT instruction counter for debug method 2
AddrDB_BREAK_ADDR break address for method number 2
DB_CLAUSE
_MODE_ALU_{0…7}Clause_mode[3] clause mode for debug method 2 (0: normal, 1: addr, 2: kill)
DB_CLAUSE
_MODE_FETCH_{0…7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)

NO_PRED_OPTIMIZE turns off the predicate bit optimization (conditional_execute_predicates is always

executed.

24.25. Interfaces

24.125.1 External Interfaces
Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ→SPx it means that SQ is going to broadcast the same information to all SP instances.

24.1.125.1.1 SC to SP : IJ bus
This is a bus that sends the IJ information to the IJ fifos on the top of each shader pipe. At the same time the control
information goes to the sequencer. There are 4 of these buses over the whole chip (SP0 thru 3)

Name Direction Bits Description
SC_SP0_data SC→SP0 64 IJ information sent over 2 clocks (or XY info sent over 1

clock in the lower 24 LSBs of the interface)
SC_SP0_q_wr_mask SC→SP0 1 Write Mask
SC_SP0_dest SC→SP0 1 Controls the write destination (XY buffer, IJ buffer)
SC_SP1_data SC→SP1 64 IJ information sent over 2 clocks (or XY info sent over 1

clock in the lower 24 LSBs of the interface)
SC_SP1_q_wr_mask SC→SP1 1 Write Mask
SC_SP1_dest SC→SP1 1 Controls the write destination (XY buffer, IJ buffer)
SC_SP2_data SC→SP2 64 IJ information sent over 2 clocks (or XY info sent over 1

clock in the lower 24 LSBs of the interface)
SC_SP2_q_wr_mask SC→SP2 1 Write Mask
SC_SP2_dest SC→SP2 1 Controls the write destination (XY buffer, IJ buffer)
SC_SP3_data SC→SP3 64 IJ information sent over 2 clocks (or XY info sent over 1

clock in the lower 24 LSBs of the interface)
SC_SP3_q_wr_mask SC→SP3 1 Write Mask
SC_SP3_dest SC→SP3 1 Controls the write destination (XY buffer, IJ buffer)

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 314 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

R400 Sequencer Specification PAGE

32 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

24.1.225.1.2 SC to SEQ : IJ Control bus
This is the control information sent to the sequencer in order to control the IJ fifos and all other information needed to
execute a shader program on the sent pixels. This information is sent over 2 clocks, if SENDXY is asserted the next
control packet is going to be ignored and XY information is going to be sent on the IJ bus (for the quads that where
just sent).

Name Direction Bits Description
SC_SQ_q_wr_mask SC→SQ 4 Quad Write mask left to right
SC_SQ_lod_correct SC→SQ 24 LOD correction per quad (6 bits per quad)
SC_SQ_flat_vertex SC→SQ 2 Provoking vertex for flat shading
SC_SQ_param_ptr0 SC→SQ 11 P Store pointer for vertex 0
SC_SQ_param_ptr1 SC→SQ 11 P Store pointer for vertex 1
SC_SQ_param_ptr2 SC→SQ 11 P Store pointer for vertex 2
SC_SQ_end_of_vect SC→SQ 1 End of the vector
SC_SQ_store_dealloc SC→SQ 1 Deallocation token for the P Store
SC_SQ_state SC→SQ 3 State/constant pointer (6*3+3)
SC_SQ_valid_pixel SC→SQ 16 Valid bits for all pixels
SC_SQ_null_prim SC→SQ 1 Null Primitive (for PC deallocation purposes)
SC_SQ_end_of_prim SC→SQ 1 End Of the primitive
SC_SQ_fbface SC→SQ 1 Front face = 1, back face = 0
SC_SQ_send_xy SC→SQ 1 Sending XY information [XY information is going to be

sent on the next clock]
SC_SQ_prim_type SC→SQ 3 Real time command need to load tex cords from

alternate buffer. Line AA, Point AA and Sprite reads
their parameters from GEN_T and GEN_S registers.
000 : Normal
011 : Real Time
100 : Line AA
101 : Point AA
110 : Sprite

SC_SQ_new_vector SC→SQ 1 This primitive comes from a new vector of vertices.
Make sure that the corresponding vertex shader has
finished before starting the group of pixels.

SC_SQ_RTRn SQ→SC 1 Stalls the PA in n clocks
SC_SQ_RTS SC→SQ 1 SC ready to send data

24.1.325.1.3 SQ to SP: Interpolator bus
Name Direction Bits Description
SQ_SPx_interp_prim_type SQ→SPx 3 Type of the primitive

000 : Normal
011 : Real Time
100 : Line AA
101 : Point AA
110 : Sprite

SQ_SPx_interp_flat_vtx SQ→SPx 2 Provoking vertex for flat shading
SQ_SPx_interp_flat_gouraud SQ→SPx 1 Flat or gouraud shading
SQ_SPx_interp_cyl_wrap SQ→SPx 4 Wich parameter needs to be cylindrical wrapped
SQ_SPx_interp_ijline SQ→SPx 2 Line in the IJ/XY buffer to use to interpolate
SQ_SPx_interp_buff_swap SQ→SPx 1 Swap the IJ/XY buffers at the end of the interpolation
SQ_SPx_interp_gen_I0 SQ→SPx 1 Generate I0 or not. This tells the interpolators not to

use the parameter cache but rather overwrite the data
with interpolated 1 and 0. Overwrite if gen_I0 is high.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 315 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

33 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

25.1.4 SQ to SP: GPR Input Mux select
This interface is synchronized with the Interpolator bus. This controls the input mux to the GPRs. The three types of
data are: generated index, Interpolated data, vertex index data (coming from the staging registers).

Name Direction Bits Description
SQ_SPx_data_type SQ→SPx 2 00: Interpolated data

01: Staging register data
1x: Count

SQ_SPx_index_count SQ→SPx 12? Index count, common for all shader pipes
SQ_SPx_stage_addr SQ→SPx 1 Staging register address

0: First staging register
1: second staging register

25.1.5 SQ to SPx: Parameter cache write control
Name Direction Bits Description
SQ_SPx_pc_wr_addr SQ→SPx 7 Write address
SQ_SPx_pc_we_addr SQ→SPx 1 Write Enable
SQ_SPx_pc_phase_mux SQ→SPx 1 The output selector mux (gpr vs parameter cache)

24.1.425.1.6 SQ to SP: Parameter Cache Read control bus
The four following interfaces (SQ→SP, SQ→SX,SP→SX and SX→Interpolators) are all SYNCHRONIZED together.

Name Direction Bits Description
SQ_SPx_ptr0 SQ→SPx 9 Pointer of PC
SQ_SPx_ptr1 SQ→SPx 9 Pointer of PC
SQ_SPx_ptr2 SQ→SPx 9 Pointer of PC
SQ_SP0_read_ena SQ→SP0 4 Read enables for the 4 memories in the SP0
SQ_SP1_read_ena SQ→SP1 4 Read enables for the 4 memories in the SP1
SQ_SP2_read_ena SQ→SP2 4 Read enables for the 4 memories in the SP2
SQ_SP3_read_ena SQ→SP3 4 Read enables for the 4 memories in the SP3

24.1.525.1.7 SQ to SX: Parameter Cache Mux control Bus
Name Direction Bits Description
SQ_SXx_mux0 SQ→SXx 4 Mux control for PC (4 MSbs of Pointer)
SQ_SXx_mux1 SQ→SXx 4 Mux control for PC (4 MSbs of Pointer)
SQ_SXx_mux2 SQ→SXx 4 Mux control for PC (4 MSbs of Pointer)

24.1.625.1.8 SP to SX: Parameter data
Name Direction Bits Description
SP0_SX0_data0 SP0→SX0 128 Parameter data 0
SP0_SX0_data1 SP0→SX0 128 Parameter data 1
SP0_SX0_data2 SP0→SX0 128 Parameter data 2
SP0_SX0_data3 SP0→SX0 128 Parameter data 3
SP1_SX1_data0 SP1→SX1 128 Parameter data 0
SP1_SX1_data1 SP1→SX1 128 Parameter data 1
SP1_SX1_data2 SP1→SX1 128 Parameter data 2
SP1_SX1_data3 SP1→SX1 128 Parameter data 3
SP2_SX0_data0 SP2→SX0 128 Parameter data 0
SP2_SX0_data1 SP2→SX0 128 Parameter data 1
SP2_SX0_data2 SP2→SX0 128 Parameter data 2
SP2_SX0_data3 SP2→SX0 128 Parameter data 3
SP3_SX1_data0 SP3→SX1 128 Parameter data 0
SP3_SX1_data1 SP3→SX1 128 Parameter data 1
SP3_SX1_data2 SP3→SX1 128 Parameter data 2

Formatted: Bullets and Numbering

Formatted

Formatted

Formatted

Formatted

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 316 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

R400 Sequencer Specification PAGE

34 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

SP3_SX1_data3 SP3→SX1 128 Parameter data 3

24.1.725.1.9 SX to Interpolators: Parameter Cache Return bus
Name Direction Bits Description
SXx_SPx_vtx_data_0 SXx→SPx 128 Vertex data to interpolate
SXx_SPx_vtx_data_1 SXx→SPx 128 Vertex data to interpolate
SXx_SPx_vtx_data_2 SXx→SPx 128 Vertex data to interpolate

25.1.10 SQ to SP0: Staging Register Data
Name Direction Bits Description
SQ_SP0_vgt_vsisr_data SQ→SP0 96 Pointers of indexes or HOS surface information
SQ_SP0_vgt_vsisr_double SQ→SP0 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0_data_valid SQ→SP0 1 Data is valid

25.1.11 PA to SQ : Vertex interface

25.1.11.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide.

Name Bits Description
PA_SQ_vgt_vsisr_data 96 Pointers of indexes or HOS surface information
PA_SQ_vgt_vsisr_double 1 0: Normal 96 bits per vert 1: double 192 bits per vert
PA_SQ_vgt_end_of_vector 1 Indicates the last VSISR data set for the current process vector (for double vector

data, "end_of_vector" is set on the second vector)
PA_SQ_vgt_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when

“PA_SQ_vgt_end_of_vector” is high.
PA_SQ_vgt_send 1 Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_PA_vgt_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

25.1.11.2 Interface Diagrams

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 317 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

35 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:56 PM12/05/01 04:59 PM11/16/01 10:17 AM

VGT

VSISR_DATA_2

END_OF_VECTOR_2

STATE_SEL_2

REG

VSISR_DOUBLE_2
REG

REG

REG

REG

REG

SEND_2

REG

REG

REG

REG

REG

REG

PA_SQ_vgt_vsisr_data

PA_SQ_vgt_vsisr_double

PA_SQ_vgt_end_of_vector

PA_SQ_vgt_state_sel

PA_SQ_vgt_send

SQ_PA_vgt_rtr

VSISR_DATA_4

END_OF_VECTOR_4

STATE_SEL_4

VSISR_DOUBLE_4

96

1

1

3

1

1

SEND_4

RTR_2 RTR_0

SHADER
SEQUENCER

RTS

101 X 4
SKID

BUFFER

SRST SRST

WE

EMPTY

RE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 318 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

R400 Sequencer Specification PAGE

36 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:56 PM12/05/01 04:59 PM11/16/01 10:17 AM

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

6 7

6 7

6 7

0 1 2 3

0 1

8

8

8

2 43 5

4 5 6 7

4 3 2 1

8

9 10 11 12

9 10 11 12

9 10 11 12

9 10 11 12

0

RECEIVER RE-STARTS TRANSMISSION

SENDER STOPS TRANSMISSION

SQ_RTR

SQ_RTR_0

VGT_RTS

SEND_2

SEND_3

SEND_4

DATA_2

FIFO_EMPTY

FIFO_RE

SQ_RTR_1

SQ_RTR_2

DATA_3

DATA_4

FIFO_DATA_OUT

FIFO_CNT

RECEIVER STOPS TRANSMISSION

Figure 1. Detailed Logical Diagram for PA_SQ_vgt Interface.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 319 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

37 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

24.1.8 VGT to SP0/SQ : Vertex Bus

24.1.9

24.1.1025.1.12 SEQ to CP: State report
Name Direction Bits Description
SQ_CP_vrtx_ state SEQ→CP 3 Oldest vertex state still in the pipe
SQ_CP_pix_state SEQ→CP 3 Oldest pixel state still in the pipe

24.1.1025.1.13 SP to SX : Pixel/Vertex write to SX

Name Direction Bits Description
SP0_SX0_Export_data SP0→SX0 256 4 pairs of 32 bits channel values
SP0_SX0_Shader_Dest SP0→SX0 4 Specifies one of the of up to 12 export destinations
SP1_SX1_Export_data SP1→SX1 256 4 pairs of 32 bits channel values
SP1_SX1_Shader_Dest SP1→SX1 4 Specifies one of the of up to 12 export destinations
SP2_SX0_Export_data SP2→SX0 256 4 pairs of 32 bits channel values
SP2_SX0_Shader_Dest SP2→SX0 4 Specifies one of the of up to 12 export destinations
SP3_SX1_Export_data SP3→SX1 256 4 pairs of 32 bits channel values
SP3_SX1_Shader_Dest SP3→SX1 4 Specifies one of the of up to 12 export destinations
SPx_SXx_Shader_Count SP0→SX0 3 Each set of four pixels or vectors is exported over

eight clocks. This field specifies where the SP is in that
sequence.

SPx_SXx_Shader_Last SP0→SX0 1 Asserted on the first shader count of the last export of
the clause

SP0_SX0_Shader_PixelValid SP0→SX0 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color buffers).
4x4 because 16 pixels are computed per clock

SP0_SX0_Shader_WordValid SP0→SX0 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

SP1_SX1_Shader_PixelValid SP1→SX1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color buffers).
4x4 because 16 pixels are computed per clock

SP1_SX1_Shader_WordValid SP1→SX1 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

SP2_SX0_Shader_PixelValid SP2→SX0 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color buffers).
4x4 because 16 pixels are computed per clock

SP2_SX0_Shader_WordValid SP2→SX0 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

SP3_SX1_Shader_PixelValid SP3→SX1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color buffers).
4x4 because 16 pixels are computed per clock

SP3_SX1_Shader_WordValid SP3→SX1 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

24.1.1125.1.14 SQ to SX: Control bus
Name Direction Bits Description

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 320 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

R400 Sequencer Specification PAGE

38 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

SQ_SXx_exp_Pixel SQ→SXx 1 1: Pixel
0: Vertex

SQ_SXx_exp_start SQ→SXx 1 Raised to indicate that the SQ is starting an export
SQ_SXx_exp_Clause SQ→SXx 3 Clause number, which is needed for vertex clauses
SQ_SXx_exp_State SQ→SXx 3 State ID, which is needed for vertex clauses

These fields are sent synchronously with SP export data, described in SP0→SX0 interface
{ISSUE: Where are the PC pointers}

24.1.1225.1.15 SX to SQ : Output file control
Name Direction Bits Description
SXx_SQ_Export_count_rdy SXx→SQ 1 Raised by SX0 to indicate that the following two fields

reflect the result of the most recent export
SXx_SQ_Export_Position SXx→SQ 1 Specifies whether there is room for another position.
SXx_SQ_Export_Buffer SXx→SQ 7 Specifies the space available in the output buffers.

0: buffers are full
1: 2K-bits available (32-bits for each of the 64
pixels in a clause)
...
64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

24.1.1325.1.16 Shader Engine to Fetch Unit Bus
Four quad’s worth of addresses is transferred to Fetch Unit every clock. These are sourced from a different pixel within
each of the sub-engines repeating every 4 clocks. The register file index to read must precede the data by 2 clocks. The
Read address associated with Quad 0 must be sent 1 clock after the Instruction Start signal is sent, so that data is read
3 clocks after the Instruction Start.

Four Quad’s worth of Fetch Data may be written to the Register file every clock. These are directed to a different pixel
of the sub-engines repeating every 4 clocks. The register file index to write must accompany the data. Data and Index
associated with the Quad 0 must be sent 3 clocks after the Instruction Start signal is sent.

Name Direction Bits Description
SP0_TP0_fetch_addr SP0->TP0 512 4 Fetch Addresses read from the Register file
TP0_SP0_data TP0→SP0 512 4 texture results
SP1_TP1_fetch_addr SP1->TP1 512 4 Fetch Addresses read from the Register file
TP1_SP1_data TP1→SP1 512 4 texture results
SP2_TP2_fetch_addr SP2->TP2 512 4 Fetch Addresses read from the Register file
TP2_SP2_data TP2→SP2 512 4 texture results
SP3_TP3_fetch_addr SP3->TP3 512 4 Fetch Addresses read from the Register file
TP3_SP3_data TP3→SP3 512 4 texture results
TPx_SPx_gpr_dst TPx→SPx 7 Write address into the gprs
TPx_SPx_gpr_cmask TPx→SPx 4 Channel mask

24.1.1425.1.17 Sequencer to Fetch Unit bus
Once every clock, the fetch unit sends to the sequencer on which clause it is now working and if the data in the
registers is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos. The
sequencer also provides the instruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

Name Direction Bits Description
TPx_SQ_data_rdy TPx→ SQ 1 Data ready
TPx_SQ_clause_num TPx→ SQ 3 Clause number
SQ_TPx_const SQ→TPx 64 Fetch state sent over 4 clocks
SQ_TPx_instuct SQ→TPx 24 Fetch instruction sent over 4 clocks
SQ_TPx_end_of_clause SQ→TPx 1 Last instruction of the clause

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 321 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

39 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

SQ_TPx_phase SQ→TPx 2 Write phase signal
SQ_TP0_lod_correct SQ→TP0 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP0_pmask SQ→TP0 4 Pixel mask 1 bit per pixel
SQ_TP1_lod_correct SQ→TP1 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pmask SQ→TP1 4 Pixel mask 1 bit per pixel
SQ_TP2_lod_correct SQ→TP2 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pmask SQ→TP2 4 Pixel mask 1 bit per pixel
SQ_TP3_lod_correct SQ→TP3 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pmask SQ→TP3 4 Pixel mask 1 bit per pixel
SQ_TPx_clause_num SQ→TPx 3 Clause number
SQ_TPx_write_gpr_index SQ->TPx 7 Index into Register file for write of returned Fetch Data

24.1.1525.1.18 Sequencer to SP: GPR control
Name Direction Bits Description
SQ_SPx_gpr_wr_addr SQ→SPx 7 Write address
SQ_SPx_gpr_rd_addr SQ→SPx 7 Read address
SQ_SPx_gpr_re_addr SQ→SPx 1 Read Enable
SQ_SPx_gpr_we_addr SQ→SPx 1 Write Enable
SQ_SPx_gpr_phase_mux SQ→SPx 2 The phase mux
SQ_SPx_gpr_channel_mask SQ→SPx 4 The channel mask
SQ_SP0_gpr_pixel_mask SQ→SP0 4 The pixel mask
SQ_SP1_gpr_pixel_mask SQ→SP1 4 The pixel mask
SQ_SP2_gpr_pixel_mask SQ→SP2 4 The pixel mask
SQ_SP3_gpr_pixel_mask SQ→SP3 4 The pixel mask

24.1.16 Sequencer to SPx: Parameter cache write control

24.1.1725.1.19 Sequencer to SPx: Instructions
Name Direction Bits Description
SQ_SPx_instruct_start SQ→SPx 1 Instruction start
SQ_SP_instruct SQ→SPx 20 Instruction sent over 4 clocks
SQ_SPx_stall SQ→SPx 1 Stall signal
SQ_SPx_Shader_Count SQ→SPx 3 Each set of four pixels or vectors is exported over

eight clocks. This field specifies where the SP is in
that sequence.

SQ_SPx_Shader_Last SQ→SPx 1 Asserted on the first shader count of the last export
of the clause

SQ_SP0_Shader_PixelValid SQ→SP0 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP0_Shader_WordValid SQ→SP0 2 Specifies whether to write low and/or high 32-bit
word of the 64-bit export data from each of the 16
pixels or vectors

SQ_SP1_Shader_PixelValid SQ→SP1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP1_Shader_WordValid SQ→SP1 2 Specifies whether to write low and/or high 32-bit
word of the 64-bit export data from each of the 16
pixels or vectors

SQ_SP2_Shader_PixelValid SQ→SP2 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP2_Shader_WordValid SQ→SP2 2 Specifies whether to write low and/or high 32-bit
word of the 64-bit export data from each of the 16

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 322 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

R400 Sequencer Specification PAGE

40 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

pixels or vectors
SQ_SP3_Shader_PixelValid SQ→SP3 4 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP3_Shader_WordValid SQ→SP3 2 Specifies whether to write low and/or high 32-bit
word of the 64-bit export data from each of the 16
pixels or vectors

24.1.1825.1.20 SP to Sequencer: Constant address load
Name Direction Bits Description
SP0_SQ_const_addr SP0→SQ 36 Constant address load to the sequencer
SP0_SQ_valid SP0→SQ 1 Data valid
SP1_SQ_const_addr SP1→SQ 36 Constant address load to the sequencer
SP1_SQ_valid SP1→SQ 1 Data valid
SP2_SQ_const_addr SP2→SQ 36 Constant address load to the sequencer
SP2_SQ_valid SP2→SQ 1 Data valid
SP3_SQ_const_addr SP3→SQ 36 Constant address load to the sequencer
SP3_SQ_valid SP3→SQ 1 Data valid

24.1.1925.1.21 Sequencer to SPx: constant broadcast
Name Direction Bits Description
SQ_SPx_constant SQ→SPx 128 Constant broadcast

24.1.2025.1.22 SP0 to Sequencer: Kill vector load
Name Direction Bits Description
SP0_SQ_kill_vect SP0→SQ 4 Kill vector load
SP1_SQ_kill_vect SP1→SQ 4 Kill vector load
SP2_SQ_kill_vect SP2→SQ 4 Kill vector load
SP3_SQ_kill_vect SP3→SQ 4 Kill vector load

24.1.2125.1.23 SQ to CP: RBBM bus
Name Direction Bits Description
SQ_RBB_rs SQ→CP 1 Read Strobe
SQ_RBB_rd SQ→CP 32 Read Data
SQ_RBBM_nrtrtr SQ→CP 1 Optional
SQ_RBBM_rtr SQ→CP 1 Real-Time (Optional)

24.1.2225.1.24 CP to SQ: RBBM bus
Name Direction Bits Description
rbbm_we CP→SQ 1 Write Enable
rbbm_a CP→SQ 18 Address -- Upper Extent is TBD
rbbm_wd CP→SQ 32 Data
rbbm_be CP→SQ 4 Byte Enables
rbbm_re CP→SQ 1 Read Enable
rbb_rs0 CP→SQ 1 Read Return Strobe 0
rbb_rs1 CP→SQ 1 Read Return Strobe 1
rbb_rd0 CP→SQ 32 Read Data 0
rbb_rd1 CP→SQ 32 Read Data 0
RBBM_SQ_soft_reset CP→SQ 1 Soft Reset

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 323 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

41 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

25.26. Examples of program executions

25.1.126.1.1 Sequencer Control of a Vector of Vertices

1. PA sends a vector of 64 vertices (actually vertex indices – 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO
 state pointer as well as tag into position cache is sent along with vertices
 space was allocated in the position cache for transformed position before the vector was sent
 also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
 The vertex program is assumed to be loaded when we receive the vertex vector.

 the SEQ then accesses the IS base for this shader using the local state pointer (provided to all
sequencers by the RBBM when the CP is done loading the program)

2. SEQ arbitrates between the Pixel FIFO and the Vertex FIFO – basically the Vertex FIFO always has priority
 at this point the vector is removed from the Vertex FIFO
 the arbiter is not going to select a vector to be transformed if the parameter cache is full unless the pipe as

nothing else to do (ie no pixels are in the pixel fifo).

3. SEQ allocates space in the SP register file for index data plus GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
 SEQ will not send vertex data until space in the register file has been allocated

4. SEQ sends the vector to the SP register file over the RE_SP interface (which has a bandwidth of 2048 bits/cycle)
 the 64 vertex indices are sent to the 64 register files over 4 cycles

 RF0 of SU0, SU1, SU2, and SU3 is written the first cycle
 RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
 RF2 of SU0, SU1, SU2, and SU3 is written the third cycle
 RF3 of SU0, SU1, SU2, and SU3 is written the fourth cycle

 the index is written to the least significant 32 bits (floating point format?) (what about compound indices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, z)

5. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSM0 FIFO)
 the control packet contains the state pointer, the tag to the position cache and a register file base pointer.

6. TSM0 accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

7. all instructions of fetch clause 0 are issued by TSM0

8. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for requests made to the Fetch Unit to complete; it passes the register file write index for

the fetch data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data to the register files, it increments a counter that is associated with ASM0

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

9. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

10. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

11. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 position can be exported in ALU clause 3 (or 4?); the data (and the tag) is sent over a position bus (which is

shared with all four shader pipes) back to the PA’s position cache
 A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
 there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 324 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

R400 Sequencer Specification PAGE

42 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

 the ASM arbiter will prevent a packet from starting an exporting clause if the position export FIFO is full
 parameter data is exported in clause 7 (as well as position data if it was not exported earlier)

 parameter data is sent to the Parameter Cache over a dedicated bus
 the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space when there is no

longer a need for the parameters (it is told by the PA when using a token).
 the ASM arbiter will prevent a packet from starting on ASM7 if the parameter cache (or the position buffer

if position is being exported) is full

12. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

25.1.226.1.2 Sequencer Control of a Vector of Pixels

1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

 At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

2. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
 the state pointer and the LOD correction bits are also placed in the Pixel FIF0
 the Pixel FIFO is wide enough to source four quad’s worth of barycentrics per cycle

3. SEQ arbitrates between Pixel FIFO and Vertex FIFO – when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

4. SEQ allocates space in the SP register file for all the GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
 SEQ will not allow interpolated data to be sent to the shader until space in the register file has been allocated

5. SEQ controls the transfer of interpolated data to the SP register file over the RE_SP interface (which has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagrams for details.

6. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSM0 FIFO)
 note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
 the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
 all other information (such as quad address for example) travels in a separate FIFO

7. TSM0 accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

8. all instructions of fetch clause 0 are issued by TSM0

9. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for fetch requests made to the Fetch Unit to complete; it passes the register file write

index for the fetch data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data for a particular clause to the register files, it increments a counter that is

associated with the ASM0 FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

10. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

11. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

12. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 pixel data is exported in the last ALU clause (clause 7)

 it is sent to an output FIFO where it will be picked up by the render backend
 the ASM arbiter will prevent a packet from starting on ASM7 if the output FIFO is full

13. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 325 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20155
December 200126

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

43 of 43

Exhibit 2020.docR400_Sequencer.doc �� 62852 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:56
PM12/05/01 04:59 PM11/16/01 10:17 AM

25.1.326.1.3 Notes

14. The state machines and arbiters will operate ahead of time so that they will be able to immediately start the real
threads or stall.

15. The register file base pointer for a vector needs to travel with the vector through the reservation stations, but the
instruction store base pointer does not – this is because the RF pointer is different for all threads, but the IS
pointer is only different for each state and thus can be accessed via the state pointer

16. Waterfalling still needs to be specked out.

26.27. Open issues
There is currently an issue with constants. If the constants are not the same for the whole vector of vertices, we don’t
have the bandwidth from the fetch store to feed the ALUs. Two solutions exists for this problem:

1) Let the compiler handle the case and put those instructions in a fetch clause so we can use the
bandwidth there to operate. This requires a significant amount of temporary storage in the register store.

2) Waterfall down the pipe allowing only at a given time the vertices having the same constants to operate in
parallel. This might in the worst case slow us down by a factor of 16.

Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 326 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SQ

Version 1.54

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\doc_lib\design\blocks\sq\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2021
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 327 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

R400 Sequencer Specification PAGE

2 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

Table Of Contents

1. OVERVIEW .. 86
1.1 Top Level Block Diagram ... 108
1.2 Data Flow graph ... 1210
1.3 Control Graph ... 1311
2. INTERPOLATED DATA BUS .. 1311
3. INSTRUCTION STORE ... 1614
4. SEQUENCER INSTRUCTIONS ... 1816
5. CONSTANT STORES .. 1816
5.1 Memory organizations .. 1816
5.2 Management of the re-mapping tables .. 1816

5.2.1 Dirty bits .. 2018

5.2.2 Free List Block .. 2018

5.2.3 De-allocate Block .. 2018

5.2.4 Operation of Incremental model .. 2018
5.3 Constant Store Indexing ... 2119
5.4 Real Time Commands.. 2119
6. LOOPING AND BRANCHES ... 2220
6.1 The controlling state. .. 2220
6.2 The Control Flow Program ... 2220
6.3 Data dependant predicate instructions ... 2523
6.4 HW Detection of PV,PS ... 2523
6.5 Register file indexing .. 2623
6.6 Predicated Instruction support for Texture clauses .. 2624
6.7 Debugging the Shaders ... 2624

6.7.1 Method 1: Debugging registers ... 2624

6.7.2 Method 2: Exporting the values in the GPRs (12) ... 2725
7. PIXEL KILL MASK .. 2725
8. MULTIPASS VERTEX SHADERS (HOS) .. 2725
9. REGISTER FILE ALLOCATION .. 2725
10. FETCH ARBITRATION .. 2826
11. ALU ARBITRATION .. 2826
12. HANDLING STALLS ... 2927
13. CONTENT OF THE RESERVATION STATION FIFOS ... 2927
14. THE OUTPUT FILE.. 2927
15. IJ FORMAT .. 2927
15.1 Interpolation of constant attributes .. 3028
16. THE PARAMETER CACHE ... 3028
17. VERTEX POSITION EXPORTING ... 3028
18. EXPORTING ARBITRATION .. 3128
19. EXPORT TYPES .. 3129
19.1 Vertex Shading .. 3129
19.2 Pixel Shading .. 3129
20. SPECIAL INTERPOLATION MODES ... 3129

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 328 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

20.1 Real time commands .. 3129
20.2 Sprites/ XY screen coordinates/ FB information .. 3230
20.3 Auto generated counters ... 3230

20.3.1 Vertex shaders ... 3230

20.3.2 Pixel shaders .. 3230
21. STATE MANAGEMENT .. 3331
21.1 Parameter cache synchronization ... 3331
22. XY ADDRESS IMPORTS ... 3331
22.1 Vertex indexes imports .. 3331
23. REGISTERS .. 3331
23.1 Control ... 3331
23.2 Context .. 3432
24. DEBUG REGISTERS... 3533
24.1 Context .. 3533

25. INTERFACES .. 3533

25.1 External Interfaces .. 3533

25.1.1 SC to SQ : IJ Control bus .. 3533

25.1.2 SQ to SP: Interpolator bus ... 3634

25.1.3 SQ to SP: GPR Input Mux select ... 3634

25.1.4 SQ to SP: Parameter Cache Read control bus .. 3735

25.1.5 SQ to SX: Parameter Cache Mux control Bus ... 3735

25.1.6 SQ to SP: Staging Register Data ... 3735

25.1.7 PA to SQ : Vertex interface .. 3735

25.1.8 SQ to CP: State report ... 4139

25.1.9 SQ to SX: Control bus .. 4139

25.1.10 SX to SQ : Output file control ... 4139

25.1.11 SQ to TP: Control bus .. 4139

25.1.12 TP to SQ: Texture stall ... 4240

25.1.13 SQ to SP: Texture stall ... 4240

25.1.14 SQ to SP: GPR and Parameter cache control ... 4240

25.1.15 SQ to SPx: Instructions .. 4341

25.1.16 SP to SQ: Constant address load .. 4441

25.1.17 SQ to SPx: constant broadcast .. 4541

25.1.18 SP0 to SQ: Kill vector load ... 4542

25.1.19 SQ to CP: RBBM bus ... 4542

25.1.20 CP to SQ: RBBM bus ... 4542
26. EXAMPLES OF PROGRAM EXECUTIONS .. 4542

26.1.1 Sequencer Control of a Vector of Vertices ... 4542

26.1.2 Sequencer Control of a Vector of Pixels .. 4643

26.1.3 Notes .. 4744

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 329 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

R400 Sequencer Specification PAGE

4 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

27. OPEN ISSUES ... 4744
1. OVERVIEW .. 5
1.1 Top Level Block Diagram ... 7
1.2 Data Flow graph ... 9
1.3 Control Graph .. 10
2. INTERPOLATED DATA BUS ... 10
3. INSTRUCTION STORE ... 13
4. SEQUENCER INSTRUCTIONS .. 15
5. CONSTANT STORES ... 15
5.1 Memory organizations ... 15
5.2 Management of the re-mapping tables .. 15

5.2.1 Dirty bits .. 17
5.2.2 Free List Block .. 17
5.2.3 De-allocate Block .. 17
5.2.4 Operation of Incremental model ... 17

5.3 Constant Store Indexing .. 18
5.4 Real Time Commands ... 18
6. LOOPING AND BRANCHES .. 19
6.1 The controlling state... 19
6.2 The Control Flow Program ... 19
6.3 Data dependant predicate instructions .. 22
6.4 HW Detection of PV,PS ... 22
6.5 Register file indexing.. 22
6.6 Predicated Instruction support for Texture clauses ... 23
6.7 Debugging the Shaders ... 23

6.7.1 Method 1: Debugging registers ... 23
6.7.2 Method 2: Exporting the values in the GPRs (12) .. 24

7. PIXEL KILL MASK .. 24
8. MULTIPASS VERTEX SHADERS (HOS) ... 24
9. REGISTER FILE ALLOCATION ... 24
10. FETCH ARBITRATION ... 25
11. ALU ARBITRATION .. 25
12. HANDLING STALLS ... 26
13. CONTENT OF THE RESERVATION STATION FIFOS.. 26
14. THE OUTPUT FILE ... 26
15. IJ FORMAT .. 26
15.1 Interpolation of constant attributes ... 27
16. THE PARAMETER CACHE .. 27
17. VERTEX POSITION EXPORTING .. 27
18. EXPORTING ARBITRATION .. 27
19. EXPORT TYPES ... 28
19.1 Vertex Shading ... 28
19.2 Pixel Shading ... 28
20. SPECIAL INTERPOLATION MODES ... 28
20.1 Real time commands ... 28
20.2 Sprites/ XY screen coordinates/ FB information .. 29
20.3 Auto generated counters .. 29

20.3.1 Vertex shaders .. 29
20.3.2 Pixel shaders ... 29

21. STATE MANAGEMENT .. 30
21.1 Parameter cache synchronization .. 30
22. XY ADDRESS IMPORTS .. 30
22.1 Vertex indexes imports ... 30
23. REGISTERS .. 30
23.1 Control .. 30
23.2 Context ... 31
24. DEBUG REGISTERS .. 32
24.1 Context ... 32

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 330 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

25. INTERFACES .. 32
25.1 External Interfaces ... 32

25.1.1 SC to SQ : IJ Control bus .. 32
25.1.2 SQ to SP: Interpolator bus .. 33
25.1.3 SQ to SP: GPR Input Mux select .. 33
25.1.4 SQ to SP: Parameter Cache Read control bus ... 34
25.1.5 SQ to SX: Parameter Cache Mux control Bus .. 34
25.1.6 SQ to SP: Staging Register Data .. 34
25.1.7 PA to SQ : Vertex interface ... 34
25.1.8 SQ to CP: State report .. 38
25.1.9 SQ to SX: Control bus ... 38
25.1.10 SX to SQ : Output file control .. 38
25.1.11 SQ to TP: Control bus ... 38
25.1.12 TP to SQ: Texture stall .. 39
25.1.13 SQ to SP: Texture stall .. 39
25.1.14 SQ to SP: GPR and Parameter cache control .. 39
25.1.15 SQ to SPx: Instructions ... 40
25.1.16 SP to SQ: Constant address load ... 40
25.1.17 SQ to SPx: constant broadcast ... 40
25.1.18 SP0 to SQ: Kill vector load .. 41
25.1.19 SQ to CP: RBBM bus .. 41
25.1.20 CP to SQ: RBBM bus .. 41

26. EXAMPLES OF PROGRAM EXECUTIONS ... 41
26.1.1 Sequencer Control of a Vector of Vertices .. 41
26.1.2 Sequencer Control of a Vector of Pixels ... 42
26.1.3 Notes ... 43

27. OPEN ISSUES ... 43
1. OVERVIEW .. 4
1.1 Top Level Block Diagram ... 6
1.2 Data Flow graph ... 8
1.3 Control Graph .. 9
2. INTERPOLATED DATA BUS ... 9
3. INSTRUCTION STORE ... 12
4. SEQUENCER INSTRUCTIONS .. 14
5. CONSTANT STORES ... 14
5.1 Memory organizations ... 14
5.2 Management of the remaping tables ... 14
5.3 Constant Store Indexing .. 14
5.4.. 14
5.5 Real Time Commands ... 15
6. LOOPING AND BRANCHES .. 15
6.1 The controlling state... 15
6.2 The Control Flow Program ... 15
6.3 Data dependant predicate instructions .. 18
6.4 HW Detection of PV,PS ... 18
6.5 Register file indexing.. 18
6.6 Predicated Instruction support for Texture clauses ... 19
6.7 Debugging the Shaders ... 19

6.7.1 Method 1: Debugging registers ... 19
6.7.2 Method 2: Exporting the values in the GPRs (12) .. 20

7. PIXEL KILL MASK .. 20
8. MULTIPASS VERTEX SHADERS (HOS) ... 20
9. REGISTER FILE ALLOCATION ... 20
10. FETCH ARBITRATION ... 21
11. ALU ARBITRATION .. 21
12. HANDLING STALLS ... 22
13. CONTENT OF THE RESERVATION STATION FIFOS.. 22
14. THE OUTPUT FILE ... 22

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 331 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

R400 Sequencer Specification PAGE

6 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

15. IJ FORMAT .. 22
15.1 Interpolation of constant attributes ... 23
16. THE PARAMETER CACHE .. 23
17. VERTEX POSITION EXPORTING .. 23
18. EXPORTING ARBITRATION .. 23
19. EXPORT TYPES ... 24
19.1 Vertex Shading ... 24
19.2 Pixel Shading ... 24
20. SPECIAL INTERPOLATION MODES ... 24
20.1 Real time commands ... 24
20.2 Sprites/ XY screen coordinates/ FB information .. 25
20.3 Auto generated counters .. 25

20.3.1 Vertex shaders .. 25
20.3.2 Pixel shaders ... 25

21. STATE MANAGEMENT .. 26
22. XY ADDRESS IMPORTS .. 26
22.1 Vertex indexes imports ... 26
23. REGISTERS .. 26
23.1 Control .. 26
23.2 Context ... 27
24. DEBUG REGISTERS .. 28
24.1 Context ... 28
25. INTERFACES .. 28
25.1 External Interfaces ... 28

25.1.1 SC to SP : IJ bus ... 28
25.1.2 SC to SQ : IJ Control bus .. 28
25.1.3 SQ to SC: Vertex/Pixel shader synchronization bus ... 29
25.1.4 SQ to SP: Interpolator bus .. 29
25.1.5 SQ to SP: GPR Input Mux select .. 29
25.1.6 SQ to SPx: Parameter cache write control .. 30
25.1.7 SQ to SP: Parameter Cache Read control bus ... 30
25.1.8 SQ to SX: Parameter Cache Mux control Bus .. 30
25.1.9 SP to SX: Parameter data ... 30
25.1.10 SX to Interpolators: Parameter Cache Return bus ... 30
25.1.11 SQ to SP0: Staging Register Data .. 31
25.1.12 PA to SQ : Vertex interface ... 31
25.1.13 SQ to CP: State report .. 34
25.1.14 SP to SX : Pixel/Vertex write to SX ... 34
25.1.15 SQ to SX: Control bus ... 34
25.1.16 SX to SQ : Output file control .. 35
25.1.17 Shader Engine to Fetch Unit Bus .. 35
25.1.18 Sequencer to Fetch Unit bus ... 35
25.1.19 Sequencer to SP: GPR control ... 36
25.1.20 Sequencer to SPx: Instructions ... 36
25.1.21 SP to Sequencer: Constant address load ... 37
25.1.22 Sequencer to SPx: constant broadcast ... 37
25.1.23 SP0 to Sequencer: Kill vector load .. 37
25.1.24 SQ to CP: RBBM bus .. 37
25.1.25 CP to SQ: RBBM bus .. 37

26. EXAMPLES OF PROGRAM EXECUTIONS ... 37
26.1.1 Sequencer Control of a Vector of Vertices .. 37
26.1.2 Sequencer Control of a Vector of Pixels ... 38
26.1.3 Notes ... 39

27. OPEN ISSUES ... 40

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 332 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

 Changed the control flow method to be more
flexible. Also updated the external interfaces.

Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

 Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registersregisters.

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001

 Refined interfaces to RB. Added state
registersregisters.

Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

 Added SEQ→SP0 interfaces. Changed delta
precision. Changed VGT→SP0 interface. Debug
Methods added.

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001

 Interfaces greatly refined. Cleaned up the spec.

Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001

 Added the different interpolation modes.

Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

 Added the auto incrementing counters. Changed
the VGT→SQ interface. Added content on constant
management. Updated registersGPRs.

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

 Removed from the spec all interfaces that weren’t
directly tied to the SQ. Added explanations on
constant management. Added PA→SQ
synchronization fields and explanation.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 333 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

R400 Sequencer Specification PAGE

8 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

1. Overview
The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause until the fetch fetches initiated by the previous
fetch clause have completed. There are two separate sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 334 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:57 PM12/06/01 02:27 PM12/05/01 04:59 PM

SQ

SC

SPSPSPCSTOREFETCH STATE

TP

INST STORE

IJ CONTROL

IJ
CONTROL

CST
ADDR

INST
 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/QUAD
ADDRESSES

SP

ALU INST

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

INST

INTER INTER INTER INTER

IJ CROSSBAR

2 QUADS IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC READ
 POINTERS

PARAM
DATA

R/W ADDR

Vertex indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

CP

CONSTANT
LOAD

CPConstant Load

TX ADDR

PC Write
Address

TEX INST

CF
CONSTANTS

Register
Mapped

CF Read

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 335 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

R400 Sequencer Specification PAGE

10 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

1.1 Top Level Block Diagram

vertex/pixel vector arbitrator

Possible delay for available GPR’s

FIFO
Texture clause 0
reservation station

Texture clause 1
reservation station

FIFO
ALU clause 0
reservation station

FIFO

Texture clause 2
reservation station

Texture clause 3
reservation station

FIFO
ALU clause 1
reservation station

FIFO

FIFO
ALU clause 2
reservation station

FIFO

FIFO
ALU clause 3
reservation station

FIFO
Texture clause 4
reservation station

Texture clause 5
reservation station

FIFO
ALU clause 4
reservation station

FIFO

Texture clause 6
reservation station

Texture clause 7
reservation station

FIFO
ALU clause 5
reservation station

FIFO

FIFO
ALU clause 6
reservation station

FIFO

FIFO
ALU clause 7
reservation station

texture arbitrator

texture arbitrator

There are two sets of the above figure, one for vertices and one for pixels.

Depending on the arbitration state, the sequencer will either choose a vertex or a pixel packet. The control packet
consists of 3 bits of state, 7 bits for the base address of the Shader program and some information on the coverage to
determine fetch LOD plus other various small state bits.

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the registersGPRs to store the interpolated values and temporaries. Following this, the barycentric coordinates (and

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 336 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

XY screen position if needed) are sent to the interpolator buffers which are going towill use these barycentric
coordinatesthem to interpolate the parameters and place the interpolated valueresults into the GPRs. Then, the input
state machine stacks the packet in the first FIFO.

On receipt of a command, the level 0 fetch machine issues a texture fetch request to the TP and corresponding
register GPR address for the fetch address (ta). A small command (tcmd) is passed to the fetch system identifying the
current level number (0) as well as the register GPR write address for the fetch return data. One fetch request is sent
every 4 clocks causing the texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the requests are sent the
packet is put in FIFO 1.

Upon receipt of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level 0 fetch machine and sends the clause number (0) to the level 0 fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU 1 0 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO 1 counter and then issues a
complete set of level 0 shader instructions. For each instruction, the ALU state machine generates 3 source
addresses, one destination address (3 cycles later) and an instruction. Once the last instruction has been issued, the
packet is put into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbiters). One arbiter will arbitrate
over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the two arbiters is that they are not allowed to pick the same
clause number as the other one is currently working on if the packet is not of the same type (render state).

If the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbiter must prevent ALU clause 3 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, if needed the sprite size and/or edge flags can also be sent.

{ISSUE: How do we handle parameter cache pointers (computed, semi-computed or not computed)?}

A special case is for multipass vertex shaders, which can export 12 parameters per last 6 clauses to the output
buffer. If the output buffer is full or doesn’t have enough space the sequencer will prevent such a vertex group to
enter an exporting clause.

Multipass pixel shaders can export 12 parameters to memory from the last clause only (7).

All other clauseslevel process in the same way until the packet finally reaches the last ALU machine (7).

Only two one pair of interleaved ALU state machines may have access to the register file address bus or the
instruction decode bus at one time. Similarly, only one fetch state machine may have access to the register file
address bus at one time. Arbitration is performed by three arbiter blocks (two for the ALU state machines and one for
the fetch state machines). The arbiters always favor the higher number state machines, preventing a bunch of half
finished jobs from clogging up the register files.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 337 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

R400 Sequencer Specification PAGE

12 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

1.2 Data Flow graph

MAC

MAC

MAC

MAC

Register File

co
ns

ta
nt

s
fr

om
 R

E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
nt

s
fr

om
 R

E

S
ca

la
r

U
n

it

texture request

texture request

texture request

texture request

te
xt

ur
e

ad
dr

es
s

te xtu re d
ata

p rim
i tive da

ta f rom
 R

E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 338 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

SEQ

FETCH SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

OF

WrAddrIS CST

CST IDX

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 339 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

R400 Sequencer Specification PAGE

14 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x64 bits)

IJs buffer (ping-pong buffer)
(28 bits * 2 (IJ) + 8 bits * 6 (delta IJs)+4 exp

bits*6)* 16 (quads) * 2 (double-buffered)
4096 bits

32 x 128

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

64

To RB

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2

768 bits
32x24

FIX-FLOAT + EXPANSiON

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 340 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:57 PM12/06/01 02:27 PM12/05/01 04:59 PM

SP
0

SP
1

SP
2

SP
3

WRITES
T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-
11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P1 P2

T20 T21 T22 T23

VTX

T0 T1 T2 T3

XY

XY
0-3

XY
4-7

XY
8-
11

XY
12-
15

XY
16-
19

XY
20-
23

XY
24-
27

XY
28-
31

XY
32-
35

XY
36-
39

XY
40-
43

XY
44-
47

XY
48-
51

XY
52-
55

XY
56-
59

XY
60-
63

READS

SP
0

SP
1

SP
2

SP
3

A0

A1

A2

B1

B0

C3

C0

C1

C2

C4

C5

D0

D1

D2

E0

E1

A0

A1

A2

XY
A0
XY
A1
XY
A2

B1

B0

XY
B1

XY
B0

C3

C0

C1

C2

XY
C3
XY
C0
XY
C1
XY
C2

C4

C5

XY
C4
XY
C5

D0

D1

D2

XY
D1
XY
D2

XY
D0

E0

E1
XY
E1

XY
E0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 341 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

R400 Sequencer Specification PAGE

16 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

Above is an example of a tile we the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 24 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate
a parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the
register GPRs to write the valid data in.

3. Instruction Store
There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the INST_DATA, INST_INDEX_PORT control registersregister. The
INST_INDEX_PORT is auto-incremented on both reads and writes to the INST_DATA register.

The next picture shows the various modes the CP can load the memory. The Sequencer has to keep track of the
loading modes in order to wrap around the correct boundaries. The MSB of the INST_INDEX_PORT register contains
the packet type for the sequencer to know where it must wrap around. The wrap around points are arbitrary and they
are specified in the VS_BASE and PIX_BASE registersregisters.

For the Real time commands the story is quite the same but for some small differences. The CP will use the
INST_INDEX_PORT_RT and INST_DATA_RT register pair instead of the regular ones and there are no wrap around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 342 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:57 PM12/06/01 02:27 PM12/05/01 04:59 PM

R400 CP's Views of Instruction Memory Updated: 11/14/2001
John A. Carey

0

4095

Real-Time &
Shared Code

VERTEX_SHADER_BASE

PIXEL_SHADER_BASE

VS Code A

VS Code B

VS Code C

PS Code A

PS Code B

PS Code C

CP writes code start
addresses to
appropriate Sub-
Blocks so Sequencer
knows where to start
executing the code.

MODE 0 - Dual Ring
0

4095

Real-Time &
Shared Code

VERTEX_SHADER_BASE

VS Code A

VS Code B

VS Code C

PS Code A

PS Code B

PS Code C

MODE 1 - Single Ring

CP writes code start
addresses to
appropriate Sub-
Blocks so Sequencer
knows where to start
executing the code.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 343 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

R400 Sequencer Specification PAGE

18 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

4. Sequencer Instructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS).

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the remapingre-mapping table is 128 lines (each line addresses 4 constants). The write granularity is
4 constants or 512 bits. It takes 16 clocks to write the four constants.

The texture state is also kept in a similar memory. The size of this memory is 192x128. The memory thus holds 128
texture states (192 bits per state). The logical size exposed exposes 32 different states total, which are going to be
shared between the pixel and the vertex shader. The size of the remapingre-mapping table to for the texture state
memory is 16 lines (each line addresses 2 texture state lines in the real memory). The write granularity is 2 texture
state lines (or 384 bits). The driver sends 512 bits but the CP ignores the top 128 bits. It thus takes 12 clocks to write
the two texture states.

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a state change. Its size is 256320*32 because it must hold 8 copies of the 32
dwords of control flow constants and the loop construct constants must be aligned.

The CP is loading the constant store using the CONST_DATA and CONST_ADDR registersregisters. It does so by
writing to the CONST_ADDR register the logical address for the constant block it wants to update and then writes 16
times to the CONST_DATA register. The CONST_ADDR is auto-incremented on both reads and writes to the
CONST_DATA register.

5.2 Management of the remapingre-mapping tables
The sequencer is responsible to manage two remapingre-mapping tables (one for the constant store and one for the
texture state). On a state change (by the driver), the sequencer will broadside copy the contents of its remapingre-
mapping tables to a new one. We have 8 different remapingre-mapping tables we can use concurrently. More details
and a diagram to come….

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 344 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

Physical
Memory

Renaming Table
for 1 Context
Current/Last

Physical
Address

per
Logical
Address

Renaming
table

N-Contexts

Reset
Dirty
per

Logical
Address

(Only
de-

allocate
if set)

This
Context

Dirty
per

Logical
Address
(If set
don't

allocate
or de-

allocate)

Logical address
On the

GlbRegBus
when lsb are zero
first word of write

next
physical
address
ready

for allocate

Constants
location
available
WRTR

physical
address

to
schedule

for
de-alloc

Staging Data
Buffer

Staging Write Addr

Copy Last held above to
Current Context on reciept

of Set Constant for a
new context (Hide loading

behind Set State load - 16 clocks)
all other Set States just write one

entry to current state.

Free
list

(pass Phys
Address if
Context
Dirty)

Dealloc
Counts

Seq
Constant
Request

Context &
Logical
Address

NTF
WritePtr

When a Logical
Address is written

that has been
written before,

store the physical
address that was
allocated by that
Logical Address

YTF
ptr to first physical

address that is
scheduled to be de-
allocated but noty
yet de-allocate.

Advanced each time
a context is freed by

the number of
physical address
displaced by that

Context

NTA
ptr to physical

address that will
be used next if
the init count is

at maximum
number of
physical
address

Free List

Number of entries
equals Max Number of
Physical Blocks. All
Pointers start at zero
and roll around but

can never pass each
other

Free
Address

Address
to Allocate

Global Register
Data Bus

Renaming Table
Context 0 => N

Logical Address
& Context

Physical
Address

Context 0 (8 rows of 16 - 8 bit
physical => 128 entries copy in

eight clocks)

Context 1

Context N

Current/Last
Context

(8 rows of 16 - 8
bit physical =>

128 entries copy
in eight clocks)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 345 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

R400 Sequencer Specification PAGE

20 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

5.2.1 Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero when ever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.2.2 Free List Block
A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call NTF (Next To Free). This
pointer will identify the next location to write the physical address of a block to be de-allocated. Note: we can never
free more physical memory locations than we have. Once recording address the pointer will be incremented to walk
the free list like a ring.
The second pointer will be called YTF (Yet To Free). The YTF pointer will be advanced by the number of address
chunks de-allocates when a context finishes. The address between the YTF and NTF cannot be reused because
they are still in use. But as soon as the context using then is dismissed the YTF will be advanced.
The third pointer will be called NTA (Next To Allocate). This pointer will point will point to the next address that can
be used for allocation as long as the NTA does not equal the YTF and the IFC is at its maximum count.

5.2.3 De-allocate Block
This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the NTF pointer. This count will be reset
upon reset or when this context is active on the back and different than the previous context. It is actually a count of
blocks in the previous context that will no longer be used. This count will be used to advance the NTF pointer to
make available the set of physical blocks freed when the previous context was done. This allows the discard or de-
allocation of any number of blocks in one clock.

5.2.4 Operation of Incremental model
The basic operation of the model would start with the NTF, YTF, NTA pointers in the free list set to zero and the free
list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When the first set
constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list counter
because its not at the max value. The data will be written into physical address zero. Both the additional copy of the
renaming table and the context zeros of the big renaming table will be updated for the logical address that was written
by set start with physical address of 0. This process will be repeated for any logical address that are not dirty until
the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty bits
would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When a set constant comes with a different than last context, the previous context stored in the additional renaming
table will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the NTF pointer location on the free list and the NTF
will be incremented. The de-allocation counter for the previous context (zero) will be incremented. This as set states
come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at NTA pointer if NTA != to YTF .

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 346 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at NTF and it is incremented along with the de-allocate counter for the
last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide back pressure to the CP when ever he
has not free list entries available (counter at max and YTF == NTA). The command stream will keep a count of
contexts of constants in use and prevent more than max constants contexts from being sent.
Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the YTF pointer. This will make all the physical addresses used by this context available to the NTA allocate
pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.3 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)
between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

5.4The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

5.55.4 Real Time Commands
The real time commands constants are written by the CP using the CONST_DATA_RT and CONST_ADDR_RT
registersGPRs. It works is the same way than when dealing with regular constant loads BUT in this case the CP is
not sending a logical address but rather a physical address and the reads are not passing thru the remapingre-
mapping table but are directly read from the memory. The boundary between the two zones is defined by the
CONST_EO_RT control register.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 347 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

R400 Sequencer Specification PAGE

22 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

CONST_EO_RT

RT SECTON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table)

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
Examples of control flow programs are located in the R400 programming guide document.

The basic model is as follows:

The render state defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 348 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

Pixel_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located

A pointer value of FF means that the clause doesn’t contain any instructions.

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The control program is the only program aware of the clause
boundaries.

The control program has eleven basic instructions:

Execute
Conditional_execute
Conditional_Execute_Predicates
Conditional_jump
Call
Return
Loop_start
Loop_end
End_of_clause
Conditional_End_of_clause
NOP

Execute, causes the specified number of instructions in instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified number of instructions in instruction
store to be executed.
Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified number of instructions.
Call jumps to an address and pushes the IP counter on the stack. On the return instruction, the IP is popped from the
stack.
Conditional_execute_or_Jump executes a block of instructions or jumps to an address is the condition is not met.
Conditional_execute_Predicates executes a block of instructions if all bits in the predicate vectors meet the condition.
End_of_clause marks the end of a clause.
Conditional_End_of_clause marks the end of a clause if the condition is met.
Conditional_jumps jumps to an address if the condition is met.
NOP is a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSES since there are two control flow instructions per
memory line. Thus the compiler must insert NOPs where needed to align the jumps on even CFP addresses.

Also if the jump is logically bigger than pshader_cntl_size (or vshader_cntl_size) we break the program (clause) and
set the debug registersregisters. If an execute or conditional_execute is lower than cntl_size or bigger than size we
also break the program (clause) and set the debug registersregisters.

We have to fit instructions into 48 bits in order to be able to put two control flow instruction per line in the instruction
store.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

Execute
47 46… 42 41 … 24 23 … 12 11 … 0

Addressing 00001 RESERVED Instruction count Exec Address

Execute up to 4k instructions at the specified address in the instruction memory.

NOP
47 46 … 42 41 … 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 349 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

R400 Sequencer Specification PAGE

24 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

Addressing 00010 RESERVED

This is a regular NOP.

Conditionnal_Execute

47 46 … 42 41 40 … 33 32 31 … 24 23 … 12 11 … 0
Addressing 00011 RESERVED Boolean

address
Condition RESERVED Instruction count Exec Address

If the specified booleanBoolean (8 bits can address 256 booleansBooleans) meets the specified condition then
execute the specified instructions (up to 4k instructions)

Conditionnal_Execute_Predicates
47 46 … 42 41 … 35 34 … 33 32 31 … 24 23 … 12 11 … 0

Addressing 00100 RESERVED Predicate
vector

Condition RESERVED Instruction count Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid.

Loop_Start
47 46 … 42 41 … 17 16 … 12 11 … 0

Addressing

00101 RESERVED loop ID Jump address

Loop Start. Compares the loop countiterator with the end value. If loop condition not met jump to the address.
Forward jump only. Also computes the index value.value. The loop id must match between the start to end, and also
indicates which control flow constants should be used with the loop.

Loop_End
47 46 … 42 41 … 17 16 … 12 11 … 0

Addressing

00111 RESERVED loop ID start address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, and jumps BACK only to the start of the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Call
47 46 … 42 41…12 11 … 0

Addressing

01000 RESERVED Jump address

Jumps to the specified address and pushes the IP control flow program counter on the stack.

Return
47 46 … 42 41 … 0

Addressing

01001 RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump
47 46 … 42 41 40 … 33 32 31 30 … 12 11 … 0

Addressing

01010 RESERVED Boolean
address

Condition FW only RESERVED Jump address

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 350 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

If condition met, jumps to the address. FORWARD jump only allowed if bit 31 set. Bit 31 is only an optimization for the
compiler and should NOT be exposed to the API.

Conditional_End_of_Clause
47 46 … 42 41 40 … 33 32 31 … 0

Addressing

01011 RESERVED Boolean
address

Condition RESERVED

This is an optimization in the case of very short shaders (where the control flow instruction can’t be hidden anymore
and thus are not free. In this case, if the condition is met, the clause is ended, else we continue the execution of the
clause.

End_of_Clause
47 46 … 42 41 … 0

 Addressing 01011 RESERVED

Marks the end of a clause.

To prevent infinite loops, we will keep 9 bits loop counters instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start instruction is going to break the loop and set the
debug registersGPRs.

6.3 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETNE_# - similar to SETNE except that the result is 'exported' to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE0_# – SETE0
 PRED_SETE1_# – SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

 P0_ADD_# R0,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

6.4 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 351 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

R400 Sequencer Specification PAGE

26 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

6.5 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

The sequencer is going to keep a loop index computed as such:

 Index = Loop_counteriterator*Loop_iteratorstep + Loop_initstart.

The index is going to return 0 if it is out of the range. We loop until loop_iterator = loop_count. Loop_step is a signed
value [-128…127].

6.6 Predicated Instruction support for Texture clauses
For texture clauses, we support the following optimization: we keep 1 bit (thus 4 bits for the four predicate vectors)
per predicate vector in the reservation stations. A value of 1 means that one ore more elements in the vector have a
value of one (thus we have to do the texture fetches for the whole vector. A value of 0 means that no elements in the
vector have his predicate bit set and we can thus skip over the texture fetch. We have to make sure the invalid
pixels aren’t considered with this optimization.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registersregisters
Current plans are to expose 2 debugging, or error notification, registersregisters:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow
- jump error
 relative jump address > size of the control flow program
 relative jump address > length of the shader program
- constant overflow
- register overflow
- call stack
 call with stack full
 return with stack empty

With two of the errors, a jump error or a register overflow will cause the program to break. In this case, a break
means that a clause will halt execution, but allowing further clauses to be executed.

With the other errors, program can continue to run, potentially to worst-case limits.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 352 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

If indexing outside of the constant range, causing an overflow error, the hardware is specified to return the value with
an index of 0. This could be exploited to generate error tokens, by reserving and initializing the 0th register (or
constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs (12)
The sequencer will have a count register and an address register for this mode and 3 bits per clause specifying the
execution mode for each clause. The modes can be :

1) Normal
2) Debug Kill
3) Debug Addr + Count

Under the normal mode execution follows the normal course. Under the kill mode, all control flow instructions are
executed but all normal shader instructions of the clause are replaced by NOPs. Only debug_export instructions of
clause 7 will be executed under the debug kill setting. Under the other mode, normal execution is done until we reach
an address specified by the address register and instruction count (useful for loops) specified by the count register.
After we have hit the instruction n times (n=count) we switch the clause to the kill mode.

Under the debug mode (debug kill OR debug Addr + count), it is assumed that clause 7 is always exporting 12 debug
vectors and that all other exports to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by
the sequencer (even if they occur before the address stated by the ADDR debug register).

7. Pixel Kill Mask
A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE

 MASK_SETGT
 MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to VERTEX_REG_SIZE for vertices and 256-
VERTEX_REG_SIZE for pixels.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 353 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

R400 Sequencer Specification PAGE

28 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again.

10. Fetch Arbitration
The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration
ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbitrersarbiters, one for the even clocks and one for the odd
clocks. For exaemple, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets
of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…
 Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 354 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic to selectfrom selecting the last clause
(this way nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the
position buffer is full (POS_FULL) then the sequencer also prevents a thread to enterfrom entering the exporting
clause (3?). The sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus
the ALU arbiter will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs
The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address and 1
bit to specify if the vector is of pixels or vertices. Since pixels and vertices are kept in order in the shader pipe, we
only need two fifos (one for vertices and one for pixels) deep enough to cover the shader pipe latency. This size will
be determined later when we will know the size of the small fifos between the reservation stations.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registersregisters with write BW 512 bits/clock and read BW 256 bits/clock. The
staging registersregisters are 4x128 (and there are 16 of those on the whole chip).

15. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel’s parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming P0 is the interpolated parameter at Pixel 0 having the barycentric coordinates I(0), J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at V0 (interpolated with I), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

)(*03)(*0303

)(*02)(*0202

)(*01)(*0101

)(*)0()(*)0(0

)0()3(03

)0()3(03

)0()2(02

)0()2(02

)0()1(01

)0()1(01

CBJCAIPP

CBJCAIPP

CBJCAIPP

CBJCAICP

JJJ

III

JJJ

III

JJJ

III

P0 is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

P0

P2

P1

P3

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 355 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

R400 Sequencer Specification PAGE

30 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF P0’s IJ : Mantissa 20 Exp 4 for I + Sign
 Mantissa 20 Exp 4 for J + Sign

FORMAT of Deltas (x3): Mantissa 8 Exp 4 for I + Sign
 Mantissa 8 Exp 4 for J + Sign

Total number of bits : 20*2 + 8*6 + 4*8 + 4*2 = 128

The Deltas have a leading 1, the Full precision IJs don’t. This means that in the case of the deltas we MUST be able
to shift 8 right (exponent value of 0 means number = 0, exponent value of 1 means shift right 8).All numbers are kept
using the un-normalized floating point convention: if exponent is different than 0 the number is normalized if not, then
the number is un-normalized. This means that tThe maximum range for the IJs (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

15.1 Interpolation of constant attributes
Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

We start with the premise that if A = B and B = C and C = A, then P0,1,2,3 = A. Since one or more of the IJ terms
may be zero, so we extend this to:

if (A=B and B=C and C=A)
 P0,1,2,3 = A;
else if ((I = 0) or (J = 0)) and
 ((J = 0) or (1-I-J = 0)) and
 ((1-J-I = 0) or (I = 0))) {
 if(I != 0) {
 P0 = A;
 } else if(J != 0) {
 P0 = B;
 } else {
 P0 = C;
 }
 //rest of the quad interpolated normally
}
else
{
 normal interpolation
}

16. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories.

17. Vertex position exporting
On clause 3 the vertex shader can export to the PA both the vertex position and the point sprite. It can also do so at
clause 7 if not done at clause 3. The storage needed to perform the position export is at least 64x128 memories for
the position and 64x32 memories for the sprite size. It is going to be taken in the pixel output fifo from the SX blocks.
The clause where the position export occurs is specified by the EXPORT_LATE register. If turned on, it means that
the export is going to occur at ALU clause 7 if unset position export occurs at clause 3.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 356 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

18. Exporting Arbitration
Here are the rules for co-issuing exporting ALU clauses.

1) Position exports and position exports cannot be co-issued.
2) Position exports and memory exports cannot be co-issued.
3) Position exports and Z/Color exports cannot be co-issued.
4) Memory exports and Z/Color exports cannot be co-issued.
5) Memory exports and memory exports cannot be co-issued.
6) Z/color exports and Z/color exports cannot be co-issued.
7) Parameter exports and Z/Color exports CAN be co-issued.
8) Parameter exports and parameter exports CAN be co-issued.
9) Parameter exports and memory exports CAN be co-issued.

19. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

19.1 Vertex Shading
 0:15 - 16 parameter cache
 16:31 - Empty (Reserved?)
 32:43 - 12 vertex exports to the frame buffer and index
 44:47 - Empty
 48:59 - 12 debug export (interpret as normal vertex export)
 60 - export addressing mode
 61 - Empty
 62 - sprite size export that goes with position export
 (point_h,point_w,edgeflag,misc)
 63 - position

19.2 Pixel Shading
 0 - Color for buffer 0 (primary)
 1 - Color for buffer 1
 2 - Color for buffer 2
 3 - Color for buffer 3
 4:7 - Empty
 8 - Buffer 0 Color/Fog (primary)
 9 - Buffer 1 Color/Fog
 10 - Buffer 2 Color/Fog
 11 - Buffer 3 Color/Fog
 12:15 - Empty
 16:31 - Empty (Reserved?)
 32:43 - 12 exports for multipass pixel shaders.
 44:47 - Empty
 48:59 - 12 debug exports (interpret as normal pixel export)
 60 - export addressing mode
 61:62 - Empty
 63 - Z for primary buffer (Z exported to 'alpha' component)

20. Special Interpolation modes

20.1 Real time commands
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 357 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

R400 Sequencer Specification PAGE

32 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem I see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft’s high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This mode is triggered by the primitive type: REAL TIME.

20.2 Sprites/ XY screen coordinates/ FB information
When working with sprites, one may want to overwrite the parameter 0 with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_I0 register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control registersregister. Here is a list of all the modes and how they
interact together:

Gen_st is a bit taken from the interface between the SC and the SQ. This is the MSB of the primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between 0 and 1.

Param_Gen_I0 disable, snd_xy disable, no gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy disable, gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy enable, no gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy enable, gen_st – I0 = No modification
Param_Gen_I0 enable, snd_xy disable, no gen_st – I0 = garbage, garbage, garbage, faceness
Param_Gen_I0 enable, snd_xy disable, gen_st – I0 = garbage, garbage, s, t
Param_Gen_I0 enable, snd_xy enable, no gen_st – I0 = screen x, screen y, garbage, faceness
Param_Gen_I0 enable, snd_xy enable, gen_st – I0 = screen x, screen y, s, t

20.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1st pass data to memory and then use the count to retrieve the data on the 2nd pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. While there is only one
count broadcast to the registersGPRs, the LSB are hardwired to specific values making the index different for all
elements in the vector.

20.3.1 Vertex shaders
In the case of vertex shaders, if GEN_INDEX is set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

20.3.2 Pixel shaders
In the case of pixel shaders, if GEN_INDEX is set, the data will be put in the x field of the 2nd register (I1.x).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 358 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

33 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

AUTO
COUNT

STG 0

STG1

INTERPOLATORS

GPR0

AUTO COUNT 000000

MUX

The Auto Count Value is
broadcast to all GPRs. It is

loaded into a register wich has
its LSBs hardwired to the

GPR number (0 thru 63). Then
if GEN_INDEX is high, the
mux selects the auto-count

value and it is loaded into the
GPRs to be either used to

retrieve data using the TP or
sent to the SX for the RB to

use it to write the data to
memory

21. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

21.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

22. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix→float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 20.2 for details on how to control the interpolation in this mode.

22.1 Vertex indexes imports
In order to import vertex indexes, we have 64x2x96 staging registersregisters. These are loaded one at a time by the
VGT block. They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

23. RegistersRegisters

23.1 Control
REG_DYNAMIC Dynamic allocation (pixel/vertex) of the register file on or off.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 359 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

R400 Sequencer Specification PAGE

34 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

REG_SIZE_PIX Size of the register file's pixel portion (minimal size when dynamic allocation turned
on)

REG_SIZE_VTX Size of the register file's vertex portion (minimal size when dynamic allocation turned
on)

ARBITRATION_POLICY policy of the arbitration between vertexes and pixels
INST_STORE_ALLOC interleaved, separate
INST_BASE_VTX start point for the vertex instruction store (RT always ends at vertex_base and

Begins at 0)
INST_BASE_PIX start point for the pixel shader instruction store
ONE_THREAD debug state register. Only allows one program at a time into the GPRs
ONE_ALU debug state register. Only allows one ALU program at a time to be executed (instead

of 2)
INSTRUCTION_INDEX
_PORTADDR This is where the CP puts the base address of the instruction writes and type (auto-

incremented on reads/writes)
INSTRUCTION_DATA This is where the CP puts the actual data going to the instruction memory
CONSTANT_DATA This is where the CP puts constant data (32 bits)
CONSTANT_ADDR This is where the CP puts the logical constant address (9 bits)
INSTRUCTION_INDEX
PORTADDR_RT This is where the CP puts the base address of the instruction writes and type for

Real Time (auto-incremented on reads/writes)
INSTRUCTION_DATA_RT This is where the CP puts the actual data going to the instruction memory for

Real Time
CONSTANT_DATA_RT This is where the CP puts constant data for Real Time (32 bits)
CONSTANT_ADDR_RT This is where the CP puts the logical constant address for Real Time (9 bits)
CONSTANT_EO_RT This is the size of the space reserved for real time in the constant store (from 0 to

CONSTANT_EO_RT). The remapingre-mapping table operates on the rest of the
memory

EXPORT_LATE Controls whether or not we are exporting position from clause 3. If set, position
exports occur at clause 7.

23.2 Context
VS_FETCH_{0…7} eight 8 bit pointers to the location where each clauses control program is located
VS_ALU_{0…7} eight 8 bit pointers to the location where each clauses control program is located
PS_FETCH_{0…7} eight 8 bit pointers to the location where each clauses control program is located
PS_ALU_{0…7} eight 8 bit pointers to the location where each clauses control program is located
PS_BASE base pointer for the pixel shader in the instruction store
VS_BASE base pointer for the vertex shader in the instruction store
VS_CF_SIZE size of the vertex shader (# of instructions in control program/2)
PS_CF_SIZE size of the pixel shader (# of instructions in control program/2)
PS_SIZE size of the pixel shader (cntl+instructions)
VS_SIZE size of the vertex shader (cntl+instructions)
PS_NUM_REG number of registersGPRs to allocate for pixel shader programs
VS_NUM_REG number of registersGPRs to allocate for vertex shader programs
PARAM_SHADE One 16 bit register specifying which parameters are to be gouraud shaded (0 = flat, 1

= gouraud)
PARAM_WRAP 64 bits: for which parameters (and channels (xyzw)) do we do the cyl wrapping

(0=linear, 1=cylindrical).
PS_EXPORT_MODE 0xxxx : Normal mode
 1xxxx : Multipass mode
 If normal, bbbz where bbb is how many colors (0-4) and z is export z or not
 If multipass 1-12 exports for color.
VS_EXPORT_MASK which of the last 6 ALU clauses is exporting (multipass only)
VS_EXPORT_MODE 0: position (1 vector), 1: position (2 vectors), 3:multipass
VS_EXPORT
COUNT{0…6} Six 4 bit counters representing the # of interpolated parameters exported in clause 7

(located in VS_EXPORT_COUNT_6) OR
 # of exported vectors to memory per clause in multipass mode (per clause)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 360 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

35 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

PARAM_GEN_I0 Do we overwrite or not the parameter 0 with XY data and generated T and S values
GEN_INDEX Auto generates an address from 0 to XX. Puts the results into R1 for pixel shaders

and R3 for vertex shaders
CONST_BASE_VTX (9 bits) Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Turns on the predicate bit optimization (if of, conditional_execute_predicates is

always executed).
CF_BOOLEANS 256 boolean bits
CF_LOOP_COUNT 32x8 bit counters (number of times we traverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in index computation)

24. DEBUG registersRegisters

24.1 Context
DB_PROB_ADDR instruction address where the first problem occurred
DB_PROB_COUNT number of problems encountered during the execution of the program
DB_INST_COUNT instruction counter for debug method 2
DB_BREAK_ADDR break address for method number 2
DB_CLAUSE
_MODE_ALU_{0…7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)
DB_CLAUSE
_MODE_FETCH_{0…7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)

25. Interfaces

25.1 External Interfaces
Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ→SPx it means that SQ is going to broadcast the same information to all SP instances.

25.1.1 SC to SP : IJ bus
This is a bus that sends the IJ information to the IJ fifos on the top of each shader pipe. At the same time the control
information goes to the sequencer. There are 4 of these buses over the whole chip (SP0 thru 3)

25.1.225.1.1 SC to SQ : IJ Control bus
This is the control information sent to the sequencer in order to control the IJ fifos and all other information needed to
execute a shader program on the sent pixels. This information is sent over 2 clocks, if SENDXY is asserted the next
control packet is going to be ignored and XY information is going to be sent on the IJ bus (for the quads that where
just sent). All pixels from the group of quads are from the same primitive, all quads of a vector are from the same
render state.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 361 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

R400 Sequencer Specification PAGE

36 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

Name Direction Bits Description
SC_SQ_q_wr_mask SC→SQ 4 Quad Write mask left to right
SC_SQ_lod_correct SC→SQ 24 LOD correction per quad (6 bits per quad)
SC_SQ_flat_vertex SC→SQ 2 Provoking vertex for flat shading
SC_SQ_param_ptr0 SC→SQ 11 P Store pointer for vertex 0
SC_SQ_param_ptr1 SC→SQ 11 P Store pointer for vertex 1
SC_SQ_param_ptr2 SC→SQ 11 P Store pointer for vertex 2
SC_SQ_end_of_vect SC→SQ 1 End of the vector
SC_SQ_store_dealloc SC→SQ 1 Deallocation token for the P Store
SC_SQ_state SC→SQ 3 State/constant pointer (6*3+3)
SC_SQ_valid_pixel SC→SQ 16 Valid bits for all pixels
SC_SQ_null_prim SC→SQ 1 Null Primitive (for PC deallocation purposes)
SC_SQ_end_of_prim SC→SQ 1 End Of the primitive
SC_SQ_fbface SC→SQ 1 Front face = 1, back face = 0
SC_SQ_send_xy SC→SQ 1 Sending XY information [XY information is going to be

sent on the next clock]
SC_SQ_prim_type SC→SQ 3 Real time command need to load tex cords from

alternate buffer. Line AA, Point AA and Sprite reads
their parameters from GEN_T and GEN_S
registersGPRs.
000 : Normal
011 : Real Time
100 : Line AA
101 : Point AA
110 : Sprite

SC_SQ_new_vector SC→SQ 1 This primitive comes from a new vector of vertices.
Make sure that the corresponding vertex shader has
finished before starting the group of pixels.

SC_SQ_RTRn SQ→SC 1 Stalls the PA in n clocks
SC_SQ_RTS SC→SQ 1 SC ready to send data

25.1.325.1.2 SQ to SP: Interpolator bus
Name Direction Bits Description
SQ_SPx_interp_prim_type SQ→SPx 3 Type of the primitive

000 : Normal
011 : Real Time
100 : Line AA
101 : Point AA
110 : Sprite

SQ_SPx_interp_flat_vtx SQ→SPx 2 Provoking vertex for flat shading
SQ_SPx_interp_flat_gouraud SQ→SPx 1 Flat or gouraud shading
SQ_SPx_interp_cyl_wrap SQ→SPx 4 Wich parameter needs to be cylindrical wrapped
SQ_SPx_interp_ijline SQ→SPx 2 Line in the IJ/XY buffer to use to interpolate
SQ_SPx_interp_buff_swap SQ→SPx 1 Swap the IJ/XY buffers at the end of the interpolation
SQ_SPx_interp_gen_I0 SQ→SPx 1 Generate I0 or not. This tells the interpolators not to

use the parameter cache but rather overwrite the data
with interpolated 1 and 0. Overwrite if gen_I0 is high.

25.1.425.1.3 SQ to SP: GPR Input Mux select
This interface is synchronized with the Interpolator bus. This controls the input mux to the GPRs. The three types of
data are: generated index, Interpolated data, vertex index data (coming from the staging registersregisters).

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 362 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

37 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

Name Direction Bits Description
SQ_SPx_data_type SQ→SPx 2 00: Interpolated data

01: Staging register data
1x: Count

SQ_SPx_index_count SQ→SPx 12? Index count, common for all shader pipes
SQ_SPx_stage_addr SQ→SPx 1 Staging register address

0: First staging register
1: second staging register

25.1.5 SQ to SPx: Parameter cache write control

25.1.625.1.4 SQ to SP: Parameter Cache Read control bus
The four following interfaces (SQ→SP, SQ→SX,SP→SX and SX→Interpolators) are all SYNCHRONIZED together.

Name Direction Bits Description
SQ_SPx_ptr0 SQ→SPx 9 Pointer of PC
SQ_SPx_ptr1 SQ→SPx 9 Pointer of PC
SQ_SPx_ptr2 SQ→SPx 9 Pointer of PC
SQ_SP0_read_ena SQ→SP0 4 Read enables for the 4 memories in the SP0
SQ_SP1_read_ena SQ→SP1 4 Read enables for the 4 memories in the SP1
SQ_SP2_read_ena SQ→SP2 4 Read enables for the 4 memories in the SP2
SQ_SP3_read_ena SQ→SP3 4 Read enables for the 4 memories in the SP3

25.1.725.1.5 SQ to SX: Parameter Cache Mux control Bus
Name Direction Bits Description
SQ_SXx_mux0 SQ→SXx 4 Mux control for PC (4 MSbs of Pointer)
SQ_SXx_mux1 SQ→SXx 4 Mux control for PC (4 MSbs of Pointer)
SQ_SXx_mux2 SQ→SXx 4 Mux control for PC (4 MSbs of Pointer)

25.1.8 SP to SX: Parameter data

25.1.9 SX to Interpolators: Parameter Cache Return bus

25.1.1025.1.6 SQ to SP0: Staging Register Data
Name Direction Bits Description
SQ_SP0_vgt_vsisr_data SQ→SP0 96 Pointers of indexes or HOS surface information
SQ_SP0_vgt_vsisr_double SQ→SP0 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0_data_valid SQ→SP0 1 Data is valid
SQ_SP1_vgt_vsisr_data SQ→SP1 96 Pointers of indexes or HOS surface information
SQ_SP1_vgt_vsisr_double SQ→SP1 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP1_data_valid SQ→SP1 1 Data is valid
SQ_SP2_vgt_vsisr_data SQ→SP2 96 Pointers of indexes or HOS surface information
SQ_SP2_vgt_vsisr_double SQ→SP2 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP2_data_valid SQ→SP2 1 Data is valid
SQ_SP3_vgt_vsisr_data SQ→SP3 96 Pointers of indexes or HOS surface information
SQ_SP3_vgt_vsisr_double SQ→SP3 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP3_data_valid SQ→SP3 1 Data is valid

25.1.1125.1.7 PA to SQ : Vertex interface

25.1.11.125.1.7.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 363 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

R400 Sequencer Specification PAGE

38 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide.

Name Bits Description
PA_SQ_vgt_vsisr_data 96 Pointers of indexes or HOS surface information
PA_SQ_vgt_vsisr_double 1 0: Normal 96 bits per vert 1: double 192 bits per vert
PA_SQ_vgt_end_of_vector 1 Indicates the last VSISR data set for the current process vector (for double vector

data, "end_of_vector" is set on the second vector)
PA_SQ_vgt_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when

“PA_SQ_vgt_end_of_vector” is high.
PA_SQ_vgt_send 1 Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_PA_vgt_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

25.1.11.225.1.7.2 Interface Diagrams Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 364 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

39 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:57 PM12/06/01 02:27 PM12/05/01 04:59 PM

VGT

VSISR_DATA_2

END_OF_VECTOR_2

STATE_SEL_2

REG

VSISR_DOUBLE_2
REG

REG

REG

REG

REG

SEND_2

REG

REG

REG

REG

REG

REG

PA_SQ_vgt_vsisr_data

PA_SQ_vgt_vsisr_double

PA_SQ_vgt_end_of_vector

PA_SQ_vgt_state_sel

PA_SQ_vgt_send

SQ_PA_vgt_rtr

VSISR_DATA_4

END_OF_VECTOR_4

STATE_SEL_4

VSISR_DOUBLE_4

96

1

1

3

1

1

SEND_4

RTR_2 RTR_0

SHADER
SEQUENCER

RTS

101 X 4
SKID

BUFFER

SRST SRST

WE

EMPTY

RE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 365 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

R400 Sequencer Specification PAGE

40 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:57 PM12/06/01 02:27 PM12/05/01 04:59 PM

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

6 7

6 7

6 7

0 1 2 3

0 1

8

8

8

2 43 5

4 5 6 7

4 3 2 1

8

9 10 11 12

9 10 11 12

9 10 11 12

9 10 11 12

0

RECEIVER RE-STARTS TRANSMISSION

SENDER STOPS TRANSMISSION

SQ_RTR

SQ_RTR_0

VGT_RTS

SEND_2

SEND_3

SEND_4

DATA_2

FIFO_EMPTY

FIFO_RE

SQ_RTR_1

SQ_RTR_2

DATA_3

DATA_4

FIFO_DATA_OUT

FIFO_CNT

RECEIVER STOPS TRANSMISSION

Figure 1. Detailed Logical Diagram for PA_SQ_vgt Interface.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 366 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

41 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

25.1.1225.1.8 SQ to CP: State report
Name Direction Bits Description
SQ_CP_vrtx_ state SEQ→CP 3 Oldest vertex state still in the pipe
SQ_CP_pix_state SEQ→CP 3 Oldest pixel state still in the pipe

25.1.13 SP to SX : Pixel/Vertex write to SX

25.1.1425.1.9 SQ to SX: Control bus
Name Direction Bits Description
SQ_SXx_exp_Pixel SQ→SXx 1 1: Pixel

0: Vertex
SQ_SXx_exp_start SQ→SXx 1 Raised to indicate that the SQ is starting an export
SQ_SXx_exp_Clause SQ→SXx 3 Clause number, which is needed for vertex clauses
SQ_SXx_exp_State SQ→SXx 3 State ID, which is needed for vertex clauses

These fields are sent synchronously with SP export data, described in SP0→SX0 interface
{ISSUE: Where are the PC pointers}

25.1.1525.1.10 SX to SQ : Output file control
Name Direction Bits Description
SXx_SQ_Export_count_rdy SXx→SQ 1 Raised by SX0 to indicate that the following two fields

reflect the result of the most recent export
SXx_SQ_Export_Position SXx→SQ 1 Specifies whether there is room for another position.
SXx_SQ_Export_Buffer SXx→SQ 7 Specifies the space available in the output buffers.

0: buffers are full
1: 2K-bits available (32-bits for each of the 64
pixels in a clause)
...
64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

25.1.16 Shader Engine to Fetch Unit Bus
Four quad’s worth of addresses is transferred to Fetch Unit every clock. These are sourced from a different pixel within
each of the sub-engines repeating every 4 clocks. The register file index to read must precede the data by 2 clocks. The
Read address associated with Quad 0 must be sent 1 clock after the Instruction Start signal is sent, so that data is read
3 clocks after the Instruction Start.

Four Quad’s worth of Fetch Data may be written to the Register file every clock. These are directed to a different pixel
of the sub-engines repeating every 4 clocks. The register file index to write must accompany the data. Data and Index
associated with the Quad 0 must be sent 3 clocks after the Instruction Start signal is sent.

25.1.1725.1.11 Sequencer to Fetch Unit busSQ to TP: Control bus
Once every clock, the fetch unit sends to the sequencer on which clause it is now working and if the data in the
registersGPRs is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos.
The sequencer also provides the instruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

Name Direction Bits Description
TPx_SQ_data_rdy TPx→ SQ 1 Data ready

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 367 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

R400 Sequencer Specification PAGE

42 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

TPx_SQ_clause_num TPx→ SQ 3 Clause number
SQ_TPx_const SQ→TPx 64 Fetch state sent over 4 clocks
SQ_TPx_instuct SQ→TPx 24 Fetch instruction sent over 4 clocks
SQ_TPx_end_of_clause SQ→TPx 1 Last instruction of the clause
SQ_TPx_phase SQ→TPx 2 Write phase signal
SQ_TP0_lod_correct SQ→TP0 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP0_pmask SQ→TP0 4 Pixel mask 1 bit per pixel
SQ_TP1_lod_correct SQ→TP1 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pmask SQ→TP1 4 Pixel mask 1 bit per pixel
SQ_TP2_lod_correct SQ→TP2 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pmask SQ→TP2 4 Pixel mask 1 bit per pixel
SQ_TP3_lod_correct SQ→TP3 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pmask SQ→TP3 4 Pixel mask 1 bit per pixel
SQ_TPx_clause_num SQ→TPx 3 Clause number
SQ_TPx_write_gpr_index SQ->TPx 7 Index into Register file for write of returned Fetch Data

25.1.12 TP to SQ: Texture stall
The TP sends this signal to the SQ when its input buffer is full. The SQ is going to send it to the SP X clocks after
reception (maximum of 3 clocks of pipeline delay).

Name Direction Bits Description
TP_SQ_fetch_stall TP→ SQ 1 Do not send more texture request if asserted

25.1.13 SQ to SP: Texture stall
Name Direction Bits Description
SQ_SPx_fetch_stall SQ→SPx 1 Do not send more texture request if asserted

25.1.1825.1.14 SequencerQ to SP: GPR and Parameter cache control
Name Direction Bits Description
SQ_SPx_gpr_wr_addr SQ→SPx 7 Write address
SQ_SPx_gpr_rd_addr SQ→SPx 7 Read address
SQ_SPx_gpr_re_addr SQ→SPx 1 Read Enable
SQ_SPx_gpr_we_addr SQ→SPx 1 Write Enable for the GPRs
SQ_SPx_gpr_phase_mux SQ→SPx 2 The phase mux
SQ_SPx_gpr_channel_mask SQ→SPx 4 The channel mask
SQ_SP0_gpr_pixel_mask SQ→SP0 4 The pixel mask
SQ_SP1_gpr_pixel_mask SQ→SP1 4 The pixel mask
SQ_SP2_gpr_pixel_mask SQ→SP2 4 The pixel mask
SQ_SP3_gpr_pixel_mask SQ→SP3 4 The pixel mask
SQ_SPx_pc_we_addr SQ→SPx 1 Write Enable for the parameter caches

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 368 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

43 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

25.1.1925.1.15 Sequencer SQ to SPx: Instructions
Name Name DirectionDirection BitsBits DescriptionDescription
SQ_SPx_instruct_startSQ_SPx_instruct_start SQ→SPxSQ→SPx 11 Instruction startInstruction

start
SQ_SP_instructSQ_SP_instruct SQ→SPxSQ→SPx 2020 Instruction sent over 4

clocksInstruction sent over 4
clocks

SQ_SPx_stallSQ_SPx_stall SQ→SPxSQ→SPx 11 Stall signalStall signal
SQ_SPx_export_countSQ_SPx_Shader_Count SQ→SPxSQ→SPx 33 Each set of four pixels or

vectors is exported over
eight clocks. This field
specifies where the SP is in
that sequence.Each set of
four pixels or vectors is
exported over eight clocks.
This field specifies where
the SP is in that sequence.

SQ_SPx_export_lastSQ_SPx_Shader_Last SQ→SPxSQ→SPx 11 Asserted on the first shader
count of the last export of
the clauseAsserted on the
first shader count of the
last export of the clause

SQ_SP0_export_pvalidSQ_SP0_Shader_PixelValid SQ→SP0SQ→SP0 44 Result of pixel kill in the
shader pipe, which must be
output for all pixel exports
(depth and all color
buffers). 4x4 because 16
pixels are computed per
clockResult of pixel kill in
the shader pipe, which
must be output for all pixel
exports (depth and all color
buffers). 4x4 because 16
pixels are computed per
clock

SQ_SP0_export_wvalidSQ_SP0_Shader_WordVali
d

SQ→SP0SQ→SP0 22 Specifies whether to write
low and/or high 32-bit word
of the 64-bit export data
from each of the 16 pixels
or vectorsSpecifies
whether to write low and/or
high 32-bit word of the 64-
bit export data from each of
the 16 pixels or vectors

SQ_SP1_ export_pvalidSQ_SP1_Shader_PixelValid SQ→SP1SQ→SP1 44 Result of pixel kill in the
shader pipe, which must be
output for all pixel exports
(depth and all color
buffers). 4x4 because 16
pixels are computed per
clockResult of pixel kill in
the shader pipe, which
must be output for all pixel
exports (depth and all color
buffers). 4x4 because 16
pixels are computed per
clock

SQ_SP1_ SQ→SP1SQ→SP1 22 Specifies whether to write

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 369 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

R400 Sequencer Specification PAGE

44 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

export_wvalidSQ_SP1_Shader_WordValid low and/or high 32-bit word
of the 64-bit export data
from each of the 16 pixels
or vectorsSpecifies
whether to write low and/or
high 32-bit word of the 64-
bit export data from each of
the 16 pixels or vectors

SQ_SP2_ export_pvalidSQ_SP2_Shader_PixelValid SQ→SP2SQ→SP2 44 Result of pixel kill in the
shader pipe, which must be
output for all pixel exports
(depth and all color
buffers). 4x4 because 16
pixels are computed per
clockResult of pixel kill in
the shader pipe, which
must be output for all pixel
exports (depth and all color
buffers). 4x4 because 16
pixels are computed per
clock

SQ_SP2_
export_wvalidSQ_SP2_Shader_WordValid

SQ→SP2SQ→SP2 22 Specifies whether to write
low and/or high 32-bit word
of the 64-bit export data
from each of the 16 pixels
or vectorsSpecifies
whether to write low and/or
high 32-bit word of the 64-
bit export data from each of
the 16 pixels or vectors

SQ_SP3_ export_pvalidSQ_SP3_Shader_PixelValid SQ→SP3SQ→SP3 44 Result of pixel kill in the
shader pipe, which must be
output for all pixel exports
(depth and all color
buffers). 4x4 because 16
pixels are computed per
clockResult of pixel kill in
the shader pipe, which
must be output for all pixel
exports (depth and all color
buffers). 4x4 because 16
pixels are computed per
clock

SQ_SP3_
export_wvalidSQ_SP3_Shader_WordValid

SQ→SP3SQ→SP3 22 Specifies whether to write
low and/or high 32-bit word
of the 64-bit export data
from each of the 16 pixels
or vectorsSpecifies
whether to write low and/or
high 32-bit word of the 64-
bit export data from each of
the 16 pixels or vectors

25.1.2025.1.16 SP to SequencerSQ: Constant address load
Name Direction Bits Description
SP0_SQ_const_addr SP0→SQ 36 Constant address load to the sequencer
SP0_SQ_valid SP0→SQ 1 Data valid
SP1_SQ_const_addr SP1→SQ 36 Constant address load to the sequencer

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 370 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

45 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

SP1_SQ_valid SP1→SQ 1 Data valid
SP2_SQ_const_addr SP2→SQ 36 Constant address load to the sequencer
SP2_SQ_valid SP2→SQ 1 Data valid
SP3_SQ_const_addr SP3→SQ 36 Constant address load to the sequencer
SP3_SQ_valid SP3→SQ 1 Data valid

25.1.2125.1.17 Sequencer SQ to SPx: constant broadcast
Name Direction Bits Description
SQ_SPx_constant SQ→SPx 128 Constant broadcast

25.1.2225.1.18 SP0 to SequencerSQ: Kill vector load
Name Direction Bits Description
SP0_SQ_kill_vect SP0→SQ 4 Kill vector load
SP1_SQ_kill_vect SP1→SQ 4 Kill vector load
SP2_SQ_kill_vect SP2→SQ 4 Kill vector load
SP3_SQ_kill_vect SP3→SQ 4 Kill vector load

25.1.2325.1.19 SQ to CP: RBBM bus
Name Direction Bits Description
SQ_RBB_rs SQ→CP 1 Read Strobe
SQ_RBB_rd SQ→CP 32 Read Data
SQ_RBBM_nrtrtr SQ→CP 1 Optional
SQ_RBBM_rtr SQ→CP 1 Real-Time (Optional)

25.1.2425.1.20 CP to SQ: RBBM bus
Name Direction Bits Description
rbbm_we CP→SQ 1 Write Enable
rbbm_a CP→SQ 18 Address -- Upper Extent is TBD
rbbm_wd CP→SQ 32 Data
rbbm_be CP→SQ 4 Byte Enables
rbbm_re CP→SQ 1 Read Enable
rbb_rs0 CP→SQ 1 Read Return Strobe 0
rbb_rs1 CP→SQ 1 Read Return Strobe 1
rbb_rd0 CP→SQ 32 Read Data 0
rbb_rd1 CP→SQ 32 Read Data 0
RBBM_SQ_soft_reset CP→SQ 1 Soft Reset

26. Examples of program executions

26.1.1 Sequencer Control of a Vector of Vertices

1. PA sends a vector of 64 vertices (actually vertex indices – 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO
 state pointer as well as tag into position cache is sent along with vertices
 space was allocated in the position cache for transformed position before the vector was sent
 also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
 The vertex program is assumed to be loaded when we receive the vertex vector.

 the SEQ then accesses the IS base for this shader using the local state pointer (provided to all
sequencers by the RBBM when the CP is done loading the program)

2. SEQ arbitrates between the Pixel FIFO and the Vertex FIFO – basically the Vertex FIFO always has priority
 at this point the vector is removed from the Vertex FIFO
 the arbiter is not going to select a vector to be transformed if the parameter cache is full unless the pipe as

nothing else to do (ie no pixels are in the pixel fifo).

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 371 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

R400 Sequencer Specification PAGE

46 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

3. SEQ allocates space in the SP register file for index data plus GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
 SEQ will not send vertex data until space in the register file has been allocated

4. SEQ sends the vector to the SP register file over the RE_SP interface (which has a bandwidth of 2048 bits/cycle)
 the 64 vertex indices are sent to the 64 register files over 4 cycles

 RF0 of SU0, SU1, SU2, and SU3 is written the first cycle
 RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
 RF2 of SU0, SU1, SU2, and SU3 is written the third cycle
 RF3 of SU0, SU1, SU2, and SU3 is written the fourth cycle

 the index is written to the least significant 32 bits (floating point format?) (what about compound indices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, z)

5. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSM0 FIFO)
 the control packet contains the state pointer, the tag to the position cache and a register file base pointer.

6. TSM0 accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

7. all instructions of fetch clause 0 are issued by TSM0

8. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for requests made to the Fetch Unit to complete; it passes the register file write index for

the fetch data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data to the register files, it increments a counter that is associated with ASM0

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

9. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

10. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

11. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 position can be exported in ALU clause 3 (or 4?); the data (and the tag) is sent over a position bus (which is

shared with all four shader pipes) back to the PA’s position cache
 A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
 there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA
 the ASM arbiter will prevent a packet from starting an exporting clause if the position export FIFO is full

 parameter data is exported in clause 7 (as well as position data if it was not exported earlier)
 parameter data is sent to the Parameter Cache over a dedicated bus
 the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space when there is no

longer a need for the parameters (it is told by the PA when using a token).
 the ASM arbiter will prevent a packet from starting on ASM7 if the parameter cache (or the position buffer

if position is being exported) is full

12. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

26.1.2 Sequencer Control of a Vector of Pixels

1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

 At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

2. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
 the state pointer and the LOD correction bits are also placed in the Pixel FIF0
 the Pixel FIFO is wide enough to source four quad’s worth of barycentrics per cycle

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 372 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

47 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

3. SEQ arbitrates between Pixel FIFO and Vertex FIFO – when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

4. SEQ allocates space in the SP register file for all the GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
 SEQ will not allow interpolated data to be sent to the shader until space in the register file has been allocated

5. SEQ controls the transfer of interpolated data to the SP register file over the RE_SP interface (which has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagrams for details.

6. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSM0 FIFO)
 note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
 the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
 all other information (such as quad address for example) travels in a separate FIFO

7. TSM0 accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

8. all instructions of fetch clause 0 are issued by TSM0

9. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for fetch requests made to the Fetch Unit to complete; it passes the register file write

index for the fetch data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data for a particular clause to the register files, it increments a counter that is

associated with the ASM0 FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

10. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

11. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

12. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 pixel data is exported in the last ALU clause (clause 7)

 it is sent to an output FIFO where it will be picked up by the render backend
 the ASM arbiter will prevent a packet from starting on ASM7 if the output FIFO is full

13. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

26.1.3 Notes

14. The state machines and arbiters will operate ahead of time so that they will be able to immediately start the real
threads or stall.

15. The register file base pointer for a vector needs to travel with the vector through the reservation stations, but the
instruction store base pointer does not – this is because the RF pointer is different for all threads, but the IS
pointer is only different for each state and thus can be accessed via the state pointer.

16. Waterfalling still needs to be specked out.

27. Open issues
There is currently an issue with constants. If the constants are not the same for the whole vector of vertices, we don’t
have the bandwidth from the fetch store to feed the ALUs. Two solutions exists for this problem:

1)Let the compiler handle the case and put those instructions in a fetch clause so we can use the bandwidth
there to operate. This requires a significant amount of temporary storage in the register store.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 373 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
December 20016

R400 Sequencer Specification PAGE

48 of 48

Exhibit 2021.docR400_Sequencer.doc �� 64782 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM12/06/01 02:27 PM12/05/01 04:59 PM

2)Waterfall down the pipe allowing only at a given time the vertices having the same constants to operate in
parallel. This might in the worst case slow us down by a factor of 16.

Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 374 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SQ

Version 1.65

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\doc_lib\design\blocks\sq\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAread_ptrINS CONFIDENTIAL INFORMATION THAT
COULD BE SUBSTANTIALLY DETRIMENTAread_ptrL TO THE INTEREST OF ATI

TECHNOLOGIES INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2022
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 375 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

R400 Sequencer Specification PAGE

2 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

Table Of Contents

1. OVERVIEW .. 6
1.1 Top Level Block Diagram ... 8
1.2 Data Flow graph ... 10
1.3 Control Graph ... 11
2. INTERPOLATED DATA BUS .. 11
3. INSTRUCTION STORE ... 14
4. SEQUENCER INSTRUCTIONS ... 16
5. CONSTANT STORES .. 16
5.1 Memory organizations .. 16
5.2 Management of the re-mapping tables .. 16

5.2.1 Dirty bits .. 1918

5.2.2 Free List Block .. 1918

5.2.3 De-allocate Block .. 1918

5.2.4 Operation of Incremental model .. 2018
5.3 Constant Store Indexing ... 2119
5.4 Real Time Commands.. 2119
6. LOOPING AND BRANCHES ... 2220
6.1 The controlling state. .. 2220
6.2 The Control Flow Program ... 2220
6.3 Data dependant predicate instructions ... 2523
6.4 HW Detection of PV,PS ... 2523
6.5 Register file indexing .. 2623
6.6 Predicated Instruction support for Texture clauses .. 2624
6.7 Debugging the Shaders ... 2624

6.7.1 Method 1: Debugging registers ... 2624

6.7.2 Method 2: Exporting the values in the GPRs (12) ... 2725
7. PIXEL KILL MASK .. 2725
8. MULTIPASS VERTEX SHADERS (HOS) .. 2725
9. REGISTER FILE ALLOCATION .. 2725
10. FETCH ARBITRATION .. 2826
11. ALU ARBITRATION .. 2826
12. HANDLING STALLS ... 2927
13. CONTENT OF THE RESERVATION STATION FIFOS ... 2927
14. THE OUTPUT FILE.. 2927
15. IJ FORMAT .. 2927
15.1 Interpolation of constant attributes .. 3028
16. THE PARAMETER CACHE ... 323028
17. VERTEX POSITION EXPORTING ... 323028
18. EXPORTING ARBITRATION .. 323028
19. EXPORT TYPES .. 323029
19.1 Vertex Shading .. 333029
19.2 Pixel Shading .. 333029
20. SPECIAL INTERPOLATION MODES ... 333129

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 376 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

20.1 Real time commands .. 333129
20.2 Sprites/ XY screen coordinates/ FB information .. 333130
20.3 Auto generated counters ... 343130

20.3.1 Vertex shaders ... 343230

20.3.2 Pixel shaders .. 343230
21. STATE MANAGEMENT .. 353231
21.1 Parameter cache synchronization ... 353231
22. XY ADDRESS IMPORTS ... 353231
22.1 Vertex indexes imports .. 353331
23. REGISTERS .. 353331
23.1 Control ... 353331
23.2 Context .. 363332
24. DEBUG REGISTERS... 363433
24.1 Context .. 363433

25. INTERFACES .. 373433

25.1 External Interfaces .. 373433

25.1.1 SC to SQ : IJ Control bus .. 373433

25.1.2 SQ to SP: Interpolator bus ... 373534

25.1.3 SQ to SP: GPR Input Mux select ... 383534

25.1.4 SQ to SP: Parameter Cache Read control bus .. 383635

25.1.5 SQ to SX: Parameter Cache Mux control Bus ... 383635

25.1.6 SQ to SP: Staging Register Data ... 383635

25.1.7 PA to SQ : Vertex interface .. 383635

25.1.8 SQ to CP: State report ... 424039

25.1.9 SQ to SX: Control bus .. 424039

25.1.10 SX to SQ : Output file control ... 424039

25.1.11 SQ to TP: Control bus .. 424039

25.1.12 TP to SQ: Texture stall ... 434140

25.1.13 SQ to SP: Texture stall ... 434140

25.1.14 SQ to SP: GPR and Parameter cache control ... 434140

25.1.15 SQ to SPx: Instructions .. 444241

25.1.16 SP to SQ: Constant address load .. 444241

25.1.17 SQ to SPx: constant broadcast .. 444241

25.1.18 SP0 to SQ: Kill vector load ... 454342

25.1.19 SQ to CP: RBBM bus ... 454342

25.1.20 CP to SQ: RBBM bus ... 454342
26. EXAMPLES OF PROGRAM EXECUTIONS .. 454342

26.1.1 Sequencer Control of a Vector of Vertices ... 454342

26.1.2 Sequencer Control of a Vector of Pixels .. 464443

26.1.3 Notes .. 474544

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 377 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

R400 Sequencer Specification PAGE

4 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

27. OPEN ISSUES ... 474544

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 378 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

 Changed the control flow method to be more
flexible. Also updated the external interfaces.

Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

 Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001

 Refined interfaces to RB. Added state registers.

Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

 Added SEQ→SP0 interfaces. Changed delta
precision. Changed VGT→SP0 interface. Debug
Methods added.

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001

 Interfaces greatly refined. Cleaned up the spec.

Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001

 Added the different interpolation modes.

Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

 Added the auto incrementing counters. Changed
the VGT→SQ interface. Added content on constant
management. Updated GPRs.

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

 Removed from the spec all interfaces that weren’t
directly tied to the SQ. Added explanations on
constant management. Added PA→SQ
synchronization fields and explanation.

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

 Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 379 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

R400 Sequencer Specification PAGE

6 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

1. Overview
The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause until the fetch fetches initiated by the previous
fetch clause have completed. There are two separate sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 380 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:57 PM01/04/02 02:57 PM12/06/01 02:27 PM

SQ

SC

SPSPSPCSTOREFETCH STATE

TP

INST STORE

IJ CONTROL

IJ
CONTROL

CST
ADDR

INST
 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/QUAD
ADDRESSES

SP

ALU INST

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

INST

INTER INTER INTER INTER

IJ CROSSBAR

2 QUADS IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC READ
 POINTERS

PARAM
DATA

R/W ADDR

Vertex indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

CP

CONSTANT
LOAD

CPConstant Load

TX ADDR

PC Write
Address

TEX INST

CF
CONSTANTS

Register
Mapped

CF Read

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 381 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

R400 Sequencer Specification PAGE

8 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

1.1 Top Level Block Diagram

vertex/pixel vector arbitrator

Possible delay for available GPR’s

FIFO
Texture clause 0
reservation station

Texture clause 1
reservation station

FIFO
ALU clause 0
reservation station

FIFO

Texture clause 2
reservation station

Texture clause 3
reservation station

FIFO
ALU clause 1
reservation station

FIFO

FIFO
ALU clause 2
reservation station

FIFO

FIFO
ALU clause 3
reservation station

FIFO
Texture clause 4
reservation station

Texture clause 5
reservation station

FIFO
ALU clause 4
reservation station

FIFO

Texture clause 6
reservation station

Texture clause 7
reservation station

FIFO
ALU clause 5
reservation station

FIFO

FIFO
ALU clause 6
reservation station

FIFO

FIFO
ALU clause 7
reservation station

texture arbitrator

texture arbitrator

There are two sets of the above figure, one for vertices and one for pixels.

Depending on the arbitration state, the sequencer will either choose a vertex or a pixel packet. The control packet
consists of 3 bits of state, 7 bits for the base address of the Shader program and some information on the coverage to
determine fetch LOD plus other various small state bits.

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the GPRs to store the interpolated values and temporaries. Following this, the barycentric coordinates (and XY

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 382 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

screen position if needed) are sent to the interpolator which will use them to interpolate the parameters and place the
results into the GPRs. Then, the input state machine stacks the packet in the first FIFO.

On receipt of a command, the level 0 fetch machine issues a fetch request to the TP and corresponding GPR
address for the fetch address (ta). A small command (tcmd) is passed to the fetch system identifying the current level
number (0) as well as the GPR write address for the fetch return data. One fetch request is sent every 4 clocks
causing the texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the requests are sent the packet is put in
FIFO 1.

Upon receipt of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level 0 fetch machine and sends the clause number (0) to the level 0 fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU 0 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO 1 counter and then issues a
complete set of level 0 shader instructions. For each instruction, the ALU state machine generates 3 source
addresses, one destination address and an instruction. Once the last instruction has been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbiters). One arbiter will arbitrate
over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the two arbiters is that they are not allowed to pick the same
clause number as the other one is currently working on if the packet is not of the same type (render state).

If the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbiter must prevent ALU clause 3 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, if needed the sprite size and/or edge flags can also be sent.

{ISSUE: How do we handle parameter cache pointers (computed, semi-computed or not computed)?}

A special case is for multipass vertex shaders, which can export 12 parameters per last 6 clauses to the output
buffer. If the output buffer is full or doesn’t have enough space the sequencer will prevent such a vertex group to
enter an exporting clause.

Multipass pixel shaders can export 12 parameters to memory from the last clause only (7).

All other clauses process in the same way until the packet finally reaches the last ALU machine (7).

Only one pair of interleaved ALU state machines may have access to the register file address bus or the instruction
decode bus at one time. Similarly, only one fetch state machine may have access to the register file address bus at
one time. Arbitration is performed by three arbiter blocks (two for the ALU state machines and one for the fetch state
machines). The arbiters always favor the higher number state machines, preventing a bunch of half finished jobs from
clogging up the register files.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 383 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

R400 Sequencer Specification PAGE

10 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

1.2 Data Flow graph (SP)

MAC

MAC

MAC

MAC

Register File

co
ns

ta
nt

s
fr

om
 R

E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
nt

s
fr

om
 R

E

S
ca

la
r

U
n

it

texture request

texture request

texture request

texture request

te
xt

ur
e

ad
dr

es
s

te xtu re d
ata

p rim
i tive da

ta f rom
 R

E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 384 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

SEQ

FETCH SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

OF

WrAddrIS CST

CST IDX

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 385 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

R400 Sequencer Specification PAGE

12 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x64 bits)

IJs buffer (ping-pong buffer)
(28 bits * 2 (IJ) + 8 bits * 6 (delta IJs)+4 exp

bits*6)* 16 (quads) * 2 (double-buffered)
4096 bits

32 x 128

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

64

To RB

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2

768 bits
32x24

FIX-FLOAT + EXPANSiON

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 386 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:57 PM01/04/02 02:57 PM12/06/01 02:27 PM

SP
0

SP
1

SP
2

SP
3

WRITES
T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-
11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P1 P2

T20 T21 T22 T23

VTX

T0 T1 T2 T3

XY

XY
0-3

XY
4-7

XY
8-
11

XY
12-
15

XY
16-
19

XY
20-
23

XY
24-
27

XY
28-
31

XY
32-
35

XY
36-
39

XY
40-
43

XY
44-
47

XY
48-
51

XY
52-
55

XY
56-
59

XY
60-
63

READS

SP
0

SP
1

SP
2

SP
3

A0

A1

A2

B1

B0

C3

C0

C1

C2

C4

C5

D0

D1

D2

E0

E1

A0

A1

A2

XY
A0
XY
A1
XY
A2

B1

B0

XY
B1

XY
B0

C3

C0

C1

C2

XY
C3
XY
C0
XY
C1
XY
C2

C4

C5

XY
C4
XY
C5

D0

D1

D2

XY
D1
XY
D2

XY
D0

E0

E1
XY
E1

XY
E0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 387 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

R400 Sequencer Specification PAGE

14 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store
There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the INST_DATA, INST_INDEX_PORT control register. The
INST_INDEX_PORT is auto-incremented on both reads and writes to the INST_DATA register.register mapped
registers.

The next picture shows the various modes the CP can load the memory. The Sequencer has to keep track of the
loading modes in order to wrap around the correct boundaries. The MSB of the INST_INDEX_PORT register
contains the packet type for the sequencer to know where it must wrap around. The wrap around points arewrap
around points are arbitrary and they are specified in the VS_BASE and PIX_BASE registers.

For the Real time commands the story is quite the same but for some small differences. The CP will use the
INST_INDEX_PORT_RT and INST_DATA_RT register pair instead of the regular ones and Tthere are no wrap
around points for real time so the driver must be careful not to overwrite regular shader data. The shared code
(shared subroutines) uses the same path as real time.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 388 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:57 PM01/04/02 02:57 PM12/06/01 02:27 PM

R400 CP's Views of Instruction Memory Updated: 11/14/2001
John A. Carey

0

4095

Real-Time &
Shared Code

VERTEX_SHADER_BASE

PIXEL_SHADER_BASE

VS Code A

VS Code B

VS Code C

PS Code A

PS Code B

PS Code C

CP writes code start
addresses to
appropriate Sub-
Blocks so Sequencer
knows where to start
executing the code.

MODE 0 - Dual Ring
0

4095

Real-Time &
Shared Code

VERTEX_SHADER_BASE

VS Code A

VS Code B

VS Code C

PS Code A

PS Code B

PS Code C

MODE 1 - Single Ring

CP writes code start
addresses to
appropriate Sub-
Blocks so Sequencer
knows where to start
executing the code.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 389 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

R400 Sequencer Specification PAGE

16 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

4. Sequencer Instructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants.

The texture state is also kept in a similar memory. The size of this memory is 192x128. The memory thus holds 128
texture states (192 bits per state). The logical size exposes 32 different states total, which are going to be shared
between the pixel and the vertex shader. The size of the re-mapping table to for the texture state memory is 16 lines
(each line addresses 2 texture state lines in the real memory). The write granularity is 2 texture state lines (or 384
bits). The driver sends 512 bits but the CP ignores the top 128 bits. It thus takes 12 clocks to write the two texture
states.

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a state change. Its size is 320*32 because it must hold 8 copies of the 32 dwords
of control flow constants and the loop construct constants must be aligned.

The CP is loading the constant store using the CONST_DATA and CONST_ADDR registers. It does so by writing to
the CONST_ADDR register the logical address for the constant block it wants to update and then writes 16 times to
the CONST_DATA register. The CONST_ADDR is auto-incremented on both reads and writes to the CONST_DATA
register. The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular
mode and physically register mapped for RT operation.

5.2 Management of the re-mapping tables
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work, the requirement is that the physical memory MUST be at least twice as large as the logical
address space. In our case, since the logical address space is 512, the memory must be of sizes 1024 and above.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 390 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

Physical
Memory

Renaming Table
for 1 Context
Current/Last

Physical
Address

per
Logical
Address

Renaming
table

N-Contexts

Reset
Dirty
per

Logical
Address

(Only
de-

allocate
if set)

This
Context

Dirty
per

Logical
Address

(If set
don't

allocate
or de-

allocate)

Logical address
On the

GlbRegBus
when lsb are zero
first word of write

next
physical
address
ready

for allocate

Constants
location
available
WRTR

physical
address

to
schedule

for
de-alloc

Staging Data
Buffer

Staging Write Addr

Copy Last held above to
Current Context on receipt

of Set Constant for a
new context (Hide loading

behind Set State load - 16 clocks)
all other Set States just write one

entry to current state.

Free
list

(pass Phys
Address if
Context
Dirty)

Dealloc
Counts

Seq
Constant
Request

Context &
Logical
Address

Free_ptr
WritePtr

When a Logical
Address is written

that has been
written before,

store the physical
address that was
allocated by that
Logical Address

Stop_ptr
ptr to first physical

address that is
scheduled to be de-
allocated but noty
yet de-allocate.

Advanced each time
a context is freed by

the number of
physical address
displaced by that

Context

Read_ptr
ptr to physical

address that will be
used next if the init

count is at
maximum number

of physical address

Free List

Number of entries
equals Max Number of
Physical Blocks. All
Pointers start at zero
and roll around but

can never pass each
other

Free
Address

Address
to Allocate

Global Register
Data Bus

Renaming Table
Context 0 => N

Logical Address
& Context

Physical
Address

Context 0 (8 rows of 16 - 8 bit
physical => 128 entries copy in

eight clocks)

Context 1

Context N

Current/Last
Context

(8 rows of 16 - 8
bit physical =>

128 entries copy
in eight clocks)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 391 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

R400 Sequencer Specification PAGE

18 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

Physical
Memory

Renaming Table
for 1 Context
Current/Last

Physical
Address

per
Logical
Address

Renaming
table

N-Contexts

Reset
Dirty
per

Logical
Address

(Only
de-

allocate
if set)

This
Context

Dirty
per

Logical
Address
(If set
don't

allocate
or de-

allocate)

Logical address
On the

GlbRegBus
when lsb are zero
first word of write

next
physical
address
ready

for allocate

Constants
location
available
WRTR

physical
address

to
schedule

for
de-alloc

Staging Data
Buffer

Staging Write Addr

Copy Last held above to
Current Context on reciept

of Set Constant for a
new context (Hide loading

behind Set State load - 16 clocks)
all other Set States just write one

entry to current state.

Free
list

(pass Phys
Address if
Context
Dirty)

Dealloc
Counts

Seq
Constant
Request

Context &
Logical
Address

NTF
WritePtr

When a Logical
Address is written

that has been
written before,

store the physical
address that was
allocated by that
Logical Address

YTF
ptr to first physical

address that is
scheduled to be de-
allocated but noty
yet de-allocate.

Advanced each time
a context is freed by

the number of
physical address
displaced by that

Context

NTA
ptr to physical

address that will
be used next if
the init count is

at maximum
number of
physical
address

Free List

Number of entries
equals Max Number of
Physical Blocks. All
Pointers start at zero
and roll around but

can never pass each
other

Free
Address

Address
to Allocate

Global Register
Data Bus

Renaming Table
Context 0 => N

Logical Address
& Context

Physical
Address

Context 0 (8 rows of 16 - 8 bit
physical => 128 entries copy in

eight clocks)

Context 1

Context N

Current/Last
Context

(8 rows of 16 - 8
bit physical =>

128 entries copy
in eight clocks)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 392 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

5.2.1 Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero when ever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.2.2 Free List Block
A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.
A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call NTF (Next To Free). This
pointer will identify the next location to write the physical address of a block to be de-allocated. Note: we can never
free more physical memory locations than we have. Once recording address the pointer will be incremented to walk
the free list like a ring.
The second pointer will be called YTF (Yet To Free). The YTF pointer will be advanced by the number of address
chunks de-allocates when a context finishes. The address between the YTF and NTF cannot be reused because
they are still in use. But as soon as the context using then is dismissed the YTF will be advanced.
The third pointer will be called NTA (Next To Allocate). This pointer will point will point to the next address that can
be used for allocation as long as the NTA does not equal the YTF and the IFC is at its maximum count.

5.2.3 De-allocate Block
This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any number of blocks in one clock.
This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the NTF pointer. This count will be reset
upon reset or when this context is active on the back and different than the previous context. It is actually a count of
blocks in the previous context that will no longer be used. This count will be used to advance the NTF pointer to
make available the set of physical blocks freed when the previous context was done. This allows the discard or de-
allocation of any number of blocks in one clock.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 393 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

R400 Sequencer Specification PAGE

20 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

5.2.4 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.The basic operation of the model would start with the
NTF, YTF, NTA pointers in the free list set to zero and the free list counter is set to zero. Also all the dirty bits and the
previous context will be initialized to zero. When the first set constants happen, the reset dirty bit will not be set, so we
will allocate a physical location from the free list counter because its not at the max value. The data will be written
into physical address zero. Both the additional copy of the renaming table and the context zeros of the big renaming
table will be updated for the logical address that was written by set start with physical address of 0. This process will
be repeated for any logical address that are not dirty until the context changes. If a logical address is hit that has its
dirty bits set while in the same context, both dirty bits would be set, so the new data will be over-written to the last
physical address assigned for this logical address. When a set constant comes with a different than last context, the
previous context stored in the additional renaming table will be copied to the larger renaming table in the current
(new) context location. Then the set constant logical address with be loaded with a new physical address during the
copy and if the reset dirty was set, the physical address it replaced in the renaming table would be entered at the NTF
pointer location on the free list and the NTF will be incremented. The de-allocation counter for the previous context
(zero) will be incremented. This as set states come in for this context one of the following will happen:

1.)No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or the
free list at NTA pointer if NTA != to YTF .

2.)Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at NTF and it is incremented along with the de-allocate counter for the
last context.

3.)Context dirty is set then the data will be written into the physical address specified by the logical address.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 394 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

This process will continue as long as set states arrive. This block will provide back pressure to the CP when ever he
has not free list entries available (counter at max and YTF == NTA). The command stream will keep a count of
contexts of constants in use and prevent more than max constants contexts from being sent.
Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the YTF pointer. This will make all the physical addresses used by this context available to the NTA allocate
pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.3 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)
between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

5.4 Real Time Commands
The real time commands constants are written by the CP using the CONST_DATA_RT and CONST_ADDR_RT
GPRsregister mapped registers allocated for RT. It works is the same way than when dealing with regular constant
loads BUT in this case the CP is not sending a logical address but rather a physical address and the reads are not
passing thru the re-mapping table but are directly read from the memory. The boundary between the two zones is
defined by the CONST_EO_RT control register.

5.5 Constant Waterfalling
In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenever a state is freed.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 395 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

R400 Sequencer Specification PAGE

22 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

CONST_EO_RT

RT SECTON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table)

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
Examples of control flow programs are located in the R400 programming guide document.

The basic model is as follows:

The render state defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 396 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

Pixel_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located

A pointer value of FF means that the clause doesn’t contain any instructions.

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The control program is the only program aware of the clause
boundaries.

The control program has eleven basic instructions:

Execute
Conditional_execute
Conditional_Execute_Predicates
Conditional_jump
Conditionnal_Call
Return
Loop_start
Loop_end
End_of_clause
Conditional_End_of_clause
NOP

Execute, causes the specified number of instructions in instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified number of instructions in instruction
store to be executed.
Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified number of instructions.
Conditionnal_Call jumps to an address and pushes the IP counter on the stack if the condition is met. On the return
instruction, the IP is popped from the stack.
Conditional_execute_or_Jump executes a block of instructions or jumps to an address is the condition is not met.
Conditional_execute_Predicates executes a block of instructions if all bits in the predicate vectors meet the condition.
End_of_clause marks the end of a clause.
Conditional_End_of_clause marks the end of a clause if the condition is met.
Conditional_jumps jumps to an address if the condition is met.
NOP is a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSES since there are two control flow instructions per
memory line. Thus the compiler must insert NOPs where needed to align the jumps on even CFP addresses.

Also if the jump is logically bigger than pshader_cntl_size (or vshader_cntl_size) we break the program (clause) and
set the debug registers. If an execute or conditional_execute is lower than cntl_size or bigger than size we also break
the program (clause) and set the debug registers.

We have to fit instructions into 48 bits in order to be able to put two control flow instruction per line in the instruction
store.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

Execute
47 46… 42 41 … 24 23 … 12 11 … 0

Addressing 00001 RESERVED Instruction count Exec Address

Execute up to 4k instructions at the specified address in the instruction memory.

NOP
47 46 … 42 41 … 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 397 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

R400 Sequencer Specification PAGE

24 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

Addressing 00010 RESERVED

This is a regular NOP.

Conditional_Execute

47 46 … 42 41 40 … 33 32 31 … 24 23 … 12 11 … 0
Addressing 00011 RESERVED Boolean

address
Condition RESERVED Instruction count Exec Address

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 4k instructions)

Conditional_Execute_Predicates
47 46 … 42 41 … 35 34 … 33 32 31 … 24 23 … 12 11 … 0

Addressing 00100 RESERVED Predicate
vector

Condition RESERVED Instruction count Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid.

Loop_Start
47 46 … 42 41 … 17 16 … 12 11 … 0

Addressing

00101 RESERVED loop ID Jump address

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Loop_End
47 46 … 42 41 … 17 16 … 12 11 … 0

Addressing

00111 RESERVED loop ID start address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal_Call
47 46 … 42 41 …

3541…12
34 … 33 32 31 … 12 11 … 0

Addressing

01000 RESERVED Predicate
vector

Condition RESERVED Jump address

If the condition is met, jJumps to the specified address and pushes the control flow program counter on the stack.

Return
47 46 … 42 41 … 0

Addressing

01001 RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump
47 46 … 42 41 40 … 33 32 31 30 … 12 11 … 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 398 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

Addressing

01010 RESERVED Boolean
address

Condition FW only RESERVED Jump address

If condition met, jumps to the address. FORWARD jump only allowed if bit 31 set. Bit 31 is only an optimization for the
compiler and should NOT be exposed to the API.

Conditional_End_of_Clause
47 46 … 42 41 40 … 33 32 31 … 0

Addressing

01011 RESERVED Boolean
address

Condition RESERVED

This is an optimization in the case of very short shaders (where the control flow instruction can’t be hidden anymore
and thus are not free. In this case, if the condition is met, the clause is ended, else we continue the execution of the
clause.

End_of_Clause
47 46 … 42 41 … 0

 Addressing 01011 RESERVED

Marks the end of a clause.

To prevent infinite loops, we will keep 9 bits loop counters instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start instruction is going to break the loop and set the
debug GPRs.

6.3 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETNE_# - similar to SETNE except that the result is 'exported' to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE0_# – SETE0
 PRED_SETE1_# – SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

 P0_ADD_# R0,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

6.4 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 399 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

R400 Sequencer Specification PAGE

26 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

6.5 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

The sequencer is going to keep a loop index computed as such:

 Index = Loop_iterator*Loop_step + Loop_start.

The index is going to return 0 if it is out of the range. We loop until loop_iterator = loop_count. Loop_step is a signed
value [-128…127].

6.6 Predicated Instruction support for Texture clauses
For texture clauses, we support the following optimization: we keep 1 bit (thus 4 bits for the four predicate vectors)
per predicate vector in the reservation stations. A value of 1 means that one ore more elements in the vector have a
value of one (thus we have to do the texture fetches for the whole vector). A value of 0 means that no elements in the
vector have his predicate bit set and we can thus skip over the texture fetch. We have to make sure the invalid
pixels aren’t considered with this optimization.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow
- jump error
 relative jump address > size of the control flow program
 relative jump address > length of the shader program
- - constant overflow

-
- register overflow
- register overflow
- call stack
 call with stack full
 return with stack empty
Compiler recognizable errors:
 - jump errors

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 400 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

 relative jump address > size of the control flow program
 relative jump address > length of the shader program
 - call stack
 call with stack full

return with stack empty

With two of the errors, a jump error or a register overflow will cause the program to break. In this case, a break
means that a clause will halt execution, but allowing further clauses to be executed.

With the other errors, program can continue to run, potentially to worst-case limits.

If indexing outside of the constant range, causing an overflow error, the hardware is specified to return the value with
an index of 0. This could be exploited to generate error tokens, by reserving and initializing the 0th register (or
constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs (12)
The sequencer will have a count register and an address register for this mode and 3 bits per clause specifying the
execution mode for each clause. The modes can be :

1) Normal
2) Debug Kill
3) Debug Addr + Count

Under the normal mode execution follows the normal course. Under the kill mode, all control flow instructions are
executed but all normal shader instructions of the clause are replaced by NOPs. Only debug_export instructions of
clause 7 will be executed under the debug kill setting. Under the other mode, normal execution is done until we reach
an address specified by the address register and instruction count (useful for loops) specified by the count register.
After we have hit the instruction n times (n=count) we switch the clause to the kill mode.

Under the debug mode (debug kill OR debug Addr + count), it is assumed that clause 7 is always exporting 12 debug
vectors and that all other exports to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by
the sequencer (even if they occur before the address stated by the ADDR debug register).

7. Pixel Kill Mask
A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE

 MASK_SETGT
 MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to VERTEX_REG_SIZE for vertices and 256-
VERTEX_REG_SIZE for pixels.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 401 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

R400 Sequencer Specification PAGE

28 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again.

10. Fetch Arbitration
The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration
ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…
 Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 402 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the exporting clause (3?). The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs
The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel’s parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming P0 is the interpolated parameter at Pixel 0 having the barycentric coordinates I(0), J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at V0 (interpolated with I), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

)(*03)(*0303

)(*02)(*0202

)(*01)(*0101

)(*)0()(*)0(0

)0()3(03

)0()3(03

)0()2(02

)0()2(02

)0()1(01

)0()1(01

CBJCAIPP

CBJCAIPP

CBJCAIPP

CBJCAICP

JJJ

III

JJJ

III

JJJ

III

P0 is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2
Adds: 8

P0

P2

P1

P3

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 403 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

R400 Sequencer Specification PAGE

30 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

FORMAT OF P0’s IJ : Mantissa 20 Exp 4 for I + Sign
 Mantissa 20 Exp 4 for J + Sign

FORMAT of Deltas (x3): Mantissa 8 Exp 4 for I + Sign
 Mantissa 8 Exp 4 for J + Sign

Total number of bits : 20*2 + 8*6 + 4*8 + 4*2 = 128

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the number is
normalized if not, then the number is un-normalized. The maximum range for the IJs (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

15.1 Interpolation of constant attributes
Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

We start with the premise that if A = B and B = C and C = A, then P0,1,2,3 = A. Since one or more of the IJ terms
may be zero, so we extend this to:

if (A=B and B=C and C=A)
 P0,1,2,3 = A;
else if ((I = 0) or (J = 0)) and
 ((J = 0) or (1-I-J = 0)) and
 ((1-J-I = 0) or (I = 0))) {
 if(I != 0) {
 P0 = A;
 } else if(J != 0) {
 P0 = B;
 } else {
 P0 = C;
 }
 //rest of the quad interpolated normally
}
else
{
 normal interpolation
}

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 || 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencer will re-arrange them in this fashion:

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 || 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 || 8 9 10 11 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the VGT will send padding to account for
the missing pipe. For example, if SP1 is broken, vertices 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sent
by the VGT to the SQ BUT will not be processed by the SP and thus should be considered invalid (by the SU and
VGT).

Formatted: Bullets and Numbering

Formatted

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 404 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 2. The area of the fixed-to-float converters and the VSISRs for this method is roughly estimated as 0.759sqmm
using the R300 process. The gate count estimate is shown in Figure 1.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11631 60.57813per bit

Area of 96x8-deep Latch Memory 46524
Area of 24-bit Fix-to-float Converter 4712per converter

Method 1 Block Quantity Area

 F2F 3 14136

 8x96 Latch 16 744384

 758520

Figure 1:Area Estimate for VGT to Shader Interface

SHADER PIPE

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

3
2

3
2

3
2

VGT BLOCK
(IN PA)

3
2

9
6

VECTOR ENGINE

96

8x96
MEMORY
1-READ
1-WRITE

3 OTHER
SHADER
PIPES

 3 Fix->Float Converters (24-bit)
 16 Memories 8x96-bit (12,288 bits)

Totals:

THREE MORE VECTOR ENGINES
PER SHADER PIPE

VECTOR ENGINE

SHADER
SEQUENCER

Figure 2:VGT to Shader Interface

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 405 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

R400 Sequencer Specification PAGE

32 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

16.17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER
4 bits

ADDRESS
7 bits

The PA generates the parameter cache addresses as the positions comes from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT_6 (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT_6 = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17th) is going to have the address 00000001000, the 18th 00010001000, the 19th 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 1*VS_EXPORT_COUNT_6
to Current_Location and reset the memory count to 0 before the next vector begins).

17.18. Vertex position exporting
On clause 3 the vertex shader can export to the PA both the vertex position and the point sprite. It can also do so at
clause 7 if not done at clause 3. The storage needed to perform the position export is at least 64x128 memories for
the position and 64x32 memories for the sprite size. It is going to be taken in the pixel output fifo from the SX blocks.
The clause where the position export occurs is specified by the EXPORT_LATE register. If turned on, it means that
the export is going to occur at ALU clause 7 if unset position export occurs at clause 3.

18.19. Exporting Arbitration
Any type of exporting clause can be co-issued. The sequencer will have to make sure back to back memory exports
(position/straight memory exports) are interleaved with NOPs as we don’t have the bandwidth to service them at full
speed.
Here are the rules for co-issuing exporting ALU clauses.

1)Position exports and position exports cannot be co-issued.
2)Position exports and memory exports cannot be co-issued.
3)Position exports and Z/Color exports cannot be co-issued.

4)Memory exports and Z/Color exports cannot be co-issued.
5)Memory exports and memory exports cannot be co-issued.
6)Z/color exports and Z/color exports cannot be co-issued.
7)Parameter exports and Z/Color exports CAN be co-issued.

8)Parameter exports and parameter exports CAN be co-issued.
9)Parameter exports and memory exports CAN be co-issued.

19.20. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

Formatted: Bullets and Numbering

Formatted

Formatted

Formatted

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 406 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

33 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

19.120.1 Vertex Shading
 0:15 - 16 parameter cache
 16:31 - Empty (Reserved?)
 32:43 - 12 vertex exports to the frame buffer and index
 44:47 - Empty
 48:59 - 12 debug export (interpret as normal vertex export)
 60 - export addressing mode
 61 - Empty
 62 - sprite size export that goes with position export
 (point_h,point_w,edgeflag,misc)
 63 - position

19.220.2 Pixel Shading
 0 - Color for buffer 0 (primary)
 1 - Color for buffer 1
 2 - Color for buffer 2
 3 - Color for buffer 3
 4:7 - Empty
 8 - Buffer 0 Color/Fog (primary)
 9 - Buffer 1 Color/Fog
 10 - Buffer 2 Color/Fog
 11 - Buffer 3 Color/Fog
 12:15 - Empty
 16:31 - Empty (Reserved?)
 32:43 - 12 exports for multipass pixel shaders.
 44:47 - Empty
 48:59 - 12 debug exports (interpret as normal pixel export)
 60 - export addressing mode
 61:62 - Empty
 63 - Z for primary buffer (Z exported to 'alpha' component)

20.21. Special Interpolation modes

20.121.1 Real time commands
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem I see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft’s high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This mode is triggered by the primitive type: REAL TIME.

20.221.2 Sprites/ XY screen coordinates/ FB information
When working with sprites, one may want to overwrite the parameter 0 with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_I0 register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Here is a list of all the modes and how they interact
together:

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 407 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

R400 Sequencer Specification PAGE

34 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

Gen_st is a bit taken from the interface between the SC and the SQ. This is the MSB of the primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between 0 and 1.

Param_Gen_I0 disable, snd_xy disable, no gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy disable, gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy enable, no gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy enable, gen_st – I0 = No modification
Param_Gen_I0 enable, snd_xy disable, no gen_st – I0 = garbage, garbage, garbage, faceness
Param_Gen_I0 enable, snd_xy disable, gen_st – I0 = garbage, garbage, s, t
Param_Gen_I0 enable, snd_xy enable, no gen_st – I0 = screen x, screen y, garbage, faceness
Param_Gen_I0 enable, snd_xy enable, gen_st – I0 = screen x, screen y, s, t

20.321.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1st pass data to memory and then use the count to retrieve the data on the 2nd pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. The sequencer is going to
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the
GPRs the counter is incremented. Every time a state change is detected, the corresponding counter is reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

20.3.121.3.1 Vertex shaders
In the case of vertex shaders, if GEN_INDEX is set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

20.3.221.3.2 Pixel shaders
In the case of pixel shaders, if GEN_INDEX is set and Param_Gen_I0 is enabled, the data will be put in the x field of
the 2nd register (RI1.x), else if GEN_INDEX is set the data will be put into the x field of the 1st register (R0.x).

AUTO
COUNT

STG 0

STG1

INTERPOLATORS

GPR0

AUTO COUNT 000000

MUX

The Auto Count Value is
broadcast to all GPRs. It is

loaded into a register wich has
its LSBs hardwired to the

GPR number (0 thru 63). Then
if GEN_INDEX is high, the
mux selects the auto-count

value and it is loaded into the
GPRs to be either used to

retrieve data using the TP or
sent to the SX for the RB to

use it to write the data to
memory

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 408 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

35 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

21.22. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

21.122.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

22.23. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix→float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 21.221.220.2 for details on how to control the interpolation in this mode.

22.123.1 Vertex indexes imports
In order to import vertex indexes, we have 64x2x96 16 8x96 staging registers. These are loaded one line at a time by
the VGT block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

23.24. Registers

23.124.1 Control
REG_DYNAMIC Dynamic allocation (pixel/vertex) of the register file on or off.
REG_SIZE_PIX Size of the register file's pixel portion (minimal size when dynamic allocation turned

on)
REG_SIZE_VTX Size of the register file's vertex portion (minimal size when dynamic allocation turned

on)
ARBITRATION_POLICY policy of the arbitration between vertexes and pixels
INST_STORE_ALLOC interleaved, separate
INST_BASE_VTX start point for the vertex instruction store (RT always ends at vertex_base and

Begins at 0)
INST_BASE_PIX start point for the pixel shader instruction store
ONE_THREAD debug state register. Only allows one program at a time into the GPRs
ONE_ALU debug state register. Only allows one ALU program at a time to be executed (instead

of 2)
INSTRUCTION_ADDR This is where the CP puts the base address of the instruction writes and type (auto-

incremented on reads/writes)
INSTRUCTION_DATA This is where the CP puts the actual data going to the instruction memory
CONSTANT_DATA This is where the CP puts constant data (32 bits)
CONSTANT_ADDR This is where the CP puts the logical constant address (9 bits)CONSTANTS

 512*4 ALU constants + 32*6 Texture state 32 bits registers (logically
mapped)

INSTRUCTION_ADDR_RT This is where the CP puts the base address of the instruction writes and type for
Real Time (auto-incremented on reads/writes)

INSTRUCTION_DATA_RT This is where the CP puts the actual data going to the instruction memory for
Real Time

CONSTANT_DATA_RT This is where the CP puts constant data for Real Time (32 bits)

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 409 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

R400 Sequencer Specification PAGE

36 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

CONSTANT_ADDR_RT This is where the CP puts the logical constant address for Real Time (9
bits)CONSTANTS_RT 256*4 ALU constants + 32*6 texture states? (physically
mapped)

CONSTANT_EO_RT This is the size of the space reserved for real time in the constant store (from 0 to
CONSTANT_EO_RT). The re-mapping table operates on the rest of the memory

EXPORT_LATE Controls whether or not we are exporting position from clause 3. If set, position
exports occur at clause 7.

23.224.2 Context
VS_FETCH_{0…7} eight 8 bit pointers to the location where each clauses control program is located
VS_ALU_{0…7} eight 8 bit pointers to the location where each clauses control program is located
PS_FETCH_{0…7} eight 8 bit pointers to the location where each clauses control program is located
PS_ALU_{0…7} eight 8 bit pointers to the location where each clauses control program is located
PS_BASE base pointer for the pixel shader in the instruction store
VS_BASE base pointer for the vertex shader in the instruction store
VS_CF_SIZE size of the vertex shader (# of instructions in control program/2)
PS_CF_SIZE size of the pixel shader (# of instructions in control program/2)
PS_SIZE size of the pixel shader (cntl+instructions)
VS_SIZE size of the vertex shader (cntl+instructions)
PS_NUM_REG number of GPRs to allocate for pixel shader programs
VS_NUM_REG number of GPRs to allocate for vertex shader programs
PARAM_SHADE One 16 bit register specifying which parameters are to be gouraud shaded (0 = flat, 1

= gouraud)
PARAM_WRAP 64 bits: for which parameters (and channels (xyzw)) do we do the cyl wrapping

(0=linear, 1=cylindrical).
PS_EXPORT_MODE 0xxxx : Normal mode
 1xxxx : Multipass mode
 If normal, bbbz where bbb is how many colors (0-4) and z is export z or not
 If multipass 1-12 exports for color.
VS_EXPORT_MASK which of the last 6 ALU clauses is exporting (multipass only)
VS_EXPORT_MODE 0: position (1 vector), 1: position (2 vectors), 3:multipass
VS_EXPORT
COUNT{0…6} Six 4 bit counters representing the # of interpolated parameters exported in clause 7

(located in VS_EXPORT_COUNT_6) OR
 # of exported vectors to memory per clause in multipass mode (per clause)
PARAM_GEN_I0 Do we overwrite or not the parameter 0 with XY data and generated T and S values
GEN_INDEX Auto generates an address from 0 to XX. Puts the results into R1 R0-1 for pixel

shaders and R3 R2 for vertex shaders
CONST_BASE_VTX (9 bits) Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Turns on the predicate bit optimization (if of, conditional_execute_predicates is

always executed).
CF_BOOLEANS 256 boolean bits
CF_LOOP_COUNT 32x8 bit counters (number of times we traverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in index computation)

24.25. DEBUG Registers

24.125.1 Context
DB_PROB_ADDR instruction address where the first problem occurred
DB_PROB_COUNT number of problems encountered during the execution of the program
DB_INST_COUNT instruction counter for debug method 2
DB_BREAK_ADDR break address for method number 2

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 410 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

37 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

DB_CLAUSE
_MODE_ALU_{0…7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)
DB_CLAUSE
_MODE_FETCH_{0…7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)

25.26. Interfaces

25.126.1 External Interfaces
Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ→SPx it means that SQ is going to broadcast the same information to all SP instances.

25.1.126.1.1 SC to SQ : IJ Control bus
This is the control information sent to the sequencer in order to control the IJ fifos and all other information needed to
execute a shader program on the sent pixels. This information is sent over 2 clocks, if SENDXY is asserted the next
control packet is going to be ignored and XY information is going to be sent on the IJ bus (for the quads that where
just sent). All pixels from the group of quads are from the same primitive, all quads of a vector are from the same
render state.

Name Direction Bits Description
SC_SQ_q_wr_mask SC→SQ 4 Quad Write mask left to right
SC_SQ_lod_correct SC→SQ 24 LOD correction per quad (6 bits per quad)
SC_SQ_flat_vertex SC→SQ 2 Provoking vertex for flat shading
SC_SQ_param_ptr0 SC→SQ 11 P Store pointer for vertex 0
SC_SQ_param_ptr1 SC→SQ 11 P Store pointer for vertex 1
SC_SQ_param_ptr2 SC→SQ 11 P Store pointer for vertex 2
SC_SQ_end_of_vect SC→SQ 1 End of the vector
SC_SQ_store_dealloc SC→SQ 1 Deallocation token for the P Store
SC_SQ_state SC→SQ 3 State/constant pointer
SC_SQ_valid_pixel SC→SQ 16 Valid bits for all pixels
SC_SQ_null_prim SC→SQ 1 Null Primitive (for PC deallocation purposes)
SC_SQ_end_of_prim SC→SQ 1 End Of the primitive
SC_SQ_send_xy SC→SQ 1 Sending XY information [XY information is going to be

sent on the next clock]
SC_SQ_prim_type SC→SQ 3 Real time command need to load tex cords from

alternate buffer. Line AA, Point AA and Sprite reads
their parameters from GEN_T and GEN_S GPRs.
000 : Normal
011 : Real Time
100 : Line AA
101 : Point AA
110 : Sprite

SC_SQ_new_vector SC→SQ 1 This primitive comes from a new vector of vertices.
Make sure that the corresponding vertex shader has
finished before starting the group of pixels.

SC_SQ_RTRn SQ→SC 1 Stalls the PA in n clocks
SC_SQ_RTS SC→SQ 1 SC ready to send data

25.1.226.1.2 SQ to SP: Interpolator bus
Name Direction Bits Description
SQ_SPx_interp_prim_type SQ→SPx 3 Type of the primitive

000 : Normal
011 : Real Time
100 : Line AA
101 : Point AA
110 : Sprite

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 411 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

R400 Sequencer Specification PAGE

38 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

SQ_SPx_interp_flat_vtx SQ→SPx 2 Provoking vertex for flat shading
SQ_SPx_interp_flat_gouraud SQ→SPx 1 Flat or gouraud shading
SQ_SPx_interp_cyl_wrap SQ→SPx 4 Wich parameter needs to be cylindrical wrapped
SQ_SPx_interp_ijline SQ→SPx 2 Line in the IJ/XY buffer to use to interpolate
SQ_SPx_interp_buff_swap SQ→SPx 1 Swap the IJ/XY buffers at the end of the interpolation
SQ_SPx_interp_gen_I0 SQ→SPx 1 Generate I0 or not. This tells the interpolators not to

use the parameter cache but rather overwrite the data
with interpolated 1 and 0. Overwrite if gen_I0 is high.

25.1.3SQ to SP: GPR Input Mux select
This interface is synchronized with the Interpolator bus. This controls the input mux to the GPRs. The three types of
data are: generated index, Interpolated data, vertex index data (coming from the staging registers).

25.1.426.1.3 SQ to SP: Parameter Cache Read control bus
The four following interfaces (SQ→SP, SQ→SX,SP→SX and SX→Interpolators) are all SYNCHRONIZED together.

Name Direction Bits Description
SQ_SPx_ptr0 SQ→SPx 9 Pointer of PC
SQ_SPx_ptr1 SQ→SPx 9 Pointer of PC
SQ_SPx_ptr2 SQ→SPx 9 Pointer of PC
SQ_SP0_read_ena SQ→SP0 4 Read enables for the 4 memories in the SP0
SQ_SP1_read_ena SQ→SP1 4 Read enables for the 4 memories in the SP1
SQ_SP2_read_ena SQ→SP2 4 Read enables for the 4 memories in the SP2
SQ_SP3_read_ena SQ→SP3 4 Read enables for the 4 memories in the SP3

25.1.526.1.4 SQ to SX: Parameter Cache Mux control Bus
Name Direction Bits Description
SQ_SXx_mux0 SQ→SXx 4 Mux control for PC (4 MSbs of Pointer)
SQ_SXx_mux1 SQ→SXx 4 Mux control for PC (4 MSbs of Pointer)
SQ_SXx_mux2 SQ→SXx 4 Mux control for PC (4 MSbs of Pointer)

25.1.626.1.5 SQ to SP: Staging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.
Name Direction Bits Description
SQ_SPx0_vgt_vsisr_data SQ→SPx0 96 Pointers of indexes or HOS surface information
SQ_SP0x_vgt_vsisr_double SQ→SPx0 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0_data_valid SQ→SP0 1 Data is valid
SQ_SP1_data_valid SQ→SP1 1 Data is valid
SQ_SP2_data_valid SQ→SP2 1 Data is valid
SQ_SP3_data_valid SQ→SP3 1 Data is valid

25.1.726.1.6 PA to SQ : Vertex interface

25.1.7.126.1.6.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 412 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

39 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

Name Bits Description
PA_SQ_vgt_vsisr_data 96 Pointers of indexes or HOS surface information
PA_SQ_vgt_vsisr_double 1 0: Normal 96 bits per vert 1: double 192 bits per vert
PA_SQ_vgt_end_of_vector 1 Indicates the last VSISR data set for the current process vector (for double vector

data, "end_of_vector" is set on the second vector)
PA_SQ_vgt_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when

“PA_SQ_vgt_end_of_vector” is high.
PA_SQ_vgt_send 1 Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_PA_vgt_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

25.1.7.226.1.6.2 Interface Diagrams Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 413 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

R400 Sequencer Specification PAGE

40 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:57 PM01/04/02 02:57 PM12/06/01 02:27 PM

VGT

VSISR_DATA_2

END_OF_VECTOR_2

STATE_SEL_2

REG

VSISR_DOUBLE_2
REG

REG

REG

REG

REG

SEND_2

REG

REG

REG

REG

REG

REG

PA_SQ_vgt_vsisr_data

PA_SQ_vgt_vsisr_double

PA_SQ_vgt_end_of_vector

PA_SQ_vgt_state_sel

PA_SQ_vgt_send

SQ_PA_vgt_rtr

VSISR_DATA_4

END_OF_VECTOR_4

STATE_SEL_4

VSISR_DOUBLE_4

96

1

1

3

1

1

SEND_4

RTR_2 RTR_0

SHADER
SEQUENCER

RTS

101 X 4
SKID

BUFFER

SRST SRST

WE

EMPTY

RE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 414 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

41 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:57 PM01/04/02 02:57 PM12/06/01 02:27 PM

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

6 7

6 7

6 7

0 1 2 3

0 1

8

8

8

2 43 5

4 5 6 7

4 3 2 1

8

9 10 11 12

9 10 11 12

9 10 11 12

9 10 11 12

0

RECEIVER RE-STARTS TRANSMISSION

SENDER STOPS TRANSMISSION

SQ_RTR

SQ_RTR_0

VGT_RTS

SEND_2

SEND_3

SEND_4

DATA_2

FIFO_EMPTY

FIFO_RE

SQ_RTR_1

SQ_RTR_2

DATA_3

DATA_4

FIFO_DATA_OUT

FIFO_CNT

RECEIVER STOPS TRANSMISSION

Figure 1. Detailed Logical Diagram for PA_SQ_vgt Interface.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 415 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

R400 Sequencer Specification PAGE

42 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

25.1.826.1.7 SQ to CP: State report
Name Direction Bits Description
SQ_CP_vrtx_ state SEQ→CP 3 Oldest vertex state still in the pipe
SQ_CP_pix_state SEQ→CP 3 Oldest pixel state still in the pipe

25.1.926.1.8 SQ to SX: Control bus
Name Direction Bits Description
SQ_SXx_exp_Pixel SQ→SXx 1 1: Pixel

0: Vertex
SQ_SXx_exp_start SQ→SXx 1 Raised to indicate that the SQ is starting an export
SQ_SXx_exp_Clause SQ→SXx 3 Clause number, which is needed for vertex clauses
SQ_SXx_exp_State SQ→SXx 3 State ID, which is needed for vertex clauses

These fields are sent synchronously with SP export data, described in SP0→SX0 interface
{ISSUE: Where are the PC pointers}

25.1.1026.1.9 SX to SQ : Output file control
Name Direction Bits Description
SXx_SQ_Export_count_rdy SXx→SQ 1 Raised by SX0 to indicate that the following two fields

reflect the result of the most recent export
SXx_SQ_Export_Position SXx→SQ 1 Specifies whether there is room for another position.
SXx_SQ_Export_Buffer SXx→SQ 7 Specifies the space available in the output buffers.

0: buffers are full
1: 2K-bits available (32-bits for each of the 64
pixels in a clause)
...
64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

25.1.1126.1.10 SQ to TP: Control bus
Once every clock, the fetch unit sends to the sequencer on which clause it is now working and if the data in the GPRs
is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos. The sequencer
also provides the instruction and constants for the fetch to execute and the address in the register file where to write
the fetch return data.

Name Direction Bits Description
TPx_SQ_data_rdy TPx→ SQ 1 Data ready
TPx_SQ_clause_num TPx→ SQ 3 Clause number
SQ_TPx_const SQ→TPx 6448 Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instuct SQ→TPx 24 Fetch instruction sent over 4 clocks
SQ_TPx_end_of_clause SQ→TPx 1 Last instruction of the clause
SQ_TPx_phase SQ→TPx 2 Write phase signal
SQ_TP0_lod_correct SQ→TP0 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP0_pmask SQ→TP0 4 Pixel mask 1 bit per pixel
SQ_TP1_lod_correct SQ→TP1 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pmask SQ→TP1 4 Pixel mask 1 bit per pixel
SQ_TP2_lod_correct SQ→TP2 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pmask SQ→TP2 4 Pixel mask 1 bit per pixel
SQ_TP3_lod_correct SQ→TP3 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pmask SQ→TP3 4 Pixel mask 1 bit per pixel
SQ_TPx_clause_num SQ→TPx 3 Clause number
SQ_TPx_write_gpr_index SQ->TPx 7 Index into Register file for write of returned Fetch Data

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 416 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

43 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

25.1.1226.1.11 TP to SQ: Texture stall
The TP sends this signal to the SQ when its input buffer is full. The SQ is going to send it to the SP X clocks after
reception (maximum of 3 clocks of pipeline delay).

Name Direction Bits Description
TP_SQ_fetch_stall TP→ SQ 1 Do not send more texture request if asserted

25.1.1326.1.12 SQ to SP: Texture stall
Name Direction Bits Description
SQ_SPx_fetch_stall SQ→SPx 1 Do not send more texture request if asserted

25.1.1426.1.13 SQ to SP: GPR, and Parameter cache control and auto counter
Name Direction Bits Description
SQ_SPx_wr_addr SQ→SPx 7 Write address
SQ_SPx_gpr_rd_addr SQ→SPx 7 Read address
SQ_SPx_gpr_re_addr SQ→SPx 1 Read Enable
SQ_SPx_gpr_we_addr SQ→SPx 1 Write Enable for the GPRs
SQ_SPx_gpr_phase_mux SQ→SPx 2 The phase mux (arbitrates between inputs, ALU SRC

reads and writes)
SQ_SPx_channel_mask SQ→SPx 4 The channel mask
SQ_SP0_pixel_mask SQ→SP0 4 The pixel mask
SQ_SP1_pixel_mask SQ→SP1 4 The pixel mask
SQ_SP2_pixel_mask SQ→SP2 4 The pixel mask
SQ_SP3_pixel_mask SQ→SP3 4 The pixel mask
SQ_SPx_pc_we_addr SQ→SPx 1 Write Enable for the parameter caches
SQ_SPx_gpr_input_mux SQ→SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTX0,
VTX1, autogen counter.

SQ_SPx_index_count SQ→SPx 12? Index count, common for all shader pipes

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 417 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

R400 Sequencer Specification PAGE

44 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

25.1.1526.1.14 SQ to SPx: Instructions
Name Direction Bits Description
SQ_SPx_instruct_start SQ→SPx 1 Instruction start
SQ_SP_instruct SQ→SPx 20 Instruction sent over 4 clocks
SQ_SPx_stall SQ→SPx 1 Stall signal
SQ_SPx_export_count SQ→SPx 3 Each set of four pixels or vectors is exported over

eight clocks. This field specifies where the SP is in
that sequence.

SQ_SPx_export_last SQ→SPx 1 Asserted on the first shader count of the last export
of the clause

SQ_SP0_export_pvalid SQ→SP0 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP0_export_wvalid SQ→SP0 2 Specifies whether to write low and/or high 32-bit
word of the 64-bit export data from each of the 16
pixels or vectors

SQ_SP1_ export_pvalid SQ→SP1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP1_ export_wvalid SQ→SP1 2 Specifies whether to write low and/or high 32-bit
word of the 64-bit export data from each of the 16
pixels or vectors

SQ_SP2_ export_pvalid SQ→SP2 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP2_ export_wvalid SQ→SP2 2 Specifies whether to write low and/or high 32-bit
word of the 64-bit export data from each of the 16
pixels or vectors

SQ_SP3_ export_pvalid SQ→SP3 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP3_ export_wvalid SQ→SP3 2 Specifies whether to write low and/or high 32-bit
word of the 64-bit export data from each of the 16
pixels or vectors

25.1.1626.1.15 SP to SQ: Constant address load
Name Direction Bits Description
SP0_SQ_const_addr SP0→SQ 36 Constant address load to the sequencer
SP0_SQ_valid SP0→SQ 1 Data valid
SP1_SQ_const_addr SP1→SQ 36 Constant address load to the sequencer
SP1_SQ_valid SP1→SQ 1 Data valid
SP2_SQ_const_addr SP2→SQ 36 Constant address load to the sequencer
SP2_SQ_valid SP2→SQ 1 Data valid
SP3_SQ_const_addr SP3→SQ 36 Constant address load to the sequencer
SP3_SQ_valid SP3→SQ 1 Data valid

25.1.1726.1.16 SQ to SPx: constant broadcast
Name Direction Bits Description
SQ_SPx_constant SQ→SPx 128 Constant broadcast

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 418 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

45 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

25.1.1826.1.17 SP0 to SQ: Kill vector load
Name Direction Bits Description
SP0_SQ_kill_vect SP0→SQ 4 Kill vector load
SP1_SQ_kill_vect SP1→SQ 4 Kill vector load
SP2_SQ_kill_vect SP2→SQ 4 Kill vector load
SP3_SQ_kill_vect SP3→SQ 4 Kill vector load

25.1.1926.1.18 SQ to CP: RBBM bus
Name Direction Bits Description
SQ_RBB_rs SQ→CP 1 Read Strobe
SQ_RBB_rd SQ→CP 32 Read Data
SQ_RBBM_nrtrtr SQ→CP 1 Optional
SQ_RBBM_rtr SQ→CP 1 Real-Time (Optional)

25.1.2026.1.19 CP to SQ: RBBM bus
Name Direction Bits Description
rbbm_we CP→SQ 1 Write Enable
rbbm_a CP→SQ 18 Address -- Upper Extent is TBD
rbbm_wd CP→SQ 32 Data
rbbm_be CP→SQ 4 Byte Enables
rbbm_re CP→SQ 1 Read Enable
rbb_rs0 CP→SQ 1 Read Return Strobe 0
rbb_rs1 CP→SQ 1 Read Return Strobe 1
rbb_rd0 CP→SQ 32 Read Data 0
rbb_rd1 CP→SQ 32 Read Data 0
RBBM_SQ_soft_reset CP→SQ 1 Soft Reset

26.27. Examples of program executions

26.1.127.1.1 Sequencer Control of a Vector of Vertices

1. PA sends a vector of 64 vertices (actually vertex indices – 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO
 state pointer as well as tag into position cache is sent along with vertices
 space was allocated in the position cache for transformed position before the vector was sent
 also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
 The vertex program is assumed to be loaded when we receive the vertex vector.

 the SEQ then accesses the IS base for this shader using the local state pointer (provided to all
sequencers by the RBBM when the CP is done loading the program)

2. SEQ arbitrates between the Pixel FIFO and the Vertex FIFO – basically the Vertex FIFO always has priority
 at this point the vector is removed from the Vertex FIFO
 the arbiter is not going to select a vector to be transformed if the parameter cache is full unless the pipe as

nothing else to do (ie no pixels are in the pixel fifo).

3. SEQ allocates space in the SP register file for index data plus GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
 SEQ will not send vertex data until space in the register file has been allocated

4. SEQ sends the vector to the SP register file over the RE_SP interface (which has a bandwidth of 2048 bits/cycle)
 the 64 vertex indices are sent to the 64 register files over 4 cycles

 RF0 of SU0, SU1, SU2, and SU3 is written the first cycle
 RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
 RF2 of SU0, SU1, SU2, and SU3 is written the third cycle
 RF3 of SU0, SU1, SU2, and SU3 is written the fourth cycle

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 419 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

R400 Sequencer Specification PAGE

46 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

 the index is written to the least significant 32 bits (floating point format?) (what about compound indices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, z)

5. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSM0 FIFO)
 the control packet contains the state pointer, the tag to the position cache and a register file base pointer.

6. TSM0 accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

7. all instructions of fetch clause 0 are issued by TSM0

8. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for requests made to the Fetch Unit to complete; it passes the register file write index for

the fetch data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data to the register files, it increments a counter that is associated with ASM0

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

9. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

10. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

11. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 position can be exported in ALU clause 3 (or 4?); the data (and the tag) is sent over a position bus (which is

shared with all four shader pipes) back to the PA’s position cache
 A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
 there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA
 the ASM arbiter will prevent a packet from starting an exporting clause if the position export FIFO is full

 parameter data is exported in clause 7 (as well as position data if it was not exported earlier)
 parameter data is sent to the Parameter Cache over a dedicated bus
 the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space when there is no

longer a need for the parameters (it is told by the PA when using a token).
 the ASM arbiter will prevent a packet from starting on ASM7 if the parameter cache (or the position buffer

if position is being exported) is full

12. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

26.1.227.1.2 Sequencer Control of a Vector of Pixels

1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

 At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

2. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
 the state pointer and the LOD correction bits are also placed in the Pixel FIF0
 the Pixel FIFO is wide enough to source four quad’s worth of barycentrics per cycle

3. SEQ arbitrates between Pixel FIFO and Vertex FIFO – when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

4. SEQ allocates space in the SP register file for all the GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
 SEQ will not allow interpolated data to be sent to the shader until space in the register file has been allocated

5. SEQ controls the transfer of interpolated data to the SP register file over the RE_SP interface (which has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagrams for details.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 420 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

47 of 47

Exhibit 2022.docR400_Sequencer.doc �� 67798 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 09/04/15 12:57
PM01/04/02 02:57 PM12/06/01 02:27 PM

6. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSM0 FIFO)
 note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
 the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
 all other information (such as quad address for example) travels in a separate FIFO

7. TSM0 accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

8. all instructions of fetch clause 0 are issued by TSM0

9. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for fetch requests made to the Fetch Unit to complete; it passes the register file write

index for the fetch data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data for a particular clause to the register files, it increments a counter that is

associated with the ASM0 FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

10. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

11. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

12. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 pixel data is exported in the last ALU clause (clause 7)

 it is sent to an output FIFO where it will be picked up by the render backend
 the ASM arbiter will prevent a packet from starting on ASM7 if the output FIFO is full

13. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

26.1.327.1.3 Notes

14. The state machines and arbiters will operate ahead of time so that they will be able to immediately start the real
threads or stall.

15. The register file base pointer for a vector needs to travel with the vector through the reservation stations, but the
instruction store base pointer does not – this is because the RF pointer is different for all threads, but the IS
pointer is only different for each state and thus can be accessed via the state pointer.

27.28. Open issues
Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 421 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SQ

Version 1.76

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\doc_lib\design\blocks\sq\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAread_ptrINS CONFIDENTIAL INFORMATION THAT
COULD BE SUBSTANTIALLY DETRIMENTAread_ptrL TO THE INTEREST OF ATI

TECHNOLOGIES INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2023
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 422 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

R400 Sequencer Specification PAGE

2 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

Table Of Contents

1. OVERVIEW .. 76
1.1 Top Level Block Diagram ... 98
1.2 Data Flow graph (SP) ... 1110
1.3 Control Graph ... 1211
2. INTERPOLATED DATA BUS .. 1211
3. INSTRUCTION STORE ... 1514
4. SEQUENCER INSTRUCTIONS ... 1716
5. CONSTANT STORES .. 1716
5.1 Memory organizations .. 1716
5.2 Management of the re-mapping tables .. 1716

5.2.1 Dirty bits .. 2018

5.2.2 Free List Block .. 2018

5.2.3 De-allocate Block .. 2118

5.2.4 Operation of Incremental model .. 2118
5.3 Constant Store Indexing ... 2119
5.4 Real Time Commands.. 2219
5.5 Constant Waterfalling ... 2219
6. LOOPING AND BRANCHES ... 2320
6.1 The controlling state. .. 2320
6.2 The Control Flow Program ... 2320
6.3 Data dependant predicate instructions ... 2523
6.4 HW Detection of PV,PS ... 2623
6.5 Register file indexing .. 2623
6.6 Predicated Instruction support for Texture clauses .. 2724
6.7 Debugging the Shaders ... 2724

6.7.1 Method 1: Debugging registers ... 2724

6.7.2 Method 2: Exporting the values in the GPRs (12) ... 2725
7. PIXEL KILL MASK .. 2825
8. MULTIPASS VERTEX SHADERS (HOS) .. 2825
9. REGISTER FILE ALLOCATION .. 2825
10. FETCH ARBITRATION .. 2926
11. ALU ARBITRATION .. 2926
12. HANDLING STALLS ... 3027
13. CONTENT OF THE RESERVATION STATION FIFOS ... 3027
14. THE OUTPUT FILE.. 3027
15. IJ FORMAT .. 3027
15.1 Interpolation of constant attributes .. 3128
16. STAGING REGISTERS ... 3128
17. THE PARAMETER CACHE ... 3330
18. VERTEX POSITION EXPORTING ... 3430
19. EXPORTING ARBITRATION .. 3430
20. EXPORT TYPES .. 3430
20.1 Vertex Shading .. 3430

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 423 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

20.2 Pixel Shading .. 3430
21. SPECIAL INTERPOLATION MODES ... 3531
21.1 Real time commands .. 3531
21.2 Sprites/ XY screen coordinates/ FB information .. 3531
21.3 Auto generated counters ... 3531

21.3.1 Vertex shaders ... 3532

21.3.2 Pixel shaders .. 3532
22. STATE MANAGEMENT .. 3632
22.1 Parameter cache synchronization ... 3632
23. XY ADDRESS IMPORTS ... 3632
23.1 Vertex indexes imports .. 3633
24. REGISTERS .. 3733
24.1 Control ... 3733
24.2 Context .. 3733
25. DEBUG REGISTERS... 3834
25.1 Context .. 3834

26. INTERFACES .. 3834

26.1 External Interfaces .. 3834

26.1.1 SC to SQ : IJ Control bus .. 3834

26.1.2 SQ to SP: Interpolator bus ... 3935

26.1.3 SQ to SP: Parameter Cache Read control bus .. 3935

26.1.4 SQ to SX: Parameter Cache Mux control Bus ... 4036

26.1.5 SQ to SP: Staging Register Data ... 4036

26.1.6 PA to SQ : Vertex interface .. 4036

26.1.7 SQ to CP: State report ... 4439

26.1.8 SQ to SX: Control bus .. 4439

26.1.9 SX to SQ : Output file control ... 4439

26.1.10 SQ to TP: Control bus .. 4439

26.1.11 TP to SQ: Texture stall ... 4540

26.1.12 SQ to SP: Texture stall ... 4540

26.1.13 SQ to SP: GPR, Parameter cache control and auto counter 4540

26.1.14 SQ to SPx: Instructions .. 4641

26.1.15 SP to SQ: Constant address load .. 4741

26.1.16 SQ to SPx: constant broadcast .. 4741

26.1.17 SP0 to SQ: Kill vector load ... 4742

26.1.18 SQ to CP: RBBM bus ... 4742

26.1.19 CP to SQ: RBBM bus ... 4742
27. EXAMPLES OF PROGRAM EXECUTIONS .. 4842

27.1.1 Sequencer Control of a Vector of Vertices ... 4842

27.1.2 Sequencer Control of a Vector of Pixels .. 4943

27.1.3 Notes .. 5044

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 424 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

R400 Sequencer Specification PAGE

4 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

28. OPEN ISSUES ... 5044
1. OVERVIEW .. 6
1.1 Top Level Block Diagram ... 8
1.2 Data Flow graph ... 10
1.3 Control Graph ... 11
2. INTERPOLATED DATA BUS .. 11
3. INSTRUCTION STORE ... 14
4. SEQUENCER INSTRUCTIONS ... 16
5. CONSTANT STORES .. 16
5.1 Memory organizations .. 16
5.2 Management of the re-mapping tables .. 16

5.2.1 Dirty bits .. 18

5.2.2 Free List Block .. 18

5.2.3 De-allocate Block .. 18

5.2.4 Operation of Incremental model .. 18
5.3 Constant Store Indexing ... 19
5.4 Real Time Commands.. 19
6. LOOPING AND BRANCHES ... 20
6.1 The controlling state. .. 20
6.2 The Control Flow Program ... 20
6.3 Data dependant predicate instructions ... 23
6.4 HW Detection of PV,PS ... 23
6.5 Register file indexing .. 23
6.6 Predicated Instruction support for Texture clauses .. 24
6.7 Debugging the Shaders ... 24

6.7.1 Method 1: Debugging registers ... 24

6.7.2 Method 2: Exporting the values in the GPRs (12) ... 25
7. PIXEL KILL MASK .. 25
8. MULTIPASS VERTEX SHADERS (HOS) .. 25
9. REGISTER FILE ALLOCATION .. 25
10. FETCH ARBITRATION .. 26
11. ALU ARBITRATION .. 26
12. HANDLING STALLS ... 27
13. CONTENT OF THE RESERVATION STATION FIFOS ... 27
14. THE OUTPUT FILE.. 27
15. IJ FORMAT .. 27
15.1 Interpolation of constant attributes .. 28
16. THE PARAMETER CACHE ... 30
17. VERTEX POSITION EXPORTING ... 30
18. EXPORTING ARBITRATION .. 30
19. EXPORT TYPES .. 30
19.1 Vertex Shading .. 30
19.2 Pixel Shading .. 30
20. SPECIAL INTERPOLATION MODES ... 31
20.1 Real time commands .. 31
20.2 Sprites/ XY screen coordinates/ FB information .. 31
20.3 Auto generated counters ... 31

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 425 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

20.3.1 Vertex shaders ... 32

20.3.2 Pixel shaders .. 32
21. STATE MANAGEMENT .. 32
21.1 Parameter cache synchronization ... 32
22. XY ADDRESS IMPORTS ... 32
22.1 Vertex indexes imports .. 33
23. REGISTERS .. 33
23.1 Control ... 33
23.2 Context .. 33
24. DEBUG REGISTERS... 34
24.1 Context .. 34

25. INTERFACES .. 34

25.1 External Interfaces .. 34

25.1.1 SC to SQ : IJ Control bus .. 34

25.1.2 SQ to SP: Interpolator bus ... 35

25.1.3 SQ to SP: GPR Input Mux select ... 35

25.1.4 SQ to SP: Parameter Cache Read control bus .. 36

25.1.5 SQ to SX: Parameter Cache Mux control Bus ... 36

25.1.6 SQ to SP: Staging Register Data ... 36

25.1.7 PA to SQ : Vertex interface .. 36

25.1.8 SQ to CP: State report ... 40

25.1.9 SQ to SX: Control bus .. 40

25.1.10 SX to SQ : Output file control ... 40

25.1.11 SQ to TP: Control bus .. 40

25.1.12 TP to SQ: Texture stall ... 41

25.1.13 SQ to SP: Texture stall ... 41

25.1.14 SQ to SP: GPR and Parameter cache control ... 41

25.1.15 SQ to SPx: Instructions .. 42

25.1.16 SP to SQ: Constant address load .. 42

25.1.17 SQ to SPx: constant broadcast .. 42

25.1.18 SP0 to SQ: Kill vector load ... 43

25.1.19 SQ to CP: RBBM bus ... 43

25.1.20 CP to SQ: RBBM bus ... 43
26. EXAMPLES OF PROGRAM EXECUTIONS .. 43

26.1.1 Sequencer Control of a Vector of Vertices ... 43

26.1.2 Sequencer Control of a Vector of Pixels .. 44

26.1.3 Notes .. 45
27. OPEN ISSUES ... 45

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 426 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

R400 Sequencer Specification PAGE

6 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

 Changed the control flow method to be more
flexible. Also updated the external interfaces.

Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

 Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001

 Refined interfaces to RB. Added state registers.

Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

 Added SEQ→SP0 interfaces. Changed delta
precision. Changed VGT→SP0 interface. Debug
Methods added.

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001

 Interfaces greatly refined. Cleaned up the spec.

Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001

 Added the different interpolation modes.

Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

 Added the auto incrementing counters. Changed
the VGT→SQ interface. Added content on constant
management. Updated GPRs.

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

 Removed from the spec all interfaces that weren’t
directly tied to the SQ. Added explanations on
constant management. Added PA→SQ
synchronization fields and explanation.

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

 Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002

 Added Real Time parameter control in the SX
interface. Updated the control flow section.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 427 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

1. Overview
The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause until the fetch fetches initiated by the previous
fetch clause have completed. There are two separate sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 428 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

R400 Sequencer Specification PAGE

8 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***01/04/02 02:57 PM

SQ

SC

SPSPSPCSTOREFETCH STATE

TP

INST STORE

IJ CONTROL

IJ
CONTROL

CST
ADDR

INST
 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/QUAD
ADDRESSES

SP

ALU INST

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

INST

INTER INTER INTER INTER

IJ CROSSBAR

2 QUADS IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC READ
 POINTERS

PARAM
DATA

R/W ADDR

Vertex indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

CP

CONSTANT
LOAD

CPConstant Load

TX ADDR

PC Write
Address

TEX INST

CF
CONSTANTS

Register
Mapped

CF Read

Figure 1: General Sequencer overview

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 429 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

1.1 Top Level Block Diagram

vertex/pixel vector arbitrator

Possible delay for available GPR’s

FIFO
Texture clause 0
reservation station

Texture clause 1
reservation station

FIFO
ALU clause 0
reservation station

FIFO

Texture clause 2
reservation station

Texture clause 3
reservation station

FIFO
ALU clause 1
reservation station

FIFO

FIFO
ALU clause 2
reservation station

FIFO

FIFO
ALU clause 3
reservation station

FIFO
Texture clause 4
reservation station

Texture clause 5
reservation station

FIFO
ALU clause 4
reservation station

FIFO

Texture clause 6
reservation station

Texture clause 7
reservation station

FIFO
ALU clause 5
reservation station

FIFO

FIFO
ALU clause 6
reservation station

FIFO

FIFO
ALU clause 7
reservation station

texture arbitrator

texture arbitrator

Figure 2: Reservation stations and arbiters

There are two sets of the above figure, one for vertices and one for pixels.

Depending on the arbitration state, the sequencer will either choose a vertex or a pixel packet. The control packet
consists of 3 bits of state, 7 bits for the base address of the Shader program and some information on the coverage to
determine fetch LOD plus other various small state bits.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 430 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

R400 Sequencer Specification PAGE

10 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the GPRs to store the interpolated values and temporaries. Following this, the barycentric coordinates (and XY
screen position if needed) are sent to the interpolator whichinterpolator, which will use them to interpolate the
parameters and place the results into the GPRs. Then, the input state machine stacks the packet in the first FIFO.

On receipt of a command, the level 0 fetch machine issues a fetch request to the TP and corresponding GPR
address for the fetch address (ta). A small command (tcmd) is passed to the fetch system identifying the current level
number (0) as well as the GPR write address for the fetch return data. One fetch request is sent every 4 clocks
causing the texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the requests are sent the packet is put in
FIFO 1.

Upon receipt of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level 0 fetch machine and sends the clause number (0) to the level 0 fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU 0 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO 1 counter and then issues a
complete set of level 0 shader instructions. For each instruction, the ALU state machine generates 3 source
addresses, one destination address and an instruction. Once the last instruction has been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbiters). One arbiter will arbitrate
over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the two arbiters is that they are not allowed to pick the same
clause number as the other one is currently working on if the packet is not of the same type (render state).

If the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbiter must prevent ALU clause 3 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, if needed the sprite size and/or edge flags can also be sent.

A special case is for multipass vertex shaders, which can export 12 parameters per last 6 clauses to the output
buffer. If the output buffer is full or doesn’t have enough space the sequencer will prevent such a vertex group to
enter an exporting clause.

Multipass pixel shaders can export 12 parameters to memory from the last clause only (7).

All other clauses process in the same way until the packet finally reaches the last ALU machine (7).

Only one pair of interleaved ALU state machines may have access to the register file address bus or the instruction
decode bus at one time. Similarly, only one fetch state machine may have access to the register file address bus at
one time. Arbitration is performed by three arbiter blocks (two for the ALU state machines and one for the fetch state
machines). The arbiters always favor the higher number state machines, preventing a bunch of half finished jobs from
clogging up the register files.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 431 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

1.2 Data Flow graph (SP)

MAC

MAC

MAC

MAC

Register File

co
n

st
an

ts
 f

ro
m

 R
E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
n

ts
 f

ro
m

 R
E

S
ca

la
r

U
ni

t

texture request

texture request

texture request

texture request

te
xt

ur
e

 a
dd

re
ss

te xtu
re

 d
ata

prim
itiv e d a

ta
 from

 R
E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

Figure 3: The shader Pipe

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 432 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

R400 Sequencer Specification PAGE

12 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

SEQ

FETCH SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

OF

WrAddrIS CST

CST IDX

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 433 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x64 bits)

IJs buffer (ping-pong buffer)
(28 bits * 2 (IJ) + 8 bits * 6 (delta IJs)+4 exp

bits*6)* 16 (quads) * 2 (double-buffered)
4096 bits

32 x 128

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

64

To RB

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2

768 bits
32x24

FIX-FLOAT + EXPANSiON

Figure 5: Interpolation buffers

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 434 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

R400 Sequencer Specification PAGE

14 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***01/04/02 02:57 PM

SP
0

SP
1

SP
2

SP
3

WRITES
T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-
11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P1 P2

T20 T21 T22 T23

VTX

T0 T1 T2 T3

XY

XY
0-3

XY
4-7

XY
8-
11

XY
12-
15

XY
16-
19

XY
20-
23

XY
24-
27

XY
28-
31

XY
32-
35

XY
36-
39

XY
40-
43

XY
44-
47

XY
48-
51

XY
52-
55

XY
56-
59

XY
60-
63

READS

SP
0

SP
1

SP
2

SP
3

A0

A1

A2

B1

B0

C3

C0

C1

C2

C4

C5

D0

D1

D2

E0

E1

A0

A1

A2

XY
A0
XY
A1
XY
A2

B1

B0

XY
B1

XY
B0

C3

C0

C1

C2

XY
C3
XY
C0
XY
C1
XY
C2

C4

C5

XY
C4
XY
C5

D0

D1

D2

XY
D1
XY
D2

XY
D0

E0

E1
XY
E1

XY
E0

Figure 6: Interpolation timing diagram

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 435 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

{ISSUE : Do we do the center + centroid approach using both IJ buffers?}

3. Instruction Store
There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The next picture shows the various modes the CP can load the memory. The Sequencer has to keep track of the
loading modes in order to wrap around the correct boundaries. The wrap- around points are arbitrary and they are
specified in the VS_BASE and PIX_BASE control registers. The VS_BASE and PS_BASE context registers are used
to specify for each context where its shader is in the instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap- around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 436 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

R400 Sequencer Specification PAGE

16 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***01/04/02 02:57 PM

R400 CP's Views of Instruction Memory Updated: 11/14/2001
John A. Carey

0

4095

Real-Time &
Shared Code

VERTEX_SHADER_BASE

PIXEL_SHADER_BASE

VS Code A

VS Code B

VS Code C

PS Code A

PS Code B

PS Code C

CP writes code start
addresses to
appropriate Sub-
Blocks so Sequencer
knows where to start
executing the code.

MODE 0 - Dual Ring
0

4095

Real-Time &
Shared Code

VERTEX_SHADER_BASE

VS Code A

VS Code B

VS Code C

PS Code A

PS Code B

PS Code C

MODE 1 - Single Ring

CP writes code start
addresses to
appropriate Sub-
Blocks so Sequencer
knows where to start
executing the code.

Figure 7: The CP's view of the instruction memory

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 437 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

4. Sequencer Instructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 192x128128x192 bits. The memory thus
holds 128 texture states (192 bits per state). The logical size exposes 32 different states total, which are going to be
shared between the pixel and the vertex shader. The size of the re-mapping table to for the texture state memory is
16 32 lines (each line addresses 2 1 texture state lines in the real memory). The CP write granularity is 2 1 texturee
state lines (or 384 192 bits). The driver sends 512 bits but the CP ignores the top 128 320 bits. It thus takes 12 6
clocks to write the two texture states. Real time requires 32 lines in the physical memory (this is physically register
mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a state change. Its size is 320*32 because it must hold 8 copies of the 32 dwords
of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

5.2 Management of the re-mapping tables

5.2.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1024 1280 and above.
Similarly the size of the texture store must be of 32*2+32 = 96 entries and above.

5.2.15.2.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROL packet of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it with
the new state (this is depicted in Figure 9: De-allocation mechanismFigure 9: De-allocation mechanismFigure 2: De-
allocation mechanism Figure 1: Dealocation mechanism). Note that in the case a state is cleared a value of 0 is
written to the corresponding de-allocation counter location so that when the SQ is going to report a state change,
nothing will be de-allocated upon the first report.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 438 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

R400 Sequencer Specification PAGE

18 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed). Be careful to set only those bits that the CURENT STATE IS USING (if for
example the current state uses only 64 constants we set only lines 0 thru 15 to 1). This is ok to do so because the
blocks are idle and thus the context has finished drawing.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 439 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

Physical
Memory

Renaming Table
for 1 Context
Current/Last

Physical
Address

per
Logical
Address

Renaming
table

N-Contexts

Reset
Dirty
per

Logical
Address

(Only
de-

allocate
if set)

This
Context

Dirty
per

Logical
Address

(If set
don't

allocate
or de-

allocate)

Logical address
On the

GlbRegBus
when lsb are zero
first word of write

next
physical
address
ready

for allocate

Constants
location
available
WRTR

physical
address

to
schedule

for
de-alloc

Staging Data
Buffer

Staging Write Addr

Copy Last held above to
Current Context on receipt

of Set Constant for a
new context (Hide loading

behind Set State load - 16 clocks)
all other Set States just write one

entry to current state.

Free
list

(pass Phys
Address if
Context
Dirty)

Dealloc
Counts

Seq
Constant
Request

Context &
Logical
Address

Free_ptr
WritePtr

When a Logical
Address is written

that has been
written before,

store the physical
address that was
allocated by that
Logical Address

Stop_ptr
ptr to first physical

address that is
scheduled to be de-
allocated but noty
yet de-allocate.

Advanced each time
a context is freed by

the number of
physical address
displaced by that

Context

Read_ptr
ptr to physical

address that will be
used next if the init

count is at
maximum number

of physical address

Free List

Number of entries
equals Max Number of
Physical Blocks. All
Pointers start at zero
and roll around but

can never pass each
other

Free
Address

Address
to Allocate

Global Register
Data Bus

Renaming Table
Context 0 => N

Logical Address
& Context

Physical
Address

Context 0 (8 rows of 16 - 8 bit
physical => 128 entries copy in

eight clocks)

Context 1

Context N

Current/Last
Context

(8 rows of 16 - 8
bit physical =>

128 entries copy
in eight clocks)

Figure 8: Constant management

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 440 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

R400 Sequencer Specification PAGE

20 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

DEALOC
COUNTERSFree List

!=

OR

AND

NOT

ADDR

PREVIOUS
STATE

NEW
STATE

SQ_IDLE

CP_NEW_STATE_CNTL
PA_IDLE

VALUE

VALID

CNT VALUE

SQ_STATE#

WRITE_ENABLE

REMAPPING
TABLE

SET CTX BITS

Figure 9: De-allocation mechanism for R400LE

5.2.15.2.3 Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero when ever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.2.25.2.4 Free List Block
A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 441 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

5.2.35.2.5 De-allocate Block
This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any number of blocks in one clock.

5.2.45.2.6 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.3 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 442 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

R400 Sequencer Specification PAGE

22 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

5.4 Real Time Commands
The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
works is the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zones is defined by the TSTATE_EO_RT control register.

5.5 Constant Waterfalling
In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenever a state is freed.

CONST_EO_RT

RT SECTON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table)

Figure 10: The instruction store

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 443 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
Examples of control flow programs are located in the R400 programming guide document.

The basic model is as follows:

The render state defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located

A pointer value of FF means that the clause doesn’t contain any instructions.

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The control program is the only program aware of the clause
boundaries.

The control program has eleven basic instructions:

Execute
Conditional_execute
Conditional_Execute_Predicates
Conditional_jump
Conditionnal_Call
Return
Loop_start
Loop_end
End_of_clause
Conditional_End_of_clause
NOP

Execute, causes the specified number of instructions in instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified number of instructions in instruction
store to be executed.
Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified number of instructions.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 444 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

R400 Sequencer Specification PAGE

24 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

Conditionnal_Call jumps to an address and pushes the IP counter on the stack if the condition is met. On the return
instruction, the IP is popped from the stack.
Conditional_execute_or_Jump executes a block of instructions or jumps to an address is the condition is not met.
Conditional_execute_Predicates executes a block of instructions if all bits in the predicate vectors meet the condition.
End_of_clause marks the end of a clause.
Conditional_End_of_clause marks the end of a clause if the condition is met.
Conditional_jumps jumps to an address if the condition is met.
NOP is a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSES since there are two control flow instructions per
memory line. Thus the compiler must insert NOPs where needed to align the jumps on even CFP addresses.

Also if the jump is logically bigger than pshader_cntl_size (or vshader_cntl_size) we break the program (clause) and
set the debug registers. If an execute or conditional_execute is lower than cntl_size or bigger than size we also break
the program (clause) and set the debug registers.

We have to fit instructions into 48 bits in order to be able to put two control flow instruction per line in the instruction
store.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

Execute
47 46… 42 41 … 24 23 … 12 11 … 0

Addressing 00001 RESERVED Instruction count Exec Address

Execute up to 4k instructions at the specified address in the instruction memory.

NOP
47 46 … 42 41 … 0

Addressing 00010 RESERVED

This is a regular NOP.

Conditional_Execute

47 46 … 42 41 40 … 33 32 31 … 24 23 … 12 11 … 0
Addressing 00011 RESERVED Boolean

address
Condition RESERVED Instruction count Exec Address

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 4k instructions)

Conditional_Execute_Predicates
47 46 … 42 41 … 35 34 … 33 32 31 … 24 23 … 12 11 … 0

Addressing 00100 RESERVED Predicate
vector

Condition RESERVED Instruction count Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid.

Loop_Start
47 46 … 42 41 … 17 16 … 12 11 … 0

Addressing

00101 RESERVED loop ID Jump address

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 445 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

Loop_End
47 46 … 42 41 … 17 16 … 12 11 … 0

Addressing

001101 RESERVED loop ID start address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal_Call
47 46 … 42 41 … 35 34 … 33 32 31 … 12 11 … 0

Addressing

0101110
00

RESERVED Predicate
vector

Condition RESERVED Jump address

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack.

Return
47 46 … 42 41 … 0

Addressing

0100000
1

RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump
47 46 … 42 41 40 … 33 32 31 30 … 12 11 … 0

Addressing

0100110 RESERVED Boolean
address

Condition FW only RESERVED Jump address

If condition met, jumps to the address. FORWARD jump only allowed if bit 31 set. Bit 31 is only an optimization for the
compiler and should NOT be exposed to the API.

Conditional_End_of_Clause
47 46 … 42 41 40 … 33 32 31 … 0

Addressing

010101 RESERVED Boolean
address

Condition RESERVED

This is an optimization in the case of very short shaders (where the control flow instruction can’t be hidden anymore
and thus are not free. In this case, if the condition is met, the clause is ended, else we continue the execution of the
clause.

End_of_Clause
47 46 … 42 41 … 0

 Addressing 010110
11

RESERVED

Marks the end of a clause.

To prevent infinite loops, we will keep 9 9 bits loop counters iterators instead of 8 (we are only able to loop 256
times). If the counter goes higher than 255 then the loop_end or the loop_start instruction is going to break the loop
and set the debug GPRs.

6.3 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the result is 'exported' to the sequencer.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 446 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

R400 Sequencer Specification PAGE

26 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

PRED_SETNE_# - similar to SETNE except that the result is 'exported' to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE0_# – SETE0
 PRED_SETE1_# – SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

 P0_ADD_# R0,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

6.4 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

6.5 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

The sequencer is going to keep a loop index computed as such:

 Index = Loop_iterator*Loop_step + Loop_start.

The index is going to return 0 if it is out of the range.
We loop until loop_iterator = loop_count. Loop_step is a signed value [-128…127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 447 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

6.6 Predicated Instruction support for Texture clauses
For texture clauses, we support the following optimization: we keep 1 bit (thus 4 bits for the four predicate vectors)
per predicate vector in the reservation stations. A value of 1 means that one ore more elements in the vector have a
value of one (thus we have to do the texture fetches for the whole vector). A value of 0 means that no elements in the
vector have his predicate bit set and we can thus skip over the texture fetch. We have to make sure the invalid
pixels aren’t considered with this optimization.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow
-- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
 - jump errors
 relative jump address > size of the control flow program
 relative jump address > length of the shader program
 - call stack
 call with stack full

return with stack empty

With two of the errors, aA jump error or a register overflow will always cause the program to break. In this case, a
break means that a clause will halt execution, but allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only break if
the DB_PROB_BREAK register is set.

If indexing outside of the constant constant or the register range, causing an overflow error, the hardware is specified
to return the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing
the 0th register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs (12)
The sequencer will have a count register and an address register for this mode and 3 bits per clause specifying the
execution mode for each clause. The modes can be :

1) Normal
2) Debug Kill
3) Debug Addr + Count

Under the normal mode execution follows the normal course. Under the kill mode, all control flow instructions are
executed but all normal shader instructions of the clause are replaced by NOPs. Only debug_export instructions of
clause 7 will be executed under the debug kill setting. Under the other mode, normal execution is done until we reach
an address specified by the address register and instruction count (useful for loops) specified by the count register.
After we have hit the instruction n times (n=count) we switch the clause to the kill mode.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 448 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

R400 Sequencer Specification PAGE

28 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

Under the debug mode (debug kill OR debug Addr + count), it is assumed that clause 7 is always exporting 12 debug
vectors and that all other exports to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by
the sequencer (even if they occur before the address stated by the ADDR debug register).

7. Pixel Kill Mask
A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE

 MASK_SETGT
 MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and 256-
VERTEXPIXEL_REG_SIZE for pixels.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 449 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

10. Fetch Arbitration
The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration
ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…
 Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 450 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

R400 Sequencer Specification PAGE

30 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the exporting clause (3?). The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs
The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel’s parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming P0 is the interpolated parameter at Pixel 0 having the barycentric coordinates I(0), J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at V0 (interpolated with I), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

)(*03)(*0303

)(*02)(*0202

)(*01)(*0101

)(*)0()(*)0(0

)0()3(03

)0()3(03

)0()2(02

)0()2(02

)0()1(01

)0()1(01

CBJCAIPP

CBJCAIPP

CBJCAIPP

CBJCAICP

JJJ

III

JJJ

III

JJJ

III

P0 is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2

P0

P2

P1

P3

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 451 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

Adds: 8

FORMAT OF P0’s IJ : Mantissa 20 Exp 4 for I + Sign
 Mantissa 20 Exp 4 for J + Sign

FORMAT of Deltas (x3): Mantissa 8 Exp 4 for I + Sign
 Mantissa 8 Exp 4 for J + Sign

Total number of bits : 20*2 + 8*6 + 4*8 + 4*2 = 128

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the number is
normalized if not, then the number is un-normalized. The maximum range for the IJs (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

15.1 Interpolation of constant attributes
Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

We start with the premise that if A = B and B = C and C = A, then P0,1,2,3 = A. Since one or more of the IJ terms
may be zero, so we extend this to:

if (A=B and B=C and C=A)
 P0,1,2,3 = A;
else if ((I = 0) or (J = 0)) and
 ((J = 0) or (1-I-J = 0)) and
 ((1-J-I = 0) or (I = 0))) {
 if(I != 0) {
 P0 = A;
 } else if(J != 0) {
 P0 = B;
 } else {
 P0 = C;
 }
 //rest of the quad interpolated normally
}
else
{
 normal interpolation
}

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 || 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencer will re-arrange them in this fashion:

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 || 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 || 8 9 10 11 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the VGT will send padding to account for
the missing pipe. For example, if SP1 is broken, vertices 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sent
by the VGT to the SQ BUT will not be processed by the SP and thus should be considered invalid (by the SU and
VGT).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 452 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

R400 Sequencer Specification PAGE

32 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 12Figure 12Figure 2. The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure 11Figure 11Figure 1.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11631 60.57813per bit

Area of 96x8-deep Latch Memory 46524
Area of 24-bit Fix-to-float Converter 4712per converter

Method 1 Block Quantity Area

 F2F 3 14136

 8x96 Latch 16 744384

 758520

Figure 11111:Area Estimate for VGT to Shader Interface

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 453 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

33 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

SHADER PIPE

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

3
2

3
2

3
2

VGT BLOCK
(IN PA)

3
2

9
6

VECTOR ENGINE

96

8x96
MEMORY
1-READ
1-WRITE

3 OTHER
SHADER
PIPES

 3 Fix->Float Converters (24-bit)
 16 Memories 8x96-bit (12,288 bits)

Totals:

THREE MORE VECTOR ENGINES
PER SHADER PIPE

VECTOR ENGINE

SHADER
SEQUENCER

Figure 12122:VGT to Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER
4 bits

ADDRESS
7 bits

The PA generates the parameter cache addresses as the positions comes from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT_67 (a snooped
register from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is
exporting 8 parameters per vertex (VS_EXPORT_COUNT_6 7 = 8). The first position received is going to have the
PC address 00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000.
Then the next position received (the 17th) is going to have the address 00000001000, the 18th 00010001000, the 19th
00100001000 and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful
about is that if the SX doesn't send you a full group of positions (<64) then you need to fill the address space so that
the next group starts correctly aligned (for example if you receive only 33 positions then you need to add
12*VS_EXPORT_COUNT_6 7to Current_Location and reset the memory count to 0 before the next vector begins).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 454 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

R400 Sequencer Specification PAGE

34 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

18. Vertex position exporting
On clause 3 the vertex shader can export to the PA both the vertex position and the point sprite. It can also do so at
clause 7 if not done at clause 3. The storage needed to perform the position export is at least 64x128 memories for
the position and 64x32 memories for the sprite size. It is going to be taken in the pixel output fifo from the SX blocks.
The clause where the position export occurs is specified by the EXPORT_LATE register. If turned on, it means that
the export is going to occur at ALU clause 7 if unset position export occurs at clause 3.

19. Exporting Arbitration
Here are the rules for co-issuing exporting ALU clauses.

1) Position exports and position exports cannot be co-issued.

All other types of exports can be co-issued as long as there is place in the receiving buffer.

{ISSUE: Do we move the parameter caches to the SX?}
Any type of exporting clause can be co-issued. The sequencer will have to make sure back to back memory exports
(position/straight memory exports) are interleaved with NOPs as we don’t have the bandwidth to service them at full
speed.

20. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

20.1 Vertex Shading
 0:15 - 16 parameter cache
 16:31 - Empty (Reserved?)
 32:43 - 12 vertex exports to the frame buffer and index
 44:47 - Empty
 48:59 - 12 debug export (interpret as normal vertex export)
 60 - export addressing mode
 61 - Empty
 62 - position sprite size export that goes with position export
 (point_h,point_w,edgeflag,misc)
 63 - positionsprite size export that goes with position export
 (point_h,point_w,edgeflag,misc)

20.2 Pixel Shading
 0 - Color for buffer 0 (primary)
 1 - Color for buffer 1
 2 - Color for buffer 2
 3 - Color for buffer 3
 4:7 - Empty
 8 - Buffer 0 Color/Fog (primary)
 9 - Buffer 1 Color/Fog
 10 - Buffer 2 Color/Fog
 11 - Buffer 3 Color/Fog
 12:15 - Empty
 16:31 - Empty (Reserved?)
 32:43 - 12 exports for multipass pixel shaders.
 44:47 - Empty
 48:59 - 12 debug exports (interpret as normal pixel export)
 60 - export addressing mode
 61:62 - Empty
 63 - Z for primary buffer (Z exported to 'alpha' component)

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 455 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

35 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

21. Special Interpolation modes

21.1 Real time commands
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem I see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft’s high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This mode is triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

21.2 Sprites/ XY screen coordinates/ FB information
When working with sprites, one may want to overwrite the parameter 0 with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_I0 register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Here is a list of all the modes and how they interact
together:

Gen_st is a bit taken from the interface between the SC and the SQ. This is the MSB of the primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between 0 and 1.

Param_Gen_I0 disable, snd_xy disable, no gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy disable, gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy enable, no gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy enable, gen_st – I0 = No modification
Param_Gen_I0 enable, snd_xy disable, no gen_st – I0 = garbage, garbage, garbage, faceness
Param_Gen_I0 enable, snd_xy disable, gen_st – I0 = garbage, garbage, s, t
Param_Gen_I0 enable, snd_xy enable, no gen_st – I0 = screen x, screen y, garbage, faceness
Param_Gen_I0 enable, snd_xy enable, gen_st – I0 = screen x, screen y, s, t

21.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1st pass data to memory and then use the count to retrieve the data on the 2nd pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. The sequencer is going to
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the
GPRs the counter is incremented. Every time a state change is detected, the corresponding counter is reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

21.3.1 Vertex shaders
In the case of vertex shaders, if GEN_INDEX is set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

21.3.2 Pixel shaders
In the case of pixel shaders, if GEN_INDEX is set and Param_Gen_I0 is enabled, the data will be put in the x field of
the 2nd register (R1.x), else if GEN_INDEX is set the data will be put into the x field of the 1st register (R0.x).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 456 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

R400 Sequencer Specification PAGE

36 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

AUTO
COUNT

STG 0

STG1

INTERPOLATORS

GPR0

AUTO COUNT 000000

MUX

The Auto Count Value is
broadcast to all GPRs. It is

loaded into a register wich has
its LSBs hardwired to the

GPR number (0 thru 63). Then
if GEN_INDEX is high, the
mux selects the auto-count

value and it is loaded into the
GPRs to be either used to

retrieve data using the TP or
sent to the SX for the RB to

use it to write the data to
memory

Figure 13: GPR input mux Control

22. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

22.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

23. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix→float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 21.2 for details on how to control the interpolation in this mode.

23.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 457 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

37 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

24. Registers

24.1 Control
REG_DYNAMIC Dynamic allocation (pixel/vertex) of the register file on or off.
REG_SIZE_PIX Size of the register file's pixel portion (minimal size when dynamic allocation turned

on)
REG_SIZE_VTX Size of the register file's vertex portion (minimal size when dynamic allocation turned

on)
ARBITRATION_POLICY policy of the arbitration between vertexes and pixels
INST_STORE_ALLOC interleaved, separate
INST_BASE_VTX start point for the vertex instruction store (RT always ends at vertex_base and

Begins at 0)
INST_BASE_PIX start point for the pixel shader instruction store
ONE_THREAD debug state register. Only allows one program at a time into the GPRs
ONE_ALU debug state register. Only allows one ALU program at a time to be executed (instead

of 2)
INSTRUCTION_ADDR This is where the CP puts the base address of the instruction writes and type (auto-

incremented on reads/writes) Register mapped
INSTRUCTION_DATA This is where the CP puts the actual data going to the instruction memory
CONSTANTS 512*4 ALU constants + 32*6 Texture state 32 bits registers (logically mapped)
INSTRUCTION_ADDR_RT This is where the CP puts the base address of the instruction writes and type for

Real Time (auto-incremented on reads/writes)
INSTRUCTION_DATA_RT This is where the CP puts the actual data going to the instruction memory for

Real Time
CONSTANTS_RT 256*4 ALU constants + 32*6 texture states? (physically mapped)
CONSTANT_EO_RT This is the size of the space reserved for real time in the constant store (from 0 to

CONSTANT_EO_RT). The re-mapping table operates on the rest of the memory
TSTATE_EO_RT This is the size of the space reserved for real time in the fetch state store (from 0 to

TSTATE_EO_RT). The re-mapping table operates on the rest of the memory
EXPORT_LATE Controls whether or not we are exporting position from clause 3. If set, position

exports occur at clause 7.

24.2 Context
VS_FETCH_{0…7} eight 8 bit pointers to the location where each clauses control program is located
VS_ALU_{0…7} eight 8 bit pointers to the location where each clauses control program is located
PS_FETCH_{0…7} eight 8 bit pointers to the location where each clauses control program is located
PS_ALU_{0…7} eight 8 bit pointers to the location where each clauses control program is located
PS_BASE base pointer for the pixel shader in the instruction store
VS_BASE base pointer for the vertex shader in the instruction store
VS_CF_SIZE size of the vertex shader (# of instructions in control program/2)
PS_CF_SIZE size of the pixel shader (# of instructions in control program/2)
PS_SIZE size of the pixel shader (cntl+instructions)
VS_SIZE size of the vertex shader (cntl+instructions)
PS_NUM_REG number of GPRs to allocate for pixel shader programs
VS_NUM_REG number of GPRs to allocate for vertex shader programs
PARAM_SHADE One 16 bit register specifying which parameters are to be gouraud shaded (0 = flat, 1

= gouraud)
PARAM_WRAP 64 bits: for which parameters (and channels (xyzw)) do we do the cyl wrapping

(0=linear, 1=cylindrical).
PS_EXPORT_MODE 0xxxx : Normal mode
 1xxxx : Multipass mode
 If normal, bbbz where bbb is how many colors (0-4) and z is export z or not
 If multipass 1-12 exports for color.
VS_EXPORT_MASK which of the last 6 ALU clauses is exporting (multipass only)
VS_EXPORT_MODE 0: position (1 vector), 1: position (2 vectors), 3:multipass
VS_EXPORT

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 458 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

R400 Sequencer Specification PAGE

38 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

COUNT{0…6} Six 4 bit counters representing the # of interpolated parameters exported in clause 7
(located in VS_EXPORT_COUNT_6) OR

 # of exported vectors to memory per clause in multipass mode (per clause)
PARAM_GEN_I0 Do we overwrite or not the parameter 0 with XY data and generated T and S values
GEN_INDEX Auto generates an address from 0 to XX. Puts the results into R0-1 for pixel shaders

and R2 for vertex shaders
CONST_BASE_VTX (9 bits) Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Turns on the predicate bit optimization (if of, conditional_execute_predicates is

always executed).
CF_BOOLEANS 256 boolean bits
CF_LOOP_COUNT 32x8 bit counters (number of times we traverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in index computation)

25. DEBUG Registers

25.1 Context
DB_PROB_ADDR instruction address where the first problem occurred
DB_PROB_COUNT number of problems encountered during the execution of the program
DB_PROB_BREAK break the clause if an error is found.
DB_INST_COUNT instruction counter for debug method 2
DB_BREAK_ADDR break address for method number 2
DB_CLAUSE
_MODE_ALU_{0…7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)
DB_CLAUSE
_MODE_FETCH_{0…7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)

25.2 Control
DB_ALUCST_MEMSIZE Size of the physical ALU constant memory
DB_TSTATE_MEMSIZE Size of the physical texture state memory

26. Interfaces

26.1 External Interfaces
Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ→SPx it means that SQ is going to broadcast the same information to all SP instances.

26.1.1 SC to SQ : IJ Control bus
This is the control information sent to the sequencer in order to control the IJ fifos and all other information needed to
execute a shader program on the sent pixels. This information is sent over 2 clocks, if SENDXY is asserted the next
control packet is going to be ignored and XY information is going to be sent on the IJ bus (for the quads that where
just sent). All pixels from the group of quads are from the same primitive, all quads of a vector are from the same
render state.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 459 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

39 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

Name Direction Bits Description
SC_SQ_q_wr_mask SC→SQ 4 Quad Write mask left to right
SC_SQ_lod_correct SC→SQ 24 LOD correction per quad (6 bits per quad)
SC_SQ_flat_vertex SC→SQ 2 Provoking vertex for flat shading
SC_SQ_param_ptr0 SC→SQ 11 P Store pointer for vertex 0
SC_SQ_param_ptr1 SC→SQ 11 P Store pointer for vertex 1
SC_SQ_param_ptr2 SC→SQ 11 P Store pointer for vertex 2
SC_SQ_end_of_vect SC→SQ 1 End of the vector
SC_SQ_store_dealloc SC→SQ 1 Deallocation token for the P Store
SC_SQ_state SC→SQ 3 State/constant pointer
SC_SQ_valid_pixel SC→SQ 16 Valid bits for all pixels
SC_SQ_null_prim SC→SQ 1 Null Primitive (for PC deallocation purposes)
SC_SQ_end_of_prim SC→SQ 1 End Of the primitive
SC_SQ_send_xy SC→SQ 1 Sending XY information [XY information is going to be

sent on the next clock]
SC_SQ_prim_type SC→SQ 3 Real time command need to load tex cords from

alternate buffer. Line AA, Point AA and Sprite reads
their parameters from GEN_T and GEN_S GPRs.
000 : Normal
011 : Real Time
100 : Line AA
101 : Point AA
110 : Sprite

SC_SQ_new_vector SC→SQ 1 This primitive comes from a new vector of vertices.
Make sure that the corresponding vertex shader has
finished before starting the group of pixels.

SC_SQ_RTRn SQ→SC 1 Stalls the PA in n clocks
SC_SQ_RTS SC→SQ 1 SC ready to send data

26.1.2 SQ to SP: Interpolator bus
Name Direction Bits Description
SQ_SPx_interp_prim_type SQ→SPx 3 Type of the primitive

000 : Normal
011 : Real Time
100 : Line AA
101 : Point AA
110 : Sprite

SQ_SPx_interp_ijline SQ→SPx 2 Line in the IJ/XY buffer to use to interpolate
SQ_SPx_interp_buff_swap SQ→SPx 1 Swap the IJ/XY buffers at the end of the interpolation
SQ_SPx_interp_gen_I0 SQ→SPx 1 Generate I0 or not. This tells the interpolators not to

use the parameter cache but rather overwrite the data
with interpolated 1 and 0. Overwrite if gen_I0 is high.

26.1.3 SQ to SX: Interpolator bus
Name Direction Bits Description
SQ_SPx_interp_flat_vtx SQ→SPx 2 Provoking vertex for flat shading
SQ_SPx_interp_flat_gouraud SQ→SPx 1 Flat or gouraud shading
SQ_SPx_interp_cyl_wrap SQ→SPx 4 Wich channel needs to be cylindrical wrapped

26.1.326.1.4 SQ to SP: Parameter Cache Read control bus
The four following interfaces (SQ→SP, SQ→SX,SP→SX and SX→Interpolators) are all SYNCHRONIZED together.

Name Direction Bits Description
SQ_SPx_ptr0SQ_SPx_ptr0 SQ→SPxSQ→SPx 79 Parameter Pointer into PC Pointer of PC
SQ_SPx_ptr1SQ_SPx_ptr1 SQ→SPxSQ→SPx 79 Parameter Pointer into PC Pointer of PC

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 460 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

R400 Sequencer Specification PAGE

40 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

SQ_SPx_ptr2SQ_SPx_ptr2 SQ→SPxSQ→SPx 79 Parameter Pointer into Parameter
CachePointer of PC

SQ_SPx_pc0_addr_selSQ_SP0_read_ena SQSPxSQ→SP0 24 Selection one of the pointers for parameter
cache 0Read enables for the 4 memories in the
SP0

SQ_SPx_pc1_addr_selSQ_SP1_read_ena SQSPxSQ→SP1 24 Selection one of the pointers for parameter
cache 1Read enables for the 4 memories in the
SP1

SQ_SPx_pc2_addr_selSQ_SP2_read_ena SQSPxSQ→SP2 24 Selection one of the pointers for parameter
cache 2Read enables for the 4 memories in the
SP2

SQ_SPx_pc3_addr_selSQ_SP3_read_ena SQSPxSQ→SP3 24 Selection one of the pointers for parameter
cache 3Read enables for the 4 memories in the
SP3

SQ_SP0_read_ena SQ→SP0 4 Read enables for the 4 memories in the SP0
SQ_SP1_read_ena SQ→SP1 4 Read enables for the 4 memories in the SP1
SQ_SP2_read_ena SQ→SP2 4 Read enables for the 4 memories in the SP2
SQ_SP3_read_ena SQ→SP3 4 Read enables for the 4 memories in the SP3

26.1.426.1.5 SQ to SX: Parameter Cache Mux control Bus
Name Direction Bits Description
SQ_SXx_mux0 SQ→SXx 4 Mux control for PC or RT (4 MSbs of Pointer in the PC

case)
SQ_SXx_mux1 SQ→SXx 4 Mux control for PC or RT (4 MSbs of Pointer in the PC

case)
SQ_SXx_mux2 SQ→SXx 4 Mux control for PC or RT (4 MSbs of Pointer in the PC

case)
SQ_SXx_RT_switch SQ→SXx 1 Selects between RT and Normal data

26.1.526.1.6 SQ to SP: Staging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.
Name Direction Bits Description
SQ_SPx_vgt_vsisr_data SQ→SPx 96 Pointers of indexes or HOS surface information
SQ_SPx_vgt_vsisr_double SQ→SPx 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0_data_valid SQ→SP0 1 Data is valid
SQ_SP1_data_valid SQ→SP1 1 Data is valid
SQ_SP2_data_valid SQ→SP2 1 Data is valid
SQ_SP3_data_valid SQ→SP3 1 Data is valid

26.1.626.1.7 PA to SQ : Vertex interface

26.1.6.126.1.7.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 461 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

41 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

Name Bits Description
PA_SQ_vgt_vsisr_data 9966 Pointers of indexes or HOS surface information
PA_SQ_vgt_vsisr_double 1 0: Normal 96 96 bits per vert 1: double 192 192 bits per vert
PA_SQ_vgt_end_of_vector 1 Indicates the last VSISR data set for the current process vector (for double vector

data, "end_of_vector" is set on the second vector)
PA_SQ_vgt_vsisr_valid 1 Vsisr data is valid
PA_SQ_vgt_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when

“PA_SQ_vgt_end_of_vector” is high.
PA_SQ_vgt_send 1 Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_PA_vgt_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

26.1.6.226.1.7.2 Interface Diagrams Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 462 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

R400 Sequencer Specification PAGE

42 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***01/04/02 02:57 PM

VGT

VSISR_DATA_2

END_OF_VECTOR_2

STATE_SEL_2

REG

VSISR_DOUBLE_2
REG

REG

REG

REG

REG

SEND_2

REG

REG

REG

REG

REG

REG

PA_SQ_vgt_vsisr_data

PA_SQ_vgt_vsisr_double

PA_SQ_vgt_end_of_vector

PA_SQ_vgt_state_sel

PA_SQ_vgt_send

SQ_PA_vgt_rtr

VSISR_DATA_4

END_OF_VECTOR_4

STATE_SEL_4

VSISR_DOUBLE_4

96

1

1

3

1

1

SEND_4

RTR_2 RTR_0

SHADER
SEQUENCER

RTS

101 X 4
SKID

BUFFER

SRST SRST

WE

EMPTY

RE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 463 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

43 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***01/04/02 02:57 PM

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

6 7

6 7

6 7

0 1 2 3

0 1

8

8

8

2 43 5

4 5 6 7

4 3 2 1

8

9 10 11 12

9 10 11 12

9 10 11 12

9 10 11 12

0

RECEIVER RE-STARTS TRANSMISSION

SENDER STOPS TRANSMISSION

SQ_RTR

SQ_RTR_0

VGT_RTS

SEND_2

SEND_3

SEND_4

DATA_2

FIFO_EMPTY

FIFO_RE

SQ_RTR_1

SQ_RTR_2

DATA_3

DATA_4

FIFO_DATA_OUT

FIFO_CNT

RECEIVER STOPS TRANSMISSION

Figure 1. Detailed Logical Diagram for PA_SQ_vgt Interface.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 464 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

R400 Sequencer Specification PAGE

44 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

26.1.726.1.8 SQ to CP: State report
Name Direction Bits Description
SQ_CP_vrtx_ state SEQ→CP 3 Oldest vertex state still in the pipe
SQ_CP_pix_state SEQ→CP 3 Oldest pixel state still in the pipe

26.1.826.1.9 SQ to SX: Control bus
Name Direction Bits Description
SQ_SXx_exp_Pixel SQ→SXx 1 1: Pixel

0: Vertex
SQ_SXx_exp_start SQ→SXx 1 Raised to indicate that the SQ is starting an export
SQ_SXx_exp_Clause SQ→SXx 3 Clause number, which is needed for vertex clauses
SQ_SXx_exp_State SQ→SXx 3 State ID, which is needed for vertex clauses

These fields are sent synchronously with SP export data, described in SP0→SX0 interface
{ISSUE: Where are the PC pointers}

26.1.926.1.10 SX to SQ : Output file control
Name Direction Bits Description
SXx_SQ_Export_count_rdy SXx→SQ 1 Raised by SX0 to indicate that the following two fields

reflect the result of the most recent export
SXx_SQ_Export_Position SXx→SQ 1 Specifies whether there is room for another position.
SXx_SQ_Export_Buffer SXx→SQ 7 Specifies the space available in the output buffers.

0: buffers are full
1: 2K-bits available (32-bits for each of the 64
pixels in a clause)
...
64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

26.1.1026.1.11 SQ to TP: Control bus
Once every clock, the fetch unit sends to the sequencer on which clause it is now working and if the data in the GPRs
is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos. The sequencer
also provides the instruction and constants for the fetch to execute and the address in the register file where to write
the fetch return data.

Name Direction Bits Description
TPx_SQ_data_rdy TPx→ SQ 1 Data ready
TPx_SQ_clause_num TPx→ SQ 3 Clause number

TPx_SQ_TypeTPx_SQ_clause_num TPx→ SQTPx→
SQ

13 Type of data sent (0:PIXEL, 1:VERTEX)Clause
number

SQ_TPx_const SQ→TPx 48 Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instuct SQ→TPx 24 Fetch instruction sent over 4 clocks
SQ_TPx_end_of_clause SQ→TPx 1 Last instruction of the clause
SQ_TPx_Type SQ→TPx 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_phase SQ→TPx 2 Write phase signal
SQ_TP0_lod_correct SQ→TP0 6 LOD correct 3 bits per comp 2 components per

quad
SQ_TP0_pmask SQ→TP0 4 Pixel mask 1 bit per pixel
SQ_TP1_lod_correct SQ→TP1 6 LOD correct 3 bits per comp 2 components per

quad
SQ_TP1_pmask SQ→TP1 4 Pixel mask 1 bit per pixel
SQ_TP2_lod_correct SQ→TP2 6 LOD correct 3 bits per comp 2 components per

quad

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 465 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

45 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

SQ_TP2_pmask SQ→TP2 4 Pixel mask 1 bit per pixel
SQ_TP3_lod_correct SQ→TP3 6 LOD correct 3 bits per comp 2 components per

quad
SQ_TP3_pmask SQ→TP3 4 Pixel mask 1 bit per pixel
SQ_TPx_clause_num SQ→TPx 3 Clause number
SQ_TPx_write_gpr_index SQ->TPx 7 Index into Register file for write of returned Fetch

Data

26.1.1126.1.12 TP to SQ: Texture stall
The TP sends this signal to the SQ when its input buffer is full. The SQ is going to send it to the SP X clocks after
reception (maximum of 3 clocks of pipeline delay).

Name Direction Bits Description
TP_SQ_fetch_stall TP→ SQ 1 Do not send more texture request if asserted

26.1.1226.1.13 SQ to SP: Texture stall
Name Direction Bits Description
SQ_SPx_fetch_stall SQ→SPx 1 Do not send more texture request if asserted

26.1.1326.1.14 SQ to SP: GPR, Parameter cache control and auto counter
Name Direction Bits Description
SQ_SPx_wr_addr SQ→SPx 7 Write address
SQ_SPx_gpr_rd_addr SQ→SPx 7 Read address
SQ_SPx_gpr_re_addr SQ→SPx 1 Read Enable
SQ_SPx_gpr_we_addr SQ→SPx 1 Write Enable for the GPRs
SQ_SPx_gpr_phase_mux SQ→SPx 2 The phase mux (arbitrates between inputs, ALU SRC

reads and writes)
SQ_SPx_channel_mask SQ→SPx 4 The channel mask
SQ_SP0_pixel_mask SQ→SP0 4 The pixel mask
SQ_SP1_pixel_mask SQ→SP1 4 The pixel mask
SQ_SP2_pixel_mask SQ→SP2 4 The pixel mask
SQ_SP3_pixel_mask SQ→SP3 4 The pixel mask
SQ_SPx_pc_we_addr SQ→SPx 1 Write Enable for the parameter caches
SQ_SPx_gpr_input_mux SQ→SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTX0,
VTX1, autogen counter.

SQ_SPx_index_count SQ→SPx 12? Index count, common for all shader pipes

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 466 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

R400 Sequencer Specification PAGE

46 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

26.1.1426.1.15 SQ to SPx: Instructions
Name Direction Bits Description
SQ_SPx_instruct_start SQ→SPx 1 Instruction start
SQ_SP_instruct SQ→SPx 2120 Transferred over 4 cycles

0: SRC A Select 2:0
 SRC A Argument Modifier 3:3
 SRC A swizzle 11:4
 Unused 20:12
--
-
1: SRC B Select 2:0
 SRC B Argument Modifier 3:3
 SRC B swizzle 11:4
 Unused 20:12
--
-
2: SRC C Select 2:0
 SRC C Argument Modifier 3:3
 SRC C swizzle 11:4
 Unused 20:12
--
-
3: Vector Opcode 4:0
 Scalar Opcode 10:5
 Vector Clamp 11:11
 Scalar Clamp 12:12
 Vector Write Mask 16:13
 Scalar Write Mask 20:17Instruction sent over
4 clocks

SQ_SPx_stall SQ→SPx 1 Stall signal
SQ_SPx_export_count SQ→SPx 3 Each set of four pixels or vectors is exported over

eight clocks. This field specifies where the SP is in
that sequence.

SQ_SPx_export_last SQ→SPx 1 Asserted on the first shader count of the last export
of the clause

SQ_SP0_export_pvalid SQ→SP0 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP0_export_wvalid SQ→SP0 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

SQ_SP1_ export_pvalid SQ→SP1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP1_ export_wvalid SQ→SP1 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

SQ_SP2_ export_pvalid SQ→SP2 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP2_ export_wvalid SQ→SP2 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

SQ_SP3_ export_pvalid SQ→SP3 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 467 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

47 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

clock
SQ_SP3_ export_wvalid SQ→SP3 2 Specifies whether to write low and/or high 32-bit word

of the 64-bit export data from each of the 16 pixels or
vectors

26.1.1526.1.16 SP to SQ: Constant address load/ Predicate Set
Name Direction Bits Description
SP0_SQ_const_addr SP0→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP0_SQ_valid SP0→SQ 1 Data valid
SP1_SQ_const_addr SP1→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP1_SQ_valid SP1→SQ 1 Data valid
SP2_SQ_const_addr SP2→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP2_SQ_valid SP2→SQ 1 Data valid
SP3_SQ_const_addr SP3→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP3_SQ_valid SP3→SQ 1 Data valid

26.1.1626.1.17 SQ to SPx: constant broadcast
Name Direction Bits Description
SQ_SPx_constant SQ→SPx 128 Constant broadcast

26.1.1726.1.18 SP0 to SQ: Kill vector load
Name Direction Bits Description
SP0_SQ_kill_vect SP0→SQ 4 Kill vector load
SP1_SQ_kill_vect SP1→SQ 4 Kill vector load
SP2_SQ_kill_vect SP2→SQ 4 Kill vector load
SP3_SQ_kill_vect SP3→SQ 4 Kill vector load

26.1.1826.1.19 SQ to CP: RBBM bus
Name Direction Bits Description
SQ_RBB_rs SQ→CP 1 Read Strobe
SQ_RBB_rd SQ→CP 32 Read Data
SQ_RBBM_nrtrtr SQ→CP 1 Optional
SQ_RBBM_rtr SQ→CP 1 Real-Time (Optional)

26.1.1926.1.20 CP to SQ: RBBM bus
Name Direction Bits Description
rbbm_we CP→SQ 1 Write Enable
rbbm_a CP→SQ 1815 Address -- Upper Extent is TBD (16:2)
rbbm_wd CP→SQ 32 Data
rbbm_be CP→SQ 4 Byte Enables
rbbm_re CP→SQ 1 Read Enable
rbb_rs0 CP→SQ 1 Read Return Strobe 0
rbb_rs1 CP→SQ 1 Read Return Strobe 1
rbb_rd0 CP→SQ 32 Read Data 0
rbb_rd1 CP→SQ 32 Read Data 0
RBBM_SQ_soft_reset CP→SQ 1 Soft Reset

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 468 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

R400 Sequencer Specification PAGE

48 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

27. Examples of program executions

27.1.1 Sequencer Control of a Vector of Vertices

1. PA sends a vector of 64 vertices (actually vertex indices – 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO
 state pointer as well as tag into position cache is sent along with vertices
 space was allocated in the position cache for transformed position before the vector was sent
 also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
 The vertex program is assumed to be loaded when we receive the vertex vector.

 the SEQ then accesses the IS base for this shader using the local state pointer (provided to all
sequencers by the RBBM when the CP is done loading the program)

2. SEQ arbitrates between the Pixel FIFO and the Vertex FIFO – basically the Vertex FIFO always has priority
 at this point the vector is removed from the Vertex FIFO
 the arbiter is not going to select a vector to be transformed if the parameter cache is full unless the pipe as

nothing else to do (ie no pixels are in the pixel fifo).

3. SEQ allocates space in the SP register file for index data plus GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
 SEQ will not send vertex data until space in the register file has been allocated

4. SEQ sends the vector to the SP register file over the RE_SP interface (which has a bandwidth of 2048 bits/cycle)
 the 64 vertex indices are sent to the 64 register files over 4 cycles

 RF0 of SU0, SU1, SU2, and SU3 is written the first cycle
 RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
 RF2 of SU0, SU1, SU2, and SU3 is written the third cycle
 RF3 of SU0, SU1, SU2, and SU3 is written the fourth cycle

 the index is written to the least significant 32 bits (floating point format?) (what about compound indices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, z)

5. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSM0 FIFO)
 the control packet contains the state pointer, the tag to the position cache and a register file base pointer.

6. TSM0 accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

7. all instructions of fetch clause 0 are issued by TSM0

8. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for requests made to the Fetch Unit to complete; it passes the register file write index for

the fetch data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data to the register files, it increments a counter that is associated with ASM0

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

9. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

10. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

11. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 position can be exported in ALU clause 3 (or 4?); the data (and the tag) is sent over a position bus (which is

shared with all four shader pipes) back to the PA’s position cache
 A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
 there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 469 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

49 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

 the ASM arbiter will prevent a packet from starting an exporting clause if the position export FIFO is full
 parameter data is exported in clause 7 (as well as position data if it was not exported earlier)

 parameter data is sent to the Parameter Cache over a dedicated bus
 the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space when there is no

longer a need for the parameters (it is told by the PA when using a token).
 the ASM arbiter will prevent a packet from starting on ASM7 if the parameter cache (or the position buffer

if position is being exported) is full

12. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

27.1.2 Sequencer Control of a Vector of Pixels

1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

 At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

2. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
 the state pointer and the LOD correction bits are also placed in the Pixel FIF0
 the Pixel FIFO is wide enough to source four quad’s worth of barycentrics per cycle

3. SEQ arbitrates between Pixel FIFO and Vertex FIFO – when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

4. SEQ allocates space in the SP register file for all the GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
 SEQ will not allow interpolated data to be sent to the shader until space in the register file has been allocated

5. SEQ controls the transfer of interpolated data to the SP register file over the RE_SP interface (which has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagrams for details.

6. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSM0 FIFO)
 note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
 the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
 all other information (such as quad address for example) travels in a separate FIFO

7. TSM0 accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

8. all instructions of fetch clause 0 are issued by TSM0

9. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for fetch requests made to the Fetch Unit to complete; it passes the register file write

index for the fetch data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data for a particular clause to the register files, it increments a counter that is

associated with the ASM0 FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

10. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

11. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

12. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 pixel data is exported in the last ALU clause (clause 7)

 it is sent to an output FIFO where it will be picked up by the render backend
 the ASM arbiter will prevent a packet from starting on ASM7 if the output FIFO is full

13. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 470 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
February 20029

R400 Sequencer Specification PAGE

50 of 50

Exhibit 2023.docR400_Sequencer.doc �� 71499 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page *** 01/04/02 02:57 PM

27.1.3 Notes

14. The state machines and arbiters will operate ahead of time so that they will be able to immediately start the real
threads or stall.

15. The register file base pointer for a vector needs to travel with the vector through the reservation stations, but the
instruction store base pointer does not – this is because the RF pointer is different for all threads, but the IS
pointer is only different for each state and thus can be accessed via the state pointer.

28. Open issues
Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

Parameter caches in SX?

Using both IJ buffers for center + centroid interpolation?

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 471 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024 February

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SQ

Version 1.87

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\doc_lib\design\blocks\sq\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2024
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 472 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024

R400 Sequencer Specification PAGE

2 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Table Of Contents

1. OVERVIEW .. 6
1.1 Top Level Block Diagram ... 8
1.2 Data Flow graph (SP) ... 10
1.3 Control Graph ... 11
2. INTERPOLATED DATA BUS .. 11
3. INSTRUCTION STORE ... 14
4. SEQUENCER INSTRUCTIONS ... 16
5. CONSTANT STORES .. 16
5.1 Memory organizations .. 16
5.2 Management of the re-mapping tables .. 16

5.2.1 Dirty bits .. 1918

5.2.2 Free List Block .. 1918

5.2.3 De-allocate Block .. 201918

5.2.4 Operation of Incremental model .. 201918
5.3 Constant Store Indexing ... 2019
5.4 Real Time Commands.. 212019
5.5 Constant Waterfalling ... 212019
6. LOOPING AND BRANCHES ... 222120
6.1 The controlling state. .. 222120
6.2 The Control Flow Program ... 222120
6.3 Data dependant predicate instructions ... 2423
6.4 HW Detection of PV,PS ... 252423
6.5 Register file indexing .. 252423
6.6 Predicated Instruction support for Texture clauses .. 2624
6.7 Debugging the Shaders ... 262524

6.7.1 Method 1: Debugging registers ... 262524

6.7.2 Method 2: Exporting the values in the GPRs (12) ... 2625
7. PIXEL KILL MASK .. 2725
8. MULTIPASS VERTEX SHADERS (HOS) .. 272625
9. REGISTER FILE ALLOCATION .. 272625
10. FETCH ARBITRATION .. 282726
11. ALU ARBITRATION .. 282726
12. HANDLING STALLS ... 292827
13. CONTENT OF THE RESERVATION STATION FIFOS ... 292827
14. THE OUTPUT FILE.. 292827
15. IJ FORMAT .. 292827
15.1 Interpolation of constant attributes .. 302928
16. STAGING REGISTERS ... 302928
17. THE PARAMETER CACHE ... 323130
18. VERTEX POSITION EXPORTING ... 333130
19. EXPORTING ARBITRATION .. 333130
20. EXPORT TYPES .. 333130
20.1 Vertex Shading .. 333130

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 473 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024 February

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

20.2 Pixel Shading .. 333230
21. SPECIAL INTERPOLATION MODES ... 343231
21.1 Real time commands .. 343231
21.2 Sprites/ XY screen coordinates/ FB information .. 343231
21.3 Auto generated counters ... 343331

21.3.1 Vertex shaders ... 343332

21.3.2 Pixel shaders .. 343332
22. STATE MANAGEMENT .. 353332
22.1 Parameter cache synchronization ... 353332
23. XY ADDRESS IMPORTS ... 353432
23.1 Vertex indexes imports .. 353433
24. REGISTERS .. 363433
24.1 Control ... 363433
24.2 Context .. 363433
25. DEBUG REGISTERS... 373534
25.1 Context .. 373534

26. INTERFACES .. 373534

26.1 External Interfaces .. 373534

26.1.1 SC to SQ : IJ Control bus .. 373634

26.1.2 SQ to SP: Interpolator bus ... 383635

26.1.3 SQ to SP: Parameter Cache Read control bus .. 383635

26.1.4 SQ to SX: Parameter Cache Mux control Bus ... 393736

26.1.5 SQ to SP: Staging Register Data ... 393736

26.1.6 PA to SQ : Vertex interface .. 393736

26.1.7 SQ to CP: State report ... 424139

26.1.8 SQ to SX: Control bus .. 424139

26.1.9 SX to SQ : Output file control ... 424139

26.1.10 SQ to TP: Control bus .. 424139

26.1.11 TP to SQ: Texture stall ... 434240

26.1.12 SQ to SP: Texture stall ... 434240

26.1.13 SQ to SP: GPR, Parameter cache control and auto counter 434240

26.1.14 SQ to SPx: Instructions .. 444341

26.1.15 SP to SQ: Constant address load .. 454441

26.1.16 SQ to SPx: constant broadcast .. 454441

26.1.17 SP0 to SQ: Kill vector load ... 454442

26.1.18 SQ to CP: RBBM bus ... 454442

26.1.19 CP to SQ: RBBM bus ... 454442
27. EXAMPLES OF PROGRAM EXECUTIONS .. 464442

27.1.1 Sequencer Control of a Vector of Vertices ... 464442

27.1.2 Sequencer Control of a Vector of Pixels .. 474643

27.1.3 Notes .. 484644

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 474 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024

R400 Sequencer Specification PAGE

4 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

28. OPEN ISSUES ... 484744

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 475 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024 February

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

 Changed the control flow method to be more
flexible. Also updated the external interfaces.

Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

 Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001

 Refined interfaces to RB. Added state registers.

Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

 Added SEQ→SP0 interfaces. Changed delta
precision. Changed VGT→SP0 interface. Debug
Methods added.

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001

 Interfaces greatly refined. Cleaned up the spec.

Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001

 Added the different interpolation modes.

Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

 Added the auto incrementing counters. Changed
the VGT→SQ interface. Added content on constant
management. Updated GPRs.

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

 Removed from the spec all interfaces that weren’t
directly tied to the SQ. Added explanations on
constant management. Added PA→SQ
synchronization fields and explanation.

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

 Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002

 Added Real Time parameter control in the SX
interface. Updated the control flow section.

Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

 New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 476 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024

R400 Sequencer Specification PAGE

6 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1. Overview
The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause until the fetch fetches initiated by the previous
fetch clause have completed. There are two separate sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 477 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024 February

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ

SC

SPSPSPCSTOREFETCH STATE

TP

INST STORE

IJ CONTROL

IJ
CONTROL

CST
ADDR

INST
 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/QUAD
ADDRESSES

SP

ALU INST

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

INST

INTER INTER INTER INTER

IJ CROSSBAR

2 QUADS IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC READ
 POINTERS

PARAM
DATA

R/W ADDR

Vertex indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

CP

CONSTANT
LOAD

CPConstant Load

TX ADDR

PC Write
Address

TEX INST

CF
CONSTANTS

Register
Mapped

CF Read

Figure 1: General Sequencer overview

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 478 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024

R400 Sequencer Specification PAGE

8 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.1 Top Level Block Diagram

vertex/pixel vector arbitrator

Possible delay for available GPR’s

FIFO
Texture clause 0
reservation station

Texture clause 1
reservation station

FIFO
ALU clause 0
reservation station

FIFO

Texture clause 2
reservation station

Texture clause 3
reservation station

FIFO
ALU clause 1
reservation station

FIFO

FIFO
ALU clause 2
reservation station

FIFO

FIFO
ALU clause 3
reservation station

FIFO
Texture clause 4
reservation station

Texture clause 5
reservation station

FIFO
ALU clause 4
reservation station

FIFO

Texture clause 6
reservation station

Texture clause 7
reservation station

FIFO
ALU clause 5
reservation station

FIFO

FIFO
ALU clause 6
reservation station

FIFO

FIFO
ALU clause 7
reservation station

texture arbitrator

texture arbitrator

Figure 2: Reservation stations and arbiters

There are two sets of the above figure, one for vertices and one for pixels.

Depending on the arbitration state, the sequencer will either choose a vertex or a pixel packet. The control packet
consists of 3 bits of state, 7 bits for the base address of the Shader program and some information on the coverage to
determine fetch LOD plus other various small state bits.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 479 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024 February

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the GPRs to store the interpolated values and temporaries. Following this, the barycentric coordinates (and XY
screen position if needed) are sent to the interpolator, which will use them to interpolate the parameters and place the
results into the GPRs. Then, the input state machine stacks the packet in the first FIFO.

On receipt of a command, the level 0 fetch machine issues a fetch request to the TP and corresponding GPR
address for the fetch address (ta). A small command (tcmd) is passed to the fetch system identifying the current level
number (0) as well as the GPR write address for the fetch return data. One fetch request is sent every 4 clocks
causing the texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the requests are sent the packet is put in
FIFO 1.

Upon receipt of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level 0 fetch machine and sends the clause number (0) to the level 0 fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU 0 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO 1 counter and then issues a
complete set of level 0 shader instructions. For each instruction, the ALU state machine generates 3 source
addresses, one destination address and an instruction. Once the last instruction has been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbiters). One arbiter will arbitrate
over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the two arbiters is that they are not allowed to pick the same
clause number as the other one is currently working on if the packet is not of the same type (render state).

If the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbiter must prevent ALU clause 3 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, if needed the sprite size and/or edge flags can also be sent.

A special case is for multipass vertex shaders, which can export 12 parameters per last 6 clauses to the output
buffer. If the output buffer is full or doesn’t have enough space the sequencer will prevent such a vertex group to
enter an exporting clause.

Multipass pixel shaders can export 12 parameters to memory from the last clause only (7).

All other clauses process in the same way until the packet finally reaches the last ALU machine (7).

Only one pair of interleaved ALU state machines may have access to the register file address bus or the instruction
decode bus at one time. Similarly, only one fetch state machine may have access to the register file address bus at
one time. Arbitration is performed by three arbiter blocks (two for the ALU state machines and one for the fetch state
machines). The arbiters always favor the higher number state machines, preventing a bunch of half finished jobs from
clogging up the register files.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 480 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024

R400 Sequencer Specification PAGE

10 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.2 Data Flow graph (SP)

MAC

MAC

MAC

MAC

Register File

co
n

st
an

ts
 f

ro
m

 R
E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
n

ts
 f

ro
m

 R
E

S
ca

la
r

U
ni

t

texture request

texture request

texture request

texture request

te
xt

ur
e

 a
dd

re
ss

te xtu
re

 d
ata

prim
itiv e d a

ta
 from

 R
E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

Figure 3: The shader Pipe

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 481 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024 February

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

SEQ

FETCH SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

OF

WrAddrIS CST

CST IDX

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 482 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024

R400 Sequencer Specification PAGE

12 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x64 bits)

IJs buffer (ping-pong buffer)
(28 bits * 2 (IJ) + 8 bits * 6 (delta IJs)+4 exp

bits*6)* 16 (quads) * 2 (double-buffered)
4096 bits

32 x 128

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

64

To RB

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2

768 bits
32x24

FIX-FLOAT + EXPANSiON

Figure 5: Interpolation buffers

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 483 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024 February

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SP
0

SP
1

SP
2

SP
3

WRITES
T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-
11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P1 P2

T20 T21 T22 T23

VTX

T0 T1 T2 T3

XY

XY
0-3

XY
4-7

XY
8-
11

XY
12-
15

XY
16-
19

XY
20-
23

XY
24-
27

XY
28-
31

XY
32-
35

XY
36-
39

XY
40-
43

XY
44-
47

XY
48-
51

XY
52-
55

XY
56-
59

XY
60-
63

READS

SP
0

SP
1

SP
2

SP
3

A0

A1

A2

B1

B0

C3

C0

C1

C2

C4

C5

D0

D1

D2

E0

E1

A0

A1

A2

XY
A0
XY
A1
XY
A2

B1

B0

XY
B1

XY
B0

C3

C0

C1

C2

XY
C3
XY
C0
XY
C1
XY
C2

C4

C5

XY
C4
XY
C5

D0

D1

D2

XY
D1
XY
D2

XY
D0

E0

E1
XY
E1

XY
E0

Figure 6: Interpolation timing diagram

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 484 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024

R400 Sequencer Specification PAGE

14 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

{ISSUE : Do we do the center + centroid approach using both IJ buffers?}

3. Instruction Store
There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The next picture shows the various modes the CP can load the memory. The Sequencer has to keep track of the
loading modes in order to wrap around the correct boundaries. The wrap-around points are arbitrary and they are
specified in the VS_BASE and PIX_BASE control registers. The VS_BASE and PS_BASE context registers are used
to specify for each context where its shader is in the instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 485 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024 February

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

R400 CP's Views of Instruction Memory Updated: 11/14/2001
John A. Carey

0

4095

Real-Time &
Shared Code

VERTEX_SHADER_BASE

PIXEL_SHADER_BASE

VS Code A

VS Code B

VS Code C

PS Code A

PS Code B

PS Code C

CP writes code start
addresses to
appropriate Sub-
Blocks so Sequencer
knows where to start
executing the code.

MODE 0 - Dual Ring
0

4095

Real-Time &
Shared Code

VERTEX_SHADER_BASE

VS Code A

VS Code B

VS Code C

PS Code A

PS Code B

PS Code C

MODE 1 - Single Ring

CP writes code start
addresses to
appropriate Sub-
Blocks so Sequencer
knows where to start
executing the code.

Figure 7: The CP's view of the instruction memory

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 486 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024

R400 Sequencer Specification PAGE

16 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

4. Sequencer Instructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 128x192 bits. The memory thus holds
128 texture states (192 bits per state). The logical size exposes 32 different states total, which are going to be shared
between the pixel and the vertex shader. The size of the re-mapping table to for the texture state memory is 32 lines
(each line addresses 1 texture state lines in the real memory). The CP write granularity is 1 texture state lines (or 192
bits). The driver sends 512 bits but the CP ignores the top 320 bits. It thus takes 6 clocks to write the texture state.
Real time requires 32 lines in the physical memory (this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a state change in the control flow constants. Its size is 320*32 because it must
hold 8 copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

5.2 Management of the Control Flow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied whenever there is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn’t write to CF the state is going to use the previous CF constants.

5.25.3 Management of the re-mapping tables

5.2.15.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 487 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024 February

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.2.25.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROL packet of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it with
the new state (this is depicted in Figure 9: De-allocation mechanismFigure 9: De-allocation mechanismFigure 9: De-
allocation mechanism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 488 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024

R400 Sequencer Specification PAGE

18 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Physical
Memory

Renaming Table
for 1 Context
Current/Last

Physical
Address

per
Logical
Address

Renaming
table

N-Contexts

Reset
Dirty
per

Logical
Address

(Only
de-

allocate
if set)

This
Context

Dirty
per

Logical
Address

(If set
don't

allocate
or de-

allocate)

Logical address
On the

GlbRegBus
when lsb are zero
first word of write

next
physical
address
ready

for allocate

Constants
location
available
WRTR

physical
address

to
schedule

for
de-alloc

Staging Data
Buffer

Staging Write Addr

Copy Last held above to
Current Context on receipt

of Set Constant for a
new context (Hide loading

behind Set State load - 16 clocks)
all other Set States just write one

entry to current state.

Free
list

(pass Phys
Address if
Context
Dirty)

Dealloc
Counts

Seq
Constant
Request

Context &
Logical
Address

Free_ptr
WritePtr

When a Logical
Address is written

that has been
written before,

store the physical
address that was
allocated by that
Logical Address

Stop_ptr
ptr to first physical

address that is
scheduled to be de-
allocated but noty
yet de-allocate.

Advanced each time
a context is freed by

the number of
physical address
displaced by that

Context

Read_ptr
ptr to physical

address that will be
used next if the init

count is at
maximum number

of physical address

Free List

Number of entries
equals Max Number of
Physical Blocks. All
Pointers start at zero
and roll around but

can never pass each
other

Free
Address

Address
to Allocate

Global Register
Data Bus

Renaming Table
Context 0 => N

Logical Address
& Context

Physical
Address

Context 0 (8 rows of 16 - 8 bit
physical => 128 entries copy in

eight clocks)

Context 1

Context N

Current/Last
Context

(8 rows of 16 - 8
bit physical =>

128 entries copy
in eight clocks)

Figure 8: Constant management

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 489 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024 February

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

DEALOC
COUNTERSFree List

!=

OR

AND

NOT

ADDR

PREVIOUS
STATE

NEW
STATE

SQ_IDLE

CP_NEW_STATE_CNTL
PA_IDLE

VALUE

VALID

CNT VALUE

SQ_STATE#

WRITE_ENABLE

REMAPPING
TABLE

SET CTX BITS

Figure 9: De-allocation mechanism for R400LE

5.2.35.3.3 Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.2.45.3.4 Free List Block
A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 490 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024

R400 Sequencer Specification PAGE

20 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

5.2.55.3.5 De-allocate Block
This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any number of blocks in one clock.

5.2.65.3.6 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.35.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 491 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024 February

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

5.45.5 Real Time Commands
The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
works is the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zones is defined by the TSTATE_EO_RT control register.

5.55.6 Constant Waterfalling
In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenever a state is freed.

CONST_EO_RT

RT SECTON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table)

Figure 10: The instruction store

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 492 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024

R400 Sequencer Specification PAGE

22 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
Examples of control flow programs are located in the R400 programming guide document.

The basic model is as follows:

The render state defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located

A pointer value of FF means that the clause doesn’t contain any instructions.

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The control program is the only program aware of the clause
boundaries.

The control program has eleven nine basic instructions:

Execute
Conditional_execute
Conditional_Execute_Predicates
Conditional_jump
Conditionnal_Call
Return
Loop_start
Loop_end
End_of_clause
Conditional_End_of_clause
NOP

Execute, causes the specified number of instructions in instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified number of instructions in instruction
store to be executed.
Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified number of instructions.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 493 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024 February

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Conditionnal_Call jumps to an address and pushes the IP counter on the stack if the condition is met. On the return
instruction, the IP is popped from the stack.
Conditional_execute_Predicates executes a block of instructions if all bits in the predicate vectors meet the condition.
End_of_clause marks the end of a clause.
Conditional_End_of_clause marks the end of a clause if the condition is met.
Conditional_jumps jumps to an address if the condition is met.
NOP is a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSES since there are two control flow instructions per
memory line. Thus the compiler must insert NOPs where needed to align the jumps on even CFP addresses.

Also if the jump is logically bigger than pshader_cntl_size (or vshader_cntl_size) we break the program (clause) and
set the debug registers. If an execute or conditional_execute is lower than cntl_size or bigger than size we also break
the program (clause) and set the debug registers.

We have to fit instructions into 48 bits in order to be able to put two control flow instruction per line in the instruction
store.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

Execute
47 46… 42 4141 … 24 40 … 24 23 … 12 11 … 0

Addressing 00001 LastRESERVE
D

RESERVED Instruction
count

Exec Address

Execute up to 4k instructions at the specified address in the instruction memory. If Last is set, this is the last group of
instructions of the clause.

NOP
47 46 … 42 4141 … 0 40 … 0

Addressing 00010 LastRESERVE
D

RESERVED

This is a regular NOP. If Last is set, this is the last instruction of the clause.

Conditional_Execute

47 46 … 42 41 40 … 33 32 31 … 24 23 … 12 11 … 0
Addressing 00011 RESERVED

Last
Boolean
address

Condition RESERVED Instruction count Exec Address

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 4k instructions). If Last is set, then if the condition is met, this is the last group of instructions to be
executed in the clause. If the condition is not met, we go on to the next control flow instruction.

Conditional_Execute_Predicates
47 46 … 42 41

…
35

40 … 35 34 … 33 32 31 … 24 23 … 12 11 … 0

Addressing 00100 Last
RES
ERV
ED

RESERVED Predicate
vector

Condition RESERVED Instruction
count

Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid. If Last is
set, then if the condition is met, this is the last group of instructions to be executed in the clause. If the condition is not
met, we go on to the next control flow instruction.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 494 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024

R400 Sequencer Specification PAGE

24 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Loop_Start

47 46 … 42 41 … 17 16 … 12 11 … 0

Addressing
00101 RESERVED loop ID Jump address

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Loop_End
47 46 … 42 41 … 17 16 … 12 11 … 0

Addressing

00110 RESERVED loop ID start address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal_Call
47 46 … 42 41 … 35 34 … 33 32 31 … 12 11 … 0

Addressing

00111 RESERVED Predicate
vector

Condition RESERVED Jump address

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack.

Return
47 46 … 42 41 … 0

Addressing

01000 RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump
47 46 … 42 41 40 … 33 32 31 30 … 12 11 … 0

Addressing

01001 RESERVED Boolean
address

Condition FW only RESERVED Jump address

If condition met, jumps to the address. FORWARD jump only allowed if bit 31 set. Bit 31 is only an optimization for the
compiler and should NOT be exposed to the API.

This is an optimization in the case of very short shaders (where the control flow instruction can’t be hidden anymore
and thus are not free. In this case, if the condition is met, the clause is ended, else we continue the execution of the
clause.

Marks the end of a clause.

To prevent infinite loops, we will keep 9 bits loop iterators instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start instruction is going to break the loop and set the
debug GPRs.

6.3 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 495 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024 February

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

PRED_SETE_# - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETNE_# - similar to SETNE except that the result is 'exported' to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE0_# – SETE0
 PRED_SETE1_# – SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

 P0_ADD_# R0,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

6.4 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

6.5 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

The sequencer is going to keep a loop index computed as such:

 Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128…127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 496 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024

R400 Sequencer Specification PAGE

26 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

6.6 Predicated Instruction support for Texture clauses
For texture clauses, we support the following optimization: we keep 1 bit (thus 4 bits for the four predicate vectors)
per predicate vector in the reservation stations. A value of 1 means that one ore more elements in the vector have a
value of one (thus we have to do the texture fetches for the whole vector). A value of 0 means that no elements in the
vector have his predicate bit set and we can thus skip over the texture fetch. We have to make sure the invalid
pixels aren’t considered with this optimization.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
 - jump errors
 relative jump address > size of the control flow program
 - call stack
 call with stack full

return with stack empty

A jump error will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only break if
the DB_PROB_BREAK register is set.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the 0th
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs (12)
The sequencer will have a count register and an address register for this mode and 3 bits per clause specifying the
execution mode for each clause. The modes can be :

1) Normal
2) Debug Kill
3) Debug Addr + Count

Under the normal mode execution follows the normal course. Under the kill mode, all control flow instructions are
executed but all normal shader instructions of the clause are replaced by NOPs. Only debug_export instructions of
clause 7 will be executed under the debug kill setting. Under the other mode, normal execution is done until we reach
an address specified by the address register and instruction count (useful for loops) specified by the count register.
After we have hit the instruction n times (n=count) we switch the clause to the kill mode.

Under the debug mode (debug kill OR debug Addr + count), it is assumed that clause 7 is always exporting 12 debug
vectors and that all other exports to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by
the sequencer (even if they occur before the address stated by the ADDR debug register).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 497 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024 February

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

7. Pixel Kill Mask
A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE

 MASK_SETGT
 MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZE for pixels.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 498 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024

R400 Sequencer Specification PAGE

28 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

10. Fetch Arbitration
The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration
ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…
 Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 499 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024 February

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the exporting clause (3?). The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs
The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel’s parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming P0 is the interpolated parameter at Pixel 0 having the barycentric coordinates I(0), J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at V0 (interpolated with I), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

)(*03)(*0303

)(*02)(*0202

)(*01)(*0101

)(*)0()(*)0(0

)0()3(03

)0()3(03

)0()2(02

)0()2(02

)0()1(01

)0()1(01

CBJCAIPP

CBJCAIPP

CBJCAIPP

CBJCAICP

JJJ

III

JJJ

III

JJJ

III

P0 is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2

P0

P2

P1

P3

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 500 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024

R400 Sequencer Specification PAGE

30 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Adds: 8

FORMAT OF P0’s IJ : Mantissa 20 Exp 4 for I + Sign
 Mantissa 20 Exp 4 for J + Sign

FORMAT of Deltas (x3): Mantissa 8 Exp 4 for I + Sign
 Mantissa 8 Exp 4 for J + Sign

Total number of bits : 20*2 + 8*6 + 4*8 + 4*2 = 128

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the number is
normalized if not, then the number is un-normalized. The maximum range for the IJs (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

15.1 Interpolation of constant attributes
Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

We start with the premise that if A = B and B = C and C = A, then P0,1,2,3 = A. Since one or more of the IJ terms
may be zero, so we extend this to:

if (A=B and B=C and C=A)
 P0,1,2,3 = A;
else if ((I = 0) or (J = 0)) and
 ((J = 0) or (1-I-J = 0)) and
 ((1-J-I = 0) or (I = 0))) {
 if(I != 0) {
 P0 = A;
 } else if(J != 0) {
 P0 = B;
 } else {
 P0 = C;
 }
 //rest of the quad interpolated normally
}
else
{
 normal interpolation
}

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 || 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencer will re-arrange them in this fashion:

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 || 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 || 8 9 10 11 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the VGT will send padding to account for
the missing pipe. For example, if SP1 is broken, vertices 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sent
by the VGT to the SQ BUT will not be processed by the SP and thus should be considered invalid (by the SU and
VGT).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 501 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024 February

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 12Figure 12Figure 12. The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure 11Figure 11Figure 11.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11631 60.57813per bit

Area of 96x8-deep Latch Memory 46524
Area of 24-bit Fix-to-float Converter 4712per converter

Method 1 Block Quantity Area

 F2F 3 14136

 8x96 Latch 16 744384

 758520

Figure 11:Area Estimate for VGT to Shader Interface

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 502 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024

R400 Sequencer Specification PAGE

32 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SHADER PIPE

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

3
2

3
2

3
2

VGT BLOCK
(IN PA)

3
2

9
6

VECTOR ENGINE

96

8x96
MEMORY
1-READ
1-WRITE

3 OTHER
SHADER
PIPES

 3 Fix->Float Converters (24-bit)
 16 Memories 8x96-bit (12,288 bits)

Totals:

THREE MORE VECTOR ENGINES
PER SHADER PIPE

VECTOR ENGINE

SHADER
SEQUENCER

Figure 12:VGT to Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER
4 bits

ADDRESS
7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT_7 (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT_7 = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17th) is going to have the address 00000001000, the 18th 00010001000, the 19th 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add
2*VS_EXPORT_COUNT_7to Current_Location and reset the memory count to 0 before the next vector begins).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 503 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024 February

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

33 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

18. Vertex position exporting
On clause 3 the vertex shader can export to the PA both the vertex position and the point sprite. It can also do so at
clause 7 if not done at clause 3. The storage needed to perform the position export is at least 64x128 memories for
the position and 64x32 memories for the sprite size. It is going to be taken in the pixel output fifo from the SX blocks.
The clause where the position export occurs is specified by the EXPORT_LATE register. If turned on, it means that
the export is going to occur at ALU clause 7 if unset position export occurs at clause 3.

19. Exporting Arbitration
Here are the rules for co-issuing exporting ALU clauses.

1) Position exports and position exports cannot be co-issued.

All other types of exports can be co-issued as long as there is place in the receiving buffer.

{ISSUE: Do we move the parameter caches to the SX?}

20. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

20.1 Vertex Shading
 0:15 - 16 parameter cache
 16:31 - Empty (Reserved?)
 32:43 - 12 vertex exports to the frame buffer and index
 44:47 - Empty
 48:59 - 12 debug export (interpret as normal vertex export)
 60 - export addressing mode
 61 - Empty
 62 - position
 63 - sprite size export that goes with position export
 (point_h,point_w,edgeflag,misc)

20.2 Pixel Shading
 0 - Color for buffer 0 (primary)
 1 - Color for buffer 1
 2 - Color for buffer 2
 3 - Color for buffer 3
 4:7 - Empty
 8 - Buffer 0 Color/Fog (primary)
 9 - Buffer 1 Color/Fog
 10 - Buffer 2 Color/Fog
 11 - Buffer 3 Color/Fog
 12:15 - Empty
 16:31 - Empty (Reserved?)
 32:43 - 12 exports for multipass pixel shaders.
 44:47 - Empty
 48:59 - 12 debug exports (interpret as normal pixel export)
 60 - export addressing mode
 61:62 - Empty
 63 - Z for primary buffer (Z exported to 'alpha' component)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 504 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024

R400 Sequencer Specification PAGE

34 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

21. Special Interpolation modes

21.1 Real time commands
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem I see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft’s high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This mode is triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

21.2 Sprites/ XY screen coordinates/ FB information
When working with sprites, one may want to overwrite the parameter 0 with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_I0 register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Here is a list of all the modes and how they interact
together:

Gen_st is a bit taken from the interface between the SC and the SQ. This is the MSB of the primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between 0 and 1.

Param_Gen_I0 disable, snd_xy disable, no gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy disable, gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy enable, no gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy enable, gen_st – I0 = No modification
Param_Gen_I0 enable, snd_xy disable, no gen_st – I0 = garbage, garbage, garbage, faceness
Param_Gen_I0 enable, snd_xy disable, gen_st – I0 = garbage, garbage, s, t
Param_Gen_I0 enable, snd_xy enable, no gen_st – I0 = screen x, screen y, garbage, faceness
Param_Gen_I0 enable, snd_xy enable, gen_st – I0 = screen x, screen y, s, t

21.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1st pass data to memory and then use the count to retrieve the data on the 2nd pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. The sequencer is going to
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the
GPRs the counter is incremented. Every time a state change is detected, the corresponding counter is reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

21.3.1 Vertex shaders
In the case of vertex shaders, if GEN_INDEX is set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

21.3.2 Pixel shaders
In the case of pixel shaders, if GEN_INDEX is set and Param_Gen_I0 is enabled, the data will be put in the x field of
the 2nd register (R1.x), else if GEN_INDEX is set the data will be put into the x field of the 1st register (R0.x).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 505 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024 February

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

35 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

AUTO
COUNT

STG 0

STG1

INTERPOLATORS

GPR0

AUTO COUNT 000000

MUX

The Auto Count Value is
broadcast to all GPRs. It is

loaded into a register wich has
its LSBs hardwired to the

GPR number (0 thru 63). Then
if GEN_INDEX is high, the
mux selects the auto-count

value and it is loaded into the
GPRs to be either used to

retrieve data using the TP or
sent to the SX for the RB to

use it to write the data to
memory

Figure 13: GPR input mux Control

22. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

22.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

23. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix→float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 21.2 for details on how to control the interpolation in this mode.

23.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 506 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024

R400 Sequencer Specification PAGE

36 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24. Registers

24.1 Control
REG_DYNAMIC Dynamic allocation (pixel/vertex) of the register file on or off.
REG_SIZE_PIX Size of the register file's pixel portion (minimal size when dynamic allocation turned

on)
REG_SIZE_VTX Size of the register file's vertex portion (minimal size when dynamic allocation turned

on)
ARBITRATION_POLICY policy of the arbitration between vertexes and pixels
INST_STORE_ALLOC interleaved, separate
INST_BASE_VTX start point for the vertex instruction store (RT always ends at vertex_base and

Begins at 0)
INST_BASE_PIX start point for the pixel shader instruction store
ONE_THREAD debug state register. Only allows one program at a time into the GPRs
ONE_ALU debug state register. Only allows one ALU program at a time to be executed (instead

of 2)
INSTRUCTION This is where the CP puts the base address of the instruction writes and type (auto-

incremented on reads/writes) Register mapped
CONSTANTS 512*4 ALU constants + 32*6 Texture state 32 bits registers (logically mapped)
CONSTANTS_RT 256*4 ALU constants + 32*6 texture states? (physically mapped)
CONSTANT_EO_RT This is the size of the space reserved for real time in the constant store (from 0 to

CONSTANT_EO_RT). The re-mapping table operates on the rest of the memory
TSTATE_EO_RT This is the size of the space reserved for real time in the fetch state store (from 0 to

TSTATE_EO_RT). The re-mapping table operates on the rest of the memory
EXPORT_LATE Controls whether or not we are exporting position from clause 3. If set, position

exports occur at clause 7.

24.2 Context
VS_FETCH_{0…7} eight 8 bit pointers to the location where each clauses control program is located
VS_ALU_{0…7} eight 8 bit pointers to the location where each clauses control program is located
PS_FETCH_{0…7} eight 8 bit pointers to the location where each clauses control program is located
PS_ALU_{0…7} eight 8 bit pointers to the location where each clauses control program is located
PS_BASE base pointer for the pixel shader in the instruction store
VS_BASE base pointer for the vertex shader in the instruction store
VS_CF_SIZE size of the vertex shader (# of instructions in control program/2)
PS_CF_SIZE size of the pixel shader (# of instructions in control program/2)
PS_SIZE size of the pixel shader (cntl+instructions)
VS_SIZE size of the vertex shader (cntl+instructions)
PS_NUM_REG number of GPRs to allocate for pixel shader programs
VS_NUM_REG number of GPRs to allocate for vertex shader programs
PARAM_SHADE One 16 bit register specifying which parameters are to be gouraud shaded (0 = flat, 1

= gouraud)
PROVO_VERT 0 : vertex 0, 1: vertex 1, 2: vertex 2, 3: Last vertex of the primitive
PARAM_WRAP 64 bits: for which parameters (and channels (xyzw)) do we do the cyl wrapping

(0=linear, 1=cylindrical).
PS_EXPORT_MODE 0xxxx : Normal mode
 1xxxx : Multipass mode
 If normal, bbbz where bbb is how many colors (0-4) and z is export z or not
 If multipass 1-12 exports for color.
VS_EXPORT_MASK which of the last 6 ALU clauses is exporting (multipass only)
VS_EXPORT_MODE 0: position (1 vector), 1: position (2 vectors), 3:multipass
VS_EXPORT
COUNT{0…6} Six 4 bit counters representing the # of interpolated parameters exported in clause 7

(located in VS_EXPORT_COUNT_6) OR
 # of exported vectors to memory per clause in multipass mode (per clause)
PARAM_GEN_I0 Do we overwrite or not the parameter 0 with XY data and generated T and S values

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 507 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024 February

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

37 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

GEN_INDEX Auto generates an address from 0 to XX. Puts the results into R0-1 for pixel shaders
and R2 for vertex shaders

CONST_BASE_VTX (9 bits) Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Turns on the predicate bit optimization (if of, conditional_execute_predicates is

always executed).
CF_BOOLEANS 256 boolean bits
CF_LOOP_COUNT 32x8 bit counters (number of times we traverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in index computation)

25. DEBUG Registers

25.1 Context
DB_PROB_ADDR instruction address where the first problem occurred
DB_PROB_COUNT number of problems encountered during the execution of the program
DB_PROB_BREAK break the clause if an error is found.
DB_INST_COUNT instruction counter for debug method 2
DB_BREAK_ADDR break address for method number 2
DB_CLAUSE
_MODE_ALU_{0…7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)
DB_CLAUSE
_MODE_FETCH_{0…7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)

25.2 Control
DB_ALUCST_MEMSIZE Size of the physical ALU constant memory
DB_TSTATE_MEMSIZE Size of the physical texture state memory

26. Interfaces

26.1 External Interfaces
Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ→SPx it means that SQ is going to broadcast the same information to all SP instances.

26.1.1 SC to SQ : IJ Control bus
This is the control information sent to the sequencer in order to control the IJ fifos and all other information needed to
execute a shader program on the sent pixels. This information is sent over 2 clocks, if SENDXY is asserted the next
control packet is going to be ignored and XY information is going to be sent on the IJ bus (for the quads that where
just sent). All pixels from the group of quads are from the same primitive, all quads of a vector are from the same
render state.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 508 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024

R400 Sequencer Specification PAGE

38 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Name Direction Bits Description
SC_SQ_q_wr_mask SC→SQ 4 Quad Write mask left to right
SC_SQ_lod_correct SC→SQ 24 LOD correction per quad (6 bits per quad)
SC_SQ_param_ptr0 SC→SQ 11 P Store pointer for vertex 0
SC_SQ_param_ptr1 SC→SQ 11 P Store pointer for vertex 1
SC_SQ_param_ptr2 SC→SQ 11 P Store pointer for vertex 2
SC_SQ_end_of_vect SC→SQ 1 End of the vector
SC_SQ_store_dealloc SC→SQ 1 Deallocation token for the P Store
SC_SQ_state SC→SQ 3 State/constant pointer
SC_SQ_valid_pixel SC→SQ 16 Valid bits for all pixels
SC_SQ_null_prim SC→SQ 1 Null Primitive (for PC deallocation purposes)
SC_SQ_end_of_prim SC→SQ 1 End Of the primitive
SC_SQ_send_xy SC→SQ 1 Sending XY information [XY information is going to be

sent on the next clock]
SC_SQ_prim_type SC→SQ 3 Real time command need to load tex cords from

alternate buffer. Line AA, Point AA and Sprite reads
their parameters from GEN_T and GEN_S GPRs.
000 : Normal
011 : Real Time
100 : Line AA
101 : Point AA
110 : Sprite

SC_SQ_new_vector SC→SQ 1 This primitive comes from a new vector of vertices.
Make sure that the corresponding vertex shader has
finished before starting the group of pixels.

SC_SQ_RTRn SQ→SC 1 Stalls the PA in n clocks
SC_SQ_RTS SC→SQ 1 SC ready to send data

26.1.2 SQ to SP: Interpolator bus
Name Direction Bits Description
SQ_SPx_interp_prim_type SQ→SPx 3 Type of the primitive

000 : Normal
011 : Real Time
100 : Line AA
101 : Point AA
110 : Sprite

SQ_SPx_interp_ijline SQ→SPx 2 Line in the IJ/XY buffer to use to interpolate
SQ_SPx_interp_buff_swap SQ→SPx 1 Swap the IJ/XY buffers at the end of the interpolation
SQ_SPx_interp_gen_I0 SQ→SPx 1 Generate I0 or not. This tells the interpolators not to

use the parameter cache but rather overwrite the data
with interpolated 1 and 0. Overwrite if gen_I0 is high.

26.1.3 SQ to SX: Interpolator bus
Name Direction Bits Description
SQ_SPx_interp_flat_vtx SQ→SPx 2 Provoking vertex for flat shading
SQ_SPx_interp_flat_gouraud SQ→SPx 1 Flat or gouraud shading
SQ_SPx_interp_cyl_wrap SQ→SPx 4 Wich channel needs to be cylindrical wrapped
SQ_SXx_mux0 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_mux1 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_mux2 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_RT_switch SQ→SXx 1 Selects between RT and Normal data

26.1.4SQ to SP: Parameter Cache Read control bus
The four following interfaces (SQ→SP, SQ→SX,SP→SX and SX→Interpolators) are all SYNCHRONIZED together.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 509 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024 February

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

39 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

26.1.4 SQ to SX: Parameter Cache Mux control Bus

26.1.626.1.4 SQ to SP: Staging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.
Name Direction Bits Description
SQ_SPx_vgt_vsisr_data SQ→SPx 96 Pointers of indexes or HOS surface information
SQ_SPx_vgt_vsisr_double SQ→SPx 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0_data_valid SQ→SP0 1 Data is valid
SQ_SP1_data_valid SQ→SP1 1 Data is valid
SQ_SP2_data_valid SQ→SP2 1 Data is valid
SQ_SP3_data_valid SQ→SP3 1 Data is valid

26.1.726.1.5 PA to SQ : Vertex interface

26.1.7.126.1.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide.

Name Bits Description
PA_SQ_vgt_vsisr_data 96 Pointers of indexes or HOS surface information
PA_SQ_vgt_vsisr_double 1 0: Normal 96 bits per vert 1: double 192 bits per vert
PA_SQ_vgt_end_of_vector 1 Indicates the last VSISR data set for the current process vector (for double vector

data, "end_of_vector" is set on the second vector)
PA_SQ_vgt_vsisr_valid 1 Vsisr data is valid
PA_SQ_vgt_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when

“PA_SQ_vgt_end_of_vector” is high.
PA_SQ_vgt_send 1 Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_PA_vgt_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

26.1.7.226.1.5.2 Interface Diagrams

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 510 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024

R400 Sequencer Specification PAGE

40 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

VGT

VSISR_DATA_2

END_OF_VECTOR_2

STATE_SEL_2

REG

VSISR_DOUBLE_2
REG

REG

REG

REG

REG

SEND_2

REG

REG

REG

REG

REG

REG

PA_SQ_vgt_vsisr_data

PA_SQ_vgt_vsisr_double

PA_SQ_vgt_end_of_vector

PA_SQ_vgt_state_sel

PA_SQ_vgt_send

SQ_PA_vgt_rtr

VSISR_DATA_4

END_OF_VECTOR_4

STATE_SEL_4

VSISR_DOUBLE_4

96

1

1

3

1

1

SEND_4

RTR_2 RTR_0

SHADER
SEQUENCER

RTS

101 X 4
SKID

BUFFER

SRST SRST

WE

EMPTY

RE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 511 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024 February

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

41 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

6 7

6 7

6 7

0 1 2 3

0 1

8

8

8

2 43 5

4 5 6 7

4 3 2 1

8

9 10 11 12

9 10 11 12

9 10 11 12

9 10 11 12

0

RECEIVER RE-STARTS TRANSMISSION

SENDER STOPS TRANSMISSION

SQ_RTR

SQ_RTR_0

VGT_RTS

SEND_2

SEND_3

SEND_4

DATA_2

FIFO_EMPTY

FIFO_RE

SQ_RTR_1

SQ_RTR_2

DATA_3

DATA_4

FIFO_DATA_OUT

FIFO_CNT

RECEIVER STOPS TRANSMISSION

Figure 1. Detailed Logical Diagram for PA_SQ_vgt Interface.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 512 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024

R400 Sequencer Specification PAGE

42 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

26.1.826.1.6 SQ to CP: State report
Name Direction Bits Description
SQ_CP_vrtx_ state SEQ→CP 3 Oldest vertex state still in the pipe
SQ_CP_pix_state SEQ→CP 3 Oldest pixel state still in the pipe

26.1.926.1.7 SQ to SX: Control bus
Name Direction Bits Description
SQ_SXx_exp_Pixel SQ→SXx 1 1: Pixel

0: Vertex
SQ_SXx_exp_start SQ→SXx 1 Raised to indicate that the SQ is starting an exporting

clause
SQ_SXx_exp_Clause SQ→SXx 3 Clause number, which is needed for vertex clauses
SQ_SXx_exp_State SQ→SXx 3 State ID, which is needed for vertex clauses
SQ_SXx_exp_VDest SQ→SXx 6 Export Destination
SQ_SXx_exp_exportID SQ→SXx 1 ALU ID

These fields are sent synchronously with SP export data, described in SP0→SX0 interface
{ISSUE: Where are the PC pointers}

26.1.1026.1.8 SX to SQ : Output file control
Name Direction Bits Description
SXx_SQ_Export_count_rdy SXx→SQ 1 Raised by SX0 to indicate that the following two fields

reflect the result of the most recent export
SXx_SQ_Export_Position SXx→SQ 1 Specifies whether there is room for another position.
SXx_SQ_Export_Buffer SXx→SQ 7 Specifies the space available in the output buffers.

0: buffers are full
1: 2K-bits available (32-bits for each of the 64
pixels in a clause)
...
64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

26.1.1126.1.9 SQ to TP: Control bus
Once every clock, the fetch unit sends to the sequencer on which clause it is now working and if the data in the GPRs
is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos. The sequencer
also provides the instruction and constants for the fetch to execute and the address in the register file where to write
the fetch return data.

Name Direction Bits Description
TPx_SQ_data_rdy TPx→ SQ 1 Data ready
TPx_SQ_clause_num TPx→ SQ 3 Clause number

TPx_SQ_Type TPx→ SQ 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_const SQ→TPx 48 Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instuct SQ→TPx 24 Fetch instruction sent over 4 clocks
SQ_TPx_end_of_clause SQ→TPx 1 Last instruction of the clause
SQ_TPx_Type SQ→TPx 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_phase SQ→TPx 2 Write phase signal
SQ_TP0_lod_correct SQ→TP0 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP0_pmask SQ→TP0 4 Pixel mask 1 bit per pixel
SQ_TP1_lod_correct SQ→TP1 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pmask SQ→TP1 4 Pixel mask 1 bit per pixel
SQ_TP2_lod_correct SQ→TP2 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pmask SQ→TP2 4 Pixel mask 1 bit per pixel

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 513 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024 February

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

43 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ_TP3_lod_correct SQ→TP3 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pmask SQ→TP3 4 Pixel mask 1 bit per pixel
SQ_TPx_clause_num SQ→TPx 3 Clause number
SQ_TPx_write_gpr_index SQ->TPx 7 Index into Register file for write of returned Fetch Data

26.1.1226.1.10 TP to SQ: Texture stall
The TP sends this signal to the SQ when its input buffer is full. The SQ is going to send it to the SP X clocks after
reception (maximum of 3 clocks of pipeline delay).

SU0

SU3

SU2

SU1

SQ_SP_fetch_Stall

SQ_SP_wr_addr

Name Direction Bits Description
TP_SQ_fetch_stall TP→ SQ 1 Do not send more texture request if asserted

26.1.1326.1.11 SQ to SP: Texture stall
Name Direction Bits Description
SQ_SPx_fetch_stall SQ→SPx 1 Do not send more texture request if asserted

26.1.1426.1.12 SQ to SP: GPR, Parameter cache control and auto counter
Name Direction Bits Description
SQ_SPx_wr_addr SQ→SPx 7 Write address
SQ_SPx_gpr_rd_addr SQ→SPx 7 Read address
SQ_SPx_gpr_re_addr SQ→SPx 1 Read Enable
SQ_SPx_gpr_we_addr SQ→SPx 1 Write Enable for the GPRs
SQ_SPx_gpr_phase_mux SQ→SPx 2 The phase mux (arbitrates between inputs, ALU SRC

reads and writes)
SQ_SPx_channel_mask SQ→SPx 4 The channel mask
SQ_SP0_pixel_mask SQ→SP0 4 The pixel mask
SQ_SP1_pixel_mask SQ→SP1 4 The pixel mask
SQ_SP2_pixel_mask SQ→SP2 4 The pixel mask
SQ_SP3_pixel_mask SQ→SP3 4 The pixel mask
SQ_SPx_pc_we_addr SQ→SPx 1 Write Enable for the parameter caches
SQ_SPx_gpr_input_mux SQ→SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTX0,
VTX1, autogen counter.

SQ_SPx_index_count SQ→SPx 12? Index count, common for all shader pipes

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 514 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024

R400 Sequencer Specification PAGE

44 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

26.1.1526.1.13 SQ to SPx: Instructions
Name Direction Bits Description
SQ_SPx_instruct_start SQ→SPx 1 Instruction start
SQ_SP_instruct SQ→SPx 21 Transferred over 4 cycles

0: SRC A Select 2:0
 SRC A Argument Modifier 3:3
 SRC A swizzle 11:4
 Unused VectorDst
2017:12
 Unused 20:18
--
-
1: SRC B Select 2:0
 SRC B Argument Modifier 3:3
 SRC B swizzle 11:4
 ScalarDst 17:12
 Unused 20:18 Unused
20:12
--
-
2: SRC C Select 2:0
 SRC C Argument Modifier 3:3
 SRC C swizzle 11:4
 Unused 20:12
--
-
3: Vector Opcode 4:0
 Scalar Opcode 10:5
 Vector Clamp 11:11
 Scalar Clamp 12:12
 Vector Write Mask 16:13
 Scalar Write Mask 20:17

SQ_SPx_stall SQ→SPx 1 Stall signal
SQ_SPx_export_count SQ→SPx 3 Each set of four pixels or vectors is exported over

eight clocks. This field specifies where the SP is in
that sequence.

SQ_SPx_export_last SQ→SPx 1 Asserted on the first shader count of the last export
of the clause

SQ_SP0_export_pvalid SQ→SP0 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP0_export_wvalid SQ→SP0 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

SQ_SP1_ export_pvalid SQ→SP1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP1_ export_wvalid SQ→SP1 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

SQ_SP2_ export_pvalid SQ→SP2 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP2_ export_wvalid SQ→SP2 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 515 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024 February

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

45 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ_SP3_ export_pvalid SQ→SP3 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP3_ export_wvalid SQ→SP3 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

26.1.1626.1.14 SP to SQ: Constant address load/ Predicate Set
Name Direction Bits Description
SP0_SQ_const_addr SP0→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP0_SQ_valid SP0→SQ 1 Data valid
SP1_SQ_const_addr SP1→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP1_SQ_valid SP1→SQ 1 Data valid
SP2_SQ_const_addr SP2→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP2_SQ_valid SP2→SQ 1 Data valid
SP3_SQ_const_addr SP3→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP3_SQ_valid SP3→SQ 1 Data valid

26.1.1726.1.15 SQ to SPx: constant broadcast
Name Direction Bits Description
SQ_SPx_constant SQ→SPx 128 Constant broadcast

26.1.1826.1.16 SP0 to SQ: Kill vector load
Name Direction Bits Description
SP0_SQ_kill_vect SP0→SQ 4 Kill vector load
SP1_SQ_kill_vect SP1→SQ 4 Kill vector load
SP2_SQ_kill_vect SP2→SQ 4 Kill vector load
SP3_SQ_kill_vect SP3→SQ 4 Kill vector load

26.1.1926.1.17 SQ to CP: RBBM bus
Name Direction Bits Description
SQ_RBB_rs SQ→CP 1 Read Strobe
SQ_RBB_rd SQ→CP 32 Read Data
SQ_RBBM_nrtrtr SQ→CP 1 Optional
SQ_RBBM_rtr SQ→CP 1 Real-Time (Optional)

26.1.2026.1.18 CP to SQ: RBBM bus
Name Direction Bits Description
rbbm_we CP→SQ 1 Write Enable
rbbm_a CP→SQ 15 Address -- Upper Extent is TBD (16:2)
rbbm_wd CP→SQ 32 Data
rbbm_be CP→SQ 4 Byte Enables
rbbm_re CP→SQ 1 Read Enable
rbb_rs0 CP→SQ 1 Read Return Strobe 0
rbb_rs1 CP→SQ 1 Read Return Strobe 1
rbb_rd0 CP→SQ 32 Read Data 0
rbb_rd1 CP→SQ 32 Read Data 0
RBBM_SQ_soft_reset CP→SQ 1 Soft Reset

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 516 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024

R400 Sequencer Specification PAGE

46 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

27. Examples of program executions

27.1.1 Sequencer Control of a Vector of Vertices

1. PA sends a vector of 64 vertices (actually vertex indices – 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO
 state pointer as well as tag into position cache is sent along with vertices
 space was allocated in the position cache for transformed position before the vector was sent
 also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
 The vertex program is assumed to be loaded when we receive the vertex vector.

 the SEQ then accesses the IS base for this shader using the local state pointer (provided to all
sequencers by the RBBM when the CP is done loading the program)

2. SEQ arbitrates between the Pixel FIFO and the Vertex FIFO – basically the Vertex FIFO always has priority
 at this point the vector is removed from the Vertex FIFO
 the arbiter is not going to select a vector to be transformed if the parameter cache is full unless the pipe as

nothing else to do (ie no pixels are in the pixel fifo).

3. SEQ allocates space in the SP register file for index data plus GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
 SEQ will not send vertex data until space in the register file has been allocated

4. SEQ sends the vector to the SP register file over the RE_SP interface (which has a bandwidth of 2048 bits/cycle)
 the 64 vertex indices are sent to the 64 register files over 4 cycles

 RF0 of SU0, SU1, SU2, and SU3 is written the first cycle
 RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
 RF2 of SU0, SU1, SU2, and SU3 is written the third cycle
 RF3 of SU0, SU1, SU2, and SU3 is written the fourth cycle

 the index is written to the least significant 32 bits (floating point format?) (what about compound indices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, z)

5. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSM0 FIFO)
 the control packet contains the state pointer, the tag to the position cache and a register file base pointer.

6. TSM0 accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

7. all instructions of fetch clause 0 are issued by TSM0

8. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for requests made to the Fetch Unit to complete; it passes the register file write index for

the fetch data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data to the register files, it increments a counter that is associated with ASM0

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

9. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

10. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

11. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 position can be exported in ALU clause 3 (or 4?); the data (and the tag) is sent over a position bus (which is

shared with all four shader pipes) back to the PA’s position cache
 A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
 there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 517 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024 February

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

47 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 the ASM arbiter will prevent a packet from starting an exporting clause if the position export FIFO is full
 parameter data is exported in clause 7 (as well as position data if it was not exported earlier)

 parameter data is sent to the Parameter Cache over a dedicated bus
 the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space when there is no

longer a need for the parameters (it is told by the PA when using a token).
 the ASM arbiter will prevent a packet from starting on ASM7 if the parameter cache (or the position buffer

if position is being exported) is full

12. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

27.1.2 Sequencer Control of a Vector of Pixels

1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

 At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

2. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
 the state pointer and the LOD correction bits are also placed in the Pixel FIF0
 the Pixel FIFO is wide enough to source four quad’s worth of barycentrics per cycle

3. SEQ arbitrates between Pixel FIFO and Vertex FIFO – when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

4. SEQ allocates space in the SP register file for all the GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
 SEQ will not allow interpolated data to be sent to the shader until space in the register file has been allocated

5. SEQ controls the transfer of interpolated data to the SP register file over the RE_SP interface (which has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagrams for details.

6. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSM0 FIFO)
 note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
 the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
 all other information (such as quad address for example) travels in a separate FIFO

7. TSM0 accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

8. all instructions of fetch clause 0 are issued by TSM0

9. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for fetch requests made to the Fetch Unit to complete; it passes the register file write

index for the fetch data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data for a particular clause to the register files, it increments a counter that is

associated with the ASM0 FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

10. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

11. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

12. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 pixel data is exported in the last ALU clause (clause 7)

 it is sent to an output FIFO where it will be picked up by the render backend
 the ASM arbiter will prevent a packet from starting on ASM7 if the output FIFO is full

13. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 518 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154
March 20024

R400 Sequencer Specification PAGE

48 of 48

Exhibit 2024.docR400_Sequencer.doc �� 71269 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

27.1.3 Notes

14. The state machines and arbiters will operate ahead of time so that they will be able to immediately start the real
threads or stall.

15. The register file base pointer for a vector needs to travel with the vector through the reservation stations, but the
instruction store base pointer does not – this is because the RF pointer is different for all threads, but the IS
pointer is only different for each state and thus can be accessed via the state pointer.

28. Open issues
Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

Parameter caches in SX?

Using both IJ buffers for center + centroid interpolation?

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 519 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SQ

Version 1.98

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\doc_lib\design\blocks\sq\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2025
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 520 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

R400 Sequencer Specification PAGE

2 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Table Of Contents

1. OVERVIEW .. 86
1.1 Top Level Block Diagram ... 108
1.2 Data Flow graph (SP) ... 1210
1.3 Control Graph ... 1311
2. INTERPOLATED DATA BUS .. 1311
3. INSTRUCTION STORE ... 1614
4. SEQUENCER INSTRUCTIONS ... 1816
5. CONSTANT STORES .. 1816
5.1 Memory organizations .. 1816
5.2 Management of the Control Flow Constants .. 1816
5.3 Management of the re-mapping tables ... 1816

5.3.1 R400 Constant management... 1816

5.3.2 Proposal for R400LE constant management ... 1917

5.3.3 Dirty bits .. 2119

5.3.4 Free List Block ... 2119

5.3.5 De-allocate Block .. 2220

5.3.6 Operation of Incremental model .. 2220
5.4 Constant Store Indexing ... 2220
5.5 Real Time Commands .. 2321
5.6 Constant Waterfalling ... 2321
6. LOOPING AND BRANCHES ... 2422
6.1 The controlling state. .. 2422
6.2 The Control Flow Program ... 2422
6.3 Data dependant predicate instructions ... 2624
6.4 HW Detection of PV,PS .. 2725
6.5 Register file indexing .. 2725
6.6 Predicated Instruction support for Texture clauses .. 2725
6.7 Debugging the Shaders .. 2825

6.7.1 Method 1: Debugging registers ... 2825

6.7.2 Method 2: Exporting the values in the GPRs (12) ... 2826
7. PIXEL KILL MASK .. 2826
8. MULTIPASS VERTEX SHADERS (HOS) .. 2926
9. REGISTER FILE ALLOCATION .. 2926
10. FETCH ARBITRATION .. 3028
11. ALU ARBITRATION .. 3028
12. HANDLING STALLS ... 3129
13. CONTENT OF THE RESERVATION STATION FIFOS ... 3129
14. THE OUTPUT FILE .. 3129
15. IJ FORMAT .. 3129
15.1 Interpolation of constant attributes .. 3230
16. STAGING REGISTERS ... 3230
17. THE PARAMETER CACHE ... 3432

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 521 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

18. VERTEX POSITION EXPORTING ... 3532
19. EXPORTING ARBITRATION .. 3532
20. EXPORT TYPES .. 3532
20.1 Vertex Shading .. 3532
20.2 Pixel Shading .. 3533
21. SPECIAL INTERPOLATION MODES ... 3633
21.1 Real time commands ... 3633
21.2 Sprites/ XY screen coordinates/ FB information .. 3633
21.3 Auto generated counters ... 3634

21.3.1 Vertex shaders ... 3634

21.3.2 Pixel shaders .. 3634
22. STATE MANAGEMENT .. 3734
22.1 Parameter cache synchronization ... 3734
23. XY ADDRESS IMPORTS ... 3735
23.1 Vertex indexes imports .. 3735
24. REGISTERS .. 3835
24.1 Control ... 3835
24.2 Context .. 3835
25. DEBUG REGISTERS ... 3936
25.1 Context .. 3936
25.2 Control ... 3936

26. INTERFACES .. 3936

26.1 External Interfaces .. 3936

26.1.1 SC to SQ : IJ Control bus .. 3937

26.1.2 SQ to SP: Interpolator bus ... 4037

26.1.3 SQ to SX: Interpolator bus ... 4037

26.1.4 SQ to SP: Staging Register Data ... 4138

26.1.5 PA to SQ : Vertex interface .. 4138

26.1.6 SQ to CP: State report ... 4441

26.1.7 SQ to SX: Control bus .. 4441

26.1.8 SX to SQ : Output file control ... 4441

26.1.9 SQ to TP: Control bus .. 4441

26.1.10 TP to SQ: Texture stall ... 4542

26.1.11 SQ to SP: Texture stall ... 4542

26.1.12 SQ to SP: GPR and auto counter ... 4542

26.1.13 SQ to SPx: Instructions .. 4643

26.1.14 SP to SQ: Constant address load/ Predicate Set ... 4744

26.1.15 SQ to SPx: constant broadcast .. 4744

26.1.16 SP0 to SQ: Kill vector load ... 4744

26.1.17 SQ to CP: RBBM bus ... 4744

26.1.18 CP to SQ: RBBM bus ... 4744
27. EXAMPLES OF PROGRAM EXECUTIONS .. 4845

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 522 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

R400 Sequencer Specification PAGE

4 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

27.1.1 Sequencer Control of a Vector of Vertices ... 4845

27.1.2 Sequencer Control of a Vector of Pixels ... 4946

27.1.3 Notes .. 5047
28. OPEN ISSUES ... 5047
1. OVERVIEW .. 6
1.1 Top Level Block Diagram ... 8
1.2 Data Flow graph (SP) ... 10
1.3 Control Graph ... 11
2. INTERPOLATED DATA BUS .. 11
3. INSTRUCTION STORE ... 14
4. SEQUENCER INSTRUCTIONS ... 16
5. CONSTANT STORES .. 16
5.1 Memory organizations .. 16
5.2 Management of the re-mapping tables ... 16

5.2.1 Dirty bits .. 18

5.2.2 Free List Block ... 18

5.2.3 De-allocate Block .. 19

5.2.4 Operation of Incremental model .. 19
5.3 Constant Store Indexing ... 19
5.4 Real Time Commands .. 20
5.5 Constant Waterfalling ... 20
6. LOOPING AND BRANCHES ... 21
6.1 The controlling state. .. 21
6.2 The Control Flow Program ... 21
6.3 Data dependant predicate instructions ... 23
6.4 HW Detection of PV,PS .. 24
6.5 Register file indexing .. 24
6.6 Predicated Instruction support for Texture clauses .. 24
6.7 Debugging the Shaders .. 25

6.7.1 Method 1: Debugging registers ... 25

6.7.2 Method 2: Exporting the values in the GPRs (12) ... 25
7. PIXEL KILL MASK .. 25
8. MULTIPASS VERTEX SHADERS (HOS) .. 26
9. REGISTER FILE ALLOCATION .. 26
10. FETCH ARBITRATION .. 27
11. ALU ARBITRATION .. 27
12. HANDLING STALLS ... 28
13. CONTENT OF THE RESERVATION STATION FIFOS ... 28
14. THE OUTPUT FILE .. 28
15. IJ FORMAT .. 28
15.1 Interpolation of constant attributes .. 29
16. STAGING REGISTERS ... 29
17. THE PARAMETER CACHE ... 31
18. VERTEX POSITION EXPORTING ... 31
19. EXPORTING ARBITRATION .. 31
20. EXPORT TYPES .. 31

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 523 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

20.1 Vertex Shading .. 31
20.2 Pixel Shading .. 32
21. SPECIAL INTERPOLATION MODES ... 32
21.1 Real time commands ... 32
21.2 Sprites/ XY screen coordinates/ FB information .. 32
21.3 Auto generated counters ... 33

21.3.1 Vertex shaders ... 33

21.3.2 Pixel shaders .. 33
22. STATE MANAGEMENT .. 33
22.1 Parameter cache synchronization ... 33
23. XY ADDRESS IMPORTS ... 34
23.1 Vertex indexes imports .. 34
24. REGISTERS .. 34
24.1 Control ... 34
24.2 Context .. 34
25. DEBUG REGISTERS ... 35
25.1 Context .. 35

26. INTERFACES .. 35

26.1 External Interfaces .. 35

26.1.1 SC to SQ : IJ Control bus .. 36

26.1.2 SQ to SP: Interpolator bus ... 36

26.1.3 SQ to SP: Parameter Cache Read control bus .. 36

26.1.4 SQ to SX: Parameter Cache Mux control Bus .. 37

26.1.5 SQ to SP: Staging Register Data ... 37

26.1.6 PA to SQ : Vertex interface .. 37

26.1.7 SQ to CP: State report ... 41

26.1.8 SQ to SX: Control bus .. 41

26.1.9 SX to SQ : Output file control ... 41

26.1.10 SQ to TP: Control bus .. 41

26.1.11 TP to SQ: Texture stall ... 42

26.1.12 SQ to SP: Texture stall ... 42

26.1.13 SQ to SP: GPR, Parameter cache control and auto counter 42

26.1.14 SQ to SPx: Instructions .. 43

26.1.15 SP to SQ: Constant address load ... 44

26.1.16 SQ to SPx: constant broadcast .. 44

26.1.17 SP0 to SQ: Kill vector load ... 44

26.1.18 SQ to CP: RBBM bus ... 44

26.1.19 CP to SQ: RBBM bus ... 44
27. EXAMPLES OF PROGRAM EXECUTIONS .. 44

27.1.1 Sequencer Control of a Vector of Vertices ... 44

27.1.2 Sequencer Control of a Vector of Pixels ... 46

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 524 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

R400 Sequencer Specification PAGE

6 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

27.1.3 Notes .. 46
28. OPEN ISSUES ... 47

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 525 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

 Changed the control flow method to be more
flexible. Also updated the external interfaces.

Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

 Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001

 Refined interfaces to RB. Added state registers.

Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

 Added SEQ→SP0 interfaces. Changed delta
precision. Changed VGT→SP0 interface. Debug
Methods added.

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001

 Interfaces greatly refined. Cleaned up the spec.

Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001

 Added the different interpolation modes.

Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

 Added the auto incrementing counters. Changed
the VGT→SQ interface. Added content on constant
management. Updated GPRs.

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

 Removed from the spec all interfaces that weren’t
directly tied to the SQ. Added explanations on
constant management. Added PA→SQ
synchronization fields and explanation.

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

 Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002

 Added Real Time parameter control in the SX
interface. Updated the control flow section.

Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

 New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.

Rev 1.9 (Laurent Lefebvre)
Date :

 Rearangement of the CF instruction bits in order to
ensure byte alignement

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 526 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

R400 Sequencer Specification PAGE

8 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1. Overview
The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause until the fetch fetches initiated by the previous
fetch clause have completed. There are two separate sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 527 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ

SC

SPSPSPCSTOREFETCH STATE

TP

INST STORE

IJ CONTROL

IJ
CONTROL

CST
ADDR

INST
 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/QUAD
ADDRESSES

SP

ALU INST

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

INST

INTER INTER INTER INTER

IJ CROSSBAR

2 QUADS IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC READ
 POINTERS

PARAM
DATA

R/W ADDR

Vertex indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

CP

CONSTANT
LOAD

CPConstant Load

TX ADDR

PC Write
Address

TEX INST

CF
CONSTANTS

Register
Mapped

CF Read

Figure 1: General Sequencer overview

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 528 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

R400 Sequencer Specification PAGE

10 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.1 Top Level Block Diagram

vertex/pixel vector arbitrator

Possible delay for available GPR’s

FIFO
Texture clause 0
reservation station

Texture clause 1
reservation station

FIFO
ALU clause 0
reservation station

FIFO

Texture clause 2
reservation station

Texture clause 3
reservation station

FIFO
ALU clause 1
reservation station

FIFO

FIFO
ALU clause 2
reservation station

FIFO

FIFO
ALU clause 3
reservation station

FIFO
Texture clause 4
reservation station

Texture clause 5
reservation station

FIFO
ALU clause 4
reservation station

FIFO

Texture clause 6
reservation station

Texture clause 7
reservation station

FIFO
ALU clause 5
reservation station

FIFO

FIFO
ALU clause 6
reservation station

FIFO

FIFO
ALU clause 7
reservation station

texture arbitrator

texture arbitrator

Figure 2: Reservation stations and arbiters

There are two sets of the above figure, one for vertices and one for pixels.

Depending on the arbitration state, the sequencer will either choose a vertex or a pixel packet. The control packet
consists of 3 bits of state, 7 bits for the base address of the Shader program and some information on the coverage to
determine fetch LOD plus other various small state bits.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 529 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the GPRs to store the interpolated values and temporaries. Following this, the barycentric coordinates (and XY
screen position if needed) are sent to the interpolator, which will use them to interpolate the parameters and place the
results into the GPRs. Then, the input state machine stacks the packet in the first FIFO.

On receipt of a command, the level 0 fetch machine issues a fetch request to the TP and corresponding GPR
address for the fetch address (ta). A small command (tcmd) is passed to the fetch system identifying the current level
number (0) as well as the GPR write address for the fetch return data. One fetch request is sent every 4 clocks
causing the texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the requests are sent the packet is put in
FIFO 1.

Upon receipt of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level 0 fetch machine and sends the clause number (0) to the level 0 fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU 0 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO 1 counter and then issues a
complete set of level 0 shader instructions. For each instruction, the ALU state machine generates 3 source
addresses, one destination address and an instruction. Once the last instruction has been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbiters). One arbiter will arbitrate
over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the two arbiters is that they are not allowed to pick the same
clause number as the other one is currently working on if the packet is not of the same type (render state).

If the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbiter must prevent ALU clause 3 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, if needed the sprite size and/or edge flags can also be sent.

A special case is for multipass vertex shaders, which can export 12 parameters per last 6 clauses to the output
buffer. If the output buffer is full or doesn’t have enough space the sequencer will prevent such a vertex group to
enter an exporting clause.

Multipass pixel shaders can export 12 parameters to memory from the last clause only (7).

All other clauses process in the same way until the packet finally reaches the last ALU machine (7).

Only one pair of interleaved ALU state machines may have access to the register file address bus or the instruction
decode bus at one time. Similarly, only one fetch state machine may have access to the register file address bus at
one time. Arbitration is performed by three arbiter blocks (two for the ALU state machines and one for the fetch state
machines). The arbiters always favor the higher number state machines, preventing a bunch of half finished jobs from
clogging up the register files.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 530 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

R400 Sequencer Specification PAGE

12 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.2 Data Flow graph (SP)

MAC

MAC

MAC

MAC

Register File

co
ns

ta
nt

s
fr

om
 R

E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
nt

s
fr

om
 R

E

S
ca

la
r

U
n

it

texture request

texture request

texture request

texture request

te
xt

ur
e

ad
dr

es
s

te xtu re d
a ta

p rim
it ive da

ta fro m
 R

E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

Figure 3: The shader Pipe

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 531 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

SEQ

FETCH SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

OF

WrAddrIS CST

CST IDX

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 532 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

R400 Sequencer Specification PAGE

14 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x64 bits)

IJs buffer (ping-pong buffer)
(28 bits * 2 (IJ) + 8 bits * 6 (delta IJs)+4 exp

bits*6)* 16 (quads) * 2 (double-buffered)
4096 bits

32 x 128

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

64

To RB

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2

768 bits
32x24

FIX-FLOAT + EXPANSiON

Figure 5: Interpolation buffers

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 533 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SP
0

SP
1

SP
2

SP
3

WRITES
T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-
11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P1 P2

T20 T21 T22 T23

VTX

T0 T1 T2 T3

XY

XY
0-3

XY
4-7

XY
8-
11

XY
12-
15

XY
16-
19

XY
20-
23

XY
24-
27

XY
28-
31

XY
32-
35

XY
36-
39

XY
40-
43

XY
44-
47

XY
48-
51

XY
52-
55

XY
56-
59

XY
60-
63

READS

SP
0

SP
1

SP
2

SP
3

A0

A1

A2

B1

B0

C3

C0

C1

C2

C4

C5

D0

D1

D2

E0

E1

A0

A1

A2

XY
A0
XY
A1
XY
A2

B1

B0

XY
B1

XY
B0

C3

C0

C1

C2

XY
C3
XY
C0
XY
C1
XY
C2

C4

C5

XY
C4
XY
C5

D0

D1

D2

XY
D1
XY
D2

XY
D0

E0

E1
XY
E1

XY
E0

Figure 6: Interpolation timing diagram

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 534 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

R400 Sequencer Specification PAGE

16 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

{ISSUE : Do we do the center + centroid approach using both IJ buffers?}

3. Instruction Store
There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The next picture shows the various modes the CP can load the memory. The Sequencer has to keep track of the
loading modes in order to wrap around the correct boundaries. The wrap-around points are arbitrary and they are
specified in the VS_BASE and PIX_BASE control registers. The VS_BASE and PS_BASE context registers are used
to specify for each context where its shader is in the instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 535 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

R400 CP's Views of Instruction Memory Updated: 11/14/2001
John A. Carey

0

4095

Real-Time &
Shared Code

VERTEX_SHADER_BASE

PIXEL_SHADER_BASE

VS Code A

VS Code B

VS Code C

PS Code A

PS Code B

PS Code C

CP writes code start
addresses to
appropriate Sub-
Blocks so Sequencer
knows where to start
executing the code.

MODE 0 - Dual Ring
0

4095

Real-Time &
Shared Code

VERTEX_SHADER_BASE

VS Code A

VS Code B

VS Code C

PS Code A

PS Code B

PS Code C

MODE 1 - Single Ring

CP writes code start
addresses to
appropriate Sub-
Blocks so Sequencer
knows where to start
executing the code.

Figure 7: The CP's view of the instruction memory

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 536 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

R400 Sequencer Specification PAGE

18 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

4. Sequencer Instructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 128x192 320x96 bits (128 texture states
for regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

5.2 Management of the Control Flow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied whenever there is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn’t write to CF the state is going to use the previous CF constants.

5.3 Management of the re-mapping tables

5.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 537 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROL packet of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it with
the new state (this is depicted in Figure 9: De-allocation mechanismFigure 9: De-allocation mechanismFigure 9: De-
allocation mechanism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 538 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

R400 Sequencer Specification PAGE

20 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Physical
Memory

Renaming Table
for 1 Context
Current/Last

Physical
Address

per
Logical
Address

Renaming
table

N-Contexts

Reset
Dirty
per

Logical
Address

(Only
de-

allocate
if set)

This
Context

Dirty
per

Logical
Address

(If set
don't

allocate
or de-

allocate)

Logical address
On the

GlbRegBus
when lsb are zero
first word of write

next
physical
address
ready

for allocate

Constants
location
available
WRTR

physical
address

to
schedule

for
de-alloc

Staging Data
Buffer

Staging Write Addr

Copy Last held above to
Current Context on receipt

of Set Constant for a
new context (Hide loading

behind Set State load - 16 clocks)
all other Set States just write one

entry to current state.

Free
list

(pass Phys
Address if
Context
Dirty)

Dealloc
Counts

Seq
Constant
Request

Context &
Logical
Address

Free_ptr
WritePtr

When a Logical
Address is written

that has been
written before,

store the physical
address that was
allocated by that
Logical Address

Stop_ptr
ptr to first physical

address that is
scheduled to be de-
allocated but noty
yet de-allocate.

Advanced each time
a context is freed by

the number of
physical address
displaced by that

Context

Read_ptr
ptr to physical

address that will be
used next if the init

count is at
maximum number

of physical address

Free List

Number of entries
equals Max Number of
Physical Blocks. All
Pointers start at zero
and roll around but

can never pass each
other

Free
Address

Address
to Allocate

Global Register
Data Bus

Renaming Table
Context 0 => N

Logical Address
& Context

Physical
Address

Context 0 (8 rows of 16 - 8 bit
physical => 128 entries copy in

eight clocks)

Context 1

Context N

Current/Last
Context

(8 rows of 16 - 8
bit physical =>

128 entries copy
in eight clocks)

Figure 8: Constant management

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 539 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

DEALOC
COUNTERSFree List

!=

OR

AND

NOT

ADDR

PREVIOUS
STATE

NEW
STATE

SQ_IDLE

CP_NEW_STATE_CNTL
PA_IDLE

VALUE

VALID

CNT VALUE

SQ_STATE#

WRITE_ENABLE

REMAPPING
TABLE

SET CTX BITS

Figure 9: De-allocation mechanism for R400LE

5.3.3 Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block
A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 540 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

R400 Sequencer Specification PAGE

22 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

5.3.5 De-allocate Block
This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any number of blocks in one clock.

5.3.6 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 541 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

5.5 Real Time Commands
The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
works is the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zones is defined by the TSTATE_EO_RT control register.

5.6 Constant Waterfalling
In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenever a state is freed.

CONST_EO_RT

RT SECTON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table)

Figure 10: The instruction store

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 542 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

R400 Sequencer Specification PAGE

24 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
Examples of control flow programs are located in the R400 programming guide document.

The basic model is as follows:

The render state defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located

A pointer value of FF means that the clause doesn’t contain any instructions.

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The control program is the only program aware of the clause
boundaries.

The control program has nine basic instructions:

Execute
Conditional_execute
Conditional_Execute_Predicates
Conditional_jump
Conditionnal_Call
Return
Loop_start
Loop_end
NOP

Execute, causes the specified number of instructions in instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified number of instructions in instruction
store to be executed.
Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified number of instructions.
Conditionnal_Call jumps to an address and pushes the IP counter on the stack if the condition is met. On the return
instruction, the IP is popped from the stack.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 543 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Conditional_execute_Predicates executes a block of instructions if all bits in the predicate vectors meet the condition.
Conditional_jumps jumps to an address if the condition is met.
NOP is a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSES since there are two control flow instructions per
memory line. Thus the compiler must insert NOPs where needed to align the jumps on even CFP addresses.

Also if the jump is logically bigger than pshader_cntl_size (or vshader_cntl_size) we break the program (clause) and
set the debug registers. If an execute or conditional_execute is lower than cntl_size or bigger than size we also break
the program (clause) and set the debug registers.

We have to fit instructions into 48 bits in order to be able to put two control flow instruction per line in the instruction
store.

A value of 1 in the Addressing means that the address specified in the Exec Address field (or in the jump address
field) is an ABSOLUTE address. If the addressing field is cleared (should be the default) then the address is relative
to the base of the current shader program.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

Execute
47 46… 42 41 40 … 24 23 … 12 11 … 0

Addressing 00001 Last RESERVED Instruction
count

Exec Address

Execute up to 4k instructions at the specified address in the instruction memory. If Last is set, this is the last group of
instructions of the clause.

NOP
47 46 … 42 41 40 … 0

Addressing 00010 Last RESERVED

This is a regular NOP. If Last is set, this is the last instruction of the clause.

Conditional_Execute

47 46 … 42 41 40 40 39 …
3332

3231 31 30 … 24 23 … 12 11 … 0

Addressing 00011 Last RESERVED Boolean
address

Condition RESERVED Instruction
count

Exec
Address

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 4k instructions). If Last is set, then if the condition is met, this is the last group of instructions to be
executed in the clause. If the condition is not met, we go on to the next control flow instruction.

Conditional_Execute_Predicates
47 46 … 42 41 40 40 …

3534
34 33 …

3332
3231 31 30 … 24 23 … 12 11 … 0

Addressing 00100 Last RESERVED Predicate
vector

Condition RESERVED Instruction
count

Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid. If Last is
set, then if the condition is met, this is the last group of instructions to be executed in the clause. If the condition is not
met, we go on to the next control flow instruction.

Loop_Start
47 46 … 42 41 … 17 16 … 12 11 … 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 544 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

R400 Sequencer Specification PAGE

26 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Addressing

00101 RESERVED loop ID Jump address

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Loop_End
47 46 … 42 41 … 17 16 … 12 11 … 0

Addressing

00110 RESERVED loop ID start address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal_Call
47 46 … 42 41 … 3534 34 33 …

3332
312 31 30 … 12 11 … 0

Addressing

00111 RESERVED Predicate
vector

Condition RESERVED Jump address

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack.

Return
47 46 … 42 41 … 0

Addressing

01000 RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump
47 46 … 42 41 … 401 40 39 …

3332
3231 3130 30 29 … 12 11 … 0

Addressing

01001 RESERVED Boolean
address

Condition FW only RESERVED Jump address

If condition met, jumps to the address. FORWARD jump only allowed if bit 31 set. Bit 31 is only an optimization for the
compiler and should NOT be exposed to the API.

To prevent infinite loops, we will keep 9 bits loop iterators instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start instruction is going to break the loop and set the
debug GPRs.

6.3 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETNE_# - similar to SETNE except that the result is 'exported' to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE0_# – SETE0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 545 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 PRED_SETE1_# – SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

 P0_ADD_# R0,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

6.4 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

6.5 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

The sequencer is going to keep a loop index computed as such:

 Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128…127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

6.6 Predicated Instruction support for Texture clauses
For texture clauses, we support the following optimization: we keep 1 bit (thus 4 bits for the four predicate vectors)
per predicate vector in the reservation stations. A value of 1 means that one ore more elements in the vector have a
value of one (thus we have to do the texture fetches for the whole vector). A value of 0 means that no elements in the
vector have his predicate bit set and we can thus skip over the texture fetch. We have to make sure the invalid
pixels aren’t considered with this optimization.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 546 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

R400 Sequencer Specification PAGE

28 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
 - jump errors
 relative jump address > size of the control flow program
 - call stack
 call with stack full

return with stack empty

A jump error will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only break if
the DB_PROB_BREAK register is set.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the 0th
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs (12)
The sequencer will have a count register and an address register for this mode and 3 bits per clause specifying the
execution mode for each clause. The modes can be :

1) Normal
2) Debug Kill
3) Debug Addr + Count

Under the normal mode execution follows the normal course. Under the kill mode, all control flow instructions are
executed but all normal shader instructions of the clause are replaced by NOPs. Only debug_export instructions of
clause 7 will be executed under the debug kill setting. Under the other mode, normal execution is done until we reach
an address specified by the address register and instruction count (useful for loops) specified by the count register.
After we have hit the instruction n times (n=count) we switch the clause to the kill mode.

Under the debug mode (debug kill OR debug Addr + count), it is assumed that clause 7 is always exporting 12 debug
vectors and that all other exports to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by
the sequencer (even if they occur before the address stated by the ADDR debug register).

7. Pixel Kill Mask
A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE

 MASK_SETGT

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 547 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZE for pixels.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 548 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

R400 Sequencer Specification PAGE

30 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

10. Fetch Arbitration
The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration
ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…
 Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 549 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the exporting clause (3?). The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs
The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel’s parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming P0 is the interpolated parameter at Pixel 0 having the barycentric coordinates I(0), J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at V0 (interpolated with I), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

)(*03)(*0303

)(*02)(*0202

)(*01)(*0101

)(*)0()(*)0(0

)0()3(03

)0()3(03

)0()2(02

)0()2(02

)0()1(01

)0()1(01

CBJCAIPP

CBJCAIPP

CBJCAIPP

CBJCAICP

JJJ

III

JJJ

III

JJJ

III

P0 is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2

P0

P2

P1

P3

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 550 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

R400 Sequencer Specification PAGE

32 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Adds: 8

FORMAT OF P0’s IJ : Mantissa 20 Exp 4 for I + Sign
 Mantissa 20 Exp 4 for J + Sign

FORMAT of Deltas (x3): Mantissa 8 Exp 4 for I + Sign
 Mantissa 8 Exp 4 for J + Sign

Total number of bits : 20*2 + 8*6 + 4*8 + 4*2 = 128

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the number is
normalized if not, then the number is un-normalized. The maximum range for the IJs (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

15.1 Interpolation of constant attributes
Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

We start with the premise that if A = B and B = C and C = A, then P0,1,2,3 = A. Since one or more of the IJ terms
may be zero, so we extend this to:

if (A=B and B=C and C=A)
 P0,1,2,3 = A;
else if ((I = 0) or (J = 0)) and
 ((J = 0) or (1-I-J = 0)) and
 ((1-J-I = 0) or (I = 0))) {
 if(I != 0) {
 P0 = A;
 } else if(J != 0) {
 P0 = B;
 } else {
 P0 = C;
 }
 //rest of the quad interpolated normally
}
else
{
 normal interpolation
}

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 || 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencer will re-arrange them in this fashion:

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 || 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 || 8 9 10 11 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the VGT will send padding to account for
the missing pipe. For example, if SP1 is broken, vertices 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sent
by the VGT to the SQ BUT will not be processed by the SP and thus should be considered invalid (by the SU and
VGT).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 551 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

33 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 12Figure 12Figure 12. The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure 11Figure 11Figure 11.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11631 60.57813 per bit

Area of 96x8-deep Latch Memory 46524

Area of 24-bit Fix-to-float Converter 4712per converter

Method 1 Block Quantity Area

 F2F 3 14136

 8x96 Latch 16 744384

 758520

Figure 11:Area Estimate for VGT to Shader Interface

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 552 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

R400 Sequencer Specification PAGE

34 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SHADER PIPE

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

3
2

3
2

3
2

VGT BLOCK
(IN PA)

3
2

9
6

VECTOR ENGINE

96

8x96
MEMORY
1-READ
1-WRITE

3 OTHER
SHADER
PIPES

 3 Fix->Float Converters (24-bit)
 16 Memories 8x96-bit (12,288 bits)

Totals:

THREE MORE VECTOR ENGINES
PER SHADER PIPE

VECTOR ENGINE

SHADER
SEQUENCER

Figure 12:VGT to Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER
4 bits

ADDRESS
7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT_7 (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT_7 = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17th) is going to have the address 00000001000, the 18th 00010001000, the 19th 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add
2*VS_EXPORT_COUNT_7to Current_Location and reset the memory count to 0 before the next vector begins).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 553 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

35 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

18. Vertex position exporting
On clause 3 the vertex shader can export to the PA both the vertex position and the point sprite. It can also do so at
clause 7 if not done at clause 3. The storage needed to perform the position export is at least 64x128 memories for
the position and 64x32 memories for the sprite size. It is going to be taken in the pixel output fifo from the SX blocks.
The clause where the position export occurs is specified by the EXPORT_LATE register. If turned on, it means that
the export is going to occur at ALU clause 7 if unset position export occurs at clause 3.

19. Exporting Arbitration
Here are the rules for co-issuing exporting ALU clauses.

1) Position exports and position exports cannot be co-issued.

All other types of exports can be co-issued as long as there is place in the receiving buffer.

{ISSUE: Do we move the parameter caches to the SX?}

20. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

20.1 Vertex Shading
 0:15 - 16 parameter cache
 16:31 - Empty (Reserved?)
 32:43 - 12 vertex exports to the frame buffer and index
 44:47 - Empty
 48:59 - 12 debug export (interpret as normal vertex export)
 60 - export addressing mode
 61 - Empty
 62 - position
 63 - sprite size export that goes with position export
 (point_h,point_w,edgeflag,misc)

20.2 Pixel Shading
 0 - Color for buffer 0 (primary)
 1 - Color for buffer 1
 2 - Color for buffer 2
 3 - Color for buffer 3
 4:7 - Empty
 8 - Buffer 0 Color/Fog (primary)
 9 - Buffer 1 Color/Fog
 10 - Buffer 2 Color/Fog
 11 - Buffer 3 Color/Fog
 12:15 - Empty
 16:31 - Empty (Reserved?)
 32:43 - 12 exports for multipass pixel shaders.
 44:47 - Empty
 48:59 - 12 debug exports (interpret as normal pixel export)
 60 - export addressing mode
 61:62 - Empty
 63 - Z for primary buffer (Z exported to 'alpha' component)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 554 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

R400 Sequencer Specification PAGE

36 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

21. Special Interpolation modes

21.1 Real time commands
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem I see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft’s high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This mode is triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

21.2 Sprites/ XY screen coordinates/ FB information
When working with sprites, one may want to overwrite the parameter 0 with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_I0 register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Here is a list of all the modes and how they interact
together:

Gen_st is a bit taken from the interface between the SC and the SQ. This is the MSB of the primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between 0 and 1.

Param_Gen_I0 disable, snd_xy disable, no gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy disable, gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy enable, no gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy enable, gen_st – I0 = No modification
Param_Gen_I0 enable, snd_xy disable, no gen_st – I0 = garbage, garbage, garbage, faceness
Param_Gen_I0 enable, snd_xy disable, gen_st – I0 = garbage, garbage, s, t
Param_Gen_I0 enable, snd_xy enable, no gen_st – I0 = screen x, screen y, garbage, faceness
Param_Gen_I0 enable, snd_xy enable, gen_st – I0 = screen x, screen y, s, t

21.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1st pass data to memory and then use the count to retrieve the data on the 2nd pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. The sequencer is going to
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the
GPRs the counter is incremented. Every time a state change is detected, the corresponding counter is reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

21.3.1 Vertex shaders
In the case of vertex shaders, if GEN_INDEX is set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

21.3.2 Pixel shaders
In the case of pixel shaders, if GEN_INDEX is set and Param_Gen_I0 is enabled, the data will be put in the x field of
the 2nd register (R1.x), else if GEN_INDEX is set the data will be put into the x field of the 1st register (R0.x).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 555 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

37 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

AUTO
COUNT

STG 0

STG1

INTERPOLATORS

GPR0

AUTO COUNT 000000

MUX

The Auto Count Value is
broadcast to all GPRs. It is

loaded into a register wich has
its LSBs hardwired to the

GPR number (0 thru 63). Then
if GEN_INDEX is high, the
mux selects the auto-count

value and it is loaded into the
GPRs to be either used to

retrieve data using the TP or
sent to the SX for the RB to

use it to write the data to
memory

Figure 13: GPR input mux Control

22. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

22.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

23. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix→float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 21.2 for details on how to control the interpolation in this mode.

23.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 556 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

R400 Sequencer Specification PAGE

38 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24. Registers

24.1 Control
REG_DYNAMIC Dynamic allocation (pixel/vertex) of the register file on or off.
REG_SIZE_PIX Size of the register file's pixel portion (minimal size when dynamic allocation turned

on)
REG_SIZE_VTX Size of the register file's vertex portion (minimal size when dynamic allocation turned

on)
ARBITRATION_POLICY policy of the arbitration between vertexes and pixels
INST_STORE_ALLOC interleaved, separate
INST_BASE_VTX start point for the vertex instruction store (RT always ends at vertex_base and

Begins at 0)
INST_BASE_PIX start point for the pixel shader instruction store
ONE_THREAD debug state register. Only allows one program at a time into the GPRs
ONE_ALU debug state register. Only allows one ALU program at a time to be executed (instead

of 2)
INSTRUCTION This is where the CP puts the base address of the instruction writes and type (auto-

incremented on reads/writes) Register mapped
CONSTANTS 512*4 ALU constants + 32*6 Texture state 32 bits registers (logically mapped)
CONSTANTS_RT 256*4 ALU constants + 32*6 texture states? (physically mapped)
CONSTANT_EO_RT This is the size of the space reserved for real time in the constant store (from 0 to

CONSTANT_EO_RT). The re-mapping table operates on the rest of the memory
TSTATE_EO_RT This is the size of the space reserved for real time in the fetch state store (from 0 to

TSTATE_EO_RT). The re-mapping table operates on the rest of the memory
EXPORT_LATE Controls whether or not we are exporting position from clause 3. If set, position

exports occur at clause 7.

24.2 Context
VS_FETCH_{0…7} eight 8 bit pointers to the location where each clauses control program is located
VS_ALU_{0…7} eight 8 bit pointers to the location where each clauses control program is located
PS_FETCH_{0…7} eight 8 bit pointers to the location where each clauses control program is located
PS_ALU_{0…7} eight 8 bit pointers to the location where each clauses control program is located
PS_BASE base pointer for the pixel shader in the instruction store
VS_BASE base pointer for the vertex shader in the instruction store
VS_CF_SIZE size of the vertex shader (# of instructions in control program/2)
PS_CF_SIZE size of the pixel shader (# of instructions in control program/2)
PS_SIZE size of the pixel shader (cntl+instructions)
VS_SIZE size of the vertex shader (cntl+instructions)
PS_NUM_REG number of GPRs to allocate for pixel shader programs
VS_NUM_REG number of GPRs to allocate for vertex shader programs
PARAM_SHADE One 16 bit register specifying which parameters are to be gouraud shaded (0 = flat, 1

= gouraud)
PROVO_VERT 0 : vertex 0, 1: vertex 1, 2: vertex 2, 3: Last vertex of the primitive
PARAM_WRAP 64 bits: for which parameters (and channels (xyzw)) do we do the cyl wrapping

(0=linear, 1=cylindrical).
PS_EXPORT_MODE 0xxxx : Normal mode
 1xxxx : Multipass mode
 If normal, bbbz where bbb is how many colors (0-4) and z is export z or not
 If multipass 1-12 exports for color.
VS_EXPORT_MASK which of the last 6 ALU clauses is exporting (multipass only)
VS_EXPORT_MODE 0: position (1 vector), 1: position (2 vectors), 3:multipass
VS_EXPORT
COUNT{0…6} Six 4 bit counters representing the # of interpolated parameters exported in clause 7

(located in VS_EXPORT_COUNT_6) OR
 # of exported vectors to memory per clause in multipass mode (per clause)
PARAM_GEN_I0 Do we overwrite or not the parameter 0 with XY data and generated T and S values

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 557 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

39 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

GEN_INDEX Auto generates an address from 0 to XX. Puts the results into R0-1 for pixel shaders
and R2 for vertex shaders

CONST_BASE_VTX (9 bits) Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Turns on the predicate bit optimization (if of, conditional_execute_predicates is

always executed).
CF_BOOLEANS 256 boolean bits
CF_LOOP_COUNT 32x8 bit counters (number of times we traverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in index computation)

25. DEBUG Registers

25.1 Context
DB_PROB_ADDR instruction address where the first problem occurred
DB_PROB_COUNT number of problems encountered during the execution of the program
DB_PROB_BREAK break the clause if an error is found.
DB_INST_COUNT instruction counter for debug method 2
DB_BREAK_ADDR break address for method number 2
DB_CLAUSE
_MODE_ALU_{0…7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)
DB_CLAUSE
_MODE_FETCH_{0…7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)

25.2 Control
DB_ALUCST_MEMSIZE Size of the physical ALU constant memory
DB_TSTATE_MEMSIZE Size of the physical texture state memory

26. Interfaces

26.1 External Interfaces
Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ→SPx it means that SQ is going to broadcast the same information to all SP instances.

26.1.1 SC to SQ : IJ Control bus
This is the control information sent to the sequencer in order to control the IJ fifos and all other information needed to
execute a shader program on the sent pixels. This information is sent over 2 clocks, if SENDXY is asserted the next
control packet is going to be ignored and XY information is going to be sent on the IJ bus (for the quads that where
just sent). All pixels from the group of quads are from the same primitive, all quads of a vector are from the same
render state.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 558 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

R400 Sequencer Specification PAGE

40 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Name Direction Bits Description
SC_SQ_q_wr_mask SC→SQ 4 Quad Write mask left to right
SC_SQ_lod_correct SC→SQ 24 LOD correction per quad (6 bits per quad)
SC_SQ_param_ptr0 SC→SQ 11 P Store pointer for vertex 0
SC_SQ_param_ptr1 SC→SQ 11 P Store pointer for vertex 1
SC_SQ_param_ptr2 SC→SQ 11 P Store pointer for vertex 2
SC_SQ_end_of_vect SC→SQ 1 End of the vector
SC_SQ_store_dealloc SC→SQ 1 Deallocation token for the P Store
SC_SQ_state SC→SQ 3 State/constant pointer
SC_SQ_valid_pixel SC→SQ 16 Valid bits for all pixels
SC_SQ_null_prim SC→SQ 1 Null Primitive (for PC deallocation purposes)
SC_SQ_end_of_prim SC→SQ 1 End Of the primitive
SC_SQ_send_xy SC→SQ 1 Sending XY information [XY information is going to be

sent on the next clock]
SC_SQ_prim_type SC→SQ 3 Real time command need to load tex cords from

alternate buffer. Line AA, Point AA and Sprite reads
their parameters from GEN_T and GEN_S GPRs.
000 : Normal
011 : Real Time
100 : Line AA
101 : Point AA
110 : Sprite

SC_SQ_new_vector SC→SQ 1 This primitive comes from a new vector of vertices.
Make sure that the corresponding vertex shader has
finished before starting the group of pixels.

SC_SQ_RTRn SQ→SC 1 Stalls the PA in n clocks
SC_SQ_RTS SC→SQ 1 SC ready to send data

26.1.2 SQ to SP: Interpolator bus
Name Direction Bits Description
SQ_SPx_interp_prim_type SQ→SPx 3 Type of the primitive

000 : Normal
011 : Real Time
100 : Line AA
101 : Point AA
110 : Sprite

SQ_SPx_interp_ijline SQ→SPx 2 Line in the IJ/XY buffer to use to interpolate
SQ_SPx_interp_mode SQ→SPx 1 0: Use centroid buffer

1: Use center buffer
SQ_SPx_interp_buff_swap SQ→SPx 1 Swap the IJ/XY buffers at the end of the interpolation
SQ_SPx_interp_gen_I0 SQ→SPx 1 Generate I0 or not. This tells the interpolators not to

use the parameter cache but rather overwrite the data
with interpolated 1 and 0. Overwrite if gen_I0 is high.

26.1.3 SQ to SX: Interpolator bus
Name Direction Bits Description
SQ_SPx_interp_flat_vtx SQ→SPx 2 Provoking vertex for flat shading
SQ_SPx_interp_flat_gouraud SQ→SPx 1 Flat or gouraud shading
SQ_SPx_interp_cyl_wrap SQ→SPx 4 Wich channel needs to be cylindrical wrapped
SQ_SXx_ptr1mux0 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_ptr2mux1 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_ptr3mux2 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_RT_switch SQ→SXx 1 Selects between RT and Normal data
SQ_SXx_pc_wr_en SQ→SXx 1 Write enable for the PC memories
SQ_SXx_pc_wr_addr SQ→SXx 7 Write address for the PCs

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 559 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

41 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

26.1.4 SQ to SP: Staging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.
Name Direction Bits Description
SQ_SPx_vgt_vsisr_data SQ→SPx 96 Pointers of indexes or HOS surface information
SQ_SPx_vgt_vsisr_double SQ→SPx 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0_data_valid SQ→SP0 1 Data is valid
SQ_SP1_data_valid SQ→SP1 1 Data is valid
SQ_SP2_data_valid SQ→SP2 1 Data is valid
SQ_SP3_data_valid SQ→SP3 1 Data is valid

26.1.5 PA to SQ : Vertex interface

26.1.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide.

Name Bits Description
PA_SQ_vgt_vsisr_data 96 Pointers of indexes or HOS surface information
PA_SQ_vgt_vsisr_double 1 0: Normal 96 bits per vert 1: double 192 bits per vert
PA_SQ_vgt_end_of_vector 1 Indicates the last VSISR data set for the current process vector (for double vector

data, "end_of_vector" is set on the second vector)
PA_SQ_vgt_vsisr_valid 1 Vsisr data is valid
PA_SQ_vgt_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when

“PA_SQ_vgt_end_of_vector” is high.
PA_SQ_vgt_send 1 Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_PA_vgt_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

26.1.5.2 Interface Diagrams

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 560 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

R400 Sequencer Specification PAGE

42 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

VGT

VSISR_DATA_2

END_OF_VECTOR_2

STATE_SEL_2

REG

VSISR_DOUBLE_2
REG

REG

REG

REG

REG

SEND_2

REG

REG

REG

REG

REG

REG

PA_SQ_vgt_vsisr_data

PA_SQ_vgt_vsisr_double

PA_SQ_vgt_end_of_vector

PA_SQ_vgt_state_sel

PA_SQ_vgt_send

SQ_PA_vgt_rtr

VSISR_DATA_4

END_OF_VECTOR_4

STATE_SEL_4

VSISR_DOUBLE_4

96

1

1

3

1

1

SEND_4

RTR_2 RTR_0

SHADER
SEQUENCER

RTS

101 X 4
SKID

BUFFER

SRST SRST

WE

EMPTY

RE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 561 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

43 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

6 7

6 7

6 7

0 1 2 3

0 1

8

8

8

2 43 5

4 5 6 7

4 3 2 1

8

9 10 11 12

9 10 11 12

9 10 11 12

9 10 11 12

0

RECEIVER RE-STARTS TRANSMISSION

SENDER STOPS TRANSMISSION

SQ_RTR

SQ_RTR_0

VGT_RTS

SEND_2

SEND_3

SEND_4

DATA_2

FIFO_EMPTY

FIFO_RE

SQ_RTR_1

SQ_RTR_2

DATA_3

DATA_4

FIFO_DATA_OUT

FIFO_CNT

RECEIVER STOPS TRANSMISSION

Figure 1. Detailed Logical Diagram for PA_SQ_vgt Interface.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 562 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

R400 Sequencer Specification PAGE

44 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

26.1.6 SQ to CP: State report
Name Direction Bits Description
SQ_CP_vrtx_ state SEQ→CP 3 Oldest vertex state still in the pipe
SQ_CP_pix_state SEQ→CP 3 Oldest pixel state still in the pipe

26.1.7 SQ to SX: Control bus
Name Direction Bits Description
SQ_SXx_exp_Pixel SQ→SXx 1 1: Pixel

0: Vertex
SQ_SXx_exp_Clause SQ→SXx 3 Clause number, which is needed for vertex clauses
SQ_SXx_exp_State SQ→SXx 3 State ID
SQ_SXx_exp_exportID SQ→SXx 1 ALU ID

These fields are sent synchronously with SP export data, described in SP0→SX0 interfaceevery time the sequencer
picks an exporting clause for execution.

26.1.8 SX to SQ : Output file control
Name Direction Bits Description
SXx_SQ_Export_count_rdy SXx→SQ 1 Raised by SX0 to indicate that the following two fields

reflect the result of the most recent export
SXx_SQ_Export_Position SXx→SQ 1 Specifies whether there is room for another position.
SXx_SQ_Export_Buffer SXx→SQ 7 Specifies the space available in the output buffers.

0: buffers are full
1: 2K-bits available (32-bits for each of the 64
pixels in a clause)
...
64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

26.1.9 SQ to TP: Control bus
Once every clock, the fetch unit sends to the sequencer on which clause it is now working and if the data in the GPRs
is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos. The sequencer
also provides the instruction and constants for the fetch to execute and the address in the register file where to write
the fetch return data.

Name Direction Bits Description
TPx_SQ_data_rdy TPx→ SQ 1 Data ready
TPx_SQ_clause_num TPx→ SQ 3 Clause number

TPx_SQ_Type TPx→ SQ 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_const SQ→TPx 48 Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instuct SQ→TPx 24 Fetch instruction sent over 4 clocks
SQ_TPx_end_of_clause SQ→TPx 1 Last instruction of the clause
SQ_TPx_Type SQ→TPx 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_phase SQ→TPx 2 Write phase signal
SQ_TP0_lod_correct SQ→TP0 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP0_pmask SQ→TP0 4 Pixel mask 1 bit per pixel
SQ_TP1_lod_correct SQ→TP1 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pmask SQ→TP1 4 Pixel mask 1 bit per pixel
SQ_TP2_lod_correct SQ→TP2 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pmask SQ→TP2 4 Pixel mask 1 bit per pixel
SQ_TP3_lod_correct SQ→TP3 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pmask SQ→TP3 4 Pixel mask 1 bit per pixel

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 563 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

45 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ_TPx_clause_num SQ→TPx 3 Clause number
SQ_TPx_write_gpr_index SQ->TPx 7 Index into Register file for write of returned Fetch Data

26.1.10 TP to SQ: Texture stall
The TP sends this signal to the SQ when its input buffer is full. The SQ is going to send it to the SP X clocks after
reception (maximum of 3 clocks of pipeline delay).

SU0

SU3

SU2

SU1

SQ_SP_fetch_Stall

SQ_SP_wr_addr

Name Direction Bits Description
TP_SQ_fetch_stall TP→ SQ 1 Do not send more texture request if asserted

26.1.11 SQ to SP: Texture stall
Name Direction Bits Description
SQ_SPx_fetch_stall SQ→SPx 1 Do not send more texture request if asserted

26.1.12 SQ to SP: GPR, Parameter cache control and auto counter
Name Direction Bits Description
SQ_SPx_gpr_wr_addr SQ→SPx 7 Write address
SQ_SPx_gpr_rd_addr SQ→SPx 7 Read address
SQ_SPx_gpr_red_addren SQ→SPx 1 Read Enable
SQ_SPx_gpr_wewr_addren SQ→SPx 1 Write Enable for the GPRs
SQ_SPx_gpr_phase_mux SQ→SPx 2 The phase mux (arbitrates between inputs, ALU SRC

reads and writes)
SQ_SPx_channel_mask SQ→SPx 4 The channel mask
SQ_SP0_pixel_mask SQ→SP0 4 The pixel mask
SQ_SP1_pixel_mask SQ→SP1 4 The pixel mask
SQ_SP2_pixel_mask SQ→SP2 4 The pixel mask
SQ_SP3_pixel_mask SQ→SP3 4 The pixel mask
SQ_SPx_gpr_input_mux SQ→SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTX0,
VTX1, autogen counter.

SQ_SPx_index_count SQ→SPx 12? Index count, common for all shader pipes

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 564 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

R400 Sequencer Specification PAGE

46 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

26.1.13 SQ to SPx: Instructions
Name Direction Bits Description
SQ_SPx_instruct_start SQ→SPx 1 Instruction start
SQ_SP_instruct SQ→SPx 21 Transferred over 4 cycles

0: SRC A Select 2:0
 SRC A Argument Modifier 3:3
 SRC A swizzle 11:4
 VectorDst 17:12
 Unused 20:18
--
-
1: SRC B Select 2:0
 SRC B Argument Modifier 3:3
 SRC B swizzle 11:4
 ScalarDst 17:12
 Unused 20:18
--
-
2: SRC C Select 2:0
 SRC C Argument Modifier 3:3
 SRC C swizzle 11:4
 Unused 20:12
--
-
3: Vector Opcode 4:0
 Scalar Opcode 10:5
 Vector Clamp 11:11
 Scalar Clamp 12:12
 Vector Write Mask 16:13
 Scalar Write Mask 20:17

SQ_SPx_exp_exportID SQ→SPx 1 ALU ID
SQ_SPx_stall SQ→SPx 1 Stall signal
SQ_SPx_export_count SQ→SPx 3 Each set of four pixels or vectors is exported over

eight clocks. This field specifies where the SP is in
that sequence.

SQ_SPx_export_last SQ→SPx 1 Asserted on the first shader count of the last export
of the clause

SQ_SP0_export_pvalid SQ→SP0 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP0_export_wvalid SQ→SP0 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

SQ_SP1_ export_pvalid SQ→SP1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP1_ export_wvalid SQ→SP1 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

SQ_SP2_ export_pvalid SQ→SP2 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP2_ export_wvalid SQ→SP2 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

SQ_SP3_ export_pvalid SQ→SP3 4 Result of pixel kill in the shader pipe, which must be

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 565 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

47 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP3_ export_wvalid SQ→SP3 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

26.1.14 SP to SQ: Constant address load/ Predicate Set
Name Direction Bits Description
SP0_SQ_const_addr SP0→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP0_SQ_valid SP0→SQ 1 Data valid
SP1_SQ_const_addr SP1→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP1_SQ_valid SP1→SQ 1 Data valid
SP2_SQ_const_addr SP2→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP2_SQ_valid SP2→SQ 1 Data valid
SP3_SQ_const_addr SP3→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP3_SQ_valid SP3→SQ 1 Data valid

26.1.15 SQ to SPx: constant broadcast
Name Direction Bits Description
SQ_SPx_constant SQ→SPx 128 Constant broadcast

26.1.16 SP0 to SQ: Kill vector load
Name Direction Bits Description
SP0_SQ_kill_vect SP0→SQ 4 Kill vector load
SP1_SQ_kill_vect SP1→SQ 4 Kill vector load
SP2_SQ_kill_vect SP2→SQ 4 Kill vector load
SP3_SQ_kill_vect SP3→SQ 4 Kill vector load

26.1.17 SQ to CP: RBBM bus
Name Direction Bits Description
SQ_RBB_rs SQ→CP 1 Read Strobe
SQ_RBB_rd SQ→CP 32 Read Data
SQ_RBBM_nrtrtr SQ→CP 1 Optional
SQ_RBBM_rtr SQ→CP 1 Real-Time (Optional)

26.1.18 CP to SQ: RBBM bus
Name Direction Bits Description
rbbm_we CP→SQ 1 Write Enable
rbbm_a CP→SQ 15 Address -- Upper Extent is TBD (16:2)
rbbm_wd CP→SQ 32 Data
rbbm_be CP→SQ 4 Byte Enables
rbbm_re CP→SQ 1 Read Enable
rbb_rs0 CP→SQ 1 Read Return Strobe 0
rbb_rs1 CP→SQ 1 Read Return Strobe 1
rbb_rd0 CP→SQ 32 Read Data 0
rbb_rd1 CP→SQ 32 Read Data 0
RBBM_SQ_soft_reset CP→SQ 1 Soft Reset

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 566 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

R400 Sequencer Specification PAGE

48 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

27. Examples of program executions

27.1.1 Sequencer Control of a Vector of Vertices

1. PA sends a vector of 64 vertices (actually vertex indices – 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO
 state pointer as well as tag into position cache is sent along with vertices
 space was allocated in the position cache for transformed position before the vector was sent
 also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
 The vertex program is assumed to be loaded when we receive the vertex vector.

 the SEQ then accesses the IS base for this shader using the local state pointer (provided to all
sequencers by the RBBM when the CP is done loading the program)

2. SEQ arbitrates between the Pixel FIFO and the Vertex FIFO – basically the Vertex FIFO always has priority
 at this point the vector is removed from the Vertex FIFO
 the arbiter is not going to select a vector to be transformed if the parameter cache is full unless the pipe as

nothing else to do (ie no pixels are in the pixel fifo).

3. SEQ allocates space in the SP register file for index data plus GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
 SEQ will not send vertex data until space in the register file has been allocated

4. SEQ sends the vector to the SP register file over the RE_SP interface (which has a bandwidth of 2048 bits/cycle)
 the 64 vertex indices are sent to the 64 register files over 4 cycles

 RF0 of SU0, SU1, SU2, and SU3 is written the first cycle
 RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
 RF2 of SU0, SU1, SU2, and SU3 is written the third cycle
 RF3 of SU0, SU1, SU2, and SU3 is written the fourth cycle

 the index is written to the least significant 32 bits (floating point format?) (what about compound indices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, z)

5. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSM0 FIFO)
 the control packet contains the state pointer, the tag to the position cache and a register file base pointer.

6. TSM0 accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

7. all instructions of fetch clause 0 are issued by TSM0

8. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for requests made to the Fetch Unit to complete; it passes the register file write index for

the fetch data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data to the register files, it increments a counter that is associated with ASM0

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

9. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

10. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

11. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 position can be exported in ALU clause 3 (or 4?); the data (and the tag) is sent over a position bus (which is

shared with all four shader pipes) back to the PA’s position cache
 A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
 there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 567 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

49 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 the ASM arbiter will prevent a packet from starting an exporting clause if the position export FIFO is full
 parameter data is exported in clause 7 (as well as position data if it was not exported earlier)

 parameter data is sent to the Parameter Cache over a dedicated bus
 the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space when there is no

longer a need for the parameters (it is told by the PA when using a token).
 the ASM arbiter will prevent a packet from starting on ASM7 if the parameter cache (or the position buffer

if position is being exported) is full

12. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

27.1.2 Sequencer Control of a Vector of Pixels

1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

 At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

2. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
 the state pointer and the LOD correction bits are also placed in the Pixel FIF0
 the Pixel FIFO is wide enough to source four quad’s worth of barycentrics per cycle

3. SEQ arbitrates between Pixel FIFO and Vertex FIFO – when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

4. SEQ allocates space in the SP register file for all the GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
 SEQ will not allow interpolated data to be sent to the shader until space in the register file has been allocated

5. SEQ controls the transfer of interpolated data to the SP register file over the RE_SP interface (which has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagrams for details.

6. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSM0 FIFO)
 note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
 the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
 all other information (such as quad address for example) travels in a separate FIFO

7. TSM0 accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

8. all instructions of fetch clause 0 are issued by TSM0

9. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for fetch requests made to the Fetch Unit to complete; it passes the register file write

index for the fetch data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data for a particular clause to the register files, it increments a counter that is

associated with the ASM0 FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

10. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

11. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

12. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 pixel data is exported in the last ALU clause (clause 7)

 it is sent to an output FIFO where it will be picked up by the render backend
 the ASM arbiter will prevent a packet from starting on ASM7 if the output FIFO is full

13. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 568 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201518
March 20024 March

R400 Sequencer Specification PAGE

50 of 50

Exhibit 2025.docR400_Sequencer.doc �� 71630 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

27.1.3 Notes

14. The state machines and arbiters will operate ahead of time so that they will be able to immediately start the real
threads or stall.

15. The register file base pointer for a vector needs to travel with the vector through the reservation stations, but the
instruction store base pointer does not – this is because the RF pointer is different for all threads, but the IS
pointer is only different for each state and thus can be accessed via the state pointer.

28. Open issues
Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

Parameter caches in SX?

Using both IJ buffers for center + centroid interpolation?

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 569 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SQ

Version 1.108

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\doc_lib\design\blocks\sq\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2026
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 570 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

2 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Table Of Contents

1. OVERVIEW .. 86
1.1 Top Level Block Diagram ... 108
1.2 Data Flow graph (SP) ... 1210
1.3 Control Graph ... 1311
2. INTERPOLATED DATA BUS .. 1311
3. INSTRUCTION STORE ... 1614
4. SEQUENCER INSTRUCTIONS ... 1816
5. CONSTANT STORES .. 1816
5.1 Memory organizations .. 1816
5.2 Management of the Control Flow Constants .. 1816
5.3 Management of the re-mapping tables .. 1816

5.3.1 R400 Constant management .. 1816

5.3.2 Proposal for R400LE constant management .. 1917

5.3.3 Dirty bits .. 2119

5.3.4 Free List Block .. 2119

5.3.5 De-allocate Block .. 2220

5.3.6 Operation of Incremental model .. 2220
5.4 Constant Store Indexing ... 2220
5.5 Real Time Commands.. 2321
5.6 Constant Waterfalling ... 2321
6. LOOPING AND BRANCHES ... 2422
6.1 The controlling state. .. 2422
6.2 The Control Flow Program ... 2422
6.3 Data dependant predicate instructions ... 2624
6.4 HW Detection of PV,PS ... 2725
6.5 Register file indexing .. 2725
6.6 Predicated Instruction support for Texture clauses .. 2725
6.7 Debugging the Shaders ... 2825

6.7.1 Method 1: Debugging registers ... 2825

6.7.2 Method 2: Exporting the values in the GPRs (12) ... 2826
7. PIXEL KILL MASK .. 2826
8. MULTIPASS VERTEX SHADERS (HOS) .. 2926
9. REGISTER FILE ALLOCATION .. 2926
10. FETCH ARBITRATION .. 3028
11. ALU ARBITRATION .. 3028
12. HANDLING STALLS ... 3129
13. CONTENT OF THE RESERVATION STATION FIFOS ... 3129
14. THE OUTPUT FILE.. 3129
15. IJ FORMAT .. 3129
15.1 Interpolation of constant attributes .. 3230
16. STAGING REGISTERS ... 3230
17. THE PARAMETER CACHE ... 3432
18. VERTEX POSITION EXPORTING ... 3532

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 571 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

19. EXPORTING ARBITRATION .. 3532
20. EXPORT TYPES .. 3532
20.1 Vertex Shading .. 3532
20.2 Pixel Shading .. 3533
21. SPECIAL INTERPOLATION MODES ... 3633
21.1 Real time commands .. 3633
21.2 Sprites/ XY screen coordinates/ FB information .. 3633
21.3 Auto generated counters ... 3634

21.3.1 Vertex shaders ... 3734

21.3.2 Pixel shaders .. 3734
22. STATE MANAGEMENT .. 3734
22.1 Parameter cache synchronization ... 3734
23. XY ADDRESS IMPORTS ... 3835
23.1 Vertex indexes imports .. 3835
24. REGISTERS .. 3835
24.1 Control ... 3835
24.2 Context .. 3835
25. DEBUG REGISTERS... 3936
25.1 Context .. 3936
25.2 Control ... 3936

26. INTERFACES .. 3936

26.1 External Interfaces .. 3936

26.1.1 SC to SQ : IJ Control bus .. 3937

26.1.2 SQ to SP: Interpolator bus ... 4237

26.1.3 SQ to SX: Interpolator bus ... 4237

26.1.4 SQ to SP: Staging Register Data ... 4238

26.1.5 PA to SQ : Vertex interface .. 4338

26.1.6 SQ to CP: State report ... 4641

26.1.7 SQ to SX: Control bus .. 4641

26.1.8 SX to SQ : Output file control ... 4641

26.1.9 SQ to TP: Control bus .. 4641

26.1.10 TP to SQ: Texture stall ... 4742

26.1.11 SQ to SP: Texture stall ... 4742

26.1.12 SQ to SP: GPR and auto counter .. 4742

26.1.13 SQ to SPx: Instructions .. 4843

26.1.14 SP to SQ: Constant address load/ Predicate Set ... 4844

26.1.15 SQ to SPx: constant broadcast .. 4944

26.1.16 SP0 to SQ: Kill vector load ... 4944

26.1.17 SQ to CP: RBBM bus ... 4944

26.1.18 CP to SQ: RBBM bus ... 4944
27. EXAMPLES OF PROGRAM EXECUTIONS .. 4945

27.1.1 Sequencer Control of a Vector of Vertices ... 4945

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 572 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

4 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

27.1.2 Sequencer Control of a Vector of Pixels .. 5046

27.1.3 Notes .. 5147
28. OPEN ISSUES ... 5147
1. OVERVIEW .. 6
1.1 Top Level Block Diagram ... 8
1.2 Data Flow graph (SP) ... 10
1.3 Control Graph ... 11
2. INTERPOLATED DATA BUS .. 11
3. INSTRUCTION STORE ... 14
4. SEQUENCER INSTRUCTIONS ... 16
5. CONSTANT STORES .. 16
5.1 Memory organizations .. 16
5.2 Management of the re-mapping tables .. 16

5.2.1 Dirty bits .. 18

5.2.2 Free List Block .. 18

5.2.3 De-allocate Block .. 19

5.2.4 Operation of Incremental model .. 19
5.3 Constant Store Indexing ... 19
5.4 Real Time Commands.. 20
5.5 Constant Waterfalling ... 20
6. LOOPING AND BRANCHES ... 21
6.1 The controlling state. .. 21
6.2 The Control Flow Program ... 21
6.3 Data dependant predicate instructions ... 23
6.4 HW Detection of PV,PS ... 24
6.5 Register file indexing .. 24
6.6 Predicated Instruction support for Texture clauses .. 24
6.7 Debugging the Shaders ... 25

6.7.1 Method 1: Debugging registers ... 25

6.7.2 Method 2: Exporting the values in the GPRs (12) ... 25
7. PIXEL KILL MASK .. 25
8. MULTIPASS VERTEX SHADERS (HOS) .. 26
9. REGISTER FILE ALLOCATION .. 26
10. FETCH ARBITRATION .. 27
11. ALU ARBITRATION .. 27
12. HANDLING STALLS ... 28
13. CONTENT OF THE RESERVATION STATION FIFOS ... 28
14. THE OUTPUT FILE.. 28
15. IJ FORMAT .. 28
15.1 Interpolation of constant attributes .. 29
16. STAGING REGISTERS ... 29
17. THE PARAMETER CACHE ... 31
18. VERTEX POSITION EXPORTING ... 31
19. EXPORTING ARBITRATION .. 31
20. EXPORT TYPES .. 31
20.1 Vertex Shading .. 31

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 573 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

20.2 Pixel Shading .. 32
21. SPECIAL INTERPOLATION MODES ... 32
21.1 Real time commands .. 32
21.2 Sprites/ XY screen coordinates/ FB information .. 32
21.3 Auto generated counters ... 33

21.3.1 Vertex shaders ... 33

21.3.2 Pixel shaders .. 33
22. STATE MANAGEMENT .. 33
22.1 Parameter cache synchronization ... 33
23. XY ADDRESS IMPORTS ... 34
23.1 Vertex indexes imports .. 34
24. REGISTERS .. 34
24.1 Control ... 34
24.2 Context .. 34
25. DEBUG REGISTERS... 35
25.1 Context .. 35

26. INTERFACES .. 35

26.1 External Interfaces .. 35

26.1.1 SC to SQ : IJ Control bus .. 36

26.1.2 SQ to SP: Interpolator bus ... 36

26.1.3 SQ to SP: Parameter Cache Read control bus .. 36

26.1.4 SQ to SX: Parameter Cache Mux control Bus ... 37

26.1.5 SQ to SP: Staging Register Data ... 37

26.1.6 PA to SQ : Vertex interface .. 37

26.1.7 SQ to CP: State report ... 41

26.1.8 SQ to SX: Control bus .. 41

26.1.9 SX to SQ : Output file control ... 41

26.1.10 SQ to TP: Control bus .. 41

26.1.11 TP to SQ: Texture stall ... 42

26.1.12 SQ to SP: Texture stall ... 42

26.1.13 SQ to SP: GPR, Parameter cache control and auto counter 42

26.1.14 SQ to SPx: Instructions .. 43

26.1.15 SP to SQ: Constant address load .. 44

26.1.16 SQ to SPx: constant broadcast .. 44

26.1.17 SP0 to SQ: Kill vector load ... 44

26.1.18 SQ to CP: RBBM bus ... 44

26.1.19 CP to SQ: RBBM bus ... 44
27. EXAMPLES OF PROGRAM EXECUTIONS .. 44

27.1.1 Sequencer Control of a Vector of Vertices ... 44

27.1.2 Sequencer Control of a Vector of Pixels .. 46

27.1.3 Notes .. 46

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 574 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

6 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

28. OPEN ISSUES ... 47

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 575 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

 Changed the control flow method to be more
flexible. Also updated the external interfaces.

Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

 Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001

 Refined interfaces to RB. Added state registers.

Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

 Added SEQ→SP0 interfaces. Changed delta
precision. Changed VGT→SP0 interface. Debug
Methods added.

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001

 Interfaces greatly refined. Cleaned up the spec.

Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001

 Added the different interpolation modes.

Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

 Added the auto incrementing counters. Changed
the VGT→SQ interface. Added content on constant
management. Updated GPRs.

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

 Removed from the spec all interfaces that weren’t
directly tied to the SQ. Added explanations on
constant management. Added PA→SQ
synchronization fields and explanation.

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

 Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002

 Added Real Time parameter control in the SX
interface. Updated the control flow section.

Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

 New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002

 Rearangement of the CF instruction bits in order to
ensure byte alignement.

Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002

 Updated the interfaces and added a section on
exporting rules.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 576 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

8 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1. Overview
The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause until the fetch fetches initiated by the previous
fetch clause have completed. There are two separate sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 577 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ

SC

SPSPSPCSTOREFETCH STATE

TP

INST STORE

IJ CONTROL

IJ
CONTROL

CST
ADDR

INST
 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/QUAD
ADDRESSES

SP

ALU INST

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

INST

INTER INTER INTER INTER

IJ CROSSBAR

2 QUADS IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC READ
 POINTERS

PARAM
DATA

R/W ADDR

Vertex indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

CP

CONSTANT
LOAD

CPConstant Load

TX ADDR

PC Write
Address

TEX INST

CF
CONSTANTS

Register
Mapped

CF Read

Figure 1: General Sequencer overview

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 578 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

10 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.1 Top Level Block Diagram

vertex/pixel vector arbitrator

Possible delay for available GPR’s

FIFO
Texture clause 0
reservation station

Texture clause 1
reservation station

FIFO
ALU clause 0
reservation station

FIFO

Texture clause 2
reservation station

Texture clause 3
reservation station

FIFO
ALU clause 1
reservation station

FIFO

FIFO
ALU clause 2
reservation station

FIFO

FIFO
ALU clause 3
reservation station

FIFO
Texture clause 4
reservation station

Texture clause 5
reservation station

FIFO
ALU clause 4
reservation station

FIFO

Texture clause 6
reservation station

Texture clause 7
reservation station

FIFO
ALU clause 5
reservation station

FIFO

FIFO
ALU clause 6
reservation station

FIFO

FIFO
ALU clause 7
reservation station

texture arbitrator

texture arbitrator

Figure 2: Reservation stations and arbiters

There are two sets of the above figure, one for vertices and one for pixels.

Depending on the arbitration state, the sequencer will either choose a vertex or a pixel packet. The control packet
consists of 3 bits of state, 7 bits for the base address of the Shader program and some information on the coverage to
determine fetch LOD plus other various small state bits.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 579 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the GPRs to store the interpolated values and temporaries. Following this, the barycentric coordinates (and XY
screen position if needed) are sent to the interpolator, which will use them to interpolate the parameters and place the
results into the GPRs. Then, the input state machine stacks the packet in the first FIFO.

On receipt of a command, the level 0 fetch machine issues a fetch request to the TP and corresponding GPR
address for the fetch address (ta). A small command (tcmd) is passed to the fetch system identifying the current level
number (0) as well as the GPR write address for the fetch return data. One fetch request is sent every 4 clocks
causing the texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the requests are sent the packet is put in
FIFO 1.

Upon receipt of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level 0 fetch machine and sends the clause number (0) to the level 0 fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU 0 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO 1 counter and then issues a
complete set of level 0 shader instructions. For each instruction, the ALU state machine generates 3 source
addresses, one destination address and an instruction. Once the last instruction has been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbiters). One arbiter will arbitrate
over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the two arbiters is that they are not allowed to pick the same
clause number as the other one is currently working on if the packet is not of the same type (render state).

If the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbiter must prevent ALU clause 3 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, if needed the sprite size and/or edge flags can also be sent.

A special case is for multipass vertex shaders, which can export 12 parameters per last 6 clauses to the output
buffer. If the output buffer is full or doesn’t have enough space the sequencer will prevent such a vertex group to
enter an exporting clause.

Multipass pixel shaders can export 12 parameters to memory from the last clause only (7).

All other clauses process in the same way until the packet finally reaches the last ALU machine (7).

Only one pair of interleaved ALU state machines may have access to the register file address bus or the instruction
decode bus at one time. Similarly, only one fetch state machine may have access to the register file address bus at
one time. Arbitration is performed by three arbiter blocks (two for the ALU state machines and one for the fetch state
machines). The arbiters always favor the higher number state machines, preventing a bunch of half finished jobs from
clogging up the register files.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 580 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

12 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.2 Data Flow graph (SP)

MAC

MAC

MAC

MAC

Register File

co
n

st
an

ts
 f

ro
m

 R
E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
n

ts
 f

ro
m

 R
E

S
ca

la
r

U
ni

t

texture request

texture request

texture request

texture request

te
xt

ur
e

 a
dd

re
ss

te xtu
re

 d
ata

prim
itiv e d a

ta
 from

 R
E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

Figure 3: The shader Pipe

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 581 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

SEQ

FETCH SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

OF

WrAddrIS CST

CST IDX

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 582 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

14 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x64 bits)

IJs buffer (ping-pong buffer)
(28 bits * 2 (IJ) + 8 bits * 6 (delta IJs)+4 exp

bits*6)* 16 (quads) * 2 (double-buffered)
4096 bits

32 x 128

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

64

To RB

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2

768 bits
32x24

FIX-FLOAT + EXPANSiON

Figure 5: Interpolation buffers

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 583 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SP
0

SP
1

SP
2

SP
3

WRITES
T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-
11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P1 P2

T20 T21 T22 T23

VTX

T0 T1 T2 T3

XY

XY
0-3

XY
4-7

XY
8-
11

XY
12-
15

XY
16-
19

XY
20-
23

XY
24-
27

XY
28-
31

XY
32-
35

XY
36-
39

XY
40-
43

XY
44-
47

XY
48-
51

XY
52-
55

XY
56-
59

XY
60-
63

READS

SP
0

SP
1

SP
2

SP
3

A0

A1

A2

B1

B0

C3

C0

C1

C2

C4

C5

D0

D1

D2

E0

E1

A0

A1

A2

XY
A0
XY
A1
XY
A2

B1

B0

XY
B1

XY
B0

C3

C0

C1

C2

XY
C3
XY
C0
XY
C1
XY
C2

C4

C5

XY
C4
XY
C5

D0

D1

D2

XY
D1
XY
D2

XY
D0

E0

E1
XY
E1

XY
E0

Figure 6: Interpolation timing diagram

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 584 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

16 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

{ISSUE : Do we do the center + centroid approach using both IJ buffers?}

3. Instruction Store
There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The next picture shows the various modes the CP can load the memory. The Sequencer has to keep track of the
loading modes in order to wrap around the correct boundaries. The wrap-around points are arbitrary and they are
specified in the VS_BASE and PIX_BASE control registers. The VS_BASE and PS_BASE context registers are used
to specify for each context where its shader is in the instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 585 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

R400 CP's Views of Instruction Memory Updated: 11/14/2001
John A. Carey

0

4095

Real-Time &
Shared Code

VERTEX_SHADER_BASE

PIXEL_SHADER_BASE

VS Code A

VS Code B

VS Code C

PS Code A

PS Code B

PS Code C

CP writes code start
addresses to
appropriate Sub-
Blocks so Sequencer
knows where to start
executing the code.

MODE 0 - Dual Ring
0

4095

Real-Time &
Shared Code

VERTEX_SHADER_BASE

VS Code A

VS Code B

VS Code C

PS Code A

PS Code B

PS Code C

MODE 1 - Single Ring

CP writes code start
addresses to
appropriate Sub-
Blocks so Sequencer
knows where to start
executing the code.

Figure 7: The CP's view of the instruction memory

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 586 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

18 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

4. Sequencer Instructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 128x192 320x96 bits (128 texture states
for regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

5.2 Management of the Control Flow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied whenever there is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn’t write to CF the state is going to use the previous CF constants.

5.3 Management of the re-mapping tables

5.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 587 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROL packet of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it with
the new state (this is depicted in Figure 9: De-allocation mechanismFigure 9: De-allocation mechanismFigure 9: De-
allocation mechanism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 588 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

20 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Physical
Memory

Renaming Table
for 1 Context
Current/Last

Physical
Address

per
Logical
Address

Renaming
table

N-Contexts

Reset
Dirty
per

Logical
Address

(Only
de-

allocate
if set)

This
Context

Dirty
per

Logical
Address

(If set
don't

allocate
or de-

allocate)

Logical address
On the

GlbRegBus
when lsb are zero
first word of write

next
physical
address
ready

for allocate

Constants
location
available
WRTR

physical
address

to
schedule

for
de-alloc

Staging Data
Buffer

Staging Write Addr

Copy Last held above to
Current Context on receipt

of Set Constant for a
new context (Hide loading

behind Set State load - 16 clocks)
all other Set States just write one

entry to current state.

Free
list

(pass Phys
Address if
Context
Dirty)

Dealloc
Counts

Seq
Constant
Request

Context &
Logical
Address

Free_ptr
WritePtr

When a Logical
Address is written

that has been
written before,

store the physical
address that was
allocated by that
Logical Address

Stop_ptr
ptr to first physical

address that is
scheduled to be de-
allocated but noty
yet de-allocate.

Advanced each time
a context is freed by

the number of
physical address
displaced by that

Context

Read_ptr
ptr to physical

address that will be
used next if the init

count is at
maximum number

of physical address

Free List

Number of entries
equals Max Number of
Physical Blocks. All
Pointers start at zero
and roll around but

can never pass each
other

Free
Address

Address
to Allocate

Global Register
Data Bus

Renaming Table
Context 0 => N

Logical Address
& Context

Physical
Address

Context 0 (8 rows of 16 - 8 bit
physical => 128 entries copy in

eight clocks)

Context 1

Context N

Current/Last
Context

(8 rows of 16 - 8
bit physical =>

128 entries copy
in eight clocks)

Figure 8: Constant management

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 589 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

DEALOC
COUNTERSFree List

!=

OR

AND

NOT

ADDR

PREVIOUS
STATE

NEW
STATE

SQ_IDLE

CP_NEW_STATE_CNTL
PA_IDLE

VALUE

VALID

CNT VALUE

SQ_STATE#

WRITE_ENABLE

REMAPPING
TABLE

SET CTX BITS

Figure 9: De-allocation mechanism for R400LE

5.3.3 Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block
A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 590 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

22 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

5.3.5 De-allocate Block
This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any number of blocks in one clock.

5.3.6 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 591 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

5.5 Real Time Commands
The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
works is the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zones is defined by the TSTATE_EO_RT control register.

5.6 Constant Waterfalling
In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenever a state is freed.

CONST_EO_RT

RT SECTON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table)

Figure 10: The instruction store

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 592 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

24 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
Examples of control flow programs are located in the R400 programming guide document.

The basic model is as follows:

The render state defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located

A pointer value of FF means that the clause doesn’t contain any instructions.

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The control program is the only program aware of the clause
boundaries.

The control program has nine basic instructions:

Execute
Conditional_execute
Conditional_Execute_Predicates
Conditional_jump
Conditionnal_Call
Return
Loop_start
Loop_end
NOP

Execute, causes the specified number of instructions in instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified number of instructions in instruction
store to be executed.
Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified number of instructions.
Conditionnal_Call jumps to an address and pushes the IP counter on the stack if the condition is met. On the return
instruction, the IP is popped from the stack.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 593 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Conditional_execute_Predicates executes a block of instructions if all bits in the predicate vectors meet the condition.
Conditional_jumps jumps to an address if the condition is met.
NOP is a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSES since there are two control flow instructions per
memory line. Thus the compiler must insert NOPs where needed to align the jumps on even CFP addresses.

Also if the jump is logically bigger than pshader_cntl_size (or vshader_cntl_size) we break the program (clause) and
set the debug registers. If an execute or conditional_execute is lower than cntl_size or bigger than size we also break
the program (clause) and set the debug registers.

We have to fit instructions into 48 bits in order to be able to put two control flow instruction per line in the instruction
store.

A value of 1 in the Addressing means that the address specified in the Exec Address field (or in the jump address
field) is an ABSOLUTE address. If the addressing field is cleared (should be the default) then the address is relative
to the base of the current shader program.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

Execute
47 46… 42 41 40 … 24 23 … 12 11 … 0

Addressing 00001 Last RESERVED Instruction
count

Exec Address

Execute up to 4k instructions at the specified address in the instruction memory. If Last is set, this is the last group of
instructions of the clause.

NOP
47 46 … 42 41 40 … 0

Addressing 00010 Last RESERVED

This is a regular NOP. If Last is set, this is the last instruction of the clause.

Conditional_Execute

47 46 … 42 41 40 40 39 …
3332

3231 31 30 … 24 23 … 12 11 … 0

Addressing 00011 Last RESERVED Boolean
address

Condition RESERVED Instruction
count

Exec
Address

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 4k instructions). If Last is set, then if the condition is met, this is the last group of instructions to be
executed in the clause. If the condition is not met, we go on to the next control flow instruction.

Conditional_Execute_Predicates
47 46 … 42 41 40 40 …

3534
34 33 …

3332
3231 31 30 … 24 23 … 12 11 … 0

Addressing 00100 Last RESERVED Predicate
vector

Condition RESERVED Instruction
count

Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid. If Last is
set, then if the condition is met, this is the last group of instructions to be executed in the clause. If the condition is not
met, we go on to the next control flow instruction.

Loop_Start
47 46 … 42 41 … 17 16 … 12 11 … 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 594 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

26 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Addressing

00101 RESERVED loop ID Jump address

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Loop_End
47 46 … 42 41 … 17 16 … 12 11 … 0

Addressing

00110 RESERVED loop ID start address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal_Call
47 46 … 42 41 … 3534 34 33 …

3332
312 31 30 … 12 11 … 0

Addressing

00111 RESERVED Predicate
vector

Condition RESERVED Jump address

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack.

Return
47 46 … 42 41 … 0

Addressing

01000 RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump
47 46 … 42 41 … 401 40 39 …

3332
3231 3130 30 29 … 12 11 … 0

Addressing

01001 RESERVED Boolean
address

Condition FW only RESERVED Jump address

If condition met, jumps to the address. FORWARD jump only allowed if bit 31 set. Bit 31 is only an optimization for the
compiler and should NOT be exposed to the API.

To prevent infinite loops, we will keep 9 bits loop iterators instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start instruction is going to break the loop and set the
debug GPRs.

6.3 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETNE_# - similar to SETNE except that the result is 'exported' to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE0_# – SETE0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 595 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 PRED_SETE1_# – SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

 P0_ADD_# R0,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

6.4 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

6.5 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

The sequencer is going to keep a loop index computed as such:

 Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128…127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

6.6 Predicated Instruction support for Texture clauses
For texture clauses, we support the following optimization: we keep 1 bit (thus 4 bits for the four predicate vectors)
per predicate vector in the reservation stations. A value of 1 means that one ore more elements in the vector have a
value of one (thus we have to do the texture fetches for the whole vector). A value of 0 means that no elements in the
vector have his predicate bit set and we can thus skip over the texture fetch. We have to make sure the invalid
pixels aren’t considered with this optimization.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 596 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

28 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
 - jump errors
 relative jump address > size of the control flow program
 - call stack
 call with stack full

return with stack empty

A jump error will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only break if
the DB_PROB_BREAK register is set.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the 0th
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs (12)
The sequencer will have a count register and an address register for this mode and 3 bits per clause specifying the
execution mode for each clause. The modes can be :

1) Normal
2) Debug Kill
3) Debug Addr + Count

Under the normal mode execution follows the normal course. Under the kill mode, all control flow instructions are
executed but all normal shader instructions of the clause are replaced by NOPs. Only debug_export instructions of
clause 7 will be executed under the debug kill setting. Under the other mode, normal execution is done until we reach
an address specified by the address register and instruction count (useful for loops) specified by the count register.
After we have hit the instruction n times (n=count) we switch the clause to the kill mode.

Under the debug mode (debug kill OR debug Addr + count), it is assumed that clause 7 is always exporting 12 debug
vectors and that all other exports to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by
the sequencer (even if they occur before the address stated by the ADDR debug register).

7. Pixel Kill Mask
A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE

 MASK_SETGT

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 597 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZE for pixels.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 598 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

30 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

10. Fetch Arbitration
The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration
ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…
 Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 599 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the exporting clause (3?). The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs
The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel’s parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming P0 is the interpolated parameter at Pixel 0 having the barycentric coordinates I(0), J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at V0 (interpolated with I), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

)(*03)(*0303

)(*02)(*0202

)(*01)(*0101

)(*)0()(*)0(0

)0()3(03

)0()3(03

)0()2(02

)0()2(02

)0()1(01

)0()1(01

CBJCAIPP

CBJCAIPP

CBJCAIPP

CBJCAICP

JJJ

III

JJJ

III

JJJ

III

P0 is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2

P0

P2

P1

P3

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 600 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

32 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Adds: 8

FORMAT OF P0’s IJ : Mantissa 20 Exp 4 for I + Sign
 Mantissa 20 Exp 4 for J + Sign

FORMAT of Deltas (x3): Mantissa 8 Exp 4 for I + Sign
 Mantissa 8 Exp 4 for J + Sign

Total number of bits : 20*2 + 8*6 + 4*8 + 4*2 = 128

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the number is
normalized if not, then the number is un-normalized. The maximum range for the IJs (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

15.1 Interpolation of constant attributes
Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

We start with the premise that if A = B and B = C and C = A, then P0,1,2,3 = A. Since one or more of the IJ terms
may be zero, so we extend this to:

if (A=B and B=C and C=A)
 P0,1,2,3 = A;
else if ((I = 0) or (J = 0)) and
 ((J = 0) or (1-I-J = 0)) and
 ((1-J-I = 0) or (I = 0))) {
 if(I != 0) {
 P0 = A;
 } else if(J != 0) {
 P0 = B;
 } else {
 P0 = C;
 }
 //rest of the quad interpolated normally
}
else
{
 normal interpolation
}

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 || 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencer will re-arrange them in this fashion:

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 || 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 || 8 9 10 11 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the VGT will send padding to account for
the missing pipe. For example, if SP1 is broken, vertices 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sent
by the VGT to the SQ BUT will not be processed by the SP and thus should be considered invalid (by the SU and
VGT).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 601 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

33 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 12Figure 12Figure 12. The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure 11Figure 11Figure 11.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11631 60.57813per bit

Area of 96x8-deep Latch Memory 46524
Area of 24-bit Fix-to-float Converter 4712per converter

Method 1 Block Quantity Area

 F2F 3 14136

 8x96 Latch 16 744384

 758520

Figure 11:Area Estimate for VGT to Shader Interface

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 602 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

34 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SHADER PIPE

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

3
2

3
2

3
2

VGT BLOCK
(IN PA)

3
2

9
6

VECTOR ENGINE

96

8x96
MEMORY
1-READ
1-WRITE

3 OTHER
SHADER
PIPES

 3 Fix->Float Converters (24-bit)
 16 Memories 8x96-bit (12,288 bits)

Totals:

THREE MORE VECTOR ENGINES
PER SHADER PIPE

VECTOR ENGINE

SHADER
SEQUENCER

Figure 12:VGT to Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER
4 bits

ADDRESS
7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT_7 (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT_7 = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17th) is going to have the address 00000001000, the 18th 00010001000, the 19th 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add
2*VS_EXPORT_COUNT_7to Current_Location and reset the memory count to 0 before the next vector begins).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 603 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

35 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

18. Vertex position exporting
On clause 3 the vertex shader can export to the PA both the vertex position and the point sprite. It can also do so at
clause 7 if not done at clause 3. The storage needed to perform the position export is at least 64x128 memories for
the position and 64x32 memories for the sprite size. It is going to be taken in the pixel output fifo from the SX blocks.
The clause where the position export occurs is specified by the EXPORT_LATE register. If turned on, it means that
the export is going to occur at ALU clause 7 if unset position export occurs at clause 3.

19. Exporting Arbitration
Here are the rules for co-issuing exporting ALU clauses.

1) Position exports and position exports cannot be co-issued.

All other types of exports can be co-issued as long as there is place in the receiving buffer.

{ISSUE: Do we move the parameter caches to the SX?}

20. Exporting Rules

20.1 Parameter caches exports
We support masking and out of order exports to the parameter caches. So one can export multiple times to the same
PC line using different masks.

20.2 Memory exports
Memory exports don’t support masking. However, you can export out of order to memory locations.

20.3 Position exports
Position exports have to be done IN ORDER and don’t support masking.

20.21. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

20.121.1 Vertex Shading
 0:15 - 16 parameter cache
 16:31 - Empty (Reserved?)
 32:43 - 12 vertex exports to the frame buffer and index
 44:47 - Empty
 48:59 - 12 debug export (interpret as normal vertex export)
 60 - export addressing mode
 61 - Empty
 62 - position
 63 - sprite size export that goes with position export
 (point_h,point_w,edgeflag,misc)

20.221.2 Pixel Shading
 0 - Color for buffer 0 (primary)
 1 - Color for buffer 1

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 604 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

36 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 2 - Color for buffer 2
 3 - Color for buffer 3
 4:7 - Empty
 8 - Buffer 0 Color/Fog (primary)
 9 - Buffer 1 Color/Fog
 10 - Buffer 2 Color/Fog
 11 - Buffer 3 Color/Fog
 12:15 - Empty
 16:31 - Empty (Reserved?)
 32:43 - 12 exports for multipass pixel shaders.
 44:47 - Empty
 48:59 - 12 debug exports (interpret as normal pixel export)
 60 - export addressing mode
 61:62 - Empty
 63 - Z for primary buffer (Z exported to 'alpha' component)

21.22. Special Interpolation modes

21.122.1 Real time commands
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem I see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft’s high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This mode is triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

21.222.2 Sprites/ XY screen coordinates/ FB information
When working with sprites, one may want to overwrite the parameter 0 with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_I0 register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Here is a list of all the modes and how they interact
together:

Gen_st is a bit taken from the interface between the SC and the SQ. This is the MSB of the primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between 0 and 1.

Param_Gen_I0 disable, snd_xy disable, no gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy disable, gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy enable, no gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy enable, gen_st – I0 = No modification
Param_Gen_I0 enable, snd_xy disable, no gen_st – I0 = garbage, garbage, garbage, faceness
Param_Gen_I0 enable, snd_xy disable, gen_st – I0 = garbage, garbage, s, t
Param_Gen_I0 enable, snd_xy enable, no gen_st – I0 = screen x, screen y, garbage, faceness
Param_Gen_I0 enable, snd_xy enable, gen_st – I0 = screen x, screen y, s, t

21.322.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1st pass data to memory and then use the count to retrieve the data on the 2nd pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 605 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

37 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. The sequencer is going to
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the
GPRs the counter is incremented. Every time a state change is detected, the corresponding counter is reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

21.3.122.3.1 Vertex shaders
In the case of vertex shaders, if GEN_INDEX is set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

21.3.222.3.2 Pixel shaders
In the case of pixel shaders, if GEN_INDEX is set and Param_Gen_I0 is enabled, the data will be put in the x field of
the 2nd register (R1.x), else if GEN_INDEX is set the data will be put into the x field of the 1st register (R0.x).

AUTO
COUNT

STG 0

STG1

INTERPOLATORS

GPR0

AUTO COUNT 000000

MUX

The Auto Count Value is
broadcast to all GPRs. It is

loaded into a register wich has
its LSBs hardwired to the

GPR number (0 thru 63). Then
if GEN_INDEX is high, the
mux selects the auto-count

value and it is loaded into the
GPRs to be either used to

retrieve data using the TP or
sent to the SX for the RB to

use it to write the data to
memory

Figure 13: GPR input mux Control

22.23. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

22.123.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 606 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

38 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.24. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix→float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 22.221.2 for details on how to control the interpolation in this mode.

23.124.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

24.25. Registers

24.125.1 Control
REG_DYNAMIC Dynamic allocation (pixel/vertex) of the register file on or off.
REG_SIZE_PIX Size of the register file's pixel portion (minimal size when dynamic allocation turned

on)
REG_SIZE_VTX Size of the register file's vertex portion (minimal size when dynamic allocation turned

on)
ARBITRATION_POLICY policy of the arbitration between vertexes and pixels
INST_STORE_ALLOC interleaved, separate
INST_BASE_VTX start point for the vertex instruction store (RT always ends at vertex_base and

Begins at 0)
INST_BASE_PIX start point for the pixel shader instruction store
ONE_THREAD debug state register. Only allows one program at a time into the GPRs
ONE_ALU debug state register. Only allows one ALU program at a time to be executed (instead

of 2)
INSTRUCTION This is where the CP puts the base address of the instruction writes and type (auto-

incremented on reads/writes) Register mapped
CONSTANTS 512*4 ALU constants + 32*6 Texture state 32 bits registers (logically mapped)
CONSTANTS_RT 256*4 ALU constants + 32*6 texture states? (physically mapped)
CONSTANT_EO_RT This is the size of the space reserved for real time in the constant store (from 0 to

CONSTANT_EO_RT). The re-mapping table operates on the rest of the memory
TSTATE_EO_RT This is the size of the space reserved for real time in the fetch state store (from 0 to

TSTATE_EO_RT). The re-mapping table operates on the rest of the memory
EXPORT_LATE Controls whether or not we are exporting position from clause 3. If set, position

exports occur at clause 7.

24.225.2 Context
VS_FETCH_{0…7} eight 8 bit pointers to the location where each clauses control program is located
VS_ALU_{0…7} eight 8 bit pointers to the location where each clauses control program is located
PS_FETCH_{0…7} eight 8 bit pointers to the location where each clauses control program is located
PS_ALU_{0…7} eight 8 bit pointers to the location where each clauses control program is located
PS_BASE base pointer for the pixel shader in the instruction store
VS_BASE base pointer for the vertex shader in the instruction store
VS_CF_SIZE size of the vertex shader (# of instructions in control program/2)
PS_CF_SIZE size of the pixel shader (# of instructions in control program/2)
PS_SIZE size of the pixel shader (cntl+instructions)
VS_SIZE size of the vertex shader (cntl+instructions)
PS_NUM_REG number of GPRs to allocate for pixel shader programs
VS_NUM_REG number of GPRs to allocate for vertex shader programs
PARAM_SHADE One 16 bit register specifying which parameters are to be gouraud shaded (0 = flat, 1

= gouraud)
PROVO_VERT 0 : vertex 0, 1: vertex 1, 2: vertex 2, 3: Last vertex of the primitive

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 607 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

39 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

PARAM_WRAP 64 bits: for which parameters (and channels (xyzw)) do we do the cyl wrapping
(0=linear, 1=cylindrical).

PS_EXPORT_MODE 0xxxx : Normal mode
 1xxxx : Multipass mode
 If normal, bbbz where bbb is how many colors (0-4) and z is export z or not
 If multipass 1-12 exports for color.
VS_EXPORT_MASK which of the last 6 ALU clauses is exporting (multipass only)
VS_EXPORT_MODE 0: position (1 vector), 1: position (2 vectors), 3:multipass
VS_EXPORT
COUNT{0…6} Six 4 bit counters representing the # of interpolated parameters exported in clause 7

(located in VS_EXPORT_COUNT_6) OR
 # of exported vectors to memory per clause in multipass mode (per clause)
PARAM_GEN_I0 Do we overwrite or not the parameter 0 with XY data and generated T and S values
GEN_INDEX Auto generates an address from 0 to XX. Puts the results into R0-1 for pixel shaders

and R2 for vertex shaders
CONST_BASE_VTX (9 bits) Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Turns on the predicate bit optimization (if of, conditional_execute_predicates is

always executed).
CF_BOOLEANS 256 boolean bits
CF_LOOP_COUNT 32x8 bit counters (number of times we traverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in index computation)

25.26. DEBUG Registers

25.126.1 Context
DB_PROB_ADDR instruction address where the first problem occurred
DB_PROB_COUNT number of problems encountered during the execution of the program
DB_PROB_BREAK break the clause if an error is found.
DB_INST_COUNT instruction counter for debug method 2
DB_BREAK_ADDR break address for method number 2
DB_CLAUSE
_MODE_ALU_{0…7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)
DB_CLAUSE
_MODE_FETCH_{0…7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)

25.226.2 Control
DB_ALUCST_MEMSIZE Size of the physical ALU constant memory
DB_TSTATE_MEMSIZE Size of the physical texture state memory

26.27. Interfaces

26.127.1 External Interfaces
Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ→SPx it means that SQ is going to broadcast the same information to all SP instances.

27.2 SC to SP Interfaces

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 608 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

40 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

27.2.1 SC_SP#
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the I,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data which is transferred per quad is
 Ref Pix I => S4.20 Floating Point I value
 Ref Pix J => S4.20 Floating Point J value
 Delta Pix I (x3) => S4.8 Floating Point Delta I value
 Delta Pix J (x3) => S4.8 Floating Point Delta J value
This equates to a total of 128 bits which transferred over 2 clocks
and therefor needs an interface 64 bits wide

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a IJ_BUF_INUSE_COUNT in the SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNT count. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2, if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of I,J data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,SQ and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple mode first with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performance hit.)

Name Bits Description
SC_SP#_data 64 IJ information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bit)

Type 0 or 1, First clock I, second clk J
Field ULC URC LLC LRC
 Bits [63:39] [38:26] [25:13] [12:0]
Format SE4M20 SE4M8 SE4M8 SE4M8
Type 2
Field Face X Y
 Bits [63] [23:12] [11:0]
Format Bit Unsigned Unsigned

SC_SP#_valid 1 Valid
SC_SP#_last_quad 1 This bit will be set on the last transfer of data per quad.
SC_SP#_type 2 0 -> Indicates centroids

1 -> Indicates centers
2 -> Indicates X,Y Data and faceness on data bus
The SC shall look at state data to determine how many types to send for the
interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP block will have neither because the instantiation will insert the prefix.

27.2.2 SC_SQ
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 92 bits) could be folded in half to approx 46 bits.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 609 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

41 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Name Bits Description
SC_SQ_data 46 Control Data sent to the SQ

1 clk transfers
 Event – valid data consist of event_id and
 state_id. Instruct SQ to post an
 event vector to send state id and
 event_id through request fifo
 and onto the reservation stations
 making sure state id and/or event_id
 gets back to the CP. Events only
 follow end of packets so no pixel
 vectors will be in progress.

 Empty Quad Mask – Transfer Control data
 consisting of pc_dealloc
 or new_vector. Receipt of this is to
 transfer pc_dealloc or new_vector
 without any valid quad data. New
 vector will always be posted to
 request fifo and pc_dealloc will be
 attached to any pixel vector
 outstanding or posted in request fifo
 if no valid quad outstanding.
2 clk transfers
 Quad Data Valid – Sending quad data with or
 without new_vector or pc_dealloc.
 New vector will be posted to request
 fifo with or without a pixel vector and
 pc_dealloc will be posted with a pixel
 vector unless none is in progress. In
 this case the pc_dealloc will be
 posted in the request queue.
 Filler quads will be transferred with
 The Quad mask set but the pixel
 corresponding pixel mask set to
 zero.

SC_SQ_valid 1 SC sending valid data, 2nd clk could be all zeroes

SC_SQ_data – first clock and second clock transfers are shown in the table below.

Name BitField Bits Description

1st Clock Transfer

SC_SQ_event 0 1 This transfer is a 1 clock event vector
Force quad_mask = new_vector=pc_dealloc=0

SC_SQ_event_id [2:1] 2 This field identifies the event
0 => denotes an End Of State Event
1 => TBD

SC_SQ_pc_dealloc 3 1 Deallocation token for the Parameter Cache
SC_SQ_new_vector 4 1 The SQ must wait for Vertex shader done count > 0 and after

dispatching the Pixel Vector the SQ will decrement the count.
SC_SQ_quad_mask [8:5] 4 Quad Write mask left to right SP0 => SP3
SC_SQ_end_of_prim 9 1 End Of the primitive
SC_SQ_state_id [12:10] 3 State/constant pointer (6*3+3)
SC_SQ_pix_mask [28:13] 16 Valid bits for all pixels SP0=>SP3 (UL,UR,LL,LR)
SC_SQ_prim_type [31:29] 3 Stippled line and Real time command need to load tex cords from

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 610 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

42 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

alternate buffer
000: Normal
100: Realtime
101: Line AA
110: Point AA (Sprite)

SC_SQ_pc_ptr0 [42:32] 11 Parameter Cache pointer for vertex 0

2nd Clock Transfer
SC_SQ_pc_ptr1 [10:0] 11 Parameter Cache pointer for vertex 1
SC_SQ_pc_ptr2 [21:11] 11 Parameter Cache pointer for vertex 2
SC_SQ_lod_correct [45:22] 24 LOD correction per quad (6 bits per quad)

Name Bits Description
SQ_SC_free_buff 1 Pipelined bit that instructs SC to decrement count of buffers in use.
SQ_SC_dec_cntr_cnt 1 Pipelined bit that instructs SC to decrement count of new vector and/or event

sent to prevent SC from overflowing SQ interpolator/Reservation request fifo.

The scan converter will submit a partial vector whenever:

1.) He gets a primitive marked with an end of packet signal.
2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been

marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal made it through and thus the hang.)

26.1.1 SC to SQ : IJ Control bus
This is the control information sent to the sequencer in order to control the IJ fifos and all other information needed to
execute a shader program on the sent pixels. This information is sent over 2 clocks, if SENDXY is asserted the next
control packet is going to be ignored and XY information is going to be sent on the IJ bus (for the quads that where
just sent). All pixels from the group of quads are from the same primitive, all quads of a vector are from the same
render state.

26.1.2 SQ to SP: Interpolator bus

26.1.327.2.3 SQ to SX: Interpolator bus
Name Direction Bits Description
SQ_SPxSXx_interp_flat_vtx SQ→SPx 2 Provoking vertex for flat shading
SQ_SPXx_interp_flat_gourau
d

SQ→SPx 1 Flat or gouraud shading

SQ_SPXx_interp_cyl_wrap SQ→SPx 4 Wich channel needs to be cylindrical wrapped
SQ_SXXx_ptr1mux0 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_ptr2mux1 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_ptr3mux2 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_RT_switchrt_sel SQ→SXx 1 Selects between RT and Normal data
SQ_SXx_pc_wr_en SQ→SXx 1 Write enable for the PC memories
SQ_SXx_pc_wr_addr SQ→SXx 7 Write address for the PCs
SQ_SXx_pc_cmask SQ→SXx 4 Channel mask

26.1.427.2.4 SQ to SP: Staging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.
Name Direction Bits Description

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 611 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

43 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ_SPx_vgt_vsisrvsr_data SQ→SPx 96 Pointers of indexes or HOS surface information
SQ_SPx_vgt_vsisrvsr_double SQ→SPx 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0_ data_valid SQ→SP0 1 Data is valid
SQ_SP1_ data_valid SQ→SP1 1 Data is valid
SQ_SP2_ data_valid SQ→SP2 1 Data is valid
SQ_SP3_ data_valid SQ→SP3 1 Data is valid

26.1.527.2.5 PA VGT to SQ : Vertex interface

26.1.5.127.2.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide.

Name Bits Description
PAVGT_SQ__vgt_vsisr_data 96 Pointers of indexes or HOS surface information
VGTPA_SQ__vgt_vsisr_doubl
e

1 0: Normal 96 bits per vert 1: double 192 bits per vert

VGTPA__SQ__vgt_end_of_v
ector

1 Indicates the last VSISR data set for the current process vector (for double vector
data, "end_of_vector" is set on the second vector)

VGTPA_SQ__vgt_vsisrindx_v
alid

1 Vsisr data is valid

VGTPA_SQ__vgt_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when
“PAVGT_SQ_vgt_end_of_vector” is high.

VGTPA_SQ__vgt_send 1 Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR
interface handshaking)

SQ_VGT_PA_vgt_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface
handshaking)

26.1.5.227.2.5.2 Interface Diagrams

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 612 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

44 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

VGT

VSISR_DATA_2

END_OF_VECTOR_2

STATE_SEL_2

REG

VSISR_DOUBLE_2
REG

REG

REG

REG

REG

SEND_2

REG

REG

REG

REG

REG

REG

PA_SQ_vgt_vsisr_data

PA_SQ_vgt_vsisr_double

PA_SQ_vgt_end_of_vector

PA_SQ_vgt_state_sel

PA_SQ_vgt_send

SQ_PA_vgt_rtr

VSISR_DATA_4

END_OF_VECTOR_4

STATE_SEL_4

VSISR_DOUBLE_4

96

1

1

3

1

1

SEND_4

RTR_2 RTR_0

SHADER
SEQUENCER

RTS

101 X 4
SKID

BUFFER

SRST SRST

WE

EMPTY

RE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 613 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

45 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

6 7

6 7

6 7

0 1 2 3

0 1

8

8

8

2 43 5

4 5 6 7

4 3 2 1

8

9 10 11 12

9 10 11 12

9 10 11 12

9 10 11 12

0

RECEIVER RE-STARTS TRANSMISSION

SENDER STOPS TRANSMISSION

SQ_RTR

SQ_RTR_0

VGT_RTS

SEND_2

SEND_3

SEND_4

DATA_2

FIFO_EMPTY

FIFO_RE

SQ_RTR_1

SQ_RTR_2

DATA_3

DATA_4

FIFO_DATA_OUT

FIFO_CNT

RECEIVER STOPS TRANSMISSION

Figure 1. Detailed Logical Diagram for PA_SQ_vgt Interface.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 614 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

46 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

26.1.627.2.6 SQ to CP: State report
Name Direction Bits Description
SQ_CP_vrtx_ state SEQ→CP 3 Oldest vertex state still in the pipe
SQ_CP_pix_state SEQ→CP 3 Oldest pixel state still in the pipe

26.1.727.2.7 SQ to SX: Control bus
Name Direction Bits Description
SQ_SXx_exp_Pixelpix SQ→SXx 1 1: Pixel

0: Vertex
SQ_SXx_exp_cClause SQ→SXx 3 Clause number, which is needed for vertex clauses
SQ_SXx_exp_sState SQ→SXx 3 State ID
SQ_SXx_exp_exportIDalu_id SQ→SXx 1 ALU ID

These fields are sent synchronously with SP export data, described in SP0→SX0 interfaceevery time the sequencer
picks an exporting clause for execution.

26.1.827.2.8 SX to SQ : Output file control
Name Direction Bits Description
SXx_SQ_Exportexp_count_rdy SXx→SQ 1 Raised by SX0 to indicate that the following two

fields reflect the result of the most recent export
SXx_SQ_Exportexp_Pposition_spac
e

SXx→SQ 1 Specifies whether there is room for another
position.

SXx_SQ_expExport_bBuffer_space SXx→SQ 7 Specifies the space available in the output
buffers.
0: buffers are full
1: 2K-bits available (32-bits for each of the 64
pixels in a clause)
...
64: 128K-bits available (16 128-bit entries for
each of 64 pixels)
65-127: RESERVED

26.1.927.2.9 SQ to TP: Control bus
Once every clock, the fetch unit sends to the sequencer on which clause it is now working and if the data in the GPRs
is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos. The sequencer
also provides the instruction and constants for the fetch to execute and the address in the register file where to write
the fetch return data.

Name Direction Bits Description
TPx_SQ_data_rdy TPx→ SQ 1 Data ready
TPx_SQ_clause_num TPx→ SQ 3 Clause number

TPx_SQ_tType TPx→ SQ 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_send SQ→TPx 1 Sending valid data
SQ_TPx_const SQ→TPx 48 Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instuctinstr SQ→TPx 24 Fetch instruction sent over 4 clocks
SQ_TPx_end_of_clause SQ→TPx 1 Last instruction of the clause
SQ_TPx_Type SQ→TPx 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_phase SQ→TPx 2 Write phase signal
SQ_TP0_lod_correct SQ→TP0 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP0_pmask SQ→TP0 4 Pixel mask 1 bit per pixel
SQ_TP1_lod_correct SQ→TP1 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pmask SQ→TP1 4 Pixel mask 1 bit per pixel
SQ_TP2_lod_correct SQ→TP2 6 LOD correct 3 bits per comp 2 components per quad

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 615 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

47 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ_TP2_pmask SQ→TP2 4 Pixel mask 1 bit per pixel
SQ_TP3_lod_correct SQ→TP3 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pmask SQ→TP3 4 Pixel mask 1 bit per pixel
SQ_TPx_clause_num SQ→TPx 3 Clause number
SQ_TPx_write_gpr_index SQ->TPx 7 Index into Register file for write of returned Fetch Data

26.1.1027.2.10 TP to SQ: Texture stall
The TP sends this signal to the SQ when its input buffer is full. The SQ is going to send it to the SP X clocks after
reception (maximum of 3 clocks of pipeline delay).

SU0

SU3

SU2

SU1

SQ_SP_fetch_Stall

SQ_SP_wr_addr

Name Direction Bits Description
TP_SQ_fetch_stall TP→ SQ 1 Do not send more texture request if asserted

26.1.1127.2.11 SQ to SP: Texture stall
Name Direction Bits Description
SQ_SPx_fetch_stall SQ→SPx 1 Do not send more texture request if asserted

26.1.1227.2.12 SQ to SP: GPR, Parameter cache control and auto counter
Name Direction Bits Description
SQ_SPx_gpr_wr_addr SQ→SPx 7 Write address
SQ_SPx_gpr_rd_addr SQ→SPx 7 Read address
SQ_SPx_gpr_red_addren SQ→SPx 1 Read Enable
SQ_SPx_gpr_wewr_addren SQ→SPx 1 Write Enable for the GPRs
SQ_SPx_gpr_phase_mux SQ→SPx 2 The phase mux (arbitrates between inputs, ALU SRC

reads and writes)
SQ_SPx_channel_mask SQ→SPx 4 The channel mask
SQ_SP0_pixel_mask SQ→SP0 4 The pixel mask
SQ_SP1_pixel_mask SQ→SP1 4 The pixel mask
SQ_SP2_pixel_mask SQ→SP2 4 The pixel mask
SQ_SP3_pixel_mask SQ→SP3 4 The pixel mask
SQ_SPx_gpr_input_mux SQ→SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTX0,
VTX1, autogen counter.

SQ_SPx_indexauto_count SQ→SPx 12? Index Auto count generated by the SQ, common for all
shader pipes

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 616 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

48 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

26.1.1327.2.13 SQ to SPx: Instructions
Name Direction Bits Description
SQ_SPx_instruct_start SQ→SPx 1 Instruction start
SQ_SP_instruct SQ→SPx 21 Transferred over 4 cycles

0: SRC A Select 2:0
 SRC A Argument Modifier 3:3
 SRC A swizzle 11:4
 VectorDst 17:12
 Unused 20:18
--
-
1: SRC B Select 2:0
 SRC B Argument Modifier 3:3
 SRC B swizzle 11:4
 ScalarDst 17:12
 Unused 20:18
--
-
2: SRC C Select 2:0
 SRC C Argument Modifier 3:3
 SRC C swizzle 11:4
 Unused 20:12
--
-
3: Vector Opcode 4:0
 Scalar Opcode 10:5
 Vector Clamp 11:11
 Scalar Clamp 12:12
 Vector Write Mask 16:13
 Scalar Write Mask 20:17

SQ_SPx_exp_alu_id SQ→SPx 1 ALU ID
SQ_SPx_exporting SQ→SPx 2 0: Not Exporting

1: Vector Exporting
2: Scalar Exporting

SQ_SPx_stall SQ→SPx 1 Stall signal
SQ_SP0_export_pvalid SQ→SP0 4 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP1_ export_pvalid SQ→SP1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP2_ export_pvalid SQ→SP2 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP3_ export_pvalid SQ→SP3 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

26.1.1427.2.14 SP to SQ: Constant address load/ Predicate Set
Name Direction Bits Description
SP0_SQ_const_addr SP0→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP0_SQ_valid SP0→SQ 1 Data valid
SP1_SQ_const_addr SP1→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 617 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

49 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SP1_SQ_valid SP1→SQ 1 Data valid
SP2_SQ_const_addr SP2→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP2_SQ_valid SP2→SQ 1 Data valid
SP3_SQ_const_addr SP3→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP3_SQ_valid SP3→SQ 1 Data valid

26.1.1527.2.15 SQ to SPx: constant broadcast
Name Direction Bits Description
SQ_SPx_consttant SQ→SPx 128 Constant broadcast

26.1.1627.2.16 SP0 to SQ: Kill vector load
Name Direction Bits Description
SP0_SQ_kill_vect SP0→SQ 4 Kill vector load
SP1_SQ_kill_vect SP1→SQ 4 Kill vector load
SP2_SQ_kill_vect SP2→SQ 4 Kill vector load
SP3_SQ_kill_vect SP3→SQ 4 Kill vector load

26.1.1727.2.17 SQ to CP: RBBM bus
Name Direction Bits Description
SQ_RBB_rs SQ→CP 1 Read Strobe
SQ_RBB_rd SQ→CP 32 Read Data
SQ_RBBM_nrtrtr SQ→CP 1 Optional
SQ_RBBM_rtr SQ→CP 1 Real-Time (Optional)

26.1.1827.2.18 CP to SQ: RBBM bus
Name Direction Bits Description
rbbm_we CP→SQ 1 Write Enable
rbbm_a CP→SQ 15 Address -- Upper Extent is TBD (16:2)
rbbm_wd CP→SQ 32 Data
rbbm_be CP→SQ 4 Byte Enables
rbbm_re CP→SQ 1 Read Enable
rbb_rs0 CP→SQ 1 Read Return Strobe 0
rbb_rs1 CP→SQ 1 Read Return Strobe 1
rbb_rd0 CP→SQ 32 Read Data 0
rbb_rd1 CP→SQ 32 Read Data 0
RBBM_SQ_soft_reset CP→SQ 1 Soft Reset

27.28. Examples of program executions

27.1.128.1.1 Sequencer Control of a Vector of Vertices

1. PA sends a vector of 64 vertices (actually vertex indices – 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO
 state pointer as well as tag into position cache is sent along with vertices
 space was allocated in the position cache for transformed position before the vector was sent
 also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
 The vertex program is assumed to be loaded when we receive the vertex vector.

 the SEQ then accesses the IS base for this shader using the local state pointer (provided to all
sequencers by the RBBM when the CP is done loading the program)

2. SEQ arbitrates between the Pixel FIFO and the Vertex FIFO – basically the Vertex FIFO always has priority
 at this point the vector is removed from the Vertex FIFO

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 618 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

50 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 the arbiter is not going to select a vector to be transformed if the parameter cache is full unless the pipe as
nothing else to do (ie no pixels are in the pixel fifo).

3. SEQ allocates space in the SP register file for index data plus GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
 SEQ will not send vertex data until space in the register file has been allocated

4. SEQ sends the vector to the SP register file over the RE_SP interface (which has a bandwidth of 2048 bits/cycle)
 the 64 vertex indices are sent to the 64 register files over 4 cycles

 RF0 of SU0, SU1, SU2, and SU3 is written the first cycle
 RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
 RF2 of SU0, SU1, SU2, and SU3 is written the third cycle
 RF3 of SU0, SU1, SU2, and SU3 is written the fourth cycle

 the index is written to the least significant 32 bits (floating point format?) (what about compound indices)
of the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, z)

5. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSM0 FIFO)
 the control packet contains the state pointer, the tag to the position cache and a register file base pointer.

6. TSM0 accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

7. all instructions of fetch clause 0 are issued by TSM0

8. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for requests made to the Fetch Unit to complete; it passes the register file write index for

the fetch data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data to the register files, it increments a counter that is associated with ASM0

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

9. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

10. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

11. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 position can be exported in ALU clause 3 (or 4?); the data (and the tag) is sent over a position bus (which is

shared with all four shader pipes) back to the PA’s position cache
 A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is

going to be in the parameter cache.
 there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA
 the ASM arbiter will prevent a packet from starting an exporting clause if the position export FIFO is full

 parameter data is exported in clause 7 (as well as position data if it was not exported earlier)
 parameter data is sent to the Parameter Cache over a dedicated bus
 the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space when there is no

longer a need for the parameters (it is told by the PA when using a token).
 the ASM arbiter will prevent a packet from starting on ASM7 if the parameter cache (or the position buffer

if position is being exported) is full

12. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

27.1.228.1.2 Sequencer Control of a Vector of Pixels

1. As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

 At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 619 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

51 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

2. the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
 the state pointer and the LOD correction bits are also placed in the Pixel FIF0
 the Pixel FIFO is wide enough to source four quad’s worth of barycentrics per cycle

3. SEQ arbitrates between Pixel FIFO and Vertex FIFO – when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

4. SEQ allocates space in the SP register file for all the GPRs used by the program
 the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
 SEQ will not allow interpolated data to be sent to the shader until space in the register file has been allocated

5. SEQ controls the transfer of interpolated data to the SP register file over the RE_SP interface (which has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagrams for details.

6. SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of
fetch state machine 0, or TSM0 FIFO)
 note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
 the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
 all other information (such as quad address for example) travels in a separate FIFO

7. TSM0 accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
 TSM0 was first selected by the TSM arbiter before it could start

8. all instructions of fetch clause 0 are issued by TSM0

9. the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
 TSM0 does not wait for fetch requests made to the Fetch Unit to complete; it passes the register file write

index for the fetch data to the TU, which will write the data to the RF as it is received
 once the TU has written all the data for a particular clause to the register files, it increments a counter that is

associated with the ASM0 FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

10. ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

11. all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

12. the control packet continues to travel down the path of reservation stations until all clauses have been executed
 pixel data is exported in the last ALU clause (clause 7)

 it is sent to an output FIFO where it will be picked up by the render backend
 the ASM arbiter will prevent a packet from starting on ASM7 if the output FIFO is full

13. after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

27.1.328.1.3 Notes

14. The state machines and arbiters will operate ahead of time so that they will be able to immediately start the real
threads or stall.

15. The register file base pointer for a vector needs to travel with the vector through the reservation stations, but the
instruction store base pointer does not – this is because the RF pointer is different for all threads, but the IS
pointer is only different for each state and thus can be accessed via the state pointer.

28.29. Open issues
Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 620 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201525
March 20024 March

R400 Sequencer Specification PAGE

52 of 52

Exhibit 2026.docR400_Sequencer.doc �� 75288 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Saving power?

Parameter caches in SX?

Using both IJ buffers for center + centroid interpolation?

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 621 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SQ

Version 1.110

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\doc_lib\design\blocks\sq\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2027
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 622 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

2 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Table Of Contents

1. OVERVIEW .. 86
1.1 Top Level Block Diagram ... 108
1.2 Data Flow graph (SP) ... 1210
1.3 Control Graph ... 1311
2. INTERPOLATED DATA BUS .. 1311
3. INSTRUCTION STORE ... 1614
4. SEQUENCER INSTRUCTIONS ... 1814
5. CONSTANT STORES .. 1814
5.1 Memory organizations .. 1814
5.2 Management of the Control Flow Constants .. 1815
5.3 Management of the re-mapping tables .. 1815

5.3.1 R400 Constant management .. 1815

5.3.2 Proposal for R400LE constant management .. 1915

5.3.3 Dirty bits .. 2117

5.3.4 Free List Block .. 2117

5.3.5 De-allocate Block .. 2218

5.3.6 Operation of Incremental model .. 2218
5.4 Constant Store Indexing ... 2218
5.5 Real Time Commands.. 2319
5.6 Constant Waterfalling ... 2319
6. LOOPING AND BRANCHES ... 2420
6.1 The controlling state. .. 2420
6.2 The Control Flow Program ... 2420
6.3 Data dependant predicate instructions ... 2622
6.4 HW Detection of PV,PS ... 2723
6.5 Register file indexing .. 2723
6.6 Predicated Instruction support for Texture clauses .. 2723
6.7 Debugging the Shaders ... 2723

6.7.1 Method 1: Debugging registers ... 2823

6.7.2 Method 2: Exporting the values in the GPRs (12) ... 2824
7. PIXEL KILL MASK .. 2824
8. MULTIPASS VERTEX SHADERS (HOS) .. 2924
9. REGISTER FILE ALLOCATION .. 2924
10. FETCH ARBITRATION .. 3026
11. ALU ARBITRATION .. 3026
12. HANDLING STALLS ... 3127
13. CONTENT OF THE RESERVATION STATION FIFOS ... 3127
14. THE OUTPUT FILE.. 3127
15. IJ FORMAT .. 3127
15.1 Interpolation of constant attributes .. 3228
16. STAGING REGISTERS ... 3228
17. THE PARAMETER CACHE ... 3430
18. VERTEX POSITION EXPORTING ... 3530

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 623 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

19. EXPORTING ARBITRATION .. 3530
20. EXPORTING RULES ... 3530
20.1 Parameter caches exports .. 3530
20.2 Memory exports .. 3530
20.3 Position exports ... 3530
21. EXPORT TYPES .. 3530
21.1 Vertex Shading .. 3531
21.2 Pixel Shading .. 3531
22. SPECIAL INTERPOLATION MODES ... 3631
22.1 Real time commands .. 3631
22.2 Sprites/ XY screen coordinates/ FB information .. 3631
22.3 Auto generated counters ... 3632

22.3.1 Vertex shaders ... 3732

22.3.2 Pixel shaders .. 3732
23. STATE MANAGEMENT .. 3733
23.1 Parameter cache synchronization ... 3733
24. XY ADDRESS IMPORTS ... 3733
24.1 Vertex indexes imports .. 3833
25. REGISTERS .. 3833
25.1 Control ... 3833
25.2 Context .. 3833
26. DEBUG REGISTERS... 3934
26.1 Context .. 3934
26.2 Control ... 3934

27. INTERFACES .. 3935

27.1 External Interfaces .. 3935
27.2 SC to SP Interfaces ... 3935

27.2.1 SC_SP# ... 3935

27.2.2 SC_SQ ... 4036

27.2.3 SQ to SX: Interpolator bus ... 4237

27.2.4 SQ to SP: Staging Register Data ... 4237

27.2.5 VGT to SQ : Vertex interface .. 4238

27.2.6 SQ to SX: Control bus .. 4641

27.2.7 SX to SQ : Output file control ... 4641

27.2.8 SQ to TP: Control bus .. 4641

27.2.9 TP to SQ: Texture stall ... 4742

27.2.10 SQ to SP: Texture stall ... 4742

27.2.11 SQ to SP: GPR and auto counter .. 4742

27.2.12 SQ to SPx: Instructions .. 4843

27.2.13 SP to SQ: Constant address load/ Predicate Set ... 4843

27.2.14 SQ to SPx: constant broadcast .. 4944

27.2.15 SP0 to SQ: Kill vector load ... 4944

27.2.16 SQ to CP: RBBM bus ... 4944

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 624 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

4 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

27.2.17 CP to SQ: RBBM bus ... 4944

27.2.18 SQ to CP: State report ... 4944
28. OPEN ISSUES ... 5244
1. OVERVIEW .. 6
1.1 Top Level Block Diagram ... 8
1.2 Data Flow graph (SP) ... 10
1.3 Control Graph ... 11
2. INTERPOLATED DATA BUS .. 11
3. INSTRUCTION STORE ... 14
4. SEQUENCER INSTRUCTIONS ... 16
5. CONSTANT STORES .. 16
5.1 Memory organizations .. 16
5.2 Management of the Control Flow Constants .. 16
5.3 Management of the re-mapping tables .. 16

5.3.1 R400 Constant management .. 16

5.3.2 Proposal for R400LE constant management .. 17

5.3.3 Dirty bits .. 19

5.3.4 Free List Block .. 19

5.3.5 De-allocate Block .. 20

5.3.6 Operation of Incremental model .. 20
5.4 Constant Store Indexing ... 20
5.5 Real Time Commands.. 21
5.6 Constant Waterfalling ... 21
6. LOOPING AND BRANCHES ... 22
6.1 The controlling state. .. 22
6.2 The Control Flow Program ... 22
6.3 Data dependant predicate instructions ... 24
6.4 HW Detection of PV,PS ... 25
6.5 Register file indexing .. 25
6.6 Predicated Instruction support for Texture clauses .. 25
6.7 Debugging the Shaders ... 25

6.7.1 Method 1: Debugging registers ... 25

6.7.2 Method 2: Exporting the values in the GPRs (12) ... 26
7. PIXEL KILL MASK .. 26
8. MULTIPASS VERTEX SHADERS (HOS) .. 26
9. REGISTER FILE ALLOCATION .. 26
10. FETCH ARBITRATION .. 28
11. ALU ARBITRATION .. 28
12. HANDLING STALLS ... 29
13. CONTENT OF THE RESERVATION STATION FIFOS ... 29
14. THE OUTPUT FILE.. 29
15. IJ FORMAT .. 29
15.1 Interpolation of constant attributes .. 30
16. STAGING REGISTERS ... 30
17. THE PARAMETER CACHE ... 32

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 625 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

18. VERTEX POSITION EXPORTING ... 32
19. EXPORTING ARBITRATION .. 32
20. EXPORT TYPES .. 32
20.1 Vertex Shading .. 32
20.2 Pixel Shading .. 33
21. SPECIAL INTERPOLATION MODES ... 33
21.1 Real time commands .. 33
21.2 Sprites/ XY screen coordinates/ FB information .. 33
21.3 Auto generated counters ... 34

21.3.1 Vertex shaders ... 34

21.3.2 Pixel shaders .. 34
22. STATE MANAGEMENT .. 34
22.1 Parameter cache synchronization ... 34
23. XY ADDRESS IMPORTS ... 35
23.1 Vertex indexes imports .. 35
24. REGISTERS .. 35
24.1 Control ... 35
24.2 Context .. 35
25. DEBUG REGISTERS... 36
25.1 Context .. 36
25.2 Control ... 36

26. INTERFACES .. 36

26.1 External Interfaces .. 36

26.1.1 SC to SQ : IJ Control bus .. 37

26.1.2 SQ to SP: Interpolator bus ... 37

26.1.3 SQ to SX: Interpolator bus ... 37

26.1.4 SQ to SP: Staging Register Data ... 38

26.1.5 PA to SQ : Vertex interface .. 38

26.1.6 SQ to CP: State report ... 41

26.1.7 SQ to SX: Control bus .. 41

26.1.8 SX to SQ : Output file control ... 41

26.1.9 SQ to TP: Control bus .. 41

26.1.10 TP to SQ: Texture stall ... 42

26.1.11 SQ to SP: Texture stall ... 42

26.1.12 SQ to SP: GPR and auto counter .. 42

26.1.13 SQ to SPx: Instructions .. 43

26.1.14 SP to SQ: Constant address load/ Predicate Set ... 44

26.1.15 SQ to SPx: constant broadcast .. 44

26.1.16 SP0 to SQ: Kill vector load ... 44

26.1.17 SQ to CP: RBBM bus ... 44

26.1.18 CP to SQ: RBBM bus ... 44
27. EXAMPLES OF PROGRAM EXECUTIONS .. 45

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 626 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

6 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

27.1.1 Sequencer Control of a Vector of Vertices ... 45

27.1.2 Sequencer Control of a Vector of Pixels .. 46

27.1.3 Notes .. 47
28. OPEN ISSUES ... 47

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 627 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

 Changed the control flow method to be more
flexible. Also updated the external interfaces.

Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

 Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001

 Refined interfaces to RB. Added state registers.

Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

 Added SEQ→SP0 interfaces. Changed delta
precision. Changed VGT→SP0 interface. Debug
Methods added.

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001

 Interfaces greatly refined. Cleaned up the spec.

Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001

 Added the different interpolation modes.

Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

 Added the auto incrementing counters. Changed
the VGT→SQ interface. Added content on constant
management. Updated GPRs.

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

 Removed from the spec all interfaces that weren’t
directly tied to the SQ. Added explanations on
constant management. Added PA→SQ
synchronization fields and explanation.

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

 Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002

 Added Real Time parameter control in the SX
interface. Updated the control flow section.

Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

 New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002

 Rearangement of the CF instruction bits in order to
ensure byte alignement.

Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002

 Updated the interfaces and added a section on
exporting rules.

Rev 1.11 (Laurent Lefebvre)
Date :

 Added CP state report interface. Last version of the
spec with the old control flow scheme

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 628 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

8 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1. Overview
The sequencer is based on the R300 design. It chooses two ALU clauses and a fetch clause to execute, and
executes all of the instructions in a clause before looking for a new clause of the same type. Two ALU clauses are
executed interleaved to hide the ALU latency. Each vector will have eight fetch and eight ALU clauses, but clauses do
not need to contain instructions. A vector of pixels or vertices ping-pongs along the sequencer FIFO, bouncing from
fetch reservation station to alu reservation station. A FIFO exists between each reservation stage, holding up vectors
until the vector currently occupying a reservation station has left. A vector at a reservation station can be chosen to
execute. The sequencer looks at all eight alu reservation stations to choose an alu clause to execute and all eight
fetch stations to choose a fetch clause to execute. The arbitrator will give priority to clauses/reservation stations
closer to the bottom of the pipeline. It will not execute an alu clause until the fetch fetches initiated by the previous
fetch clause have completed. There are two separate sets of reservation stations, one for pixel vectors and one for
vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 629 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ

SC

SPSPSPCSTOREFETCH STATE

TP

INST STORE

IJ CONTROL

IJ
CONTROL

CST
ADDR

INST
 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/QUAD
ADDRESSES

SP

ALU INST

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

INST

INTER INTER INTER INTER

IJ CROSSBAR

2 QUADS IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC READ
 POINTERS

PARAM
DATA

R/W ADDR

Vertex indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

CP

CONSTANT
LOAD

CPConstant Load

TX ADDR

PC Write
Address

TEX INST

CF
CONSTANTS

Register
Mapped

CF Read

Figure 1: General Sequencer overview

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 630 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

10 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.1 Top Level Block Diagram

vertex/pixel vector arbitrator

Possible delay for available GPR’s

FIFO
Texture clause 0
reservation station

Texture clause 1
reservation station

FIFO
ALU clause 0
reservation station

FIFO

Texture clause 2
reservation station

Texture clause 3
reservation station

FIFO
ALU clause 1
reservation station

FIFO

FIFO
ALU clause 2
reservation station

FIFO

FIFO
ALU clause 3
reservation station

FIFO
Texture clause 4
reservation station

Texture clause 5
reservation station

FIFO
ALU clause 4
reservation station

FIFO

Texture clause 6
reservation station

Texture clause 7
reservation station

FIFO
ALU clause 5
reservation station

FIFO

FIFO
ALU clause 6
reservation station

FIFO

FIFO
ALU clause 7
reservation station

texture arbitrator

texture arbitrator

Figure 2: Reservation stations and arbiters

There are two sets of the above figure, one for vertices and one for pixels.

Depending on the arbitration state, the sequencer will either choose a vertex or a pixel packet. The control packet
consists of 3 bits of state, 7 bits for the base address of the Shader program and some information on the coverage to
determine fetch LOD plus other various small state bits.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 631 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the GPRs to store the interpolated values and temporaries. Following this, the barycentric coordinates (and XY
screen position if needed) are sent to the interpolator, which will use them to interpolate the parameters and place the
results into the GPRs. Then, the input state machine stacks the packet in the first FIFO.

On receipt of a command, the level 0 fetch machine issues a fetch request to the TP and corresponding GPR
address for the fetch address (ta). A small command (tcmd) is passed to the fetch system identifying the current level
number (0) as well as the GPR write address for the fetch return data. One fetch request is sent every 4 clocks
causing the texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the requests are sent the packet is put in
FIFO 1.

Upon receipt of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level 0 fetch machine and sends the clause number (0) to the level 0 fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU 0 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO 1 counter and then issues a
complete set of level 0 shader instructions. For each instruction, the ALU state machine generates 3 source
addresses, one destination address and an instruction. Once the last instruction has been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbiters). One arbiter will arbitrate
over the odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4
clocks cycles). The only constraints between the two arbiters is that they are not allowed to pick the same
clause number as the other one is currently working on if the packet is not of the same type (render state).

If the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbiter must prevent ALU clause 3 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, if needed the sprite size and/or edge flags can also be sent.

A special case is for multipass vertex shaders, which can export 12 parameters per last 6 clauses to the output
buffer. If the output buffer is full or doesn’t have enough space the sequencer will prevent such a vertex group to
enter an exporting clause.

Multipass pixel shaders can export 12 parameters to memory from the last clause only (7).

All other clauses process in the same way until the packet finally reaches the last ALU machine (7).

Only one pair of interleaved ALU state machines may have access to the register file address bus or the instruction
decode bus at one time. Similarly, only one fetch state machine may have access to the register file address bus at
one time. Arbitration is performed by three arbiter blocks (two for the ALU state machines and one for the fetch state
machines). The arbiters always favor the higher number state machines, preventing a bunch of half finished jobs from
clogging up the register files.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 632 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

12 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.2 Data Flow graph (SP)

MAC

MAC

MAC

MAC

Register File

co
n

st
an

ts
 f

ro
m

 R
E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
n

ts
 f

ro
m

 R
E

S
ca

la
r

U
ni

t

texture request

texture request

texture request

texture request

te
xt

ur
e

 a
dd

re
ss

te xtu
re

 d
ata

prim
itiv e d a

ta
 from

 R
E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

Figure 3: The shader Pipe

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 633 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

SEQ

FETCH SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

OF

WrAddrIS CST

CST IDX

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 634 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

14 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x64 bits)

IJs buffer (ping-pong buffer)
(28 bits * 2 (IJ) + 8 bits * 6 (delta IJs)+4 exp

bits*6)* 16 (quads) * 2 (double-buffered)
4096 bits

32 x 128

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

64

To RB

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2

768 bits
32x24

FIX-FLOAT + EXPANSiON

Figure 5: Interpolation buffers

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 635 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SP
0

SP
1

SP
2

SP
3

WRITES
T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-
11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P1 P2

T20 T21 T22 T23

VTX

T0 T1 T2 T3

XY

XY
0-3

XY
4-7

XY
8-
11

XY
12-
15

XY
16-
19

XY
20-
23

XY
24-
27

XY
28-
31

XY
32-
35

XY
36-
39

XY
40-
43

XY
44-
47

XY
48-
51

XY
52-
55

XY
56-
59

XY
60-
63

READS

SP
0

SP
1

SP
2

SP
3

A0

A1

A2

B1

B0

C3

C0

C1

C2

C4

C5

D0

D1

D2

E0

E1

A0

A1

A2

XY
A0
XY
A1
XY
A2

B1

B0

XY
B1

XY
B0

C3

C0

C1

C2

XY
C3
XY
C0
XY
C1
XY
C2

C4

C5

XY
C4
XY
C5

D0

D1

D2

XY
D1
XY
D2

XY
D0

E0

E1
XY
E1

XY
E0

Figure 6: Interpolation timing diagram

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 636 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

16 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store
There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The next picture shows the various modes the CP can load the memory. The Sequencer has to keep track of the
loading modes in order to wrap around the correct boundaries. The wrap-around points are arbitrary and they are
specified in the VS_BASE and PIX_BASE control registers. The VS_BASE and PS_BASE context registers are used
to specify for each context where its shader is in the instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 637 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

R400 CP's Views of Instruction Memory Updated: 11/14/2001
John A. Carey

0

4095

Real-Time &
Shared Code

VERTEX_SHADER_BASE

PIXEL_SHADER_BASE

VS Code A

VS Code B

VS Code C

PS Code A

PS Code B

PS Code C

CP writes code start
addresses to
appropriate Sub-
Blocks so Sequencer
knows where to start
executing the code.

MODE 0 - Dual Ring
0

4095

Real-Time &
Shared Code

VERTEX_SHADER_BASE

VS Code A

VS Code B

VS Code C

PS Code A

PS Code B

PS Code C

MODE 1 - Single Ring

CP writes code start
addresses to
appropriate Sub-
Blocks so Sequencer
knows where to start
executing the code.

4. Figure 7: The CP's view of the instruction memory
Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 638 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

18 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

5.4. Sequencer Instructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS) if they have nothing else to do.

6.5. Constant Stores

6.15.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

6.25.2 Management of the Control Flow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied whenever there is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn’t write to CF the state is going to use the previous CF constants.

6.35.3 Management of the re-mapping tables

6.3.15.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 639 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

6.3.25.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROL packet of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it with
the new state (this is depicted in Figure 8: De-allocation mechanismFigure 9: De-allocation mechanismFigure 9: De-
allocation mechanism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 640 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

20 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Physical
Memory

Renaming Table
for 1 Context
Current/Last

Physical
Address

per
Logical
Address

Renaming
table

N-Contexts

Reset
Dirty
per

Logical
Address

(Only
de-

allocate
if set)

This
Context

Dirty
per

Logical
Address

(If set
don't

allocate
or de-

allocate)

Logical address
On the

GlbRegBus
when lsb are zero
first word of write

next
physical
address
ready

for allocate

Constants
location
available
WRTR

physical
address

to
schedule

for
de-alloc

Staging Data
Buffer

Staging Write Addr

Copy Last held above to
Current Context on receipt

of Set Constant for a
new context (Hide loading

behind Set State load - 16 clocks)
all other Set States just write one

entry to current state.

Free
list

(pass Phys
Address if
Context
Dirty)

Dealloc
Counts

Seq
Constant
Request

Context &
Logical
Address

Free_ptr
WritePtr

When a Logical
Address is written

that has been
written before,

store the physical
address that was
allocated by that
Logical Address

Stop_ptr
ptr to first physical

address that is
scheduled to be de-
allocated but noty
yet de-allocate.

Advanced each time
a context is freed by

the number of
physical address
displaced by that

Context

Read_ptr
ptr to physical

address that will be
used next if the init

count is at
maximum number

of physical address

Free List

Number of entries
equals Max Number of
Physical Blocks. All
Pointers start at zero
and roll around but

can never pass each
other

Free
Address

Address
to Allocate

Global Register
Data Bus

Renaming Table
Context 0 => N

Logical Address
& Context

Physical
Address

Context 0 (8 rows of 16 - 8 bit
physical => 128 entries copy in

eight clocks)

Context 1

Context N

Current/Last
Context

(8 rows of 16 - 8
bit physical =>

128 entries copy
in eight clocks)

Figure 78: Constant management

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 641 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

DEALOC
COUNTERSFree List

!=

OR

AND

NOT

ADDR

PREVIOUS
STATE

NEW
STATE

SQ_IDLE

CP_NEW_STATE_CNTL
PA_IDLE

VALUE

VALID

CNT VALUE

SQ_STATE#

WRITE_ENABLE

REMAPPING
TABLE

SET CTX BITS

Figure 89: De-allocation mechanism for R400LE

6.3.35.3.3 Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

6.3.45.3.4 Free List Block
A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 642 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

22 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

6.3.55.3.5 De-allocate Block
This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any number of blocks in one clock.

6.3.65.3.6 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

6.45.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 643 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

6.55.5 Real Time Commands
The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
works is the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zones is defined by the TSTATE_EO_RT control register.

6.65.6 Constant Waterfalling
In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenever a state is freed.

CONST_EO_RT

RT SECTON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table)

Figure 910: The instruction store

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 644 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

24 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

7.6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

7.16.1 The controlling state.
The R400 controling state consists of:

Boolean[256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

7.26.2 The Control Flow Program
Examples of control flow programs are located in the R400 programming guide document.

The basic model is as follows:

The render state defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located

A pointer value of FF means that the clause doesn’t contain any instructions.

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The control program is the only program aware of the clause
boundaries.

The control program has nine basic instructions:

Execute
Conditional_execute
Conditional_Execute_Predicates
Conditional_jump
Conditionnal_Call
Return
Loop_start
Loop_end
NOP

Execute, causes the specified number of instructions in instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified number of instructions in instruction
store to be executed.
Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified number of instructions.
Conditionnal_Call jumps to an address and pushes the IP counter on the stack if the condition is met. On the return
instruction, the IP is popped from the stack.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 645 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Conditional_execute_Predicates executes a block of instructions if all bits in the predicate vectors meet the condition.
Conditional_jumps jumps to an address if the condition is met.
NOP is a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSES since there are two control flow instructions per
memory line. Thus the compiler must insert NOPs where needed to align the jumps on even CFP addresses.

Also if the jump is logically bigger than pshader_cntl_size (or vshader_cntl_size) we break the program (clause) and
set the debug registers. If an execute or conditional_execute is lower than cntl_size or bigger than size we also break
the program (clause) and set the debug registers.

We have to fit instructions into 48 bits in order to be able to put two control flow instruction per line in the instruction
store.

A value of 1 in the Addressing means that the address specified in the Exec Address field (or in the jump address
field) is an ABSOLUTE address. If the addressing field is cleared (should be the default) then the address is relative
to the base of the current shader program.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

Execute
47 46… 42 41 40 … 24 23 … 12 11 … 0

Addressing 00001 Last RESERVED Instruction
count

Exec Address

Execute up to 4k instructions at the specified address in the instruction memory. If Last is set, this is the last group of
instructions of the clause.

NOP
47 46 … 42 41 40 … 0

Addressing 00010 Last RESERVED

This is a regular NOP. If Last is set, this is the last instruction of the clause.

Conditional_Execute

47 46 … 42 41 40 39 … 32 31 30 … 24 23 … 12 11 … 0
Addressing 00011 Last RESERVED Boolean

address
Condition RESERVED Instruction

count
Exec

Address

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 4k instructions). If Last is set, then if the condition is met, this is the last group of instructions to be
executed in the clause. If the condition is not met, we go on to the next control flow instruction.

Conditional_Execute_Predicates
47 46 … 42 41 40 … 34 33 … 32 31 30 … 24 23 … 12 11 … 0

Addressing 00100 Last RESERVED Predicate
vector

Condition RESERVED Instruction
count

Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid. If Last is
set, then if the condition is met, this is the last group of instructions to be executed in the clause. If the condition is not
met, we go on to the next control flow instruction.

Loop_Start
47 46 … 42 41 … 17 16 … 12 11 … 0

Addressing

00101 RESERVED loop ID Jump address

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 646 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

26 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Loop_End
47 46 … 42 41 … 17 16 … 12 11 … 0

Addressing

00110 RESERVED loop ID start address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal_Call
47 46 … 42 41 … 34 33 … 32 31 30 … 12 11 … 0

Addressing

00111 RESERVED Predicate
vector

Condition RESERVED Jump address

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack.

Return
47 46 … 42 41 … 0

Addressing

01000 RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump
47 46 … 42 41 … 40 39 … 32 31 30 29 … 12 11 … 0

Addressing

01001 RESERVED Boolean
address

Condition FW only RESERVED Jump address

If condition met, jumps to the address. FORWARD jump only allowed if bit 31 set. Bit 31 is only an optimization for the
compiler and should NOT be exposed to the API.

To prevent infinite loops, we will keep 9 bits loop iterators instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start instruction is going to break the loop and set the
debug GPRs.

7.36.3 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETNE_# - similar to SETNE except that the result is 'exported' to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE0_# – SETE0
 PRED_SETE1_# – SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 647 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

 P0_ADD_# R0,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

7.46.4 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

7.56.5 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

The sequencer is going to keep a loop index computed as such:

 Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128…127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

7.66.6 Predicated Instruction support for Texture clauses
For texture clauses, we support the following optimization: we keep 1 bit (thus 4 bits for the four predicate vectors)
per predicate vector in the reservation stations. A value of 1 means that one ore more elements in the vector have a
value of one (thus we have to do the texture fetches for the whole vector). A value of 0 means that no elements in the
vector have his predicate bit set and we can thus skip over the texture fetch. We have to make sure the invalid
pixels aren’t considered with this optimization.

7.76.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 648 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

28 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

7.7.16.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
 - jump errors
 relative jump address > size of the control flow program
 - call stack
 call with stack full

return with stack empty

A jump error will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only break if
the DB_PROB_BREAK register is set.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the 0th
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

7.7.26.7.2 Method 2: Exporting the values in the GPRs (12)
The sequencer will have a count register and an address register for this mode and 3 bits per clause specifying the
execution mode for each clause. The modes can be :

1) Normal
2) Debug Kill
3) Debug Addr + Count

Under the normal mode execution follows the normal course. Under the kill mode, all control flow instructions are
executed but all normal shader instructions of the clause are replaced by NOPs. Only debug_export instructions of
clause 7 will be executed under the debug kill setting. Under the other mode, normal execution is done until we reach
an address specified by the address register and instruction count (useful for loops) specified by the count register.
After we have hit the instruction n times (n=count) we switch the clause to the kill mode.

Under the debug mode (debug kill OR debug Addr + count), it is assumed that clause 7 is always exporting 12 debug
vectors and that all other exports to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by
the sequencer (even if they occur before the address stated by the ADDR debug register).

8.7. Pixel Kill Mask
A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE

 MASK_SETGT
 MASK_SETGTE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 649 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

9.8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

10.9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZE for pixels.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 650 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

30 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

11.10. Fetch Arbitration
The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

12.11. ALU Arbitration
ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…
 Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 651 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

13.12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the exporting clause (3?). The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

14.13. Content of the reservation station FIFOs
The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

15.14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

16.15. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel’s parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming P0 is the interpolated parameter at Pixel 0 having the barycentric coordinates I(0), J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at V0 (interpolated with I), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

)(*03)(*0303

)(*02)(*0202

)(*01)(*0101

)(*)0()(*)0(0

)0()3(03

)0()3(03

)0()2(02

)0()2(02

)0()1(01

)0()1(01

CBJCAIPP

CBJCAIPP

CBJCAIPP

CBJCAICP

JJJ

III

JJJ

III

JJJ

III

P0 is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2

P0

P2

P1

P3

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 652 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

32 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Adds: 8

FORMAT OF P0’s IJ : Mantissa 20 Exp 4 for I + Sign
 Mantissa 20 Exp 4 for J + Sign

FORMAT of Deltas (x3): Mantissa 8 Exp 4 for I + Sign
 Mantissa 8 Exp 4 for J + Sign

Total number of bits : 20*2 + 8*6 + 4*8 + 4*2 = 128

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the number is
normalized if not, then the number is un-normalized. The maximum range for the IJs (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

16.115.1 Interpolation of constant attributes
Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

We start with the premise that if A = B and B = C and C = A, then P0,1,2,3 = A. Since one or more of the IJ terms
may be zero, so we extend this to:

if (A=B and B=C and C=A)
 P0,1,2,3 = A;
else if ((I = 0) or (J = 0)) and
 ((J = 0) or (1-I-J = 0)) and
 ((1-J-I = 0) or (I = 0))) {
 if(I != 0) {
 P0 = A;
 } else if(J != 0) {
 P0 = B;
 } else {
 P0 = C;
 }
 //rest of the quad interpolated normally
}
else
{
 normal interpolation
}

17.16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 || 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencer will re-arrange them in this fashion:

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 || 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 || 8 9 10 11 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the VGT will send padding to account for
the missing pipe. For example, if SP1 is broken, vertices 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sent
by the VGT to the SQ BUT will not be processed by the SP and thus should be considered invalid (by the SU and
VGT).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 653 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

33 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 11Figure 12Figure 12. The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure 10Figure 11Figure 11.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11631 60.57813per bit

Area of 96x8-deep Latch Memory 46524
Area of 24-bit Fix-to-float Converter 4712per converter

Method 1 Block Quantity Area

 F2F 3 14136

 8x96 Latch 16 744384

 758520

Figure 1011:Area Estimate for VGT to Shader Interface

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 654 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

34 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SHADER PIPE

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

3
2

3
2

3
2

VGT BLOCK
(IN PA)

3
2

9
6

VECTOR ENGINE

96

8x96
MEMORY
1-READ
1-WRITE

3 OTHER
SHADER
PIPES

 3 Fix->Float Converters (24-bit)
 16 Memories 8x96-bit (12,288 bits)

Totals:

THREE MORE VECTOR ENGINES
PER SHADER PIPE

VECTOR ENGINE

SHADER
SEQUENCER

Figure 1112:VGT to Shader Interface

18.17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER
4 bits

ADDRESS
7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT_7 (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT_7 = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17th) is going to have the address 00000001000, the 18th 00010001000, the 19th 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add
2*VS_EXPORT_COUNT_7to Current_Location and reset the memory count to 0 before the next vector begins).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 655 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

35 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

19.18. Vertex position exporting
On clause 3 the vertex shader can export to the PA both the vertex position and the point sprite. It can also do so at
clause 7 if not done at clause 3. The storage needed to perform the position export is at least 64x128 memories for
the position and 64x32 memories for the sprite size. It is going to be taken in the pixel output fifo from the SX blocks.
The clause where the position export occurs is specified by the EXPORT_LATE register. If turned on, it means that
the export is going to occur at ALU clause 7 if unset position export occurs at clause 3.

20.19. Exporting Arbitration
Here are the rules for co-issuing exporting ALU clauses.

1) Position exports and position exports cannot be co-issued.

All other types of exports can be co-issued as long as there is place in the receiving buffer.

21.20. Exporting Rules

21.120.1 Parameter caches exports
We support masking and out of order exports to the parameter caches. So one can export multiple times to the same
PC line using different masks.

21.220.2 Memory exports
Memory exports don’t support masking. However, you can export out of order to memory locations.

21.320.3 Position exports
Position exports have to be done IN ORDER and don’t support masking.

22.21. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

22.121.1 Vertex Shading
 0:15 - 16 parameter cache
 16:3131 - Empty (Reserved?)

32 - Export Address
 3233:43 40 - 12 8 vertex exports to the frame buffer and index
 4441:47 - Empty
 48:5955 - 12 8 debug export (interpret as normal vertex export)
 60 - export addressing mode
 61 - Empty
 62 - position
 63 - sprite size export that goes with position export
 (point_h,point_w,edgeflag,misc)

22.221.2 Pixel Shading
 0 - Color for buffer 0 (primary)
 1 - Color for buffer 1
 2 - Color for buffer 2
 3 - Color for buffer 3
 4:7 - Empty

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 656 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

36 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 8 - Buffer 0 Color/Fog (primary)
 9 - Buffer 1 Color/Fog
 10 - Buffer 2 Color/Fog
 11 - Buffer 3 Color/Fog
 12:15 - Empty
 16:3131 - Empty (Reserved?)
 32 - Export Address
 3233:4340 - 12 8 exports for multipass pixel shaders.
 4441:47 - Empty
 48:5955 - 12 8 debug exports (interpret as normal pixel export)
 60 - export addressing mode
 61:62 - Empty
 63 - Z for primary buffer (Z exported to 'alpha' component)

23.22. Special Interpolation modes

23.122.1 Real time commands
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem I see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft’s high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This mode is triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

23.222.2 Sprites/ XY screen coordinates/ FB information
When working with sprites, one may want to overwrite the parameter 0 with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_I0 register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Here is a list of all the modes and how they interact
together:

Gen_st is a bit taken from the interface between the SC and the SQ. This is the MSB of the primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between 0 and 1.

Param_Gen_I0 disable, snd_xy disable, no gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy disable, gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy enable, no gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy enable, gen_st – I0 = No modification
Param_Gen_I0 enable, snd_xy disable, no gen_st – I0 = garbage, garbage, garbage, faceness
Param_Gen_I0 enable, snd_xy disable, gen_st – I0 = garbage, garbage, s, t
Param_Gen_I0 enable, snd_xy enable, no gen_st – I0 = screen x, screen y, garbage, faceness
Param_Gen_I0 enable, snd_xy enable, gen_st – I0 = screen x, screen y, s, t

23.322.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1st pass data to memory and then use the count to retrieve the data on the 2nd pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. The sequencer is going to
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 657 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

37 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

GPRs the counter is incremented. Every time a state change is detected, the corresponding counter is reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

23.3.122.3.1 Vertex shaders
In the case of vertex shaders, if GEN_INDEX is set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

23.3.222.3.2 Pixel shaders
In the case of pixel shaders, if GEN_INDEX is set and Param_Gen_I0 is enabled, the data will be put in the x field of
the 2nd register (R1.x), else if GEN_INDEX is set the data will be put into the x field of the 1st register (R0.x).

AUTO
COUNT

STG 0

STG1

INTERPOLATORS

GPR0

AUTO COUNT 000000

MUX

The Auto Count Value is
broadcast to all GPRs. It is

loaded into a register wich has
its LSBs hardwired to the

GPR number (0 thru 63). Then
if GEN_INDEX is high, the
mux selects the auto-count

value and it is loaded into the
GPRs to be either used to

retrieve data using the TP or
sent to the SX for the RB to

use it to write the data to
memory

Figure 1213: GPR input mux Control

24.23. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

24.123.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

25.24. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 658 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

38 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

interpolate the IJ data or pass the XY data thru a Fix→float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 22.2 for details on how to control the interpolation in this mode.

25.124.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

26.25. Registers

26.125.1 Control
REG_DYNAMIC Dynamic allocation (pixel/vertex) of the register file on or off.
REG_SIZE_PIX Size of the register file's pixel portion (minimal size when dynamic allocation turned

on)
REG_SIZE_VTX Size of the register file's vertex portion (minimal size when dynamic allocation turned

on)
ARBITRATION_POLICY policy of the arbitration between vertexes and pixels
INST_STORE_ALLOC interleaved, separate
INST_BASE_VTX start point for the vertex instruction store (RT always ends at vertex_base and

Begins at 0)
INST_BASE_PIX start point for the pixel shader instruction store
ONE_THREAD debug state register. Only allows one program at a time into the GPRs
ONE_ALU debug state register. Only allows one ALU program at a time to be executed (instead

of 2)
INSTRUCTION This is where the CP puts the base address of the instruction writes and type (auto-

incremented on reads/writes) Register mapped
CONSTANTS 512*4 ALU constants + 32*6 Texture state 32 bits registers (logically mapped)
CONSTANTS_RT 256*4 ALU constants + 32*6 texture states? (physically mapped)
CONSTANT_EO_RT This is the size of the space reserved for real time in the constant store (from 0 to

CONSTANT_EO_RT). The re-mapping table operates on the rest of the memory
TSTATE_EO_RT This is the size of the space reserved for real time in the fetch state store (from 0 to

TSTATE_EO_RT). The re-mapping table operates on the rest of the memory
EXPORT_LATE Controls whether or not we are exporting position from clause 3. If set, position

exports occur at clause 7.

26.225.2 Context
VS_FETCH_{0…7} eight 8 bit pointers to the location where each clauses control program is located
VS_ALU_{0…7} eight 8 bit pointers to the location where each clauses control program is located
PS_FETCH_{0…7} eight 8 bit pointers to the location where each clauses control program is located
PS_ALU_{0…7} eight 8 bit pointers to the location where each clauses control program is located
PS_BASE base pointer for the pixel shader in the instruction store
VS_BASE base pointer for the vertex shader in the instruction store
VS_CF_SIZE size of the vertex shader (# of instructions in control program/2)
PS_CF_SIZE size of the pixel shader (# of instructions in control program/2)
PS_SIZE size of the pixel shader (cntl+instructions)
VS_SIZE size of the vertex shader (cntl+instructions)
PS_NUM_REG number of GPRs to allocate for pixel shader programs
VS_NUM_REG number of GPRs to allocate for vertex shader programs
PARAM_SHADE One 16 bit register specifying which parameters are to be gouraud shaded (0 = flat, 1

= gouraud)
PROVO_VERT 0 : vertex 0, 1: vertex 1, 2: vertex 2, 3: Last vertex of the primitive
PARAM_WRAP 64 bits: for which parameters (and channels (xyzw)) do we do the cyl wrapping

(0=linear, 1=cylindrical).
PS_EXPORT_MODE 0xxxx : Normal mode
 1xxxx : Multipass mode

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 659 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

39 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 If normal, bbbz where bbb is how many colors (0-4) and z is export z or not
 If multipass 1-12 exports for color.
VS_EXPORT_MODE 0: position (1 vector), 1: position (2 vectors), 3:multipass
VS_EXPORT
COUNT{0…6} Six 4 bit counters representing the # of interpolated parameters exported in clause 7

(located in VS_EXPORT_COUNT_6) OR
 # of exported vectors to memory per clause in multipass mode (per clause)
PARAM_GEN_I0 Do we overwrite or not the parameter 0 with XY data and generated T and S values
GEN_INDEX Auto generates an address from 0 to XX. Puts the results into R0-1 for pixel shaders

and R2 for vertex shaders
CONST_BASE_VTX (9 bits) Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Turns on the predicate bit optimization (if of, conditional_execute_predicates is

always executed).
CF_BOOLEANS 256 boolean bits
CF_LOOP_COUNT 32x8 bit counters (number of times we traverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in index computation)

27.26. DEBUG Registers

27.126.1 Context
DB_PROB_ADDR instruction address where the first problem occurred
DB_PROB_COUNT number of problems encountered during the execution of the program
DB_PROB_BREAK break the clause if an error is found.
DB_INST_COUNT instruction counter for debug method 2
DB_BREAK_ADDR break address for method number 2
DB_CLAUSE
_MODE_ALU_{0…7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)
DB_CLAUSE
_MODE_FETCH_{0…7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)

27.226.2 Control
DB_ALUCST_MEMSIZE Size of the physical ALU constant memory
DB_TSTATE_MEMSIZE Size of the physical texture state memory

28.27. Interfaces

28.127.1 External Interfaces
Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ→SPx it means that SQ is going to broadcast the same information to all SP instances.

28.227.2 SC to SP Interfaces

28.2.127.2.1 SC_SP#
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the I,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 660 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

40 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The actual data which is transferred per quad is
 Ref Pix I => S4.20 Floating Point I value
 Ref Pix J => S4.20 Floating Point J value
 Delta Pix I (x3) => S4.8 Floating Point Delta I value
 Delta Pix J (x3) => S4.8 Floating Point Delta J value
This equates to a total of 128 bits which transferred over 2 clocks
and therefor needs an interface 64 bits wide

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a IJ_BUF_INUSE_COUNT in the SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNT count. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2, if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of I,J data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,SQ and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple mode first with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performance hit.)

Name Bits Description
SC_SP#_data 64 IJ information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bit)

Type 0 or 1, First clock I, second clk J
Field ULC URC LLC LRC
 Bits [63:39] [38:26] [25:13] [12:0]
Format SE4M20 SE4M8 SE4M8 SE4M8
Type 2
Field Face X Y
 Bits [63] [23:12] [11:0]
Format Bit Unsigned Unsigned

SC_SP#_valid 1 Valid
SC_SP#_last_quad_data 1 This bit will be set on the last transfer of data per quad.
SC_SP#_type 2 0 -> Indicates centroids

1 -> Indicates centers
2 -> Indicates X,Y Data and faceness on data bus
The SC shall look at state data to determine how many types to send for the
interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP block will have neither because the instantiation will insert the prefix.

28.2.227.2.2 SC_SQ
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 92 bits) could be folded in half to approx 46 47
bits.

Name Bits Description
SC_SQ_data 46 Control Data sent to the SQ

1 clk transfers
 Event – valid data consist of event_id and

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 661 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

41 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 state_id. Instruct SQ to post an
 event vector to send state id and
 event_id through request fifo
 and onto the reservation stations
 making sure state id and/or event_id
 gets back to the CP. Events only
 follow end of packets so no pixel
 vectors will be in progress.

 Empty Quad Mask – Transfer Control data
 consisting of pc_dealloc
 or new_vector. Receipt of this is to
 transfer pc_dealloc or new_vector
 without any valid quad data. New
 vector will always be posted to
 request fifo and pc_dealloc will be
 attached to any pixel vector
 outstanding or posted in request fifo
 if no valid quad outstanding.
2 clk transfers
 Quad Data Valid – Sending quad data with or
 without new_vector or pc_dealloc.
 New vector will be posted to request
 fifo with or without a pixel vector and
 pc_dealloc will be posted with a pixel
 vector unless none is in progress. In
 this case the pc_dealloc will be
 posted in the request queue.
 Filler quads will be transferred with
 The Quad mask set but the pixel
 corresponding pixel mask set to
 zero.

SC_SQ_valid 1 SC sending valid data, 2nd clk could be all zeroes

SC_SQ_data – first clock and second clock transfers are shown in the table below.

Name BitField Bits Description

1st Clock Transfer

SC_SQ_event 0 1 This transfer is a 1 clock event vector
Force quad_mask = new_vector=pc_dealloc=0

SC_SQ_event_id [2:1] 2 This field identifies the event
0 => denotes an End Of State Event
1 => TBD

SC_SQ_pc_dealloc [5:3]3 31 Deallocation token for the Parameter Cache
SC_SQ_new_vector 64 1 The SQ must wait for Vertex shader done count > 0

and after dispatching the Pixel Vector the SQ will
decrement the count.

SC_SQ_quad_mask [108:75] 4 Quad Write mask left to right SP0 => SP3
SC_SQ_end_of_prim 119 1 End Of the primitive
SC_SQ_state_id [142:120] 3 State/constant pointer (6*3+3)
SC_SQ_pix_mask [3028:153] 16 Valid bits for all pixels SP0=>SP3 (UL,UR,LL,LR)
SC_SQ_prim_type [331:3129] 3 Stippled line and Real time command need to load tex

cords from alternate buffer
000: Normal
100010: Realtime
101: Line AA

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 662 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

42 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

110: Point AA (Sprite)
SC_SQ_provok_vtxSC_SQ_pc_ptr
0

[35:34][42:32] 211 Provoking vertex for flat shadingParameter Cache
pointer for vertex 0

SC_SQ_pc_ptr0 [46:36] 11 Parameter Cache pointer for vertex 0
2nd Clock Transfer
SC_SQ_pc_ptr1 [10:0] 11 Parameter Cache pointer for vertex 1
SC_SQ_pc_ptr2 [21:11] 11 Parameter Cache pointer for vertex 2
SC_SQ_lod_correct [45:22] 24 LOD correction per quad (6 bits per quad)

Name Bits Description
SQ_SC_free_buff 1 Pipelined bit that instructs SC to decrement count of buffers in use.
SQ_SC_dec_cntr_cnt 1 Pipelined bit that instructs SC to decrement count of new vector and/or event

sent to prevent SC from overflowing SQ interpolator/Reservation request fifo.

The scan converter will submit a partial vector whenever:

1.) He gets a primitive marked with an end of packet signal.
2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been

marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal made it through and thus the hang.)

28.2.327.2.3 SQ to SX: Interpolator bus
Name Direction Bits Description
SQ_SXx_interp_flat_vtx SQ→SPx 2 Provoking vertex for flat shading
SQ_SXx_interp_flat_gouraud SQ→SPx 1 Flat or gouraud shading
SQ_SXx_interp_cyl_wrap SQ→SPx 4 Wich channel needs to be cylindrical wrapped
SQ_SXx_pc_ptr01 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr12 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr23 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_rt_sel SQ→SXx 1 Selects between RT and Normal data
SQ_SXx_pc_wr_en SQ→SXx 1 Write enable for the PC memories
SQ_SXx_pc_wr_addr SQ→SXx 7 Write address for the PCs
SQ_SXx_pc_channel_mask SQ→SXx 4 Channel mask

28.2.427.2.4 SQ to SP: Staging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.
Name Direction Bits Description
SQ_SPx_vsr_data SQ→SPx 96 Pointers of indexes or HOS surface information
SQ_SPx_vsr_double SQ→SPx 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0_ vsr_valid SQ→SP0 1 Data is valid
SQ_SP1_ vsr_ valid SQ→SP1 1 Data is valid
SQ_SP2_ vsr_ valid SQ→SP2 1 Data is valid
SQ_SP3_ vsr_ valid SQ→SP3 1 Data is valid
SQ_SPx_vsr_read SQ→SPx 1 Increment the read pointers

28.2.527.2.5 VGT to SQ : Vertex interface

28.2.5.127.2.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 663 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

43 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide.

Name Bits Description
VGT_SQ_vsisr_data 96 Pointers of indexes or HOS surface information
VGT_SQ_vsisr_double 1 0: Normal 96 bits per vert 1: double 192 bits per vert
VGT_SQ_end_of_vector 1 Indicates the last VSISR data set for the current process vector (for double vector

data, "end_of_vector" is set on the second first vector)
VGT_SQ_indx_valid 1 Vsisr data is valid
VGT_SQ_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when

“VGT_SQ_vgt_end_of_vector” is high.
VGT_SQ_send 1 Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_VGT_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

28.2.5.227.2.5.2 Interface Diagrams

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 664 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

44 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

VGT

VSISR_DATA_2

END_OF_VECTOR_2

STATE_SEL_2

REG

VSISR_DOUBLE_2
REG

REG

REG

REG

REG

SEND_2

REG

REG

REG

REG

REG

REG

PA_SQ_vgt_vsisr_data

PA_SQ_vgt_vsisr_double

PA_SQ_vgt_end_of_vector

PA_SQ_vgt_state_sel

PA_SQ_vgt_send

SQ_PA_vgt_rtr

VSISR_DATA_4

END_OF_VECTOR_4

STATE_SEL_4

VSISR_DOUBLE_4

96

1

1

3

1

1

SEND_4

RTR_2 RTR_0

SHADER
SEQUENCER

RTS

101 X 4
SKID

BUFFER

SRST SRST

WE

EMPTY

RE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 665 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

45 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

6 7

6 7

6 7

0 1 2 3

0 1

8

8

8

2 43 5

4 5 6 7

4 3 2 1

8

9 10 11 12

9 10 11 12

9 10 11 12

9 10 11 12

0

RECEIVER RE-STARTS TRANSMISSION

SENDER STOPS TRANSMISSION

SQ_RTR

SQ_RTR_0

VGT_RTS

SEND_2

SEND_3

SEND_4

DATA_2

FIFO_EMPTY

FIFO_RE

SQ_RTR_1

SQ_RTR_2

DATA_3

DATA_4

FIFO_DATA_OUT

FIFO_CNT

RECEIVER STOPS TRANSMISSION

Figure 1. Detailed Logical Diagram for PA_SQ_vgt Interface.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 666 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

46 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

27.2.6 SQ to CP: State report

27.2.727.2.6 SQ to SX: Control bus
Name Direction Bits Description
SQ_SXx_exp_pix SQ→SXx 1 1: Pixel

0: Vertex
SQ_SXx_exp_clause SQ→SXx 3 Clause number, which is needed for vertex clauses
SQ_SXx_exp_state SQ→SXx 3 State ID
SQ_SXx_exp_alu_id SQ→SXx 1 ALU ID
SQ_SXx_exp_valid SQ→SXx 1 Valid bit

These fields are sent every time the sequencer picks an exporting clause for execution.

27.2.827.2.7 SX to SQ : Output file control
Name Direction Bits Description
SXx_SQ_exp_count_rdy SXx→SQ 1 Raised by SX0 to indicate that the following two

fields reflect the result of the most recent export
SXx_SQ_exp_position_availspac
e

SXx→SQ 1 Specifies whether there is room for another
position.

SXx_SQ_exp_buffer_availspace SXx→SQ 7 Specifies the space available in the output buffers.
0: buffers are full
1: 2K-bits available (32-bits for each of the 64
pixels in a clause)
...
64: 128K-bits available (16 128-bit entries for each
of 64 pixels)
65-127: RESERVED

27.2.927.2.8 SQ to TP: Control bus
Once every clock, the fetch unit sends to the sequencer on which clause it is now working and if the data in the GPRs
is ready or not. This way the sequencer can update the fetch counters for the reservation station fifos. The sequencer
also provides the instruction and constants for the fetch to execute and the address in the register file where to write
the fetch return data.

Name Direction Bits Description
TPx_SQ_data_rdy TPx→ SQ 1 Data ready
TPx_SQ_clause_num TPx→ SQ 3 Clause number

TPx_SQ_type TPx→ SQ 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_send SQ→TPx 1 Sending valid data
SQ_TPx_const SQ→TPx 48 Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instr SQ→TPx 24 Fetch instruction sent over 4 clocks
SQ_TPx_end_of_clause SQ→TPx 1 Last instruction of the clause
SQ_TPx_Type SQ→TPx 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_gpr_phase SQ→TPx 2 Write phase signal
SQ_TP0_lod_correct SQ→TP0 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP0_pix_mask SQ→TP0 4 Pixel mask 1 bit per pixel
SQ_TP1_lod_correct SQ→TP1 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pix_mask SQ→TP1 4 Pixel mask 1 bit per pixel
SQ_TP2_lod_correct SQ→TP2 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pix_mask SQ→TP2 4 Pixel mask 1 bit per pixel
SQ_TP3_lod_correct SQ→TP3 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pix_mask SQ→TP3 4 Pixel mask 1 bit per pixel
SQ_TPx_clause_num SQ→TPx 3 Clause number

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 667 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

47 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ_TPx_write_gpr_index SQ->TPx 7 Index into Register file for write of returned Fetch Data

27.2.1027.2.9 TP to SQ: Texture stall
The TP sends this signal to the SQ and the SPs when its input buffer is full. The SQ is going to send it to the SP X
clocks after reception (maximum of 3 clocks of pipeline delay).

SU0

SU3

SU2

SU1

TP_SP_fetch_Stall

SQ_SP_wr_addr

Name Direction Bits Description
TP_SQ_fetch_stall TP→ SQ 1 Do not send more texture request if asserted

27.2.1127.2.10 SQ to SP: Texture stall
Name Direction Bits Description
SQ_SPx_fetch_stall SQ→SPx 1 Do not send more texture request if asserted

27.2.1227.2.11 SQ to SP: GPR and auto counter
Name Direction Bits Description
SQ_SPx_gpr_wr_addr SQ→SPx 7 Write address
SQ_SPx_gpr_rd_addr SQ→SPx 7 Read address
SQ_SPx_gpr_rd_en SQ→SPx 1 Read Enable
SQ_SPx_gpr_wr_en SQ→SPx 1 Write Enable for the GPRs
SQ_SPx_gpr_phase_mux SQ→SPx 2 The phase mux (arbitrates between inputs, ALU SRC

reads and writes)
SQ_SPx_channel_mask SQ→SPx 4 The channel mask
SQ_SPx_gpr_input_muxsel SQ→SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTX0,
VTX1, autogen counter.

SQ_SPx_auto_count SQ→SPx 12? Auto count generated by the SQ, common for all shader
pipes

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 668 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

48 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

27.2.1327.2.12 SQ to SPx: Instructions
Name Direction Bits Description
SQ_SPx_instr_start SQ→SPx 1 Instruction start
SQ_SP_instr SQ→SPx 21 Transferred over 4 cycles

0: SRC A Select 2:0
 SRC A Argument Modifier 3:3
 SRC A swizzle 11:4
 VectorDst 17:12
 Unused 20:18
--
-
1: SRC B Select 2:0
 SRC B Argument Modifier 3:3
 SRC B swizzle 11:4
 ScalarDst 17:12
 Unused 20:18
--
-
2: SRC C Select 2:0
 SRC C Argument Modifier 3:3
 SRC C swizzle 11:4
 Unused 20:12
--
-
3: Vector Opcode 4:0
 Scalar Opcode 10:5
 Vector Clamp 11:11
 Scalar Clamp 12:12
 Vector Write Mask 16:13
 Scalar Write Mask 20:17

SQ_SPx_exp_alu_id SQ→SPx 1 ALU ID
SQ_SPx_exporting SQ→SPx 2 0: Not Exporting

1: Vector Exporting
2: Scalar Exporting

SQ_SPx_stall SQ→SPx 1 Stall signal
SQ_SP0_exp_pvalidwrite_mas
k

SQ→SP0 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP1_
write_maskexp_pvalid

SQ→SP1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP2_
write_maskexp_pvalid

SQ→SP2 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP3_
write_maskexp_pvalid

SQ→SP3 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

27.2.1427.2.13 SP to SQ: Constant address load/ Predicate Set
Name Direction Bits Description
SP0_SQ_const_addr SP0→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP0_SQ_valid SP0→SQ 1 Data valid
SP1_SQ_const_addr SP1→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 669 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

49 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SP1_SQ_valid SP1→SQ 1 Data valid
SP2_SQ_const_addr SP2→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP2_SQ_valid SP2→SQ 1 Data valid
SP3_SQ_const_addr SP3→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP3_SQ_valid SP3→SQ 1 Data valid

27.2.1527.2.14 SQ to SPx: constant broadcast
Name Direction Bits Description
SQ_SPx_const SQ→SPx 128 Constant broadcast

27.2.1627.2.15 SP0 to SQ: Kill vector load
Name Direction Bits Description
SP0_SQ_kill_vect SP0→SQ 4 Kill vector load
SP1_SQ_kill_vect SP1→SQ 4 Kill vector load
SP2_SQ_kill_vect SP2→SQ 4 Kill vector load
SP3_SQ_kill_vect SP3→SQ 4 Kill vector load

27.2.1727.2.16 SQ to CP: RBBM bus
Name Direction Bits Description
SQ_RBB_rs SQ→CP 1 Read Strobe
SQ_RBB_rd SQ→CP 32 Read Data
SQ_RBBM_nrtrtr SQ→CP 1 Optional
SQ_RBBM_rtr SQ→CP 1 Real-Time (Optional)

27.2.1827.2.17 CP to SQ: RBBM bus
Name Direction Bits Description
rbbm_we CP→SQ 1 Write Enable
rbbm_a CP→SQ 15 Address -- Upper Extent is TBD (16:2)
rbbm_wd CP→SQ 32 Data
rbbm_be CP→SQ 4 Byte Enables
rbbm_re CP→SQ 1 Read Enable
rbb_rs0 CP→SQ 1 Read Return Strobe 0
rbb_rs1 CP→SQ 1 Read Return Strobe 1
rbb_rd0 CP→SQ 32 Read Data 0
rbb_rd1 CP→SQ 32 Read Data 0
RBBM_SQ_soft_reset CP→SQ 1 Soft Reset

27.2.18 SQ to CP: State report
Name Direction Bits Description
SQ_CP_vs_event SQ→CP 1 Vertex Shader Event
SQ_CP_vs_eventid SQ→CP 2 Vertex Shader Event ID
SQ_CP_ps_event SQ→CP 1 Pixel Shader Event
SQ_CP_ps_eventid SQ→CP 2 Pixel Shader Event ID

 eventid = 0 => *sEndOfState (i.e. VsEndOfState)
 eventid = 1 => *sDone (i.e. VsDone)

So, the CP will assume the Vs is done with a state whenever it gets a pulse on the SQ_CP_vs_event
and the SQ_CP_vs_eventid = 0.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 670 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

50 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

28.Examples of program executions

28.1.1 Sequencer Control of a Vector of Vertices

1.PA sends a vector of 64 vertices (actually vertex indices – 32 bits/index for 2048 bit total) to the RE’s Vertex FIFO
state pointer as well as tag into position cache is sent along with vertices
space was allocated in the position cache for transformed position before the vector was sent
also before the vector is sent to the RE, the CP has loaded the global instruction store with the vertex

shader program (using the MH?)
The vertex program is assumed to be loaded when we receive the vertex vector.

the SEQ then accesses the IS base for this shader using the local state pointer (provided to all sequencers
by the RBBM when the CP is done loading the program)

2.SEQ arbitrates between the Pixel FIFO and the Vertex FIFO – basically the Vertex FIFO always has priority
at this point the vector is removed from the Vertex FIFO
the arbiter is not going to select a vector to be transformed if the parameter cache is full unless the pipe as

nothing else to do (ie no pixels are in the pixel fifo).

3.SEQ allocates space in the SP register file for index data plus GPRs used by the program
the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer that came down with the vertices
SEQ will not send vertex data until space in the register file has been allocated

4.SEQ sends the vector to the SP register file over the RE_SP interface (which has a bandwidth of 2048 bits/cycle)
the 64 vertex indices are sent to the 64 register files over 4 cycles

RF0 of SU0, SU1, SU2, and SU3 is written the first cycle
RF1 of SU0, SU1, SU2, and SU3 is written the second cycle
RF2 of SU0, SU1, SU2, and SU3 is written the third cycle
RF3 of SU0, SU1, SU2, and SU3 is written the fourth cycle

the index is written to the least significant 32 bits (floating point format?) (what about compound indices) of
the 128-bit location within the register file (w); the remaining data bits are set to zero (x, y, z)

5.SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of fetch
state machine 0, or TSM0 FIFO)
the control packet contains the state pointer, the tag to the position cache and a register file base pointer.

6.TSM0 accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
TSM0 was first selected by the TSM arbiter before it could start

7.all instructions of fetch clause 0 are issued by TSM0

8.the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
TSM0 does not wait for requests made to the Fetch Unit to complete; it passes the register file write index for the

fetch data to the TU, which will write the data to the RF as it is received
once the TU has written all the data to the register files, it increments a counter that is associated with ASM0

FIFO; a count greater than zero indicates that the ALU state machine can go ahead start to execute the ALU
clause

9.ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU clause
0 from the global instruction store

10.all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

11.the control packet continues to travel down the path of reservation stations until all clauses have been executed
position can be exported in ALU clause 3 (or 4?); the data (and the tag) is sent over a position bus (which is

shared with all four shader pipes) back to the PA’s position cache
A parameter cache pointer is also sent along with the position data. This tells to the PA where the data is going

to be in the parameter cache.
there is a position export FIFO in the SP that buffers position data before it gets sent back to the PA

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 671 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

51 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

the ASM arbiter will prevent a packet from starting an exporting clause if the position export FIFO is full
parameter data is exported in clause 7 (as well as position data if it was not exported earlier)

parameter data is sent to the Parameter Cache over a dedicated bus
the SEQ allocates storage in the Parameter Cache, and the SEQ deallocates that space when there is no

longer a need for the parameters (it is told by the PA when using a token).
the ASM arbiter will prevent a packet from starting on ASM7 if the parameter cache (or the position buffer if

position is being exported) is full

12.after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

28.1.2 Sequencer Control of a Vector of Pixels

1.As with vertex shader programs, pixel shaders are loaded into the global instruction store by the CP

At this point it is assumed that the pixel program is loaded into the instruction store and thus ready to be read.

2.the RE’s Pixel FIFO is loaded with the barycentric coordinates for pixel quads by the detailed walker
the state pointer and the LOD correction bits are also placed in the Pixel FIF0
the Pixel FIFO is wide enough to source four quad’s worth of barycentrics per cycle

3.SEQ arbitrates between Pixel FIFO and Vertex FIFO – when there are no vertices pending OR there is no space
left in the register files for vertices, the Pixel FIFO is selected

4.SEQ allocates space in the SP register file for all the GPRs used by the program
the number of GPRs required by the program is stored in a local state register, which is accessed using the

state pointer
SEQ will not allow interpolated data to be sent to the shader until space in the register file has been allocated

5.SEQ controls the transfer of interpolated data to the SP register file over the RE_SP interface (which has a
bandwidth of 2048 bits/cycle). See interpolated data bus diagrams for details.

6.SEQ constructs a control packet for the vector and sends it to the first reservation station (the FIFO in front of fetch
state machine 0, or TSM0 FIFO)
note that there is a separate set of reservation stations/arbiters/state machines for vertices and for pixels
the control packet contains the state pointer, the register file base pointer, and the LOD correction bits
all other information (such as quad address for example) travels in a separate FIFO

7.TSM0 accepts the control packet and fetches the instructions for fetch clause 0 from the global instruction store
TSM0 was first selected by the TSM arbiter before it could start

8.all instructions of fetch clause 0 are issued by TSM0

9.the control packet is passed to the next reservation station (the FIFO in front of ALU state machine 0, or ASM0
FIFO)
TSM0 does not wait for fetch requests made to the Fetch Unit to complete; it passes the register file write index

for the fetch data to the TU, which will write the data to the RF as it is received
once the TU has written all the data for a particular clause to the register files, it increments a counter that is

associated with the ASM0 FIFO; a count greater than zero indicates that the ALU state machine can go
ahead and pop the FIFO and start to execute the ALU clause

10.ASM0 accepts the control packet (after being selected by the ASM arbiter) and gets the instructions for ALU
clause 0 from the global instruction store

11.all instructions of ALU clause 0 are issued by ASM0, then the control packet is passed to the next reservation
station (the FIFO in front of fetch state machine 1, or TSM1 FIFO)

12.the control packet continues to travel down the path of reservation stations until all clauses have been executed
pixel data is exported in the last ALU clause (clause 7)

 it is sent to an output FIFO where it will be picked up by the render backend
the ASM arbiter will prevent a packet from starting on ASM7 if the output FIFO is full

13.after the shader program has completed, the SEQ will free up the GPRs so that they can be used by another
shader program

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 672 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 200225 March

R400 Sequencer Specification PAGE

52 of 52

Exhibit 2027.docR400_Sequencer.doc �� 68205 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

28.1.3 Notes

14.The state machines and arbiters will operate ahead of time so that they will be able to immediately start the real
threads or stall.

15.The register file base pointer for a vector needs to travel with the vector through the reservation stations, but the
instruction store base pointer does not – this is because the RF pointer is different for all threads, but the IS
pointer is only different for each state and thus can be accessed via the state pointer.

29.28. Open issues
Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

Parameter caches in SX?

Using both IJ buffers for center + centroid interpolation?

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 673 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SQ

Version 1.112.0

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\doc_lib\design\blocks\sq\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2028
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 674 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

2 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Table Of Contents

1. OVERVIEW .. 6
1.1 Top Level Block Diagram ... 98
1.2 Data Flow graph (SP) ... 1310
1.3 Control Graph ... 1411
2. INTERPOLATED DATA BUS .. 1411
3. INSTRUCTION STORE ... 1714
4. SEQUENCER INSTRUCTIONS ... 1714
5. CONSTANT STORES .. 1714
5.1 Memory organizations .. 1714
5.2 Management of the Control Flow Constants .. 1815
5.3 Management of the re-mapping tables .. 1815

5.3.1 R400 Constant management .. 1815

5.3.2 Proposal for R400LE constant management .. 1815

5.3.3 Dirty bits .. 2017

5.3.4 Free List Block .. 2017

5.3.5 De-allocate Block .. 2118

5.3.6 Operation of Incremental model .. 2118
5.4 Constant Store Indexing ... 2118
5.5 Real Time Commands.. 2219
5.6 Constant Waterfalling ... 2219
6. LOOPING AND BRANCHES ... 2320
6.1 The controlling state. .. 2320
6.2 The Control Flow Program ... 2320
6.3 Data dependant predicate instructions ... 2922
6.4 HW Detection of PV,PS ... 2923
6.5 Register file indexing .. 2923
6.6 Predicated Instruction support for Texture clauses .. 3023
6.7 Debugging the Shaders ... 3023

6.7.1 Method 1: Debugging registers ... 3023

6.7.2 Method 2: Exporting the values in the GPRs (12) ... 3024
7. PIXEL KILL MASK .. 3124
8. MULTIPASS VERTEX SHADERS (HOS) .. 3124
9. REGISTER FILE ALLOCATION .. 3124
10. FETCH ARBITRATION .. 3226
11. ALU ARBITRATION .. 3226
12. HANDLING STALLS ... 3327
13. CONTENT OF THE RESERVATION STATION FIFOS ... 3327
14. THE OUTPUT FILE.. 3327
15. IJ FORMAT .. 3327
15.1 Interpolation of constant attributes .. 3428
16. STAGING REGISTERS ... 3428
17. THE PARAMETER CACHE ... 3630
18. VERTEX POSITION EXPORTING ... 3730

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 675 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

19. EXPORTING ARBITRATION .. 3730
20. EXPORTING RULES ... 3830
20.1 Parameter caches exports .. 3830
20.2 Memory exports .. 3830
20.3 Position exports ... 3830
21. EXPORT TYPES .. 3830
21.1 Vertex Shading .. 3831
21.2 Pixel Shading .. 3831
22. SPECIAL INTERPOLATION MODES ... 3931
22.1 Real time commands .. 3931
22.2 Sprites/ XY screen coordinates/ FB information .. 3931
22.3 Auto generated counters ... 3932

22.3.1 Vertex shaders ... 3932

22.3.2 Pixel shaders .. 3932
23. STATE MANAGEMENT .. 4033
23.1 Parameter cache synchronization ... 4033
24. XY ADDRESS IMPORTS ... 4033
24.1 Vertex indexes imports .. 4033
25. REGISTERS .. 4133
25.1 Control ... 4133
25.2 Context .. 4133
26. DEBUG REGISTERS... 4234
26.1 Context .. 4234
26.2 Control ... 4234

27. INTERFACES .. 4235

27.1 External Interfaces .. 4235
27.2 SC to SP Interfaces ... 4235

27.2.1 SC_SP# ... 4235

27.2.2 SC_SQ ... 4336

27.2.3 SQ to SX: Interpolator bus ... 4537

27.2.4 SQ to SP: Staging Register Data ... 4537

27.2.5 VGT to SQ : Vertex interface .. 4538

27.2.6 SQ to SX: Control bus .. 4941

27.2.7 SX to SQ : Output file control ... 4941

27.2.8 SQ to TP: Control bus .. 5041

27.2.9 TP to SQ: Texture stall ... 5142

27.2.10 SQ to SP: Texture stall ... 5142

27.2.11 SQ to SP: GPR and auto counter .. 5142

27.2.12 SQ to SPx: Instructions .. 5243

27.2.13 SP to SQ: Constant address load/ Predicate Set ... 5243

27.2.14 SQ to SPx: constant broadcast .. 5344

27.2.15 SP0 to SQ: Kill vector load ... 5344

27.2.16 SQ to CP: RBBM bus ... 5344

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 676 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

4 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

27.2.17 CP to SQ: RBBM bus ... 5344

27.2.18 SQ to CP: State report ... 5344
28. OPEN ISSUES ... 5844

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 677 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

 Changed the control flow method to be more
flexible. Also updated the external interfaces.

Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

 Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001

 Refined interfaces to RB. Added state registers.

Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

 Added SEQ→SP0 interfaces. Changed delta
precision. Changed VGT→SP0 interface. Debug
Methods added.

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001

 Interfaces greatly refined. Cleaned up the spec.

Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001

 Added the different interpolation modes.

Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

 Added the auto incrementing counters. Changed
the VGT→SQ interface. Added content on constant
management. Updated GPRs.

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

 Removed from the spec all interfaces that weren’t
directly tied to the SQ. Added explanations on
constant management. Added PA→SQ
synchronization fields and explanation.

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

 Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002

 Added Real Time parameter control in the SX
interface. Updated the control flow section.

Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

 New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002

 Rearangement of the CF instruction bits in order to
ensure byte alignement.

Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002

 Updated the interfaces and added a section on
exporting rules.

Rev 1.11 (Laurent Lefebvre)
Date : April 19, 2002

 Added CP state report interface. Last version of the
spec with the old control flow scheme

Rev 2.0 (Laurent Lefebvre)
Date : April 19, 2002

 New control flow scheme

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 678 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

6 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1. Overview
The sequencer is based on the R300 design. ItThe sequencer chooses two ALU clauses threads and a fetch clause
hread to execute, and executes all of the instructions in a clause block before looking for a new clause of the same
type. Two ALU clauses threads are executed interleaved to hide the ALU latency. Each vector will have eight fetch
and eight ALU clauses, but clauses do not need to contain instructions. A vector of pixels or vertices ping-pongs
along the sequencer FIFO, bouncing from fetch reservation station to alu reservation station. A FIFO exists between
each reservation stage, holding up vectors until the vector currently occupying a reservation station has left. A vector
at a reservation station can be chosen to execute. The sequencer looks at all eight alu reservation stations to choose
an alu clause to execute and all eight fetch stations to choose a fetch clause to execute. The arbitrator will give
priority to clauses/reservation stations closer to the bottom of the pipelineolder threads. It will not execute an alu
clause until the fetch fetches initiated by the previous fetch clause have completed. There are two separate sets of
reservation stations, one for pixel vectors and one for vertices vectors. This way a pixel can pass a vertex and a
vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 679 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ

SC

SPSPSPCSTOREFETCH STATE

TP

INST STORE

IJ CONTROL

IJ
CONTROL

CST
ADDR

INST
 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/QUAD
ADDRESSES

SP

ALU INST

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

INST

INTER INTER INTER INTER

IJ CROSSBAR

2 QUADS IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC READ
 POINTERS

PARAM
DATA

R/W ADDR

Vertex indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

CP

CONSTANT
LOAD

CPConstant Load

TX ADDR

PC Write
Address

TEX INST

CF
CONSTANTS

Register
Mapped

CF Read

Figure 1: General Sequencer overview

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 680 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

8 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 681 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.1 Top Level Block Diagram

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 682 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

10 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

ALU Texture

VTX RS PIX RS

Exec Arbiter

Input Arbiter

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 683 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

vertex/pixel vector arbitrator

Possible delay for available GPR’s

FIFO
Texture clause 0
reservation station

Texture clause 1
reservation station

FIFO
ALU clause 0
reservation station

FIFO

Texture clause 2
reservation station

Texture clause 3
reservation station

FIFO
ALU clause 1
reservation station

FIFO

FIFO
ALU clause 2
reservation station

FIFO

FIFO
ALU clause 3
reservation station

FIFO
Texture clause 4
reservation station

Texture clause 5
reservation station

FIFO
ALU clause 4
reservation station

FIFO

Texture clause 6
reservation station

Texture clause 7
reservation station

FIFO
ALU clause 5
reservation station

FIFO

FIFO
ALU clause 6
reservation station

FIFO

FIFO
ALU clause 7
reservation station

texture arbitrator

texture arbitrator

Figure 2: Reservation stations and arbiters

There are two sets of the above figure, one for vertices and one for pixels.

Depending on the arbitration state, the sequencer will either choose a vertex or a pixel packet. The control packet
consists of 3 bits of state, 7 bits for the base address of the Shader program and some information on the coverage to
determine fetch LOD plus other various small state bits.

On receipt of a packet, the input state machine (not pictured but just before the first FIFO) allocated enough space in
the GPRs to store the interpolated values and temporaries. Following this, the barycentric coordinates (and XY
screen position if needed) are sent to the interpolator, which will use them to interpolate the parameters and place the
results into the GPRs. Then, the input state machine stacks the packet in the first FIFO.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 684 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

12 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

On receipt of a command, the level 0 fetch machine issues a fetch request to the TP and corresponding GPR
address for the fetch address (ta). A small command (tcmd) is passed to the fetch system identifying the current level
number (0) as well as the GPR write address for the fetch return data. One fetch request is sent every 4 clocks
causing the texturing of sixteen 2x2s worth of data (or 64 vertices). Once all the requests are sent the packet is put in
FIFO 1.

Upon receipt of the return data, the fetch unit writes the data to the register file using the write address that was
provided by the level 0 fetch machine and sends the clause number (0) to the level 0 fetch state machine to signify
that the write is done and thus the data is ready. Then, the level 0 fetch machine increments the counter of FIFO 1 to
signify to the ALU 0 that the data is ready to be processed.

On receipt of a command, the level 0 ALU machine first decrements the input FIFO 1 counter and then issues a
complete set of level 0 shader instructions. For each instruction, the ALU state machine generates 3 source
addresses, one destination address and an instruction. Once the last instruction has been issued, the packet is put
into FIFO 2.

There will always be two active ALU clauses at any given time (and two arbiters). One arbiter will arbitrate over the
odd instructions (4 clocks cycles) and the other one will arbitrate over the even instructions (4 clocks cycles). The
only constraints between the two arbiters is that they are not allowed to pick the same clause number as the other
one is currently working on if the packet is not of the same type (render state).

If the packet is a vertex packet, upon reaching ALU clause 3, it can export the position if the position is ready. So the
arbiter must prevent ALU clause 3 to be selected if the positional buffer is full (or can’t be accessed). Along with the
positional data, if needed the sprite size and/or edge flags can also be sent.

A special case is for multipass vertex shaders, which can export 12 parameters per last 6 clauses to the output
buffer. If the output buffer is full or doesn’t have enough space the sequencer will prevent such a vertex group to
enter an exporting clause.

Multipass pixel shaders can export 12 parameters to memory from the last clause only (7).

All other clauses process in the same way until the packet finally reaches the last ALU machine (7).

Only one pair of interleaved ALU state machines may have access to the register file address bus or the instruction
decode bus at one time. Similarly, only one fetch state machine may have access to the register file address bus at
one time. Arbitration is performed by three arbiter blocks (two for the ALU state machines and one for the fetch state
machines). The arbiters always favor the higher number state machines, preventing a bunch of half finished jobs from
clogging up the register files.
Under this new scheme, the sequencer (SQ) will only use one global state management machine per vector type
(pixel, vertex) that we call the reservation station (RS).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 685 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.2 Data Flow graph (SP)

MAC

MAC

MAC

MAC

Register File

co
n

st
an

ts
 f

ro
m

 R
E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
n

ts
 f

ro
m

 R
E

S
ca

la
r

U
ni

t

texture request

texture request

texture request

texture request

te
xt

ur
e

 a
dd

re
ss

te xtu
re

 d
ata

prim
itiv e d a

ta
 from

 R
E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

Figure 3: The shader Pipe

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 686 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

14 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

SEQ

FETCH SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

OF

WrAddrIS CST

CST IDX

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 687 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x64 bits)

IJs buffer (ping-pong buffer)
(28 bits * 2 (IJ) + 8 bits * 6 (delta IJs)+4 exp

bits*6)* 16 (quads) * 2 (double-buffered)
4096 bits

32 x 128

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

64

To RB

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2

768 bits
32x24

FIX-FLOAT + EXPANSiON

Figure 5: Interpolation buffers

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 688 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

16 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SP
0

SP
1

SP
2

SP
3

WRITES
T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-
11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P1 P2

T20 T21 T22 T23

VTX

T0 T1 T2 T3

XY

XY
0-3

XY
4-7

XY
8-
11

XY
12-
15

XY
16-
19

XY
20-
23

XY
24-
27

XY
28-
31

XY
32-
35

XY
36-
39

XY
40-
43

XY
44-
47

XY
48-
51

XY
52-
55

XY
56-
59

XY
60-
63

READS

SP
0

SP
1

SP
2

SP
3

A0

A1

A2

B1

B0

C3

C0

C1

C2

C4

C5

D0

D1

D2

E0

E1

A0

A1

A2

XY
A0
XY
A1
XY
A2

B1

B0

XY
B1

XY
B0

C3

C0

C1

C2

XY
C3
XY
C0
XY
C1
XY
C2

C4

C5

XY
C4
XY
C5

D0

D1

D2

XY
D1
XY
D2

XY
D0

E0

E1
XY
E1

XY
E0

Figure 6: Interpolation timing diagram

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 689 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store
There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4. Sequencer Instructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 690 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

18 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

5.2 Management of the Control Flow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied whenever there is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn’t write to CF the state is going to use the previous CF constants.

5.3 Management of the re-mapping tables

5.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROL packet of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it with
the new state (this is depicted in Figure 8: De-allocation mechanismFigure 9: De-allocation mechanism). Note that in
the case a state is cleared a value of 0 is written to the corresponding de-allocation counter location so that when the
SQ is going to report a state change, nothing will be de-allocated upon the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 691 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Physical
Memory

Renaming Table
for 1 Context
Current/Last

Physical
Address

per
Logical
Address

Renaming
table

N-Contexts

Reset
Dirty
per

Logical
Address

(Only
de-

allocate
if set)

This
Context

Dirty
per

Logical
Address

(If set
don't

allocate
or de-

allocate)

Logical address
On the

GlbRegBus
when lsb are zero
first word of write

next
physical
address
ready

for allocate

Constants
location
available
WRTR

physical
address

to
schedule

for
de-alloc

Staging Data
Buffer

Staging Write Addr

Copy Last held above to
Current Context on receipt

of Set Constant for a
new context (Hide loading

behind Set State load - 16 clocks)
all other Set States just write one

entry to current state.

Free
list

(pass Phys
Address if
Context
Dirty)

Dealloc
Counts

Seq
Constant
Request

Context &
Logical
Address

Free_ptr
WritePtr

When a Logical
Address is written

that has been
written before,

store the physical
address that was
allocated by that
Logical Address

Stop_ptr
ptr to first physical

address that is
scheduled to be de-
allocated but noty
yet de-allocate.

Advanced each time
a context is freed by

the number of
physical address
displaced by that

Context

Read_ptr
ptr to physical

address that will be
used next if the init

count is at
maximum number

of physical address

Free List

Number of entries
equals Max Number of
Physical Blocks. All
Pointers start at zero
and roll around but

can never pass each
other

Free
Address

Address
to Allocate

Global Register
Data Bus

Renaming Table
Context 0 => N

Logical Address
& Context

Physical
Address

Context 0 (8 rows of 16 - 8 bit
physical => 128 entries copy in

eight clocks)

Context 1

Context N

Current/Last
Context

(8 rows of 16 - 8
bit physical =>

128 entries copy
in eight clocks)

Figure 78: Constant management

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 692 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

20 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

DEALOC
COUNTERSFree List

!=

OR

AND

NOT

ADDR

PREVIOUS
STATE

NEW
STATE

SQ_IDLE

CP_NEW_STATE_CNTL
PA_IDLE

VALUE

VALID

CNT VALUE

SQ_STATE#

WRITE_ENABLE

REMAPPING
TABLE

SET CTX BITS

Figure 89: De-allocation mechanism for R400LE

5.3.3 Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block
A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 693 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

5.3.5 De-allocate Block
This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any number of blocks in one clock.

5.3.6 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 694 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

22 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

5.5 Real Time Commands
The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
works is the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zones is defined by the TSTATE_EO_RT control register.

5.6 Constant Waterfalling
In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenever a state is freed.

CONST_EO_RT

RT SECTON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table)

Figure 910: The instruction store

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 695 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
We'd like to be able to code up a program of the form:

1: Loop
2: Exec TexFetch
3: TexFetch
4: ALU
5: ALU
6: TexFetch
7: End Loop
8: ALU Export

But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3:. Without clausing,
these dependencies need to be expressed in the Control Flow instructions. Additionally, without separate 'texture
clauses' and 'ALU clauses' we need to know which instructions to dispatch to the Texture Unit and which to the ALU
unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of information for each (non-control flow) instruction:
 a) ALU or Texture
 b) Serialize Execution

(b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched. Given the allocation of reserved bits, this would mean that the count of an 'Exec' instruction
would be limited to about 8 (non-control-flow) instructions. If more than this were needed, a second Exec (with the
same conditions) would be issued.

Another function that relies upon 'clauses' is allocation and order of execution. We need to assure that pixels and
vertices are exported in the correct order (even if not all execution is ordered) and that space in the output buffers are
allocated in order. Additionally data can't be exported until space is allocated. A new control flow instruction:

 Alloc <buffer select -- position,parameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual
allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already
completed. The implementation would also assure that execution of instruction(s) following the serialization due to the
Alloc will occur in order -- at least until the next serialization or change from ALU to Texture. In most cases this will
allow the exports to occur without any further synchronization. Only 'final' allocations or position allocations are

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 696 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

24 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

guaranteed to be ordered. Because strict ordering is required for pixels, parameters and positions, this implies only
a single alloc for these structures. Vertex exports to memory do not require ordering during allocation and so multiple
'allocs' may be done.

6.2.1 Control flow instructions table
Here is the revised control flow instruction set.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

Execute
47 46… 43 40 … 34 33 …16 15…12 11 … 0

Addressing 0001 RESERVED Instructions type + serialize (9
instructions)

Count Exec Address

Execute up to 9 instructions at the specified address in the instruction memory. The Instruction type field tells the
sequencer the type of the instruction (LSB) (1 = Texture, 0 = ALU and whether to serialize or not the execution (MSB)
(1 = Serialize, 0 = Non-Serialized).

NOP
47 46 … 43 42 … 0

Addressing 0010 RESERVED

This is a regular NOP.

Conditional_Execute

47 46 … 43 42 41 … 34 33…16 15 …12 11 … 0
Addressing 0011 Condition Boolean

address
Instructions type + serialize (9

instructions)
Count Exec Address

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 9 instructions). If the condition is not met, we go on to the next control flow instruction.

Conditional_Execute_Predicates
47 46 … 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0

Addressing 0010 Condition RESERVED Predicate
vector

Instructions
type + serialize
(9 instructions)

Count Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid. If the
condition is not met, we go on to the next control flow instruction.

Loop_Start
47 46 … 43 42 … 17 16 … 12 11 … 0

Addressing 0101 RESERVED loop ID Jump address

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 697 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Loop_End

47 46 … 43 42 … 2017 19… 17 16 … 12 11 … 0
Addressing 0011 RESERVED Predicate break loop ID start address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop. If predicate break != 0, then compares predicate vector n
(specified by predicate break number). If all bits cleared then break the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal_Call
47 46 … 43 42 41 …37 35 … 34 33 … 12 11 … 0

Addressing 0111 Condition RESERVED Predicate vector RESERVED Jump address

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack.

Return
47 46 … 43 42 … 0

Addressing 1000 RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump
47 46 … 43 42 41… 34 33 32 … 12 11 … 0

Addressing 1001 Condition Boolean
address

FW only RESERVED Jump address

Allocate

47 46 … 43 42…41 40 … 4 3 …0
Debug 1010 Buffer Select RESERVED Allocation size

Buffer Select takes a value of the following:
01 – position export (ordered export)
10 – parameter cache or pixel export (ordered export)
11 – pass thru (out of order exports).

If debug is set this is a debug alloc (ignore if debug DB_ON register is set to off).

End Of Program

47 46 … 43 42… 0
RESERVED 1011 RESERVED

Marks the end of the program.

6.3 Implementation

The envisioned implementation has a buffer that maintains the state of each thread. A thread lives in a given
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the order that they
enter. Actually two buffers are maintained -- one for Vertices and one for Pixels. The intended implementation
would allow for:

16 entries for vertices
48 entries for pixels.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 698 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

26 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

From each buffer, arbitration logic attempts to select 1 thread for the texture unit and 1 (interleaved) thread for the
ALU unit. Once a thread is selected it is read out of the buffer, marked as invalid, and submitted to appropriate
execution unit. It is returned to the buffer (at the same place) with its status updated once all possible sequential
instructions have been executed. A switch from ALU to TEX or visa-versa or a Serialize_Execution modifier forces
the thread to be returned to the buffer.

Each entry in the buffer will be stored across two physical pieces of memory - most bits will be stored in a 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed 'state'. The bits kept in the multi-read ported device will be termed 'status'.

'State Bits' needed include:

1. Control Flow Instruction Pointer (12 bits),
2. Execution Count Marker 4 bits),
3. Loop Iterators (4x9 bits),
4. Call return pointers (4x12 bits),
5. Predicate Bits(4x64 bits),
6. Export ID (1 bit),
7. Parameter Cache base Ptr (7 bits),
8. GPR Base Ptr (8 bits),
9. Context Ptr (3 bits).
10. LOD corrections (6x16 bits)

Absent from this list are 'Index' pointers. These are costly enough that I'm presuming that they are instead stored in
the GPRs. The first seven fields above (Control Flow Ptr, Execution Count, Loop Counts, call return ptrs, Predicate
bits, PC base ptr and export ID) are updated every time the thread is returned to the buffer based on how much
progress has been mode on thread execution. GPR Base Ptr, Context Ptr and LOD corrections are unchanged
throughout execution of the thread.

'Status Bits' needed include:

 Valid Thread
 Texture/ALU engine needed
 Texture Reads are outstanding
 Waiting on Texture Read to Complete
 Allocation Wait (2 bits)
 00 – No allocation needed
 01 – Position export allocation needed (ordered export)
 10 – Parameter or pixel export needed (ordered export)
 11 – pass thru (out of order export)
 Allocation Size (4 bits)
 Position Allocated
 First thread of a new context
 Event thread (NULL thread that needs to trickle down the pipe)
 Last (1 bit)

All of the above fields from all of the entries go into the arbitration circuitry. The arbitration circuitry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -- one for
pixels and one for vertices. A final selection is then done between the two. But the rest of this implementation
summary only considers the 'first' level selection which is similar for both pixels and vertices.

Texture arbitration requires no allocation or ordering so it is purely based on selecting the 'oldest' thread that requires
the Texture Engine.

ALU arbitration is a little more complicated. First, only threads where either of Texture_Reads_outstanding or
Waiting_on_Texture_Read_to_Complete are '0' are considered. Then if Allocation_Wait is active, these threads are
further filtered based on whether space is available. If the allocation is position allocation, then the thread is only

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 699 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

considered if all 'older' threads have already done their position allocation (position allocated bits set). If the
allocation is parameter or pixel allocation, then the thread is only considered if it is the oldest thread. Also a thread is
not considered if it is a parameter or pixel or position allocation, has its First_thread_of_a_new_context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the 'oldest' of the threads that pass through the above filters is selected. If the thread needed to allocate, then
at this time the allocation is done, based on Allocation_Size. If a thread has its “last” bit set, then it is also removed
from the buffer, never to return.

If I now redefine 'clauses' to mean 'how many times the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine', then the minimum number of clauses needed is 2 -- one to perform
the allocation for exports (execution automatically halts after an 'Alloc' instruction) (but doesn't performs the actual
allocation) and one for the actual ALU/export instructions. As the 'Alloc' instruction could be part of a texture clause
(presumably the final instruction in such a clause), a thread could still execute in this minimal number of 2 clauses,
even if it involved texture fetching.

The Texture_Reads_Outstanding bit must be updated by the sequencer, based on keeping track of how many
Texture Clauses have been executed by a given thread that have not yet had there data returned. Any number
above 0 results in this bit being set. We could consider forcing synchronization such that two texture clauses for a
given thread may not be outstanding at any time (that would be my preference for simplicity reasons and because it
would require only very little change in the texture pipe interface). This would allow the sequencer to set the bit on
execution of the texture clause, and allow the texture unit to return a pointer to the thread buffer on completion that
clears the bit.
Examples of control flow programs are located in the R400 programming guide document.

The basic model is as follows:

The render state defined the clause boundaries:
Vertex_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Vertex_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_fetch[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located
Pixel_shader_alu[7:0][7:0] // eight 8 bit pointers to the location where each clauses control program is located

A pointer value of FF means that the clause doesn’t contain any instructions.

The control program for a given clause is executed to completion before moving to another clause, (with the
exception of the pick two nature of the alu execution). The control program is the only program aware of the clause
boundaries.

The control program has nine basic instructions:

Execute
Conditional_execute
Conditional_Execute_Predicates
Conditional_jump
Conditionnal_Call
Return
Loop_start
Loop_end
NOP

Execute, causes the specified number of instructions in instruction store to be executed.
Conditional_execute checks a condition first, and if true, causes the specified number of instructions in instruction
store to be executed.
Loop_start resets the corresponding loop counter to the start value on the first pass after it checks for the end
condition and if met jumps over to a specified address.
Loop_end increments (decrements?) the loop counter and jumps back the specified number of instructions.
Conditionnal_Call jumps to an address and pushes the IP counter on the stack if the condition is met. On the return
instruction, the IP is popped from the stack.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 700 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

28 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Conditional_execute_Predicates executes a block of instructions if all bits in the predicate vectors meet the condition.
Conditional_jumps jumps to an address if the condition is met.
NOP is a regular NOP

NOTE THAT ALL JUMPS MUST JUMP TO EVEN CFP ADDRESSES since there are two control flow instructions per
memory line. Thus the compiler must insert NOPs where needed to align the jumps on even CFP addresses.

Also if the jump is logically bigger than pshader_cntl_size (or vshader_cntl_size) we break the program (clause) and
set the debug registers. If an execute or conditional_execute is lower than cntl_size or bigger than size we also break
the program (clause) and set the debug registers.

We have to fit instructions into 48 bits in order to be able to put two control flow instruction per line in the instruction
store.

A value of 1 in the Addressing means that the address specified in the Exec Address field (or in the jump address
field) is an ABSOLUTE address. If the addressing field is cleared (should be the default) then the address is relative
to the base of the current shader program.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

Execute up to 4k instructions at the specified address in the instruction memory. If Last is set, this is the last group of
instructions of the clause.

This is a regular NOP. If Last is set, this is the last instruction of the clause.

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 4k instructions). If Last is set, then if the condition is met, this is the last group of instructions to be
executed in the clause. If the condition is not met, we go on to the next control flow instruction.

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid. If Last is
set, then if the condition is met, this is the last group of instructions to be executed in the clause. If the condition is not
met, we go on to the next control flow instruction.

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack.

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

If condition met, jumps to the address. FORWARD jump only allowed if bit 31 set. Bit 31 is only an optimization for the
compiler and should NOT be exposed to the API.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 701 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

To prevent infinite loops, we will keep 9 bits loop iterators instead of 8 (we are only able to loop 256 times). If the
counter goes higher than 255 then the loop_end or the loop_start instruction is going to break the loop and set the
debug GPRs.

6.36.4 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETNE_# - similar to SETNE except that the result is 'exported' to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE0_# – SETE0
 PRED_SETE1_# – SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

 P0_ADD_# R0,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

6.46.5 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

6.56.6 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 702 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

30 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The sequencer is going to keep a loop index computed as such:

 Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128…127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.
Predicated Instruction support for Texture clauses
For texture clauses, we support the following optimization: we keep 1 bit (thus 4 bits for the four predicate vectors)
per predicate vector in the reservation stations. A value of 1 means that one ore more elements in the vector have a
value of one (thus we have to do the texture fetches for the whole vector). A value of 0 means that no elements in the
vector have his predicate bit set and we can thus skip over the texture fetch. We have to make sure the invalid
pixels aren’t considered with this optimization.

6.66.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.6.16.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
 - jump errors
 relative jump address > size of the control flow program
 - call stack
 call with stack full

return with stack empty

A jump error will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only break if
the DB_PROB_BREAK register is set.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the 0th
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.6.26.7.2 Method 2: Exporting the values in the GPRs (12)
The sequencer will have a debug active, count register and an address register for this mode and 3 bits per clause
specifying the execution mode for each clause. The modes can be :
Normal

2)Debug Kill
2)1) Debug Addr + Count

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 703 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Under the normal mode execution follows the normal course. Under the kill mode, all control flow instructions are
executed but all normal shader instructions of the clause are replaced by NOPs. Only debug_export instructions of
clause 7 will be executed under the debug kill setting. Under the other mode, normal execution is done until we reach
an address specified by the address register and instruction count (useful for loops) specified by the count register.
After we have hit the instruction n times (n=count) we switch the clause to the kill mode.

Under the debug mode (debug kill OR debug Addr + count), it is assumed that the programclause 7 is always
exporting 12 n debug vectors and that all other exports to the SX block (position, color, z, ect) will been turned off
(changed into NOPs) by the sequencer (even if they occur before the address stated by the ADDR debug register).

7. Pixel Kill Mask
A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE

 MASK_SETGT
 MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZE for pixels.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 704 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

32 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

10. Fetch Arbitration
The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration
ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…
 Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 705 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

33 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the exporting clause (3?). The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs
The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel’s parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming P0 is the interpolated parameter at Pixel 0 having the barycentric coordinates I(0), J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at V0 (interpolated with I), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

)(*03)(*0303

)(*02)(*0202

)(*01)(*0101

)(*)0()(*)0(0

)0()3(03

)0()3(03

)0()2(02

)0()2(02

)0()1(01

)0()1(01

CBJCAIPP

CBJCAIPP

CBJCAIPP

CBJCAICP

JJJ

III

JJJ

III

JJJ

III

P0 is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2

P0

P2

P1

P3

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 706 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

34 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Adds: 8

FORMAT OF P0’s IJ : Mantissa 20 Exp 4 for I + Sign
 Mantissa 20 Exp 4 for J + Sign

FORMAT of Deltas (x3): Mantissa 8 Exp 4 for I + Sign
 Mantissa 8 Exp 4 for J + Sign

Total number of bits : 20*2 + 8*6 + 4*8 + 4*2 = 128

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the number is
normalized if not, then the number is un-normalized. The maximum range for the IJs (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

15.1 Interpolation of constant attributes
Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

We start with the premise that if A = B and B = C and C = A, then P0,1,2,3 = A. Since one or more of the IJ terms
may be zero, so we extend this to:

if (A=B and B=C and C=A)
 P0,1,2,3 = A;
else if ((I = 0) or (J = 0)) and
 ((J = 0) or (1-I-J = 0)) and
 ((1-J-I = 0) or (I = 0))) {
 if(I != 0) {
 P0 = A;
 } else if(J != 0) {
 P0 = B;
 } else {
 P0 = C;
 }
 //rest of the quad interpolated normally
}
else
{
 normal interpolation
}

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 || 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencer will re-arrange them in this fashion:

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 || 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 || 8 9 10 11 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the VGT will send padding to account for
the missing pipe. For example, if SP1 is broken, vertices 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sent
by the VGT to the SQ BUT will not be processed by the SP and thus should be considered invalid (by the SU and
VGT).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 707 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

35 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 11Figure 12. The area of the fixed-to-float converters and the VSISRs for this method is roughly estimated as
0.759sqmm using the R300 process. The gate count estimate is shown in Figure 10Figure 11.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11631 60.57813per bit

Area of 96x8-deep Latch Memory 46524
Area of 24-bit Fix-to-float Converter 4712per converter

Method 1 Block Quantity Area

 F2F 3 14136

 8x96 Latch 16 744384

 758520

Figure 1011:Area Estimate for VGT to Shader Interface

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 708 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

36 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SHADER PIPE

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

3
2

3
2

3
2

VGT BLOCK
(IN PA)

3
2

9
6

VECTOR ENGINE

96

8x96
MEMORY
1-READ
1-WRITE

3 OTHER
SHADER
PIPES

 3 Fix->Float Converters (24-bit)
 16 Memories 8x96-bit (12,288 bits)

Totals:

THREE MORE VECTOR ENGINES
PER SHADER PIPE

VECTOR ENGINE

SHADER
SEQUENCER

Figure 1112:VGT to Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER
4 bits

ADDRESS
7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT_7 (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT_7 = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17th) is going to have the address 00000001000, the 18th 00010001000, the 19th 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*VS_EXPORT_COUNT
_7to Current_Location and reset the memory count to 0 before the next vector begins).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 709 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

37 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

17.1 Export restrictions

17.1.1 Pixel exports:
Pixels can export 1,2,3 or 4 color buffers to the SX(+z). The exports will be done in order. The PRED_OPTIMIZE
function has to be turned of if the exports are done using interleaved predicated instructions. The exports will always
be ordered to the SX.

17.1.2 Vertex exports:
Position or parameter caches can be exported in any order in the shader program. It is always better to export
posistion as soon as possible. Position has to be exported in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be done in any order with texture instructions interleaved.
The PRED_OPTIMIZE function has to be turned of if the exports are done using interleaved predicated instructions to
the Parameter cache (see Arbitration restrictions for details). The exports will always be allocated in order to the SX.

17.1.3 Pass thru exports:
Pass thru exports have to be done in groups of the form:

Alloc 4 (8 or 12)
Execute ALU(ADDR) ALU(DATA) ALU(DATA) ALU(DATA)…

They cannot have texture instructions interleaved in the export block. These exports are not guaranteed to be
ordered.

Also, when doing a pass thru export, Position MUST be exported AFTER all pass thru exports. This position export is
used to synchronize the chip when doing a transition from pass thru shader to regular shader and vice versa.

17.2 Arbitration restrictions
Here are the Sequencer arbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texture pending bit is set
2) Cannot allocate position if any older thread has not allocated position
3) If last thread is marked as not valid AND marked as last and we are about to execute the second to oldest

thread also marked last then:
a. Both threads must be from the same context (cannot allow a first thread)
b. Must turn off the predicate optimization for the second thread

4) Cannot execute a texture clause if texture reads are pending
5) Cannot execute last if texture pending (even if not serial)

18. Vertex position exporting
On clause 3 the vertex shader can export to the PA both the vertex position and the point sprite. It can also do so at
clause 7 if not done at clause 3. The storage needed to perform the position export is at least 64x128 memories for
the position and 64x32 memories for the sprite size. It is going to be taken in the pixel output fifo from the SX blocks.
The clause where the position export occurs is specified by the EXPORT_LATE register. If turned on, it means that
the export is going to occur at ALU clause 7 if unset position export occurs at clause 3.

19. Exporting Arbitration
Here are the rules for co-issuing exporting ALU clauses.

1)Position exports and position exports cannot be co-issued.

All other types of exports can be co-issued as long as there is place in the receiving buffer.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 710 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

38 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

20. Exporting Rules

20.1 Parameter caches exports
We support masking and out of order exports to the parameter caches. So one can export multiple times to the same
PC line using different masks.

20.2 Memory exports
Memory exports don’t support masking. However, you can export out of order to memory locations.

20.3 Position exports
Position exports have to be done IN ORDER and don’t support masking.

21.18. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

21.118.1 Vertex Shading
 0:15 - 16 parameter cache
 16:31 - Empty (Reserved?)

32 - Export Address
 33:40 - 8 vertex exports to the frame buffer and index
 41:47 - Empty
 48:55 - 8 debug export (interpret as normal vertex export)
 60 - export addressing mode
 61 - Empty
 62 - position
 63 - sprite size export that goes with position export
 (point_h,point_w,edgeflag,misc)

21.218.2 Pixel Shading
 0 - Color for buffer 0 (primary)
 1 - Color for buffer 1
 2 - Color for buffer 2
 3 - Color for buffer 3
 4:7 - Empty
 8 - Buffer 0 Color/Fog (primary)
 9 - Buffer 1 Color/Fog
 10 - Buffer 2 Color/Fog
 11 - Buffer 3 Color/Fog
 12:15 - Empty
 16:31 - Empty (Reserved?)
 32 - Export Address
 33:40 - 8 exports for multipass pixel shaders.
 41:47 - Empty
 48:55 - 8 debug exports (interpret as normal pixel export)
 60 - export addressing mode
 61:62 - Empty
 63 - Z for primary buffer (Z exported to 'alpha' component)

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 711 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

39 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

22.19. Special Interpolation modes

22.119.1 Real time commands
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem I see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft’s high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This mode is triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

22.219.2 Sprites/ XY screen coordinates/ FB information
When working with sprites, one may want to overwrite the parameter 0 with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_I0 register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Here is a list of all the modes and how they interact
together:

Gen_st is a bit taken from the interface between the SC and the SQ. This is the MSB of the primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between 0 and 1.

Param_Gen_I0 disable, snd_xy disable, no gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy disable, gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy enable, no gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy enable, gen_st – I0 = No modification
Param_Gen_I0 enable, snd_xy disable, no gen_st – I0 = garbage, garbage, garbage, faceness
Param_Gen_I0 enable, snd_xy disable, gen_st – I0 = garbage, garbage, s, t
Param_Gen_I0 enable, snd_xy enable, no gen_st – I0 = screen x, screen y, garbage, faceness
Param_Gen_I0 enable, snd_xy enable, gen_st – I0 = screen x, screen y, s, t

22.319.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1st pass data to memory and then use the count to retrieve the data on the 2nd pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. The sequencer is going to
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the
GPRs the counter is incremented. Every time a state change is detected, the corresponding counter is reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

22.3.119.3.1 Vertex shaders
In the case of vertex shaders, if GEN_INDEX is set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

22.3.219.3.2 Pixel shaders
In the case of pixel shaders, if GEN_INDEX is set and Param_Gen_I0 is enabled, the data will be put in the x field of
the 2nd register (R1.x), else if GEN_INDEX is set the data will be put into the x field of the 1st register (R0.x).

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 712 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

40 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

AUTO
COUNT

STG 0

STG1

INTERPOLATORS

GPR0

AUTO COUNT 000000

MUX

The Auto Count Value is
broadcast to all GPRs. It is

loaded into a register wich has
its LSBs hardwired to the

GPR number (0 thru 63). Then
if GEN_INDEX is high, the
mux selects the auto-count

value and it is loaded into the
GPRs to be either used to

retrieve data using the TP or
sent to the SX for the RB to

use it to write the data to
memory

Figure 1213: GPR input mux Control

23.20. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

23.120.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

24.21. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix→float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 19.222.2 for details on how to control the interpolation in this mode.

24.121.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 713 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

41 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

25.22. Registers

25.122.1 Control
REG_DYNAMIC Dynamic allocation (pixel/vertex) of the register file on or off.
REG_SIZE_PIX Size of the register file's pixel portion (minimal size when dynamic allocation turned

on)
REG_SIZE_VTX Size of the register file's vertex portion (minimal size when dynamic allocation turned

on)
ARBITRATION_POLICY policy of the arbitration between vertexes and pixels
INST_BASE_VTX start point for the vertex instruction store (RT always ends at vertex_base and

Begins at 0)
INST_BASE_PIX start point for the pixel shader instruction store
ONE_THREAD debug state register. Only allows one program at a time into the GPRs
ONE_ALU debug state register. Only allows one ALU program at a time to be executed (instead

of 2)
INSTRUCTION This is where the CP puts the base address of the instruction writes and type (auto-

incremented on reads/writes) Register mapped
CONSTANTS 512*4 ALU constants + 32*6 Texture state 32 bits registers (logically mapped)
CONSTANTS_RT 256*4 ALU constants + 32*6 texture states? (physically mapped)
CONSTANT_EO_RT This is the size of the space reserved for real time in the constant store (from 0 to

CONSTANT_EO_RT). The re-mapping table operates on the rest of the memory
TSTATE_EO_RT This is the size of the space reserved for real time in the fetch state store (from 0 to

TSTATE_EO_RT). The re-mapping table operates on the rest of the memory
EXPORT_LATE Controls whether or not we are exporting position from clause 3. If set, position exports occur at
clause 7.

25.222.2 Context
VS_FETCH_{0…7} eight 8 bit pointers to the location where each clauses control program is located
VS_ALU_{0…7} eight 8 bit pointers to the location where each clauses control program is located
PS_FETCH_{0…7} eight 8 bit pointers to the location where each clauses control program is located
PS_ALU_{0…7} eight 8 bit pointers to the location where each clauses control program is located
PS_BASE base pointer for the pixel shader in the instruction store
VS_BASE base pointer for the vertex shader in the instruction store
VS_CF_SIZE size of the vertex shader (# of instructions in control program/2)
PS_CF_SIZE size of the pixel shader (# of instructions in control program/2)
PS_SIZE size of the pixel shader (cntl+instructions)
VS_SIZE size of the vertex shader (cntl+instructions)
PS_NUM_REG number of GPRs to allocate for pixel shader programs
VS_NUM_REG number of GPRs to allocate for vertex shader programs
PARAM_SHADE One 16 bit register specifying which parameters are to be gouraud shaded (0 = flat, 1

= gouraud)
PROVO_VERT 0 : vertex 0, 1: vertex 1, 2: vertex 2, 3: Last vertex of the primitive
PARAM_WRAP 64 bits: for which parameters (and channels (xyzw)) do we do the cyl wrapping

(0=linear, 1=cylindrical).
PS_EXPORT_MODE 0xxxx : Normal mode
 1xxxx : Multipass mode
 If normal, bbbz where bbb is how many colors (0-4) and z is export z or not
 If multipass 1-12 exports for color.
VS_EXPORT_MODE 0: position (1 vector), 1: position (2 vectors), 3:multipass
VS_EXPORT

_COUNT Number of locations exported by the VS (and thus number of interpolated
parameters)_{0…6} Six 4 bit counters representing the # of interpolated
parameters exported in clause 7 (located in VS_EXPORT_COUNT_6) OR

 # of exported vectors to memory per clause in multipass mode (per clause)
PARAM_GEN_I0 Do we overwrite or not the parameter 0 with XY data and generated T and S values

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 714 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

42 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

GEN_INDEX Auto generates an address from 0 to XX. Puts the results into R0-1 for pixel shaders
and R2 for vertex shaders

CONST_BASE_VTX (9 bits) Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Turns on the predicate bit optimization (if of, conditional_execute_predicates is

always executed).
CF_BOOLEANS 256 boolean bits
CF_LOOP_COUNT 32x8 bit counters (number of times we traverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in index computation)

26.23. DEBUG Registers

26.123.1 Context
DB_PROB_ADDR instruction address where the first problem occurred
DB_PROB_COUNT number of problems encountered during the execution of the program
DB_PROB_BREAK break the clause if an error is found.
DB_ON turns on an off debug method 2
DB_INST_COUNT instruction counter for debug method 2
DB_BREAK_ADDR break address for method number 2
DB_CLAUSE
_MODE_ALU_{0…7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)
DB_CLAUSE
_MODE_FETCH_{0…7} clause mode for debug method 2 (0: normal, 1: addr, 2: kill)

26.223.2 Control
DB_ALUCST_MEMSIZE Size of the physical ALU constant memory
DB_TSTATE_MEMSIZE Size of the physical texture state memory

27.24. Interfaces

27.124.1 External Interfaces
Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ→SPx it means that SQ is going to broadcast the same information to all SP instances.

27.224.2 SC to SP Interfaces

27.2.124.2.1 SC_SP#
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the I,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data which is transferred per quad is
 Ref Pix I => S4.20 Floating Point I value
 Ref Pix J => S4.20 Floating Point J value
 Delta Pix I (x3) => S4.8 Floating Point Delta I value
 Delta Pix J (x3) => S4.8 Floating Point Delta J value
This equates to a total of 128 bits which transferred over 2 clocks
and therefor needs an interface 64 bits wide

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 715 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

43 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a IJ_BUF_INUSE_COUNT in the SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNT count. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2, if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of I,J data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,SQ and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple mode first with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performance hit.)

Name Bits Description
SC_SP#_data 64 IJ information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bit)

Type 0 or 1, First clock I, second clk J
Field ULC URC LLC LRC
 Bits [63:39] [38:26] [25:13] [12:0]
Format SE4M20 SE4M8 SE4M8 SE4M8
Type 2
Field Face X Y
 Bits [63] [23:12] [11:0]
Format Bit Unsigned Unsigned

SC_SP#_valid 1 Valid
SC_SP#_last_quad_data 1 This bit will be set on the last transfer of data per quad.
SC_SP#_type 2 0 -> Indicates centroids

1 -> Indicates centers
2 -> Indicates X,Y Data and faceness on data bus
The SC shall look at state data to determine how many types to send for the
interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP block will have neither because the instantiation will insert the prefix.

27.2.224.2.2 SC_SQ
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 92 bits) could be folded in half to approx 47 bits.

Name Bits Description
SC_SQ_data 46 Control Data sent to the SQ

1 clk transfers
 Event – valid data consist of event_id and
 state_id. Instruct SQ to post an
 event vector to send state id and
 event_id through request fifo
 and onto the reservation stations
 making sure state id and/or event_id
 gets back to the CP. Events only
 follow end of packets so no pixel
 vectors will be in progress.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 716 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

44 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 Empty Quad Mask – Transfer Control data
 consisting of pc_dealloc
 or new_vector. Receipt of this is to
 transfer pc_dealloc or new_vector
 without any valid quad data. New
 vector will always be posted to
 request fifo and pc_dealloc will be
 attached to any pixel vector
 outstanding or posted in request fifo
 if no valid quad outstanding.
2 clk transfers
 Quad Data Valid – Sending quad data with or
 without new_vector or pc_dealloc.
 New vector will be posted to request
 fifo with or without a pixel vector and
 pc_dealloc will be posted with a pixel
 vector unless none is in progress. In
 this case the pc_dealloc will be
 posted in the request queue.
 Filler quads will be transferred with
 The Quad mask set but the pixel
 corresponding pixel mask set to
 zero.

SC_SQ_valid 1 SC sending valid data, 2nd clk could be all zeroes

SC_SQ_data – first clock and second clock transfers are shown in the table below.

Name BitField Bits Description

1st Clock Transfer

SC_SQ_event 0 1 This transfer is a 1 clock event vector
Force quad_mask = new_vector=pc_dealloc=0

SC_SQ_event_id [2:1] 2 This field identifies the event
0 => denotes an End Of State Event
1 => TBD

SC_SQ_pc_dealloc [5:3] 3 Deallocation token for the Parameter Cache
SC_SQ_new_vector 6 1 The SQ must wait for Vertex shader done count > 0 and after

dispatching the Pixel Vector the SQ will decrement the count.
SC_SQ_quad_mask [10:7] 4 Quad Write mask left to right SP0 => SP3
SC_SQ_end_of_prim 11 1 End Of the primitive
SC_SQ_state_id [14:12] 3 State/constant pointer (6*3+3)
SC_SQ_pix_mask [30:15] 16 Valid bits for all pixels SP0=>SP3 (UL,UR,LL,LR)
SC_SQ_prim_type [33:31] 3 Stippled line and Real time command need to load tex cords from

alternate buffer
000: Normal
010: Realtime
101: Line AA
110: Point AA (Sprite)

SC_SQ_provok_vtx [35:34] 2 Provoking vertex for flat shading
SC_SQ_pc_ptr0 [46:36] 11 Parameter Cache pointer for vertex 0
2nd Clock Transfer
SC_SQ_pc_ptr1 [10:0] 11 Parameter Cache pointer for vertex 1
SC_SQ_pc_ptr2 [21:11] 11 Parameter Cache pointer for vertex 2
SC_SQ_lod_correct [45:22] 24 LOD correction per quad (6 bits per quad)

Name Bits Description

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 717 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

45 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ_SC_free_buff 1 Pipelined bit that instructs SC to decrement count of buffers in use.
SQ_SC_dec_cntr_cnt 1 Pipelined bit that instructs SC to decrement count of new vector and/or event

sent to prevent SC from overflowing SQ interpolator/Reservation request fifo.

The scan converter will submit a partial vector whenever:

1.) He gets a primitive marked with an end of packet signal.
2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been

marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal made it through and thus the hang.)

27.2.324.2.3 SQ to SX: Interpolator bus
Name Direction Bits Description
SQ_SXx_interp_flat_vtx SQ→SPx 2 Provoking vertex for flat shading
SQ_SXx_interp_flat_gouraud SQ→SPx 1 Flat or gouraud shading
SQ_SXx_interp_cyl_wrap SQ→SPx 4 Wich channel needs to be cylindrical wrapped
SQ_SXx_pc_ptr0 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr1 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr2 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_rt_sel SQ→SXx 1 Selects between RT and Normal data
SQ_SXx_pc_wr_en SQ→SXx 1 Write enable for the PC memories
SQ_SXx_pc_wr_addr SQ→SXx 7 Write address for the PCs
SQ_SXx_pc_channel_mask SQ→SXx 4 Channel mask

27.2.424.2.4 SQ to SP: Staging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.
Name Direction Bits Description
SQ_SPx_vsr_data SQ→SPx 96 Pointers of indexes or HOS surface information
SQ_SPx_vsr_double SQ→SPx 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0_ vsr_valid SQ→SP0 1 Data is valid
SQ_SP1_ vsr_ valid SQ→SP1 1 Data is valid
SQ_SP2_ vsr_ valid SQ→SP2 1 Data is valid
SQ_SP3_ vsr_ valid SQ→SP3 1 Data is valid
SQ_SPx_vsr_read SQ→SPx 1 Increment the read pointers

27.2.524.2.5 VGT to SQ : Vertex interface

27.2.5.124.2.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 718 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

46 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Name Bits Description
VGT_SQ_vsisr_data 96 Pointers of indexes or HOS surface information
VGT_SQ_vsisr_double 1 0: Normal 96 bits per vert 1: double 192 bits per vert
VGT_SQ_end_of_vector 1 Indicates the last VSISR data set for the current process vector (for double vector

data, "end_of_vector" is set on the first vector)
VGT_SQ_indx_valid 1 Vsisr data is valid
VGT_SQ_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when

“VGT_SQ_vgt_end_of_vector” is high.
VGT_SQ_send 1 Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_VGT_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

27.2.5.224.2.5.2 Interface Diagrams Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 719 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

47 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

VGT

VSISR_DATA_2

END_OF_VECTOR_2

STATE_SEL_2

REG

VSISR_DOUBLE_2
REG

REG

REG

REG

REG

SEND_2

REG

REG

REG

REG

REG

REG

PA_SQ_vgt_vsisr_data

PA_SQ_vgt_vsisr_double

PA_SQ_vgt_end_of_vector

PA_SQ_vgt_state_sel

PA_SQ_vgt_send

SQ_PA_vgt_rtr

VSISR_DATA_4

END_OF_VECTOR_4

STATE_SEL_4

VSISR_DOUBLE_4

96

1

1

3

1

1

SEND_4

RTR_2 RTR_0

SHADER
SEQUENCER

RTS

101 X 4
SKID

BUFFER

SRST SRST

WE

EMPTY

RE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 720 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

48 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

6 7

6 7

6 7

0 1 2 3

0 1

8

8

8

2 43 5

4 5 6 7

4 3 2 1

8

9 10 11 12

9 10 11 12

9 10 11 12

9 10 11 12

0

RECEIVER RE-STARTS TRANSMISSION

SENDER STOPS TRANSMISSION

SQ_RTR

SQ_RTR_0

VGT_RTS

SEND_2

SEND_3

SEND_4

DATA_2

FIFO_EMPTY

FIFO_RE

SQ_RTR_1

SQ_RTR_2

DATA_3

DATA_4

FIFO_DATA_OUT

FIFO_CNT

RECEIVER STOPS TRANSMISSION

Figure 1. Detailed Logical Diagram for PA_SQ_vgt Interface.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 721 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

49 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

27.2.624.2.6 SQ to SX: Control bus

Name Direction Bits Description
SQ_SXx_exp_type SQ→SXx 2 00: Pixel without z (1 to 4 buffers)

01: Pixel with z (1 to 4 buffers)
10: Position (1 or 2 results)
11: Pass thru (4,8 or 12 results aligned)

SQ_SXx_exp_number SQ→SXx 2 Number of locations needed in the export buffer
(encoding depends on the type see bellow).

SQ_SXx_exp_alu_id SQ→SXx 1 ALU ID
SQ_SXx_exp_valid SQ→SXx 1 Valid bit
SQ_SXx_exp_state SQ→SXx 3 State Context

SQ_SXx_free_done SQ→SXx 1 Pulse to indicate that the previous export is finished
(this can be sent with or without the other fields of the
interface)

SQ_SXx_free_alu_id SQ→SXx 1 ALU ID

Depending on the type the number of export location changes:

 Type 00 : Pixels without Z
o 00 = 1 buffer
o 01 = 2 buffers
o 10 = 3 buffers
o 11 = 4 buffer

 Type 01: Pixels with Z
o 00 = 2 Buffers (color + Z)
o 01 = 3 buffers (2 color + Z)
o 10 = 4 buffers (3 color + Z)
o 11 = 5 buffers (4 color + Z)

 Type 10 : Position export
o 00 = 1 position
o 01 = 2 positions
o 1X = Undefined

 Type 11: Pass Thru
o 00 = 4 buffers
o 01 = 8 buffers
o 10 = 12 buffers
o 11 = Undefined

Below the thick black line is the end of transfer packet that tells the SX that a given export is finished. The report
packet will always arrive either before or at the same time than the next export to the same ALU id.These fields
are sent every time the sequencer picks an exporting clause for execution.

27.2.724.2.7 SX to SQ : Output file control
Name Direction Bits Description
SXx_SQ_exp_count_rdy SXx→SQ 1 Raised by SX0 to indicate that the following two fields

reflect the result of the most recent export
SXx_SQ_exp_pos_avail SXx→SQ 1 Specifies whether there is room for another position.
SXx_SQ_exp_buf_avail SXx→SQ 7 Specifies the space available in the output buffers.

0: buffers are full
1: 2K-bits available (32-bits for each of the 64
pixels in a clause)
...
64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

Formatted: Bullets and Numbering

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 722 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

50 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

27.2.824.2.8 SQ to TP: Control bus
Once every clock, the fetch unit sends to the sequencer on which clause RS line it is now working and if the data in
the GPRs is ready or not. This way the sequencer can update the fetch valid bits counters flags for the reservation
station fifos. The sequencer also provides the instruction and constants for the fetch to execute and the address in
the register file where to write the fetch return data.

Name Name DirectionDirection BitsBits DescriptionDescription
TPx_SQ_data_rdyTPx_SQ_data_rdy TPx→ SQTPx→

SQ
11 Data readyData ready

TPx_SQ_rs_line_numTPx_SQ_clause_num TPx→ SQTPx→
SQ

63 Line number in the
Reservation stationClause
number

TPx_SQ_typeTPx_SQ_type TPx→ SQTPx→
SQ

11 Type of data sent (0:PIXEL,
1:VERTEX)Type of data sent
(0:PIXEL, 1:VERTEX)

SQ_TPx_sendSQ_TPx_send SQ→TPxSQ→TPx 11 Sending valid dataSending
valid data

SQ_TPx_constSQ_TPx_const SQ→TPxSQ→TPx 4848 Fetch state sent over 4 clocks
(192 bits total)Fetch state sent
over 4 clocks (192 bits total)

SQ_TPx_instrSQ_TPx_instr SQ→TPxSQ→TPx 2424 Fetch instruction sent over 4
clocksFetch instruction sent
over 4 clocks

SQ_TPx_end_of_groupSQ_TPx_end_of_clause SQ→TPxSQ→TPx 11 Last instruction of the
groupLast instruction of the
clause

SQ_TPx_TypeSQ_TPx_Type SQ→TPxSQ→TPx 11 Type of data sent (0:PIXEL,
1:VERTEX)Type of data sent
(0:PIXEL, 1:VERTEX)

SQ_TPx_gpr_phaseSQ_TPx_gpr_phase SQ→TPxSQ→TPx 22 Write phase signalWrite phase
signal

SQ_TP0_lod_correctSQ_TP0_lod_correct SQ→TP0SQ→TP0 66 LOD correct 3 bits per comp 2
components per quad LOD
correct 3 bits per comp 2
components per quad

SQ_TP0_pix_maskSQ_TP0_pix_mask SQ→TP0SQ→TP0 44 Pixel mask 1 bit per pixelPixel
mask 1 bit per pixel

SQ_TP1_lod_correctSQ_TP1_lod_correct SQ→TP1SQ→TP1 66 LOD correct 3 bits per comp 2
components per quad LOD
correct 3 bits per comp 2
components per quad

SQ_TP1_pix_maskSQ_TP1_pix_mask SQ→TP1SQ→TP1 44 Pixel mask 1 bit per pixelPixel
mask 1 bit per pixel

SQ_TP2_lod_correctSQ_TP2_lod_correct SQ→TP2SQ→TP2 66 LOD correct 3 bits per comp 2
components per quad LOD
correct 3 bits per comp 2
components per quad

SQ_TP2_pix_maskSQ_TP2_pix_mask SQ→TP2SQ→TP2 44 Pixel mask 1 bit per pixelPixel
mask 1 bit per pixel

SQ_TP3_lod_correctSQ_TP3_lod_correct SQ→TP3SQ→TP3 66 LOD correct 3 bits per comp 2
components per quad LOD
correct 3 bits per comp 2
components per quad

SQ_TP3_pix_maskSQ_TP3_pix_mask SQ→TP3SQ→TP3 44 Pixel mask 1 bit per pixelPixel
mask 1 bit per pixel

Formatted: Bullets and Numbering

Formatted

Formatted

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 723 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

51 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ_TPx_rs_line_numSQ_TPx_clause_num SQ→TPxSQ→TPx 63 Line number in the
Reservation stationClause
number

SQ_TPx_write_gpr_indexSQ_TPx_write_gpr_inde
x

SQ->TPxSQ->TPx 77 Index into Register file for write
of returned Fetch DataIndex
into Register file for write of
returned Fetch Data

27.2.924.2.9 TP to SQ: Texture stall
The TP sends this signal to the SQ and the SPs when its input buffer is full.

SU0

SU3

SU2

SU1

TP_SP_fetch_Stall

SQ_SP_wr_addr

Name Direction Bits Description
TP_SQ_fetch_stall TP→ SQ 1 Do not send more texture request if asserted

27.2.1024.2.10 SQ to SP: Texture stall
Name Direction Bits Description
SQ_SPx_fetch_stall SQ→SPx 1 Do not send more texture request if asserted

27.2.1124.2.11 SQ to SP: GPR and auto counter
Name Direction Bits Description
SQ_SPx_gpr_wr_addr SQ→SPx 7 Write address
SQ_SPx_gpr_rd_addr SQ→SPx 7 Read address
SQ_SPx_gpr_rd_en SQ→SPx 1 Read Enable
SQ_SPx_gpr_wr_en SQ→SPx 1 Write Enable for the GPRs
SQ_SPx_gpr_phase SQ→SPx 2 The phase mux (arbitrates between inputs, ALU SRC

reads and writes)
SQ_SPx_channel_mask SQ→SPx 4 The channel mask
SQ_SPx_gpr_input_sel SQ→SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTX0,
VTX1, autogen counter.

SQ_SPx_auto_count SQ→SPx 12? Auto count generated by the SQ, common for all shader
pipes

Formatted

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 724 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

52 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

27.2.1224.2.12 SQ to SPx: Instructions
Name Direction Bits Description
SQ_SPx_instr_start SQ→SPx 1 Instruction start
SQ_SP_instr SQ→SPx 21 Transferred over 4 cycles

0: SRC A Select 2:0
 SRC A Argument Modifier 3:3
 SRC A swizzle 11:4
 VectorDst 17:12
 Unused 20:18
--
-
1: SRC B Select 2:0
 SRC B Argument Modifier 3:3
 SRC B swizzle 11:4
 ScalarDst 17:12
 Unused 20:18
--
-
2: SRC C Select 2:0
 SRC C Argument Modifier 3:3
 SRC C swizzle 11:4
 Unused 20:12
--
-
3: Vector Opcode 4:0
 Scalar Opcode 10:5
 Vector Clamp 11:11
 Scalar Clamp 12:12
 Vector Write Mask 16:13
 Scalar Write Mask 20:17

SQ_SPx_exp_alu_id SQ→SPx 1 ALU ID
SQ_SPx_exporting SQ→SPx 2 0: Not Exporting

1: Vector Exporting
2: Scalar Exporting

SQ_SPx_stall SQ→SPx 1 Stall signal
SQ_SP0_write_mask SQ→SP0 4 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP1_ write_mask SQ→SP1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP2_ write_mask SQ→SP2 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP3_ write_mask SQ→SP3 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

27.2.1324.2.13 SP to SQ: Constant address load/ Predicate Set
Name Direction Bits Description
SP0_SQ_const_addr SP0→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP0_SQ_valid SP0→SQ 1 Data valid
SP1_SQ_const_addr SP1→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 725 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

53 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SP1_SQ_valid SP1→SQ 1 Data valid
SP2_SQ_const_addr SP2→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP2_SQ_valid SP2→SQ 1 Data valid
SP3_SQ_const_addr SP3→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP3_SQ_valid SP3→SQ 1 Data valid

27.2.1424.2.14 SQ to SPx: constant broadcast
Name Direction Bits Description
SQ_SPx_const SQ→SPx 128 Constant broadcast

27.2.1524.2.15 SP0 to SQ: Kill vector load
Name Direction Bits Description
SP0_SQ_kill_vect SP0→SQ 4 Kill vector load
SP1_SQ_kill_vect SP1→SQ 4 Kill vector load
SP2_SQ_kill_vect SP2→SQ 4 Kill vector load
SP3_SQ_kill_vect SP3→SQ 4 Kill vector load

27.2.1624.2.16 SQ to CP: RBBM bus
Name Direction Bits Description
SQ_RBB_rs SQ→CP 1 Read Strobe
SQ_RBB_rd SQ→CP 32 Read Data
SQ_RBBM_nrtrtr SQ→CP 1 Optional
SQ_RBBM_rtr SQ→CP 1 Real-Time (Optional)

27.2.1724.2.17 CP to SQ: RBBM bus
Name Direction Bits Description
rbbm_we CP→SQ 1 Write Enable
rbbm_a CP→SQ 15 Address -- Upper Extent is TBD (16:2)
rbbm_wd CP→SQ 32 Data
rbbm_be CP→SQ 4 Byte Enables
rbbm_re CP→SQ 1 Read Enable
rbb_rs0 CP→SQ 1 Read Return Strobe 0
rbb_rs1 CP→SQ 1 Read Return Strobe 1
rbb_rd0 CP→SQ 32 Read Data 0
rbb_rd1 CP→SQ 32 Read Data 0
RBBM_SQ_soft_reset CP→SQ 1 Soft Reset

27.2.1824.2.18 SQ to CP: State report
Name Direction Bits Description
SQ_CP_vs_event SQ→CP 1 Vertex Shader Event
SQ_CP_vs_eventid SQ→CP 2 Vertex Shader Event ID
SQ_CP_ps_event SQ→CP 1 Pixel Shader Event
SQ_CP_ps_eventid SQ→CP 2 Pixel Shader Event ID

 eventid = 0 => *sEndOfState (i.e. VsEndOfState)
 eventid = 1 => *sDone (i.e. VsDone)

So, the CP will assume the Vs is done with a state whenever it gets a pulse on the SQ_CP_vs_event
and the SQ_CP_vs_eventid = 0.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 726 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

54 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24.3 Example of control flow program execution
We now provide some examples of execution to better illustrate the new design.

Given the program:

Alu 0
Alu 1
Tex 0
Tex 1
Alu 3 Serial
Alu 4
Tex 2
Alu 5
Alu 6 Serial
Tex 3
Alu 7
Alloc Position 1 buffer
Alu 8 Export
Tex 4
Alloc Parameter 3 buffers
Alu 9 Export 0
Tex 5
Alu 10 Serial Export 2
Alu 11 Export 1 End

Would be converted into the following CF instructions:

Execute Alu 0 Alu 0 Tex 0 Tex 0 Alu 1 Alu 0 Tex 0 Alu 0 Alu 1 Tex 0
Execute Alu 0
Alloc Position 1
Execute Alu 0 Tex 0
Alloc Param 3
Execute Alu 0 Tex 0 Alu 1 Alu 0 End

And the execution of this program would look like this:

Put thread in Vertex RS:

Control Flow Instruction Pointer (12 bits), (CFP)
Execution Count Marker (3 or 4 bits), (ECM)
Loop Iterators (4x9 bits), (LI)
Call return pointers (4x12 bits), (CRP)
Predicate Bits(4x64 bits), (PB)
Export ID (1 bit), (EXID)
GPR Base Ptr (8 bits), (GPR)
Export Base Ptr (7 bits), (EB)
Context Ptr (3 bits).(CPTR)
LOD correction bits (16x6 bits) (LOD)

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 0 0 0 0 0 0 0 0 0

Valid Thread (VALID)
Texture/ALU engine needed (TYPE)
Texture Reads are outstanding (PENDING)
Waiting on Texture Read to Complete (SERIAL)
Allocation Wait (2 bits) (ALLOC)

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 727 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

55 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

00 – No allocation needed
01 – Position export allocation needed (ordered export)
10 – Parameter or pixel export needed (ordered export)
11 – pass thru (out of order export)

Allocation Size (4 bits) (SIZE)
Position Allocated (POS_ALLOC)
First thread of a new context (FIRST)
Last (1 bit), (LAST)

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 0 0 0 0 0 1 0

Then the thread is picked up for the execution of the first control flow instruction:
Execute Alu 0 Alu 0 Tex 0 Tex 0 Alu 1 Alu 0 Tex 0 Alu 0 Alu 1 Tex 0

It executes the first two ALU instructions and goes back to the RS for a resource request change. Here is the
state returned to the RS:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 2 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Then when the texture pipe frees up, the arbiter picks up the thread to issue the texture reads. The thread comes

back in this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 4 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 0 1 0

Because of the serial bit the arbiter must wait for the texture to return and clear the PENDING bit before it can

pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returns it in
this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 6 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Again the TP frees up, the arbiter picks up the thread and executes. It returns in this state:

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 728 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

56 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 7 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 0 0 0 1 0

Now, even if the texture has not returned we can still pick up the thread for ALU execution because the serial bit

is not set. The thread will however come back to the RS for the second ALU instruction because it has the serial bit
set.

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 8 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 0 1 0

As soon as the TP clears the pending bit the thread is picked up and returns:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 9 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Picked up by the TP and returns:
Execute Alu 0

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
1 0 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 0 0 0 1 0

Picked up by the ALU and returns (lets say the TP has not returned yet):
Alloc Position 1

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
2 0 0 0 0 0 0 0 0 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 729 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

57 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 01 1 0 1 0

If the SX has the place for the export, the SQ is going to allocate and pick up the thread for execution. It returns to

the RS in this state:

Execute Alu 0 Tex 0

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
3 1 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 1 0 0 0 1 1 0

Now, since the TP has not returned yet, we must wait for it to return because we cannot issue multiple texture

requests. The TP returns, clears the PENDING bit and we proceed:

Alloc Param 3

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
4 0 0 0 0 1 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 10 3 1 1 0

Once again the SQ makes sure the SX has enough room in the Parameter cache before it can pick up this

thread.

Execute Alu 0 Tex 0 Alu 1 Alu 0 End

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
5 1 0 0 0 1 0 100 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 1 0 0 0 1 1 0

This executes on the TP and then returns:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
5 2 0 0 0 1 0 100 0 0

Status Bits

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 730 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201519
April 2002

R400 Sequencer Specification PAGE

58 of 58

Exhibit 2028.docR400_Sequencer.doc �� 73201 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 1 1 1

Waits for the TP to return because of the textures reads are pending (and SERIAL in this case). Then executes
and does not return to the RS because the LAST bit is set. This is the end of this thread and before dropping it on the
floor, the SQ notifies the SX of export completion.

28.25. Open issues
Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 731 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SQ

Version 2.010

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\doc_lib\design\blocks\sq\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2029
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 732 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

2 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Table Of Contents

1. OVERVIEW .. 97
1.1 Top Level Block Diagram ... 119
1.2 Data Flow graph (SP) ... 1210
1.3 Control Graph ... 1311
2. INTERPOLATED DATA BUS .. 1311
3. INSTRUCTION STORE ... 1614
4. SEQUENCER INSTRUCTIONS ... 1614
5. CONSTANT STORES .. 1614
5.1 Memory organizations .. 1614
5.2 Management of the Control Flow Constants .. 1715
5.3 Management of the re-mapping tables .. 1715

5.3.1 R400 Constant management .. 1715

5.3.2 Proposal for R400LE constant management .. 1715

5.3.3 Dirty bits .. 1917

5.3.4 Free List Block .. 1917

5.3.5 De-allocate Block .. 2018

5.3.6 Operation of Incremental model .. 2018
5.4 Constant Store Indexing ... 2018
5.5 Real Time Commands.. 2119
5.6 Constant Waterfalling ... 2119
6. LOOPING AND BRANCHES ... 2220
6.1 The controlling state. .. 2220
6.2 The Control Flow Program ... 2220

6.2.1 Control flow instructions table ... 2321
6.3 Implementation ... 2422
6.4 Data dependant predicate instructions ... 2624
6.5 HW Detection of PV,PS ... 2724
6.6 Register file indexing .. 2724
6.7 Debugging the Shaders ... 2725

6.7.1 Method 1: Debugging registers ... 2725

6.7.2 Method 2: Exporting the values in the GPRs .. 2825
7. PIXEL KILL MASK .. 2826
8. MULTIPASS VERTEX SHADERS (HOS) .. 2826
9. REGISTER FILE ALLOCATION .. 2826
10. FETCH ARBITRATION .. 2927
11. ALU ARBITRATION .. 2927
12. HANDLING STALLS ... 3028
13. CONTENT OF THE RESERVATION STATION FIFOS ... 3028
14. THE OUTPUT FILE.. 3028
15. IJ FORMAT .. 3028
15.1 Interpolation of constant attributes .. 3129
16. STAGING REGISTERS ... 3129

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 733 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

17. THE PARAMETER CACHE ... 3330
17.1 Export restrictions ... 3430

17.1.1 Pixel exports: .. 3430

17.1.2 Vertex exports: ... 3430

17.1.3 Pass thru exports: .. 3430
17.2 Arbitration restrictions ... 3430
18. EXPORT TYPES .. 3431
18.1 Vertex Shading .. 3431
18.2 Pixel Shading .. 3531
19. SPECIAL INTERPOLATION MODES ... 3531
19.1 Real time commands .. 3531
19.2 Sprites/ XY screen coordinates/ FB information .. 3532
19.3 Auto generated counters ... 3632

19.3.1 Vertex shaders ... 3632

19.3.2 Pixel shaders .. 3632
20. STATE MANAGEMENT .. 3633
20.1 Parameter cache synchronization ... 3633
21. XY ADDRESS IMPORTS ... 3733
21.1 Vertex indexes imports .. 3733
22. REGISTERS .. 3734
22.1 Control ... 3734
22.2 Context .. 3734
23. DEBUG REGISTERS... 3835
23.1 Context .. 3835
23.2 Control ... 3835

24. INTERFACES .. 3835

24.1 External Interfaces .. 3835
24.2 SC to SP Interfaces ... 3835

24.2.1 SC_SP# ... 3835

24.2.2 SC_SQ ... 3936

24.2.3 SQ to SX: Interpolator bus ... 4138

24.2.4 SQ to SP: Staging Register Data ... 4138

24.2.5 VGT to SQ : Vertex interface .. 4138

24.2.6 SQ to SX: Control bus .. 4541

24.2.7 SX to SQ : Output file control ... 4541

24.2.8 SQ to TP: Control bus .. 4642

24.2.9 TP to SQ: Texture stall ... 4642

24.2.10 SQ to SP: Texture stall ... 4742

24.2.11 SQ to SP: GPR and auto counter .. 4743

24.2.12 SQ to SPx: Instructions .. 4844

24.2.13 SP to SQ: Constant address load/ Predicate Set ... 4844

24.2.14 SQ to SPx: constant broadcast .. 4945

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 734 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

4 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24.2.15 SP0 to SQ: Kill vector load ... 4945

24.2.16 SQ to CP: RBBM bus ... 4945

24.2.17 CP to SQ: RBBM bus ... 4945

24.2.18 SQ to CP: State report ... 4945
24.3 Example of control flow program execution .. 5045
25. OPEN ISSUES ... 5450
1. OVERVIEW .. 6
1.1 Top Level Block Diagram ... 8
1.2 Data Flow graph (SP) ... 9
1.3 Control Graph ... 10
2. INTERPOLATED DATA BUS .. 10
3. INSTRUCTION STORE ... 13
4. SEQUENCER INSTRUCTIONS ... 13
5. CONSTANT STORES .. 13
5.1 Memory organizations .. 13
5.2 Management of the Control Flow Constants .. 14
5.3 Management of the re-mapping tables .. 14

5.3.1 R400 Constant management .. 14

5.3.2 Proposal for R400LE constant management .. 14

5.3.3 Dirty bits .. 16

5.3.4 Free List Block .. 16

5.3.5 De-allocate Block .. 17

5.3.6 Operation of Incremental model .. 17
5.4 Constant Store Indexing ... 17
5.5 Real Time Commands.. 18
5.6 Constant Waterfalling ... 18
6. LOOPING AND BRANCHES ... 19
6.1 The controlling state. .. 19
6.2 The Control Flow Program ... 19
6.3 Data dependant predicate instructions ... 23
6.4 HW Detection of PV,PS ... 23
6.5 Register file indexing .. 23
6.6 Predicated Instruction support for Texture clauses .. 24
6.7 Debugging the Shaders ... 24

6.7.1 Method 1: Debugging registers ... 24

6.7.2 Method 2: Exporting the values in the GPRs (12) ... 24
7. PIXEL KILL MASK .. 25
8. MULTIPASS VERTEX SHADERS (HOS) .. 25
9. REGISTER FILE ALLOCATION .. 25
10. FETCH ARBITRATION .. 26
11. ALU ARBITRATION .. 26
12. HANDLING STALLS ... 27
13. CONTENT OF THE RESERVATION STATION FIFOS ... 27
14. THE OUTPUT FILE.. 27
15. IJ FORMAT .. 27

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 735 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

15.1 Interpolation of constant attributes .. 28
16. STAGING REGISTERS ... 28
17. THE PARAMETER CACHE ... 30
18. VERTEX POSITION EXPORTING ... 31
19. EXPORTING ARBITRATION .. 31
20. EXPORTING RULES ... 31
20.1 Parameter caches exports .. 31
20.2 Memory exports .. 31
20.3 Position exports ... 31
21. EXPORT TYPES .. 31
21.1 Vertex Shading .. 31
21.2 Pixel Shading .. 31
22. SPECIAL INTERPOLATION MODES ... 31
22.1 Real time commands .. 31
22.2 Sprites/ XY screen coordinates/ FB information .. 32
22.3 Auto generated counters ... 32

22.3.1 Vertex shaders ... 32

22.3.2 Pixel shaders .. 32
23. STATE MANAGEMENT .. 33
23.1 Parameter cache synchronization ... 33
24. XY ADDRESS IMPORTS ... 33
24.1 Vertex indexes imports .. 33
25. REGISTERS .. 34
25.1 Control ... 34
25.2 Context .. 34
26. DEBUG REGISTERS... 35
26.1 Context .. 35
26.2 Control ... 35

27. INTERFACES .. 35

27.1 External Interfaces .. 35
27.2 SC to SP Interfaces ... 35

27.2.1 SC_SP# ... 35

27.2.2 SC_SQ ... 36

27.2.3 SQ to SX: Interpolator bus ... 38

27.2.4 SQ to SP: Staging Register Data ... 38

27.2.5 VGT to SQ : Vertex interface .. 38

27.2.6 SQ to SX: Control bus .. 41

27.2.7 SX to SQ : Output file control ... 41

27.2.8 SQ to TP: Control bus .. 42

27.2.9 TP to SQ: Texture stall ... 42

27.2.10 SQ to SP: Texture stall ... 42

27.2.11 SQ to SP: GPR and auto counter .. 43

27.2.12 SQ to SPx: Instructions .. 44

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 736 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

6 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

27.2.13 SP to SQ: Constant address load/ Predicate Set ... 44

27.2.14 SQ to SPx: constant broadcast .. 45

27.2.15 SP0 to SQ: Kill vector load ... 45

27.2.16 SQ to CP: RBBM bus ... 45

27.2.17 CP to SQ: RBBM bus ... 45

27.2.18 SQ to CP: State report ... 45
28. OPEN ISSUES ... 50

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 737 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

 Changed the control flow method to be more
flexible. Also updated the external interfaces.

Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

 Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001

 Refined interfaces to RB. Added state registers.

Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

 Added SEQ→SP0 interfaces. Changed delta
precision. Changed VGT→SP0 interface. Debug
Methods added.

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001

 Interfaces greatly refined. Cleaned up the spec.

Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001

 Added the different interpolation modes.

Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

 Added the auto incrementing counters. Changed
the VGT→SQ interface. Added content on constant
management. Updated GPRs.

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

 Removed from the spec all interfaces that weren’t
directly tied to the SQ. Added explanations on
constant management. Added PA→SQ
synchronization fields and explanation.

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

 Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002

 Added Real Time parameter control in the SX
interface. Updated the control flow section.

Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

 New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002

 Rearangement of the CF instruction bits in order to
ensure byte alignement.

Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002

 Updated the interfaces and added a section on
exporting rules.

Rev 1.11 (Laurent Lefebvre)
Date : April 19, 2002

 Added CP state report interface. Last version of the
spec with the old control flow scheme

Rev 2.0 (Laurent Lefebvre)
Date : April 19, 2002

 New control flow scheme

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 738 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

8 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Rev 2.01 (Laurent Lefebvre)
Date : May 2, 2002

 Changed slightly the control flow instructions to
allow force jumps and calls.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 739 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1. Overview
The sequencer chooses two ALU threads and a fetch hread to execute, and executes all of the instructions in a block
before looking for a new clause of the same type. Two ALU threads are executed interleaved to hide the ALU latency.
The arbitrator will give priority to older threads. There are two separate reservation stations, one for pixel vectors and
one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 740 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

10 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ

SC

SPSPSPCSTOREFETCH STATE

TP

INST STORE

IJ CONTROL

IJ
CONTROL

CST
ADDR

INST
 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/QUAD
ADDRESSES

SP

ALU INST

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

INST

INTER INTER INTER INTER

IJ CROSSBAR

2 QUADS IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC READ
 POINTERS

PARAM
DATA

R/W ADDR

Vertex indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

CP

CONSTANT
LOAD

CPConstant Load

TX ADDR

PC Write
Address

TEX INST

CF
CONSTANTS

Register
Mapped

CF Read

Figure 1: General Sequencer overview

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 741 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.1 Top Level Block Diagram

ALU Texture

VTX RS PIX RS

Exec Arbiter

Input Arbiter

Figure 2: Reservation stations and arbiters

Under this new scheme, the sequencer (SQ) will only use one global state management machine per vector type
(pixel, vertex) that we call the reservation station (RS).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 742 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

12 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.2 Data Flow graph (SP)

MAC

MAC

MAC

MAC

Register File

co
n

st
an

ts
 f

ro
m

 R
E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
n

ts
 f

ro
m

 R
E

S
ca

la
r

U
ni

t

texture request

texture request

texture request

texture request

te
xt

ur
e

 a
dd

re
ss

te xtu
re

 d
ata

prim
itiv e d a

ta
 from

 R
E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

Figure 3: The shader Pipe

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 743 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

SEQ

FETCH SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

OF

WrAddrIS CST

CST IDX

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 744 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

14 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x64 bits)

IJs buffer (ping-pong buffer)
(28 bits * 2 (IJ) + 8 bits * 6 (delta IJs)+4 exp

bits*6)* 16 (quads) * 2 (double-buffered)
4096 bits

32 x 128

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

64

To RB

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2

768 bits
32x24

FIX-FLOAT + EXPANSiON

Figure 5: Interpolation buffers

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 745 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SP
0

SP
1

SP
2

SP
3

WRITES
T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-
11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P1 P2

T20 T21 T22 T23

VTX

T0 T1 T2 T3

XY

XY
0-3

XY
4-7

XY
8-
11

XY
12-
15

XY
16-
19

XY
20-
23

XY
24-
27

XY
28-
31

XY
32-
35

XY
36-
39

XY
40-
43

XY
44-
47

XY
48-
51

XY
52-
55

XY
56-
59

XY
60-
63

READS

SP
0

SP
1

SP
2

SP
3

A0

A1

A2

B1

B0

C3

C0

C1

C2

C4

C5

D0

D1

D2

E0

E1

A0

A1

A2

XY
A0
XY
A1
XY
A2

B1

B0

XY
B1

XY
B0

C3

C0

C1

C2

XY
C3
XY
C0
XY
C1
XY
C2

C4

C5

XY
C4
XY
C5

D0

D1

D2

XY
D1
XY
D2

XY
D0

E0

E1
XY
E1

XY
E0

Figure 6: Interpolation timing diagram

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 746 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

16 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store
There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4. Sequencer Instructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 747 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

5.2 Management of the Control Flow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied whenever there is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn’t write to CF the state is going to use the previous CF constants.

5.3 Management of the re-mapping tables

5.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROL packet of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it with
the new state (this is depicted in Figure 8: De-allocation mechanismFigure 8: De-allocation mechanismFigure 8: De-
allocation mechanism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 748 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

18 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Physical
Memory

Renaming Table
for 1 Context
Current/Last

Physical
Address

per
Logical
Address

Renaming
table

N-Contexts

Reset
Dirty
per

Logical
Address

(Only
de-

allocate
if set)

This
Context

Dirty
per

Logical
Address

(If set
don't

allocate
or de-

allocate)

Logical address
On the

GlbRegBus
when lsb are zero
first word of write

next
physical
address
ready

for allocate

Constants
location
available
WRTR

physical
address

to
schedule

for
de-alloc

Staging Data
Buffer

Staging Write Addr

Copy Last held above to
Current Context on receipt

of Set Constant for a
new context (Hide loading

behind Set State load - 16 clocks)
all other Set States just write one

entry to current state.

Free
list

(pass Phys
Address if
Context
Dirty)

Dealloc
Counts

Seq
Constant
Request

Context &
Logical
Address

Free_ptr
WritePtr

When a Logical
Address is written

that has been
written before,

store the physical
address that was
allocated by that
Logical Address

Stop_ptr
ptr to first physical

address that is
scheduled to be de-
allocated but noty
yet de-allocate.

Advanced each time
a context is freed by

the number of
physical address
displaced by that

Context

Read_ptr
ptr to physical

address that will be
used next if the init

count is at
maximum number

of physical address

Free List

Number of entries
equals Max Number of
Physical Blocks. All
Pointers start at zero
and roll around but

can never pass each
other

Free
Address

Address
to Allocate

Global Register
Data Bus

Renaming Table
Context 0 => N

Logical Address
& Context

Physical
Address

Context 0 (8 rows of 16 - 8 bit
physical => 128 entries copy in

eight clocks)

Context 1

Context N

Current/Last
Context

(8 rows of 16 - 8
bit physical =>

128 entries copy
in eight clocks)

Figure 7: Constant management

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 749 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

DEALOC
COUNTERSFree List

!=

OR

AND

NOT

ADDR

PREVIOUS
STATE

NEW
STATE

SQ_IDLE

CP_NEW_STATE_CNTL
PA_IDLE

VALUE

VALID

CNT VALUE

SQ_STATE#

WRITE_ENABLE

REMAPPING
TABLE

SET CTX BITS

Figure 8: De-allocation mechanism for R400LE

5.3.3 Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block
A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 750 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

20 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

5.3.5 De-allocate Block
This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any number of blocks in one clock.

5.3.6 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 751 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

5.5 Real Time Commands
The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
works is the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zones is defined by the TSTATE_EO_RT control register.

5.6 Constant Waterfalling
In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenever a state is freed.

CONST_EO_RT

RT SECTON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table)

Figure 9: The instruction store

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 752 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

22 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
We'd like to be able to code up a program of the form:

1: Loop
2: Exec TexFetch
3: TexFetch
4: ALU
5: ALU
6: TexFetch
7: End Loop
8: ALU Export

But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3:. Without clausing,
these dependencies need to be expressed in the Control Flow instructions. Additionally, without separate 'texture
clauses' and 'ALU clauses' we need to know which instructions to dispatch to the Texture Unit and which to the ALU
unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of information for each (non-control flow) instruction:
 a) ALU or Texture
 b) Serialize Execution

(b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched. Given the allocation of reserved bits, this would mean that the count of an 'Exec' instruction
would be limited to about 8 (non-control-flow) instructions. If more than this were needed, a second Exec (with the
same conditions) would be issued.

Another function that relies upon 'clauses' is allocation and order of execution. We need to assure that pixels and
vertices are exported in the correct order (even if not all execution is ordered) and that space in the output buffers are
allocated in order. Additionally data can't be exported until space is allocated. A new control flow instruction:

 Alloc <buffer select -- position,parameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual
allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already
completed. The implementation would also assure that execution of instruction(s) following the serialization due to the
Alloc will occur in order -- at least until the next serialization or change from ALU to Texture. In most cases this will
allow the exports to occur without any further synchronization. Only 'final' allocations or position allocations are

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 753 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

guaranteed to be ordered. Because strict ordering is required for pixels, parameters and positions, this implies only
a single alloc for these structures. Vertex exports to memory do not require ordering during allocation and so multiple
'allocs' may be done.

6.2.1 Control flow instructions table
Here is the revised control flow instruction set.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

Execute
47 46… 43 40 … 34 33 …16 15…12 11 … 0

Addressing 0001 RESERVED Instructions type + serialize (9
instructions)

Count Exec Address

Execute up to 9 instructions at the specified address in the instruction memory. The Instruction type field tells the
sequencer the type of the instruction (LSB) (1 = Texture, 0 = ALU and whether to serialize or not the execution (MSB)
(1 = Serialize, 0 = Non-Serialized).

NOP
47 46 … 43 42 … 0

Addressing 0010 RESERVED

This is a regular NOP.

Conditional_Execute

47 46 … 43 42 41 … 34 33…16 15 …12 11 … 0
Addressing 0011 Condition Boolean

address
Instructions type + serialize (9

instructions)
Count Exec Address

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 9 instructions). If the condition is not met, we go on to the next control flow instruction.

Conditional_Execute_Predicates
47 46 … 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0

Addressing 0010 Condition RESERVED Predicate
vector

Instructions
type + serialize
(9 instructions)

Count Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid. If the
condition is not met, we go on to the next control flow instruction.

Loop_Start
47 46 … 43 42 … 17 20 … 16 15…1216 …

12
11 … 0

Addressing 0101 RESERVED loop ID RESERVEDlo
op ID

Jump address

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 754 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

24 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Loop_End

47 46 … 43 42 … 204 23… 21 20 … 1619… 17 15…1216 …
12

11 … 0

Addressing 0011 RESERVED Predicate break loop ID
Predicate break

RESERVED
loop ID

start address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop. If predicate break != 0, then compares predicate vector n
(specified by predicate break number). If all bits cleared then break the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal_Call
47 46 … 43 42 35 41 … 34 33 … 132 12 11 … 0

Addressing 0111 Condition Predicate
vectorBoolean

address

RESERVED Force Call Jump address

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack. If
force call is set the condition is ignored and the call is made always.

Return
47 46 … 43 42 … 0

Addressing 1000 RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump
47 46 … 43 42 41… 34 33 32 … 132 12 11 … 0

Addressing 1001 Condition Boolean
address

FW only RESERVED Force Jump Jump address

If force jump is set the condition is ignored and the jump is made always. If FW only is set then only forward jumps
are allowed.

Allocate
47 46 … 43 42…41 40 … 4 3 …0

Debug 1010 Buffer Select RESERVED Allocation size

Buffer Select takes a value of the following:
01 – position export (ordered export)
10 – parameter cache or pixel export (ordered export)
11 – pass thru (out of order exports).

If debug is set this is a debug alloc (ignore if debug DB_ON register is set to off).

End Of Program

47 46 … 43 42… 0
RESERVED 1011 RESERVED

Marks the end of the program.

6.3 Implementation

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 755 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The envisioned implementation has a buffer that maintains the state of each thread. A thread lives in a given
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the order that they
enter. Actually two buffers are maintained -- one for Vertices and one for Pixels. The intended implementation
would allow for:

16 entries for vertices
48 entries for pixels.

From each buffer, arbitration logic attempts to select 1 thread for the texture unit and 1 (interleaved) thread for the
ALU unit. Once a thread is selected it is read out of the buffer, marked as invalid, and submitted to appropriate
execution unit. It is returned to the buffer (at the same place) with its status updated once all possible sequential
instructions have been executed. A switch from ALU to TEX or visa-versa or a Serialize_Execution modifier forces
the thread to be returned to the buffer.

Each entry in the buffer will be stored across two physical pieces of memory - most bits will be stored in a 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed 'state'. The bits kept in the multi-read ported device will be termed 'status'.

'State Bits' needed include:

1. Control Flow Instruction Pointer (12 13 bits),
2. Execution Count Marker 4 bits),
3. Loop Iterators (4x9 bits),
4. Call return pointers (4x12 bits),
5. Predicate Bits (4x64 bits),
6. Export ID (1 bit),
7. Parameter Cache base Ptr (7 bits),
8. GPR Base Ptr (8 bits),
9. Context Ptr (3 bits).
10. LOD corrections (6x16 bits)
11. Valid bits (64 bits)

Absent from this list are 'Index' pointers. These are costly enough that I'm presuming that they are instead stored in
the GPRs. The first seven fields above (Control Flow Ptr, Execution Count, Loop Counts, call return ptrs, Predicate
bits, PC base ptr and export ID) are updated every time the thread is returned to the buffer based on how much
progress has been mode on thread execution. GPR Base Ptr, Context Ptr and LOD corrections are unchanged
throughout execution of the thread.

'Status Bits' needed include:

 Valid Thread
 Texture/ALU engine needed
 Texture Reads are outstanding
 Waiting on Texture Read to Complete
 Allocation Wait (2 bits)
 00 – No allocation needed
 01 – Position export allocation needed (ordered export)
 10 – Parameter or pixel export needed (ordered export)
 11 – pass thru (out of order export)
 Allocation Size (4 bits)
 Position Allocated
 First thread of a new context
 Event thread (NULL thread that needs to trickle down the pipe)
 Last (1 bit)
 Pulse SX (1 bit)

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 756 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

26 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

All of the above fields from all of the entries go into the arbitration circuitry. The arbitration circuitry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -- one for
pixels and one for vertices. A final selection is then done between the two. But the rest of this implementation
summary only considers the 'first' level selection which is similar for both pixels and vertices.

Texture arbitration requires no allocation or ordering so it is purely based on selecting the 'oldest' thread that requires
the Texture Engine.

ALU arbitration is a little more complicated. First, only threads where either of Texture_Reads_outstanding or
Waiting_on_Texture_Read_to_Complete are '0' are considered. Then if Allocation_Wait is active, these threads are
further filtered based on whether space is available. If the allocation is position allocation, then the thread is only
considered if all 'older' threads have already done their position allocation (position allocated bits set). If the
allocation is parameter or pixel allocation, then the thread is only considered if it is the oldest thread. Also a thread is
not considered if it is a parameter or pixel or position allocation, has its First_thread_of_a_new_context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the 'oldest' of the threads that pass through the above filters is selected. If the thread needed to allocate, then
at this time the allocation is done, based on Allocation_Size. If a thread has its “last” bit set, then it is also removed
from the buffer, never to return.

If I now redefine 'clauses' to mean 'how many times the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine', then the minimum number of clauses needed is 2 -- one to perform
the allocation for exports (execution automatically halts after an 'Alloc' instruction) (but doesn't performs the actual
allocation) and one for the actual ALU/export instructions. As the 'Alloc' instruction could be part of a texture clause
(presumably the final instruction in such a clause), a thread could still execute in this minimal number of 2 clauses,
even if it involved texture fetching.

The Texture_Reads_Outstanding bit must be updated by the sequencer, based on keeping track of how many
Texture Clauses have been executed by a given thread that have not yet had there data returned. Any number
above 0 results in this bit being set. We could consider forcing synchronization such that two texture clauses for a
given thread may not be outstanding at any time (that would be my preference for simplicity reasons and because it
would require only very little change in the texture pipe interface). This would allow the sequencer to set the bit on
execution of the texture clause, and allow the texture unit to return a pointer to the thread buffer on completion that
clears the bit.

6.4 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETNE_# - similar to SETNE except that the result is 'exported' to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE0_# – SETE0
 PRED_SETE1_# – SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

 P0_ADD_# R0,R1,R2

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 757 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

6.5 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

6.6 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

The sequencer is going to keep a loop index computed as such:

 Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128…127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
 - jump errors
 relative jump address > size of the control flow program
 - call stack
 call with stack full

return with stack empty

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 758 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

28 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

A jump error will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only break if
the DB_PROB_BREAK register is set.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the 0th
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs
1) The sequencer will have a debug active, count register and an address register for this mode.

Under the normal mode execution follows the normal course.

Under the debug mode it is assumed that the program is always exporting n debug vectors and that all other exports
to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by the sequencer (even if they occur
before the address stated by the ADDR debug register).

7. Pixel Kill Mask
A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE

 MASK_SETGT
 MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZE for pixels.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 759 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

10. Fetch Arbitration
The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration
ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…
 Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 760 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

30 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the exporting clause (3?). The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs
The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel’s parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming P0 is the interpolated parameter at Pixel 0 having the barycentric coordinates I(0), J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at V0 (interpolated with I), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

)(*03)(*0303

)(*02)(*0202

)(*01)(*0101

)(*)0()(*)0(0

)0()3(03

)0()3(03

)0()2(02

)0()2(02

)0()1(01

)0()1(01

CBJCAIPP

CBJCAIPP

CBJCAIPP

CBJCAICP

JJJ

III

JJJ

III

JJJ

III

P0 is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2

P0

P2

P1

P3

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 761 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Adds: 8

FORMAT OF P0’s IJ : Mantissa 20 Exp 4 for I + Sign
 Mantissa 20 Exp 4 for J + Sign

FORMAT of Deltas (x3): Mantissa 8 Exp 4 for I + Sign
 Mantissa 8 Exp 4 for J + Sign

Total number of bits : 20*2 + 8*6 + 4*8 + 4*2 = 128

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the number is
normalized if not, then the number is un-normalized. The maximum range for the IJs (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

15.1 Interpolation of constant attributes
Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

We start with the premise that if A = B and B = C and C = A, then P0,1,2,3 = A. Since one or more of the IJ terms
may be zero, so we extend this to:

if (A=B and B=C and C=A)
 P0,1,2,3 = A;
else if ((I = 0) or (J = 0)) and
 ((J = 0) or (1-I-J = 0)) and
 ((1-J-I = 0) or (I = 0))) {
 if(I != 0) {
 P0 = A;
 } else if(J != 0) {
 P0 = B;
 } else {
 P0 = C;
 }
 //rest of the quad interpolated normally
}
else
{
 normal interpolation
}

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 || 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencer will re-arrange them in this fashion:

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 || 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 || 8 9 10 11 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the VGT will send padding to account for
the missing pipe. For example, if SP1 is broken, vertices 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sent
by the VGT to the SQ BUT will not be processed by the SP and thus should be considered invalid (by the SU and
VGT).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 762 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

32 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 11Figure 11Figure 11. The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure 10Figure 10Figure 10.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11631 60.57813per bit

Area of 96x8-deep Latch Memory 46524
Area of 24-bit Fix-to-float Converter 4712per converter

Method 1 Block Quantity Area

 F2F 3 14136

 8x96 Latch 16 744384

 758520

Figure 10:Area Estimate for VGT to Shader Interface

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 763 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

33 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SHADER PIPE

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

3
2

3
2

3
2

VGT BLOCK
(IN PA)

3
2

9
6

VECTOR ENGINE

96

8x96
MEMORY
1-READ
1-WRITE

3 OTHER
SHADER
PIPES

 3 Fix->Float Converters (24-bit)
 16 Memories 8x96-bit (12,288 bits)

Totals:

THREE MORE VECTOR ENGINES
PER SHADER PIPE

VECTOR ENGINE

SHADER
SEQUENCER

Figure 11:VGT to Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER
4 bits

ADDRESS
7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17th) is going to have the address 00000001000, the 18th 00010001000, the 19th 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*VS_EXPORT_COUNT to
Current_Location and reset the memory count to 0 before the next vector begins).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 764 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

34 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

17.1 Export restrictions

17.1.1 Pixel exports:
Pixels can export 1,2,3 or 4 color buffers to the SX(+z). The exports will be done in order. The PRED_OPTIMIZE
function has to be turned of if the exports are done using interleaved predicated instructions. The exports will always
be ordered to the SX.

17.1.2 Vertex exports:
Position or parameter caches can be exported in any order in the shader program. It is always better to export
posistion as soon as possible. Position has to be exported in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be done in any order with texture instructions interleaved.
The PRED_OPTIMIZE function has to be turned of if the exports are done using interleaved predicated instructions to
the Parameter cache (see Arbitration restrictions for details). The exports will always be allocated in order to the SX.

17.1.3 Pass thru exports:
Pass thru exports have to be done in groups of the form:

Alloc 4 (8 or 12)
Execute ALU(ADDR) ALU(DATA) ALU(DATA) ALU(DATA)…

They cannot have texture instructions interleaved in the export block. These exports are not guaranteed to be
ordered.

Also, when doing a pass thru export, Position MUST be exported AFTER all pass thru exports. This position export is
used to synchronize the chip when doing a transition from pass thru shader to regular shader and vice versa.

17.2 Arbitration restrictions
Here are the Sequencer arbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texture pending bit is set
2) Cannot allocate position if any older thread has not allocated position
3) If last thread is marked as not valid AND marked as last and we are about to execute the second to oldest

thread also marked last then:
a. Both threads must be from the same context (cannot allow a first thread)
b. Must turn off the predicate optimization for the second thread

4) Cannot execute a texture clause if texture reads are pending
5) Cannot execute last if texture pending (even if not serial)

18. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

18.1 Vertex Shading
 0:15 - 16 parameter cache
 16:31 - Empty (Reserved?)

32 - Export Address
 33:40 - 8 vertex exports to the frame buffer and index
 41:47 - Empty
 48:55 - 8 debug export (interpret as normal vertex export)
 60 - export addressing mode
 61 - Empty
 62 - position

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 765 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

35 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 63 - sprite size export that goes with position export
 (point_h,point_w,edgeflag,misc)

18.2 Pixel Shading
 0 - Color for buffer 0 (primary)
 1 - Color for buffer 1
 2 - Color for buffer 2
 3 - Color for buffer 3
 4:7 - Empty
 8 - Buffer 0 Color/Fog (primary)
 9 - Buffer 1 Color/Fog
 10 - Buffer 2 Color/Fog
 11 - Buffer 3 Color/Fog
 12:15 - Empty
 16:31 - Empty (Reserved?)
 32 - Export Address
 33:40 - 8 exports for multipass pixel shaders.
 41:47 - Empty
 48:55 - 8 debug exports (interpret as normal pixel export)
 60 - export addressing mode
 61:62 - Empty
 63 - Z for primary buffer (Z exported to 'alpha' component)

19. Special Interpolation modes

19.1 Real time commands
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem I see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft’s high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This mode is triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

19.2 Sprites/ XY screen coordinates/ FB information
When working with sprites, one may want to overwrite the parameter 0 with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_I0 register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Here is a list of all the modes and how they interact
together:

Gen_st is a bit taken from the interface between the SC and the SQ. This is the MSB of the primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between 0 and 1.

Param_Gen_I0 disable, snd_xy disable, no gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy disable, gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy enable, no gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy enable, gen_st – I0 = No modification
Param_Gen_I0 enable, snd_xy disable, no gen_st – I0 = garbage, garbage, garbage, faceness

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 766 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

36 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Param_Gen_I0 enable, snd_xy disable, gen_st – I0 = garbage, garbage, s, t
Param_Gen_I0 enable, snd_xy enable, no gen_st – I0 = screen x, screen y, garbage, faceness
Param_Gen_I0 enable, snd_xy enable, gen_st – I0 = screen x, screen y, s, t

19.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1st pass data to memory and then use the count to retrieve the data on the 2nd pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. The sequencer is going to
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the
GPRs the counter is incremented. Every time a state change is detected, the corresponding counter is reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

19.3.1 Vertex shaders
In the case of vertex shaders, if GEN_INDEX is set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

19.3.2 Pixel shaders
In the case of pixel shaders, if GEN_INDEX is set and Param_Gen_I0 is enabled, the data will be put in the x field of
the 2nd register (R1.x), else if GEN_INDEX is set the data will be put into the x field of the 1st register (R0.x).

AUTO
COUNT

STG 0

STG1

INTERPOLATORS

GPR0

AUTO COUNT 000000

MUX

The Auto Count Value is
broadcast to all GPRs. It is

loaded into a register wich has
its LSBs hardwired to the

GPR number (0 thru 63). Then
if GEN_INDEX is high, the
mux selects the auto-count

value and it is loaded into the
GPRs to be either used to

retrieve data using the TP or
sent to the SX for the RB to

use it to write the data to
memory

Figure 12: GPR input mux Control

20. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

20.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 767 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

37 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

21. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix→float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 19.2 for details on how to control the interpolation in this mode.

21.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

22. Registers

22.1 Control
REG_DYNAMIC Dynamic allocation (pixel/vertex) of the register file on or off.
REG_SIZE_PIX Size of the register file's pixel portion (minimal size when dynamic allocation turned

on)
REG_SIZE_VTX Size of the register file's vertex portion (minimal size when dynamic allocation turned

on)
ARBITRATION_POLICY policy of the arbitration between vertexes and pixels
INST_BASE_VTX start point for the vertex instruction store (RT always ends at vertex_base and

Begins at 0)
INST_BASE_PIX start point for the pixel shader instruction store
ONE_THREAD debug state register. Only allows one program at a time into the GPRs
ONE_ALU debug state register. Only allows one ALU program at a time to be executed (instead

of 2)
INSTRUCTION This is where the CP puts the base address of the instruction writes and type (auto-

incremented on reads/writes) Register mapped
CONSTANTS 512*4 ALU constants + 32*6 Texture state 32 bits registers (logically mapped)
CONSTANTS_RT 256*4 ALU constants + 32*6 texture states? (physically mapped)
CONSTANT_EO_RT This is the size of the space reserved for real time in the constant store (from 0 to

CONSTANT_EO_RT). The re-mapping table operates on the rest of the memory
TSTATE_EO_RT This is the size of the space reserved for real time in the fetch state store (from 0 to
TSTATE_EO_RT). The re-mapping table operates on the rest of the memory

22.2 Context
PS_BASE base pointer for the pixel shader in the instruction store
VS_BASE base pointer for the vertex shader in the instruction store
VS_CF_SIZE size of the vertex shader (# of instructions in control program/2)
PS_CF_SIZE size of the pixel shader (# of instructions in control program/2)
PS_SIZE size of the pixel shader (cntl+instructions)
VS_SIZE size of the vertex shader (cntl+instructions)
PS_NUM_REG number of GPRs to allocate for pixel shader programs
VS_NUM_REG number of GPRs to allocate for vertex shader programs
PARAM_SHADE One 16 bit register specifying which parameters are to be gouraud shaded (0 = flat, 1

= gouraud)
PARAM_WRAP 64 bits: for which parameters (and channels (xyzw)) do we do the cyl wrapping

(0=linear, 1=cylindrical).
PS_EXPORT_MODE 0xxxx : Normal mode

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 768 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

38 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 1xxxx : Multipass mode
 If normal, bbbz where bbb is how many colors (0-4) and z is export z or not
 If multipass 1-12 exports for color.
VS_EXPORT_MODE 0: position (1 vector), 1: position (2 vectors), 3:multipass
VS_EXPORT_COUNT Number of locations exported by the VS (and thus number of interpolated
parameters)
PARAM_GEN_I0 Do we overwrite or not the parameter 0 with XY data and generated T and S values
GEN_INDEX Auto generates an address from 0 to XX. Puts the results into R0-1 for pixel shaders

and R2 for vertex shaders
CONST_BASE_VTX (9 bits) Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Turns on the predicate bit optimization (if of, conditional_execute_predicates is

always executed).
CF_BOOLEANS 256 boolean bits
CF_LOOP_COUNT 32x8 bit counters (number of times we traverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in index computation)

23. DEBUG Registers

23.1 Context
DB_PROB_ADDR instruction address where the first problem occurred
DB_PROB_COUNT number of problems encountered during the execution of the program
DB_PROB_BREAK break the clause if an error is found.
DB_ON turns on an off debug method 2
DB_INST_COUNT instruction counter for debug method 2
DB_BREAK_ADDR break address for method number 2

23.2 Control
DB_ALUCST_MEMSIZE Size of the physical ALU constant memory
DB_TSTATE_MEMSIZE Size of the physical texture state memory

24. Interfaces

24.1 External Interfaces
Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ→SPx it means that SQ is going to broadcast the same information to all SP instances.

24.2 SC to SP Interfaces

24.2.1 SC_SP#
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the I,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data which is transferred per quad is
 Ref Pix I => S4.20 Floating Point I value
 Ref Pix J => S4.20 Floating Point J value

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 769 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

39 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 Delta Pix I (x3) => S4.8 Floating Point Delta I value
 Delta Pix J (x3) => S4.8 Floating Point Delta J value
This equates to a total of 128 bits which transferred over 2 clocks
and therefor needs an interface 64 bits wide

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a IJ_BUF_INUSE_COUNT in the SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNT count. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2, if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of I,J data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,SQ and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple mode first with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performance hit.)

Name Bits Description
SC_SP#_data 64 IJ information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bit)

Type 0 or 1, First clock I, second clk J
Field ULC URC LLC LRC
 Bits [63:39] [38:26] [25:13] [12:0]
Format SE4M20 SE4M8 SE4M8 SE4M8
Type 2
Field Face X Y
 Bits [63] [23:12] [11:0]
Format Bit Unsigned Unsigned

SC_SP#_valid 1 Valid
SC_SP#_last_quad_data 1 This bit will be set on the last transfer of data per quad.
SC_SP#_type 2 0 -> Indicates centroids

1 -> Indicates centers
2 -> Indicates X,Y Data and faceness on data bus
The SC shall look at state data to determine how many types to send for the
interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP block will have neither because the instantiation will insert the prefix.

24.2.2 SC_SQ
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 92 bits) could be folded in half to approx 47 bits.

Name Bits Description
SC_SQ_data 46 Control Data sent to the SQ

1 clk transfers
 Event – valid data consist of event_id and
 state_id. Instruct SQ to post an
 event vector to send state id and
 event_id through request fifo
 and onto the reservation stations

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 770 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

40 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 making sure state id and/or event_id
 gets back to the CP. Events only
 follow end of packets so no pixel
 vectors will be in progress.

 Empty Quad Mask – Transfer Control data
 consisting of pc_dealloc
 or new_vector. Receipt of this is to
 transfer pc_dealloc or new_vector
 without any valid quad data. New
 vector will always be posted to
 request fifo and pc_dealloc will be
 attached to any pixel vector
 outstanding or posted in request fifo
 if no valid quad outstanding.
2 clk transfers
 Quad Data Valid – Sending quad data with or
 without new_vector or pc_dealloc.
 New vector will be posted to request
 fifo with or without a pixel vector and
 pc_dealloc will be posted with a pixel
 vector unless none is in progress. In
 this case the pc_dealloc will be
 posted in the request queue.
 Filler quads will be transferred with
 The Quad mask set but the pixel
 corresponding pixel mask set to
 zero.

SC_SQ_valid 1 SC sending valid data, 2nd clk could be all zeroes

SC_SQ_data – first clock and second clock transfers are shown in the table below.

Name BitField Bits Description

1st Clock Transfer

SC_SQ_event 0 1 This transfer is a 1 clock event vector
Force quad_mask = new_vector=pc_dealloc=0

SC_SQ_event_id [2:1] 2 This field identifies the event
0 => denotes an End Of State Event
1 => TBD

SC_SQ_pc_dealloc [5:3] 3 Deallocation token for the Parameter Cache
SC_SQ_new_vector 6 1 The SQ must wait for Vertex shader done count > 0 and after

dispatching the Pixel Vector the SQ will decrement the count.
SC_SQ_quad_mask [10:7] 4 Quad Write mask left to right SP0 => SP3
SC_SQ_end_of_prim 11 1 End Of the primitive
SC_SQ_state_id [14:12] 3 State/constant pointer (6*3+3)
SC_SQ_pix_mask [30:15] 16 Valid bits for all pixels SP0=>SP3 (UL,UR,LL,LR)
SC_SQ_prim_type [33:31] 3 Stippled line and Real time command need to load tex cords from

alternate buffer
000: Normal
010: Realtime
101: Line AA
110: Point AA (Sprite)

SC_SQ_provok_vtx [35:34] 2 Provoking vertex for flat shading
SC_SQ_pc_ptr0 [46:36] 11 Parameter Cache pointer for vertex 0
2nd Clock Transfer
SC_SQ_pc_ptr1 [10:0] 11 Parameter Cache pointer for vertex 1

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 771 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

41 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SC_SQ_pc_ptr2 [21:11] 11 Parameter Cache pointer for vertex 2
SC_SQ_lod_correct [45:22] 24 LOD correction per quad (6 bits per quad)

Name Bits Description
SQ_SC_free_buff 1 Pipelined bit that instructs SC to decrement count of buffers in use.
SQ_SC_dec_cntr_cnt 1 Pipelined bit that instructs SC to decrement count of new vector and/or event

sent to prevent SC from overflowing SQ interpolator/Reservation request fifo.

The scan converter will submit a partial vector whenever:

1.) He gets a primitive marked with an end of packet signal.
2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been

marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal made it through and thus the hang.)

24.2.3 SQ to SX: Interpolator bus
Name Direction Bits Description
SQ_SXx_interp_flat_vtx SQ→SPx 2 Provoking vertex for flat shading
SQ_SXx_interp_flat_gouraud SQ→SPx 1 Flat or gouraud shading
SQ_SXx_interp_cyl_wrap SQ→SPx 4 Wich channel needs to be cylindrical wrapped
SQ_SXx_pc_ptr0 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr1 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr2 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_rt_sel SQ→SXx 1 Selects between RT and Normal data
SQ_SXx_pc_wr_en SQ→SXx 1 Write enable for the PC memories
SQ_SXx_pc_wr_addr SQ→SXx 7 Write address for the PCs
SQ_SXx_pc_channel_mask SQ→SXx 4 Channel mask

24.2.4 SQ to SP: Staging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.
Name Direction Bits Description
SQ_SPx_vsr_data SQ→SPx 96 Pointers of indexes or HOS surface information
SQ_SPx_vsr_double SQ→SPx 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0_ vsr_valid SQ→SP0 1 Data is valid
SQ_SP1_ vsr_ valid SQ→SP1 1 Data is valid
SQ_SP2_ vsr_ valid SQ→SP2 1 Data is valid
SQ_SP3_ vsr_ valid SQ→SP3 1 Data is valid
SQ_SPx_vsr_read SQ→SPx 1 Increment the read pointers

24.2.5 VGT to SQ : Vertex interface

24.2.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 772 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

42 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Name Bits Description
VGT_SQ_vsisr_data 96 Pointers of indexes or HOS surface information
VGT_SQ_vsisr_double 1 0: Normal 96 bits per vert 1: double 192 bits per vert
VGT_SQ_end_of_vector 1 Indicates the last VSISR data set for the current process vector (for double vector

data, "end_of_vector" is set on the first vector)
VGT_SQ_indx_valid 1 Vsisr data is valid
VGT_SQ_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when

“VGT_SQ_vgt_end_of_vector” is high.
VGT_SQ_send 1 Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_VGT_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

24.2.5.2 Interface Diagrams

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 773 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

43 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

VGT

VSISR_DATA_2

END_OF_VECTOR_2

STATE_SEL_2

REG

VSISR_DOUBLE_2
REG

REG

REG

REG

REG

SEND_2

REG

REG

REG

REG

REG

REG

PA_SQ_vgt_vsisr_data

PA_SQ_vgt_vsisr_double

PA_SQ_vgt_end_of_vector

PA_SQ_vgt_state_sel

PA_SQ_vgt_send

SQ_PA_vgt_rtr

VSISR_DATA_4

END_OF_VECTOR_4

STATE_SEL_4

VSISR_DOUBLE_4

96

1

1

3

1

1

SEND_4

RTR_2 RTR_0

SHADER
SEQUENCER

RTS

101 X 4
SKID

BUFFER

SRST SRST

WE

EMPTY

RE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 774 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

44 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

6 7

6 7

6 7

0 1 2 3

0 1

8

8

8

2 43 5

4 5 6 7

4 3 2 1

8

9 10 11 12

9 10 11 12

9 10 11 12

9 10 11 12

0

RECEIVER RE-STARTS TRANSMISSION

SENDER STOPS TRANSMISSION

SQ_RTR

SQ_RTR_0

VGT_RTS

SEND_2

SEND_3

SEND_4

DATA_2

FIFO_EMPTY

FIFO_RE

SQ_RTR_1

SQ_RTR_2

DATA_3

DATA_4

FIFO_DATA_OUT

FIFO_CNT

RECEIVER STOPS TRANSMISSION

Figure 1. Detailed Logical Diagram for PA_SQ_vgt Interface.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 775 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

45 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24.2.6 SQ to SX: Control bus

Name Direction Bits Description
SQ_SXx_exp_type SQ→SXx 2 00: Pixel without z (1 to 4 buffers)

01: Pixel with z (1 to 4 buffers)
10: Position (1 or 2 results)
11: Pass thru (4,8 or 12 results aligned)

SQ_SXx_exp_number SQ→SXx 2 Number of locations needed in the export buffer
(encoding depends on the type see bellow).

SQ_SXx_exp_alu_id SQ→SXx 1 ALU ID
SQ_SXx_exp_valid SQ→SXx 1 Valid bit
SQ_SXx_exp_state SQ→SXx 3 State Context

SQ_SXx_free_done SQ→SXx 1 Pulse to indicate that the previous export is finished
(this can be sent with or without the other fields of the
interface)

SQ_SXx_free_alu_id SQ→SXx 1 ALU ID

Depending on the type the number of export location changes:

 Type 00 : Pixels without Z
o 00 = 1 buffer
o 01 = 2 buffers
o 10 = 3 buffers
o 11 = 4 buffer

 Type 01: Pixels with Z
o 00 = 2 Buffers (color + Z)
o 01 = 3 buffers (2 color + Z)
o 10 = 4 buffers (3 color + Z)
o 11 = 5 buffers (4 color + Z)

 Type 10 : Position export
o 00 = 1 position
o 01 = 2 positions
o 1X = Undefined

 Type 11: Pass Thru
o 00 = 4 buffers
o 01 = 8 buffers
o 10 = 12 buffers
o 11 = Undefined

Below the thick black line is the end of transfer packet that tells the SX that a given export is finished. The report
packet will always arrive either before or at the same time than the next export to the same ALU id.

24.2.7 SX to SQ : Output file control
Name Direction Bits Description
SXx_SQ_exp_count_rdy SXx→SQ 1 Raised by SX0 to indicate that the following two fields

reflect the result of the most recent export
SXx_SQ_exp_pos_avail SXx→SQ 1 Specifies whether there is room for another position.
SXx_SQ_exp_buf_avail SXx→SQ 7 Specifies the space available in the output buffers.

0: buffers are full
1: 2K-bits available (32-bits for each of the 64
pixels in a clause)
...
64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 776 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

46 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24.2.8 SQ to TP: Control bus
Once every clock, the fetch unit sends to the sequencer on which RS line it is now working and if the data in the
GPRs is ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequencer also provides the instruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

Name Direction Bits Description
TPx_SQ_data_rdy TPx→ SQ 1 Data ready

TPx_SQ_rs_line_num TPx→ SQ 6 Line number in the Reservation station

TPx_SQ_type TPx→ SQ 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_send SQ→TPx 1 Sending valid data
SQ_TPx_const SQ→TPx 48 Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instr SQ→TPx 24 Fetch instruction sent over 4 clocks
SQ_TPx_end_of_group SQ→TPx 1 Last instruction of the group
SQ_TPx_Type SQ→TPx 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_gpr_phase SQ→TPx 2 Write phase signal
SQ_TP0_lod_correct SQ→TP0 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP0_pix_mask SQ→TP0 4 Pixel mask 1 bit per pixel
SQ_TP1_lod_correct SQ→TP1 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pix_mask SQ→TP1 4 Pixel mask 1 bit per pixel
SQ_TP2_lod_correct SQ→TP2 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pix_mask SQ→TP2 4 Pixel mask 1 bit per pixel
SQ_TP3_lod_correct SQ→TP3 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pix_mask SQ→TP3 4 Pixel mask 1 bit per pixel
SQ_TPx_rs_line_num SQ→TPx 6 Line number in the Reservation station
SQ_TPx_write_gpr_index SQ->TPx 7 Index into Register file for write of returned Fetch Data

24.2.9 TP to SQ: Texture stall
The TP sends this signal to the SQ and the SPs when its input buffer is full.

SU0

SU3

SU2

SU1

TP_SP_fetch_Stall

SQ_SP_wr_addr

Name Direction Bits Description
TP_SQ_fetch_stall TP→ SQ 1 Do not send more texture request if asserted

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 777 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

47 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24.2.10 SQ to SP: Texture stall
Name Direction Bits Description
SQ_SPx_fetch_stall SQ→SPx 1 Do not send more texture request if asserted

24.2.11 SQ to SP: GPR and auto counter
Name Direction Bits Description
SQ_SPx_gpr_wr_addr SQ→SPx 7 Write address
SQ_SPx_gpr_rd_addr SQ→SPx 7 Read address
SQ_SPx_gpr_rd_en SQ→SPx 1 Read Enable
SQ_SP0_gpr_wr_en SQ→SPx 1 Write Enable for the GPRs of SP0
SQ_SP1_gpr_wr_en SQ→SPx 1 Write Enable for the GPRs of SP1
SQ_SP2_gpr_wr_en SQ→SPx 1 Write Enable for the GPRs of SP2
SQ_SPx3_gpr_wr_en SQ→SPx 1 Write Enable for the GPRs of SP3
SQ_SPx_gpr_phase SQ→SPx 2 The phase mux (arbitrates between inputs, ALU SRC

reads and writes)
SQ_SPx_channel_mask SQ→SPx 4 The channel mask
SQ_SPx_gpr_input_sel SQ→SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTX0,
VTX1, autogen counter.

SQ_SPx_auto_count SQ→SPx 12? Auto count generated by the SQ, common for all shader
pipes

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 778 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

48 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24.2.12 SQ to SPx: Instructions
Name Direction Bits Description
SQ_SPx_instr_start SQ→SPx 1 Instruction start
SQ_SP_instr SQ→SPx 21 Transferred over 4 cycles

0: SRC A Select 2:0
 SRC A Argument Modifier 3:3
 SRC A swizzle 11:4
 VectorDst 17:12
 Unused 20:18
--
-
1: SRC B Select 2:0
 SRC B Argument Modifier 3:3
 SRC B swizzle 11:4
 ScalarDst 17:12
 Unused 20:18
--
-
2: SRC C Select 2:0
 SRC C Argument Modifier 3:3
 SRC C swizzle 11:4
 Unused 20:12
--
-
3: Vector Opcode 4:0
 Scalar Opcode 10:5
 Vector Clamp 11:11
 Scalar Clamp 12:12
 Vector Write Mask 16:13
 Scalar Write Mask 20:17

SQ_SPx_exp_alu_id SQ→SPx 1 ALU ID
SQ_SPx_exporting SQ→SPx 2 0: Not Exporting

1: Vector Exporting
2: Scalar Exporting

SQ_SPx_stall SQ→SPx 1 Stall signal
SQ_SP0_write_mask SQ→SP0 4 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP1_ write_mask SQ→SP1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP2_ write_mask SQ→SP2 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP3_ write_mask SQ→SP3 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

24.2.13 SP to SQ: Constant address load/ Predicate Set
Name Direction Bits Description
SP0_SQ_const_addr SP0→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP0_SQ_valid SP0→SQ 1 Data valid
SP1_SQ_const_addr SP1→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 779 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

49 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SP1_SQ_valid SP1→SQ 1 Data valid
SP2_SQ_const_addr SP2→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP2_SQ_valid SP2→SQ 1 Data valid
SP3_SQ_const_addr SP3→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP3_SQ_valid SP3→SQ 1 Data valid

24.2.14 SQ to SPx: constant broadcast
Name Direction Bits Description
SQ_SPx_const SQ→SPx 128 Constant broadcast

24.2.15 SP0 to SQ: Kill vector load
Name Direction Bits Description
SP0_SQ_kill_vect SP0→SQ 4 Kill vector load
SP1_SQ_kill_vect SP1→SQ 4 Kill vector load
SP2_SQ_kill_vect SP2→SQ 4 Kill vector load
SP3_SQ_kill_vect SP3→SQ 4 Kill vector load

24.2.16 SQ to CP: RBBM bus
Name Direction Bits Description
SQ_RBB_rs SQ→CP 1 Read Strobe
SQ_RBB_rd SQ→CP 32 Read Data
SQ_RBBM_nrtrtr SQ→CP 1 Optional
SQ_RBBM_rtr SQ→CP 1 Real-Time (Optional)

24.2.17 CP to SQ: RBBM bus
Name Direction Bits Description
rbbm_we CP→SQ 1 Write Enable
rbbm_a CP→SQ 15 Address -- Upper Extent is TBD (16:2)
rbbm_wd CP→SQ 32 Data
rbbm_be CP→SQ 4 Byte Enables
rbbm_re CP→SQ 1 Read Enable
rbb_rs0 CP→SQ 1 Read Return Strobe 0
rbb_rs1 CP→SQ 1 Read Return Strobe 1
rbb_rd0 CP→SQ 32 Read Data 0
rbb_rd1 CP→SQ 32 Read Data 0
RBBM_SQ_soft_reset CP→SQ 1 Soft Reset

24.2.18 SQ to CP: State report
Name Direction Bits Description
SQ_CP_vs_event SQ→CP 1 Vertex Shader Event
SQ_CP_vs_eventid SQ→CP 2 Vertex Shader Event ID
SQ_CP_ps_event SQ→CP 1 Pixel Shader Event
SQ_CP_ps_eventid SQ→CP 2 Pixel Shader Event ID

 eventid = 0 => *sEndOfState (i.e. VsEndOfState)
 eventid = 1 => *sDone (i.e. VsDone)

So, the CP will assume the Vs is done with a state whenever it gets a pulse on the SQ_CP_vs_event
and the SQ_CP_vs_eventid = 0.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 780 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

50 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24.3 Example of control flow program execution
We now provide some examples of execution to better illustrate the new design.

Given the program:

Alu 0
Alu 1
Tex 0
Tex 1
Alu 3 Serial
Alu 4
Tex 2
Alu 5
Alu 6 Serial
Tex 3
Alu 7
Alloc Position 1 buffer
Alu 8 Export
Tex 4
Alloc Parameter 3 buffers
Alu 9 Export 0
Tex 5
Alu 10 Serial Export 2
Alu 11 Export 1 End

Would be converted into the following CF instructions:

Execute Alu 0 Alu 0 Tex 0 Tex 0 Alu 1 Alu 0 Tex 0 Alu 0 Alu 1 Tex 0
Execute Alu 0
Alloc Position 1
Execute Alu 0 Tex 0
Alloc Param 3
Execute Alu 0 Tex 0 Alu 1 Alu 0 End

And the execution of this program would look like this:

Put thread in Vertex RS:

Control Flow Instruction Pointer (12 bits), (CFP)
Execution Count Marker (3 or 4 bits), (ECM)
Loop Iterators (4x9 bits), (LI)
Call return pointers (4x12 bits), (CRP)
Predicate Bits(4x64 bits), (PB)
Export ID (1 bit), (EXID)
GPR Base Ptr (8 bits), (GPR)
Export Base Ptr (7 bits), (EB)
Context Ptr (3 bits).(CPTR)
LOD correction bits (16x6 bits) (LOD)

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 0 0 0 0 0 0 0 0 0

Valid Thread (VALID)
Texture/ALU engine needed (TYPE)
Texture Reads are outstanding (PENDING)
Waiting on Texture Read to Complete (SERIAL)
Allocation Wait (2 bits) (ALLOC)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 781 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

51 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

00 – No allocation needed
01 – Position export allocation needed (ordered export)
10 – Parameter or pixel export needed (ordered export)
11 – pass thru (out of order export)

Allocation Size (4 bits) (SIZE)
Position Allocated (POS_ALLOC)
First thread of a new context (FIRST)
Last (1 bit), (LAST)

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 0 0 0 0 0 1 0

Then the thread is picked up for the execution of the first control flow instruction:
Execute Alu 0 Alu 0 Tex 0 Tex 0 Alu 1 Alu 0 Tex 0 Alu 0 Alu 1 Tex 0

It executes the first two ALU instructions and goes back to the RS for a resource request change. Here is the
state returned to the RS:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 2 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Then when the texture pipe frees up, the arbiter picks up the thread to issue the texture reads. The thread comes

back in this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 4 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 0 1 0

Because of the serial bit the arbiter must wait for the texture to return and clear the PENDING bit before it can

pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returns it in
this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 6 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Again the TP frees up, the arbiter picks up the thread and executes. It returns in this state:

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 782 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

52 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 7 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 0 0 0 1 0

Now, even if the texture has not returned we can still pick up the thread for ALU execution because the serial bit

is not set. The thread will however come back to the RS for the second ALU instruction because it has the serial bit
set.

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 8 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 0 1 0

As soon as the TP clears the pending bit the thread is picked up and returns:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 9 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Picked up by the TP and returns:
Execute Alu 0

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
1 0 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 0 0 0 1 0

Picked up by the ALU and returns (lets say the TP has not returned yet):
Alloc Position 1

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
2 0 0 0 0 0 0 0 0 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 783 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

53 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 01 1 0 1 0

If the SX has the place for the export, the SQ is going to allocate and pick up the thread for execution. It returns to

the RS in this state:

Execute Alu 0 Tex 0

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
3 1 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 1 0 0 0 1 1 0

Now, since the TP has not returned yet, we must wait for it to return because we cannot issue multiple texture

requests. The TP returns, clears the PENDING bit and we proceed:

Alloc Param 3

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
4 0 0 0 0 1 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 10 3 1 1 0

Once again the SQ makes sure the SX has enough room in the Parameter cache before it can pick up this

thread.

Execute Alu 0 Tex 0 Alu 1 Alu 0 End

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
5 1 0 0 0 1 0 100 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 1 0 0 0 1 1 0

This executes on the TP and then returns:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
5 2 0 0 0 1 0 100 0 0

Status Bits

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 784 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
May 200219 April

R400 Sequencer Specification PAGE

54 of 54

Exhibit 2029.docR400_Sequencer.doc �� 73711 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 1 1 1

Waits for the TP to return because of the textures reads are pending (and SERIAL in this case). Then executes
and does not return to the RS because the LAST bit is set. This is the end of this thread and before dropping it on the
floor, the SQ notifies the SX of export completion.

25. Open issues
Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 785 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SQ

Version 2.021

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\doc_lib\design\blocks\sq\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2030
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 786 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

2 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Table Of Contents

1. OVERVIEW .. 7
1.1 Top Level Block Diagram ... 9
1.2 Data Flow graph (SP) ... 10
1.3 Control Graph ... 11
2. INTERPOLATED DATA BUS .. 11
3. INSTRUCTION STORE ... 14
4. SEQUENCER INSTRUCTIONS ... 14
5. CONSTANT STORES .. 14
5.1 Memory organizations .. 14
5.2 Management of the Control Flow Constants .. 15
5.3 Management of the re-mapping tables ... 15

5.3.1 R400 Constant management... 15

5.3.2 Proposal for R400LE constant management ... 15

5.3.3 Dirty bits .. 17

5.3.4 Free List Block ... 17

5.3.5 De-allocate Block .. 18

5.3.6 Operation of Incremental model .. 18
5.4 Constant Store Indexing ... 18
5.5 Real Time Commands .. 19
5.6 Constant Waterfalling ... 19
6. LOOPING AND BRANCHES ... 20
6.1 The controlling state. .. 20
6.2 The Control Flow Program ... 20

6.2.1 Control flow instructions table .. 21
6.3 Implementation ... 2322
6.4 Data dependant predicate instructions ... 2524
6.5 HW Detection of PV,PS .. 2524
6.6 Register file indexing .. 252524
6.7 Debugging the Shaders .. 2625

6.7.1 Method 1: Debugging registers ... 2625

6.7.2 Method 2: Exporting the values in the GPRs ... 262625
7. PIXEL KILL MASK .. 26
8. MULTIPASS VERTEX SHADERS (HOS) .. 2726
9. REGISTER FILE ALLOCATION .. 2726
10. FETCH ARBITRATION .. 2827
11. ALU ARBITRATION .. 2827
12. HANDLING STALLS ... 2928
13. CONTENT OF THE RESERVATION STATION FIFOS ... 2928
14. THE OUTPUT FILE .. 2928
15. IJ FORMAT .. 2928
15.1 Interpolation of constant attributes .. 3029
16. STAGING REGISTERS ... 3029

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 787 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

17. THE PARAMETER CACHE ... 323130
17.1 Export restrictions .. 333130

17.1.1 Pixel exports: .. 333130

17.1.2 Vertex exports: ... 333130

17.1.3 Pass thru exports: .. 333130
17.2 Arbitration restrictions .. 333130
18. EXPORT TYPES .. 333231
18.1 Vertex Shading .. 333231
18.2 Pixel Shading .. 343231
19. SPECIAL INTERPOLATION MODES ... 343231
19.1 Real time commands ... 343231
19.2 Sprites/ XY screen coordinates/ FB information .. 343332
19.3 Auto generated counters ... 353332

19.3.1 Vertex shaders ... 353332

19.3.2 Pixel shaders .. 353332
20. STATE MANAGEMENT .. 353433
20.1 Parameter cache synchronization ... 353433
21. XY ADDRESS IMPORTS ... 363433
21.1 Vertex indexes imports .. 363433
22. REGISTERS .. 363534
22.1 Control ... 363534
22.2 Context .. 363534
23. DEBUG REGISTERS ... 373635
23.1 Context .. 373635
23.2 Control ... 373635

24. INTERFACES .. 373635

24.1 External Interfaces .. 373635
24.2 SC to SP Interfaces ... 373635

24.2.1 SC_SP#.. 373635

24.2.2 SC_SQ ... 383736

24.2.3 SQ to SX: Interpolator bus ... 403938

24.2.4 SQ to SP: Staging Register Data ... 403938

24.2.5 VGT to SQ : Vertex interface .. 403938

24.2.6 SQ to SX: Control bus .. 444241

24.2.7 SX to SQ : Output file control ... 444241

24.2.8 SQ to TP: Control bus .. 454342

24.2.9 TP to SQ: Texture stall ... 454342

24.2.10 SQ to SP: Texture stall ... 464442

24.2.11 SQ to SP: GPR and auto counter ... 464443

24.2.12 SQ to SPx: Instructions .. 474544

24.2.13 SP to SQ: Constant address load/ Predicate Set ... 474544

24.2.14 SQ to SPx: constant broadcast .. 484645

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 788 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

4 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24.2.15 SP0 to SQ: Kill vector load ... 484645

24.2.16 SQ to CP: RBBM bus ... 484645

24.2.17 CP to SQ: RBBM bus ... 484645

24.2.18 SQ to CP: State report ... 484645
24.3 Example of control flow program execution ... 494645
25. OPEN ISSUES ... 535150

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 789 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

 Changed the control flow method to be more
flexible. Also updated the external interfaces.

Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

 Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001

 Refined interfaces to RB. Added state registers.

Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

 Added SEQ→SP0 interfaces. Changed delta
precision. Changed VGT→SP0 interface. Debug
Methods added.

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001

 Interfaces greatly refined. Cleaned up the spec.

Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001

 Added the different interpolation modes.

Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

 Added the auto incrementing counters. Changed
the VGT→SQ interface. Added content on constant
management. Updated GPRs.

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

 Removed from the spec all interfaces that weren’t
directly tied to the SQ. Added explanations on
constant management. Added PA→SQ
synchronization fields and explanation.

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

 Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002

 Added Real Time parameter control in the SX
interface. Updated the control flow section.

Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

 New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002

 Rearangement of the CF instruction bits in order to
ensure byte alignement.

Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002

 Updated the interfaces and added a section on
exporting rules.

Rev 1.11 (Laurent Lefebvre)
Date : April 19, 2002

 Added CP state report interface. Last version of the
spec with the old control flow scheme

Rev 2.0 (Laurent Lefebvre)
Date : April 19, 2002

 New control flow scheme

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 790 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

6 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Rev 2.01 (Laurent Lefebvre)
Date : May 2, 2002

 Changed slightly the control flow instructions to
allow force jumps and calls.

Rev 2.02 (Laurent Lefebvre)
Date : May 13, 2002

 Updated the Opcodes. Added type field to the
constant/pred interface. Added Last field to the
SQ→SP instruction load interface.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 791 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1. Overview
The sequencer chooses two ALU threads and a fetch hread to execute, and executes all of the instructions in a block
before looking for a new clause of the same type. Two ALU threads are executed interleaved to hide the ALU latency.
The arbitrator will give priority to older threads. There are two separate reservation stations, one for pixel vectors and
one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 792 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

8 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ

SC

SPSPSPCSTOREFETCH STATE

TP

INST STORE

IJ CONTROL

IJ
CONTROL

CST
ADDR

INST
 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/QUAD
ADDRESSES

SP

ALU INST

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

INST

INTER INTER INTER INTER

IJ CROSSBAR

2 QUADS IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC READ
 POINTERS

PARAM
DATA

R/W ADDR

Vertex indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

CP

CONSTANT
LOAD

CPConstant Load

TX ADDR

PC Write
Address

TEX INST

CF
CONSTANTS

Register
Mapped

CF Read

Figure 1: General Sequencer overview

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 793 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.1 Top Level Block Diagram

ALU Texture

VTX RS PIX RS

Exec Arbiter

Input Arbiter

Figure 2: Reservation stations and arbiters

Under this new scheme, the sequencer (SQ) will only use one global state management machine per vector type
(pixel, vertex) that we call the reservation station (RS).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 794 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

10 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.2 Data Flow graph (SP)

MAC

MAC

MAC

MAC

Register File

co
ns

ta
nt

s
fr

om
 R

E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
nt

s
fr

om
 R

E

S
ca

la
r

U
n

it

texture request

texture request

texture request

texture request

te
xt

ur
e

ad
dr

es
s

te xtu re d
a ta

p rim
it ive da

ta fro m
 R

E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

Figure 3: The shader Pipe

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 795 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

SEQ

FETCH SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

OF

WrAddrIS CST

CST IDX

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 796 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

12 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x64 bits)

IJs buffer (ping-pong buffer)
(28 bits * 2 (IJ) + 8 bits * 6 (delta IJs)+4 exp

bits*6)* 16 (quads) * 2 (double-buffered)
4096 bits

32 x 128

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

64

To RB

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2

768 bits
32x24

FIX-FLOAT + EXPANSiON

Figure 5: Interpolation buffers

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 797 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SP
0

SP
1

SP
2

SP
3

WRITES
T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-
11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P1 P2

T20 T21 T22 T23

VTX

T0 T1 T2 T3

XY

XY
0-3

XY
4-7

XY
8-
11

XY
12-
15

XY
16-
19

XY
20-
23

XY
24-
27

XY
28-
31

XY
32-
35

XY
36-
39

XY
40-
43

XY
44-
47

XY
48-
51

XY
52-
55

XY
56-
59

XY
60-
63

READS

SP
0

SP
1

SP
2

SP
3

A0

A1

A2

B1

B0

C3

C0

C1

C2

C4

C5

D0

D1

D2

E0

E1

A0

A1

A2

XY
A0
XY
A1
XY
A2

B1

B0

XY
B1

XY
B0

C3

C0

C1

C2

XY
C3
XY
C0
XY
C1
XY
C2

C4

C5

XY
C4
XY
C5

D0

D1

D2

XY
D1
XY
D2

XY
D0

E0

E1
XY
E1

XY
E0

Figure 6: Interpolation timing diagram

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 798 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

14 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store
There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4. Sequencer Instructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 799 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

5.2 Management of the Control Flow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied whenever there is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn’t write to CF the state is going to use the previous CF constants.

5.3 Management of the re-mapping tables

5.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROL packet of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it with
the new state (this is depicted in Figure 8: De-allocation mechanismFigure 8: De-allocation mechanismFigure 8: De-
allocation mechanism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 800 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

16 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Physical
Memory

Renaming Table
for 1 Context
Current/Last

Physical
Address

per
Logical
Address

Renaming
table

N-Contexts

Reset
Dirty
per

Logical
Address

(Only
de-

allocate
if set)

This
Context

Dirty
per

Logical
Address

(If set
don't

allocate
or de-

allocate)

Logical address
On the

GlbRegBus
when lsb are zero
first word of write

next
physical
address
ready

for allocate

Constants
location
available
WRTR

physical
address

to
schedule

for
de-alloc

Staging Data
Buffer

Staging Write Addr

Copy Last held above to
Current Context on receipt

of Set Constant for a
new context (Hide loading

behind Set State load - 16 clocks)
all other Set States just write one

entry to current state.

Free
list

(pass Phys
Address if
Context
Dirty)

Dealloc
Counts

Seq
Constant
Request

Context &
Logical
Address

Free_ptr
WritePtr

When a Logical
Address is written

that has been
written before,

store the physical
address that was
allocated by that
Logical Address

Stop_ptr
ptr to first physical

address that is
scheduled to be de-
allocated but noty
yet de-allocate.

Advanced each time
a context is freed by

the number of
physical address
displaced by that

Context

Read_ptr
ptr to physical

address that will be
used next if the init

count is at
maximum number

of physical address

Free List

Number of entries
equals Max Number of
Physical Blocks. All
Pointers start at zero
and roll around but

can never pass each
other

Free
Address

Address
to Allocate

Global Register
Data Bus

Renaming Table
Context 0 => N

Logical Address
& Context

Physical
Address

Context 0 (8 rows of 16 - 8 bit
physical => 128 entries copy in

eight clocks)

Context 1

Context N

Current/Last
Context

(8 rows of 16 - 8
bit physical =>

128 entries copy
in eight clocks)

Figure 7: Constant management

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 801 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

DEALOC
COUNTERSFree List

!=

OR

AND

NOT

ADDR

PREVIOUS
STATE

NEW
STATE

SQ_IDLE

CP_NEW_STATE_CNTL
PA_IDLE

VALUE

VALID

CNT VALUE

SQ_STATE#

WRITE_ENABLE

REMAPPING
TABLE

SET CTX BITS

Figure 8: De-allocation mechanism for R400LE

5.3.3 Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block
A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 802 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

18 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

5.3.5 De-allocate Block
This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any number of blocks in one clock.

5.3.6 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 803 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

5.5 Real Time Commands
The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
works is the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zones is defined by the TSTATE_EO_RT control register.

5.6 Constant Waterfalling
In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenever a state is freed.

CONST_EO_RT

RT SECTON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table)

Figure 9: The instruction store

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 804 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

20 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
We'd like to be able to code up a program of the form:

1: Loop
2: Exec TexFetch
3: TexFetch
4: ALU
5: ALU
6: TexFetch
7: End Loop
8: ALU Export

But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3:. Without clausing,
these dependencies need to be expressed in the Control Flow instructions. Additionally, without separate 'texture
clauses' and 'ALU clauses' we need to know which instructions to dispatch to the Texture Unit and which to the ALU
unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of information for each (non-control flow) instruction:
 a) ALU or Texture
 b) Serialize Execution

(b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched. Given the allocation of reserved bits, this would mean that the count of an 'Exec' instruction
would be limited to about 8 (non-control-flow) instructions. If more than this were needed, a second Exec (with the
same conditions) would be issued.

Another function that relies upon 'clauses' is allocation and order of execution. We need to assure that pixels and
vertices are exported in the correct order (even if not all execution is ordered) and that space in the output buffers are
allocated in order. Additionally data can't be exported until space is allocated. A new control flow instruction:

 Alloc <buffer select -- position,parameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual
allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already
completed. The implementation would also assure that execution of instruction(s) following the serialization due to the
Alloc will occur in order -- at least until the next serialization or change from ALU to Texture. In most cases this will
allow the exports to occur without any further synchronization. Only 'final' allocations or position allocations are

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 805 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

guaranteed to be ordered. Because strict ordering is required for pixels, parameters and positions, this implies only
a single alloc for these structures. Vertex exports to memory do not require ordering during allocation and so multiple
'allocs' may be done.

6.2.1 Control flow instructions table
Here is the revised control flow instruction set.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).
.

NOP
47 … 44 43 42 … 0

0000 Addressin
g

RESERVED

This is a regular NOP.

Execute
47 … 4447 4346…

43
40 … 34 33 …16 15…12 11 … 0

0001Addre
ssing

Address
ing0001

RESERVED Instructions type + serialize (9
instructions)

Count Exec Address

Execute_End

47 … 44 43 40 … 34 33 …16 15…12 11 … 0
0010 Address

ing
RESERVED Instructions type + serialize (9

instructions)
Count Exec Address

Execute up to 9 instructions at the specified address in the instruction memory. The Instruction type field tells the
sequencer the type of the instruction (LSB) (1 = Texture, 0 = ALU and whether to serialize or not the execution (MSB)
(1 = Serialize, 0 = Non-Serialized). If Execute_End this is the last execution block of the shader program.

This is a regular NOP.

Conditional_Execute

47 … 4447 4346 …
43

42 41 … 34 33…16 15 …12 11 … 0

0011Addre
ssing

Address
ing0011

Condition Boolean
address

Instructions type + serialize (9
instructions)

Count Exec Address

Conditional_Execute_End

47 … 44 43 42 41 … 34 33…16 15 …12 11 … 0
0100 Address

ing
Condition Boolean

address
Instructions type + serialize (9

instructions)
Count Exec Address

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 9 instructions). If the condition is not met, we go on to the next control flow instruction. If
Conditional_Execute_End and the condition is met, this is the last execution block of the shader program.

Conditional_Execute_Predicates
47 … 4447 4346 …

43
42 41 … 36 35 … 34 33…16 15…12 11 … 0

0101Addres
sing

Addressi
ng0010

Condition RESERVED Predicate
vector

Instructions
type + serialize
(9 instructions)

Count Exec Address

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 806 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

22 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Conditional_Execute_Predicates_End

47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0
0110 Addressi

ng
Condition RESERVED Predicate

vector
Instructions

type + serialize
(9 instructions)

Count Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid. If the
condition is not met, we go on to the next control flow instruction. If Conditional_Execute_Predicates_End and the
condition is met, this is the last execution block of the shader program.

Loop_Start
47 … 4447 4346 …

43
42 … 17 20 … 16 15…12 11 … 0

0111Addre
ssing

Addressi
ng0101

RESERVED loop ID RESERVED Jump address

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Loop_End
47 … 4447 4346 …

43
42 … 24 23… 21 20 … 16 15…12 11 … 0

1000Addre
ssing

Addressi
ng0011

RESERVED Predicate break loop ID RESERVED start address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop. If predicate break != 0, then compares predicate vector n
(specified by predicate break number). If all bits cleared then break the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal_Call
47 … 4447 4346 …

43
42 41 … 34 33 … 13 12 11 … 0

1001Addre
ssing

Addressi
ng0111

Condition Boolean address RESERVED Force Call Jump address

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack. If
force call is set the condition is ignored and the call is made always.

Return
47 … 4447 4346 …

43
42 … 0

1010Addre
ssing

Addressi
ng1000

RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump
47 … 4447 4346 …

43
42 41… 34 33 32 … 13 12 11 … 0

1011Addre
ssing

Addressi
ng1001

Condition Boolean
address

FW only RESERVED Force Jump Jump address

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 807 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

If force jump is set the condition is ignored and the jump is made always. If FW only is set then only forward jumps
are allowed.

Allocate
47 … 4447 4346 …

43
42…41 40 … 4 3 …0

1100Debug Debug10
10

Buffer Select RESERVED Allocation size

Buffer Select takes a value of the following:
01 – position export (ordered export)
10 – parameter cache or pixel export (ordered export)
11 – pass thru (out of order exports).

If debug is set this is a debug alloc (ignore if debug DB_ON register is set to off).

Marks the end of the program.

6.3 Implementation

The envisioned implementation has a buffer that maintains the state of each thread. A thread lives in a given
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the order that they
enter. Actually two buffers are maintained -- one for Vertices and one for Pixels. The intended implementation
would allow for:

16 entries for vertices
48 entries for pixels.

From each buffer, arbitration logic attempts to select 1 thread for the texture unit and 1 (interleaved) thread for the
ALU unit. Once a thread is selected it is read out of the buffer, marked as invalid, and submitted to appropriate
execution unit. It is returned to the buffer (at the same place) with its status updated once all possible sequential
instructions have been executed. A switch from ALU to TEX or visa-versa or a Serialize_Execution modifier forces
the thread to be returned to the buffer.

Each entry in the buffer will be stored across two physical pieces of memory - most bits will be stored in a 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed 'state'. The bits kept in the multi-read ported device will be termed 'status'.

'State Bits' needed include:

1. Control Flow Instruction Pointer (13 bits),
2. Execution Count Marker 4 bits),
3. Loop Iterators (4x9 bits),
4. Call return pointers (4x12 bits),
5. Predicate Bits (64 bits),
6. Export ID (1 bit),
7. Parameter Cache base Ptr (7 bits),
8. GPR Base Ptr (8 bits),
9. Context Ptr (3 bits).
10. LOD corrections (6x16 bits)
11. Valid bits (64 bits)

Absent from this list are 'Index' pointers. These are costly enough that I'm presuming that they are instead stored in
the GPRs. The first seven fields above (Control Flow Ptr, Execution Count, Loop Counts, call return ptrs, Predicate

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 808 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

24 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

bits, PC base ptr and export ID) are updated every time the thread is returned to the buffer based on how much
progress has been mode on thread execution. GPR Base Ptr, Context Ptr and LOD corrections are unchanged
throughout execution of the thread.

'Status Bits' needed include:

 Valid Thread
 Texture/ALU engine needed
 Texture Reads are outstanding
 Waiting on Texture Read to Complete
 Allocation Wait (2 bits)
 00 – No allocation needed
 01 – Position export allocation needed (ordered export)
 10 – Parameter or pixel export needed (ordered export)
 11 – pass thru (out of order export)
 Allocation Size (4 bits)
 Position Allocated
 First thread of a new context
 Event thread (NULL thread that needs to trickle down the pipe)
 Last (1 bit)
 Pulse SX (1 bit)

All of the above fields from all of the entries go into the arbitration circuitry. The arbitration circuitry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -- one for
pixels and one for vertices. A final selection is then done between the two. But the rest of this implementation
summary only considers the 'first' level selection which is similar for both pixels and vertices.

Texture arbitration requires no allocation or ordering so it is purely based on selecting the 'oldest' thread that requires
the Texture Engine.

ALU arbitration is a little more complicated. First, only threads where either of Texture_Reads_outstanding or
Waiting_on_Texture_Read_to_Complete are '0' are considered. Then if Allocation_Wait is active, these threads are
further filtered based on whether space is available. If the allocation is position allocation, then the thread is only
considered if all 'older' threads have already done their position allocation (position allocated bits set). If the
allocation is parameter or pixel allocation, then the thread is only considered if it is the oldest thread. Also a thread is
not considered if it is a parameter or pixel or position allocation, has its First_thread_of_a_new_context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the 'oldest' of the threads that pass through the above filters is selected. If the thread needed to allocate, then
at this time the allocation is done, based on Allocation_Size. If a thread has its “last” bit set, then it is also removed
from the buffer, never to return.

If I now redefine 'clauses' to mean 'how many times the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine', then the minimum number of clauses needed is 2 -- one to perform
the allocation for exports (execution automatically halts after an 'Alloc' instruction) (but doesn't performs the actual
allocation) and one for the actual ALU/export instructions. As the 'Alloc' instruction could be part of a texture clause
(presumably the final instruction in such a clause), a thread could still execute in this minimal number of 2 clauses,
even if it involved texture fetching.

The Texture_Reads_Outstanding bit must be updated by the sequencer, based on keeping track of how many
Texture Clauses have been executed by a given thread that have not yet had there data returned. Any number
above 0 results in this bit being set. We could consider forcing synchronization such that two texture clauses for a
given thread may not be outstanding at any time (that would be my preference for simplicity reasons and because it
would require only very little change in the texture pipe interface). This would allow the sequencer to set the bit on
execution of the texture clause, and allow the texture unit to return a pointer to the thread buffer on completion that
clears the bit.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 809 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

6.4 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETNE_# - similar to SETNE except that the result is 'exported' to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE0_# – SETE0
 PRED_SETE1_# – SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

 P0_ADD_# R0,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

6.5 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

6.6 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

The sequencer is going to keep a loop index computed as such:

 Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128…127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 810 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

26 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
 - jump errors
 relative jump address > size of the control flow program
 - call stack
 call with stack full

return with stack empty

A jump error will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only break if
the DB_PROB_BREAK register is set.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the 0th
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs
1) The sequencer will have a debug active, count register and an address register for this mode.

Under the normal mode execution follows the normal course.

Under the debug mode it is assumed that the program is always exporting n debug vectors and that all other exports
to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by the sequencer (even if they occur
before the address stated by the ADDR debug register).

7. Pixel Kill Mask
A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE

 MASK_SETGT
 MASK_SETGTE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 811 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZE for pixels.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 812 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

28 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

10. Fetch Arbitration
The fetch arbitration logic chooses one of the 8 potentially pending fetch clauses to be executed. The choice is made
by looking at the fifos from 7 to 0 and picking the first one ready to execute. Once chosen, the clause state machine
will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch instructions of the clause
are sent. This means that there cannot be any dependencies between two fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration
ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 potentially pending ALU clauses to be executed. The choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…
 Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 813 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the exporting clause (3?). The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs
The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper left pixel’s parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming P0 is the interpolated parameter at Pixel 0 having the barycentric coordinates I(0), J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at V0 (interpolated with I), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

)(*03)(*0303

)(*02)(*0202

)(*01)(*0101

)(*)0()(*)0(0

)0()3(03

)0()3(03

)0()2(02

)0()2(02

)0()1(01

)0()1(01

CBJCAIPP

CBJCAIPP

CBJCAIPP

CBJCAICP

JJJ

III

JJJ

III

JJJ

III

P0 is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2

P0

P2

P1

P3

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 814 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

30 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Adds: 8

FORMAT OF P0’s IJ : Mantissa 20 Exp 4 for I + Sign
 Mantissa 20 Exp 4 for J + Sign

FORMAT of Deltas (x3): Mantissa 8 Exp 4 for I + Sign
 Mantissa 8 Exp 4 for J + Sign

Total number of bits : 20*2 + 8*6 + 4*8 + 4*2 = 128

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the number is
normalized if not, then the number is un-normalized. The maximum range for the IJs (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

15.1 Interpolation of constant attributes
Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the barycentric coordinates are the same.

We start with the premise that if A = B and B = C and C = A, then P0,1,2,3 = A. Since one or more of the IJ terms
may be zero, so we extend this to:

if (A=B and B=C and C=A)
 P0,1,2,3 = A;
else if ((I = 0) or (J = 0)) and
 ((J = 0) or (1-I-J = 0)) and
 ((1-J-I = 0) or (I = 0))) {
 if(I != 0) {
 P0 = A;
 } else if(J != 0) {
 P0 = B;
 } else {
 P0 = C;
 }
 //rest of the quad interpolated normally
}
else
{
 normal interpolation
}

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 || 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencer will re-arrange them in this fashion:

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 || 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 || 8 9 10 11 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the VGT will send padding to account for
the missing pipe. For example, if SP1 is broken, vertices 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sent
by the VGT to the SQ BUT will not be processed by the SP and thus should be considered invalid (by the SU and
VGT).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 815 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 11Figure 11Figure 11. The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure 10Figure 10Figure 10.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11631 60.57813 per bit

Area of 96x8-deep Latch Memory 46524

Area of 24-bit Fix-to-float Converter 4712per converter

Method 1 Block Quantity Area

 F2F 3 14136

 8x96 Latch 16 744384

 758520

Figure 10:Area Estimate for VGT to Shader Interface

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 816 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

32 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SHADER PIPE

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

3
2

3
2

3
2

VGT BLOCK
(IN PA)

3
2

9
6

VECTOR ENGINE

96

8x96
MEMORY
1-READ
1-WRITE

3 OTHER
SHADER
PIPES

 3 Fix->Float Converters (24-bit)
 16 Memories 8x96-bit (12,288 bits)

Totals:

THREE MORE VECTOR ENGINES
PER SHADER PIPE

VECTOR ENGINE

SHADER
SEQUENCER

Figure 11:VGT to Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER
4 bits

ADDRESS
7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17th) is going to have the address 00000001000, the 18th 00010001000, the 19th 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*VS_EXPORT_COUNT to
Current_Location and reset the memory count to 0 before the next vector begins).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 817 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

33 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

17.1 Export restrictions

17.1.1 Pixel exports:
Pixels can export 1,2,3 or 4 color buffers to the SX(+z). The exports will be done in order. The PRED_OPTIMIZE
function has to be turned of if the exports are done using interleaved predicated instructions. The exports will always
be ordered to the SX.

17.1.2 Vertex exports:
Position or parameter caches can be exported in any order in the shader program. It is always better to export
posistion as soon as possible. Position has to be exported in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be done in any order with texture instructions interleaved.
The PRED_OPTIMIZE function has to be turned of if the exports are done using interleaved predicated instructions to
the Parameter cache (see Arbitration restrictions for details). The exports will always be allocated in order to the SX.

17.1.3 Pass thru exports:
Pass thru exports have to be done in groups of the form:

Alloc 4 (8 or 12)
Execute ALU(ADDR) ALU(DATA) ALU(DATA) ALU(DATA)…

They cannot have texture instructions interleaved in the export block. These exports are not guaranteed to be
ordered.

Also, when doing a pass thru export, Position MUST be exported AFTER all pass thru exports. This position export is
used to synchronize the chip when doing a transition from pass thru shader to regular shader and vice versa.

17.2 Arbitration restrictions
Here are the Sequencer arbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texture pending bit is set
2) Cannot allocate position if any older thread has not allocated position
3) If last thread is marked as not valid AND marked as last and we are about to execute the second to oldest

thread also marked last then:
a. Both threads must be from the same context (cannot allow a first thread)
b. Must turn off the predicate optimization for the second thread

4) Cannot execute a texture clause if texture reads are pending
5) Cannot execute last if texture pending (even if not serial)

18. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

18.1 Vertex Shading
 0:15 - 16 parameter cache
 16:31 - Empty (Reserved?)

32 - Export Address
 33:40 - 8 vertex exports to the frame buffer and index
 41:47 - Empty
 48:55 - 8 debug export (interpret as normal vertex export)
 60 - export addressing mode
 61 - Empty
 62 - position

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 818 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

34 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 63 - sprite size export that goes with position export
 (point_h,point_w,edgeflag,misc)

18.2 Pixel Shading
 0 - Color for buffer 0 (primary)
 1 - Color for buffer 1
 2 - Color for buffer 2
 3 - Color for buffer 3
 4:7 - Empty
 8 - Buffer 0 Color/Fog (primary)
 9 - Buffer 1 Color/Fog
 10 - Buffer 2 Color/Fog
 11 - Buffer 3 Color/Fog
 12:15 - Empty
 16:31 - Empty (Reserved?)
 32 - Export Address
 33:40 - 8 exports for multipass pixel shaders.
 41:47 - Empty
 48:55 - 8 debug exports (interpret as normal pixel export)
 60 - export addressing mode
 61:62 - Empty
 63 - Z for primary buffer (Z exported to 'alpha' component)

19. Special Interpolation modes

19.1 Real time commands
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem I see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft’s high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This mode is triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

19.2 Sprites/ XY screen coordinates/ FB information
When working with sprites, one may want to overwrite the parameter 0 with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_I0 register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Here is a list of all the modes and how they interact
together:

Gen_st is a bit taken from the interface between the SC and the SQ. This is the MSB of the primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between 0 and 1.

Param_Gen_I0 disable, snd_xy disable, no gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy disable, gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy enable, no gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy enable, gen_st – I0 = No modification
Param_Gen_I0 enable, snd_xy disable, no gen_st – I0 = garbage, garbage, garbage, faceness

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 819 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

35 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Param_Gen_I0 enable, snd_xy disable, gen_st – I0 = garbage, garbage, s, t
Param_Gen_I0 enable, snd_xy enable, no gen_st – I0 = screen x, screen y, garbage, faceness
Param_Gen_I0 enable, snd_xy enable, gen_st – I0 = screen x, screen y, s, t

19.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1st pass data to memory and then use the count to retrieve the data on the 2nd pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. The sequencer is going to
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the
GPRs the counter is incremented. Every time a state change is detected, the corresponding counter is reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

19.3.1 Vertex shaders
In the case of vertex shaders, if GEN_INDEX is set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

19.3.2 Pixel shaders
In the case of pixel shaders, if GEN_INDEX is set and Param_Gen_I0 is enabled, the data will be put in the x field of
the 2nd register (R1.x), else if GEN_INDEX is set the data will be put into the x field of the 1st register (R0.x).

AUTO
COUNT

STG 0

STG1

INTERPOLATORS

GPR0

AUTO COUNT 000000

MUX

The Auto Count Value is
broadcast to all GPRs. It is

loaded into a register wich has
its LSBs hardwired to the

GPR number (0 thru 63). Then
if GEN_INDEX is high, the
mux selects the auto-count

value and it is loaded into the
GPRs to be either used to

retrieve data using the TP or
sent to the SX for the RB to

use it to write the data to
memory

Figure 12: GPR input mux Control

20. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

20.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 820 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

36 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

21. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix→float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 19.2 for details on how to control the interpolation in this mode.

21.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

22. Registers

22.1 Control
REG_DYNAMIC Dynamic allocation (pixel/vertex) of the register file on or off.
REG_SIZE_PIX Size of the register file's pixel portion (minimal size when dynamic allocation turned

on)
REG_SIZE_VTX Size of the register file's vertex portion (minimal size when dynamic allocation turned

on)
ARBITRATION_POLICY policy of the arbitration between vertexes and pixels
INST_BASE_VTX start point for the vertex instruction store (RT always ends at vertex_base and

Begins at 0)
INST_BASE_PIX start point for the pixel shader instruction store
ONE_THREAD debug state register. Only allows one program at a time into the GPRs
ONE_ALU debug state register. Only allows one ALU program at a time to be executed (instead

of 2)
INSTRUCTION This is where the CP puts the base address of the instruction writes and type (auto-

incremented on reads/writes) Register mapped
CONSTANTS 512*4 ALU constants + 32*6 Texture state 32 bits registers (logically mapped)
CONSTANTS_RT 256*4 ALU constants + 32*6 texture states? (physically mapped)
CONSTANT_EO_RT This is the size of the space reserved for real time in the constant store (from 0 to

CONSTANT_EO_RT). The re-mapping table operates on the rest of the memory
TSTATE_EO_RT This is the size of the space reserved for real time in the fetch state store (from 0 to
TSTATE_EO_RT). The re-mapping table operates on the rest of the memory

22.2 Context
PS_BASE base pointer for the pixel shader in the instruction store
VS_BASE base pointer for the vertex shader in the instruction store
VS_CF_SIZE size of the vertex shader (# of instructions in control program/2)
PS_CF_SIZE size of the pixel shader (# of instructions in control program/2)
PS_SIZE size of the pixel shader (cntl+instructions)
VS_SIZE size of the vertex shader (cntl+instructions)
PS_NUM_REG number of GPRs to allocate for pixel shader programs
VS_NUM_REG number of GPRs to allocate for vertex shader programs
PARAM_SHADE One 16 bit register specifying which parameters are to be gouraud shaded (0 = flat, 1

= gouraud)
PARAM_WRAP 64 bits: for which parameters (and channels (xyzw)) do we do the cyl wrapping

(0=linear, 1=cylindrical).
PS_EXPORT_MODE 0xxxx : Normal mode

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 821 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

37 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 1xxxx : Multipass mode
 If normal, bbbz where bbb is how many colors (0-4) and z is export z or not
 If multipass 1-12 exports for color.
VS_EXPORT_MODE 0: position (1 vector), 1: position (2 vectors), 3:multipass
VS_EXPORT_COUNT Number of locations exported by the VS (and thus number of interpolated
parameters)
PARAM_GEN_I0 Do we overwrite or not the parameter 0 with XY data and generated T and S values
GEN_INDEX Auto generates an address from 0 to XX. Puts the results into R0-1 for pixel shaders

and R2 for vertex shaders
CONST_BASE_VTX (9 bits) Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Turns on the predicate bit optimization (if of, conditional_execute_predicates is

always executed).
CF_BOOLEANS 256 boolean bits
CF_LOOP_COUNT 32x8 bit counters (number of times we traverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in index computation)

23. DEBUG Registers

23.1 Context
DB_PROB_ADDR instruction address where the first problem occurred
DB_PROB_COUNT number of problems encountered during the execution of the program
DB_PROB_BREAK break the clause if an error is found.
DB_ON turns on an off debug method 2
DB_INST_COUNT instruction counter for debug method 2
DB_BREAK_ADDR break address for method number 2

23.2 Control
DB_ALUCST_MEMSIZE Size of the physical ALU constant memory
DB_TSTATE_MEMSIZE Size of the physical texture state memory

24. Interfaces

24.1 External Interfaces
Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ→SPx it means that SQ is going to broadcast the same information to all SP instances.

24.2 SC to SP Interfaces

24.2.1 SC_SP#
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the I,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data which is transferred per quad is
 Ref Pix I => S4.20 Floating Point I value
 Ref Pix J => S4.20 Floating Point J value

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 822 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

38 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 Delta Pix I (x3) => S4.8 Floating Point Delta I value
 Delta Pix J (x3) => S4.8 Floating Point Delta J value
This equates to a total of 128 bits which transferred over 2 clocks
and therefor needs an interface 64 bits wide

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a IJ_BUF_INUSE_COUNT in the SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNT count. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2, if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of I,J data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,SQ and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple mode first with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performance hit.)

Name Bits Description
SC_SP#_data 64 IJ information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bit)

Type 0 or 1, First clock I, second clk J
Field ULC URC LLC LRC
 Bits [63:39] [38:26] [25:13] [12:0]
Format SE4M20 SE4M8 SE4M8 SE4M8
Type 2
Field Face X Y
 Bits [63] [23:12] [11:0]
Format Bit Unsigned Unsigned

SC_SP#_valid 1 Valid
SC_SP#_last_quad_data 1 This bit will be set on the last transfer of data per quad.
SC_SP#_type 2 0 -> Indicates centroids

1 -> Indicates centers
2 -> Indicates X,Y Data and faceness on data bus
The SC shall look at state data to determine how many types to send for the
interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP block will have neither because the instantiation will insert the prefix.

24.2.2 SC_SQ
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 92 94 bits) could be folded in half to approx 47
49 bits.

Name Bits Description
SC_SQ_data 46 Control Data sent to the SQ

1 clk transfers
 Event – valid data consist of event_id and
 state_id. Instruct SQ to post an
 event vector to send state id and
 event_id through request fifo

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 823 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

39 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 and onto the reservation stations
 making sure state id and/or event_id
 gets back to the CP. Events only
 follow end of packets so no pixel
 vectors will be in progress.

 Empty Quad Mask – Transfer Control data
 consisting of pc_dealloc
 or new_vector. Receipt of this is to
 transfer pc_dealloc or new_vector
 without any valid quad data. New
 vector will always be posted to
 request fifo and pc_dealloc will be
 attached to any pixel vector
 outstanding or posted in request fifo
 if no valid quad outstanding.
2 clk transfers
 Quad Data Valid – Sending quad data with or
 without new_vector or pc_dealloc.
 New vector will be posted to request
 fifo with or without a pixel vector and
 pc_dealloc will be posted with a pixel
 vector unless none is in progress. In
 this case the pc_dealloc will be
 posted in the request queue.
 Filler quads will be transferred with
 The Quad mask set but the pixel
 corresponding pixel mask set to
 zero.

SC_SQ_valid 1 SC sending valid data, 2nd clk could be all zeroes

SC_SQ_data – first clock and second clock transfers are shown in the table below.

Name BitField Bits Description

1st Clock Transfer
SC_SQ_event 0 1 This transfer is a 1 clock event vector Force quad_mask =

new_vector=pc_dealloc=0
SC_SQ_event_id [4:1] 4 This field identifies the event 0 => denotes an End Of State Event 1

=> TBD
SC_SQ_pc_dealloc [7:5] 3 Deallocation token for the Parameter Cache
SC_SQ_new_vector 8 1 The SQ must wait for Vertex shader done count > 0 and after

dispatching the Pixel Vector the SQ will decrement the count.
SC_SQ_quad_mask [12:9] 4 Quad Write mask left to right SP0 => SP3
SC_SQ_end_of_prim 13 1 End Of the primitive
SC_SQ_state_id [16:14] 3 State/constant pointer (6*3+3)
SC_SQ_pix_mask [32:17] 16 Valid bits for all pixels SP0=>SP3 (UL,UR,LL,LR)
SC_SQ_provok_vtx [37:36] 2 Provoking vertex for flat shading
SC_SQ_pc_ptr0 [48:38] 11 Parameter Cache pointer for vertex 0

2nd Clock Transfer
SC_SQ_pc_ptr1 [10:0] 11 Parameter Cache pointer for vertex 1
SC_SQ_pc_ptr2 [21:11] 11 Parameter Cache pointer for vertex 2
SC_SQ_lod_correct [45:22] 24 LOD correction per quad (6 bits per quad)
SC_SQ_prim_type [48:46] 3 Stippled line and Real time command need to load tex cords from

alternate buffer 000: Normal 100: Realtime 101: Line AA 110:
Point AA (Sprite)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 824 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

40 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Name Bits Description
SQ_SC_free_buff 1 Pipelined bit that instructs SC to decrement count of buffers in use.
SQ_SC_dec_cntr_cnt 1 Pipelined bit that instructs SC to decrement count of new vector and/or event

sent to prevent SC from overflowing SQ interpolator/Reservation request fifo.

The scan converter will submit a partial vector whenever:

1.) He gets a primitive marked with an end of packet signal.
2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been

marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal made it through and thus the hang.)

24.2.3 SQ to SX: Interpolator bus
Name Direction Bits Description
SQ_SXx_interp_flat_vtx SQ→SPx 2 Provoking vertex for flat shading
SQ_SXx_interp_flat_gouraud SQ→SPx 1 Flat or gouraud shading
SQ_SXx_interp_cyl_wrap SQ→SPx 4 Wich channel needs to be cylindrical wrapped
SQ_SXx_pc_ptr0 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr1 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr2 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_rt_sel SQ→SXx 1 Selects between RT and Normal data
SQ_SXx_pc_wr_en SQ→SXx 1 Write enable for the PC memories
SQ_SXx_pc_wr_addr SQ→SXx 7 Write address for the PCs
SQ_SXx_pc_channel_mask SQ→SXx 4 Channel mask

24.2.4 SQ to SP: Staging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.
Name Direction Bits Description
SQ_SPx_vsr_data SQ→SPx 96 Pointers of indexes or HOS surface information
SQ_SPx_vsr_double SQ→SPx 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0_ vsr_valid SQ→SP0 1 Data is valid
SQ_SP1_ vsr_ valid SQ→SP1 1 Data is valid
SQ_SP2_ vsr_ valid SQ→SP2 1 Data is valid
SQ_SP3_ vsr_ valid SQ→SP3 1 Data is valid
SQ_SPx_vsr_read SQ→SPx 1 Increment the read pointers

24.2.5 VGT to SQ : Vertex interface

24.2.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 825 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

41 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Name Bits Description
VGT_SQ_vsisr_data 96 Pointers of indexes or HOS surface information
VGT_SQ_vsisr_double 1 0: Normal 96 bits per vert 1: double 192 bits per vert
VGT_SQ_end_of_vector 1 Indicates the last VSISR data set for the current process vector (for double vector

data, "end_of_vector" is set on the first vector)
VGT_SQ_indx_valid 1 Vsisr data is valid
VGT_SQ_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when

“VGT_SQ_vgt_end_of_vector” is high.
VGT_SQ_send 1 Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_VGT_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

24.2.5.2 Interface Diagrams

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 826 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

42 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

VGT

VSISR_DATA_2

END_OF_VECTOR_2

STATE_SEL_2

REG

VSISR_DOUBLE_2
REG

REG

REG

REG

REG

SEND_2

REG

REG

REG

REG

REG

REG

PA_SQ_vgt_vsisr_data

PA_SQ_vgt_vsisr_double

PA_SQ_vgt_end_of_vector

PA_SQ_vgt_state_sel

PA_SQ_vgt_send

SQ_PA_vgt_rtr

VSISR_DATA_4

END_OF_VECTOR_4

STATE_SEL_4

VSISR_DOUBLE_4

96

1

1

3

1

1

SEND_4

RTR_2 RTR_0

SHADER
SEQUENCER

RTS

101 X 4
SKID

BUFFER

SRST SRST

WE

EMPTY

RE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 827 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

43 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

6 7

6 7

6 7

0 1 2 3

0 1

8

8

8

2 43 5

4 5 6 7

4 3 2 1

8

9 10 11 12

9 10 11 12

9 10 11 12

9 10 11 12

0

RECEIVER RE-STARTS TRANSMISSION

SENDER STOPS TRANSMISSION

SQ_RTR

SQ_RTR_0

VGT_RTS

SEND_2

SEND_3

SEND_4

DATA_2

FIFO_EMPTY

FIFO_RE

SQ_RTR_1

SQ_RTR_2

DATA_3

DATA_4

FIFO_DATA_OUT

FIFO_CNT

RECEIVER STOPS TRANSMISSION

Figure 1. Detailed Logical Diagram for PA_SQ_vgt Interface.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 828 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

44 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24.2.6 SQ to SX: Control bus

Name Direction Bits Description
SQ_SXx_exp_type SQ→SXx 2 00: Pixel without z (1 to 4 buffers)

01: Pixel with z (1 to 4 buffers)
10: Position (1 or 2 results)
11: Pass thru (4,8 or 12 results aligned)

SQ_SXx_exp_number SQ→SXx 2 Number of locations needed in the export buffer
(encoding depends on the type see bellow).

SQ_SXx_exp_alu_id SQ→SXx 1 ALU ID
SQ_SXx_exp_valid SQ→SXx 1 Valid bit
SQ_SXx_exp_state SQ→SXx 3 State Context

SQ_SXx_free_done SQ→SXx 1 Pulse to indicate that the previous export is finished
(this can be sent with or without the other fields of the
interface)

SQ_SXx_free_alu_id SQ→SXx 1 ALU ID

Depending on the type the number of export location changes:

 Type 00 : Pixels without Z
o 00 = 1 buffer
o 01 = 2 buffers
o 10 = 3 buffers
o 11 = 4 buffer

 Type 01: Pixels with Z
o 00 = 2 Buffers (color + Z)
o 01 = 3 buffers (2 color + Z)
o 10 = 4 buffers (3 color + Z)
o 11 = 5 buffers (4 color + Z)

 Type 10 : Position export
o 00 = 1 position
o 01 = 2 positions
o 1X = Undefined

 Type 11: Pass Thru
o 00 = 4 buffers
o 01 = 8 buffers
o 10 = 12 buffers
o 11 = Undefined

Below the thick black line is the end of transfer packet that tells the SX that a given export is finished. The report
packet will always arrive either before or at the same time than the next export to the same ALU id.

24.2.7 SX to SQ : Output file control
Name Direction Bits Description
SXx_SQ_exp_count_rdy SXx→SQ 1 Raised by SX0 to indicate that the following two fields

reflect the result of the most recent export
SXx_SQ_exp_pos_avail SXx→SQ 1 Specifies whether there is room for another position.
SXx_SQ_exp_buf_avail SXx→SQ 7 Specifies the space available in the output buffers.

0: buffers are full
1: 2K-bits available (32-bits for each of the 64
pixels in a clause)
...
64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 829 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

45 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24.2.8 SQ to TP: Control bus
Once every clock, the fetch unit sends to the sequencer on which RS line it is now working and if the data in the
GPRs is ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequencer also provides the instruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

Name Direction Bits Description
TPx_SQ_data_rdy TPx→ SQ 1 Data ready

TPx_SQ_rs_line_num TPx→ SQ 6 Line number in the Reservation station

TPx_SQ_type TPx→ SQ 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_send SQ→TPx 1 Sending valid data
SQ_TPx_const SQ→TPx 48 Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instr SQ→TPx 24 Fetch instruction sent over 4 clocks
SQ_TPx_end_of_group SQ→TPx 1 Last instruction of the group
SQ_TPx_Type SQ→TPx 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_gpr_phase SQ→TPx 2 Write phase signal
SQ_TP0_lod_correct SQ→TP0 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP0_pix_mask SQ→TP0 4 Pixel mask 1 bit per pixel
SQ_TP1_lod_correct SQ→TP1 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pix_mask SQ→TP1 4 Pixel mask 1 bit per pixel
SQ_TP2_lod_correct SQ→TP2 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pix_mask SQ→TP2 4 Pixel mask 1 bit per pixel
SQ_TP3_lod_correct SQ→TP3 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pix_mask SQ→TP3 4 Pixel mask 1 bit per pixel
SQ_TPx_rs_line_num SQ→TPx 6 Line number in the Reservation station
SQ_TPx_write_gpr_index SQ->TPx 7 Index into Register file for write of returned Fetch Data

24.2.9 TP to SQ: Texture stall
The TP sends this signal to the SQ and the SPs when its input buffer is full.

SU0

SU3

SU2

SU1

TP_SP_fetch_Stall

SQ_SP_wr_addr

Name Direction Bits Description
TP_SQ_fetch_stall TP→ SQ 1 Do not send more texture request if asserted

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 830 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

46 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24.2.10 SQ to SP: Texture stall
Name Direction Bits Description
SQ_SPx_fetch_stall SQ→SPx 1 Do not send more texture request if asserted

24.2.11 SQ to SP: GPR and auto counter
Name Direction Bits Description
SQ_SPx_gpr_wr_addr SQ→SPx 7 Write address
SQ_SPx_gpr_rd_addr SQ→SPx 7 Read address
SQ_SPx_gpr_rd_en SQ→SPx 1 Read Enable
SQ_SP0_gpr_wr_en SQ→SPx 1 Write Enable for the GPRs of SP0
SQ_SP1_gpr_wr_en SQ→SPx 1 Write Enable for the GPRs of SP1
SQ_SP2_gpr_wr_en SQ→SPx 1 Write Enable for the GPRs of SP2
SQ_SP3_gpr_wr_en SQ→SPx 1 Write Enable for the GPRs of SP3
SQ_SPx_gpr_phase SQ→SPx 2 The phase mux (arbitrates between inputs, ALU SRC

reads and writes)
SQ_SPx_channel_mask SQ→SPx 4 The channel mask
SQ_SPx_gpr_input_sel SQ→SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTX0,
VTX1, autogen counter.

SQ_SPx_auto_count SQ→SPx 12? Auto count generated by the SQ, common for all shader
pipes

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 831 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

47 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24.2.12 SQ to SPx: Instructions
Name Direction Bits Description
SQ_SPx_instr_start SQ→SPx 1 Instruction start
SQ_SP_instr SQ→SPx 21 Transferred over 4 cycles

0: SRC A Select 2:0
 SRC A Argument Modifier 3:3
 SRC A swizzle 11:4
 VectorDst 17:12
 Unused 20:18
--
-
1: SRC B Select 2:0
 SRC B Argument Modifier 3:3
 SRC B swizzle 11:4
 ScalarDst 17:12
 Unused 20:18
--
-
2: SRC C Select 2:0
 SRC C Argument Modifier 3:3
 SRC C swizzle 11:4
 Unused 20:12
--
-
3: Vector Opcode 4:0
 Scalar Opcode 10:5
 Vector Clamp 11:11
 Scalar Clamp 12:12
 Vector Write Mask 16:13
 Scalar Write Mask 20:17

SQ_SPx_exp_alu_id SQ→SPx 1 ALU ID
SQ_SPx_exporting SQ→SPx 2 0: Not Exporting

1: Vector Exporting
2: Scalar Exporting

SQ_SPx_stall SQ→SPx 1 Stall signal
SQ_SP0_write_mask SQ→SP0 4 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP1_ write_mask SQ→SP1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP2_ write_mask SQ→SP2 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP3_ write_mask SQ→SP3 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SPx_last SQ→SPx 1 Last instruction of the block

24.2.13 SP to SQ: Constant address load/ Predicate Set
Name Direction Bits Description
SP0_SQ_const_addr SP0→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP0_SQ_valid SP0→SQ 1 Data valid
SP1_SQ_const_addr SP1→SQ 36 Constant address load / predicate vector load (4 bits only)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 832 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

48 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

to the sequencer
SP1_SQ_valid SP1→SQ 1 Data valid
SP2_SQ_const_addr SP2→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP2_SQ_valid SP2→SQ 1 Data valid
SP3_SQ_const_addr SP3→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP3_SQ_valid SP3→SQ 1 Data valid
SP0_SQ_data_type SPSQ 1 Data Type

0: Constant Load
1: Predicate Set

24.2.14 SQ to SPx: constant broadcast
Name Direction Bits Description
SQ_SPx_const SQ→SPx 128 Constant broadcast

24.2.15 SP0 to SQ: Kill vector load
Name Direction Bits Description
SP0_SQ_kill_vect SP0→SQ 4 Kill vector load
SP1_SQ_kill_vect SP1→SQ 4 Kill vector load
SP2_SQ_kill_vect SP2→SQ 4 Kill vector load
SP3_SQ_kill_vect SP3→SQ 4 Kill vector load

24.2.16 SQ to CP: RBBM bus
Name Direction Bits Description
SQ_RBB_rs SQ→CP 1 Read Strobe
SQ_RBB_rd SQ→CP 32 Read Data
SQ_RBBM_nrtrtr SQ→CP 1 Optional
SQ_RBBM_rtr SQ→CP 1 Real-Time (Optional)

24.2.17 CP to SQ: RBBM bus
Name Direction Bits Description
rbbm_we CP→SQ 1 Write Enable
rbbm_a CP→SQ 15 Address -- Upper Extent is TBD (16:2)
rbbm_wd CP→SQ 32 Data
rbbm_be CP→SQ 4 Byte Enables
rbbm_re CP→SQ 1 Read Enable
rbb_rs0 CP→SQ 1 Read Return Strobe 0
rbb_rs1 CP→SQ 1 Read Return Strobe 1
rbb_rd0 CP→SQ 32 Read Data 0
rbb_rd1 CP→SQ 32 Read Data 0
RBBM_SQ_soft_reset CP→SQ 1 Soft Reset

24.2.18 SQ to CP: State report
Name Direction Bits Description
SQ_CP_vs_event SQ→CP 1 Vertex Shader Event
SQ_CP_vs_eventid SQ→CP 2 Vertex Shader Event ID
SQ_CP_ps_event SQ→CP 1 Pixel Shader Event
SQ_CP_ps_eventid SQ→CP 2 Pixel Shader Event ID

 eventid = 0 => *sEndOfState (i.e. VsEndOfState)
 eventid = 1 => *sDone (i.e. VsDone)

So, the CP will assume the Vs is done with a state whenever it gets a pulse on the SQ_CP_vs_event
and the SQ_CP_vs_eventid = 0.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 833 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

49 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24.3 Example of control flow program execution
We now provide some examples of execution to better illustrate the new design.

Given the program:

Alu 0
Alu 1
Tex 0
Tex 1
Alu 3 Serial
Alu 4
Tex 2
Alu 5
Alu 6 Serial
Tex 3
Alu 7
Alloc Position 1 buffer
Alu 8 Export
Tex 4
Alloc Parameter 3 buffers
Alu 9 Export 0
Tex 5
Alu 10 Serial Export 2
Alu 11 Export 1 End

Would be converted into the following CF instructions:

Execute Alu 0 Alu 0 Tex 0 Tex 0 Alu 1 Alu 0 Tex 0 Alu 0 Alu 1 Tex 0
Execute Alu 0
Alloc Position 1
Execute Alu 0 Tex 0
Alloc Param 3
Execute Alu 0 Tex 0 Alu 1 Alu 0 End

And the execution of this program would look like this:

Put thread in Vertex RS:

Control Flow Instruction Pointer (12 bits), (CFP)
Execution Count Marker (3 or 4 bits), (ECM)
Loop Iterators (4x9 bits), (LI)
Call return pointers (4x12 bits), (CRP)
Predicate Bits(4x64 bits), (PB)
Export ID (1 bit), (EXID)
GPR Base Ptr (8 bits), (GPR)
Export Base Ptr (7 bits), (EB)
Context Ptr (3 bits).(CPTR)
LOD correction bits (16x6 bits) (LOD)

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 0 0 0 0 0 0 0 0 0

Valid Thread (VALID)
Texture/ALU engine needed (TYPE)
Texture Reads are outstanding (PENDING)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 834 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

50 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Waiting on Texture Read to Complete (SERIAL)
Allocation Wait (2 bits) (ALLOC)

00 – No allocation needed
01 – Position export allocation needed (ordered export)
10 – Parameter or pixel export needed (ordered export)
11 – pass thru (out of order export)

Allocation Size (4 bits) (SIZE)
Position Allocated (POS_ALLOC)
First thread of a new context (FIRST)
Last (1 bit), (LAST)

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 0 0 0 0 0 1 0

Then the thread is picked up for the execution of the first control flow instruction:
Execute Alu 0 Alu 0 Tex 0 Tex 0 Alu 1 Alu 0 Tex 0 Alu 0 Alu 1 Tex 0

It executes the first two ALU instructions and goes back to the RS for a resource request change. Here is the
state returned to the RS:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 2 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Then when the texture pipe frees up, the arbiter picks up the thread to issue the texture reads. The thread comes

back in this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 4 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 0 1 0

Because of the serial bit the arbiter must wait for the texture to return and clear the PENDING bit before it can

pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returns it in
this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 6 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Again the TP frees up, the arbiter picks up the thread and executes. It returns in this state:

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 835 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

51 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 7 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 0 0 0 1 0

Now, even if the texture has not returned we can still pick up the thread for ALU execution because the serial bit

is not set. The thread will however come back to the RS for the second ALU instruction because it has the serial bit
set.

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 8 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 0 1 0

As soon as the TP clears the pending bit the thread is picked up and returns:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 9 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Picked up by the TP and returns:
Execute Alu 0

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
1 0 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 0 0 0 1 0

Picked up by the ALU and returns (lets say the TP has not returned yet):
Alloc Position 1

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
2 0 0 0 0 0 0 0 0 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 836 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

R400 Sequencer Specification PAGE

52 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 01 1 0 1 0

If the SX has the place for the export, the SQ is going to allocate and pick up the thread for execution. It returns to

the RS in this state:

Execute Alu 0 Tex 0

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
3 1 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 1 0 0 0 1 1 0

Now, since the TP has not returned yet, we must wait for it to return because we cannot issue multiple texture

requests. The TP returns, clears the PENDING bit and we proceed:

Alloc Param 3

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
4 0 0 0 0 1 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 10 3 1 1 0

Once again the SQ makes sure the SX has enough room in the Parameter cache before it can pick up this

thread.

Execute Alu 0 Tex 0 Alu 1 Alu 0 End

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
5 1 0 0 0 1 0 100 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 1 0 0 0 1 1 0

This executes on the TP and then returns:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
5 2 0 0 0 1 0 100 0 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 837 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201513
May 20022 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

53 of 53

Exhibit 2030.docR400_Sequencer.doc �� 74578 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 1 1 1

Waits for the TP to return because of the textures reads are pending (and SERIAL in this case). Then executes
and does not return to the RS because the LAST bit is set. This is the end of this thread and before dropping it on the
floor, the SQ notifies the SX of export completion.

25. Open issues
Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 838 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SQ

Version 2.032

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\doc_lib\design\blocks\sq\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2031
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 839 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

2 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Table Of Contents

1. OVERVIEW .. 97
1.1 Top Level Block Diagram ... 119
1.2 Data Flow graph (SP) ... 1210
1.3 Control Graph ... 1311
2. INTERPOLATED DATA BUS .. 1311
3. INSTRUCTION STORE ... 1614
4. SEQUENCER INSTRUCTIONS ... 1614
5. CONSTANT STORES .. 1614
5.1 Memory organizations .. 1614
5.2 Management of the Control Flow Constants .. 1715
5.3 Management of the re-mapping tables .. 1715

5.3.1 R400 Constant management .. 1715

5.3.2 Proposal for R400LE constant management .. 1715

5.3.3 Dirty bits .. 1917

5.3.4 Free List Block .. 1917

5.3.5 De-allocate Block .. 2018

5.3.6 Operation of Incremental model .. 2018
5.4 Constant Store Indexing ... 2018
5.5 Real Time Commands.. 2119
5.6 Constant Waterfalling ... 2119
6. LOOPING AND BRANCHES ... 2220
6.1 The controlling state. .. 2220
6.2 The Control Flow Program ... 2220

6.2.1 Control flow instructions table ... 2321
6.3 Implementation ... 2523
6.4 Data dependant predicate instructions ... 2624
6.5 HW Detection of PV,PS ... 2725
6.6 Register file indexing .. 2725
6.7 Debugging the Shaders ... 2825

6.7.1 Method 1: Debugging registers ... 2826

6.7.2 Method 2: Exporting the values in the GPRs .. 2826
7. PIXEL KILL MASK .. 2826
8. MULTIPASS VERTEX SHADERS (HOS) .. 2826
9. REGISTER FILE ALLOCATION .. 2926
10. FETCH ARBITRATION .. 3028
11. ALU ARBITRATION .. 3028
12. HANDLING STALLS ... 3129
13. CONTENT OF THE RESERVATION STATION FIFOS ... 3129
14. THE OUTPUT FILE.. 3129
15. IJ FORMAT .. 3129
15.1 Interpolation of constant attributes .. 3229
16. STAGING REGISTERS ... 3230

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 840 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

17. THE PARAMETER CACHE ... 3431
17.1 Export restrictions ... 3432

17.1.1 Pixel exports: .. 3432

17.1.2 Vertex exports: ... 3432

17.1.3 Pass thru exports: .. 3432
17.2 Arbitration restrictions ... 3432
18. EXPORT TYPES .. 3532
18.1 Vertex Shading .. 3532
18.2 Pixel Shading .. 3533
19. SPECIAL INTERPOLATION MODES ... 3533
19.1 Real time commands .. 3533
19.2 Sprites/ XY screen coordinates/ FB information .. 3633
19.3 Auto generated counters ... 3634

19.3.1 Vertex shaders ... 3634

19.3.2 Pixel shaders .. 3634
20. STATE MANAGEMENT .. 3734
20.1 Parameter cache synchronization ... 3734
21. XY ADDRESS IMPORTS ... 3735
21.1 Vertex indexes imports .. 3735
22. REGISTERS .. 3735
22.1 Control ... 3735
22.2 Context .. 3835
23. DEBUG REGISTERS... 3935
23.1 Context .. 3935
23.2 Control ... 3935

24. INTERFACES .. 3935

24.1 External Interfaces .. 3935
24.2 SC to SP Interfaces ... 3935

24.2.1 SC_SP# ... 3935

24.2.2 SC_SQ ... 4036

24.2.3 SQ to SX: Interpolator bus ... 4238

24.2.4 SQ to SP: Staging Register Data ... 4238

24.2.5 VGT to SQ : Vertex interface .. 4238

24.2.6 SQ to SX: Control bus .. 4541

24.2.7 SX to SQ : Output file control ... 4541

24.2.8 SQ to TP: Control bus .. 4642

24.2.9 TP to SQ: Texture stall ... 4642

24.2.10 SQ to SP: Texture stall ... 4743

24.2.11 SQ to SP: GPR and auto counter .. 4743

24.2.12 SQ to SPx: Instructions .. 4844

24.2.13 SP to SQ: Constant address load/ Predicate Set ... 4944

24.2.14 SQ to SPx: constant broadcast .. 4945

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 841 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

4 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24.2.15 SP0 to SQ: Kill vector load ... 4945

24.2.16 SQ to CP: RBBM bus ... 4945

24.2.17 CP to SQ: RBBM bus ... 4945

24.2.18 SQ to CP: State report ... 5045
24.3 Example of control flow program execution .. 5046
25. OPEN ISSUES ... 5450
1. OVERVIEW .. 7
1.1 Top Level Block Diagram ... 9
1.2 Data Flow graph (SP) ... 10
1.3 Control Graph ... 11
2. INTERPOLATED DATA BUS .. 11
3. INSTRUCTION STORE ... 14
4. SEQUENCER INSTRUCTIONS ... 14
5. CONSTANT STORES .. 14
5.1 Memory organizations .. 14
5.2 Management of the Control Flow Constants .. 15
5.3 Management of the re-mapping tables .. 15

5.3.1 R400 Constant management .. 15

5.3.2 Proposal for R400LE constant management .. 15

5.3.3 Dirty bits .. 17

5.3.4 Free List Block .. 17

5.3.5 De-allocate Block .. 18

5.3.6 Operation of Incremental model .. 18
5.4 Constant Store Indexing ... 18
5.5 Real Time Commands.. 19
5.6 Constant Waterfalling ... 19
6. LOOPING AND BRANCHES ... 20
6.1 The controlling state. .. 20
6.2 The Control Flow Program ... 20

6.2.1 Control flow instructions table ... 21
6.3 Implementation ... 22
6.4 Data dependant predicate instructions ... 24
6.5 HW Detection of PV,PS ... 24
6.6 Register file indexing .. 25
6.7 Debugging the Shaders ... 25

6.7.1 Method 1: Debugging registers ... 25

6.7.2 Method 2: Exporting the values in the GPRs .. 26
7. PIXEL KILL MASK .. 26
8. MULTIPASS VERTEX SHADERS (HOS) .. 26
9. REGISTER FILE ALLOCATION .. 26
10. FETCH ARBITRATION .. 27
11. ALU ARBITRATION .. 27
12. HANDLING STALLS ... 28
13. CONTENT OF THE RESERVATION STATION FIFOS ... 28
14. THE OUTPUT FILE.. 28

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 842 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

15. IJ FORMAT .. 28
15.1 Interpolation of constant attributes .. 29
16. STAGING REGISTERS ... 29
17. THE PARAMETER CACHE ... 31
17.1 Export restrictions ... 31

17.1.1 Pixel exports: .. 31

17.1.2 Vertex exports: ... 31

17.1.3 Pass thru exports: .. 31
17.2 Arbitration restrictions ... 31
18. EXPORT TYPES .. 32
18.1 Vertex Shading .. 32
18.2 Pixel Shading .. 32
19. SPECIAL INTERPOLATION MODES ... 32
19.1 Real time commands .. 32
19.2 Sprites/ XY screen coordinates/ FB information .. 33
19.3 Auto generated counters ... 33

19.3.1 Vertex shaders ... 33

19.3.2 Pixel shaders .. 33
20. STATE MANAGEMENT .. 34
20.1 Parameter cache synchronization ... 34
21. XY ADDRESS IMPORTS ... 34
21.1 Vertex indexes imports .. 34
22. REGISTERS .. 35
22.1 Control ... 35
22.2 Context .. 35
23. DEBUG REGISTERS... 36
23.1 Context .. 36
23.2 Control ... 36

24. INTERFACES .. 36

24.1 External Interfaces .. 36
24.2 SC to SP Interfaces ... 36

24.2.1 SC_SP# ... 36

24.2.2 SC_SQ ... 37

24.2.3 SQ to SX: Interpolator bus ... 39

24.2.4 SQ to SP: Staging Register Data ... 39

24.2.5 VGT to SQ : Vertex interface .. 39

24.2.6 SQ to SX: Control bus .. 42

24.2.7 SX to SQ : Output file control ... 42

24.2.8 SQ to TP: Control bus .. 43

24.2.9 TP to SQ: Texture stall ... 43

24.2.10 SQ to SP: Texture stall ... 44

24.2.11 SQ to SP: GPR and auto counter .. 44

24.2.12 SQ to SPx: Instructions .. 45

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 843 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

6 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24.2.13 SP to SQ: Constant address load/ Predicate Set ... 45

24.2.14 SQ to SPx: constant broadcast .. 46

24.2.15 SP0 to SQ: Kill vector load ... 46

24.2.16 SQ to CP: RBBM bus ... 46

24.2.17 CP to SQ: RBBM bus ... 46

24.2.18 SQ to CP: State report ... 46
24.3 Example of control flow program execution .. 46
25. OPEN ISSUES ... 51

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 844 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

 Changed the control flow method to be more
flexible. Also updated the external interfaces.

Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

 Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001

 Refined interfaces to RB. Added state registers.

Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

 Added SEQ→SP0 interfaces. Changed delta
precision. Changed VGT→SP0 interface. Debug
Methods added.

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001

 Interfaces greatly refined. Cleaned up the spec.

Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001

 Added the different interpolation modes.

Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

 Added the auto incrementing counters. Changed
the VGT→SQ interface. Added content on constant
management. Updated GPRs.

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

 Removed from the spec all interfaces that weren’t
directly tied to the SQ. Added explanations on
constant management. Added PA→SQ
synchronization fields and explanation.

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

 Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002

 Added Real Time parameter control in the SX
interface. Updated the control flow section.

Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

 New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002

 Rearangement of the CF instruction bits in order to
ensure byte alignement.

Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002

 Updated the interfaces and added a section on
exporting rules.

Rev 1.11 (Laurent Lefebvre)
Date : April 19, 2002

 Added CP state report interface. Last version of the
spec with the old control flow scheme

Rev 2.0 (Laurent Lefebvre)
Date : April 19, 2002

 New control flow scheme

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 845 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

8 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Rev 2.01 (Laurent Lefebvre)
Date : May 2, 2002

 Changed slightly the control flow instructions to
allow force jumps and calls.

Rev 2.02 (Laurent Lefebvre)
Date : May 13, 2002

 Updated the Opcodes. Added type field to the
constant/pred interface. Added Last field to the
SQ→SP instruction load interface.

Rev 2.03 (Laurent Lefebvre)
Date : July 15, 2002

 SP interface updated to include predication
optimizations. Added the predicate no stall
instructions,

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 846 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1. Overview
The sequencer chooses two ALU threads and a fetch hread to execute, and executes all of the instructions in a block
before looking for a new clause of the same type. Two ALU threads are executed interleaved to hide the ALU latency.
The arbitrator will give priority to older threads. There are two separate reservation stations, one for pixel vectors and
one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 847 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

10 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ

SC

SPSPSPCSTOREFETCH STATE

TP

INST STORE

IJ CONTROL

IJ
CONTROL

CST
ADDR

INST
 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/QUAD
ADDRESSES

SP

ALU INST

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

INST

INTER INTER INTER INTER

IJ CROSSBAR

2 QUADS IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC READ
 POINTERS

PARAM
DATA

R/W ADDR

Vertex indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

CP

CONSTANT
LOAD

CPConstant Load

TX ADDR

PC Write
Address

TEX INST

CF
CONSTANTS

Register
Mapped

CF Read

Figure 1: General Sequencer overview

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 848 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.1 Top Level Block Diagram

ALU Texture

VTX RS PIX RS

Exec Arbiter

Input Arbiter

Figure 2: Reservation stations and arbiters

Under this new scheme, the sequencer (SQ) will only use one global state management machine per vector type
(pixel, vertex) that we call the reservation station (RS).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 849 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

12 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.2 Data Flow graph (SP)

MAC

MAC

MAC

MAC

Register File

co
n

st
an

ts
 f

ro
m

 R
E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
n

ts
 f

ro
m

 R
E

S
ca

la
r

U
ni

t

texture request

texture request

texture request

texture request

te
xt

ur
e

 a
dd

re
ss

te xtu
re

 d
ata

prim
itiv e d a

ta
 from

 R
E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

Figure 3: The shader Pipe

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 850 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

SEQ

FETCH SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

OF

WrAddrIS CST

CST IDX

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 851 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

14 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x100 bits)

IJs buffer (ping-pong buffer)
(25 bits * 8 (IJ) * 4 * 4 * 4 (quadruple-buffered)

12800 bits

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

100

To RB

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2

768 bits
32x24

FIX-FLOAT + EXPANSiON

Figure 5: Interpolation buffers

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 852 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SP
0

SP
1

SP
2

SP
3

WRITES
T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-
11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P1 P2

T20 T21 T22 T23

VTX

T0 T1 T2 T3

XY

XY
0-3

XY
4-7

XY
8-
11

XY
12-
15

XY
16-
19

XY
20-
23

XY
24-
27

XY
28-
31

XY
32-
35

XY
36-
39

XY
40-
43

XY
44-
47

XY
48-
51

XY
52-
55

XY
56-
59

XY
60-
63

READS

SP
0

SP
1

SP
2

SP
3

A0

A1

A2

B1

B0

C3

C0

C1

C2

C4

C5

D0

D1

D2

E0

E1

A0

A1

A2

XY
A0
XY
A1
XY
A2

B1

B0

XY
B1

XY
B0

C3

C0

C1

C2

XY
C3
XY
C0
XY
C1
XY
C2

C4

C5

XY
C4
XY
C5

D0

D1

D2

XY
D1
XY
D2

XY
D0

E0

E1
XY
E1

XY
E0

Figure 6: Interpolation timing diagram

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 853 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

16 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store
There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4. Sequencer Instructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 854 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

5.2 Management of the Control Flow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied whenever there is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn’t write to CF the state is going to use the previous CF constants.

5.3 Management of the re-mapping tables

5.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROL packet of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it with
the new state (this is depicted in Figure 8: De-allocation mechanismFigure 8: De-allocation mechanismFigure 8: De-
allocation mechanism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 855 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

18 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Physical
Memory

Renaming Table
for 1 Context
Current/Last

Physical
Address

per
Logical
Address

Renaming
table

N-Contexts

Reset
Dirty
per

Logical
Address

(Only
de-

allocate
if set)

This
Context

Dirty
per

Logical
Address

(If set
don't

allocate
or de-

allocate)

Logical address
On the

GlbRegBus
when lsb are zero
first word of write

next
physical
address
ready

for allocate

Constants
location
available
WRTR

physical
address

to
schedule

for
de-alloc

Staging Data
Buffer

Staging Write Addr

Copy Last held above to
Current Context on receipt

of Set Constant for a
new context (Hide loading

behind Set State load - 16 clocks)
all other Set States just write one

entry to current state.

Free
list

(pass Phys
Address if
Context
Dirty)

Dealloc
Counts

Seq
Constant
Request

Context &
Logical
Address

Free_ptr
WritePtr

When a Logical
Address is written

that has been
written before,

store the physical
address that was
allocated by that
Logical Address

Stop_ptr
ptr to first physical

address that is
scheduled to be de-
allocated but noty
yet de-allocate.

Advanced each time
a context is freed by

the number of
physical address
displaced by that

Context

Read_ptr
ptr to physical

address that will be
used next if the init

count is at
maximum number

of physical address

Free List

Number of entries
equals Max Number of
Physical Blocks. All
Pointers start at zero
and roll around but

can never pass each
other

Free
Address

Address
to Allocate

Global Register
Data Bus

Renaming Table
Context 0 => N

Logical Address
& Context

Physical
Address

Context 0 (8 rows of 16 - 8 bit
physical => 128 entries copy in

eight clocks)

Context 1

Context N

Current/Last
Context

(8 rows of 16 - 8
bit physical =>

128 entries copy
in eight clocks)

Figure 7: Constant management

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 856 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

DEALOC
COUNTERSFree List

!=

OR

AND

NOT

ADDR

PREVIOUS
STATE

NEW
STATE

SQ_IDLE

CP_NEW_STATE_CNTL
PA_IDLE

VALUE

VALID

CNT VALUE

SQ_STATE#

WRITE_ENABLE

REMAPPING
TABLE

SET CTX BITS

Figure 8: De-allocation mechanism for R400LE

5.3.3 Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block
A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 857 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

20 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

5.3.5 De-allocate Block
This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any number of blocks in one clock.

5.3.6 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 858 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

5.5 Real Time Commands
The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
works is the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zones is defined by the TSTATE_EO_RT control register.

5.6 Constant Waterfalling
In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenever a state is freed.

CONST_EO_RT

RT SECTON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table)

Figure 9: The instruction Constant store

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 859 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

22 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
We'd like to be able to code up a program of the form:

1: Loop
2: Exec TexFetch
3: TexFetch
4: ALU
5: ALU
6: TexFetch
7: End Loop
8: ALU Export

But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3:. Without clausing,
these dependencies need to be expressed in the Control Flow instructions. Additionally, without separate 'texture
clauses' and 'ALU clauses' we need to know which instructions to dispatch to the Texture Unit and which to the ALU
unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of information for each (non-control flow) instruction:
 a) ALU or Texture
 b) Serialize Execution

(b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched. Given the allocation of reserved bits, this would mean that the count of an 'Exec' instruction
would be limited to about 8 (non-control-flow) instructions. If more than this were needed, a second Exec (with the
same conditions) would be issued.

Another function that relies upon 'clauses' is allocation and order of execution. We need to assure that pixels and
vertices are exported in the correct order (even if not all execution is ordered) and that space in the output buffers are
allocated in order. Additionally data can't be exported until space is allocated. A new control flow instruction:

 Alloc <buffer select -- position,parameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual
allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already
completed. The implementation would also assure that execution of instruction(s) following the serialization due to the
Alloc will occur in order -- at least until the next serialization or change from ALU to Texture. In most cases this will
allow the exports to occur without any further synchronization. Only 'final' allocations or position allocations are

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 860 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

guaranteed to be ordered. Because strict ordering is required for pixels, parameters and positions, this implies only
a single alloc for these structures. Vertex exports to memory do not require ordering during allocation and so multiple
'allocs' may be done.

6.2.1 Control flow instructions table
Here is the revised control flow instruction set.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

NOP
47 … 44 43 42 … 0

0000 Addressing RESERVED

This is a regular NOP.

Execute
47 … 44 43 40 … 34 33 …16 15…12 11 … 0

0001 Addressing RESERVED Instructions type + serialize (9
instructions)

Count Exec Address

Execute_End

47 … 44 43 40 … 34 33 …16 15…12 11 … 0
0010 Addressing RESERVED Instructions type + serialize (9

instructions)
Count Exec Address

Execute up to 9 instructions at the specified address in the instruction memory. The Instruction type field tells the
sequencer the type of the instruction (LSB) (1 = Texture, 0 = ALU and whether to serialize or not the execution (MSB)
(1 = Serialize, 0 = Non-Serialized). If Execute_End this is the last execution block of the shader program.

Conditional_Execute

47 … 44 43 42 41 … 34 33…16 15 …12 11 … 0
0011 Addressing Condition Boolean

address
Instructions type + serialize (9

instructions)
Count Exec Address

Conditional_Execute_End

47 … 44 43 42 41 … 34 33…16 15 …12 11 … 0
0100 Addressing Condition Boolean

address
Instructions type + serialize (9

instructions)
Count Exec Address

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 9 instructions). If the condition is not met, we go on to the next control flow instruction. If
Conditional_Execute_End and the condition is met, this is the last execution block of the shader program.

Conditional_Execute_Predicates
47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0

0101 Addressing Condition RESERVED Predicate
vector

Instructions
type + serialize
(9 instructions)

Count Exec Address

Conditional_Execute_Predicates_End

47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0
0110 Addressing Condition RESERVED Predicate

vector
Instructions

type + serialize
(9 instructions)

Count Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid. If the

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 861 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

24 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

condition is not met, we go on to the next control flow instruction. If Conditional_Execute_Predicates_End and the
condition is met, this is the last execution block of the shader program.

Conditional_Execute_Predicates_No_Stall
47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0

1101 Addressing Condition RESERVED Predicate
vector

Instructions
type + serialize
(9 instructions)

Count Exec Address

Conditional_Execute_Predicates_No_Stall_End

47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0
1110 Addressing Condition RESERVED Predicate

vector
Instructions

type + serialize
(9 instructions)

Count Exec Address

Same as Conditionnal_Execute_Predicates but the SQ is not going to wait for the predicate vector to be updated.
You can only set this in the compiler if you know that the predicate set is only a refinement of the current one (like a
nested if) because the optimization would still work.

Loop_Start
47 … 44 43 42 … 1721 20 … 16 15…12 11 … 0

0111 Addressing RESERVED loop ID RESERVED Jump address

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Loop_End
47 … 44 43 42 … 24 23… 21 20 … 16 15…12 11 … 0

1000 Addressing RESERVED Predicate break loop ID RESERVED start address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop. If predicate break != 0, then compares predicate vector n
(specified by predicate break number). If all bits cleared then break the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal_Call
47 … 44 43 42 41 … 34 33 … 13 12 11 … 0

1001 Addressing Condition Boolean address RESERVED Force Call Jump address

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack. If
force call is set the condition is ignored and the call is made always.

Return
47 … 44 43 42 … 0

1010 Addressing RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump
47 … 44 43 42 41… 34 33 32 … 13 12 11 … 0

1011 Addressing Condition Boolean
address

FW only RESERVED Force Jump Jump address

If force jump is set the condition is ignored and the jump is made always. If FW only is set then only forward jumps
are allowed.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 862 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Allocate

47 … 44 43 42…41 40 … 4 3 …0
1100 Debug Buffer Select RESERVED Allocation size

Buffer Select takes a value of the following:
01 – position export (ordered export)
10 – parameter cache or pixel export (ordered export)
11 – pass thru (out of order exports).

Buffer Size takes a value of the following:
00 – 1 buffer
01 – 2 buffers
…
15 – 16 buffers

If debug is set this is a debug alloc (ignore if debug DB_ON register is set to off).

6.3 Implementation

The envisioned implementation has a buffer that maintains the state of each thread. A thread lives in a given
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the order that they
enter. Actually two buffers are maintained -- one for Vertices and one for Pixels. The intended implementation
would allow for:

16 entries for vertices
48 entries for pixels.

From each buffer, arbitration logic attempts to select 1 thread for the texture unit and 1 (interleaved) thread for the
ALU unit. Once a thread is selected it is read out of the buffer, marked as invalid, and submitted to appropriate
execution unit. It is returned to the buffer (at the same place) with its status updated once all possible sequential
instructions have been executed. A switch from ALU to TEX or visa-versa or a Serialize_Execution modifier forces
the thread to be returned to the buffer.

Each entry in the buffer will be stored across two physical pieces of memory - most bits will be stored in a 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed 'state'. The bits kept in the multi-read ported device will be termed 'status'.

'State Bits' needed include:

1. Control Flow Instruction Pointer (13 bits),
2. Execution Count Marker 4 bits),
3. Loop Iterators (4x9 bits),
4. Call return pointers (4x12 bits),
5. Predicate Bits (64 bits),
6. Export ID (1 bit),
7. Parameter Cache base Ptr (7 bits),
8. GPR Base Ptr (8 bits),
9. Context Ptr (3 bits).
10. LOD corrections (6x16 bits)
11. Valid bits (64 bits)

Absent from this list are 'Index' pointers. These are costly enough that I'm presuming that they are instead stored in
the GPRs. The first seven fields above (Control Flow Ptr, Execution Count, Loop Counts, call return ptrs, Predicate
bits, PC base ptr and export ID) are updated every time the thread is returned to the buffer based on how much
progress has been mode on thread execution. GPR Base Ptr, Context Ptr and LOD corrections are unchanged
throughout execution of the thread.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 863 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

26 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

'Status Bits' needed include:

 Valid Thread
 Texture/ALU engine needed
 Texture Reads are outstanding
 Waiting on Texture Read to Complete
 Allocation Wait (2 bits)
 00 – No allocation needed
 01 – Position export allocation needed (ordered export)
 10 – Parameter or pixel export needed (ordered export)
 11 – pass thru (out of order export)
 Allocation Size (4 bits)
 Position Allocated
 First thread of a new context
 Event thread (NULL thread that needs to trickle down the pipe)
 Last (1 bit)
 Pulse SX (1 bit)

All of the above fields from all of the entries go into the arbitration circuitry. The arbitration circuitry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -- one for
pixels and one for vertices. A final selection is then done between the two. But the rest of this implementation
summary only considers the 'first' level selection which is similar for both pixels and vertices.

Texture arbitration requires no allocation or ordering so it is purely based on selecting the 'oldest' thread that requires
the Texture Engine.

ALU arbitration is a little more complicated. First, only threads where either of Texture_Reads_outstanding or
Waiting_on_Texture_Read_to_Complete are '0' are considered. Then if Allocation_Wait is active, these threads are
further filtered based on whether space is available. If the allocation is position allocation, then the thread is only
considered if all 'older' threads have already done their position allocation (position allocated bits set). If the
allocation is parameter or pixel allocation, then the thread is only considered if it is the oldest thread. Also a thread is
not considered if it is a parameter or pixel or position allocation, has its First_thread_of_a_new_context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the 'oldest' of the threads that pass through the above filters is selected. If the thread needed to allocate, then
at this time the allocation is done, based on Allocation_Size. If a thread has its “last” bit set, then it is also removed
from the buffer, never to return.

If I now redefine 'clauses' to mean 'how many times the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine', then the minimum number of clauses needed is 2 -- one to perform
the allocation for exports (execution automatically halts after an 'Alloc' instruction) (but doesn't performs the actual
allocation) and one for the actual ALU/export instructions. As the 'Alloc' instruction could be part of a texture clause
(presumably the final instruction in such a clause), a thread could still execute in this minimal number of 2 clauses,
even if it involved texture fetching.

The Texture_Reads_Outstanding bit must be updated by the sequencer, based on keeping track of how many
Texture Clauses have been executed by a given thread that have not yet had there data returned. Any number
above 0 results in this bit being set. We could consider forcing synchronization such that two texture clauses for a
given thread may not be outstanding at any time (that would be my preference for simplicity reasons and because it
would require only very little change in the texture pipe interface). This would allow the sequencer to set the bit on
execution of the texture clause, and allow the texture unit to return a pointer to the thread buffer on completion that
clears the bit.

6.4 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 864 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

PRED_SETE_# - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETNE_# - similar to SETNE except that the result is 'exported' to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE0_# – SETE0
 PRED_SETE1_# – SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

 P0_ADD_# R0,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

6.5 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

6.6 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

The sequencer is going to keep a loop index computed as such:

 Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128…127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 865 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

28 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
 - jump errors
 relative jump address > size of the control flow program
 - call stack
 call with stack full

return with stack empty

A jump error will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only break if
the DB_PROB_BREAK register is set.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the 0th
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs
1) The sequencer will have a debug active, count register and an address register for this mode.

Under the normal mode execution follows the normal course.

Under the debug mode it is assumed that the program is always exporting n debug vectors and that all other exports
to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by the sequencer (even if they occur
before the address stated by the ADDR debug register).

7. Pixel Kill Mask
A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE

 MASK_SETGT
 MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 866 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZE for pixels.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 867 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

30 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

10. Fetch Arbitration
The fetch arbitration logic chooses one of the 8 n potentially pending fetch clauses to be executed. The choice is
made by looking at the fifos from 7 to 0Vs and Ps reservation stations and picking the first one ready to execute.
Once chosen, the clause state machine will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks)
until all the fetch instructions of the clause are sent. This means that there cannot be any dependencies between two
fetches of the same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration
ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
8 n potentially pending ALU clauses to be executed. The choice is made by looking at the Vs and Ps reservation
stations and picking the first one ready to executeThe choice is made by looking at the fifos from 7 to 0 and picking
the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for the odd clocks. For
example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 868 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering the an exporting clause. (3?). The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs
The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). The interpolation is done at a different precision across the 2x2. The upper leftAll pixel’s parameters are
always interpolated at full 20x24 mantissa precision. Then the result of the interpolation along with the difference in IJ
in reduced precision is used to interpolate the parameter for the other three pixels of the 2x2. Here is how we do it:

Assuming P0 is the interpolated parameter at Pixel 0 having the barycentric coordinates I(0), J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at V0 (interpolated with I), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

)(*)3()(*)3(3

)(*)2()(*)2(2

)(*)1()(*)1(1

)(*)0()(*)0(0

ACJABIAP

ACJABIAP

ACJABIAP

ACJABIAP

P0 is computed at 20x24 mantissa precision and P1 to P3 are computed at 8X24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 28
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF P0’s IJ : Mantissa 20 Exp 4 for I + Sign

P0

P2

P1

P3

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 869 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

32 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 Mantissa 20 Exp 4 for J + Sign

FORMAT of Deltas (x3): Mantissa 8 Exp 4 for I + Sign
 Mantissa 8 Exp 4 for J + Sign

Total number of bits : 20*2 8 + 8*6 + 4*8 + 4*2 = 200.
128

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the number is
normalized if not, then the number is un-normalized. The maximum range for the IJs (Full precision) is +/- 63
1024.and the range for the Deltas is +/- 127.

15.1 Interpolation of constant attributes
Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the barycentric coordinatesterms are the same.

We start with the premise that if A = B and B = C and C = A, then P0,1,2,3 = A. Since one or more of the IJ terms
may be zero, so we extend this to:

if (A=B and B=C and C=A)
 P0,1,2,3 = A;
else if ((I = 0) or (J = 0)) and
 ((J = 0) or (1-I-J = 0)) and
 ((1-J-I = 0) or (I = 0))) {
 if(I != 0) {
 P0 = A;
 } else if(J != 0) {
 P0 = B;
 } else {
 P0 = C;
 }
 //rest of the quad interpolated normally
}
else
{
 normal interpolation
}

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 || 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencer will re-arrange them in this fashion:

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 || 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 || 8 9 10 11 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the VGT will send padding to account for
the missing pipe. For example, if SP1 is broken, vertices 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will still be sent
by the VGT to the SQ BUT will not be processed by the SP and thus should be considered invalid (by the SU and
VGT).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 870 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

33 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 11Figure 11Figure 11. The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure 10Figure 10Figure 10.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11631 60.57813per bit

Area of 96x8-deep Latch Memory 46524
Area of 24-bit Fix-to-float Converter 4712per converter

Method 1 Block Quantity Area

 F2F 3 14136

 8x96 Latch 16 744384

 758520

Figure 10:Area Estimate for VGT to Shader Interface

SHADER PIPE

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

3
2

3
2

3
2

VGT BLOCK
(IN PA)

3
2

9
6

VECTOR ENGINE

96

8x96
MEMORY
1-READ
1-WRITE

3 OTHER
SHADER
PIPES

 3 Fix->Float Converters (24-bit)
 16 Memories 8x96-bit (12,288 bits)

Totals:

THREE MORE VECTOR ENGINES
PER SHADER PIPE

VECTOR ENGINE

SHADER
SEQUENCER

Figure 11:VGT to Shader Interface

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 871 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

34 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER
4 bits

ADDRESS
7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17th) is going to have the address 00000001000, the 18th 00010001000, the 19th 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*VS_EXPORT_COUNT to
Current_Location and reset the memory count to 0 before the next vector begins).

17.1 Export restrictions

17.1.1 Pixel exports:
Pixels can export 1,2,3 or 4 color buffers to the SX(+z). The exports will be done in order. The PRED_OPTIMIZE
function has to be turned of if the exports are done using interleaved predicated instructions. The exports will always
be ordered to the SX.

17.1.2 Vertex exports:
Position or parameter caches can be exported in any order in the shader program. It is always better to export
posistion as soon as possible. Position has to be exported in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be done in any order with texture instructions interleaved.
The PRED_OPTIMIZE function has to be turned of if the exports are done using interleaved predicated instructions to
the Parameter cache (see Arbitration restrictions for details). The exports will always be allocated in order to the SX.

17.1.3 Pass thru exports:
Pass thru exports have to be done in groups of the form:

Alloc 4 (8 or 12)
Execute ALU(ADDR) ALU(DATA) ALU(DATA) ALU(DATA)…

They cannot have texture instructions interleaved in the export block. These exports are not guaranteed to be
ordered.

Also, when doing a pass thru export, Position MUST be exported AFTER all pass thru exports. This position export is
used to synchronize the chip when doing a transition from pass thru shader to regular shader and vice versa.

17.2 Arbitration restrictions
Here are the Sequencer arbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texture pending bit is set
2) Cannot allocate position if any older thread has not allocated position
3) If last thread is marked as not valid AND marked as last and we are about to execute the second to oldest

thread also marked last then:

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 872 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

35 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

a. Both threads must be from the same context (cannot allow a first thread)
b. Must turn off the predicate optimization for the second thread

4) Cannot execute a texture clause if texture reads are pending
5) Cannot execute last if texture pending (even if not serial)

18. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

18.1 Vertex Shading
 0:15 - 16 parameter cache
 16:31 - Empty (Reserved?)

32 - Export Address
 33:40 - 8 vertex exports to the frame buffer and index
 41:47 - Empty
 48:55 - 8 debug export (interpret as normal vertex export)
 60 - export addressing mode
 61 - Empty
 62 - position
 63 - sprite size export that goes with position export
 (point_h,point_w,edgeflag,misc)

18.2 Pixel Shading
 0 - Color for buffer 0 (primary)
 1 - Color for buffer 1
 2 - Color for buffer 2
 3 - Color for buffer 3
 4:7 - Empty
 8 - Buffer 0 Color/Fog (primary)
 9 - Buffer 1 Color/Fog
 10 - Buffer 2 Color/Fog
 11 - Buffer 3 Color/Fog
 12:15 - Empty
 16:31 - Empty (Reserved?)
 32 - Export Address
 33:40 - 8 exports for multipass pixel shaders.
 41:47 - Empty
 48:55 - 8 debug exports (interpret as normal pixel export)
 60 - export addressing mode
 61:62 - Empty
 63 - Z for primary buffer (Z exported to 'alpha' component)

19. Special Interpolation modes

19.1 Real time commands
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem I see with this is, if we

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 873 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

36 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

view support for 16 vector-4 interpolants important (true only if we map Microsoft’s high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This mode is triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

19.2 Sprites/ XY screen coordinates/ FB information
When working with sprites, one may want to overwrite the parameter 0 with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the gen_I0 register (in SQ) in
conjunction with the SND_XY register (in SC). Also it is possible to send the faceness information (for OGL front/back
special operations) to the shader using the same control register. Here is a list of all the modes and how they interact
together:

Gen_st is a bit taken from the interface between the SC and the SQ. This is the MSB of the primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between 0 and 1.

Param_Gen_I0 disable, snd_xy disable, no gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy disable, gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy enable, no gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy enable, gen_st – I0 = No modification
Param_Gen_I0 enable, snd_xy disable, no gen_st – I0 = garbage, garbage, garbage, faceness
Param_Gen_I0 enable, snd_xy disable, gen_st – I0 = garbage, garbage, s, t
Param_Gen_I0 enable, snd_xy enable, no gen_st – I0 = screen x, screen y, garbage, faceness
Param_Gen_I0 enable, snd_xy enable, gen_st – I0 = screen x, screen y, s, t

19.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1st pass data to memory and then use the count to retrieve the data on the 2nd pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. The sequencer is going to
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the
GPRs the counter is incremented. Every time a state change is detected, the corresponding counter is reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

19.3.1 Vertex shaders
In the case of vertex shaders, if GEN_INDEX is set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

19.3.2 Pixel shaders
In the case of pixel shaders, if GEN_INDEX is set and Param_Gen_I0 is enabled, the data will be put in the x field of
the 2nd register (R1.x), else if GEN_INDEX is set the data will be put into the x field of the 1st register (R0.x).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 874 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

37 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

AUTO
COUNT

STG 0

STG1

INTERPOLATORS

GPR0

AUTO COUNT 000000

MUX

The Auto Count Value is
broadcast to all GPRs. It is

loaded into a register wich has
its LSBs hardwired to the

GPR number (0 thru 63). Then
if GEN_INDEX is high, the
mux selects the auto-count

value and it is loaded into the
GPRs to be either used to

retrieve data using the TP or
sent to the SX for the RB to

use it to write the data to
memory

Figure 12: GPR input mux Control

20. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

20.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

21. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix→float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 19.2 for details on how to control the interpolation in this mode.

21.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

22. Registers
Please see the auto-generated web pages for register definitions.Control

REG_DYNAMIC Dynamic allocation (pixel/vertex) of the register file on or off.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 875 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

38 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

REG_SIZE_PIX Size of the register file's pixel portion (minimal size when dynamic allocation turned
on)

REG_SIZE_VTX Size of the register file's vertex portion (minimal size when dynamic allocation turned
on)

ARBITRATION_POLICY policy of the arbitration between vertexes and pixels
INST_BASE_VTX start point for the vertex instruction store (RT always ends at vertex_base and

Begins at 0)
INST_BASE_PIX start point for the pixel shader instruction store
ONE_THREAD debug state register. Only allows one program at a time into the GPRs
ONE_ALU debug state register. Only allows one ALU program at a time to be executed (instead

of 2)
INSTRUCTION This is where the CP puts the base address of the instruction writes and type (auto-

incremented on reads/writes) Register mapped
CONSTANTS 512*4 ALU constants + 32*6 Texture state 32 bits registers (logically mapped)
CONSTANTS_RT 256*4 ALU constants + 32*6 texture states? (physically mapped)
CONSTANT_EO_RT This is the size of the space reserved for real time in the constant store (from 0 to

CONSTANT_EO_RT). The re-mapping table operates on the rest of the memory
TSTATE_EO_RT This is the size of the space reserved for real time in the fetch state store (from 0 to
TSTATE_EO_RT). The re-mapping table operates on the rest of the memory

22.2 Context
PS_BASE base pointer for the pixel shader in the instruction store
VS_BASE base pointer for the vertex shader in the instruction store
VS_CF_SIZE size of the vertex shader (# of instructions in control program/2)
PS_CF_SIZE size of the pixel shader (# of instructions in control program/2)
PS_SIZE size of the pixel shader (cntl+instructions)
VS_SIZE size of the vertex shader (cntl+instructions)
PS_NUM_REG number of GPRs to allocate for pixel shader programs
VS_NUM_REG number of GPRs to allocate for vertex shader programs
PARAM_SHADE One 16 bit register specifying which parameters are to be gouraud shaded (0 = flat, 1

= gouraud)
PARAM_WRAP 64 bits: for which parameters (and channels (xyzw)) do we do the cyl wrapping

(0=linear, 1=cylindrical).
PS_EXPORT_MODE 0xxxx : Normal mode
 1xxxx : Multipass mode
 If normal, bbbz where bbb is how many colors (0-4) and z is export z or not
 If multipass 1-12 exports for color.
VS_EXPORT_MODE 0: position (1 vector), 1: position (2 vectors), 3:multipass
VS_EXPORT_COUNT Number of locations exported by the VS (and thus number of interpolated
parameters)
PARAM_GEN_I0 Do we overwrite or not the parameter 0 with XY data and generated T and S values
GEN_INDEX Auto generates an address from 0 to XX. Puts the results into R0-1 for pixel shaders

and R2 for vertex shaders
CONST_BASE_VTX (9 bits) Logical Base address for the constants of the Vertex shader
CONST_BASE_PIX (9 bits) Logical Base address for the constants of the Pixel shader
CONST_SIZE_PIX (8 bits) Size of the logical constant store for pixel shaders
CONST_SIZE_VTX (8 bits) Size of the logical constant store for vertex shaders
INST_PRED_OPTIMIZE Turns on the predicate bit optimization (if of, conditional_execute_predicates is

always executed).
CF_BOOLEANS 256 boolean bits
CF_LOOP_COUNT 32x8 bit counters (number of times we traverse the loop)
CF_LOOP_START 32x8 bit counters (init value used in index computation)
CF_LOOP_STEP 32x8 bit counters (step value used in index computation)

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 876 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

39 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23. DEBUG Registers

23.1 Context
DB_PROB_ADDR instruction address where the first problem occurred
DB_PROB_COUNT number of problems encountered during the execution of the program
DB_PROB_BREAK break the clause if an error is found.
DB_ON turns on an off debug method 2
DB_INST_COUNT instruction counter for debug method 2
DB_BREAK_ADDR break address for method number 2

23.2 Control
DB_ALUCST_MEMSIZE Size of the physical ALU constant memory
DB_TSTATE_MEMSIZE Size of the physical texture state memory

24.23. Interfaces

24.123.1 External Interfaces
Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ→SPx it means that SQ is going to broadcast the same information to all SP instances.

24.223.2 SC to SP Interfaces

24.2.123.2.1 SC_SP#
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the I,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data which is transferred per quad is
 Ref Pix I => S4.20 Floating Point I value *4
 Ref Pix J => S4.20 Floating Point J value *4
 Delta Pix I (x3) => S4.8 Floating Point Delta I value
 Delta Pix J (x3) => S4.8 Floating Point Delta J value
This equates to a total of 128 200 bits which transferred over 2 clocks
and therefor needs an interface 64100 bits wide

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a IJ_BUF_INUSE_COUNT in the SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNT count. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2, if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of I,J data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,SQ and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple mode first with a belief that only the end of

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 877 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

40 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performance hit.)

Name Bits Description
SC_SP#_data 64100 IJ information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bit)

Type 0 or 1, First clock I, second clk J
Field ULC URC LLC LRC
 Bits [63:39] [38:26] [25:13] [12:0]
Format SE4M20 SE4M20SE4M8 SE4M20SE4M8 SE4M20SE4M8
Type 2
Field Face X Y
 Bits [63] [23:12] [11:0]
Format Bit Unsigned Unsigned

SC_SP#_valid 1 Valid
SC_SP#_last_quad_data 1 This bit will be set on the last transfer of data per quad.
SC_SP#_type 2 0 -> Indicates centroids

1 -> Indicates centers
2 -> Indicates X,Y Data and faceness on data bus
The SC shall look at state data to determine how many types to send for the
interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP block will have neither because the instantiation will insert the prefix.

24.2.223.2.2 SC_SQ
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 94 bits) could be folded in half to approx 49 bits.

Name Bits Description
SC_SQ_data 46 Control Data sent to the SQ

1 clk transfers
 Event – valid data consist of event_id and
 state_id. Instruct SQ to post an
 event vector to send state id and
 event_id through request fifo
 and onto the reservation stations
 making sure state id and/or event_id
 gets back to the CP. Events only
 follow end of packets so no pixel
 vectors will be in progress.

 Empty Quad Mask – Transfer Control data
 consisting of pc_dealloc
 or new_vector. Receipt of this is to
 transfer pc_dealloc or new_vector
 without any valid quad data. New
 vector will always be posted to
 request fifo and pc_dealloc will be
 attached to any pixel vector
 outstanding or posted in request fifo
 if no valid quad outstanding.
2 clk transfers
 Quad Data Valid – Sending quad data with or
 without new_vector or pc_dealloc.
 New vector will be posted to request
 fifo with or without a pixel vector and

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 878 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

41 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 pc_dealloc will be posted with a pixel
 vector unless none is in progress. In
 this case the pc_dealloc will be
 posted in the request queue.
 Filler quads will be transferred with
 The Quad mask set but the pixel
 corresponding pixel mask set to
 zero.

SC_SQ_valid 1 SC sending valid data, 2nd clk could be all zeroes

SC_SQ_data – first clock and second clock transfers are shown in the table below.

Name BitField Bits Description

1st Clock Transfer
SC_SQ_event 0 1 This transfer is a 1 clock event vector Force quad_mask =

new_vector=pc_dealloc=0
SC_SQ_event_id [4:1] 4 This field identifies the event 0 => denotes an End Of State Event 1

=> TBD
SC_SQ_pc_dealloc [7:5] 3 Deallocation token for the Parameter Cache
SC_SQ_new_vector 8 1 The SQ must wait for Vertex shader done count > 0 and after

dispatching the Pixel Vector the SQ will decrement the count.
SC_SQ_quad_mask [12:9] 4 Quad Write mask left to right SP0 => SP3
SC_SQ_end_of_prim 13 1 End Of the primitive
SC_SQ_state_id [16:14] 3 State/constant pointer (6*3+3)
SC_SQ_pix_mask [32:17] 16 Valid bits for all pixels SP0=>SP3 (UL,UR,LL,LR)
SC_SQ_provok_vtx [37:36] 2 Provoking vertex for flat shading
SC_SQ_pc_ptr0 [48:38] 11 Parameter Cache pointer for vertex 0

2nd Clock Transfer
SC_SQ_pc_ptr1 [10:0] 11 Parameter Cache pointer for vertex 1
SC_SQ_pc_ptr2 [21:11] 11 Parameter Cache pointer for vertex 2
SC_SQ_lod_correct [45:22] 24 LOD correction per quad (6 bits per quad)
SC_SQ_prim_type [48:46] 33 Stippled line and Real time command need to load tex cords from

alternate buffer
0000: Normal Sprite (point)
001: Line
010: Tri_rect
10100: Realtime Realtime Sprite (point)
101: Realtime Line
110: Realtime Tri_rect101: Line AA 110: Point AA (Sprite)

Name Bits Description
SQ_SC_free_buff 1 Pipelined bit that instructs SC to decrement count of buffers in use.
SQ_SC_dec_cntr_cnt 1 Pipelined bit that instructs SC to decrement count of new vector and/or event

sent to prevent SC from overflowing SQ interpolator/Reservation request fifo.

The scan converter will submit a partial vector whenever:

1.) He gets a primitive marked with an end of packet signal.
2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been

marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 879 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

42 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal made it through and thus the hang.)

24.2.323.2.3 SQ to SX(SP): Interpolator bus
Name Direction Bits Description
SQ_SPXx_interp_flat_vtx SQ→SPx 2 Provoking vertex for flat shading
SQ_SPXx_interp_flat_gourau
d

SQ→SPx 1 Flat or gouraud shading

SQ_SXxSPx_interp_cyl_wrap SQ→SPx 4 Wich channel needs to be cylindrical wrapped
SQ_SXx_pc_ptr0 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr1 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr2 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_rt_sel SQ→SXx 1 Selects between RT and Normal data
SQ_SXx_pc_wr_en SQ→SXx 1 Write enable for the PC memories
SQ_SXx_pc_wr_addr SQ→SXx 7 Write address for the PCs
SQ_SXx_pc_channel_mask SQ→SXx 4 Channel mask
SQ_SXx_pc_ptr_valid SQ→SXx 1 Read pointers are valid.
SQ_SPx_interp_valid SQ→SPx 1 Interpolation control valid

24.2.423.2.4 SQ to SP: Staging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.
Name Direction Bits Description
SQ_SPx_vsr_data SQ→SPx 96 Pointers of indexes or HOS surface information
SQ_SPx_vsr_double SQ→SPx 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0_ vsr_valid SQ→SP0 1 Data is valid
SQ_SP1_ vsr_ valid SQ→SP1 1 Data is valid
SQ_SP2_ vsr_ valid SQ→SP2 1 Data is valid
SQ_SP3_ vsr_ valid SQ→SP3 1 Data is valid
SQ_SPx_vsr_read SQ→SPx 1 Increment the read pointers

24.2.523.2.5 VGT to SQ : Vertex interface

24.2.5.123.2.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide.

Name Bits Description
VGT_SQ_vsisr_data 96 Pointers of indexes or HOS surface information
VGT_SQ_event 1 VGT is sending an event
VGT_SQ_vsisr_doublecontinu
ed

1 0: Normal 96 bits per vert 1: double 192 bits per vert

VGT_SQ_end_of_vectorvtx_v
ect

1 Indicates the last VSISR data set for the current process vector (for double vector
data, "end_of_vector" is set on the first vector)

VGT_SQ_indx_valid 1 Vsisr data is valid
VGT_SQ_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when

“VGT_SQ_vgt_end_of_vector” is high.
VGT_SQ_send 1 Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_VGT_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

24.2.5.223.2.5.2 Interface Diagrams

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 880 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

43 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

VGT

VSISR_DATA_2

END_OF_VECTOR_2

STATE_SEL_2

REG

VSISR_DOUBLE_2
REG

REG

REG

REG

REG

SEND_2

REG

REG

REG

REG

REG

REG

PA_SQ_vgt_vsisr_data

PA_SQ_vgt_vsisr_double

PA_SQ_vgt_end_of_vector

PA_SQ_vgt_state_sel

PA_SQ_vgt_send

SQ_PA_vgt_rtr

VSISR_DATA_4

END_OF_VECTOR_4

STATE_SEL_4

VSISR_DOUBLE_4

96

1

1

3

1

1

SEND_4

RTR_2 RTR_0

SHADER
SEQUENCER

RTS

101 X 4
SKID

BUFFER

SRST SRST

WE

EMPTY

RE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 881 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

44 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

6 7

6 7

6 7

0 1 2 3

0 1

8

8

8

2 43 5

4 5 6 7

4 3 2 1

8

9 10 11 12

9 10 11 12

9 10 11 12

9 10 11 12

0

RECEIVER RE-STARTS TRANSMISSION

SENDER STOPS TRANSMISSION

SQ_RTR

SQ_RTR_0

VGT_RTS

SEND_2

SEND_3

SEND_4

DATA_2

FIFO_EMPTY

FIFO_RE

SQ_RTR_1

SQ_RTR_2

DATA_3

DATA_4

FIFO_DATA_OUT

FIFO_CNT

RECEIVER STOPS TRANSMISSION

Figure 1. Detailed Logical Diagram for PA_SQ_vgt Interface.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 882 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

45 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24.2.623.2.6 SQ to SX: Control bus

Name Direction Bits Description
SQ_SXx_exp_type SQ→SXx 2 00: Pixel without z (1 to 4 buffers)

01: Pixel with z (1 to 4 buffers)
10: Position (1 or 2 results)
11: Pass thru (4,8 or 12 results aligned)

SQ_SXx_exp_number SQ→SXx 2 Number of locations needed in the export buffer
(encoding depends on the type see bellow).

SQ_SXx_exp_alu_id SQ→SXx 1 ALU ID
SQ_SXx_exp_valid SQ→SXx 1 Valid bit
SQ_SXx_exp_state SQ→SXx 3 State Context

SQ_SXx_free_done SQ→SXx 1 Pulse to indicate that the previous export is finished
(this can be sent with or without the other fields of the
interface)

SQ_SXx_free_alu_id SQ→SXx 1 ALU ID

Depending on the type the number of export location changes:

 Type 00 : Pixels without Z
o 00 = 1 buffer
o 01 = 2 buffers
o 10 = 3 buffers
o 11 = 4 buffer

 Type 01: Pixels with Z
o 00 = 2 Buffers (color + Z)
o 01 = 3 buffers (2 color + Z)
o 10 = 4 buffers (3 color + Z)
o 11 = 5 buffers (4 color + Z)

 Type 10 : Position export
o 00 = 1 position
o 01 = 2 positions
o 1X = Undefined

 Type 11: Pass Thru
o 00 = 4 buffers
o 01 = 8 buffers
o 10 = 12 buffers
o 11 = Undefined

Below the thick black line is the end of transfer packet that tells the SX that a given export is finished. The report
packet will always arrive either before or at the same time than the next export to the same ALU id.

24.2.723.2.7 SX to SQ : Output file control
Name Direction Bits Description
SXx_SQ_exp_count_rdy SXx→SQ 1 Raised by SX0 to indicate that the following two fields

reflect the result of the most recent export
SXx_SQ_exp_pos_avail SXx→SQ 1 Specifies whether there is room for another position.
SXx_SQ_exp_buf_avail SXx→SQ 7 Specifies the space available in the output buffers.

0: buffers are full
1: 2K-bits available (32-bits for each of the 64
pixels in a clause)
...
64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 883 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

46 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24.2.823.2.8 SQ to TP: Control bus
Once every clock, the fetch unit sends to the sequencer on which RS line it is now working and if the data in the
GPRs is ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequencer also provides the instruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

Name Direction Bits Description
TPx_SQ_data_rdy TPx→ SQ 1 Data ready

TPx_SQ_rs_line_num TPx→ SQ 6 Line number in the Reservation station

TPx_SQ_type TPx→ SQ 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_send SQ→TPx 1 Sending valid data
SQ_TPx_const SQ→TPx 48 Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instr SQ→TPx 24 Fetch instruction sent over 4 clocks
SQ_TPx_end_of_group SQ→TPx 1 Last instruction of the group
SQ_TPx_Type SQ→TPx 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_gpr_phase SQ→TPx 2 Write phase signal
SQ_TP0_lod_correct SQ→TP0 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP0_pix_mask SQ→TP0 4 Pixel mask 1 bit per pixel
SQ_TP1_lod_correct SQ→TP1 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pix_mask SQ→TP1 4 Pixel mask 1 bit per pixel
SQ_TP2_lod_correct SQ→TP2 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pix_mask SQ→TP2 4 Pixel mask 1 bit per pixel
SQ_TP3_lod_correct SQ→TP3 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pix_mask SQ→TP3 4 Pixel mask 1 bit per pixel
SQ_TPx_rs_line_num SQ→TPx 6 Line number in the Reservation station
SQ_TPx_write_gpr_index SQ->TPx 7 Index into Register file for write of returned Fetch Data

24.2.923.2.9 TP to SQ: Texture stall
The TP sends this signal to the SQ and the SPs when its input buffer is full.

SU0

SU3

SU2

SU1

TP_SP_fetch_Stall

SQ_SP_wr_addr

Name Direction Bits Description
TP_SQ_fetch_stall TP→ SQ 1 Do not send more texture request if asserted

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 884 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

47 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24.2.1023.2.10 SQ to SP: Texture stall
Name Direction Bits Description
SQ_SPx_fetch_stall SQ→SPx 1 Do not send more texture request if asserted

24.2.1123.2.11 SQ to SP: GPR and auto counter
Name Direction Bits Description
SQ_SPx_gpr_wr_addr SQ→SPx 7 Write address
SQ_SPx_gpr_rd_addr SQ→SPx 7 Read address
SQ_SPx_gpr_rd_en SQ→SPx 1 Read Enable
SQ_SP0_gpr_wr_en SQ→SPx 1 Write Enable for the GPRs of SP0
SQ_SP1_gpr_wr_en SQ→SPx 1 Write Enable for the GPRs of SP1
SQ_SP2_gpr_wr_en SQ→SPx 1 Write Enable for the GPRs of SP2
SQ_SP3_gpr_wr_en SQ→SPx 1 Write Enable for the GPRs of SP3
SQ_SPx_gpr_phase SQ→SPx 2 The phase mux (arbitrates between inputs, ALU SRC

reads and writes)
SQ_SPx_channel_mask SQ→SPx 4 The channel mask
SQ_SPx_gpr_input_sel SQ→SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTX0,
VTX1, autogen counter.

SQ_SPx_auto_count SQ→SPx 12? Auto count generated by the SQ, common for all shader
pipes

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 885 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

48 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24.2.1223.2.12 SQ to SPx: Instructions
Name Direction Bits Description
SQ_SPx_instr_start SQ→SPx 1 Instruction start
SQ_SP_instr SQ→SPx 221 Transferred over 4 cycles

0: SRC A Select 2:0
 SRC A Argument Modifier 3:3
 SRC A swizzle 11:4
 VectorDst 17:12
 Unused Per channel use mask
(PV/Reg) 2021:18
--
-
1: SRC B Select 2:0
 SRC B Argument Modifier 3:3
 SRC B swizzle 11:4
 ScalarDst 17:12
 Per channel use mask (PV/Reg) 21:18Unused
20:18

--
-
2: SRC C Select 2:0
 SRC C Argument Modifier 3:3
 SRC C swizzle 11:4
 Per channel use mask (PV/Reg) 21:18Unused
20:12
--
-
3: Vector Opcode 4:0
 Scalar Opcode 10:5
 Vector Clamp 11:11
 Scalar Clamp 12:12
 Vector Write Mask 16:13
 Scalar Write Mask 20:17

SQ_SPx_exp_alu_id SQ→SPx 1 ALU ID
SQ_SPx_exporting SQ→SPx 2 0: Not Exporting

1: Vector Exporting
2: Scalar Exporting

SQ_SPx_stall SQ→SPx 1 Stall signal
SQ_SP0_write_mask SQ→SP0 4 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP1_ write_mask SQ→SP1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP2_ write_mask SQ→SP2 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP3_ write_mask SQ→SP3 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SPx_last SQ→SPx 1 Last instruction of the block
SQ_SP0_pred_overwrite SQ→SP0 4 Indicates to overwrite the use of PV/PS because of

the predication (use the GPRs instead). This
operation is done on a per-pixel basis.

SQ_SP1_pred_overwrite SQ→SP1 4 Indicates to overwrite the use of PV/PS because of

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 886 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

49 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

the predication (use the GPRs instead). This
operation is done on a per-pixel basis.

SQ_SP2_pred_overwrite SQ→SP2 4 Indicates to overwrite the use of PV/PS because of
the predication (use the GPRs instead). This
operation is done on a per-pixel basis.

SQ_SP3_pred_overwrite SQ→SP3 4 Indicates to overwrite the use of PV/PS because of
the predication (use the GPRs instead). This
operation is done on a per-pixel basis.

24.2.1323.2.13 SP to SQ: Constant address load/ Predicate Set
Name Direction Bits Description
SP0_SQ_const_addr SP0→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP0_SQ_valid SP0→SQ 1 Data valid
SP1_SQ_const_addr SP1→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP1_SQ_valid SP1→SQ 1 Data valid
SP2_SQ_const_addr SP2→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP2_SQ_valid SP2→SQ 1 Data valid
SP3_SQ_const_addr SP3→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP3_SQ_valid SP3→SQ 1 Data valid
SP0_SQ_data_type SPSQ 1 Data Type

0: Constant Load
1: Predicate Set

24.2.1423.2.14 SQ to SPx: constant broadcast
Name Direction Bits Description
SQ_SPx_const SQ→SPx 128 Constant broadcast

24.2.1523.2.15 SP0 to SQ: Kill vector load
Name Direction Bits Description
SP0_SQ_kill_vect SP0→SQ 4 Kill vector load
SP1_SQ_kill_vect SP1→SQ 4 Kill vector load
SP2_SQ_kill_vect SP2→SQ 4 Kill vector load
SP3_SQ_kill_vect SP3→SQ 4 Kill vector load

24.2.1623.2.16 SQ to CP: RBBM bus
Name Direction Bits Description
SQ_RBB_rs SQ→CP 1 Read Strobe
SQ_RBB_rd SQ→CP 32 Read Data
SQ_RBBM_nrtrtr SQ→CP 1 Optional
SQ_RBBM_rtr SQ→CP 1 Real-Time (Optional)

24.2.1723.2.17 CP to SQ: RBBM bus
Name Direction Bits Description
rbbm_we CP→SQ 1 Write Enable
rbbm_a CP→SQ 15 Address -- Upper Extent is TBD (16:2)
rbbm_wd CP→SQ 32 Data
rbbm_be CP→SQ 4 Byte Enables
rbbm_re CP→SQ 1 Read Enable
rbb_rs0 CP→SQ 1 Read Return Strobe 0
rbb_rs1 CP→SQ 1 Read Return Strobe 1
rbb_rd0 CP→SQ 32 Read Data 0

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 887 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

50 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

rbb_rd1 CP→SQ 32 Read Data 0
RBBM_SQ_soft_reset CP→SQ 1 Soft Reset

24.2.1823.2.18 SQ to CP: State report
Name Direction Bits Description
SQ_CP_vs_event SQ→CP 1 Vertex Shader Event
SQ_CP_vs_eventid SQ→CP 2 Vertex Shader Event ID
SQ_CP_ps_event SQ→CP 1 Pixel Shader Event
SQ_CP_ps_eventid SQ→CP 2 Pixel Shader Event ID

 eventid = 0 => *sEndOfState (i.e. VsEndOfState)
 eventid = 1 => *sDone (i.e. VsDone)

So, the CP will assume the Vs is done with a state whenever it gets a pulse on the SQ_CP_vs_event
and the SQ_CP_vs_eventid = 0.

24.323.3 Example of control flow program execution
We now provide some examples of execution to better illustrate the new design.

Given the program:

Alu 0
Alu 1
Tex 0
Tex 1
Alu 3 Serial
Alu 4
Tex 2
Alu 5
Alu 6 Serial
Tex 3
Alu 7
Alloc Position 1 buffer
Alu 8 Export
Tex 4
Alloc Parameter 3 buffers
Alu 9 Export 0
Tex 5
Alu 10 Serial Export 2
Alu 11 Export 1 End

Would be converted into the following CF instructions:

Execute Alu 0 Alu Alu 0 Alu Tex 0 Tex Tex 0 Tex Alu 1 Alu Alu 0 Alu Tex 0 Tex Alu 0
Alu Alu 1 Alu Tex 0 Tex
Execute Alu 0 Alu
Alloc Position 1
Execute Alu 0 Alu Tex 0 Tex
Alloc Param 3
Execute_end Alu 0 Alu Tex 0 Tex Alu 1 Alu Alu 0 Alu End

And the execution of this program would look like this:

Put thread in Vertex RS:

Control Flow Instruction Pointer (12 bits), (CFP)
Execution Count Marker (3 or 4 bits), (ECM)

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 888 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

51 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Loop Iterators (4x9 bits), (LI)
Call return pointers (4x12 bits), (CRP)
Predicate Bits(4x64 bits), (PB)
Export ID (1 bit), (EXID)
GPR Base Ptr (8 bits), (GPR)
Export Base Ptr (7 bits), (EB)
Context Ptr (3 bits).(CPTR)
LOD correction bits (16x6 bits) (LOD)

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 0 0 0 0 0 0 0 0 0

Valid Thread (VALID)
Texture/ALU engine needed (TYPE)
Texture Reads are outstanding (PENDING)
Waiting on Texture Read to Complete (SERIAL)
Allocation Wait (2 bits) (ALLOC)

00 – No allocation needed
01 – Position export allocation needed (ordered export)
10 – Parameter or pixel export needed (ordered export)
11 – pass thru (out of order export)

Allocation Size (4 bits) (SIZE)
Position Allocated (POS_ALLOC)
First thread of a new context (FIRST)
Last (1 bit), (LAST)

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 0 0 0 0 0 1 0

Then the thread is picked up for the execution of the first control flow instruction:

Execute 0 Alu 0 Alu 0 Tex 0 Tex 1 Alu 0 Alu 0 Tex 0 Alu 1 Alu 0 Tex
Execute Alu 0 Alu 0 Tex 0 Tex 0 Alu 1 Alu 0 Tex 0 Alu 0 Alu 1 Tex 0

It executes the first two ALU instructions and goes back to the RS for a resource request change. Here is the
state returned to the RS:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 2 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Then when the texture pipe frees up, the arbiter picks up the thread to issue the texture reads. The thread comes

back in this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 4 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 889 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

52 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1 ALU 1 1 0 0 0 1 0

Because of the serial bit the arbiter must wait for the texture to return and clear the PENDING bit before it can

pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returns it in
this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 6 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Again the TP frees up, the arbiter picks up the thread and executes. It returns in this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 7 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 0 0 0 1 0

Now, even if the texture has not returned we can still pick up the thread for ALU execution because the serial bit

is not set. The thread will however come back to the RS for the second ALU instruction because it has the serial bit
set.

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 8 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 0 1 0

As soon as the TP clears the pending bit the thread is picked up and returns:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 9 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Picked up by the TP and returns:
Execute 0 Alu
Execute Alu 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 890 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May 2002

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

53 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
1 0 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 0 0 0 1 0

Picked up by the ALU and returns (lets say the TP has not returned yet):
Alloc Position 1

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
2 0 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 01 1 0 1 0

If the SX has the place for the export, the SQ is going to allocate and pick up the thread for execution. It returns to

the RS in this state:

Execute Alu 0 Alu Tex 0 Tex

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
3 1 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 1 0 0 0 1 1 0

Now, since the TP has not returned yet, we must wait for it to return because we cannot issue multiple texture

requests. The TP returns, clears the PENDING bit and we proceed:

Alloc Param 3

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
4 0 0 0 0 1 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 10 3 1 1 0

Once again the SQ makes sure the SX has enough room in the Parameter cache before it can pick up this

thread.

Execute_end Alu 0 Alu Tex 0 Tex Alu 1 Alu Alu 0 AluEnd

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 891 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201515
July 200213 May

R400 Sequencer Specification PAGE

54 of 54

Exhibit 2031.docR400_Sequencer.doc �� 71818 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
5 1 0 0 0 1 0 100 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 1 0 0 0 1 1 0

This executes on the TP and then returns:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
5 2 0 0 0 1 0 100 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 1 1 1

Waits for the TP to return because of the textures reads are pending (and SERIAL in this case). Then executes
and does not return to the RS because the LAST bit is set. This is the end of this thread and before dropping it on the
floor, the SQ notifies the SX of export completion.

25.24. Open issues
Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 892 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SQ

Version 2.04

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\doc_lib\design\blocks\sq\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2032
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 893 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

R400 Sequencer Specification PAGE

2 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Table Of Contents

1. OVERVIEW .. 7
1.1 Top Level Block Diagram ... 9
1.2 Data Flow graph (SP) ... 10
1.3 Control Graph ... 11
2. INTERPOLATED DATA BUS .. 11
3. INSTRUCTION STORE ... 14
4. SEQUENCER INSTRUCTIONS ... 14
5. CONSTANT STORES .. 14
5.1 Memory organizations .. 14
5.2 Management of the Control Flow Constants .. 15
5.3 Management of the re-mapping tables ... 15

5.3.1 R400 Constant management... 15

5.3.2 Proposal for R400LE constant management ... 15

5.3.3 Dirty bits .. 17

5.3.4 Free List Block ... 17

5.3.5 De-allocate Block .. 18

5.3.6 Operation of Incremental model .. 18
5.4 Constant Store Indexing ... 18
5.5 Real Time Commands .. 19
5.6 Constant Waterfalling ... 19
6. LOOPING AND BRANCHES ... 20
6.1 The controlling state. .. 20
6.2 The Control Flow Program ... 20

6.2.1 Control flow instructions table .. 21
6.3 Implementation ... 23
6.4 Data dependant predicate instructions ... 24
6.5 HW Detection of PV,PS .. 25
6.6 Register file indexing .. 25
6.7 Debugging the Shaders .. 2625

6.7.1 Method 1: Debugging registers ... 26

6.7.2 Method 2: Exporting the values in the GPRs ... 26
7. PIXEL KILL MASK .. 26
8. MULTIPASS VERTEX SHADERS (HOS) .. 26
9. REGISTER FILE ALLOCATION .. 2726
10. FETCH ARBITRATION .. 28
11. ALU ARBITRATION .. 28
12. HANDLING STALLS ... 29
13. CONTENT OF THE RESERVATION STATION FIFOS ... 29
14. THE OUTPUT FILE .. 29
15. IJ FORMAT .. 29
15.1 Interpolation of constant attributes .. 29
16. STAGING REGISTERS ... 30

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 894 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

17. THE PARAMETER CACHE ... 31
17.1 Export restrictions .. 32

17.1.1 Pixel exports: .. 32

17.1.2 Vertex exports: ... 32

17.1.3 Pass thru exports: .. 32
17.2 Arbitration restrictions .. 32
18. EXPORT TYPES .. 32
18.1 Vertex Shading .. 32
18.2 Pixel Shading .. 33
19. SPECIAL INTERPOLATION MODES ... 33
19.1 Real time commands ... 33
19.2 Sprites/ XY screen coordinates/ FB information .. 33
19.3 Auto generated counters ... 34

19.3.1 Vertex shaders ... 34

19.3.2 Pixel shaders .. 34
20. STATE MANAGEMENT .. 3534
20.1 Parameter cache synchronization ... 3534
21. XY ADDRESS IMPORTS ... 35
21.1 Vertex indexes imports .. 35
22. REGISTERS .. 35
22.1 Control Error! Bookmark not defined.Error! Bookmark not defined.35
22.2 Context Error! Bookmark not defined.Error! Bookmark not defined.35
23. DEBUG REGISTERS ERROR! BOOKMARK NOT DEFINED.ERROR! BOOKMARK NOT
DEFINED.35
23.1 Context Error! Bookmark not defined.Error! Bookmark not defined.35
23.2 Control Error! Bookmark not defined.Error! Bookmark not defined.35

24. INTERFACES .. 3635

24.1 External Interfaces .. 3635
24.2 SC to SP Interfaces ... 3635

24.2.1 SC_SP#.. 3635

24.2.2 SC_SQ ... 3736

24.2.3 SQ to SX: Interpolator bus ... 38

24.2.4 SQ to SP: Staging Register Data ... 38

24.2.5 VGT to SQ : Vertex interface .. 3938

24.2.6 SQ to SX: Control bus .. 4241

24.2.7 SX to SQ : Output file control ... 4241

24.2.8 SQ to TP: Control bus .. 4342

24.2.9 TP to SQ: Texture stall ... 4342

24.2.10 SQ to SP: Texture stall ... 4443

24.2.11 SQ to SP: GPR and auto counter ... 4443

24.2.12 SQ to SPx: Instructions .. 4544

24.2.13 SP to SQ: Constant address load/ Predicate Set ... 464544

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 895 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

R400 Sequencer Specification PAGE

4 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24.2.14 SQ to SPx: constant broadcast .. 4645

24.2.15 SP0 to SQ: Kill vector load ... 4645

24.2.16 SQ to CP: RBBM bus ... 4645

24.2.17 CP to SQ: RBBM bus ... 4645

24.2.18 SQ to CP: State report ... 4745
24.3 Example of control flow program execution ... 4746
25. OPEN ISSUES ... 5150

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 896 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

 Changed the control flow method to be more
flexible. Also updated the external interfaces.

Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

 Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001

 Refined interfaces to RB. Added state registers.

Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

 Added SEQ→SP0 interfaces. Changed delta
precision. Changed VGT→SP0 interface. Debug
Methods added.

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001

 Interfaces greatly refined. Cleaned up the spec.

Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001

 Added the different interpolation modes.

Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

 Added the auto incrementing counters. Changed
the VGT→SQ interface. Added content on constant
management. Updated GPRs.

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

 Removed from the spec all interfaces that weren’t
directly tied to the SQ. Added explanations on
constant management. Added PA→SQ
synchronization fields and explanation.

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

 Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002

 Added Real Time parameter control in the SX
interface. Updated the control flow section.

Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

 New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002

 Rearangement of the CF instruction bits in order to
ensure byte alignement.

Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002

 Updated the interfaces and added a section on
exporting rules.

Rev 1.11 (Laurent Lefebvre)
Date : April 19, 2002

 Added CP state report interface. Last version of the
spec with the old control flow scheme

Rev 2.0 (Laurent Lefebvre)
Date : April 19, 2002

 New control flow scheme

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 897 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

R400 Sequencer Specification PAGE

6 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Rev 2.01 (Laurent Lefebvre)
Date : May 2, 2002

 Changed slightly the control flow instructions to
allow force jumps and calls.

Rev 2.02 (Laurent Lefebvre)
Date : May 13, 2002

 Updated the Opcodes. Added type field to the
constant/pred interface. Added Last field to the
SQ→SP instruction load interface.

Rev 2.03 (Laurent Lefebvre)
Date : July 15, 2002

 SP interface updated to include predication
optimizations. Added the predicate no stall
instructions,

Rev 2.04 (Laurent Lefebvre)
Date :August 2, 2002

 Documented the new parameter generation scheme
for XY coordinates points and lines STs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 898 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1. Overview
The sequencer chooses two ALU threads and a fetch hread to execute, and executes all of the instructions in a block
before looking for a new clause of the same type. Two ALU threads are executed interleaved to hide the ALU latency.
The arbitrator will give priority to older threads. There are two separate reservation stations, one for pixel vectors and
one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 899 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

R400 Sequencer Specification PAGE

8 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ

SC

SPSPSPCSTOREFETCH STATE

TP

INST STORE

IJ CONTROL

IJ
CONTROL

CST
ADDR

INST
 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/QUAD
ADDRESSES

SP

ALU INST

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

INST

INTER INTER INTER INTER

IJ CROSSBAR

2 QUADS IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC READ
 POINTERS

PARAM
DATA

R/W ADDR

Vertex indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

CP

CONSTANT
LOAD

CPConstant Load

TX ADDR

PC Write
Address

TEX INST

CF
CONSTANTS

Register
Mapped

CF Read

Figure 1: General Sequencer overview

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 900 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.1 Top Level Block Diagram

ALU Texture

VTX RS PIX RS

Exec Arbiter

Input Arbiter

Figure 2: Reservation stations and arbiters

Under this new scheme, the sequencer (SQ) will only use one global state management machine per vector type
(pixel, vertex) that we call the reservation station (RS).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 901 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

R400 Sequencer Specification PAGE

10 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.2 Data Flow graph (SP)

MAC

MAC

MAC

MAC

Register File

co
ns

ta
nt

s
fr

om
 R

E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
nt

s
fr

om
 R

E

S
ca

la
r

U
n

it

texture request

texture request

texture request

texture request

te
xt

ur
e

ad
dr

es
s

te xtu re d
a ta

p rim
it ive da

ta fro m
 R

E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

Figure 3: The shader Pipe

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 902 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

SEQ

FETCH SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

OF

WrAddrIS CST

CST IDX

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 903 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

R400 Sequencer Specification PAGE

12 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x100 bits)

IJs buffer (ping-pong buffer)
(25 bits * 8 (IJ) * 4 * 4 * 4 (quadruple-buffered)

12800 bits

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

100

To RB

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2

768 bits
32x24

FIX-FLOAT + EXPANSiON

Figure 5: Interpolation buffers

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 904 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SP
0

SP
1

SP
2

SP
3

WRITES
T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-
11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P1 P2

T20 T21 T22 T23

VTX

T0 T1 T2 T3

XY

XY
0-3

XY
4-7

XY
8-
11

XY
12-
15

XY
16-
19

XY
20-
23

XY
24-
27

XY
28-
31

XY
32-
35

XY
36-
39

XY
40-
43

XY
44-
47

XY
48-
51

XY
52-
55

XY
56-
59

XY
60-
63

READS

SP
0

SP
1

SP
2

SP
3

A0

A1

A2

B1

B0

C3

C0

C1

C2

C4

C5

D0

D1

D2

E0

E1

A0

A1

A2

XY
A0
XY
A1
XY
A2

B1

B0

XY
B1

XY
B0

C3

C0

C1

C2

XY
C3
XY
C0
XY
C1
XY
C2

C4

C5

XY
C4
XY
C5

D0

D1

D2

XY
D1
XY
D2

XY
D0

E0

E1
XY
E1

XY
E0

Figure 6: Interpolation timing diagram

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 905 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

R400 Sequencer Specification PAGE

14 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store
There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4. Sequencer Instructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 906 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

5.2 Management of the Control Flow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied whenever there is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn’t write to CF the state is going to use the previous CF constants.

5.3 Management of the re-mapping tables

5.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROL packet of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it with
the new state (this is depicted in Figure 8: De-allocation mechanismFigure 8: De-allocation mechanismFigure 8: De-
allocation mechanism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 907 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

R400 Sequencer Specification PAGE

16 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Physical
Memory

Renaming Table
for 1 Context
Current/Last

Physical
Address

per
Logical
Address

Renaming
table

N-Contexts

Reset
Dirty
per

Logical
Address

(Only
de-

allocate
if set)

This
Context

Dirty
per

Logical
Address

(If set
don't

allocate
or de-

allocate)

Logical address
On the

GlbRegBus
when lsb are zero
first word of write

next
physical
address
ready

for allocate

Constants
location
available
WRTR

physical
address

to
schedule

for
de-alloc

Staging Data
Buffer

Staging Write Addr

Copy Last held above to
Current Context on receipt

of Set Constant for a
new context (Hide loading

behind Set State load - 16 clocks)
all other Set States just write one

entry to current state.

Free
list

(pass Phys
Address if
Context
Dirty)

Dealloc
Counts

Seq
Constant
Request

Context &
Logical
Address

Free_ptr
WritePtr

When a Logical
Address is written

that has been
written before,

store the physical
address that was
allocated by that
Logical Address

Stop_ptr
ptr to first physical

address that is
scheduled to be de-
allocated but noty
yet de-allocate.

Advanced each time
a context is freed by

the number of
physical address
displaced by that

Context

Read_ptr
ptr to physical

address that will be
used next if the init

count is at
maximum number

of physical address

Free List

Number of entries
equals Max Number of
Physical Blocks. All
Pointers start at zero
and roll around but

can never pass each
other

Free
Address

Address
to Allocate

Global Register
Data Bus

Renaming Table
Context 0 => N

Logical Address
& Context

Physical
Address

Context 0 (8 rows of 16 - 8 bit
physical => 128 entries copy in

eight clocks)

Context 1

Context N

Current/Last
Context

(8 rows of 16 - 8
bit physical =>

128 entries copy
in eight clocks)

Figure 7: Constant management

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 908 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

DEALOC
COUNTERSFree List

!=

OR

AND

NOT

ADDR

PREVIOUS
STATE

NEW
STATE

SQ_IDLE

CP_NEW_STATE_CNTL
PA_IDLE

VALUE

VALID

CNT VALUE

SQ_STATE#

WRITE_ENABLE

REMAPPING
TABLE

SET CTX BITS

Figure 8: De-allocation mechanism for R400LE

5.3.3 Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block
A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 909 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

R400 Sequencer Specification PAGE

18 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

5.3.5 De-allocate Block
This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any number of blocks in one clock.

5.3.6 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 910 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

5.5 Real Time Commands
The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
works is the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zones is defined by the TSTATE_EO_RT control register.

5.6 Constant Waterfalling
In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenever a state is freed.

CONST_EO_RT

RT SECTON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table)

Figure 9: The Constant store

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 911 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

R400 Sequencer Specification PAGE

20 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
We'd like to be able to code up a program of the form:

1: Loop
2: Exec TexFetch
3: TexFetch
4: ALU
5: ALU
6: TexFetch
7: End Loop
8: ALU Export

But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3:. Without clausing,
these dependencies need to be expressed in the Control Flow instructions. Additionally, without separate 'texture
clauses' and 'ALU clauses' we need to know which instructions to dispatch to the Texture Unit and which to the ALU
unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of information for each (non-control flow) instruction:
 a) ALU or Texture
 b) Serialize Execution

(b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched. Given the allocation of reserved bits, this would mean that the count of an 'Exec' instruction
would be limited to about 8 (non-control-flow) instructions. If more than this were needed, a second Exec (with the
same conditions) would be issued.

Another function that relies upon 'clauses' is allocation and order of execution. We need to assure that pixels and
vertices are exported in the correct order (even if not all execution is ordered) and that space in the output buffers are
allocated in order. Additionally data can't be exported until space is allocated. A new control flow instruction:

 Alloc <buffer select -- position,parameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual
allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already
completed. The implementation would also assure that execution of instruction(s) following the serialization due to the
Alloc will occur in order -- at least until the next serialization or change from ALU to Texture. In most cases this will
allow the exports to occur without any further synchronization. Only 'final' allocations or position allocations are

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 912 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

guaranteed to be ordered. Because strict ordering is required for pixels, parameters and positions, this implies only
a single alloc for these structures. Vertex exports to memory do not require ordering during allocation and so multiple
'allocs' may be done.

6.2.1 Control flow instructions table
Here is the revised control flow instruction set.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

NOP
47 … 44 43 42 … 0

0000 Addressing RESERVED

This is a regular NOP.

Execute
47 … 44 43 40 … 34 33 …16 15…12 11 … 0

0001 Addressing RESERVED Instructions type + serialize (9
instructions)

Count Exec Address

Execute_End

47 … 44 43 40 … 34 33 …16 15…12 11 … 0
0010 Addressing RESERVED Instructions type + serialize (9

instructions)
Count Exec Address

Execute up to 9 instructions at the specified address in the instruction memory. The Instruction type field tells the
sequencer the type of the instruction (LSB) (1 = Texture, 0 = ALU and whether to serialize or not the execution (MSB)
(1 = Serialize, 0 = Non-Serialized). If Execute_End this is the last execution block of the shader program.

Conditional_Execute

47 … 44 43 42 41 … 34 33…16 15 …12 11 … 0
0011 Addressing Condition Boolean

address
Instructions type + serialize (9

instructions)
Count Exec Address

Conditional_Execute_End

47 … 44 43 42 41 … 34 33…16 15 …12 11 … 0
0100 Addressing Condition Boolean

address
Instructions type + serialize (9

instructions)
Count Exec Address

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 9 instructions). If the condition is not met, we go on to the next control flow instruction. If
Conditional_Execute_End and the condition is met, this is the last execution block of the shader program.

Conditional_Execute_Predicates
47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0

0101 Addressing Condition RESERVED Predicate
vector

Instructions
type + serialize
(9 instructions)

Count Exec Address

Conditional_Execute_Predicates_End

47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0
0110 Addressing Condition RESERVED Predicate

vector
Instructions

type + serialize
(9 instructions)

Count Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid. If the

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 913 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

R400 Sequencer Specification PAGE

22 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

condition is not met, we go on to the next control flow instruction. If Conditional_Execute_Predicates_End and the
condition is met, this is the last execution block of the shader program.

Conditional_Execute_Predicates_No_Stall
47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0

1101 Addressing Condition RESERVED Predicate
vector

Instructions
type + serialize
(9 instructions)

Count Exec Address

Conditional_Execute_Predicates_No_Stall_End

47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0
1110 Addressing Condition RESERVED Predicate

vector
Instructions

type + serialize
(9 instructions)

Count Exec Address

Same as Conditionnal_Execute_Predicates but the SQ is not going to wait for the predicate vector to be updated.
You can only set this in the compiler if you know that the predicate set is only a refinement of the current one (like a
nested if) because the optimization would still work.

Loop_Start
47 … 44 43 42 … 21 20 … 16 15…12 11 … 0

0111 Addressing RESERVED loop ID RESERVED Jump address

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Loop_End
47 … 44 43 42 … 24 23… 21 20 … 16 15…12 11 … 0

1000 Addressing RESERVED Predicate break loop ID RESERVED start address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop. If predicate break != 0, then compares predicate vector n
(specified by predicate break number). If all bits cleared then break the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal_Call
47 … 44 43 42 41 … 34 33 … 13 12 11 … 0

1001 Addressing Condition Boolean address RESERVED Force Call Jump address

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack. If
force call is set the condition is ignored and the call is made always.

Return
47 … 44 43 42 … 0

1010 Addressing RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump
47 … 44 43 42 41… 34 33 32 … 13 12 11 … 0

1011 Addressing Condition Boolean
address

FW only RESERVED Force Jump Jump address

If force jump is set the condition is ignored and the jump is made always. If FW only is set then only forward jumps
are allowed.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 914 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Allocate

47 … 44 43 42…41 40 … 4 3 …0
1100 Debug Buffer Select RESERVED Allocation size

Buffer Select takes a value of the following:
01 – position export (ordered export)
10 – parameter cache or pixel export (ordered export)
11 – pass thru (out of order exports).

Buffer Size takes a value of the following:
00 – 1 buffer
01 – 2 buffers
…
15 – 16 buffers

If debug is set this is a debug alloc (ignore if debug DB_ON register is set to off).

6.3 Implementation

The envisioned implementation has a buffer that maintains the state of each thread. A thread lives in a given
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the order that they
enter. Actually two buffers are maintained -- one for Vertices and one for Pixels. The intended implementation
would allow for:

16 entries for vertices
48 entries for pixels.

From each buffer, arbitration logic attempts to select 1 thread for the texture unit and 1 (interleaved) thread for the
ALU unit. Once a thread is selected it is read out of the buffer, marked as invalid, and submitted to appropriate
execution unit. It is returned to the buffer (at the same place) with its status updated once all possible sequential
instructions have been executed. A switch from ALU to TEX or visa-versa or a Serialize_Execution modifier forces
the thread to be returned to the buffer.

Each entry in the buffer will be stored across two physical pieces of memory - most bits will be stored in a 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed 'state'. The bits kept in the multi-read ported device will be termed 'status'.

'State Bits' needed include:

1. Control Flow Instruction Pointer (13 bits),
2. Execution Count Marker 4 bits),
3. Loop Iterators (4x9 bits),
4. Call return pointers (4x12 bits),
5. Predicate Bits (64 bits),
6. Export ID (1 bit),
7. Parameter Cache base Ptr (7 bits),
8. GPR Base Ptr (8 bits),
9. Context Ptr (3 bits).
10. LOD corrections (6x16 bits)
11. Valid bits (64 bits)

Absent from this list are 'Index' pointers. These are costly enough that I'm presuming that they are instead stored in
the GPRs. The first seven fields above (Control Flow Ptr, Execution Count, Loop Counts, call return ptrs, Predicate
bits, PC base ptr and export ID) are updated every time the thread is returned to the buffer based on how much
progress has been mode on thread execution. GPR Base Ptr, Context Ptr and LOD corrections are unchanged
throughout execution of the thread.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 915 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

R400 Sequencer Specification PAGE

24 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

'Status Bits' needed include:

 Valid Thread
 Texture/ALU engine needed
 Texture Reads are outstanding
 Waiting on Texture Read to Complete
 Allocation Wait (2 bits)
 00 – No allocation needed
 01 – Position export allocation needed (ordered export)
 10 – Parameter or pixel export needed (ordered export)
 11 – pass thru (out of order export)
 Allocation Size (4 bits)
 Position Allocated
 First thread of a new context
 Event thread (NULL thread that needs to trickle down the pipe)
 Last (1 bit)
 Pulse SX (1 bit)

All of the above fields from all of the entries go into the arbitration circuitry. The arbitration circuitry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -- one for
pixels and one for vertices. A final selection is then done between the two. But the rest of this implementation
summary only considers the 'first' level selection which is similar for both pixels and vertices.

Texture arbitration requires no allocation or ordering so it is purely based on selecting the 'oldest' thread that requires
the Texture Engine.

ALU arbitration is a little more complicated. First, only threads where either of Texture_Reads_outstanding or
Waiting_on_Texture_Read_to_Complete are '0' are considered. Then if Allocation_Wait is active, these threads are
further filtered based on whether space is available. If the allocation is position allocation, then the thread is only
considered if all 'older' threads have already done their position allocation (position allocated bits set). If the
allocation is parameter or pixel allocation, then the thread is only considered if it is the oldest thread. Also a thread is
not considered if it is a parameter or pixel or position allocation, has its First_thread_of_a_new_context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the 'oldest' of the threads that pass through the above filters is selected. If the thread needed to allocate, then
at this time the allocation is done, based on Allocation_Size. If a thread has its “last” bit set, then it is also removed
from the buffer, never to return.

If I now redefine 'clauses' to mean 'how many times the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine', then the minimum number of clauses needed is 2 -- one to perform
the allocation for exports (execution automatically halts after an 'Alloc' instruction) (but doesn't performs the actual
allocation) and one for the actual ALU/export instructions. As the 'Alloc' instruction could be part of a texture clause
(presumably the final instruction in such a clause), a thread could still execute in this minimal number of 2 clauses,
even if it involved texture fetching.

The Texture_Reads_Outstanding bit must be updated by the sequencer, based on keeping track of how many
Texture Clauses have been executed by a given thread that have not yet had there data returned. Any number
above 0 results in this bit being set. We could consider forcing synchronization such that two texture clauses for a
given thread may not be outstanding at any time (that would be my preference for simplicity reasons and because it
would require only very little change in the texture pipe interface). This would allow the sequencer to set the bit on
execution of the texture clause, and allow the texture unit to return a pointer to the thread buffer on completion that
clears the bit.

6.4 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 916 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

PRED_SETE_# - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETNE_# - similar to SETNE except that the result is 'exported' to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE0_# – SETE0
 PRED_SETE1_# – SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

 P0_ADD_# R0,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

6.5 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

6.6 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

The sequencer is going to keep a loop index computed as such:

 Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128…127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 917 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

R400 Sequencer Specification PAGE

26 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
 - jump errors
 relative jump address > size of the control flow program
 - call stack
 call with stack full

return with stack empty

A jump error will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only break if
the DB_PROB_BREAK register is set.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the 0th
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs
1) The sequencer will have a debug active, count register and an address register for this mode.

Under the normal mode execution follows the normal course.

Under the debug mode it is assumed that the program is always exporting n debug vectors and that all other exports
to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by the sequencer (even if they occur
before the address stated by the ADDR debug register).

7. Pixel Kill Mask
A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE

 MASK_SETGT
 MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 918 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZE for pixels.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 919 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

R400 Sequencer Specification PAGE

28 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

10. Fetch Arbitration
The fetch arbitration logic chooses one of the n potentially pending fetch clauses to be executed. The choice is made
by looking at the Vs and Ps reservation stations and picking the first one ready to execute. Once chosen, the clause
state machine will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two fetches of the
same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration
ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
n potentially pending ALU clauses to be executed. The choice is made by looking at the Vs and Ps reservation
stations and picking the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for
the odd clocks. For example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and
Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 920 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering an exporting clause. The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs
The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). All pixel’s parameters are always interpolated at full 20x24 mantissa precision.

)(*)3()(*)3(3

)(*)2()(*)2(2

)(*)1()(*)1(1

)(*)0()(*)0(0

ACJABIAP

ACJABIAP

ACJABIAP

ACJABIAP

Multiplies (Full Precision): 8
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF P’s IJ : Mantissa 20 Exp 4 for I + Sign
 Mantissa 20 Exp 4 for J + Sign

Total number of bits : 20*8 + 4*8 + 4*2 = 200.

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the number is
normalized if not, then the number is un-normalized. The maximum range for the IJs (Full precision) is +/- 1024.

15.1 Interpolation of constant attributes
Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the terms are the same.

P0

P2

P1

P3

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 921 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

R400 Sequencer Specification PAGE

30 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 || 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencer will re-arrange them in this fashion:

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 || 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 || 8 9 10 11 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the SQ VGT will sendis responsible to
insert padding to account for the missing pipe. For example, if SP1 is broken, vertices 4 5 6 7 20 21 22 23 36 37 38
39 52 53 54 55 will still be not be sent by the VGT to the SQ BUT AND the SQ is responsible to “jump” over these
vertices in order for no valid vertices to be sent to an invalid SP will not be processed by the SP and thus should be
considered invalid (by the SU and VGT).

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 11Figure 11Figure 11. The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure 10Figure 10Figure 10.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11631 60.57813 per bit

Area of 96x8-deep Latch Memory 46524

Area of 24-bit Fix-to-float Converter 4712per converter

Method 1 Block Quantity Area

 F2F 3 14136

 8x96 Latch 16 744384

 758520

Figure 10:Area Estimate for VGT to Shader Interface

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 922 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SHADER PIPE

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

3
2

3
2

3
2

VGT BLOCK
(IN PA)

3
2

9
6

VECTOR ENGINE

96

8x96
MEMORY
1-READ
1-WRITE

3 OTHER
SHADER
PIPES

 3 Fix->Float Converters (24-bit)
 16 Memories 8x96-bit (12,288 bits)

Totals:

THREE MORE VECTOR ENGINES
PER SHADER PIPE

VECTOR ENGINE

SHADER
SEQUENCER

Figure 11:VGT to Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER
4 bits

ADDRESS
7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17th) is going to have the address 00000001000, the 18th 00010001000, the 19th 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*VS_EXPORT_COUNT to
Current_Location and reset the memory count to 0 before the next vector begins).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 923 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

R400 Sequencer Specification PAGE

32 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

17.1 Export restrictions

17.1.1 Pixel exports:
Pixels can export 1,2,3 or 4 color buffers to the SX(+z). The exports will be done in order. The PRED_OPTIMIZE
function has to be turned of if the exports are done using interleaved predicated instructions. The exports will always
be ordered to the SX.

17.1.2 Vertex exports:
Position or parameter caches can be exported in any order in the shader program. It is always better to export
posistion as soon as possible. Position has to be exported in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be done in any order with texture instructions interleaved.
The PRED_OPTIMIZE function has to be turned of if the exports are done using interleaved predicated instructions to
the Parameter cache (see Arbitration restrictions for details). The exports will always be allocated in order to the SX.

17.1.3 Pass thru exports:
Pass thru exports have to be done in groups of the form:

Alloc 4 (8 or 12)
Execute ALU(ADDR) ALU(DATA) ALU(DATA) ALU(DATA)…

They cannot have texture instructions interleaved in the export block. These exports are not guaranteed to be
ordered.

Also, when doing a pass thru export, Position MUST be exported AFTER all pass thru exports. This position export is
used to synchronize the chip when doing a transition from pass thru shader to regular shader and vice versa.

17.2 Arbitration restrictions
Here are the Sequencer arbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texture pending bit is set
2) Cannot allocate position if any older thread has not allocated position
3) If last thread is marked as not valid AND marked as last and we are about to execute the second to oldest

thread also marked last then:
a. Both threads must be from the same context (cannot allow a first thread)
b. Must turn off the predicate optimization for the second thread

4) Cannot execute a texture clause if texture reads are pending
5) Cannot execute last if texture pending (even if not serial)

18. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

18.1 Vertex Shading
 0:15 - 16 parameter cache
 16:31 - Empty (Reserved?)

32 - Export Address
 33:40 - 8 vertex exports to the frame buffer and index
 41:47 - Empty
 48:55 - 8 debug export (interpret as normal vertex export)
 60 - export addressing mode
 61 - Empty
 62 - position

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 924 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

33 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 63 - sprite size export that goes with position export
 (point_h,point_w,edgeflag,misc)

18.2 Pixel Shading
 0 - Color for buffer 0 (primary)
 1 - Color for buffer 1
 2 - Color for buffer 2
 3 - Color for buffer 3
 4:7 - Empty
 8 - Buffer 0 Color/Fog (primary)
 9 - Buffer 1 Color/Fog
 10 - Buffer 2 Color/Fog
 11 - Buffer 3 Color/Fog
 12:15 - Empty
 16:31 - Empty (Reserved?)
 32 - Export Address
 33:40 - 8 exports for multipass pixel shaders.
 41:47 - Empty
 48:55 - 8 debug exports (interpret as normal pixel export)
 60 - export addressing mode
 61:62 - Empty
 63 - Z for primary buffer (Z exported to 'alpha' component)

19. Special Interpolation modes

19.1 Real time commands
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem I see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft’s high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This mode is triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

19.2 Sprites/ XY screen coordinates/ FB information
When working with sprites, one may want to overwrite the parameter 0 with SC generated data. Also, XY screen
coordinates may be needed in the shader program. This functionality is controlled by the param_gen_I0 register (in
SQ) in conjunction with the SND_XY register (in SC) and the param_gen_pos. Also it is possible to send the
faceness information (for OGL front/back special operations) to the shader using the same control register. Here is a
list of all the modes and how they interact together:

The Data is going to be written in the register specified by the param_gen_pos register.

Gen_st is a bit taken from the interface between the SC and the SQ. This is the MSB of the primitive type. If the bit is
set, it means we are dealing with Point AA, Line AA or sprite and in this case the vertex values are going to generated
between 0 and 1.

Param_Gen_I0 disable, snd_xy disable, no gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy disable, gen_st – I0 = No modification
Param_Gen_I0 disable, snd_xy enable, no gen_st – I0 = No modification

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 925 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

R400 Sequencer Specification PAGE

34 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Param_Gen_I0 disable, snd_xy enable, gen_st – I0 = No modification
Param_Gen_I0 enable, snd_xy disable, no gen_st – I0 = Sign(faceness)garbage,(Sign Point) garbage,Sign(Line)
garbage, facenesss, t
Param_Gen_I0 enable, snd_xy disable, gen_st – I0 = garbage, garbage, s, t
Param_Gen_I0 enable, snd_xy enable, no gen_st – I0 = Sign(faceness)screenX,(Sign Point)screenY,Sign(Line)s, t

In other words,

The generated vector is (X in RED, Y in GREEN, S in BLUE and T in ALPHA):
X,Y,S,T
These values are always supposed to be positive and any shader use of them should use the ABS function
(as their sign bits will now be used for flags).
SignX = BackFacing
SignY = Point Primitive
SignS = Line Primitive
SignT = currently unused as a flag.

If !Point & !Line, then it is a Poly.

I would assume that one implementation which allows for generic texture lookup (using 3D maps) for poly
stipple and AA for the driver would be
if(Y<0) {
 R = 0.0 (Point)
} else if (S < 0) {
 R = 1.0 (Line)
} else {
 R = 2.0 (Poly)
}screen x, screen y, garbage, faceness

Param_Gen_I0 enable, snd_xy enable, gen_st – I0 = screen x, screen y, s, t

19.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1st pass data to memory and then use the count to retrieve the data on the 2nd pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX register. The sequencer is going to
keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is written to the
GPRs the counter is incremented. Every time a state change is detected, the corresponding counter is reset. While
there is only one count broadcast to the GPRs, the LSB are hardwired to specific values making the index different for
all elements in the vector.

19.3.1 Vertex shaders
In the case of vertex shaders, if GEN_INDEX is set, the data will be put into the x field of the third register (it means
that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

19.3.2 Pixel shaders
In the case of pixel shaders, if GEN_INDEX is set and Param_Gen_I0 is enabled, the data will be put in the x field of
the 2nd param_gen_pos+1 register (R1.x), else if GEN_INDEX is set the data will be put into the x field of the 1st
register (R0.x).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 926 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

35 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

AUTO
COUNT

STG 0

STG1

INTERPOLATORS

GPR0

AUTO COUNT 000000

MUX

The Auto Count Value is
broadcast to all GPRs. It is

loaded into a register wich has
its LSBs hardwired to the

GPR number (0 thru 63). Then
if GEN_INDEX is high, the
mux selects the auto-count

value and it is loaded into the
GPRs to be either used to

retrieve data using the TP or
sent to the SX for the RB to

use it to write the data to
memory

Figure 12: GPR input mux Control

20. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

20.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

21. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix→float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 19.2 for details on how to control the interpolation in this mode.

21.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

22. Registers
Please see the auto-generated web pages for register definitions.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 927 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

R400 Sequencer Specification PAGE

36 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23. Interfaces

23.1 External Interfaces
Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ→SPx it means that SQ is going to broadcast the same information to all SP instances.

23.2 SC to SP Interfaces

23.2.1 SC_SP#
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the I,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data which is transferred per quad is
 Ref Pix I => S4.20 Floating Point I value *4
 Ref Pix J => S4.20 Floating Point J value *4

This equates to a total of 200 bits which transferred over 2 clocks
and therefor needs an interface 100 bits wide

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a IJ_BUF_INUSE_COUNT in the SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNT count. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2, if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of I,J data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,SQ and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple mode first with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performance hit.)

Name Bits Description
SC_SP#_data 100 IJ information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bit)

Type 0 or 1, First clock I, second clk J
Field ULC URC LLC LRC
 Bits [63:39] [38:26] [25:13] [12:0]
Format SE4M20 SE4M20 SE4M20 SE4M20
Type 2
Field Face X Y
 Bits [63] [23:12] [11:0]
Format Bit Unsigned Unsigned

SC_SP#_valid 1 Valid
SC_SP#_last_quad_data 1 This bit will be set on the last transfer of data per quad.
SC_SP#_type 2 0 -> Indicates centroids

1 -> Indicates centers
2 -> Indicates X,Y Data and faceness on data bus
The SC shall look at state data to determine how many types to send for the

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 928 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

37 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP block will have neither because the instantiation will insert the prefix.

23.2.2 SC_SQ
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 94 bits) could be folded in half to approx 49 bits.

Name Bits Description
SC_SQ_data 46 Control Data sent to the SQ

1 clk transfers
 Event – valid data consist of event_id and
 state_id. Instruct SQ to post an
 event vector to send state id and
 event_id through request fifo
 and onto the reservation stations
 making sure state id and/or event_id
 gets back to the CP. Events only
 follow end of packets so no pixel
 vectors will be in progress.

 Empty Quad Mask – Transfer Control data
 consisting of pc_dealloc
 or new_vector. Receipt of this is to
 transfer pc_dealloc or new_vector
 without any valid quad data. New
 vector will always be posted to
 request fifo and pc_dealloc will be
 attached to any pixel vector
 outstanding or posted in request fifo
 if no valid quad outstanding.
2 clk transfers
 Quad Data Valid – Sending quad data with or
 without new_vector or pc_dealloc.
 New vector will be posted to request
 fifo with or without a pixel vector and
 pc_dealloc will be posted with a pixel
 vector unless none is in progress. In
 this case the pc_dealloc will be
 posted in the request queue.
 Filler quads will be transferred with
 The Quad mask set but the pixel
 corresponding pixel mask set to
 zero.

SC_SQ_valid 1 SC sending valid data, 2nd clk could be all zeroes

SC_SQ_data – first clock and second clock transfers are shown in the table below.

Name BitField Bits Description

1st Clock Transfer
SC_SQ_event 0 1 This transfer is a 1 clock event vector Force quad_mask =

new_vector=pc_dealloc=0
SC_SQ_event_id [4:1] 4 This field identifies the event 0 => denotes an End Of State Event 1

=> TBD

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 929 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

R400 Sequencer Specification PAGE

38 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SC_SQ_pc_dealloc [7:5] 3 Deallocation token for the Parameter Cache
SC_SQ_new_vector 8 1 The SQ must wait for Vertex shader done count > 0 and after

dispatching the Pixel Vector the SQ will decrement the count.
SC_SQ_quad_mask [12:9] 4 Quad Write mask left to right SP0 => SP3
SC_SQ_end_of_prim 13 1 End Of the primitive
SC_SQ_state_id [16:14] 3 State/constant pointer (6*3+3)
SC_SQ_pix_mask [32:17] 16 Valid bits for all pixels SP0=>SP3 (UL,UR,LL,LR)
SC_SQ_provok_vtx [37:36] 2 Provoking vertex for flat shading
SC_SQ_pc_ptr0 [48:38] 11 Parameter Cache pointer for vertex 0

2nd Clock Transfer
SC_SQ_pc_ptr1 [10:0] 11 Parameter Cache pointer for vertex 1
SC_SQ_pc_ptr2 [21:11] 11 Parameter Cache pointer for vertex 2
SC_SQ_lod_correct [45:22] 24 LOD correction per quad (6 bits per quad)
SC_SQ_prim_type [48:46] 3 Stippled line and Real time command need to load tex cords from

alternate buffer
000: Sprite (point)
001: Line
010: Tri_rect
100: Realtime Sprite (point)
101: Realtime Line
110: Realtime Tri_rect

Name Bits Description
SQ_SC_free_buff 1 Pipelined bit that instructs SC to decrement count of buffers in use.
SQ_SC_dec_cntr_cnt 1 Pipelined bit that instructs SC to decrement count of new vector and/or event

sent to prevent SC from overflowing SQ interpolator/Reservation request fifo.

The scan converter will submit a partial vector whenever:

1.) He gets a primitive marked with an end of packet signal.
2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been

marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal made it through and thus the hang.)

23.2.3 SQ to SX(SP): Interpolator bus
Name Direction Bits Description
SQ_SPx_interp_flat_vtx SQ→SPx 2 Provoking vertex for flat shading
SQ_SPx_interp_flat_gouraud SQ→SPx 1 Flat or gouraud shading
SQ_SPx_interp_cyl_wrap SQ→SPx 4 Wich channel needs to be cylindrical wrapped
SQ_SXx_pc_ptr0 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr1 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr2 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_rt_sel SQ→SXx 1 Selects between RT and Normal data
SQ_SXx_pc_wr_en SQ→SXx 1 Write enable for the PC memories
SQ_SXx_pc_wr_addr SQ→SXx 7 Write address for the PCs
SQ_SXx_pc_channel_mask SQ→SXx 4 Channel mask
SQ_SXx_pc_ptr_valid SQ→SXx 1 Read pointers are valid.
SQ_SPx_interp_valid SQ→SPx 1 Interpolation control valid

23.2.4 SQ to SP: Staging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 930 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

39 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Name Direction Bits Description
SQ_SPx_vsr_data SQ→SPx 96 Pointers of indexes or HOS surface information
SQ_SPx_vsr_double SQ→SPx 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0_ vsr_valid SQ→SP0 1 Data is valid
SQ_SP1_ vsr_ valid SQ→SP1 1 Data is valid
SQ_SP2_ vsr_ valid SQ→SP2 1 Data is valid
SQ_SP3_ vsr_ valid SQ→SP3 1 Data is valid
SQ_SPx_vsr_read SQ→SPx 1 Increment the read pointers

23.2.5 VGT to SQ : Vertex interface

23.2.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide.

Name Bits Description
VGT_SQ_vsisr_data 96 Pointers of indexes or HOS surface information
VGT_SQ_event 1 VGT is sending an event
VGT_SQ_vsisr_continued 1 0: Normal 96 bits per vert 1: double 192 bits per vert
VGT_SQ_end_of_vtx_vect 1 Indicates the last VSISR data set for the current process vector (for double vector

data, "end_of_vector" is set on the first vector)
VGT_SQ_indx_valid 1 Vsisr data is valid
VGT_SQ_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when

“VGT_SQ_vgt_end_of_vector” is high.
VGT_SQ_send 1 Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_VGT_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

23.2.5.2 Interface Diagrams

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 931 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

R400 Sequencer Specification PAGE

40 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

VGT

VSISR_DATA_2

END_OF_VECTOR_2

STATE_SEL_2

REG

VSISR_DOUBLE_2
REG

REG

REG

REG

REG

SEND_2

REG

REG

REG

REG

REG

REG

PA_SQ_vgt_vsisr_data

PA_SQ_vgt_vsisr_double

PA_SQ_vgt_end_of_vector

PA_SQ_vgt_state_sel

PA_SQ_vgt_send

SQ_PA_vgt_rtr

VSISR_DATA_4

END_OF_VECTOR_4

STATE_SEL_4

VSISR_DOUBLE_4

96

1

1

3

1

1

SEND_4

RTR_2 RTR_0

SHADER
SEQUENCER

RTS

101 X 4
SKID

BUFFER

SRST SRST

WE

EMPTY

RE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 932 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

41 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

6 7

6 7

6 7

0 1 2 3

0 1

8

8

8

2 43 5

4 5 6 7

4 3 2 1

8

9 10 11 12

9 10 11 12

9 10 11 12

9 10 11 12

0

RECEIVER RE-STARTS TRANSMISSION

SENDER STOPS TRANSMISSION

SQ_RTR

SQ_RTR_0

VGT_RTS

SEND_2

SEND_3

SEND_4

DATA_2

FIFO_EMPTY

FIFO_RE

SQ_RTR_1

SQ_RTR_2

DATA_3

DATA_4

FIFO_DATA_OUT

FIFO_CNT

RECEIVER STOPS TRANSMISSION

Figure 1. Detailed Logical Diagram for PA_SQ_vgt Interface.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 933 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

R400 Sequencer Specification PAGE

42 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.6 SQ to SX: Control bus

Name Direction Bits Description
SQ_SXx_exp_type SQ→SXx 2 00: Pixel without z (1 to 4 buffers)

01: Pixel with z (1 to 4 buffers)
10: Position (1 or 2 results)
11: Pass thru (4,8 or 12 results aligned)

SQ_SXx_exp_number SQ→SXx 2 Number of locations needed in the export buffer
(encoding depends on the type see bellow).

SQ_SXx_exp_alu_id SQ→SXx 1 ALU ID
SQ_SXx_exp_valid SQ→SXx 1 Valid bit
SQ_SXx_exp_state SQ→SXx 3 State Context

SQ_SXx_free_done SQ→SXx 1 Pulse to indicate that the previous export is finished
(this can be sent with or without the other fields of the
interface)Pulse that indicates that the previous export
is finished from the point of view of the SP. This
does not necessarily mean that the data has been
transferred to RB or PA, or that the space in export
buffer for that particular vector thread has been
freed up.

SQ_SXx_free_alu_id SQ→SXx 1 ALU ID

Depending on the type the number of export location changes:

 Type 00 : Pixels without Z
o 00 = 1 buffer
o 01 = 2 buffers
o 10 = 3 buffers
o 11 = 4 buffer

 Type 01: Pixels with Z
o 00 = 2 Buffers (color + Z)
o 01 = 3 buffers (2 color + Z)
o 10 = 4 buffers (3 color + Z)
o 11 = 5 buffers (4 color + Z)

 Type 10 : Position export
o 00 = 1 position
o 01 = 2 positions
o 1X = Undefined

 Type 11: Pass Thru
o 00 = 4 buffers
o 01 = 8 buffers
o 10 = 12 buffers
o 11 = Undefined

Below the thick black line is the end of transfer packet that tells the SX that a given export is finished. The report
packet will always arrive either before or at the same time than the next export to the same ALU id.

23.2.7 SX to SQ : Output file control
Name Direction Bits Description
SXx_SQ_exp_count_rdy SXx→SQ 1 Raised by SX0 to indicate that the following two fields

reflect the result of the most recent export
SXx_SQ_exp_pos_avail SXx→SQ 1 Specifies whether there is room for another position.
SXx_SQ_exp_buf_avail SXx→SQ 7 Specifies the space available in the output buffers.

0: buffers are full
1: 2K-bits available (32-bits for each of the 64
pixels in a clause)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 934 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

43 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

...
64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

23.2.8 SQ to TP: Control bus
Once every clock, the fetch unit sends to the sequencer on which RS line it is now working and if the data in the
GPRs is ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequencer also provides the instruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

Name Direction Bits Description
TPx_SQ_data_rdy TPx→ SQ 1 Data ready

TPx_SQ_rs_line_num TPx→ SQ 6 Line number in the Reservation station

TPx_SQ_type TPx→ SQ 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_send SQ→TPx 1 Sending valid data
SQ_TPx_const SQ→TPx 48 Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instr SQ→TPx 24 Fetch instruction sent over 4 clocks
SQ_TPx_end_of_group SQ→TPx 1 Last instruction of the group
SQ_TPx_Type SQ→TPx 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_gpr_phase SQ→TPx 2 Write phase signal
SQ_TP0_lod_correct SQ→TP0 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP0_pix_mask SQ→TP0 4 Pixel mask 1 bit per pixel
SQ_TP1_lod_correct SQ→TP1 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pix_mask SQ→TP1 4 Pixel mask 1 bit per pixel
SQ_TP2_lod_correct SQ→TP2 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pix_mask SQ→TP2 4 Pixel mask 1 bit per pixel
SQ_TP3_lod_correct SQ→TP3 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pix_mask SQ→TP3 4 Pixel mask 1 bit per pixel
SQ_TPx_rs_line_num SQ→TPx 6 Line number in the Reservation station
SQ_TPx_write_gpr_index SQ->TPx 7 Index into Register file for write of returned Fetch Data

23.2.9 TP to SQ: Texture stall
The TP sends this signal to the SQ and the SPs when its input buffer is full.

SU0

SU3

SU2

SU1

TP_SP_fetch_Stall

SQ_SP_wr_addr

Name Direction Bits Description

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 935 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

R400 Sequencer Specification PAGE

44 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

TP_SQ_fetch_stall TP→ SQ 1 Do not send more texture request if asserted

23.2.10 SQ to SP: Texture stall
Name Direction Bits Description
SQ_SPx_fetch_stall SQ→SPx 1 Do not send more texture request if asserted

23.2.11 SQ to SP: GPR and auto counter
Name Direction Bits Description
SQ_SPx_gpr_wr_addr SQ→SPx 7 Write address
SQ_SPx_gpr_rd_addr SQ→SPx 7 Read address
SQ_SPx_gpr_rd_en SQ→SPx 1 Read Enable
SQ_SP0_gpr_wr_en SQ→SPx 1 Write Enable for the GPRs of SP0
SQ_SP1_gpr_wr_en SQ→SPx 1 Write Enable for the GPRs of SP1
SQ_SP2_gpr_wr_en SQ→SPx 1 Write Enable for the GPRs of SP2
SQ_SP3_gpr_wr_en SQ→SPx 1 Write Enable for the GPRs of SP3
SQ_SPx_gpr_phase SQ→SPx 2 The phase mux (arbitrates between inputs, ALU SRC

reads and writes)
SQ_SPx_channel_mask SQ→SPx 4 The channel mask
SQ_SPx_gpr_input_sel SQ→SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTX0,
VTX1, autogen counter.

SQ_SPx_auto_count SQ→SPx 12? Auto count generated by the SQ, common for all shader
pipes

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 936 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

45 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.12 SQ to SPx: Instructions
Name Direction Bits Description
SQ_SPx_instr_start SQ→SPx 1 Instruction start
SQ_SP_instr SQ→SPx 22 Transferred over 4 cycles

0: SRC A Select 2:0
 SRC A Argument Modifier 3:3
 SRC A swizzle 11:4
 VectorDst 17:12
 Per channel use mask (PV/Reg) 21:18
--
-
1: SRC B Select 2:0
 SRC B Argument Modifier 3:3
 SRC B swizzle 11:4
 ScalarDst 17:12
 Per channel use mask (PV/Reg) 21:18
--
-
2: SRC C Select 2:0
 SRC C Argument Modifier 3:3
 SRC C swizzle 11:4
 Per channel use mask (PV/Reg) 21:18
--
-
3: Vector Opcode 4:0
 Scalar Opcode 10:5
 Vector Clamp 11:11
 Scalar Clamp 12:12
 Vector Write Mask 16:13
 Scalar Write Mask 20:17

SQ_SPx_exp_alu_id SQ→SPx 1 ALU ID
SQ_SPx_exporting SQ→SPx 12 0: Not Exporting

1: Vector Exporting
2: Scalar Exporting

SQ_SPx_stall SQ→SPx 1 Stall signal
SQ_SP0_write_mask SQ→SP0 4 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP1_ write_mask SQ→SP1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP2_ write_mask SQ→SP2 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SP3_ write_mask SQ→SP3 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock

SQ_SPx_last SQ→SPx 1 Last instruction of the block
SQ_SP0_pred_overwrite SQ→SP0 4 Indicates to overwrite the use of PV/PS because of

the predication (use the GPRs instead). This
operation is done on a per-pixel basis.

SQ_SP1_pred_overwrite SQ→SP1 4 Indicates to overwrite the use of PV/PS because of
the predication (use the GPRs instead). This
operation is done on a per-pixel basis.

SQ_SP2_pred_overwrite SQ→SP2 4 Indicates to overwrite the use of PV/PS because of

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 937 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

R400 Sequencer Specification PAGE

46 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

the predication (use the GPRs instead). This
operation is done on a per-pixel basis.

SQ_SP3_pred_overwrite SQ→SP3 4 Indicates to overwrite the use of PV/PS because of
the predication (use the GPRs instead). This
operation is done on a per-pixel basis.

23.2.13 SP to SQ: Constant address load/ Predicate Set
Name Direction Bits Description
SP0_SQ_const_addr SP0→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP0_SQ_valid SP0→SQ 1 Data valid
SP1_SQ_const_addr SP1→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP1_SQ_valid SP1→SQ 1 Data valid
SP2_SQ_const_addr SP2→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP2_SQ_valid SP2→SQ 1 Data valid
SP3_SQ_const_addr SP3→SQ 36 Constant address load / predicate vector load (4 bits only)

to the sequencer
SP3_SQ_valid SP3→SQ 1 Data valid
SP0_SQ_data_type SPSQ 1 Data Type

0: Constant Load
1: Predicate Set

23.2.14 SQ to SPx: constant broadcast
Name Direction Bits Description
SQ_SPx_const SQ→SPx 128 Constant broadcast

23.2.15 SP0 to SQ: Kill vector load
Name Direction Bits Description
SP0_SQ_kill_vect SP0→SQ 4 Kill vector load
SP1_SQ_kill_vect SP1→SQ 4 Kill vector load
SP2_SQ_kill_vect SP2→SQ 4 Kill vector load
SP3_SQ_kill_vect SP3→SQ 4 Kill vector load

23.2.16 SQ to CP: RBBM bus
Name Direction Bits Description
SQ_RBB_rs SQ→CP 1 Read Strobe
SQ_RBB_rd SQ→CP 32 Read Data
SQ_RBBM_nrtrtr SQ→CP 1 Optional
SQ_RBBM_rtr SQ→CP 1 Real-Time (Optional)

23.2.17 CP to SQ: RBBM bus
Name Direction Bits Description
rbbm_we CP→SQ 1 Write Enable
rbbm_a CP→SQ 15 Address -- Upper Extent is TBD (16:2)
rbbm_wd CP→SQ 32 Data
rbbm_be CP→SQ 4 Byte Enables
rbbm_re CP→SQ 1 Read Enable
rbb_rs0 CP→SQ 1 Read Return Strobe 0
rbb_rs1 CP→SQ 1 Read Return Strobe 1
rbb_rd0 CP→SQ 32 Read Data 0
rbb_rd1 CP→SQ 32 Read Data 0
RBBM_SQ_soft_reset CP→SQ 1 Soft Reset

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 938 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

47 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.18 SQ to CP: State report
Name Direction Bits Description
SQ_CP_vs_event SQ→CP 1 Vertex Shader Event
SQ_CP_vs_eventid SQ→CP 2 Vertex Shader Event ID
SQ_CP_ps_event SQ→CP 1 Pixel Shader Event
SQ_CP_ps_eventid SQ→CP 2 Pixel Shader Event ID

 eventid = 0 => *sEndOfState (i.e. VsEndOfState)
 eventid = 1 => *sDone (i.e. VsDone)

So, the CP will assume the Vs is done with a state whenever it gets a pulse on the SQ_CP_vs_event
and the SQ_CP_vs_eventid = 0.

23.3 Example of control flow program execution
We now provide some examples of execution to better illustrate the new design.

Given the program:

Alu 0
Alu 1
Tex 0
Tex 1
Alu 3 Serial
Alu 4
Tex 2
Alu 5
Alu 6 Serial
Tex 3
Alu 7
Alloc Position 1 buffer
Alu 8 Export
Tex 4
Alloc Parameter 3 buffers
Alu 9 Export 0
Tex 5
Alu 10 Serial Export 2
Alu 11 Export 1 End

Would be converted into the following CF instructions:

Execute 0 Alu 0 Alu 0 Tex 0 Tex 1 Alu 0 Alu 0 Tex 0 Alu 1 Alu 0 Tex
Execute 0 Alu
Alloc Position 1
Execute 0 Alu 0 Tex
Alloc Param 3
Execute_end 0 Alu 0 Tex 1 Alu 0 Alu

And the execution of this program would look like this:

Put thread in Vertex RS:

Control Flow Instruction Pointer (12 bits), (CFP)
Execution Count Marker (3 or 4 bits), (ECM)
Loop Iterators (4x9 bits), (LI)
Call return pointers (4x12 bits), (CRP)
Predicate Bits(4x64 bits), (PB)
Export ID (1 bit), (EXID)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 939 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

R400 Sequencer Specification PAGE

48 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

GPR Base Ptr (8 bits), (GPR)
Export Base Ptr (7 bits), (EB)
Context Ptr (3 bits).(CPTR)
LOD correction bits (16x6 bits) (LOD)

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 0 0 0 0 0 0 0 0 0

Valid Thread (VALID)
Texture/ALU engine needed (TYPE)
Texture Reads are outstanding (PENDING)
Waiting on Texture Read to Complete (SERIAL)
Allocation Wait (2 bits) (ALLOC)

00 – No allocation needed
01 – Position export allocation needed (ordered export)
10 – Parameter or pixel export needed (ordered export)
11 – pass thru (out of order export)

Allocation Size (4 bits) (SIZE)
Position Allocated (POS_ALLOC)
First thread of a new context (FIRST)
Last (1 bit), (LAST)

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 0 0 0 0 0 1 0

Then the thread is picked up for the execution of the first control flow instruction:

Execute 0 Alu 0 Alu 0 Tex 0 Tex 1 Alu 0 Alu 0 Tex 0 Alu 1 Alu 0 Tex

It executes the first two ALU instructions and goes back to the RS for a resource request change. Here is the
state returned to the RS:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 2 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Then when the texture pipe frees up, the arbiter picks up the thread to issue the texture reads. The thread comes

back in this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 4 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 0 1 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 940 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

49 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Because of the serial bit the arbiter must wait for the texture to return and clear the PENDING bit before it can
pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returns it in
this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 6 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Again the TP frees up, the arbiter picks up the thread and executes. It returns in this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 7 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 0 0 0 1 0

Now, even if the texture has not returned we can still pick up the thread for ALU execution because the serial bit

is not set. The thread will however come back to the RS for the second ALU instruction because it has the serial bit
set.

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 8 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 0 1 0

As soon as the TP clears the pending bit the thread is picked up and returns:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 9 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Picked up by the TP and returns:
Execute 0 Alu

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 941 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

R400 Sequencer Specification PAGE

50 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
1 0 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 0 0 0 1 0

Picked up by the ALU and returns (lets say the TP has not returned yet):
Alloc Position 1

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
2 0 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 01 1 0 1 0

If the SX has the place for the export, the SQ is going to allocate and pick up the thread for execution. It returns to

the RS in this state:

Execute 0 Alu 0 Tex

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
3 1 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 1 0 0 0 1 1 0

Now, since the TP has not returned yet, we must wait for it to return because we cannot issue multiple texture

requests. The TP returns, clears the PENDING bit and we proceed:

Alloc Param 3

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
4 0 0 0 0 1 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 10 3 1 1 0

Once again the SQ makes sure the SX has enough room in the Parameter cache before it can pick up this

thread.

Execute_end 0 Alu 0 Tex 1 Alu 0 Alu

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 942 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20152
August 200215 July

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

51 of 51

Exhibit 2032.docR400_Sequencer.doc �� 72136 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
5 1 0 0 0 1 0 100 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 1 0 0 0 1 1 0

This executes on the TP and then returns:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
5 2 0 0 0 1 0 100 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 1 1 1

Waits for the TP to return because of the textures reads are pending (and SERIAL in this case). Then executes
and does not return to the RS because the LAST bit is set. This is the end of this thread and before dropping it on the
floor, the SQ notifies the SX of export completion.

24. Open issues
Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 943 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SQ

Version 2.054

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\doc_lib\design\blocks\sq\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2033
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 944 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

2 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Table Of Contents

1. OVERVIEW .. 97
1.1 Top Level Block Diagram ... 119
1.2 Data Flow graph (SP) ... 1210
1.3 Control Graph ... 1311
2. INTERPOLATED DATA BUS .. 1311
3. INSTRUCTION STORE ... 1614
4. SEQUENCER INSTRUCTIONS ... 1614
5. CONSTANT STORES .. 1614
5.1 Memory organizations .. 1614
5.2 Management of the Control Flow Constants .. 1715
5.3 Management of the re-mapping tables ... 1715

5.3.1 R400 Constant management... 1715

5.3.2 Proposal for R400LE constant management ... 1715

5.3.3 Dirty bits .. 1917

5.3.4 Free List Block ... 1917

5.3.5 De-allocate Block .. 2018

5.3.6 Operation of Incremental model .. 2018
5.4 Constant Store Indexing ... 2018
5.5 Real Time Commands .. 2119
5.6 Constant Waterfalling ... 2119
6. LOOPING AND BRANCHES ... 2220
6.1 The controlling state. .. 2220
6.2 The Control Flow Program ... 2220

6.2.1 Control flow instructions table .. 2321
6.3 Implementation ... 2523
6.4 Data dependant predicate instructions ... 2724
6.5 HW Detection of PV,PS .. 2725
6.6 Register file indexing .. 2725
6.7 Debugging the Shaders .. 2825

6.7.1 Method 1: Debugging registers ... 2826

6.7.2 Method 2: Exporting the values in the GPRs ... 2826
7. PIXEL KILL MASK .. 2826
8. MULTIPASS VERTEX SHADERS (HOS) .. 2926
9. REGISTER FILE ALLOCATION .. 2926
10. FETCH ARBITRATION .. 3028
11. ALU ARBITRATION .. 3028
12. HANDLING STALLS ... 3129
13. CONTENT OF THE RESERVATION STATION FIFOS ... 3129
14. THE OUTPUT FILE .. 3129
15. IJ FORMAT .. 3129
15.1 Interpolation of constant attributes .. 3129
16. STAGING REGISTERS ... 3230

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 945 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

17. THE PARAMETER CACHE ... 3331
17.1 Export restrictions .. 3432

17.1.1 Pixel exports: .. 3432

17.1.2 Vertex exports: ... 3432

17.1.3 Pass thru exports: .. 3432
17.2 Arbitration restrictions .. 3432
18. EXPORT TYPES .. 3432
18.1 Vertex Shading .. 3432
18.2 Pixel Shading .. 3533
19. SPECIAL INTERPOLATION MODES ... 3533
19.1 Real time commands ... 3533
19.2 Sprites/ XY screen coordinates/ FB information .. 3533
19.3 Auto generated counters ... 3634

19.3.1 Vertex shaders ... 3634

19.3.2 Pixel shaders .. 3634
20. STATE MANAGEMENT .. 3735
20.1 Parameter cache synchronization ... 3735
21. XY ADDRESS IMPORTS ... 3735
21.1 Vertex indexes imports .. 3735
22. REGISTERS .. 3735

23. INTERFACES .. 3836

23.1 External Interfaces .. 3836
23.2 SC to SP Interfaces ... 3836

23.2.1 SC_SP#.. 3836

23.2.2 SC_SQ ... 3937

23.2.3 SQ to SX(SP): Interpolator bus .. 4139

23.2.4 SQ to SP: Staging Register Data ... 4139

23.2.5 VGT to SQ : Vertex interface .. 4139

23.2.6 SQ to SX: Control bus .. 4442

23.2.7 SX to SQ : Output file control ... 4442

23.2.8 SQ to TP: Control bus .. 4543

23.2.9 TP to SQ: Texture stall ... 4543

23.2.10 SQ to SP: Texture stall ... 4644

23.2.11 SQ to SP: GPR and auto counter ... 4644

23.2.12 SQ to SPx: Instructions .. 4745

23.2.13 SP to SQ: Constant address load/ Predicate Set/Kill set 4846

23.2.14 SQ to SPx: constant broadcast .. 4846

23.2.15 SQ to CP: RBBM bus ... 4946

23.2.16 CP to SQ: RBBM bus ... 4946

23.2.17 SQ to CP: State report ... 4947
23.3 Example of control flow program execution ... 4947

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 946 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

4 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24. OPEN ISSUES ... 5351
1. OVERVIEW .. 7
1.1 Top Level Block Diagram ... 9
1.2 Data Flow graph (SP) ... 10
1.3 Control Graph ... 11
2. INTERPOLATED DATA BUS .. 11
3. INSTRUCTION STORE ... 14
4. SEQUENCER INSTRUCTIONS ... 14
5. CONSTANT STORES .. 14
5.1 Memory organizations .. 14
5.2 Management of the Control Flow Constants .. 15
5.3 Management of the re-mapping tables ... 15

5.3.1 R400 Constant management... 15

5.3.2 Proposal for R400LE constant management ... 15

5.3.3 Dirty bits .. 17

5.3.4 Free List Block ... 17

5.3.5 De-allocate Block .. 18

5.3.6 Operation of Incremental model .. 18
5.4 Constant Store Indexing ... 18
5.5 Real Time Commands .. 19
5.6 Constant Waterfalling ... 19
6. LOOPING AND BRANCHES ... 20
6.1 The controlling state. .. 20
6.2 The Control Flow Program ... 20

6.2.1 Control flow instructions table .. 21
6.3 Implementation ... 23
6.4 Data dependant predicate instructions ... 24
6.5 HW Detection of PV,PS .. 25
6.6 Register file indexing .. 25
6.7 Debugging the Shaders .. 25

6.7.1 Method 1: Debugging registers ... 26

6.7.2 Method 2: Exporting the values in the GPRs ... 26
7. PIXEL KILL MASK .. 26
8. MULTIPASS VERTEX SHADERS (HOS) .. 26
9. REGISTER FILE ALLOCATION .. 26
10. FETCH ARBITRATION .. 28
11. ALU ARBITRATION .. 28
12. HANDLING STALLS ... 29
13. CONTENT OF THE RESERVATION STATION FIFOS ... 29
14. THE OUTPUT FILE .. 29
15. IJ FORMAT .. 29
15.1 Interpolation of constant attributes .. 29
16. STAGING REGISTERS ... 30
17. THE PARAMETER CACHE ... 31
17.1 Export restrictions .. 32

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 947 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

17.1.1 Pixel exports: .. 32

17.1.2 Vertex exports: ... 32

17.1.3 Pass thru exports: .. 32
17.2 Arbitration restrictions .. 32
18. EXPORT TYPES .. 32
18.1 Vertex Shading .. 32
18.2 Pixel Shading .. 33
19. SPECIAL INTERPOLATION MODES ... 33
19.1 Real time commands ... 33
19.2 Sprites/ XY screen coordinates/ FB information .. 33
19.3 Auto generated counters ... 34

19.3.1 Vertex shaders ... 34

19.3.2 Pixel shaders .. 34
20. STATE MANAGEMENT .. 34
20.1 Parameter cache synchronization ... 34
21. XY ADDRESS IMPORTS ... 35
21.1 Vertex indexes imports .. 35
22. REGISTERS .. 35
22.1 Control ... Error! Bookmark not defined.
22.2 Context .. Error! Bookmark not defined.
23. DEBUG REGISTERS ... ERROR! BOOKMARK NOT DEFINED.
23.1 Context .. Error! Bookmark not defined.
23.2 Control ... Error! Bookmark not defined.

24. INTERFACES .. 35

24.1 External Interfaces .. 35
24.2 SC to SP Interfaces ... 35

24.2.1 SC_SP#.. 35

24.2.2 SC_SQ ... 36

24.2.3 SQ to SX: Interpolator bus ... 38

24.2.4 SQ to SP: Staging Register Data ... 38

24.2.5 VGT to SQ : Vertex interface .. 38

24.2.6 SQ to SX: Control bus .. 41

24.2.7 SX to SQ : Output file control ... 41

24.2.8 SQ to TP: Control bus .. 42

24.2.9 TP to SQ: Texture stall ... 42

24.2.10 SQ to SP: Texture stall ... 43

24.2.11 SQ to SP: GPR and auto counter ... 43

24.2.12 SQ to SPx: Instructions .. 44

24.2.13 SP to SQ: Constant address load/ Predicate Set ... 45

24.2.14 SQ to SPx: constant broadcast .. 45

24.2.15 SP0 to SQ: Kill vector load ... 45

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 948 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

6 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24.2.16 SQ to CP: RBBM bus ... 45

24.2.17 CP to SQ: RBBM bus ... 45

24.2.18 SQ to CP: State report ... 45
24.3 Example of control flow program execution ... 46
25. OPEN ISSUES ... 50

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 949 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

 Changed the control flow method to be more
flexible. Also updated the external interfaces.

Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

 Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001

 Refined interfaces to RB. Added state registers.

Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

 Added SEQ→SP0 interfaces. Changed delta
precision. Changed VGT→SP0 interface. Debug
Methods added.

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001

 Interfaces greatly refined. Cleaned up the spec.

Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001

 Added the different interpolation modes.

Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

 Added the auto incrementing counters. Changed
the VGT→SQ interface. Added content on constant
management. Updated GPRs.

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

 Removed from the spec all interfaces that weren’t
directly tied to the SQ. Added explanations on
constant management. Added PA→SQ
synchronization fields and explanation.

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

 Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002

 Added Real Time parameter control in the SX
interface. Updated the control flow section.

Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

 New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002

 Rearangement of the CF instruction bits in order to
ensure byte alignement.

Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002

 Updated the interfaces and added a section on
exporting rules.

Rev 1.11 (Laurent Lefebvre)
Date : April 19, 2002

 Added CP state report interface. Last version of the
spec with the old control flow scheme

Rev 2.0 (Laurent Lefebvre)
Date : April 19, 2002

 New control flow scheme

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 950 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

8 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Rev 2.01 (Laurent Lefebvre)
Date : May 2, 2002

 Changed slightly the control flow instructions to
allow force jumps and calls.

Rev 2.02 (Laurent Lefebvre)
Date : May 13, 2002

 Updated the Opcodes. Added type field to the
constant/pred interface. Added Last field to the
SQ→SP instruction load interface.

Rev 2.03 (Laurent Lefebvre)
Date : July 15, 2002

 SP interface updated to include predication
optimizations. Added the predicate no stall
instructions,

Rev 2.04 (Laurent Lefebvre)
Date :August 2, 2002

 Documented the new parameter generation scheme
for XY coordinates points and lines STs.

Rev 2.05 (Laurent Lefebvre)
Date :

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 951 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1. Overview
The sequencer chooses two ALU threads and a fetch hread to execute, and executes all of the instructions in a block
before looking for a new clause of the same type. Two ALU threads are executed interleaved to hide the ALU latency.
The arbitrator will give priority to older threads. There are two separate reservation stations, one for pixel vectors and
one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 952 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

10 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ

SC

SPSPSPCSTOREFETCH STATE

TP

INST STORE

IJ CONTROL

IJ
CONTROL

CST
ADDR

INST
 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/QUAD
ADDRESSES

SP

ALU INST

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

INST

INTER INTER INTER INTER

IJ CROSSBAR

2 QUADS IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC READ
 POINTERS

PARAM
DATA

R/W ADDR

Vertex indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

CP

CONSTANT
LOAD

CPConstant Load

TX ADDR

PC Write
Address

TEX INST

CF
CONSTANTS

Register
Mapped

CF Read

Figure 1: General Sequencer overview

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 953 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.1 Top Level Block Diagram

ALU Texture

VTX RS PIX RS

Exec Arbiter

Input Arbiter

Figure 2: Reservation stations and arbiters

Under this new scheme, the sequencer (SQ) will only use one global state management machine per vector type
(pixel, vertex) that we call the reservation station (RS).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 954 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

12 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.2 Data Flow graph (SP)

MAC

MAC

MAC

MAC

Register File

co
n

st
an

ts
 f

ro
m

 R
E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
n

ts
 f

ro
m

 R
E

S
ca

la
r

U
ni

t

texture request

texture request

texture request

texture request

te
xt

ur
e

 a
dd

re
ss

te xtu
re

 d
ata

prim
itiv e d a

ta
 from

 R
E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

Figure 3: The shader Pipe

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 955 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

SEQ

FETCH SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

OF

WrAddrIS CST

CST IDX

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 956 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

14 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x100 bits)

IJs buffer (ping-pong buffer)
(25 bits * 8 (IJ) * 4 * 4 * 4 (quadruple-buffered)

12800 bits

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

100

To RB

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2

768 bits
32x24

FIX-FLOAT + EXPANSiON

Figure 5: Interpolation buffers

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 957 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SP
0

SP
1

SP
2

SP
3

WRITES
T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-
11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P1 P2

T20 T21 T22 T23

VTX

T0 T1 T2 T3

XY

XY
0-3

XY
4-7

XY
8-
11

XY
12-
15

XY
16-
19

XY
20-
23

XY
24-
27

XY
28-
31

XY
32-
35

XY
36-
39

XY
40-
43

XY
44-
47

XY
48-
51

XY
52-
55

XY
56-
59

XY
60-
63

READS

SP
0

SP
1

SP
2

SP
3

A0

A1

A2

B1

B0

C3

C0

C1

C2

C4

C5

D0

D1

D2

E0

E1

A0

A1

A2

XY
A0
XY
A1
XY
A2

B1

B0

XY
B1

XY
B0

C3

C0

C1

C2

XY
C3
XY
C0
XY
C1
XY
C2

C4

C5

XY
C4
XY
C5

D0

D1

D2

XY
D1
XY
D2

XY
D0

E0

E1
XY
E1

XY
E0

Figure 6: Interpolation timing diagram

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 958 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

16 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store
There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4. Sequencer Instructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 959 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

5.2 Management of the Control Flow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied whenever there is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn’t write to CF the state is going to use the previous CF constants.

5.3 Management of the re-mapping tables

5.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROL packet of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it with
the new state (this is depicted in Figure 8: De-allocation mechanismFigure 8: De-allocation mechanismFigure 8: De-
allocation mechanism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 960 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

18 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Physical
Memory

Renaming Table
for 1 Context
Current/Last

Physical
Address

per
Logical
Address

Renaming
table

N-Contexts

Reset
Dirty
per

Logical
Address

(Only
de-

allocate
if set)

This
Context

Dirty
per

Logical
Address

(If set
don't

allocate
or de-

allocate)

Logical address
On the

GlbRegBus
when lsb are zero
first word of write

next
physical
address
ready

for allocate

Constants
location
available
WRTR

physical
address

to
schedule

for
de-alloc

Staging Data
Buffer

Staging Write Addr

Copy Last held above to
Current Context on receipt

of Set Constant for a
new context (Hide loading

behind Set State load - 16 clocks)
all other Set States just write one

entry to current state.

Free
list

(pass Phys
Address if
Context
Dirty)

Dealloc
Counts

Seq
Constant
Request

Context &
Logical
Address

Free_ptr
WritePtr

When a Logical
Address is written

that has been
written before,

store the physical
address that was
allocated by that
Logical Address

Stop_ptr
ptr to first physical

address that is
scheduled to be de-
allocated but noty
yet de-allocate.

Advanced each time
a context is freed by

the number of
physical address
displaced by that

Context

Read_ptr
ptr to physical

address that will be
used next if the init

count is at
maximum number

of physical address

Free List

Number of entries
equals Max Number of
Physical Blocks. All
Pointers start at zero
and roll around but

can never pass each
other

Free
Address

Address
to Allocate

Global Register
Data Bus

Renaming Table
Context 0 => N

Logical Address
& Context

Physical
Address

Context 0 (8 rows of 16 - 8 bit
physical => 128 entries copy in

eight clocks)

Context 1

Context N

Current/Last
Context

(8 rows of 16 - 8
bit physical =>

128 entries copy
in eight clocks)

Figure 7: Constant management

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 961 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

DEALOC
COUNTERSFree List

!=

OR

AND

NOT

ADDR

PREVIOUS
STATE

NEW
STATE

SQ_IDLE

CP_NEW_STATE_CNTL
PA_IDLE

VALUE

VALID

CNT VALUE

SQ_STATE#

WRITE_ENABLE

REMAPPING
TABLE

SET CTX BITS

Figure 8: De-allocation mechanism for R400LE

5.3.3 Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block
A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 962 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

20 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

5.3.5 De-allocate Block
This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any number of blocks in one clock.

5.3.6 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 963 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

5.5 Real Time Commands
The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
works is the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zones is defined by the TSTATE_EO_RT control register.

5.6 Constant Waterfalling
In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenever a state is freed.

CONST_EO_RT

RT SECTON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table)

Figure 9: The Constant store

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 964 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

22 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
We'd like to be able to code up a program of the form:

1: Loop
2: Exec TexFetch
3: TexFetch
4: ALU
5: ALU
6: TexFetch
7: End Loop
8: ALU Export

But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3:. Without clausing,
these dependencies need to be expressed in the Control Flow instructions. Additionally, without separate 'texture
clauses' and 'ALU clauses' we need to know which instructions to dispatch to the Texture Unit and which to the ALU
unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of information for each (non-control flow) instruction:
 a) ALU or Texture
 b) Serialize Execution

(b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched. Given the allocation of reserved bits, this would mean that the count of an 'Exec' instruction
would be limited to about 8 (non-control-flow) instructions. If more than this were needed, a second Exec (with the
same conditions) would be issued.

Another function that relies upon 'clauses' is allocation and order of execution. We need to assure that pixels and
vertices are exported in the correct order (even if not all execution is ordered) and that space in the output buffers are
allocated in order. Additionally data can't be exported until space is allocated. A new control flow instruction:

 Alloc <buffer select -- position,parameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual
allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already
completed. The implementation would also assure that execution of instruction(s) following the serialization due to the
Alloc will occur in order -- at least until the next serialization or change from ALU to Texture. In most cases this will
allow the exports to occur without any further synchronization. Only 'final' allocations or position allocations are

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 965 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

guaranteed to be ordered. Because strict ordering is required for pixels, parameters and positions, this implies only
a single alloc for these structures. Vertex exports to memory do not require ordering during allocation and so multiple
'allocs' may be done.

6.2.1 Control flow instructions table
Here is the revised control flow instruction set.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

NOP
47 … 44 43 42 … 0

0000 Addressing RESERVED

This is a regular NOP.

Execute
47 … 44 43 40 … 34 33 …16 15…12 11 … 0

0001 Addressing RESERVED Instructions type + serialize (9
instructions)

Count Exec Address

Execute_End

47 … 44 43 40 … 34 33 …16 15…12 11 … 0
0010 Addressing RESERVED Instructions type + serialize (9

instructions)
Count Exec Address

Execute up to 9 instructions at the specified address in the instruction memory. The Instruction type field tells the
sequencer the type of the instruction (LSB) (1 = Texture, 0 = ALU and whether to serialize or not the execution (MSB)
(1 = Serialize, 0 = Non-Serialized). If Execute_End this is the last execution block of the shader program.

Conditional_Execute

47 … 44 43 42 41 … 34 33…16 15 …12 11 … 0
0011 Addressing Condition Boolean

address
Instructions type + serialize (9

instructions)
Count Exec Address

Conditional_Execute_End

47 … 44 43 42 41 … 34 33…16 15 …12 11 … 0
0100 Addressing Condition Boolean

address
Instructions type + serialize (9

instructions)
Count Exec Address

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 9 instructions). If the condition is not met, we go on to the next control flow instruction. If
Conditional_Execute_End and the condition is met, this is the last execution block of the shader program.

Conditional_Execute_Predicates
47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0

0101 Addressing Condition RESERVED Predicate
vector

Instructions
type + serialize
(9 instructions)

Count Exec Address

Conditional_Execute_Predicates_End

47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0
0110 Addressing Condition RESERVED Predicate

vector
Instructions

type + serialize
(9 instructions)

Count Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid. If the

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 966 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

24 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

condition is not met, we go on to the next control flow instruction. If Conditional_Execute_Predicates_End and the
condition is met, this is the last execution block of the shader program.

Conditional_Execute_Predicates_No_Stall
47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0

1101 Addressing Condition RESERVED Predicate
vector

Instructions
type + serialize
(9 instructions)

Count Exec Address

Conditional_Execute_Predicates_No_Stall_End

47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0
1110 Addressing Condition RESERVED Predicate

vector
Instructions

type + serialize
(9 instructions)

Count Exec Address

Same as Conditionnal_Execute_Predicates but the SQ is not going to wait for the predicate vector to be updated.
You can only set this in the compiler if you know that the predicate set is only a refinement of the current one (like a
nested if) because the optimization would still work.

Loop_Start
47 … 44 43 42 … 21 20 … 16 15…12 11 … 0

0111 Addressing RESERVED loop ID RESERVED Jump address

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Loop_End
47 … 44 43 42 … 24 23… 21 20 … 16 15…12 11 … 0

1000 Addressing RESERVED Predicate break loop ID RESERVED start address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop. If predicate break != 0, then compares predicate vector n
(specified by predicate break number). If all bits cleared then break the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal_Call
47 … 44 43 42 41 … 34 33 … 13 12 11 … 0

1001 Addressing Condition Boolean address RESERVED Force Call Jump address

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack. If
force call is set the condition is ignored and the call is made always.

Return
47 … 44 43 42 … 0

1010 Addressing RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump
47 … 44 43 42 41… 34 33 32 … 13 12 11 … 0

1011 Addressing Condition Boolean
address

FW only RESERVED Force Jump Jump address

If force jump is set the condition is ignored and the jump is made always. If FW only is set then only forward jumps
are allowed.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 967 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Allocate

47 … 44 43 42…41 40 … 3 4 2…3 …0
1100 Debug Buffer Select RESERVED SizeAllocation size

Buffer Select takes a value of the following:
01 – position export (ordered export)
10 – parameter cache or pixel export (ordered export)
11 – pass thru (out of order exports).

Size field is only used to reserve space in the export buffer for pass thru exports. Valid values are 1 (1 line) thru 9 (9
lines). It should be determined by the compiler/assembler by taking max index used +1.
 Buffer Size takes a value of the following:
00 – 1 buffer
01 – 2 buffers
…
15 – 16 buffers

If debug is set this is a debug alloc (ignore if debug DB_ON register is set to off).

6.3 Implementation

The envisioned implementation has a buffer that maintains the state of each thread. A thread lives in a given
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the order that they
enter. Actually two buffers are maintained -- one for Vertices and one for Pixels. The intended implementation
would allow for:

16 entries for vertices
48 entries for pixels.

From each buffer, arbitration logic attempts to select 1 thread for the texture unit and 1 (interleaved) thread for the
ALU unit. Once a thread is selected it is read out of the buffer, marked as invalid, and submitted to appropriate
execution unit. It is returned to the buffer (at the same place) with its status updated once all possible sequential
instructions have been executed. A switch from ALU to TEX or visa-versa or a Serialize_Execution modifier forces
the thread to be returned to the buffer.

Each entry in the buffer will be stored across two physical pieces of memory - most bits will be stored in a 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed 'state'. The bits kept in the multi-read ported device will be termed 'status'.

'State Bits' needed include:

1. Control Flow Instruction Pointer (13 bits),
2. Execution Count Marker 4 bits),
3. Loop Iterators (4x9 bits),
4. Call return pointers (4x12 bits),
5. Predicate Bits (64 bits),
6. Export ID (1 bit),
7. Parameter Cache base Ptr (7 bits),
8. GPR Base Ptr (8 bits),
9. Context Ptr (3 bits).
10. LOD corrections (6x16 bits)
11. Valid bits (64 bits)
12. RT (1 bit) Signifies that this thread is a Real Time thread. This bit must be sent to the Constant store state

machine when reading it.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 968 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

26 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Absent from this list are 'Index' pointers. These are costly enough that I'm presuming that they are instead stored in
the GPRs. The first seven fields above (Control Flow Ptr, Execution Count, Loop Counts, call return ptrs, Predicate
bits, PC base ptr and export ID) are updated every time the thread is returned to the buffer based on how much
progress has been mode on thread execution. GPR Base Ptr, Context Ptr and LOD corrections are unchanged
throughout execution of the thread.

'Status Bits' needed include:

 Valid Thread
 Texture/ALU engine needed
 Texture Reads are outstanding
 Waiting on Texture Read to Complete
 Allocation Wait (2 bits)
 00 – No allocation needed
 01 – Position export allocation needed (ordered export)
 10 – Parameter or pixel export needed (ordered export)
 11 – pass thru (out of order export)
 Allocation Size (4 bits)
 Position Allocated
 First thread of a new context
 Event thread (NULL thread that needs to trickle down the pipe)
 Last (1 bit)
 Pulse SX (1 bit)

All of the above fields from all of the entries go into the arbitration circuitry. The arbitration circuitry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -- one for
pixels and one for vertices. A final selection is then done between the two. But the rest of this implementation
summary only considers the 'first' level selection which is similar for both pixels and vertices.

Texture arbitration requires no allocation or ordering so it is purely based on selecting the 'oldest' thread that requires
the Texture Engine.

ALU arbitration is a little more complicated. First, only threads where either of Texture_Reads_outstanding or
Waiting_on_Texture_Read_to_Complete are '0' are considered. Then if Allocation_Wait is active, these threads are
further filtered based on whether space is available. If the allocation is position allocation, then the thread is only
considered if all 'older' threads have already done their position allocation (position allocated bits set). If the
allocation is parameter or pixel allocation, then the thread is only considered if it is the oldest thread. Also a thread is
not considered if it is a parameter or pixel or position allocation, has its First_thread_of_a_new_context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the 'oldest' of the threads that pass through the above filters is selected. If the thread needed to allocate, then
at this time the allocation is done, based on Allocation_Size. If a thread has its “last” bit set, then it is also removed
from the buffer, never to return.

If I now redefine 'clauses' to mean 'how many times the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine', then the minimum number of clauses needed is 2 -- one to perform
the allocation for exports (execution automatically halts after an 'Alloc' instruction) (but doesn't performs the actual
allocation) and one for the actual ALU/export instructions. As the 'Alloc' instruction could be part of a texture clause
(presumably the final instruction in such a clause), a thread could still execute in this minimal number of 2 clauses,
even if it involved texture fetching.

The Texture_Reads_Outstanding bit must be updated by the sequencer, based on keeping track of how many
Texture Clauses have been executed by a given thread that have not yet had there data returned. Any number
above 0 results in this bit being set. We could consider forcing synchronization such that two texture clauses for a
given thread may not be outstanding at any time (that would be my preference for simplicity reasons and because it
would require only very little change in the texture pipe interface). This would allow the sequencer to set the bit on
execution of the texture clause, and allow the texture unit to return a pointer to the thread buffer on completion that
clears the bit.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 969 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

6.4 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETNE_# - similar to SETNE except that the result is 'exported' to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE0_# – SETE0
 PRED_SETE1_# – SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

 P0_ADD_# R0,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

6.5 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

6.6 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

The sequencer is going to keep a loop index computed as such:

 Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128…127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 970 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

28 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
 - jump errors
 relative jump address > size of the control flow program
 - call stack
 call with stack full

return with stack empty

A jump error will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only break if
the DB_PROB_BREAK register is set.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the 0th
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs
1) The sequencer will have a debug active, count register and an address register for this mode.

Under the normal mode execution follows the normal course.

Under the debug mode it is assumed that the program is always exporting n debug vectors and that all other exports
to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by the sequencer (even if they occur
before the address stated by the ADDR debug register).

7. Pixel Kill Mask
A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE

 MASK_SETGT
 MASK_SETGTE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 971 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZE for pixels.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 972 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

30 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

10. Fetch Arbitration
The fetch arbitration logic chooses one of the n potentially pending fetch clauses to be executed. The choice is made
by looking at the Vs and Ps reservation stations and picking the first one ready to execute. Once chosen, the clause
state machine will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two fetches of the
same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration
ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
n potentially pending ALU clauses to be executed. The choice is made by looking at the Vs and Ps reservation
stations and picking the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for
the odd clocks. For example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and
Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 973 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering an exporting clause. The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs
The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). All pixel’s parameters are always interpolated at full 20x24 mantissa precision.

)(*)3()(*)3(3

)(*)2()(*)2(2

)(*)1()(*)1(1

)(*)0()(*)0(0

ACJABIAP

ACJABIAP

ACJABIAP

ACJABIAP

Multiplies (Full Precision): 8
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF P’s IJ : Mantissa 20 Exp 4 for I + Sign
 Mantissa 20 Exp 4 for J + Sign

Total number of bits : 20*8 + 4*8 + 4*2 = 200.

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the number is
normalized if not, then the number is un-normalized. The maximum range for the IJs (Full precision) is +/- 1024.

15.1 Interpolation of constant attributes
Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the terms are the same.

P0

P2

P1

P3

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 974 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

32 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 || 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencer will re-arrange them in this fashion:

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 || 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 || 8 9 10 11 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the SQ is responsible to insert padding to
account for the missing pipe. For example, if SP1 is broken, vertices 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will
not be sent by the VGT to the SQ AND the SQ is responsible to “jump” over these vertices in order for no valid
vertices to be sent to an invalid SP.

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 11Figure 11Figure 11. The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure 10Figure 10Figure 10.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11631 60.57813per bit

Area of 96x8-deep Latch Memory 46524

Area of 24-bit Fix-to-float Converter 4712per converter

Method 1 Block Quantity Area

 F2F 3 14136

 8x96 Latch 16 744384

 758520

Figure 10:Area Estimate for VGT to Shader Interface

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 975 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

33 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SHADER PIPE

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

3
2

3
2

3
2

VGT BLOCK
(IN PA)

3
2

9
6

VECTOR ENGINE

96

8x96
MEMORY
1-READ
1-WRITE

3 OTHER
SHADER
PIPES

 3 Fix->Float Converters (24-bit)
 16 Memories 8x96-bit (12,288 bits)

Totals:

THREE MORE VECTOR ENGINES
PER SHADER PIPE

VECTOR ENGINE

SHADER
SEQUENCER

Figure 11:VGT to Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER
4 bits

ADDRESS
7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17th) is going to have the address 00000001000, the 18th 00010001000, the 19th 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*VS_EXPORT_COUNT to
Current_Location and reset the memory count to 0 before the next vector begins).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 976 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

34 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

17.1 Export restrictions

17.1.1 Pixel exports:
Pixels can export 1,2,3 or 4 color buffers to the SX(+z). The exports will be done in order. The PRED_OPTIMIZE
function has to be turned of if the exports are done using interleaved predicated instructions. The exports will always
be ordered to the SX.

17.1.2 Vertex exports:
Position or parameter caches can be exported in any order in the shader program. It is always better to export
posistion as soon as possible. Position has to be exported in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be done in any order with texture instructions interleaved.
The PRED_OPTIMIZE function has to be turned of if the exports are done using interleaved predicated instructions to
the Parameter cache (see Arbitration restrictions for details). The exports will always be allocated in order to the SX.

17.1.3 Pass thru exports:
Pass thru exports have to be done in groups of the form:

Alloc 4 (8 or 12)
Execute ALU(ADDR) ALU(DATA) ALU(DATA) ALU(DATA)…

They cannot have texture instructions interleaved in the export block. These exports are not guaranteed to be
ordered.

Also, when doing a pass thru export, Position MUST be exported AFTER all pass thru exports. This position export is
used to synchronize the chip when doing a transition from pass thru shader to regular shader and vice versa.

17.2 Arbitration restrictions
Here are the Sequencer arbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texture pending bit is set
2) Cannot allocate position if any older thread has not allocated position
3) If last thread is marked as not valid AND marked as last and we are about to execute the second to oldest

thread also marked last then:
a. Both threads must be from the same context (cannot allow a first thread)
b. Must turn off the predicate optimization for the second thread

4) Cannot execute a texture clause if texture reads are pending
5) Cannot execute last if texture pending (even if not serial)

18. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

18.1 Vertex Shading
 0:15 - 16 parameter cache
 16:31 - Empty (Reserved?)

32 - Export Address
 33:40 41 - 8 9 vertex exports to the frame buffer and index
 4142:47 - Empty
 48:55 - 8 debug export (interpret as normal vertex export)
 60 - export addressing mode
 61 - Empty
 62 - position

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 977 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

35 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 63 - sprite size export that goes with position export
 (point_h,point_w,edgeflag,misc)X= point size, Y= edge flag is bit 0, Z= VtxKill is bitwise OR
of bits 30:0. Any bit other than sign means VtxKill.)

18.2 Pixel Shading
 0 - Color for buffer 0 (primary)
 1 - Color for buffer 1
 2 - Color for buffer 2
 3 - Color for buffer 3
 4:715 - Empty
 816 - Buffer 0 Color/Fog (primary)
 917 - Buffer 1 Color/Fog
 108 - Buffer 2 Color/Fog
 119 - Buffer 3 Color/Fog
 1220:1531 - Empty
 16:31 - Empty (Reserved?)
 32 - Export Address
 33:4041 - 8 9 exports for multipass pixel shaders.
 412:47 - Empty
 48:55 - 8 debug exports (interpret as normal pixel export)

60 60 - export addressing mode
6061 - Z for primary buffer (Z exported to 'alpha' component)

 6162:623 - Empty
 63 - Z for primary buffer (Z exported to 'alpha' component)

19. Special Interpolation modes

19.1 Real time commands
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem I see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft’s high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This mode is triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

19.2 Sprites/ XY screen coordinates/ FB information
XY screen coordinates may be needed in the shader program. This functionality is controlled by the param_gen_I0
register (in SQ) in conjunction with the SND_XY register (in SC) and the param_gen_pos. Also it is possible to send
the faceness information (for OGL front/back special operations) to the shader using the same control register. Here
is a list of all the modes and how they interact together:

The Data is going to be written in the register specified by the param_gen_pos register.

Param_Gen_I0 disable, snd_xy disable = No modification
Param_Gen_I0 disable, snd_xy enable = No modification
Param_Gen_I0 enable, snd_xy disable = Sign(faceness)garbage,(Sign Point)garbage,Sign(Line)s, t
Param_Gen_I0 enable, snd_xy enable = Sign(faceness)screenX,(Sign Point)screenY,Sign(Line)s, t

In other words,

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 978 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

36 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The generated vector is (X in RED, Y in GREEN, S in BLUE and T in ALPHA):
X,Y,S,T
These values are always supposed to be positive and any shader use of them should use the ABS function
(as their sign bits will now be used for flags).
SignX = BackFacing
SignY = Point Primitive
SignS = Line Primitive
SignT = currently unused as a flag.

If !Point & !Line, then it is a Poly.

I would assume that one implementation which allows for generic texture lookup (using 3D maps) for poly
stipple and AA for the driver would be
if(Y<0) {
 R = 0.0 (Point)
} else if (S < 0) {
 R = 1.0 (Line)
} else {
 R = 2.0 (Poly)

}

19.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1st pass data to memory and then use the count to retrieve the data on the 2nd pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX_PIX/VTX register. The sequencer
is going to keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is
written to the GPRs the counter is incremented. Every time a state change is detectedRST_PIX_COUNT or
RST_VTX_COUNT events are received, the corresponding counter is reset. While there is only one count broadcast
to the GPRs, the LSB are hardwired to specific values making the index different for all elements in the vector. Since
the count must be different for all pixels/vertices and the 4 LSBs (16 positions) are hardwired to the corresponding
shader unit the SQ has two choices:

1) Maintain a 19 bit counter that counts the vectors of 64. In this case the phase must be appended to the count
before the count is broadcast to the SPs:

Counter (19 bits) Phase (2 bits) Hardwired (4 bits)

2) Maintain a 21 bits counter that counts sub-vectors of 16. In this case only the counter is sent to the Sps:

Counter (21 bits) Harwired (4 bits)

19.3.1 Vertex shaders
In the case of vertex shaders, if GEN_INDEX_VTX is set, the data will be put into the x field of the third register (it
means that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

19.3.2 Pixel shaders
In the case of pixel shaders, if GEN_INDEX_PIX is set, the data will be put in the x field of the param_gen_pos+1
register.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 979 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

37 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

AUTO
COUNT

STG 0

STG1

INTERPOLATORS

GPR0

AUTO COUNT 000000

MUX

The Auto Count Value is
broadcast to all GPRs. It is

loaded into a register wich has
its LSBs hardwired to the

GPR number (0 thru 63). Then
if GEN_INDEX is high, the
mux selects the auto-count

value and it is loaded into the
GPRs to be either used to

retrieve data using the TP or
sent to the SX for the RB to

use it to write the data to
memory

Figure 12: GPR input mux Control

20. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

20.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

21. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix→float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 19.2 for details on how to control the interpolation in this mode.

21.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

22. Registers
Please see the auto-generated web pages for register definitions.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 980 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

38 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23. Interfaces

23.1 External Interfaces
Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ→SPx it means that SQ is going to broadcast the same information to all SP instances.

23.2 SC to SP Interfaces

23.2.1 SC_SP#
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the I,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data which is transferred per quad is
 Ref Pix I => S4.20 Floating Point I value *4
 Ref Pix J => S4.20 Floating Point J value *4

This equates to a total of 200 bits which transferred over 2 clocks
and therefor needs an interface 100 bits wide

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a IJ_BUF_INUSE_COUNT in the SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNT count. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2, if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of I,J data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,SQ and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple mode first with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performance hit.)

Name Bits Description
SC_SP#_data 100 IJ information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bit)

Type 0 or 1, First clock I, second clk J
Field ULC URC LLC LRC
 Bits [63:39] [38:26] [25:13] [12:0]
Format SE4M20 SE4M20 SE4M20 SE4M20
Type 2
Field Face X Y
 Bits [6324] [23:12] [11:0]
Format Bit Unsigned Unsigned

SC_SP#_valid 1 Valid
SC_SP#_last_quad_data 1 This bit will be set on the last transfer of data per quad.
SC_SP#_type 2 0 -> Indicates centroids

1 -> Indicates centers
2 -> Indicates X,Y Data and faceness on data bus
The SC shall look at state data to determine how many types to send for the

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 981 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

39 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP block will have neither because the instantiation will insert the prefix.

23.2.2 SC_SQ
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 94 108 bits) could be folded in half to approx 49
54 bits.

Name Bits Description
SC_SQ_data 46 Control Data sent to the SQ

1 clk transfers
 Event – valid data consist of event_id and
 state_id. Instruct SQ to post an
 event vector to send state id and
 event_id through request fifo
 and onto the reservation stations
 making sure state id and/or event_id
 gets back to the CP. Events only
 follow end of packets so no pixel
 vectors will be in progress.

 Empty Quad Mask – Transfer Control data
 consisting of pc_dealloc
 or new_vector. Receipt of this is to
 transfer pc_dealloc or new_vector
 without any valid quad data. New
 vector will always be posted to
 request fifo and pc_dealloc will be
 attached to any pixel vector
 outstanding or posted in request fifo
 if no valid quad outstanding.
2 clk transfers
 Quad Data Valid – Sending quad data with or
 without new_vector or pc_dealloc.
 New vector will be posted to request
 fifo with or without a pixel vector and
 pc_dealloc will be posted with a pixel
 vector unless none is in progress. In
 this case the pc_dealloc will be
 posted in the request queue.
 Filler quads will be transferred with
 The Quad mask set but the pixel
 corresponding pixel mask set to
 zero.

SC_SQ_valid 1 SC sending valid data, 2nd clk could be all zeroes

SC_SQ_data – first clock and second clock transfers are shown in the table below.

Name BitField Bits Description

1st Clock Transfer
SC_SQ_event 0 1 This transfer is a 1 clock event vector Force quad_mask =

new_vector=pc_dealloc=0
SC_SQ_event_id [4:1] 4 This field identifies the event 0 => denotes an End Of State Event 1

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 982 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

40 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

=> TBD
SC_SQ_pc_deallocSC_SQ_s
tate_id

[7:5][7:
5]

33 Deallocation token for the Parameter CacheState/constant pointer
(6*3+3)

SC_SQ_pc_dealloc [10:8] 3 Deallocation token for the Parameter Cache
SC_SQ_new_vector 118 1 The SQ must wait for Vertex shader done count > 0 and after

dispatching the Pixel Vector the SQ will decrement the count.
SC_SQ_quad_mask [125:12

9]
4 Quad Write mask left to right SP0 => SP3

SC_SQ_end_of_prim 136 1 End Of the primitive
SC_SQ_pix_mask [32:17] 16 Valid bits for all pixels SP0=>SP3 (UL,UR,LL,LR)
SC_SQ_provok_vtx [374:36

3]
2 Provoking vertex for flat shading

SC_SQ_pc_ptr0SC_SQ_lod_
correct_0

[483:38
5]

119 Parameter Cache pointer for vertex 0LOD correction for quad 0
(SP0) (9 bits per quad)

SC_SQ_lod_correct_1 [52:44] 9 LOD correction for quad 1 (SP1) (9 bits per quad)

2nd Clock Transfer
SC_SQ_lod_correct_2SC_S
Q_pc_ptr1

[8:0][10
:0]

911 LOD correction for quad 2 (SP2) (9 bits per quad)Parameter Cache
pointer for vertex 1

SC_SQ_lod_correct_3 [17:9] 9 LOD correction for quad 3 (SP3) (9 bits per quad)
SC_SQ_pc_ptr0 [28:18] 11 Parameter Cache pointer for vertex 0
SC_SQ_pc_ptr21 [2139:1

129]
11 Parameter Cache pointer for vertex 12

SC_SQ_pc_ptr2
SC_SQ_lod_correct

[4550:2
240]

241
1

Parameter Cache pointer for vertex 2LOD correction per quad (6
bits per quad)

SC_SQ_prim_type [4853:4
651]

3 Stippled line and Real time command need to load tex cords from
alternate buffer
000: Sprite (point)
001: Line
010: Tri_rect
100: Realtime Sprite (point)
101: Realtime Line
110: Realtime Tri_rect

Name Bits Description
SQ_SC_free_buff 1 Pipelined bit that instructs SC to decrement count of buffers in use.
SQ_SC_dec_cntr_cnt 1 Pipelined bit that instructs SC to decrement count of new vector and/or event

sent to prevent SC from overflowing SQ interpolator/Reservation request fifo.

The scan converter will submit a partial vector whenever:

1.) He gets a primitive marked with an end of packet signal.
2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been

marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal made it through and thus the hang.)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 983 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

41 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.3 SQ to SX(SP): Interpolator bus
Name Direction Bits Description
SQ_SPx_interp_flat_vtx SQ→SPx 2 Provoking vertex for flat shading
SQ_SPx_interp_flat_gouraud SQ→SPx 1 Flat or gouraud shading
SQ_SPx_interp_cyl_wrap SQ→SPx 4 Wich channel needs to be cylindrical wrapped
SQ_SPx_interp_param_gen SQ→SPx 1 Generate Parameter
SQ_SPx_interp_prim_type SQ→SPx 2 Bits [1:0] of primitive type sent by SC
SQ_SPx_interp_buff_swap SQ→SPx 1 Swapp IJ buffers
SQ_SPx_interp_IJ_line SQ→SPx 2 IJ line number
SQ_SPx_interp_mode SQ→SPx 1 Center/Centroid sampling
SQ_SXx_pc_ptr0 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr1 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr2 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_rt_sel SQ→SXx 1 Selects between RT and Normal data (Bit 2 of prim type)
SQ_SX0_pc_wr_en SQ→SX0 8 Write enable for the PC memories
SQ_SXx1_pc_wr_en SQ→SXxSX1 18 Write enable for the PC memories
SQ_SXx_pc_wr_addr SQ→SXx 7 Write address for the PCs
SQ_SXx_pc_channel_mask SQ→SXx 4 Channel mask
SQ_SXx_pc_ptr_valid SQ→SXx 1 Read pointers are valid.
SQ_SPx_interp_valid SQ→SPx 1 Interpolation control valid

23.2.4 SQ to SP: Staging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.
Name Direction Bits Description
SQ_SPx_vsr_data SQ→SPx 96 Pointers of indexes or HOS surface information
SQ_SPx_vsr_double SQ→SPx 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0_ vsr_valid SQ→SP0 1 Data is valid
SQ_SP1_ vsr_ valid SQ→SP1 1 Data is valid
SQ_SP2_ vsr_ valid SQ→SP2 1 Data is valid
SQ_SP3_ vsr_ valid SQ→SP3 1 Data is valid
SQ_SPx_vsr_read SQ→SPx 1 Increment the read pointers

23.2.5 VGT to SQ : Vertex interface

23.2.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide.

Name Bits Description
VGT_SQ_vsisr_data 96 Pointers of indexes or HOS surface information
VGT_SQ_event 1 VGT is sending an event
VGT_SQ_vsisr_continued 1 0: Normal 96 bits per vert 1: double 192 bits per vert
VGT_SQ_end_of_vtx_vect 1 Indicates the last VSISR data set for the current process vector (for double vector

data, "end_of_vector" is set on the first vector)
VGT_SQ_indx_valid 1 Vsisr data is valid
VGT_SQ_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when

“VGT_SQ_vgt_end_of_vector” is high.
VGT_SQ_send 1 Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_VGT_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

23.2.5.2 Interface Diagrams

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 984 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

42 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

VGT

VSISR_DATA_2

END_OF_VECTOR_2

STATE_SEL_2

REG

VSISR_DOUBLE_2
REG

REG

REG

REG

REG

SEND_2

REG

REG

REG

REG

REG

REG

PA_SQ_vgt_vsisr_data

PA_SQ_vgt_vsisr_double

PA_SQ_vgt_end_of_vector

PA_SQ_vgt_state_sel

PA_SQ_vgt_send

SQ_PA_vgt_rtr

VSISR_DATA_4

END_OF_VECTOR_4

STATE_SEL_4

VSISR_DOUBLE_4

96

1

1

3

1

1

SEND_4

RTR_2 RTR_0

SHADER
SEQUENCER

RTS

101 X 4
SKID

BUFFER

SRST SRST

WE

EMPTY

RE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 985 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

43 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

6 7

6 7

6 7

0 1 2 3

0 1

8

8

8

2 43 5

4 5 6 7

4 3 2 1

8

9 10 11 12

9 10 11 12

9 10 11 12

9 10 11 12

0

RECEIVER RE-STARTS TRANSMISSION

SENDER STOPS TRANSMISSION

SQ_RTR

SQ_RTR_0

VGT_RTS

SEND_2

SEND_3

SEND_4

DATA_2

FIFO_EMPTY

FIFO_RE

SQ_RTR_1

SQ_RTR_2

DATA_3

DATA_4

FIFO_DATA_OUT

FIFO_CNT

RECEIVER STOPS TRANSMISSION

Figure 1. Detailed Logical Diagram for PA_SQ_vgt Interface.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 986 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

44 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.6 SQ to SX: Control bus

Name Direction Bits Description
SQ_SXx_exp_type SQ→SXx 2 00: Pixel without z (1 to 4 buffers)

01: Pixel with z (1 to 4 buffers)
10: Position (1 or 2 results)
11: Pass thru (4,8 or 12 results aligned)

SQ_SXx_exp_number SQ→SXx 2 Number of locations needed in the export buffer
(encoding depends on the type see bellow).

SQ_SXx_exp_alu_id SQ→SXx 1 ALU ID
SQ_SXx_exp_valid SQ→SXx 1 Valid bit
SQ_SXx_exp_state SQ→SXx 3 State Context

SQ_SXx_free_done SQ→SXx 1 Pulse that indicates that the previous export is finished
from the point of view of the SP. This does not
necessarily mean that the data has been
transferred to RB or PA, or that the space in export
buffer for that particular vector thread has been
freed up.

SQ_SXx_free_alu_id SQ→SXx 1 ALU ID

Depending on the type the number of export location changes:

 Type 00 : Pixels without Z
o 00 = 1 buffer
o 01 = 2 buffers
o 10 = 3 buffers
o 11 = 4 buffer

 Type 01: Pixels with Z
o 00 = 2 Buffers (color + Z)
o 01 = 3 buffers (2 color + Z)
o 10 = 4 buffers (3 color + Z)
o 11 = 5 buffers (4 color + Z)

 Type 10 : Position export
o 00 = 1 position
o 01 = 2 positions
o 1X = Undefined

 Type 11: Pass Thru
o 00 = 4 buffers
o 01 = 8 buffers
o 10 = 12 buffers
o 11 = Undefined

Below the thick black line is the end of transfer packet that tells the SX that a given export is finished. The report
packet will always arrive either before or at the same time than the next export to the same ALU id.

23.2.7 SX to SQ : Output file control
Name Direction Bits Description
SXx_SQ_exp_count_rdy SXx→SQ 1 Raised by SX0 to indicate that the following two fields

reflect the result of the most recent export
SXx_SQ_exp_pos_avail SXx→SQ 21 Specifies whether there is room for another position.

00 : 0 buffers ready
01 : 1 buffer ready
10 : 2 or more buffers ready

SXx_SQ_exp_buf_avail SXx→SQ 7 Specifies the space available in the output buffers.
0: buffers are full
1: 2K-bits available (32-bits for each of the 64

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 987 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

45 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

pixels in a clause)
...
64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

23.2.8 SQ to TP: Control bus
Once every clock, the fetch unit sends to the sequencer on which RS line it is now working and if the data in the
GPRs is ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequencer also provides the instruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

Name Direction Bits Description
TPx_SQ_data_rdy TPx→ SQ 1 Data ready

TPx_SQ_rs_line_num TPx→ SQ 6 Line number in the Reservation station

TPx_SQ_type TPx→ SQ 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_send SQ→TPx 1 Sending valid data
SQ_TPx_const SQ→TPx 48 Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instr SQ→TPx 24 Fetch instruction sent over 4 clocks
SQ_TPx_end_of_group SQ→TPx 1 Last instruction of the group
SQ_TPx_Type SQ→TPx 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_gpr_phase SQ→TPx 2 Write phase signal
SQ_TP0_lod_correct SQ→TP0 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP0_pix_mask SQ→TP0 4 Pixel mask 1 bit per pixel
SQ_TP1_lod_correct SQ→TP1 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pix_mask SQ→TP1 4 Pixel mask 1 bit per pixel
SQ_TP2_lod_correct SQ→TP2 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pix_mask SQ→TP2 4 Pixel mask 1 bit per pixel
SQ_TP3_lod_correct SQ→TP3 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pix_mask SQ→TP3 4 Pixel mask 1 bit per pixel
SQ_TPx_rs_line_num SQ→TPx 6 Line number in the Reservation station
SQ_TPx_write_gpr_index SQ->TPx 7 Index into Register file for write of returned Fetch Data

23.2.9 TP to SQ: Texture stall
The TP sends this signal to the SQ and the SPs when its input buffer is full.

SU0

SU3

SU2

SU1

TP_SP_fetch_Stall

SQ_SP_wr_addr

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 988 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

46 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Name Direction Bits Description
TP_SQ_fetch_stall TP→ SQ 1 Do not send more texture request if asserted

23.2.10 SQ to SP: Texture stall
Name Direction Bits Description
SQ_SPx_fetch_stall SQ→SPx 1 Do not send more texture request if asserted

23.2.11 SQ to SP: GPR and auto counter
Name Direction Bits Description
SQ_SPx_gpr_wr_addr SQ→SPx 7 Write address
SQ_SPx_gpr_rd_addr SQ→SPx 7 Read address
SQ_SPx_gpr_rd_en SQ→SPx 1 Read Enable
SQ_SP0_gpr_wr_en SQ→SPx 14 Write Enable for the GPRs of SP0
SQ_SP1_gpr_wr_en SQ→SPx 14 Write Enable for the GPRs of SP1
SQ_SP2_gpr_wr_en SQ→SPx 14 Write Enable for the GPRs of SP2
SQ_SP3_gpr_wr_en SQ→SPx 14 Write Enable for the GPRs of SP3
SQ_SPx_gpr_phase SQ→SPx 2 The phase mux (arbitrates between inputs, ALU SRC

reads and writes)
SQ_SPx_channel_mask SQ→SPx 4 The channel mask
SQ_SPx_gpr_input_sel SQ→SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTX0,
VTX1, autogen counter.

SQ_SPx_auto_count SQ→SPx 12?21 Auto count generated by the SQ, common for all shader
pipes

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 989 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

47 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.12 SQ to SPx: Instructions
Name Direction Bits Description
SQ_SPx_instr_start SQ→SPx 1 Instruction start
SQ_SP_instr SQ→SPx 242 Transferred over 4 cycles

0: SRC A Select 2:0
 SRC A Argument Modifier 3:3
 SRC A swizzle 11:4
 VectorDst 17:12
 Per channel use mask (PV/Reg) 21:18SRC A Negate
Argument Modifier 0:0
 SRC A Abs Argument Modifier 1:1
 SRC A Swizzle 9:2
 Vector Dst 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
--
-
1: SRC B Negate Argument Modifier 0:0
 SRC B Abs Argument Modifier 1:1
 SRC B Swizzle 9:2
 Scalar Dst 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
SRC B Select 2:0
 SRC B Argument Modifier 3:3
 SRC B swizzle 11:4
 ScalarDst 17:12
 Per channel use mask (PV/Reg) 21:18
--
-
2: SRC C Negate Argument Modifier 0:0
 SRC C Abs Argument Modifier 1:1
 SRC C Swizzle 9:2
 Unused 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
SRC C Select 2:0
 SRC C Argument Modifier 3:3
 SRC C swizzle 11:4
 Per channel use mask (PV/Reg) 21:18
--
-
3: Vector Opcode 4:0
 Scalar Opcode 10:5
 Vector Clamp 11:11
 Scalar Clamp 12:12
 Vector Write Mask 16:13
 Scalar Write Mask 20:17
 Unused 23:21

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 990 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

48 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ_SP0_pred_override SQ→SP0 4 0: Use per channel RGBA field (enables the per channel
logic, if not set only pay attention to the 11 seting).
1: Use GPR

SQ_SP1_pred_override SQ→SP1 4 0: Use per channel RGBA field (enables the per channel
logic, if not set only pay attention to the 11 seting).
1: Use GPR

SQ_SP2_pred_override SQ→SP2 4 0: Use per channel RGBA field (enables the per channel
logic, if not set only pay attention to the 11 seting).
1: Use GPR

SQ_SP3_pred_override SQ→SP3 4 0: Use per channel RGBA field (enables the per channel
logic, if not set only pay attention to the 11 seting).
1: Use GPR

SQ_SPx_exp_alu_id SQ→SPx 1 GPRALU ID
SQ_SPx_exporting SQ→SPx 1 0: Not Exporting

1: Exporting
SQ_SPx_stall SQ→SPx 1 Stall signal

23.2.13 SQ to SX: write mask interface (must be aligned with the SP data)
Name Direction Bits Description
SQ_SX0_write_mask SQ→SP0 8 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock. This is for the data coming of SP0 and SP2.

SQ_SX1_ write_mask SQ→SP1 8 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock. This is for the data coming of SP1 and SP3.

23.2.1323.2.14 SP to SQ: Constant address load/ Predicate Set/Kill set
Name Direction Bits Description
SP0_SQ_const_addr SP0→SQ 36 Constant address load / predicate vector load (4 bits only)/

Kill vector load (4 bits only) to the sequencer
SP0_SQ_valid SP0→SQ 1 Data valid
SP1_SQ_const_addr SP1→SQ 36 Constant address load / predicate vector load (4 bits only)/

Kill vector load (4 bits only) to the sequencer
SP1_SQ_valid SP1→SQ 1 Data valid
SP2_SQ_const_addr SP2→SQ 36 Constant address load / predicate vector load (4 bits only)/

Kill vector load (4 bits only) to the sequencer
SP2_SQ_valid SP2→SQ 1 Data valid
SP3_SQ_const_addr SP3→SQ 36 Constant address load / predicate vector load (4 bits only)/

Kill vector load (4 bits only) to the sequencer
SP3_SQ_valid SP3→SQ 1 Data valid
SP0_SQ_data_type SPSQ 12 Data Type

0: Constant Load
1: Predicate Set
2: Kill vector load

Because of the sharing of the bus none of the MOVA, PREDSET or KILL instructions may be coissued.

23.2.1423.2.15 SQ to SPx: constant broadcast
Name Direction Bits Description
SQ_SPx_const SQ→SPx 128 Constant broadcast

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 991 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

49 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.15 SP0 to SQ: Kill vector load

23.2.16 SQ to CP: RBBM bus
Name Direction Bits Description
SQ_RBB_rs SQ→CP 1 Read Strobe
SQ_RBB_rd SQ→CP 32 Read Data
SQ_RBBM_nrtrtr SQ→CP 1 Optional
SQ_RBBM_rtr SQ→CP 1 Real-Time (Optional)

23.2.17 CP to SQ: RBBM bus
Name Direction Bits Description
rbbm_we CP→SQ 1 Write Enable
rbbm_a CP→SQ 15 Address -- Upper Extent is TBD (16:2)
rbbm_wd CP→SQ 32 Data
rbbm_be CP→SQ 4 Byte Enables
rbbm_re CP→SQ 1 Read Enable
rbb_rs0 CP→SQ 1 Read Return Strobe 0
rbb_rs1 CP→SQ 1 Read Return Strobe 1
rbb_rd0 CP→SQ 32 Read Data 0
rbb_rd1 CP→SQ 32 Read Data 0
RBBM_SQ_soft_reset CP→SQ 1 Soft Reset

23.2.18 SQ to CP: State report
Name Direction Bits Description
SQ_CP_vs_event SQ→CP 1 Vertex Shader Event
SQ_CP_vs_eventid SQ→CP 42 Vertex Shader Event ID
SQ_CP_ps_event SQ→CP 1 Pixel Shader Event
SQ_CP_ps_eventid SQ→CP 42 Pixel Shader Event ID

 eventid = 0 => *sEndOfState (i.e. VsEndOfState)
 eventid = 1 => *sDone (i.e. VsDone)

So, the CP will assume the Vs is done with a state whenever it gets a pulse on the SQ_CP_vs_event
and the SQ_CP_vs_eventid = 0.

23.3 Example of control flow program execution
We now provide some examples of execution to better illustrate the new design.

Given the program:

Alu 0
Alu 1
Tex 0
Tex 1
Alu 3 Serial
Alu 4
Tex 2
Alu 5
Alu 6 Serial
Tex 3
Alu 7
Alloc Position 1 buffer
Alu 8 Export
Tex 4

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 992 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

50 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Alloc Parameter 3 buffers
Alu 9 Export 0
Tex 5
Alu 10 Serial Export 2
Alu 11 Export 1 End

Would be converted into the following CF instructions:

Execute 0 Alu 0 Alu 0 Tex 0 Tex 1 Alu 0 Alu 0 Tex 0 Alu 1 Alu 0 Tex
Execute 0 Alu
Alloc Position 1
Execute 0 Alu 0 Tex
Alloc Param 3
Execute_end 0 Alu 0 Tex 1 Alu 0 Alu

And the execution of this program would look like this:

Put thread in Vertex RS:

Control Flow Instruction Pointer (12 bits), (CFP)
Execution Count Marker (3 or 4 bits), (ECM)
Loop Iterators (4x9 bits), (LI)
Call return pointers (4x12 bits), (CRP)
Predicate Bits(4x64 bits), (PB)
Export ID (1 bit), (EXID)
GPR Base Ptr (8 bits), (GPR)
Export Base Ptr (7 bits), (EB)
Context Ptr (3 bits).(CPTR)
LOD correction bits (16x6 bits) (LOD)

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 0 0 0 0 0 0 0 0 0

Valid Thread (VALID)
Texture/ALU engine needed (TYPE)
Texture Reads are outstanding (PENDING)
Waiting on Texture Read to Complete (SERIAL)
Allocation Wait (2 bits) (ALLOC)

00 – No allocation needed
01 – Position export allocation needed (ordered export)
10 – Parameter or pixel export needed (ordered export)
11 – pass thru (out of order export)

Allocation Size (4 bits) (SIZE)
Position Allocated (POS_ALLOC)
First thread of a new context (FIRST)
Last (1 bit), (LAST)

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 0 0 0 0 0 1 0

Then the thread is picked up for the execution of the first control flow instruction:

Execute 0 Alu 0 Alu 0 Tex 0 Tex 1 Alu 0 Alu 0 Tex 0 Alu 1 Alu 0 Tex

It executes the first two ALU instructions and goes back to the RS for a resource request change. Here is the
state returned to the RS:

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 993 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

51 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 2 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Then when the texture pipe frees up, the arbiter picks up the thread to issue the texture reads. The thread comes

back in this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 4 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 0 1 0

Because of the serial bit the arbiter must wait for the texture to return and clear the PENDING bit before it can

pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returns it in
this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 6 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Again the TP frees up, the arbiter picks up the thread and executes. It returns in this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 7 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 0 0 0 1 0

Now, even if the texture has not returned we can still pick up the thread for ALU execution because the serial bit

is not set. The thread will however come back to the RS for the second ALU instruction because it has the serial bit
set.

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 8 0 0 0 0 0 0 0 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 994 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

R400 Sequencer Specification PAGE

52 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 0 1 0

As soon as the TP clears the pending bit the thread is picked up and returns:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 9 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Picked up by the TP and returns:
Execute 0 Alu

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
1 0 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 0 0 0 1 0

Picked up by the ALU and returns (lets say the TP has not returned yet):
Alloc Position 1

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
2 0 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 01 1 0 1 0

If the SX has the place for the export, the SQ is going to allocate and pick up the thread for execution. It returns to

the RS in this state:

Execute 0 Alu 0 Tex

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
3 1 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 1 0 0 0 1 1 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 995 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20159
September 20022

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

53 of 53

Exhibit 2033.docR400_Sequencer.doc �� 73016 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Now, since the TP has not returned yet, we must wait for it to return because we cannot issue multiple texture
requests. The TP returns, clears the PENDING bit and we proceed:

Alloc Param 3

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
4 0 0 0 0 1 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 10 3 1 1 0

Once again the SQ makes sure the SX has enough room in the Parameter cache before it can pick up this

thread.

Execute_end 0 Alu 0 Tex 1 Alu 0 Alu

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
5 1 0 0 0 1 0 100 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 1 0 0 0 1 1 0

This executes on the TP and then returns:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
5 2 0 0 0 1 0 100 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 1 1 1

Waits for the TP to return because of the textures reads are pending (and SERIAL in this case). Then executes
and does not return to the RS because the LAST bit is set. This is the end of this thread and before dropping it on the
floor, the SQ notifies the SX of export completion.

24. Open issues
Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 996 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SQ

Version 2.065

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\doc_lib\design\blocks\sq\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2034
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 997 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

R400 Sequencer Specification PAGE

2 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Table Of Contents

1. OVERVIEW .. 7
1.1 Top Level Block Diagram ... 9
1.2 Data Flow graph (SP) ... 10
1.3 Control Graph ... 11
2. INTERPOLATED DATA BUS .. 11
3. INSTRUCTION STORE ... 14
4. SEQUENCER INSTRUCTIONS ... 14
5. CONSTANT STORES .. 14
5.1 Memory organizations .. 14
5.2 Management of the Control Flow Constants .. 15
5.3 Management of the re-mapping tables .. 15

5.3.1 R400 Constant management .. 15

5.3.2 Proposal for R400LE constant management .. 15

5.3.3 Dirty bits .. 17

5.3.4 Free List Block .. 17

5.3.5 De-allocate Block .. 18

5.3.6 Operation of Incremental model .. 18
5.4 Constant Store Indexing ... 18
5.5 Real Time Commands.. 19
5.6 Constant Waterfalling ... 19
6. LOOPING AND BRANCHES ... 20
6.1 The controlling state. .. 20
6.2 The Control Flow Program ... 20

6.2.1 Control flow instructions table ... 21
6.3 Implementation ... 23
6.4 Data dependant predicate instructions ... 24
6.5 HW Detection of PV,PS ... 25
6.6 Register file indexing .. 25
6.7 Debugging the Shaders ... 2625

6.7.1 Method 1: Debugging registers ... 26

6.7.2 Method 2: Exporting the values in the GPRs .. 26
7. PIXEL KILL MASK .. 26
8. MULTIPASS VERTEX SHADERS (HOS) .. 26
9. REGISTER FILE ALLOCATION .. 2726
10. FETCH ARBITRATION .. 28
11. ALU ARBITRATION .. 28
12. HANDLING STALLS ... 29
13. CONTENT OF THE RESERVATION STATION FIFOS ... 29
14. THE OUTPUT FILE.. 29
15. IJ FORMAT .. 29
15.1 Interpolation of constant attributes .. 29
16. STAGING REGISTERS ... 30

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 998 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

17. THE PARAMETER CACHE ... 31
17.1 Export restrictions ... 32

17.1.1 Pixel exports: .. 32

17.1.2 Vertex exports: ... 32

17.1.3 Pass thru exports: .. 32
17.2 Arbitration restrictions ... 32
18. EXPORT TYPES .. 32
18.1 Vertex Shading .. 32
18.2 Pixel Shading .. 33
19. SPECIAL INTERPOLATION MODES ... 33
19.1 Real time commands .. 33
19.2 Sprites/ XY screen coordinates/ FB information .. 33
19.3 Auto generated counters ... 34

19.3.1 Vertex shaders ... 34

19.3.2 Pixel shaders .. 34
20. STATE MANAGEMENT .. 35
20.1 Parameter cache synchronization ... 35
21. XY ADDRESS IMPORTS ... 35
21.1 Vertex indexes imports .. 35
22. REGISTERS .. 35

23. INTERFACES .. 36

23.1 External Interfaces .. 36
23.2 SC to SP Interfaces ... 36

23.2.1 SC_SP# ... 36

23.2.2 SC_SQ ... 37

23.2.3 SQ to SX(SP): Interpolator bus .. 39

23.2.4 SQ to SP: Staging Register Data ... 39

23.2.5 VGT to SQ : Vertex interface .. 39

23.2.6 SQ to SX: Control bus .. 42

23.2.7 SX to SQ : Output file control ... 42

23.2.8 SQ to TP: Control bus .. 43

23.2.9 TP to SQ: Texture stall ... 43

23.2.10 SQ to SP: Texture stall ... 44

23.2.11 SQ to SP: GPR and auto counter .. 44

23.2.12 SQ to SPx: Instructions .. 45

23.2.13 SP to SQ: Constant address load/ Predicate Set/Kill set ... 46

23.2.14 SQ to SPx: constant broadcast .. 46

23.2.15 SQ to CP: RBBM bus ... 46

23.2.16 CP to SQ: RBBM bus ... 46

23.2.17 SQ to CP: State report ... 47
23.3 Example of control flow program execution .. 47

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 999 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

R400 Sequencer Specification PAGE

4 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24. OPEN ISSUES ... 51

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1000 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

 Changed the control flow method to be more
flexible. Also updated the external interfaces.

Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

 Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001

 Refined interfaces to RB. Added state registers.

Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

 Added SEQ→SP0 interfaces. Changed delta
precision. Changed VGT→SP0 interface. Debug
Methods added.

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001

 Interfaces greatly refined. Cleaned up the spec.

Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001

 Added the different interpolation modes.

Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

 Added the auto incrementing counters. Changed
the VGT→SQ interface. Added content on constant
management. Updated GPRs.

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

 Removed from the spec all interfaces that weren’t
directly tied to the SQ. Added explanations on
constant management. Added PA→SQ
synchronization fields and explanation.

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

 Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002

 Added Real Time parameter control in the SX
interface. Updated the control flow section.

Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

 New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002

 Rearangement of the CF instruction bits in order to
ensure byte alignement.

Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002

 Updated the interfaces and added a section on
exporting rules.

Rev 1.11 (Laurent Lefebvre)
Date : April 19, 2002

 Added CP state report interface. Last version of the
spec with the old control flow scheme

Rev 2.0 (Laurent Lefebvre)
Date : April 19, 2002

 New control flow scheme

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1001 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

R400 Sequencer Specification PAGE

6 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Rev 2.01 (Laurent Lefebvre)
Date : May 2, 2002

 Changed slightly the control flow instructions to
allow force jumps and calls.

Rev 2.02 (Laurent Lefebvre)
Date : May 13, 2002

 Updated the Opcodes. Added type field to the
constant/pred interface. Added Last field to the
SQ→SP instruction load interface.

Rev 2.03 (Laurent Lefebvre)
Date : July 15, 2002

 SP interface updated to include predication
optimizations. Added the predicate no stall
instructions,

Rev 2.04 (Laurent Lefebvre)
Date :August 2, 2002

 Documented the new parameter generation scheme
for XY coordinates points and lines STs.

Rev 2.05 (Laurent Lefebvre)
Date : September 10, 2002

 Some interface changes and an architectural
change to the auto-counter scheme.

Rev 2.06 (Laurent Lefebvre)
Date : October 11, 2002

 Widened the event interface to 5 bits. Some other
little typos corrected.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1002 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1. Overview
The sequencer chooses two ALU threads and a fetch hread to execute, and executes all of the instructions in a block
before looking for a new clause of the same type. Two ALU threads are executed interleaved to hide the ALU latency.
The arbitrator will give priority to older threads. There are two separate reservation stations, one for pixel vectors and
one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1003 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

R400 Sequencer Specification PAGE

8 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ

SC

SPSPSPCSTOREFETCH STATE

TP

INST STORE

IJ CONTROL

IJ
CONTROL

CST
ADDR

INST
 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/QUAD
ADDRESSES

SP

ALU INST

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

INST

INTER INTER INTER INTER

IJ CROSSBAR

2 QUADS IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC READ
 POINTERS

PARAM
DATA

R/W ADDR

Vertex indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

CP

CONSTANT
LOAD

CPConstant Load

TX ADDR

PC Write
Address

TEX INST

CF
CONSTANTS

Register
Mapped

CF Read

Figure 1: General Sequencer overview

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1004 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.1 Top Level Block Diagram

ALU Texture

VTX RS PIX RS

Exec Arbiter

Input Arbiter

Figure 2: Reservation stations and arbiters

Under this new scheme, the sequencer (SQ) will only use one global state management machine per vector type
(pixel, vertex) that we call the reservation station (RS).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1005 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

R400 Sequencer Specification PAGE

10 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.2 Data Flow graph (SP)

MAC

MAC

MAC

MAC

Register File

co
n

st
an

ts
 f

ro
m

 R
E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
n

ts
 f

ro
m

 R
E

S
ca

la
r

U
ni

t

texture request

texture request

texture request

texture request

te
xt

ur
e

 a
dd

re
ss

te xtu
re

 d
ata

prim
itiv e d a

ta
 from

 R
E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

Figure 3: The shader Pipe

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1006 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

SEQ

FETCH SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

OF

WrAddrIS CST

CST IDX

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1007 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

R400 Sequencer Specification PAGE

12 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x100 bits)

IJs buffer (ping-pong buffer)
(25 bits * 8 (IJ) * 4 * 4 * 4 (quadruple-buffered)

12800 bits

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

100

To RB

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2

768 bits
32x24

FIX-FLOAT + EXPANSiON

Figure 5: Interpolation buffers

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1008 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SP
0

SP
1

SP
2

SP
3

WRITES
T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-
11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P1 P2

T20 T21 T22 T23

VTX

T0 T1 T2 T3

XY

XY
0-3

XY
4-7

XY
8-
11

XY
12-
15

XY
16-
19

XY
20-
23

XY
24-
27

XY
28-
31

XY
32-
35

XY
36-
39

XY
40-
43

XY
44-
47

XY
48-
51

XY
52-
55

XY
56-
59

XY
60-
63

READS

SP
0

SP
1

SP
2

SP
3

A0

A1

A2

B1

B0

C3

C0

C1

C2

C4

C5

D0

D1

D2

E0

E1

A0

A1

A2

XY
A0
XY
A1
XY
A2

B1

B0

XY
B1

XY
B0

C3

C0

C1

C2

XY
C3
XY
C0
XY
C1
XY
C2

C4

C5

XY
C4
XY
C5

D0

D1

D2

XY
D1
XY
D2

XY
D0

E0

E1
XY
E1

XY
E0

Figure 6: Interpolation timing diagram

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1009 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

R400 Sequencer Specification PAGE

14 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store
There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4. Sequencer Instructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1010 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

5.2 Management of the Control Flow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied whenever there is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn’t write to CF the state is going to use the previous CF constants.

5.3 Management of the re-mapping tables

5.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROL packet of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it with
the new state (this is depicted in Figure 8: De-allocation mechanismFigure 8: De-allocation mechanismFigure 8: De-
allocation mechanism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1011 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

R400 Sequencer Specification PAGE

16 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Physical
Memory

Renaming Table
for 1 Context
Current/Last

Physical
Address

per
Logical
Address

Renaming
table

N-Contexts

Reset
Dirty
per

Logical
Address

(Only
de-

allocate
if set)

This
Context

Dirty
per

Logical
Address

(If set
don't

allocate
or de-

allocate)

Logical address
On the

GlbRegBus
when lsb are zero
first word of write

next
physical
address
ready

for allocate

Constants
location
available
WRTR

physical
address

to
schedule

for
de-alloc

Staging Data
Buffer

Staging Write Addr

Copy Last held above to
Current Context on receipt

of Set Constant for a
new context (Hide loading

behind Set State load - 16 clocks)
all other Set States just write one

entry to current state.

Free
list

(pass Phys
Address if
Context
Dirty)

Dealloc
Counts

Seq
Constant
Request

Context &
Logical
Address

Free_ptr
WritePtr

When a Logical
Address is written

that has been
written before,

store the physical
address that was
allocated by that
Logical Address

Stop_ptr
ptr to first physical

address that is
scheduled to be de-
allocated but noty
yet de-allocate.

Advanced each time
a context is freed by

the number of
physical address
displaced by that

Context

Read_ptr
ptr to physical

address that will be
used next if the init

count is at
maximum number

of physical address

Free List

Number of entries
equals Max Number of
Physical Blocks. All
Pointers start at zero
and roll around but

can never pass each
other

Free
Address

Address
to Allocate

Global Register
Data Bus

Renaming Table
Context 0 => N

Logical Address
& Context

Physical
Address

Context 0 (8 rows of 16 - 8 bit
physical => 128 entries copy in

eight clocks)

Context 1

Context N

Current/Last
Context

(8 rows of 16 - 8
bit physical =>

128 entries copy
in eight clocks)

Figure 7: Constant management

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1012 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

DEALOC
COUNTERSFree List

!=

OR

AND

NOT

ADDR

PREVIOUS
STATE

NEW
STATE

SQ_IDLE

CP_NEW_STATE_CNTL
PA_IDLE

VALUE

VALID

CNT VALUE

SQ_STATE#

WRITE_ENABLE

REMAPPING
TABLE

SET CTX BITS

Figure 8: De-allocation mechanism for R400LE

5.3.3 Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block
A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1013 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

R400 Sequencer Specification PAGE

18 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

5.3.5 De-allocate Block
This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any number of blocks in one clock.

5.3.6 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1014 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

5.5 Real Time Commands
The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
works is the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zones is defined by the TSTATE_EO_RT control register.

5.6 Constant Waterfalling
In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenever a state is freed.

CONST_EO_RT

RT SECTON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table)

Figure 9: The Constant store

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1015 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

R400 Sequencer Specification PAGE

20 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
We'd like to be able to code up a program of the form:

1: Loop
2: Exec TexFetch
3: TexFetch
4: ALU
5: ALU
6: TexFetch
7: End Loop
8: ALU Export

But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3:. Without clausing,
these dependencies need to be expressed in the Control Flow instructions. Additionally, without separate 'texture
clauses' and 'ALU clauses' we need to know which instructions to dispatch to the Texture Unit and which to the ALU
unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of information for each (non-control flow) instruction:
 a) ALU or Texture
 b) Serialize Execution

(b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched. Given the allocation of reserved bits, this would mean that the count of an 'Exec' instruction
would be limited to about 8 (non-control-flow) instructions. If more than this were needed, a second Exec (with the
same conditions) would be issued.

Another function that relies upon 'clauses' is allocation and order of execution. We need to assure that pixels and
vertices are exported in the correct order (even if not all execution is ordered) and that space in the output buffers are
allocated in order. Additionally data can't be exported until space is allocated. A new control flow instruction:

 Alloc <buffer select -- position,parameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual
allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already
completed. The implementation would also assure that execution of instruction(s) following the serialization due to the
Alloc will occur in order -- at least until the next serialization or change from ALU to Texture. In most cases this will
allow the exports to occur without any further synchronization. Only 'final' allocations or position allocations are

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1016 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

guaranteed to be ordered. Because strict ordering is required for pixels, parameters and positions, this implies only
a single alloc for these structures. Vertex exports to memory do not require ordering during allocation and so multiple
'allocs' may be done.

6.2.1 Control flow instructions table
Here is the revised control flow instruction set.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

NOP
47 … 44 43 42 … 0

0000 Addressing RESERVED

This is a regular NOP.

Execute
47 … 44 43 40 … 34 33 …16 15…12 11 … 0

0001 Addressing RESERVED Instructions type + serialize (9
instructions)

Count Exec Address

Execute_End

47 … 44 43 40 … 34 33 …16 15…12 11 … 0
0010 Addressing RESERVED Instructions type + serialize (9

instructions)
Count Exec Address

Execute up to 9 instructions at the specified address in the instruction memory. The Instruction type field tells the
sequencer the type of the instruction (LSB) (1 = Texture, 0 = ALU and whether to serialize or not the execution (MSB)
(1 = Serialize, 0 = Non-Serialized). If Execute_End this is the last execution block of the shader program.

Conditional_Execute

47 … 44 43 42 41 … 34 33…16 15 …12 11 … 0
0011 Addressing Condition Boolean

address
Instructions type + serialize (9

instructions)
Count Exec Address

Conditional_Execute_End

47 … 44 43 42 41 … 34 33…16 15 …12 11 … 0
0100 Addressing Condition Boolean

address
Instructions type + serialize (9

instructions)
Count Exec Address

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 9 instructions). If the condition is not met, we go on to the next control flow instruction. If
Conditional_Execute_End and the condition is met, this is the last execution block of the shader program.

Conditional_Execute_Predicates
47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0

0101 Addressing Condition RESERVED Predicate
vector

Instructions
type + serialize
(9 instructions)

Count Exec Address

Conditional_Execute_Predicates_End

47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0
0110 Addressing Condition RESERVED Predicate

vector
Instructions

type + serialize
(9 instructions)

Count Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid. If the

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1017 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

R400 Sequencer Specification PAGE

22 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

condition is not met, we go on to the next control flow instruction. If Conditional_Execute_Predicates_End and the
condition is met, this is the last execution block of the shader program.

Conditional_Execute_Predicates_No_Stall
47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0

1101 Addressing Condition RESERVED Predicate
vector

Instructions
type + serialize
(9 instructions)

Count Exec Address

Conditional_Execute_Predicates_No_Stall_End

47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0
1110 Addressing Condition RESERVED Predicate

vector
Instructions

type + serialize
(9 instructions)

Count Exec Address

Same as Conditionnal_Execute_Predicates but the SQ is not going to wait for the predicate vector to be updated.
You can only set this in the compiler if you know that the predicate set is only a refinement of the current one (like a
nested if) because the optimization would still work.

Loop_Start
47 … 44 43 42 … 21 20 … 16 15…12 11 … 0

0111 Addressing RESERVED loop ID RESERVED Jump address

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Loop_End
47 … 44 43 42 … 24 23… 21 20 … 16 15…12 11 … 0

1000 Addressing RESERVED Predicate break loop ID RESERVED start address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop. If predicate break != 0, then compares predicate vector n
(specified by predicate break number). If all bits cleared then break the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal_Call
47 … 44 43 42 41 … 34 33 … 13 12 11 … 0

1001 Addressing Condition Boolean address RESERVED Force Call Jump address

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack. If
force call is set the condition is ignored and the call is made always.

Return
47 … 44 43 42 … 0

1010 Addressing RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump
47 … 44 43 42 41… 34 33 32 … 13 12 11 … 0

1011 Addressing Condition Boolean
address

FW only RESERVED Force Jump Jump address

If force jump is set the condition is ignored and the jump is made always. If FW only is set then only forward jumps
are allowed.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1018 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Allocate

47 … 44 43 42…41 40 … 3 2…0
1100 Debug Buffer Select RESERVED Size

Buffer Select takes a value of the following:
01 – position export (ordered export)
10 – parameter cache or pixel export (ordered export)
11 – pass thru (out of order exports).

Size field is only used to reserve space in the export buffer for pass thru exports. Valid values are 1 (1 line) thru 9 (9
lines). It should be determined by the compiler/assembler by taking max index used +1.

If debug is set this is a debug alloc (ignore if debug DB_ON register is set to off).

6.3 Implementation

The envisioned implementation has a buffer that maintains the state of each thread. A thread lives in a given
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the order that they
enter. Actually two buffers are maintained -- one for Vertices and one for Pixels. The intended implementation
would allow for:

16 entries for vertices
48 entries for pixels.

From each buffer, arbitration logic attempts to select 1 thread for the texture unit and 1 (interleaved) thread for the
ALU unit. Once a thread is selected it is read out of the buffer, marked as invalid, and submitted to appropriate
execution unit. It is returned to the buffer (at the same place) with its status updated once all possible sequential
instructions have been executed. A switch from ALU to TEX or visa-versa or a Serialize_Execution modifier forces
the thread to be returned to the buffer.

Each entry in the buffer will be stored across two physical pieces of memory - most bits will be stored in a 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed 'state'. The bits kept in the multi-read ported device will be termed 'status'.

'State Bits' needed include:

1. Control Flow Instruction Pointer (13 bits),
2. Execution Count Marker 4 bits),
3. Loop Iterators (4x9 bits),
4. Call return pointers (4x12 bits),
5. Predicate Bits (64 bits),
6. Export ID (1 bit),
7. Parameter Cache base Ptr (7 bits),
8. GPR Base Ptr (8 bits),
9. Context Ptr (3 bits).
10. LOD corrections (6x16 bits)
11. Valid bits (64 bits)
12. RT (1 bit) Signifies that this thread is a Real Time thread. This bit must be sent to the Constant store state

machine when reading it.

Absent from this list are 'Index' pointers. These are costly enough that I'm presuming that they are instead stored in
the GPRs. The first seven fields above (Control Flow Ptr, Execution Count, Loop Counts, call return ptrs, Predicate
bits, PC base ptr and export ID) are updated every time the thread is returned to the buffer based on how much
progress has been mode on thread execution. GPR Base Ptr, Context Ptr and LOD corrections are unchanged
throughout execution of the thread.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1019 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

R400 Sequencer Specification PAGE

24 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

'Status Bits' needed include:

 Valid Thread
 Texture/ALU engine needed
 Texture Reads are outstanding
 Waiting on Texture Read to Complete
 Allocation Wait (2 bits)
 00 – No allocation needed
 01 – Position export allocation needed (ordered export)
 10 – Parameter or pixel export needed (ordered export)
 11 – pass thru (out of order export)
 Allocation Size (4 bits)
 Position Allocated
 Mem/Color Allocated
 First thread of a new context
 Event thread (NULL thread that needs to trickle down the pipe)
 Last (1 bit)
 Pulse SX (1 bit)

All of the above fields from all of the entries go into the arbitration circuitry. The arbitration circuitry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -- one for
pixels and one for vertices. A final selection is then done between the two. But the rest of this implementation
summary only considers the 'first' level selection which is similar for both pixels and vertices.

Texture arbitration requires no allocation or ordering so it is purely based on selecting the 'oldest' thread that requires
the Texture Engine.

ALU arbitration is a little more complicated. First, only threads where either of Texture_Reads_outstanding or
Waiting_on_Texture_Read_to_Complete are '0' are considered. Then if Allocation_Wait is active, these threads are
further filtered based on whether space is available. If the allocation is position allocation, then the thread is only
considered if all 'older' threads have already done their position allocation (position allocated bits set). If the
allocation is parameter or pixel allocation, then the thread is only considered if it is the oldest thread. Also a thread is
not considered if it is a parameter or pixel or position allocation, has its First_thread_of_a_new_context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the 'oldest' of the threads that pass through the above filters is selected. If the thread needed to allocate, then
at this time the allocation is done, based on Allocation_Size. If a thread has its “last” bit set, then it is also removed
from the buffer, never to return.

If I now redefine 'clauses' to mean 'how many times the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine', then the minimum number of clauses needed is 2 -- one to perform
the allocation for exports (execution automatically halts after an 'Alloc' instruction) (but doesn't performs the actual
allocation) and one for the actual ALU/export instructions. As the 'Alloc' instruction could be part of a texture clause
(presumably the final instruction in such a clause), a thread could still execute in this minimal number of 2 clauses,
even if it involved texture fetching.

The Texture_Reads_Outstanding bit must be updated by the sequencer, based on keeping track of how many
Texture Clauses have been executed by a given thread that have not yet had there data returned. Any number
above 0 results in this bit being set. We could consider forcing synchronization such that two texture clauses for a
given thread may not be outstanding at any time (that would be my preference for simplicity reasons and because it
would require only very little change in the texture pipe interface). This would allow the sequencer to set the bit on
execution of the texture clause, and allow the texture unit to return a pointer to the thread buffer on completion that
clears the bit.

6.4 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1020 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

PRED_SETE_# - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETNE_# - similar to SETNE except that the result is 'exported' to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE0_# – SETE0
 PRED_SETE1_# – SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

 P0_ADD_# R0,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

6.5 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

6.6 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

The sequencer is going to keep a loop index computed as such:

 Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128…127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1021 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

R400 Sequencer Specification PAGE

26 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
 - jump errors
 relative jump address > size of the control flow program
 - call stack
 call with stack full

return with stack empty

A jump error will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only break if
the DB_PROB_BREAK register is set.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the 0th
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs
1) The sequencer will have a debug active, count register and an address register for this mode.

Under the normal mode execution follows the normal course.

Under the debug mode it is assumed that the program is always exporting n debug vectors and that all other exports
to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by the sequencer (even if they occur
before the address stated by the ADDR debug register).

7. Pixel Kill Mask
A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE

 MASK_SETGT
 MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1022 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZE for pixels.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1023 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

R400 Sequencer Specification PAGE

28 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

10. Fetch Arbitration
The fetch arbitration logic chooses one of the n potentially pending fetch clauses to be executed. The choice is made
by looking at the Vs and Ps reservation stations and picking the first one ready to execute. Once chosen, the clause
state machine will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two fetches of the
same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration
ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
n potentially pending ALU clauses to be executed. The choice is made by looking at the Vs and Ps reservation
stations and picking the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for
the odd clocks. For example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and
Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1024 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering an exporting clause. The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs
The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). All pixel’s parameters are always interpolated at full 20x24 mantissa precision.

)(*)3()(*)3(3

)(*)2()(*)2(2

)(*)1()(*)1(1

)(*)0()(*)0(0

ACJABIAP

ACJABIAP

ACJABIAP

ACJABIAP

Multiplies (Full Precision): 8
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF P’s IJ : Mantissa 20 Exp 4 for I + Sign
 Mantissa 20 Exp 4 for J + Sign

Total number of bits : 20*8 + 4*8 + 4*2 = 200.

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the number is
normalized if not, then the number is un-normalized. The maximum range for the IJs (Full precision) is +/- 1024.

15.1 Interpolation of constant attributes
Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the terms are the same.

P0

P2

P1

P3

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1025 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

R400 Sequencer Specification PAGE

30 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 || 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencer will re-arrange them in this fashion:

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 || 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 || 8 9 10 11 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the SQ is responsible to insert padding to
account for the missing pipe. For example, if SP1 is broken, vertices 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will
not be sent by the VGT to the SQ AND the SQ is responsible to “jump” over these vertices in order for no valid
vertices to be sent to an invalid SP.

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 11Figure 11Figure 11. The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure 10Figure 10Figure 10.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11631 60.57813per bit

Area of 96x8-deep Latch Memory 46524

Area of 24-bit Fix-to-float Converter 4712per converter

Method 1 Block Quantity Area

 F2F 3 14136

 8x96 Latch 16 744384

 758520

Figure 10:Area Estimate for VGT to Shader Interface

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1026 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SHADER PIPE

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

3
2

3
2

3
2

VGT BLOCK
(IN PA)

3
2

9
6

VECTOR ENGINE

96

8x96
MEMORY
1-READ
1-WRITE

3 OTHER
SHADER
PIPES

 3 Fix->Float Converters (24-bit)
 16 Memories 8x96-bit (12,288 bits)

Totals:

THREE MORE VECTOR ENGINES
PER SHADER PIPE

VECTOR ENGINE

SHADER
SEQUENCER

Figure 11:VGT to Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER
4 bits

ADDRESS
7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17th) is going to have the address 00000001000, the 18th 00010001000, the 19th 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*VS_EXPORT_COUNT to
Current_Location and reset the memory count to 0 before the next vector begins).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1027 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

R400 Sequencer Specification PAGE

32 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

17.1 Export restrictions

17.1.1 Pixel exports:
Pixels can export 1,2,3 or 4 color buffers to the SX(+z). The exports will be done in order. The PRED_OPTIMIZE
function has to be turned of if the exports are done using interleaved predicated instructions. The exports will always
be ordered to the SX.

17.1.2 Vertex exports:
Position or parameter caches can be exported in any order in the shader program. It is always better to export
posistion as soon as possible. Position has to be exported in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be done in any order with texture instructions interleaved.
The PRED_OPTIMIZE function has to be turned of if the exports are done using interleaved predicated instructions to
the Parameter cache (see Arbitration restrictions for details). The exports will always be allocated in order to the SX.

17.1.3 Pass thru exports:
Pass thru exports have to be done in groups of the form:

Alloc 4 (8 or 12)
Execute ALU(ADDR) ALU(DATA) ALU(DATA) ALU(DATA)…

They cannot have texture instructions interleaved in the export block. These exports are not guaranteed to be
ordered.

Also, when doing a pass thru export, Position MUST be exported AFTER all pass thru exports. This position export is
used to synchronize the chip when doing a transition from pass thru shader to regular shader and vice versa.

17.2 Arbitration restrictions
Here are the Sequencer arbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texture pending bit is set
2) Cannot allocate position if any older thread has not allocated position
3) If last thread is marked as not valid AND marked as last and we are about to execute the second to oldest

thread also marked last then:
a. Both threads must be from the same context (cannot allow a first thread)
b. Must turn off the predicate optimization for the second thread

4) Cannot execute a texture clause if texture reads are pending
5) Cannot execute last if texture pending (even if not serial)

18. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

18.1 Vertex Shading
 0:15 - 16 parameter cache
 16:31 - Empty (Reserved?)

32 - Export Address
 33:41 37 - 9 5 vertex exports to the frame buffer and index
 4238:47 - Empty
 48:5525 - 8 5 debug export (interpret as normal vertex memory export)
 60 - export addressing mode
 61 - Empty
 62 - position

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1028 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

33 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 63 - sprite size export that goes with position export
 (X= point size, Y= edge flag is bit 0, Z= VtxKill is bitwise OR of bits 30:0. Any bit other than
sign means VtxKill.)

18.2 Pixel Shading
 0 - Color for buffer 0 (primary)
 1 - Color for buffer 1
 2 - Color for buffer 2
 3 - Color for buffer 3
 4:15 - Empty
 16 - Buffer 0 Color/Fog (primary)
 17 - Buffer 1 Color/Fog
 18 - Buffer 2 Color/Fog
 19 - Buffer 3 Color/Fog
 20:31 - Empty
 32 - Export Address
 33:4137 - 9 5 exports for multipass pixel shaders.
 4238:47 - Empty
 48:5525 - 85 debug exports (interpret as normal pixel memory export)

60 - export addressing mode
61 - Z for primary buffer (Z exported to 'alpha' component)

 62:63 - Empty

19. Special Interpolation modes

19.1 Real time commands
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem I see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft’s high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This mode is triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

19.2 Sprites/ XY screen coordinates/ FB information
XY screen coordinates may be needed in the shader program. This functionality is controlled by the param_gen_I0
register (in SQ) in conjunction with the SND_XY register (in SC) and the param_gen_pos. Also it is possible to send
the faceness information (for OGL front/back special operations) to the shader using the same control register. Here
is a list of all the modes and how they interact together:

The Data is going to be written in the register specified by the param_gen_pos register.

Param_Gen_I0 disable, snd_xy disable = No modification
Param_Gen_I0 disable, snd_xy enable = No modification
Param_Gen_I0 enable, snd_xy disable = Sign(faceness)garbage,(Sign Point)garbage,Sign(Line)s, t
Param_Gen_I0 enable, snd_xy enable = Sign(faceness)screenX,(Sign Point)screenY,Sign(Line)s, t

In other words,

The generated vector is (X in RED, Y in GREEN, S in BLUE and T in ALPHA):
X,Y,S,T

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1029 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

R400 Sequencer Specification PAGE

34 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

These values are always supposed to be positive and any shader use of them should use the ABS function
(as their sign bits will now be used for flags).
SignX = BackFacing
SignY = Point Primitive
SignS = Line Primitive
SignT = currently unused as a flag.

If !Point & !Line, then it is a Poly.

I would assume that one implementation which allows for generic texture lookup (using 3D maps) for poly
stipple and AA for the driver would be
if(Y<0) {
 R = 0.0 (Point)
} else if (S < 0) {
 R = 1.0 (Line)
} else {
 R = 2.0 (Poly)

}

19.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1st pass data to memory and then use the count to retrieve the data on the 2nd pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX_PIX/VTX register. The sequencer
is going to keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is
written to the GPRs the counter is incremented. Every time a RST_PIX_COUNT or RST_VTX_COUNT events are
received, the corresponding counter is reset. While there is only one count broadcast to the GPRs, the LSB are
hardwired to specific values making the index different for all elements in the vector. Since the count must be different
for all pixels/vertices and the 4 LSBs (16 positions) are hardwired to the corresponding shader unit the SQ has two
choices:

1) Maintain a 19 bit counter that counts the vectors of 64. In this case the phase must be appended to the count
before the count is broadcast to the SPs:

Counter (19 bits) Phase (2 bits) Hardwired (4 bits)

2) Maintain a 21 bits counter that counts sub-vectors of 16. In this case only the counter is sent to the Sps:

Counter (21 bits) HarwiredHardwired (4 bits)

19.3.1 Vertex shaders
In the case of vertex shaders, if GEN_INDEX_VTX is set, the data will be put into the x field of the third register (it
means that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

19.3.2 Pixel shaders
In the case of pixel shaders, if GEN_INDEX_PIX is set, the data will be put in the x field of the param_gen_pos+1
register.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1030 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

35 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

AUTO
COUNT

STG 0

STG1

INTERPOLATORS

GPR0

AUTO COUNT 000000

MUX

The Auto Count Value is
broadcast to all GPRs. It is

loaded into a register wich has
its LSBs hardwired to the

GPR number (0 thru 63). Then
if GEN_INDEX is high, the
mux selects the auto-count

value and it is loaded into the
GPRs to be either used to

retrieve data using the TP or
sent to the SX for the RB to

use it to write the data to
memory

Figure 12: GPR input mux Control

20. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

20.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

21. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix→float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 19.2 for details on how to control the interpolation in this mode.

21.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

22. Registers
Please see the auto-generated web pages for register definitions.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1031 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

R400 Sequencer Specification PAGE

36 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23. Interfaces

23.1 External Interfaces
Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ→SPx it means that SQ is going to broadcast the same information to all SP instances.

23.2 SC to SP Interfaces

23.2.1 SC_SP#
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the I,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data which is transferred per quad is
 Ref Pix I => S4.20 Floating Point I value *4
 Ref Pix J => S4.20 Floating Point J value *4

This equates to a total of 200 bits which transferred over 2 clocks
and therefor needs an interface 100 bits wide

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a IJ_BUF_INUSE_COUNT in the SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNT count. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2, if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of I,J data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,SQ and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple mode first with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performance hit.)

Name Bits Description
SC_SP#_data 100 IJ information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bit)

Type 0 or 1, First clock I, second clk J
Field ULC URC LLC LRC
 Bits [63:39] [38:26] [25:13] [12:0]
Format SE4M20 SE4M20 SE4M20 SE4M20
Type 2
Field Face X Y
 Bits [24] [23:12] [11:0]
Format Bit Unsigned Unsigned

SC_SP#_valid 1 Valid
SC_SP#_last_quad_data 1 This bit will be set on the last transfer of data per quad.
SC_SP#_type 2 0 -> Indicates centroids

1 -> Indicates centers
2 -> Indicates X,Y Data and faceness on data bus
The SC shall look at state data to determine how many types to send for the

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1032 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

37 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP block will have neither because the instantiation will insert the prefix.

23.2.2 SC_SQ
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 108 bits) could be folded in half to approx 54
bits.

Name Bits Description
SC_SQ_data 46 Control Data sent to the SQ

1 clk transfers
 Event – valid data consist of event_id and
 state_id. Instruct SQ to post an
 event vector to send state id and
 event_id through request fifo
 and onto the reservation stations
 making sure state id and/or event_id
 gets back to the CP. Events only
 follow end of packets so no pixel
 vectors will be in progress.

 Empty Quad Mask – Transfer Control data
 consisting of pc_dealloc
 or new_vector. Receipt of this is to
 transfer pc_dealloc or new_vector
 without any valid quad data. New
 vector will always be posted to
 request fifo and pc_dealloc will be
 attached to any pixel vector
 outstanding or posted in request fifo
 if no valid quad outstanding.
2 clk transfers
 Quad Data Valid – Sending quad data with or
 without new_vector or pc_dealloc.
 New vector will be posted to request
 fifo with or without a pixel vector and
 pc_dealloc will be posted with a pixel
 vector unless none is in progress. In
 this case the pc_dealloc will be
 posted in the request queue.
 Filler quads will be transferred with
 The Quad mask set but the pixel
 corresponding pixel mask set to
 zero.

SC_SQ_valid 1 SC sending valid data, 2nd clk could be all zeroes

SC_SQ_data – first clock and second clock transfers are shown in the table below.

Name BitField Bits Description

1st Clock Transfer
SC_SQ_event 0 1 This transfer is a 1 clock event vector Force quad_mask =

new_vector=pc_dealloc=0
SC_SQ_event_id [45:1] 4 This field identifies the event 0 => denotes an End Of State Event 1

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1033 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

R400 Sequencer Specification PAGE

38 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

=> TBD
SC_SQ_state_id [78:65] 3 State/constant pointer (6*3+3)
SC_SQ_pc_dealloc [1011:8

9]
3 Deallocation token for the Parameter Cache

SC_SQ_new_vector 1112 1 The SQ must wait for Vertex shader done count > 0 and after
dispatching the Pixel Vector the SQ will decrement the count.

SC_SQ_quad_mask [1516:1
213]

4 Quad Write mask left to right SP0 => SP3

SC_SQ_end_of_prim 1617 1 End Of the primitive
SC_SQ_pix_mask [3233:1

718]
16 Valid bits for all pixels SP0=>SP3 (UL,UR,LL,LR)

SC_SQ_provok_vtx [3435:3
334]

2 Provoking vertex for flat shading

SC_SQ_lod_correct_0 [4344:3
536]

9 LOD correction for quad 0 (SP0) (9 bits per quad)

SC_SQ_lod_correct_1 [5253:4
445]

9 LOD correction for quad 1 (SP1) (9 bits per quad)

2nd Clock Transfer
SC_SQ_lod_correct_2 [8:0] 9 LOD correction for quad 2 (SP2) (9 bits per quad)
SC_SQ_lod_correct_3 [17:9] 9 LOD correction for quad 3 (SP3) (9 bits per quad)
SC_SQ_pc_ptr0 [28:18] 11 Parameter Cache pointer for vertex 0
SC_SQ_pc_ptr1 [39:29] 11 Parameter Cache pointer for vertex 1
SC_SQ_pc_ptr2 [50:40] 11 Parameter Cache pointer for vertex 2
SC_SQ_prim_type [53:51] 3 Stippled line and Real time command need to load tex cords from

alternate buffer
000: Sprite (point)
001: Line
010: Tri_rect
100: Realtime Sprite (point)
101: Realtime Line
110: Realtime Tri_rect

Name Bits Description
SQ_SC_free_buff 1 Pipelined bit that instructs SC to decrement count of buffers in use.
SQ_SC_dec_cntr_cnt 1 Pipelined bit that instructs SC to decrement count of new vector and/or event

sent to prevent SC from overflowing SQ interpolator/Reservation request fifo.

The scan converter will submit a partial vector whenever:

1.) He gets a primitive marked with an end of packet signal.
2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been

marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal made it through and thus the hang.)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1034 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

39 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.3 SQ to SX(SP): Interpolator bus
Name Direction Bits Description
SQ_SPx_interp_flat_vtx SQ→SPx 2 Provoking vertex for flat shading
SQ_SPx_interp_flat_gouraud SQ→SPx 1 Flat or gouraud shading
SQ_SPx_interp_cyl_wrap SQ→SPx 4 Wich channel needs to be cylindrical wrapped
SQ_SPx_interp_param_gen SQ→SPx 1 Generate Parameter
SQ_SPx_interp_prim_type SQ→SPx 2 Bits [1:0] of primitive type sent by SC
SQ_SPx_interp_buff_swap SQ→SPx 1 Swapp IJ buffers
SQ_SPx_interp_IJ_line SQ→SPx 2 IJ line number
SQ_SPx_interp_mode SQ→SPx 1 Center/Centroid sampling
SQ_SXx_pc_ptr0 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr1 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr2 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_rt_sel SQ→SXx 1 Selects between RT and Normal data (Bit 2 of prim type)
SQ_SX0_pc_wr_en SQ→SX0 8 Write enable for the PC memories
SQ_SX1_pc_wr_en SQ→SX1 8 Write enable for the PC memories
SQ_SXx_pc_wr_addr SQ→SXx 7 Write address for the PCs
SQ_SXx_pc_channel_mask SQ→SXx 4 Channel mask
SQ_SXx_pc_ptr_valid SQ→SXx 1 Read pointers are valid.
SQ_SPx_interp_valid SQ→SPx 1 Interpolation control valid

23.2.4 SQ to SP: Staging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.
Name Direction Bits Description
SQ_SPx_vsr_data SQ→SPx 96 Pointers of indexes or HOS surface information
SQ_SPx_vsr_double SQ→SPx 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0_ vsr_valid SQ→SP0 1 Data is valid
SQ_SP1_ vsr_ valid SQ→SP1 1 Data is valid
SQ_SP2_ vsr_ valid SQ→SP2 1 Data is valid
SQ_SP3_ vsr_ valid SQ→SP3 1 Data is valid
SQ_SPx_vsr_read SQ→SPx 1 Increment the read pointers

23.2.5 VGT to SQ : Vertex interface

23.2.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide. In the case where an event is sent the 5 LSBs of VGT_SQ_vsisr_data contain the eventID.

Name Bits Description
VGT_SQ_vsisr_data 96 Pointers of indexes or HOS surface information
VGT_SQ_event 1 VGT is sending an event
VGT_SQ_vsisr_continued 1 0: Normal 96 bits per vert 1: double 192 bits per vert
VGT_SQ_end_of_vtx_vect 1 Indicates the last VSISR data set for the current process vector (for double vector

data, "end_of_vector" is set on the first vector)
VGT_SQ_indx_valid 1 Vsisr data is valid
VGT_SQ_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when

“VGT_SQ_vgt_end_of_vector” is high.
VGT_SQ_send 1 Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_VGT_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

23.2.5.2 Interface Diagrams

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1035 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

R400 Sequencer Specification PAGE

40 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

VGT

VSISR_DATA_2

END_OF_VECTOR_2

STATE_SEL_2

REG

VSISR_DOUBLE_2
REG

REG

REG

REG

REG

SEND_2

REG

REG

REG

REG

REG

REG

PA_SQ_vgt_vsisr_data

PA_SQ_vgt_vsisr_double

PA_SQ_vgt_end_of_vector

PA_SQ_vgt_state_sel

PA_SQ_vgt_send

SQ_PA_vgt_rtr

VSISR_DATA_4

END_OF_VECTOR_4

STATE_SEL_4

VSISR_DOUBLE_4

96

1

1

3

1

1

SEND_4

RTR_2 RTR_0

SHADER
SEQUENCER

RTS

101 X 4
SKID

BUFFER

SRST SRST

WE

EMPTY

RE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1036 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

41 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

6 7

6 7

6 7

0 1 2 3

0 1

8

8

8

2 43 5

4 5 6 7

4 3 2 1

8

9 10 11 12

9 10 11 12

9 10 11 12

9 10 11 12

0

RECEIVER RE-STARTS TRANSMISSION

SENDER STOPS TRANSMISSION

SQ_RTR

SQ_RTR_0

VGT_RTS

SEND_2

SEND_3

SEND_4

DATA_2

FIFO_EMPTY

FIFO_RE

SQ_RTR_1

SQ_RTR_2

DATA_3

DATA_4

FIFO_DATA_OUT

FIFO_CNT

RECEIVER STOPS TRANSMISSION

Figure 1. Detailed Logical Diagram for PA_SQ_vgt Interface.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1037 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

R400 Sequencer Specification PAGE

42 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.6 SQ to SX: Control bus

Name Direction Bits Description
SQ_SXx_exp_type SQ→SXx 2 00: Pixel without z (1 to 4 buffers)

01: Pixel with z (1 to 4 buffers)
10: Position (1 or 2 results)
11: Pass thru (4,8 or 12 results aligned)

SQ_SXx_exp_number SQ→SXx 2 Number of locations needed in the export buffer
(encoding depends on the type see bellow).

SQ_SXx_exp_alu_id SQ→SXx 1 ALU ID
SQ_SXx_exp_valid SQ→SXx 1 Valid bit
SQ_SXx_exp_state SQ→SXx 3 State Context

SQ_SXx_free_done SQ→SXx 1 Pulse that indicates that the previous export is finished
from the point of view of the SP. This does not
necessarily mean that the data has been
transferred to RB or PA, or that the space in export
buffer for that particular vector thread has been
freed up.

SQ_SXx_free_alu_id SQ→SXx 1 ALU ID

Depending on the type the number of export location changes:

 Type 00 : Pixels without Z
o 00 = 1 buffer
o 01 = 2 buffers
o 10 = 3 buffers
o 11 = 4 buffer

 Type 01: Pixels with Z
o 00 = 2 Buffers (color + Z)
o 01 = 3 buffers (2 color + Z)
o 10 = 4 buffers (3 color + Z)
o 11 = 5 buffers (4 color + Z)

 Type 10 : Position export
o 00 = 1 position
o 01 = 2 positions
o 1X = Undefined

 Type 11: Pass Thru
o 00 = 4 buffers
o 01 = 8 buffers
o 10 = 12 buffers
o 11 = Undefined

Below the thick black line is the end of transfer packet that tells the SX that a given export is finished. The report
packet will always arrive either before or at the same time than the next export to the same ALU id.

23.2.7 SX to SQ : Output file control
Name Direction Bits Description
SXx_SQ_exp_count_rdy SXx→SQ 1 Raised by SX0 to indicate that the following two fields

reflect the result of the most recent export
SXx_SQ_exp_pos_avail SXx→SQ 2 Specifies whether there is room for another position.

00 : 0 buffers ready
01 : 1 buffer ready
10 : 2 or more buffers ready

SXx_SQ_exp_buf_avail SXx→SQ 7 Specifies the space available in the output buffers.
0: buffers are full
1: 2K-bits available (32-bits for each of the 64

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1038 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

43 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

pixels in a clause)
...
64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

23.2.8 SQ to TP: Control bus
Once every clock, the fetch unit sends to the sequencer on which RS line it is now working and if the data in the
GPRs is ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequencer also provides the instruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

Name Direction Bits Description
TPx_SQ_data_rdy TPx→ SQ 1 Data ready

TPx_SQ_rs_line_num TPx→ SQ 6 Line number in the Reservation station

TPx_SQ_type TPx→ SQ 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_send SQ→TPx 1 Sending valid data
SQ_TPx_const SQ→TPx 48 Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instr SQ→TPx 24 Fetch instruction sent over 4 clocks
SQ_TPx_end_of_group SQ→TPx 1 Last instruction of the group
SQ_TPx_Type SQ→TPx 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_gpr_phase SQ→TPx 2 Write phase signal
SQ_TP0_lod_correct SQ→TP0 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP0_pix_mask SQ→TP0 4 Pixel mask 1 bit per pixel
SQ_TP1_lod_correct SQ→TP1 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pix_mask SQ→TP1 4 Pixel mask 1 bit per pixel
SQ_TP2_lod_correct SQ→TP2 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pix_mask SQ→TP2 4 Pixel mask 1 bit per pixel
SQ_TP3_lod_correct SQ→TP3 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pix_mask SQ→TP3 4 Pixel mask 1 bit per pixel
SQ_TPx_rs_line_num SQ→TPx 6 Line number in the Reservation station
SQ_TPx_write_gpr_index SQ->TPx 7 Index into Register file for write of returned Fetch Data
SQ_TPx_ctx_id SQ→TPx 3 The state context ID (needed for multisample resolves)

23.2.9 TP to SQ: Texture stall
The TP sends this signal to the SQ and the SPs when its input buffer is full.

SU0

SU3

SU2

SU1

TP_SP_fetch_Stall

SQ_SP_wr_addr

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1039 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

R400 Sequencer Specification PAGE

44 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Name Direction Bits Description
TP_SQ_fetch_stall TP→ SQ 1 Do not send more texture request if asserted

23.2.10 SQ to SP: Texture stall
Name Direction Bits Description
SQ_SPx_fetch_stall SQ→SPx 1 Do not send more texture request if asserted

23.2.11 SQ to SP: GPR and auto counter
Name Direction Bits Description
SQ_SPx_gpr_wr_addr SQ→SPx 7 Write address
SQ_SPx_gpr_rd_addr SQ→SPx 7 Read address
SQ_SPx_gpr_rd_en SQ→SPx 1 Read Enable
SQ_SP0_gpr_wr_en SQ→SPx 4 Write Enable for the GPRs of SP0
SQ_SP1_gpr_wr_en SQ→SPx 4 Write Enable for the GPRs of SP1
SQ_SP2_gpr_wr_en SQ→SPx 4 Write Enable for the GPRs of SP2
SQ_SP3_gpr_wr_en SQ→SPx 4 Write Enable for the GPRs of SP3
SQ_SPx_gpr_phase SQ→SPx 2 The phase mux (arbitrates between inputs, ALU SRC

reads and writes)
SQ_SPx_channel_mask SQ→SPx 4 The channel mask
SQ_SPx_gpr_input_sel SQ→SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTX0,
VTX1, autogen counter.

SQ_SPx_auto_count SQ→SPx 21 Auto count generated by the SQ, common for all shader
pipes

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1040 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

45 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.12 SQ to SPx: Instructions
Name Direction Bits Description
SQ_SPx_instr_start SQ→SPx 1 Instruction start
SQ_SP_instr SQ→SPx 24 Transferred over 4 cycles

0: SRC A Negate Argument Modifier 0:0
 SRC A Abs Argument Modifier 1:1
 SRC A Swizzle 9:2
 Vector Dst 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
--
-
1: SRC B Negate Argument Modifier 0:0
 SRC B Abs Argument Modifier 1:1
 SRC B Swizzle 9:2
 Scalar Dst 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
--
-
2: SRC C Negate Argument Modifier 0:0
 SRC C Abs Argument Modifier 1:1
 SRC C Swizzle 9:2
 Unused 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
--
-
3: Vector Opcode 4:0
 Scalar Opcode 10:5
 Vector Clamp 11:11
 Scalar Clamp 12:12
 Vector Write Mask 16:13
 Scalar Write Mask 20:17
 Unused 23:21

SQ_SP0_pred_override SQ→SP0 4 0: Use per channel RGBA field (enables the per
channel logic, if not set only pay attention to the 11
seting).
1: Use GPR

SQ_SP1_pred_override SQ→SP1 4 0: Use per channel RGBA field (enables the per
channel logic, if not set only pay attention to the 11
seting).
1: Use GPR

SQ_SP2_pred_override SQ→SP2 4 0: Use per channel RGBA field (enables the per
channel logic, if not set only pay attention to the 11
seting).
1: Use GPR

SQ_SP3_pred_override SQ→SP3 4 0: Use per channel RGBA field (enables the per
channel logic, if not set only pay attention to the 11

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1041 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

R400 Sequencer Specification PAGE

46 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

seting).
1: Use GPR

SQ_SPx_exp_id SQ→SPx 1 GPR ID
SQ_SPx_exporting SQ→SPx 1 0: Not Exporting

1: Exporting
SQ_SPx_stall SQ→SPx 1 Stall signal

23.2.13 SQ to SX: write mask interface (must be aligned with the SP data)
Name Direction Bits Description
SQ_SX0_write_mask SQ→SP0 8 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock. This is for the data coming of SP0 and SP2.

SQ_SX1_ write_mask SQ→SP1 8 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock. This is for the data coming of SP1 and SP3.

23.2.14 SP to SQ: Constant address load/ Predicate Set/Kill set
Name Direction Bits Description
SP0_SQ_const_addr SP0→SQ 36 Constant address load / predicate vector load (4 bits only)/

Kill vector load (4 bits only) to the sequencer
SP0_SQ_valid SP0→SQ 1 Data valid
SP1_SQ_const_addr SP1→SQ 36 Constant address load / predicate vector load (4 bits only)/

Kill vector load (4 bits only) to the sequencer
SP1_SQ_valid SP1→SQ 1 Data valid
SP2_SQ_const_addr SP2→SQ 36 Constant address load / predicate vector load (4 bits only)/

Kill vector load (4 bits only) to the sequencer
SP2_SQ_valid SP2→SQ 1 Data valid
SP3_SQ_const_addr SP3→SQ 36 Constant address load / predicate vector load (4 bits only)/

Kill vector load (4 bits only) to the sequencer
SP3_SQ_valid SP3→SQ 1 Data valid
SP0_SQ_data_type SPSQ 2 Data Type

0: Constant Load
1: Predicate Set
2: Kill vector load

Because of the sharing of the bus none of the MOVA, PREDSET or KILL instructions may be coissued.

23.2.15 SQ to SPx: constant broadcast
Name Direction Bits Description
SQ_SPx_const SQ→SPx 128 Constant broadcast

23.2.16 SQ to CP: RBBM bus
Name Direction Bits Description
SQ_RBB_rs SQ→CP 1 Read Strobe
SQ_RBB_rd SQ→CP 32 Read Data
SQ_RBBM_nrtrtr SQ→CP 1 Optional
SQ_RBBM_rtr SQ→CP 1 Real-Time (Optional)

23.2.17 CP to SQ: RBBM bus
Name Direction Bits Description
rbbm_we CP→SQ 1 Write Enable
rbbm_a CP→SQ 15 Address -- Upper Extent is TBD (16:2)
rbbm_wd CP→SQ 32 Data

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1042 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

47 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

rbbm_be CP→SQ 4 Byte Enables
rbbm_re CP→SQ 1 Read Enable
rbb_rs0 CP→SQ 1 Read Return Strobe 0
rbb_rs1 CP→SQ 1 Read Return Strobe 1
rbb_rd0 CP→SQ 32 Read Data 0
rbb_rd1 CP→SQ 32 Read Data 0
RBBM_SQ_soft_reset CP→SQ 1 Soft Reset

23.2.18 SQ to CP: State report
Name Direction Bits Description
SQ_CP_vs_event SQ→CP 1 Vertex Shader Event
SQ_CP_vs_eventid SQ→CP 45 Vertex Shader Event ID
SQ_CP_ps_event SQ→CP 1 Pixel Shader Event
SQ_CP_ps_eventid SQ→CP 45 Pixel Shader Event ID

23.3 Example of control flow program execution
We now provide some examples of execution to better illustrate the new design.

Given the program:

Alu 0
Alu 1
Tex 0
Tex 1
Alu 3 Serial
Alu 4
Tex 2
Alu 5
Alu 6 Serial
Tex 3
Alu 7
Alloc Position 1 buffer
Alu 8 Export
Tex 4
Alloc Parameter 3 buffers
Alu 9 Export 0
Tex 5
Alu 10 Serial Export 2
Alu 11 Export 1 End

Would be converted into the following CF instructions:

Execute 0 Alu 0 Alu 0 Tex 0 Tex 1 Alu 0 Alu 0 Tex 0 Alu 1 Alu 0 Tex
Execute 0 Alu
Alloc Position 1
Execute 0 Alu 0 Tex
Alloc Param 3
Execute_end 0 Alu 0 Tex 1 Alu 0 Alu

And the execution of this program would look like this:

Put thread in Vertex RS:

Control Flow Instruction Pointer (12 bits), (CFP)
Execution Count Marker (3 or 4 bits), (ECM)
Loop Iterators (4x9 bits), (LI)
Call return pointers (4x12 bits), (CRP)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1043 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

R400 Sequencer Specification PAGE

48 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Predicate Bits(4x64 bits), (PB)
Export ID (1 bit), (EXID)
GPR Base Ptr (8 bits), (GPR)
Export Base Ptr (7 bits), (EB)
Context Ptr (3 bits).(CPTR)
LOD correction bits (16x6 bits) (LOD)

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 0 0 0 0 0 0 0 0 0

Valid Thread (VALID)
Texture/ALU engine needed (TYPE)
Texture Reads are outstanding (PENDING)
Waiting on Texture Read to Complete (SERIAL)
Allocation Wait (2 bits) (ALLOC)

00 – No allocation needed
01 – Position export allocation needed (ordered export)
10 – Parameter or pixel export needed (ordered export)
11 – pass thru (out of order export)

Allocation Size (4 bits) (SIZE)
Position Allocated (POS_ALLOC)
First thread of a new context (FIRST)
Last (1 bit), (LAST)

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 0 0 0 0 0 1 0

Then the thread is picked up for the execution of the first control flow instruction:

Execute 0 Alu 0 Alu 0 Tex 0 Tex 1 Alu 0 Alu 0 Tex 0 Alu 1 Alu 0 Tex

It executes the first two ALU instructions and goes back to the RS for a resource request change. Here is the
state returned to the RS:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 2 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Then when the texture pipe frees up, the arbiter picks up the thread to issue the texture reads. The thread comes

back in this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 4 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 0 1 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1044 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

49 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Because of the serial bit the arbiter must wait for the texture to return and clear the PENDING bit before it can
pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returns it in
this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 6 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Again the TP frees up, the arbiter picks up the thread and executes. It returns in this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 7 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 0 0 0 1 0

Now, even if the texture has not returned we can still pick up the thread for ALU execution because the serial bit

is not set. The thread will however come back to the RS for the second ALU instruction because it has the serial bit
set.

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 8 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 0 1 0

As soon as the TP clears the pending bit the thread is picked up and returns:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 9 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Picked up by the TP and returns:
Execute 0 Alu

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1045 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

R400 Sequencer Specification PAGE

50 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
1 0 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 0 0 0 1 0

Picked up by the ALU and returns (lets say the TP has not returned yet):
Alloc Position 1

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
2 0 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 01 1 0 1 0

If the SX has the place for the export, the SQ is going to allocate and pick up the thread for execution. It returns to

the RS in this state:

Execute 0 Alu 0 Tex

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
3 1 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 1 0 0 0 1 1 0

Now, since the TP has not returned yet, we must wait for it to return because we cannot issue multiple texture

requests. The TP returns, clears the PENDING bit and we proceed:

Alloc Param 3

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
4 0 0 0 0 1 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 10 3 1 1 0

Once again the SQ makes sure the SX has enough room in the Parameter cache before it can pick up this

thread.

Execute_end 0 Alu 0 Tex 1 Alu 0 Alu

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1046 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201511
October 200210

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

51 of 51

Exhibit 2034.docR400_Sequencer.doc �� 73365 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
5 1 0 0 0 1 0 100 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 1 0 0 0 1 1 0

This executes on the TP and then returns:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
5 2 0 0 0 1 0 100 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 1 1 1

Waits for the TP to return because of the textures reads are pending (and SERIAL in this case). Then executes
and does not return to the RS because the LAST bit is set. This is the end of this thread and before dropping it on the
floor, the SQ notifies the SX of export completion.

24. Open issues
Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1047 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SQ

Version 2.07

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\doc_lib\design\blocks\sq\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2035
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1048 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

R400 Sequencer Specification PAGE

2 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Table Of Contents

1. OVERVIEW .. 7
1.1 Top Level Block Diagram ... 9
1.2 Data Flow graph (SP) ... 10
1.3 Control Graph ... 11
2. INTERPOLATED DATA BUS .. 11
3. INSTRUCTION STORE ... 14
4. SEQUENCER INSTRUCTIONS ... 14
5. CONSTANT STORES .. 14
5.1 Memory organizations .. 14
5.2 Management of the Control Flow Constants .. 15
5.3 Management of the re-mapping tables .. 15

5.3.1 R400 Constant management .. 15

5.3.2 Proposal for R400LE constant management .. 15

5.3.3 Dirty bits .. 17

5.3.4 Free List Block .. 17

5.3.5 De-allocate Block .. 18

5.3.6 Operation of Incremental model .. 18
5.4 Constant Store Indexing ... 18
5.5 Real Time Commands.. 19
5.6 Constant Waterfalling ... 19
6. LOOPING AND BRANCHES ... 20
6.1 The controlling state. .. 20
6.2 The Control Flow Program ... 20

6.2.1 Control flow instructions table ... 21
6.3 Implementation ... 23
6.4 Data dependant predicate instructions ... 24
6.5 HW Detection of PV,PS ... 25
6.6 Register file indexing .. 25
6.7 Debugging the Shaders ... 2625

6.7.1 Method 1: Debugging registers ... 26

6.7.2 Method 2: Exporting the values in the GPRs .. 26
7. PIXEL KILL MASK .. 26
8. MULTIPASS VERTEX SHADERS (HOS) .. 26
9. REGISTER FILE ALLOCATION .. 2726
10. FETCH ARBITRATION .. 28
11. ALU ARBITRATION .. 28
12. HANDLING STALLS ... 29
13. CONTENT OF THE RESERVATION STATION FIFOS ... 29
14. THE OUTPUT FILE.. 29
15. IJ FORMAT .. 29
15.1 Interpolation of constant attributes .. 29
16. STAGING REGISTERS ... 30

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1049 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

17. THE PARAMETER CACHE ... 31
17.1 Export restrictions ... 32

17.1.1 Pixel exports: .. 32

17.1.2 Vertex exports: ... 32

17.1.3 Pass thru exports: .. 32
17.2 Arbitration restrictions ... 32
18. EXPORT TYPES .. 32
18.1 Vertex Shading .. 32
18.2 Pixel Shading .. 33
19. SPECIAL INTERPOLATION MODES ... 33
19.1 Real time commands .. 33
19.2 Sprites/ XY screen coordinates/ FB information .. 33
19.3 Auto generated counters ... 34

19.3.1 Vertex shaders ... 34

19.3.2 Pixel shaders .. 34
20. STATE MANAGEMENT .. 35
20.1 Parameter cache synchronization ... 35
21. XY ADDRESS IMPORTS ... 35
21.1 Vertex indexes imports .. 35
22. REGISTERS .. 35

23. INTERFACES .. 36

23.1 External Interfaces .. 36
23.2 SC to SP Interfaces ... 36

23.2.1 SC_SP# ... 36

23.2.2 SC_SQ ... 37

23.2.3 SQ to SX(SP): Interpolator bus .. 39

23.2.4 SQ to SP: Staging Register Data ... 39

23.2.5 VGT to SQ : Vertex interface .. 39

23.2.6 SQ to SX: Control bus .. 42

23.2.7 SX to SQ : Output file control ... 42

23.2.8 SQ to TP: Control bus .. 43

23.2.9 TP to SQ: Texture stall ... 43

23.2.10 SQ to SP: Texture stall ... 44

23.2.11 SQ to SP: GPR and auto counter .. 44

23.2.12 SQ to SPx: Instructions .. 45

23.2.13 SP to SQ: Constant address load/ Predicate Set/Kill set ... 46

23.2.14 SQ to SPx: constant broadcast .. 46

23.2.15 SQ to CP: RBBM bus ... 46

23.2.16 CP to SQ: RBBM bus ... 46

23.2.17 SQ to CP: State report ... 47
23.3 Example of control flow program execution .. 47

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1050 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

R400 Sequencer Specification PAGE

4 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24. OPEN ISSUES ... 51

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1051 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

 Changed the control flow method to be more
flexible. Also updated the external interfaces.

Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

 Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001

 Refined interfaces to RB. Added state registers.

Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

 Added SEQ→SP0 interfaces. Changed delta
precision. Changed VGT→SP0 interface. Debug
Methods added.

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001

 Interfaces greatly refined. Cleaned up the spec.

Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001

 Added the different interpolation modes.

Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

 Added the auto incrementing counters. Changed
the VGT→SQ interface. Added content on constant
management. Updated GPRs.

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

 Removed from the spec all interfaces that weren’t
directly tied to the SQ. Added explanations on
constant management. Added PA→SQ
synchronization fields and explanation.

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

 Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002

 Added Real Time parameter control in the SX
interface. Updated the control flow section.

Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

 New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002

 Rearangement of the CF instruction bits in order to
ensure byte alignement.

Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002

 Updated the interfaces and added a section on
exporting rules.

Rev 1.11 (Laurent Lefebvre)
Date : April 19, 2002

 Added CP state report interface. Last version of the
spec with the old control flow scheme

Rev 2.0 (Laurent Lefebvre)
Date : April 19, 2002

 New control flow scheme

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1052 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

R400 Sequencer Specification PAGE

6 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Rev 2.01 (Laurent Lefebvre)
Date : May 2, 2002

 Changed slightly the control flow instructions to
allow force jumps and calls.

Rev 2.02 (Laurent Lefebvre)
Date : May 13, 2002

 Updated the Opcodes. Added type field to the
constant/pred interface. Added Last field to the
SQ→SP instruction load interface.

Rev 2.03 (Laurent Lefebvre)
Date : July 15, 2002

 SP interface updated to include predication
optimizations. Added the predicate no stall
instructions,

Rev 2.04 (Laurent Lefebvre)
Date :August 2, 2002

 Documented the new parameter generation scheme
for XY coordinates points and lines STs.

Rev 2.05 (Laurent Lefebvre)
Date : September 10, 2002

 Some interface changes and an architectural
change to the auto-counter scheme.

Rev 2.06 (Laurent Lefebvre)
Date : October 11, 2002

 Widened the event interface to 5 bits. Some other
little typos corrected.

Rev 2.07 (Laurent Lefebvre)
Date : October 14, 2002

 Loops, jumps and calls are now using a 13 bit
address which allows to jump and call and loop
around any control flow addresses (does not
requires to be even anymore).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1053 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1. Overview
The sequencer chooses two ALU threads and a fetch hread to execute, and executes all of the instructions in a block
before looking for a new clause of the same type. Two ALU threads are executed interleaved to hide the ALU latency.
The arbitrator will give priority to older threads. There are two separate reservation stations, one for pixel vectors and
one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1054 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

R400 Sequencer Specification PAGE

8 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ

SC

SPSPSPCSTOREFETCH STATE

TP

INST STORE

IJ CONTROL

IJ
CONTROL

CST
ADDR

INST
 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/QUAD
ADDRESSES

SP

ALU INST

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

INST

INTER INTER INTER INTER

IJ CROSSBAR

2 QUADS IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC READ
 POINTERS

PARAM
DATA

R/W ADDR

Vertex indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

CP

CONSTANT
LOAD

CPConstant Load

TX ADDR

PC Write
Address

TEX INST

CF
CONSTANTS

Register
Mapped

CF Read

Figure 1: General Sequencer overview

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1055 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.1 Top Level Block Diagram

ALU Texture

VTX RS PIX RS

Exec Arbiter

Input Arbiter

Figure 2: Reservation stations and arbiters

Under this new scheme, the sequencer (SQ) will only use one global state management machine per vector type
(pixel, vertex) that we call the reservation station (RS).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1056 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

R400 Sequencer Specification PAGE

10 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.2 Data Flow graph (SP)

MAC

MAC

MAC

MAC

Register File

co
n

st
an

ts
 f

ro
m

 R
E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
n

ts
 f

ro
m

 R
E

S
ca

la
r

U
ni

t

texture request

texture request

texture request

texture request

te
xt

ur
e

 a
dd

re
ss

te xtu
re

 d
ata

prim
itiv e d a

ta
 from

 R
E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

Figure 3: The shader Pipe

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1057 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

SEQ

FETCH SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

OF

WrAddrIS CST

CST IDX

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1058 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

R400 Sequencer Specification PAGE

12 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x100 bits)

IJs buffer (ping-pong buffer)
(25 bits * 8 (IJ) * 4 * 4 * 4 (quadruple-buffered)

12800 bits

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

100

To RB

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2

768 bits
32x24

FIX-FLOAT + EXPANSiON

Figure 5: Interpolation buffers

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1059 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SP
0

SP
1

SP
2

SP
3

WRITES
T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-
11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P1 P2

T20 T21 T22 T23

VTX

T0 T1 T2 T3

XY

XY
0-3

XY
4-7

XY
8-
11

XY
12-
15

XY
16-
19

XY
20-
23

XY
24-
27

XY
28-
31

XY
32-
35

XY
36-
39

XY
40-
43

XY
44-
47

XY
48-
51

XY
52-
55

XY
56-
59

XY
60-
63

READS

SP
0

SP
1

SP
2

SP
3

A0

A1

A2

B1

B0

C3

C0

C1

C2

C4

C5

D0

D1

D2

E0

E1

A0

A1

A2

XY
A0
XY
A1
XY
A2

B1

B0

XY
B1

XY
B0

C3

C0

C1

C2

XY
C3
XY
C0
XY
C1
XY
C2

C4

C5

XY
C4
XY
C5

D0

D1

D2

XY
D1
XY
D2

XY
D0

E0

E1
XY
E1

XY
E0

Figure 6: Interpolation timing diagram

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1060 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

R400 Sequencer Specification PAGE

14 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store
There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4. Sequencer Instructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1061 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

5.2 Management of the Control Flow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied whenever there is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn’t write to CF the state is going to use the previous CF constants.

5.3 Management of the re-mapping tables

5.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROL packet of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it with
the new state (this is depicted in Figure 8: De-allocation mechanismFigure 8: De-allocation mechanismFigure 8: De-
allocation mechanism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1062 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

R400 Sequencer Specification PAGE

16 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Physical
Memory

Renaming Table
for 1 Context
Current/Last

Physical
Address

per
Logical
Address

Renaming
table

N-Contexts

Reset
Dirty
per

Logical
Address

(Only
de-

allocate
if set)

This
Context

Dirty
per

Logical
Address

(If set
don't

allocate
or de-

allocate)

Logical address
On the

GlbRegBus
when lsb are zero
first word of write

next
physical
address
ready

for allocate

Constants
location
available
WRTR

physical
address

to
schedule

for
de-alloc

Staging Data
Buffer

Staging Write Addr

Copy Last held above to
Current Context on receipt

of Set Constant for a
new context (Hide loading

behind Set State load - 16 clocks)
all other Set States just write one

entry to current state.

Free
list

(pass Phys
Address if
Context
Dirty)

Dealloc
Counts

Seq
Constant
Request

Context &
Logical
Address

Free_ptr
WritePtr

When a Logical
Address is written

that has been
written before,

store the physical
address that was
allocated by that
Logical Address

Stop_ptr
ptr to first physical

address that is
scheduled to be de-
allocated but noty
yet de-allocate.

Advanced each time
a context is freed by

the number of
physical address
displaced by that

Context

Read_ptr
ptr to physical

address that will be
used next if the init

count is at
maximum number

of physical address

Free List

Number of entries
equals Max Number of
Physical Blocks. All
Pointers start at zero
and roll around but

can never pass each
other

Free
Address

Address
to Allocate

Global Register
Data Bus

Renaming Table
Context 0 => N

Logical Address
& Context

Physical
Address

Context 0 (8 rows of 16 - 8 bit
physical => 128 entries copy in

eight clocks)

Context 1

Context N

Current/Last
Context

(8 rows of 16 - 8
bit physical =>

128 entries copy
in eight clocks)

Figure 7: Constant management

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1063 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

DEALOC
COUNTERSFree List

!=

OR

AND

NOT

ADDR

PREVIOUS
STATE

NEW
STATE

SQ_IDLE

CP_NEW_STATE_CNTL
PA_IDLE

VALUE

VALID

CNT VALUE

SQ_STATE#

WRITE_ENABLE

REMAPPING
TABLE

SET CTX BITS

Figure 8: De-allocation mechanism for R400LE

5.3.3 Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block
A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1064 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

R400 Sequencer Specification PAGE

18 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

5.3.5 De-allocate Block
This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any number of blocks in one clock.

5.3.6 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1065 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

5.5 Real Time Commands
The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
works is the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zones is defined by the TSTATE_EO_RT control register.

5.6 Constant Waterfalling
In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenever a state is freed.

CONST_EO_RT

RT SECTON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table)

Figure 9: The Constant store

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1066 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

R400 Sequencer Specification PAGE

20 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
We'd like to be able to code up a program of the form:

1: Loop
2: Exec TexFetch
3: TexFetch
4: ALU
5: ALU
6: TexFetch
7: End Loop
8: ALU Export

But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3:. Without clausing,
these dependencies need to be expressed in the Control Flow instructions. Additionally, without separate 'texture
clauses' and 'ALU clauses' we need to know which instructions to dispatch to the Texture Unit and which to the ALU
unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of information for each (non-control flow) instruction:
 a) ALU or Texture
 b) Serialize Execution

(b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched. Given the allocation of reserved bits, this would mean that the count of an 'Exec' instruction
would be limited to about 8 (non-control-flow) instructions. If more than this were needed, a second Exec (with the
same conditions) would be issued.

Another function that relies upon 'clauses' is allocation and order of execution. We need to assure that pixels and
vertices are exported in the correct order (even if not all execution is ordered) and that space in the output buffers are
allocated in order. Additionally data can't be exported until space is allocated. A new control flow instruction:

 Alloc <buffer select -- position,parameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual
allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already
completed. The implementation would also assure that execution of instruction(s) following the serialization due to the
Alloc will occur in order -- at least until the next serialization or change from ALU to Texture. In most cases this will
allow the exports to occur without any further synchronization. Only 'final' allocations or position allocations are

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1067 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

guaranteed to be ordered. Because strict ordering is required for pixels, parameters and positions, this implies only
a single alloc for these structures. Vertex exports to memory do not require ordering during allocation and so multiple
'allocs' may be done.

6.2.1 Control flow instructions table
Here is the revised control flow instruction set.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

NOP
47 … 44 43 42 … 0

0000 Addressing RESERVED

This is a regular NOP.

Execute
47 … 44 43 40 … 34 33 …16 15…12 11 … 0

0001 Addressing RESERVED Instructions type + serialize (9
instructions)

Count Exec Address

Execute_End

47 … 44 43 40 … 34 33 …16 15…12 11 … 0
0010 Addressing RESERVED Instructions type + serialize (9

instructions)
Count Exec Address

Execute up to 9 instructions at the specified address in the instruction memory. The Instruction type field tells the
sequencer the type of the instruction (LSB) (1 = Texture, 0 = ALU and whether to serialize or not the execution (MSB)
(1 = Serialize, 0 = Non-Serialized). If Execute_End this is the last execution block of the shader program.

Conditional_Execute

47 … 44 43 42 41 … 34 33…16 15 …12 11 … 0
0011 Addressing Condition Boolean

address
Instructions type + serialize (9

instructions)
Count Exec Address

Conditional_Execute_End

47 … 44 43 42 41 … 34 33…16 15 …12 11 … 0
0100 Addressing Condition Boolean

address
Instructions type + serialize (9

instructions)
Count Exec Address

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 9 instructions). If the condition is not met, we go on to the next control flow instruction. If
Conditional_Execute_End and the condition is met, this is the last execution block of the shader program.

Conditional_Execute_Predicates
47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0

0101 Addressing Condition RESERVED Predicate
vector

Instructions
type + serialize
(9 instructions)

Count Exec Address

Conditional_Execute_Predicates_End

47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0
0110 Addressing Condition RESERVED Predicate

vector
Instructions

type + serialize
(9 instructions)

Count Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid. If the

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1068 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

R400 Sequencer Specification PAGE

22 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

condition is not met, we go on to the next control flow instruction. If Conditional_Execute_Predicates_End and the
condition is met, this is the last execution block of the shader program.

Conditional_Execute_Predicates_No_Stall
47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0

1101 Addressing Condition RESERVED Predicate
vector

Instructions
type + serialize
(9 instructions)

Count Exec Address

Conditional_Execute_Predicates_No_Stall_End

47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0
1110 Addressing Condition RESERVED Predicate

vector
Instructions

type + serialize
(9 instructions)

Count Exec Address

Same as Conditionnal_Execute_Predicates but the SQ is not going to wait for the predicate vector to be updated.
You can only set this in the compiler if you know that the predicate set is only a refinement of the current one (like a
nested if) because the optimization would still work.

Loop_Start
47 … 44 43 42 … 21 20 … 16 15…123 121 … 0

0111 Addressing RESERVED loop ID RESERVED Jump address

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Loop_End
47 … 44 43 42 … 24 23… 21 20 … 16 15…1213 11 12 … 0

1000 Addressing RESERVED Predicate break loop ID RESERVED start address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop. If predicate break != 0, then compares predicate vector n
(specified by predicate break number). If all bits cleared then break the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal_Call
47 … 44 43 42 41 … 34 33 … 1314 1213 11 12 … 0

1001 Addressing Condition Boolean address RESERVED Force Call Jump address

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack. If
force call is set the condition is ignored and the call is made always.

Return
47 … 44 43 42 … 0

1010 Addressing RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump
47 … 44 43 42 41… 34 33 32 … 1314 1213 11 12 … 0

1011 Addressing Condition Boolean
address

FW only RESERVED Force Jump Jump address

If force jump is set the condition is ignored and the jump is made always. If FW only is set then only forward jumps
are allowed.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1069 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Allocate

47 … 44 43 42…41 40 … 3 2…0
1100 Debug Buffer Select RESERVED Size

Buffer Select takes a value of the following:
01 – position export (ordered export)
10 – parameter cache or pixel export (ordered export)
11 – pass thru (out of order exports).

Size field is only used to reserve space in the export buffer for pass thru exports. Valid values are 1 (1 line) thru 9 (9
lines). It should be determined by the compiler/assembler by taking max index used +1.

If debug is set this is a debug alloc (ignore if debug DB_ON register is set to off).

6.3 Implementation

The envisioned implementation has a buffer that maintains the state of each thread. A thread lives in a given
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the order that they
enter. Actually two buffers are maintained -- one for Vertices and one for Pixels. The intended implementation
would allow for:

16 entries for vertices
48 entries for pixels.

From each buffer, arbitration logic attempts to select 1 thread for the texture unit and 1 (interleaved) thread for the
ALU unit. Once a thread is selected it is read out of the buffer, marked as invalid, and submitted to appropriate
execution unit. It is returned to the buffer (at the same place) with its status updated once all possible sequential
instructions have been executed. A switch from ALU to TEX or visa-versa or a Serialize_Execution modifier forces
the thread to be returned to the buffer.

Each entry in the buffer will be stored across two physical pieces of memory - most bits will be stored in a 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed 'state'. The bits kept in the multi-read ported device will be termed 'status'.

'State Bits' needed include:

1. Control Flow Instruction Pointer (13 bits),
2. Execution Count Marker 4 bits),
3. Loop Iterators (4x9 bits),
4. Loop Counters (4x9 bits),
4.5. Call return pointers (4x12 4x13 bits),
5.6. Predicate Bits (64 bits),
6.7. Export ID (1 bit),
7.8. Parameter Cache base Ptr (7 bits),
8.9. GPR Base Ptr (8 bits),
9.10. Context Ptr (3 bits).
10.11. LOD corrections (6x16 bits)
11.12. Valid bits (64 bits)
12.13. RT (1 bit) Signifies that this thread is a Real Time thread. This bit must be sent to the Constant store

state machine when reading it.

Absent from this list are 'Index' pointers. These are costly enough that I'm presuming that they are instead stored in
the GPRs. The first seven fields above (Control Flow Ptr, Execution Count, Loop Counts, call return ptrs, Predicate
bits, PC base ptr and export ID) are updated every time the thread is returned to the buffer based on how much
progress has been mode on thread execution. GPR Base Ptr, Context Ptr and LOD corrections are unchanged
throughout execution of the thread.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1070 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

R400 Sequencer Specification PAGE

24 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

'Status Bits' needed include:

 Valid Thread
 Texture/ALU engine needed
 Texture Reads are outstanding
 Waiting on Texture Read to Complete
 Allocation Wait (2 bits)
 00 – No allocation needed
 01 – Position export allocation needed (ordered export)
 10 – Parameter or pixel export needed (ordered export)
 11 – pass thru (out of order export)
 Allocation Size (4 bits)
 Position Allocated
 Mem/Color Allocated
 First thread of a new context
 Event thread (NULL thread that needs to trickle down the pipe)
 Last (1 bit)
 Pulse SX (1 bit)

All of the above fields from all of the entries go into the arbitration circuitry. The arbitration circuitry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -- one for
pixels and one for vertices. A final selection is then done between the two. But the rest of this implementation
summary only considers the 'first' level selection which is similar for both pixels and vertices.

Texture arbitration requires no allocation or ordering so it is purely based on selecting the 'oldest' thread that requires
the Texture Engine.

ALU arbitration is a little more complicated. First, only threads where either of Texture_Reads_outstanding or
Waiting_on_Texture_Read_to_Complete are '0' are considered. Then if Allocation_Wait is active, these threads are
further filtered based on whether space is available. If the allocation is position allocation, then the thread is only
considered if all 'older' threads have already done their position allocation (position allocated bits set). If the
allocation is parameter or pixel allocation, then the thread is only considered if it is the oldest thread. Also a thread is
not considered if it is a parameter or pixel or position allocation, has its First_thread_of_a_new_context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the 'oldest' of the threads that pass through the above filters is selected. If the thread needed to allocate, then
at this time the allocation is done, based on Allocation_Size. If a thread has its “last” bit set, then it is also removed
from the buffer, never to return.

If I now redefine 'clauses' to mean 'how many times the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine', then the minimum number of clauses needed is 2 -- one to perform
the allocation for exports (execution automatically halts after an 'Alloc' instruction) (but doesn't performs the actual
allocation) and one for the actual ALU/export instructions. As the 'Alloc' instruction could be part of a texture clause
(presumably the final instruction in such a clause), a thread could still execute in this minimal number of 2 clauses,
even if it involved texture fetching.

The Texture_Reads_Outstanding bit must be updated by the sequencer, based on keeping track of how many
Texture Clauses have been executed by a given thread that have not yet had there data returned. Any number
above 0 results in this bit being set. We could consider forcing synchronization such that two texture clauses for a
given thread may not be outstanding at any time (that would be my preference for simplicity reasons and because it
would require only very little change in the texture pipe interface). This would allow the sequencer to set the bit on
execution of the texture clause, and allow the texture unit to return a pointer to the thread buffer on completion that
clears the bit.

6.4 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1071 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

PRED_SETE_# - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETNE_# - similar to SETNE except that the result is 'exported' to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE0_# – SETE0
 PRED_SETE1_# – SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

 P0_ADD_# R0,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

6.5 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

6.6 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

The sequencer is going to keep a loop index computed as such:

 Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128…127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1072 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

R400 Sequencer Specification PAGE

26 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
 - jump errors
 relative jump address > size of the control flow program
 - call stack
 call with stack full

return with stack empty

A jump error will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only break if
the DB_PROB_BREAK register is set.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the 0th
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs
1) The sequencer will have a debug active, count register and an address register for this mode.

Under the normal mode execution follows the normal course.

Under the debug mode it is assumed that the program is always exporting n debug vectors and that all other exports
to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by the sequencer (even if they occur
before the address stated by the ADDR debug register).

7. Pixel Kill Mask
A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE

 MASK_SETGT
 MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1073 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZE for pixels.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1074 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

R400 Sequencer Specification PAGE

28 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

10. Fetch Arbitration
The fetch arbitration logic chooses one of the n potentially pending fetch clauses to be executed. The choice is made
by looking at the Vs and Ps reservation stations and picking the first one ready to execute. Once chosen, the clause
state machine will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two fetches of the
same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration
ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
n potentially pending ALU clauses to be executed. The choice is made by looking at the Vs and Ps reservation
stations and picking the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for
the odd clocks. For example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and
Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1075 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering an exporting clause. The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs
The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). All pixel’s parameters are always interpolated at full 20x24 mantissa precision.

)(*)3()(*)3(3

)(*)2()(*)2(2

)(*)1()(*)1(1

)(*)0()(*)0(0

ACJABIAP

ACJABIAP

ACJABIAP

ACJABIAP

Multiplies (Full Precision): 8
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF P’s IJ : Mantissa 20 Exp 4 for I + Sign
 Mantissa 20 Exp 4 for J + Sign

Total number of bits : 20*8 + 4*8 + 4*2 = 200.

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the number is
normalized if not, then the number is un-normalized. The maximum range for the IJs (Full precision) is +/- 1024.

15.1 Interpolation of constant attributes
Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the terms are the same.

P0

P2

P1

P3

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1076 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

R400 Sequencer Specification PAGE

30 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 || 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencer will re-arrange them in this fashion:

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 || 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 || 8 9 10 11 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the SQ is responsible to insert padding to
account for the missing pipe. For example, if SP1 is broken, vertices 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will
not be sent by the VGT to the SQ AND the SQ is responsible to “jump” over these vertices in order for no valid
vertices to be sent to an invalid SP.

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 11Figure 11Figure 11. The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure 10Figure 10Figure 10.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11631 60.57813per bit

Area of 96x8-deep Latch Memory 46524

Area of 24-bit Fix-to-float Converter 4712per converter

Method 1 Block Quantity Area

 F2F 3 14136

 8x96 Latch 16 744384

 758520

Figure 10:Area Estimate for VGT to Shader Interface

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1077 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SHADER PIPE

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

3
2

3
2

3
2

VGT BLOCK
(IN PA)

3
2

9
6

VECTOR ENGINE

96

8x96
MEMORY
1-READ
1-WRITE

3 OTHER
SHADER
PIPES

 3 Fix->Float Converters (24-bit)
 16 Memories 8x96-bit (12,288 bits)

Totals:

THREE MORE VECTOR ENGINES
PER SHADER PIPE

VECTOR ENGINE

SHADER
SEQUENCER

Figure 11:VGT to Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER
4 bits

ADDRESS
7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17th) is going to have the address 00000001000, the 18th 00010001000, the 19th 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*VS_EXPORT_COUNT to
Current_Location and reset the memory count to 0 before the next vector begins).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1078 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

R400 Sequencer Specification PAGE

32 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

17.1 Export restrictions

17.1.1 Pixel exports:
Pixels can export 1,2,3 or 4 color buffers to the SX(+z). The exports will be done in order. The PRED_OPTIMIZE
function has to be turned of if the exports are done using interleaved predicated instructions. The exports will always
be ordered to the SX.

17.1.2 Vertex exports:
Position or parameter caches can be exported in any order in the shader program. It is always better to export
posistion as soon as possible. Position has to be exported in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be done in any order with texture instructions interleaved.
The PRED_OPTIMIZE function has to be turned of if the exports are done using interleaved predicated instructions to
the Parameter cache (see Arbitration restrictions for details). The exports will always be allocated in order to the SX.

17.1.3 Pass thru exports:
Pass thru exports have to be done in groups of the form:

Alloc 4 (8 or 12)
Execute ALU(ADDR) ALU(DATA) ALU(DATA) ALU(DATA)…

They cannot have texture instructions interleaved in the export block. These exports are not guaranteed to be
ordered.

Also, when doing a pass thru export, Position MUST be exported AFTER all pass thru exports. This position export is
used to synchronize the chip when doing a transition from pass thru shader to regular shader and vice versa.

17.2 Arbitration restrictions
Here are the Sequencer arbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texture pending bit is set
2) Cannot allocate position if any older thread has not allocated position
3) If last thread is marked as not valid AND marked as last and we are about to execute the second to oldest

thread also marked last then:
a. Both threads must be from the same context (cannot allow a first thread)
b. Must turn off the predicate optimization for the second thread

4) Cannot execute a texture clause if texture reads are pending
5) Cannot execute last if texture pending (even if not serial)

18. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

18.1 Vertex Shading
 0:15 - 16 parameter cache
 16:31 - Empty (Reserved?)

32 - Export Address
 33:37 - 5 vertex exports to the frame buffer and index
 38:47 - Empty
 48:52 - 5 debug export (interpret as normal memory export)
 60 - export addressing mode
 61 - Empty
 62 - position

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1079 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

33 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 63 - sprite size export that goes with position export
 (X= point size, Y= edge flag is bit 0, Z= VtxKill is bitwise OR of bits 30:0. Any bit other than
sign means VtxKill.)

18.2 Pixel Shading
 0 - Color for buffer 0 (primary)
 1 - Color for buffer 1
 2 - Color for buffer 2
 3 - Color for buffer 3
 4:15 - Empty
 16 - Buffer 0 Color/Fog (primary)
 17 - Buffer 1 Color/Fog
 18 - Buffer 2 Color/Fog
 19 - Buffer 3 Color/Fog
 20:31 - Empty
 32 - Export Address
 33:37 - 5 exports for multipass pixel shaders.
 38:47 - Empty
 48:52 - 5 debug exports (interpret as normal memory export)

60 - export addressing mode
61 - Z for primary buffer (Z exported to 'alpha' component)

 62:63 - Empty

19. Special Interpolation modes

19.1 Real time commands
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem I see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft’s high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This mode is triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

19.2 Sprites/ XY screen coordinates/ FB information
XY screen coordinates may be needed in the shader program. This functionality is controlled by the param_gen_I0
register (in SQ) in conjunction with the SND_XY register (in SC) and the param_gen_pos. Also it is possible to send
the faceness information (for OGL front/back special operations) to the shader using the same control register. Here
is a list of all the modes and how they interact together:

The Data is going to be written in the register specified by the param_gen_pos register.

Param_Gen_I0 disable, snd_xy disable = No modification
Param_Gen_I0 disable, snd_xy enable = No modification
Param_Gen_I0 enable, snd_xy disable = Sign(faceness)garbage,(Sign Point)garbage,Sign(Line)s, t
Param_Gen_I0 enable, snd_xy enable = Sign(faceness)screenX,(Sign Point)screenY,Sign(Line)s, t

In other words,

The generated vector is (X in RED, Y in GREEN, S in BLUE and T in ALPHA):
X,Y,S,T

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1080 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

R400 Sequencer Specification PAGE

34 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

These values are always supposed to be positive and any shader use of them should use the ABS function
(as their sign bits will now be used for flags).
SignX = BackFacing
SignY = Point Primitive
SignS = Line Primitive
SignT = currently unused as a flag.

If !Point & !Line, then it is a Poly.

I would assume that one implementation which allows for generic texture lookup (using 3D maps) for poly
stipple and AA for the driver would be
if(Y<0) {
 R = 0.0 (Point)
} else if (S < 0) {
 R = 1.0 (Line)
} else {
 R = 2.0 (Poly)

}

19.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1st pass data to memory and then use the count to retrieve the data on the 2nd pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX_PIX/VTX register. The sequencer
is going to keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is
written to the GPRs the counter is incremented. Every time a RST_PIX_COUNT or RST_VTX_COUNT events are
received, the corresponding counter is reset. While there is only one count broadcast to the GPRs, the LSB are
hardwired to specific values making the index different for all elements in the vector. Since the count must be different
for all pixels/vertices and the 4 LSBs (16 positions) are hardwired to the corresponding shader unit the SQ has two
choices:

1) Maintain a 19 bit counter that counts the vectors of 64. In this case the phase must be appended to the count
before the count is broadcast to the SPs:

Counter (19 bits) Phase (2 bits) Hardwired (4 bits)

2) Maintain a 21 bits counter that counts sub-vectors of 16. In this case only the counter is sent to the Sps:

Counter (21 bits) Hardwired (4 bits)

19.3.1 Vertex shaders
In the case of vertex shaders, if GEN_INDEX_VTX is set, the data will be put into the x field of the third register (it
means that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

19.3.2 Pixel shaders
In the case of pixel shaders, if GEN_INDEX_PIX is set, the data will be put in the x field of the param_gen_pos+1
register.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1081 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

35 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

AUTO
COUNT

STG 0

STG1

INTERPOLATORS

GPR0

AUTO COUNT 000000

MUX

The Auto Count Value is
broadcast to all GPRs. It is

loaded into a register wich has
its LSBs hardwired to the

GPR number (0 thru 63). Then
if GEN_INDEX is high, the
mux selects the auto-count

value and it is loaded into the
GPRs to be either used to

retrieve data using the TP or
sent to the SX for the RB to

use it to write the data to
memory

Figure 12: GPR input mux Control

20. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

20.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

21. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix→float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 19.2 for details on how to control the interpolation in this mode.

21.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

22. Registers
Please see the auto-generated web pages for register definitions.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1082 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

R400 Sequencer Specification PAGE

36 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23. Interfaces

23.1 External Interfaces
Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ→SPx it means that SQ is going to broadcast the same information to all SP instances.

23.2 SC to SP Interfaces

23.2.1 SC_SP#
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the I,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data which is transferred per quad is
 Ref Pix I => S4.20 Floating Point I value *4
 Ref Pix J => S4.20 Floating Point J value *4

This equates to a total of 200 bits which transferred over 2 clocks
and therefor needs an interface 100 bits wide

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a IJ_BUF_INUSE_COUNT in the SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNT count. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2, if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of I,J data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,SQ and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple mode first with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performance hit.)

Name Bits Description
SC_SP#_data 100 IJ information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bit)

Type 0 or 1, First clock I, second clk J
Field ULC URC LLC LRC
 Bits [63:39] [38:26] [25:13] [12:0]
Format SE4M20 SE4M20 SE4M20 SE4M20
Type 2
Field Face X Y
 Bits [24] [23:12] [11:0]
Format Bit Unsigned Unsigned

SC_SP#_valid 1 Valid
SC_SP#_last_quad_data 1 This bit will be set on the last transfer of data per quad.
SC_SP#_type 2 0 -> Indicates centroids

1 -> Indicates centers
2 -> Indicates X,Y Data and faceness on data bus
The SC shall look at state data to determine how many types to send for the

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1083 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

37 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP block will have neither because the instantiation will insert the prefix.

23.2.2 SC_SQ
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 108 bits) could be folded in half to approx 54
bits.

Name Bits Description
SC_SQ_data 46 Control Data sent to the SQ

1 clk transfers
 Event – valid data consist of event_id and
 state_id. Instruct SQ to post an
 event vector to send state id and
 event_id through request fifo
 and onto the reservation stations
 making sure state id and/or event_id
 gets back to the CP. Events only
 follow end of packets so no pixel
 vectors will be in progress.

 Empty Quad Mask – Transfer Control data
 consisting of pc_dealloc
 or new_vector. Receipt of this is to
 transfer pc_dealloc or new_vector
 without any valid quad data. New
 vector will always be posted to
 request fifo and pc_dealloc will be
 attached to any pixel vector
 outstanding or posted in request fifo
 if no valid quad outstanding.
2 clk transfers
 Quad Data Valid – Sending quad data with or
 without new_vector or pc_dealloc.
 New vector will be posted to request
 fifo with or without a pixel vector and
 pc_dealloc will be posted with a pixel
 vector unless none is in progress. In
 this case the pc_dealloc will be
 posted in the request queue.
 Filler quads will be transferred with
 The Quad mask set but the pixel
 corresponding pixel mask set to
 zero.

SC_SQ_valid 1 SC sending valid data, 2nd clk could be all zeroes

SC_SQ_data – first clock and second clock transfers are shown in the table below.

Name BitField Bits Description

1st Clock Transfer
SC_SQ_event 0 1 This transfer is a 1 clock event vector Force quad_mask =

new_vector=pc_dealloc=0
SC_SQ_event_id [5:1] 4 This field identifies the event 0 => denotes an End Of State Event 1

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1084 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

R400 Sequencer Specification PAGE

38 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

=> TBD
SC_SQ_state_id [8:6] 3 State/constant pointer (6*3+3)
SC_SQ_pc_dealloc [11:9] 3 Deallocation token for the Parameter Cache
SC_SQ_new_vector 12 1 The SQ must wait for Vertex shader done count > 0 and after

dispatching the Pixel Vector the SQ will decrement the count.
SC_SQ_quad_mask [16:13] 4 Quad Write mask left to right SP0 => SP3
SC_SQ_end_of_prim 17 1 End Of the primitive
SC_SQ_pix_mask [33:18] 16 Valid bits for all pixels SP0=>SP3 (UL,UR,LL,LR)

SC_SQ_provok_vtx [35:34] 2 Provoking vertex for flat shading
SC_SQ_lod_correct_0 [44:36] 9 LOD correction for quad 0 (SP0) (9 bits per quad)
SC_SQ_lod_correct_1 [53:45] 9 LOD correction for quad 1 (SP1) (9 bits per quad)

2nd Clock Transfer
SC_SQ_lod_correct_2 [8:0] 9 LOD correction for quad 2 (SP2) (9 bits per quad)
SC_SQ_lod_correct_3 [17:9] 9 LOD correction for quad 3 (SP3) (9 bits per quad)
SC_SQ_pc_ptr0 [28:18] 11 Parameter Cache pointer for vertex 0
SC_SQ_pc_ptr1 [39:29] 11 Parameter Cache pointer for vertex 1
SC_SQ_pc_ptr2 [50:40] 11 Parameter Cache pointer for vertex 2
SC_SQ_prim_type [53:51] 3 Stippled line and Real time command need to load tex cords from

alternate buffer
000: Sprite (point)
001: Line
010: Tri_rect
100: Realtime Sprite (point)
101: Realtime Line
110: Realtime Tri_rect

Name Bits Description
SQ_SC_free_buff 1 Pipelined bit that instructs SC to decrement count of buffers in use.
SQ_SC_dec_cntr_cnt 1 Pipelined bit that instructs SC to decrement count of new vector and/or event

sent to prevent SC from overflowing SQ interpolator/Reservation request fifo.

The scan converter will submit a partial vector whenever:

1.) He gets a primitive marked with an end of packet signal.
2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been

marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal made it through and thus the hang.)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1085 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

39 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.3 SQ to SX(SP): Interpolator bus
Name Direction Bits Description
SQ_SPx_interp_flat_vtx SQ→SPx 2 Provoking vertex for flat shading
SQ_SPx_interp_flat_gouraud SQ→SPx 1 Flat or gouraud shading
SQ_SPx_interp_cyl_wrap SQ→SPx 4 Wich channel needs to be cylindrical wrapped
SQ_SPx_interp_param_gen SQ→SPx 1 Generate Parameter
SQ_SPx_interp_prim_type SQ→SPx 2 Bits [1:0] of primitive type sent by SC
SQ_SPx_interp_buff_swap SQ→SPx 1 Swapp IJ buffers
SQ_SPx_interp_IJ_line SQ→SPx 2 IJ line number
SQ_SPx_interp_mode SQ→SPx 1 Center/Centroid sampling
SQ_SXx_pc_ptr0 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr1 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr2 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_rt_sel SQ→SXx 1 Selects between RT and Normal data (Bit 2 of prim type)
SQ_SX0_pc_wr_en SQ→SX0 8 Write enable for the PC memories
SQ_SX1_pc_wr_en SQ→SX1 8 Write enable for the PC memories
SQ_SXx_pc_wr_addr SQ→SXx 7 Write address for the PCs
SQ_SXx_pc_channel_mask SQ→SXx 4 Channel mask
SQ_SXx_pc_ptr_valid SQ→SXx 1 Read pointers are valid.
SQ_SPx_interp_valid SQ→SPx 1 Interpolation control valid

23.2.4 SQ to SP: Staging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.
Name Direction Bits Description
SQ_SPx_vsr_data SQ→SPx 96 Pointers of indexes or HOS surface information
SQ_SPx_vsr_double SQ→SPx 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0_ vsr_valid SQ→SP0 1 Data is valid
SQ_SP1_ vsr_ valid SQ→SP1 1 Data is valid
SQ_SP2_ vsr_ valid SQ→SP2 1 Data is valid
SQ_SP3_ vsr_ valid SQ→SP3 1 Data is valid
SQ_SPx_vsr_read SQ→SPx 1 Increment the read pointers

23.2.5 VGT to SQ : Vertex interface

23.2.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide. In the case where an event is sent the 5 LSBs of VGT_SQ_vsisr_data contain the eventID.

Name Bits Description
VGT_SQ_vsisr_data 96 Pointers of indexes or HOS surface information
VGT_SQ_event 1 VGT is sending an event
VGT_SQ_vsisr_continued 1 0: Normal 96 bits per vert 1: double 192 bits per vert
VGT_SQ_end_of_vtx_vect 1 Indicates the last VSISR data set for the current process vector (for double vector

data, "end_of_vector" is set on the first vector)
VGT_SQ_indx_valid 1 Vsisr data is valid
VGT_SQ_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when

“VGT_SQ_vgt_end_of_vector” is high.
VGT_SQ_send 1 Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_VGT_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

23.2.5.2 Interface Diagrams

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1086 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

R400 Sequencer Specification PAGE

40 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

VGT

VSISR_DATA_2

END_OF_VECTOR_2

STATE_SEL_2

REG

VSISR_DOUBLE_2
REG

REG

REG

REG

REG

SEND_2

REG

REG

REG

REG

REG

REG

PA_SQ_vgt_vsisr_data

PA_SQ_vgt_vsisr_double

PA_SQ_vgt_end_of_vector

PA_SQ_vgt_state_sel

PA_SQ_vgt_send

SQ_PA_vgt_rtr

VSISR_DATA_4

END_OF_VECTOR_4

STATE_SEL_4

VSISR_DOUBLE_4

96

1

1

3

1

1

SEND_4

RTR_2 RTR_0

SHADER
SEQUENCER

RTS

101 X 4
SKID

BUFFER

SRST SRST

WE

EMPTY

RE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1087 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

41 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

6 7

6 7

6 7

0 1 2 3

0 1

8

8

8

2 43 5

4 5 6 7

4 3 2 1

8

9 10 11 12

9 10 11 12

9 10 11 12

9 10 11 12

0

RECEIVER RE-STARTS TRANSMISSION

SENDER STOPS TRANSMISSION

SQ_RTR

SQ_RTR_0

VGT_RTS

SEND_2

SEND_3

SEND_4

DATA_2

FIFO_EMPTY

FIFO_RE

SQ_RTR_1

SQ_RTR_2

DATA_3

DATA_4

FIFO_DATA_OUT

FIFO_CNT

RECEIVER STOPS TRANSMISSION

Figure 1. Detailed Logical Diagram for PA_SQ_vgt Interface.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1088 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

R400 Sequencer Specification PAGE

42 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.6 SQ to SX: Control bus

Name Direction Bits Description
SQ_SXx_exp_type SQ→SXx 2 00: Pixel without z (1 to 4 buffers)

01: Pixel with z (1 to 4 buffers)
10: Position (1 or 2 results)
11: Pass thru (4,8 or 12 results aligned)

SQ_SXx_exp_number SQ→SXx 2 Number of locations needed in the export buffer
(encoding depends on the type see bellow).

SQ_SXx_exp_alu_id SQ→SXx 1 ALU ID
SQ_SXx_exp_valid SQ→SXx 1 Valid bit
SQ_SXx_exp_state SQ→SXx 3 State Context

SQ_SXx_free_done SQ→SXx 1 Pulse that indicates that the previous export is finished
from the point of view of the SP. This does not
necessarily mean that the data has been
transferred to RB or PA, or that the space in export
buffer for that particular vector thread has been
freed up.

SQ_SXx_free_alu_id SQ→SXx 1 ALU ID

Depending on the type the number of export location changes:

 Type 00 : Pixels without Z
o 00 = 1 buffer
o 01 = 2 buffers
o 10 = 3 buffers
o 11 = 4 buffer

 Type 01: Pixels with Z
o 00 = 2 Buffers (color + Z)
o 01 = 3 buffers (2 color + Z)
o 10 = 4 buffers (3 color + Z)
o 11 = 5 buffers (4 color + Z)

 Type 10 : Position export
o 00 = 1 position
o 01 = 2 positions
o 1X = Undefined

 Type 11: Pass Thru
o 00 = 4 buffers
o 01 = 8 buffers
o 10 = 12 buffers
o 11 = Undefined

Below the thick black line is the end of transfer packet that tells the SX that a given export is finished. The report
packet will always arrive either before or at the same time than the next export to the same ALU id.

23.2.7 SX to SQ : Output file control
Name Direction Bits Description
SXx_SQ_exp_count_rdy SXx→SQ 1 Raised by SX0 to indicate that the following two fields

reflect the result of the most recent export
SXx_SQ_exp_pos_avail SXx→SQ 2 Specifies whether there is room for another position.

00 : 0 buffers ready
01 : 1 buffer ready
10 : 2 or more buffers ready

SXx_SQ_exp_buf_avail SXx→SQ 7 Specifies the space available in the output buffers.
0: buffers are full
1: 2K-bits available (32-bits for each of the 64

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1089 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

43 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

pixels in a clause)
...
64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

23.2.8 SQ to TP: Control bus
Once every clock, the fetch unit sends to the sequencer on which RS line it is now working and if the data in the
GPRs is ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequencer also provides the instruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

Name Direction Bits Description
TPx_SQ_data_rdy TPx→ SQ 1 Data ready

TPx_SQ_rs_line_num TPx→ SQ 6 Line number in the Reservation station

TPx_SQ_type TPx→ SQ 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_send SQ→TPx 1 Sending valid data
SQ_TPx_const SQ→TPx 48 Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instr SQ→TPx 24 Fetch instruction sent over 4 clocks
SQ_TPx_end_of_group SQ→TPx 1 Last instruction of the group
SQ_TPx_Type SQ→TPx 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_gpr_phase SQ→TPx 2 Write phase signal
SQ_TP0_lod_correct SQ→TP0 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP0_pix_mask SQ→TP0 4 Pixel mask 1 bit per pixel
SQ_TP1_lod_correct SQ→TP1 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pix_mask SQ→TP1 4 Pixel mask 1 bit per pixel
SQ_TP2_lod_correct SQ→TP2 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pix_mask SQ→TP2 4 Pixel mask 1 bit per pixel
SQ_TP3_lod_correct SQ→TP3 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pix_mask SQ→TP3 4 Pixel mask 1 bit per pixel
SQ_TPx_rs_line_num SQ→TPx 6 Line number in the Reservation station
SQ_TPx_write_gpr_index SQ->TPx 7 Index into Register file for write of returned Fetch Data
SQ_TPx_ctx_id SQ→TPx 3 The state context ID (needed for multisample resolves)

23.2.9 TP to SQ: Texture stall
The TP sends this signal to the SQ and the SPs when its input buffer is full.

SU0

SU3

SU2

SU1

TP_SP_fetch_Stall

SQ_SP_wr_addr

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1090 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

R400 Sequencer Specification PAGE

44 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Name Direction Bits Description
TP_SQ_fetch_stall TP→ SQ 1 Do not send more texture request if asserted

23.2.10 SQ to SP: Texture stall
Name Direction Bits Description
SQ_SPx_fetch_stall SQ→SPx 1 Do not send more texture request if asserted

23.2.11 SQ to SP: GPR and auto counter
Name Direction Bits Description
SQ_SPx_gpr_wr_addr SQ→SPx 7 Write address
SQ_SPx_gpr_rd_addr SQ→SPx 7 Read address
SQ_SPx_gpr_rd_en SQ→SPx 1 Read Enable
SQ_SP0_gpr_wr_en SQ→SPx 4 Write Enable for the GPRs of SP0
SQ_SP1_gpr_wr_en SQ→SPx 4 Write Enable for the GPRs of SP1
SQ_SP2_gpr_wr_en SQ→SPx 4 Write Enable for the GPRs of SP2
SQ_SP3_gpr_wr_en SQ→SPx 4 Write Enable for the GPRs of SP3
SQ_SPx_gpr_phase SQ→SPx 2 The phase mux (arbitrates between inputs, ALU SRC

reads and writes)
SQ_SPx_channel_mask SQ→SPx 4 The channel mask
SQ_SPx_gpr_input_sel SQ→SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTX0,
VTX1, autogen counter.

SQ_SPx_auto_count SQ→SPx 21 Auto count generated by the SQ, common for all shader
pipes

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1091 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

45 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.12 SQ to SPx: Instructions
Name Direction Bits Description
SQ_SPx_instr_start SQ→SPx 1 Instruction start
SQ_SP_instr SQ→SPx 24 Transferred over 4 cycles

0: SRC A Negate Argument Modifier 0:0
 SRC A Abs Argument Modifier 1:1
 SRC A Swizzle 9:2
 Vector Dst 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
--
-
1: SRC B Negate Argument Modifier 0:0
 SRC B Abs Argument Modifier 1:1
 SRC B Swizzle 9:2
 Scalar Dst 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
--
-
2: SRC C Negate Argument Modifier 0:0
 SRC C Abs Argument Modifier 1:1
 SRC C Swizzle 9:2
 Unused 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
--
-
3: Vector Opcode 4:0
 Scalar Opcode 10:5
 Vector Clamp 11:11
 Scalar Clamp 12:12
 Vector Write Mask 16:13
 Scalar Write Mask 20:17
 Unused 23:21

SQ_SP0_pred_override SQ→SP0 4 0: Use per channel RGBA field (enables the per channel
logic, if not set only pay attention to the 11 seting).
1: Use GPR

SQ_SP1_pred_override SQ→SP1 4 0: Use per channel RGBA field (enables the per channel
logic, if not set only pay attention to the 11 seting).
1: Use GPR

SQ_SP2_pred_override SQ→SP2 4 0: Use per channel RGBA field (enables the per channel
logic, if not set only pay attention to the 11 seting).
1: Use GPR

SQ_SP3_pred_override SQ→SP3 4 0: Use per channel RGBA field (enables the per channel
logic, if not set only pay attention to the 11 seting).
1: Use GPR

SQ_SPx_exp_id SQ→SPx 1 GPR ID

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1092 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

R400 Sequencer Specification PAGE

46 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ_SPx_exporting SQ→SPx 1 0: Not Exporting
1: Exporting

SQ_SPx_stall SQ→SPx 1 Stall signal

23.2.13 SQ to SX: write mask interface (must be aligned with the SP data)
Name Direction Bits Description
SQ_SX0_write_mask SQ→SP0 8 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock. This is for the data coming of SP0 and SP2.

SQ_SX1_ write_mask SQ→SP1 8 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock. This is for the data coming of SP1 and SP3.

23.2.14 SP to SQ: Constant address load/ Predicate Set/Kill set
Name Direction Bits Description
SP0_SQ_const_addr SP0→SQ 36 Constant address load / predicate vector load (4 bits only)/

Kill vector load (4 bits only) to the sequencer
SP0_SQ_valid SP0→SQ 1 Data valid
SP1_SQ_const_addr SP1→SQ 36 Constant address load / predicate vector load (4 bits only)/

Kill vector load (4 bits only) to the sequencer
SP1_SQ_valid SP1→SQ 1 Data valid
SP2_SQ_const_addr SP2→SQ 36 Constant address load / predicate vector load (4 bits only)/

Kill vector load (4 bits only) to the sequencer
SP2_SQ_valid SP2→SQ 1 Data valid
SP3_SQ_const_addr SP3→SQ 36 Constant address load / predicate vector load (4 bits only)/

Kill vector load (4 bits only) to the sequencer
SP3_SQ_valid SP3→SQ 1 Data valid
SP0_SQ_data_type SPSQ 2 Data Type

0: Constant Load
1: Predicate Set
2: Kill vector load

Because of the sharing of the bus none of the MOVA, PREDSET or KILL instructions may be coissued.

23.2.15 SQ to SPx: constant broadcast
Name Direction Bits Description
SQ_SPx_const SQ→SPx 128 Constant broadcast

23.2.16 SQ to CP: RBBM bus
Name Direction Bits Description
SQ_RBB_rs SQ→CP 1 Read Strobe
SQ_RBB_rd SQ→CP 32 Read Data
SQ_RBBM_nrtrtr SQ→CP 1 Optional
SQ_RBBM_rtr SQ→CP 1 Real-Time (Optional)

23.2.17 CP to SQ: RBBM bus
Name Direction Bits Description
rbbm_we CP→SQ 1 Write Enable
rbbm_a CP→SQ 15 Address -- Upper Extent is TBD (16:2)
rbbm_wd CP→SQ 32 Data
rbbm_be CP→SQ 4 Byte Enables
rbbm_re CP→SQ 1 Read Enable
rbb_rs0 CP→SQ 1 Read Return Strobe 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1093 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

47 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

rbb_rs1 CP→SQ 1 Read Return Strobe 1
rbb_rd0 CP→SQ 32 Read Data 0
rbb_rd1 CP→SQ 32 Read Data 0
RBBM_SQ_soft_reset CP→SQ 1 Soft Reset

23.2.18 SQ to CP: State report
Name Direction Bits Description
SQ_CP_vs_event SQ→CP 1 Vertex Shader Event
SQ_CP_vs_eventid SQ→CP 5 Vertex Shader Event ID
SQ_CP_ps_event SQ→CP 1 Pixel Shader Event
SQ_CP_ps_eventid SQ→CP 5 Pixel Shader Event ID

23.3 Example of control flow program execution
We now provide some examples of execution to better illustrate the new design.

Given the program:

Alu 0
Alu 1
Tex 0
Tex 1
Alu 3 Serial
Alu 4
Tex 2
Alu 5
Alu 6 Serial
Tex 3
Alu 7
Alloc Position 1 buffer
Alu 8 Export
Tex 4
Alloc Parameter 3 buffers
Alu 9 Export 0
Tex 5
Alu 10 Serial Export 2
Alu 11 Export 1 End

Would be converted into the following CF instructions:

Execute 0 Alu 0 Alu 0 Tex 0 Tex 1 Alu 0 Alu 0 Tex 0 Alu 1 Alu 0 Tex
Execute 0 Alu
Alloc Position 1
Execute 0 Alu 0 Tex
Alloc Param 3
Execute_end 0 Alu 0 Tex 1 Alu 0 Alu

And the execution of this program would look like this:

Put thread in Vertex RS:

Control Flow Instruction Pointer (12 bits), (CFP)
Execution Count Marker (3 or 4 bits), (ECM)
Loop Iterators (4x9 bits), (LI)
Call return pointers (4x12 bits), (CRP)
Predicate Bits(4x64 bits), (PB)
Export ID (1 bit), (EXID)
GPR Base Ptr (8 bits), (GPR)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1094 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

R400 Sequencer Specification PAGE

48 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Export Base Ptr (7 bits), (EB)
Context Ptr (3 bits).(CPTR)
LOD correction bits (16x6 bits) (LOD)

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 0 0 0 0 0 0 0 0 0

Valid Thread (VALID)
Texture/ALU engine needed (TYPE)
Texture Reads are outstanding (PENDING)
Waiting on Texture Read to Complete (SERIAL)
Allocation Wait (2 bits) (ALLOC)

00 – No allocation needed
01 – Position export allocation needed (ordered export)
10 – Parameter or pixel export needed (ordered export)
11 – pass thru (out of order export)

Allocation Size (4 bits) (SIZE)
Position Allocated (POS_ALLOC)
First thread of a new context (FIRST)
Last (1 bit), (LAST)

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 0 0 0 0 0 1 0

Then the thread is picked up for the execution of the first control flow instruction:

Execute 0 Alu 0 Alu 0 Tex 0 Tex 1 Alu 0 Alu 0 Tex 0 Alu 1 Alu 0 Tex

It executes the first two ALU instructions and goes back to the RS for a resource request change. Here is the
state returned to the RS:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 2 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Then when the texture pipe frees up, the arbiter picks up the thread to issue the texture reads. The thread comes

back in this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 4 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 0 1 0

Because of the serial bit the arbiter must wait for the texture to return and clear the PENDING bit before it can

pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returns it in
this state:

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1095 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

49 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 6 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Again the TP frees up, the arbiter picks up the thread and executes. It returns in this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 7 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 0 0 0 1 0

Now, even if the texture has not returned we can still pick up the thread for ALU execution because the serial bit

is not set. The thread will however come back to the RS for the second ALU instruction because it has the serial bit
set.

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 8 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 0 1 0

As soon as the TP clears the pending bit the thread is picked up and returns:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 9 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Picked up by the TP and returns:
Execute 0 Alu

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
1 0 0 0 0 0 0 0 0 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1096 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

R400 Sequencer Specification PAGE

50 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 0 0 0 1 0

Picked up by the ALU and returns (lets say the TP has not returned yet):
Alloc Position 1

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
2 0 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 01 1 0 1 0

If the SX has the place for the export, the SQ is going to allocate and pick up the thread for execution. It returns to

the RS in this state:

Execute 0 Alu 0 Tex

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
3 1 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 1 0 0 0 1 1 0

Now, since the TP has not returned yet, we must wait for it to return because we cannot issue multiple texture

requests. The TP returns, clears the PENDING bit and we proceed:

Alloc Param 3

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
4 0 0 0 0 1 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 10 3 1 1 0

Once again the SQ makes sure the SX has enough room in the Parameter cache before it can pick up this

thread.

Execute_end 0 Alu 0 Tex 1 Alu 0 Alu

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
5 1 0 0 0 1 0 100 0 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1097 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201514
October 200211

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

51 of 51

Exhibit 2035.docR400_Sequencer.doc �� 73569 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 1 0 0 0 1 1 0

This executes on the TP and then returns:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
5 2 0 0 0 1 0 100 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 1 1 1

Waits for the TP to return because of the textures reads are pending (and SERIAL in this case). Then executes
and does not return to the RS because the LAST bit is set. This is the end of this thread and before dropping it on the
floor, the SQ notifies the SX of export completion.

24. Open issues
Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1098 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SQ

Version 2.087

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\doc_lib\design\blocks\sq\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2036
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1099 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

R400 Sequencer Specification PAGE

2 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Table Of Contents

1. OVERVIEW .. 7
1.1 Top Level Block Diagram ... 9
1.2 Data Flow graph (SP) ... 10
1.3 Control Graph ... 11
2. INTERPOLATED DATA BUS .. 11
3. INSTRUCTION STORE ... 14
4. SEQUENCER INSTRUCTIONS ... 14
5. CONSTANT STORES .. 14
5.1 Memory organizations .. 14
5.2 Management of the Control Flow Constants .. 15
5.3 Management of the re-mapping tables ... 15

5.3.1 R400 Constant management... 15

5.3.2 Proposal for R400LE constant management ... 15

5.3.3 Dirty bits .. 17

5.3.4 Free List Block ... 17

5.3.5 De-allocate Block .. 18

5.3.6 Operation of Incremental model .. 18
5.4 Constant Store Indexing ... 18
5.5 Real Time Commands .. 19
5.6 Constant Waterfalling ... 19
6. LOOPING AND BRANCHES ... 20
6.1 The controlling state. .. 20
6.2 The Control Flow Program ... 20

6.2.1 Control flow instructions table .. 21
6.3 Implementation ... 23
6.4 Data dependant predicate instructions ... 2524
6.5 HW Detection of PV,PS .. 2625
6.6 Register file indexing .. 2625
6.7 Debugging the Shaders .. 2625

6.7.1 Method 1: Debugging registers ... 26

6.7.2 Method 2: Exporting the values in the GPRs ... 2726
7. PIXEL KILL MASK .. 2726
8. MULTIPASS VERTEX SHADERS (HOS) .. 2726
9. REGISTER FILE ALLOCATION .. 2726
10. FETCH ARBITRATION .. 28
11. ALU ARBITRATION .. 28
12. HANDLING STALLS ... 29
13. CONTENT OF THE RESERVATION STATION FIFOS ... 29
14. THE OUTPUT FILE .. 29
15. IJ FORMAT .. 29
15.1 Interpolation of constant attributes .. 29
16. STAGING REGISTERS ... 30

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1100 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

17. THE PARAMETER CACHE ... 31
17.1 Export restrictions .. 32

17.1.1 Pixel exports: .. 32

17.1.2 Vertex exports: ... 32

17.1.3 Pass thru exports: .. 32
17.2 Arbitration restrictions .. 32
18. EXPORT TYPES .. 32
18.1 Vertex Shading .. 32
18.2 Pixel Shading .. 33
19. SPECIAL INTERPOLATION MODES ... 33
19.1 Real time commands ... 33
19.2 Sprites/ XY screen coordinates/ FB information .. 33
19.3 Auto generated counters ... 34

19.3.1 Vertex shaders ... 34

19.3.2 Pixel shaders .. 34
20. STATE MANAGEMENT .. 35
20.1 Parameter cache synchronization ... 35
21. XY ADDRESS IMPORTS ... 35
21.1 Vertex indexes imports .. 35
22. REGISTERS .. 35

23. INTERFACES .. 36

23.1 External Interfaces .. 36
23.2 SC to SP Interfaces ... 36

23.2.1 SC_SP#.. 36

23.2.2 SC_SQ ... 37

23.2.3 SQ to SX(SP): Interpolator bus .. 39

23.2.4 SQ to SP: Staging Register Data ... 39

23.2.5 VGT to SQ : Vertex interface .. 39

23.2.6 SQ to SX: Control bus .. 42

23.2.7 SX to SQ : Output file control ... 42

23.2.8 SQ to TP: Control bus .. 43

23.2.9 TP to SQ: Texture stall ... 43

23.2.10 SQ to SP: Texture stall ... 44

23.2.11 SQ to SP: GPR and auto counter ... 44

23.2.12 SQ to SPx: Instructions .. 45

23.2.13 SP to SQ: Constant address load/ Predicate Set/Kill set .. 46

23.2.14 SQ to SPx: constant broadcast .. 46

23.2.15 SQ to CP: RBBM bus ... 46

23.2.16 CP to SQ: RBBM bus ... 46

23.2.17 SQ to CP: State report ... 47
23.3 Example of control flow program execution ... 47

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1101 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

R400 Sequencer Specification PAGE

4 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

24. OPEN ISSUES ... 51

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1102 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

 Changed the control flow method to be more
flexible. Also updated the external interfaces.

Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

 Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001

 Refined interfaces to RB. Added state registers.

Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

 Added SEQ→SP0 interfaces. Changed delta
precision. Changed VGT→SP0 interface. Debug
Methods added.

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001

 Interfaces greatly refined. Cleaned up the spec.

Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001

 Added the different interpolation modes.

Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

 Added the auto incrementing counters. Changed
the VGT→SQ interface. Added content on constant
management. Updated GPRs.

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

 Removed from the spec all interfaces that weren’t
directly tied to the SQ. Added explanations on
constant management. Added PA→SQ
synchronization fields and explanation.

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

 Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002

 Added Real Time parameter control in the SX
interface. Updated the control flow section.

Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

 New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002

 Rearangement of the CF instruction bits in order to
ensure byte alignement.

Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002

 Updated the interfaces and added a section on
exporting rules.

Rev 1.11 (Laurent Lefebvre)
Date : April 19, 2002

 Added CP state report interface. Last version of the
spec with the old control flow scheme

Rev 2.0 (Laurent Lefebvre)
Date : April 19, 2002

 New control flow scheme

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1103 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

R400 Sequencer Specification PAGE

6 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Rev 2.01 (Laurent Lefebvre)
Date : May 2, 2002

 Changed slightly the control flow instructions to
allow force jumps and calls.

Rev 2.02 (Laurent Lefebvre)
Date : May 13, 2002

 Updated the Opcodes. Added type field to the
constant/pred interface. Added Last field to the
SQ→SP instruction load interface.

Rev 2.03 (Laurent Lefebvre)
Date : July 15, 2002

 SP interface updated to include predication
optimizations. Added the predicate no stall
instructions,

Rev 2.04 (Laurent Lefebvre)
Date :August 2, 2002

 Documented the new parameter generation scheme
for XY coordinates points and lines STs.

Rev 2.05 (Laurent Lefebvre)
Date : September 10, 2002

 Some interface changes and an architectural
change to the auto-counter scheme.

Rev 2.06 (Laurent Lefebvre)
Date : October 11, 2002

 Widened the event interface to 5 bits. Some other
little typos corrected.

Rev 2.07 (Laurent Lefebvre)
Date : October 14, 2002

 Loops, jumps and calls are now using a 13 bit
address which allows to jump and call and loop
around any control flow addresses (does not
requires to be even anymore).

Rev 2.08 (Laurent Lefebvre)
Date : October 16, 2002

 Clarification updates after discussion with Clay.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1104 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1. Overview
The sequencer chooses two ALU threads and a fetch hread to execute, and executes all of the instructions in a block
before looking for a new clause of the same type. Two ALU threads are executed interleaved to hide the ALU latency.
The arbitrator will give priority to older threads. There are two separate reservation stations, one for pixel vectors and
one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1105 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

R400 Sequencer Specification PAGE

8 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ

SC

SPSPSPCSTOREFETCH STATE

TP

INST STORE

IJ CONTROL

IJ
CONTROL

CST
ADDR

INST
 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/QUAD
ADDRESSES

SP

ALU INST

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

INST

INTER INTER INTER INTER

IJ CROSSBAR

2 QUADS IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC READ
 POINTERS

PARAM
DATA

R/W ADDR

Vertex indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

CP

CONSTANT
LOAD

CPConstant Load

TX ADDR

PC Write
Address

TEX INST

CF
CONSTANTS

Register
Mapped

CF Read

Figure 1: General Sequencer overview

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1106 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.1 Top Level Block Diagram

ALU Texture

VTX RS PIX RS

Exec Arbiter

Input Arbiter

Figure 2: Reservation stations and arbiters

Under this new scheme, the sequencer (SQ) will only use one global state management machine per vector type
(pixel, vertex) that we call the reservation station (RS).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1107 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

R400 Sequencer Specification PAGE

10 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.2 Data Flow graph (SP)

MAC

MAC

MAC

MAC

Register File

co
n

st
an

ts
 f

ro
m

 R
E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
n

ts
 f

ro
m

 R
E

S
ca

la
r

U
ni

t

texture request

texture request

texture request

texture request

te
xt

ur
e

 a
dd

re
ss

te xtu
re

 d
ata

prim
itiv e d a

ta
 from

 R
E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

Figure 3: The shader Pipe

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1108 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

SEQ

FETCH SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

OF

WrAddrIS CST

CST IDX

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1109 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

R400 Sequencer Specification PAGE

12 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x100 bits)

IJs buffer (ping-pong buffer)
(25 bits * 8 (IJ) * 4 * 4 * 4 (quadruple-buffered)

12800 bits

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

100

To RB

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2

768 bits
32x24

FIX-FLOAT + EXPANSiON

Figure 5: Interpolation buffers

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1110 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SP
0

SP
1

SP
2

SP
3

WRITES
T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-
11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P1 P2

T20 T21 T22 T23

VTX

T0 T1 T2 T3

XY

XY
0-3

XY
4-7

XY
8-
11

XY
12-
15

XY
16-
19

XY
20-
23

XY
24-
27

XY
28-
31

XY
32-
35

XY
36-
39

XY
40-
43

XY
44-
47

XY
48-
51

XY
52-
55

XY
56-
59

XY
60-
63

READS

SP
0

SP
1

SP
2

SP
3

A0

A1

A2

B1

B0

C3

C0

C1

C2

C4

C5

D0

D1

D2

E0

E1

A0

A1

A2

XY
A0
XY
A1
XY
A2

B1

B0

XY
B1

XY
B0

C3

C0

C1

C2

XY
C3
XY
C0
XY
C1
XY
C2

C4

C5

XY
C4
XY
C5

D0

D1

D2

XY
D1
XY
D2

XY
D0

E0

E1
XY
E1

XY
E0

Figure 6: Interpolation timing diagram

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1111 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

R400 Sequencer Specification PAGE

14 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store
There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4. Sequencer Instructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1112 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

5.2 Management of the Control Flow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied whenever there is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn’t write to CF the state is going to use the previous CF constants.

5.3 Management of the re-mapping tables

5.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROL packet of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it with
the new state (this is depicted in Figure 8: De-allocation mechanismFigure 8: De-allocation mechanismFigure 8: De-
allocation mechanism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1113 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

R400 Sequencer Specification PAGE

16 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Physical
Memory

Renaming Table
for 1 Context
Current/Last

Physical
Address

per
Logical
Address

Renaming
table

N-Contexts

Reset
Dirty
per

Logical
Address

(Only
de-

allocate
if set)

This
Context

Dirty
per

Logical
Address

(If set
don't

allocate
or de-

allocate)

Logical address
On the

GlbRegBus
when lsb are zero
first word of write

next
physical
address
ready

for allocate

Constants
location
available
WRTR

physical
address

to
schedule

for
de-alloc

Staging Data
Buffer

Staging Write Addr

Copy Last held above to
Current Context on receipt

of Set Constant for a
new context (Hide loading

behind Set State load - 16 clocks)
all other Set States just write one

entry to current state.

Free
list

(pass Phys
Address if
Context
Dirty)

Dealloc
Counts

Seq
Constant
Request

Context &
Logical
Address

Free_ptr
WritePtr

When a Logical
Address is written

that has been
written before,

store the physical
address that was
allocated by that
Logical Address

Stop_ptr
ptr to first physical

address that is
scheduled to be de-
allocated but noty
yet de-allocate.

Advanced each time
a context is freed by

the number of
physical address
displaced by that

Context

Read_ptr
ptr to physical

address that will be
used next if the init

count is at
maximum number

of physical address

Free List

Number of entries
equals Max Number of
Physical Blocks. All
Pointers start at zero
and roll around but

can never pass each
other

Free
Address

Address
to Allocate

Global Register
Data Bus

Renaming Table
Context 0 => N

Logical Address
& Context

Physical
Address

Context 0 (8 rows of 16 - 8 bit
physical => 128 entries copy in

eight clocks)

Context 1

Context N

Current/Last
Context

(8 rows of 16 - 8
bit physical =>

128 entries copy
in eight clocks)

Figure 7: Constant management

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1114 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

DEALOC
COUNTERSFree List

!=

OR

AND

NOT

ADDR

PREVIOUS
STATE

NEW
STATE

SQ_IDLE

CP_NEW_STATE_CNTL
PA_IDLE

VALUE

VALID

CNT VALUE

SQ_STATE#

WRITE_ENABLE

REMAPPING
TABLE

SET CTX BITS

Figure 8: De-allocation mechanism for R400LE

5.3.3 Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block
A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1115 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

R400 Sequencer Specification PAGE

18 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

5.3.5 De-allocate Block
This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any number of blocks in one clock.

5.3.6 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1116 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Since the data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1
instruction) between the time the sequencer is loaded and the time one can index into the constant store. The
assembly will look like this

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP // latency of the float to fixed conversion
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

The address register is a signed integer, which ranges from –256 to 255.

5.5 Real Time Commands
The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
works is the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zones is defined by the TSTATE_EO_RT control register.

5.6 Constant Waterfalling
In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenever a state is freed.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1117 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

R400 Sequencer Specification PAGE

20 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

CONST_EO_RT

RT SECTON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table)

Figure 9: The Constant store

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[2556:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
We'd like to be able to code up a program of the form:

1: Loop
2: Exec TexFetch

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1118 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

3: TexFetch
4: ALU
5: ALU
6: TexFetch
7: End Loop
8: ALU Export

But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3:. Without clausing,
these dependencies need to be expressed in the Control Flow instructions. Additionally, without separate 'texture
clauses' and 'ALU clauses' we need to know which instructions to dispatch to the Texture Unit and which to the ALU
unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of information for each (non-control flow) instruction:
 a) ALU or Texture
 b) Serialize Execution

(b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched. Given the allocation of reserved bits, this would mean that the count of an 'Exec' instruction
would be limited to about 8 (non-control-flow) instructions. If more than this were needed, a second Exec (with the
same conditions) would be issued.

Another function that relies upon 'clauses' is allocation and order of execution. We need to assure that pixels and
vertices are exported in the correct order (even if not all execution is ordered) and that space in the output buffers are
allocated in order. Additionally data can't be exported until space is allocated. A new control flow instruction:

 Alloc <buffer select -- position,parameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual
allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already
completed. The implementation would also assure that execution of instruction(s) following the serialization due to the
Alloc will occur in order -- at least until the next serialization or change from ALU to Texture. In most cases this will
allow the exports to occur without any further synchronization. Only 'final' allocations or position allocations are
guaranteed to be ordered. Because strict ordering is required for pixels, parameters and positions, this implies only
a single alloc for these structures. Vertex exports to memory do not require ordering during allocation and so multiple
'allocs' may be done.

6.2.1 Control flow instructions table
Here is the revised control flow instruction set.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

NOP
47 … 44 43 42 … 0

0000 Addressing RESERVED

This is a regular NOP.

Execute
47 … 44 43 40 … 34 33 …16 15…12 11 … 0

0001 Addressing RESERVED Instructions type + serialize (9
instructions)

Count Exec Address

Execute_End

47 … 44 43 40 … 34 33 …16 15…12 11 … 0
0010 Addressing RESERVED Instructions type + serialize (9

instructions)
Count Exec Address

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1119 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

R400 Sequencer Specification PAGE

22 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Execute up to 9 instructions at the specified address in the instruction memory. The Instruction type field tells the
sequencer the type of the instruction (LSB) (1 = Texture, 0 = ALU and whether to serialize or not the execution (MSB)
(1 = Serialize, 0 = Non-Serialized). If Execute_End this is the last execution block of the shader program.

Conditional_Execute

47 … 44 43 42 41 … 34 33…16 15 …12 11 … 0
0011 Addressing Condition Boolean

address
Instructions type + serialize (9

instructions)
Count Exec Address

Conditional_Execute_End

47 … 44 43 42 41 … 34 33…16 15 …12 11 … 0
0100 Addressing Condition Boolean

address
Instructions type + serialize (9

instructions)
Count Exec Address

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 9 instructions). If the condition is not met, we go on to the next control flow instruction. If
Conditional_Execute_End and the condition is met, this is the last execution block of the shader program.

Conditional_Execute_Predicates
47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0

0101 Addressing Condition RESERVED Predicate
vector

Instructions
type + serialize
(9 instructions)

Count Exec Address

Conditional_Execute_Predicates_End

47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0
0110 Addressing Condition RESERVED Predicate

vector
Instructions

type + serialize
(9 instructions)

Count Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid. If the
condition is not met, we go on to the next control flow instruction. If Conditional_Execute_Predicates_End and the
condition is met, this is the last execution block of the shader program.

Conditional_Execute_Predicates_No_Stall
47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0

1101 Addressing Condition RESERVED Predicate
vector

Instructions
type + serialize
(9 instructions)

Count Exec Address

Conditional_Execute_Predicates_No_Stall_End

47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0
1110 Addressing Condition RESERVED Predicate

vector
Instructions

type + serialize
(9 instructions)

Count Exec Address

Same as Conditionnal_Execute_Predicates but the SQ is not going to wait for the predicate vector to be updated.
You can only set this in the compiler if you know that the predicate set is only a refinement of the current one (like a
nested if) because the optimization would still work.

Loop_Start
47 … 44 43 42 … 21 20 … 16 15…13 12 … 0

0111 Addressing RESERVED loop ID RESERVED Jump address

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1120 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Loop_End
47 …

44
43 42 …

24
41… 36 35…34 33… 2223…

21
21 20 … 16 15…13 12 … 0

1000 Addressing RES
ERV
EDC
ond

RESERVED Predicate
Vector

RESERVED
Predicate

break

Pred
break

loop ID RESERVED start
address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop. If predicate break != 0, then compares predicate vector n
(specified by predicate break numberVector) to condition. If all bits cleared then break the loopmeet condition then
break the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal_Call
47 … 44 43 42 41 … 34 33 … 14 13 12 … 0

1001 Addressing Condition Boolean address RESERVED Force Call Jump address

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack. If
force call is set the condition is ignored and the call is made always.

Return
47 … 44 43 42 … 0

1010 Addressing RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump
47 … 44 43 42 41… 34 33 32 … 14 13 12 … 0

1011 Addressing Condition Boolean
address

FW only RESERVED Force Jump Jump address

If force jump is set the condition is ignored and the jump is made always. If FW only is set then only forward jumps
are allowed.

Allocate
47 … 44 43 42…41 40 … 3 2…0

1100 Debug Buffer Select RESERVED Size

Buffer Select takes a value of the following:
01 – position export (ordered export)
10 – parameter cache or pixel export (ordered export)
11 – pass thru (out of order exports).

Size field is only used to reserve space in the export buffer for pass thru exports. Valid values are 1 (1 line) thru 9 (9
lines). It should be determined by the compiler/assembler by taking max index used +1.

If debug is set this is a debug alloc (ignore if debug DB_ON register is set to off).

6.3 Implementation

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1121 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

R400 Sequencer Specification PAGE

24 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The envisioned implementation has a buffer that maintains the state of each thread. A thread lives in a given
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the order that they
enter. Actually two buffers are maintained -- one for Vertices and one for Pixels. The intended implementation
would allow for:

16 entries for vertices
48 entries for pixels.

From each buffer, arbitration logic attempts to select 1 thread for the texture unit and 1 2 (interleaved) thread for the
ALU unit. Once a thread is selected it is read out of the buffer, marked as invalid, and submitted to appropriate
execution unit. It is returned to the buffer (at the same place) with its status updated once all possible sequential
instructions have been executed. A switch from ALU to TEX or visa-versa or a Serialize_Execution modifier forces
the thread to be returned to the buffer.

Each entry in the buffer will be stored across two physical pieces of memory - most bits will be stored in a 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed 'state'. The bits kept in the multi-read ported device will be termed 'status'.

'State Bits' needed include:

1. Control Flow Instruction Pointer (13 bits),
2. Execution Count Marker 4 bits),
3. Loop Iterators (4x9 bits),
4. Loop Counters (4x9 bits),
5. Call return pointers (4x13 bits),
6. Predicate Bits (64 bits),
7. Export ID (1 bit),
8. Parameter Cache base Ptr (7 bits),
9. GPR Base Ptr (8 bits),
10. Context Ptr (3 bits).
11. LOD corrections (6x16 bits)
12. Valid bits (64 bits)
13. RT (1 bit) Signifies that this thread is a Real Time thread. This bit must be sent to the Constant store state

machine when reading it.

Absent from this list are 'Index' pointers. These are costly enough that I'm presuming that they are instead stored in
the GPRs. The first seven fields above (Control Flow Ptr, Execution Count, Loop Counts, call return ptrs, Predicate
bits, PC base ptr and export ID) are updated every time the thread is returned to the buffer based on how much
progress has been mode on thread execution. GPR Base Ptr, Context Ptr and LOD corrections are unchanged
throughout execution of the thread.

'Status Bits' needed include:

 Valid Thread
 Texture/ALU engine needed
 Texture Reads are outstanding
 Waiting on Texture Read to Complete
 Allocation Wait (2 bits)
 00 – No allocation needed
 01 – Position export allocation needed (ordered export)
 10 – Parameter or pixel export needed (ordered export)
 11 – pass thru (out of order export)
 Allocation Size (4 bits)
 Position Allocated
 Mem/Color Allocated
 First thread of a new context
 Event thread (NULL thread that needs to trickle down the pipe)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1122 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 Last (1 bit)
 Pulse SX (1 bit)

All of the above fields from all of the entries go into the arbitration circuitry. The arbitration circuitry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -- one for
pixels and one for vertices. A final selection is then done between the two. But the rest of this implementation
summary only considers the 'first' level selection which is similar for both pixels and vertices.

Texture arbitration requires no allocation or ordering so it is purely based on selecting the 'oldest' thread that requires
the Texture Engine.

ALU arbitration is a little more complicated. First, only threads where either of Texture_Reads_outstanding or
Waiting_on_Texture_Read_to_Complete are '0' are considered. Then if Allocation_Wait is active, these threads are
further filtered based on whether space is available. If the allocation is position allocation, then the thread is only
considered if all 'older' threads have already done their position allocation (position allocated bits set). If the
allocation is parameter or pixel allocation, then the thread is only considered if it is the oldest thread. Also a thread is
not considered if it is a parameter or pixel or position allocation, has its First_thread_of_a_new_context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the 'oldest' of the threads that pass through the above filters is selected. If the thread needed to allocate, then
at this time the allocation is done, based on Allocation_Size. If a thread has its “last” bit set, then it is also removed
from the buffer, never to return.

If I now redefine 'clauses' to mean 'how many times the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine', then the minimum number of clauses needed is 2 -- one to perform
the allocation for exports (execution automatically halts after an 'Alloc' instruction) (but doesn't performs the actual
allocation) and one for the actual ALU/export instructions. As the 'Alloc' instruction could be part of a texture clause
(presumably the final instruction in such a clause), a thread could still execute in this minimal number of 2 clauses,
even if it involved texture fetching.

The Texture_Reads_Outstanding bit must be updated by the sequencer, based on keeping track of how many
Texture Clauses have been executed by a given thread that have not yet had there data returned. Any number
above 0 results in this bit being set. We could consider forcing synchronization such that two texture clauses for a
given thread may not be outstanding at any time (that would be my preference for simplicity reasons and because it
would require only very little change in the texture pipe interface). This would allow the sequencer to set the bit on
execution of the texture clause, and allow the texture unit to return a pointer to the thread buffer on completion that
clears the bit.

6.4 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_# _PUSH - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETNE_PUSH# - similar to SETNE except that the result is 'exported' to the sequencer.
PRED_SETGT_PUSH # - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_PUSH# - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE0_# – SETE0

 PRED_SETE1_#NE – SETE

PRED_SETGT 1
PRED_SET_INV

 PRED_SET_POP
 PRED_SET_CLR
 PRED_SET_RESTORE

Details about actual implementation of these opcodes are in the shader pipe architectural spec.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1123 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

R400 Sequencer Specification PAGE

26 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 1 sets of 64 bits predicate vectors (in fact 28 sets because we interleave two programs but only 4 1 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

 P0_P0_ ADD_# R0,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

6.5 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.detect wich channels to read from the GPRs and which ones
to read from the PV/PS.

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

6.6 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

The sequencer is going to keep a loop index computed as such:

 Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128…127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1124 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The sequencer will detect the following groups of errors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
 - jump errors
 relative jump address > size of the control flow program
 - call stack
 call with stack full

return with stack empty

A jump error will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only break if
the DB_PROB_BREAK register is set.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the 0th
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs
1) The sequencer will have a debug active, count register and an address register for this mode.

Under the normal mode execution follows the normal course.

Under the debug mode it is assumed that the program is always exporting n debug vectors and that all other exports
to the SX block (but for position, color, z, ect) will been turned off (changed into NOPs) by the sequencer (even if they
occur before the address stated by the ADDR debug register).

7. Pixel Kill Mask
A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE

 MASK_SETGT
 MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZE for pixels.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1125 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

R400 Sequencer Specification PAGE

28 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

10. Fetch Arbitration
The fetch arbitration logic chooses one of the n potentially pending fetch clauses to be executed. The choice is made
by looking at the Vs and Ps reservation stations and picking the first one ready to execute. Once chosen, the clause
state machine will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two fetches of the
same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration
ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
n potentially pending ALU clauses to be executed. The choice is made by looking at the Vs and Ps reservation
stations and picking the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for
the odd clocks. For example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and
Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1126 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering an exporting clause. The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs
The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). All pixel’s parameters are always interpolated at full 20x24 mantissa precision.

)(*)3()(*)3(3

)(*)2()(*)2(2

)(*)1()(*)1(1

)(*)0()(*)0(0

ACJABIAP

ACJABIAP

ACJABIAP

ACJABIAP

Multiplies (Full Precision): 8
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF P’s IJ : Mantissa 20 Exp 4 for I + Sign
 Mantissa 20 Exp 4 for J + Sign

Total number of bits : 20*8 + 4*8 + 4*2 = 200.

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the number is
normalized if not, then the number is un-normalized. The maximum range for the IJs (Full precision) is +/- 1024.

15.1 Interpolation of constant attributes
Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the terms are the same.

P0

P2

P1

P3

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1127 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

R400 Sequencer Specification PAGE

30 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 || 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencer will re-arrange them in this fashion:

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 || 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 || 8 9 10 11 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the SQ is responsible to insert padding to
account for the missing pipe. For example, if SP1 is broken, vertices 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will
not be sent by the VGT to the SQ AND the SQ is responsible to “jump” over these vertices in order for no valid
vertices to be sent to an invalid SP.

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 11Figure 11Figure 11. The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure 10Figure 10Figure 10.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11631 60.57813per bit

Area of 96x8-deep Latch Memory 46524

Area of 24-bit Fix-to-float Converter 4712per converter

Method 1 Block Quantity Area

 F2F 3 14136

 8x96 Latch 16 744384

 758520

Figure 10:Area Estimate for VGT to Shader Interface

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1128 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SHADER PIPE

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

3
2

3
2

3
2

VGT BLOCK
(IN PA)

3
2

9
6

VECTOR ENGINE

96

8x96
MEMORY
1-READ
1-WRITE

3 OTHER
SHADER
PIPES

 3 Fix->Float Converters (24-bit)
 16 Memories 8x96-bit (12,288 bits)

Totals:

THREE MORE VECTOR ENGINES
PER SHADER PIPE

VECTOR ENGINE

SHADER
SEQUENCER

Figure 11:VGT to Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER
4 bits

ADDRESS
7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17th) is going to have the address 00000001000, the 18th 00010001000, the 19th 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*VS_EXPORT_COUNT to
Current_Location and reset the memory count to 0 before the next vector begins).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1129 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

R400 Sequencer Specification PAGE

32 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

17.1 Export restrictions

17.1.1 Pixel exports:
Pixels can export 1,2,3 or 4 color buffers to the SX(+z). The exports will be done in order. The PRED_OPTIMIZE
function has to be turned of if the exports are done using interleaved predicated instructions. The exports will always
be ordered to the SX.

17.1.2 Vertex exports:
Position or parameter caches can be exported in any order in the shader program. It is always better to export
posistion as soon as possible. Position has to be exported in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be done in any order with texture instructions interleaved.
The PRED_OPTIMIZE function has to be turned of if the exports are done using interleaved predicated instructions to
the Parameter cache (see Arbitration restrictions for details). The exports will always be allocated in order to the SX.

17.1.3 Pass thru exports:
Pass thru exports have to be done in groups of the form:

Alloc 4 (or 88 or 12)
Execute ALU(ADDR) ALU(DATA) ALU(DATA) ALU(DATA)…

They cannot have texture instructions interleaved in the export block. These exports are not guaranteed to be
ordered.

Also, when doing a pass thru export, Position MUST be exported AFTER all pass thru exports. This position
export is used to synchronize the chip when doing a transition from pass thru shader to regular shader and vice
versa.

17.2 Arbitration restrictions
Here are the Sequencer arbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texture pending bit is set
2) Cannot allocate position if any older thread has not allocated position
3) Cannot have more than 2 opened allocs of type : Memory, position and Color.
3)4) If last thread is marked as not valid AND marked as last and we are about to execute the second to oldest

thread also marked last then:
a. Both threads must be from the same context (cannot allow a first thread)
b. Must turn off the predicate optimization for the second thread

4)5) Cannot execute a texture clause if texture reads are pending
5)6) Cannot execute last if texture pending (even if not serial)
7) Cannot allocate if not last or second to last for color exports.

18. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

18.1 Vertex Shading
 0:15 - 16 parameter cache
 16:31 - Empty (Reserved?)

32 - Export Address
 33:37 - 5 vertex exports to the frame buffer and index
 38:47 - Empty
 48:52 - 5 debug export (interpret as normal memory export)

Formatted

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1130 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

33 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 60 - export addressing mode
 61 - Empty
 62 - position
 63 - sprite size export that goes with position export
 (X= point size, Y= edge flag is bit 0, Z= VtxKill is bitwise OR of bits 30:0. Any bit other than
sign means VtxKill.)

18.2 Pixel Shading
 0 - Color for buffer 0 (primary)
 1 - Color for buffer 1
 2 - Color for buffer 2
 3 - Color for buffer 3
 4:15 - Empty
 16 - Buffer 0 Color/Fog (primary)
 17 - Buffer 1 Color/Fog
 18 - Buffer 2 Color/Fog
 19 - Buffer 3 Color/Fog
 20:31 - Empty
 32 - Export Address
 33:37 - 5 exports for multipass pixel shaders.
 38:47 - Empty
 48:52 - 5 debug exports (interpret as normal memory export)

60 - export addressing mode
61 - Z for primary buffer (Z exported to 'alpha' component)

 62:63 - Empty

19. Special Interpolation modes

19.1 Real time commands
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem I see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft’s high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This mode is triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

19.2 Sprites/ XY screen coordinates/ FB information
XY screen coordinates may be needed in the shader program. This functionality is controlled by the param_gen_I0
register (in SQ) in conjunction with the SND_XY register (in SC) and the param_gen_pos. Also it is possible to send
the faceness information (for OGL front/back special operations) to the shader using the same control register. Here
is a list of all the modes and how they interact together:

The Data is going to be written in the register specified by the param_gen_pos register.

Param_Gen_I0 disable, snd_xy disable = No modification
Param_Gen_I0 disable, snd_xy enable = No modification
Param_Gen_I0 enable, snd_xy disable = Sign(faceness)garbage,(Sign Point)garbage,Sign(Line)s, t
Param_Gen_I0 enable, snd_xy enable = Sign(faceness)screenX,(Sign Point)screenY,Sign(Line)s, t

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1131 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

R400 Sequencer Specification PAGE

34 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

In other words,
The generated vector is (X in RED, Y in GREEN, S in BLUE and T in ALPHA):
X,Y,S,T
These values are always supposed to be positive and any shader use of them should use the ABS function
(as their sign bits will now be used for flags).
SignX = BackFacing
SignY = Point Primitive
SignS = Line Primitive
SignT = currently unused as a flag.

If !Point & !Line, then it is a Poly.

I would assume that one implementation which allows for generic texture lookup (using 3D maps) for poly
stipple and AA for the driver would be
if(Y<0) {
 R = 0.0 (Point)
} else if (S < 0) {
 R = 1.0 (Line)
} else {
 R = 2.0 (Poly)

}

19.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1st pass data to memory and then use the count to retrieve the data on the 2nd pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX_PIX/VTX register. The sequencer
is going to keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is
written to the GPRs the counter is incremented. Every time a RST_PIX_COUNT or RST_VTX_COUNT events are
received, the corresponding counter is reset. While there is only one count broadcast to the GPRs, the LSB are
hardwired to specific values making the index different for all elements in the vector. Since the count must be different
for all pixels/vertices and the 4 LSBs (16 positions) are hardwired to the corresponding shader unit the SQ has two
choices:

1) Maintain a 19 bit counter that counts the vectors of 64. In this case the phase must be appended to the count
before the count is broadcast to the SPs:

Counter (19 bits) Phase (2 bits) Hardwired (4 bits)

2) Maintain a 21 bits counter that counts sub-vectors of 16. In this case only the counter is sent to the Sps:

Counter (21 bits) Hardwired (4 bits)

19.3.1 Vertex shaders
In the case of vertex shaders, if GEN_INDEX_VTX is set, the data will be put into the x field of the third register (it
means that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

19.3.2 Pixel shaders
In the case of pixel shaders, if GEN_INDEX_PIX is set, the data will be put in the x field of the param_gen_pos+1
register.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1132 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

35 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

AUTO
COUNT

STG 0

STG1

INTERPOLATORS

GPR0

AUTO COUNT 000000

MUX

The Auto Count Value is
broadcast to all GPRs. It is

loaded into a register wich has
its LSBs hardwired to the

GPR number (0 thru 63). Then
if GEN_INDEX is high, the
mux selects the auto-count

value and it is loaded into the
GPRs to be either used to

retrieve data using the TP or
sent to the SX for the RB to

use it to write the data to
memory

Figure 12: GPR input mux Control

20. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

20.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

21. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix→float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 19.2 for details on how to control the interpolation in this mode.

21.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

22. Registers
Please see the auto-generated web pages for register definitions.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1133 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

R400 Sequencer Specification PAGE

36 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23. Interfaces

23.1 External Interfaces
Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ→SPx it means that SQ is going to broadcast the same information to all SP instances.

23.2 SC to SP Interfaces

23.2.1 SC_SP#
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the I,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data which is transferred per quad is
 Ref Pix I => S4.20 Floating Point I value *4
 Ref Pix J => S4.20 Floating Point J value *4

This equates to a total of 200 bits which transferred over 2 clocks
and therefor needs an interface 100 bits wide

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a IJ_BUF_INUSE_COUNT in the SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNT count. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2, if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of I,J data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,SQ and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple mode first with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performance hit.)

Name Bits Description
SC_SP#_data 100 IJ information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bit)

Type 0 or 1, First clock I, second clk J
Field ULC URC LLC LRC
 Bits [63:39] [38:26] [25:13] [12:0]
Format SE4M20 SE4M20 SE4M20 SE4M20
Type 2
Field Face X Y
 Bits [24] [23:12] [11:0]
Format Bit Unsigned Unsigned

SC_SP#_valid 1 Valid
SC_SP#_last_quad_data 1 This bit will be set on the last transfer of data per quad.
SC_SP#_type 2 0 -> Indicates centroids

1 -> Indicates centers
2 -> Indicates X,Y Data and faceness on data bus
The SC shall look at state data to determine how many types to send for the

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1134 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

37 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP block will have neither because the instantiation will insert the prefix.

23.2.2 SC_SQ
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 108 bits) could be folded in half to approx 54
bits.

Name Bits Description
SC_SQ_data 46 Control Data sent to the SQ

1 clk transfers
 Event – valid data consist of event_id and
 state_id. Instruct SQ to post an
 event vector to send state id and
 event_id through request fifo
 and onto the reservation stations
 making sure state id and/or event_id
 gets back to the CP. Events only
 follow end of packets so no pixel
 vectors will be in progress.

 Empty Quad Mask – Transfer Control data
 consisting of pc_dealloc
 or new_vector. Receipt of this is to
 transfer pc_dealloc or new_vector
 without any valid quad data. New
 vector will always be posted to
 request fifo and pc_dealloc will be
 attached to any pixel vector
 outstanding or posted in request fifo
 if no valid quad outstanding.
2 clk transfers
 Quad Data Valid – Sending quad data with or
 without new_vector or pc_dealloc.
 New vector will be posted to request
 fifo with or without a pixel vector and
 pc_dealloc will be posted with a pixel
 vector unless none is in progress. In
 this case the pc_dealloc will be
 posted in the request queue.
 Filler quads will be transferred with
 The Quad mask set but the pixel
 corresponding pixel mask set to
 zero.

SC_SQ_valid 1 SC sending valid data, 2nd clk could be all zeroes

SC_SQ_data – first clock and second clock transfers are shown in the table below.

Name BitField Bits Description

1st Clock Transfer
SC_SQ_event 0 1 This transfer is a 1 clock event vector Force quad_mask =

new_vector=pc_dealloc=0
SC_SQ_event_id [5:1] 4 This field identifies the event 0 => denotes an End Of State Event 1

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1135 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

R400 Sequencer Specification PAGE

38 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

=> TBD
SC_SQ_state_id [8:6] 3 State/constant pointer (6*3+3)
SC_SQ_pc_dealloc [11:9] 3 Deallocation token for the Parameter Cache
SC_SQ_new_vector 12 1 The SQ must wait for Vertex shader done count > 0 and after

dispatching the Pixel Vector the SQ will decrement the count.
SC_SQ_quad_mask [16:13] 4 Quad Write mask left to right SP0 => SP3
SC_SQ_end_of_prim 17 1 End Of the primitive
SC_SQ_pix_mask [33:18] 16 Valid bits for all pixels SP0=>SP3 (UL,UR,LL,LR)

SC_SQ_provok_vtx [35:34] 2 Provoking vertex for flat shading
SC_SQ_lod_correct_0 [44:36] 9 LOD correction for quad 0 (SP0) (9 bits per quad)
SC_SQ_lod_correct_1 [53:45] 9 LOD correction for quad 1 (SP1) (9 bits per quad)

2nd Clock Transfer
SC_SQ_lod_correct_2 [8:0] 9 LOD correction for quad 2 (SP2) (9 bits per quad)
SC_SQ_lod_correct_3 [17:9] 9 LOD correction for quad 3 (SP3) (9 bits per quad)
SC_SQ_pc_ptr0 [28:18] 11 Parameter Cache pointer for vertex 0
SC_SQ_pc_ptr1 [39:29] 11 Parameter Cache pointer for vertex 1
SC_SQ_pc_ptr2 [50:40] 11 Parameter Cache pointer for vertex 2
SC_SQ_prim_type [53:51] 3 Stippled line and Real time command need to load tex cords from

alternate buffer
000: Sprite (point)
001: Line
010: Tri_rect
100: Realtime Sprite (point)
101: Realtime Line
110: Realtime Tri_rect

Name Bits Description
SQ_SC_free_buff 1 Pipelined bit that instructs SC to decrement count of buffers in use.
SQ_SC_dec_cntr_cnt 1 Pipelined bit that instructs SC to decrement count of new vector and/or event

sent to prevent SC from overflowing SQ interpolator/Reservation request fifo.

The scan converter will submit a partial vector whenever:

1.) He gets a primitive marked with an end of packet signal.
2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been

marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal made it through and thus the hang.)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1136 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

39 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.3 SQ to SX(SP): Interpolator bus
Name Direction Bits Description
SQ_SPx_interp_flat_vtx SQ→SPx 2 Provoking vertex for flat shading
SQ_SPx_interp_flat_gouraud SQ→SPx 1 Flat or gouraud shading
SQ_SPx_interp_cyl_wrap SQ→SPx 4 Wich channel needs to be cylindrical wrapped
SQ_SPx_interp_param_gen SQ→SPx 1 Generate Parameter
SQ_SPx_interp_prim_type SQ→SPx 2 Bits [1:0] of primitive type sent by SC
SQ_SPx_interp_buff_swap SQ→SPx 1 Swapp IJ buffers
SQ_SPx_interp_IJ_line SQ→SPx 2 IJ line number
SQ_SPx_interp_mode SQ→SPx 1 Center/Centroid sampling
SQ_SXx_pc_ptr0 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr1 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr2 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_rt_sel SQ→SXx 1 Selects between RT and Normal data (Bit 2 of prim type)
SQ_SX0_pc_wr_en SQ→SX0 8 Write enable for the PC memories
SQ_SX1_pc_wr_en SQ→SX1 8 Write enable for the PC memories
SQ_SXx_pc_wr_addr SQ→SXx 7 Write address for the PCs
SQ_SXx_pc_channel_mask SQ→SXx 4 Channel mask
SQ_SXx_pc_ptr_valid SQ→SXx 1 Read pointers are valid.
SQ_SPx_interp_valid SQ→SPx 1 Interpolation control valid

23.2.4 SQ to SP: Staging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.
Name Direction Bits Description
SQ_SPx_vsr_data SQ→SPx 96 Pointers of indexes or HOS surface information
SQ_SPx_vsr_double SQ→SPx 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0_ vsr_valid SQ→SP0 1 Data is valid
SQ_SP1_ vsr_ valid SQ→SP1 1 Data is valid
SQ_SP2_ vsr_ valid SQ→SP2 1 Data is valid
SQ_SP3_ vsr_ valid SQ→SP3 1 Data is valid
SQ_SPx_vsr_read SQ→SPx 1 Increment the read pointers

23.2.5 VGT to SQ : Vertex interface

23.2.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide. In the case where an event is sent the 5 LSBs of VGT_SQ_vsisr_data contain the eventID.

Name Bits Description
VGT_SQ_vsisr_data 96 Pointers of indexes or HOS surface information
VGT_SQ_event 1 VGT is sending an event
VGT_SQ_vsisr_continued 1 0: Normal 96 bits per vert 1: double 192 bits per vert
VGT_SQ_end_of_vtx_vect 1 Indicates the last VSISR data set for the current process vector (for double vector

data, "end_of_vector" is set on the first vector)
VGT_SQ_indx_valid 1 Vsisr data is valid
VGT_SQ_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when

“VGT_SQ_vgt_end_of_vector” is high.
VGT_SQ_send 1 Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_VGT_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

23.2.5.2 Interface Diagrams

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1137 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

R400 Sequencer Specification PAGE

40 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

VGT

VSISR_DATA_2

END_OF_VECTOR_2

STATE_SEL_2

REG

VSISR_DOUBLE_2
REG

REG

REG

REG

REG

SEND_2

REG

REG

REG

REG

REG

REG

PA_SQ_vgt_vsisr_data

PA_SQ_vgt_vsisr_double

PA_SQ_vgt_end_of_vector

PA_SQ_vgt_state_sel

PA_SQ_vgt_send

SQ_PA_vgt_rtr

VSISR_DATA_4

END_OF_VECTOR_4

STATE_SEL_4

VSISR_DOUBLE_4

96

1

1

3

1

1

SEND_4

RTR_2 RTR_0

SHADER
SEQUENCER

RTS

101 X 4
SKID

BUFFER

SRST SRST

WE

EMPTY

RE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1138 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

41 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

6 7

6 7

6 7

0 1 2 3

0 1

8

8

8

2 43 5

4 5 6 7

4 3 2 1

8

9 10 11 12

9 10 11 12

9 10 11 12

9 10 11 12

0

RECEIVER RE-STARTS TRANSMISSION

SENDER STOPS TRANSMISSION

SQ_RTR

SQ_RTR_0

VGT_RTS

SEND_2

SEND_3

SEND_4

DATA_2

FIFO_EMPTY

FIFO_RE

SQ_RTR_1

SQ_RTR_2

DATA_3

DATA_4

FIFO_DATA_OUT

FIFO_CNT

RECEIVER STOPS TRANSMISSION

Figure 1. Detailed Logical Diagram for PA_SQ_vgt Interface.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1139 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

R400 Sequencer Specification PAGE

42 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.6 SQ to SX: Control bus

Name Direction Bits Description
SQ_SXx_exp_type SQ→SXx 2 00: Pixel without z (1 to 4 buffers)

01: Pixel with z (1 to 4 buffers)
10: Position (1 or 2 results)
11: Pass thru (4,8 or 12 results aligned)

SQ_SXx_exp_number SQ→SXx 2 Number of locations needed in the export buffer
(encoding depends on the type see bellow).

SQ_SXx_exp_alu_id SQ→SXx 1 ALU ID
SQ_SXx_exp_valid SQ→SXx 1 Valid bit
SQ_SXx_exp_state SQ→SXx 3 State Context

SQ_SXx_free_done SQ→SXx 1 Pulse that indicates that the previous export is finished
from the point of view of the SP. This does not
necessarily mean that the data has been
transferred to RB or PA, or that the space in export
buffer for that particular vector thread has been
freed up.

SQ_SXx_free_alu_id SQ→SXx 1 ALU ID

Depending on the type the number of export location changes:

 Type 00 : Pixels without Z
o 00 = 1 buffer
o 01 = 2 buffers
o 10 = 3 buffers
o 11 = 4 buffer

 Type 01: Pixels with Z
o 00 = 2 Buffers (color + Z)
o 01 = 3 buffers (2 color + Z)
o 10 = 4 buffers (3 color + Z)
o 11 = 5 buffers (4 color + Z)

 Type 10 : Position export
o 00 = 1 position
o 01 = 2 positions
o 1X = Undefined

 Type 11: Pass Thru
o 00 = 4 buffers
o 01 = 8 buffers
o 10 = 12 buffers
o 11 = Undefined

Below the thick black line is the end of transfer packet that tells the SX that a given export is finished. The report
packet will always arrive either before or at the same time than the next export to the same ALU id.

23.2.7 SX to SQ : Output file control
Name Direction Bits Description
SXx_SQ_exp_count_rdy SXx→SQ 1 Raised by SX0 to indicate that the following two fields

reflect the result of the most recent export
SXx_SQ_exp_pos_avail SXx→SQ 2 Specifies whether there is room for another position.

00 : 0 buffers ready
01 : 1 buffer ready
10 : 2 or more buffers ready

SXx_SQ_exp_buf_avail SXx→SQ 7 Specifies the space available in the output buffers.
0: buffers are full
1: 2K-bits available (32-bits for each of the 64

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1140 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

43 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

pixels in a clause)
...
64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

23.2.8 SQ to TP: Control bus
Once every clock, the fetch unit sends to the sequencer on which RS line it is now working and if the data in the
GPRs is ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequencer also provides the instruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

Name Direction Bits Description
TPx_SQ_data_rdy TPx→ SQ 1 Data ready

TPx_SQ_rs_line_num TPx→ SQ 6 Line number in the Reservation station

TPx_SQ_type TPx→ SQ 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_send SQ→TPx 1 Sending valid data
SQ_TPx_const SQ→TPx 48 Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instr SQ→TPx 24 Fetch instruction sent over 4 clocks
SQ_TPx_end_of_group SQ→TPx 1 Last instruction of the group
SQ_TPx_Type SQ→TPx 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_gpr_phase SQ→TPx 2 Write phase signal
SQ_TP0_lod_correct SQ→TP0 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP0_pix_mask SQ→TP0 4 Pixel mask 1 bit per pixel
SQ_TP1_lod_correct SQ→TP1 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pix_mask SQ→TP1 4 Pixel mask 1 bit per pixel
SQ_TP2_lod_correct SQ→TP2 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pix_mask SQ→TP2 4 Pixel mask 1 bit per pixel
SQ_TP3_lod_correct SQ→TP3 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pix_mask SQ→TP3 4 Pixel mask 1 bit per pixel
SQ_TPx_rs_line_num SQ→TPx 6 Line number in the Reservation station
SQ_TPx_write_gpr_index SQ->TPx 7 Index into Register file for write of returned Fetch Data
SQ_TPx_ctx_id SQ→TPx 3 The state context ID (needed for multisample resolves)

23.2.9 TP to SQ: Texture stall
The TP sends this signal to the SQ and the SPs when its input buffer is full.

SU0

SU3

SU2

SU1

TP_SP_fetch_Stall

SQ_SP_wr_addr

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1141 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

R400 Sequencer Specification PAGE

44 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Name Direction Bits Description
TP_SQ_fetch_stall TP→ SQ 1 Do not send more texture request if asserted

23.2.10 SQ to SP: Texture stall
Name Direction Bits Description
SQ_SPx_fetch_stall SQ→SPx 1 Do not send more texture request if asserted

23.2.11 SQ to SP: GPR and auto counter
Name Direction Bits Description
SQ_SPx_gpr_wr_addr SQ→SPx 7 Write address
SQ_SPx_gpr_rd_addr SQ→SPx 7 Read address
SQ_SPx_gpr_rd_en SQ→SPx 1 Read Enable
SQ_SP0_gpr_wr_en SQ→SPx 4 Write Enable for the GPRs of SP0
SQ_SP1_gpr_wr_en SQ→SPx 4 Write Enable for the GPRs of SP1
SQ_SP2_gpr_wr_en SQ→SPx 4 Write Enable for the GPRs of SP2
SQ_SP3_gpr_wr_en SQ→SPx 4 Write Enable for the GPRs of SP3
SQ_SPx_gpr_phase SQ→SPx 2 The phase mux (arbitrates between inputs, ALU SRC

reads and writes)
SQ_SPx_channel_mask SQ→SPx 4 The channel mask
SQ_SPx_gpr_input_sel SQ→SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTX0,
VTX1, autogen counter.

SQ_SPx_auto_count SQ→SPx 21 Auto count generated by the SQ, common for all shader
pipes

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1142 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

45 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.12 SQ to SPx: Instructions
Name Direction Bits Description
SQ_SPx_instr_start SQ→SPx 1 Instruction start
SQ_SP_instr SQ→SPx 24 Transferred over 4 cycles

0: SRC A Negate Argument Modifier 0:0
 SRC A Abs Argument Modifier 1:1
 SRC A Swizzle 9:2
 Vector Dst 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
--
-
1: SRC B Negate Argument Modifier 0:0
 SRC B Abs Argument Modifier 1:1
 SRC B Swizzle 9:2
 Scalar Dst 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
--
-
2: SRC C Negate Argument Modifier 0:0
 SRC C Abs Argument Modifier 1:1
 SRC C Swizzle 9:2
 Unused 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
--
-
3: Vector Opcode 4:0
 Scalar Opcode 10:5
 Vector Clamp 11:11
 Scalar Clamp 12:12
 Vector Write Mask 16:13
 Scalar Write Mask 20:17
 Unused 23:21

SQ_SP0_pred_override SQ→SP0 4 0: Use per channel RGBA field (enables the per channel
logic, if not set only pay attention to the 11 seting).
1: Use GPR

SQ_SP1_pred_override SQ→SP1 4 0: Use per channel RGBA field (enables the per channel
logic, if not set only pay attention to the 11 seting).
1: Use GPR

SQ_SP2_pred_override SQ→SP2 4 0: Use per channel RGBA field (enables the per channel
logic, if not set only pay attention to the 11 seting).
1: Use GPR

SQ_SP3_pred_override SQ→SP3 4 0: Use per channel RGBA field (enables the per channel
logic, if not set only pay attention to the 11 seting).
1: Use GPR

SQ_SPx_exp_id SQ→SPx 1 GPR ID

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1143 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

R400 Sequencer Specification PAGE

46 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ_SPx_exporting SQ→SPx 1 0: Not Exporting
1: Exporting

SQ_SPx_stall SQ→SPx 1 Stall signal

23.2.13 SQ to SX: write mask interface (must be aligned with the SP data)
Name Direction Bits Description
SQ_SX0_write_mask SQ→SP0 8 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock. This is for the data coming of SP0 and SP2.

SQ_SX1_ write_mask SQ→SP1 8 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock. This is for the data coming of SP1 and SP3.

23.2.14 SP to SQ: Constant address load/ Predicate Set/Kill set
Name Direction Bits Description
SP0_SQ_const_addr SP0→SQ 36 Constant address load / predicate vector load (4 bits only)/

Kill vector load (4 bits only) to the sequencer
SP0_SQ_valid SP0→SQ 1 Data valid
SP1_SQ_const_addr SP1→SQ 36 Constant address load / predicate vector load (4 bits only)/

Kill vector load (4 bits only) to the sequencer
SP1_SQ_valid SP1→SQ 1 Data valid
SP2_SQ_const_addr SP2→SQ 36 Constant address load / predicate vector load (4 bits only)/

Kill vector load (4 bits only) to the sequencer
SP2_SQ_valid SP2→SQ 1 Data valid
SP3_SQ_const_addr SP3→SQ 36 Constant address load / predicate vector load (4 bits only)/

Kill vector load (4 bits only) to the sequencer
SP3_SQ_valid SP3→SQ 1 Data valid
SP0_SQ_data_type SPSQ 2 Data Type

0: Constant Load
1: Predicate Set
2: Kill vector load

Because of the sharing of the bus none of the MOVA, PREDSET or KILL instructions may be coissued.

23.2.15 SQ to SPx: constant broadcast
Name Direction Bits Description
SQ_SPx_const SQ→SPx 128 Constant broadcast

23.2.16 SQ to CP: RBBM bus
Name Direction Bits Description
SQ_RBB_rs SQ→CP 1 Read Strobe
SQ_RBB_rd SQ→CP 32 Read Data
SQ_RBBM_nrtrtr SQ→CP 1 Optional
SQ_RBBM_rtr SQ→CP 1 Real-Time (Optional)

23.2.17 CP to SQ: RBBM bus
Name Direction Bits Description
rbbm_we CP→SQ 1 Write Enable
rbbm_a CP→SQ 15 Address -- Upper Extent is TBD (16:2)
rbbm_wd CP→SQ 32 Data
rbbm_be CP→SQ 4 Byte Enables
rbbm_re CP→SQ 1 Read Enable
rbb_rs0 CP→SQ 1 Read Return Strobe 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1144 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

47 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

rbb_rs1 CP→SQ 1 Read Return Strobe 1
rbb_rd0 CP→SQ 32 Read Data 0
rbb_rd1 CP→SQ 32 Read Data 0
RBBM_SQ_soft_reset CP→SQ 1 Soft Reset

23.2.18 SQ to CP: State report
Name Direction Bits Description
SQ_CP_vs_event SQ→CP 1 Vertex Shader Event
SQ_CP_vs_eventid SQ→CP 5 Vertex Shader Event ID
SQ_CP_ps_event SQ→CP 1 Pixel Shader Event
SQ_CP_ps_eventid SQ→CP 5 Pixel Shader Event ID

23.3 Example of control flow program execution
We now provide some examples of execution to better illustrate the new design.

Given the program:

Alu 0
Alu 1
Tex 0
Tex 1
Alu 3 Serial
Alu 4
Tex 2
Alu 5
Alu 6 Serial
Tex 3
Alu 7
Alloc Position 1 buffer
Alu 8 Export
Tex 4
Alloc Parameter 3 buffers
Alu 9 Export 0
Tex 5
Alu 10 Serial Export 2
Alu 11 Export 1 End

Would be converted into the following CF instructions:

Execute 0 Alu 0 Alu 0 Tex 0 Tex 1 Alu 0 Alu 0 Tex 0 Alu 1 Alu 0 Tex
Execute 0 Alu
Alloc Position 1
Execute 0 Alu 0 Tex
Alloc Param 3
Execute_end 0 Alu 0 Tex 1 Alu 0 Alu

And the execution of this program would look like this:

Put thread in Vertex RS:

Control Flow Instruction Pointer (12 bits), (CFP)
Execution Count Marker (3 or 4 bits), (ECM)
Loop Iterators (4x9 bits), (LI)
Call return pointers (4x12 bits), (CRP)
Predicate Bits(4x64 bits), (PB)
Export ID (1 bit), (EXID)
GPR Base Ptr (8 bits), (GPR)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1145 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

R400 Sequencer Specification PAGE

48 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Export Base Ptr (7 bits), (EB)
Context Ptr (3 bits).(CPTR)
LOD correction bits (16x6 bits) (LOD)

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 0 0 0 0 0 0 0 0 0

Valid Thread (VALID)
Texture/ALU engine needed (TYPE)
Texture Reads are outstanding (PENDING)
Waiting on Texture Read to Complete (SERIAL)
Allocation Wait (2 bits) (ALLOC)

00 – No allocation needed
01 – Position export allocation needed (ordered export)
10 – Parameter or pixel export needed (ordered export)
11 – pass thru (out of order export)

Allocation Size (4 bits) (SIZE)
Position Allocated (POS_ALLOC)
First thread of a new context (FIRST)
Last (1 bit), (LAST)

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 0 0 0 0 0 1 0

Then the thread is picked up for the execution of the first control flow instruction:

Execute 0 Alu 0 Alu 0 Tex 0 Tex 1 Alu 0 Alu 0 Tex 0 Alu 1 Alu 0 Tex

It executes the first two ALU instructions and goes back to the RS for a resource request change. Here is the
state returned to the RS:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 2 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Then when the texture pipe frees up, the arbiter picks up the thread to issue the texture reads. The thread comes

back in this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 4 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 0 1 0

Because of the serial bit the arbiter must wait for the texture to return and clear the PENDING bit before it can

pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returns it in
this state:

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1146 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

49 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 6 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Again the TP frees up, the arbiter picks up the thread and executes. It returns in this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 7 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 0 0 0 1 0

Now, even if the texture has not returned we can still pick up the thread for ALU execution because the serial bit

is not set. The thread will however come back to the RS for the second ALU instruction because it has the serial bit
set.

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 8 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 0 1 0

As soon as the TP clears the pending bit the thread is picked up and returns:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 9 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Picked up by the TP and returns:
Execute 0 Alu

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
1 0 0 0 0 0 0 0 0 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1147 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

R400 Sequencer Specification PAGE

50 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 0 0 0 1 0

Picked up by the ALU and returns (lets say the TP has not returned yet):
Alloc Position 1

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
2 0 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 01 1 0 1 0

If the SX has the place for the export, the SQ is going to allocate and pick up the thread for execution. It returns to

the RS in this state:

Execute 0 Alu 0 Tex

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
3 1 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 1 0 0 0 1 1 0

Now, since the TP has not returned yet, we must wait for it to return because we cannot issue multiple texture

requests. The TP returns, clears the PENDING bit and we proceed:

Alloc Param 3

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
4 0 0 0 0 1 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 10 3 1 1 0

Once again the SQ makes sure the SX has enough room in the Parameter cache before it can pick up this

thread.

Execute_end 0 Alu 0 Tex 1 Alu 0 Alu

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
5 1 0 0 0 1 0 100 0 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1148 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516
October 200214

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

51 of 51

Exhibit 2036.docR400_Sequencer.doc �� 73119 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 1 0 0 0 1 1 0

This executes on the TP and then returns:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
5 2 0 0 0 1 0 100 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 1 1 1

Waits for the TP to return because of the textures reads are pending (and SERIAL in this case). Then executes
and does not return to the RS because the LAST bit is set. This is the end of this thread and before dropping it on the
floor, the SQ notifies the SX of export completion.

24. Open issues
Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1149 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SQ

Version 2.098

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\doc_lib\design\blocks\sq\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2037
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1150 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

2 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Table Of Contents

1. OVERVIEW .. 87
1.1 Top Level Block Diagram ... 109
1.2 Data Flow graph (SP) ... 1110
1.3 Control Graph ... 1211
2. INTERPOLATED DATA BUS .. 1211
3. INSTRUCTION STORE ... 1514
4. SEQUENCER INSTRUCTIONS ... 1514
5. CONSTANT STORES .. 1514
5.1 Memory organizations .. 1514
5.2 Management of the Control Flow Constants .. 1615
5.3 Management of the re-mapping tables .. 1615

5.3.1 R400 Constant management .. 1615

5.3.2 Proposal for R400LE constant management .. 1615

5.3.3 Dirty bits .. 1817

5.3.4 Free List Block .. 1817

5.3.5 De-allocate Block .. 1918

5.3.6 Operation of Incremental model .. 1918
5.4 Constant Store Indexing ... 1918
5.5 Real Time Commands.. 2019
5.6 Constant Waterfalling ... 2019
6. LOOPING AND BRANCHES ... 2120
6.1 The controlling state. .. 2120
6.2 The Control Flow Program ... 2120

6.2.1 Control flow instructions table ... 2221
6.3 Implementation ... 2423
6.4 Data dependant predicate instructions ... 2624
6.5 HW Detection of PV,PS ... 2625
6.6 Register file indexing .. 2625
6.7 Debugging the Shaders ... 2726

6.7.1 Method 1: Debugging registers ... 2726

6.7.2 Method 2: Exporting the values in the GPRs .. 2726
7. PIXEL KILL MASK .. 2726
8. MULTIPASS VERTEX SHADERS (HOS) .. 2726
9. REGISTER FILE ALLOCATION .. 2826
10. FETCH ARBITRATION .. 2928
11. ALU ARBITRATION .. 2928
12. HANDLING STALLS ... 3029
13. CONTENT OF THE RESERVATION STATION FIFOS ... 3029
14. THE OUTPUT FILE.. 3029
15. IJ FORMAT .. 3029
15.1 Interpolation of constant attributes .. 3029
16. STAGING REGISTERS ... 3130

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1151 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

17. THE PARAMETER CACHE ... 3231
17.1 Export restrictions ... 3332

17.1.1 Pixel exports: .. 3332

17.1.2 Vertex exports: ... 3332

17.1.3 Pass thru exports: .. 3332
17.2 Arbitration restrictions ... 3432
18. EXPORT TYPES .. 3432
18.1 Vertex Shading .. 3432
18.2 Pixel Shading .. 3433
19. SPECIAL INTERPOLATION MODES ... 3533
19.1 Real time commands .. 3533
19.2 Sprites/ XY screen coordinates/ FB information .. 3533
19.3 Auto generated counters ... 3634

19.3.1 Vertex shaders ... 3634

19.3.2 Pixel shaders .. 3634
20. STATE MANAGEMENT .. 3735
20.1 Parameter cache synchronization ... 3735
21. XY ADDRESS IMPORTS ... 3735
21.1 Vertex indexes imports .. 3735
22. REGISTERS .. 3735

23. INTERFACES .. 3836

23.1 External Interfaces .. 3836
23.2 SC to SP Interfaces ... 3836

23.2.1 SC_SP# ... 3836

23.2.2 SC_SQ ... 3937

23.2.3 SQ to SX(SP): Interpolator bus .. 4139

23.2.4 SQ to SP: Staging Register Data ... 4139

23.2.5 VGT to SQ : Vertex interface .. 4139

23.2.6 SQ to SX: Control bus .. 4542

23.2.7 SX to SQ : Output file control ... 4542

23.2.8 SQ to TP: Control bus .. 4643

23.2.9 TP to SQ: Texture stall ... 4643

23.2.10 SQ to SP: Texture stall ... 4744

23.2.11 SQ to SP: GPR and auto counter .. 4744

23.2.12 SQ to SPx: Instructions .. 4845

23.2.13 SQ to SX: write mask interface (must be aligned with the SP data) 4946

23.2.14 SP to SQ: Constant address load/ Predicate Set/Kill set 4946

23.2.15 SQ to SPx: constant broadcast .. 4946

23.2.16 SQ to CP: RBBM bus ... 4946

23.2.17 CP to SQ: RBBM bus ... 5046

23.2.18 SQ to CP: State report ... 5047

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1152 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

4 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.3 Example of control flow program execution .. 5047
24. OPEN ISSUES ... 5451
1. OVERVIEW .. 7
1.1 Top Level Block Diagram ... 9
1.2 Data Flow graph (SP) ... 10
1.3 Control Graph ... 11
2. INTERPOLATED DATA BUS .. 11
3. INSTRUCTION STORE ... 14
4. SEQUENCER INSTRUCTIONS ... 14
5. CONSTANT STORES .. 14
5.1 Memory organizations .. 14
5.2 Management of the Control Flow Constants .. 15
5.3 Management of the re-mapping tables .. 15

5.3.1 R400 Constant management .. 15

5.3.2 Proposal for R400LE constant management .. 15

5.3.3 Dirty bits .. 17

5.3.4 Free List Block .. 17

5.3.5 De-allocate Block .. 18

5.3.6 Operation of Incremental model .. 18
5.4 Constant Store Indexing ... 18
5.5 Real Time Commands.. 19
5.6 Constant Waterfalling ... 19
6. LOOPING AND BRANCHES ... 20
6.1 The controlling state. .. 20
6.2 The Control Flow Program ... 20

6.2.1 Control flow instructions table ... 21
6.3 Implementation ... 23
6.4 Data dependant predicate instructions ... 24
6.5 HW Detection of PV,PS ... 25
6.6 Register file indexing .. 25
6.7 Debugging the Shaders ... 25

6.7.1 Method 1: Debugging registers ... 26

6.7.2 Method 2: Exporting the values in the GPRs .. 26
7. PIXEL KILL MASK .. 26
8. MULTIPASS VERTEX SHADERS (HOS) .. 26
9. REGISTER FILE ALLOCATION .. 26
10. FETCH ARBITRATION .. 28
11. ALU ARBITRATION .. 28
12. HANDLING STALLS ... 29
13. CONTENT OF THE RESERVATION STATION FIFOS ... 29
14. THE OUTPUT FILE.. 29
15. IJ FORMAT .. 29
15.1 Interpolation of constant attributes .. 29
16. STAGING REGISTERS ... 30
17. THE PARAMETER CACHE ... 31
17.1 Export restrictions ... 32

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1153 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

17.1.1 Pixel exports: .. 32

17.1.2 Vertex exports: ... 32

17.1.3 Pass thru exports: .. 32
17.2 Arbitration restrictions ... 32
18. EXPORT TYPES .. 32
18.1 Vertex Shading .. 32
18.2 Pixel Shading .. 33
19. SPECIAL INTERPOLATION MODES ... 33
19.1 Real time commands .. 33
19.2 Sprites/ XY screen coordinates/ FB information .. 33
19.3 Auto generated counters ... 34

19.3.1 Vertex shaders ... 34

19.3.2 Pixel shaders .. 34
20. STATE MANAGEMENT .. 35
20.1 Parameter cache synchronization ... 35
21. XY ADDRESS IMPORTS ... 35
21.1 Vertex indexes imports .. 35
22. REGISTERS .. 35

23. INTERFACES .. 36

23.1 External Interfaces .. 36
23.2 SC to SP Interfaces ... 36

23.2.1 SC_SP# ... 36

23.2.2 SC_SQ ... 37

23.2.3 SQ to SX(SP): Interpolator bus .. 39

23.2.4 SQ to SP: Staging Register Data ... 39

23.2.5 VGT to SQ : Vertex interface .. 39

23.2.6 SQ to SX: Control bus .. 42

23.2.7 SX to SQ : Output file control ... 42

23.2.8 SQ to TP: Control bus .. 43

23.2.9 TP to SQ: Texture stall ... 43

23.2.10 SQ to SP: Texture stall ... 44

23.2.11 SQ to SP: GPR and auto counter .. 44

23.2.12 SQ to SPx: Instructions .. 45

23.2.13 SP to SQ: Constant address load/ Predicate Set/Kill set ... 46

23.2.14 SQ to SPx: constant broadcast .. 46

23.2.15 SQ to CP: RBBM bus ... 46

23.2.16 CP to SQ: RBBM bus ... 46

23.2.17 SQ to CP: State report ... 47
23.3 Example of control flow program execution .. 47
24. OPEN ISSUES ... 51

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1154 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

6 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

 Changed the control flow method to be more
flexible. Also updated the external interfaces.

Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

 Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001

 Refined interfaces to RB. Added state registers.

Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

 Added SEQ→SP0 interfaces. Changed delta
precision. Changed VGT→SP0 interface. Debug
Methods added.

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001

 Interfaces greatly refined. Cleaned up the spec.

Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001

 Added the different interpolation modes.

Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

 Added the auto incrementing counters. Changed
the VGT→SQ interface. Added content on constant
management. Updated GPRs.

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

 Removed from the spec all interfaces that weren’t
directly tied to the SQ. Added explanations on
constant management. Added PA→SQ
synchronization fields and explanation.

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

 Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002

 Added Real Time parameter control in the SX
interface. Updated the control flow section.

Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

 New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002

 Rearangement of the CF instruction bits in order to
ensure byte alignement.

Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002

 Updated the interfaces and added a section on
exporting rules.

Rev 1.11 (Laurent Lefebvre)
Date : April 19, 2002

 Added CP state report interface. Last version of the
spec with the old control flow scheme

Rev 2.0 (Laurent Lefebvre)
Date : April 19, 2002

 New control flow scheme

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1155 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Rev 2.01 (Laurent Lefebvre)
Date : May 2, 2002

 Changed slightly the control flow instructions to
allow force jumps and calls.

Rev 2.02 (Laurent Lefebvre)
Date : May 13, 2002

 Updated the Opcodes. Added type field to the
constant/pred interface. Added Last field to the
SQ→SP instruction load interface.

Rev 2.03 (Laurent Lefebvre)
Date : July 15, 2002

 SP interface updated to include predication
optimizations. Added the predicate no stall
instructions,

Rev 2.04 (Laurent Lefebvre)
Date :August 2, 2002

 Documented the new parameter generation scheme
for XY coordinates points and lines STs.

Rev 2.05 (Laurent Lefebvre)
Date : September 10, 2002

 Some interface changes and an architectural
change to the auto-counter scheme.

Rev 2.06 (Laurent Lefebvre)
Date : October 11, 2002

 Widened the event interface to 5 bits. Some other
little typos corrected.

Rev 2.07 (Laurent Lefebvre)
Date : October 14, 2002

 Loops, jumps and calls are now using a 13 bit
address which allows to jump and call and loop
around any control flow addresses (does not
requires to be even anymore).

Rev 2.08 (Laurent Lefebvre)
Date : October 16, 2002

 Clarification updates after discussion with Clay.

Rev 2.09 (Laurent Lefebvre)
Date : January 7, 2003

 Corrected the SQ→SP staging register interface.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1156 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

8 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1. Overview
The sequencer chooses two ALU threads and a fetch hread to execute, and executes all of the instructions in a block
before looking for a new clause of the same type. Two ALU threads are executed interleaved to hide the ALU latency.
The arbitrator will give priority to older threads. There are two separate reservation stations, one for pixel vectors and
one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1157 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ

SC

SPSPSPCSTOREFETCH STATE

TP

INST STORE

IJ CONTROL

IJ
CONTROL

CST
ADDR

INST
 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/QUAD
ADDRESSES

SP

ALU INST

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

INST

INTER INTER INTER INTER

IJ CROSSBAR

2 QUADS IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC READ
 POINTERS

PARAM
DATA

R/W ADDR

Vertex indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

CP

CONSTANT
LOAD

CPConstant Load

TX ADDR

PC Write
Address

TEX INST

CF
CONSTANTS

Register
Mapped

CF Read

Figure 1: General Sequencer overview

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1158 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

10 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.1 Top Level Block Diagram

ALU Texture

VTX RS PIX RS

Exec Arbiter

Input Arbiter

Figure 2: Reservation stations and arbiters

Under this new scheme, the sequencer (SQ) will only use one global state management machine per vector type
(pixel, vertex) that we call the reservation station (RS).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1159 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.2 Data Flow graph (SP)

MAC

MAC

MAC

MAC

Register File

co
n

st
an

ts
 f

ro
m

 R
E

in
st

ru
ct

io
n

pipeline stage

pipeline stage

pipeline stage

in
st

ru
ct

io
n

in
st

ru
ct

io
n

in
st

ru
ct

io
n

co
ns

ta
n

ts
 f

ro
m

 R
E

S
ca

la
r

U
ni

t

texture request

texture request

texture request

texture request

te
xt

ur
e

 a
dd

re
ss

te xtu
re

 d
ata

prim
itiv e d a

ta
 from

 R
E

Mux

scalar input/output

scalar input/output

scalar input/output

to Primitive Assembly Unit or RenderBackend

Register File

Register File

Register File

scalar input/output

Figure 3: The shader Pipe

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1160 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

12 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

SEQ

FETCH SP

Clause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

OF

WrAddrIS CST

CST IDX

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1161 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x100 bits)

IJs buffer (ping-pong buffer)
(25 bits * 8 (IJ) * 4 * 4 * 4 (quadruple-buffered)

12800 bits

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

100

To RB

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2

768 bits
32x24

FIX-FLOAT + EXPANSiON

Figure 5: Interpolation buffers

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1162 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

14 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SP
0

SP
1

SP
2

SP
3

WRITES
T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-
11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P1 P2

T20 T21 T22 T23

VTX

T0 T1 T2 T3

XY

XY
0-3

XY
4-7

XY
8-
11

XY
12-
15

XY
16-
19

XY
20-
23

XY
24-
27

XY
28-
31

XY
32-
35

XY
36-
39

XY
40-
43

XY
44-
47

XY
48-
51

XY
52-
55

XY
56-
59

XY
60-
63

READS

SP
0

SP
1

SP
2

SP
3

A0

A1

A2

B1

B0

C3

C0

C1

C2

C4

C5

D0

D1

D2

E0

E1

A0

A1

A2

XY
A0
XY
A1
XY
A2

B1

B0

XY
B1

XY
B0

C3

C0

C1

C2

XY
C3
XY
C0
XY
C1
XY
C2

C4

C5

XY
C4
XY
C5

D0

D1

D2

XY
D1
XY
D2

XY
D0

E0

E1
XY
E1

XY
E0

Figure 6: Interpolation timing diagram

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1163 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store
There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4. Sequencer Instructions
All control flow instructions instructions are handled by the sequencer only. The ALUs will perform NOPs during this
time (MOV PV,PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1164 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

16 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

5.2 Management of the Control Flow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied whenever there is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn’t write to CF the state is going to use the previous CF constants.

5.3 Management of the re-mapping tables

5.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROL packet of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it with
the new state (this is depicted in Figure 8: De-allocation mechanismFigure 8: De-allocation mechanismFigure 8: De-
allocation mechanism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a state change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1165 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Physical
Memory

Renaming Table
for 1 Context
Current/Last

Physical
Address

per
Logical
Address

Renaming
table

N-Contexts

Reset
Dirty
per

Logical
Address

(Only
de-

allocate
if set)

This
Context

Dirty
per

Logical
Address

(If set
don't

allocate
or de-

allocate)

Logical address
On the

GlbRegBus
when lsb are zero
first word of write

next
physical
address
ready

for allocate

Constants
location
available
WRTR

physical
address

to
schedule

for
de-alloc

Staging Data
Buffer

Staging Write Addr

Copy Last held above to
Current Context on receipt

of Set Constant for a
new context (Hide loading

behind Set State load - 16 clocks)
all other Set States just write one

entry to current state.

Free
list

(pass Phys
Address if
Context
Dirty)

Dealloc
Counts

Seq
Constant
Request

Context &
Logical
Address

Free_ptr
WritePtr

When a Logical
Address is written

that has been
written before,

store the physical
address that was
allocated by that
Logical Address

Stop_ptr
ptr to first physical

address that is
scheduled to be de-
allocated but noty
yet de-allocate.

Advanced each time
a context is freed by

the number of
physical address
displaced by that

Context

Read_ptr
ptr to physical

address that will be
used next if the init

count is at
maximum number

of physical address

Free List

Number of entries
equals Max Number of
Physical Blocks. All
Pointers start at zero
and roll around but

can never pass each
other

Free
Address

Address
to Allocate

Global Register
Data Bus

Renaming Table
Context 0 => N

Logical Address
& Context

Physical
Address

Context 0 (8 rows of 16 - 8 bit
physical => 128 entries copy in

eight clocks)

Context 1

Context N

Current/Last
Context

(8 rows of 16 - 8
bit physical =>

128 entries copy
in eight clocks)

Figure 7: Constant management

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1166 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

18 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

DEALOC
COUNTERSFree List

!=

OR

AND

NOT

ADDR

PREVIOUS
STATE

NEW
STATE

SQ_IDLE

CP_NEW_STATE_CNTL
PA_IDLE

VALUE

VALID

CNT VALUE

SQ_STATE#

WRITE_ENABLE

REMAPPING
TABLE

SET CTX BITS

Figure 8: De-allocation mechanism for R400LE

5.3.3 Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block
A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1167 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

5.3.5 De-allocate Block
This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any number of blocks in one clock.

5.3.6 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1168 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

20 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

The address register is a signed integer, which ranges from –256 to 255.

5.5 Real Time Commands
The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
works is the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zones is defined by the TSTATE_EO_RT control register.

5.6 Constant Waterfalling
In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenever a state is freed.

CONST_EO_RT

RT SECTON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table)

Figure 9: The Constant store

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1169 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[255:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
We'd like to be able to code up a program of the form:

1: Loop
2: Exec TexFetch
3: TexFetch
4: ALU
5: ALU
6: TexFetch
7: End Loop
8: ALU Export

But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3:. Without clausing,
these dependencies need to be expressed in the Control Flow instructions. Additionally, without separate 'texture
clauses' and 'ALU clauses' we need to know which instructions to dispatch to the Texture Unit and which to the ALU
unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of information for each (non-control flow) instruction:
 a) ALU or Texture
 b) Serialize Execution

(b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched. Given the allocation of reserved bits, this would mean that the count of an 'Exec' instruction
would be limited to about 8 (non-control-flow) instructions. If more than this were needed, a second Exec (with the
same conditions) would be issued.

Another function that relies upon 'clauses' is allocation and order of execution. We need to assure that pixels and
vertices are exported in the correct order (even if not all execution is ordered) and that space in the output buffers are
allocated in order. Additionally data can't be exported until space is allocated. A new control flow instruction:

 Alloc <buffer select -- position,parameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual
allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already
completed. The implementation would also assure that execution of instruction(s) following the serialization due to the
Alloc will occur in order -- at least until the next serialization or change from ALU to Texture. In most cases this will
allow the exports to occur without any further synchronization. Only 'final' allocations or position allocations are

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1170 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

22 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

guaranteed to be ordered. Because strict ordering is required for pixels, parameters and positions, this implies only
a single alloc for these structures. Vertex exports to memory do not require ordering during allocation and so multiple
'allocs' may be done.

6.2.1 Control flow instructions table
Here is the revised control flow instruction set.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

NOP
47 … 44 43 42 … 0

0000 Addressing RESERVED

This is a regular NOP.

Execute
47 … 44 43 40 … 34 33 …16 15…12 11 … 0

0001 Addressing RESERVED Instructions type + serialize (9
instructions)

Count Exec Address

Execute_End

47 … 44 43 40 … 34 33 …16 15…12 11 … 0
0010 Addressing RESERVED Instructions type + serialize (9

instructions)
Count Exec Address

Execute up to 9 instructions at the specified address in the instruction memory. The Instruction type field tells the
sequencer the type of the instruction (LSB) (1 = Texture, 0 = ALU and whether to serialize or not the execution (MSB)
(1 = Serialize, 0 = Non-Serialized). If Execute_End this is the last execution block of the shader program.

Conditional_Execute

47 … 44 43 42 41 … 34 33…16 15 …12 11 … 0
0011 Addressing Condition Boolean

address
Instructions type + serialize (9

instructions)
Count Exec Address

Conditional_Execute_End

47 … 44 43 42 41 … 34 33…16 15 …12 11 … 0
0100 Addressing Condition Boolean

address
Instructions type + serialize (9

instructions)
Count Exec Address

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 9 instructions). If the condition is not met, we go on to the next control flow instruction. If
Conditional_Execute_End and the condition is met, this is the last execution block of the shader program.

Conditional_Execute_Predicates
47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0

0101 Addressing Condition RESERVED Predicate
vector

Instructions
type + serialize
(9 instructions)

Count Exec Address

Conditional_Execute_Predicates_End

47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0
0110 Addressing Condition RESERVED Predicate

vector
Instructions

type + serialize
(9 instructions)

Count Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid. If the

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1171 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

condition is not met, we go on to the next control flow instruction. If Conditional_Execute_Predicates_End and the
condition is met, this is the last execution block of the shader program.

Conditional_Execute_Predicates_No_Stall
47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0

1101 Addressing Condition RESERVED Predicate
vector

Instructions
type + serialize
(9 instructions)

Count Exec Address

Conditional_Execute_Predicates_No_Stall_End

47 … 44 43 42 41 … 36 35 … 34 33…16 15…12 11 … 0
1110 Addressing Condition RESERVED Predicate

vector
Instructions

type + serialize
(9 instructions)

Count Exec Address

Same as Conditionnal_Execute_Predicates but the SQ is not going to wait for the predicate vector to be updated.
You can only set this in the compiler if you know that the predicate set is only a refinement of the current one (like a
nested if) because the optimization would still work.

Loop_Start
47 … 44 43 42 … 21 20 … 16 15…13 12 … 0

0111 Addressing RESERVED loop ID RESERVED Jump address

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Loop_End
47 …44 43 42 41… 36 35…34 33… 22 21 20 … 16 15…13 12 … 0

1000 Addressing Cond RESERVED Predicate
Vector

RESERVED Pred
break

loop ID RESERVED start
address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop. If predicate break != 0, then compares predicate vector n
(specified by predicate Vector) to condition. If all bits meet condition then break the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal_Call
47 … 44 43 42 41 … 34 33 … 14 13 12 … 0

1001 Addressing Condition Boolean address RESERVED Force Call Jump address

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack. If
force call is set the condition is ignored and the call is made always.

Return
47 … 44 43 42 … 0

1010 Addressing RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump
47 … 44 43 42 41… 34 33 32 … 14 13 12 … 0

1011 Addressing Condition Boolean
address

FW only RESERVED Force Jump Jump address

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1172 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

24 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

If force jump is set the condition is ignored and the jump is made always. If FW only is set then only forward jumps
are allowed.

Allocate
47 … 44 43 42…41 40 … 3 2…0

1100 Debug Buffer Select RESERVED Size

Buffer Select takes a value of the following:
01 – position export (ordered export)
10 – parameter cache or pixel export (ordered export)
11 – pass thru (out of order exports).

Size field is only used to reserve space in the export buffer for pass thru exports. Valid values are 1 (1 line) thru 9 (9
lines). It should be determined by the compiler/assembler by taking max index used +1.

If debug is set this is a debug alloc (ignore if debug DB_ON register is set to off).

6.3 Implementation

The envisioned implementation has a buffer that maintains the state of each thread. A thread lives in a given
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the order that they
enter. Actually two buffers are maintained -- one for Vertices and one for Pixels. The intended implementation
would allow for:

16 entries for vertices
48 entries for pixels.

From each buffer, arbitration logic attempts to select 1 thread for the texture unit and 2 (interleaved) thread for the
ALU unit. Once a thread is selected it is read out of the buffer, marked as invalid, and submitted to appropriate
execution unit. It is returned to the buffer (at the same place) with its status updated once all possible sequential
instructions have been executed. A switch from ALU to TEX or visa-versa or a Serialize_Execution modifier forces
the thread to be returned to the buffer.

Each entry in the buffer will be stored across two physical pieces of memory - most bits will be stored in a 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed 'state'. The bits kept in the multi-read ported device will be termed 'status'.

'State Bits' needed include:

1. Control Flow Instruction Pointer (13 bits),
2. Execution Count Marker 4 bits),
3. Loop Iterators (4x9 bits),
4. Loop Counters (4x9 bits),
5. Call return pointers (4x13 bits),
6. Predicate Bits (64 bits),
7. Export ID (1 bit),
8. Parameter Cache base Ptr (7 bits),
9. GPR Base Ptr (8 bits),
10. Context Ptr (3 bits).
11. LOD corrections (6x16 bits)
12. Valid bits (64 bits)
13. RT (1 bit) Signifies that this thread is a Real Time thread. This bit must be sent to the Constant store state

machine when reading it.

Absent from this list are 'Index' pointers. These are costly enough that I'm presuming that they are instead stored in
the GPRs. The first seven fields above (Control Flow Ptr, Execution Count, Loop Counts, call return ptrs, Predicate
bits, PC base ptr and export ID) are updated every time the thread is returned to the buffer based on how much

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1173 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

progress has been mode on thread execution. GPR Base Ptr, Context Ptr and LOD corrections are unchanged
throughout execution of the thread.

'Status Bits' needed include:

 Valid Thread
 Texture/ALU engine needed
 Texture Reads are outstanding
 Waiting on Texture Read to Complete
 Allocation Wait (2 bits)
 00 – No allocation needed
 01 – Position export allocation needed (ordered export)
 10 – Parameter or pixel export needed (ordered export)
 11 – pass thru (out of order export)
 Allocation Size (4 bits)
 Position Allocated
 Mem/Color Allocated
 First thread of a new context
 Event thread (NULL thread that needs to trickle down the pipe)
 Last (1 bit)
 Pulse SX (1 bit)

All of the above fields from all of the entries go into the arbitration circuitry. The arbitration circuitry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -- one for
pixels and one for vertices. A final selection is then done between the two. But the rest of this implementation
summary only considers the 'first' level selection which is similar for both pixels and vertices.

Texture arbitration requires no allocation or ordering so it is purely based on selecting the 'oldest' thread that requires
the Texture Engine.

ALU arbitration is a little more complicated. First, only threads where either of Texture_Reads_outstanding or
Waiting_on_Texture_Read_to_Complete are '0' are considered. Then if Allocation_Wait is active, these threads are
further filtered based on whether space is available. If the allocation is position allocation, then the thread is only
considered if all 'older' threads have already done their position allocation (position allocated bits set). If the
allocation is parameter or pixel allocation, then the thread is only considered if it is the oldest thread. Also a thread is
not considered if it is a parameter or pixel or position allocation, has its First_thread_of_a_new_context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the 'oldest' of the threads that pass through the above filters is selected. If the thread needed to allocate, then
at this time the allocation is done, based on Allocation_Size. If a thread has its “last” bit set, then it is also removed
from the buffer, never to return.

If I now redefine 'clauses' to mean 'how many times the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine', then the minimum number of clauses needed is 2 -- one to perform
the allocation for exports (execution automatically halts after an 'Alloc' instruction) (but doesn't performs the actual
allocation) and one for the actual ALU/export instructions. As the 'Alloc' instruction could be part of a texture clause
(presumably the final instruction in such a clause), a thread could still execute in this minimal number of 2 clauses,
even if it involved texture fetching.

The Texture_Reads_Outstanding bit must be updated by the sequencer, based on keeping track of how many
Texture Clauses have been executed by a given thread that have not yet had there data returned. Any number
above 0 results in this bit being set. We could consider forcing synchronization such that two texture clauses for a
given thread may not be outstanding at any time (that would be my preference for simplicity reasons and because it
would require only very little change in the texture pipe interface). This would allow the sequencer to set the bit on
execution of the texture clause, and allow the texture unit to return a pointer to the thread buffer on completion that
clears the bit.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1174 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

26 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

6.4 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_PUSH - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETNE_PUSH - similar to SETNE except that the result is 'exported' to the sequencer.
PRED_SETGT_PUSH - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_PUSH - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE
 PRED_SETNE

PRED_SETGT
PRED_SET_INV

 PRED_SET_POP
 PRED_SET_CLR
 PRED_SET_RESTORE

Details about actual implementation of these opcodes are in the shader pipe architectural spec.

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 1 set of 64 bits predicate vectors (in fact 2 sets because we interleave two programs but only 1 will be
exposed) and use it to control the write masking. This predicate is maintained across clause boundaries.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

 P0_ ADD_# R0,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

6.5 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert detect wich channels to read from the GPRs and which ones to read from the PV/PS.

6.6 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

The sequencer is going to keep a loop index computed as such:

 Index = Loop_iterator*Loop_step + Loop_start.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1175 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128…127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
 - jump errors
 relative jump address > size of the control flow program
 - call stack
 call with stack full

return with stack empty

With all the other errors, program can continue to run, potentially to worst-case limits.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the 0th
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs
1) The sequencer will have a debug active, count register and an address register for this mode.

Under the normal mode execution follows the normal course.

Under the debug mode it is assumed that the program is always exporting n debug vectors and that all other exports
to the SX block (but for position) will be turned off (changed into NOPs) by the sequencer (even if they occur before
the address stated by the ADDR debug register).

7. Pixel Kill Mask
A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE

 MASK_SETGT
 MASK_SETGTE
Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1176 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

28 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

9.8. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZE for pixels.

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1177 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

10.9. Fetch Arbitration
The fetch arbitration logic chooses one of the n potentially pending fetch clauses to be executed. The choice is made
by looking at the Vs and Ps reservation stations and picking the first one ready to execute. Once chosen, the clause
state machine will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two fetches of the
same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11.10. ALU Arbitration
ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
n potentially pending ALU clauses to be executed. The choice is made by looking at the Vs and Ps reservation
stations and picking the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for
the odd clocks. For example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and
Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1178 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

30 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

12.11. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering an exporting clause. The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13.12. Content of the reservation station FIFOs
The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14.13. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15.14. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). All pixel’s parameters are always interpolated at full 20x24 mantissa precision.

)(*)3()(*)3(3

)(*)2()(*)2(2

)(*)1()(*)1(1

)(*)0()(*)0(0

ACJABIAP

ACJABIAP

ACJABIAP

ACJABIAP

Multiplies (Full Precision): 8
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF P’s IJ : Mantissa 20 Exp 4 for I + Sign
 Mantissa 20 Exp 4 for J + Sign

Total number of bits : 20*8 + 4*8 + 4*2 = 200.

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the number is
normalized if not, then the number is un-normalized. The maximum range for the IJs (Full precision) is +/- 1024.

15.114.1 Interpolation of constant attributes
Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the terms are the same.

P0

P2

P1

P3

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1179 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

16.15. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 || 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencer will re-arrange them in this fashion:

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 || 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 || 8 9 10 11 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the SQ is responsible to insert padding to
account for the missing pipe. For example, if SP1 is broken, vertices 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will
not be sent by the VGT to the SQ AND the SQ is responsible to “jump” over these vertices in order for no valid
vertices to be sent to an invalid SP.

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 11Figure 11Figure 11. The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure 10Figure 10Figure 10.

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11631 60.57813per bit

Area of 96x8-deep Latch Memory 46524

Area of 24-bit Fix-to-float Converter 4712per converter

Method 1 Block Quantity Area

 F2F 3 14136

 8x96 Latch 16 744384

 758520

Figure 10:Area Estimate for VGT to Shader Interface

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1180 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

32 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SHADER PIPE

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

3
2

3
2

3
2

VGT BLOCK
(IN PA)

3
2

9
6

VECTOR ENGINE

96

8x96
MEMORY
1-READ
1-WRITE

3 OTHER
SHADER
PIPES

 3 Fix->Float Converters (24-bit)
 16 Memories 8x96-bit (12,288 bits)

Totals:

THREE MORE VECTOR ENGINES
PER SHADER PIPE

VECTOR ENGINE

SHADER
SEQUENCER

Figure 11:VGT to Shader Interface

17.16. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER
4 bits

ADDRESS
7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17th) is going to have the address 00000001000, the 18th 00010001000, the 19th 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*VS_EXPORT_COUNT to
Current_Location and reset the memory count to 0 before the next vector begins).

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1181 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

33 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

17.116.1 Export restrictions

17.1.116.1.1 Pixel exports:
Pixels can export 1,2,3 or 4 color buffers to the SX(+z). The exports will be done in order. The exports will always be
ordered to the SX.

17.1.216.1.2 Vertex exports:
Position or parameter caches can be exported in any order in the shader program. It is always better to export
posistion as soon as possible. Position has to be exported in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be done in any order with texture instructions interleaved.
The exports will always be allocated in order to the SX.

17.1.316.1.3 Pass thru exports:
Pass thru exports have to be done in groups of the form:

Alloc 4 1 thru 5 (max export offset + 1, for example if using EM4 alloc size 5)(or 8)
Execute ALU(ADDR) ALU(DATA) ALU(DATA) ALU(DATA)…

When exporting to more than EM0, one MUST write to EM4 also (the write may be predicated if you don’t need the
export). This is used to initialize the buffers in the SX.

There cannot be any serialize bits set OR texture Reads between the EA and the last EM.

Memory exports will be surfaced using a macro extension; here is what needs to happen inside the macro:

The macro needs to create a special constant of the form:

Stream ID constant:
 .x = Integer that holds BaseAddressInBytes/4 in bits (29:0). Bits 31:30 should be 0b01.
 .y = 2**23
 .z = Integer that holds register field data. Note that this data must be organized so that it
always represents a 'valid' floating point number, with the relevant bits in (23 - 0); One way of doing this would be to
take the 23 bits and add 2**23.
 .w = max index value + 2**23

Output to EXaddress:

 .x = Base of array (in low 30 bits)/4
 .y = Index value (in low 23 bits)
 .z = Register Field data (in low 23 bits)
 .w = Max Index value (in low 23 bits)

Also Assume that C0:

 .x = 0.0
 .y = 1.0

The Macro expansion would be as follows:

 MULADD EA = Rindex.xxxx,C0.xyxx,CstreamID;
 MOV EMx (x = 0 thru 4) = Rdata;

The SX will check for invalid writes and mask out the data so it won’t be written to memory. Invalid writes are:

1) Index value >= Max Index value
2) bit 31 != 0 (negative index)

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted

Formatted

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1182 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

34 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

3) bits [30:23] != 23 + IEEE_EXP_BIAS (127) (meaning the index was too big to be represented using 23 bits)

They cannot have texture instructions interleaved in the export block. These exports are not guaranteed to be
ordered.

Also, when doing a pass thru export, Position MUST be exported AFTER all pass thru exports. This position
export is used to synchronize the chip when doing a transition from pass thru shader to regular shader and vice versa
the shader must still do either a position and PC export (if Vertex) or a color export (if Pixel). The pass thru export can
occur anywhere in any shader program and thus can be used to debug. There can be any number of pass thru export
blocks throughout the pixel or vertex shader or both..

17.216.2 Arbitration restrictions
Here are the Sequencer arbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texture pending bit is set
2) Cannot allocate position if any older thread has not allocated position
3) Cannot have more than 2 opened allocs of type : Memory, position and Color.
4) If last thread is marked as not valid AND marked as last and we are about to execute the second to oldest

thread also marked last then:
a. Both threads must be from the same context (cannot allow a first thread)
b. Must turn off the predicate optimization for the second thread

5) Cannot execute a texture clause if texture reads are pending
6) Cannot execute last if texture pending (even if not serial)
7) Cannot allocate if not last or second to last for color exports.

18.17. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

18.117.1 Vertex Shading
 0:15 - 16 parameter cache
 16:31 - Empty (Reserved?)

32 - Export Address
 33:37 - 5 vertex exports to the frame buffer and index
 38:476 - Empty
 47 - Debug Address
 48:52 - 5 debug export (interpret as normal memory export)
 53:59 - Empty
 60 - export addressing mode
 61 - Empty
 62 - position
 63 - sprite size export that goes with position export
 (X= point size, Y= edge flag is bit 0, Z= VtxKill is bitwise OR of bits 30:0. Any bit other than
sign means VtxKill.)

18.217.2 Pixel Shading
 0 - Color for buffer 0 (primary)
 1 - Color for buffer 1
 2 - Color for buffer 2
 3 - Color for buffer 3
 4:15 - Empty
 16 - Buffer 0 Color/Fog (primary)
 17 - Buffer 1 Color/Fog

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1183 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

35 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 18 - Buffer 2 Color/Fog
 19 - Buffer 3 Color/Fog
 20:31 - Empty
 32 - Export Address
 33:37 - 5 exports for multipass pixel shaders.
 38:476 - Empty
 47 - Debug Address
 48:52 - 5 debug exports (interpret as normal memory export)

60 - export addressing mode
61 - Z for primary buffer (Z exported to 'alpha' component)

 62:63 - Empty

19.18. Special Interpolation modes

19.118.1 Real time commands
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 4x128 memories (one for each of three vertices x 16 4 interpolants). These will be mapped
onto the register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA
need to be able to address the reatime parameter memory as well as the regular parameter store. For higher
performance we should be able able to view them as two banks of 16 and do double buffering allowing one to be
loaded, while the other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might
be to restrict the memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem I see
with this is, if we view support for 16 vector-4 interpolants important (true only if we map Microsoft’s high priority
stream to the realtime stream), then the PA/sequencer need to support a realtime-specific mode where we need to
address 32 vectors of parameters instead of 16. This mode is triggered by the primitive type: REAL TIME. The actual
memories are in the in the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by
the CP using register mapped memory.

19.218.2 Sprites/ XY screen coordinates/ FB information
XY screen coordinates may be needed in the shader program. This functionality is controlled by the param_genn_I0
register (in SQ) in conjunction with the SND_XY register (in SC) and the param_gen_pos. Also it is possible to send
the faceness information (for OGL front/back special operations) to the shader using the same control register. Here
is a list of all the modes and how they interact together:

The Data is going to be written in the register specified by the param_gen_pos register.

Param_Gen_I0 disable, snd_xy disable = No modification
Param_Gen_I0 disable, snd_xy enable = No modification
Param_Gen_I0 enable, snd_xy disable = Sign(faceness)garbage,(Sign Point)garbage,Sign(Line)s, t
Param_Gen_I0 enable, snd_xy enable = Sign(faceness)screenX,(Sign Point)screenY,Sign(Line)s, t

In other words,

The generated vector is (X in RED, Y in GREEN, S in BLUE and T in ALPHA):
X,Y,S,T
These values are always supposed to be positive and any shader use of them should use the ABS function
(as their sign bits will now be used for flags).
SignX = BackFacing
SignY = Point Primitive
SignS = Line Primitive
SignT = currently unused as a flag.

If !Point & !Line, then it is a Poly.

I would assume that one implementation which allows for generic texture lookup (using 3D maps) for poly
stipple and AA for the driver would be
if(Y<0) {
 R = 0.0 (Point)

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1184 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

36 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

} else if (S < 0) {
 R = 1.0 (Line)
} else {
 R = 2.0 (Poly)

}

19.318.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1st pass data to memory and then use the count to retrieve the data on the 2nd pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX_PIX/VTX register. The sequencer
is going to keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is
written to the GPRs the counter is incremented. Every time a RST_PIX_COUNT or RST_VTX_COUNT events are
received, the corresponding counter is reset. While there is only one count broadcast to the GPRs, the LSB are
hardwired to specific values making the index different for all elements in the vector. Since the count must be different
for all pixels/vertices and the 4 LSBs (16 positions) are hardwired to the corresponding shader unit the SQ has two
choices:

1) Maintain a 19 bit counter that counts the vectors of 64. In this case the phase must be appended to the count
before the count is broadcast to the SPs:

Counter (19 bits) Phase (2 bits) Hardwired (4 bits)

2) Maintain a 21 bits counter that counts sub-vectors of 16. In this case only the counter is sent to the Sps:

Counter (21 bits) Hardwired (4 bits)

19.3.118.3.1 Vertex shaders
In the case of vertex shaders, if GEN_INDEX_VTX is set, the data will be put into the x field of the third register (it
means that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

19.3.218.3.2 Pixel shaders
In the case of pixel shaders, if GEN_INDEX_PIX is set, the data will be put in the x field of the param_gen_pos+1
register.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1185 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

37 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

AUTO
COUNT

STG 0

STG1

INTERPOLATORS

GPR0

AUTO COUNT 000000

MUX

The Auto Count Value is
broadcast to all GPRs. It is

loaded into a register wich has
its LSBs hardwired to the

GPR number (0 thru 63). Then
if GEN_INDEX is high, the
mux selects the auto-count

value and it is loaded into the
GPRs to be either used to

retrieve data using the TP or
sent to the SX for the RB to

use it to write the data to
memory

Figure 12: GPR input mux Control

20.19. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

20.119.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

21.20. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix→float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 18.218.219.2 for details on how to control the interpolation in this mode.

21.120.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

22.21. Registers
Please see the auto-generated web pages for register definitions.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1186 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

38 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.22. Interfaces

23.122.1 External Interfaces
Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ→SPx it means that SQ is going to broadcast the same information to all SP instances.

23.222.2 SC to SP Interfaces

23.2.122.2.1 SC_SP#
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the I,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data which is transferred per quad is
 Ref Pix I => S4.20 Floating Point I value *4
 Ref Pix J => S4.20 Floating Point J value *4

This equates to a total of 200 bits which transferred over 2 clocks
and therefor needs an interface 100 bits wide

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a IJ_BUF_INUSE_COUNT in the SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNT count. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2, if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of I,J data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,SQ and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple mode first with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performance hit.)

Name Bits Description
SC_SP#_data 100 IJ information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bit)

Type 0 or 1, First clock I, second clk J
Field ULC URC LLC LRC
 Bits [63:39] [38:26] [25:13] [12:0]
Format SE4M20 SE4M20 SE4M20 SE4M20
Type 2
Field Face X Y
 Bits [24] [23:12] [11:0]
Format Bit Unsigned Unsigned

SC_SP#_valid 1 Valid
SC_SP#_last_quad_data 1 This bit will be set on the last transfer of data per quad.
SC_SP#_type 2 0 -> Indicates centroids

1 -> Indicates centers
2 -> Indicates X,Y Data and faceness on data bus
The SC shall look at state data to determine how many types to send for the

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1187 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

39 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP block will have neither because the instantiation will insert the prefix.

23.2.222.2.2 SC_SQ
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 108 bits) could be folded in half to approx 54
bits.

Name Bits Description
SC_SQ_data 46 Control Data sent to the SQ

1 clk transfers
 Event – valid data consist of event_id and
 state_id. Instruct SQ to post an
 event vector to send state id and
 event_id through request fifo
 and onto the reservation stations
 making sure state id and/or event_id
 gets back to the CP. Events only
 follow end of packets so no pixel
 vectors will be in progress.

 Empty Quad Mask – Transfer Control data
 consisting of pc_dealloc
 or new_vector. Receipt of this is to
 transfer pc_dealloc or new_vector
 without any valid quad data. New
 vector will always be posted to
 request fifo and pc_dealloc will be
 attached to any pixel vector
 outstanding or posted in request fifo
 if no valid quad outstanding.
2 clk transfers
 Quad Data Valid – Sending quad data with or
 without new_vector or pc_dealloc.
 New vector will be posted to request
 fifo with or without a pixel vector and
 pc_dealloc will be posted with a pixel
 vector unless none is in progress. In
 this case the pc_dealloc will be
 posted in the request queue.
 Filler quads will be transferred with
 The Quad mask set but the pixel
 corresponding pixel mask set to
 zero.

SC_SQ_valid 1 SC sending valid data, 2nd clk could be all zeroes

SC_SQ_data – first clock and second clock transfers are shown in the table below.

Name BitField Bits Description

1st Clock Transfer
SC_SQ_event 0 1 This transfer is a 1 clock event vector Force quad_mask =

new_vector=pc_dealloc=0
SC_SQ_event_id [5:1] 4 This field identifies the event 0 => denotes an End Of State Event 1

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1188 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

40 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

=> TBD
SC_SQ_state_id [8:6] 3 State/constant pointer (6*3+3)
SC_SQ_pc_dealloc [11:9] 3 Deallocation token for the Parameter Cache
SC_SQ_new_vector 12 1 The SQ must wait for Vertex shader done count > 0 and after

dispatching the Pixel Vector the SQ will decrement the count.
SC_SQ_quad_mask [16:13] 4 Quad Write mask left to right SP0 => SP3
SC_SQ_end_of_prim 17 1 End Of the primitive
SC_SQ_pix_mask [33:18] 16 Valid bits for all pixels SP0=>SP3 (UL,UR,LL,LR)

SC_SQ_provok_vtx [35:34] 2 Provoking vertex for flat shading
SC_SQ_lod_correct_0 [44:36] 9 LOD correction for quad 0 (SP0) (9 bits per quad)
SC_SQ_lod_correct_1 [53:45] 9 LOD correction for quad 1 (SP1) (9 bits per quad)

2nd Clock Transfer
SC_SQ_lod_correct_2 [8:0] 9 LOD correction for quad 2 (SP2) (9 bits per quad)
SC_SQ_lod_correct_3 [17:9] 9 LOD correction for quad 3 (SP3) (9 bits per quad)
SC_SQ_pc_ptr0 [28:18] 11 Parameter Cache pointer for vertex 0
SC_SQ_pc_ptr1 [39:29] 11 Parameter Cache pointer for vertex 1
SC_SQ_pc_ptr2 [50:40] 11 Parameter Cache pointer for vertex 2
SC_SQ_prim_type [53:51] 3 Stippled line and Real time command need to load tex cords from

alternate buffer
000: Sprite (point)
001: Line
010: Tri_rect
100: Realtime Sprite (point)
101: Realtime Line
110: Realtime Tri_rect

Name Bits Description
SQ_SC_free_buff 1 Pipelined bit that instructs SC to decrement count of buffers in use.
SQ_SC_dec_cntr_cnt 1 Pipelined bit that instructs SC to decrement count of new vector and/or event

sent to prevent SC from overflowing SQ interpolator/Reservation request fifo.

The scan converter will submit a partial vector whenever:

1.) He gets a primitive marked with an end of packet signal.
2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been

marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal made it through and thus the hang.)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1189 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

41 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.322.2.3 SQ to SX(SP): Interpolator bus
Name Direction Bits Description
SQ_SPx_interp_flat_vtx SQ→SPx 2 Provoking vertex for flat shading
SQ_SPx_interp_flat_gouraud SQ→SPx 1 Flat or gouraud shading
SQ_SPx_interp_cyl_wrap SQ→SPx 4 Wich channel needs to be cylindrical wrapped
SQ_SPx_interp_param_gen SQ→SPx 1 Generate Parameter
SQ_SPx_interp_prim_type SQ→SPx 2 Bits [1:0] of primitive type sent by SC
SQ_SPx_interp_buff_swap SQ→SPx 1 Swapp IJ buffers
SQ_SPx_interp_IJ_line SQ→SPx 2 IJ line number
SQ_SPx_interp_mode SQ→SPx 1 Center/Centroid sampling
SQ_SXx_pc_ptr0 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr1 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr2 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_rt_sel SQ→SXx 1 Selects between RT and Normal data (Bit 2 of prim type)
SQ_SX0_pc_wr_en SQ→SX0 8 Write enable for the PC memories
SQ_SX1_pc_wr_en SQ→SX1 8 Write enable for the PC memories
SQ_SXx_pc_wr_addr SQ→SXx 7 Write address for the PCs
SQ_SXx_pc_channel_mask SQ→SXx 4 Channel mask
SQ_SXx_pc_ptr_valid SQ→SXx 1 Read pointers are valid.
SQ_SPx_interp_valid SQ→SPx 1 Interpolation control valid

23.2.422.2.4 SQ to SP: Staging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.
Name Direction Bits Description
SQ_SPx_vsr_data SQ→SPx 96 Pointers of indexes or HOS surface information
SQ_SPx_vsr_wrt_addr SQ→SPx 3 Staging register write address
SQ_SPx_vsr_rd_addrSQ_SPx_vsr_double SQ→SPx 31 Staging register read address0: Normal 96 bits

per vert 1: double 192 bits per vert
SQ_SP0_ vsr_valid SQ→SP0 1 Data is valid
SQ_SP1_ vsr_ valid SQ→SP1 1 Data is valid
SQ_SP2_ vsr_ valid SQ→SP2 1 Data is valid
SQ_SP3_ vsr_ valid SQ→SP3 1 Data is valid
SQ_SPx_vsr_read SQ→SPx 1 Increment the read pointers

23.2.522.2.5 VGT to SQ : Vertex interface

23.2.5.122.2.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide. In the case where an event is sent the 5 LSBs of VGT_SQ_vsisr_data contain the eventID.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1190 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

42 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Name Bits Description
VGT_SQ_vsisr_data 96 Pointers of indexes or HOS surface information
VGT_SQ_event 1 VGT is sending an event
VGT_SQ_vsisr_continued 1 0: Normal 96 bits per vert 1: double 192 bits per vert
VGT_SQ_end_of_vtx_vect 1 Indicates the last VSISR data set for the current process vector (for double vector

data, "end_of_vector" is set on the first vector)
VGT_SQ_indx_valid 1 Vsisr data is valid
VGT_SQ_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when

“VGT_SQ_vgt_end_of_vector” is high.
VGT_SQ_send 1 Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_VGT_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

23.2.5.222.2.5.2 Interface Diagrams Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1191 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

43 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

VGT

VSISR_DATA_2

END_OF_VECTOR_2

STATE_SEL_2

REG

VSISR_DOUBLE_2
REG

REG

REG

REG

REG

SEND_2

REG

REG

REG

REG

REG

REG

PA_SQ_vgt_vsisr_data

PA_SQ_vgt_vsisr_double

PA_SQ_vgt_end_of_vector

PA_SQ_vgt_state_sel

PA_SQ_vgt_send

SQ_PA_vgt_rtr

VSISR_DATA_4

END_OF_VECTOR_4

STATE_SEL_4

VSISR_DOUBLE_4

96

1

1

3

1

1

SEND_4

RTR_2 RTR_0

SHADER
SEQUENCER

RTS

101 X 4
SKID

BUFFER

SRST SRST

WE

EMPTY

RE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1192 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

44 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

6 7

6 7

6 7

0 1 2 3

0 1

8

8

8

2 43 5

4 5 6 7

4 3 2 1

8

9 10 11 12

9 10 11 12

9 10 11 12

9 10 11 12

0

RECEIVER RE-STARTS TRANSMISSION

SENDER STOPS TRANSMISSION

SQ_RTR

SQ_RTR_0

VGT_RTS

SEND_2

SEND_3

SEND_4

DATA_2

FIFO_EMPTY

FIFO_RE

SQ_RTR_1

SQ_RTR_2

DATA_3

DATA_4

FIFO_DATA_OUT

FIFO_CNT

RECEIVER STOPS TRANSMISSION

Figure 1. Detailed Logical Diagram for PA_SQ_vgt Interface.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1193 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

45 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.622.2.6 SQ to SX: Control bus

Name Direction Bits Description
SQ_SXx_exp_type SQ→SXx 2 00: Pixel without z (1 to 4 buffers)

01: Pixel with z (1 to 4 buffers)
10: Position (1 or 2 results)
11: Pass thru (4,8 or 12 results aligned)

SQ_SXx_exp_number SQ→SXx 2 Number of locations needed in the export buffer
(encoding depends on the type see bellow).

SQ_SXx_exp_alu_id SQ→SXx 1 ALU ID
SQ_SXx_exp_valid SQ→SXx 1 Valid bit
SQ_SXx_exp_state SQ→SXx 3 State Context

SQ_SXx_free_done SQ→SXx 1 Pulse that indicates that the previous export is finished
from the point of view of the SP. This does not
necessarily mean that the data has been
transferred to RB or PA, or that the space in export
buffer for that particular vector thread has been
freed up.

SQ_SXx_free_alu_id SQ→SXx 1 ALU ID

Depending on the type the number of export location changes:

 Type 00 : Pixels without Z
o 00 = 1 buffer
o 01 = 2 buffers
o 10 = 3 buffers
o 11 = 4 buffer

 Type 01: Pixels with Z
o 00 = 2 Buffers (color + Z)
o 01 = 3 buffers (2 color + Z)
o 10 = 4 buffers (3 color + Z)
o 11 = 5 buffers (4 color + Z)

 Type 10 : Position export
o 00 = 1 position
o 01 = 2 positions
o 1X = Undefined

 Type 11: Pass Thru
o 00 = 4 buffers
o 01 = 8 buffers
o 10 = 12 buffers
o 11 = Undefined

Below the thick black line is the end of transfer packet that tells the SX that a given export is finished. The report
packet will always arrive either before or at the same time than the next export to the same ALU id.

23.2.722.2.7 SX to SQ : Output file control
Name Direction Bits Description
SXx_SQ_exp_count_rdy SXx→SQ 1 Raised by SX0 to indicate that the following two fields

reflect the result of the most recent export
SXx_SQ_exp_pos_avail SXx→SQ 2 Specifies whether there is room for another position.

00 : 0 buffers ready
01 : 1 buffer ready
10 : 2 or more buffers ready

SXx_SQ_exp_buf_avail SXx→SQ 7 Specifies the space available in the output buffers.
0: buffers are full
1: 2K-bits available (32-bits for each of the 64

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1194 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

46 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

pixels in a clause)
...
64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

23.2.822.2.8 SQ to TP: Control bus
Once every clock, the fetch unit sends to the sequencer on which RS line it is now working and if the data in the
GPRs is ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequencer also provides the instruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

Name Direction Bits Description
TPx_SQ_data_rdy TPx→ SQ 1 Data ready

TPx_SQ_rs_line_num TPx→ SQ 6 Line number in the Reservation station

TPx_SQ_type TPx→ SQ 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_send SQ→TPx 1 Sending valid data
SQ_TPx_const SQ→TPx 48 Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instr SQ→TPx 24 Fetch instruction sent over 4 clocks
SQ_TPx_end_of_group SQ→TPx 1 Last instruction of the group
SQ_TPx_Type SQ→TPx 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_gpr_phase SQ→TPx 2 Write phase signal
SQ_TP0_lod_correct SQ→TP0 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP0_pix_mask SQ→TP0 4 Pixel mask 1 bit per pixel
SQ_TP1_lod_correct SQ→TP1 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pix_mask SQ→TP1 4 Pixel mask 1 bit per pixel
SQ_TP2_lod_correct SQ→TP2 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pix_mask SQ→TP2 4 Pixel mask 1 bit per pixel
SQ_TP3_lod_correct SQ→TP3 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pix_mask SQ→TP3 4 Pixel mask 1 bit per pixel
SQ_TPx_rs_line_num SQ→TPx 6 Line number in the Reservation station
SQ_TPx_write_gpr_index SQ->TPx 7 Index into Register file for write of returned Fetch Data
SQ_TPx_ctx_id SQ→TPx 3 The state context ID (needed for multisample resolves)

23.2.922.2.9 TP to SQ: Texture stall
The TP sends this signal to the SQ and the SPs when its input buffer is full.

SU0

SU3

SU2

SU1

TP_SP_fetch_Stall

SQ_SP_wr_addr

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1195 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

47 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Name Direction Bits Description
TP_SQ_fetch_stall TP→ SQ 1 Do not send more texture request if asserted

23.2.10 SQ to SP: Texture stall

23.2.1122.2.10 SQ to SP: GPR and auto counter
Name Direction Bits Description
SQ_SPx_gpr_wr_addr SQ→SPx 7 Write address
SQ_SPx_gpr_rd_addr SQ→SPx 7 Read address
SQ_SPx_gpr_rd_en SQ→SPx 1 Read Enable
SQ_SP0_gpr_pspv_wr_en SQ→SPx 4 Write Enable for the GPRs of SP0 for PS

and PV
SQ_SP1_gpr_pspv_wr_en SQ→SPx 4 Write Enable for the GPRs of SP1 for PS

and PV
SQ_SP2_gpr_pspv_wr_en SQ→SPx 4 Write Enable for the GPRs of SP2 for PS

and PV
SQ_SP3_gpr_pspv_wr_en SQ→SPx 4 Write Enable for the GPRs of SP3 for PS

and PV
SQ_SP0_gpr_int_wr_en SQ→SPx 1 Write Enable for the GPRs of SP0 for

Inputs (interp/vtx)
SQ_SP1_gpr_int_wr_en SQ→SPx 1 Write Enable for the GPRs of SP1 for

Inputs (interp/vtx)
SQ_SP2_gpr_int_wr_en SQ→SPx 1 Write Enable for the GPRs of SP2 for

Inputs (interp/vtx)
SQ_SP3_gpr_int_wr_enSQ_SP3_gpr_wr_en SQ→SPxSQ→SPx 14 Write Enable for the GPRs of SP3 for

Inputs (interp/vtx)Write Enable for the
GPRs of SP3

SQ_SPx_gpr_phase SQ→SPx 2 The phase mux (arbitrates between
inputs, ALU SRC reads and writes)

SQ_SPx_channel_mask SQ→SPx 4 The channel mask
SQ_SPx_gpr_input_sel SQ→SPx 2 When the phase mux selects the inputs

this tells from which source to read from:
Interpolated data, VTX0, VTX1, autogen
counter.

SQ_SPx_auto_count SQ→SPx 21 Auto count generated by the SQ, common
for all shader pipes

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1196 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

48 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.1222.2.11 SQ to SPx: Instructions
Name Direction Bits Description
SQ_SPx_instr_start SQ→SPx 1 Instruction start
SQ_SP_instr SQ→SPx 24 Transferred over 4 cycles

0: SRC A Negate Argument Modifier 0:0
 SRC A Abs Argument Modifier 1:1
 SRC A Swizzle 9:2
 Vector Dst 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
--
-
1: SRC B Negate Argument Modifier 0:0
 SRC B Abs Argument Modifier 1:1
 SRC B Swizzle 9:2
 Scalar Dst 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
--
-
2: SRC C Negate Argument Modifier 0:0
 SRC C Abs Argument Modifier 1:1
 SRC C Swizzle 9:2
 Unused 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
--
-
3: Vector Opcode 4:0
 Scalar Opcode 10:5
 Vector Clamp 11:11
 Scalar Clamp 12:12
 Vector Write Mask 16:13
 Scalar Write Mask 20:17
 Unused 23:21

SQ_SP0_pred_override SQ→SP0 4 0: Use per channel RGBA field (enables the per
channel logic, if not set only pay attention to the 11
seting).
1: Use GPR

SQ_SP1_pred_override SQ→SP1 4 0: Use per channel RGBA field (enables the per
channel logic, if not set only pay attention to the 11
seting).
1: Use GPR

SQ_SP2_pred_override SQ→SP2 4 0: Use per channel RGBA field (enables the per
channel logic, if not set only pay attention to the 11
seting).
1: Use GPR

SQ_SP3_pred_override SQ→SP3 4 0: Use per channel RGBA field (enables the per
channel logic, if not set only pay attention to the 11

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1197 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

49 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

seting).
1: Use GPR

SQ_SPx_exp_id SQ→SPx 1 GPR ID
SQ_SPx_exporting SQ→SPx 1 0: Not Exporting

1: Exporting
SQ_SPx_stall SQ→SPx 1 Stall signal
SQ_SPx_Waterfall SQ→SPx 2 Use the incoming constant instead of the registered one

for the next group of 16.
0 : Normal mode
1: Waterfall on SRCA
2: Waterfall on SRCB
3: Waterfall on SRCC

23.2.1322.2.12 SQ to SX: write mask interface (must be aligned with the SP data)
Name Direction Bits Description
SQ_SX0_write_mask SQ→SP0 8 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock. This is for the data coming of SP0 and SP2.

SQ_SX1_ write_mask SQ→SP1 8 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock. This is for the data coming of SP1 and SP3.

23.2.1422.2.13 SP to SQ: Constant address load/ Predicate Set/Kill set
Name Direction Bits Description
SP0_SQ_const_addr SP0→SQ 36 Constant address load / predicate vector load (4 bits only)/

Kill vector load (4 bits only) to the sequencer
SP0_SQ_valid SP0→SQ 1 Data valid
SP1_SQ_const_addr SP1→SQ 36 Constant address load / predicate vector load (4 bits only)/

Kill vector load (4 bits only) to the sequencer
SP1_SQ_valid SP1→SQ 1 Data valid
SP2_SQ_const_addr SP2→SQ 36 Constant address load / predicate vector load (4 bits only)/

Kill vector load (4 bits only) to the sequencer
SP2_SQ_valid SP2→SQ 1 Data valid
SP3_SQ_const_addr SP3→SQ 36 Constant address load / predicate vector load (4 bits only)/

Kill vector load (4 bits only) to the sequencer
SP3_SQ_valid SP3→SQ 1 Data valid
SP0_SQ_data_type SPSQ 2 Data Type

0: Constant Load
1: Predicate Set
2: Kill vector load

Because of the sharing of the bus none of the MOVA, PREDSET or KILL instructions may be coissued.

23.2.1522.2.14 SQ to SPx: constant broadcast
Name Direction Bits Description
SQ_SPx_const SQ→SPx 128 Constant broadcast

23.2.1622.2.15 SQ to CP: RBBM bus
Name Direction Bits Description
SQ_RBB_rs SQ→CP 1 Read Strobe
SQ_RBB_rd SQ→CP 32 Read Data
SQ_RBBM_nrtrtr SQ→CP 1 Optional
SQ_RBBM_rtr SQ→CP 1 Real-Time (Optional)

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1198 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

50 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.1722.2.16 CP to SQ: RBBM bus
Name Direction Bits Description
rbbm_we CP→SQ 1 Write Enable
rbbm_a CP→SQ 15 Address -- Upper Extent is TBD (16:2)
rbbm_wd CP→SQ 32 Data
rbbm_be CP→SQ 4 Byte Enables
rbbm_re CP→SQ 1 Read Enable
rbb_rs0 CP→SQ 1 Read Return Strobe 0
rbb_rs1 CP→SQ 1 Read Return Strobe 1
rbb_rd0 CP→SQ 32 Read Data 0
rbb_rd1 CP→SQ 32 Read Data 0
RBBM_SQ_soft_reset CP→SQ 1 Soft Reset

23.2.1822.2.17 SQ to CP: State report
Name Direction Bits Description
SQ_CP_vs_event SQ→CP 1 Vertex Shader Event
SQ_CP_vs_eventid SQ→CP 5 Vertex Shader Event ID
SQ_CP_ps_event SQ→CP 1 Pixel Shader Event
SQ_CP_ps_eventid SQ→CP 5 Pixel Shader Event ID

23.322.3 Example of control flow program execution
We now provide some examples of execution to better illustrate the new design.

Given the program:

Alu 0
Alu 1
Tex 0
Tex 1
Alu 3 Serial
Alu 4
Tex 2
Alu 5
Alu 6 Serial
Tex 3
Alu 7
Alloc Position 1 buffer
Alu 8 Export
Tex 4
Alloc Parameter 3 buffers
Alu 9 Export 0
Tex 5
Alu 10 Serial Export 2
Alu 11 Export 1 End

Would be converted into the following CF instructions:

Execute 0 Alu 0 Alu 0 Tex 0 Tex 1 Alu 0 Alu 0 Tex 0 Alu 1 Alu 0 Tex
Execute 0 Alu
Alloc Position 1
Execute 0 Alu 0 Tex
Alloc Param 3
Execute_end 0 Alu 0 Tex 1 Alu 0 Alu

And the execution of this program would look like this:

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1199 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

51 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Put thread in Vertex RS:

Control Flow Instruction Pointer (12 bits), (CFP)
Execution Count Marker (3 or 4 bits), (ECM)
Loop Iterators (4x9 bits), (LI)
Call return pointers (4x12 bits), (CRP)
Predicate Bits(4x64 bits), (PB)
Export ID (1 bit), (EXID)
GPR Base Ptr (8 bits), (GPR)
Export Base Ptr (7 bits), (EB)
Context Ptr (3 bits).(CPTR)
LOD correction bits (16x6 bits) (LOD)

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 0 0 0 0 0 0 0 0 0

Valid Thread (VALID)
Texture/ALU engine needed (TYPE)
Texture Reads are outstanding (PENDING)
Waiting on Texture Read to Complete (SERIAL)
Allocation Wait (2 bits) (ALLOC)

00 – No allocation needed
01 – Position export allocation needed (ordered export)
10 – Parameter or pixel export needed (ordered export)
11 – pass thru (out of order export)

Allocation Size (4 bits) (SIZE)
Position Allocated (POS_ALLOC)
First thread of a new context (FIRST)
Last (1 bit), (LAST)

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 0 0 0 0 0 1 0

Then the thread is picked up for the execution of the first control flow instruction:

Execute 0 Alu 0 Alu 0 Tex 0 Tex 1 Alu 0 Alu 0 Tex 0 Alu 1 Alu 0 Tex

It executes the first two ALU instructions and goes back to the RS for a resource request change. Here is the
state returned to the RS:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 2 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Then when the texture pipe frees up, the arbiter picks up the thread to issue the texture reads. The thread comes

back in this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 4 0 0 0 0 0 0 0 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1200 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

52 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 0 1 0

Because of the serial bit the arbiter must wait for the texture to return and clear the PENDING bit before it can

pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returns it in
this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 6 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Again the TP frees up, the arbiter picks up the thread and executes. It returns in this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 7 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 0 0 0 1 0

Now, even if the texture has not returned we can still pick up the thread for ALU execution because the serial bit

is not set. The thread will however come back to the RS for the second ALU instruction because it has the serial bit
set.

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 8 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 0 1 0

As soon as the TP clears the pending bit the thread is picked up and returns:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 9 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1201 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

53 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Picked up by the TP and returns:
Execute 0 Alu

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
1 0 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 0 0 0 1 0

Picked up by the ALU and returns (lets say the TP has not returned yet):
Alloc Position 1

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
2 0 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 01 1 0 1 0

If the SX has the place for the export, the SQ is going to allocate and pick up the thread for execution. It returns to

the RS in this state:

Execute 0 Alu 0 Tex

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
3 1 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 1 0 0 0 1 1 0

Now, since the TP has not returned yet, we must wait for it to return because we cannot issue multiple texture

requests. The TP returns, clears the PENDING bit and we proceed:

Alloc Param 3

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
4 0 0 0 0 1 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 10 3 1 1 0

Once again the SQ makes sure the SX has enough room in the Parameter cache before it can pick up this

thread.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1202 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20157
January 200316

R400 Sequencer Specification PAGE

54 of 54

Exhibit 2037.docR400_Sequencer.doc �� 74373 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Execute_end 0 Alu 0 Tex 1 Alu 0 Alu

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
5 1 0 0 0 1 0 100 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 1 0 0 0 1 1 0

This executes on the TP and then returns:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
5 2 0 0 0 1 0 100 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 1 1 1

Waits for the TP to return because of the textures reads are pending (and SERIAL in this case). Then executes
and does not return to the RS because the LAST bit is set. This is the end of this thread and before dropping it on the
floor, the SQ notifies the SX of export completion.

24.23. Open issues
Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

Formatted: Bullets and Numbering

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1203 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SQ

Version 2.10

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\doc_lib\design\blocks\sq\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2038
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1204 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

2 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Table Of Contents

1. OVERVIEW .. 7
1.1 Top Level Block Diagram ... 9
1.2 Data Flow graph (SP) ... 10
1.3 Control Graph ... 11
2. INTERPOLATED DATA BUS .. 11
3. INSTRUCTION STORE ... 14
4. SEQUENCER INSTRUCTIONS ... 14
5. CONSTANT STORES .. 14
5.1 Memory organizations .. 14
5.2 Management of the Control Flow Constants .. 15
5.3 Management of the re-mapping tables ... 15

5.3.1 R400 Constant management... 15

5.3.2 Proposal for R400LE constant management Error! Bookmark not defined.

5.3.3 Dirty bits .. 15

5.3.4 Free List Block ... 15

5.3.5 De-allocate Block .. 16

5.3.6 Operation of Incremental model .. 16
5.4 Constant Store Indexing ... 17
5.5 Real Time Commands .. 17
5.6 Constant Waterfalling ... 17
6. LOOPING AND BRANCHES ... 18
6.1 The controlling state. .. 18
6.2 The Control Flow Program ... 18

6.2.1 Control flow instructions table .. 19
6.3 Implementation ... 22
6.4 Data dependant predicate instructions ... 24
6.5 HW Detection of PV,PS .. 24
6.6 Register file indexing .. 24
6.7 Debugging the Shaders .. 25

6.7.1 Method 1: Debugging registers ... 25

6.7.2 Method 2: Exporting the values in the GPRs ... 25
7. PIXEL KILL MASK .. 25
8. MULTIPASS VERTEX SHADERS (HOS) ERROR! BOOKMARK NOT DEFINED.
9. REGISTER FILE ALLOCATION .. 25
10. FETCH ARBITRATION .. 27
11. ALU ARBITRATION .. 28
12. HANDLING STALLS ... 28
13. CONTENT OF THE RESERVATION STATION FIFOS ... 28
14. THE OUTPUT FILE .. 28
15. IJ FORMAT .. 28
15.1 Interpolation of constant attributes .. 29
16. STAGING REGISTERS ... 29

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1205 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

17. THE PARAMETER CACHE ... 30
17.1 Export restrictions .. 31

17.1.1 Pixel exports: .. 31

17.1.2 Vertex exports: ... 31

17.1.3 Pass thru exports: .. 31
17.2 Arbitration restrictions .. 32
18. EXPORT TYPES .. 32
18.1 Vertex Shading .. 32
18.2 Pixel Shading .. 33
19. SPECIAL INTERPOLATION MODES ... 33
19.1 Real time commands ... 33
19.2 Sprites/ XY screen coordinates/ FB information .. 33
19.3 Auto generated counters ... 34

19.3.1 Vertex shaders ... 34

19.3.2 Pixel shaders .. 34
20. STATE MANAGEMENT .. 35
20.1 Parameter cache synchronization ... 35
21. XY ADDRESS IMPORTS ... 35
21.1 Vertex indexes imports .. 35
22. REGISTERS .. 35

23. INTERFACES .. 36

23.1 External Interfaces .. 36
23.2 SC to SP Interfaces ... 36

23.2.1 SC_SP#.. 36

23.2.2 SC_SQ ... 37

23.2.3 SQ to SX(SP): Interpolator bus .. 39

23.2.4 SQ to SP: Staging Register Data ... 39

23.2.5 VGT to SQ : Vertex interface .. 39

23.2.6 SQ to SX: Control bus .. 43

23.2.7 SX to SQ : Output file control ... 43

23.2.8 SQ to TP: Control bus .. 44

23.2.9 TP to SQ: Texture stall ... 44

23.2.10 SQ to SP: Texture stall ... Error! Bookmark not defined.

23.2.11 SQ to SP: GPR and auto counter ... 45

23.2.12 SQ to SPx: Instructions .. 47

23.2.13 SQ to SX: write mask interface (must be aligned with the SP data) 50

23.2.14 SP to SQ: Constant address load/ Predicate Set/Kill set .. 51

23.2.15 SQ to SPx: constant broadcast .. 51

23.2.16 SQ to CP: RBBM bus ... 52

23.2.17 CP to SQ: RBBM bus ... 52

23.2.18 SQ to CP: State report ... 52

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1206 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

4 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.3 Example of control flow program execution ... 52
24. OPEN ISSUES ... 56

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1207 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

 Changed the control flow method to be more
flexible. Also updated the external interfaces.

Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

 Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001

 Refined interfaces to RB. Added state registers.

Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

 Added SEQ→SP0 interfaces. Changed delta
precision. Changed VGT→SP0 interface. Debug
Methods added.

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001

 Interfaces greatly refined. Cleaned up the spec.

Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001

 Added the different interpolation modes.

Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

 Added the auto incrementing counters. Changed
the VGT→SQ interface. Added content on constant
management. Updated GPRs.

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

 Removed from the spec all interfaces that weren’t
directly tied to the SQ. Added explanations on
constant management. Added PA→SQ
synchronization fields and explanation.

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

 Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002

 Added Real Time parameter control in the SX
interface. Updated the control flow section.

Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

 New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002

 Rearangement of the CF instruction bits in order to
ensure byte alignement.

Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002

 Updated the interfaces and added a section on
exporting rules.

Rev 1.11 (Laurent Lefebvre)
Date : April 19, 2002

 Added CP state report interface. Last version of the
spec with the old control flow scheme

Rev 2.0 (Laurent Lefebvre)
Date : April 19, 2002

 New control flow scheme

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1208 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

6 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Rev 2.01 (Laurent Lefebvre)
Date : May 2, 2002

 Changed slightly the control flow instructions to
allow force jumps and calls.

Rev 2.02 (Laurent Lefebvre)
Date : May 13, 2002

 Updated the Opcodes. Added type field to the
constant/pred interface. Added Last field to the
SQ→SP instruction load interface.

Rev 2.03 (Laurent Lefebvre)
Date : July 15, 2002

 SP interface updated to include predication
optimizations. Added the predicate no stall
instructions,

Rev 2.04 (Laurent Lefebvre)
Date :August 2, 2002

 Documented the new parameter generation scheme
for XY coordinates points and lines STs.

Rev 2.05 (Laurent Lefebvre)
Date : September 10, 2002

 Some interface changes and an architectural
change to the auto-counter scheme.

Rev 2.06 (Laurent Lefebvre)
Date : October 11, 2002

 Widened the event interface to 5 bits. Some other
little typos corrected.

Rev 2.07 (Laurent Lefebvre)
Date : October 14, 2002

 Loops, jumps and calls are now using a 13 bit
address which allows to jump and call and loop
around any control flow addresses (does not
requires to be even anymore).

Rev 2.08 (Laurent Lefebvre)
Date : October 16, 2002

 Clarification updates after discussion with Clay.

Rev 2.09 (Laurent Lefebvre)
Date : January 7, 2003

 Corrected the SQ→SP staging register interface.

Rev 2.10 (Laurent Lefebvre)
Date : April 8, 2003

 Adding R500 modifications

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1209 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1. Overview
The sequencer chooses four ALU threads (two from each bank), a vertex cache and a fetch thread to execute, and
executes all of the instructions in a block before looking for a new clause of the same type. Two ALU threads are
executed interleaved to hide the ALU latency. The arbitrator will give priority to older threads. There are two separate
reservation stations, one for pixel vectors and one for vertices vectors. This way a pixel can pass a vertex and a
vertex can pass a pixel.

There are also 2 separate ALU banks from which the SQ picks the ALU threads to be executed in parallel.

To support the shader pipe the sequencer also contains the shader instruction store, constant store, control flow
constants and texture state. The height shader pipes also execute the same two instructions thus there is only one
sequencer for the whole chip but it issues 2 instructions every four clocks.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1210 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

8 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ

SC

ALU BANK 1ALU BANK 0CSTOREFETCH STATE

TP

INST STORE

IJ CONTROL

IJ
CONTROL

CST
ADDR

INST
 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/
QUAD

ADDRESSES

ALU INST

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

INST

INTER INTER

IJ CROSSBAR

2 QUADS
IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC READ
 POINTERS

PARAM
DATA

R/W ADDR

Vertex
indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

CP

CONSTANT
LOAD

CPConstant Load

TX ADDR

PC Write
Address

TEX INST

CF
CONSTANTS

Register
Mapped

CF Read

VC

VC INST

Figure 1: General Sequencer overview

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1211 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.1 Top Level Block Diagram

ALU Texture

VTX RS PIX RS

Exec Arbiter

Input Arbiter

Figure 2: Reservation stations and arbiters

Under this new scheme, the sequencer (SQ) will only use one global state management machine per vector type
(pixel, vertex) that we call the reservation station (RS).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1212 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

10 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.2 Data Flow graph (SP)

SP1

Sequencer

R500
 CONFIGURATION

SPI 0 SPI 1

SP0

Interp0 Interpolator1 Interpolator2 Interpolator3

SP7SP6SP5SP4SP3SP2

LHQ0 RHQ0 LHQ1 RHQ1 LHQ2 RHQ2 LHQ3 RHQ3

VSIR VSIR

SIMD0
Pipe0

SIMD1
Pipe0

SIMD0
Pipe1

SIMD1
Pipe1

TC RTN 64 bits
each pipe (128 total)

VC RTN 64 bits
each pipe (128 total)

TCRQ 96 bits
 each pipe (192 total)

VC RQ 32 bits
 each pipe (64 total)

Shared Export
32 bits

Shared Export
32 bits

Interp
128 bits

Interp
128 bits

SQ SIMD0 BROADCAST
CNTR

SQ SIMD1 BROADCAST
CNTR

Figure 3: The shader Pipe

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1213 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.3 Control Graph

SEQ

FETCH SP BANK 0/1

ause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

SX

WrAddrIS CST

CST IDX

VC

WrAddr

CST

CMD

WrAddr

Clause # + Rdy
IS

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1214 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

12 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x100 bits)

IJs buffer (ping-pong buffer)
(25 bits * 8 (IJ) * 4 * 4 * 4 (quadruple-buffered)

12800 bits

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

100

To RB

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2

768 bits
32x24

FIX-FLOAT + EXPANSiON

Figure 5: Interpolation buffers

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1215 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SP
0

SP
1

SP
2

SP
3

WRITES
T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-
11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P1 P2

T20 T21 T22 T23

VTX

T0 T1 T2 T3

XY

XY
0-3

XY
4-7

XY
8-
11

XY
12-
15

XY
16-
19

XY
20-
23

XY
24-
27

XY
28-
31

XY
32-
35

XY
36-
39

XY
40-
43

XY
44-
47

XY
48-
51

XY
52-
55

XY
56-
59

XY
60-
63

READS

SP
0

SP
1

SP
2

SP
3

A0

A1

A2

B1

B0

C3

C0

C1

C2

C4

C5

D0

D1

D2

E0

E1

A0

A1

A2

XY
A0
XY
A1
XY
A2

B1

B0

XY
B1

XY
B0

C3

C0

C1

C2

XY
C3
XY
C0
XY
C1
XY
C2

C4

C5

XY
C4
XY
C5

D0

D1

D2

XY
D1
XY
D2

XY
D0

E0

E1
XY
E1

XY
E0

Figure 6: Interpolation timing diagram

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1216 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

14 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store
There is going to be two instruction stores for the whole chip. They will each contain 4096 instructions of 96 bits each.

They will be 1 port memories; Ports are allocated in this fashion (but not necessarily in this order):

ALU 0 SIMD0 CF
ALU 0 SIMD0
ALU 1 SIMD0 CF
ALU 1 SIMD0
Fetch CF
Fetch
VC CF
VC

ALU 0 SIMD1 CF
ALU 0 SIMD1
ALU 1 SIMD1 CF
ALU 1 SIMD1
Fetch CF
Fetch
VC CF
VC

Fetch and VC can steal one another’s ports with stated resource having priority over its port (this is not really
necessary for the R500 but will be for any derivative part because there will only be one instruction store).

Writes are opportunistic.

The instruction store is loaded by the CP thru the register mapped registers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4. Sequencer Instructions
All control flow instructions instructions are handled by the sequencer only. The ALUs will perform NOPs during this
time (MOV PV,PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

There will be two of those memories and two of each remapping read memories.

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1217 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

5.2 Management of the Control Flow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied whenever there is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn’t write to CF the state is going to use the previous CF constants.

5.3 Management of the re-mapping tables

5.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.3 Free List Block
A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1218 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

16 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

5.3.4 De-allocate Block
This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any number of blocks in one clock.

5.3.5 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1219 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock).

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

The address register is a signed integer, which ranges from –256 to 255.

5.5 Real Time Commands
The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
works is the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zones is defined by the TSTATE_EO_RT control register.

5.6 Constant Waterfalling
In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenever a state is freed.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1220 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

18 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

CONST_EO_RT

RT SECTON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table)

Figure 7: The Constant store

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[255:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
We'd like to be able to code up a program of the form:

1: Loop
2: Exec TexFetch

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1221 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

3: TexFetch
4: ALU
5: ALU
6: TexFetch
7: End Loop
8: ALU Export

But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3:. Without clausing,
these dependencies need to be expressed in the Control Flow instructions. Additionally, without separate 'texture
clauses' and 'ALU clauses' we need to know which instructions to dispatch to the Texture Unit and which to the ALU
unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of information for each (non-control flow) instruction:
 a) ALU or Texture
 b) Serialize Execution

(b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched. Given the allocation of reserved bits, this would mean that the count of an 'Exec' instruction
would be limited to about 8 (non-control-flow) instructions. If more than this were needed, a second Exec (with the
same conditions) would be issued.

Another function that relies upon 'clauses' is allocation and order of execution. We need to assure that pixels and
vertices are exported in the correct order (even if not all execution is ordered) and that space in the output buffers are
allocated in order. Additionally data can't be exported until space is allocated. A new control flow instruction:

 Alloc <buffer select -- position,parameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual
allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already
completed. The implementation would also assure that execution of instruction(s) following the serialization due to the
Alloc will occur in order -- at least until the next serialization or change from ALU to Texture. In most cases this will
allow the exports to occur without any further synchronization. Only 'final' allocations or position allocations are
guaranteed to be ordered. Because strict ordering is required for pixels, parameters and positions, this implies only
a single alloc for these structures. Vertex exports to memory do not require ordering during allocation and so multiple
'allocs' may be done.

6.2.1 Control flow instructions table
Here is the revised control flow instruction set.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

NOP
47 … 44 43 42 … 0

0000 Addressing RESERVED

This is a regular NOP.

Execute
47 … 44 43 40 … 34 33 … 28 27 …16 15…12 11 … 0

0001 Addressing RESERV
ED

Vertex
Cache

Instructions type + serialize (6
instructions)

Count Exec Address

Execute_End

47 … 44 43 40 … 34 33 … 28 27 …16 15…12 11 … 0
0010 Addressing RESERV

ED
Vertex
Cache

Instructions type + serialize (6
instructions)

Count Exec Address

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1222 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

20 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Execute up to 6 instructions at the specified address in the instruction memory. The Instruction type field tells the
sequencer the type of the instruction (LSB) (1 = Texture, 0 = ALU and whether to serialize or not the execution (MSB)
(1 = Serialize, 0 = Non-Serialized). If the corresponding VC bit is set then VC is used instead of TP/ALU. If
Execute_End this is the last execution block of the shader program.

Vertex Cache Serialize Instruction Type (Resource)
 0 0 0 : ALU instruction, not yielding

0 0 1 : ALU instruction, yielding
0 1 0 : Texture instruction, not yielding
0 1 1 : Texture instruction, yielding
1 0 0 : Vertex cache instruction, not yielding
1 0 1 : Vertex cache instruction, yielding
1 1 0 : Vertex cache instruction, not yielding
1 1 1 : Vertex cache instruction, yielding

Conditional_Execute

47 … 44 43 42 41 … 34 33…28 27…16 15 …12 11 … 0
0011 Addressing Condition Boolean

address
Vertex Cache Instructions

type +
serialize (6
instructions)

Count Exec Address

Conditional_Execute_End

47 … 44 43 42 41 … 34 33…28 27…16 15 …12 11 … 0
0100 Addressing Condition Boolean

address
Vertex Cache Instructions

type +
serialize (6
instructions)

Count Exec Address

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 9 instructions). If the condition is not met, we go on to the next control flow instruction. If
Conditional_Execute_End and the condition is met, this is the last execution block of the shader program.

Conditional_Execute_Predicates
47 … 44 43 42 41 … 36 35 … 34 33…28 27…16 15…12 11 … 0

0101 Addressing Condition RESERVED Predicate
vector

Vertex
Cache

Instructions
type +

serialize (6
instructions)

Count Exec Address

Conditional_Execute_Predicates_End

47 … 44 43 42 41 … 36 35 … 34 33…28 27…16 15…12 11 … 0
0110 Addressing Condition RESERVED Predicate

vector
Vertex
Cache

Instructions
type +

serialize (6
instructions)

Count Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid. If the
condition is not met, we go on to the next control flow instruction. If Conditional_Execute_Predicates_End and the
condition is met, this is the last execution block of the shader program.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1223 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Conditional_Execute_Predicates_No_Stall
47 … 44 43 42 41 … 36 35 … 34 33…28 27…16 15…12 11 … 0

1101 Addressing Condition RESERVED Predicate
vector

Vertex
Cache

Instructions
type +

serialize (6
instructions)

Count Exec Address

Conditional_Execute_Predicates_No_Stall_End

47 … 44 43 42 41 … 36 35 … 34 33…28 27…16 15…12 11 … 0
1110 Addressing Condition RESERVED Predicate

vector
Vertex
Cache

Instructions
type +

serialize (6
instructions)

Count Exec Address

Same as Conditionnal_Execute_Predicates but the SQ is not going to wait for the predicate vector to be updated.
You can only set this in the compiler if you know that the predicate set is only a refinement of the current one (like a
nested if) because the optimization would still work.

Loop_Start
47 … 44 43 42 … 21 20 … 16 15…13 12 … 0

0111 Addressing RESERVED loop ID RESERVED Jump address

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Loop_End
47 …44 43 42 41… 36 35…34 33… 22 21 20 … 16 15…13 12 … 0

1000 Addressing Cond RESERVED Predicate
Vector

RESERVED Pred
break

loop ID RESERVED start
address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop. If predicate break != 0, then compares predicate vector n
(specified by predicate Vector) to condition. If all bits meet condition then break the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal_Call
47 … 44 43 42 41 … 34 33 … 14 13 12 … 0

1001 Addressing Condition Boolean address RESERVED Force Call Jump address

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack. If
force call is set the condition is ignored and the call is made always.

Return
47 … 44 43 42 … 0

1010 Addressing RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump
47 … 44 43 42 41… 34 33 32 … 14 13 12 … 0

1011 Addressing Condition Boolean
address

FW only RESERVED Force Jump Jump address

If force jump is set the condition is ignored and the jump is made always. If FW only is set then only forward jumps
are allowed.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1224 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

22 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Allocate

47 … 44 43 42…41 40 39 … 3 2…0
1100 Debug Buffer Select No Serial RESERVED Size

Buffer Select takes a value of the following:
01 – position export (ordered export)
10 – parameter cache or pixel export (ordered export)
11 – pass thru (out of order exports).

Size field is only used to reserve space in the export buffer for pass thru exports. Valid values are 1 (1 line) thru 9 (9
lines). It should be determined by the compiler/assembler by taking max index used +1.

If debug is set this is a debug alloc (ignore if debug DB_ON register is set to off).

By default the serial bit is set on an alloc. If the No Serial bit is asserted then the serial bit won’t be set in the SQ.

6.3 Implementation

The envisioned implementation has a buffer that maintains the state of each thread. A thread lives in a given
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the order that they
enter. Actually two buffers are maintained -- one for Vertices and one for Pixels. The intended implementation
would allow for:

16 entries for vertices
48 entries for pixels.

From each buffer, arbitration logic attempts to select 1 thread for the texture unit and 2 (interleaved) thread for the
ALU unit. Once a thread is selected it is read out of the buffer, marked as invalid, and submitted to appropriate
execution unit. It is returned to the buffer (at the same place) with its status updated once all possible sequential
instructions have been executed. A switch from ALU to TEX or visa-versa or a Serialize_Execution modifier forces
the thread to be returned to the buffer.

Each entry in the buffer will be stored across two physical pieces of memory - most bits will be stored in a 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed 'state'. The bits kept in the multi-read ported device will be termed 'status'.

'State Bits' needed include:

1. Control Flow Instruction Pointer (13 bits),
2. Execution Count Marker 4 bits),
3. Loop Iterators (4x9 bits),
4. Loop Counters (4x9 bits),
5. Call return pointers (4x13 bits),
6. Predicate Bits (64 bits),
7. Export ID (4 bits),
8. Parameter Cache base Ptr (7 bits),
9. GPR Base Ptr (8 bits),
10. Context Ptr (3 bits).
11. LOD corrections (6x16 bits)
12. Valid bits (64 bits)
13. RT (1 bit) Signifies that this thread is a Real Time thread. This bit must be sent to the Constant store state

machine when reading it.

Absent from this list are 'Index' pointers. These are costly enough that I'm presuming that they are instead stored in
the GPRs. The first seven fields above (Control Flow Ptr, Execution Count, Loop Counts, call return ptrs, Predicate
bits, PC base ptr and export ID) are updated every time the thread is returned to the buffer based on how much

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1225 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

progress has been mode on thread execution. GPR Base Ptr, Context Ptr and LOD corrections are unchanged
throughout execution of the thread.

'Status Bits' needed include:

 Valid Thread
 ALU engine needed
 Texture engine needed
 VC engine needed
 Texture Reads are outstanding
 VC Reads are outstanding
 Alu bank (0/1)
 Waiting on Texture Read to Complete
 Allocation Wait (2 bits)
 00 – No allocation needed
 01 – Position export allocation needed (ordered export)
 10 – Parameter or pixel export needed (ordered export)
 11 – pass thru (out of order export)
 Allocation Size (4 bits)
 Position Allocated
 Mem/Color Allocated
 First thread of a new context
 Event thread (NULL thread that needs to trickle down the pipe)
 Last (1 bit)
 Pulse SX (1 bit)

All of the above fields from all of the entries go into the arbitration circuitry. The arbitration circuitry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -- one for
pixels and one for vertices. A final selection is then done between the two. But the rest of this implementation
summary only considers the 'first' level selection which is similar for both pixels and vertices.

Texture arbitration requires no allocation or ordering so it is purely based on selecting the 'oldest' thread that requires
the Texture Engine.

ALU arbitration is a little more complicated. First, only threads where either of Texture_Reads_outstanding or
Waiting_on_Texture_Read_to_Complete are '0' are considered. Then if Allocation_Wait is active, these threads are
further filtered based on whether space is available. If the allocation is position allocation, then the thread is only
considered if all 'older' threads have already done their position allocation (position allocated bits set). If the
allocation is parameter or pixel allocation, then the thread is only considered if it is the oldest thread. Also a thread is
not considered if it is a parameter or pixel or position allocation, has its First_thread_of_a_new_context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the 'oldest' of the threads that pass through the above filters is selected. If the thread needed to allocate, then
at this time the allocation is done, based on Allocation_Size. If a thread has its “last” bit set, then it is also removed
from the buffer, never to return.

If I now redefine 'clauses' to mean 'how many times the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine', then the minimum number of clauses needed is 2 -- one to perform
the allocation for exports (execution automatically halts after an 'Alloc' instruction) (but doesn't performs the actual
allocation) and one for the actual ALU/export instructions. As the 'Alloc' instruction could be part of a texture clause
(presumably the final instruction in such a clause), a thread could still execute in this minimal number of 2 clauses,
even if it involved texture fetching.

The Texture_Reads_Outstanding and VC_reads_Outstanding bits tell the SQ that a texture or VC read is
outstanding. In this case, if we encounter a serial bit we need to wait until both resources are free (pending = 0) in
order to proceed.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1226 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

24 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

6.4 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_PUSH - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETNE_PUSH - similar to SETNE except that the result is 'exported' to the sequencer.
PRED_SETGT_PUSH - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_PUSH - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE
 PRED_SETNE

PRED_SETGT
PRED_SET_INV

 PRED_SET_POP
 PRED_SET_CLR
 PRED_SET_RESTORE

Details about actual implementation of these opcodes are in the shader pipe architectural spec.

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 1 set of 64 bits predicate vectors (in fact 2 sets because we interleave two programs but only 1 will be
exposed) and use it to control the write masking. This predicate is maintained across clause boundaries.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

 P0_ ADD_# R0,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

6.5 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert detect wich channels to read from the GPRs and which ones to read from the PV/PS.

6.6 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

The sequencer is going to keep a loop index computed as such:

 Index = Loop_iterator*Loop_step + Loop_start.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1227 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128…127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
 - jump errors
 relative jump address > size of the control flow program
 - call stack
 call with stack full

return with stack empty

With all the other errors, program can continue to run, potentially to worst-case limits.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the 0th
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs
1) The sequencer will have a debug active, count register and an address register for this mode.

Under the normal mode execution follows the normal course.

Under the debug mode it is assumed that the program is always exporting n debug vectors and that all other exports
to the SX block (but for position) will be turned off (changed into NOPs) by the sequencer (even if they occur before
the address stated by the ADDR debug register).

7. Pixel Kill Mask
A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE

 MASK_SETGT
 MASK_SETGTE

8. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1228 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

26 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZE for pixels.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1229 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

9. Fetch Arbitration
The fetch arbitration logic chooses one of the n potentially pending fetch clauses to be executed. The choice is made
by looking at the Vs and Ps reservation stations and picking the first one ready to execute. Once chosen, the clause
state machine will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two fetches of the
same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

10. VC Arbitration
The VC arbitration logic chooses one of the n potentially pending VC clauses to be executed. The choice is made by
looking at the Vs and Ps reservation stations and picking the first one ready to execute. Once chosen, the clause
state machine will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two fetches of the
same clause.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1230 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

28 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The VC pipe will be
able to handle up to X(?) in flight VC fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration
ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
n potentially pending ALU clauses to be executed. The choice is made by looking at the Vs and Ps reservation
stations and picking the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for
the odd clocks. For example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and
Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…
 Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering an exporting clause. The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

12.1 SP stall conditions

12.1.1 PS Stalls
None.

12.1.2 PV Stalls
None.

13. Content of the reservation station FIFOs
The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). All pixel’s parameters are always interpolated at full 20x24 mantissa precision.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1231 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

)(*)3()(*)3(3

)(*)2()(*)2(2

)(*)1()(*)1(1

)(*)0()(*)0(0

ACJABIAP

ACJABIAP

ACJABIAP

ACJABIAP

Multiplies (Full Precision): 8
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF P’s IJ : Mantissa 20 Exp 4 for I + Sign
 Mantissa 20 Exp 4 for J + Sign

Total number of bits : 20*8 + 4*8 + 4*2 = 200.

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the number is
normalized if not, then the number is un-normalized. The maximum range for the IJs (Full precision) is +/- 1024.

15.1 Interpolation of constant attributes
Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the terms are the same.

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 || 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencer will re-arrange them in this fashion:

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 || 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 || 8 9 10 11 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the SQ is responsible to insert padding to
account for the missing pipe. For example, if SP1 is broken, vertices 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will
not be sent by the VGT to the SQ AND the SQ is responsible to “jump” over these vertices in order for no valid
vertices to be sent to an invalid SP.

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 9. The area of the fixed-to-float converters and the VSISRs for this method is roughly estimated as 0.759sqmm
using the R300 process. The gate count estimate is shown in Figure 8.

P0

P2

P1

P3

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1232 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

30 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11631 60.57813 per bit

Area of 96x8-deep Latch Memory 46524

Area of 24-bit Fix-to-float Converter 4712per converter

Method 1 Block Quantity Area

 F2F 3 14136

 8x96 Latch 16 744384

 758520

Figure 8:Area Estimate for VGT to Shader Interface

SHADER PIPE

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

3
2

3
2

3
2

VGT BLOCK
(IN PA)

3
2

9
6

VECTOR ENGINE

96

8x96
MEMORY
1-READ
1-WRITE

3 OTHER
SHADER
PIPES

 3 Fix->Float Converters (24-bit)
 16 Memories 8x96-bit (12,288 bits)

Totals:

THREE MORE VECTOR ENGINES
PER SHADER PIPE

VECTOR ENGINE

SHADER
SEQUENCER

Figure 9:VGT to Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1233 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER
4 bits

ADDRESS
7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17th) is going to have the address 00000001000, the 18th 00010001000, the 19th 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*VS_EXPORT_COUNT to
Current_Location and reset the memory count to 0 before the next vector begins).

17.1 Export restrictions

17.1.1 Pixel exports:
Pixels can export 1,2,3 or 4 color buffers to the SX(+z). The exports will be done in order. The exports will always be
ordered to the SX.

17.1.2 Vertex exports:
Position or parameter caches can be exported in any order in the shader program. It is always better to export
posistion as soon as possible. Position has to be exported in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be done in any order with texture instructions interleaved.
The exports will always be allocated in order to the SX.

17.1.3 Pass thru exports:
Pass thru exports have to be done in groups of the form:

Alloc 1 thru 5 (max export offset + 1, for example if using EM4 alloc size 5)
Execute ALU(ADDR) ALU(DATA) ALU(DATA) ALU(DATA)…

When exporting to more than EM0, one MUST write to EM4 also (the write may be predicated if you don’t need the
export). This is used to initialize the buffers in the SX.

There cannot be any serialize bits set OR texture Reads between the EA and the last EM.

Memory exports will be surfaced using a macro extension; here is what needs to happen inside the macro:

The macro needs to create a special constant of the form:

Stream ID constant:
 .x = Integer that holds BaseAddressInBytes/4 in bits (29:0). Bits 31:30 should be 0b01.
 .y = 2**23
 .z = Integer that holds register field data. Note that this data must be organized so that it
always represents a 'valid' floating point number, with the relevant bits in (23 - 0); One way of doing this would be to
take the 23 bits and add 2**23.
 .w = max index value + 2**23

Output to EXaddress:

 .x = Base of array (in low 30 bits)/4

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1234 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

32 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 .y = Index value (in low 23 bits)
 .z = Register Field data (in low 23 bits)
 .w = Max Index value (in low 23 bits)

Also Assume that C0:

 .x = 0.0
 .y = 1.0

The Macro expansion would be as follows:

 MULADD EA = Rindex.xxxx,C0.xyxx,CstreamID;
 MOV EMx (x = 0 thru 4) = Rdata;

The SX will check for invalid writes and mask out the data so it won’t be written to memory. Invalid writes are:

1) Index value >= Max Index value
2) bit 31 != 0 (negative index)
3) bits [30:23] != 23 + IEEE_EXP_BIAS (127) (meaning the index was too big to be represented using 23 bits)

They cannot have texture instructions interleaved in the export block. These exports are not guaranteed to be
ordered.

Also, when doing a pass thru export, the shader must still do either a position and PC export (if Vertex) or a color
export (if Pixel). The pass thru export can occur anywhere in any shader program and thus can be used to debug.
There can be any number of pass thru export blocks throughout the pixel or vertex shader or both.

17.2 Arbitration restrictions
Here are the Sequencer arbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texture pending bit and VC pending is set
2) Cannot allocate position if any older thread has not allocated position
3) Cannot execute a texture clause if texture reads are pending
4) Cannot execute a VC clause if VC reads are pending
5) Cannot execute last if texture pending (even if not serial)
6) Cannot allocate if not last for color exports.
7) Cannot allocate if not last for PC exports.

18. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

18.1 Vertex Shading
 0:15 - 16 parameter cache
 16:31 - Empty (Reserved?)

32 - Export Address
 33:37 - 5 vertex exports to the frame buffer and index
 38:46 - Empty
 47 - Debug Address
 48:52 - 5 debug export (interpret as normal memory export)
 53:59 - Empty
 60 - export addressing mode
 61 - Empty
 62 - position
 63 - sprite size export that goes with position export

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1235 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

33 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 (X= point size, Y= edge flag is bit 0, Z= VtxKill is bitwise OR of bits 30:0. Any bit other than
sign means VtxKill.)

18.2 Pixel Shading
 0 - Color for buffer 0 (primary)
 1 - Color for buffer 1
 2 - Color for buffer 2
 3 - Color for buffer 3
 4:15 - Empty
 16 - Buffer 0 Color/Fog (primary)
 17 - Buffer 1 Color/Fog
 18 - Buffer 2 Color/Fog
 19 - Buffer 3 Color/Fog
 20:31 - Empty
 32 - Export Address
 33:37 - 5 exports for multipass pixel shaders.
 38:46 - Empty
 47 - Debug Address
 48:52 - 5 debug exports (interpret as normal memory export)

60 - export addressing mode
61 - Z for primary buffer (Z exported to 'alpha' component)

 62:63 - Empty

19. Special Interpolation modes

19.1 Real time commands
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 4x128 memories (one for each of three vertices x 4 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. This mode is triggered by
the primitive type: REAL TIME. The actual memories are in the in the SX blocks. The parameter data memories are
hooked on the RBBM bus and are loaded by the CP using register mapped memory.

19.2 Sprites/ XY screen coordinates/ FB information
XY screen coordinates may be needed in the shader program. This functionality is controlled by the param_gen
register (in SQ) in conjunction with the SND_XY register (in SC) and the param_gen_pos. Also it is possible to send
the faceness information (for OGL front/back special operations) to the shader using the same control register. Here
is a list of all the modes and how they interact together:

The Data is going to be written in the register specified by the param_gen_pos register.

Param_Gen disable, snd_xy disable = No modification
Param_Gen disable, snd_xy enable = No modification
Param_Gen enable, snd_xy disable = Sign(faceness)garbage,(Sign Point)garbage,Sign(Line)s, t
Param_Gen enable, snd_xy enable = Sign(faceness)screenX,(Sign Point)screenY,Sign(Line)s, t

In other words,

The generated vector is (X in RED, Y in GREEN, S in BLUE and T in ALPHA):
X,Y,S,T
These values are always supposed to be positive and any shader use of them should use the ABS function
(as their sign bits will now be used for flags).
SignX = BackFacing
SignY = Point Primitive
SignS = Line Primitive
SignT = currently unused as a flag.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1236 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

34 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

If !Point & !Line, then it is a Poly.

I would assume that one implementation which allows for generic texture lookup (using 3D maps) for poly
stipple and AA for the driver would be
if(Y<0) {
 R = 0.0 (Point)
} else if (S < 0) {
 R = 1.0 (Line)
} else {
 R = 2.0 (Poly)

}

19.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1st pass data to memory and then use the count to retrieve the data on the 2nd pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX_PIX/VTX register. The sequencer
is going to keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is
written to the GPRs the counter is incremented. Every time a RST_PIX_COUNT or RST_VTX_COUNT events are
received, the corresponding counter is reset. While there is only one count broadcast to the GPRs, the LSB are
hardwired to specific values making the index different for all elements in the vector. Since the count must be different
for all pixels/vertices and the 4 LSBs (16 positions) are hardwired to the corresponding shader unit the SQ has two
choices:

1) Maintain a 19 bit counter that counts the vectors of 64. In this case the phase must be appended to the count
before the count is broadcast to the SPs:

Counter (19 bits) Phase (2 bits) Hardwired (4 bits)

2) Maintain a 21 bits counter that counts sub-vectors of 16. In this case only the counter is sent to the Sps:

Counter (21 bits) Hardwired (4 bits)

19.3.1 Vertex shaders
In the case of vertex shaders, if GEN_INDEX_VTX is set, the data will be put into the x field of the third register (it
means that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

19.3.2 Pixel shaders
In the case of pixel shaders, if GEN_INDEX_PIX is set, the data will be put in the x field of the param_gen_pos+1
register.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1237 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

35 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

AUTO
COUNT

STG 0

STG1

INTERPOLATORS

GPR0

AUTO COUNT 000000

MUX

The Auto Count Value is
broadcast to all GPRs. It is

loaded into a register wich has
its LSBs hardwired to the

GPR number (0 thru 63). Then
if GEN_INDEX is high, the
mux selects the auto-count

value and it is loaded into the
GPRs to be either used to

retrieve data using the TP or
sent to the SX for the RB to

use it to write the data to
memory

Figure 10: GPR input mux Control

20. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

20.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

21. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix→float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 19.2 for details on how to control the interpolation in this mode.

21.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

22. Registers
Please see the auto-generated web pages for register definitions.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1238 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

36 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23. Interfaces

23.1 External Interfaces
Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ→SPx it means that SQ is going to broadcast the same information to all SP instances.

23.2 SC to SP Interfaces

23.2.1 SC_SP#
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the I,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data which is transferred per quad is
 Ref Pix I => S4.20 Floating Point I value *4
 Ref Pix J => S4.20 Floating Point J value *4

This equates to a total of 200 bits which transferred over 2 clocks
and therefor needs an interface 100 bits wide

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a IJ_BUF_INUSE_COUNT in the SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNT count. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2, if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of I,J data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,SQ and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple mode first with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performance hit.)

Name Bits Description
SC_SP#_data 100 IJ information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bit)

Type 0 or 1, First clock I, second clk J
Field ULC URC LLC LRC
 Bits [63:39] [38:26] [25:13] [12:0]
Format SE4M20 SE4M20 SE4M20 SE4M20
Type 2
Field Face X Y
 Bits [24] [23:12] [11:0]
Format Bit Unsigned Unsigned

SC_SP#_valid 1 Valid
SC_SP#_last_quad_data 1 This bit will be set on the last transfer of data per quad.
SC_SP#_type 2 0 -> Indicates centroids

1 -> Indicates centers
2 -> Indicates X,Y Data and faceness on data bus
The SC shall look at state data to determine how many types to send for the

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1239 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

37 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP block will have neither because the instantiation will insert the prefix.

23.2.2 SC_SQ
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 108 bits) could be folded in half to approx 54
bits.

Name Bits Description
SC_SQ_data 46 Control Data sent to the SQ

1 clk transfers
 Event – valid data consist of event_id and
 state_id. Instruct SQ to post an
 event vector to send state id and
 event_id through request fifo
 and onto the reservation stations
 making sure state id and/or event_id
 gets back to the CP. Events only
 follow end of packets so no pixel
 vectors will be in progress.

 Empty Quad Mask – Transfer Control data
 consisting of pc_dealloc
 or new_vector. Receipt of this is to
 transfer pc_dealloc or new_vector
 without any valid quad data. New
 vector will always be posted to
 request fifo and pc_dealloc will be
 attached to any pixel vector
 outstanding or posted in request fifo
 if no valid quad outstanding.
2 clk transfers
 Quad Data Valid – Sending quad data with or
 without new_vector or pc_dealloc.
 New vector will be posted to request
 fifo with or without a pixel vector and
 pc_dealloc will be posted with a pixel
 vector unless none is in progress. In
 this case the pc_dealloc will be
 posted in the request queue.
 Filler quads will be transferred with
 The Quad mask set but the pixel
 corresponding pixel mask set to
 zero.

SC_SQ_valid 1 SC sending valid data, 2nd clk could be all zeroes

SC_SQ_data – first clock and second clock transfers are shown in the table below.

Name BitField Bits Description

1st Clock Transfer
SC_SQ_event 0 1 This transfer is a 1 clock event vector Force quad_mask =

new_vector=pc_dealloc=0
SC_SQ_event_id [5:1] 4 This field identifies the event 0 => denotes an End Of State Event 1

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1240 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

38 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

=> TBD
SC_SQ_state_id [8:6] 3 State/constant pointer (6*3+3)
SC_SQ_pc_dealloc [11:9] 3 Deallocation token for the Parameter Cache
SC_SQ_new_vector 12 1 The SQ must wait for Vertex shader done count > 0 and after

dispatching the Pixel Vector the SQ will decrement the count.
SC_SQ_quad_mask [16:13] 4 Quad Write mask left to right SP0 => SP3
SC_SQ_end_of_prim 17 1 End Of the primitive
SC_SQ_pix_mask [33:18] 16 Valid bits for all pixels SP0=>SP3 (UL,UR,LL,LR)

SC_SQ_provok_vtx [35:34] 2 Provoking vertex for flat shading
SC_SQ_lod_correct_0 [44:36] 9 LOD correction for quad 0 (SP0) (9 bits per quad)
SC_SQ_lod_correct_1 [53:45] 9 LOD correction for quad 1 (SP1) (9 bits per quad)

2nd Clock Transfer
SC_SQ_lod_correct_2 [8:0] 9 LOD correction for quad 2 (SP2) (9 bits per quad)
SC_SQ_lod_correct_3 [17:9] 9 LOD correction for quad 3 (SP3) (9 bits per quad)
SC_SQ_pc_ptr0 [28:18] 11 Parameter Cache pointer for vertex 0
SC_SQ_pc_ptr1 [39:29] 11 Parameter Cache pointer for vertex 1
SC_SQ_pc_ptr2 [50:40] 11 Parameter Cache pointer for vertex 2
SC_SQ_prim_type [53:51] 3 Stippled line and Real time command need to load tex cords from

alternate buffer
000: Sprite (point)
001: Line
010: Tri_rect
100: Realtime Sprite (point)
101: Realtime Line
110: Realtime Tri_rect

Name Bits Description
SQ_SC_free_buff 1 Pipelined bit that instructs SC to decrement count of buffers in use.
SQ_SC_dec_cntr_cnt 1 Pipelined bit that instructs SC to decrement count of new vector and/or event

sent to prevent SC from overflowing SQ interpolator/Reservation request fifo.

The scan converter will submit a partial vector whenever:

1.) He gets a primitive marked with an end of packet signal.
2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been

marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal made it through and thus the hang.)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1241 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

39 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.3 SQ to SX(SP): Interpolator bus
Name Direction Bits Description
SQ_SPx_interp_flat_vtx SQ→SPx 2 Provoking vertex for flat shading
SQ_SPx_interp_flat_gouraud SQ→SPx 1 Flat or gouraud shading
SQ_SPx_interp_cyl_wrap SQ→SPx 4 Wich channel needs to be cylindrical wrapped
SQ_SPx_interp_param_gen SQ→SPx 1 Generate Parameter
SQ_SPx_interp_prim_type SQ→SPx 2 Bits [1:0] of primitive type sent by SC
SQ_SPx_interp_buff_swap SQ→SPx 1 Swapp IJ buffers
SQ_SPx_interp_IJ_line SQ→SPx 2 IJ line number
SQ_SPx_interp_mode SQ→SPx 1 Center/Centroid sampling
SQ_SXx_pc_ptr0 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr1 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr2 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_rt_sel SQ→SXx 1 Selects between RT and Normal data (Bit 2 of prim type)
SQ_SX0_pc_wr_en SQ→SX0 8 Write enable for the PC memories
SQ_SX1_pc_wr_en SQ→SX1 8 Write enable for the PC memories
SQ_SXx_pc_wr_addr SQ→SXx 7 Write address for the PCs
SQ_SXx_pc_channel_mask SQ→SXx 4 Channel mask
SQ_SXx_pc_ptr_valid SQ→SXx 1 Read pointers are valid.
SQ_SPx_interp_valid SQ→SPx 1 Interpolation control valid
SQ_SPx_SIMD_engine SQ→SPx 1 Tells which SIMD engine this data belongs to

23.2.4 SQ to SP: Staging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.
Name Direction Bits Description
SQ_SPx_vsr_data SQ→SPx 96 Pointers of indexes or HOS surface information
SQ_SPx_vsr_wrt_addr SQ→SPx 3 Staging register write address
SQ_SPx_vsr_rd_addr SQ→SPx 3 Staging register read address
SQ_SP0_ vsr_valid SQ→SP0 1 Data is valid
SQ_SP1_ vsr_ valid SQ→SP1 1 Data is valid
SQ_SP2_ vsr_ valid SQ→SP2 1 Data is valid
SQ_SP3_ vsr_ valid SQ→SP3 1 Data is valid
SQ_SPx_vsr_read SQ→SPx 1 Increment the read pointers

23.2.5 VGT to SQ : Vertex interface

23.2.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide. In the case where an event is sent the 5 LSBs of VGT_SQ_vsisr_data contain the eventID.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1242 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

40 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Name Bits Description
VGT_SQ_vsisr_data 96 Pointers of indexes or HOS surface information
VGT_SQ_event 1 VGT is sending an event
VGT_SQ_vsisr_continued 1 0: Normal 96 bits per vert 1: double 192 bits per vert
VGT_SQ_end_of_vtx_vect 1 Indicates the last VSISR data set for the current process vector (for double vector

data, "end_of_vector" is set on the first vector)
VGT_SQ_indx_valid 1 Vsisr data is valid
VGT_SQ_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when

“VGT_SQ_vgt_end_of_vector” is high.
VGT_SQ_send 1 Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_VGT_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

23.2.5.2 Interface Diagrams

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1243 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

41 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

VGT

VSISR_DATA_2

END_OF_VECTOR_2

STATE_SEL_2

REG

VSISR_DOUBLE_2
REG

REG

REG

REG

REG

SEND_2

REG

REG

REG

REG

REG

REG

PA_SQ_vgt_vsisr_data

PA_SQ_vgt_vsisr_double

PA_SQ_vgt_end_of_vector

PA_SQ_vgt_state_sel

PA_SQ_vgt_send

SQ_PA_vgt_rtr

VSISR_DATA_4

END_OF_VECTOR_4

STATE_SEL_4

VSISR_DOUBLE_4

96

1

1

3

1

1

SEND_4

RTR_2 RTR_0

SHADER
SEQUENCER

RTS

101 X 4
SKID

BUFFER

SRST SRST

WE

EMPTY

RE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1244 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

42 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

6 7

6 7

6 7

0 1 2 3

0 1

8

8

8

2 43 5

4 5 6 7

4 3 2 1

8

9 10 11 12

9 10 11 12

9 10 11 12

9 10 11 12

0

RECEIVER RE-STARTS TRANSMISSION

SENDER STOPS TRANSMISSION

SQ_RTR

SQ_RTR_0

VGT_RTS

SEND_2

SEND_3

SEND_4

DATA_2

FIFO_EMPTY

FIFO_RE

SQ_RTR_1

SQ_RTR_2

DATA_3

DATA_4

FIFO_DATA_OUT

FIFO_CNT

RECEIVER STOPS TRANSMISSION

Figure 1. Detailed Logical Diagram for PA_SQ_vgt Interface.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1245 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

43 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.6 SQ to SX: Control bus

Name Direction Bits Description
SQ_SXx_exp_type SQ→SXx 2 00: Pixel without z (1 to 4 buffers)

01: Pixel with z (1 to 4 buffers)
10: Position (1 or 2 results)
11: Pass thru (1 to 5 results aligned)

SQ_SXx_exp_number SQ→SXx 2 Number of locations needed in the export buffer
(encoding depends on the type see bellow).

SQ_SXx_exp_alu_id SQ→SXx 4 ALU ID. Revolving ID 0 thru 15. Memory exports have
to increment this count by 4 or 8 depending on the size
requested. Other type of exports increment the ID by 1.

SQ_SXx_exp_valid SQ→SXx 1 Valid bit
SQ_SXx_exp_state SQ→SXx 3 State Context

SQ_SXx_free_done SQ→SXx 1 Pulse that indicates that the previous export is finished
from the point of view of the SP. This does not
necessarily mean that the data has been
transferred to RB or PA, or that the space in export
buffer for that particular vector thread has been
freed up.

SQ_SXx_free_alu_id SQ→SXx 4 ALU ID that was used at allocate time.

Depending on the type the number of export location changes:

 Type 00 : Pixels without Z
o 00 = 1 buffer
o 01 = 2 buffers
o 10 = 3 buffers
o 11 = 4 buffer

 Type 01: Pixels with Z
o 00 = 2 Buffers (color + Z)
o 01 = 3 buffers (2 color + Z)
o 10 = 4 buffers (3 color + Z)
o 11 = 5 buffers (4 color + Z)

 Type 10 : Position export
o 00 = 1 position
o 01 = 2 positions
o 1X = Undefined

 Type 11: Pass Thru
o 00 = 4 buffers
o 01 = 8 buffers
o 10 = Undefined
o 11 = Undefined

Below the thick black line is the end of transfer packet that tells the SX that a given export is finished. The report
packet will always arrive either before or at the same time than the next export to the same ALU id.

23.2.7 SX to SQ : Output file control
Name Direction Bits Description
SXx_SQ_pix_free_count0 SXx→SQ 6 How many slots where just freed in the SX for bank0
SXx_SQ_pix_count0_valid SXx→SQ 1 Free_count0 is valid
SXx_SQ_pix_free_count1 SXx→SQ 6 How many slots where just freed in the SX for bank1
SXx_SQ_pix_count1_valid SXx→SQ 1 Free_count1 is valid
SXx_SQ_pos_free_count0 SXx→SQ 4 How many slots where just freed in the SX for bank0
SXx_SQ_pos_count0_valid SXx→SQ 1 Free_count0 is valid
SXx_SQ_pos_free_count1 SXx→SQ 4 How many slots where just freed in the SX for bank1

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1246 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

44 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SXx_SQ_pos_count1_valid SXx→SQ 1 Free_count1 is valid
SXx_SQ_mem_export_free SXx→SQ 1 Freed a memory export slot

23.2.8 SQ to TP: Control bus
Once every clock, the fetch unit sends to the sequencer on which RS line it is now working and if the data in the
GPRs is ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequencer also provides the instruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

Name Direction Bits Description
TPx_SQ_data_rdy TPx→ SQ 1 Data ready

TPx_SQ_rs_line_num TPx→ SQ 6 Line number in the Reservation station

TPx_SQ_type TPx→ SQ 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_send SQ→TPx 1 Sending valid data
SQ_TPx_const SQ→TPx 48 Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instr SQ→TPx 24 Fetch instruction sent over 4 clocks
SQ_TPx_end_of_group SQ→TPx 1 Last instruction of the group
SQ_TPx_Type SQ→TPx 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_gpr_phase SQ→TPx 2 Write phase signal
SQ_TP0_lod_correct SQ→TP0 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP0_pix_mask SQ→TP0 4 Pixel mask 1 bit per pixel
SQ_TP1_lod_correct SQ→TP1 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pix_mask SQ→TP1 4 Pixel mask 1 bit per pixel
SQ_TP2_lod_correct SQ→TP2 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pix_mask SQ→TP2 4 Pixel mask 1 bit per pixel
SQ_TP3_lod_correct SQ→TP3 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pix_mask SQ→TP3 4 Pixel mask 1 bit per pixel
SQ_TPx_rs_line_num SQ→TPx 6 Line number in the Reservation station
SQ_TPx_write_gpr_index SQ->TPx 7 Index into Register file for write of returned Fetch Data
SQ_TPx_ctx_id SQ→TPx 3 The state context ID (needed for multisample resolves)
SQ_TPx_SIMD SQ->TPx 1 Tells the TP from which SIMD the data is coming from.

23.2.9 SQ to VC: Control bus
Once every clock, the VC unit sends to the sequencer on which RS line it is now working and if the data in the GPRs
is ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequencer also provides the instruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

Name Direction Bits Description
VCx_SQ_data_rdy VCx→ SQ 1 Data ready

VCx_SQ_rs_line_num VCx→ SQ 6 Line number in the Reservation station

VCx_SQ_type VCx→ SQ 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_VCx_send SQ→VCx 1 Sending valid data
SQ_VCx_const SQ→VCx 48 Fetch state sent over 4 clocks (192 bits total)
SQ_VCx_instr SQ→VCx 24 Fetch instruction sent over 4 clocks
SQ_VCx_end_of_group SQ→VCx 1 Last instruction of the group
SQ_VCx_Type SQ→VCx 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_VCx_gpr_phase SQ→VCx 2 Write phase signal
SQ_VC0_pix_mask SQ→VC0 4 Pixel mask 1 bit per pixel
SQ_VC1_pix_mask SQ→VC1 4 Pixel mask 1 bit per pixel
SQ_VC2_pix_mask SQ→VC2 4 Pixel mask 1 bit per pixel
SQ_VC3_pix_mask SQ→VC3 4 Pixel mask 1 bit per pixel
SQ_VCx_rs_line_num SQ→VCx 6 Line number in the Reservation station

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1247 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

45 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ_VCx_write_gpr_index SQ->VCx 7 Index into Register file for write of returned Fetch Data
SQ_VCx_SIMD SQ->VCx 1 Tells the VC from which SIMD the data is coming from.

23.2.10 TP to SQ: Texture stall
The TP sends this signal to the SQ and the SPs when its input buffer is full. Stall needs to be aligned with the
Instruction start.

Name Direction Bits Description
TP_SQ_fetch_stall TP→ SQ 1 Do not send more texture request if asserted

23.2.11 VC to SQ: Vertex Cache stall
The VCsends this signal to the SQ and the SPs when its input buffer is full. Stall needs to be aligned with the
Instruction start.

Name Direction Bits Description
VC_SQ_fetch_stall VC→ SQ 1 Do not send more vertex cache request if asserted

23.2.12 SQ to SP: GPR and auto counter
Name Direction Bits Description
SQ_SPx_simd0_gpr_wr_addr SQ→SPx 7 Write address
SQ_SPx_simd0_gpr_rd_addr SQ→SPx 7 Read address
SQ_SPx_simd0_gpr_rd_en SQ→SPx 1 Read Enable
SQ_SP0_simd0_gpr_pspv_wr_en SQ→SP0 (SP4) 4 Write Enable for the GPRs of SP0 for PS and PV
SQ_SP1_simd0_gpr_pspv_wr_en SQ→SP1 (SP5) 4 Write Enable for the GPRs of SP1 for PS and PV
SQ_SP2_simd0_gpr_pspv_wr_en SQ→SP2 (SP6) 4 Write Enable for the GPRs of SP2 for PS and PV
SQ_SP3_simd0_gpr_pspv_wr_en SQ→SP3 (SP7) 4 Write Enable for the GPRs of SP3 for PS and PV
SQ_SP0_simd0_gpr_int_wr_en SQ→SP0 1 Write Enable for the GPRs of SP0 for Inputs

(interp/vtx)
SQ_SP1_simd0_gpr_int_wr_en SQ→SP1 1 Write Enable for the GPRs of SP1 for Inputs

(interp/vtx)
SQ_SP2_simd0_gpr_int_wr_en SQ→SP2 1 Write Enable for the GPRs of SP2 for Inputs

(interp/vtx)
SQ_SP3_simd0_gpr_int_wr_en SQ→SP3 1 Write Enable for the GPRs of SP3 for Inputs

(interp/vtx)
SQ_SPx_gpr_phase SQ→SPx 2 The phase mux (arbitrates between inputs, ALU SRC

reads and writes)
SQ_SPx_simd0_channel_mask SQ→SPx 4 The channel mask for SIMD0
SQ_SPx_gpr_input_sel SQ→SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTX0,
VTX1, autogen counter.

SQ_SPx_auto_count SQ→SPx 21 Auto count generated by the SQ, common for all
shader pipes

SQ_SPx_simd0_fetch_swizzle SQ→SPx 6 Swizzle code for the TP request (2 bits per channel
ignore W as it is not used).
Bits [1..0] X mode select:
0=GPR_X 1=GPR_Y 2=GPR_Z 3=GPR_W
Bits [3..2] Y mode select:
0=GPR_X 1=GPR_Y 2=GPR_Z 3=GPR_W
Bits [5..4] Z mode select:
0=GPR_X 1=GPR_Y 2=GPR_Z 3=GPR_W

SQ_SPx_simd0_fetch_resource SQ→SPx 1 Resource in use currently
0: TP
1: VC

SQ_SPx_simd1_gpr_wr_addr SQ→SPx 7 Write address
SQ_SPx_simd1_gpr_rd_addr SQ→SPx 7 Read address
SQ_SPx_simd1_gpr_rd_en SQ→SPx 1 Read Enable
SQ_SP0_simd1_gpr_pspv_wr_en SQ→SP0 (SP4) 4 Write Enable for the GPRs of SP0 for PS and PV

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1248 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

46 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ_SP1_simd1_gpr_pspv_wr_en SQ→SP1 (SP5) 4 Write Enable for the GPRs of SP1 for PS and PV
SQ_SP2_simd1_gpr_pspv_wr_en SQ→SP2 (SP6) 4 Write Enable for the GPRs of SP2 for PS and PV
SQ_SP3_simd1_gpr_pspv_wr_en SQ→SP3 (SP7) 4 Write Enable for the GPRs of SP3 for PS and PV
SQ_SPx__simd1_channel_mask SQ→SPx 4 The channel mask for SIMD1
SQ_SPx_simd1_fetch_resource SQ→SPx 1 Resource in use currently

0: TP
1: VC

SQ_SPx_simd1_fetch_swizzle SQ→SPx 6 Swizzle code for the TP request (2 bits per channel
ignore W as it is not used).
Bits [1..0] X mode select:
0=GPR_X 1=GPR_Y 2=GPR_Z 3=GPR_W
Bits [3..2] Y mode select:
0=GPR_X 1=GPR_Y 2=GPR_Z 3=GPR_W
Bits [5..4] Z mode select:
0=GPR_X 1=GPR_Y 2=GPR_Z 3=GPR_W

SQ_SP0_simd1_gpr_int_wr_en SQ→SP0 1 Write Enable for the GPRs of SP0 for Inputs
(interp/vtx)

SQ_SP1_simd1_gpr_int_wr_en SQ→SP1 1 Write Enable for the GPRs of SP1 for Inputs
(interp/vtx)

SQ_SP2_simd1_gpr_int_wr_en SQ→SP2 1 Write Enable for the GPRs of SP2 for Inputs
(interp/vtx)

SQ_SP3_simd1_gpr_int_wr_en SQ→SP3 1 Write Enable for the GPRs of SP3 for Inputs
(interp/vtx)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1249 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

47 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.13 SQ to SPx:
Name Direction Bits Description
SQ_SPx_instr_start SQ→SPx 1 Instruction start
SQ_SPx_simd0_instruct SQ→SPx 24 Transferred over 4 cycles

0: SRC A Negate Argument Modifier 0:0
 SRC A Abs Argument Modifier 1:1
 SRC A Swizzle 9:2
 Vector Dst 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
--
-
1: SRC B Negate Argument Modifier 0:0
 SRC B Abs Argument Modifier 1:1
 SRC B Swizzle 9:2
 Scalar Dst 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
--
-
2: SRC C Negate Argument Modifier 0:0
 SRC C Abs Argument Modifier 1:1
 SRC C Swizzle 9:2
 Unused 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
--
-
3: Vector Opcode 4:0
 Scalar Opcode 10:5
 Vector Clamp 11:11
 Scalar Clamp 12:12
 Vector Write Mask 16:13
 Scalar Write Mask 20:17
 Unused 23:21

SQ_SP0_simd0_pred_override SQ→SP0 (SP4) 4 0: Use per channel RGBA field (enables the per channel
logic).
1: Use GPR for PV or PS settings. LET the 11
(constant) go thru unchanged

SQ_SP1_simd0_pred_override SQ→SP1 (SP5) 4 0: Use per channel RGBA field (enables the per channel
logic).
1: Use GPR for PV or PS settings. LET the 11
(constant) go thru unchanged

SQ_SP2_simd0_pred_override SQ→SP2 (SP6) 4 0: Use per channel RGBA field (enables the per channel
logic).
1: Use GPR for PV or PS settings. LET the 11
(constant) go thru unchanged

SQ_SP3_simd0_pred_override SQ→SP3 (SP7) 4 0: Use per channel RGBA field (enables the per channel
logic).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1250 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

48 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1: Use GPR for PV or PS settings. LET the 11
(constant) go thru unchanged

SQ_SPx_simd0_stall SQ→SPx 1 Stall signal

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1251 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

49 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ_SPx_simd0_Waterfall SQ→SPx 2 Use the incoming constant instead of the registered one
for the next group of 16.
0 : Normal mode
1: Waterfall on SRCA
2: Waterfall on SRCB
3: Waterfall on SRCC

SQ_SPx_simd1_instruct SQ→SPx 24 Transferred over 4 cycles
0: SRC A Negate Argument Modifier 0:0
 SRC A Abs Argument Modifier 1:1
 SRC A Swizzle 9:2
 Vector Dst 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
--
-
1: SRC B Negate Argument Modifier 0:0
 SRC B Abs Argument Modifier 1:1
 SRC B Swizzle 9:2
 Scalar Dst 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
--
-
2: SRC C Negate Argument Modifier 0:0
 SRC C Abs Argument Modifier 1:1
 SRC C Swizzle 9:2
 Unused 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
--
-
3: Vector Opcode 4:0
 Scalar Opcode 10:5
 Vector Clamp 11:11
 Scalar Clamp 12:12
 Vector Write Mask 16:13
 Scalar Write Mask 20:17
 Unused 23:21

SQ_SP0_simd1_pred_override SQ→SP0 (SP4) 4 0: Use per channel RGBA field (enables the per channel
logic).
1: Use GPR for PV or PS settings. LET the 11
(constant) go thru unchanged

SQ_SP1_simd1_pred_override SQ→SP1 (SP5) 4 0: Use per channel RGBA field (enables the per channel
logic).
1: Use GPR for PV or PS settings. LET the 11
(constant) go thru unchanged

SQ_SP2_simd1_pred_override SQ→SP2 (SP6) 4 0: Use per channel RGBA field (enables the per channel
logic).
1: Use GPR for PV or PS settings. LET the 11
(constant) go thru unchanged

SQ_SP3_simd1_pred_override SQ→SP3 (SP7) 4 0: Use per channel RGBA field (enables the per channel

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1252 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

50 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

logic).
1: Use GPR for PV or PS settings. LET the 11
(constant) go thru unchanged

SQ_SPx_simd1_stall SQ→SPx 1 Stall signal
SQ_SPx_simd1_Waterfall SQ→SPx 2 Use the incoming constant instead of the registered one

for the next group of 16.
0 : Normal mode
1: Waterfall on SRCA
2: Waterfall on SRCB
3: Waterfall on SRCC

SQ_SPx_export_simd_sel SQ->SPx 1 Which SIMD engine is exporting.

23.2.14 SQ to SX: write mask interface (must be aligned with the SP data)
Name Direction Bits Description
SQ_SX0_write_mask SQ→SP0 8 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock. This is for the data coming of SP0 and SP2.

SQ_SX1_ write_mask SQ→SP1 8 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock. This is for the data coming of SP1 and SP3.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1253 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

51 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.15 SP to SQ: Constant address load/ Predicate Set/Kill set
Name Direction Bits Description
SP0_SQ_simd0_const_addr (SP4) SP0→SQ 36 Constant address load 18 bits from SP0 and 18 from

SP4.
SP0_SQ_simd0_valid SP0→SQ 1 Data valid
SP1_SQ_simd0_const_addr (SP5) SP1→SQ 36 Constant address load
SP1_SQ_simd0_valid SP1→SQ 1 Data valid
SP2_SQ_simd0_const_addr (SP6) SP2→SQ 36 Constant address load
SP2_SQ_simd0_valid SP2→SQ 1 Data valid
SP3_SQ_simd0_const_addr (SP7) SP3→SQ 36 Constant address load
SP3_SQ_simd0_valid SP3→SQ 1 Data valid
SP0_SQ_simd0_pred_kill_vector (SP4) SP0SQ 4 Data (predicates or kill/mask) 2 bits from SP0 and 2

bits from SP4
SP0_SQ_simd0_pred_kill_valid SP0->SQ 1 Data valid
SP0_SQ_simd0_pred_kill_type SP0->SQ 1 0: predicate vector

1: kill/mask vector
SP1_SQ_simd0_pred_kill_vector (SP5) SP1SQ 4 Data (predicates or kill/mask)
SP1_SQ_simd0_pred_kill_valid SP1->SQ 1 Data valid
SP1_SQ_simd0_pred_kill_type SP1->SQ 1 0: predicate vector

1: kill/mask vector
SP2_SQ_simd0_pred_kill_vector (SP6) SP2SQ 4 Data (predicates or kill/mask)
SP2_SQ_simd0_pred_kill_valid SP2->SQ 1 Data valid
SP2_SQ_simd0_pred_kill_type SP2->SQ 1 0: predicate vector

1: kill/mask vector
SP3_SQ_simd0_pred_kill_vector (SP7) SP3SQ 4 Data (predicates or kill/mask)
SP3_SQ_simd0_pred_kill_valid SP3->SQ 1 Data valid
SP3_SQ_simd0_pred_kill_type SP3->SQ 1 0: predicate vector

1: kill/mask vector
SP0_SQ_simd1_const_addr (SP4) SP0→SQ 36 Constant address load 18 bits from SP0 and 18 from

SP4.
SP0_SQ_simd1_valid SP0→SQ 1 Data valid
SP1_SQ_simd1_const_addr (SP5) SP1→SQ 36 Constant address load
SP1_SQ_simd1_valid SP1→SQ 1 Data valid
SP2_SQ_simd1_const_addr (SP6) SP2→SQ 36 Constant address load
SP2_SQ_simd1_valid SP2→SQ 1 Data valid
SP3_SQ_simd1_const_addr (SP7) SP3→SQ 36 Constant address load
SP3_SQ_simd1_valid SP3→SQ 1 Data valid
SP0_SQ_simd1_pred_kill_vector (SP4) SP0SQ 4 Data (predicates or kill/mask) 2 bits from SP0 and 2

bits from SP4
SP0_SQ_simd1_pred_kill_valid SP0->SQ 1 Data valid
SP0_SQ_simd1_pred_kill_type SP0->SQ 1 0: predicate vector

1: kill/mask vector
SP1_SQ_simd1_pred_kill_vector (SP5) SP1SQ 4 Data (predicates or kill/mask)
SP1_SQ_simd1_pred_kill_valid SP1->SQ 1 Data valid
SP1_SQ_simd1_pred_kill_type SP1->SQ 1 0: predicate vector

1: kill/mask vector
SP2_SQ_simd1_pred_kill_vector (SP6) SP2SQ 4 Data (predicates or kill/mask)
SP2_SQ_simd1_pred_kill_valid SP2->SQ 1 Data valid
SP2_SQ_simd1_pred_kill_type SP2->SQ 1 0: predicate vector

1: kill/mask vector
SP3_SQ_simd1_pred_kill_vector (SP7) SP3SQ 4 Data (predicates or kill/mask)
SP3_SQ_simd1_pred_kill_valid SP3->SQ 1 Data valid
SP3_SQ_simd1_pred_kill_type SP3->SQ 1 0: predicate vector

1: kill/mask vector

Because of the sharing of the bus none of the MOVA, PREDSET or KILL instructions may be coissued.

23.2.16 SQ to SPx: constant broadcast
Name Direction Bits Description

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1254 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

52 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ_SPx_simd0_const SQ→SPx 128 Constant broadcast
SQ_SPx_simd1_const SQ→SPx 128 Constant broadcast

23.2.17 SQ to CP: RBBM bus
Name Direction Bits Description
SQ_RBB_rs SQ→CP 1 Read Strobe
SQ_RBB_rd SQ→CP 32 Read Data
SQ_RBBM_nrtrtr SQ→CP 1 Optional
SQ_RBBM_rtr SQ→CP 1 Real-Time (Optional)

23.2.18 CP to SQ: RBBM bus
Name Direction Bits Description
rbbm_we CP→SQ 1 Write Enable
rbbm_a CP→SQ 15 Address -- Upper Extent is TBD (16:2)
rbbm_wd CP→SQ 32 Data
rbbm_be CP→SQ 4 Byte Enables
rbbm_re CP→SQ 1 Read Enable
rbb_rs0 CP→SQ 1 Read Return Strobe 0
rbb_rs1 CP→SQ 1 Read Return Strobe 1
rbb_rd0 CP→SQ 32 Read Data 0
rbb_rd1 CP→SQ 32 Read Data 0
RBBM_SQ_soft_reset CP→SQ 1 Soft Reset

23.2.19 SQ to CP: State report
Name Direction Bits Description
SQ_CP_vs_event SQ→CP 1 Vertex Shader Event
SQ_CP_vs_eventid SQ→CP 5 Vertex Shader Event ID
SQ_CP_ps_event SQ→CP 1 Pixel Shader Event
SQ_CP_ps_eventid SQ→CP 5 Pixel Shader Event ID

23.3 Example of control flow program execution
We now provide some examples of execution to better illustrate the new design.

Given the program:

Alu 0
Alu 1
Tex 0
Tex 1
Alu 3 Serial
Alu 4
Tex 2
Alu 5
Alu 6 Serial
Tex 3
Alu 7
Alloc Position 1 buffer
Alu 8 Export
Tex 4
Alloc Parameter 3 buffers
Alu 9 Export 0
Tex 5
Alu 10 Serial Export 2
Alu 11 Export 1 End

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1255 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

53 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Would be converted into the following CF instructions:

Execute 0 Alu 0 Alu 0 Tex 0 Tex 1 Alu 0 Alu 0 Tex 0 Alu 1 Alu 0 Tex
Execute 0 Alu
Alloc Position 1
Execute 0 Alu 0 Tex
Alloc Param 3
Execute_end 0 Alu 0 Tex 1 Alu 0 Alu

And the execution of this program would look like this:

Put thread in Vertex RS:

Control Flow Instruction Pointer (12 bits), (CFP)
Execution Count Marker (3 or 4 bits), (ECM)
Loop Iterators (4x9 bits), (LI)
Call return pointers (4x12 bits), (CRP)
Predicate Bits(4x64 bits), (PB)
Export ID (1 bit), (EXID)
GPR Base Ptr (8 bits), (GPR)
Export Base Ptr (7 bits), (EB)
Context Ptr (3 bits).(CPTR)
LOD correction bits (16x6 bits) (LOD)

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 0 0 0 0 0 0 0 0 0

Valid Thread (VALID)
Texture/ALU engine needed (TYPE)
Texture Reads are outstanding (PENDING)
Waiting on Texture Read to Complete (SERIAL)
Allocation Wait (2 bits) (ALLOC)

00 – No allocation needed
01 – Position export allocation needed (ordered export)
10 – Parameter or pixel export needed (ordered export)
11 – pass thru (out of order export)

Allocation Size (4 bits) (SIZE)
Position Allocated (POS_ALLOC)
First thread of a new context (FIRST)
Last (1 bit), (LAST)

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 0 0 0 0 0 1 0

Then the thread is picked up for the execution of the first control flow instruction:

Execute 0 Alu 0 Alu 0 Tex 0 Tex 1 Alu 0 Alu 0 Tex 0 Alu 1 Alu 0 Tex

It executes the first two ALU instructions and goes back to the RS for a resource request change. Here is the
state returned to the RS:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 2 0 0 0 0 0 0 0 0

Status Bits

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1256 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

54 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Then when the texture pipe frees up, the arbiter picks up the thread to issue the texture reads. The thread comes

back in this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 4 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 0 1 0

Because of the serial bit the arbiter must wait for the texture to return and clear the PENDING bit before it can

pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returns it in
this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 6 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Again the TP frees up, the arbiter picks up the thread and executes. It returns in this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 7 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 0 0 0 1 0

Now, even if the texture has not returned we can still pick up the thread for ALU execution because the serial bit

is not set. The thread will however come back to the RS for the second ALU instruction because it has the serial bit
set.

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 8 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 0 1 0

As soon as the TP clears the pending bit the thread is picked up and returns:

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1257 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

55 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 9 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Picked up by the TP and returns:
Execute 0 Alu

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
1 0 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 0 0 0 1 0

Picked up by the ALU and returns (lets say the TP has not returned yet):
Alloc Position 1

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
2 0 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 01 1 0 1 0

If the SX has the place for the export, the SQ is going to allocate and pick up the thread for execution. It returns to

the RS in this state:

Execute 0 Alu 0 Tex

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
3 1 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 1 0 0 0 1 1 0

Now, since the TP has not returned yet, we must wait for it to return because we cannot issue multiple texture

requests. The TP returns, clears the PENDING bit and we proceed:

Alloc Param 3

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1258 of 1898

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

56 of 56

Exhibit 2038.doc �� 81670 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
4 0 0 0 0 1 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 10 3 1 1 0

Once again the SQ makes sure the SX has enough room in the Parameter cache before it can pick up this

thread.

Execute_end 0 Alu 0 Tex 1 Alu 0 Alu

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
5 1 0 0 0 1 0 100 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 1 0 0 0 1 1 0

This executes on the TP and then returns:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
5 2 0 0 0 1 0 100 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 1 1 1

Waits for the TP to return because of the textures reads are pending (and SERIAL in this case). Then executes
and does not return to the RS because the LAST bit is set. This is the end of this thread and before dropping it on the
floor, the SQ notifies the SX of export completion.

24. Open issues
Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1259 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Author: Laurent Lefebvre

Issue To:

Copy No:

R400 Sequencer Specification

SQ

Version 2.11

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: C:\perforce\r400\doc_lib\design\blocks\sq\R400_Sequencer.doc
Current Intranet Search Title: R400 Sequencer Specification

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

ATI 2039
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1260 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

2 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Table Of Contents

1. OVERVIEW .. 6
1.1 Top Level Block Diagram ... 8
1.2 Data Flow graph (SP) ... 9
1.3 Control Graph ... 10
2. INTERPOLATED DATA BUS .. 10
3. INSTRUCTION STORE ... 13
4. SEQUENCER INSTRUCTIONS ... 13
5. CONSTANT STORES .. 13
5.1 Memory organizations .. 13
5.2 Management of the Control Flow Constants .. 14
5.3 Management of the re-mapping tables ... 14

5.3.1 R400 Constant management ... 14
5.3.2 Dirty bits ... 14
5.3.3 Free List Block .. 14
5.3.4 De-allocate Block ... 15
5.3.5 Operation of Incremental model ... 15

5.4 Constant Store Indexing ... 16
5.5 Real Time Commands .. 16
5.6 Constant Waterfalling ... 16
6. LOOPING AND BRANCHES ... 17
6.1 The controlling state. .. 17
6.2 The Control Flow Program ... 17

6.2.1 Control flow instructions table... 18
6.3 Implementation ... 21
6.4 Data dependant predicate instructions ... 23
6.5 HW Detection of PV,PS .. 24
6.6 Register file indexing .. 24
6.7 Debugging the Shaders .. 24

6.7.1 Method 1: Debugging registers .. 24
6.7.2 Method 2: Exporting the values in the GPRs .. 25

7. PIXEL KILL MASK .. 25
8. REGISTER FILE ALLOCATION .. 25
9. FETCH ARBITRATION .. 26
10. VC ARBITRATION ... 26
11. ALU ARBITRATION .. 27
12. HANDLING STALLS ... 27
12.1 SP stall conditions ... 27

12.1.1 PS Stalls .. 27
12.1.2 PV Stalls .. 27

13. CONTENT OF THE RESERVATION STATION FIFOS ... 27
14. THE OUTPUT FILE .. 27
15. IJ FORMAT .. 27
15.1 Interpolation of constant attributes .. 28
16. STAGING REGISTERS ... 28
17. THE PARAMETER CACHE ... 29

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1261 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

17.1 Export restrictions .. 30
17.1.1 Pixel exports: ... 30
17.1.2 Vertex exports: .. 30
17.1.3 Pass thru exports: ... 30

17.2 Arbitration restrictions .. 31
18. EXPORT TYPES .. 31
18.1 Vertex Shading .. 31
18.2 Pixel Shading .. 32
19. SPECIAL INTERPOLATION MODES ... 32
19.1 Real time commands ... 32
19.2 Sprites/ XY screen coordinates/ FB information .. 32
19.3 Auto generated counters ... 33

19.3.1 Vertex shaders .. 33
19.3.2 Pixel shaders ... 34

20. STATE MANAGEMENT .. 34
20.1 Parameter cache synchronization ... 34
21. XY ADDRESS IMPORTS ... 34
21.1 Vertex indexes imports .. 34
22. REGISTERS .. 35
23. INTERFACES .. 35
23.1 External Interfaces .. 35
23.2 SC to SP Interfaces ... 35

23.2.1 SC_SP# .. 35
23.2.2 SC_SQ .. 36
23.2.3 SQ to SX(SP): Interpolator bus ... 38
23.2.4 SQ to SP: Staging Register Data .. 38
23.2.5 VGT to SQ : Vertex interface ... 38
23.2.6 SQ to SX: Control bus ... 42
23.2.7 SX to SQ : Output file control .. 42
23.2.8 SQ to TP: Control bus ... 43
23.2.9 SQ to VC: Control bus ... 43
23.2.10 TP to SQ: Texture stall .. 44
23.2.11 VC to SQ: Vertex Cache stall .. 44
23.2.12 SQ to SP: GPR and auto counter .. 44
23.2.13 SQ to SPx: .. 46
23.2.14 SQ to SX: write mask interface (must be aligned with the SP data) 48
23.2.15 SP to SQ: Constant address load/ Predicate Set/Kill set ... 49
23.2.16 SQ to SPx: constant broadcast ... 49
23.2.17 SQ to CP: RBBM bus .. 50
23.2.18 CP to SQ: RBBM bus .. 50
23.2.19 SQ to CP: State report .. 50

23.3 Example of control flow program execution ... 50
24. OPEN ISSUES ... 54

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1262 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

4 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

 First draft.

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

 Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

 Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

 Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001

 Added timing diagrams (Vic)

Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001

 Changed the spec to reflect the new R400
architecture. Added interfaces.

Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

 Added constant store management, instruction
store management, control flow management and
data dependant predication.

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001

 Changed the control flow method to be more
flexible. Also updated the external interfaces.

Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

 Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001

 Refined interfaces to RB. Added state registers.

Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

 Added SEQ→SP0 interfaces. Changed delta
precision. Changed VGT→SP0 interface. Debug
Methods added.

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001

 Interfaces greatly refined. Cleaned up the spec.

Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001

 Added the different interpolation modes.

Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

 Added the auto incrementing counters. Changed
the VGT→SQ interface. Added content on constant
management. Updated GPRs.

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

 Removed from the spec all interfaces that weren’t
directly tied to the SQ. Added explanations on
constant management. Added PA→SQ
synchronization fields and explanation.

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

 Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002

 Added Real Time parameter control in the SX
interface. Updated the control flow section.

Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

 New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002

 Rearangement of the CF instruction bits in order to
ensure byte alignement.

Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002

 Updated the interfaces and added a section on
exporting rules.

Rev 1.11 (Laurent Lefebvre)
Date : April 19, 2002

 Added CP state report interface. Last version of the
spec with the old control flow scheme

Rev 2.0 (Laurent Lefebvre)
Date : April 19, 2002

 New control flow scheme

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1263 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Rev 2.01 (Laurent Lefebvre)
Date : May 2, 2002

 Changed slightly the control flow instructions to
allow force jumps and calls.

Rev 2.02 (Laurent Lefebvre)
Date : May 13, 2002

 Updated the Opcodes. Added type field to the
constant/pred interface. Added Last field to the
SQ→SP instruction load interface.

Rev 2.03 (Laurent Lefebvre)
Date : July 15, 2002

 SP interface updated to include predication
optimizations. Added the predicate no stall
instructions,

Rev 2.04 (Laurent Lefebvre)
Date :August 2, 2002

 Documented the new parameter generation scheme
for XY coordinates points and lines STs.

Rev 2.05 (Laurent Lefebvre)
Date : September 10, 2002

 Some interface changes and an architectural
change to the auto-counter scheme.

Rev 2.06 (Laurent Lefebvre)
Date : October 11, 2002

 Widened the event interface to 5 bits. Some other
little typos corrected.

Rev 2.07 (Laurent Lefebvre)
Date : October 14, 2002

 Loops, jumps and calls are now using a 13 bit
address which allows to jump and call and loop
around any control flow addresses (does not
requires to be even anymore).

Rev 2.08 (Laurent Lefebvre)
Date : October 16, 2002

 Clarification updates after discussion with Clay.

Rev 2.09 (Laurent Lefebvre)
Date : January 7, 2003

 Corrected the SQ→SP staging register interface.

Rev 2.10 (Laurent Lefebvre)
Date : April 8, 2003

 Adding R500 modifications

Rev 2.11 (Laurent Lefebvre)
Date : May 1, 2003

 Adding SQ->SP updated interfaces

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1264 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

6 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1. Overview
The sequencer chooses four ALU threads (two from each bank), a vertex cache and a fetch thread to execute, and
executes all of the instructions in a block before looking for a new clause of the same type. Two ALU threads are
executed interleaved to hide the ALU latency. The arbitrator will give priority to older threads. There are two separate
reservation stations, one for pixel vectors and one for vertices vectors. This way a pixel can pass a vertex and a
vertex can pass a pixel.

There are also 2 separate ALU banks from which the SQ picks the ALU threads to be executed in parallel.

To support the shader pipe the sequencer also contains the shader instruction store, constant store, control flow
constants and texture state. The height shader pipes also execute the same two instructions thus there is only one
sequencer for the whole chip but it issues 2 instructions every four clocks.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1265 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ

SC

ALU BANK 1ALU BANK 0CSTOREFETCH STATE

TP

INST STORE

IJ CONTROL

IJ
CONTROL

CST
ADDR

INST
 ADDR

CST IDX
PREDICATES

RBRBRBRB

COVERAGE/
QUAD

ADDRESSES

ALU INST

TSTATE
ADDR

WRT ADD
+ PHASE

TX WRITE DATA

INST

INTER INTER

IJ CROSSBAR

2 QUADS
IJs

IJ IJ IJ

PC/OB PC/OBPC/OBPC/OB

PC READ
 POINTERS

PARAM
DATA

R/W ADDR

Vertex
indexes

CONTROL

STALL

IJ

VTX
POSITION
RETURN

VERTEX
CONTROL

Stipple
Tex

Coords

INST
LOAD

CP

CONSTANT
LOAD

CPConstant Load

TX ADDR

PC Write
Address

TEX INST

CF
CONSTANTS

Register
Mapped

CF Read

VC

VC INST

Figure 1: General Sequencer overview

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1266 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

8 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.1 Top Level Block Diagram

ALU Texture

VTX RS PIX RS

Exec Arbiter

Input Arbiter

Figure 2: Reservation stations and arbiters

Under this new scheme, the sequencer (SQ) will only use one global state management machine per vector type
(pixel, vertex) that we call the reservation station (RS).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1267 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.2 Data Flow graph (SP)

SP1

Sequencer

R500
 CONFIGURATION

SPI 0 SPI 1

SP0

Interp0 Interpolator1 Interpolator2 Interpolator3

SP7SP6SP5SP4SP3SP2

LHQ0 RHQ0 LHQ1 RHQ1 LHQ2 RHQ2 LHQ3 RHQ3

VSIR VSIR

SIMD0
Pipe0

SIMD1
Pipe0

SIMD0
Pipe1

SIMD1
Pipe1

TC RTN 64 bits
each pipe (128 total)

VC RTN 64 bits
each pipe (128 total)

TCRQ 96 bits
 each pipe (192 total)

VC RQ 32 bits
 each pipe (64 total)

Shared Export
32 bits

Shared Export
32 bits

Interp
128 bits

Interp
128 bits

SQ SIMD0 BROADCAST
CNTR

SQ SIMD1 BROADCAST
CNTR

Figure 3: The shader Pipe

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1268 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

10 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1.3 Control Graph

SEQ

FETCH SP BANK 0/1

ause # + Rdy

WrAddr

CMD

CST

Phase

WrAddr

RdAddr

CMD CST1CST2 A B C WrVec

WrAddrWrScal

SX

WrAddrIS CST

CST IDX

VC

WrAddr

CST

CMD

WrAddr

Clause # + Rdy
IS

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1269 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x100 bits)

IJs buffer (ping-pong buffer)
(25 bits * 8 (IJ) * 4 * 4 * 4 (quadruple-buffered)

12800 bits

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

100

To RB

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2

768 bits
32x24

FIX-FLOAT + EXPANSiON

Figure 5: Interpolation buffers

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1270 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

12 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SP
0

SP
1

SP
2

SP
3

WRITES
T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

A0

A1

A2

B1 C3

C4

C5

D1

D2

B0

C0

C1

C2 D0

E0

E1

V
0-3

V
4-7

V
8-
11

V
12-
15

V
16-
19

V
20-
23

V
24-
27

V
28-
31

V
32-
35

V
36-
39

V
40-
43

V
44-
47

V
48-
51

V
52-
55

V
56-
59

V
60-
63

P1 P2

T20 T21 T22 T23

VTX

T0 T1 T2 T3

XY

XY
0-3

XY
4-7

XY
8-
11

XY
12-
15

XY
16-
19

XY
20-
23

XY
24-
27

XY
28-
31

XY
32-
35

XY
36-
39

XY
40-
43

XY
44-
47

XY
48-
51

XY
52-
55

XY
56-
59

XY
60-
63

READS

SP
0

SP
1

SP
2

SP
3

A0

A1

A2

B1

B0

C3

C0

C1

C2

C4

C5

D0

D1

D2

E0

E1

A0

A1

A2

XY
A0
XY
A1
XY
A2

B1

B0

XY
B1

XY
B0

C3

C0

C1

C2

XY
C3
XY
C0
XY
C1
XY
C2

C4

C5

XY
C4
XY
C5

D0

D1

D2

XY
D1
XY
D2

XY
D0

E0

E1
XY
E1

XY
E0

Figure 6: Interpolation timing diagram

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1271 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store
There is going to be two instruction stores for the whole chip. They will each contain 4096 instructions of 96 bits each.

They will be 1 port memories; Ports are allocated in this fashion (but not necessarily in this order):

ALU 0 SIMD0 CF
ALU 0 SIMD0
ALU 1 SIMD0 CF
ALU 1 SIMD0
Fetch CF
Fetch
VC CF
VC

ALU 0 SIMD1 CF
ALU 0 SIMD1
ALU 1 SIMD1 CF
ALU 1 SIMD1
Fetch CF
Fetch
VC CF
VC

Fetch and VC can steal one another’s ports with stated resource having priority over its port (this is not really
necessary for the R500 but will be for any derivative part because there will only be one instruction store).

Writes are opportunistic.

The instruction store is loaded by the CP thru the register mapped registers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4. Sequencer Instructions
All control flow instructions instructions are handled by the sequencer only. The ALUs will perform NOPs during this
time (MOV PV,PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

There will be two of those memories and two of each remapping read memories.

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1272 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

14 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

5.2 Management of the Control Flow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied whenever there is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn’t write to CF the state is going to use the previous CF constants.

5.3 Management of the re-mapping tables

5.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.3 Free List Block
A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.
Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1273 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

5.3.4 De-allocate Block
This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any number of blocks in one clock.

5.3.5 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1274 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

16 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock).

MOVA R1.X,R2.X // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
ADD R3,R4,C0[R2.X] // Uses the state from the sequencer to add R4 to C0[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

The address register is a signed integer, which ranges from –256 to 255.

The address register is not kept across clause boundaries. As such, it must be refreshed after any Serialize (or yield),
allocate instruction or resource change. Failure to refresh the address register will result in unpredictable behavior.

5.5 Real Time Commands
The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
works is the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zones is defined by the TSTATE_EO_RT control register.

5.6 Constant Waterfalling
In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenever a state is freed.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1275 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

CONST_EO_RT

RT SECTON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table)

Figure 7: The Constant store

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[255:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
We'd like to be able to code up a program of the form:

1: Loop
2: Exec TexFetch

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1276 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

18 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

3: TexFetch
4: ALU
5: ALU
6: TexFetch
7: End Loop
8: ALU Export

But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3:. Without clausing,
these dependencies need to be expressed in the Control Flow instructions. Additionally, without separate 'texture
clauses' and 'ALU clauses' we need to know which instructions to dispatch to the Texture Unit and which to the ALU
unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of information for each (non-control flow) instruction:
 a) ALU or Texture
 b) Serialize Execution

(b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched. Given the allocation of reserved bits, this would mean that the count of an 'Exec' instruction
would be limited to about 8 (non-control-flow) instructions. If more than this were needed, a second Exec (with the
same conditions) would be issued.

Another function that relies upon 'clauses' is allocation and order of execution. We need to assure that pixels and
vertices are exported in the correct order (even if not all execution is ordered) and that space in the output buffers are
allocated in order. Additionally data can't be exported until space is allocated. A new control flow instruction:

 Alloc <buffer select -- position,parameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual
allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already
completed. The implementation would also assure that execution of instruction(s) following the serialization due to the
Alloc will occur in order -- at least until the next serialization or change from ALU to Texture. In most cases this will
allow the exports to occur without any further synchronization. Only 'final' allocations or position allocations are
guaranteed to be ordered. Because strict ordering is required for pixels, parameters and positions, this implies only
a single alloc for these structures. Vertex exports to memory do not require ordering during allocation and so multiple
'allocs' may be done.

6.2.1 Control flow instructions table
Here is the revised control flow instruction set.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

NOP
47 … 44 43 42 … 0

0000 Addressing RESERVED

This is a regular NOP.

Execute
47 … 44 43 40 … 34 33 … 28 27 …16 15…12 11 … 0

0001 Addressing RESERV
ED

Vertex
Cache

Instructions type + serialize (6
instructions)

Count Exec Address

Execute_End

47 … 44 43 40 … 34 33 … 28 27 …16 15…12 11 … 0
0010 Addressing RESERV

ED
Vertex
Cache

Instructions type + serialize (6
instructions)

Count Exec Address

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1277 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Execute up to 6 instructions at the specified address in the instruction memory. The Instruction type field tells the
sequencer the type of the instruction (LSB) (1 = Texture, 0 = ALU and whether to serialize or not the execution (MSB)
(1 = Serialize, 0 = Non-Serialized). If the corresponding VC bit is set then VC is used instead of TP/ALU. If
Execute_End this is the last execution block of the shader program.

Vertex Cache Serialize Instruction Type (Resource)
 0 0 0 : ALU instruction, not yielding

0 0 1 : Texture instruction, not yielding
0 1 0 : ALU instruction, yielding
0 1 1 : Texture instruction, yielding
1 0 0 : Vertex cache instruction, not yielding
1 0 1 : Vertex cache instruction, not yielding
1 1 0 : Vertex cache instruction, yielding
1 1 1 : Vertex cache instruction, yielding

Conditional_Execute

47 … 44 43 42 41 … 34 33…28 27…16 15 …12 11 … 0
0011 Addressing Condition Boolean

address
Vertex Cache Instructions

type +
serialize (6
instructions)

Count Exec Address

Conditional_Execute_End

47 … 44 43 42 41 … 34 33…28 27…16 15 …12 11 … 0
0100 Addressing Condition Boolean

address
Vertex Cache Instructions

type +
serialize (6
instructions)

Count Exec Address

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 9 instructions). If the condition is not met, we go on to the next control flow instruction. If
Conditional_Execute_End and the condition is met, this is the last execution block of the shader program.

Conditional_Execute_Predicates
47 … 44 43 42 41 … 36 35 … 34 33…28 27…16 15…12 11 … 0

0101 Addressing Condition RESERVED Predicate
vector

Vertex
Cache

Instructions
type +

serialize (6
instructions)

Count Exec Address

Conditional_Execute_Predicates_End

47 … 44 43 42 41 … 36 35 … 34 33…28 27…16 15…12 11 … 0
0110 Addressing Condition RESERVED Predicate

vector
Vertex
Cache

Instructions
type +

serialize (6
instructions)

Count Exec Address

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren’t valid. If the
condition is not met, we go on to the next control flow instruction. If Conditional_Execute_Predicates_End and the
condition is met, this is the last execution block of the shader program.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1278 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

20 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Conditional_Execute_Predicates_No_Stall
47 … 44 43 42 41 … 36 35 … 34 33…28 27…16 15…12 11 … 0

1101 Addressing Condition RESERVED Predicate
vector

Vertex
Cache

Instructions
type +

serialize (6
instructions)

Count Exec Address

Conditional_Execute_Predicates_No_Stall_End

47 … 44 43 42 41 … 36 35 … 34 33…28 27…16 15…12 11 … 0
1110 Addressing Condition RESERVED Predicate

vector
Vertex
Cache

Instructions
type +

serialize (6
instructions)

Count Exec Address

Same as Conditionnal_Execute_Predicates but the SQ is not going to wait for the predicate vector to be updated.
You can only set this in the compiler if you know that the predicate set is only a refinement of the current one (like a
nested if) because the optimization would still work.

Loop_Start
47 … 44 43 42 … 21 20 … 16 15…13 12 … 0

0111 Addressing RESERVED loop ID RESERVED Jump address

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Loop_End
47 …44 43 42 41… 36 35…34 33… 22 21 20 … 16 15…13 12 … 0

1000 Addressing Cond RESERVED Predicate
Vector

RESERVED Pred
break

loop ID RESERVED start
address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop. If predicate break != 0, then compares predicate vector n
(specified by predicate Vector) to condition. If all bits meet condition then break the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal_Call
47 … 44 43 42 41 … 34 33 … 14 13 12 … 0

1001 Addressing Condition Boolean address RESERVED Force Call Jump address

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack. If
force call is set the condition is ignored and the call is made always.

Return
47 … 44 43 42 … 0

1010 Addressing RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump
47 … 44 43 42 41… 34 33 32 … 14 13 12 … 0

1011 Addressing Condition Boolean
address

FW only RESERVED Force Jump Jump address

If force jump is set the condition is ignored and the jump is made always. If FW only is set then only forward jumps
are allowed.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1279 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Allocate

47 … 44 43 42…41 40 39 … 3 2…0
1100 Debug Buffer Select No Serial RESERVED Size

Buffer Select takes a value of the following:
01 – position export (ordered export)
10 – parameter cache or pixel export (ordered export)
11 – pass thru (out of order exports).

Size field is only used to reserve space in the export buffer for pass thru exports. Valid values are 1 (1 line) thru 5 (5
lines). It should be determined by the compiler/assembler by taking max index used +1.

If debug is set this is a debug alloc (ignore if debug DB_ON register is set to off).

By default the serial bit is set on an alloc. If the No Serial bit is asserted then the serial bit won’t be set in the SQ.

6.2.2 Alloc Statements
Alloc statements are control flow instructions that allocate resources that are required for executable export
instructions. An alloc statement can be either a normal yield point, or a partial yield. At a partial yield - hardware
releases the gpu so all state (mova, grad etc) is lost but the thread can resume before all pending fetches have
completed.

There are three types of allocs:

alloc-position - proceeds the export of position from a vertex shader. A vertex shader must include one alloc of
position. A position alloc cannot be used in a pixel shader. all exports for position must execute between the alloc-
position and the next yield point or resource change. There is a small performance advantage to placing the alloc-
position near the top of the vertex shader. However we don't think this is worth adding an
extra instruction or register to the shader.

alloc-interp/color - proceeds interpolator exports in a vertex shader or the color exports in a pixel shader. There can
be only one alloc interp/color per shader. The color alloc in a pixel shader must be after any alloc-mem-exports. The
actual exports can occur anywhere between the alloc-interp/color and the end of the program. There is a small
performance advantage to placing the alloc-interp/color near the bottom of the shader. However we don't think this is
worth adding an extra instruction or register to the shader. There is a big performance advantage of having no
fetches of any kind after the alloc-interp/color.

alloc-mem-export - proceeds any memory-address, memory-data exports. There can be multiple alloc-mem-export
statements in either kind of shader. All exports for mem-exports must execute between the corresponding alloc-
mem-export and the next yield point or resource change.

6.3 Implementation

The envisioned implementation has a buffer that maintains the state of each thread. A thread lives in a given
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the order that they
enter. Actually two buffers are maintained -- one for Vertices and one for Pixels. The intended implementation
would allow for:

16 entries for vertices
48 entries for pixels.

From each buffer, arbitration logic attempts to select 1 thread for the texture unit and 2 (interleaved) thread for the
ALU unit. Once a thread is selected it is read out of the buffer, marked as invalid, and submitted to appropriate
execution unit. It is returned to the buffer (at the same place) with its status updated once all possible sequential

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1280 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

22 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

instructions have been executed. A switch from ALU to TEX or visa-versa or a Serialize_Execution modifier forces
the thread to be returned to the buffer.

Each entry in the buffer will be stored across two physical pieces of memory - most bits will be stored in a 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed 'state'. The bits kept in the multi-read ported device will be termed 'status'.

'State Bits' needed include:

1. Control Flow Instruction Pointer (13 bits),
2. Execution Count Marker 4 bits),
3. Loop Iterators (4x9 bits),
4. Loop Counters (4x9 bits),
5. Call return pointers (4x13 bits),
6. Predicate Bits (64 bits),
7. Export ID (4 bits),
8. Parameter Cache base Ptr (7 bits),
9. GPR Base Ptr (8 bits),
10. Context Ptr (3 bits).
11. LOD corrections (6x16 bits)
12. Valid bits (64 bits)
13. RT (1 bit) Signifies that this thread is a Real Time thread. This bit must be sent to the Constant store state

machine when reading it.

Absent from this list are 'Index' pointers. These are costly enough that I'm presuming that they are instead stored in
the GPRs. The first seven fields above (Control Flow Ptr, Execution Count, Loop Counts, call return ptrs, Predicate
bits, PC base ptr and export ID) are updated every time the thread is returned to the buffer based on how much
progress has been mode on thread execution. GPR Base Ptr, Context Ptr and LOD corrections are unchanged
throughout execution of the thread.

'Status Bits' needed include:

 Valid Thread
 ALU engine needed
 Texture engine needed
 VC engine needed
 Texture Reads are outstanding
 VC Reads are outstanding
 Alu bank (0/1)
 Waiting on Texture Read to Complete
 Allocation Wait (2 bits)
 00 – No allocation needed
 01 – Position export allocation needed (ordered export)
 10 – Parameter or pixel export needed (ordered export)
 11 – pass thru (out of order export)
 Allocation Size (4 bits)
 Position Allocated
 Mem/Color Allocated
 First thread of a new context
 Event thread (NULL thread that needs to trickle down the pipe)
 Last (1 bit)
 Pulse SX (1 bit)

All of the above fields from all of the entries go into the arbitration circuitry. The arbitration circuitry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -- one for
pixels and one for vertices. A final selection is then done between the two. But the rest of this implementation
summary only considers the 'first' level selection which is similar for both pixels and vertices.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1281 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Texture arbitration requires no allocation or ordering so it is purely based on selecting the 'oldest' thread that requires
the Texture Engine.

ALU arbitration is a little more complicated. First, only threads where either of Texture_Reads_outstanding or
Waiting_on_Texture_Read_to_Complete are '0' are considered. Then if Allocation_Wait is active, these threads are
further filtered based on whether space is available. If the allocation is position allocation, then the thread is only
considered if all 'older' threads have already done their position allocation (position allocated bits set). If the
allocation is parameter or pixel allocation, then the thread is only considered if it is the oldest thread. Also a thread is
not considered if it is a parameter or pixel or position allocation, has its First_thread_of_a_new_context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the 'oldest' of the threads that pass through the above filters is selected. If the thread needed to allocate, then
at this time the allocation is done, based on Allocation_Size. If a thread has its “last” bit set, then it is also removed
from the buffer, never to return.

If I now redefine 'clauses' to mean 'how many times the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine', then the minimum number of clauses needed is 2 -- one to perform
the allocation for exports (execution automatically halts after an 'Alloc' instruction) (but doesn't performs the actual
allocation) and one for the actual ALU/export instructions. As the 'Alloc' instruction could be part of a texture clause
(presumably the final instruction in such a clause), a thread could still execute in this minimal number of 2 clauses,
even if it involved texture fetching.

The Texture_Reads_Outstanding and VC_reads_Outstanding bits tell the SQ that a texture or VC read is
outstanding. In this case, if we encounter a serial bit we need to wait until both resources are free (pending = 0) in
order to proceed.

6.4 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_PUSH - similar to SETE except that the result is 'exported' to the sequencer.
PRED_SETNE_PUSH - similar to SETNE except that the result is 'exported' to the sequencer.
PRED_SETGT_PUSH - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_PUSH - similar to SETGTE except that the result is 'exported' to the sequencer

For the scalar operations only we will also support the two following instructions:
 PRED_SETE
 PRED_SETNE

PRED_SETGT
PRED_SET_INV

 PRED_SET_POP
 PRED_SET_CLR
 PRED_SET_RESTORE

Details about actual implementation of these opcodes are in the shader pipe architectural spec.

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 1 set of 64 bits predicate vectors (in fact 2 sets because we interleave two programs but only 1 will be
exposed) and use it to control the write masking. This predicate is maintained across clause boundaries.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

 P0_ ADD_# R0,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the P0 or P1 without precharging the
sequencer with a PRED instruction is undefined.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1282 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

24 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

6.5 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert detect wich channels to read from the GPRs and which ones to read from the PV/PS.

6.6 Register file indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
 0 0 'absolute register'
 0 1 'relative register'
 1 0 'previous vector'
 1 1 'previous scalar'

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

The sequencer is going to keep a loop index computed as such:

 Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_iterator = loop_count. Loop_step is a signed value [-128…127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
 - jump errors
 relative jump address > size of the control flow program
 - call stack
 call with stack full

return with stack empty

With all the other errors, program can continue to run, potentially to worst-case limits.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the 0th
register (or constant) for errors.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1283 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs
1) The sequencer will have a debug active, count register and an address register for this mode.

Under the normal mode execution follows the normal course.

Under the debug mode it is assumed that the program is always exporting n debug vectors and that all other exports
to the SX block (but for position) will be turned off (changed into NOPs) by the sequencer (even if they occur before
the address stated by the ADDR debug register).

7. Pixel Kill Mask
A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE

 MASK_SETGT
 MASK_SETGTE

8. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZE for pixels.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1284 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

26 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Above is an example of how the algorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

9. Fetch Arbitration
The fetch arbitration logic chooses one of the n potentially pending fetch clauses to be executed. The choice is made
by looking at the Vs and Ps reservation stations and picking the first one ready to execute. Once chosen, the clause
state machine will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two fetches of the
same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

10. VC Arbitration
The VC arbitration logic chooses one of the n potentially pending VC clauses to be executed. The choice is made by
looking at the Vs and Ps reservation stations and picking the first one ready to execute. Once chosen, the clause
state machine will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two fetches of the
same clause.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1285 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The VC pipe will be
able to handle up to X(?) in flight VC fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration
ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
n potentially pending ALU clauses to be executed. The choice is made by looking at the Vs and Ps reservation
stations and picking the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for
the odd clocks. For example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and
Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0…
 Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering an exporting clause. The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

12.1 SP stall conditions

12.1.1 PS Stalls
None.

12.1.2 PV Stalls
None.

13. Content of the reservation station FIFOs
The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. IJ Format
The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). All pixel’s parameters are always interpolated at full 20x24 mantissa precision.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1286 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

28 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

)(*)3()(*)3(3

)(*)2()(*)2(2

)(*)1()(*)1(1

)(*)0()(*)0(0

ACJABIAP

ACJABIAP

ACJABIAP

ACJABIAP

Multiplies (Full Precision): 8
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF P’s IJ : Mantissa 20 Exp 4 for I + Sign
 Mantissa 20 Exp 4 for J + Sign

Total number of bits : 20*8 + 4*8 + 4*2 = 200.

All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the number is
normalized if not, then the number is un-normalized. The maximum range for the IJs (Full precision) is +/- 1024.

15.1 Interpolation of constant attributes
Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the terms are the same.

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 || 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencer will re-arrange them in this fashion:

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 || 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 || 8 9 10 11 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the SQ is responsible to insert padding to
account for the missing pipe. For example, if SP1 is broken, vertices 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will
not be sent by the VGT to the SQ AND the SQ is responsible to “jump” over these vertices in order for no valid
vertices to be sent to an invalid SP.

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 9. The area of the fixed-to-float converters and the VSISRs for this method is roughly estimated as 0.759sqmm
using the R300 process. The gate count estimate is shown in Figure 8.

P0

P2

P1

P3

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1287 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Basis for 8-deep Latch Memory (from R300)

8x24-bit 11631 60.57813 per bit

Area of 96x8-deep Latch Memory 46524

Area of 24-bit Fix-to-float Converter 4712per converter

Method 1 Block Quantity Area

 F2F 3 14136

 8x96 Latch 16 744384

 758520

Figure 8:Area Estimate for VGT to Shader Interface

SHADER PIPE

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

24-BIT
FIX2FLOAT

2
4

3
2

3
2

3
2

VGT BLOCK
(IN PA)

3
2

9
6

VECTOR ENGINE

96

8x96
MEMORY
1-READ
1-WRITE

3 OTHER
SHADER
PIPES

 3 Fix->Float Converters (24-bit)
 16 Memories 8x96-bit (12,288 bits)

Totals:

THREE MORE VECTOR ENGINES
PER SHADER PIPE

VECTOR ENGINE

SHADER
SEQUENCER

Figure 9:VGT to Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1288 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

30 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER
4 bits

ADDRESS
7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17th) is going to have the address 00000001000, the 18th 00010001000, the 19th 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*VS_EXPORT_COUNT to
Current_Location and reset the memory count to 0 before the next vector begins).

17.1 Export restrictions

17.1.1 Pixel exports:
Pixels can export 1,2,3 or 4 color buffers to the SX(+z). The exports will be done in order. The exports will always be
ordered to the SX.

17.1.2 Vertex exports:
Position or parameter caches can be exported in any order in the shader program. It is always better to export
posistion as soon as possible. Position has to be exported in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be done in any order with texture instructions interleaved.
The exports will always be allocated in order to the SX.

17.1.3 Pass thru exports:
Pass thru exports have to be done in groups of the form:

Alloc 1 thru 5 (max export offset + 1, for example if using EM4 alloc size 5)
Execute ALU(ADDR) ALU(DATA) ALU(DATA) ALU(DATA)…

When exporting to more than EM0, one MUST write to EM4 also (the write may be predicated if you don’t need the
export). This is used to initialize the buffers in the SX.

There cannot be any serialize bits set OR texture Reads between the EA and the last EM.

Memory exports will be surfaced using a macro extension; here is what needs to happen inside the macro:

The macro needs to create a special constant of the form:

Stream ID constant:
 .x = Integer that holds BaseAddressInBytes/4 in bits (29:0). Bits 31:30 should be 0b01.
 .y = 2**23
 .z = Integer that holds register field data. Note that this data must be organized so that it
always represents a 'valid' floating point number, with the relevant bits in (23 - 0); One way of doing this would be to
take the 23 bits and add 2**23.
 .w = max index value + 2**23

Output to EXaddress:

 .x = Base of array (in low 30 bits)/4

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1289 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 .y = Index value (in low 23 bits)
 .z = Register Field data (in low 23 bits)
 .w = Max Index value (in low 23 bits)

Also Assume that C0:

 .x = 0.0
 .y = 1.0

The Macro expansion would be as follows:

 MULADD EA = Rindex.xxxx,C0.xyxx,CstreamID;
 MOV EMx (x = 0 thru 4) = Rdata;

The SX will check for invalid writes and mask out the data so it won’t be written to memory. Invalid writes are:

1) Index value >= Max Index value
2) bit 31 != 0 (negative index)
3) bits [30:23] != 23 + IEEE_EXP_BIAS (127) (meaning the index was too big to be represented using 23 bits)

They cannot have texture instructions interleaved in the export block. These exports are not guaranteed to be
ordered.

Also, when doing a pass thru export, the shader must still do either a position and PC export (if Vertex) or a color
export (if Pixel). The pass thru export can occur anywhere in any shader program and thus can be used to debug.
There can be any number of pass thru export blocks throughout the pixel or vertex shader or both.

17.2 Arbitration restrictions
Here are the Sequencer arbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texture pending bit and VC pending is set
2) Cannot allocate position if any older thread has not allocated position
3) Cannot execute a texture clause if texture reads are pending
4) Cannot execute a VC clause if VC reads are pending
5) Cannot execute last if texture pending (even if not serial)
6) Cannot allocate if not last for color exports.
7) Cannot allocate if not last for PC exports.

18. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

18.1 Vertex Shading
 0:15 - 16 parameter cache
 16:31 - Empty (Reserved?)

32 - Export Address
 33:37 - 5 vertex exports to the frame buffer and index
 38:46 - Empty
 47 - Debug Address
 48:52 - 5 debug export (interpret as normal memory export)
 53:59 - Empty
 60 - export addressing mode
 61 - Empty
 62 - position
 63 - sprite size export that goes with position export

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1290 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

32 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

 (X= point size, Y= edge flag is bit 0, Z= VtxKill is bitwise OR of bits 30:0. Any bit other than
sign means VtxKill.)

18.2 Pixel Shading
 0 - Color for buffer 0 (primary)
 1 - Color for buffer 1
 2 - Color for buffer 2
 3 - Color for buffer 3
 4:15 - Empty
 16 - Buffer 0 Color/Fog (primary)
 17 - Buffer 1 Color/Fog
 18 - Buffer 2 Color/Fog
 19 - Buffer 3 Color/Fog
 20:31 - Empty
 32 - Export Address
 33:37 - 5 exports for multipass pixel shaders.
 38:46 - Empty
 47 - Debug Address
 48:52 - 5 debug exports (interpret as normal memory export)

60 - export addressing mode
61 - Z for primary buffer (Z exported to 'alpha' component)

 62:63 - Empty

19. Special Interpolation modes

19.1 Real time commands
We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 4x128 memories (one for each of three vertices x 4 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. This mode is triggered by
the primitive type: REAL TIME. The actual memories are in the in the SX blocks. The parameter data memories are
hooked on the RBBM bus and are loaded by the CP using register mapped memory.

19.2 Sprites/ XY screen coordinates/ FB information
XY screen coordinates may be needed in the shader program. This functionality is controlled by the param_gen
register (in SQ) in conjunction with the SND_XY register (in SC) and the param_gen_pos. Also it is possible to send
the faceness information (for OGL front/back special operations) to the shader using the same control register. Here
is a list of all the modes and how they interact together:

The Data is going to be written in the register specified by the param_gen_pos register.

Param_Gen disable, snd_xy disable = No modification
Param_Gen disable, snd_xy enable = No modification
Param_Gen enable, snd_xy disable = Sign(faceness)garbage,(Sign Point)garbage,Sign(Line)s, t
Param_Gen enable, snd_xy enable = Sign(faceness)screenX,(Sign Point)screenY,Sign(Line)s, t

In other words,

The generated vector is (X in RED, Y in GREEN, S in BLUE and T in ALPHA):
X,Y,S,T

PGenReg.X = screen X biased 2^23 (assumes pixel center at 0.0), sign bit encodes faceness (0=frontface,
1=backface)
PGenReg.Y = screen Y biased 2^23 (assumes pixel center at 0.0), sign encodes is point primitive (0=not
point, 1=is point)
PGenReg.Z = parametric S coordinate [0..1], sign encodes is line primitive (0=not line, 1=is line)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1291 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

33 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

PGenReg.W = parametric T coordinate [0..1]

Constant
C0.X = 2^23 (debias for D3D)
C0.Y= 2^23 - 0.5 (debias for OGL which has pixel centers at 0.5)

To generate useable XY:
For D3D:
ADD ScreenXYReg.xy__ = abs(PGenReg), -C0.xxxx
For OGL
ADD ScreenXYReg.xy__ = abs(PGenReg), -C0.yyyy
Note abs has to be done on PGenReg

To access faceness.
Must ALWAYS use (or pos/neg test against) PGenReg.X.
< 0.0 is backface
>= 0.0 is frontface

To access parametric ST.
Same as before simply take abs before access.
realS = abs(PGenReg.Z)
realT = abs(PGenReg.W)

To access primitive type
+/-ZERO cannot be differentiated in shader pipe so a RECIP_CLAMPED instruction must be done first
before testing isLine.
isPoint = PGenReg.Y (if <0.0 then point primitive)
isLine = RECIP_CLAMPED PGenReg.Z (if <0.0 then line primitive)
if ((isPoint>=0.0) && (isLine>=0.0)) then triangle primitive

19.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1st pass data to memory and then use the count to retrieve the data on the 2nd pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX_PIX/VTX register. The sequencer
is going to keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is
written to the GPRs the counter is incremented. Every time a RST_PIX_COUNT or RST_VTX_COUNT events are
received, the corresponding counter is reset. While there is only one count broadcast to the GPRs, the LSB are
hardwired to specific values making the index different for all elements in the vector. Since the count must be different
for all pixels/vertices and the 4 LSBs (16 positions) are hardwired to the corresponding shader unit the SQ has two
choices:

1) Maintain a 17 bit counter that counts the vectors of 64. In this case the phase must be appended to the count
before the count is broadcast to the SPs:

Counter (17 bits) Phase (2 bits) Hardwired (4 bits)

2) Maintain a 21 bits counter that counts sub-vectors of 16. In this case only the counter is sent to the Sps:

Counter (19 bits) Hardwired (4 bits)

19.3.1 Vertex shaders
In the case of vertex shaders, if GEN_INDEX_VTX is set, the data will be put into the x field of the third register (it
means that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1292 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

34 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

19.3.2 Pixel shaders
In the case of pixel shaders, if GEN_INDEX_PIX is set, the data will be put in the x field of the param_gen_pos+1
register.

AUTO
COUNT

STG 0

STG1

INTERPOLATORS

GPR0

AUTO COUNT 000000

MUX

The Auto Count Value is
broadcast to all GPRs. It is

loaded into a register wich has
its LSBs hardwired to the

GPR number (0 thru 63). Then
if GEN_INDEX is high, the
mux selects the auto-count

value and it is loaded into the
GPRs to be either used to

retrieve data using the TP or
sent to the SX for the RB to

use it to write the data to
memory

Figure 10: GPR input mux Control

20. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

20.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

21. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix→float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 19.2 for details on how to control the interpolation in this mode.

21.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1293 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

35 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

22. Registers
Please see the auto-generated web pages for register definitions.

23. Interfaces

23.1 External Interfaces
Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ→SPx it means that SQ is going to broadcast the same information to all SP instances.

23.2 SC to SP Interfaces

23.2.1 SC_SP#
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the I,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data which is transferred per quad is
 Ref Pix I => S4.20 Floating Point I value *4
 Ref Pix J => S4.20 Floating Point J value *4

This equates to a total of 200 bits which transferred over 2 clocks
and therefor needs an interface 100 bits wide

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a IJ_BUF_INUSE_COUNT in the SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNT count. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2, if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of I,J data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,SQ and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple mode first with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performance hit.)

Name Bits Description
SC_SP#_data 100 IJ information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bit)

Type 0 or 1, First clock I, second clk J
Field ULC URC LLC LRC
 Bits [63:39] [38:26] [25:13] [12:0]
Format SE4M20 SE4M20 SE4M20 SE4M20
Type 2
Field Face X Y
 Bits [24] [23:12] [11:0]
Format Bit Unsigned Unsigned

SC_SP#_valid 1 Valid
SC_SP#_last_quad_data 1 This bit will be set on the last transfer of data per quad.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1294 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

36 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SC_SP#_type 2 0 -> Indicates centroids
1 -> Indicates centers
2 -> Indicates X,Y Data and faceness on data bus
The SC shall look at state data to determine how many types to send for the
interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP block will have neither because the instantiation will insert the prefix.

23.2.2 SC_SQ
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 108 bits) could be folded in half to approx 54
bits.

Name Bits Description
SC_SQ_data 46 Control Data sent to the SQ

1 clk transfers
 Event – valid data consist of event_id and
 state_id. Instruct SQ to post an
 event vector to send state id and
 event_id through request fifo
 and onto the reservation stations
 making sure state id and/or event_id
 gets back to the CP. Events only
 follow end of packets so no pixel
 vectors will be in progress.

 Empty Quad Mask – Transfer Control data
 consisting of pc_dealloc
 or new_vector. Receipt of this is to
 transfer pc_dealloc or new_vector
 without any valid quad data. New
 vector will always be posted to
 request fifo and pc_dealloc will be
 attached to any pixel vector
 outstanding or posted in request fifo
 if no valid quad outstanding.
2 clk transfers
 Quad Data Valid – Sending quad data with or
 without new_vector or pc_dealloc.
 New vector will be posted to request
 fifo with or without a pixel vector and
 pc_dealloc will be posted with a pixel
 vector unless none is in progress. In
 this case the pc_dealloc will be
 posted in the request queue.
 Filler quads will be transferred with
 The Quad mask set but the pixel
 corresponding pixel mask set to
 zero.

SC_SQ_valid 1 SC sending valid data, 2nd clk could be all zeroes

SC_SQ_data – first clock and second clock transfers are shown in the table below.

Name BitField Bits Description

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1295 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

37 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

1st Clock Transfer
SC_SQ_event 0 1 This transfer is a 1 clock event vector Force quad_mask =

new_vector=pc_dealloc=0
SC_SQ_event_id [5:1] 4 This field identifies the event 0 => denotes an End Of State Event 1

=> TBD
SC_SQ_state_id [8:6] 3 State/constant pointer (6*3+3)
SC_SQ_pc_dealloc [11:9] 3 Deallocation token for the Parameter Cache
SC_SQ_new_vector 12 1 The SQ must wait for Vertex shader done count > 0 and after

dispatching the Pixel Vector the SQ will decrement the count.
SC_SQ_quad_mask [16:13] 4 Quad Write mask left to right SP0 => SP3
SC_SQ_end_of_prim 17 1 End Of the primitive
SC_SQ_pix_mask [33:18] 16 Valid bits for all pixels SP0=>SP3 (UL,UR,LL,LR)

SC_SQ_provok_vtx [35:34] 2 Provoking vertex for flat shading
SC_SQ_lod_correct_0 [44:36] 9 LOD correction for quad 0 (SP0) (9 bits per quad)
SC_SQ_lod_correct_1 [53:45] 9 LOD correction for quad 1 (SP1) (9 bits per quad)

2nd Clock Transfer
SC_SQ_lod_correct_2 [8:0] 9 LOD correction for quad 2 (SP2) (9 bits per quad)
SC_SQ_lod_correct_3 [17:9] 9 LOD correction for quad 3 (SP3) (9 bits per quad)
SC_SQ_pc_ptr0 [28:18] 11 Parameter Cache pointer for vertex 0
SC_SQ_pc_ptr1 [39:29] 11 Parameter Cache pointer for vertex 1
SC_SQ_pc_ptr2 [50:40] 11 Parameter Cache pointer for vertex 2
SC_SQ_prim_type [53:51] 3 Stippled line and Real time command need to load tex cords from

alternate buffer
000: Sprite (point)
001: Line
010: Tri_rect
100: Realtime Sprite (point)
101: Realtime Line
110: Realtime Tri_rect

Name Bits Description
SQ_SC_free_buff 1 Pipelined bit that instructs SC to decrement count of buffers in use.
SQ_SC_dec_cntr_cnt 1 Pipelined bit that instructs SC to decrement count of new vector and/or event

sent to prevent SC from overflowing SQ interpolator/Reservation request fifo.

The scan converter will submit a partial vector whenever:

1.) He gets a primitive marked with an end of packet signal.
2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been

marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal made it through and thus the hang.)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1296 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

38 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.3 SQ to SX(SP): Interpolator bus
Name Direction Bits Description
SQ_SXx_interp_cyl_wrap SQ→SXx 4 Which channel needs to be cylindrical wrapped
SQ_SXx_wrap_count SQ->SXx 2 Cylindrical wrap count
SQ_SPx_auto_count SQ->SPx 19 Auto generated count for VTx and Pixels
SQ_SPx_interp_param_gen SQ→SPx 1 Generate Parameter
SQ_SPx_interp_prim_type SQ→SPx 2 Bits [1:0] of primitive type sent by SC
SQ_SPx_interp_buff_swap SQ→SPx 1 Swap IJ buffers
SQ_SPx_interp_IJ_line SQ→SPx 2 IJ line number
SQ_SPx_interp_mode SQ→SPx 1 Center/Centroid sampling
SQ_SXx_pc_ptr0 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr1 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_pc_ptr2 SQ→SXx 11 Parameter Cache Pointer
SQ_SXx_rt_sel SQ→SXx 1 Selects between RT and Normal data (Bit 2 of prim type)
SQ_SX0_pc_wr_en SQ→SX0 8 Write enable for the PC memories
SQ_SX1_pc_wr_en SQ→SX1 8 Write enable for the PC memories
SQ_SXx_pc_wr_addr SQ→SXx 7 Write address for the PCs
SQ_SXx_pc_channel_mask SQ→SXx 4 Channel mask
SQ_SXx_pc_ptr_valid SQ→SXx 1 Read pointers are valid.
SQ_SPx_interp_valid SQ→SPx 1 Interpolation control valid

23.2.4 SQ to SP: Staging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.
Name Direction Bits Description
SQ_SPx_vsr_data SQ→SPx 96 Pointers of indexes or HOS surface information
SQ_SPx_vsr_wrt_addr SQ→SPx 3 Staging register write address
SQ_SPx_vsr_rd_addr SQ→SPx 3 Staging register read address
SQ_SP0_ vsr_valid SQ→SP0 1 Data is valid
SQ_SP1_ vsr_ valid SQ→SP1 1 Data is valid
SQ_SP2_ vsr_ valid SQ→SP2 1 Data is valid
SQ_SP3_ vsr_ valid SQ→SP3 1 Data is valid
SQ_SPx_vsr_read SQ→SPx 1 Increment the read pointers

23.2.5 VGT to SQ : Vertex interface

23.2.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide. In the case where an event is sent the 5 LSBs of VGT_SQ_vsisr_data contain the eventID.

Name Bits Description
VGT_SQ_vsisr_data 96 Pointers of indexes or HOS surface information
VGT_SQ_event 1 VGT is sending an event
VGT_SQ_vsisr_continued 1 0: Normal 96 bits per vert 1: double 192 bits per vert
VGT_SQ_end_of_vtx_vect 1 Indicates the last VSISR data set for the current process vector (for double vector

data, "end_of_vector" is set on the first vector)
VGT_SQ_indx_valid 1 Vsisr data is valid
VGT_SQ_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when

“VGT_SQ_vgt_end_of_vector” is high.
VGT_SQ_send 1 Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR

interface handshaking)
SQ_VGT_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1297 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

39 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.5.2 Interface Diagrams

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1298 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

40 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

VGT

VSISR_DATA_2

END_OF_VECTOR_2

STATE_SEL_2

REG

VSISR_DOUBLE_2
REG

REG

REG

REG

REG

SEND_2

REG

REG

REG

REG

REG

REG

PA_SQ_vgt_vsisr_data

PA_SQ_vgt_vsisr_double

PA_SQ_vgt_end_of_vector

PA_SQ_vgt_state_sel

PA_SQ_vgt_send

SQ_PA_vgt_rtr

VSISR_DATA_4

END_OF_VECTOR_4

STATE_SEL_4

VSISR_DOUBLE_4

96

1

1

3

1

1

SEND_4

RTR_2 RTR_0

SHADER
SEQUENCER

RTS

101 X 4
SKID

BUFFER

SRST SRST

WE

EMPTY

RE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1299 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

41 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

6 7

6 7

6 7

0 1 2 3

0 1

8

8

8

2 43 5

4 5 6 7

4 3 2 1

8

9 10 11 12

9 10 11 12

9 10 11 12

9 10 11 12

0

RECEIVER RE-STARTS TRANSMISSION

SENDER STOPS TRANSMISSION

SQ_RTR

SQ_RTR_0

VGT_RTS

SEND_2

SEND_3

SEND_4

DATA_2

FIFO_EMPTY

FIFO_RE

SQ_RTR_1

SQ_RTR_2

DATA_3

DATA_4

FIFO_DATA_OUT

FIFO_CNT

RECEIVER STOPS TRANSMISSION

Figure 1. Detailed Logical Diagram for PA_SQ_vgt Interface.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1300 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

42 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.6 SQ to SX: Control bus

Name Direction Bits Description
SQ_SXx_exp_type SQ→SXx 2 00: Pixel without z (1 to 4 buffers)

01: Pixel with z (1 to 4 buffers)
10: Position (1 or 2 results)
11: Pass thru (1 to 5 results aligned)

SQ_SXx_exp_number SQ→SXx 2 Number of locations needed in the export buffer
(encoding depends on the type see bellow).

SQ_SXx_exp_alu_id SQ→SXx 4 ALU ID. Revolving ID 0 thru 15. Memory exports have
to increment this count by 4 or 8 depending on the size
requested. Other type of exports increment the ID by 1.

SQ_SXx_exp_valid SQ→SXx 1 Valid bit
SQ_SXx_exp_state SQ→SXx 3 State Context

SQ_SXx_free_done SQ→SXx 1 Pulse that indicates that the previous export is finished
from the point of view of the SP. This does not
necessarily mean that the data has been
transferred to RB or PA, or that the space in export
buffer for that particular vector thread has been
freed up.

SQ_SXx_free_alu_id SQ→SXx 4 ALU ID that was used at allocate time.

Depending on the type the number of export location changes:

 Type 00 : Pixels without Z
o 00 = 1 buffer
o 01 = 2 buffers
o 10 = 3 buffers
o 11 = 4 buffer

 Type 01: Pixels with Z
o 00 = 2 Buffers (color + Z)
o 01 = 3 buffers (2 color + Z)
o 10 = 4 buffers (3 color + Z)
o 11 = 5 buffers (4 color + Z)

 Type 10 : Position export
o 00 = 1 position
o 01 = 2 positions
o 1X = Undefined

 Type 11: Pass Thru
o 00 = 4 buffers
o 01 = 8 buffers
o 10 = Undefined
o 11 = Undefined

Below the thick black line is the end of transfer packet that tells the SX that a given export is finished. The report
packet will always arrive either before or at the same time than the next export to the same ALU id.

23.2.7 SX to SQ : Output file control
Name Direction Bits Description
SXx_SQ_pix_free_count0 SXx→SQ 6 How many slots where just freed in the SX for bank0
SXx_SQ_pix_count0_valid SXx→SQ 1 Free_count0 is valid
SXx_SQ_pix_free_count1 SXx→SQ 6 How many slots where just freed in the SX for bank1
SXx_SQ_pix_count1_valid SXx→SQ 1 Free_count1 is valid
SXx_SQ_pos_free_count0 SXx→SQ 4 How many slots where just freed in the SX for bank0
SXx_SQ_pos_count0_valid SXx→SQ 1 Free_count0 is valid
SXx_SQ_pos_free_count1 SXx→SQ 4 How many slots where just freed in the SX for bank1

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1301 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

43 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SXx_SQ_pos_count1_valid SXx→SQ 1 Free_count1 is valid
SXx_SQ_mem_export_free SXx→SQ 1 Freed a memory export slot

23.2.8 SQ to TP: Control bus
Once every clock, the fetch unit sends to the sequencer on which RS line it is now working and if the data in the
GPRs is ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequencer also provides the instruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

Name Direction Bits Description
TPx_SQ_data_rdy TPx→ SQ 1 Data ready

TPx_SQ_rs_line_num TPx→ SQ 6 Line number in the Reservation station

TPx_SQ_type TPx→ SQ 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_send SQ→TPx 1 Sending valid data
SQ_TPx_const SQ→TPx 48 Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instr SQ→TPx 24 Fetch instruction sent over 4 clocks
SQ_TPx_end_of_group SQ→TPx 1 Last instruction of the group
SQ_TPx_Type SQ→TPx 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_TPx_gpr_phase SQ→TPx 2 Write phase signal
SQ_TP0_lod_correct SQ→TP0 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP0_pix_mask SQ→TP0 4 Pixel mask 1 bit per pixel
SQ_TP1_lod_correct SQ→TP1 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pix_mask SQ→TP1 4 Pixel mask 1 bit per pixel
SQ_TP2_lod_correct SQ→TP2 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pix_mask SQ→TP2 4 Pixel mask 1 bit per pixel
SQ_TP3_lod_correct SQ→TP3 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pix_mask SQ→TP3 4 Pixel mask 1 bit per pixel
SQ_TPx_rs_line_num SQ→TPx 6 Line number in the Reservation station
SQ_TPx_write_gpr_index SQ->TPx 7 Index into Register file for write of returned Fetch Data
SQ_TPx_ctx_id SQ→TPx 3 The state context ID (needed for multisample resolves)
SQ_TPx_SIMD SQ->TPx 1 Tells the TP from which SIMD the data is coming from.

23.2.9 SQ to VC: Control bus
Once every clock, the VC unit sends to the sequencer on which RS line it is now working and if the data in the GPRs
is ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequencer also provides the instruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

Name Direction Bits Description
VCx_SQ_data_rdy VCx→ SQ 1 Data ready

VCx_SQ_rs_line_num VCx→ SQ 6 Line number in the Reservation station

VCx_SQ_type VCx→ SQ 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_VCx_send SQ→VCx 1 Sending valid data
SQ_VCx_const SQ→VCx 48 Fetch state sent over 4 clocks (192 bits total)
SQ_VCx_instr SQ→VCx 24 Fetch instruction sent over 4 clocks
SQ_VCx_end_of_group SQ→VCx 1 Last instruction of the group
SQ_VCx_Type SQ→VCx 1 Type of data sent (0:PIXEL, 1:VERTEX)
SQ_VCx_gpr_phase SQ→VCx 2 Write phase signal
SQ_VC0_pix_mask SQ→VC0 4 Pixel mask 1 bit per pixel
SQ_VC1_pix_mask SQ→VC1 4 Pixel mask 1 bit per pixel
SQ_VC2_pix_mask SQ→VC2 4 Pixel mask 1 bit per pixel
SQ_VC3_pix_mask SQ→VC3 4 Pixel mask 1 bit per pixel
SQ_VCx_rs_line_num SQ→VCx 6 Line number in the Reservation station

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1302 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

44 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ_VCx_write_gpr_index SQ->VCx 7 Index into Register file for write of returned Fetch Data
SQ_VCx_SIMD SQ->VCx 1 Tells the VC from which SIMD the data is coming from.

23.2.10 TP to SQ: Texture stall
The TP sends this signal to the SQ and the SPs when frees up a buffer.

Name Direction Bits Description
TP_SQ_fetch_dec TP→ SQ 1 Just freed a slot in the TP.

23.2.11 VC to SQ: Vertex Cache stall
The VC sends this signal to the SQ and the SPs when frees up a buffer. There are 2 types of buffers, Mega and Mini
and a signal for both.

Name Direction Bits Description
VC_SQ_fetch_dec_mega VC→ SQ 1 Freed a Mega slot in the VC.
VC_SQ_fetch_dec_mini VC→ SQ 1 Freed a Mini slot in the VC.

23.2.12 SQ to SP: GPR and auto counter
Name Direction Bits Description
SQ_SPx_simd0_gpr_wr_addr SQ→SPx 7 Write address
SQ_SPx_simd0_gpr_rd_addr SQ→SPx 7 Read address
SQ_SPx_simd0_gpr_rd_en SQ→SPx 1 Read Enable
SQ_SP0_simd0_gpr_pspv_wr_en SQ→SP0 (SP1) 4 Write Enable for the GPRs of SP0-1 for PS and PV
SQ_SP2_simd0_gpr_pspv_wr_en SQ→SP2 (SP3) 4 Write Enable for the GPRs of SP2-3 for PS and PV
SQ_SP4_simd0_gpr_pspv_wr_en SQ→SP4 (SP5) 4 Write Enable for the GPRs of SP4-5 for PS and PV
SQ_SP6_simd0_gpr_pspv_wr_en SQ→SP6 (SP7) 4 Write Enable for the GPRs of SP6-7 for PS and PV
SQ_SP0_simd0_gpr_int_wr_en SQ→SP0 1 Write Enable for the GPRs of SP0 for Inputs

(interp/vtx)
SQ_SP2_simd0_gpr_int_wr_en SQ→SP2 1 Write Enable for the GPRs of SP1 for Inputs

(interp/vtx)
SQ_SP4_simd0_gpr_int_wr_en SQ→SP4 1 Write Enable for the GPRs of SP2 for Inputs

(interp/vtx)
SQ_SP6_simd0_gpr_int_wr_en SQ→SP6 1 Write Enable for the GPRs of SP3 for Inputs

(interp/vtx)
SQ_SPx_gpr_phase SQ→SPx 2 The phase mux (arbitrates between inputs, ALU SRC

reads and writes)
SQ_SPx_simd0_channel_mask SQ→SPx 4 The channel mask for SIMD0
SQ_SPx_gpr_input_sel SQ→SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VSR,
autogen counter.

SQ_SPx_auto_count SQ→SPx 21 Auto count generated by the SQ, common for all
shader pipes

SQ_SPx_simd0_fetch_swizzle SQ→SPx 6 Swizzle code for the TP request (2 bits per channel
ignore W as it is not used).
Bits [1..0] X mode select:
0=GPR_X 1=GPR_Y 2=GPR_Z 3=GPR_W
Bits [3..2] Y mode select:
0=GPR_X 1=GPR_Y 2=GPR_Z 3=GPR_W
Bits [5..4] Z mode select:
0=GPR_X 1=GPR_Y 2=GPR_Z 3=GPR_W

SQ_SPx_tp_fetch_simd_sel SQ→SPx 1 TP Resource coming from:
0: SIMD0
1: SIMD1

SQ_SPx_vc_fetch_simd_sel SQ→SPx 1 VC Resource coming from:
0: SIMD0
1: SIMD1

SQ_SPx_simd1_gpr_wr_addr SQ→SPx 7 Write address

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1303 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

45 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ_SPx_simd1_gpr_rd_addr SQ→SPx 7 Read address
SQ_SPx_simd1_gpr_rd_en SQ→SPx 1 Read Enable
SQ_SP0_simd1_gpr_pspv_wr_en SQ→SP0 (SP1) 4 Write Enable for the GPRs of SP0-1 for PS and PV
SQ_SP2_simd1_gpr_pspv_wr_en SQ→SP2 (SP3) 4 Write Enable for the GPRs of SP2-3 for PS and PV
SQ_SP4_simd1_gpr_pspv_wr_en SQ→SP4 (SP5) 4 Write Enable for the GPRs of SP4-5 for PS and PV
SQ_SP6_simd1_gpr_pspv_wr_en SQ→SP6 (SP7) 4 Write Enable for the GPRs of SP6-7 for PS and PV
SQ_SPx__simd1_channel_mask SQ→SPx 4 The channel mask for SIMD1
SQ_SPx_simd1_fetch_swizzle SQ→SPx 6 Swizzle code for the TP request (2 bits per channel

ignore W as it is not used).
Bits [1..0] X mode select:
0=GPR_X 1=GPR_Y 2=GPR_Z 3=GPR_W
Bits [3..2] Y mode select:
0=GPR_X 1=GPR_Y 2=GPR_Z 3=GPR_W
Bits [5..4] Z mode select:
0=GPR_X 1=GPR_Y 2=GPR_Z 3=GPR_W

SQ_SP0_simd1_gpr_int_wr_en SQ→SP0 1 Write Enable for the GPRs of SP0-1 for Inputs
(interp/vtx)

SQ_SP2_simd1_gpr_int_wr_en SQ→SP2 1 Write Enable for the GPRs of SP2-3 for Inputs
(interp/vtx)

SQ_SP4_simd1_gpr_int_wr_en SQ→SP4 1 Write Enable for the GPRs of SP4-5 for Inputs
(interp/vtx)

SQ_SP6_simd1_gpr_int_wr_en SQ→SP6 1 Write Enable for the GPRs of SP6-7 for Inputs
(interp/vtx)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1304 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

46 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.13 SQ to SPx:
Name Direction Bits Description
SQ_SPx_instr_start SQ→SPx 1 Instruction start
SQ_SPx_simd0_instruct SQ→SPx 24 Transferred over 4 cycles

0: SRC A Negate Argument Modifier 0:0
 SRC A Abs Argument Modifier 1:1
 SRC A Swizzle 9:2
 Vector Dst 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
--
-
1: SRC B Negate Argument Modifier 0:0
 SRC B Abs Argument Modifier 1:1
 SRC B Swizzle 9:2
 Scalar Dst 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
--
-
2: SRC C Negate Argument Modifier 0:0
 SRC C Abs Argument Modifier 1:1
 SRC C Swizzle 9:2
 Unused 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
--
-
3: Vector Opcode 4:0
 Scalar Opcode 10:5
 Vector Clamp 11:11
 Scalar Clamp 12:12
 Vector Write Mask 16:13
 Scalar Write Mask 20:17
 Unused 23:21

SQ_SP0_simd0_pred_override SQ→SP0 (SP1) 4 SP0 receives 2 bits and SP1 two bits as well.

0: Use per channel RGBA field (enables the per channel
logic).
1: Use GPR for PV or PS settings. LET the 11
(constant) go thru unchanged

SQ_SP2_simd0_pred_override SQ→SP2 (SP3) 4 0: Use per channel RGBA field (enables the per channel
logic).
1: Use GPR for PV or PS settings. LET the 11
(constant) go thru unchanged

SQ_SP4_simd0_pred_override SQ→SP4 (SP5) 4 0: Use per channel RGBA field (enables the per channel
logic).
1: Use GPR for PV or PS settings. LET the 11
(constant) go thru unchanged

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1305 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

47 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ_SP6_simd0_pred_override SQ→SP6 (SP7) 4 0: Use per channel RGBA field (enables the per channel
logic).
1: Use GPR for PV or PS settings. LET the 11
(constant) go thru unchanged

SQ_SPx_simd0_stall SQ→SPx 1 Stall signal
SQ_SPx_simd1_instruct SQ→SPx 24 Transferred over 4 cycles

0: SRC A Negate Argument Modifier 0:0
 SRC A Abs Argument Modifier 1:1
 SRC A Swizzle 9:2
 Vector Dst 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
--
-
1: SRC B Negate Argument Modifier 0:0
 SRC B Abs Argument Modifier 1:1
 SRC B Swizzle 9:2
 Scalar Dst 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
--
-
2: SRC C Negate Argument Modifier 0:0
 SRC C Abs Argument Modifier 1:1
 SRC C Swizzle 9:2
 Unused 15:10
 Per channel Select 23:16
 00: GPR
 01: PV
 10: PS
 11: Constant (if 11 has to be 11 for all
channels)
--
-
3: Vector Opcode 4:0
 Scalar Opcode 10:5
 Vector Clamp 11:11
 Scalar Clamp 12:12
 Vector Write Mask 16:13
 Scalar Write Mask 20:17
 Unused 23:21

SQ_SP0_simd0_pred_override SQ→SP0 (SP1) 4 SP0 receives 2 bits and SP1 two bits as well.

0: Use per channel RGBA field (enables the per channel
logic).
1: Use GPR for PV or PS settings. LET the 11
(constant) go thru unchanged

SQ_SP2_simd0_pred_override SQ→SP2 (SP3) 4 0: Use per channel RGBA field (enables the per channel
logic).
1: Use GPR for PV or PS settings. LET the 11
(constant) go thru unchanged

SQ_SP4_simd0_pred_override SQ→SP4 (SP5) 4 0: Use per channel RGBA field (enables the per channel
logic).
1: Use GPR for PV or PS settings. LET the 11
(constant) go thru unchanged

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1306 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

48 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ_SP6_simd0_pred_override SQ→SP6 (SP7) 4 0: Use per channel RGBA field (enables the per channel
logic).
1: Use GPR for PV or PS settings. LET the 11
(constant) go thru unchanged

SQ_SPx_simd1_stall SQ→SPx 1 Stall signal
SQ_SPx_export_simd_sel SQ->SPx 1 Which SIMD engine is exporting.

23.2.14 SQ to SX: write mask interface (must be aligned with the SP data)
Name Direction Bits Description
SQ_SX0_write_mask SQ→SX0 8 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock. This is for the data coming of SP0 and SP2.

SQ_SX1_ write_mask SQ→SX1 8 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock. This is for the data coming of SP1 and SP3.

SQ_SXx_channel_mask SQ->SXx 4 This is the per channel export mask. It is computed
by doing vector_mask | scalar_mask | bit 14 of the
alu instruction.

SQ_SX0_kill_mask SQ->SX0 8 These are the valid bits coming straight from the
reservation stations.

SQ_SX1_kill_mask SQ->SX1 8 These are the valid bits coming straight from the
reservation stations.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1307 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

49 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

23.2.15 SP to SQ: Constant address load/ Predicate Set/Kill set
Name Direction Bits Description
SP0_SQ_simd0_const_addr (SP1) SP0→SQ 36 Constant address load 18 bits from SP0 and 18 from

SP4.
SP0_SQ_simd0_valid SP0→SQ 1 Data valid
SP2_SQ_simd0_const_addr (SP3) SP2→SQ 36 Constant address load
SP2_SQ_simd0_valid SP2→SQ 1 Data valid
SP4_SQ_simd0_const_addr (SP5) SP4→SQ 36 Constant address load
SP4_SQ_simd0_valid SP4→SQ 1 Data valid
SP6_SQ_simd0_const_addr (SP7) SP6→SQ 36 Constant address load
SP6_SQ_simd0_valid SP6→SQ 1 Data valid
SP0_SQ_simd0_pred_kill_vector (SP1) SP0SQ 4 Data (predicates or kill/mask) 2 bits from SP0 and 2

bits from SP4
SP0_SQ_simd0_pred_kill_valid SP0->SQ 1 Data valid
SP0_SQ_simd0_pred_kill_type SP0->SQ 1 0: predicate vector

1: kill/mask vector
SP2_SQ_simd0_pred_kill_vector (SP3) SP2SQ 4 Data (predicates or kill/mask)
SP2_SQ_simd0_pred_kill_valid SP2->SQ 1 Data valid
SP2_SQ_simd0_pred_kill_type SP2->SQ 1 0: predicate vector

1: kill/mask vector
SP4_SQ_simd0_pred_kill_vector (SP5) SP4SQ 4 Data (predicates or kill/mask)
SP4_SQ_simd0_pred_kill_valid SP4->SQ 1 Data valid
SP4_SQ_simd0_pred_kill_type SP4->SQ 1 0: predicate vector

1: kill/mask vector
SP6_SQ_simd0_pred_kill_vector (SP7) SP6SQ 4 Data (predicates or kill/mask)
SP6_SQ_simd0_pred_kill_valid SP6->SQ 1 Data valid
SP6_SQ_simd0_pred_kill_type SP6->SQ 1 0: predicate vector

1: kill/mask vector
SP0_SQ_simd1_const_addr (SP1) SP0→SQ 36 Constant address load 18 bits from SP0 and 18 from

SP4.
SP0_SQ_simd1_valid SP0→SQ 1 Data valid
SP2_SQ_simd1_const_addr (SP3) SP2→SQ 36 Constant address load
SP2_SQ_simd1_valid SP2→SQ 1 Data valid
SP4_SQ_simd1_const_addr (SP5) SP4→SQ 36 Constant address load
SP4_SQ_simd1_valid SP4→SQ 1 Data valid
SP6_SQ_simd1_const_addr (SP7) SP6→SQ 36 Constant address load
SP6_SQ_simd1_valid SP6→SQ 1 Data valid
SP0_SQ_simd1_pred_kill_vector (SP1) SP0SQ 4 Data (predicates or kill/mask) 2 bits from SP0 and 2

bits from SP4
SP0_SQ_simd1_pred_kill_valid SP0->SQ 1 Data valid
SP0_SQ_simd1_pred_kill_type SP0->SQ 1 0: predicate vector

1: kill/mask vector
SP2_SQ_simd1_pred_kill_vector (SP3) SP2SQ 4 Data (predicates or kill/mask)
SP2_SQ_simd1_pred_kill_valid SP2->SQ 1 Data valid
SP2_SQ_simd1_pred_kill_type SP2->SQ 1 0: predicate vector

1: kill/mask vector
SP4_SQ_simd1_pred_kill_vector (SP5) SP4SQ 4 Data (predicates or kill/mask)
SP4_SQ_simd1_pred_kill_valid SP4->SQ 1 Data valid
SP4_SQ_simd1_pred_kill_type SP4->SQ 1 0: predicate vector

1: kill/mask vector
SP6_SQ_simd1_pred_kill_vector (SP7) SP6SQ 4 Data (predicates or kill/mask)
SP6_SQ_simd1_pred_kill_valid SP6->SQ 1 Data valid
SP6_SQ_simd1_pred_kill_type SP6->SQ 1 0: predicate vector

1: kill/mask vector

Because of the sharing of the bus none of the MOVA, PREDSET or KILL instructions may be coissued.

23.2.16 SQ to SPx: constant broadcast
Name Direction Bits Description

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1308 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

50 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

SQ_SPx_simd0_const SQ→SPx 128 Constant broadcast
SQ_SPx_simd1_const SQ→SPx 128 Constant broadcast
SQ_SPx_simd0_const_sel SQ→SPx 2 Use the incoming constant instead of the registered one

for the next group of 16.
0 : Normal mode
1: Waterfall on SRCA
2: Waterfall on SRCB
3: Waterfall on SRCC

SQ_SPx_simd1_const_sel SQ→SPx 2 Use the incoming constant instead of the registered one
for the next group of 16.
0 : Normal mode
1: Waterfall on SRCA
2: Waterfall on SRCB
3: Waterfall on SRCC

23.2.17 SQ to CP: RBBM bus
Name Direction Bits Description
SQ_RBB_rs SQ→CP 1 Read Strobe
SQ_RBB_rd SQ→CP 32 Read Data
SQ_RBBM_nrtrtr SQ→CP 1 Optional
SQ_RBBM_rtr SQ→CP 1 Real-Time (Optional)

23.2.18 CP to SQ: RBBM bus
Name Direction Bits Description
rbbm_we CP→SQ 1 Write Enable
rbbm_a CP→SQ 15 Address -- Upper Extent is TBD (16:2)
rbbm_wd CP→SQ 32 Data
rbbm_be CP→SQ 4 Byte Enables
rbbm_re CP→SQ 1 Read Enable
rbb_rs0 CP→SQ 1 Read Return Strobe 0
rbb_rs1 CP→SQ 1 Read Return Strobe 1
rbb_rd0 CP→SQ 32 Read Data 0
rbb_rd1 CP→SQ 32 Read Data 0
RBBM_SQ_soft_reset CP→SQ 1 Soft Reset

23.2.19 SQ to CP: State report
Name Direction Bits Description
SQ_CP_vs_event SQ→CP 1 Vertex Shader Event
SQ_CP_vs_eventid SQ→CP 5 Vertex Shader Event ID
SQ_CP_ps_event SQ→CP 1 Pixel Shader Event
SQ_CP_ps_eventid SQ→CP 5 Pixel Shader Event ID

23.3 Example of control flow program execution
We now provide some examples of execution to better illustrate the new design.

Given the program:

Alu 0
Alu 1
Tex 0
Tex 1
Alu 3 Serial
Alu 4
Tex 2
Alu 5
Alu 6 Serial

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1309 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

51 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Tex 3
Alu 7
Alloc Position 1 buffer
Alu 8 Export
Tex 4
Alloc Parameter 3 buffers
Alu 9 Export 0
Tex 5
Alu 10 Serial Export 2
Alu 11 Export 1 End

Would be converted into the following CF instructions:

Execute 0 Alu 0 Alu 0 Tex 0 Tex 1 Alu 0 Alu 0 Tex 0 Alu 1 Alu 0 Tex
Execute 0 Alu
Alloc Position 1
Execute 0 Alu 0 Tex
Alloc Param 3
Execute_end 0 Alu 0 Tex 1 Alu 0 Alu

And the execution of this program would look like this:

Put thread in Vertex RS:

Control Flow Instruction Pointer (12 bits), (CFP)
Execution Count Marker (3 or 4 bits), (ECM)
Loop Iterators (4x9 bits), (LI)
Call return pointers (4x12 bits), (CRP)
Predicate Bits(4x64 bits), (PB)
Export ID (1 bit), (EXID)
GPR Base Ptr (8 bits), (GPR)
Export Base Ptr (7 bits), (EB)
Context Ptr (3 bits).(CPTR)
LOD correction bits (16x6 bits) (LOD)

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 0 0 0 0 0 0 0 0 0

Valid Thread (VALID)
Texture/ALU engine needed (TYPE)
Texture Reads are outstanding (PENDING)
Waiting on Texture Read to Complete (SERIAL)
Allocation Wait (2 bits) (ALLOC)

00 – No allocation needed
01 – Position export allocation needed (ordered export)
10 – Parameter or pixel export needed (ordered export)
11 – pass thru (out of order export)

Allocation Size (4 bits) (SIZE)
Position Allocated (POS_ALLOC)
First thread of a new context (FIRST)
Last (1 bit), (LAST)

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 0 0 0 0 0 1 0

Then the thread is picked up for the execution of the first control flow instruction:

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1310 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

52 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Execute 0 Alu 0 Alu 0 Tex 0 Tex 1 Alu 0 Alu 0 Tex 0 Alu 1 Alu 0 Tex

It executes the first two ALU instructions and goes back to the RS for a resource request change. Here is the
state returned to the RS:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 2 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Then when the texture pipe frees up, the arbiter picks up the thread to issue the texture reads. The thread comes

back in this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 4 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 0 1 0

Because of the serial bit the arbiter must wait for the texture to return and clear the PENDING bit before it can

pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returns it in
this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 6 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Again the TP frees up, the arbiter picks up the thread and executes. It returns in this state:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 7 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 0 0 0 1 0

Now, even if the texture has not returned we can still pick up the thread for ALU execution because the serial bit

is not set. The thread will however come back to the RS for the second ALU instruction because it has the serial bit
set.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1311 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

53 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 8 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 0 1 0

As soon as the TP clears the pending bit the thread is picked up and returns:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
0 9 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 0 0 0 0 0 1 0

Picked up by the TP and returns:
Execute 0 Alu

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
1 0 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 0 0 0 1 0

Picked up by the ALU and returns (lets say the TP has not returned yet):
Alloc Position 1

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
2 0 0 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 01 1 0 1 0

If the SX has the place for the export, the SQ is going to allocate and pick up the thread for execution. It returns to

the RS in this state:

Execute 0 Alu 0 Tex

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
3 1 0 0 0 0 0 0 0 0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1312 of 1898

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

54 of 54

Exhibit 2039.doc �� 84302 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 1 0 0 0 1 1 0

Now, since the TP has not returned yet, we must wait for it to return because we cannot issue multiple texture

requests. The TP returns, clears the PENDING bit and we proceed:

Alloc Param 3

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
4 0 0 0 0 1 0 0 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 0 10 3 1 1 0

Once again the SQ makes sure the SX has enough room in the Parameter cache before it can pick up this

thread.

Execute_end 0 Alu 0 Tex 1 Alu 0 Alu

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
5 1 0 0 0 1 0 100 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 TEX 1 0 0 0 1 1 0

This executes on the TP and then returns:

State Bits

CFP ECM LI CRP PB EXID GPR EB CPTR LOD
5 2 0 0 0 1 0 100 0 0

Status Bits

VALID TYPE PENDING SERIAL ALLOC SIZE POS_ALLOC FIRST LAST
1 ALU 1 1 0 0 1 1 1

Waits for the TP to return because of the textures reads are pending (and SERIAL in this case). Then executes
and does not return to the RS because the LAST bit is set. This is the end of this thread and before dropping it on the
floor, the SQ notifies the SX of export completion.

24. Open issues
Need to do some testing on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1313 of 1898

ORIGINATE DATE

13 November, 2000

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 16

Exhibit 2040.doc �� 26858 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 04:43 PM

Author: Steve Morein

Issue To:

Copy No:

R400 Architecture Proposal

ver 0.1

Overview: The is a proposal for the overall architecture of the R400. It is also just a proposal, and nothing is decided

yet.

AUTOMATICALLY UPDATED FIELDS:
Document Location: VST FireWire HD:r400 spec
Current Intranet Search Title : R400 Top Level Spec

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2000, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2000. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

 ATI 2040
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1314 of 1898

ORIGINATE DATE

13 November, 2000

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

Go to "File -> Properties ->
Summary" to set title name

PAGE

2 of 16

Exhibit 2040.doc �� 26858 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 04:43 PM

Table Of Contents

1. FEATURES .. 6
1.1 AGP8x and possibly serial AGP .. 6
1.2 128 Bit memory interface .. 6
1.3 Nearly transparent dual chip ... 6
1.4 Unified processing pipe ... 6
1.5 Front end scaling ... 6
1.6 Control processor .. 7
1.7 Real-Time drawing command ability ... 7
1.8 3D Features .. 7

1.8.1 Noise Textures ... 7
1.8.2 Shadow buffers .. 7
1.8.3 Anti-Aliasing ... 7
1.8.4 Texture compression .. 7
1.8.5 Z compression .. 7
1.8.6 Filtering .. 8
1.8.7 Curved Surface Support ... 8

1.9 High color depth .. 8
1.10 Performance ... 8
2. AREA ... 8
3. SCHEDULE ... 8
4. PROCESS .. 8
5. DUAL CHIP .. 9
6. GENERAL RENDERING OPERATION ... 9
6.1 Unified Shader... 9
6.2 3D Rendering .. 9
6.3 2D Rendering .. 11
6.4 Real-time Rendering ... 12
7. DISPLAY OPERATION ... 12
8. BLOCK DIAGRAM .. 13
9. SHORT BLOCK DESCRIPTIONS ... 14
9.1 SYS ... 14

9.1.1 HBIU ... 14
9.1.2 HDP .. 15
9.1.3 MISC .. 15
9.1.4 Rom .. 15
9.1.5 VIP ... 15
9.1.6 I2C .. 15
9.1.7 ? ... 15
9.1.8 ClockGen.. 15
9.1.9 CP .. 15
9.1.10 RBBM ... 15
9.1.11 MC .. 15

9.2 Display .. 15
9.3 Grfx ... 15

9.3.1 PrimitiveAssembly/vertex cache ... 15
9.3.2 Raster Engine ... 15

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1315 of 1898

ORIGINATE DATE

13 November, 2000

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 16

Exhibit 2040.doc �� 26858 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 04:43 PM

9.3.3 Sequencer .. 15
9.3.4 Datapath ... 15
9.3.5 TextureEngine .. 15
9.3.6 RenderBackend .. 15

10. TOP LEVEL INTERCONNECTIONS ... 15
10.1 First Level Sub Heading ... 15

10.1.1 Second Level Sub Heading’ ... 15

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1316 of 1898

ORIGINATE DATE

13 November, 2000

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

Go to "File -> Properties ->
Summary" to set title name

PAGE

4 of 16

Exhibit 2040.doc �� 26858 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 04:43 PM

Revision Changes:

Rev 0.0 (Steve Morein)
Date: November 6, 2000
Initial revision.

 Document started

Rev 0.01 Steve Morein
Date: November 10,2000

 Document continued

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1317 of 1898

ORIGINATE DATE

13 November, 2000

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 16

Exhibit 2040.doc �� 26858 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 04:43 PM

Introduction

This document outlines a proposal for the r400 architecture.

A minor note: in the middle of writing this I decided that it makes the most sense to call the “pixel” pipelines shader
pipeline since they handle vertices and pixels. I have not gone through this to make sure that my usage is consistent.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1318 of 1898

ORIGINATE DATE

13 November, 2000

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

Go to "File -> Properties ->
Summary" to set title name

PAGE

6 of 16

Exhibit 2040.doc �� 26858 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 04:43 PM

1. Features

1.1 AGP8x and possibly serial AGP
The R400 will at a minimum support AGP4x and AGP8x interfaces. We may also support 3.3V i/o including AGP2x
and 3.3V PCI. We need to consider how we interface to LDT (AMD) and possibly the Motorola rapid I/O that may be
used in future Apple Designs (G5).

1.2 128 Bit memory interface
We are thinking of only supporting a 128 bit interface to memory. The memory will be configured as four channels of
32 bits each. The atomic fetch until will be 256 bits in expectation that some high speed memories will use a prefetch-
8 architecture. Logic in the memory controller will optimize down to 128 bit writes when possible on DDR or prefetch 4
memories. Memories up to 500 MHz will be supported (1 gigabit data rate).

Memory is the most open issue on the R400. We need to develop a roadmap ASAP for how memory will develop,
and this may significantly affect our plans.

1.3 Nearly transparent dual chip
To be able to address the very high end desktop/enthusiast market we will support a glueless two chip design instead
of a 256 bit bus. Unlike previous dual chip designs we have done, this is targeted to be a mainstream product. This
implies that it can easily be WHQL’d, and can accelerate all applications and benchmarks, not just a subset of full
screen apps. A separate document outlines the two proposals we are looking at for the dual chip design.

There will be costs added to the base chip to support this. Design time, pins, and area will be impacted by adding this
support.

1.4 Unified processing pipe
The most ambitious feature in this design is the “truly unified pipe” : a single programmable pipeline is used for 2D,
Video, 3D vertex, and 3D pixel operations. The unified pipeline does all of its calculations in 32 bit floating point, the
same as the existing vertex transform in previous chip, and the next step in the precision of the color/pixel
calculations which have increased from 8 bits (R100), through 16 bits (R200), to the 20 bits in the R300.

There is an area cost to the unified pipeline since we are forced to go to 32 bit precision for color, when application
requirements may need less (22 to 24 bits). However the unified pipeline results in a single math/register structure
compared to the separate structures in a more traditional design. It is hoped that by only needing to design the one
structure we can make the investment in design time and effort to really optimize the area.

Some of the benefits to merging the pipelines include allowing the vertex operations to do texture fetches, which we
could not afford add logic to the transform pipe to do, a single programming model for both operations, more precision
on color than we would normally provide, and the ability to support significantly more registers and instructions in
pixel shaders.

One important benefit is load balancing. In the current pipeline when the app it transform bound the pixel pipeline is
idle some significant portion of the time, and when the app is raster bound the transform hardware idle. The unified
pipeline presented here dynamically allocates its processing power between transform and raster.

1.5 Front end scaling
We will remove the back end scaling capability from the display, and replace it with a non-scaling overlay. This will
require us to be able to implement scaling using the unified pipeline. Key features that will need to be supported are
large filter kernels, de-interlacing, frame rate conversion, and good support for YUV and color conversion.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1319 of 1898

ORIGINATE DATE

13 November, 2000

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 16

Exhibit 2040.doc �� 26858 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 04:43 PM

1.6 Control processor
To allow us to emulate a backend scaler and to enable new applications the control processor will be enhanced with
event based streams. These are secondary, real time, command streams that start execution when an event
happens.

1.7 Real-Time drawing command ability
To allow for the emulation of backend scaling as well as support new features we need to be able to interrupt the 3D
pipe and be able to execute high priority commands with low latency. At the moment it appears far to difficult to be
able to insert a new command at the top of the 3D pipeline and meet latency requirements (which I believe we wish to
define as around a 1/16 of a frame refresh). This would require us to be able to interrupt triangles in the midst of
rasterizing, inset vertices in the midst of a large vertex array, and other nasty things. I think instead we can get by with
a second rasterizer which drives the pixel pipelines. Setup would be done with software, but since the majority of the
real time rasterization is expected to be simple

1.8 3D Features
There are a number of new 3D features we are considering for inclusion. Additional features may be added, and
some of these may be dropped.

1.8.1 Noise Textures
Perlin style noise is useful for a number of applications. It is generated on chip and consumes no external memory
bandwidth. It also larger than any physical texture can be: 256x256x256 lattice points, and still has detail when the
resolution is 4Kx4Kx4K. There is an opportunity to get this adopted as part of dx9.

1.8.2 Shadow buffers
John Carmack is using shadow volumes to generate shadow effects in doom3. Shadow volumes are very poor way
to use modern 3D pipelines. (will add more detail here later). Shadow buffers have two key limitations: very high
resolutions are required to avoid aliasing, and traditional shadow buffers can not be mip-mapped so filtering is real
problem. Through a combination of the z techniques we have developed and, hopefully, deep shadow buffers, we
can solve both of these problems and widely enable shadow buffers.

1.8.3 Anti-Aliasing
We want to further improve the anti-aliasing used in the R300 by reducing the needed memory, and possibly
increasing the number of samples per pixel. The goal is more than fifty percent of the performance and less than
three times the memory of anti-aliased rendering. We should also look into improved methods.

1.8.4 Texture compression
To further reduce bandwidth we need to improve texture compression. We need to achieve both better compression
that S3TC, and have a high enough quality that textures that would lose too much detail with S3TC can be
compressed. Both of these goals do not need to be achieved simultaneously on all textures. We also need to look at
compression of non-traditional surfaces such as normal maps.

1.8.5 Z compression
We will build on the R300 slope based compression but we are looking at supporting maxmin for cachelines that do
not compress with slopes (either too many slopes per cacheline, or the pixel shader modifies the z value)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1320 of 1898

ORIGINATE DATE

13 November, 2000

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

Go to "File -> Properties ->
Summary" to set title name

PAGE

8 of 16

Exhibit 2040.doc �� 26858 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 04:43 PM

1.8.6 Filtering
As part of the move to front end scaling we need better than bi-linear filters. Goals are : arbitrary sized separable
filters and 4x4 bi-cubic. Being able to support programmable weights is nice.

1.8.7 Curved Surface Support
We need to figure out how we are going to support curved surfaces in this architecture. I think that we can find a way
to use the wide ability of a vertex shader to implement acceleration for subdivision surfaces, but the vertex only level
of processing in the shader pipeline means that something ahead of it needs to set up the surface. At one point I
imagined that we could use the sibyte processor as a CP, which would have the power to do the curved surface
setup. That is obviously no longer possible.

1.9 High color depth
We will support a 64 bit color buffer (16:16:16:16), the exact format (fixed, floating, etc.?) has yet to be decided

1.10 Performance

I think we can increase the clock speed from 300 MHz to 500MHz.
Historically the goal has been to double speed in each generation, assuming a constant clock speed. However since
we are considering the dual chip solution for the very high end we may not need to be 2x the speed of the R300. Our
use of a 128 bit memory bus instead of 256 bits will impose a potentially lower bandwidth.

That said I would still like to aim for 2x the internal processing capability of the R300:

 R300 R400
Clock speed 300 MHz 500 MHz
Pixels per clock 8 16
Bi tex fetches per pixel 2 2
ALU ops/clk (mac’s) 64 (dedicated) 192 (shared)
Peak Tri/Sec 150 250
Peak xform fp ops/clk 16? (dedicated) 192 (shared)

We may need to reduce this performance goal to meet our area goal.

2. Area

The area goal for the R400 is 10mm on a side in .13 micron CMOS
There will probably be a lower cost version with a target area of 8.5 on a side.

3. Schedule

Tapeout April 2, 2002
Samples May, 2002
Production Nov, 2002

4. Process

At the moment this looks like an easy choice: .13 will be in production for over a year, and .10 does not show up until
the very end of 2002 according to the TSMC and UMC roadmaps.

We will probably want to be in a flip chip packaging approach to meet power distribution goals. It will also reduce the
cost of the dual chip option by making the extra pins needed for the interface cheaper. Is there a way to have an

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1321 of 1898

ORIGINATE DATE

13 November, 2000

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 16

Exhibit 2040.doc �� 26858 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 04:43 PM

option to wire bond it also? Possibly without the dual chip interface, and with less pwr/gnd forcing a lower clock
speed. This may make sense for a lower cost sku.

5. Dual Chip

<need to copy the dual chip notes over and add to them>

6. General rendering operation

6.1 Unified Shader

The unified shader is a simd/vector engine that performs the same instructions on four sets of four (16 total)
elements. For pixel shader operations the elements are pixels with the sets of four required to be 2x2 footprints. For
vertex shader operations the sixteen elements are sixteen vertices. The basic element is a 4 value vector – frequently
interpreted as x,y,z,w or r,g,b,a.

The user model for the unified shader is composed of a variable number of general purpose registers, a subset of
which are usually initialized with data. An ALU can do simple math, conditional moves, and permutations on the
registers, and the ability to do a limited number of memory reads using the texture cache. The number of register is
variable, and the number of registers required for an operation are specified when the task is submitted to the unified
shader. The unified shader will not start the task until there is enough free room for the tasks registers.

The unified shader is based on the R300 partially unified shader.

6.2 3D Rendering

For 3D rendering data is passed twice through the unified shader- once to transform the vertices and a second time
to determine the color of the pixels.

The input to the 3D pipe is expected to be indexed vertex arrays. Linear vertex arrays can easily be supported by the
CP generating sequential indices. Inline vertex data is an open issue, I would prefer to write it to memory and then
fetch it as a vertex array rather than add a direct path.

The stream of indices is sent to the Primitive Assembly block by the CP. The front of the primitive assembly block
maintains the tag for the vertex cache; The vertex cache stores transformed vertices. As misses are detected in the
tag, the indices that miss are placed into 16 entry vectors. Each vector contains a state pointer, a pointer to the vertex
shader to be used, and the 16 indices to vertices that need to be transformed. When either a vector is filled with 16
entries or a state change happens (so that the next vertex does not share the state and vertex shader with the
previous vertex) the vector is issued to one of the “shader” pipelines for transformation. Which of the four shader
pipelines it is issued to determined either by some effort of load balancing or a simple round robin. All that is
submitted to the pixel pipeline is the state, the vertex program, and the indices. The shader pipeline will fetch the
vertex array data through the cache infrastructure that is also used for texture fetches. After the tag the indices
(actually now the indices into the vertex cache) are placed into a latency FIFO to hide the latency of transforming the
vertices.

The shader pipeline receives the vector of 16 indices from the primitive assembly block. The shader pipeline
operates, when rendering pixels, by processing a vector of four 2x2 pixel footprints, A total of 16 pixels. For vertex
processing each of the pixels is replaced with a vertex. The vertex program includes information of how many local
variables it will need. The rasterizer waits until that many local variables are free, (as each executing thread in the
shader pipeline terminates it frees its local variables). With the proposed shader datapath the maximum number of
local variables per vertex is 256. However this leaves no ability to hide latency, 16 to 32 local variables will probably
maximize latency hiding and therefore performance. The vertex shader program can use all the capabilities of the
shader pipeline including texture fetches and dependent lookups. At the end of the vertex program, the transformed
coordinates must be output. One output will be the x,y,z,w position which we be stored in the position cache of the
vertex cache. The vertex program may also output a number of parameter values (colors, texture coordinates, other

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1322 of 1898

ORIGINATE DATE

13 November, 2000

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

Go to "File -> Properties ->
Summary" to set title name

PAGE

10 of 16

Exhibit 2040.doc �� 26858 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 04:43 PM

interpolated inputs into the pixel shader). The parameter values must be output as a multiple of four 128 bit words, as
the parameter cache is designed for this.

The primitive assembly block reads the indices back out of the latency FIFO and accesses the position cache portion
of the vertex cache. It assembles the vertices into primitives (lines, triangles, rectangles, quads?, points, ?).
Baricentric values are assigned to the vertices, and will be used later in the rasterizer to interpolate the parameters.
The parameters are not accessed by the primitive assembly logic, which only works from the position data. The
primitive is clipped against both the viewing volume as well as user clip planes, with fractional baricentric coordinates
assigned to the clipped primitive sections. The primitive goes through the perspective divide and the viewport
transform. The resulting screen space primitive is setup (plane equations for 1/W, Z, and the baricentric coordinates).
The resulting primitive data, including the indices back into the parameter portion of the vertex cache are broadcast to
the four pipes. The final time that an index is output that access the oldest vertex cache line, a token is also sent.
When all of the four pipelines return the token the primitive assembly block can free that cacheline and allow it to be
used for a new vector of vertices. The performance goal in the primitive assembly block is a triangle every two clocks.

Each pipe has a FIFO in front of the rasterize to load balance. Each pipe will handles 16x16 sections which are
interleaved between the pipes. To maximize the effective size of the FIFO we will probably cull the triangle list before
the FIFO. The rasterizer will request the parameter data from the parameter cache for the primitives. A small latency
hiding FIFO will hide the latency of the access to the parameter cache. The parameter cache is 512 bits wide, and the
interfaces from the parameter cache to the rasterizer are 128 bits wide, this allows the parameter cache to output one
pipelines request per clock, which is serialized over four clocks, keeping all four interfaces busy. The rasterizer keeps
a small cache of three to four vertices, this allow only the new parameter to be fetched when adjacent triangles are
processed. The parameter cache interface imposes a second performance limits, in the worst case each polygon
covers all four pipelines and there are no vertices shared from triangle to triangle. In this case the peak performance
is (500 MHz / (4 pipelines * 3 vertices) = (500/12) = 41.6 million triangles per second. In the best case triangles are
perfectly stripped and never cross over pipeline boundaries. In this case the peak performance (If we ignore the setup
limit) is 500 million triangles per second. As a practical manner we should be able to approach the setup limit of 250
Million triangles per second.

The rasterizer also contains a portion of the hierarchical Z memory. We are looking into moving this into a cache
based approach, but that is far for certain at this point. We would like to be able to do heirz culling at a speed in
excess of 64 pixel per clock per pipelines (256 pixels per clock total). We are also going to consider some of the
improved latency heriz options to improve culling efficiency.

The rasterizer will generate four pixels per clock if there are no more than eight interpolated parameters. The
rasterizer generates vectors of four 2x2 footprints (16 pixels). Each 2x2 footprint must be screen aligned and from
the same triangle (with a single shared z slope). The four footprints only need to share the same state and shader
program.

Before starting the processing of a vector the rasterizer (which includes the sequencer for the shader pipeline) checks
to make sure that there are enough free registers in the shader pipeline for the pixel shader program. If not, it stalls
until there are enough. The rasterizer also needs to arbitrate between the three streams of vectors to be shaded: the
vertex stream, the pixel stream, and the real time stream. I think it will be sufficient for the real time stream to have
priority over the vertex stream which has priority over the pixel stream. This will meet the realtime demands, and keep
the vertex cache filled.

The vector is then processed by the shader pipeline. We will probably support up to eight sequentially dependent
texture fetches. (to use the R300 terminology, eight clauses). 16 (8?) textures are supported, but each texture can be
accessed multiple times by a single pixel shader which can provide a different address each time. This is especially
useful for complex filters.

The output of the pixel shader is the final color of the fragment. The pixel shader may also replace the Z value. Fog
and stippling must be done in the pixel shader program.

The render backend does the z compare, stencil operation and color alpha blend.

The texture fetch path has a number of design options. One option is an approach where the local, multiported,
texture cache is small (1 to 4 KB), and contains uncompressed color in a canonical format (32 bits per pixel) and uses
a 4x2 or 4x4 cacheline. This is backed up by a large (>16KB) L2 cache which also stored uncompressed 8x8
cachelines. The decompression logic lives between the memory controller and the L2 cache.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1323 of 1898

ORIGINATE DATE

13 November, 2000

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of
16

Exhibit 2040.doc �� 26858 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 04:43 PM

An alternative design uses the L2 cache to contain data in memory format (compressed) which is decompressed as
needed to fulfill L1 texture cache misses. This will increase the effective size of the L2. The L2 cache is distributed,
with 1/4 of it residing in each memory controller. The Texture decompression logic can either be located in each
shader pipeline, or exist as a shared block(s) that receive data from all four memory controller and send the
decompressed 4x4 cachelines to each shader pipeline. The unified decompression block will result in better
performance, and possibly less area, at the cost of some of the scalability.

Assuming that we chose the L2 in memory controller and the unified decompression logic, the texture path would
work as follows:

In a four pipeline design there are two texture decompression blocks, one for the “left” texture units in each shader
pipeline, and the second for the “right” texture units. In the two pipeline, lower cost, version of the chip only a single
decompression pipeline is used, serving the left and right texture units.

The L1 texture cache receives a texture request from its shader pipeline. The usual tag and latency FIFO is used to
generate the misses. These are sent to the shared texture decompression block, which looks up the texture to find
the physical address and then sends the request to the L2 cache in the memory controller. The L2 also has a latency
FIFO and tag, and will return the data in order (but there is no order guaranteed between the data returning from each
L2). The decompression block has a buffer which is used to place the data from the memory controllers back in order.
The decompression logic decompresses the texture and returns, in order, the 4x4 cachelines that the L1 caches are
requesting. Most of the compression techniques we are considering are based on an 8x8 tile (or 4x4x4), when
necessary the decompression logic will decompress an entire 64 pixel tile and only return the requested 16 pixels to
the L1 cache. This will tend to increase the bandwidth between the decompression logic and the L2 cache as 8x8
blocks are repeatedly requested to provide different 4x4 subtiles to the L1. The L2 cache will prevent the repeated
reads from going to memory, and we will probably implement an “L0” style cache in front of the L2 to also catch the
redundant requests.

Each memory controller will have two 64 bit read return buses, one to each of the two decompression blocks, each
decompression blocks drives a separate 128 bit bus to each of the four shader pipelines. This will tend to have better
utilization and load balancing than having the memory controller drive a 32 bit bus to the decompression logic in each
shader pipeline. While the total number of wires is similar (128 bits per memory controller, 128 bits into each texture
cache) we are less likely to leave the texture pipes starved when there is some imbalance.

6.3 2D Rendering

2D rendering is implemented in the 3D pipeline. The first reason for the change is performance; The current 2D
pipeline can render 128 bits per clock (16 8 bit pixels, 8 16 bit pixels, 4 32 bit pixels). The 3D pipe can render 16
pixels per clock, and the pixels can be 8 to 64 bits wide. Secondly routing the three busses needed by the 2D engine
(src read, dest read, dest write) has a certain cost, and complicated the design of the chip. If we attempt to improve
the performance of the 2D pipe these busses will increase in size, further complicating the design. Another reason is
dual chip rendering, it would be nice if 2D as well as 3D operations increase in speed. (2D operations include things
like color clears and texture uploads that do show up in 3D benchmarks.

There are four issues currently known that will affect placing the 2D commands into the 3D pipelines:
1) Command compatibility
2) Hostpath blits
3) ROP3
4) Overlapping blits.

We wish to be as compatible as possible with the existing PM4 2D model. This will require that the CP be enhanced,
allowing it to translate 2D commands into commands understood by the 3D pipe. We will ad interfaces to the 3D pipe
to make this easier but there will still be significant amount of work that still needs to be done by the CP.

Host path blits can no longer work as they do now. Four pipelines will be attempting to execute the requested
command in parallel, walking the area to be drawn in some tightly tiled pattern to optimize memory and cache
performance. This bears little resemblance to the single linear stream of data from embedded into the PM4 command
stream. In addition the shader pipelines are heavily optimized for a pull, “reverse” mapping model, and not a push,
“forward” model. The basic solution to this problem is for the 3D pipes to pull the source data directly out of a

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1324 of 1898

ORIGINATE DATE

13 November, 2000

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

Go to "File -> Properties ->
Summary" to set title name

PAGE

12 of 16

Exhibit 2040.doc �� 26858 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 04:43 PM

command/data buffer, in whatever order, and in whatever parallel streams exist. Whether we give the PM4 engine the
ability to skip over the hostpath data, or force the driver to move hostpath data into a second command ring still
needs to be decided. It is possible that one or more changes may be needed to the driver for this.

2D supports a ROP3 operation that requires the destination color as well as two sources: the source, and the pattern.
To support this the pattern color is output by the pixel shader on the Z output which is not used by 2D operations. The
render backend now has all three needed sources.

Overlapping blits is an ugly problem that I have not yet found an acceptable solution to. More work needed.

One benefit to these changes is the 2D operations will also be accelerated by the second chip in a dual chip board.

6.4 Real-time Rendering

7. Display operation

The display must be able to display from microtiled surfaces and overlays. This will generally force us to adopt line
buffers.

The display should support at least two outputs, ideally we will be able to support two high resolution outputs and a
low resolution output (TV out)

We will drop support for overlay scaling, and therefore supporting an overlay on all displays becomes affordable,
fixing a “bug” that our current dual display products suffer from.

We will place the overlay line buffers in the memory controllers, this changes the interface from the memory
controllers to the display from a wide “bursty” interface to a narrow continuos interface.

<this rest of this was copied out of another document and needs some editing to fit in this document. Bear with us as
construction of this document continues>

Video buffer operation:

At beginning of even scanline (scanline 0) 1/2 of line buffer is filled.
The upper half of the buffer is read out, at the same time as the second half of the buffer is filled. When the scanout
reaches the midpoint 3/4 of the buffer is filled. When the scanout reaches the end of the scan the buffer is filled. The
speed at which the buffer is filled must be greater than 1/2 of the rate at which the buffer is scanned out.

For the odd scanlines, the buffer is completely filled at the start of scanout (as a result of the even scanline finishing
properly). As the lower half is scanned out, reads are issued to fetch the data for the next pairs of scanlines. At the
end of the odd scanline, the buffer is expected to contain half of the data for the next scanline.

Another way of looking at this is as follows:

At the beginning of the odd scanline the scan buffer is filled. As each word is read from the buffer and sent to the
display logic, a request is made to the memory controller to fill in the data. It is not necessary for all the data for the
next scanline pair to be fetched by the time that the scanline reaches the end, the real requirement is for the last word
in the scanline buffer to get there just before it is read, at the end of the next even scanline.

We will support a single non-scaled overlay per each display.

Some bandwidth numbers
In reality we do not need to deal with quite as much bandwidth as the FIFO in the display can hide the horizontal
retrace.
350 MHz primary fetch, 32 bit data:
350 MHz primary display, 32 bits
350 MHz overlay fetch

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1325 of 1898

ORIGINATE DATE

13 November, 2000

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of
16

Exhibit 2040.doc �� 26858 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 04:43 PM

350 MHz overlay display
total: 350 MHz * 16 bytes (128 bits)

Since we support dual monitor, this is doubled.

One design option is to split the display scanline into pieces and move them into the memory controller. This greatly
reduces the exposed bandwidth in the system (reducing power and routing problems)

If we assume that there are four memory controllers, each with 2GB/s of memory bandwidth then the following will
work:

core clock speed: >= 1x the memory clock
memclk = 500 MHz
coreclk = 500 MHz

each memory interface is 32 bits at a DDR rate, and the fetch granularity is 256 bits.
Therefore if data was continuously received into the display FIFO 64 bits would be received every clock. A 256 bit
interface at the core clock rate is more than adequate..

the memory size needed for two 2048 displays is : 2048*4 bytes * 2 scanlines * 4 buffers is 64KB. So each buffer is
16KB (128 Kbit). With a 256 bit interface the memory is 256x512 single ported.

For writes into the write buffer as a result of memory fetches, a small buffer reorders data between pairs of 256 bit
words so that while what is read from memory is 256 bits containing two vertically stacked 128 bit words, what is
written is two 128 bit words that are on the same scanline.

The interface from the memory controller to the display only needs to be big enough for the sustained bandwidth, and
not the peak memory speed bandwidth. A 16 bit interface to each display seems like more than enough.
(compare this to the rage 6 with two 128 bit busses between the memory controller and display)

A couple more notes:
for the most part the memory format is stored in the scanline buffer. The exception is 64 bit, which we would like to
convert to something like 11:11:10 or 8:8:8:8 This may mean some sort of gamma circuit in the memory controller.

A LUT would exist in the display for gamma de-correction and pallet support.

The interleave between the memory controllers would have to be compatible with the tiling and still give good
performance.

A big question is how does this work in a two chip board? I had been thinking about interleaving on a fine basis
between the chips with a display controller in one chip fetching from both, but this somewhat flips that around. We
need to route the video signals as an extra channel between the chips, this will add complexity, but it actually is less
bandwidth since the overlay is combined first.

8. Block diagram

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1326 of 1898

ORIGINATE DATE

13 November, 2000

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

Go to "File -> Properties ->
Summary" to set title name

PAGE

14 of 16

Exhibit 2040.doc �� 26858 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 04:43 PM

Primitive Assembly and Cliping
Vertex Cache

Parameter Cache

Triangles

Parameters

Vertex indicies

RealTime stream

Transformed Verticies

CP/RBBM

Texture
Decompress L

Texture
Decompress R

Memory Controller 0

Render
Backend 0

Pipe
0a

Pipe
0b

Pipe
0c

Pipe
0d

Rasterizer and Sequencer
0

Texture 0l

Texture 0r

Memory Controller 1

Render
Backend 1

Pipe
1a

Pipe
1b

Pipe
1c

Pipe
1d

Rasterizer and Sequencer
1

Texture 1l

Texture 1r

Memory Controller 2

Render
Backend 2

Pipe
2a

Pipe
2b

Pipe
2c

Pipe
2d

Rasterizer and Sequencer
2

Texture 2l

Texture 2r

Memory Controller 3

Render
Backend 3

Pipe
3a

Pipe
3b

Pipe
3c

Pipe
3d

Rasterizer and Sequencer
3

Texture 3l

Texture 3r

Global register bus
(most connections not shown)

HBIU

AIC interface

Triple Display
(2 hires + tvout)

Shared read return bus
for low bandwidth clients
(CP,HDP,VIP,DMA,?)

VIP,
ROM,
I2C,
straps

ClockGen,
PowerMgmt

Test/Debug

Oxcart Port
Interface

R400 Top Level Block Diagram

9. Short Block descriptions

9.1 SYS
The system blocks support the chip, but are not graphics specific.

9.1.1 HBIU
The HBIU is the interface to the host bus. It implements four interfaces: register/read write, HDP for host access to
memory and the

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1327 of 1898

ORIGINATE DATE

13 November, 2000

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of
16

Exhibit 2040.doc �� 26858 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 04:43 PM

9.1.2 HDP

9.1.3 MISC

9.1.4 Rom

9.1.5 VIP

9.1.6 I2C

9.1.7 ?

9.1.8 ClockGen

9.1.9 CP

9.1.10 RBBM

9.1.11 MC
The memory controller is distributed, each of the four memory channels has a separate memory conttoller. Each
memory control contain a part of the L2/Line buffer memory. This large buffer serves a number of purposes in the
graphics chip, including L2 cache for textures and verticies.

9.2 Display

9.3 Grfx

9.3.1 PrimitiveAssembly/vertex cache

9.3.2 Raster Engine

9.3.3 Sequencer

9.3.4 Datapath

9.3.5 TextureEngine

9.3.6 RenderBackend

10. Top Level Interconnections

10.1 First Level Sub Heading

10.1.1 Second Level Sub Heading’

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1328 of 1898

ORIGINATE DATE

13 November, 2000

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

Go to "File -> Properties ->
Summary" to set title name

PAGE

16 of 16

Exhibit 2040.doc �� 26858 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 04:43 PM

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1329 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

Author: Steve Morein

Issue To:

Copy No:

R400 Top Level Specification

ver 0.2

Overview: This replaces the R400 architecture specification.

AUTOMATICALLY UPDATED FIELDS:
Document Location: Document1
Current Intranet Search Title : R400 Top Level Spec

APPROVALS
Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2000, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2000. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

 ATI 2041
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1330 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

R400 Top Level Spec

PAGE

2 of 32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

Table Of Contents

1. FEATURES .. 7
1.1 AGP 8x ... 7
1.2 256 Bit Memory Interface ... 7
1.3 Unified Processing pipe .. 7
1.4 Front end scaling .. 7
1.5 Real-Time drawing command ability .. 7
1.6 3D Features ... 8

1.6.1 Noise Textures .. 8

1.6.2 Shadow buffers ... 8

1.6.3 Sort Independent Transparency .. 8

1.6.4 Anti-Aliasing .. 8

1.6.5 Texture compression ... 8

1.6.6 Z compression ... 8

1.6.7 Texture Filtering .. 8

1.6.8 Curved Surface Support .. 9

1.6.9 Displacement maps ... 9
1.7 High color depth ... 9
2. PERFORMANCE ... 9
3. SCHEDULE ... 9
4. PROCESS .. 9
5. GENERAL CHIP OPERATION .. 9
5.1 Unified Shader ... 9
5.2 3D Rendering ... 10
5.3 Real Time Rendering ... 12
5.4 State Management ... 13
5.5 Bad Data .. 13
5.6 Display operation .. 14
6. BLOCK DIAGRAM .. 15
7. BLOCKS .. 15
8. BLOCK DESCRIPTONS .. 16
8.1 HBIU – host bus interface unit .. 16

8.1.1 Description .. 16

8.1.2 Major interfaces ... 16

8.1.3 Block diagram .. 17
8.2 CP – control processor ... 18

8.2.1 Description .. 18

8.2.2 Major interfaces ... 18

8.2.3 Block diagram .. 19
8.3 RBBM – register interface manager ... 19

8.3.1 Description .. 19

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1331 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

8.3.2 Major interfaces ... 19

8.3.3 Block diagram .. 20

8.3.4 RBBM operation .. 20
8.4 CLK – clock generator .. 21

8.4.1 Description .. 21

8.4.2 Major interfaces ... 21

8.4.3 Block diagram .. 22
8.5 TC – test controller ... 22

8.5.1 Description .. 22

8.5.2 Major interfaces ... 22

8.5.3 Block diagram .. 22
8.6 VIP – Video input port .. 22

8.6.1 Description .. 22

8.6.2 Major interfaces ... 22

8.6.3 Block diagram .. 22
8.7 ROM – boot rom ... 22

8.7.1 Description .. 22

8.7.2 Major interfaces ... 22

8.7.3 Block diagram .. 22
8.8 I2C – I2C interface ... 22

8.8.1 Description .. 22

8.8.2 Major interfaces ... 22

8.8.3 Block diagram .. 23
8.9 DU – Display .. 23

8.9.1 Description .. 23

8.9.2 Major interfaces ... 23

8.9.3 Block diagram .. 24
8.10 MH – Memory Hub .. 24

8.10.1 Description ... 24

8.10.2 Major interfaces .. 24

8.10.3 Block diagram ... 24
8.11 HDP – Host Data Path .. 24

8.11.1 Description ... 25

8.11.2 Major interfaces .. 25

8.11.3 Block diagram ... 25
8.12 IDCT – Mpeg decoder ... 25

8.12.1 Description ... 25

8.12.2 Major interfaces .. 25

8.12.3 Block diagram ... 25
8.13 PA – Primitive Assembly ... 25

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1332 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

R400 Top Level Spec

PAGE

4 of 32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

8.13.1 Description ... 25

8.13.2 Major interfaces .. 25

8.13.3 Block diagram ... 26
8.14 TD – Texture Decompression ... 26

8.14.1 Description ... 26

8.14.2 Major interfaces .. 27

8.14.3 Block diagram ... 27
8.15 RE – Raster Engine ... 27

8.15.1 Description ... 27

8.15.2 Major interfaces .. 28

8.15.3 Block diagram ... 29
8.16 SP – Shader Pipe .. 30

8.16.1 Description ... 30

8.16.2 Major interfaces .. 30

8.16.3 Block diagram ... 31
8.17 TP – Texture Pipe ... 32

8.17.1 Description ... 32

8.17.2 Major interfaces .. 32

8.17.3 Block diagram ... 32
8.18 RB – Render Backend ... 32

8.18.1 Description ... 32

8.18.2 Major interfaces .. 32

8.18.3 Block diagram ... 32
8.19 MC – Memory Controller ... 32

8.19.1 Description ... 32

8.19.2 Major interfaces .. 32

8.19.3 Block diagram ... 32
9. COMMON FOUNDATIONS ... 32
9.1 Logic Design .. 32

9.1.1 Data formats .. 32

9.1.2 Register Bus .. 32

9.1.3 Block Communication protocol .. 32
9.2 Software ... 32

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1333 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

Revision Changes:

Rev 0.0 (Steve Morein)
Date: March 11, 2001
Initial revision.

 Document recreated from earlier documents

Date March 14,2001 Finally got back to editing it.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1334 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

R400 Top Level Spec

PAGE

6 of 32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

Introduction

The R400 will be the high end standalone graphics chip product when it is introduced.
It will be followed very rapidly with two variants:
The RV400, aimed at the volume PC space
The R450, aimed at a volume high end market.
The targets for the three chips are:

Part Clock

Speed
pixels/clk texture

fetches/clk
alu ops/clk Memory

width
Memory
speed

die size Tapeout

R400 400 MHz 8 16 32 256 400MHz 11.5 July,2002
RV40
0

500 MHz 4 8 16 128 500 MHz 8.5 Nov 2002

R450 500 MHz 8 16 32 256? 500 MHz 9.5 Feb 2003

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1335 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

1. Features

1.1 AGP 8x
The chip will support the 32 bit AGP interface at speeds up to 8x. I expect that we will need to support AGP 1x and 2x
which require 3.3 Volt I/0 (AGP 4x is 1.5v and AGP 8x is 750mv). AGP fast writes are supported for access to the
frame buffer.

Open issue: 64 bit address space support.

1.2 256 Bit Memory Interface
The R400 and R450 support four memory channels, which can be 32 or 64 bits wide; the maximum memory bus
width is a total of 256 bits. The RV400 supports two memory channels and a maximum total width of 128 bits.

All channels need to be configured identically, 1, 2 or 4 channels can be configured.

Memory standards supported:
I/O Voltage Memory type Speed
SSTL2.5 2.5 DDR 100 to 500 MHz
SSTL1.8 1.8 DDR/infineon 300 to 500 MHz
Elpida 1.8 (1.5?) Elpida 300 to 400 MHz
Infineon 1.2, 1.0 V Infinion e-dram 500 MHz

No support for SSTL3.3, or SDRAM (LVTTL – 3.3V) is planned.

1.3 Unified Processing pipe
The most ambitious feature in this design is the “truly unified pipe” : a single programmable pipeline is used for 2D,
Video, 3D vertex, and 3D pixel operations. The unified pipeline does all of its calculations in 32 bit floating point, the
same as the existing vertex transform in previous chip, and the next step in the precision of the color/pixel
calculations which have increased from 8 bits (R100), through 16 bits (R200), to the 20 bits in the R300.

There is an area cost to the unified pipeline since we are forced to go to 32 bit precision for color, when application
requirements may need less (22 to 24 bits). However the unified pipeline results in a single math/register structure
compared to the separate structures in a more traditional design. It is hoped that by only needing to design the one
structure we can make the investment in design time and effort to really optimize the area.

Some of the benefits to merging the pipelines include allowing the vertex operations to do texture fetches, which we
could not afford add logic to the transform pipe to do, a single programming model for both operations, more precision
on color than we would normally provide, and the ability to support significantly more registers and instructions in
pixel shaders.

One important benefit is load balancing. In the current pipeline when the app it transform bound the pixel pipeline is
idle some significant portion of the time, and when the app is raster bound the transform hardware idle. The unified
pipeline presented here dynamically allocates its processing power between transform and raster.

1.4 Front end scaling
We will remove the back end scaling capability from the display, and replace it with a non-scaling overlay. This will
require us to be able to implement scaling using the unified pipeline. Key features that will need to be supported are
large filter kernels, de-interlacing, frame rate conversion, and good support for YUV and color conversion.

1.5 Real-Time drawing command ability
To allow for the emulation of backend scaling as well as support new features we need to be able to interrupt the 3D
pipe and be able to execute high priority commands with low latency. The point of interruption is in the primitive

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1336 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

R400 Top Level Spec

PAGE

8 of 32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

assembly, the maximum latency will be about the time it takes to render 4096 pixels. The real time commands are
inserted into the 3D pipeline after transform, clipping, and setup. Those function need to be performed by the driver.
There are also limits on the number of constant registers available.

1.6 3D Features
There are a number of new 3D features we are considering for inclusion. Additional features may be added, and
some of these may be dropped.

1.6.1 Noise Textures
Perlin style noise is useful for a number of applications. It is generated on chip and consumes no external memory
bandwidth. It also larger than any physical texture can be: 256x256x256 lattice points, and still has detail when the
resolution is 4Kx4Kx4K. There is an opportunity to get this adopted as part of dx9.

1.6.2 Shadow buffers
John Carmack is using shadow volumes to generate shadow effects in doom3. Shadow volumes are very poor way
to use modern 3D pipelines. (will add more detail here later). Shadow buffers have two key limitations: very high
resolutions are required to avoid aliasing, and traditional shadow buffers can not be mip-mapped so filtering is real
problem. We are able to solve the first problem through a combination of our improved anti-aliasing Z compression,
and a new method of implementing the shadow map probe.

1.6.3 Sort Independent Transparency
We are currently looking into how best to support sort independent transparency. The two plans are either the dual Z
buffer approach, or the approach described in <need to decide where the email should be placed so others can see>

1.6.4 Anti-Aliasing
The changes from the R300 include an increased number of samples per pixel, probably eight, and support for an
allocated frame buffer size smaller than the worst case maximum.

1.6.5 Texture compression
To further reduce bandwidth we need to improve texture compression. We need to achieve both better compression
that S3TC, and have a high enough quality that textures that would lose too much detail with S3TC can be
compressed. Both of these goals do not need to be achieved simultaneously on all textures. We also need to look at
compression of non-traditional surfaces such as normal maps. Advances here are dependent on the availability of
resources to work on this. If we are unable to find resources we will support the s3tc compression currently in D3D.

1.6.6 Z compression
<larry needs to give me a paragraph here>

1.6.7 Texture Filtering
The texture pipes can fetch a 2x2 region from the texture map and filter it.
The data per pixel can either be four eight bit values, two sixteen bit values, or one 32 value. All data needs to be
fixed point.
Linear filters are completely built in, and it takes 1 cycle for bi-linear, 2 for tri-linear, four for quadra-linear (filtered mip-
mapping of volume textures). Variable depth anisotropy is supported in hardware with the texture pipe calculating the
number of samples needed. Optionally the pixel shader can calculate the number of samples, and how to increment
the texture address, and provide this to the texture pipe.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1337 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

1.6.8 Curved Surface Support
We will support curved surfaces through combination of vertex shader code and a tessellation engine to generate
new vertices.

The tessellation engine generated new vertex indices from a input vertex index array. The new indices contain both
the coordinate in parametric space of the vertex, and the indices to the surface, or to data from which the surface can
be derived. More information is available in the programming guide.

1.6.9 Displacement maps
The tessellation engine for curved surfaces can dice triangles into micropolygons, the vertex shaders for the vertices
can then access into a displacement map and change the location of the points.

1.7 High color depth
We will support a 64 bit color buffer (16:16:16:16), we will support two formats: sRGB64 and a floating point format..
<need to insert format details.

2. Performance

The basic performance is:

R400 MHz fill rate bi-linear equiv peak tri/sec
 MHz Fill rate Bi-linear texture

fetches
Peak tri/sec

R400 400 3.2 gigapixel 6.4 Billion 400 Million
RV400 500 2.0 4.0 500 Million
R450 500 4.0 8.0 500 Million

Under normal conditions, and when not further limited by memory bandwidth we expect to be > 75% efficient.

3. Schedule

 Tapeout Samples Production
R400 July, 2002 Oct, 2002 Dec, 2002
RV400 Nov, 2002 Jan, 2003 March, 2003
R450 Jan, 2003 April 2003 May 2003

4. Process

At the moment this looks like an easy choice: .13 will be in production for over a year, and .10 does not show up until
the very end of 2002 according to the TSMC and UMC roadmaps.

We will probably want to be in a flip chip packaging approach to meet power distribution goals. With the 256 bit bus
we will have at least 600 signal I/O’s (404 in memory). We may be as much as 10A at 1V for average power, which
will require very good power distribution, area bond flip chip is probably the only option.

5. General Chip operation

5.1 Unified Shader

The unified shader is a simd/vector engine that performs the same instructions on four sets of four (16 total)
elements. For pixel shader operations the elements are pixels with the sets of four required to be 2x2 footprints. For

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1338 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

R400 Top Level Spec

PAGE

10 of 32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

vertex shader operations the sixteen elements are sixteen vertices. The basic element is a 4 value vector – frequently
interpreted as x,y,z,w or r,g,b,a.

The user model for the unified shader is composed of a variable number of general purpose registers, a subset of
which are usually initialized with data. An ALU can do simple math, conditional moves, and permutations on the
registers, and the ability to do a limited number of memory reads using the texture cache. The number of register is
variable, and the number of registers required for an operation are specified when the task is submitted to the unified
shader. The unified shader will not start the task until there is enough free room for the task’s registers.

The unified shader is based on the R300 pixel shader.

5.2 3D Rendering

For 3D rendering data is passed twice through the unified shader- once to transform the vertices and a second time
to determine the color of the pixels.

The input to the 3D pipe is expected to be indexed vertex arrays. Linear vertex arrays can easily be supported by the
CP generating sequential indices. Inline vertex data is an open issue, I would prefer to write it to memory and then
fetch it as a vertex array rather than add a direct path.

The stream of indices is sent to the Primitive Assembly block by the CP. The front of the primitive assembly block
maintains the tag for the vertex cache; The vertex cache stores transformed vertices. As misses are detected in the
tag, the indices that miss are placed into 16 entry vectors. Each vector contains a state pointer, a pointer to the vertex
shader to be used, and the 16 indices to vertices that need to be transformed. When either a vector is filled with 16
entries or a state change happens (so that the next vertex does not share the state and vertex shader with the
previous vertex) the vector is issued to one of the “shader” pipelines for transformation. Which of the four shader
pipelines it is issued to determined either by some effort of load balancing or a simple round robin. All that is
submitted to the pixel pipeline is the state, the vertex program, and the indices. The shader pipeline will fetch the
vertex array data through the cache infrastructure that is also used for texture fetches. After the tag the indices
(actually now the indices into the vertex cache) are placed into a latency FIFO to hide the latency of transforming the
vertices.

The shader pipeline receives the vector of 16 indices from the primitive assembly block. The shader pipeline
operates, when rendering pixels, by processing a vector of four 2x2 pixel footprints, a total of 16 pixels. For vertex
processing each of the pixels is replaced with a vertex. The vertex program includes information of how many local
variables it will need. The rasterizer waits until that many local variables are free, (as each executing thread in the
shader pipeline terminates it frees its local variables). With the proposed shader data path the maximum number of
local variables per vertex is 256. However this leaves no ability to hide latency, 16 to 32 local variables will probably
maximize latency hiding and therefore performance. The vertex shader program can use all the capabilities of the
shader pipeline including texture fetches and dependent lookups. At the end of the vertex program, the transformed
coordinates must be output. One output will be the x, y, z, w position which we be stored in the position cache of the
vertex cache. The vertex program may also output a number of parameter values (colors, texture coordinates, other
interpolated inputs into the pixel shader). The parameter values must be output as a multiple of four 128 bit words, as
the parameter cache is designed for this.

The primitive assembly block reads the indices back out of the latency FIFO and accesses the position cache portion
of the vertex cache. It assembles the vertices into primitives (lines, triangles, rectangles, quads?, points, ?).
Baricentric values are assigned to the vertices, and will be used later in the rasterizer to interpolate the parameters.
The parameters are not accessed by the primitive assembly logic, which only works from the position data. The
primitive is clipped against both the viewing volume as well as user clip planes, with fractional baricentric coordinates
assigned to the clipped primitive sections. The primitive goes through the perspective divide and the viewport
transform. The resulting screen space primitive is setup (plane equations for 1/W, Z, and the baricentric coordinates).
The resulting primitive data, including the indices back into the parameter portion of the vertex cache are broadcast to
the four pipes. The final time that an index is output that access the oldest vertex cache line, a token is also sent.
When all of the four pipelines return the token the primitive assembly block can free that cacheline and allow it to be
used for a new vector of vertices. The performance goal in the primitive assembly block is a triangle every two clocks.
An alternative option is for the vertex shader to generate screen coordinates and clip codes. If a primitive needs to be
clipped, which can not be determined until primitive assembly, then the vertices are reverse transformed back into clip
space by logic in the primitive assembly block, clipped, and then transformed back into screen space.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1339 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of
32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

To help meet marketing BS numbers we can look into doing backface culling at a rate of one triangle per clock. This
will boost us to peak bs number of 500 million triangles per second.

Each pipe has a FIFO in front of the rasterizer to load balance. Each pipe will handle 16x16 tiles of the screen which
are interleaved between the pipes. To maximize the effective size of the FIFO we will probably cull the triangle list
before the FIFO. The rasterizer will request the parameter data from the parameter cache for the primitives. A small
latency hiding FIFO will hide the latency of the access to the parameter cache. The parameter cache is 512 bits wide,
and the interfaces from the parameter cache to the rasterizer are 128 bits wide, this allows the parameter cache to
output one pipelines request per clock, which is serialized over four clocks, keeping all four interfaces busy. The
rasterizer keeps a small cache of three to four vertices, this allow only the new parameter to be fetched when
adjacent triangles are processed. The parameter cache interface imposes a second performance limits, in the worst
case each polygon covers all four pipelines and there are no vertices shared from triangle to triangle. In this case the
peak performance is (500 MHz / (4 pipelines * 3 vertices) = (500/12) = 41.6 million triangles per second. In the best
case triangles are perfectly stripped and never cross over pipeline boundaries. In this case the peak performance (If
we ignore the setup limit) is 500 million triangles per second. As a practical manner we should be able to approach
the setup limit of 250 Million triangles per second.

The rasterizer also contains a portion of the hierarchical Z memory. We are looking into moving this into a cache
based approach, but that is far for certain at this point. We would like to be able to do hierarchical z culling at a speed
in excess of 64 pixel per clock per pipelines (256 pixels per clock total). We are also going to consider some of the
improved latency hierarchical Z options to improve culling efficiency.

The rasterizer will generate four pixels per clock if there are no more than eight interpolated parameters. The
rasterizer generates vectors of four 2x2 footprints (16 pixels). Each 2x2 footprint must be screen aligned and from
the same triangle (with a single shared z slope). The four footprints only need to share the same state and shader
program.

Before starting the processing of a vector the rasterizer (which includes the sequencer for the shader pipeline) checks
to make sure that there are enough free registers in the shader pipeline for the pixel shader program. If not, it stalls
until there are enough. The rasterizer also needs to arbitrate between the three streams of vectors to be shaded: the
vertex stream, the pixel stream, and the real time stream. I think it will be sufficient for the real time stream to have
priority over the vertex stream which has priority over the pixel stream. This will meet the real-time demands, and
keep the vertex cache filled.

The vector is then processed by the shader pipeline. We will probably support up to eight sequentially dependent
texture fetches. (to use the R300 terminology, eight clauses). 16 (8?) textures are supported, but each texture can be
accessed multiple times by a single pixel shader which can provide a different address each time. This is especially
useful for complex filters.

The output of the pixel shader is the final color of the fragment. The pixel shader may also replace the Z value. Fog
and stippling must be done in the pixel shader program.

The render backend does the z compare, stencil operation and color alpha blend.

The texture fetch path has a number of design options. One option is an approach where the local, multiported,
texture cache is small (1 to 4 KB), and contains uncompressed color in a canonical format (32 bits per pixel) and uses
a 4x2 or 4x4 cacheline. This is backed up by a large (>16KB) L2 cache which also stored uncompressed 8x8
cachelines. The decompression logic lives between the memory controller and the L2 cache.

An alternative design uses the L2 cache to contain data in memory format (compressed) which is decompressed as
needed to fulfill L1 texture cache misses. This will increase the effective size of the L2. The L2 cache is distributed,
with 1/4 of it residing in each memory controller. The Texture decompression logic can either be located in each
shader pipeline, or exist as a shared block(s) that receive data from all four memory controller and send the
decompressed 4x4 cachelines to each shader pipeline. The unified decompression block will result in better
performance, and possibly less area, at the cost of some of the scalability.

Assuming that we chose the L2 in memory controller and the unified decompression logic, the texture path would
work as follows:

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1340 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

R400 Top Level Spec

PAGE

12 of 32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

In a four pipeline design there are two texture decompression blocks, one for the “left” texture units in each shader
pipeline, and the second for the “right” texture units. In the two pipeline, lower cost, version of the chip only a single
decompression pipeline is used, serving the left and right texture units.

The L1 texture cache receives a texture request from its shader pipeline. The usual tag and latency FIFO is used to
generate the misses. These are sent to the shared texture decompression block, which looks up the texture to find
the physical address and then sends the request to the L2 cache in the memory controller. The L2 also has a latency
FIFO and tag, and will return the data in order (but there is no order guaranteed between the data returning from each
L2). The decompression block has a buffer which is used to place the data from the memory controllers back in order.
The decompression logic decompresses the texture and returns, in order, the 4x4 cachelines that the L1 caches are
requesting. Most of the compression techniques we are considering are based on an 8x8 tile (or 4x4x4), when
necessary the decompression logic will decompress an entire 64 pixel tile and only return the requested 16 pixels to
the L1 cache. This will tend to increase the bandwidth between the decompression logic and the L2 cache as 8x8
blocks are repeatedly requested to provide different 4x4 subtiles to the L1. The L2 cache will prevent the repeated
reads from going to memory, and we will probably implement an “L0” style cache in front of the L2 to also catch the
redundant requests.

Each memory controller will have two 64 bit read return buses, one to each of the two decompression blocks, each
decompression blocks drives a separate 128 bit bus to each of the four shader pipelines. This will tend to have better
utilization and load balancing than having the memory controller drive a 32 bit bus to the decompression logic in each
shader pipeline. While the total number of wires is similar (128 bits per memory controller, 128 bits into each texture
cache) we are less likely to leave the texture pipes starved when there is some imbalance.

5.3 Real Time Rendering
The real time rendering interface allows primitives to be inserted into the rendering pipeline at a very late stage,
therefore providing very low latency. The expected use is for scale blits timed by the display refresh, this suggests a
small number of large primitives. We take advantage of this to simplify hardware by forcing the interface to be post
setup, a real-time primitive needs to be transformed and setup by software.

Real time primitives also do not have access to the state management hardware used by non-real-time 3D
commands. A single set of state registers, some constant registers, and one full parameter set is available. The real-
time command stream will generally need to wait for the current real-time drawing operation to complete before it can
start the next real-time command. The driver can statically allocate some of the physical constant registers to the real-
time stream, these are not available to the RBBM for renaming use, and are written by the real-time command
stream, and read by the 3D pipe at the direct physical addresses. There are two options for the parameter memory.
The parameter memory is not visible to non-real-time commands, for normal operation it is entirely managed by
hardware. For real time rendering there will be dedicated space for three vertices, each with sixteen 128 bit
interpolants. If the real-time primitive requires more than eight interpolants there will only be enough room for one
primitive at a time, even if they need the same state and constants, if less than eight interpolants are needed then
there is room to manually double buffer the interpolants, and allow pipelining of primitives. The real time command
stream will still need to manually check that the pipeline has finished with the previous primitive, before writing new
data to the parameter memory for the next primitive, while the pipeline works on the current primitive.

For example, the a drawing command in a real-time command buffer might look like this:

Wait_for_realtime_pipe_idle // make sure no real-time command is in the pipeline
Write state reg m in context 7 with data // set rendering state for command
Write state reg m in context 7 with data // set rendering state for command
Write state reg m in context 7 with data // set rendering state for command
Write state reg m in context 7 with data // set rendering state for command
Write const reg at physical address k // write constant register
Write const reg at physical address k+1 // write constant register
Write const reg at physical address k+2 // etc.
Write vertex 0, parameter 0, in real time parameter store
Write vertex 1, parameter 0, in real time parameter store
Write vertex 2, parameter 0, in real time parameter store
Write setup primitive to primitive assembly (scan converter)
Write initiator register, tag command with 0
Write vertex 0, parameter 8, in real time parameter store
Write vertex 1, parameter 8, in real time parameter store

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1341 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of
32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

Write vertex 2, parameter 8, in real time parameter store
Write setup primitive to primitive assembly (scan converter) // this assumes we double buffer the primitive registers
Write initiator register, tag command with 1
Wait_for_realtime_command_0_not_in_pipe
Write vertex 0, parameter 0, in real time parameter store
Write vertex 1, parameter 0, in real time parameter store
Write vertex 2, parameter 0, in real time parameter store
Write setup primitive to primitive assembly (scan converter)
Write initiator register, tag command with 0
Wait_for_realtime_command_1_not_in_pipe
Write vertex 0, parameter 8, in real time parameter store
Write vertex 1, parameter 8, in real time parameter store
Write vertex 2, parameter 8, in real time parameter store
Write setup primitive to primitive assembly (scan converter) // this assumes we double buffer the primitive registers
Write initiator register, tag command with 1
Wait_for_realtime_command_0_not_in_pipe

5.4 State Management
State management differs from previous ATI chips.

There are eight sets of state registers in the chip. Each pixel or triangle is tagged with which state it is supposed to
use. Most of this is hidden from the programmer by the RBBM, which implements the in-order semantics that are
normally used. States 0 to 6 are managed by the RBBM for high performance 3D/2D/video rendering. State 7 is
reserved for real time commands, and the real time command stream must ensure that the state is not changed while
the pipeline is active.

Each register is therefore mapped in to the register space nine times: once for the current state, plus eight additional
times to provide access to all existing state. This is only true for the normal pipeline state registers, the constant
registers used by the pixel/vertex shaders are handled by a separate, related mechanism.

There are two options for the update of the state registers. The first option is to implement a broadside state copy,
which copies the contents of the previous current state to the new current state before the first state write happens to
the new state. This is somewhat costly in hardware. The second option is for the state updates done by the driver to
be “complete”, write the minimum set of state registers that completely defines the new rendering state, this avoids
the need for the hw broadside copy.

The constant registers are implemented using a renaming scheme that avoids the need to do a broadside copy when
changing state. It also does not use storage for each state, when two state contexts have the same value in the same
register, the renaming logic points them at the same physical register.

Since the registers that are most frequently changed are located in the constant memory of the R400 (vertex array
pointers, and texture pointers) we may wish to separate updates to the constant registers from general state register
updates.

5.5 Bad Data
Bad data can exist for a number of reasons. When a vertex shader does an access to an address which is not
permitted (or does not exist) we need a way to avoid hanging, and make debugging possible; A similar issue exists
for pixel shaders that do bad texture accesses.

We currently handle a limited form of this: a triangle than contain a vertex which contains (or generates) a NaN or INF
is not drawn, it is simply culled at setup.

We will extend this as follows:
For a vertex fetch that goes out of range (or times out) a flag in the vertex is set which will cause that vertex to be
treated as if it contained a NaN. A debugging flag will also be set, and if we can find an easy way to do it, the index of
the offending vertex will also be stored.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1342 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

R400 Top Level Spec

PAGE

14 of 32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

For a texture fetch a similar strategy will apply: A bad access will set a flag that will cause the pixel to be dropped.
The debugging mode will force the pixel to pass the Z test, and override the color output from the pixelshader with an
ugly shade of green.

5.6 Display operation
The display must be able to display from microtiled surfaces and overlays. This will generally force us to adopt line
buffers.

The display should support at least two outputs, ideally we will be able to support two high resolution outputs and a
low resolution output (TV out)

We will drop support for overlay scaling, and therefore supporting an overlay on all displays becomes affordable,
fixing a “bug” that our current dual display products suffer from.

The memory for the line buffers is shared with the L2 texture cache. This allows use a memory size that is closer the
maximum requirement of either function, instead of the sum of the maximum requirement.

The maximum resolution color format is 64 bit color for the primary surface and 32 bit color for the overlay
For two 2560 pixel wide line buffers we need

2560 pixels 2560
two lines 2
two displays 2
96 bits of color 96 (32 overlay + 64 bits primary)
total bits 960K bits, 120 Kbytes

The L2 memory will probably be 128Kbytes, which will leave only 8KB for the texture L2 cache when driving the
above display. However, the above case is driving two multi-megapixel displays with the worst case color depth. It
works, but 3D performance suffers.

A slightly more normal case might be two 1600x1200 displays, with the same color depth:
2560 pixels 1600
two lines 2
two displays 2
96 bits of color 96 (32 overlay + 64 bits primary)
total bits 600K bits
which leaves >54Kbytes for the L2 Cache

A benchmark case, one display no overlay, 32 bit color:
2560 pixels 1280
two lines 2
two displays 1
96 bits of color 32 (32 overlay + 64 bits primary)
total bits 81K bits
which leaves >110Kbytes for the L2 cache.

The line buffers are two scan lines high:

At beginning of an even scan line (scan line 0) 1/2 of line buffer is filled.
The upper half of the buffer is read out, at the same time as the second half of the buffer is filled. When the scanout
reaches the midpoint 3/4 of the buffer is filled. When the scanout reaches the end of the scan the buffer is filled. The
speed at which the buffer is filled must be greater than 1/2 of the rate at which the buffer is scanned out.

For the odd scanlines, the buffer is completely filled at the start of scanout (as a result of the even scanline finishing
properly). As the lower half is scanned out, reads are issued to fetch the data for the next pairs of scanlines. At the
end of the odd scan line, the buffer is expected to contain half of the data for the next scan line.

Another way of looking at this is as follows:

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1343 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of
32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

At the beginning of the odd scan line the scan buffer is filled. As each word is read from the buffer and sent to the
display logic, a request is made to the memory controller to fill in the data. It is not necessary for all the data for the
next scan line pair to be fetched by the time that the scan line reaches the end, the real requirement is for the last
word in the scan line buffer to get there just before it is read, at the end of the next even scan line.

The display lives mostly in the core clock domain. There is a FIFO per pixel clock that crosses into the DAC/TMDS
clock domain.

If we are able to implement the time interleaved display block then the display will merge and color convert two pixels
per clock in the core clock domain. Whichever display FIFO is closest to empty will get the priority to be filled in the
next time slot. The sum of the pixel clocks (display0, display 1, tvout) must be less than 2x the core clock. We should
be able to cheat slightly and use some of the horizontal retrace time to fill the display fifo's, this will relax slightly the
2x core clock limit.

Since the 3D pipe is capable of real-time events, such as display triggered scale-blits, we may wish to reconsider the
location of several operations that are currently in the display. TV out scaling, and ratiometric scaling for LCD panels
may be more cheaply implemented using the 3D pipe instead of dedicated hardware.

6. Block Diagram

Memory Controller

Render Backend

Shader
Pipe

Shader
Pipe

Shader
Pipe

Shader
Pipe

Rasterizer/Sequencer

Texture
Pipe

Memory Controller

Render Backend

Shader
Pipe

Shader
Pipe

Shader
Pipe

Shader
Pipe

Rasterizer/Sequencer

Texture
Pipe

Memory Controller

Render Backend

Shader
Pipe

Shader
Pipe

Shader
Pipe

Shader
Pipe

Rasterizer/Sequencer

Texture
Pipe

Memory Controller

Render Backend

Shader
Pipe

Shader
Pipe

Shader
Pipe

Shader
Pipe

Rasterizer/Sequencer

Texture
Pipe

Primitive Assembly

L2 Cache
Display Line Buffers

Texture Decompression
Memory hub

HDP

Display

CP/RBBMHI

IDCT
clock gen

powermgmt
test/debug

VIP
I2C
Rom

straps

R400 Top Level Block Diagram

Low -bandwidth memory bus

Register backbone

Vertex broadcast bus

tile broadcast bus

tile Z broadcast bus

Vertex parameter busses

Vertex coordinate return bus

Texture fetch busses

7. Blocks
HBIU – host bus interface unit
CP – control processor
RBBM – register interface manager
CLK – clock generator
TC – test controller
VIP – video input port

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1344 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

R400 Top Level Spec

PAGE

16 of 32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

ROM – boot rom
I2C – I2C interface
DU – Display
MH – Memory Hub
HDP – Host Data Path
IDCT – Mpeg decoder
PA – Primitive Assembly
TD – Texture Decompression
RE – Raster Engine
SP – Shader Pipe
TP – Texture Pipe
RB – Render Backend
MC – Memory Controller
The blocks are combined into a smaller number of blocks for layout:

Layout block subblocks Instances

R400/450
Instances
RV400

Notes

HI HI 1 1
CP CP

RBBM
CLK
Reset

1 1

Misc VIP
ROM
I2C
TC

1 1

DU DU 1 1 Display
TD TD

MH
HDP

1 1 L:2 Cache

PA PA 1 1
RE RE 4 2
SP SP 16 8
TP TP 4 2
RB RB 4 2
MC MC 4 2

8. Block descriptions

8.1 HBIU – host bus interface unit
The HBIU interfaces the graphics chip to the system AGP bus.

8.1.1 Description
The HBIU implements the following buses:
PCI slave
PCI master
AGP fast writes
AGP reads
AGP writes

64 bit support?

8.1.2 Major interfaces
The following busses connect the HBIU to the rest of the chip:

Bus Chip client Bus client Description

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1345 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of
32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

Host register CP/RBBM PCI Slave CPU reads and writes to chip registers
Host Data HDP PCI Slave

AGP fast write
CPU reads and writes to video memory

AIC Write MC PCI Master (writes)
AGP writes

Primarily blits to system memory, and control semaphore
writes

AIC Read TD/MH PCI Master (reads)
AGP reads

CP PM4 reads
PA index reads
State/vertex program loading
Vertex loads
AGP texture

Oddites for VGA

8.1.3 Block diagram

IO pads

PCI Slave Write

AGP Fast Write

PCI Slave Read

Register read/write
(RBBM)

Video memory read/write
(HDP)

BusCLK CoreCLK

PCI Bus Master Write

AGP Write

PCI Bus Master Read

AGP Read

MC0

MC1

MC2

MC3

TD/L2/MH

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1346 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

R400 Top Level Spec

PAGE

18 of 32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

8.2 CP – control processor

8.2.1 Description
The control processor executes the pm4 display list from memory, driving the operation of the rest of the chip. It also
implements the real-time event commands.

Currently the CP is based on a custom processor, which has a very limited instruction set and is really only capable of
executing the existing program. It is not expected to be capable of doing the translation of 2D packets to the preferred
hardware interface, or be able to implement the real time commands.

An alternative is to base the CP on a more generic RISC processor. It appears that this will save area, and make it
possible to write the CP control program in C. The ARC core, for example, is less than 20K gates.

One key change that enables us to consider a processor core instead of the custom PM4 engine is that data is no
longer embedded in the command stream. In the R128 to R300 index, vertex, and host-blit data is embedded in the
primary ring buffer and the indirect buffer. In the R400 index data is fetched by a dedicated DMA engine in the PA
block, and vertex and host blit data is fetched through the texture cache. This allows us to optimized a single path for
the data rather than need to optimize both the DMA and PM4 paths. With the CP no longer needing to be able to
copy data at 32 bits per instruction (read and write), a less specialized processor can be used.

8.2.2 Major interfaces
Bus Description
RBBM->CP Register read write,

Used for reset and debugging of CP, and access to control registers
CPRBBM Register writes, and reads

Register access that occur as a result of executing the control program
CPMH Memory reads and writes.

Read PM4 buffers, write semaphores to communicate with driver
DisplayCP Source of real time events to trigger real time commands, also delays in command queue based on

display status. Current scan line is most common type of data
All blockCP Blocks status.

Used for wait for idle and power down

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1347 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of
32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

8.2.3 Block diagram

Control registers

Processor core

RBBM register reads/writes

Display events

Block status

reset/debug

Instruction Cache
or instruction memory

Data cache
(may be L2 Memory

RBBM

8.3 RBBM – register interface manager

8.3.1 Description
The RBBM of the R400 is vastly simplified compared to previous versions.
The key differences are:
1) A much simpler register decoding scheme that does not need the RBBM to be aware of autoreg files.
2) A simpler register bus protocol that (for most registers) does not involve any feedback signals to the RBBM
3) Support for simple pipelining of the register bus to meet timing goals.
4) Much of the synchronization logic that was in the RBBM is now the domain of the CP, this means that bypassing

the CP is not a viable production driver mode, but it really is not viable now.
5) Power Saving needs some adjustment (since the RBBM is no longer aware of when a block is activated.
6) All register bus connections are now single cycle, register to register which will simplify timing.

However the management of state changes has been moved from the blocks in the 3D pipe to the RBBM. The RBBM
detects when a state block is no longer in use, tracks the blocks that are not is use, and allocates them to new
primitives as needed.

8.3.2 Major interfaces
Bus Description
HBIURBBM Register read/write
CPRBBM Register writes resulting from interpretation of command packets
RBBM-register
bus

The purpose of the block

RBBMCLK Power management
RBBMall Soft/hard reset

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1348 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

R400 Top Level Spec

PAGE

20 of 32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

8.3.3 Block diagram
HBIU CP

Read address
Non-queued write
and data

Queued Write
Fifo

data and address

Arbitrator

Read address
Non-queued write
and data

Queued Write
Fifo

data and address

Register Bus Read return

RTR’s from queued register clients

8.3.4 RBBM operation
This is copied from the current RBBM spec, at some point most of it will be moved back there.

The RBBM has merges register writes and reads from the HBIU and the CP and broadcasts them to the rest of the
blocks in the chip. That is all it needs to do.

Registers can either be queued or un-queued. In general queued register writes are initiator registers, or order
critical state registers. The RBBM distinguishes between the two types of registers by their address only. The upper
?Kbytes of the register space are queued registers, the remainder is un-queued.

Both the CP and the host can generate both types of register writes.

Un-queued register writes can and will pass queued registers writes. If it is important for un-queued register writes to
be held off by a queued register write the host or cp must not send the un-queued register write until the host or cp
has determined that the queued register write has completed (usually by a spin lock on a semaphore).

Queued registers are maintained in order from the viewpoint of each originator. I.e. all of the CP’s queued writes will
complete in order, and all of the hosts will complete in order. There is no ordering between the CP and host- the
writes from both clients may become interleaved.

The global register bus is as follows:
Name Direction bits Description

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1349 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of
32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

WE RBBM 1 Write enable, address and data are valid
Addr[19:2] RBBM 18 Register address
Wm[3:0] RBBM 4 Register write mask, should be ignored by most clients
Wd[31:0] RBBM 32 Data
RE RBBM 1 Read Enable, address is valid
Rd[31:0] RBBM 32 Read data returned
RRn RBBM 1 Read return strobe (active low)

The protocol for a write is simple:

On a rising edge , if WE is high then the data and address is valid.
There are no completion signals, there is no way to abort a write.
Handshake signals for queued registers will be described later and are separate from the register bus.

The read protocol is somewhat more complex.
A read request is sent out when RE is high. The address holds the address of the read request.
RE and addr will only be valid for one clock cycle.

Some number of clock cycles later the RBBM will receive the return data back, when RR is low.
The read return “bus” (Rd and RRn) is the logical AND of all the clients that can respond to a read request.
All clients but the client that is responding to the read request drive a logical 1 on the bus. The wiring of the read
return bus is a tree of point to point connections, and each node one or more sub-busses are AND’d together,
registered, and driven on to the RBBM. This is the same as an OR tree, but the signal is inverted. Since a read
return cycle is surrounded by idle cycles the only critical transition is high to low for the Rd signals (possible timing
help, at the cost of needing to tell static timing to ignore low to high transitions).

Only one read is outstanding at any time. Reads will pass queued writes, (should/can they pass all writes?)
The RBBM will timeout on a read after 64? clocks. It is critical that no client respond latter than 64 clock as the RBBM
may timeout on the read, issue another and interpret the very late response of the first read as the second read.

If a read times out the RBBM will return dummy data (such as ‘0xDEADBEEF’) to the requestor and mark in a debug
register than an error happened.

Both queued and non-queued register writes are broadcast on the same bus. To implement the queued registers the
RBBM looks at the status of all of the RTR signals from the clients that contain queued registers. Only if all are high
will any queued register be allowed to issue from the RBBM. Note that these signals are registered on the boundary
of the RBBM, and the register bus is also registered. This means that there is at least a two clock latency responding
to a RTR signal deasserting. Since the clients will also be registered this means that a client will receive four or more
queued register writes after asking them to stop. It is the clients responsibility to have enough buffering so that no
register writes are lost.

8.4 CLK – clock generator

8.4.1 Description
The clock generator block generates the many clocks used by the R400:

Clock speed range
AGP 133 to 533 AGP clock
Sclk 33to 500 Mhz core clock
Mclk 33 to 500 memory clock
P0clk 10 to 450 pixel clock for primary display (5x faster for TMDS//LVDS)
P1clk 10 to 450 pixel clock for secondary display (5x faster for TMDS//LVDS)
Tvclk pixel clock for tvout

8.4.2 Major interfaces
Bus Description

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1350 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

R400 Top Level Spec

PAGE

22 of 32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

RBBMCLK control

8.4.3 Block diagram

8.5 TC – test controller

8.5.1 Description

8.5.2 Major interfaces

8.5.3 Block diagram

8.6 VIP – Video input port

8.6.1 Description

8.6.2 Major interfaces
Bus Description
VIPMH DMA transfers
RBBMVIP Control

8.6.3 Block diagram

8.7 ROM – boot rom
On powerup the graphics chip reads the straps from the rom. The rom is then used for responding to boot rom read
requests from the PCI bus.
We will only support serial roms.
The list of supported roms is TBD.

8.7.1 Description

8.7.2 Major interfaces
Bus Description
ROMHBIU Boot rom read interface
RBBMROM Flash/eeprom boot rom write interface
ROMchip Decoded straps

8.7.3 Block diagram

8.8 I2C – I2C interface

8.8.1 Description
The I2C bus is a 2 wire bus used to communicate with other multimedia devices (such as tv tuners)

8.8.2 Major interfaces
Bus Description
RBBMI2C Read/write interface

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1351 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of
32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

8.8.3 Block diagram

8.9 DU – Display
The R400 display drives up to three displays: two monitors and a TVOUT.

The chip can have as much as two analog RGB DAC’s, two dual channel TMDS outputs, and one dual channel LVDS
output.

All support for the scaling overlay is removed. The display supports a non-scaling overlay on each display.

See display operation section above for more details.

8.9.1 Description
Hopefully we have the resources to move to the time interleaved display design.
The following frame buffer formats are supported:
Primary surface:
8bpp index
16bpp 4444,565.555 RGB
32bpp 8888 RGB
64bpp 16:16:16:16, either sRGB or the R400 floating point format

Overlay:
32bpp 8888 RGB
4:2:2 YUYV
the color conversion for the overlay is controlled by a programmable matrix, so the choice of color space is arbitrary.

The maximum display pixel clock is greater than 400 MHz.
If we build the time interleaved design, then the maximum number of display pixels will be 2x the core clock speed.
This will be divided among the two displays and tvout.

8.9.2 Major interfaces
Bus Description
TDDU Memory read interface
RBBMDU Register writes/reads
DUCP Synchronization information

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1352 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

R400 Top Level Spec

PAGE

24 of 32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

8.9.3 Block diagram

Overlay input buffer

primary input buffer

Color format
conversion

Color format
conversion

Overlay
blend

clut ram

tvout
fifo

display0
fifo

display1
fifo

DAC

DAC

DAC

disp0 clk

disp1 clk

tvout clk

TMDS

TMDS

8.10 MH – Memory Hub

8.10.1 Description
The memory hub acts as a switch between the many small clients of the memory controllers, and the two or four
memory controllers. This allows most blocks to not have any dependencies on the number of memory controllers.

8.10.2 Major interfaces
The memory hub has a 32 bit read and a 32 bit write bus to each of the memory controllers. If we co-locate the MH
and the L2 cache in the texture decompression block, then the 128 bit read return bus from the MC to the L2 cache
can be used to return read data to the MH instead of a private bus.

The clients of the MH:

HDP
CP
VIP
PA- index buffer reading
RE- Vertex/pixel program loads, hierarchical Z
IDCT
?

8.10.3 Block diagram

8.11 HDP – Host Data Path
The host data path allow the host cpu to access video memory. It provides eight “surfaces” that provide endian and
tiling translation, making the target area of memory look like a linear surface in the processors native endian.

The HDP also implements most of the legacy VGA functionality.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1353 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of
32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

8.11.1 Description

8.11.2 Major interfaces
Bus Description
HIHDP Memory read/write requests to HDP
HDPMH HDP reads/writes to local memory

8.11.3 Block diagram

8.12 IDCT – Mpeg decoder

8.12.1 Description
The R400 uses the same implementation of IDCT/MPEG as the R300. This block decodes the compressed stream,
placing the resulting IDCT data in one buffer in memory, and the motion vectors in another. The 3D pipe is then
programmed to read the motion vectors and IDCT data and complete the decoding operation

8.12.2 Major interfaces
Bus Description
IDCTMH Read command stream, write IDCT results and motion vectors

8.12.3 Block diagram

8.13 PA – Primitive Assembly

8.13.1 Description
The primitive assembly block fetches or creates the indices to vertices, possibly creating extra vertices with the
tesselation engine. It determines which vertices have not been recently seen (and will therefore not be located in the
post transform vertex cache), assembles vectors of sixteen vertices than need to be transformed, and submits them
to a raster engine/shader pipe set to be transformed. It then receives the transformed vertex position data from the
shader pipes. The vertex cache tag also outputs the sequence of cache addresses generated from the incoming
indices. The primitive assembly subblock then creates primitives (lines, points, rectangles, triangles) from the
vertices. It also implements the line counter for styled lines. The primitives are setup in the setup/clip block, but first
clipped to the view frustum and optionally the user clip planes. The scan converted does a course walk of the
primitive using an 8x8 grid. The scan converted also determines when the hierarchical Z data needed for culling will
not be in the local hierarchical z cache in each rasterizer and makes the needed memory read requests. An arbitrator,
centrally located in the PA block arbitrates each rasterizers reads from the post transform vertex parameter cache,
which is distributed among the shader pipes.

8.13.2 Major interfaces
Bus Description
RBBMPA State changes, and initiator register writes
PAMH Index fetch path
PARE Vertex transform packets
PAMH Hierarchical Z read request
PARBn Coverage mask, position, and Z slope
PASPn 8x8 tiles to be rasterized

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1354 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

R400 Top Level Spec

PAGE

26 of 32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

8.13.3 Block diagram

Index array fetcher

Tesselation engine

Vertex cache tag

shader pipe vtx distributor

to raster engines for vtx transform

Vertex position cache

Primtive assembly

Clip/Setup

Scan converter

Real time command interface

heirZ cache tag

broadcast to raster
engines for pixel shading

broadcast to render
backends

Vtx parameter
cache arbitrator

8.14 TD – Texture Decompression

8.14.1 Description
The texture decompression block converts the memory texture formats into the uncompressed texture formats
supported by the texture pipes. It consists of the L2 texture cache, the texture decompression logic, a set of output
buffers, and the texture addressing logic.

The decompressed formats supported are:

32 bpp (8888) unsigned
32 bpp (8888) signed
32 bpp (16,16) unsigned and signed
32 bpp (32) unsigned and signed

we may also support a 8bpp mono format to improve the performance of shadow buffering.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1355 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of
32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

8.14.2 Major interfaces
Bus Description
TPTD Texture requests and returned data
TDMCn Memory read requests
TDDisplay Data path for display which uses the L2 cache as its line buffers
MCnTD Invalidate snoop bus for cache coherency

8.14.3 Block diagram

L2 Cache
section

display interface

L2 Cache
section

L2 Cache
section

L2 Cache
section

Texture decompression

Output buffer Output buffer Output buffer Output buffer

L2 tag L2 tag L2 tag L2 tag

8.15 RE – Raster Engine

8.15.1 Description
The raster engine performs two duties: it does the detail walk of 8x8 tiles of primitives, and it contains the sequencer
for the shader pipe.

The shader pipe has the FIFO to allow for balance between the pipelines in the chip, it appears that this FIFO is 64
8x8 tiles deep. Only tiles that are owned by this pipeline are stored in the FIFO, others are immediately rejected.
When an 8x8 tile is read out of the FIFO, it is checked against the heir-Z fail data that has arrived in the local heir-Z
cache. If the primitive fails, it is rejected and the RB is informed that the tile has been killed.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1356 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

R400 Top Level Spec

PAGE

28 of 32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

We are going to support hierarchical Z object culling within the command stream. To support this we have the ability
to draw a bounding object, heir-Z test it, but kill it before we rasterize it. The raster engine will receive tiles that are
marked indicating that they are part of an occlusion query, and test them against the heir-z memory. All the tiles are
rejected, but if any of them pass the heir-Z test then id then a flag is set. When the marker (which is an id) changes,
indicating the end of this occlusion query, the RE will signal back to the primitive assembly if the flag was set or not.

If the tile passes the heir-z test we need to ensure that the parameter data needed to interpolate the triangle is either
in the local l0 parameter cache, or on its way there. If not a request needs to be made to the arbitrator in the PA to
get the needed data/

A FIFO on the output of the HZ cull and parameter cache tag buffers the passing tiles while waiting for the parameter
data to arrive at the cache. It also provides buffering so that the rest of the pipeline can stay busy during a long string
of tiles that fail the hierarchical Z test.

The next step is a detail walker that generates the coverage mask for each potentially covered 2x2 quad in the 8x8.
We may need a path from this result to the render backend to aid in its determination as to what to fetch. The
parametric coordinates are calculated, and used to driver the interpolator. We need to be able to do both perspectivly
correction interpolation and non-corrected interpolation.

The raster engine breaks the stream of pixels into 4 quad vectors (16 pixels) and will wait until the needed space is
available in the shader pipe, and then start the sequencer running the pixel shader program.

The second part of the raster engine is the sequencer.
The sequencer first arbitrates between vectors of 16 vertices that arrive directly from primitive assembly and vectors
of 4 quads (16 pixels) that are generated in the raster engine.

The vertex or pixel program specifies how many GPR’s it needs to execute. The sequencer will not start the next
vector until the needed space is available.

The sequencer is based on the R300 design. It chooses an ALU clause and a texture clause to execute, and execute
all of the instructions in a clause before looking for a new clause of the same type. Each vector will have eight texture
and eight alu clauses, but clauses do not need to contain instructions. A vector of pixels or vertices ping-pongs along
the sequencer FIFO, bouncing from texture reservation station to alu reservation station. A FIFO exists between each
reservation stage, holding up vectors until the vector currently occupying a reservation station has left.. A vector at a
reservation station can be chosen to execute. The sequencer looks at all eight alu reservation stations to chose a alu
clause to execute and all eight texture stations to chose a texture clause to execute. The arbitrator will give priority to
clauses/reservation stations closer to the top of the pipeline. It will not execute an alu clause until the texture fetches
initiated by the previous texture clause have completed.

To support the shader pipe the raster engine also contains the shader instruction cache and constant store.

8.15.2 Major interfaces
Bus Description
PA(sc)RE Broadcast bus for 8x8 slices of primitives. I,J,K plane equations, front most Z for heir-Z culling,

pointer for location of parameter data in vertex parameter cache
MHRE Returned hierarchical Z data for local cache.
PARE Parameter request port
SCRE Returned parameter data
PARE Requests to transform packets of vertices
RBBMRE State register reads/writes
RESC Interpolated parameter data
RESC Instructions, constants, register file addresses
RERB Heir-Z pass/fail information
RERB Sequencing information for availability of pixels
REPA Sequencing interface for returning transformed vertices.
REPA Occlusion query results
MHRE Shader I Cache fills

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1357 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of
32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

8.15.3 Block diagram

8.15.3.1 RE Block diagram

Region Cull

Primitive Fifo
(64 8x8
Deep)

HZ CullHZ Cache

Fifo

Detail Walker

Reciprocal
(I/W+J/W+K/W

= 1/W)

Coverage
Mask

I/W J/W K/W
interpolators

Perspective Interpolators Fifo

Parameter
Cache

Shader

Vertex Transform

Parameter
Store

arbitrator
(PA)

ALU commands/reg
addr Texture commands/

register

Arbitrator/
register mngr

Fifo

8.15.3.2 RE sequencer
8.15.3.3 RE sequencer arbitrator

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1358 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

R400 Top Level Spec

PAGE

30 of 32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

vertex/pixel vector arbitrator

Possible delay for available GPR’s

FIFO
Texture clause 0
reservation station

Texture clause 1
reservation station

FIFO
ALU clause 0
reservation station

FIFO

Texture clause 2
reservation station

Texture clause 3
reservation station

FIFO
ALU clause 1
reservation station

FIFO

FIFO
ALU clause 2
reservation station

FIFO

FIFO
ALU clause 3
reservation station

FIFO
Texture clause 4
reservation station

Texture clause 5
reservation station

FIFO
ALU clause 4
reservation station

FIFO

Texture clause 6
reservation station

Texture clause 7
reservation station

FIFO
ALU clause 5
reservation station

FIFO

FIFO
ALU clause 6
reservation station

FIFO

FIFO
ALU clause 7
reservation station

texture arbitrator

texture arbitrator

8.16 SP – Shader Pipe

8.16.1 Description
The shader pipe implements the math pipeline of the R400. It has no sequencing/control logic; the control is located
in the raster engine.
The shader pipe contains four floating point MAC’s, and an

8.16.2 Major interfaces
Bus Description
RESP Interpolated data
RESP Control

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1359 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of
32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

SPTX Texture requests + vertex parameters + pixels to render backend
TXSP Returned texture data
RESP Constants
SPSP Local w bus for derivative opcode

8.16.3 Block diagram

Register File
512x128 (built as 4 128x128 or 16 128x32

Operand mux

4x32
128 bit data

4 32 bit MAC units
128 bit scalar/vector

ALU
control from RE

control from RE

constants from RE

interpolated data from RE

Address to texure
or vertex parameter data to RE through texture block
or pixel data to RB through texture block

data returned from texture fetch

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1360 of 1898

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

R400 Top Level Spec

PAGE

32 of 32

Exhibit 2041.DOC �� 48154 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page ***09/04/15 12:48 PM

8.17 TP – Texture Pipe

8.17.1 Description

8.17.2 Major interfaces

8.17.3 Block diagram

8.18 RB – Render Backend

8.18.1 Description

8.18.2 Major interfaces

8.18.3 Block diagram

8.19 MC – Memory Controller

8.19.1 Description

8.19.2 Major interfaces

8.19.3 Block diagram

9. Common Foundations

9.1 Logic Design

9.1.1 Data formats
As much as possible, data should be stored and processed identically to x86 (or sparc) conventions. This will, for
example, allow the emulator to use normal 32 bit floats and the processors native multiply, add and other operations.
This will have a significant effect on the achieved simulation performance compared to being “almost” identical which
requires the emulator take several operations to match the hardware bit-exact.

9.1.2 Register Bus
Issues:
 32 vs. 64 bit
 Do rendering state updates happen on this bus or over a dedicated path from memory?
 Flow control

9.1.3 Block Communication protocol
We want to specify a limited number (one Is probably not possible) number of different ways that blocks are
interconnected to simplify verification and emulation.

9.2 Software

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1361 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

1 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

Author: Andrew Gruber, Andi Skende

Issue To:

Copy No:

 Shader Processor

Rev 1.2

Overview: This document describes the overall architecture of the Shaders, interfaces, partitioning into functional blocks as

well as the timing of the shader pipeline. It’s intended for use by hardware designers.

AUTOMATICALLY UPDATED FIELDS:
Document Location : //ma_andi_mobile/…./doc_lib/parts/sp
Current Intranet Search Title: Shader Processor

APPROVALS
Name/Dept Signature/Date

Remarks

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES INC.

THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished work
created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this unpublished
work. The copyright notice is not an admission that publication has occurred. This work contains confidential, proprietary
information and trade secrets of ATI. No part of this document may be used, reproduced, or transmitted in any form or by any
means without the prior written permission of ATI Technologies Inc.”

ATI 2042
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1362 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

R400 Shader Processor Model

PAGE

2 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

Table Of Contents

STATE ... 6

1.1 Shader State .. 6

1.1.1 GPRs (General Purpose Registers) ... 6

1.1.2 Constant Registers .. 6

1.1.3 Previous Instruction Result .. 7

1.2 Initial state ... 7

1.2.1 Vertex Shader .. 7

1.2.2 Pixel Shader ... 7

2. PROGRAM FORMAT .. 7

3. ALU .. 7

3.1 ALU structure ... 7

3.2 ALU instruction format .. 7

3.2.1 ALU Instruction Word Interpretation .. 9
3.2.1.1 Relative vs. Absolute Constants ... 9
3.2.1.2 Argument Selection and Pointers ... 9
3.2.1.3 Input and Output Modifiers ... 9
3.2.1.4 Export and Predicate related decoding .. 10
3.2.1.5 Export Types and Addresses ... 11

3.3 ALU Opcodes .. 11
3.4 DX9.0 Shader Instructions, related exceptions and corner cases .. 14

3.5 Macro opcodes .. 14

4. SHADER BLOCK DIAGRAMS .. 15
4.1 Shader as an SIMD architecture .. 15
4.2 Top-Level Diagram of a Shader Pipeline .. 15
5. INTERFACES .. 16
5.1 External Interfaces ... 16

5.1.1 Naming Convention ... 16

5.1.2 Shader Engine to Texture Fetch Unit Bus ... 17

5.1.3 Sequencer to Shader Pipe(s): Texture stall .. 17

5.1.4 ScanConverter to Shader Pipe: IJ bus .. 17

5.1.5 Sequencer to Shader Pipe(s) - broadcast: Interpolator bus .. 18

5.1.6 Sequencer to Shader Pipe(s)-broadcast: Parameter Cache Read control bus 18

5.1.7 Sequencer to Shader Pipe: GPR, Parameter Cache control and auto counter 18

5.1.8 Shader Pipe to Shader Export (SX): Parameter data out of Parameter Cache 19

5.1.9 Shader Export (SX) to Interpolators: Parameter Cache Return bus 19

5.1.10 Shader Pipe to Shader Export (SX): Pixel/Vertex write to SX 19

5.1.11 Sequencer to SPx: Instruction Interface ... 20

5.1.12 Shader Pipe to Sequencer: Constant address load ... 22

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1363 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

3 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

5.1.13 Sequencer to SPx: constant broadcast .. 22
6. PARAMETER INTERPOLATION .. 23
7. SHADER LIMITATIONS .. 24
8. HARDWARE IMPLEMENTATION SPECIFICS ... 25
8.1 General Information on the Shader Floating Point arithmetic ... 25
8.2 Interpolators and IJ/XY Buffers .. 25

8.2.1 Interpolators .. 26
8.2.1.1 Interpolation Units .. 26
8.2.1.2 Parameter Selection Unit ... 27
8.2.1.3 Parameter Difference & Cylindrical Wrap Engine ... 27

8.2.2 GPR Write Path ... 28
8.3 Vector Unit ... 29

8.3.1 Vector Unit Pipeline ... 29

8.3.2 Argument Selection and Routing ... 30

8.3.3 Parameter Data Path ... 31
8.4 Scalar Unit .. 33

8.4.1 Scalar Engine Pipeline .. 33
8.4.1.1.1.1.1 High Precision Pipeline Exp2 Preprocessing .. 34
8.4.1.1.1.1.2 High Precision Pipeline Mantissa Calculation .. 34
8.4.1.1.1.1.3 High Precision Pipeline Log2 Post Processing ... 38
8.4.1.1.1.1.4 High Precision Pipeline Exponents .. 38
8.4.1.1.1.1.5 High Precision Special Outputs .. 39
8.4.1.1.1.1.6 Determination of High Precision Coefficients ... 39

9. OPEN ISSUES ... 42

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1364 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

R400 Shader Processor Model

PAGE

4 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

Revision Changes:

Rev 0.0 (Steve Morein)
Date: Alpril, 2001
Initial revision.

 Document started

Rev 0.1 (Andi Skende)
Date: May 09, 2001

 Updated, added the instruction formant, initial block
diagrams and preliminary interface description

Rev 0.2 (Andi Skende)
Date: May 21, 2001

 A more detailed description of the SP<->TEX,
RE/Sequencer <->SP interfaces.

Rev 0.3 (Andi Skende)
Date: June 19, 2001

 Added the paragraph related to shader functional
limitations that the compiler needs to be aware of.
A new updated and compressed version of ALU
instruction format.

Rev 0.4 (Andi Skende)
Date: June 20, 2001

 Updated the Introduction of this document. A new
Pipeline Timing Diagram was inserted.

Rev 0.5 (Andi Skende)
Date: July 31, 2001

 Merged in the Shader Hardware Spec. A more detailed
description of the interfaces with the other blocks was
added. Updated some of the diagrams to a more
correct representation of the datapaths.

Rev 0.6 (Andi Skende)
Date: August 17,2001

 A more detailed description/definition of Shader
interfaces with the other blocks.
A more detailed description of the instruction supported
by Shader Processor and it’s relation to instruction set
exposed at API level.

Rev 0.7 (Andi Skende)
Date: November 8, 2001

 Updated the Alu instruction word definition and the list
of the alu instruction opcodes supported by the shader
pipe ALU unit.

Rev 0.8 (Andi Skende)
Date: November 27, 2001

 Updated the definition of the External Interfaces

Rev 0.9 (Andi Skende)
Date: December 10, 2001

 Updated the definition and naming of some of the
external interfaces, rearranged the ALU instruction
word definition such that the fields are dword aligned.
The instruction opcode definition was updated and
expanded.

Rev 1.0 (Andi Skende)
Date: January 15, 2002

 Updated most of the diagrams. Updated the External
Interface definitions. Added a description of the
Parameter Interpolation Units. Added a diagram
desciption of the GPR write data paths.

Rev 1.1 (Andi Skende)
Date: January 21, 2002

 Updated some of the external interface definitions.
Specified the expected behavior of hardware
implementation of some shader opcode with some
corner case values as input arguments. The MS
Reference Rasterizer shader was used as guideline.

Rev 1.2 (Andi Skende)
Date: January 22, 2002

 Updated some of the external interface definitions.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1365 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

5 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

Introduction

Shader Pipe (SP) serves as the central Arithmetic and Logic Unit (ALU) for the R400 Graphics Processor. There are four
identical Shader pipelines in the R400 architecture. Differently from previous ATI architectures, the R400 Shader Pipe truly
represents an Unified Shader Architecture. In R400, both vertex and pixel shading operations are implemented through the
shader units. The R400 Shader Pipe represents an SIMD architecture. All the shader units of each and every pipe execute
the same ALU instruction on different sets of vertex parameters/pixel values. The building blocks of the R400 shader units
execute operations on single precision IEEE floating-point values.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1366 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

R400 Shader Processor Model

PAGE

6 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

State

1.1 Shader State

1.1.1 GPRs (General Purpose Registers)
The general-purpose registers are 128 bits wide, composed of four 32-bit values. Depending on the operation these
values are interpreted at RGBA, or XYZW, or STQW, or UVQW, or YUVA, or.. to simplify matters the only two aliases
used here are XYZW and RGBA.

To hide the latency of memory accesses the shader pipe will switch between different vectors. This is the same as
the idea of “microthreading” that some advanced CPU’s are investigating. The large register file is split between the
vectors executing in the shader pipe. The management of the shader register file is automatic, and not visible to a
program executing on a vector, except that a program is required to declare the number of GPRs it needs to execute.
The hardware will not start a vector until the required number of registers is available. There is a direct tradeoff
between the number of registers each program/vector needs and the number of vectors than can be simultaneously
resident. If there are too few vectors resident, then the latency of memory accesses can no longer be hidden and
performance suffers.
There are a total of 128 registers. It is possible for a single program/vector to request all 128 registers. This will make
it impossible to hide memory latency, but the program will still execute and generate the correct result.
Most pixel programs are expected to have less than eight registers, vertex programs are expected to have less than
sixteen registers.
The number of registers a program needs is the maximum number of registers it needs at any instruction. If a
program needs only 3 general purpose registers nearly all of the time, except for a short period when it needs 8, it still
needs to allocate eight. A significant performance optimization is for the compiler to reorder the instructions to
minimize the number of needed registers.

127 95 63 31 0 GPR
A/W B/Z G/Y R/X R0
 R1

 R127

Notation: R0.A refers to the bits 96 to 127 of register one. So does R0.W

1.1.2 Constant Registers
There are also (192?) constant registers:

127 95 63 31 0 Const
A/W B/Z G/Y R/X C0
 C1

 C191

These are ONLY available to vertex and pixel shader program in the primary commands stream. They should not be used
for real time stream pixel shaders, or 2D shaders. Constant Registers are physically part of the Sequencer unit. As it
become clear by reading the rest of this document, the content of the constant registers can be made available to the ALU
units of the shader pipes in the form of one of the possible alu operation arguments. ALU instruction word provides for that.

The constant registers are shared between vertex shaders and pixel shaders, it is the drivers job to allocate one section to
pixel shaders and another to vertex shaders to match the D3D programming model, other API’s may allow more freedom.
To be able to support multiple textures easily, and to save hardware area, the texture state registers are stored in constant
registers. A pair of constant registers hold 256 bits of texture state. Rather than have four or six sets of texture registers as
we do in the R100,R200, and R300 by storing them in the constant memory we can save area by reusing the logic already
needed to update the constant registers in order. Since any single texture instruction will only fetch from one texture we do
not need the simultaneous access we would get with implementing this as “normal” registers. The driver will probably decide
to allocate a fixed number of the constant registers as texture registers.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1367 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

7 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

1.1.3 Previous Instruction Result
Within an ALU clause the result of the previous operation is explicitly available, without requiring a register read.
(due to an exposed pipeline delay, the result of the previous operation can not be read from the register file without a
one-instruction delay slot). There are two distinct previous instructions, one scalar and one vector.
This register is not preserved between the end of one alu clause and the beginning of another.
It can be used to avoid using another GPR if the result is not needed. Also, the output modifiers, which do effect the
result of an instruction written into GPRs, do not effect the Previous Result content.

127 95 63 31 0

1.2 Initial state

1.2.1 Vertex Shader
A vertex shader initially has the x value of R0 set to the vertex index. No other registers are filled. The vertex shader
must use the index to fetch the vertex data from the vertex array(s), The pointers to the vertex arrays should be
placed in constant registers by the driver.

1.2.2 Pixel Shader
The pixel shader has the interpolated values generated from the values exported by the vertex shader.
If the vertex shader did expxy, and the appropriate control bit in the rasterizer is set, then the register 0 contains the
x,y,z,w of the pixel (screen space). If the pixel shader wants a world space x,y,z,w the vertex shader should output
that.

2. Program Format

A pixel or vertex shader program consists of 16 clauses, eight texture clauses and eight alu clauses.
The instructions in a clause will be executed sequentially. If a given instruction is implementing, for example,
T * S + D (T = texture for SRC A, S = Specular for Source B, D = Diffuse for Source C), it’s the Sequencer’s task to
resolve the dependencies between the ALU clause and the respective texture clause. In other words, the sequencer
will not issue the ALU instruction using texture data as input to the shader pipe, until the texture request has been
issued to and serviced by the texture pipe. In general, the Shader is not aware of the origine of the SRC A, SRC B
and SRC C data (texture, diffuse, specular, vertex parameters etc). Three address pointers into the register files (one
for each operand) are all the shaders need to fetch these operands. In reality, as it will become more evident later in
this document, there is no need for the pointer values to be passed to the shader units. This is related to the GPR’s
read/write mechanism we have chosen to implement.

3. ALU

3.1 ALU structure
ALU consist of two distinct units: the ‘Vector’ ALU and the ‘Scalar’ ALU. The Vector ALU peforms operations in
parallel across a 4-component vector, while the Scalar ALU performs operations on a single component of a vector
which is then replicated across all components. A single instruction may ‘co-issue’ both a Vector and a Scalar
instruction, subject to the limitation that the vector instruction may only require 1 or 2 arguments. For example, a
Vector MUL (Multiply) instruction can be coissued with a Scalar instruction, but a MULADD (Multiply and ADD) may
not.
For more details on the overall structure of the Shader ALU, refer to the figures in Section 5 of this document.

3.2 ALU instruction format
There are two opcodes present in the ALU instruction, one for the Vector operation and one for Scalar operation. The
idea is that we can allow a 4-component vector operation (if the compiler permits) coissued with a Scalar Operation.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1368 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

R400 Shader Processor Model

PAGE

8 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

The Scalar unit may use SRC C, depening on whether this source is being used by the vector operation. Please refer
to Section 8 of this document on the limitations of a Vector or Scalar instruction issuing.

Field Bits Size Description
SRC A Select 95 1 Select bit for selecting Constant vs Register/Vector/Scalar Feedback

0: Constant
1: Register/Previous Vector/Previous Scalar

SRC B Select 94 1 Select bit for selecting Constant vs Register/Vector/Scalar Feedback
0: Constant
1: Register/Previous Vector/Previous Scalar

SRC C Select 93 1 Select bit for selecting Constant vs Register/Vector/Scalar Feedback
0: Constant
1: Register/Previous Vector/Previous Scalar

Vector Opcode 92:88 5 Opcode for Vector instruction
SRC A Register/Const-
ant Pointer

87:80 8 Location of Source A in the register file
If not Constant, Bits [6],[7] denote:
00- (absolute register)
01 - (relative register)
10- (previous vector)
11- (previous scalar)

SRC B Register/Const-
ant Pointer

79:72 8 Refer to SRC A Register/Constant Ptr

SRC C Register/Const-
ant Pointer

71:64 8 Refer to SRC A Register/Constant Ptr

Constant0
Relative/Absolute

63 1 The address pointer into the Constant Register File is relative to some base
address register (works in conjunction with Address Register Select)

Constant1
Relative/Absolute

62 1 The address pointer into the Constant Register File is relative to some base
address register (works in conjunction with Address Register Select)

Relative Address
Register Select

61 1 This bit determines the address register used as base register when
Constant indexing is relative. It is used in conjunction with Constan0
Relative/Absolute and Constant1 Relative/Absolute fields.
0:Loop index relative
1:Address Register relative

Predicate Select 60:59 2 This bits are used in conjunction with bit 7 of Scalar Destination Pointer and
Vector Destination Pointer

SRC A Arg Modifier 58 1 0: No modification 1:negate
SRC B Arg Modifier 57 1 0: No modification 1:negate
SRC C Arg Modifier 56 1 0: No modification 1:negate
SRC A swizzle 55:48 8 2 bits for each component

45:46 alpha channel
00:leave alpha
01:red
10:blue
11:green
47:48 red channel
00:leave red
01:green
10:blue
11:alpha
49:50 green channel
00:leave green
01:blue
10:alpha
11:red
51:52 blue channel
00:leave blue
01:alpha
10:red
11:green

SRC B swizzle 47:40 8 2 bits for each component (refer to ‘SRC A swizzle’)
SRC C swizzle 39:32 8 2 bits for each component (refer to ‘SRC A swizzle’)
Scalar Opcode 31:26 6 Opcode for the Scalar instruction
Scalar Clamp 25 1 0: No clamp 1: Clamp to [0.0, 1.0] range
Vector Clamp 24 1 0: No clamp 1: Clamp to [0.0, 1.0] range

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1369 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

9 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

Scalar Write Mask 23:20 4 Defines which out of 32 bits words (four of them) in the result is written back in
the register file. There’s one bit per channel.
0: leave the current value
1: write

Vector Write Mask 19:16 4 Defines which out of 32 bits words (four of them) in the result is written back in
the register file. There’s one bit per channel
0: leave the current value
1: write

Scalar result pointer 15:8 8 Specifies the address into the register files for the result of scalar operation
Bit[6] determines whether the destination address into GPR’s is relative or
absolute.
0: absolute
1: relative
Bit[7] in conjuction with Predicate Select are used to define different scenarios
of export and predicate functionality. For more on this, refer to Section 3.2.1.2

Vector result pointer 7:0 8 Specifies the address into the register files for the result of vector operation
Bit[6] determines whether the destination address into GPR’s is relative or
absolute.
0: absolute
1: relative

There’s a total of 96 bits per instruction.
SrcA, SrcB and SrcC GPR locations denoted by Src A (B, C) Register/Constant Ptr fields of the ALU instruction word,
can be relative as well as absolute addresses. If relative, they are relative to a register (Relative Address Register)
present in the Sequencer as a render state. The above applies to Constant values as well.
The bit allocation and assignment for the different fields of the instruction word was done with under the limitations
that they should be dword (32–bit) aligned.

3.2.1 ALU Instruction Word Interpretation

3.2.1.1 Relative vs. Absolute Constants
The location of the Constant Values in the Constant Regiter File can be absolute or relative to an offset value. When
relative, they can be relative to either a loop index or a given register content value. The truth table shows the
instruction fields that are used to decode the nature of the constant values.

Constant0
Relative/Absolute

Constant1
Relative/Absolute

Address Register
Select

Notes

0 0 0 Constant0 –absolute Constant1-absolute
0 0 1 Constant0 --absolute,9 bits, Constant 1 Absolute
1 0 0 Constant0 –loop index relative Constant1-absolute
0 1 0 Constant0-absolute Constant1 –loop index relative
1 1 0 Constant0–loop index relative Constant0–loop index relative
1 0 1 Constant0-address relative Constant1-absolute
0 1 1 Constant0-absolute Constant1-address relative
1 1 1 Constant0-address relative Constant1-address relative

Note from the table that if both Constants are relative, they are relative to the same value, being that a loop index or
address register.

3.2.1.2 Argument Selection and Pointers
There can be a maximum of three sources (operands) required for an ALU operation of a vector type.
The R400 ALU instruction word definition provides location pointers into GPRs or Constant Memory for each of the
three sources (SRC A Register/Constant Pointer, SRC B Register/Constant Pointer, SRC B Register/Constant Pointer).

3.2.1.3 Input and Output Modifiers
The R400 ALU Instruction word definition provides for only two input modifiers for each of the three sources,
Negate and Swizzle.
The R400 ALU Instruction word provides for two output (result) modifiers: Mask which only effects the results going
into GPRs but not the Previous Results and Clamp.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1370 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

R400 Shader Processor Model

PAGE

10 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

3.2.1.4 Export and Predicate related decoding
The table below describes the encoding of the exports and predicate support in the instruction word.
Exports are allowed from either Scalar or Vector Pipe. Similar to the GPR write-backs, masking of export data is
permitted. The mask is present in the ALU instruction word. In cases when exports are coissued from Scalar and
Vector pipes, the export address used is the Vector Result Pointer present in the instruction word. The Scalar
Result Pointer in this case is ignored. The table below describes the “mixed” use of Scalar and Vector Result Masks
per component (each MASK field is 4 bits wide, one bit per component/channel) when exports are coissued.

Scalar Mask Vector Mask Result of Export
0 0 Don’t write
1 0 Write Scalar Component
0 1 Write Vector Component
1 1 Write 1.0 (one way of generating defaults)

A few other export related definitions:

1) When doing a Scalar export of 'pixels' or 'position', only the 'alpha' component will contain the scalar result.
The other 3 components will be expanded to 0.0. When exporting to 'parameters' the scalar result is put into
all 4 components.

2) When doing a Scalar export of 'parameters', non-export vector instructions may not be coissued.
3) Exporting of 'Fog' is a special case.

a) When exporting Fog, color must be exported at the same time. Fog will be exported in the Scalar
pipe and Color in the Vector pipe.

b) Masking is ignored for Fog exports. Instead Color and Fog are mixed into a single ARGBF word
and exported to the render back-end.

Predicate Select Scalar Destination Pointer Bit[7] Vector Destination Pointer

Bit[7]
Notes

0X 1 0 Scalar Export Vector to GPR
0X 1 1 Scalar Export Vector Export
0X 0 0 Scalar to GPR Vector to GPR
0X 0 1 Scalar to GPR Vector Export
10 0 0 Scalar to GPR Vector to GPR

Use Predicate register0
1: skip
0: execute

10 0 1 Scalar to GPR Vector to GPR
Use Predicate Register0
1: execute
0: skip

10 1 0 Scalar to GPR Vector to GPR
Use Predicate Register1
1: skip
0: execute

10 1 1 Scalar to GPR Vector to GPR
Use Predicate Register1
1: execute
0: skip

11 0 0 Scalar to GPR Vector to GPR
Use Predicate Register2
1: skip
0: execute

11 0 1 Scalar to GPR Vector to GPR
Use Predicate Register2
1: execute
0: skip

11 1 0 Scalar to GPR Vector to GPR
Use Predicate register3
1: skip
0: execute

11 1 1 Scalar to GPR Vector to GPR
Use Predicate register3
1: execute
0: skip

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1371 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

11 of
43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

3.2.1.5 Export Types and Addresses
The location where the data should be put in the event of an export is specified by in the destination address field of
the ALU instruction word. Following is a list of the possible types of exports and the range of addresses.

Vertex Shading

 0:15 - 16 parameter cache
 16:31 - Empty (Reserved?)
 32:43 - 12 vertex exports to the frame buffer and index
 44:47 - Empty
 48:59 - 12 debug export (interpret as normal vertex export)
 60 - export addressing mode
 61 - Empty
 62 - sprite size export that goes with position export
 (point_h,point_w,edgeflag,misc)

63 - position

 Pixel Shading
 0 - Color for buffer 0 (primary)
 1 - Color for buffer 1
 2 - Color for buffer 2
 3 - Color for buffer 3
 4:7 - Empty
 8 - Buffer 0 Color/Fog (primary)
 9 - Buffer 1 Color/Fog
 10 - Buffer 2 Color/Fog
 11 - Buffer 3 Color/Fog
 12:15 - Empty
 16:31 - Empty (Reserved?)
 32:43 - 12 exports for multipass pixel shaders.
 44:47 - Empty
 48:59 - 12 debug exports (interpret as normal pixel export)
 60 - export addressing mode
 61:62 - Empty
 63 - Z for primary buffer (Z exported to 'alpha' component)

3.3 ALU Opcodes
The following table represents the ALU operations/opcodes supported by the Vector unit.

Name Opcode Function Notes
ADD 0x00 Result = A + B 2 operand instruction; possible coissue
MUL 0x01 Result = A *B 2 operand instruction, possible coissue
MAX 0x02 If (A >= B) result = A; else result = B
MIN 0x03 If (A < B) result = A; else result = B
SETE 0x04 If (A = B) result = 1.0; else result = 0.0
SETGT 0x05 If (A > B) result = 1.0; else result = 0.0
SETGE 0x06 If (A >=B) result = 1.0; else result = 0.0
SETNE 0x07 If (A != B) result = 1.0; else result = 0.0
FRACT 0x08 Result = fractional part of A
TRUNC 0x09 Result = integer part of A
FLOOR 0x0a Result = TRUNCT(A) for positive A, (TRUNC(A) –1) for

negative A

MULADD 0x0b Result = A * B + C 3 operand instruction; no coissue
CNDE 0x0c If (A == 0.0) result = B ; else result = C 3 operand instruction; no coissue
CNDGE 0x0d If (A >= 0.0) result = B; else result = C 3 operand instruction; no coissue
CNDGT 0x0e If (A > 0.0) result = B; else result = C 3 operand instruction; no coissue
DOT4 0x0f Result = A dot B in 4 components Result replicated in all channels
DOT3 0x10 Result = A dot B in 3 components Result replicated in all four channels
CUBE 0x11 Result.alpha = max(A.red, A.green, A.blue);

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1372 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

R400 Shader Processor Model

PAGE

12 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

Result.blue = faceID code;
MAX4 0x13 Result.alpha = max(A.red,A.green,A,blue,A.alpha)
DOT4ABS 0x14 Result.a = abs(a.alpha*b.alpha) + abs(a.red*b.red) +

abs(a.green*b.green) + abs(a.blue*b.green)
The idea is that you woul execute:
ADD R0, R0, R1, neg ; // R0= R0 – R1
DOT4ABS R0.a, R0, C0;
// C0 holds (1.0,1.0,1.0,1.0).
// R0.a = abs(R0.a) + abs(R0.r) +
abs(R0.g) + abs(R0.b). It saves from
doing an abs() between ADD and
DOT4 in order to implement a sum of
absolute differences for 4 values.

DOT4SUB 0x15 Result.a = A.alpha * B.alpha – (A.red * B.red +
A.blue*B.blue + A.green * B.green)

PRED_SETE 0x16 If(A ==B) result =1.0; else result = 0.0 The result is written to predicate register
‘n’, not the register file.
Note that A==B compare is a per
channel compare. As such, if any of the
compares yields a result of 1.0 then the
predicate bit is set.

PRED_SETGT 0x17 If(A > B) result = 1.0; else result = 0.0 Same as above
PRED_SETGE 0x18 If(A >= B) result =1.0; else result = 0.0 Same as above
PRED_SETNE 0x19 If(A != B) result = 1.0; else result = 0.0 Same as above
MASKE 0x1a If(A ==B) result =1.0 ;else result= 0.0 The result is used to determine the

visibility of the pixel, and is not to be
written back to the register file. A 1.0
indicates that the pixel is made not
visible. Once a pixel is masked,
subsequent instructions can’t ‘unmask’
it. Note that A==B compare is a per
channel compare. As such, if any of the
compares yields a result of 1.0 then the
predicate bit is set.

MASKGT 0x1b If(A > B) result =1.0 ;else result= 0.0 Same as above
MASKGE 0x1c If(A >=B) result =1.0 ;else result= 0.0 Same as above
MASKNE 0x1d If(A != B) result = 1.0; else result = 0.0 Same as above

MOV instruction
MOV instruction can be implemented via a MIN or MAX instruction using argument selection bits in the ALU instruction
appropriately.
Predicate instructions
There are three predicate instructions. In the case of a predicate instruction, the result is written into a predicate
register, not into a register file. There are four predicate registers, so the destination must be specified in the range 0-
3. For more speficics on this, please refer to the Sequencer’s architecture speficication document.

The following table represents the ALU operations and their respective opcodes supported by the Scalar Unit.

Name Opcode Function Notes
ADD 0x00 Result = SRC.alpha + SRC.red
ADD_PREV 0x01 Result = SRC.alpha + PreviousScalar
MUL 0x02 Result = SRC.alpha * SRC.red
MUL_PREV 0x03 Result = SRC.alpha * PreviousScalar
MAX 0x04 If (SRC.alpha >= SRC.red)

 Result = SRC.alpha;
Else
 Result = SRC.red

MIN 0x05 If (SRC.alpha < SRC.red)
 Result = SRC.alpha;
Else
 Result = SRC.red;

SETE 0x06 If (SRC.alpha = SRC.red)
 Result = 1.0;

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1373 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

13 of
43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

Else
 Result = 0.0;

SETGT 0x07 If (SRC.alpha > SRC.red)
 Result = 1.0;
Else
 Result = 0.0;

SETGE 0x08 If (SRC.alpha >= SRC.red)
 Result = 1.0;
Else
 Result = 0.0;

SETNE 0x09 If (SRC.alpha ! = SRC.red)
 Result = 1.0;
Else
 Result = 0.0;

FRACT 0x0a Result = fractional part of SRC.alpha
TRUNC 0x0b Result = integer part of SRC.alpha
FLOOR 0x0c Result = TRUNCT(SRC.alpha) for

positive SRC.alpha,
(TRUNC(SRC.alpha) –1) for negative
SRC.alpha

EXP 0x0d Result = 2^ (SRC.alpha) ?? Base 2 exponent function
LOG 0x0e Result = log(SRC.alpha) Base 2 log function
RECIP 0x0f Result = 1/SRC.alpha;
RECIPSQRT 0x10 Result = 1/sqrt(SRC.alpha)
MOVA 0x1e FLOOR(SRC.alpha) This (9 bit) value is then exported to the addressing

registers in the sequencer
SUB 0x12 Result = Src.alpha – Src.red This instruction is needed since NEG argument modifier,

part of ALU instruction, applies to all channels of the
source.

SUB_PREV 0x13 Result = Src.alpha – PreviousScalar
PRED_SETE 0x14 If(Source.alpha ==Source.red) result

=1.0; else result = 0.0
The result is written to predicate register ‘n’, not the
register file.

PRED_SETGT 0x15 If(Source.alpha > Source.red) result =
1.0; else result = 0.0

Same as above

PRED_SETGE 0x16 If(Source.alpha >= Source.red) result
=1.0; else result = 0.0

Same as above

PRED_SETNE 0x17
PRED_SETZ 0x18 If(Source.alpha == 0.0) result = 1.0 ;

else result = 0.0

PRED_SETONE 0x19 If(Source.alpha == 1.0) result = 1.0 ;
else result = 0.0

MASKE 0x1a If(Source.alpha ==Source.red)
 result =1.0 ;
else
 result= 0.0

The result is used to determine the visibility of the pixel,
and is not to be written back to the register file. A 1.0
indicates that the pixel is made not visible. Once a pixel
is masked, subsequent instructions can not ‘unmask’ it.

MASKGT 0x1b If(Source.alpha >Source.red) result
=1.0 ;else result= 0.0

Same as above

MASKGE 0x1c If(Source.alpha >=Source.red) result
=1.0 ;else result= 0.0

Same as above

MASKNE 0x1d If(Source.alpha !=Source.red) result
=1.0 ;else result= 0.0

Same as above

MASKZ 0x1e If(Source.alpha == 0.0) result = 1.0 ;
else result = 0.0

Same as above

MASKONE 0x1f If(Source.alpha == 1.0) result = 1.0 ;
else result = 0.0

Same as above

SQRT 0x20 Result = EXP(0.5 *
LOG(Source.alpha))

Useful for normal compression

Note: a MOV instruction can be implemented via a MIN or MAX instruction using argument selection bits in the ALU
instruction appropriately.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1374 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

R400 Shader Processor Model

PAGE

14 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

3.4 DX9.0 Shader Instructions, related exceptions and corner cases
The following list of shader opcodes and their outputs for corner case values are based on the reference shader code
out of the DX9.0 Reference Rasterizer. R400 shader implementation in hardware will have the same behavior.

1. RCP opcode (Reciprocal)
RCP(Src.w), where Src.w = 0.0, is defined as the maximum value that can be represented by a single
precision IEEE floating point number. The hex representation of this number would be 0x7F7FFFFF.
2. RECIPSQRT opcode (Reciprocal of Square Root)
RECIPSQRT(Src.w), where Src.w = 0.0, is defined as the maximum value that can be represented by a
single precision IEEE floating point number. The hex representation of this number would be
0x7F7FFFFF.
3. LOG opcode (base 2 LOG)
LOG(Src.w) (base 2 LOG), where Src.w = 0.0, is defined as the smallest values that can be represented
by a single precision IEEE floating point number. The hex representation of this number would be
0xFF7FFFFF. For the rest of the values, LOG(Src.w) is defined as LOG(abs(Src.w)). In other words, the
sign of the Src values is ignored.

3.5 Macro opcodes
Instructions that API (DirectX, etc) defines as implementable via more “basic” instructions are know as MACROs.
DirectX 9.0 defines a few MACRO opcodes. For example:

POW - vector x power y
Instruction: POW DST, SRC1, SRC2
Description: Computes x power y.
Input power must be a scalar. Scalar result is replicated to all 4 output channels.
This is a macro instruction, which takes 3 instruction slots.
pow(x,y) could be expanded as exp(y * log(x)).
DST should be a temporary register
Macro expansion:
log DST, SRC1
mul DST, DST, SRC1
exp DST, DST

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1375 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of
43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

4. Shader Block Diagrams

4.1 Shader as an SIMD architecture
 As shown in the diagram below, four identical processing units comprise a shader unit. There are four shader units in
one shader pipeline. R400 has four shader pipelines. The full R400 shader pipe represents an example of a SIMD
(Single Instruction Multiple Data streams) architecture: the four shader pipelines, each with 4 identical shader units,
executing the same pair of Vector/Scalar Instruction on different data streams, in this case different pixel positions
within the same quad, over four different quads of pixels in parallel. In figure, the shader units are named as Upper
Left, Upper Right, Lower Left and Lower Right based on the relative position within the quad of the pixels they
process.
Within one shader pipe, only 4 processing units, one from each shader unit, are in the same execution sequence
(phase) at a given time. So, through the whole chip we have 4 sets of 16 processing units being at different execution
phases from one set to the other, but in the same execution phase within the same set.

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

shader unit Lower Rightshader unit Lower Leftshader unit Upper Rightshader unit Upper Left

1 UL 2 UL 3 UL 4 UL 1 UR 2 UR 3 UR 4 UR 1 LL 2 LL 3 LL 4 LL 1 LR 2 LR 3 LR 4 LR

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

4

Quads 0,1,2,3 (phase 0)

Quads 4,5,6,7 (phase 1)

Quads 8,9,10,11 (phase 2)

Quads 12,13,14,15 (phase 3)

4.2 Top-Level Diagram of a Shader Pipeline

The diagram below represents a high level description of a shader pipe. The major data streams coming into or going
out of it are clearly shown.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1376 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

R400 Shader Processor Model

PAGE

16 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

GPR
MAC

V0 | Q0-UL

GPR
MAC

V16 | Q4-UL

GPR
MAC

V32 | Q8-UL

GPR
MAC

V48 | Q12-UL

GPR
MAC

V1 | Q0-UR

GPR
MAC

V17 | Q4-UR

GPR
MAC

V33 | Q8-UR

GPR
MAC

V49 |Q12-UR

GPR
MAC

V2 | Q0-LL

GPR
MAC

V3 | Q0-LR

mac mac mac mac

VDataIn VDataIn VDataIn

SP 0

GPR
MAC

V18 | Q4-LL

GPR
MAC

V34 || Q8-LL

GPR
MAC

V50 | Q12-LL

GPR
MAC

V19 | Q4-LR

GPR
MAC

V35 || Q8-LR

GPR
MAC

V51 | Q12-LR

new
indices
or vert

data for
upto

64 verts

V
0

-2
1

6
x1

Seq
Cntrl

3

V
e
r
t
s

o
f

P
a
r
a
m
e
t
e
r
s

256bits -- 4 half pixels per clk

PC PC PC PC

OB OB OB OB

64 64 64 64

INTRP INTRP INTRP

VDataIn

INTRP

T
A
M

T
F
M

From
 VtxGrpTess

Vertex
Reuse Miss

Determination

Indices
 from
CP

I,J Data

5. Interfaces

5.1 External Interfaces

5.1.1 Naming Convention
TP -> stands for Texture Pipe.
SP-> stands for Shader Pipe
SQ->stands for Sequencer Unit
SX->stands for Shader Export

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1377 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

17 of
43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

SC->stands for Scan Converter
When an X is used as a postfix in the Direction colomn of the interface definition tables, it means that the bus is a
broadcast bus to all units with the same name. For example, if the direction of the bus is defined as SQ->SPx, that
means that Sequencer is broadcasting the same information to all Shader Pipe instances.

5.1.2 Shader Engine to Texture Fetch Unit Bus

Four quad’s worth of addresses is transferred to Fetch Unit every clock. These are sourced from a different pixel
within each of the sub-engines repeating every 4 clocks. The register file index to read must precede the data by 2
clocks. The Read address associated with Quad 0 must be sent 1 clock after the Instruction Start signal is sent, so
that data is read 3 clocks after the Instruction Start.

Four Quad’s worth of Fetch Data may be written to the Register file every clock. These are directed to a different pixel
of the sub-engines repeating every 4 clocks. The register file index to write must accompany the data. Data and Index
associated with the Quad 0 must be sent 3 clocks after the Instruction Start signal is sent.

Name Direction Bits Description
SP0_TP0_fetch_addr SP0->TP0 384 3 Fetch Addresses read from the Register file
TP0_SP0_data TP0→SP0 512 4 texture results
SP1_TP1_fetch_addr SP1->TP1 384 3 Fetch Addresses read from the Register file
TP1_SP1_data TP1→SP1 512 4 texture results
SP2_TP2_fetch_addr SP2->TP2 384 3 Fetch Addresses read from the Register file
TP2_SP2_data TP2→SP2 512 4 texture results
SP3_TP3_fetch_addr SP3->TP3 384 3 Fetch Addresses read from the Register file
TP3_SP3_data TP3→SP3 512 4 texture results
TPx_SPx_gpr_dst TPx→SPx 7 Write address into the gprs
TPx_SPx_gpr_cmask TPx→SPx 4 Channel mask. Supports the ability to mask any of the 32

bit channel of the fetch return data

5.1.3 Sequencer to Shader Pipe(s): Texture stall
Texture pipe signals the Sequencer that its input buffer is full. The Sequencer asserts SQ_SPx_fetch_stall so that
Shader Pipe does not send new requests to the Texture Pipe.

Name Direction Bits Description
SQ_SPx_fetch_stall SQ→SPx 1 Do not send more texture requests if asserted

5.1.4 ScanConverter to Shader Pipe: IJ bus
This is a bus that sends the IJ information to the IJ fifos on the top of each shader pipe. At the same time the control
information goes to the sequencer. There are 4 of these buses over the whole chip (SP0 thru 3)

Name Direction Bits Description
SC_SP0_data SC→SP0 64 IJ information sent over 2 clocks (or XY info sent over 1

clock in the lower 24 LSBs of the interface)
SC_SP0_q_wr_mask SC→SP0 1 Write Mask
SC_SP0_dest SC→SP0 1 Controls the write destination (XY buffer, IJ buffer)
SC_SP1_data SC→SP1 64 IJ information sent over 2 clocks (or XY info sent over 1

clock in the lower 24 LSBs of the interface)
SC_SP1_q_wr_mask SC→SP1 1 Write Mask
SC_SP1_dest SC→SP1 1 Controls the write destination (XY buffer, IJ buffer)
SC_SP2_data SC→SP2 64 IJ information sent over 2 clocks (or XY info sent over 1

clock in the lower 24 LSBs of the interface)
SC_SP2_q_wr_mask SC→SP2 1 Write Mask
SC_SP2_dest SC→SP2 1 Controls the write destination (XY buffer, IJ buffer)
SC_SP3_data SC→SP3 64 IJ information sent over 2 clocks (or XY info sent over 1

clock in the lower 24 LSBs of the interface)
SC_SP3_q_wr_mask SC→SP3 1 Write Mask
SC_SP3_dest SC→SP3 1 Controls the write destination (XY buffer, IJ buffer)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1378 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

R400 Shader Processor Model

PAGE

18 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

SC_SQ_RTS SC→SQ 1 SC ready to send data

5.1.5 Sequencer to Shader Pipe(s) - broadcast: Interpolator bus
This bus interface defines all the signals needed to perform the interpolation of the primitive parameters coming from
the Parameter Caches via the SX blocks.

Name Direction Bits Description
SQ_SPx_interp_prim_type SQ→SPx 3 Type of the primitive

000 : Normal
011 : Real Time
100 : Line AA
101 : Point AA
110 : Sprite

SQ_SPx_interp_flat_vtx SQ→SPx 2 Provoking vertex for flat shading
SQ_SPx_interp_flat_gouraud SQ→SPx 1 Flat or gouraud shaded interpolation
SQ_SPx_interp_cyl_wrap SQ→SPx 4 Which channel of the parameter being interpolated

needs to be wrapped
SQ_SPx_interp_ijline SQ→SPx 2 Line in the IJ/XY buffer to use to interpolate
SQ_SPx_interp_buff_swap SQ→SPx 1 Swap the IJ/XY buffers at the end of the interpolation
SQ_SPx_interp_gen_I0 SQ→SPx 1 Generate I0 or not. This tells the interpolators not to

use the parameter cache but rather overwrite the data
with interpolated 1 and 0. Overwrite if gen_I0 is high.

5.1.6 Sequencer to Shader Pipe(s)-broadcast: Parameter Cache Read control
bus

This interface provides three different pointers specifying the location of the parameter values in the Parameter
Caches. Depending on the way the vertices get mapped into primitives, it might happen that the parameter values
come from different relative offsets in the parameter caches from one parameter cache to the other across a shader
pipe. This is the reason why three different read pointers are specified. This is not true for the write path.
This is a broadcast interface.

Name Direction Bits Description
SQ_SPx_ptr0 SQ→SPx 7 Parameter Pointer into PC
SQ_SPx_ptr1 SQ→SPx 7 Parameter Pointer into PC
SQ_SPx_ptr2 SQ→SPx 7 Parameter Pointer into Parameter Cache
SQ_SPx_pc0_addr_sel SQSPx 2 Selection one of the pointers for parameter cache 0
SQ_SPx_pc1_addr_sel SQSPx 2 Selection one of the pointers for parameter cache 1
SQ_SPx_pc2_addr_sel SQSPx 2 Selection one of the pointers for parameter cache 2
SQ_SPx_pc3_addr_sel SQSPx 2 Selection one of the pointers for parameter cache 3
SQ_SP0_read_ena SQ→SP0 4 Read enables for the 4 memories in the SP0
SQ_SP1_read_ena SQ→SP1 4 Read enables for the 4 memories in the SP1
SQ_SP2_read_ena SQ→SP2 4 Read enables for the 4 memories in the SP2
SQ_SP3_read_ena SQ→SP3 4 Read enables for the 4 memories in the SP3

5.1.7 Sequencer to Shader Pipe: GPR, Parameter Cache control and auto
counter

This interface defines the control mechanism for the GPR read/write paths as well as the Parameter Cache write
path.

Name Direction Bits Description
SQ_SPx_wr_addr SQ→SPx 7 Write address (the same bus used for writing into GPRs

or Parameter Cache)
SQ_SPx_gpr_rd_addr SQ→SPx 7 Read address

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1379 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of
43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

SQ_SPx_gpr_re_addr SQ→SPx 1 Read Enable
SQ_SPx_gpr_we_addr SQ→SPx 1 Write Enable for the GPRs
SQ_SPx_gpr_phase_mux SQ→SPx 2 The phase mux (arbitrates between inputs, ALU source

reads and writes)
SQ_SPx_channel_mask SQ→SPx 4 The channel mask
SQ_SP0_pixel_mask SQ→SP0 4 The pixel mask
SQ_SP1_pixel_mask SQ→SP1 4 The pixel mask
SQ_SP2_pixel_mask SQ→SP2 4 The pixel mask
SQ_SP3_pixel_mask SQ→SP3 4 The pixel mask
SQ_SPx_pc_we_addr SQ→SPx 1 Write Enable for the parameter caches
SQ_SPx_gpr_input_mux SQ→SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTX0,
VTX1, autogen counter.

SQ_SPx_index_count SQ→SPx 12? Index count, common for all shader pipes

5.1.8 Shader Pipe to Shader Export (SX): Parameter data out of Parameter
Cache

There is 512-bit of data (4 x128) coming out of each shader pipe for each read out of the parameter caches.
These data gets routed into the interpolation units by the SX blocks.

Name Direction Bits Description
SP0_SX0_data0 SP0→SX0 128 Parameter data 0
SP0_SX0_data1 SP0→SX0 128 Parameter data 1
SP0_SX0_data2 SP0→SX0 128 Parameter data 2
SP0_SX0_data3 SP0→SX0 128 Parameter data 3
SP1_SX1_data0 SP1→SX1 128 Parameter data 0
SP1_SX1_data1 SP1→SX1 128 Parameter data 1
SP1_SX1_data2 SP1→SX1 128 Parameter data 2
SP1_SX1_data3 SP1→SX1 128 Parameter data 3
SP2_SX0_data0 SP2→SX0 128 Parameter data 0
SP2_SX0_data1 SP2→SX0 128 Parameter data 1
SP2_SX0_data2 SP2→SX0 128 Parameter data 2
SP2_SX0_data3 SP2→SX0 128 Parameter data 3
SP3_SX1_data0 SP3→SX1 128 Parameter data 0
SP3_SX1_data1 SP3→SX1 128 Parameter data 1
SP3_SX1_data2 SP3→SX1 128 Parameter data 2
SP3_SX1_data3 SP3→SX1 128 Parameter data 3

5.1.9 Shader Export (SX) to Interpolators: Parameter Cache Return bus
This bus represents the values of a given parameter at the three vertices of the primitive.
Note: The nature of this bus might change in the future depending on where the Parameter Difference engine
physically resides (see Section of this document titled “Open Issues”).

Name Direction Bits Description
SXx_SPx_vtx_data_0 SXx→SPx 128 Vertex data to interpolate
SXx_SPx_vtx_data_1 SXx→SPx 128 Vertex data to interpolate
SXx_SPx_vtx_data_2 SXx→SPx 128 Vertex data to interpolate

5.1.10 Shader Pipe to Shader Export (SX): Pixel/Vertex write to SX

Name Direction Bits Description

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1380 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

R400 Shader Processor Model

PAGE

20 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

SP0_SX0_export_data SP0→SX0 256 4 pairs of 32 bits channel values
SP0_SX0_export_dst SP0→SX0 4 Specifies one of the of up to 12 export destinations
SP1_SX1_export_data SP1→SX1 256 4 pairs of 32 bits channel values
SP1_SX1_export_dst SP1→SX1 4 Specifies one of the of up to 12 export destinations
SP2_SX0_export_data SP2→SX0 256 4 pairs of 32 bits channel values
SP2_SX0_export_dst SP2→SX0 4 Specifies one of the of up to 12 export destinations
SP3_SX1_export_data SP3→SX1 256 4 pairs of 32 bits channel values
SP3_SX1_export_dst SP3→SX1 4 Specifies one of the of up to 12 export destinations
SPx_SXx_ export _count SP0→SX0 3 Each set of four pixels or vectors is exported over

eight clocks. This field specifies where the SP is in that
sequence.

SPx_SXx_ export _last SP0→SX0 1 Asserted on the first shader count of the last export of
the clause

SP0_SX0_ export _pvalid SP0→SX0 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color buffers).
4x4 because 16 pixels are computed per clock

SP0_SX0_ export _wvalid SP0→SX0 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

SP1_SX1_ export _pvalid SP1→SX1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color buffers).
4x4 because 16 pixels are computed per clock

SP1_SX1_ export_wvalid SP1→SX1 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

SP2_SX0_ export _pvalid SP2→SX0 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color buffers).
4x4 because 16 pixels are computed per clock

SP2_SX0_ export _wvalid SP2→SX0 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

SP3_SX1_ export _pvalid SP3→SX1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color buffers).
4x4 because 16 pixels are computed per clock

SP3_SX1_ export _wvalid SP3→SX1 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

5.1.11 Sequencer to SPx: Instruction Interface
This is the bus that sends the instruction and constant data to all four Shader pipe instances. Because a new
instruction is needed only every 4 clocks, the width of “SQ_SPx_instruct” sub-bus is divided by 4 and both constants
and instruction are sent over those 4 clocks. SRC A (B or C) Select of SQ_SP_Instruction interface is derived by
Sequencer from the SRC A (B,C) and SRC A (B,C) Register/Constant Pointer of the ALU Instruction word. All the
other bit-fields in the SQ_SP_instruct interface bus are explicitly present in the ALU Instruction word. Please refer to
Section 3.2 of this document for more details on the R400 ALU instruction word format.

Name Direction Bits Description
SQ_SPx_instruct_start SQ→SPx 1 Instruction start
SQ_SPx_instruct SQ→SPx 20 Transferred over 4 cycles

0: SRC A Select 2:0
 SRC A Argument Modifier 3:3
 SRC A swizzle 11:4
 Unused 19:12
--
--
1: SRC B Select 2:0
 SRC B Argument Modifier 3:3
 SRC B swizzle 11:4

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1381 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

21 of
43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

 Unused 19:12
--
--
2: SRC C Select 2:0
 SRC C Argument Modifier 3:3
 SRC C swizzle 11:4
 Unused 19:12
--
--
3: Vector Opcode 4:0
 Scalar Opcode 9:5
 Vector Clamp 10:10
 Scalar Clamp 11:11
 Vector Write Mask 15:12
 Scalar Write Mask 19:16

SQ_SPx_stall SQ→SPx 1 Stall signal (ALU executes a Max PV,PV and Max PS,PS
instruction)

SQ_SPx_export_count SQ→SPx 3 Each set of four pixels or vectors is exported over eight
clocks. This field specifies where the SP is in that
sequence.

SQ_SPx_export_last SQ→SPx 1 Asserted on the first shader count of the last export of
the clause

SQ_SP0_export_pvalid SQ→SP0 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color buffers).
4x4 because 16 pixels are computed per clock

SQ_SP0_export_wvalid SQ→SP0 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

SQ_SP1_ export_pvalid SQ→SP1 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color buffers).
4x4 because 16 pixels are computed per clock

SQ_SP1_ export_wvalid SQ→SP1 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

SQ_SP2_ export_pvalid SQ→SP2 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color buffers).
4x4 because 16 pixels are computed per clock

SQ_SP2_ export_wvalid SQ→SP2 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

SQ_SP3_ export_pvalid SQ→SP3 4 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color buffers).
4x4 because 16 pixels are computed per clock

SQ_SP3_ export_wvalid SQ→SP3 2 Specifies whether to write low and/or high 32-bit word
of the 64-bit export data from each of the 16 pixels or
vectors

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1382 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

R400 Shader Processor Model

PAGE

22 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

0 0 0 0 1 1 1 1 2 2 2

Src

Src

SQ_SP_instruct[19:0]

 SEQ_SP_instruct_start

Src

Src A[127:0.]

 Src B[127:0]

Src

Src

Src Src C[127:0]

1 20SQ_SP_rd_address[6:0] 1 203 3321

1 20 1 203 3321SQ_SP_wr_address[6:0]

Clock

Tx Tx
 Texture Fetch
 Addr[127:0]

The above diagram attempts to describe the timing relation between the signals at SQ-SP instruction interface. Each
instruction (SQ_SP_instruct [19:0]) is broadcasted over four cycles. SQ_SP_instruct_start is asserted at the first cycle
of the instruction broadcast. Cycle 0 of SQ_SP_rd_address is “dedicated” to reading SRC A out of the Register File,
Cycle 1 to reading SRC B, Cycle 2 to reading SRC C and Cycle 3 to reading Texture Address for a texture fetch
request. Cycle 0 of SQ_SP_wr_address is “dedicated” to writing into Register File of Interpolated data from
Interpolation units, Cycle 1 to writing of return data from a previously issued texture fetch and Cycle 3 to Previous
Vector result and Cycle 3 to Previous Scalar result.

5.1.12 Shader Pipe to Sequencer: Constant address load
Name Direction Bits Description
SP0_SQ_const_addr SP0→SQ 36 Constant address load to the sequencer
SP0_SQ_valid SP0→SQ 1 Data valid
SP1_SQ_const_addr SP1→SQ 36 Constant address load to the sequencer
SP1_SQ_valid SP1→SQ 1 Data valid
SP2_SQ_const_addr SP2→SQ 36 Constant address load to the sequencer
SP2_SQ_valid SP2→SQ 1 Data valid
SP3_SQ_const_addr SP3→SQ 36 Constant address load to the sequencer
SP3_SQ_valid SP3→SQ 1 Data valid

5.1.13 Sequencer to SPx: constant broadcast
The interface represents the constant values interface coming from the Sequencer unit. Constant values can be
selected as operands for in a given shader instruction.

Name Direction Bits Description
SQ_SPx_constant SQ→SPx 128 Constant broadcast

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1383 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

23 of
43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

6. Parameter Interpolation
This section was partially copied from Section 15 “IJ Format” of the “R400 Sequencer Specification” document.
There are two key featues in R400 interpolation scheme:

a. Barycentric coordinates are used in the interpolation of all parameters.
b. The interpolation is done at a different precision across a 2x2 colletion of pixels. The parameters of the upper

left pixel of the quad are interpolated at full 20x24 mantissa precision. Then the result along with the
difference in IJ barycentric coords is used to interpolate the parameters for the remaining pixels of the 2x2.

Assuming P0 is the interpolated parameter at Pixel 0 having the barycentric coordinates I(0), J(0) and so on for P1,P2
and P3. Also assuming that A is the parameter value at V0 (interpolated with I), B is the parameter value at V1
(interpolated with J) and C is the parameter value at V2 (interpolated with (1-I-J).

)(*03)(*0303

)(*02)(*0202

)(*01)(*0101

)(*)0()(*)0(0

)0()3(03

)0()3(03

)0()2(02

)0()2(02

)0()1(01

)0()1(01

CBJCAIPP

CBJCAIPP

CBJCAIPP

CBJCAICP

JJJ

III

JJJ

III

JJJ

III

P0 is computed at 20x24 mantissa precision and P1 to P3 are computed at 8x24 mantissa precision. So far no visual
degradation of the image was seen using this scheme.

Multiplies (Full Precision): 2
Multiplies (Reduced precision): 6
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF P0’s IJ: Mantissa 20 Exp 4 for I + Sign
 Mantissa 20 Exp 4 for J + Sign

FORMAT of Deltas (x3): Mantissa 8 Exp 4 for I + Sign
 Mantissa 8 Exp 4 for J + Sign

Total number of bits for one quad worth of IJ data: 20*2 + 8*6 + 4*8 + 4*2 = 128
All numbers are kept using the un-normalized floating point convention: if exponent is different than 0 the number is
normalized if not, then the number is un-normalized. The maximum range for the IJs (Full precision) is +/- 63 and the
range for the Deltas is +/- 127.

P0

P2

P1

P3

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1384 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

R400 Shader Processor Model

PAGE

24 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

7. Shader Limitations
The sequencer unit and compiler need to be aware of a series of limitations in the shader functionality. These are
limitations on the pixel shader functionality as well as on the vertex shader functionality. In reality, the compiler does
not need to pay attention to these limitations since sequencer will detect them and react accordingly. However, for
compiler optimization reasons, we describe here the various latency issues revolving around our shader pipe
implementation.

1) The use of Previous Vector result (PV) and Previous Scalar result (PS) values.
The following sequence is being executed:
ADD R0 = R3, R4.
MUL R2 = R0, R1 and the desired R0 values are the ones coming from the ADD instruction (ie a dependant
instruction).
Because of the pipeline latencies involved, the R0 value from the ADD instruction won’t be available in GPRs until
one instruction later from the moment the MUL instruction enters the execution pipeline. The sequencer will write the
same sequence as follows:
ADD R0 = R3, R4.
MUL R2 = PV, R1

Alternatively, if wanted, the compiler can force the use of the PV register by instead using the following instruction:
MUL R2 = PV, R1 (instead of MUL R2 = R0, R1).

The following sequence is being executed:
ADD R0.x = R3, R4.
MUL R2 = R0, R1 and the desired R0 values is the one coming from the ADD instruction.
Because of the pipeline latencies involved, the R0.x value from the ADD instruction won’t be available in GPRs until
one cycle later from the moment the MUL instruction enters the execution pipeline. The compiler can introduce a
NOP instruction in between ADD and MUL, but it does not have to. The sequencer will detect this dependency case
and insert a MOV PV, PV on the vector side and a MOV PS, PS on the scalar side as well (MOV PV,PV is the HW
translation of a NOP).

As a conclusion: If the Previous Vector Result is used explicitly in the code, then the instruction will be executed as is.
If a dependant use of a masked register is done instead, the sequencer is going to introduce a NOP between the two
instructions in order to achieve the right behavior.

2) There is a one-instruction load-use delay between a MOVA instruction and use of a 'indexed' constant. If this
delay cannot be honored, the MOVA instruction should be followed by a MOV instruction.

3) General Coissue limitations. A scalar instruction may not be coissued with a 3-argument vector instruction.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1385 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

25 of
43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

8. Hardware Implementation Specifics

8.1 General Information on the Shader Floating Point arithmetic
Two special cases of floating-point numbers are recognized: zero is defined as any number with a zero exponent
and infinity (or NaN) is defined as any number with an exponent of 255. The mantissa is cleared for both input and
output values of zero and infinity while the sign bit is cleared for input and output zeros. The result of a multiplication
involving zero is always defined as zero. The result of any addition involving infinity is always defined as infinity, with
the added stipulation that any addition involving negative infinity always results in negative infinity. The Vector
Engine/Scalar Engine works with standard IEEE floating-point numbers although all math operations are performed
without rounding.

8.2 Interpolators and IJ/XY Buffers

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

1

2

3

4

IJs CROSSBAR (4x64 bits)

IJs buffer (ping-pong buffer)
(28 bits * 2 (IJ) + 8 bits * 6 (delta IJs)+4 exp

bits*6)* 16 (quads) * 2 (double-buffered)
4096 bits

32 x 128

1UL 4LR3LR2LR1LR4LL3LL2LL1LL4UR3UR2UR1UR4UL3UL2UL X4

INTERPOLATORS

A0 A1

RE

512

64

To RB

A0 B0A2A1

B1 C2C1C0

C3 D0C5C4

D1 E1E0D2

XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2

768 bits
32x24

FIX-FLOAT + EXPANSiON

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1386 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

R400 Shader Processor Model

PAGE

26 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

The above diagram represents a high level description of IJ and XY fifos, as well as Parameter Interpolation unit
(Interpolators). The double buffer on the left represents the IJ fifo. Each of the cells in that buffer represents a quad of
pixels worth of IJ interpolation data. The double buffer on the right represents the XY Address fifo. There is 512 bits of
data transferred from the interpolators into each shader pipe (GPRs) per cycle, a totall of 2048 bits across the whole
chip. The reading and writing of IJ/XY fifos is controlled by the sequencer via the “SQ to SP: Intepolator bus” interface
described in the Section 5.1.4 of this document.

8.2.1 Interpolators
The following diagram describes the interpolation unit for one shader pipe. There are four instances of the same in
the R400 architecture. Parameter Difference Engine calculates the difference between the values of a given
parameter at the vertices. These deltas are inputs into the four interpolators shown below. IJ intepolation data from
the IJ fifos would be the other required input into the interpolators. The first interpolation unit (High Precision
Interpolator) is used to calculate the interpolated values for Pixel 0, the upper left pixel of the quad. The result of this
interpolator is then fed into the lower precision interpolator (Delta Interpolators) used to calculate the parameter
values for the other three pixels of the quad. In Section 6 of this document you will find the mathematical description
of the barycentric interpolation equations.

Parameter Modification Unit
(Flat Shading..etc)

SQ_SP_Interpolation bus

Full Interpolator Delta Interpolator 0 Delta Interpolator 1

V
0 data 128 bit

v2 data 128 bit

V
1 data 128 bit

Parameter Data from
Parameter cache

Parameter Difference Engine & Cylindrical Wrapping

To Shader Pipe GPR Write Path 4x128 bits

Delta Interpolator 2

pipeline delay pipeline delay pipeline delay

pipeline delay

8.2.1.1 Interpolation Units
The following diagram describes the data path for a high precision interpolation unit for one 32-bit channel of the
parameter data. The diagram does not exactly describe the hardware implementation of the interpolator. In order to
simplify the diagram, three denormalize shifters are shown. In reality, only two out of three mantissa terms about to
be added, need to be denormalized to the third mantissa term with the largest exponent. The “exponent compare”
unit finds the largest exponent of the following three terms: C, I(0) (A-C) and J(0)*(B-C).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1387 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

27 of
43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

A - C B - C D ifferen ce E n g in e

exp add exp add

B
 A

 C
 I(0)

J (0)

m u ltip lie r
20x24

m ultip lie r
20x24

exp o n en t ca lcu la tio n fo r I(0) * (A - C)
an d J(0) * (B - C)

exponent com pare

exponent de lta

 fin d in g th e larg est
exp on en t

exponent de lta exponent de lta

denorm a lize sh ift denorm alize sh ift denorm a lize sh ift

C m an tissa

C exp on en t

C exp on en t

adder

norm alize

 P 0 resu lt

8.2.1.2 Parameter Selection Unit

The Parameter Modification unit described in the above diagram is used to preprocess the vertex parameter data
coming from the Parameter Cache unit before they enter the Difference engine. It’s in this block that the selection of
the provoking vertex parameter value, for flat shading, is done. The pertaining control signals are part of the “SQ to
SP: Interpolator bus” interface described in Section 5.1.5 of this document.

8.2.1.3 Parameter Difference & Cylindrical Wrap Engine

V0
V1 V2

mux muxmux

mux muxmux

sq_sp_interp_flat_vtx

sq_sp_interp_flat_gouraud

to Parameter Difference & Cylindrical Wrap Engine

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1388 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

R400 Shader Processor Model

PAGE

28 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

The purpose of the unit is to calculate the delta differences between the parameter values at vertices. These deltas
are then used as input values into the interpolator units. Also, it’s in this unit that cylindrical wrap adjustment of the
parameter values is done. All the functions are implemented on per channel basis. One alternative solution would be
for the delta differences between the parameter values to be done in the SX blocks. This way we can cut down from 4
channels * 2 substracts/channel * 4 pipes = 32 subtractors to 8 if placed in SX blocks. This may complicate the
Cylindrical Wrap implementation, which in itself requires a bunch of subtracts. The control/state signals are part of the
“SQ_SP: Interpolator Bus” interface. Please refer to Section 5.1.5 of this document for a detailed definition of this
control interface.

8.2.2 GPR Write Path
The diagram below shows all the possible data paths going into the GPR write paths, their selection and routing.
The drawing shows four GPR units representing any four GPR units of a shader pipeline that are in the same phase.
From the pipeline-timing point of view, interpolated parameters of pixels belonging to the same quad are flowing
through the data paths described in the drawing at any given time. As it was mentioned before, the interpolators have
two sets of inputs, the IJ data coming out of the IJ buffers and vertex parameter data coming from the parameter
caches via the SX (Shader Export) blocks. The SX blocks are responsible for multiplexing between the real time
parameters and vertex parameter data coming from the parameter caches. The outputs from the interpolators get
merged into 128 vectors with data coming from XY and Faceness buffers. The next level of muxing controlled by
SQ_SP_gpr_input_mux part of the “SQ_SP: Interpolation bus” interface is used to route between vertex data/indices
and interpolated pixel parameters. The next and last level of multiplexing is used to multiplex the writing into GPRs of
texture fetch return data, interpolated pixel data, previous scalar and previous vector result.
The truth table below describes all the possible “merge” combinations between the interpolated, XY and Faceness
data based on the SQ_SP_interp_prim_type and SQ_SP_interp_gen_IO signals found in “SQ_SP: Interpolation
bus” interface. The above signals are also used to control the overwrite of the parameter values coming from the
parameter cache with constants 0.0 and 1.0 when doing expansion for point sprite primitive types.

SQ_SP_interp_gen_I
O

SQ_SP_param_type[2
]

Merge Logic Result

0 0 Interpolated data
0 1 Interpolated data
1 0 X, Y, don’t care, don’t

care
1 1 X, Y, S, T

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1389 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

29 of
43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

mux

text text
XY Buffer

mux

text
Faceness Buffer

SQ_SP_interp_buff_swa

GPR DATA WRITE PATH
(for one shader pipe only) SP_SP_interp_ijline

pipeline delay pipeline delayinterpolator interpolatorinterpolator interpolator

data merging data merging data merging data merging

SQ_SP_Interp_prim_type &
interp_gen_IO

auto count

count 000000

mux muxmux mux

mux muxmux mux

128
128 128128

128128128

Texture Data 512 bits

Previous Scalar

Previous Vector

GPR
Upper Left

GPR
Upper Right

GPR
Lower Left

GPR
Lower Right

SQ_SP_gpr_phase_mux

SQ_SP_gpr_input_mux

1
0

2
3

5
4

6
7

1
0

2
3

5
4

6
7

1
0

2
3

5
4

6
7

1
0

2
3

5
4

6
7

96
Vertex buffer

128 128

128

128

96
128

128128128

128 128

Shader Export Block(s)

IJ Buffer

384

mux

real time param 3D param

parameter
overwrite

mux

0.01.0

128

8.3 Vector Unit

8.3.1 Vector Unit Pipeline
The diagram below describes a complete set of the Vector Units present in a single shader pipeline with interpolator
units at the top of the pipeline and the parameter caches at the bottom of it.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1390 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

R400 Shader Processor Model

PAGE

30 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

GPR
MAC

V0 | Q0-UL

GPR
MAC

V16 | Q4-UL

GPR
MAC

V32 | Q8-UL

GPR
MAC

V48 | Q12-UL

GPR
MAC

V1 | Q0-UR

GPR
MAC

V17 | Q4-UR

GPR
MAC

V33 | Q8-UR

GPR
MAC

V49 |Q12-UR

GPR
MAC

V2 | Q0-LL

GPR
MAC

V3 | Q0-LR

mac mac mac mac

VDataIn VDataIn VDataIn

SP 0

GPR
MAC

V18 | Q4-LL

GPR
MAC

V34 || Q8-LL

GPR
MAC

V50 | Q12-LL

GPR
MAC

V19 | Q4-LR

GPR
MAC

V35 || Q8-LR

GPR
MAC

V51 | Q12-LR

new
indices
or vert

data for
upto

64 verts

V
0-2

1
6x1

Seq
Cntrl

3

V
e
r
t
s

o
f

P
a
r
a
m
e
t
e
r
s

256bits -- 4 half pixels per clk

PC PC PC PC

OB OB OB OB

64 64 64 64

INTRP INTRP INTRP

VDataIn

INTRP

T
A
M

T
F
M

From
 VtxGrpTess

Vertex
Reuse Miss

Determination

Indices
 from
CP

I,J Data

The control of all the multiplexers present at the input and output of the GPRs, input of the TAM and output of the
parameter caches is done by the sequencer. In most cases this control represents the phase cycle relative to the
ALU instruction start. In the above diagram, the GPR/MAC units of the same row are synchronous in phase. From
one row to the other the execution sequence is phased out by one cycle.

8.3.2 Argument Selection and Routing
The following diagram describes the routing and selection logic for the ALU instruction operands. Select fields or
combination of select fields present in the ALU instruction word controls the first two levels of argument selection. The
multiplexing control logic into the SRC (A, B or C) registers is a 4-state FSM that serializes the red, green, blue and
alpha input arguments into the MAC unit. As mentioned before, the instruction ALU word specifies a pointer into the GPR
register file for each of the sources. Also, the instruction specifies a set of select bits for the final MAC input operands A, B
and C. The possible choices that Src A, B and C arguments can be selected from are: Register File Data, Constant Data,

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1391 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

31 of
43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

Previous Vector Result and Previous Scalar Result. The first level of muxing selects between Previous Vector Result,
Register File Data and Constant Data, all 128-bit values. The second level of muxing implements the swizzling logic at 32-
bit channel granularity.

Argument Selection Logic

muxmuxmux mux

mux

register file data

previous vector result

constant data

first level of argument selection

second level of argument selection
(swizzling)

 128

 32

latch

latch latch

latch

latch latch

latch

mux

blue

green
red

alpha

mux

Src A

latch

latch latch

latch

latch latch

mux

Src B

latch

latch latch latch latch

mux

Src C

 32

 32

 32

 32

scalar

muxscalar

mux

scalar

 blue

 blue

Src A

Src B

Src C

8.3.3 Parameter Data Path

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1392 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

R400 Shader Processor Model

PAGE

32 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

Shader Export 0 Shader Export 1

512-bits

512-bits

128 128

128 x 3
128 x 3

SHADER PIPE 3SHADER PIPE 2

pipeline

pipeline

pipeline

pipeline

128 bit Result

Parameter
Cache

pipeline

pipeline

pipeline

pipeline

128 bit Result

 128 bits

from shader unit 2
from shader unit 3

mux mux

mac0 mac4

128 128

128128

Interpolators

128 x 3

SHADER PIPE 1

SHADER PIPE 0

GPR

MAC 0

GPR

MAC 4

parameter data

128 x 3

m
u
x

m
u
x

Parameter
Cache

 sq_sp_ptr0

 sq_sp_ptr1

 sq_sp_ptr2

s
q

_
sp

_p
c0

_a
d

d
r_

se
l

s
q

_
sp

_p
c4

_a
d

d
r_

se
l

SQ_SP_wr_addr

mac1
mac2

mac3
mac5

mac6

mac7

sq_sp_phase_mux

arg sel arg sel

3 x 32 3 x 32

The output of the vertex shader program, transformed parameter data is written into Parameter Cache memories.
There is one parameter cache (128x128) for each vector unit, resulting in 4 parameter cache memories for one
shader pipe. The write data path of each parameter cache is time-multiplexed between the 4 MAC units of a given

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1393 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

33 of
43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

shader vector unit. The 7-bit write address into parameter cache memory comes from Sequencer unit. This address
is broadcasted to all the shader pipes. For more details on the parameter cache write path, please refer to Section
5.1.7 of this document.
The read address into parameter cache memories is a result of a muxing of three possible 7-bit address pointers
broadcasted by the Sequencer to all shader pipes. These three pointers are part of “Parameter Cache Read Control
Bus” described in Section 5.1.6 of this document.
There are 512-bit worth of data transferred from Shader Pipe to SX blocks for every read of the parameter cache.
Once read from the parameter caches, the parameter data is then routed by the SX units into the interpolation units at
the top of the shader pipe.

8.4 Scalar Unit

A large portion of R400 Scalar Unit specification is based on the R300 Math Unit specifications as described in “R300
Vertex Assembler & Processor Architecture Specification” document Version 0.93. Section 3.3 of this document
describes all the math operations and their respective opcodes supported by the Scalar Unit. There are four Scalar
Units present in each shader pipe. The Scalar unit can perform one action each cycle with the result appearing after a
latency of eight cycles. In this respect, the Scalar engine is fully pipelined.

Scalar Engine Functions and Precision

Function Range Precision1

nx

128128

0.10.0

n

x

7 ??

x

1

 x 23

x

1

 x 23

xe 0.1280.128 x 16 ??

x2 0.10.0 x 23

)(log 2 x 0.20.1 x 23

1Precision loses 1 bit each time range is doubled

The Scalar Engine also calculates
x

1
,

x

1
,)(log 2 x , and x2 using sixteen 32-entry lookup tables with four unsigned

multipliers (2 ea. 16x16, and 2 ea. 12x12) and a 26-bit unsigned adder. These functions also use a 24-bit floating-point

multiplier that applies the power term for the nx and
xe functions (maybe we do not need this !!??).

8.4.1 Scalar Engine Pipeline

All the opcodes (except MULTIPLY) that do not use the power function pipeline are processed in the high
precision pipeline. The mantissa for all functions is determined using the following function:

3
0

2
000)()()()(xxCxxBxxAxfP

The terms f(x0), A , B, and C were determined at 32 evenly spaced sample points over the range shown in Table 9-

1 for each of the functions
x

1
,

x

1
,)(log 2 x , and x2 . These terms are stored in sixteen tables, four for each

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1394 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

R400 Shader Processor Model

PAGE

34 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

function, and addressed by bits 22 – 18 of the input value x (bits 23 - 19 for the
x

1
 function). The (x – x0) terms

are deltas which allow third-order interpolation between the sample points. The resolution of these lookup table
values for each of the four functions is shown below. The largest resolution is assumed in the hardware. Lookup
table values are left justified and smaller terms are packed with zeros. Deltas are also left justified, but smaller
deltas have the truncated bits OR’ed with their LSB before and after being squared & cubed. The product terms are
truncated to the indicated precision and then right justified before being added to the f(x0) term .

High Precision Function Coefficient Resolution

Function f(x0) A B C

x

1

24 20 15 10

x

1

24 20 16 12

)(log 2 x
25 20 15 9

x2
25 20 14 7

Hardware 25 20 16 12

8.4.1.1.1.1.1 High Precision Pipeline Exp2 Preprocessing

The two opcodes EXP_BASE2_DX and EXP_BASE2_FULL_DX require that the input value be preprocessed
before it enters the main pipeline. The input exponent is first checked to determine whether the value can be
represented within the IEEE single precision format (see Power Function Pipeline Log2 to Real Conversion for
details). If the log2 exponent falls within the valid range, then the exp2 preprocessor converts the input value to a
S7.23 format value:

Input Mantissa (24 bits): 1mmmmmmmmmmmmmmmmmmmmmmm

Input Exponent (biased): eeeeeeee

Bias: 01111111

Subtract to get Unbiased (signed) Exponent : SUUUUUUUU

Absolute Value of Unbiased Exponent to get shift value: vvvvv

Shift Input Mantissa by shift value to get adjusted input (30 bits):

If Unbiased Exponent Positive, shift left: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

If Unbiased Exponent Negative, shift right: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Twos complement if input is negative to get S7.23 value: sbbbbbbbccccccccccccccccccccccc
8.4.1.1.1.1.2 High Precision Pipeline Mantissa Calculation

Calculation of the high precision mantissa is the same regardless of function type. Exceptions involve the selection
of input values and are discussed in the process flow that follows. The multiplication of the first order term (A * (x
– x0)) uses the power function pipeline multiplier. All other multiplications use dedicated multlipliers.

Get Starting value:

EXP opcode:

Use preprocessed S7.23 value: 0sbbbbbbbccccccccccccccccccccccc

All other opcodes:

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1395 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

35 of
43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

Use iAG_ME_IN_A, an IEEE floating point value: seeeeeeeemmmmmmmmmmmmmmmmmmmmmmm

Get Index:

RECIP opcode:

Use LSB of exponent and 4 MSB’s of input mantissa: ……………………iiiii…………………………………………………

All other opcodes:

Get lookup table index from 5 MSB’s of input mantissa: ………………………iiiii………………………………………………

Get delta:

RECIP & RECIPSQRT opcodes:

Use 19 LSB’s of input mantissa for delta: ddddddddddddddddddd

All other opcodes:

Use 18 LSB’s of input mantissa for delta: dddddddddddddddddd0

Get Slope1:

Term A from Lookup Table: AAAAAAAAAAAAAAAAAAAA

delta: ddddddddddddddddddd

Multiply to get mult0: qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

RECIP, RECIPSQRT opcodes:

Use 20 MSB’s of mult0 for Slope1: qqqqqqqqqqqqqqqqqqqq0

All other opcodes:

Use 21 MSB’s of mult0 for Slope1: qqqqqqqqqqqqqqqqqqqqq

Get ddelta:

RECIPSQRT & RECIP opcodes:

OR together 4 LSB’s of delta: l

Concatenate bits 18 – 4 of delta to get ddelta: dddddddddddddddl

RECIP, LOG opcodes:

OR together 5 LSB’s of delta: l

Concatenate bits 18 – 5 of delta to get ddelta: ddddddddddddddl0

EXP opcode:

OR together 6 LSB’s of delta: l

Concatenate bits 18 – 6 of delta to get ddelta: dddddddddddddl00

Get delta_square:

Square ddelta to get mult1: rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

RECIPSQRT opcode:

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1396 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

R400 Shader Processor Model

PAGE

36 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

OR together bits 16 - 15 of mult1: l

Concatenate bits 31 – 17 of mult1 to get delta_square: rrrrrrrrrrrrrrrl

RECIP & LOG opcodes:

OR together bits 17 - 16 of mult1: l

Concatenate bits 31 – 18 of mult1 to get delta_square: rrrrrrrrrrrrrrl0

EXP opcode:

OR together bits 18 - 17 of mult1: l

Concatenate bits 31 – 19 of mult1 to get delta_square: rrrrrrrrrrrrrl00

Get Slope2:

Term B from Lookup Table: BBBBBBBBBBBBBBBB

delta_square: rrrrrrrrrrrrrrrr

Multiply to get mult2: ssssssssssssssssssssssssssssssss

RECIPSQRT opcode:

Use 16 MSB’s of mult2 for Slope2: ssssssssssssssss0

RECIP opcode:

Use 15 MSB’s of mult2 for Slope2: 0sssssssssssssss0

EXP opcode:

Use 14 MSB’s of mult2 for Slope2: 000ssssssssssssss

LOG opcode:

Use 15 MSB’s of mult2 for Slope2: 00sssssssssssssss

Get dddelta:

RECIPSQRTopcode:

OR together 8 LSB’s of delta: l

Concatenate bits 18 – 8 of delta to get dddelta: dddddddddddl

RECIP opcode:

OR together 10 LSB’s of delta: l

Concatenate bits 18 – 10 of delta to get dddelta: dddddddddl00

EXP opcode:

OR together 13 LSB’s of delta: l

Concatenate bits 18 – 13 of delta to get dddelta: ddddddl00000

LOG opcode:

OR together 11 LSB’s of delta: l

Concatenate bits 18 – 11 of delta to get dddelta: ddddddddl000

Get ddelta_square:

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1397 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

37 of
43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

RECIPSQRT opcode:

OR together bits 20 - 19 of mult1: l

Concatenate bits 31 – 21 of mult1 to get ddelta_square: rrrrrrrrrrrl

RECIP opcode:

OR together bits 22 - 21 of mult1: l

Concatenate bits 31 – 23 of mult1 to get ddelta_square: rrrrrrrrrl00

EXPopcode:

OR together bits 25 - 24 of mult1: l

Concatenate bits 31 – 26 of mult1 to get ddelta_square: rrrrrrl00000

LOG opcode:

OR together bits 23 - 22 of mult1: l

Concatenate bits 31 – 24 of mult1 to get ddelta_square: rrrrrrrrl000

Get delta_cubed:

ddelta : dddddddddddd

ddelta_square : rrrrrrrrrrrr

Multiply to get mult3: tttttttttttttttttttttttt

RECIPSQRT opcode:

OR together bits 12 - 11 of mult3: l

Concatenate bits 23 – 13 of mult3 to get delta_cubed: tttttttttttl

RECIP opcode:

OR together bits 14 - 13 of mult3: l

Concatenate bits 23 – 15 of mult3 to get delta_cubed: tttttttttl00

EXP opcode:

OR together bits 17 - 16 of mult3: l

Concatenate bits 23 – 18 of mult3 to get delta_cubed: ttttttl00000

LOG opcode:

OR together bits 15 - 14 of mult3: l

Concatenate bits 23 – 16 of mult3 to get delta_cubed: ttttttttl000

Get slope3:

Term C from Lookup Table: CCCCCCCCCCCC

delta_cubed: tttttttttttt

Multiply to get mult4: uuuuuuuuuuuuuuuuuuuuuuuu

RECIPSQRT opcode:

Use 12 MSB’s of mult4 for Slope3: uuuuuuuuuuuu0

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1398 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

R400 Shader Processor Model

PAGE

38 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

RECIP opcode:

Use 10 MSB’s of mult4 for Slope3: 00uuuuuuuuuu0

EXP opcode:

Use 7 MSB’s of mult4 for Slope3: 000000uuuuuuu

LOG opcode:

Use 9 MSB’s of mult4 for Slope3: 0000uuuuuuuuu

Term f(x0) from Lookup Table: fffffffffffffffffffffffff

Slope1: qqqqqqqqqqqqqqqqqq

Slope2: ssssssssssssss

Slope3: uuuuuuuuuu

Add to get Full Mantissa: MMMMMMMMMMMMMMMMMMMMMMMMM

Right shift 2 bits to get Final Mantissa: MMMMMMMMMMMMMMMMMMMMMMM

8.4.1.1.1.1.3 High Precision Pipeline Log2 Post Processing

The two opcodes LOG_BASE2_DX and LOG_BASE2_FULL_DX post process the full mantissa to produce the
final mantissa and exponent. This step is the same as the process performed in the power function pipeline except
that the precision is higher.

Full Mantissa: MMMMMMMMMMMMMMMMMMMMMMMMM

Unbiased Input Exponent : SUUUUUUU

Combine Unbiased Exponent with Final Mantissa: SUUUUUUUMMMMMMMMMMMMMMMMMMMMMMMMM

Sign multiply to get Log2 Mantissa: 0ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

Normalize (using left shift L) to get Norm Mantissa: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Biased Exponent for shift L of 0: 10000110

Shift L: LLL

Subtract to get Biased Log2 Exponent: EEEEEEEE

Norm Mantissa (right shift by 2, drop MSB): NNNNNNNNNNNNNNNNNNNNNNN

Biased Log2 Exponent: EEEEEEEE

Unbiased Exponent Sign: S

Combine to get final Log2 Conversion Result: SEEEEEEEENNNNNNNNNNNNNNNNNNNNNNN

8.4.1.1.1.1.4 High Precision Pipeline Exponents

Calculation of the exponents for the LOG_BASE2_DX, LOG_BASE2_FULL_DX, EXP_BASE2_DX, and
EXP_BASE2_DX opcodes is covered in the corresponding pre and post processing sections. Exponents for the
RECIP_DX, RECIP_FF, RECIP_SQRT_DX, and RECIP_SQRT_FF are calculated in the following way:

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1399 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

39 of
43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

Base Exponent:

Input Exponent (biased): 0eeeeeeee

RECIPSQRT opcode:

Use Input Exponent (biased): 0bbbbbbbb

RECIP opcode:

Invert Input Exponent (biased): 1bbbbbbbb

Exponent Adjustment:

RECIPSQRT opcode:

Input is power of 4 (bits 23 – 0 are zero): 101111111

Input is not power of 4: 101111101

RECIP opcode:

Input is power of 2 (bits 22 – 0 are zero): 111111111

Input is not power of 2: 111111110

Final Exponent:

Base Exponent bbbbbbbbb

Exponent Adjustment: 1x11111xx

Add to get Intermediate Exponent : iiiiiiiiz

RECIPSQRT opcodes:

Use bits 8 – 1 of intermediate exponent: iiiiiiii

RECIP opcode:

Use bits 7 – 0 of intermediate exponent: iiiiiiiz

8.4.1.1.1.1.5 High Precision Special Outputs

The Math Engine computes or pipelines several values required by the DirectX 8.0 specification. These values
include partial terms for the EXP and LOG opcodes, and the diffuse lighting attribute for the LIT opcode. The EXP
opcode requires the input power to be split into integer and fractional parts, with the integer part then raised to a
binary power. The integer and fractional parts are readily available in the form of the S7.23 fixed-point value found
in the EXP2 preprocessing step. The integer value is already in binary power form and can be muxed onto the
oVE_WDATA output (with a zero mantissa). The fractional part of the power term needs to be normalized and
converted to floating point format. Since that is a function that is performed in the LOG2 post processing circuit,
the lower 23 bits of the S7.23 value is left shifted 10 bits and muxed into that circuit. The LOG opcode requires
that the input term be split into exponent and mantissa parts, with the exponent converted into a floating-point
value. The mantissa is easily combined with an exponent of zero (or 0x7f biased) and muxed onto the
oVE_WDATA output. Converson of the exponent requires an additional fixed-to-float circuit to generate the result
since the LOG2 post processing circuit is already used to convert the primary output for that opcode. The diffuse
lighting attribute for the LIT opcode is simply pipelined from the iAG_ME_IN_B input and muxed onto the
oVE_WDATA output.

8.4.1.1.1.1.6 Determination of High Precision Coefficients

The coefficients used to calculate the high precision mantissa were determined using third-order Lagrange
polynomials. Since the mantissa is calculated separately from the exponent, the build range for each function was
chosen so that the range of the function output values did not change dramatically (see below).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1400 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

R400 Shader Processor Model

PAGE

40 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

Build Ranges for Lagrangian Coeffiecients

Function Build Range

x

1

x = 1.0 to 2.0

x

1

x = 2.0 to 8.0

x2 x = 1.0 to 2.0

)(log 2 x x = 2.0 to 4.0

The build ranges were then divided into 32 equal segments. The coefficients for each segment were determined
using the two end points of the segment, f(x0) and f(x1), as well as two points on the segment itself, f(x01) and f(x02),
such that the distance along the x-axis between any two adjacent points, h, was 1/96 the total length of the build
range (see figure below).

INPUT

OUTPUT

0x x
1x01x 02x

x

 0xf

 xf

 01xf

 02xf

h
 1xf

Figure 8-1: Build Range Segment

The third-order Lagrange polynomial used to approximate each segment of each function at any point x along the
segment is as follows:

02101101

02010
1

1020102002

1010
20

1010201001

1020
10

10020010

10201
0

ˆ

xxxxxx

xxxxxx
xf

xxxxxx

xxxxxx
xf

xxxxxx

xxxxxx
xf

xxxxxx

xxxxxx
xfxf

Since hxx 001 , hxx 2002 , and hxx 301 , the polynomial can be rewritten in terms of x, x0, h,

f(x0), f(x1), f(x01), and f(x02):

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1401 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

41 of
43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

 hxxhxxxxxf
h

hxxhxxxxxf
h

hxxhxxxxxf
h

hxxhxxhxxxf
h

xf

2
6

1

3
2

1

32
2

1

32
6

1ˆ

00013

000203

000103

00003

The polynomial is then factored for successive powers of the quantity 0xx , i.e., 1, 0xx , 2
0xx and

 30xx . Using the notation 0xxx , the polynomial can be reduced to the following form:

3

0

ˆ
i

i
i xaxf

where each of the terms ai is:

 00 xfa

 1020101 5.495.5
3

1
xfxfxfxf

h
a

 10201022 5.4185.229
9

1
xfxfxfxf

h
a

 10201033 5.45.135.135.4
27

1
xfxfxfxf

h
a

Using the equations above, coefficients for each segment of each function were calculated and stored with the
precision necessary to achieve 24-bit resolution.

The diagram below represents the Scalar Engine part of the pipeline that implements the LUT (Lookup Table) type
scalar functions.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1402 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

R400 Shader Processor Model

PAGE

42 of 43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

Low Precision Path

iAG_ME_IN_A iAG_ME_IN_C

24x24
Floating-Point/

Integer
Multiplier

mux

64 entry
log2 lookup table

Multiplier

Adder

[16:0] [22:17]

left shift 2

log2(x)

log2(e)

log2(x
n)

Float to Fixed
 Conversion

U7.23

slope point

[10:0] [15:0]

[17:0][21:9]

OR Reduce
7 LSB's

[10:0]

unbiased_exp

concatenate

[17:0][7:0]

U8.18

sign multiply
[8]

U8.18

normalize

[25:0][7:0]

find exponent

concatenate

[8] [24:2]

pipeline

pipeline

pipeline

log2(x
n)

sign multiply

[30:0]

[31]

64 entry
exp2 lookup table

Multiplier

Adder

[16:0] [22:17]

left shift 2

slope point

[10:0] [15:0]

[17:0][21:9]

OR Reduce
7 LSB's

[10:0]

left shift 5

[17:0]

[22:0]

Add IEEE Bias

[30:23]

concatenate

[30:23]

xn

High Precision Path

Float to Fixed
 Conversion

U7.23

sign multiply

[30:0]

[31]

mux

[31:0] [31:0]

left shift 1/0/1/1

Multiplier Multiplier

Multiplier

Square

32 entry
lookup table

slope3

32 entry
lookup table

32 entry
lookup table

slope2

32 entry
lookup table

slope1
(to low precision

path)

delta_squar
e

delta_cubed
slope_delta

2

slope_delta3

slope_delta
1

point

OR 5/4/6/5 LSB's
& left shift 1/0/2/1

Numbers divided by slashes refer to
RCP/RSQ/EXP/LOG functions

OR 10/8/13/11 LSB's
& left shift 2/0/5/3

[23:19][18:0][18:0] [23:19]

[15:0]

right shift 16/15/17/16
& OR 2 LSB's

& left shift 1/0/2/1

right shift 21/19/24/22
& OR 2 LSB's

& left shift 2/0/5/3

[15:0][15:0][11:0][11:0]

right shift 17/16/18/17
& left shift 1/1/0/0

right shift 13/11/16/14
& OR 2 LSB's

& left shift 2/0/5/3

[29:0][23:0]

[11:0][11:0]

right shift 14/12/17/15
& left shift 1/1/0/0

[23:0]

[23:19]

[29:0] [29:0]

unbiased_exp

delta
(from high

precision path)
mux

slope1
(from high

precision path)

integer_result
(to high precision path)

delta
(to low precision

path)

[18:0]

[19:0]

right shift 19/19/18/18
& left shift 1/1/0/0

integer_result
(from low precision

path)

[38:0]

[23:19]

[25:0]

[11:0]

[15:0]
[20:0]

xnum1

xnum1

concatenate

[7:0]

U8.25

sign multiply
[8]

U8.25

normalize

[32:0]

find
exponent

concatenate

[8] [31:9]

mant_result

hp_mantunbiased_exp

log_result

Log2 Postprocessing

Exp2 Preprocessing &
Pipelining

iAG_ME_IN_A

oME_WDATA

pipeline

pipeline

pipeline

fp_result

Output Selection

pipeline

xnum2

xnum3

pipeline

pipeline

left shift 1/0/1/1

xnum2

left shift 1/0/1/1

xnum3

pipeline

pipeline

pipeline

pipeline

xpipe

A
d
d
e
r pipeline

hp_mant

m
u
x

log_result [30:23]

xn [30:23]

xpipe [30:23]

~xpipe [30:23]

fp_result [30:23]

A
d
d
e
r

m
u
x

0x7f

0x17d

-1

-2

0x17f

0

Exponent Calculation &
Final Result Selection

m
u
x

log_result [22:0]

xn [22:0]

mant_result [22:0]

xpipe [22:0]

fp_result [22:0]

sign multiply

[8]

U8.0

normalize

[7:0]

find
biased

exponent

concatenate

[8] [22:0]

log_exp

[7:0]

left shift 16

[23:0]

me_data0m
u
x

log_exp

exp_exp

1.0

me_result

m
u
x

fp_result [31]

log_result [31]

xpipe [31]

'0' C
o
n
c
a
t
e
n
a
t
e

me_result

exp_exp
left shift 23 me_data1m

u
x

log_mant

exp_mant

ypipe

me_result

normalize

[32:0]

find
biased

exponent

concatenate

[31:9]

exp_mant

left shift 10

[32:0]

concatenate

log_mant

[22:0]

pipeline

pipeline

pipeline

pipeline

pipeline

pipeline

pipeline

pipeline

ypipe

iAG_ME_IN_B

0x7f

xpipe

Special Outputs

me_data2me_result

me_data3m
u
x

me_result

1.0

unbiased_exp

9. Open Issues
1. There’s still to be decided the final location for difference engine used in calculating the delta between the vertex

parameter values. The two possible place are:
a. Next to the interpolators inside the parameter engines at the top of each shader pipe, but replicating this

way the same logic across 4 shader pipelines.
b. SX (Shader Exports). If this is the case, then Cylindrical Wrap logic should be propably be moved to the

SX blocks.

2. The location of the real time parameter caches as well as the routing of this data by SX units into the parameter
interpolators.

3. Data expansion logic in the path from the Fetch Engines into shader units/GPRs. Currently, the texture return data
into GPRs is defined as a 512-bit bus for each shader pipe (Section 4.3.3).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1403 of 1898

ORIGINATE DATE

17 January, 2002

EDIT DATE

9 October, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

43 of
43

Ex. 2042 - r400-doc_lib-design-blocks-sp__Shaders.doc__file#9 (2).doc �� 62641 Bytes*** ATI Confidential. Reference Copyright Notice on Cover Page
*** 10/09/15 12:06 PM

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1404 of 1898

 Page 1 of 2

Ex. 2043 --- R400_Sequencer (version 0.1 to 1.2).doc

//depot/r400/arch/doc/gfx/RE/R400_Sequencer.doc
... #18 change 10172 edit on 2001/11/16 by llefebvr@llefebvre_laptop_r400 (binary+l)

 chikin in order to move to documents to the new branch

... #17 change 9346 edit on 2001/11/06 by llefebvr@llefebvre_laptop_r400 (binary+l)

 sequencer spec backup

... #16 change 8606 edit on 2001/10/26 by llefebvr@llefebvre_laptop_r400 (binary+l)

 Sequencer spec V1.0.

... #15 change 8175 edit on 2001/10/22 by llefebvr@llefebvre_laptop_r400 (binary+l)

 sequencer v1.0 BACKUP ONLY not yet complete.

... #14 change 8081 edit on 2001/10/19 by llefebvr@llefebvre_laptop_r400 (binary+l)

 One before last major architectural revision of the sequencer before the implementation
spec. Control flow is complete and was accepted by SW team. Remains before freezing 1.0 :
external and internal interfaces.

... #13 change 7930 edit on 2001/10/17 by llefebvr@llefebvre_laptop_r400 (binary+l)

 version 0.8 of the sequencer spec. It contains the new control flow porcedure as well as
updated external interfaces.

... #12 change 7380 edit on 2001/10/05 by llefebvr@llefebvre_laptop_r400 (binary+l)

 version 0.7 of the sequencer. Interfaces and control managment added.

... #11 change 7261 edit on 2001/10/03 by llefebvr@llefebvre_laptop_r400 (binary+l)

 backup of the sequencer + register loading diagram

... #10 change 6865 edit on 2001/09/24 by llefebvr@llefebvre_laptop_r400 (binary+l)

 new spec of the Sequencer.

... #9 change 6790 edit on 2001/09/21 by llefebvr@llefebvre_laptop_r400 (binary+l)

 RE spec backup + HZ stats + SC spec backup

... #8 change 5698 edit on 2001/08/24 by llefebvr@llefebvre_laptop_r400 (binary+l)

 Page 2 of 2

Ex. 2043 --- R400_Sequencer (version 0.1 to 1.2).doc

 version 0.4 of the sequencer

... #7 change 5289 edit on 2001/08/13 by llefebvr@llefebvre_laptop_r400 (binary+l)

 added an exemple of registry file management

... #6 change 5260 edit on 2001/08/13 by llefebvr@llefebvre_laptop_r400 (binary+l)

 updated spec for sequencer

... #5 change 4001 edit on 2001/07/05 by llefebvr@llefebvre_laptop_r400 (binary+l)

 lockin is on

... #4 change 4000 edit on 2001/07/05 by llefebvr@llefebvre_laptop_r400 (binary)

 sequencer checkin

... #3 change 3999 edit on 2001/07/05 by pmitchel@pmitchel_iris (binary+l)

 change file type to lock

... #2 change 3330 edit on 2001/06/07 by llefebvr@llefebvre_laptop_r400 (binary)

 safety backup

... #1 change 3105 add on 2001/05/25 by llefebvr@llefebvre_laptop_r400 (binary)

 backup sequencer

ATI 2043
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1405 of 1898

 Page 1 of 8

Ex. 2044 --- R400_Sequencer (version 1.4 to 2.11).doc

//depot/r400/doc_lib/design/blocks/sq/R400_Sequencer.doc
... #62 change 118771 edit on 2003/08/29 by llefebvr@llefebvr_r400_montreal (binary+l)

 Fixing number of bits in the auto-count.

... ... branch into //depot/r600/r400_doc_lib/design/blocks/sq/R400_Sequencer.doc#1
... ... branch into //depot/yamato/legacy/r400/doc_lib/design/blocks/sq/R400_Sequencer.doc#1
... #61 change 114724 edit on 2003/08/04 by llefebvr@llefebvr_r400_montreal (binary+l)

 Corrected the max number for mem exports to be 5 instead of 9.

... #60 change 109954 edit on 2003/07/09 by llefebvr@llefebvr_r400_montreal (binary+l)

 Fixing VC table.

... #59 change 107253 edit on 2003/06/20 by llefebvr@llefebvr_r400_montreal (binary+l)

 Backup, no major changes.

... #58 change 103310 edit on 2003/05/30 by llefebvr@llefebvr_r400_montreal (binary+l)

 Added comments about address register.

... #57 change 101984 edit on 2003/05/21 by llefebvr@llefebvre_laptop_r400 (binary+l)

 more precisions on XYST generated register.

... #56 change 101037 edit on 2003/05/14 by llefebvr@llefebvr_r400_montreal (binary+l)

 Fixing the spec some more to match R500. Added some diagrams (SQ internals)

... #55 change 100004 edit on 2003/05/08 by llefebvr@llefebvr_r400_montreal (binary+l)

 Some interface updates.

... #54 change 98760 edit on 2003/05/02 by llefebvr@llefebvr_r400_montreal (binary+l)

 forgot to remove 1 waterfall signal.

... #53 change 98500 edit on 2003/05/01 by llefebvr@llefebvr_r400_montreal (binary+l)

 Refreshing the interfaces per Andi's last mail.

... #52 change 98401 edit on 2003/04/30 by llefebvr@llefebvr_r400_montreal (binary+l)

 Updated the SQ->SP interfaces for the R500.

 Page 2 of 8

Ex. 2044 --- R400_Sequencer (version 1.4 to 2.11).doc

... #51 change 97450 edit on 2003/04/24 by llefebvr@llefebvre_laptop_r400 (binary+l)

 Updated stall conditions.
 Made swizzle changes.
 Added more R500 specifics.

... #50 change 97161 edit on 2003/04/23 by llefebvr@llefebvre_laptop_r400 (binary+l)

 interface name changes for the SQ->SP fetch swizzles.

... #49 change 97092 edit on 2003/04/23 by llefebvr@llefebvre_laptop_r400 (binary+l)

 Added SP stall conditions to the SQ spec.

... #48 change 96572 edit on 2003/04/19 by llefebvr@llefebvr_r400_montreal (binary+l)

 Documentation changes for R500.

... #47 change 93456 edit on 2003/04/02 by llefebvr@llefebvr_r400_montreal (binary+l)

 update to the control flow instruction.
 Adding timing diagram for the SQ->VC/TP transfers.

... #46 change 92587 edit on 2003/03/28 by llefebvr@llefebvre_laptop_r400 (binary+l)

 added swizzle codes to the spec.

... #45 change 87762 edit on 2003/02/28 by llefebvr@llefebvr_r400 (binary+l)

 Added the new SX interface.

... #44 change 82838 edit on 2003/02/07 by llefebvr@llefebvr_r400 (binary+l)

 small update regarding the implementation change for the Pos Allocated / PC allocated
bits.

... #43 change 81538 edit on 2003/02/03 by llefebvr@llefebvr_r400 (binary+l)

 Missed bits 41 and 42 in the SQ_EXEC instruction format. Those are RESERVED as
well.

... #42 change 81401 edit on 2003/02/03 by llefebvr@llefebvr_r400 (binary+l)

 refined the interfaces to the SP to specify wich signals should or shouldn't be pipelined.

 Page 3 of 8

Ex. 2044 --- R400_Sequencer (version 1.4 to 2.11).doc

... #41 change 80832 edit on 2003/01/30 by llefebvr@llefebvre_laptop_r400 (binary+l)

 wording change for the predicate override bit.

... #40 change 78984 edit on 2003/01/23 by llefebvr@llefebvr_r400 (binary+l)

 small correction on memory export buffer sizes.

... #39 change 77093 edit on 2003/01/16 by llefebvr@llefebvr_r400 (binary+l)

 Modified the alloc instruction to include a no-serial bit.

... #38 change 77001 edit on 2003/01/15 by llefebvr@llefebvr_r400 (binary+l)

 Interface change from the SX (alloc dealloc bus) and interface change from the SP
(predicates and kill mask).

... #37 change 74942 edit on 2003/01/07 by llefebvr@llefebvre_laptop_r400 (binary+l)

 New revision of the spec.

... #36 change 59941 edit on 2002/10/29 by llefebvr@llefebvre_laptop_r400 (binary+l)

 backup and SQ->SP interface change.

... #35 change 58563 edit on 2002/10/22 by llefebvr@llefebvre_laptop_r400 (binary+l)

 Defined the memory exports better.

... #34 change 57527 edit on 2002/10/16 by llefebvr@llefebvre_laptop_r400 (binary+l)

 Clarifications and minor updates. Version 2.08.

... #33 change 56881 edit on 2002/10/14 by llefebvr@llefebvre_laptop_r400 (binary+l)

 Loops, jumps and calls are now using a 13 bit address which allows to jump and call and
loop around any control flow addresses (does not requires to be even anymore).

... #32 change 56604 edit on 2002/10/11 by llefebvr@llefebvre_laptop_r400 (binary+l)

 Revision 2.06 of the spec.

... #31 change 50456 edit on 2002/09/10 by llefebvr@llefebvre_laptop_r400 (binary+l)

 New spin of the SQ spec including some interface changes and auto-counter architectural
changes (for multipass pixel/vertex shaders).

 Page 4 of 8

Ex. 2044 --- R400_Sequencer (version 1.4 to 2.11).doc

... #30 change 49717 edit on 2002/09/05 by llefebvr@llefebvre_laptop_r400 (binary+l)

 updated spec.

... #29 change 49244 edit on 2002/09/03 by llefebvr@llefebvre_laptop_r400 (binary+l)

 new spec

... #28 change 48839 edit on 2002/08/29 by llefebvr@llefebvre_laptop_r400 (binary+l)

 Updated the SQ->SP interface. Added comment on the Constant load bus.

... #27 change 48092 edit on 2002/08/26 by llefebvr@llefebvre_laptop_r400 (binary+l)

 Added the new SQ->SP instruction interface.

... #26 change 46138 edit on 2002/08/14 by llefebvr@llefebvre_laptop_r400 (binary+l)

 Changed the MASK mnemonics to KILL.
 Added DST opcode.
 Added MUL_PREV2 opcode.
 Reordered the opcodes in primlib and SP.
 Implemented the new KILL and SET SCALAR opcodes, they are now all comparing the
ALPHA channel to 0.0f (instead of comapring against the RED channel).

... #25 change 44021 edit on 2002/08/02 by llefebvr@llefebvre_laptop_r400 (binary+l)

 New parameter generation scheme included in the spec.

... #24 change 41600 edit on 2002/07/19 by llefebvr@llefebvre_laptop_r400 (binary+l)

 SQ backup.

... #23 change 40691 edit on 2002/07/15 by llefebvr@llefebvre_laptop_r400 (binary+l)

 New sequencer spec.

... #22 change 37951 edit on 2002/07/03 by llefebvr@llefebvre_laptop_r400 (binary+l)

 Backup

... #21 change 31433 edit on 2002/06/03 by llefebvr@llefebvre_laptop_r400 (binary+l)

 Backup and minor updates.

ATI 2044
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1406 of 1898

 Page 5 of 8

Ex. 2044 --- R400_Sequencer (version 1.4 to 2.11).doc

... #20 change 27717 edit on 2002/05/13 by llefebvr@llefebvre_laptop_r400 (binary+l)

 Changed CF opcodes, SQ->SP interface and SP->SQ constant index load interface.

... #19 change 26057 edit on 2002/05/02 by llefebvr@llefebvre_laptop_r400 (binary+l)

 Modification on the Control flow instructions.

... #18 change 23957 edit on 2002/04/19 by llefebvr@llefebvre_laptop_r400 (binary+l)

 The new control flow scheme is now included in v2.0 of the sequencer spec.

... #17 change 23946 edit on 2002/04/19 by llefebvr@llefebvre_laptop_r400 (binary+l)

 Last version of the spec with the old control flow scheme

... #16 change 20320 edit on 2002/03/25 by llefebvr@llefebvre_laptop_r400 (binary+l)

 Upated the interfaces and added an exporting rule section.

... #15 change 20199 edit on 2002/03/22 by llefebvr@llefebvre_laptop_r400 (binary+l)

 Some minor changes to the SQ interfaces.

... #14 change 19503 edit on 2002/03/18 by llefebvr@llefebvre_laptop_r400 (binary+l)

 Changed the interfaces to reflect the fact that the PCs are now in the SX blocks

... #13 change 17380 edit on 2002/03/04 by llefebvr@llefebvre_laptop_r400 (binary+l)

 New revision of the sequencer spec.

... #12 change 14466 edit on 2002/02/04 by llefebvr@llefebvre_laptop_r400 (binary+l)

 Version 1.7 of the Sequencer spec.

... #11 change 13058 edit on 2002/01/15 by llefebvr@llefebvre_laptop_r400 (binary+l)

 redondant opcodes corrected.

... #10 change 13057 edit on 2002/01/15 by llefebvr@llefebvre_laptop_r400 (binary+l)

 There was a small error in the control flow section. Checked in the spec so that Richard
has a correct version to build the assembler on.

... #9 change 12708 edit on 2002/01/09 by llefebvr@llefebvre_laptop_r400 (binary+l)

 Page 6 of 8

Ex. 2044 --- R400_Sequencer (version 1.4 to 2.11).doc

 new revision of the sequencer spec v1.6

... #8 change 12335 edit on 2002/01/03 by llefebvr@llefebvre_laptop_r400 (binary+l)

 backup of the spec

... #7 change 11833 edit on 2001/12/17 by llefebvr@llefebvre_laptop_r400 (binary+l)

 backup

... #6 change 11503 edit on 2001/12/11 by llefebvr@llefebvre_laptop_r400 (binary+l)

 Version 1.5 of the sequencer spec. See Revision changes of the document for details.

... #5 change 11443 edit on 2001/12/10 by llefebvr@llefebvre_laptop_r400 (binary+l)

 backup. Updated the constant memory management section by copying stuff from the
R400 state management document by Mike Mantor.

... #4 change 11393 edit on 2001/12/07 by llefebvr@llefebvre_laptop_r400 (binary+l)

 backup.

... #3 change 11306 edit on 2001/12/06 by llefebvr@llefebvre_laptop_r400 (binary+l)

 New revision of the sequencer spec.

... #2 change 11226 edit on 2001/12/05 by llefebvr@llefebvre_laptop_r400 (binary+l)

 Updated the register spec.

... #1 change 11061 branch on 2001/12/03 by pmitchel@pmitchel_r400_win_marlboro
(binary+l)

 mv doc_lib/parts to doc_lib/design/blocks

... ... branch from //depot/r400/doc_lib/parts/sq/R400_Sequencer.doc#1,#3
//depot/r400/doc_lib/parts/sq/R400_Sequencer.doc
... #3 change 11048 edit on 2001/12/03 by llefebvr@llefebvre_laptop_r400 (binary+l)

 submited for Paul to move stuff around again.

... ... branch into //depot/r400/doc_lib/design/blocks/sq/R400_Sequencer.doc#1
... #2 change 10774 edit on 2001/11/27 by llefebvr@llefebvre_laptop_r400_emu (binary+l)

 Page 7 of 8

Ex. 2044 --- R400_Sequencer (version 1.4 to 2.11).doc

 opened the files with the wrong client

... #1 change 10705 branch on 2001/11/26 by pmitchel@pmitchel_r400_win_marlboro
(binary+l)

 another rename to match r300

... ... branch from //depot/r400/doc_lib/parts_lib/sq/R400_Sequencer.doc#3
//depot/r400/doc_lib/parts_lib/sq/R400_Sequencer.doc
... #3 change 10699 branch on 2001/11/26 by pmitchel@pmitchel_r400_win_marlboro
(binary+l)

 doing rename properly

... ... branch from //depot/r400/doc_lib/blocks/sq/R400_Sequencer.doc#5
... ... branch into //depot/r400/doc_lib/parts/sq/R400_Sequencer.doc#1
... #2 change 10698 delete on 2001/11/26 by pmitchel@pmitchel_r400_win_marlboro (binary+l)

 fix mistake

... #1 change 10691 branch on 2001/11/26 by pmitchel@pmitchel_r400_win_marlboro
(binary+l)

 rename "blocks" to "parts_lib"

... ... branch from //depot/r400/doc_lib/blocks/sq/R400_Sequencer.doc#1,#2
//depot/r400/doc_lib/blocks/sq/R400_Sequencer.doc
... #5 change 10697 add on 2001/11/26 by pmitchel@pmitchel_r400_win_marlboro (binary+l)

 recover

... ... branch into //depot/r400/doc_lib/parts_lib/sq/R400_Sequencer.doc#3
... #4 change 10695 delete on 2001/11/26 by pmitchel@pmitchel_r400_win_marlboro (binary+l)

 rename

... #3 change 10693 edit on 2001/11/26 by llefebvr@llefebvre_laptop_r400 (binary+l)

 closing for Paul to move files around

... #2 change 10676 edit on 2001/11/26 by llefebvr@llefebvre_laptop_r400 (binary+l)

 changed the file type to binary and locked

... ... branch into //depot/r400/doc_lib/parts_lib/sq/R400_Sequencer.doc#1
... #1 change 10674 add on 2001/11/26 by llefebvr@llefebvre_laptop_r400 (binary)

 Page 8 of 8

Ex. 2044 --- R400_Sequencer (version 1.4 to 2.11).doc

 new spin on the sequencer spec

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1407 of 1898

 Page 1 of 1

Ex. 2045 --- R400 Architecture Proposal Log --- r400spec.doc

//depot/r400/arch/doc/chip/r400spec.doc
... #6 change 3996 edit on 2001/07/05 by pmitchel@pmitchel_iris (binary+l)

 change filetype to prevent simultaneous open for edit

... #5 change 2314 edit on 2001/04/23 by smorein@smorein_r400 (binary)

 Updated area to new area estimate, post texture path changes
 checked in top level spec for larry to add to it

... #4 change 871 edit on 2001/02/02 by smorein@smorein_r400 (binary)

 Added a bunch of new documents, also updated area

... #3 change 585 edit on 2000/12/19 by smorein@smorein_r400 (binary)

 new area estimate and intial re spec.

... #2 change 496 edit on 2000/12/11 by smorein@smorein_r400 (binary)

 added block descriptions, added tiling

... #1 change 430 add on 2000/11/15 by smorein@smorein_r400 (binary)

 Adding the initial versions of several specs.

ATI 2045
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1408 of 1898

 Page 1 of 1

Ex. 2046 --- R400 Top Level Spec.DOC

//depot/r400/arch/doc/chip/R400 Top Level Spec.DOC
... #7 change 3995 edit on 2001/07/05 by pmitchel@pmitchel_iris (binary+l)

 change file type to prevent simultaneous open for edit

... #6 change 3091 edit on 2001/05/24 by lseiler@ma_lseiler (binary)

 Updated RB and MC block diagrams

... #5 change 2950 edit on 2001/05/17 by smorein@smorein_r400 (binary)

 updated spec, finally checked in

... #4 change 2359 edit on 2001/04/26 by llefebvr@llefebvre_laptop_r400 (binary)

 updated top level spec to match RE and SC specs

... #3 change 2347 edit on 2001/04/25 by lseiler@ma_lseiler (binary)

 Added text about the RB and MC plus descriptions of some RB features

... #2 change 2314 edit on 2001/04/23 by smorein@smorein_r400 (binary)

 Updated area to new area estimate, post texture path changes
 checked in top level spec for larry to add to it

... #1 change 1741 add on 2001/03/15 by smorein@smorein_r400 (binary)

 adding first real version of top level spec.

ATI 2046
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1409 of 1898

 Page 1 of 8

Ex. 2047 - r400-doc_lib-design-blocks-sp__Shaders.doc__FileHistory.log

//depot/r400/doc_lib/design/blocks/sp/Shaders.doc
... #36 change 131864 edit on 2003/11/13 by frising@frising_r400_win_marlboro (binary+l)

 -For cube instruction SrcA swizzle is now .zzxy. Also tried to clarify the differences
between what's shown in the numerics doc and what actually happens in the HW for cube
instruction.

... ... branch into //depot/r600/r400_doc_lib/design/blocks/sp/Shaders.doc#1
... ... branch into //depot/yamato/legacy/r400/doc_lib/design/blocks/sp/Shaders.doc#1
... #35 change 126058 edit on 2003/10/10 by frising@frising_r400_win_marlboro (binary+l)

 -update scalar mova instructions to return MAX_S(SrcC)

... #34 change 125972 edit on 2003/10/09 by frising@frising_r400_win_marlboro (binary+l)

 -update vector mova instruction to be two operand with result to GPR being max of
operands. Scalar mova instructions were updated to always return srcC.w.

... #33 change 111385 edit on 2003/07/16 by frising@frising_r400_win_marlboro (binary+l)

 v.1.99
 -add scalar sin and cos instructions

... #32 change 108338 edit on 2003/06/27 by frising@frising_r400_win_marlboro (binary+l)

 v.1.98
 -show scalar instructions SUB_CONST_0 and SUB_CONST_1 as negated adds to be
consistent with other subtraction instructions.

... #31 change 107630 edit on 2003/06/24 by frising@frising_r400_win_marlboro (binary+l)

 v.1.97
 -update cube instruction to take two operands. Output produced in a different order too.

... #30 change 99777 edit on 2003/05/07 by frising@frising_r400_win_marlboro (binary+l)

 v.1.96
 -update rules for masking with Color/Fog export.

... #29 change 99452 edit on 2003/05/06 by frising@frising_r400_win_marlboro (binary+l)

 v.1.95
 -Update spec to show that masking of exports is allowed for all exports now (possible
only exception fog - TBD).

... #28 change 97033 edit on 2003/04/22 by frising@frising_r400_win_marlboro (binary+l)

 Page 2 of 8

Ex. 2047 - r400-doc_lib-design-blocks-sp__Shaders.doc__FileHistory.log

 v.1.94
 -update mova* instructions to return SrcA (like a mov) on the vector side and SrcC.W
replicated on the scalar side.
 -update pred* instructions to only use W channel of operands.
 -update GPR write-back table to show that scalar component is used when both scalar
and vector write masks are enabled.

... #27 change 78304 edit on 2003/01/21 by frising@ma_frising (binary+l)

 v.1.93
 -Z export from pixel sahder now in X channel.
 -updated mova, kill and predicate instructions coissue rules now that we have a separate
bus for mova results.
 -add note saying input modifiers do not apply to PreviousScalar.
 -show not used opcodes.
 -add clamping to mova result sent to SQ.
 -add 6 new scalar instructions that operate on a constant and GPR and associated
documentation.

... #26 change 74194 edit on 2003/01/02 by frising@ma_frising (binary+l)

 v.1.92

 -MUL_PREV2 scalar instruction now checks if PreviousScalar or SrcC.X is a NaN and
returns -MAX_FLOAT if so.

... #25 change 68144 edit on 2002/12/03 by frising@ma_frising (binary+l)

 v.1.91

 -FLOOR opcode was not producing correct results for negative 'integer' inputs.

 Changed from:
 FLOOR:

 If (SrcA < 0.0f)
 Result = TRUNC(SrcA) + -1.0f;
 Else
 Result = TRUNC(SrcA)

 To:
 FLOOR:

 Result = TRUNC(SrcA)
 If ((SrcA < 0.0f) && (SrcA != Result))

 Page 3 of 8

Ex. 2047 - r400-doc_lib-design-blocks-sp__Shaders.doc__FileHistory.log

 Result += -1.0f;

 -Note that emulator was calling math library floor function so this should not be an
emulation issue.

... #24 change 67933 edit on 2002/12/02 by frising@ma_frising (binary+l)

 v.1.90

 -While we don't allow CLI relative addressing into the export file on r400, future chips
based on r400 may. This check-in moves the export masking behavior bit (bit[6] of vector
destination pointer) to bit[14] (bit[6] of scalar destination pointer). Bit[6] of vector destination
pointer now controls logical vs. CLI relative addressing into the register or export file. When
exporting, this is a Must Be Zero (logical) field for for software on r400. This will provide
binary compatibility.

 -Software will need to coordinate this change with emulator release.

... #23 change 64418 edit on 2002/11/15 by frising@ma_frising (binary+l)

 v.1.89

 -show FRACT instructions being implemented as: SRC + -FLOOR(SRC)
 -This should now sync the instructions with v.0.99b of numerics doc.

... #22 change 64381 edit on 2002/11/15 by frising@ma_frising (binary+l)

 v.1.88

 -specify that Result.X of CUBE instruction returns 2.0f * MajorAxis instead of max to
avoid confusion. See numerics doc for details of CUBE instruction.

 -specify function of all instructions in WZYX order. Nothing changing here; it's just for
spec consistency (and happens to reflect the actual order of operations in the shader pipe
hardware).

... #21 change 63732 edit on 2002/11/13 by frising@ma_frising (binary+l)

 v.1.87

 -when using absolute constant addressing all constants in instruction are absolute. This
allows compiler to easily perform mov operations on absolute constants.

 -Document instruction word in WZYX order (i.e. high bits to low bits). Documentation
issue only.

 Page 4 of 8

Ex. 2047 - r400-doc_lib-design-blocks-sp__Shaders.doc__FileHistory.log

 -lots more work cleaning up instruction word documentation (please study).

 -It may not have been clear in the past but indexing of exports is not permitted. This
update should make that obvious.

 -removed following export restriction which no longer applies: '1) When doing a Scalar
export of 'pixels' or 'position', only the 'W' component will contain the scalar result. The other
3 components will be expanded to 0.0. When exporting to 'parameters' the scalar result is put
into all 4 components.'

 Users should just use the scalar and vector destination masks appropriately to achieve
whatever result they want.

 -when exporting, bit 6 in instruction word now controls masking behavior during
parameter exports when both scalar and vector masks for a component are 0. See table 3.2.1.4

... #20 change 63509 edit on 2002/11/12 by frising@ma_frising (binary+l)

 v.1.86

 -add note that Constant0 refers to the first constant in the instruction while Constant1
and Constant2 refer to the second and third constants in the instruction respectively.

 -added note that the GPR write-back table rules only apply when the scalar and vector
destination pointers are the same. This should be obvious, but clarity never hurts.

 -when doing an export and both scalar and vector channels are masked a 0.0f is now
generated.

 -updated Exports Types and Addresses section to match what is in SQ doc.

 -tried to clean-up export rules section.

 -removed previous vector and previous scalar from source selects in instruction word.

 -added clamping code to LOG_CLAMPED instruction.

 -fixed a bunch of typos and other misc clean-up including a couple places where I was
mixing ABGRs with my WZYXs in the instruction definitions. Tried to be consistent when
refering to bits in instruction word.

... #19 change 61151 edit on 2002/11/01 by frising@ma_frising (binary+l)

 v.1.85

ATI 2047
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1410 of 1898

 Page 5 of 8

Ex. 2047 - r400-doc_lib-design-blocks-sp__Shaders.doc__FileHistory.log

 -clarifed how constant and register addressing works. For nomenclature I settled on
absolute, logical and relative addressing. New tables added.
 -documented how constant2 works.
 -Wrote a blurb and added a table on GPR write-back precedence.
 -Cleaned up ALU instruction format table

... #18 change 60264 edit on 2002/10/30 by frising@ma_frising (binary+l)

 v.1.8
 -bring up to date with v.0.99a of R400numerics.doc. Includes adding new instructions,
updating existing instructions, and moving to counter based predicate scheme.

... #17 change 49786 edit on 2002/09/05 by askende@andi_r400_docs (binary+l)

 new rev. 1.7

... #16 change 49232 edit on 2002/09/02 by askende@andi_r400_docs (binary+l)

 fixed a typo on MUL_PREV2

... #15 change 49141 edit on 2002/08/31 by askende@andi_r400_docs (binary+l)

 new rev of the spec ...rev.1.6

... #14 change 47336 edit on 2002/08/21 by askende@andi_r400_docs (binary+l)

 modified the instruction interface from SQ to SP

... #13 change 46099 edit on 2002/08/14 by askende@andi_r400_docs (binary+l)

 new rev of the spec.

... #12 change 45512 edit on 2002/08/12 by askende@andi_r400_docs (binary+l)

 new rev. 1.4

... #11 change 29310 edit on 2002/05/21 by askende@andi_r400_docs (binary+l)

 fixed typo

... #10 change 14237 edit on 2002/01/30 by askende@andi_r400_docs (binary+l)

 new rev of the document.

... #9 change 13514 edit on 2002/01/22 by askende@andi_r400_docs (binary+l)

 Page 6 of 8

Ex. 2047 - r400-doc_lib-design-blocks-sp__Shaders.doc__FileHistory.log

 new rev 1.2

... #8 change 13474 edit on 2002/01/21 by askende@andi_r400_docs (binary+l)

 new rev. 1.1

... #7 change 13471 edit on 2002/01/21 by askende@andi_r400_docs (binary+l)

 new rev 1.1 of the shader pipe

... #6 change 13235 edit on 2002/01/17 by askende@andi_r400_docs (binary+l)

 new rev.

... #5 change 13231 edit on 2002/01/17 by askende@andi_r400_docs (binary+l)

 new shader rev of the shader spec checked in.

... #4 change 13227 edit on 2002/01/17 by askende@andi_r400_docs (binary+l)

 new rev of the shader spec

... #3 change 11895 edit on 2001/12/17 by askende@andi_r400_docs (binary+l)

 new updates of the spec with regards to ALU instruction word definition,
 scalar opcode list and the hardware definition of the scalar unit.

... #2 change 11479 edit on 2001/12/10 by askende@andi_r400_docs (binary+l)

 new revision

... #1 change 11061 branch on 2001/12/03 by pmitchel@pmitchel_r400_win_marlboro
(binary+l)

 mv doc_lib/parts to doc_lib/design/blocks

... ... branch from //depot/r400/doc_lib/parts/sp/Shaders.doc#1,#4
//depot/r400/doc_lib/parts/sp/Shaders.doc
... #4 change 11047 edit on 2001/12/03 by askende@andi_r400_docs (binary+l)

 more updates

... ... branch into //depot/r400/doc_lib/design/blocks/sp/Shaders.doc#1
... #3 change 10809 edit on 2001/11/27 by askende@andi_r400_docs (binary+l)

 new rev of the spec.

 Page 7 of 8

Ex. 2047 - r400-doc_lib-design-blocks-sp__Shaders.doc__FileHistory.log

... #2 change 10770 edit on 2001/11/27 by pmitchel@pmitchel_r400_win_marlboro (binary+l)

 change filetype to +l

... #1 change 10769 branch on 2001/11/27 by pmitchel@pmitchel_r400_win_marlboro (binary)

 mv to doc_lib/parts

... ... branch from //depot/r400/arch/doc/gfx/SP/Shaders.doc#1,#18
//depot/r400/arch/doc/gfx/SP/Shaders.doc
... #18 change 10501 edit on 2001/11/21 by askende@andi_r400_docs (binary)

 opcode update

... ... branch into //depot/r400/doc_lib/parts/sp/Shaders.doc#1
... #17 change 10500 edit on 2001/11/21 by askende@andi_r400_docs (binary)

 updated a couple of opcodes

... #16 change 9723 edit on 2001/11/12 by askende@andi_r400_docs (binary)

 new revision

... #15 change 6889 edit on 2001/09/25 by askende@andi_docs (binary)

 newest version

... #14 change 5466 edit on 2001/08/17 by askende@andi_docs (binary)

 new rev of the spec

... #13 change 4960 edit on 2001/08/01 by askende@andi_docs (binary)

 new rev

... #12 change 4929 edit on 2001/07/31 by askende@andi_docs (binary)

 a new rev

... #11 change 4033 edit on 2001/07/06 by askende@andi_docs (binary)

 update of the specs

... #10 change 3585 edit on 2001/06/20 by askende@andi_docs (binary)

 Page 8 of 8

Ex. 2047 - r400-doc_lib-design-blocks-sp__Shaders.doc__FileHistory.log

 new rev

... #9 change 3574 edit on 2001/06/20 by askende@andi_docs (binary)

 new rev

... #8 change 3565 edit on 2001/06/19 by askende@andi_docs (binary)

 new rev

... #7 change 3560 edit on 2001/06/19 by askende@andi_docs (binary)

 new rev

... #6 change 3558 edit on 2001/06/19 by askende@andi_docs (binary)

 another rev

... #5 change 3553 edit on 2001/06/19 by askende@andi_docs (binary)

 another rev (rev.03) of the shader spec

... #4 change 3138 edit on 2001/05/29 by askende@andi_docs (binary)

 more updates to the spec

... #3 change 3020 edit on 2001/05/21 by askende@andi_docs (binary)

 another revision of the shader spec

... #2 change 2712 edit on 2001/05/09 by askende@andi_docs (binary)

 more updates

... #1 change 2700 add on 2001/05/09 by askende@andi_docs (binary)

 Shader specifications

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1411 of 1898

 Page 1 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 175294 on 2004/06/24 by mmantor@FL_mmantorLT_r400_win

 < initial checkin of osm random generator with minor changes to supporting files>

Change 172110 on 2004/06/07 by llefebvr@llefebvr_r400_linux_marlboro

 Fixing bad resource hang on the vertex shader.

Change 171407 on 2004/06/02 by llefebvr@llefebvr_r400_linux_marlboro

 Fixing Qnan issue

Change 168815 on 2004/05/19 by llefebvr@llefebvr_r400_linux_marlboro

 Integrate of the number of RS stations fixes from Xenos.

Change 168560 on 2004/05/18 by llefebvr@llefebvr_r400_linux_marlboro

 Back integration of the AddreValid fix from Xenos.

Change 168033 on 2004/05/14 by llefebvr@llefebvr_r400_linux_marlboro

 Integration of Randy's Kill maks changes from Xenos.

Change 167975 on 2004/05/14 by llefebvr@llefebvr_r400_linux_marlboro

 Blanket integrate of the Xenos emulator files for SQ,SP,SX to R400.

Change 167630 on 2004/05/13 by mmantor@FL_mmantorLT_r400_win

 <made alterations to tp_formatter to work in sp standalone environment made vsp
 more hardware like in pred, kill, mova, write enables and update on testbench>

Change 155924 on 2004/03/17 by llefebvr@llefebvr_r400_emu_montreal

 Integration from Xenos of the valid bit change. tb_sqspsx tracker data only, no
functionnal change here.

Change 155819 on 2004/03/17 by llefebvr@llefebvr_r400_emu_montreal

 Integration of the gpr clamping base address change from Xenos.

Change 154760 on 2004/03/12 by kryan@kryan_r400_win_marlboro_XP

 Integrate changes from Xenos/devel to my r400/branch to r400/devel

 Integrate Xenos/devel to r400 branch

 Page 2 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 - Added YIELD* keywords to the Shader Assembler.

 - Added processing for serial bit in SQ and Shader Assembler.

 - Changed handling of Control flow constants in Emulator

 to more closely match the hardware.

Change 154141 on 2004/03/10 by llefebvr@llefebvr_r400_linux_marlboro

 integration of the valid bit bug fix from Xenos

Change 153494 on 2004/03/08 by llefebvr@llefebvr_r400_emu_montreal

 Integration of the VS_DONE_EVENT change from Xenos.

Change 152749 on 2004/03/04 by llefebvr@llefebvre_laptop_r400_emu

 Integration of the PRED_COND_CALL change to R400.

Change 152663 on 2004/03/04 by llefebvr@llefebvre_laptop_r400_emu

 Fixing COND_JMP and COND_CALL predicated. Also fixing bit mask problem in the
SX that controls the tracker.

Change 151381 on 2004/02/26 by llefebvr@llefebvre_laptop_r400_emu

 Integration of the cond_pred_execute fix from Xenos

Change 151315 on 2004/02/26 by llefebvr@llefebvr_r400_linux_marlboro

 Removing the storage for RT parameters in the emultor from the register space and the
SX.

Change 151063 on 2004/02/25 by llefebvr@llefebvr_r400_linux_marlboro

 Incorporating Tom's changes to the emulator.

Change 149973 on 2004/02/19 by llefebvr@llefebvr_r400_linux_marlboro

 Validated Tom's fix.

Change 149972 on 2004/02/19 by llefebvr@llefebvr_r400_emu_montreal

 Fixing the control flow machine in the emulator to remove an extra trip to the RS on a
COND_PRED_EXEC opcode.

Change 149638 on 2004/02/17 by llefebvr@llefebvr_r400_emu_montreal

 Page 3 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 This makes the emulator write to PV/PS on all units even when the operation is
predicated. Only the writes to the registers are blocked on predication (and pred vector/kill
vector).

Change 149424 on 2004/02/16 by llefebvr@llefebvr_r400_emu_montreal

 Fixing REP bug.

Change 149402 on 2004/02/16 by llefebvr@llefebvr_r400_emu_montreal

 This fixes the COND_EXEC_PRED opcode so it returns the thread with the correct
resource when the predicate vector is dirty.

Change 148881 on 2004/02/12 by llefebvr@llefebvr_r400_emu_montreal

 The predicate clean bit was overwritten instead of being "anded" in creating less clause
boundaries than it should have on the emulator.

Change 148666 on 2004/02/11 by llefebvr@llefebvr_r400_emu_montreal

 This is a fix for the control flow instruction mismatch in the case of a
COND_EXEC_PRED opcode. The emulator wasn't updating the resource field while the HW
was.

Change 148344 on 2004/02/10 by llefebvr@llefebvr_r400_emu_montreal

 Enabling PRED_CLEAN instructions in primlib. Fixed a problem with
COND_EXEC_PRED_CLEAN_END opcode in the emulator.

Change 148246 on 2004/02/09 by donaldl@donaldl_xenos_linux_orl

 Added flat_shading signal for use in the SX parameter subtract function.
 (ie. if flat_shading is true, ignore infinity checks; just do subtract. Result
 should be zero.)

Change 148084 on 2004/02/09 by llefebvr@llefebvre_laptop_r400_emu

 Implemented the REP function in the emulator.

Change 147964 on 2004/02/07 by donaldl@donaldl_xenos_linux_orl

 Fixed bug when calling parameter_sub during creation of vectors
 (ie. lessthan0 and greaterpoint5 parameters were swapped).

Change 147952 on 2004/02/07 by mmantor@mmantor_xenos_linux_orl

 <added test bench for DiffEng param_sub in the sx for numerical verification>

Change 147697 on 2004/02/06 by llefebvr@llefebvre_laptop_r400_emu

 Page 4 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 The emulator now ignores the MSB of the count field.

Change 147181 on 2004/02/04 by llefebvr@llefebvre_laptop_r400_emu

 Adding Sq->SX event dump file.

Change 146961 on 2004/02/03 by mearl@mearl_xenos_linux_orl

 Updated the emulator to match the hardware.

Change 146954 on 2004/02/03 by llefebvr@llefebvre_laptop_r400_emu

 Fixing alloc with no serial folowed by serialized instruction bug (emulator wasn't
stopping).

Change 146738 on 2004/02/02 by mmantor@FL_mmantorLT_r400_win

 <added checking of vector and scalar results all the time, constant address and export
control&fog overlay, More values are randomized>

Change 146655 on 2004/01/31 by mmantor@mmantor_xenos_linux_orl

 <added include directory for crayola_enum.h and fixed vectpipe makefile to use env
variables for dep dir>

Change 146654 on 2004/01/31 by mmantor@FL_mmantorLT_r400_win

 <saved environment updates, problem with last checking>

Change 146651 on 2004/01/31 by mmantor@FL_mmantorLT_r400_win

 <preparing for intrinsity release, updated makes to be compatible with multiple
directories using $ROOT and $BRANCH environment
 variables and cleaned up sp_vector.v for readability and removed unused signals,
functionally equivalent>

Change 146535 on 2004/01/30 by llefebvr@llefebvr_r400_linux_marlboro

 Adding Tom's changes to the emulator and SP testbench.

Change 146499 on 2004/01/30 by llefebvr@llefebvr_r400_linux_marlboro

 Removing HW accureate flag

Change 146490 on 2004/01/30 by llefebvr@llefebvr_r400_emu_montreal

 Removing numbers.h

ATI 2048
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1412 of 1898

 Page 5 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 146478 on 2004/01/30 by llefebvr@llefebvr_r400_linux_marlboro

 Fixing bad casting in the TB

Change 146091 on 2004/01/29 by llefebvr@llefebvr_r400_emu_montreal

 Fixing SX buffer size management problem when EXPORT_BUFFER size > 128.

Change 146069 on 2004/01/29 by mmantor@mmantor_xenos_linux_orl

 <updated makefile for standalone rand vector generator for vsp>

Change 146063 on 2004/01/29 by mmantor@FL_mmantorLT_r400_win

 <added new files for last checkin>

Change 146062 on 2004/01/29 by mmantor@FL_mmantorLT_r400_win

 <repartition more vector scaler pipe (vsp) into seperate class to support lower level
random test bench and intrinsity efforts.
 moved all math from sq_alu.cpp to vsp.cpp>

Change 145619 on 2004/01/27 by llefebvr@llefebvr_r400_emu_montreal

 Added VS_FETCH_DONE event and interface pulse to the CP for the
PL_LIME_BUFFER early de-allocation of the vertex buffer.

Change 145089 on 2004/01/23 by llefebvr@llefebvr_r400_emu_montreal

 Added event propagation to the SX (from the SQ). Need to tie it off in Xenos to the BC.

Change 143941 on 2004/01/20 by llefebvr@llefebvr_r400_linux_marlboro

 1) Fixed Kill and waterfall issue (r400sq_killgt_01.cpp)
 2) Fixed waterfall and mova co-issue problem (only in non-optimized mode).
 3) Fixed SX dumpfile NAN sign propagation problem.

Change 143832 on 2004/01/19 by mmantor@FL_mmantorLT_r400_win

 <updated the vectpipetest.exe do process interleaved threads, all opcodes and
 changed tb_vector back to simple design. All ops pass 400000 instruction random
testing >

Change 143255 on 2004/01/15 by llefebvr@llefebvr_r400_emu_montreal

 Added VS_FETCH_DONE control flow instruction.
 Added VS_FETCH_DONE pulse to CP interface.
 Placed the hooks for when the event will be created.

 Page 6 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 143096 on 2004/01/14 by hartogs@hartogs_xenos_linux_orl

 Change to fix ferret dump file for VGT_SQ_Verts interface. This change passed
regress_e and parts_lib_rel.pl.

Change 141868 on 2004/01/09 by llefebvr@llefebvre_laptop_r400_emu

 Adding warnings for bad register settings on VS_CONST_BASE and VS_CONST_SIZE
(sum must be < 512).

Change 141694 on 2004/01/08 by llefebvr@llefebvre_laptop_r400_emu

 Fixing DB_ALU_SIZE to say we need 2X the number of constants than highest use in a
state.
 Fixing VS_NUM_REG to say it is number of registers -1.
 Fixing bug in predicated loop end where the jump back to the start of the loop wasn't
taken.

Change 140866 on 2004/01/06 by llefebvr@llefebvre_laptop_r400_emu

 This is the new alu code as provided by Tom. uses the new 27 bit adder.
 Passed release_parts_lib, the emulator regression and the tb_sqspsx regression. also
passed 4000000 vectors on the SP testbench.

Change 140078 on 2003/12/29 by llefebvr@llefebvr_r400_emu_montreal

 Fixing flush to zero problem on MUL_PREV2.
 Fixing _CONST abs modifier problem.

Change 139972 on 2003/12/29 by llefebvr@llefebvr_r400_emu_montreal

 Reverting Tom's changes (try 3).

Change 139970 on 2003/12/29 by llefebvr@llefebvr_r400_emu_montreal

 Reverting Tom's changes (try 2).

Change 139968 on 2003/12/29 by llefebvr@llefebvr_r400_emu_montreal

 Reverting Tom's changes. They brake the random tests with LSB missmatches.

Change 139340 on 2003/12/23 by llefebvr@llefebvr_r400_emu_montreal

 Fixed SX to send Nans on invalid positions.
 Fixed waterfalling on _CONST opcodes.
 Added more debug info to SX->PA dumps.

Change 139084 on 2003/12/22 by llefebvr@llefebvr_r400_emu_montreal

 Page 7 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 Adding more dump info in the SX->RB color dump.
 Adding bug fixes in 27 bit adder path (not used).

Change 138986 on 2003/12/20 by mmantor@mmantor_xenos_linux_orl

 <changed csim to only make one pass for param gen and gen index and write the dump
files correctly, fixed a timing loop in pix tthread buffer >

Change 138150 on 2003/12/17 by llefebvr@llefebvr_r400_emu_montreal

 Removed power of 2 specific wrapping to allow any size VTX and PIX RS.

Change 138102 on 2003/12/17 by llefebvr@llefebvr_r400_emu_montreal

 Added programable VTX and PIX RS sizes (from state register).
 Added programable SX export buffer sizes.
 Added programable number of EA buffers in SX.
 Added programable State export slots in SX.

Change 138048 on 2003/12/17 by llefebvr@llefebvr_r400_emu_montreal

 The emulator now outputs an error message and exits uppon bad usage of the address
register.

Change 137942 on 2003/12/16 by llefebvr@llefebvr_r400_linux_marlboro

 The testbench now compiles and runs on linux.

Change 137864 on 2003/12/16 by rramsey@rramsey_xenos_linux_orl

 Change emulator so param cache reads for params not exported by the VS
 still show up in sq_sx_pcaddr.
 Fix cf_resource_change logic in the cfs so it catches the clause boundary
 where a cf instr with only tex instr gets sent to the alu cfs.

Change 137313 on 2003/12/12 by mmantor@FL_mmantorLT_r400_win

 <update for standalone vp test>

Change 137273 on 2003/12/12 by llefebvr@llefebvre_laptop_r400_emu

 Fixing another data scrmable on TRUNC scalar.
 Modified MAX4v to match exactly numerics.
 Modified MAX and Min opcodes to remove the subtract that could cause an LSB
missmatch on the compare.
 Fixed Nan on FLOOR scalar.

Change 137256 on 2003/12/12 by llefebvr@llefebvre_laptop_r400_emu

 Page 8 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 This is fixing the Nan and data scramble on scalar TRUNC.

Change 137124 on 2003/12/12 by llefebvr@llefebvre_laptop_r400_emu

 This is fixing the _CONST opcode failure. This is an SQ only change so it will not affect
the SP testbench.

Change 137080 on 2003/12/11 by mmantor@FL_mmantorLT_r400_win

 <tmp remove scalar prev opcodes for standalone testing>

Change 137063 on 2003/12/11 by llefebvr@llefebvre_laptop_r400_emu

 Changing swizzles on CUBE instruction to exactly match SP.

Change 136833 on 2003/12/10 by llefebvr@llefebvre_laptop_r400_emu

 Fixing PRED_SET* opcodes to match HW behavior.
 Fixing bad channel select on KILL* and MAX4 opcodes.

Change 136832 on 2003/12/10 by mmantor@FL_mmantorLT_r400_win

 <added all ops and provide pred opcode swizzle changes and kill in the standalone
vectpipetest>

Change 136727 on 2003/12/10 by mmantor@FL_mmantorLT_r400_win

 <added all vector ops>

Change 136641 on 2003/12/10 by llefebvr@llefebvre_laptop_r400_emu

 Fix for vector TRUNC +/- 0 clamping issues.

Change 136555 on 2003/12/09 by mmantor@FL_mmantorLT_r400_win

 add VectPipeTest that test the vector pipe of the sp.

Change 136540 on 2003/12/09 by llefebvr@llefebvre_laptop_r400_emu

 This should fix TRUNC nan failures and DOT2Add INF and NAN failures.

Change 136519 on 2003/12/09 by llefebvr@llefebvre_laptop_r400_emu

 Another pass on the SP files to be more HW lookalike.

Change 136387 on 2003/12/09 by llefebvr@llefebvre_laptop_r400_emu

 This is the new SP files more HW lookalike. Also fixes DOT2ADD SRCC swizzle
issues.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1413 of 1898

 Page 9 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 136287 on 2003/12/08 by llefebvr@llefebvre_laptop_r400_emu

 The TRUNC was rounding instead of clamping when dealing with negative numbers
(LSB of mantissa only)

Change 135538 on 2003/12/04 by vromaker@vromaker_emul_r400_linux_marlboro

 - updated vtx and pix thread buffer sizes

Change 135361 on 2003/12/04 by llefebvr@llefebvr_r400_emu_montreal

 This should fix +/0 problems in CUBE (501-502). And TRUNC to +0 issue (trunc_02).

Change 134820 on 2003/12/02 by llefebvr@llefebvr_r400_emu_montreal

 Fixing the CUBE opcode. It was reading from SRCB.X while if should have read from
SRCA.W.

Change 134536 on 2003/12/01 by llefebvr@llefebvr_r400_emu_montreal

 Fixing bad swizzle in the case of a co-issued 2 operand scalar op along with a 3 operand
vector op. Emulator was doing x and w while it should have been z and w.

Change 133958 on 2003/11/25 by llefebvr@llefebvr_r400_emu_montreal

 There was a parenthesis problem in the if causing the fix for the +/- zero not to work on
the Muladd. This is fixing it.

Change 133810 on 2003/11/25 by llefebvr@llefebvr_r400_emu_montreal

 Fixing Add/MulAdd +/-0 problem in the emulator

Change 133619 on 2003/11/24 by llefebvr@llefebvr_r400_emu_montreal

 Fixing additionnal control flow entry in the SQ dumps.

Change 133415 on 2003/11/21 by llefebvr@llefebvr_r400_emu_montreal

 Fixed the wrong function for the +/- Zero bug on the Muladd engine.

Change 133358 on 2003/11/21 by llefebvr@llefebvr_r400_emu_montreal

 Adding RETAIN_PREV opcode to the scalar engine as opcode 0x32 (last one).
 Opcode has syntax:

 RETAIN_PREV Rx; Where Rx is any register. To just retain the predicate vector use:
 RETAIN_PREV Rx@;

 Page 10 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 Fixed bad SRC selection for Tc in cube opcode.
 Fixed +/- 0 problem in the multiply engine.

Change 133025 on 2003/11/20 by mearl@mearl_xenos_linux_orl

 Fixed 2 primitive per clock interpolation bug in the emulator.

Change 132250 on 2003/11/17 by llefebvr@llefebvr_r400_linux_marlboro

 Changing emulator and tests to meet with the new cube swizzles wich now are for SRCA
zzxy (instead of zzyx). Also change the assembler to accept the new swizzle code.

Change 131172 on 2003/11/10 by llefebvr@llefebvre_laptop_r400_emu

 This fixes KILL* and PRED_SET_INV opcodes when working with denorms.

Change 130817 on 2003/11/07 by llefebvr@llefebvr_r400_emu_montreal

 Fixing SUB NaN sign propagation.
 Fixing PRED* flush of denorms to 0.
 Also fixing +/-0 flush to zero problems in multiple other opcodes.

Change 130473 on 2003/11/06 by llefebvr@llefebvr_r400_emu_montreal

 Now using SRCB.z for input argument of the Z channel ma computation when Z wins in
a cube opcode.

Change 130441 on 2003/11/06 by llefebvr@llefebvr_r400_emu_montreal

 Removal of duplicate code.

Change 130357 on 2003/11/05 by llefebvr@llefebvr_r400_emu_montreal

 Fixing the CUBE opcode. Was broken because the emulator wasn't taking into account
that SRCA and B had a different set fo swizzles.

Change 130281 on 2003/11/05 by llefebvr@llefebvr_r400_emu_montreal

 Fixing SRCC valid GPR valid channel.
 Putting the SERIAL on the right line the the cubic pixel shader program.

Change 130216 on 2003/11/04 by mmantor@FL_mmantorLT_r400_win

 <changes to enable standalone vector pipe random testbench>

Change 130154 on 2003/11/04 by llefebvr@llefebvr_r400_emu_montreal

 Updated DOT2ADD opcode to propagate NAN from SRC C as well.

 Page 11 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 130063 on 2003/11/04 by llefebvr@llefebvr_r400_emu_montreal

 This should fix NAN sign propagation on the SUBs* opcodes (including SUB_PREV).

Change 129772 on 2003/11/03 by llefebvr@llefebvr_r400_emu_montreal

 This fixes a problem were the dummy line in the SP->SX dump to signify a dump free
done on memory export was places between phases 2 and 3 of an export instead of being
between two exports. This change will only affect the TB_SQSPSX and TB_SX

Change 129642 on 2003/10/31 by llefebvr@llefebvr_r400_emu_montreal

 New ExecuteVPInst function more flexible and hence more suitable to the testbench.

Change 129587 on 2003/10/31 by llefebvr@llefebvr_r400_emu_montreal

 Instanciation of multiple memories in the emulator to allow for use of
SQ_DEBUG_MISC.DB_EN_MEMORY_X and DB_READ_MEMORY register fields.

Change 129454 on 2003/10/30 by llefebvr@llefebvr_r400_emu_montreal

 This should make the CUBE opcode match exactly HW even if SRCA and B are
different.

Change 129388 on 2003/10/30 by llefebvr@llefebvr_r400_emu_montreal

 The emulator does not clamp the W channel anymore on a clamped CUBE operation.
This is in order to mimmic HW behavior.

Change 129348 on 2003/10/30 by mearl@mearl_xenos_linux_orl

 Added two primitive interpolation back in.

Change 129150 on 2003/10/29 by llefebvr@llefebvr_r400_linux_marlboro

 Increasing VC mini count to l1_fifo_size +2.

Change 129117 on 2003/10/28 by danh@danh_xenos_linux_orl

 Changed sq_sx_pcaddr.dmp generation.

Change 128927 on 2003/10/28 by llefebvr@llefebvr_r400_emu_montreal

 Fixing precision problem in all PRED* vector opcode. Emulator was rounding.

Change 128679 on 2003/10/27 by llefebvr@llefebvr_r400_emu_montreal

 This fixes an emulator dump problem related to VSISR address when vtx_count is on but
VSR_continued if off.

 Page 12 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 128526 on 2003/10/24 by mearl@mearl_xenos_linux_orl

 Took out two prim per clock to get regression to pass.

Change 128365 on 2003/10/24 by mearl@mearl_xenos_linux_orl

 Added 2 primitive interpolation in SQ and SPI. Fixed a bug in sx_parameter_cache.
Fixed synthesis
 bugs in SC.

Change 128179 on 2003/10/23 by llefebvr@llefebvr_r400_emu_montreal

 This should fix the bad data type on a position free done in the sp->sx emulator dump
file. This will only affect the TB_SQSP,TB_SQSPSX and TB_SX test benches as they are the
only ones using this field.

Change 127742 on 2003/10/22 by llefebvr@llefebvr_r400_linux_marlboro

 Removed the warnings from the sp->sx trackers and sx->sp.
 Now emulator is always executing the scalar instruction even in the case of a 3 operand
vector opcode. This is to match with random shaders.

Change 127044 on 2003/10/16 by llefebvr@llefebvre_laptop_r400_emu

 There was a bug in the post steer valid bits sent to the TP and VC. This is fixing it.

Change 127009 on 2003/10/16 by llefebvr@llefebvre_laptop_r400_emu

 This fixed the pixel auto counter bug in the interpolators.

Change 126957 on 2003/10/16 by llefebvr@llefebvre_laptop_r400_emu

 Now pushing the PERFORMANCE_STOP events to the RS.
 Fixed the predicate jump bug (wasn't reading the correct bit in the control flow
instruction).

Change 126833 on 2003/10/15 by dclifton@dclifton_xenos_linux_orl

 Small change to log result for numbers less than 1.0 to match HW.

Change 126691 on 2003/10/15 by dclifton@dclifton_xenos_linux_orl

 Another timing related change. Changed twos comp to ones comp on log
 post-process (effects log of number less than 1.0). Aligned inputs
 to high precision pipeline to reduce muxing. Improved carrysave add
 of multiplier results. Regenerated math tables to reclaim precision
 and fix roll-over mismatches.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1414 of 1898

 Page 13 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 126641 on 2003/10/14 by llefebvr@llefebvre_laptop_r400_emu

 Adding conditional_predicate_jmp and conditionnal_predicate_call. These are
performance optimizations only and are not in use at the moment.

Change 126483 on 2003/10/13 by mearl@mearl_xenos_linux_orl

 Fix One Prim Per Clock bug in sq_ptr_buff. Revert changes in sq_pix_ctl to make
 2 prim interp changes easier. Put known primdata data on all quads across packer
 to iterator interface. Fix dumps for no_inc_pix_cnt signal.

Change 126362 on 2003/10/13 by rramsey@rramsey_xenos_linux_orl

 Change sq_sp_interp dump so it contains all of the pass_count and wrap passes
 through the interpolator
 Add spi_sp tracker (enabled with ENABLE_SPI_TRACKER define)

Change 125881 on 2003/10/09 by llefebvr@llefebvr_r400_emu_montreal

 Now doing a MAX on the vector and scalar MOVA opcodes to match HW.

Change 125617 on 2003/10/08 by llefebvr@llefebvr_r400_emu_montreal

 Now passing the ROM data at the end of each line in the dump file. This is for RSP usage
in testbenches.

Change 125370 on 2003/10/07 by mearl@mearl_xenos_linux_orl

 Fixed the SQ bug when bad pipe exists before a good pipe. Also, updated
 the RT trackers in the SC testbench.

Change 125266 on 2003/10/07 by llefebvr@llefebvr_r400_emu_montreal

 Added RSP fields to the dumps to allow for easier testbench integration.

Change 125023 on 2003/10/06 by llefebvr@llefebvr_r400_emu_montreal

 Cleaned up the COND_PRED_EXECUTE and PRED_LOOP code in the emulator. No
bug fixes here, just made the code easier to read and removed dead paths.

Change 124883 on 2003/10/03 by llefebvr@llefebvr_r400_emu_montreal

 Fixing issue with NANs and TRUNC,FLOOR,FRACT. Also, now SIN returns +/- 0 on
input +/- 0.

Change 124851 on 2003/10/03 by llefebvr@llefebvr_r400_emu_montreal

 Interpolation precision change to meet HW and timing.

 Page 14 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 124843 on 2003/10/03 by llefebvr@llefebvr_r400_linux_marlboro

 These are register changes related to new arbitration policies for the ALU engine.

Change 124643 on 2003/10/02 by llefebvr@llefebvr_r400_emu_montreal

 Fixing hang on pred_optimization test.

Change 124518 on 2003/10/02 by llefebvr@llefebvr_r400_emu_montreal

 This implements the cond_pred optimization in the emulator in order to match HW in the
number of clause boundaries.

Change 124434 on 2003/10/01 by mmang@mmang_xenos_linux_orl

 1. Turned on 3 simds in emulator (sc_interp.cpp,
 sq_block_model.cpp, and user_block_model.cpp).
 2. Turned on 3 simds in rtl (sc_packer.v,
 tb_sqsp.v, and vgt.v).
 3. Fixed bug in chip_vc.tree to get SQ_VC_simd_id
 and TC_VC_simd hooked up correctly.
 4. Fixed bug in sc_packer.v related to having a 2
 bit simd_id_sel.

Change 124011 on 2003/09/30 by llefebvr@llefebvr_r400_emu_montreal

 Autoreg change to remove the _no_stalls opcodes and replace them with _pred_clean.
Documentation only should not be a functionnal change. I had to remove some refrences to
_no_stall in the emulator code as well.

Change 123879 on 2003/09/29 by llefebvr@llefebvr_r400_emu_montreal

 Fixing some RSP problems on the Sq->TP/VC interfaces. These problems only show up
when RSP is turned on (it is currently off).

Change 123610 on 2003/09/26 by llefebvr@llefebvr_r400_emu_montreal

 Trying to FIX bad NAN handling on the scalar pipe.

Change 123497 on 2003/09/26 by llefebvr@llefebvr_r400_emu_montreal

 Added the SP->SX RSP interface. Also added post_steered bits to all interfaces for
tracker purposes only (not HW). These are the valid bits of the SPs AFTER the data was steered
to go to the RSP.

Change 123278 on 2003/09/25 by llefebvr@llefebvr_r400_emu_montreal

 Added TP redundant pipe. Also renamed all redundant pipes to use SP instead of SQ.

 Page 15 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 123130 on 2003/09/24 by llefebvr@llefebvr_r400_emu_montreal

 First pass at redundant pipe in the emulator. For now, only on the VC->SQ and SQ->VC
interfaces.

Change 123082 on 2003/09/24 by mearl@mearl_crayola_linux_orl

 tb files updated for ONE_PRIM_PER_CLOCK, bug fix in interpolators for
ONE_PRIM_PER_CLOCK

Change 122815 on 2003/09/23 by llefebvr@llefebvr_r400_linux_marlboro

 Added more perf counters to the SQ to account for SIMD2-3.

Change 122728 on 2003/09/23 by llefebvr@llefebvr_r400_emu_montreal

 Made the autocount write to all channels like the HW does. Auto count in X, 0 in all
other channels.

Change 122683 on 2003/09/23 by mearl@mearl_crayola_linux_orl

 One primitieve per clock changes in the back of the SC and front of the SQ. Right now,
the ONE_PRIM_PER_CLOCK define in
 header.v and SC_SQ_interface.v are needed for this change. Will update this to
ONEPPC, since this already exists in
 header.v. Also, the sim.cfg file does not have an ifdef, so is hardcoded to one prim
per clock.

Change 122677 on 2003/09/23 by dclifton@dclifton_xenos_linux_orl

 Changed initial twos comp on exp opcode to ones comp for timing improvement in
hardware.

Change 121928 on 2003/09/17 by llefebvr@llefebvre_laptop_r400_emu

 Fixing multiple SIMD related stuff.

Change 121897 on 2003/09/17 by dclifton@dclifton_crayola_linux_orl

 Change in HW structure to improve timing

Change 121632 on 2003/09/16 by llefebvr@llefebvre_laptop_r400_emu

 Made the XYs be sent as floating point numbers instead of fix point so you can use them
directly in the shader. Also modified regress_e tests that this change broke. Also added register
fields for SIMD memory control.

Change 120731 on 2003/09/11 by llefebvr@llefebvr_r400_emu_montreal

 Page 16 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 I have removed the predication optimization on waterfall from the emulator. The HW
does not do it. Lines are marked with @@ OPTIMIZE so we can know what was removed in
order to put it back if needs be.

Change 120546 on 2003/09/10 by llefebvr@llefebvr_r400_emu_montreal

 Adding the scalar engine change. This change is currently disabled. To enable, change
line # 105 of sclarfunc.h from:

 __int64 ComputeMantissa6X(unsigned int point, unsigned int slope,
 unsigned int slope_derivative,
 unsigned int sloped_derivative,
 unsigned int delta, unsigned int ddelta,
 unsigned int dddelta, MeParam2 *params,
 int gen_type, int new_struct = 0);

 to:

 __int64 ComputeMantissa6X(unsigned int point, unsigned int slope,
 unsigned int slope_derivative,
 unsigned int sloped_derivative,
 unsigned int delta, unsigned int ddelta,
 unsigned int dddelta, MeParam2 *params,
 int gen_type, int new_struct = 1);

Change 120264 on 2003/09/09 by llefebvr@llefebvr_r400_emu_montreal

 Now writing the channel valid mask in hex in the dumps.

Change 120058 on 2003/09/08 by chammer@chammer_r400_win

 Changed width of dealloc from 3 to 4 bits since it can now accumulate to 8 in 1 prim per
clock mode.
 Load prim data into 'bad pipes' to match hardware.

Change 119590 on 2003/09/05 by llefebvr@llefebvre_laptop_r400_emu

 Rearranged the functions in the shader pipe for SP testbench purposes. No functionnal
changes per say.

Change 118543 on 2003/08/28 by llefebvr@llefebvr_r400_emu_montreal

 Adding thread type to SX interfaces for memory export validation.
 Also made sure to invalidate the Parameter cache interface reads whenever generating a
parameter.

Change 118385 on 2003/08/27 by llefebvr@llefebvr_r400_emu_montreal

 Added the thread Id identifier to interfaces for tracking purposes of memory export tests.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1415 of 1898

 Page 17 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 118345 on 2003/08/27 by llefebvr@llefebvr_r400_emu_montreal

 Missing a file in the changelist.

Change 118332 on 2003/08/27 by llefebvr@llefebvr_r400_emu_montreal

 Massive changelist of mostly non-functionnal stuff with two exeptions:

 1) Now checking for INF in the DOT path and doing as per the numerics spec.
 2) Changed the VC mini instruction count limit from 16 to 32 as instructed by Brian
Buchner.

 The rest of the changelist is the first pass to correct the invalid channels in the GPRs in
order for them not to be compared. This is mostly only adding bits at the end of the dumps for
the trackers to have the information needed to know what's valid and what's not. Interfaces
changed are:

 1) Internal SP GPR
 2) SP->SX
 3) SX->SP
 4) SX->PA
 5) SX->RB
 6) SX->Interp (PC data)
 7) SP interpolators

Change 118211 on 2003/08/26 by rramsey@rramsey_crayola_linux_orl

 changes to get fake_last set correctly in tp_sqsp.dmp

Change 117786 on 2003/08/22 by llefebvr@llefebvre_laptop_r400_emu

 The loop index clamping wasn't done correctly as I was trying to force negative values on
unsigned variables.

Change 117590 on 2003/08/21 by llefebvr@llefebvre_laptop_r400_emu

 I broke pretty much all waterfall tests with my previous checkin. This is a fix.

Change 117545 on 2003/08/21 by llefebvr@llefebvre_laptop_r400_emu

 This is an attempt to fix the bug 2515. I made sure a pixel wasn't considered in
subsequent passes if it was written. I will need sunshine to test it as I can't run the app.

Change 117283 on 2003/08/20 by llefebvr@llefebvre_laptop_r400_emu

 For parameter cache (interpolators) exports, I was using a different function to output the
results to a file. I did not bother opening up the file in this function as I suspected the position
export function would open it for me. Obviously, if you export position last this doesn't work. I

 Page 18 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

modified the function to check for file open and open it if not. This fixes the numerous bugs the
compiler guys were seing when exporting position last. This bug would only show up if dump
files are activated.

Change 117162 on 2003/08/19 by llefebvr@llefebvre_laptop_r400_emu

 Fixing CUBE instruction by move the *2.0 from red to blue.

Change 117149 on 2003/08/19 by llefebvr@llefebvre_laptop_r400_emu

 Now clamping to -256 if overflow of the loop index register.

Change 116305 on 2003/08/13 by chammer@chammer_r400_win

 Added one prim per clock to SC. This code is ifdef'd and can be enabled by
uncommenting out //#define ONE_PRIM_PER_CLK in gfx/sc/sc_types.h as well as in
gfx/sq/sc_sq.h

Change 115549 on 2003/08/08 by llefebvr@llefebvr_r400_emu_montreal

 Now writing DEADDEAD in the parameter caches at alloc time.
 Any DEADDEAD pixel or vertex will go thru CLAMP unchange is it is a DEADDEAD.

Change 115328 on 2003/08/07 by llefebvr@llefebvr_r400_emu_montreal

 The HW has a 26 bits normilizer so I increased the emulator's precision to match. This
fixes r400sq_ripple_01.cpp. I had to re-goldenize 1 test in the regress_e suite.

Change 115032 on 2003/08/05 by grayc@grayc_crayola2_linux_orl

 added back Laurent changes for sx performance counters
 modified sx.v for new performance register names

Change 114997 on 2003/08/05 by llefebvr@llefebvr_r400_emu_montreal

 Forgot to flush denorms prior to check for == 0. This was causing some tests to
missmatch on the SX->SP parameter sub interface.

Change 114116 on 2003/07/31 by grayc@grayc_crayola2_linux_orl

 backing out changes for SX Perf Counters

Change 114066 on 2003/07/30 by llefebvr@llefebvr_r400_emu_montreal

 Aligned correctly the sq_sp_interp.dmp
 Made a small change to generate -0 in the param_bub engine of the SX when both
operands are the same and SRCA is negative. This is to match the HW algorithm.

Change 114014 on 2003/07/30 by llefebvr@llefebvr_r400_emu_montreal

 Page 19 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 Made the SX performance counters unified in one SX. Also added some performance
counters to monitor the SX->RB performance. All of these are non-windowed yet.

Change 113865 on 2003/07/29 by llefebvr@llefebvr_r400_emu_montreal

 This toggles the emulator into a single/multiple SIMD engine. Can toggle on/off by
undef/def line 41 of sq_block_model.cpp (#define ENABLE_MULTIPLE_SIMDS). Currently
OFF.

Change 113818 on 2003/07/29 by llefebvr@llefebvr_r400_emu_montreal

 Now routing SIMD id to the SQ and TP dumps.
 Added 4 GPR banks to support up to 4 SIMD engines all having the same GPR address
but different data.
 Added 4 allocation engines to generate these addresses.
 The number of SIMD engines is user defined it is a #define in sq/user_block_model.h,
current setting is 4 but only 2 are used as the SC and VGT never send more than that for now.

Change 113562 on 2003/07/28 by llefebvr@llefebvr_r400_emu_montreal

 Cleaned and Fixed memory exports.
 Made the resource register pick the VC if a vertex thread is entered.

Change 112593 on 2003/07/23 by llefebvr@llefebvre_laptop_r400_emu

 Fixing infinite loop problem on 0 count exec_ends because of not setting correctly the
end of program flag in the SQ.

Change 112528 on 2003/07/22 by hartogs@fl_hartogs2

 Made the simd_id field between the VGT and the SQ two bits for up change to three or
more SIMD sets.

Change 112332 on 2003/07/22 by llefebvr@llefebvre_laptop_r400_emu

 I had the old output order for cube: ma,faceid,sc,tc. I changed it for the new one:
tc,sc,ma,faceid.

Change 112254 on 2003/07/21 by llefebvr@llefebvre_laptop_r400_emu

 This is the CUBE opcode change that takes into account the recent HW change. I also
modified one test case that was wrongfully picking W as the FACEID (it is Y).

Change 111835 on 2003/07/18 by llefebvr@llefebvr_r400_emu_montreal

 Splitting the ALU CONSTANT perf counters into SIMD0 and 1. I have added the
SIMD1 version of the counters at the end of the enumeration not to disturb again the current
order.

 Page 20 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 111444 on 2003/07/16 by llefebvr@llefebvr_r400_emu_montreal

 Added sin/cos corner cases.

Change 111399 on 2003/07/16 by llefebvr@llefebvr_r400_emu_montreal

 Fixing HOS anomaly because of bad SIMD setting in the SQ.
 Adding the auto-generated parameter in the assert for too many parameters in the RT SQ.

Change 111005 on 2003/07/14 by llefebvr@llefebvr_r400_emu_montreal

 Changing the RT assert to <= instead of <

Change 111001 on 2003/07/14 by llefebvr@llefebvr_r400_emu_montreal

 Adding the SIN/COS opcodes in the emulator.

Change 110861 on 2003/07/14 by llefebvr@llefebvr_r400_emu_montreal

 SQ now only reading TP interface data when Phase == 3 AND TP_SQ_VALID. Also
added an assert when trying to interpolate more than 4 parameters in RT mode.

Change 110814 on 2003/07/14 by jhoule@jhoule_r400_win_lt

 Added separate valids for TP_SQ and TP_SP data.
 This will eventually allow simpler HiColor data return from TP.

Change 110319 on 2003/07/10 by llefebvr@llefebvr_r400_emu_montreal

 Wasn't setting the VC counters correctly in the SQ. Was causing a hang whenever an app
would use a mini-fetch.

Change 109729 on 2003/07/08 by llefebvr@llefebvr_r400_emu_montreal

 Fixed the pixel counter in the SQ. This value is not used yet.

Change 108547 on 2003/06/30 by lseiler@lseiler_r400_win_marlboro

 Push out MemExports before processing certain events.

Change 108285 on 2003/06/27 by llefebvr@llefebvre_laptop_r400_emu

 Swapping write priority to a GPR. Was vector has priority over scalar, now IS scalar has
priority over vector.

Change 108154 on 2003/06/26 by hartogs@fl_hartogs2

 Hopefully fixed VGT alloc/dealloc for multi-SIMD vector sets

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1416 of 1898

 Page 21 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 Added simd_id fields to vgt_sq interface and vgt_ccgen interface
 Put pipedisable comments into several dump files.
 Put an "Assert(0)" into the sq_block_model.cpp to prevent access violation.

Change 107916 on 2003/06/25 by llefebvr@llefebvre_laptop_r400_emu

 Made all the necessary changes for the color buffers to be enlarged without actually
enlarging them so I don't break anything.

Change 107624 on 2003/06/24 by llefebvr@llefebvre_laptop_r400_emu

 Now enlarging valid bit mask to be quad aligned for pixel vectors (in order to get LOD
right to the TP).

Change 107575 on 2003/06/24 by llefebvr@llefebvre_laptop_r400_emu

 Added back pressure ability from the VC to the SQ using the Mega and mini counters.

Change 107515 on 2003/06/23 by mzini@mzini_r400_win

 Added vc_sq_sync interface

Change 107512 on 2003/06/23 by mzini@mzini_r400_win

 Created VC_SQ_Sync interface

Change 107026 on 2003/06/19 by llefebvr@llefebvr_r400_linux_marlboro

 1) Added a guard bit to the parameter sub engine of the SX in both the emulator and HW
this was causing a failure on a WQL test.
 2) Fixed zero detection problem in parameter_sub engine of the HW were an explicit 1
was added all the time even when the number was 0.0. This was causing r400sx_wrapper_01.cpp
to fail (this is a test that I wrote to duplicate the WQL test that was failing in order to run it on
HW).

Change 106833 on 2003/06/18 by llefebvr@llefebvr_r400_emu_montreal

 Added loop index clamping to range -256,255

Change 106809 on 2003/06/18 by llefebvr@llefebvr_r400_emu_montreal

 Was using the textureCF machine for the VC incorrectly. Caused the VC to fail.

Change 106526 on 2003/06/17 by llefebvr@llefebvr_r400_emu_montreal

 Was incorectly reading unitialized data.

Change 106470 on 2003/06/17 by rramsey@rramsey_crayola_linux_orl

 Page 22 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 Change interpolators so sx_sp_pcdata dump is not written
 for param_gen or gen_index passes (param cache is not actually
 read for those)
 Clean up sqsp_interp dump

Change 106404 on 2003/06/16 by llefebvr@llefebvr_r400_emu_montreal

 Initializing GPRS with DEADDEAD for ferret tracking purposes. Each thread is
initialized with this at GPR allocation time.

Change 106347 on 2003/06/16 by llefebvr@llefebvr_r400_emu_montreal

 Made the wrapping test >= instead of >

Change 106339 on 2003/06/16 by llefebvr@llefebvr_r400_emu_montreal

 Fixing SQ->VC bad header in dump.
 Fixing bad mova clamping.

Change 106263 on 2003/06/16 by mzini@mzini_r400_win

 Removed y and z from the index field in sq_vc.dmp file AGAIN!

Change 106093 on 2003/06/13 by llefebvr@llefebvr_r400_emu_montreal

 Emulator now clamps the address register to the range -256...255.

Change 106000 on 2003/06/13 by llefebvr@llefebvr_r400_emu_montreal

 Fixing SQ->VC dump to be correctly aligned.

Change 105865 on 2003/06/12 by llefebvr@llefebvr_r400_emu_montreal

 Fixing bad write mask setup on waterfall of lots of vertexes. Also enable
waterfall_optimize on exports.

Change 105795 on 2003/06/12 by llefebvr@llefebvr_r400_emu_montreal

 Fixing waterfalling on a MOVA instruction.

Change 105772 on 2003/06/12 by llefebvr@llefebvr_r400_emu_montreal

 Fixed a bug that caused generation of INF in the interpolators when param 0 was INF
regardless of param 1 and 2. Also realigned the sq_sp_interp.dmp.

Change 105645 on 2003/06/11 by llefebvr@llefebvr_r400_emu_montreal

 There was a problem in the way the masks were set when waterfalling. If multiple
vertexes were using the same constant on the second pass, only one of them was set.

 Page 23 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 105336 on 2003/06/10 by llefebvr@llefebvr_r400_emu_montreal

 Waterfalling wasn't tied to write mask of GPRs hence creating corruption when running
in optimized mode.

Change 105295 on 2003/06/10 by llefebvr@llefebvr_r400_emu_montreal

 Bad initialization for optimized waterfalling that caused linux to loop indefinitelly.

Change 105276 on 2003/06/10 by llefebvr@llefebvr_r400_emu_montreal

 Changing the order of waterfalling to match HW on the interface. Emulator was doing
LSB->MSB while HW was doing MSB->LSB.

Change 105001 on 2003/06/09 by llefebvr@llefebvr_r400_emu_montreal

 Added waterfall write masks to the emulator.
 Fixed the ALU instruction dump file to work with waterfall.

Change 104944 on 2003/06/09 by llefebvr@llefebvr_r400_emu_montreal

 Modified the emulator to generate the same number of passes than the HW on a waterfall
instruction. Only the number of passes is correct at this point not the write mask.

 Also corrected 2 MOVA tests where the address register wasn't loaded correctly before
use.

Change 104090 on 2003/06/04 by llefebvr@llefebvr_r400_emu_montreal

 Made 3 different counters for fetch, cst and instructions.

Change 104059 on 2003/06/04 by llefebvr@llefebvr_r400_emu_montreal

 Added a RT only instruction shader dump.

Change 103964 on 2003/06/04 by llefebvr@llefebvr_r400_emu_montreal

 1) Adding normalization stage to the SX
 2) Fixing unititialized loop variables in the SQ.
 3) Fixing RT/Normal constant and instruction loads (arbitrated on a 32 bit basis now)
 4) Fixing cylindrical wrap problem in SX
 5) Added performance counters for SIMD0/1

Change 103846 on 2003/06/03 by rramsey@rramsey_crayola_linux_orl

 Fix a problem with the control flow dump logic that was causing
 zero-count execs to be left out of the file

 Page 24 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 103806 on 2003/06/03 by rramsey@RRAMSEY_P4_r400_win

 fix comment line in SqSpInterp_Dump

Change 103675 on 2003/06/02 by mzini@mzini_r400_win

 Added simd_id to sq_vc and vc_sq dumps

Change 103552 on 2003/06/02 by llefebvr@llefebvr_r400_emu_montreal

 Added SIMD ID to TP interfaces.

Change 103230 on 2003/05/30 by mzini@mzini_r400_win

 Added simd_id to SQ_VC and VC_SQ

Change 101734 on 2003/05/20 by llefebvr@llefebvre_laptop_r400_emu

 fixing scalar trunc problem.

Change 100741 on 2003/05/13 by llefebvr@llefebvr_r400_emu_montreal

 Fixing range undeflow check of GPRs when using loop indexing and negative step.

Change 100446 on 2003/05/12 by llefebvr@llefebvr_r400_emu_montreal

 was not checking for < BASE for constant indexing range checking.

Change 100178 on 2003/05/09 by llefebvr@llefebvr_r400_emu_montreal

 bug with the VC arbiter.

Change 99938 on 2003/05/08 by hwise@fl_hwise_r400_win

 SC, SQ, & VGT Emulator Update:
 - Added shader pipe disable support for multiple SIMDs

Change 99865 on 2003/05/08 by llefebvr@llefebvr_r400_emu_montreal

 Fog changes: Serialized fog in the SP after the default settings for exports.
 Fixed assembler to put 0 in scalar write mask for BW compatibility with od shaders.

Change 99556 on 2003/05/07 by llefebvr@llefebvr_r400_emu_montreal

 fixing the RT assertion.

Change 99443 on 2003/05/06 by llefebvr@llefebvr_r400_emu_montreal

 Added an assert for bad constant registry setting regarding RT.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1417 of 1898

 Page 25 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 99140 on 2003/05/05 by lseiler@lseiler_r400_win_marlboro

 Eliminate two vcc warning messages

Change 98355 on 2003/04/30 by hwise@fl_hwise_r400_win

 ROM/GFX Emulator Update:
 1) Removed register fields from ROM_BAD_PIPE_DISABLE_REGISTER
 - DISABLE_SP_VTX
 - DISABLE_SP_PIX
 2) Added register ROM_SIMD_PIPE_DISABLE_REGISTER with fields
 + DISABLE_SIMD0_VTX
 + DISABLE_SIMD0_PIX
 + DISABLE_SIMD1_VTX
 + DISABLE_SIMD1_PIX
 + DISABLE_SIMD2_VTX (reserved for future use)
 + DISABLE_SIMD2_PIX (reserved for future use)
 + DISABLE_SIMD3_VTX (reserved for future use)
 + DISABLE_SIMD3_PIX (reserved for future use)
 3) Fixed bug in ROM block where post write trigger function for
 ROM_BAD_PIPE_DISABLE_REGISTER was not named correctly in
 rom.mblk files causing function to never be called
 4) Added post write trigger function for new register
 ROM_SIMD_PIPE_DISABLE_REGISTER
 5) Updated PA, SC, SQ, and VGT blocks to use new SIMD0 fields
 when determining bad and/or disabled pipes
 6) Added "TO DO" comment where SIMD1 logic needs to be added
 7) Modified InitRomStraps() to use ROM.ROM_BAD_PIPE_FUSE_REG.devForce()
 to set the LASER_FUSES rather than ROM.ROM_BAD_PIPE_FUSE_REG.write()
 since this is a read-only register without a default setting

Change 98272 on 2003/04/30 by llefebvr@llefebvr_r400_emu_montreal

 This should fix Ken's bug. Ken please confirm by running this in your sand box...

Change 97570 on 2003/04/25 by llefebvr@llefebvre_laptop_r400_emu

 Added SIMD1_DISABLE register field.
 Added MEMORY_READ register field.
 Added perf control to control performance dumps.
 Fixed the overwrite I made in cf_machine.cpp with previous checkin.

Change 97404 on 2003/04/24 by llefebvr@llefebvre_laptop_r400_emu

 Making the SX more HW alike for memory exports.
 Fixing the wrapping bug in the control flow machine (related to jumping in the
instruction store).

 Page 26 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 97321 on 2003/04/24 by mmantor@FL_mmantorLT_r400_win

 <fixed a bug with sx_sp_pcdata.dmp. The emulator was making the incorrect number of
passes to do interpolation>

Change 97064 on 2003/04/23 by llefebvr@llefebvre_laptop_r400_emu

 Added NO_SERIAL register.
 Changed pred_set opcodes to use W instead of X (may break some SQ tests that will
have to be fixed).

Change 97003 on 2003/04/22 by llefebvr@llefebvre_laptop_r400_emu

 Added end of shader markers to shaders dump.

Change 96907 on 2003/04/22 by llefebvr@llefebvre_laptop_r400_emu

 Added comments to SX dumps.
 Added VC dumps.
 Made emulator always stop on serial so it is deterministic.

Change 96369 on 2003/04/18 by llefebvr@llefebvr_r400_emu_montreal

 adding some more code t the VC.
 Fixed thread going always back on serial.

Change 96001 on 2003/04/16 by frising@frising_r400_win_marlboro

 Move computation of a_mul_b_exp_flip_predict before a_mul_b_exp in muladd. This
was the original intention and I suspect a copy/paste error at some point. In any case, it should
not change the results. I checked with AndyG and apparently the HW is already doing this.

Change 95739 on 2003/04/15 by llefebvr@llefebvr_r400_emu_montreal

 added the new performance counters in the SQ.

Change 95669 on 2003/04/15 by llefebvr@llefebvr_r400_emu_montreal

 New dumps with shaders and number of vertexes + pixels per shader. Neede to validate
load on the R500.

Change 95601 on 2003/04/15 by llefebvr@llefebvr_r400_emu_montreal

 The SQ now sends data to the VC. A dump: sq_vc.dmp has also been added for test
bench purposes.

Change 95456 on 2003/04/14 by llefebvr@llefebvr_r400_emu_montreal

 Added the SQ->VC interface and VC->SQ interface.

 Page 27 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 95216 on 2003/04/11 by llefebvr@llefebvr_r400_emu_montreal

 Added a VC empty shell. Need to add the interface to it. SQ is ready.

Change 94942 on 2003/04/10 by llefebvr@llefebvr_r400_emu_montreal

 changed the comment name for free_done_position to FDP

Change 94940 on 2003/04/10 by llefebvr@llefebvr_r400_emu_montreal

 Adding pos_free_done to the sp_sx.dmp for the SX testbench.

Change 94875 on 2003/04/10 by llefebvr@llefebvr_r400_emu_montreal

 Sx now sends R400_NANs to the PA when VS_EXPORT_MODE == 7.
 Added number of scalar operands to SP_in_dump.

Change 94729 on 2003/04/09 by llefebvr@llefebvr_r400_emu_montreal

 Added the bit necessary to add the VC engine. Also modified the control flow instruction.

Change 94688 on 2003/04/09 by grayc@grayc_crayola2_linux_orl

 correct filename

Change 94344 on 2003/04/07 by grayc@grayc_crayola2_linux_orl

 move appending of $TestPath into dump_point class for the rb,sx,sq,sc blocks

Change 94334 on 2003/04/07 by llefebvr@llefebvr_r400_emu_montreal

 Fixing small discrepencies in the SP dumps. I also had a bad addressing on constants
when using constant 0 on SRC B. Please Gang initiate a driver emulator drop and confirm this is
fixed indeed.

Change 93911 on 2003/04/04 by llefebvr@llefebvr_r400_emu_montreal

 I was not pushing the IP to and from the stack in the right order whenever moving to and
from the RS. Also, now using a single table line in the SX export table when doing mem-exports
and finxing additional entries in CF dump.

Change 93644 on 2003/04/03 by llefebvr@llefebvr_r400_emu_montreal

 added channel masking to the SX.

Change 93506 on 2003/04/02 by llefebvr@llefebvr_r400_emu_montreal

 adding jump/call address to the dump.

 Page 28 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 93480 on 2003/04/02 by llefebvr@llefebvr_r400_emu_montreal

 There was an error in the dump comment line for number of bits in EXEC subword.

Change 93403 on 2003/04/02 by llefebvr@llefebvr_r400_emu_montreal

 Adding CONTEXT_DONE events to the RS (not sending them to the CP).
 Fixing the problem with the SP->SX interface (was making 1 too many transfert because
of the dummy line inserted in the dump).

Change 92966 on 2003/03/31 by llefebvr@llefebvr_r400_emu_montreal

 Added the dummy free done line in case there is no export as a last clause instruction.

Change 92927 on 2003/03/31 by llefebvr@llefebvr_r400_emu_montreal

 removing the | from the CF,ALU and RS dumps, it confuses the PLI routines.

Change 92640 on 2003/03/28 by llefebvr@llefebvre_laptop_r400_emu

 Added the instruction store read address to the CF instruction and ALU dumps.

Change 92630 on 2003/03/28 by llefebvr@llefebvre_laptop_r400_emu

 Fixing MAX4 problem with NANs.

Change 92626 on 2003/03/28 by llefebvr@llefebvre_laptop_r400_emu

 Fixing the write enables of the SP dumps.

Change 92563 on 2003/03/28 by llefebvr@llefebvre_laptop_r400_emu

 Added number of operands in the SP dumps.

Change 92409 on 2003/03/27 by llefebvr@llefebvre_laptop_r400_emu

 Fixing the sign extention.

Change 92390 on 2003/03/27 by llefebvr@llefebvre_laptop_r400_emu

 fixing more alloc problems with events that were hanging SQ and SC tests.

Change 92227 on 2003/03/26 by llefebvr@llefebvre_laptop_r400_emu

 This should fix that. Let me know.

Change 92184 on 2003/03/26 by llefebvr@llefebvre_laptop_r400_emu

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1418 of 1898

 Page 29 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 The SQ was not allocating in order for colors. This was causing the SX to missbehave.
This is fixed.

Change 91585 on 2003/03/21 by llefebvr@llefebvr_r400_emu_montreal

 Fixing wrong aluId number in arbiter.
 Fixing mem exports some more.

Change 91363 on 2003/03/20 by llefebvr@llefebvr_r400_emu_montreal

 fliping mask bit order

Change 91261 on 2003/03/20 by llefebvr@llefebvr_r400_emu_montreal

 Major changes to the SQ/SX. Modified the SX to accept out of order exports and made it
closer to HW. Also now matching the HW interface for allocs/deallocs in the SX.

Change 91256 on 2003/03/20 by llefebvr@llefebvre_laptop_r400_emu

 fixing predication bug

Change 91169 on 2003/03/20 by rramsey@RRAMSEY_P4_r400_win

 fix typos in two dump file names (pix/vtx was swapped for control flow dumps)

Change 90027 on 2003/03/13 by llefebvr@llefebvr_r400_emu_montreal

 Fixed the Nan Check.
 Added more fields to sp_sx.dmp and sx_sq_addr.dmp for Sx testbench.

Change 89938 on 2003/03/13 by rramsey@RRAMSEY_P4_r400_win

 swap order of d0,1,2 in dump header

Change 89768 on 2003/03/12 by llefebvr@llefebvr_r400_emu_montreal

 changing name export to Export because of name clash on linux.

Change 89716 on 2003/03/12 by llefebvr@llefebvr_r400_emu_montreal

 SP data dumps.

Change 89381 on 2003/03/10 by llefebvr@llefebvr_r400_emu_montreal

 Added dumps for ALU instructions.

Change 89037 on 2003/03/07 by llefebvr@llefebvr_r400_emu_montreal

 fixing dumps and memory export test

 Page 30 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 89017 on 2003/03/07 by llefebvr@llefebvr_r400_emu_montreal

 Modifiyng dumps not to exceed 32 bits/col (PLI need)

Change 89007 on 2003/03/07 by llefebvr@llefebvr_r400_emu_montreal

 Added control flow instruction dumps.

Change 88898 on 2003/03/06 by rramsey@RRAMSEY_P4_r400_win

 Add new block level dumps to SQ for the vertex input controller (enabled with SqDump
>1)
 sq_sp_visr_wr.dmp - writes to staging registers
 sq_sp_vec_gpr.dmp - reads from staging regs/writes to gprs
 sq_vec_gpr_req.dmp - gpr allocate requests from the vertex controller

Change 88859 on 2003/03/06 by llefebvr@llefebvr_r400_emu_montreal

 fixing 2D bug due to GPR addressing change to match HW.

Change 88737 on 2003/03/06 by grayc@grayc_crayola_linux_orl

 changes for dump files

Change 88687 on 2003/03/05 by llefebvr@llefebvr_r400_emu_montreal

 Fixing +/-0 bug in emu and type setting.

Change 88554 on 2003/03/05 by llefebvr@llefebvr_r400_emu_montreal

 More SQ RS dumps.

Change 88079 on 2003/03/03 by llefebvr@llefebvre_laptop_r400_emu

 Changed vertex GPR addressing to match HW exactly.

Change 87922 on 2003/03/01 by mmantor@FL_mmantorLT_r400_win

 1. fixed a texture wrap bug.
 2. fixed an sc hang for large vertices with lots of primitives culled where more than the
max parameter cache space (2.5 times) could be required to operate. Put a fix that forces a
partial fill of any vector being assembled if the previous vector had more than 4 outstanding
deallocates out and a new vector (fpos) arrives at the packer input. This forces all the de-
allocates to happen on the partial fill vector which will free pc space and allow the final vertex
vector to process and etc. Added outstanding deallocate count to dump files sc_sq and
sc_pix_vect_grp_out

Change 87326 on 2003/02/27 by llefebvr@llefebvre_laptop_r400_emu

 Page 31 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 Added dumps for the reservation stations.

Change 87112 on 2003/02/26 by llefebvr@llefebvre_laptop_r400_emu

 added predicate (export write mask) to the SP->SX interface. Also added them in
emulator dump.

Change 87027 on 2003/02/26 by llefebvr@llefebvre_laptop_r400_emu

 Fixed Trunc.

Change 86925 on 2003/02/25 by llefebvr@llefebvre_laptop_r400_emu

 modified dealloc code slightly to improve debugging of deallocs.

Change 86890 on 2003/02/25 by llefebvr@llefebvre_laptop_r400_emu

 Fixing Inf and DOTs.
 Aligning RT_CONSTANTS with cleaner register boundaries.

Change 86634 on 2003/02/24 by mmantor@FL_mmantorLT_r400_win

 added thread id to sp->sx interface dump
 fixed sx to sp parameter data dump
 added sq to sx pc_ptr dump
 added texture cylinderical wrap control to sq

Change 86257 on 2003/02/22 by mmantor@FL_mmantorLT_r400_win

 Set ClampedAddr = Addr before clamping so if no reason to clamp the address is
defined. Stops emulator from crashing.

Change 86096 on 2003/02/21 by llefebvr@llefebvr_r400_emu_montreal

 That should do it. I wasn't carefull enough about the clamping rules to the GPRs when the
pointer was in fact used to read constants...

Change 85184 on 2003/02/19 by llefebvr@llefebvr_r400_emu_montreal

 fixed clamping of -0 to +0.

Change 85039 on 2003/02/18 by llefebvr@llefebvr_r400_emu_montreal

 Flushing denorms to 0 is now done on all three parameters (I forgot to do it on P0 in the
emulator).

Change 84940 on 2003/02/18 by llefebvr@llefebvr_r400_emu_montreal

 Page 32 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 Fixing clamping problem in the emulator.

Change 84802 on 2003/02/17 by llefebvr@llefebvr_r400_emu_montreal

 Code cleanup and fixing the problem with INF on the recip opcode.

Change 84554 on 2003/02/14 by llefebvr@llefebvr_r400_emu_montreal

 fixing the clamp of the NANs to 0 and 1. They now go thru the clamp modifier
unchanged.

Change 84487 on 2003/02/14 by llefebvr@llefebvr_r400_emu_montreal

 repairing instruction count perf counters.

Change 84204 on 2003/02/13 by llefebvr@llefebvr_r400_emu_montreal

 DOT now returns an R400_NAN instead of the NAN it was provided with.

Change 83625 on 2003/02/11 by llefebvr@llefebvr_r400_emu_montreal

 there was a typo in the interface. The context id was sent as the channel mask and vice
versa to the TP...
 Also added PC exports to the sp_sx.dmp file for the SQ/SP testbench.

Change 83566 on 2003/02/11 by hartogs@fl_hartogs2

 Modified dump sp_sx.dmp to be more friendly for testbench trackers.

Change 83491 on 2003/02/11 by llefebvr@llefebvr_r400_emu_montreal

 adding first of new context arbitration restriction for position export.

Change 83290 on 2003/02/10 by llefebvr@llefebvr_r400_emu_montreal

 changing default primitive type to be PRIM_NROMAL instead of RT.

Change 83285 on 2003/02/10 by mmantor@FL_mmantorLT_r400_win

 fixed a bug induced by last change that caused a the program to crash when sq_dumps
where not enabled.

Change 83166 on 2003/02/10 by mmantor@FL_mmantorLT_r400_win

 1. added state data and missing terms to the sc_packer dump.
 2. added a dump for the sx_sp interface that delievers attribute data to the interpolators.
Reoganized the sq ProcessPixel and Interpolate code to enable these dumps. Still need to make
futher modifications to make dump work properly for cylinderical wrap.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1419 of 1898

 Page 33 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 83000 on 2003/02/07 by sallen@sallen_r400_lin_marlboro

 ferret: tp_sq add ferret bits, to be unused soon
 clean up a few comparitor outputs

Change 82812 on 2003/02/07 by llefebvr@llefebvr_r400_emu_montreal

 Added a new performance select counter to count the numbers of stalls due uniquelly to
position export buffer full in the SX.

Change 82646 on 2003/02/06 by llefebvr@llefebvr_r400_emu_montreal

 now when overflow shifting we do this signed like the HW.

Change 82206 on 2003/02/05 by llefebvr@llefebvr_r400_emu_montreal

 added channel mask to the SQ->TP interface for ferret interface checking.

Change 82048 on 2003/02/05 by llefebvr@llefebvr_r400_emu_montreal

 Masking out bits [31:24] on the read of a CF_LOOP register. Now, the emulator will
always return 00 for bits [31:24] when reading such a register.

Change 81837 on 2003/02/04 by llefebvr@llefebvr_r400_emu_montreal

 Trying to fix cyl wrapping bug. Also removed some warnings in sq_alu.h.

Change 81790 on 2003/02/04 by llefebvr@llefebvr_r400_emu_montreal

 New muladd and dot code as provided by Tom.

Change 81577 on 2003/02/03 by llefebvr@llefebvr_r400_emu_montreal

 Emulator not behaving correctly when interpolating more than 1 param (in flat shading
mode). This is fixed and I am writing directed tests to make sure HW is correct as well.

Change 81430 on 2003/02/03 by llefebvr@llefebvr_r400_emu_montreal

 New muladd code with exponent prediction.

Change 81246 on 2003/02/01 by sallen@sallen_r400_lin_marlboro

 ferret: comparitor work continues
 make files now supported (start to phase out cons)
 initial tp4 checking
 add emu changes for mem id, etc

Change 81131 on 2003/01/31 by llefebvr@llefebvre_laptop_r400_emu

 Page 34 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 Added loop relative indexing modes to texture fetches.

Change 81096 on 2003/01/31 by llefebvr@llefebvre_laptop_r400_emu

 The emulator was doing the AND of all channels in order to kill a pixel or not. The right
thing to do is the OR as specified by the DX API.

Change 81054 on 2003/01/31 by llefebvr@llefebvre_laptop_r400_emu

 Enabling GPR writes on the kill instructions (where previously not writting anything).

Change 81015 on 2003/01/31 by llefebvr@llefebvre_laptop_r400_emu

 fixing a MOVA problem in the emulator when dealing with large primitives.

Change 80459 on 2003/01/29 by llefebvr@llefebvre_laptop_r400_emu

 Fixing bug in SQ where SQ was reading instruction 0 when it wanted to do a NOP.
 Fixing overflow in DOT introduced by previous change (revert).

Change 80400 on 2003/01/29 by lseiler@lseiler_r400_win_marlboro

 fixed linux warnings

Change 80277 on 2003/01/29 by llefebvr@llefebvre_laptop_r400_emu

 Refined the overflow check for the DOT opcodes add.

Change 80103 on 2003/01/28 by llefebvr@llefebvre_laptop_r400_emu

 changing the order of the processing of the DOT product to match HW. This does not
modify the output.

Change 79829 on 2003/01/27 by llefebvr@llefebvre_laptop_r400_emu

 Fixing the access violation exeption.
 Also making RealDOT the default setting for the emulator. Emulator should now be
100% HW accurate in the SP.

Change 79344 on 2003/01/24 by mmantor@fl_mmantorxp_r400_win

 changed order of new_vector and deallocate_pc in the 1clk transfer. The sc_random test
identified a bug where a new_vector and it's deallocate_pc can come in one transfer and the seq
scheduled their execution incorrectly.

Change 78935 on 2003/01/23 by llefebvr@llefebvr_r400_emu_montreal

 Now flushing denorms resulting of the normalization at the output of the interpolators.
 Fix for the depth export.

 Page 35 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 78889 on 2003/01/23 by llefebvr@llefebvr_r400_emu_montreal

 Fixing underflow error in the interpolators.

Change 78854 on 2003/01/23 by llefebvr@llefebvr_r400_emu_montreal

 Was overwriting the booleans at address 0 with the new ones. This is now working fine.

Change 78816 on 2003/01/23 by llefebvr@llefebvr_r400_emu_montreal

 Forgot to add the CNDE,GT and DOT2ADD in the non-coissuable instructions list.

Change 78672 on 2003/01/22 by llefebvr@llefebvr_r400_emu_montreal

 fixing the Frac problem with infinities.

Change 78584 on 2003/01/22 by llefebvr@llefebvr_r400_emu_montreal

 I had a bug in the read register interface for RT fetch memory. It is now resolved.

Change 78324 on 2003/01/21 by llefebvr@llefebvr_r400_emu_montreal

 fixing a bug with the _CONST opcodes and a memory export bug when exporting more
than 1 pixel per block.

Change 77874 on 2003/01/20 by llefebvr@llefebvr_r400_emu_montreal

 Fix for the scalar fract.

Change 77517 on 2003/01/17 by mmang@mmang_r400_win

 Added new hardware accurate sqrt function code.

Change 77429 on 2003/01/17 by llefebvr@llefebvr_r400_emu_montreal

 Fixing some FRAC precision issues along with MULADD problem with swizzle of
SRCC.

Change 77415 on 2003/01/17 by lseiler@lseiler_r400_win_marlboro2

 fixes for more warnings

Change 77293 on 2003/01/16 by lseiler@lseiler_r400_win_marlboro2

 Changed XOR to != on lines 133, 513, and 515 to eliminate VCC warning message

Change 77210 on 2003/01/16 by llefebvr@llefebvr_r400_emu_montreal

 Page 36 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 Added a No_Serial bit to the alloc instruction. By seting this the SQ will not wait for
texture data to have returned before allowing the alloc to go thru.

Change 76862 on 2003/01/15 by llefebvr@llefebvr_r400_emu_montreal

 Tried to do the other opcodes as well where the denorm flushes where not done right.
These include max,min,max4,trunc,frac and floor.

Change 76782 on 2003/01/15 by llefebvr@llefebvr_r400_emu_montreal

 new muladd code and dot4 code. No functionnal changes cleanup only. Provided by
Tom.

Change 75807 on 2003/01/10 by llefebvr@llefebvre_laptop_r400_emu

 SX performance counters nomenclature change.
 New dot product code (activated using RealDot Reg Key)

Change 75716 on 2003/01/10 by llefebvr@llefebvre_laptop_r400_emu

 Fixing 2D shader bug where the sequencer was exectuting twice the last instruction.

Change 75569 on 2003/01/09 by llefebvr@llefebvre_laptop_r400_emu

 Fixing exponent underflow in the mul part of the interpolators.

Change 75305 on 2003/01/08 by llefebvr@llefebvre_laptop_r400_emu

 Now using the new mulAdd function.

Change 75032 on 2003/01/07 by llefebvr@llefebvre_laptop_r400_emu

 fixing another problem with the cylindrical wrapping.

Change 74951 on 2003/01/07 by llefebvr@llefebvre_laptop_r400_emu

 adding scalar _CONST opcodes to the emulator. Not tested.

Change 74888 on 2003/01/07 by llefebvr@llefebvre_laptop_r400_emu

 Found a major bug in the SQ. This should fix the cyl wrapping problem. Needs to be
verified with Jeff.

Change 74756 on 2003/01/06 by llefebvr@llefebvre_laptop_r400_emu

 wasn't performing a denorm flush to zero on the input of the fract. Also doing it for the
floor function as well now.

Change 74712 on 2003/01/06 by lseiler@lseiler_r400_win_marlboro2

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1420 of 1898

 Page 37 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 eliminated VCC warning messages

Change 74397 on 2003/01/03 by llefebvr@llefebvr_r400_emu

 Added Soft RBBM reset feature to the SQ.

Change 74359 on 2003/01/03 by llefebvr@llefebvr_r400_emu

 Adding the additionnal restrictions on the MUL_PREV2 opcode.

Change 74297 on 2003/01/03 by sallen@sallen_r400_lin_marlboro

 change all occurances of sbfloat<8,23,127> to proper mfloat<8,23,128>

Change 74163 on 2003/01/02 by llefebvr@llefebvr_r400_emu

 I removed the input modifiers on previous scalar for the _PREV scalar opcodes per
Tom's request.

Change 74144 on 2003/01/02 by llefebvr@llefebvr_r400_emu

 There was a conflict between the counters of the SX and those of the SQ. I made the
counters of the SX start at 0x30 to remove the conflict.

Change 73968 on 2002/12/31 by mmantor@FL_mmantorLT_r400_win

 fixed for the vertex version of bad pipe to work. The sq changes corrected the steering of
vertex data to the correct gpr's and the sx solved a hang when odd number of pipes were disabled
and the vgt change corrected the pc deallocation generation circuit

Change 73536 on 2002/12/27 by llefebvr@llefebvre_laptop_r400_emu

 New DOT code based on the newest muladd function.

Change 73502 on 2002/12/27 by llefebvr@llefebvre_laptop_r400_emu

 Changing the XY import to the SP as per Tom Frinsinger's proposal.

Change 71733 on 2002/12/17 by llefebvr@llefebvre_laptop_r400_emu

 New MulAdd has been added to the emulator. It is disabled by default. To enable please
set NewMulAdd registry key or environement variable to 1.

Change 71681 on 2002/12/17 by llefebvr@llefebvre_laptop_r400_emu

 Flushing denorms to 0 before the SET*,CDN* instructions before doing the test.

Change 71542 on 2002/12/16 by llefebvr@llefebvre_laptop_r400_emu

 Page 38 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 The SQ wasn't stuffing the vertices correctly in the GPRs when there where bad pipes.

Change 71161 on 2002/12/13 by llefebvr@llefebvre_laptop_r400_emu

 Reverting the -ZERO change for the mul only. Now when doing a mul only +ZERO is
added as source C.

Change 70456 on 2002/12/11 by llefebvr@llefebvre_laptop_r400_emu

 Adding -0 for straight muls in HW accurate version instead of 0 for better precision.

Change 70403 on 2002/12/11 by llefebvr@llefebvre_laptop_r400_emu

 fixing flushing to 0 the denorm BEFORE the NAN check...

Change 70159 on 2002/12/10 by llefebvr@llefebvre_laptop_r400_emu

 Fixing overshifting in the interpolators adder.

Change 69667 on 2002/12/09 by llefebvr@llefebvre_laptop_r400_emu

 fixing overshifting in the parameter_sub function of the SX.

Change 69637 on 2002/12/09 by llefebvr@llefebvre_laptop_r400_emu

 Fixing underflow condition in the interpolators. Also flushing denorms for scalar table
functions.

Change 69604 on 2002/12/09 by llefebvr@llefebvre_laptop_r400_emu

 Backing out the change to the muladd that broke many regression tests.

Change 69176 on 2002/12/06 by llefebvr@llefebvre_laptop_r400_emu

 adding debug info to the parameter subtract.

Change 69158 on 2002/12/06 by llefebvr@llefebvre_laptop_r400_emu

 More HW precision fixes for the interpolators. Now matches perfectly HW for regular
cases. Still a problem with very large numbers (but they are not used in the regression yet).

Change 68741 on 2002/12/05 by llefebvr@llefebvre_laptop_r400_emu

 providing read path on the RBBM for the instruction store.

Change 68507 on 2002/12/04 by llefebvr@llefebvre_laptop_r400_emu

 Page 39 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 The emulator was off by 1 bit in the adder. Need to update golds... They should not
missmatch by more than 1 LSB.

Change 68349 on 2002/12/04 by llefebvr@llefebvre_laptop_r400_emu

 Error in the emulator implementation of TRUNC.

Change 68191 on 2002/12/03 by llefebvr@llefebvre_laptop_r400_emu

 new implementation of the DOT product. Currently turned off by default. Need to set
RealDOT to 1 in registry file to turn it on. Changed regular mulladd to reflect implementation
changes as well.

Change 68039 on 2002/12/03 by llefebvr@llefebvr_r400_linux_marlboro

 fixed a NaN propagation problem (the sign wasn't switched correctly)

Change 67086 on 2002/11/26 by llefebvr@llefebvr_r400_linux_marlboro

 fixing typo

Change 67080 on 2002/11/26 by llefebvr@llefebvr_r400_linux_marlboro

 fixing HW accurate boundary problems with SUB and range checking INF*0

Change 66324 on 2002/11/22 by llefebvr@llefebvre_laptop_r400_emu

 Implemented the performance counters in the SQ and SX.

Change 65882 on 2002/11/21 by llefebvr@llefebvre_laptop_r400_emu

 Fixing trunc opcode.

Change 65734 on 2002/11/20 by llefebvr@llefebvre_laptop_r400_emu

 added performance counters in SQ.

Change 65556 on 2002/11/20 by llefebvr@llefebvre_laptop_r400_emu

 Bug in the emulator dealing with large values being trunc or floored. This should fix a
bunch of regression tests.

Change 65367 on 2002/11/19 by llefebvr@llefebvre_laptop_r400_emu

 This wasn't hung. Just took a lot of time. I reduced the loop count to something more
reasonable. Also changed the R400_NAN to FFC00000.

Change 65261 on 2002/11/19 by llefebvr@llefebvre_laptop_r400_emu

 Page 40 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 Fixing the FRAC opcode error with negative numbers.

Change 65199 on 2002/11/19 by llefebvr@llefebvre_laptop_r400_emu

 There were two problems with this test:
 1) The first pass pixel shader wasn't exporting anything thus the SX wasn't sending
anything to the RBs hence the hang. You should never have a dummy pixel shader if there are
pixel generated.
 2) The time allowed to the test was too short. I incremented it to 10000 (was 1000).

 I took the opportunity to do some code cleanup as well. Rerun other memory export tests
to make sure I did not break anything.

Change 64957 on 2002/11/18 by llefebvr@llefebvre_laptop_r400_emu

 Flipping face bit meaning in SQ (I had it backwards)

Change 64913 on 2002/11/18 by llefebvr@llefebvre_laptop_r400_emu

 Fixing 2 HW accurate problems dealing with corner cases on RECIP and RECIPSQRT
scalar opcodes.

Change 64795 on 2002/11/18 by mkelly@fl_mkelly_r400_win_laptop

 * sq_block_model.cpp was not adding the buffer offset for centriods when centers and
centriods are sent.
 * fixed gold for r400sc_msaa_8_primtypes_01
 * add r400sc_sp_sample_cntl_01 to SC regress_e to lock in this test and help minimize
future debugging efforts.

Change 64467 on 2002/11/15 by llefebvr@llefebvre_laptop_r400_emu

 Fixing cube bug in SP.

Change 64130 on 2002/11/14 by llefebvr@llefebvre_laptop_r400_emu

 Fixing RT interpolation problem.

Change 63968 on 2002/11/14 by llefebvr@llefebvre_laptop_r400_emu

 fixing FOG export bug in SX.

Change 63642 on 2002/11/13 by llefebvr@llefebvre_laptop_r400_emu

 fixing full absolute constant problems in the emulator.

Change 63217 on 2002/11/11 by llefebvr@llefebvre_laptop_r400_emu

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1421 of 1898

 Page 41 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 Fixing an error with loops in the SQ that caused it to loop indefinitely. Also adding some
more predication tests.

Change 63153 on 2002/11/11 by llefebvr@llefebvre_laptop_r400_emu

 fixing error that produces black output whenever using HW accurate mode.

Change 63113 on 2002/11/11 by llefebvr@llefebvre_laptop_r400_emu

 Submiting an example of how to use the SQ generated counters.

Change 62908 on 2002/11/08 by llefebvr@llefebvre_laptop_r400_emu

 removed the fix to float before the auto-counters. One must now subtract 2**23 before
using them.

Change 62859 on 2002/11/08 by llefebvr@llefebvre_laptop_r400_emu

 Fixed an exponent underflow problem in the HW accurate interpolators.

Change 62797 on 2002/11/08 by llefebvr@llefebvre_laptop_r400_emu

 Added the write 0 fonctionnality to the PCs (bit 6 vector destination address).

Change 62709 on 2002/11/08 by llefebvr@llefebvre_laptop_r400_emu

 Fixing the bug introduced by using the scalar address for the vector data in the GPRs.

Change 62558 on 2002/11/07 by askende@andi_crayola_emu

 reversed the order in which the vector and scalar results are written in the GPRs.
 Scalar first and Vector second.

Change 62485 on 2002/11/07 by llefebvr@llefebvre_laptop_r400_emu

 Fixed a predication bug where if a pred set was done last it wouldn't count toward the
optimisation.

Change 62057 on 2002/11/06 by llefebvr@llefebvre_laptop_r400_emu

 Swapping the center/centroid sampling to reflect SC change.

Change 61970 on 2002/11/06 by llefebvr@llefebvre_laptop_r400_emu

 Fixing the interpolators problem. This problem only shows up in tests that change the
sampling modes (center/centroid).

Change 61027 on 2002/11/01 by llefebvr@llefebvre_laptop_r400_emu

 Page 42 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 Flipped GPR_MANAGEMENT fields to match CP.
 Removed float to fix on the XY load.
 Modified tests that used the feature accordingly.

Change 60854 on 2002/10/31 by llefebvr@llefebvre_laptop_r400_emu

 Fixing the sending CENTERS only to the interpolators. Previously the emulator would
only receive centers if centroids were also sent. Now you can send only the centers.

Change 60720 on 2002/10/31 by llefebvr@llefebvre_laptop_r400_emu

 added 2 bits of precision to the muladd to match R300 vertex shader precision.

Change 60690 on 2002/10/31 by llefebvr@llefebvre_laptop_r400_emu

 Problem with the predicate optimization resulting in this hang.

Change 60388 on 2002/10/30 by llefebvr@llefebvr_r400_linux_marlboro

 fixing HW accurate bug on Linux.

Change 60279 on 2002/10/30 by llefebvr@llefebvre_laptop_r400_emu

 Fixed the _prev opcodes. Now using the getSignbit instead of isNeg for NAN
compatibility.

Change 60038 on 2002/10/29 by llefebvr@llefebvre_laptop_r400_emu

 Renamed Real time parameter registers to be more explicit.
 Implemented alpha to mask in the SX.
 Implemented ALPHA_NO_BLEND in the SX.

Change 59911 on 2002/10/29 by mmantor@mmantor_r400_win

 sq_block_model.cpp - made seperate line counters for loading of sq pixel vector data
with a buffer count for the optimized quad transfers when quads from different rows can be sent
togeather.
 sx_block_mode.cpp/h seperated the quad fifo's so that even odd pairs are always read
togeather to prevent reodering in the rb's
 sc files added bad pipe to the packer and the optimized quad xfers

Change 59731 on 2002/10/28 by llefebvr@llefebvre_laptop_r400_emu

 Memory overrun in the interpolators that was corrupting the state of the SQ. Also change
the pred_clr opcode to write MAX_FLOAT instead of 5000 in the GPRs.

Change 59460 on 2002/10/25 by hartogs@fl_hartogs

 Page 43 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 Pipe Disable Change. This change creates a separate set of ROM_SP_disable bits for the
vertex shader path and the pixel shader path.

Change 59417 on 2002/10/25 by llefebvr@llefebvre_laptop_r400_emu

 Implemented the 4 IJ buffer performance optimization in the emulator.

Change 59135 on 2002/10/24 by llefebvr@llefebvre_laptop_r400_emu

 Using getField instead of getReal for NAN detection in hope of fixing linux HW accurate
bug.

Change 59077 on 2002/10/24 by llefebvr@llefebvre_laptop_r400_emu

 Fixing a problem in the SQ RS management where the call return address wasn't save
correctly in some cases. Fixes the advanced_test.

Change 58939 on 2002/10/23 by llefebvr@llefebvre_laptop_r400_emu

 Underflow of the exponent fixed.

Change 58930 on 2002/10/23 by llefebvr@llefebvre_laptop_r400_emu

 Fixes in HW accurate stuff.

Change 58812 on 2002/10/23 by llefebvr@llefebvre_laptop_r400_emu

 Implemented Cube Opcode.
 Added CNTX register for reading of the CST store using the RBBM bus for debug
purposes.

Change 58676 on 2002/10/22 by llefebvr@llefebvre_laptop_r400_emu

 Fixing a problem where the predicate bits were not set correctly wich caused problems
with predicated texture fetches.

Change 58567 on 2002/10/22 by llefebvr@llefebvre_laptop_r400_emu

 Pulsing the RB for CACHE flushes events in the VTX shader (and derivative flush
events).

Change 58306 on 2002/10/21 by llefebvr@llefebvre_laptop_r400_emu

 Fixed GradFills and Floor vector instruction.

Change 58287 on 2002/10/21 by llefebvr@llefebvre_laptop_r400_emu

 Primlib was not passing NANDs correctly for ALU constants.
 State changes are no more required for memory exports. I changed primlib to reflect this.

 Page 44 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 58052 on 2002/10/18 by llefebvr@llefebvre_laptop_r400_emu

 ABS modifier now applies to both constants.
 Added apperture checks to prevent memory spills for memory exports.

Change 58005 on 2002/10/18 by llefebvr@llefebvre_laptop_r400_emu

 Fixing r400vgt_vtx_export_very_very_simple_04 memory export test.

Change 58001 on 2002/10/18 by llefebvr@llefebvre_laptop_r400_emu

 Various fixes to the assembler and the emulator to allow for debug exports.

Change 57713 on 2002/10/17 by llefebvr@llefebvre_laptop_r400_emu

 added a debug address export destination

Change 57655 on 2002/10/17 by llefebvr@llefebvre_laptop_r400_emu

 allowing PC allocs in the debugging mode.

Change 57534 on 2002/10/16 by llefebvr@llefebvre_laptop_r400_emu

 allowing position allocs in debug mode.

Change 57526 on 2002/10/16 by llefebvr@llefebvre_laptop_r400_emu

 fixing a debug export bug (wasn't letting position thru).

Change 57498 on 2002/10/16 by llefebvr@llefebvre_laptop_r400_emu

 Added Predicate Exits support for loops in the emulator.

Change 57434 on 2002/10/16 by llefebvr@llefebvre_laptop_r400_emu

 Not doing the range checking correctly for scalar ops. Was causing an error in 1 vgt test.

Change 57142 on 2002/10/15 by llefebvr@llefebvre_laptop_r400_emu

 Added the _IEEE compliant opcodes to the scalar pipe. Updated Primlib in consequence.

Change 56880 on 2002/10/14 by llefebvr@llefebvre_laptop_r400_emu

 Loops, jumps and calls are now using a 13 bit address which allows to jump and call and
loop around any control flow addresses (does not requires to be even anymore).

Change 56697 on 2002/10/11 by llefebvr@llefebvre_laptop_r400_emu

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1422 of 1898

 Page 45 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 Added a SQ_RB pulse interface for memory export synchronization.

Change 56607 on 2002/10/11 by llefebvr@llefebvre_laptop_r400_emu

 Widened the event interfaces from 4 to 5 bits.

Change 56332 on 2002/10/10 by llefebvr@llefebvre_laptop_r400_emu

 Missblending the fog in the color. Was shifting and shouldn't.

Change 56280 on 2002/10/10 by llefebvr@llefebvre_laptop_r400_emu

 HW accuracy problem in interpolators fixed (HOS tests).
 Abs is now executed before the negate.

Change 56093 on 2002/10/09 by llefebvr@llefebvre_laptop_r400_emu

 Hw accurate bug fix when multiplying a number by 0 the fn was returning a very small
but non-zero number.

Change 56036 on 2002/10/09 by llefebvr@llefebvre_laptop_r400_emu

 Added the context ID to the SQ->TP interface. The name of the signal is SQ_TP_ctx_id.
This is needed for multisampling resolves.

Change 56028 on 2002/10/09 by llefebvr@llefebvre_laptop_r400_emu

 Fixed Nan*0 exeption case in the HW accurate mode of the muladd.

Change 55864 on 2002/10/08 by llefebvr@llefebvre_laptop_r400_emu

 Fixed a hang in the SQ where if you didn't to a Tfect because of control flow the SQ
would wiat forever after the TP. This enables the use of the new 2D pixel shader.

Change 55794 on 2002/10/08 by llefebvr@llefebvre_laptop_r400_emu

 Added range check.
 Also the test was clamping the values to infinities where clamped prior to the interface.

Change 55320 on 2002/10/04 by llefebvr@llefebvre_laptop_r400_emu

 Updated the DOT2ADD opcode to meet new specification.
 Checking in the test that reproduces the driver's setup for multiple textured triangles.

Change 55267 on 2002/10/04 by llefebvr@llefebvre_laptop_r400_emu

 Fixed a bug introduced in vgt400_hos_PNT_01. The arbiter wasn't setting deallocation
counts right.

 Page 46 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 55126 on 2002/10/03 by llefebvr@llefebvre_laptop_r400_emu

 multiple fixes for memory exports.

Change 54892 on 2002/10/02 by llefebvr@llefebvre_laptop_r400_emu

 Fixed some memory export bugs.

Change 54819 on 2002/10/02 by llefebvr@llefebvre_laptop_r400_emu

 fixing sub scalar.

Change 54748 on 2002/10/02 by llefebvr@llefebvre_laptop_r400_emu

 Added a clear vertex ready counters in order to clean up the SQ counters on context
changes.

Change 54680 on 2002/10/01 by llefebvr@llefebvre_laptop_r400_emu

 Fixed problems with negative numbers in the muladd HW accurate routine.
 Fixed HW accurate problem in the TP where it was not reading from the good vertex
buffer index in HW accurate mode. This changes makes the whole mini-regression work in full
HW accurate mode.

Change 54604 on 2002/10/01 by llefebvr@llefebvre_laptop_r400_emu

 Fixing a HW accuracy bug in the interpolators. The mantissa of the A-B and A-C was
subshifted by one.

Change 54515 on 2002/10/01 by llefebvr@llefebvre_laptop_r400_emu

 Fixed HW accuracy problem in mull_add function where the wrong variable was used to
shift the mantissa of the result of the mul prior to the add.

Change 54332 on 2002/09/30 by llefebvr@llefebvre_laptop_r400_emu

 Fixed a bug the driver's compiler found where the SQ wasn't stopping on an EXEC_END
in some cases.
 Also fixed the arbiter's rules to make sure the new PC allocation scheme was respected.

Change 54149 on 2002/09/27 by llefebvr@llefebvre_laptop_r400_emu

 Fixed the Sequencer to allow for early allocation of the PC. Allowing memory exports to
occur at any point.

Change 54018 on 2002/09/27 by llefebvr@llefebvre_laptop_r400_emu

 Fixed an error in the control flow machine where the last bit was set too early.

 Page 47 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 53879 on 2002/09/26 by llefebvr@llefebvre_laptop_r400_emu

 Fixed the SETs opcodes. Cleaned up the SX. Added an address buffer for memory
exports.

Change 53821 on 2002/09/26 by llefebvr@llefebvre_laptop_r400_emu

 Fixed the "last" bit warning that was not placed for the right condition.

Change 53670 on 2002/09/25 by llefebvr@llefebvre_laptop_r400_emu

 The SQ was missreading the SQ_SAMPLING register wich was causing the interpolation
of the data with the wrong IJs. Also fixed primlib to add the 1 parameter only SET and KILL
scalar instructions.

Change 53592 on 2002/09/25 by llefebvr@llefebvre_laptop_r400_emu

 corrected some minor errors in the vertex shader code for multiple state exports.

Change 50793 on 2002/09/11 by llefebvr@llefebvre_laptop_r400_emu

 Fixing XY reads in the shader pipe.

Change 50772 on 2002/09/11 by llefebvr@llefebvre_laptop_r400_emu

 Fixing the CP 2D test problem.

Change 50725 on 2002/09/11 by llefebvr@llefebvre_laptop_r400_emu

 Fixed SQ dump file to output generated parameters as well.

Change 50697 on 2002/09/11 by llefebvr@llefebvre_laptop_r400_emu

 Fixing the CP 2D bugs.

Change 50488 on 2002/09/10 by llefebvr@llefebvre_laptop_r400_emu

 Added data dependant masks to the PCs.

Change 50464 on 2002/09/10 by llefebvr@llefebvre_laptop_r400_emu

 Fixed HW accurate bug in the interpolators that caused inacuracies whenever the IJs
where small.
 Fixed the SP_SX interface to make it more HW accurate for the SX-RBRC testbench.
 Made the SX more flexible for multiple pixel exports to the same location.

Change 50284 on 2002/09/09 by llefebvr@llefebvre_laptop_r400_emu

 correction to the sub-normalized number interpretation of the IJs.

 Page 48 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 50231 on 2002/09/09 by llefebvr@llefebvre_laptop_r400_emu

 Corrected bad overflow handling in the HW accurate MULADD.

Change 50050 on 2002/09/06 by llefebvr@llefebvre_laptop_r400_emu

 Fixed SWAP error that caused missmatches with gold images.
 Added count reset capability in the SQ for multipass.
 Added better comments for the PARAM_SHADE register field.
 Fixed some HW accurate bugs.
 Added new MOVA write back to GPRs feature.

Change 49961 on 2002/09/06 by ctaylor@fl_ctaylor_r400_dtwin_marlboro

 Make MPASS_PIX_VEC_PER_PASS 20 bits since SQ auto-inc cannot be any bigger
due to FltPt restrictions.
 Add PA_SC_CNTL_STATUS.MPASS_OVERFLOW status flag.
 Changed name and added new event for controlling MPASS pixel shaders
 and SQ vertex and pixel counters.
 Added SC->CP VizQuery and MP PixShader dumps.
 Made window_offset register fields 15 bits instead of 16.
 Added SC MP PixShader logic.
 Added new signal to SC->SQ interface to prevent incrementation of pixel count for
"discarded" MP Pix Shader Pixel Vectors.
 Fixed MSAA bug where samples 4-7 were not being set to 0 when MSAA was disabled.
Fixed both EMU and RTL.

Change 49761 on 2002/09/05 by sallen@sallen_r400_lin_marlboro

 ferret: add some interfaces for gc comparitors

Change 49690 on 2002/09/05 by llefebvr@llefebvre_laptop_r400_emu

 Added HW accurate scalar operations but for the SQRT. Tested Log and Exp to some
extent. Using Khan 6X Scalar implementation.

Change 49621 on 2002/09/05 by llefebvr@llefebvre_laptop_r400_emu

 Added GEN_INDEX_VTX field to the SQ_PROGRAM_CNTL register.
 Changed name of GEN_INDEX field to GEN_INDEX_PIX.

Change 49556 on 2002/09/04 by llefebvr@llefebvre_laptop_r400_emu

 Fixed another Linux compilation error

Change 49549 on 2002/09/04 by llefebvr@llefebvre_laptop_r400_emu

 removed some warnings and a Linux error.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1423 of 1898

 Page 49 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 49540 on 2002/09/04 by llefebvr@llefebvre_laptop_r400_emu

 Updated the SX->SQ position ready interface to add one more bit.
 Added code for the HW accurate scalar pipe (not used yet).

Change 49374 on 2002/09/03 by mmantor@mmantor_r400_win

 added sc output of centers and xy data. Also passed the xy data on the ij bus between the
SC and SQ

Change 49353 on 2002/09/03 by llefebvr@llefebvre_laptop_r400_emu

 Added Idle0 and Idle1_7 functions for SQ idle status report.

Change 49276 on 2002/09/03 by llefebvr@llefebvre_laptop_r400_emu

 Added the RECIP_FF and RECIPSQ_FF scalar opcodes.
 Reorganized the opcode enums to match most recent HW.
 Added a more detailed description of the EO_RT control register.
 Updated primlib to reflect the opcode changes.

Change 49038 on 2002/08/30 by llefebvr@llefebvre_laptop_r400_emu

 Added debug dumps for interpolator inputs and vertex shader exports to parameter
caches.

Change 48886 on 2002/08/29 by llefebvr@llefebvre_laptop_r400_emu

 Implemented the -MAX_FLOAT changes for the MUL_PREV2, LOG and EXP opcodes.
 Implemented the HW accurate version of DOT3,DOT4 and DOT2ADD. All vector
opcodes are now HW accurate.

Change 48796 on 2002/08/29 by llefebvr@llefebvre_laptop_r400_emu

 Changed to MUL_PREV2 instruction to output -infinity also if SrcC is < 0 (per Andy
Gruber's request).

Change 48770 on 2002/08/29 by llefebvr@llefebvre_laptop_r400_emu

 Implemented the new "9 bits constant" mode. If set we use the constant address as a real
absolute address in the constant store (we do not add the VS_CONST_BASE or
PS_CONST_BASE to the address specified in the instruction). Only available for constant A.

Change 48237 on 2002/08/27 by llefebvr@llefebvre_laptop_r400_emu

 Added Event filtering in the SQ.

 Page 50 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 Added better Idle Status reporting in the SQ that now takes the VGT interface into
account (previous version was not taking the staging registers into account just the interface).

Change 48140 on 2002/08/26 by llefebvr@llefebvre_laptop_r400_emu

 Fixed 3 bugs in the HW accurate interpolators:
 1) Detection of I and J == 0 was wrong
 2) Detection of A == 0 was wrong
 3) Denormalization of second paramter was done in the inverse direction of what it
should have been.
 This fixes both primlib_template_simple_triangle.cpp and milestone_tri.cpp tests

Change 48080 on 2002/08/26 by llefebvr@llefebvre_laptop_r400_emu

 There was an indexing problem with the writting of the STs in the GPRs.

Change 47880 on 2002/08/23 by llefebvr@llefebvre_laptop_r400_emu

 This is the real fix for bug 299. The other one created nasty side effects in the VGT.

Change 47751 on 2002/08/23 by llefebvr@llefebvre_laptop_r400_emu

 There was an error in the SQ that made it wrap around when the
SQ_PS/VS_CONST.BASE value was too high. This is fixed.

Change 47592 on 2002/08/22 by llefebvr@llefebvre_laptop_r400_emu

 NewVector was not handled correclty when not associated with a pixel vector.

Change 46827 on 2002/08/19 by llefebvr@llefebvre_laptop_r400_emu

 For SX quad Fifo reasons we are now forcing memory exports to occur in order.

Change 46728 on 2002/08/19 by llefebvr@llefebvre_laptop_r400_emu

 Fixed another MAX GPR bug in the Vertex shader.

Change 46550 on 2002/08/16 by llefebvr@llefebvre_laptop_r400_emu

 Added more checks for the Idle SQ function.

Change 46516 on 2002/08/16 by llefebvr@llefebvre_laptop_r400_emu

 Fixed the maximum GPR (64) allocation problem. One can now run shaders that use 64
GPRs. The meaning of the VS/PS_NUM_REG has changed it now represents the INDEX OF
THE MAXIMUM GPR NUMBER. This change will break the HW.

Change 46315 on 2002/08/15 by llefebvr@llefebvre_laptop_r400_emu

 Page 51 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 The SQ->SC dump file was not showing all transactions that occured. This is now
corrected. Also changed the default 2D shader directory (if your $BRANCH and $ROOT
variables aren't set).

Change 46246 on 2002/08/15 by llefebvr@llefebvre_laptop_r400_emu

 Fixed an instruction wrapping problem in the SQ

Change 46140 on 2002/08/14 by llefebvr@llefebvre_laptop_r400_emu

 Changed the MASK mnemonics to KILL.
 Added DST opcode.
 Added MUL_PREV2 opcode.
 Reordered the opcodes in primlib and SP.
 Implemented the new KILL and SET SCALAR opcodes, they are now all comparing the
ALPHA channel to 0.0f (instead of comapring against the RED channel).

Change 46049 on 2002/08/14 by sallen@sallen_r400_lin_marlboro

 ferret: change bool/boolean to boolnumber & test
 change pix_mask to TP_SP_pix_mask, etc
 more sqspsx tweaks

Change 46036 on 2002/08/14 by llefebvr@llefebvre_laptop_r400_emu

 Fixed the clamping problem. Note however that now there is no triangle drawn in the test
because the clamping causes the triangle to be degenerate.

Change 45961 on 2002/08/14 by llefebvr@llefebvre_laptop_r400_emu

 Now allowing one position vector to be exported in memory export mode to "ping" the
PA that everything is done.

Change 45752 on 2002/08/13 by llefebvr@llefebvre_laptop_r400_emu

 Signal name change on the TP_SQ interface and backup of the not yet working fully
memory export in the SX.

Change 45388 on 2002/08/12 by llefebvr@llefebvre_laptop_r400_emu

 Changed the SX allocation strategy to better match the HW in MRT cases. The new
allocation scheme puts all MRTs in a single block instead of interleaving the MRTs together like
the previous implemetation.

Change 45216 on 2002/08/09 by sallen@sallen_r400_lin_marlboro

 tpc_t4 changes for TP_SQ interface

Change 45200 on 2002/08/09 by llefebvr@llefebvre_laptop_r400_emu

 Page 52 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 Corrected a bug in MUL_PREV,ADD_PREV and SUB_PREV wich where using
incorect source operands.

Change 45127 on 2002/08/09 by llefebvr@llefebvre_laptop_r400_emu

 The SQ now uses the information in state registers to allocate regular PS/VS shaders. The
size field is ONLY USED for memory writes.

Change 45015 on 2002/08/08 by llefebvr@llefebvre_laptop_r400_emu

 Fixed the fog blend logic in the SP and added SETNEs missing opcode.

Change 44461 on 2002/08/06 by llefebvr@llefebvre_laptop_r400_emu

 Fixed a problem in the SQ related to the 2D shader. Now the SQ runs even when the
END flag is not associated with any instruction (it adds a NOP to EXEC_ENDs with a count of
0).

Change 44350 on 2002/08/06 by llefebvr@llefebvre_laptop_r400_emu

 There was a bug in the SQ that made the last iteration of a loop read invalid loop indexes.
This is now fixed.

Change 44321 on 2002/08/05 by askende@askende_r400_linux_emu

 added hardware bit accurate implementation for some of the vector instructions

Change 44252 on 2002/08/05 by llefebvr@llefebvre_laptop_r400_emu

 New counter based predication scheme.

Change 44232 on 2002/08/05 by llefebvr@llefebvre_laptop_r400_emu

 Fixed a parameter generation bug in SQ wich was causing the emulator to crash for test
r400su_point_sprite_01.

Change 44054 on 2002/08/02 by llefebvr@llefebvre_laptop_r400_emu

 Fixed the emulator to add automatically the generated parameters to the number of
interpolated parameters in order not to screw up the parameter cache pointer computation in the
VGT when generating parameters.

Change 44026 on 2002/08/02 by llefebvr@llefebvre_laptop_r400_emu

 Implemented the new parameter generation scheme. See SQ spec for details.

Change 43826 on 2002/08/01 by askende@askende_r400_linux_emu

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1424 of 1898

 Page 53 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 mods related to matching the hardware accuracy

Change 43756 on 2002/08/01 by askende@askende_r400_linux_emu

 new mod on the interpolators to get it to match hardware

Change 43742 on 2002/08/01 by sallen@sallen_r400_lin_marlboro

 ferret: move HW related files from test_lib/tools/ferret to parts_lib/src/test/ferretutils
 make associated changes
 add interface changes for tp4_tc testbench
 make some tweaks for gc testbench

Change 43661 on 2002/08/01 by llefebvr@llefebvre_laptop_r400_emu

 dumping in Hex format

Change 43394 on 2002/07/31 by llefebvr@llefebvre_laptop_r400_emu

 HW accurate interpolators in the SQ. To turn on, set HardwareAccurate environment
variable to 1 (or HKEY_LOCAL_MACHINE\\SOFTWARE\\ATI
Technologies\\Emulator\\Debug\\HardwareAccurate to 1 if in windows). Off by default.

Change 43234 on 2002/07/30 by llefebvr@llefebvre_laptop_r400_emu

 The LOD correction bits are now correctly propagated to the TP.

Change 43129 on 2002/07/30 by llefebvr@llefebvre_laptop_r400_emu

 Initialized the staging registers to prevent the NAN error message in the interpolators to
be issued without a valid reason.
 Corrected a typo wich prevented the control flow booleans to be written correctly.

Change 42994 on 2002/07/29 by llefebvr@llefebvre_laptop_r400_emu

 Added the register to disable HW detection of PV/PS.
 Fixed infinite looping problem when ending a shader on a NOP.
 Fixed the BW jump problem.

Change 41911 on 2002/07/23 by hwise@fl_hwise_r400_win

 Fixed type casting bug when getting eventId from
vgt_sq_verts_data.VGT_SQ_vsisr_data[0]

Change 41828 on 2002/07/22 by mmantor@mmantor_r400_win

 connected event and event_id into the pa_sc interface
 fixed misc dump files for test bench working
 added lod_correct values to sc_sq interface

 Page 54 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 41596 on 2002/07/19 by llefebvr@llefebvre_laptop_r400_emu

 Corrected the VGT->SQ event interface. Corrected the GFX_COPY_STATE problem.

Change 41029 on 2002/07/17 by llefebvr@llefebvre_laptop_r400_emu

 Placed the hooks for HW accurate interpolation (not used yet)...

Change 40887 on 2002/07/16 by llefebvr@llefebvre_laptop_r400_emu

 Implemented the new bad pipe interface between the VGT and the SQ. The VGT doesn't
pad anymore and so the SQ is responsible to "jump" over a bad pipe when filling the reservation
stations.

Change 40867 on 2002/07/16 by llefebvr@llefebvre_laptop_r400_emu

 Minor changes to the addressing routines of the SQ in preparation for multipass
implemetation.

Change 40695 on 2002/07/15 by llefebvr@llefebvre_laptop_r400_emu

 Fixed the event interface in the SQ where it was using a NULL pointer as a valid mask
bit field wich was then crashing the numerical library. This changes should fix both the vertex
and the pixel event interface. The primlib_vgt_event_initiator.cpp now works correctly.

Change 39443 on 2002/07/10 by hwise@fl_hwise_r400_win

 CP, SQ, and Primlib Updates for PM4 packet format changes

 Packet Changes
 1) SET_CONSTANT
 a) Updated CONST_ID field to include "booleans" and "loop"
 b) Removed ALU and Texture constant grouping and now use
 DWORD offset in packet
 c) Removed CONST_WRITE_ENABLE field from ordinal 1 (the ALU and
 TEX write enables are now set with the
LOAD_CONSTANT_CONTEXT
 packet)
 d) Replaced CONST_INDEX with CONST_OFFSET because meaning changed
 (offset refers to dword offset and index used to refer to
 constant group. Also real-time vs. non-real-time is implied
 by the queue from which the packet is read rather than being
 encoded in the index)
 2) LOAD_CONSTANT_CONTEXT
 a) Updated CONST_ID field to include "booleans" and "loop"
 b) Removed ALU and Texture constant grouping and now use
 DWORD offset in packet
 c) Replaced CONST_INDEX with CONST_OFFSET because meaning changed

 Page 55 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 (offset refers to dword offset and index used to refer to
 constant group. Also real-time vs. non-real-time is implied
 by the queue from which the packet is read rather than being
 encoded in the index)
 d) Replaced NUM_CONSTANTS ordinal with NUM_DWORDS where number
 of constants had to be converted into dwords via microcode
 e) Send CONST_PREFETCH packet to the Microengine rather than
 the LOAD_CONSTANT_CONTEXT
 3) CONST_PREFETCH
 a) This is a new packet
 4) DRAW_INDX
 a) Removed INDEX offset ordinal from packet (this is now state
 that must be updated prior to the draw packet)

 CP Pre-Fetch Parser
 1) Added state to hold ALU and Texture write enables used when
 parsing SET_CONSTANT and LOAD_CONSTANT_CONTEXT packets
 2) When parsing LOAD_CONSTANT_CONTEXT packet, send CONST_PREFETCH
 packet to the Microengine rather than the LOAD_CONSTANT_CONTEXT

 CP Microengine
 1) Updated logic for reporting Microengine IDLE state
 2) Added a lot of support logic for multi-context
 3) Fixed IP stack popping bug when returning from subroutine

 SQ Register Write Decode Logic
 1) SQ no longer pads 2 dwords between groups of 6 dwords when
 decoding register addresses

 Primlib updates for new packet formats
 1) Added BOOLEAN_CONSTANT, and LOOP_CONSTANT to enum
CONSTANT_TYPE
 in render_engine.h
 2) Updated RENDER_ENGINE member functions to support new PM4
 SET_CONSTANT packet format
 a) RENDER_ENGINE::Load_Alu_Constants()
 b) RENDER_ENGINE::Load_Texture_Constants()
 c) RENDER_ENGINE::Open_Set_Constant_Packet()
 3) Updated member function RENDER_ENGINE::Load_Draw_Command() to
 support new 3D_DRAW_INDX_2 and DRAW_INDX PM4 packet formats

 CP full-chip tests
 1) Updated packet creation within tests to match the PM4 spec
 changes

Change 39130 on 2002/07/09 by llefebvr@llefebvre_laptop_r400_emu

 Fixed scalar trunc, floor and frac opcodes.

 Page 56 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 38783 on 2002/07/08 by llefebvr@llefebvre_laptop_r400_emu

 Changed the TP_SQ/SQ_TP interface rs_line name to thread_id to match the HW. Made
the corresponding ferret changes.

Change 38277 on 2002/07/05 by llefebvr@llefebvre_laptop_r400_emu

 Implemented correctly lines and points in the SQ.

Change 37942 on 2002/07/03 by llefebvr@llefebvre_laptop_r400_emu

 New interpolation scheme for ST generation for points and lines. Also made the correct
changes for flat shading of points and lines.

Change 37862 on 2002/07/03 by llefebvr@llefebvre_laptop_r400_emu

 Changed the interpolation equation from C+I*(B-C)+J*(A-C) to A+I*(B-A)+J*(C-A) to
match with the changes that occured in the SU to do lines and points cleanly.

Change 37822 on 2002/07/03 by llefebvr@llefebvre_laptop_r400_emu

 Added Call stack size checks in the SQ.

Change 35516 on 2002/06/21 by llefebvr@llefebvre_laptop_r400_emu

 Solidified the interpolators in order to make the HW accurate transition easier.

Change 35484 on 2002/06/21 by llefebvr@llefebvre_laptop_r400_emu

 Predication optimization problem fixed in Sq.

Change 35105 on 2002/06/20 by llefebvr@llefebvre_laptop_r400_emu

 corrected the sq tests to use the new primlib include.

Change 34940 on 2002/06/19 by kmahler@kmahler_r400_win_devel_views

 Shader assembler and SQ block changes to support new ALU packing including new
absolute modifier in source operand.

 This also includes syntax checking for new restrictions on export register usage. That is,
the destination operands of both the vector and scalar operations must be an export if one is an
export. The building of the implicit NOP had to be changed to support this restriction. Syntax
checking was added to ensure that only one constant register uses an absolute modifier. The co-
issue delimitor must now be "|" for shader versions not equal to "1.0". Version "1.0" may use
either the new delimitor, "|", or the old one, ":".

Change 34483 on 2002/06/17 by llefebvr@llefebvre_laptop_r400_emu

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1425 of 1898

 Page 57 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 Implemented scalar exports

Change 34451 on 2002/06/17 by llefebvr@llefebvre_laptop_r400_emu

 Changed the encoding of the SQ_PROGRAM_CNTL.VS_EXPORT_CNT register. Now
a value of 0 means 1 parameter and so forth. Everyone reading the register must now add 1 to
have the correct number of parameters. This allows to cover the range 1->16 with only 4 bits.

Change 34419 on 2002/06/17 by llefebvr@llefebvre_laptop_r400_emu

 Added MOVA opcode to the vector path and MOVA_TRUNC opcode to the scalar
path...

Change 34233 on 2002/06/14 by llefebvr@llefebvre_laptop_r400_emu

 Implemented all the new predicate set instructions (vector and scalar).

Change 34172 on 2002/06/14 by llefebvr@llefebvre_laptop_r400_emu

 Added/Removed vector and scalar opcodes to comply with the new ALU format as
specified by Andy Gruber.

Change 33840 on 2002/06/13 by llefebvr@llefebvre_laptop_r400_emu

 implemented more scalar opcodes.

Change 33485 on 2002/06/12 by llefebvr@llefebvre_laptop_r400_emu

 Implemented most of the remaining vector opcodes. Including pixel kills. The pred_set
are still not implemented since they are still changing.

Change 33165 on 2002/06/11 by llefebvr@llefebvre_laptop_r400_emu

 Fixed parameter cache addressing error when exporting more than one color in the VS.

Change 32964 on 2002/06/10 by llefebvr@llefebvre_laptop_r400_emu

 Fix for r400vgt_hos_cubic_pos_pnt_discrete_01 crashing when vertexTail == 0.

Change 32633 on 2002/06/07 by llefebvr@llefebvre_laptop_r400_emu

 added an assert for NANs in the interpolators.

Change 31997 on 2002/06/05 by llefebvr@llefebvre_laptop_r400_emu

 Added SQ_ prefix to allocation_type enum because of a name clash in windows.h

Change 31843 on 2002/06/04 by llefebvr@llefebvre_laptop_r400_emu

 Page 58 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 Added CONDITIONAL_EXEC_PRED_NO_STALL and
CONDITIONAL_EXEC_PRED_NO_STALL_END control flow opcodes to the SQ per Andy
Gruber's request.

Change 31717 on 2002/06/04 by llefebvr@llefebvre_laptop_r400_emu

 Fixed the ABSOLUTE/RELATIVE name clash in the SQ enum by changing the names
to ABSOLUTE_ADDR/RELATIVE_ADDR. Fixed some warnings and fixed the
SQ_SC_dec_cnt problem where the SQ should have pulsed twice the SC on a new vector but it
was only pulsing once.

Change 31527 on 2002/06/03 by llefebvr@llefebvre_laptop_r400_emu

 Updated the objParser. Added a bypass of the interpolators if all parameters of the
primitive are the same.

Change 31254 on 2002/05/31 by askende@andi_crayola_emu_w

 fixed a clamping related bug. Numbers greater than 1.0 weren't being clamped when
clamping is on.

Change 31115 on 2002/05/31 by llefebvr@llefebvre_laptop_r400_emu

 Added safety checks in the sq vertex processing

Change 30964 on 2002/05/30 by llefebvr@llefebvre_laptop_r400_emu

 Implemented the Event interface in the SQ (for vertices).

Change 30942 on 2002/05/30 by llefebvr@llefebvre_laptop_r400_emu

 updated the VGT->SQ interface (and corresponding blocks) to match HW in name and
size and add the Event field.

Change 30570 on 2002/05/29 by llefebvr@llefebvre_laptop_r400_emu

 fixed a parameter cache deallocation synchronization problem

Change 30311 on 2002/05/28 by llefebvr@llefebvre_laptop_r400_emu

 removed useless code...

Change 30310 on 2002/05/28 by llefebvr@llefebvre_laptop_r400_emu

 The CoissuedInstruction flag was not reset properly in sq_alu.cpp. If one mulAdd was
done in the shader the scalar path was turned off for the remainder of the shader program. This is
now corrected.

 Page 59 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 30106 on 2002/05/26 by ctaylor@fl_ctaylor_r400_dtwin_marlboro

 Remove FloatParts usage. concerned about speed/memory rqmts.

Change 30068 on 2002/05/24 by ctaylor@fl_ctaylor_r400_dtwin_marlboro

 Update SC and SP to use denormalized SE4M20 (exp bias of 6) for IJ data.

Change 29937 on 2002/05/24 by llefebvr@llefebvre_laptop_r400_emu

 Fixed a event related problem that would have hanged the sequencer in the future (when
events are turned on).

Change 29850 on 2002/05/24 by llefebvr@llefebvre_laptop_r400_emu

 Changed the SQ_PROGRAM_CNTL.VS_EXPORT_MODE register field to use this
enumeration instead:

 0: Position (1 vector).
 1: Position (2 vectors) Do not use second position export.
 2: Position (2 vectors) Use point sprite size.
 3: Position (2 vectors) Use edge flags.
 4: Position (2 vectors) Use kill flags.
 5: Position (2 vectors) Use point sprite size and kill flags.
 6: Position (2 vectors) Use edge flags and kill flags.
 7: Multipass.

 Changed all emulator files (and primlib) to match with the new setting. No impact on the
RTL (not using the feature yet).

Change 29678 on 2002/05/23 by llefebvr@llefebvre_laptop_r400_emu

 Implemented the debug features of the SQ (untested and unused at the moment).

Change 29461 on 2002/05/22 by llefebvr@llefebvre_laptop_r400_emu

 Corrected the "opcode 15 not supported" error from the primlib_tex test.

Change 29385 on 2002/05/21 by llefebvr@llefebvre_laptop_r400_emu

 Fixed an arbitration problem in arbiter where two exporting vectors could have the same
thread id (causing a hang in the SX).

Change 29075 on 2002/05/20 by llefebvr@llefebvre_laptop_r400_emu

 Fixed a problem in the vertex input engine of the SQ where the SQ was invalidating the
last vertex sent if the continued signal was asserted.

Change 29039 on 2002/05/20 by llefebvr@llefebvre_laptop_r400_emu

 Page 60 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 Added support for RECIPSQ, LOGs, EXPs. Software implementation only using the C
standard funtions.

Change 28843 on 2002/05/17 by llefebvr@llefebvre_laptop_r400_emu

 Documented all control flow instruction types in sq.blk (and sq.desc).

Change 28778 on 2002/05/17 by askende@andi_crayola_emu_w

 fixed the swizzle logic

Change 28375 on 2002/05/16 by llefebvr@llefebvre_laptop_r400_emu

 Changed the Allocate_size field of the Alloc instruction to match the encoding of the
HW.
 The encoding is now:
 00 -> 1 buffer
 01 -> 2 buffers
 ...
 15 -> 16 buffers

Change 28208 on 2002/05/15 by llefebvr@llefebvre_laptop_r400_emu

 Added the enumeration fields in autoreg for both ALU and Control Flow instructions.
Not a functionnal change.

Change 28110 on 2002/05/15 by llefebvr@llefebvre_laptop_r400_emu

 Replaced the reduce precision delat interpolation scheme with full precision
interpolation.

Change 27976 on 2002/05/14 by llefebvr@llefebvre_laptop_r400_emu

 New SQ register map.
 Added EXEC_END,CEXEC_END, CPEXEC_END. Removed the END instruction.

Change 27875 on 2002/05/14 by jhoule@jhoule_r400_win_marlboro

 Sequencer was calling GetNewTP_SQ_pix_mask instead of GetTP_SQ_pix_mask.
 TP returns correct masks now (was previously all 1s to be conservative).

Change 27413 on 2002/05/10 by llefebvr@llefebvre_laptop_r400_emu

 Added texture pipe predication support.

Change 27370 on 2002/05/10 by jhoule@jhoule_r400_win_marlboro

 Added pix_mask support (always returns 1111 from TP).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1426 of 1898

 Page 61 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 Added srcSwizzle (TInstrPacked) called from the SQ (arbiter) in order to keep 3 channels
SP->TP path.
 Adapted tp_dumps to represent all of those.

Change 27266 on 2002/05/09 by vliu@vliu_r400_cnvliu100_win_cvd

 Fixed the compile error after remove of the mc block
 - everyone, please do a clobber under emu_lib and rebuild
 since the ar_*.* files under ar_code will still be there if not removed

Change 27260 on 2002/05/09 by llefebvr@llefebvre_laptop_r400_emu

 Added the pixel masks to the TP->SQ interface. Implemented the JUMP opcode.

Change 27218 on 2002/05/09 by llefebvr@llefebvre_laptop_r400_emu

 Added the W field to the SP->TP interface.
 Implemented CALL, LOOP and COND opcodes in the control flow machine.

Change 27011 on 2002/05/08 by llefebvr@llefebvre_laptop_r400_emu

 Changed the number of bits of the event_id field from 2 to 4 in the sequencer and the
corresponding interface per Mike Mantor's request.

Change 26974 on 2002/05/08 by llefebvr@llefebvre_laptop_r400_emu

 Added constant relative indexing via address register support and predication support
(vector 0 only) in the SP. The pred_set and mova instructions are still not implemented so this is
of little use right now.

Change 26955 on 2002/05/08 by llefebvr@llefebvre_laptop_r400_emu

 Added relative constant and GPR addressing capabilities to the SQ.

Change 26797 on 2002/05/07 by llefebvr@llefebvre_laptop_r400_emu

 Changed the mbfloats in the interfaces for mfloats in order to use IEEE floats instead of
doubles in the SP, SX, and RBs. Added the control_flow_store to the SQ.

Change 26750 on 2002/05/07 by llefebvr@llefebvre_laptop_r400_emu

 Corrected a problem in the SQ when loading multiple stages in the vertex staging
registers.

Change 26569 on 2002/05/06 by llefebvr@llefebvre_laptop_r400_emu

 Added readState and WriteState utility functions to the control flow machine in the SQ.

Change 26522 on 2002/05/06 by llefebvr@llefebvre_laptop_r400_emu

 Page 62 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 There was a problem in the SQ whenever there where two EXEC instructions in a row.
This is now fixed. It fixed the regression and hopefully will fix all other tests using the same
template.

Change 26466 on 2002/05/06 by llefebvr@llefebvr_r400_linux_marlboro

 fixed linux compilation errors

Change 26365 on 2002/05/03 by llefebvr@llefebvre_laptop_r400_emu

 This is the new control flow sequencer. Expect things to be a bit unstable while this
major change settles in. I know I broke 1 regression test (r400vgt_index_size_01) but the
integration took so long that I decided to check the change in anyways and fix the problem from
the TOTT. Sorry for the inconvenience.

Change 26344 on 2002/05/03 by hartogs@fl_hartogs

 Added a count the VGT_SQ interface to verify the proper operation
 of the interface. The added code is #ifdef'ed out and is not
 a functional change.

Change 24998 on 2002/04/25 by llefebvr@llefebvre_laptop_r400_emu

 Small correction in the SQ again because of a bug in the flat shading control code.

Change 24929 on 2002/04/25 by llefebvr@llefebvre_laptop_r400_emu

 Fix for the flat shading (there was a shifting problem in the SQ)

Change 23847 on 2002/04/18 by llefebvr@llefebvre_laptop_r400_emu

 Fixed a small bug in the SC that made the SQ stall whenever the IJ buffers where filled
up.

Change 23698 on 2002/04/17 by llefebvr@llefebvre_laptop_r400_emu

 Updated the SQ->TP and TP->SQ interfaces to match the HW in names.

Change 23236 on 2002/04/15 by llefebvr@llefebvre_laptop_r400_emu

 Added an error check in the SQ to report an error when trying to dealocate an empty
parameter cache.

Change 23080 on 2002/04/12 by rramsey@RRAMSEY_P4_r400_win

 Fix bug in interp bb logic
 Add commentline dump to sc dump class
 Add state dump to sc

 Page 63 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 Change SQ input to allow new_vector and pc_dealloc to happen
 on the same quad from the SC. Laurent L. needs to verify that
 this change is OK, but it fixes the scissor_rect_04 hang and
 passes chip regression.

Change 23010 on 2002/04/12 by llefebvr@llefebvre_laptop_r400_emu

 Added the #define in vgtout that makes the deallocation of the PC occur on the last
primitive instead of having to add another null prim.

Change 22994 on 2002/04/12 by llefebvr@llefebvre_laptop_r400_emu

 Added the SQ->SC interface dump and corrected a small bug in the other interface
dumps of the SQ,SX that made the dumps slightly out of sync with what was actually sent over
the interfaces.

Change 22976 on 2002/04/11 by hartogs@fl_hartogs

 * sq_block_model.cpp --> Flipped #if switch to new dealloc mode. Fixed variable name
typo.
 * interconnect.cpp, interconnect.h --> Added DumpComment() routine to the
Interconnect
 class to allow comments in the dump file. I used this to print packet boundary
 comments into the VgtPaClipP dump for easier cross-checking with the other
dumps.
 * vgt_pa_if.h --> Changed the "dealloc_slot" field from a 'Bool' to an unsigned long.
 * vgtout.h, vgtout.cpp --> Coded new dealloc mode.
 * vgt_block_model.cpp --> Changed deallocate_slot from bool to ulong.
 * vgt_pa_clip_prim.h --> Changed deallocate_slot from bool to ulong.
 * For this check-in, the dealloc value can be greater than one, however, the dealloc
 does NOT occur on the prim using the verts.

Change 22823 on 2002/04/11 by llefebvr@llefebvre_laptop_r400_emu

 Added the SC_SQ_provok_vtx to the SC->SQ interface (Randy you must set the correct
value if you want flat shading to work).

 Added the following interface dumps to the SX:
 SX->RB
 SX->RB_quads

 Added the two ring wrapping modes for the SQ instruction store.

Change 22547 on 2002/04/09 by llefebvr@llefebvre_laptop_r400_emu

 Added the capability to dump interfaces to a file to the SQ and SX blocks.

 The SQ can now dump the following interfaces:
 SQ->SX

 Page 64 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 SP->SX
 SQ->TP

 The SX can now dump the following interface:
 SX->PA

Change 22459 on 2002/04/09 by llefebvr@llefebvre_laptop_r400_emu

 Added the auto-count to the vertex shaders. The auto-generated counter is loaded in R2.x
if SQ_IMPORTS_EXPORTS.GEN_INDEX is set.

Change 22449 on 2002/04/09 by llefebvr@llefebvre_laptop_r400_emu

 Added the new PC dealloc scheme (the old one is still there and is the one active for
now).

Change 22354 on 2002/04/08 by llefebvr@llefebvre_laptop_r400_emu

 Added the cylindrical wrapping logic in the interpolators.

Change 22138 on 2002/04/05 by llefebvr@llefebvre_laptop_r400_emu

 Modified the SQ_IMPORTS_EXPROTS.VS_EXPORT_MODE register to reflect the
proposed change of the PA review.

Change 22048 on 2002/04/05 by llefebvr@llefebvre_laptop_r400_emu

 Added the SQ_CP event interface.
 Added support for centers/centroid sampling.
 Put provok vertex to 2 if set to last in state (TEMP/ CLAY will confirm).

Change 21910 on 2002/04/04 by llefebvr@llefebvre_laptop_r400_emu

 Implemented:
 1) Real time interpolation.
 2) Auto counters for pixel vectors.
 3) Flat Shading.
 4) Faceness buffers
 5) XY buffers
 6) Sprite texture coordinate generation

Change 21673 on 2002/04/03 by llefebvr@llefebvre_laptop_r400_emu

 Implemented Real time and multi-state management in the SQ (not tested)

Change 21630 on 2002/04/03 by llefebvr@llefebvre_laptop_r400_emu

 Added the setContextNumber() functions wherever it was necessary in both the SQ and
the SX blocks.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1427 of 1898

 Page 65 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 21539 on 2002/04/03 by llefebvr@llefebvre_laptop_r400_emu

 Added the event pipelining from the CP (interface back to the CP not done yet).

Change 21480 on 2002/04/02 by rramsey@RRAMSEY_P4_r400_win

 Remove OLD_SC stuff from PA and make sure all the sc interface includes are in the
new sc directory and being called from there

Change 21275 on 2002/04/01 by llefebvr@llefebvre_laptop_r400_emu

 Now using the get functions on all context register reads from the SX and the SQ.

Change 20682 on 2002/03/27 by llefebvr@llefebvre_laptop_r400_emu

 New interfaces between SC,SQ,SP and SX are now implemented and functionnal.

Change 20483 on 2002/03/26 by jhoule@jhoule_r400_win_marlboro

 Implemented new Const/Instr classes.
 Integrated with Primlib so that it passes regression.
 TFetches don't seem to pass, but VFetches are OK.

 Numerous changes:
 - Uses const & and plain & for read/write in SQ classes
 - Uses accessor methods for set() and get()
 - Created new Instr/Const classes, with inheritance (no more unions)
 - Created *Packed classes, which are used in the SQ

Change 20198 on 2002/03/22 by llefebvr@llefebvre_laptop_r400_emu

 Added masking support for the Parameter caches. Added support to write the color
buffers out of order to the Export buffer.

Change 19923 on 2002/03/21 by llefebvr@llefebvre_laptop_r400_emu

 Added pixel kill functionnality in the SX. Fixed the SP->SX interface names to match
those of the HW.

Change 19654 on 2002/03/19 by llefebvr@llefebvre_laptop_r400_emu

 removed debug traces

Change 19617 on 2002/03/19 by llefebvr@llefebvre_laptop_r400_emu

 Corrected a bug in the SX that was causing the last quad of the triangle to be sent twice to
the Rb. Also added debug traces in the SX.

 Page 66 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 19600 on 2002/03/19 by sallen@sallen_r400_sun_marlboro

 ferret shader pipe testbench work

Change 19449 on 2002/03/18 by llefebvr@llefebvre_laptop_r400_emu

 Added RC_SC to chip.cpp...

Change 19434 on 2002/03/18 by jhoule@jhoule_r400_win_marlboro

 Removed hard-coded texture addresses.
 Changed alignment multiply from 6 to 8 in SQ.

Change 18970 on 2002/03/14 by llefebvr@llefebvre_laptop_r400_emu

 Added the new SC_SX interface. Added SX_RB_quad interface. Added RB_SX
interface. Modified SX_RB to reflect the HW interface.

Change 18930 on 2002/03/14 by sallen@sallen_r400_sun_marlboro

 add export tweak for shader testing

Change 18463 on 2002/03/11 by sallen@sallen_r400_sun_marlboro

 timing tweaks for ferret / shader pipe

Change 18443 on 2002/03/11 by llefebvr@llefebvre_laptop_r400_emu

 Added shader type to the SP->SX data interface to simplify the life of ferret

Change 18345 on 2002/03/11 by llefebvr@llefebvre_laptop_r400_emu

 Fixed a reservation station management problem in the sequencer related to pixel shader
stalls.

Change 18337 on 2002/03/11 by llefebvr@llefebvre_laptop_r400_emu

 Added export buffers into the SX block. Splitted the interface from the SQ/SP to the SX
into 2 interfaces (data, control). Repaired compilation problems of ferret because of namespace
missuses. Removed the VS_EXPORT_MASK register (replaced by a value of 0 in COUNTx
registers).

Change 18326 on 2002/03/11 by sallen@sallen_r400_sun_marlboro

 ferret shader pipe drive interp data in 512 chunks

Change 18033 on 2002/03/07 by sallen@sallen_r400_sun_marlboro

 ferret update for work with shader pipe

 Page 67 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 18029 on 2002/03/07 by askende@andi_crayola_emu_w

 updated the ALU instruction opcode enumerated type to match the latest shader spec

Change 18028 on 2002/03/07 by askende@andi_crayola_emu_w

 updated the opcode enumerated types to match the latest shader spec

Change 17825 on 2002/03/07 by sallen@sallen_r400_sun_marlboro

 ferret - new interface routines
 - debugging
 - SQ_SP drives only pixel data

Change 17818 on 2002/03/07 by llefebvr@llefebvre_laptop_r400_emu

 Changed the alu instruction packing so that it is consistant with what was done in the
texture instruction packing and with the Shader pipe spec (byte 11 = MSB, byte 0 = LSB).

Change 17757 on 2002/03/06 by llefebvr@llefebvre_laptop_r400_emu

 Added code to support the Control Flow instruction Execute. This code is not activated
yet.

Change 17676 on 2002/03/06 by sallen@sallen_r400_sun_marlboro

 ferret updates - emulator building .pipe files

Change 17543 on 2002/03/05 by llefebvr@llefebvre_laptop_r400_emu

 Changed registers writes to be uint32 instead of uint8 for texture state

Change 17503 on 2002/03/05 by llefebvr@llefebvre_laptop_r400_emu

 Another try to solve the endianess problem

Change 17498 on 2002/03/05 by llefebvr@llefebvre_laptop_r400_emu

 endian check for unix...

Change 17398 on 2002/03/04 by sallen@sallen_r400_sun_marlboro

 re-add ferret interface class needed

Change 17385 on 2002/03/04 by sallen@sallen_r400_sun_marlboro

 ferret update for new interface driven pipe model

 Page 68 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 17049 on 2002/02/28 by sallen@sallen_r400_sun_marlboro

 clean up places ferret was hacked out
 add 1st stage of interface based file/pipe in ferret
 fix a few make file gotchas
 fix a makefile out of order build that prevented a clean build from working

Change 16800 on 2002/02/27 by hartogs@fl_hartogs

 Split VGT into its own block.

Change 16798 on 2002/02/27 by sallen@sallen_r400_sun_marlboro

 ferret interfaces driven from run.cpp now
 change Interface base class to drive ferret data

Change 16466 on 2002/02/25 by jhoule@jhoule_r400_win_marlboro

 New 1.30 instruction.
 Started integrating common instr/const class shared between TP and PrimLib.

Change 16385 on 2002/02/22 by vliu@vliu_r400_cnvliu100_win_cvd

 Added support for BUILD_CONFIG environment variable.

Change 16305 on 2002/02/22 by jhoule@jhoule_r400_win_marlboro

 Changed TPConst and TPInstr to have:
 - pack and unpack instead of writeTo and readFrom
 - packing to vector<uint32>&
 - DWORD granularity function calls

Change 16176 on 2002/02/21 by jhoule@jhoule_r400_win_marlboro

 Changed tp_const and tp_instr to be in a library in cmn_lib/src.
 That way, code can be shared between emulator and primlib.

Change 15645 on 2002/02/15 by jhoule@jhoule_r400_win_marlboro

 Removed relative paths for numbers.h (includes Charlton Wang's changelist)

Change 15436 on 2002/02/14 by llefebvr@llefebvre_laptop_r400_emu

 Corrected a small bug in position export.

Change 15382 on 2002/02/13 by llefebvr@llefebvre_laptop_r400_emu

 Fixed an error in the constant load of the SQ.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1428 of 1898

 Page 69 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 15305 on 2002/02/12 by llefebvr@llefebvre_laptop_r400_emu

 Added a count++ in handle_register_fn so that the constant data is written to sq
memory...

Change 15275 on 2002/02/12 by llefebvr@llefebvre_laptop_r400_emu

 Added valid bits between SQ and TP

Change 15268 on 2002/02/12 by llefebvr@llefebvre_laptop_r400_emu

 Write the vertex data as bytes in the memory

Change 15243 on 2002/02/12 by sallen@sallen_r400_sun_marlboro

 add ferret interface class with just one shader pipe

Change 15221 on 2002/02/12 by llefebvr@llefebvre_laptop_r400_emu

 Updated SQ to take texture write masks into account

Change 15219 on 2002/02/12 by llefebvr@llefebvre_laptop_r400_emu

 Updated TP->SQ interface to add write masking capabilities

Change 15218 on 2002/02/12 by llefebvr@llefebvre_laptop_r400_emu

 Corrected an error in texture state management

Change 15217 on 2002/02/12 by llefebvr@llefebvre_laptop_r400_emu

 The SX now only exports the valid positions to the VGT.

Change 15177 on 2002/02/11 by llefebvr@llefebvre_laptop_r400_emu

 Interface sync problem on the PA->SQ vertex interface corrected

Change 15149 on 2002/02/11 by ygiang@ygiang_r400_win_marlboro

 Added: Ferret hooks to shader Pipe

Change 15072 on 2002/02/11 by llefebvr@llefebvre_laptop_r400_emu

 Corrected a memory alignement problem that corrupted the state of the arbiter. Also
modified simple_triangle to load both the pixel and the vertex shaders.

Change 14992 on 2002/02/08 by llefebvr@llefebvre_laptop_r400_emu

 Page 70 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 There was an error in the vertex input function of the sequencer it is now fixed and you
can load a partial group of vertex.

Change 14979 on 2002/02/08 by llefebvr@llefebvre_laptop_r400_emu

 Cheking in the last modifications of the SQ SX before trying to integrate the PA block.

Change 14941 on 2002/02/08 by jhoule@jhoule_r400_win_marlboro

 Was calling wrong function for filling TPInstr.

Change 14939 on 2002/02/08 by jhoule@jhoule_r400_win_marlboro

 iostream.h --> iostream

Change 14791 on 2002/02/06 by llefebvr@llefebvre_laptop_r400_emu

 Removed all sequencer related texture pipe hardcoded portions of the texture request.

Change 14783 on 2002/02/06 by llefebvr@llefebvre_laptop_r400_emu

 Fixed the order in which the instructions are written to memory.

Change 14721 on 2002/02/06 by llefebvr@llefebvre_laptop_r400_emu

 Updated the SQ->SX interface to reflect that the ParameterCaches are now in the SX
block.

Change 14627 on 2002/02/05 by llefebvr@llefebvre_laptop_r400_emu

 Created vertex.sp and pixel.sp. Simplified the shaders to their simplest expression for the
2/22 milestone. Updated the golden images to reflect the change.

Change 14530 on 2002/02/04 by llefebvr@llefebvre_laptop_r400_emu

 Not seeing the correct data when using IM_LOADS...

Change 14381 on 2002/02/01 by hwise@fl_hwise_r400_win

 1) Moved RBBM_CNTL and RBBM_SOFT_RESET primary register
 aperture addresses to match the I/O addresses
 2) Removed RBBM_*_GO_ASSERT registers
 3) Added handleRegisterAccess() functions to PA and SQ
 block classes to catch register read/write access
 broadcast by RBBM (stub with small decode example)
 4) More changes to PM4 decode of IM_LOAD and SET_CONSTANT
 5) Removed a few PM4 type3 packet definitions from primlib
 that will not be added to R400 as was previously thought
 6) Updated primlib pm4lib.cpp Promo4Lib constructor to

 Page 71 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 force the disabling of CP microcode

Change 14318 on 2002/01/31 by llefebvr@llefebvre_laptop_r400_emu

 Removed all temporary registers from the SQ (but for the _CNT registers wich are
needed until we implement CF). Primilib now needs to send the correct PM4 packets to the CP in
order to adjust the SQ registers before sending the first primitive.

Change 14215 on 2002/01/30 by llefebvr@llefebvre_laptop_r400_emu

 Added multiple triangle support in the interpolators. Also added PC allocation scheme.
Also added the SP->Parameter cache dummy interface.

Change 13962 on 2002/01/28 by rbeaudin@rbeaudin_r400_win_marlboro

 start of making the transaction engine working

Change 13934 on 2002/01/25 by llefebvr@llefebvre_laptop_r400_emu

 Added fields to the SQ_SP_Interp interface.

Change 13924 on 2002/01/25 by llefebvr@llefebvre_laptop_r400_emu

 Added two SQ->SP dummy interfaces to help with HW block level testing.

Change 13871 on 2002/01/25 by jhoule@jhoule_r400_win_marlboro

 Now uses standard header <iostream>.

Change 13829 on 2002/01/25 by llefebvr@llefebvre_laptop_r400_emu

 Added SX_PA interface fixed remaining bugs regarding register integration.

Change 13785 on 2002/01/24 by llefebvr@llefebvre_laptop_r400_emu

 Fixed the registers but the writes do not go thru because of a primilib problem?

Change 13725 on 2002/01/24 by hwise@fl_hwise_r400_win

 Integrated "play area" register spec into the emulator tree

Change 13669 on 2002/01/23 by llefebvr@llefebvre_laptop_r400_emu

 Added SX->SQ interface. Updated the Arbiter to take into account co-issue exporting
restrictions...

Change 13592 on 2002/01/23 by llefebvr@llefebvre_laptop_r400_emu

 Added File headers to all SQ and SX files.

 Page 72 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 13589 on 2002/01/23 by llefebvr@llefebvre_laptop_r400_emu

 Added the SX block to the emulator.

Change 13450 on 2002/01/21 by llefebvr@llefebvre_laptop_r400_emu

 Added the Idle function. Updated sanity. Won't regress because of framebuffer0. Ray is
working on it...

Change 13387 on 2002/01/21 by llefebvr@llefebvre_laptop_r400_emu

 Added Vertex functionnalities to the SQ. Remaining interfaces to be added are SQ->SX
position
 and SX->PA position.

Change 13288 on 2002/01/18 by llefebvr@llefebvre_laptop_r400_emu

 Added Texture pipe functionnality to the SQ.

Change 13153 on 2002/01/16 by llefebvr@llefebvre_laptop_r400_emu

 Added the PA->SQ vertex interface

Change 13149 on 2002/01/16 by llefebvr@llefebvre_laptop_r400_emu

 Refined the interfaces

Change 12931 on 2002/01/11 by llefebvr@llefebvre_laptop_r400_emu

 added the GPR allocation for the static mode only for both Vertices and pixel.

Change 12791 on 2002/01/10 by llefebvr@llefebvre_laptop_r400_emu

 Fixed an interpolation problem when using more than 2 interpolated parameters

Change 12782 on 2002/01/10 by llefebvr@llefebvre_laptop_r400_emu

 Fix for Jocelyn to work on the TP. This compiles and runs but gives incorect results for
now.

Change 12750 on 2002/01/09 by llefebvr@llefebvre_laptop_r400_emu

 Added TSTATE_MEM_BASE_ADDR register and TSTATE_MEM_WORD_COUNT
registers in order to be able to load the texture state from memory. also added a dllexported
function in the SQ to to this. Added a texture state store to the SQ.

Change 12674 on 2002/01/09 by llefebvr@llefebvre_laptop_r400_emu

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1429 of 1898

 Page 73 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

 Added a condition in the arbiter that prevents groups of pixel/vertices from passing each
other

Change 12633 on 2002/01/09 by llefebvr@llefebvre_laptop_r400_emu

 There was a color channel alignement problem in the RB. IT is now fixed but the golden
image have to be regenerated yet again. It should be in tones of red and yellow (NOT blue and
green).

Change 12617 on 2002/01/08 by askende@andi_crayola_emu_w

 rearranged the order of the channels (abgr or wzyx)and completed the mas k
capability in the GPR write back logic.

Change 12613 on 2002/01/08 by llefebvr@llefebvre_laptop_r400_emu

 channel Write Mask instruction read error in the SQ corrected

Change 12609 on 2002/01/08 by llefebvr@llefebvre_laptop_r400_emu

 Changed the channel order to RGBA (R in LSB A in MSB). Emulator wise it means that
R is in field 0 and A in field 3.

Change 12605 on 2002/01/08 by llefebvr@llefebvre_laptop_r400_emu

 Intermediate changes compiles and runs but doesn't give the right answer

Change 12577 on 2002/01/08 by llefebvr@llefebvre_laptop_r400_emu

 Added sources as const variables instead ot regular.

Change 12565 on 2002/01/07 by askende@andi_crayola_emu_w

 1.added support for argument selection being a constant

 2.added masking capabilities for the write bacl into GPRs

Change 12554 on 2002/01/07 by askende@andi_crayola_emu_w

 checking in for backup purposes

Change 12500 on 2002/01/07 by llefebvr@llefebvre_laptop_r400_emu

 reduced the size of the SQ_TP interface and added some comments in arbiter.cpp

Change 12441 on 2002/01/04 by askende@andi_crayola_emu_w

 Backup do not sync to this changelist it doesn't compile

 Page 74 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 12388 on 2002/01/04 by llefebvr@llefebvre_laptop_r400_emu

 interleaving ALU clauses

Change 12342 on 2002/01/03 by llefebvr@llefebvre_laptop_r400_emu

 added ready signal between the PA and the SQ

Change 12328 on 2002/01/03 by llefebvr@llefebvre_laptop_r400_emu

 added scalar support in the sequencer. No scalar exports yet.

Change 12177 on 2001/12/21 by llefebvr@llefebvre_laptop_r400_emu

 major changes in the SQ block. Now supports clauses. Not fully tested but otherwise
operationnal.

Change 12084 on 2001/12/20 by llefebvr@llefebvre_laptop_r400_emu

 sbfloats instead of sfloats

Change 12064 on 2001/12/19 by llefebvr@llefebvre_laptop_r400_emu

 New interface definition between SQ and TP

Change 12060 on 2001/12/19 by llefebvr@llefebvre_laptop_r400_emu

 constants are now working.

Change 12008 on 2001/12/19 by llefebvr@llefebvre_laptop_r400_emu

 Changed constants order. Added Constant read support, compiles and runs but doesn't
work.

Change 11940 on 2001/12/18 by llefebvr@llefebvre_laptop_r400_emu

 repaired a problem with RB valid bits. Added constant support, need to load them using
the MC.

Change 11912 on 2001/12/18 by llefebvr@llefebvre_laptop_r400_emu

 new ALU instruction format and clamp instructions now in the performance emulator.
First golden image can now be generated.

Change 11764 on 2001/12/14 by askende@andi_crayola_emu_w

 rearranged the ALU instruction word definition

 added the clamping for the ALU results

 Page 75 of 75

Ex. 2048 --- R400 Sequencer Emulator FH --- folder_history

Change 11581 on 2001/12/12 by rbeaudin@rbeaudin_r400_win_marlboro

 changing emu_lib structure

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1430 of 1898

 Page 1 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 173774 on 2004/06/15 by donaldl@donaldl_xenos_linux_orl

 1. Changed DEBUSSY_PATH to VERDI_ROOT in buildtb_gate.
 2. Updated sq to sp trackers to not compare the shader pipe defined by
 ROM_SIMD_SEL[1:0] and ROM_PIPE_SEL[3:0] if rsp is enabled.

Change 170775 on 2004/05/28 by bhankins@bhankins_xenos_linux_orl

 back integrate sx from xenos

Change 169691 on 2004/05/24 by rramsey@rramsey_xenos_linux_orl

 integrate xenos changes back to r400 for pa and vgt
 I verfied milestone_tri passed tb_pa and vgt_tb, but did not do a full
 block level regression. release_parts_lib passed.

Change 169281 on 2004/05/21 by rramsey@rramsey_xenos_linux_orl

 integrate xenos changes to r400 for sq, sp/rsp, spi
 take top-level-registers to r400, but only sc_cp_tlr0 is instanced as an example

Change 158310 on 2004/03/29 by dclifton@dclifton_r400

 Updates for ram and bist changes

Change 154269 on 2004/03/11 by rramsey@rramsey_xenos_linux_orl

 integrate fix for constant store hang

Change 153809 on 2004/03/09 by llefebvr@llefebvr_r400_linux_marlboro

 Integration of the Loop rep fix.

Change 153542 on 2004/03/08 by donaldl@donaldl_xenos_linux_orl

 Qualified RSP comparing of data with sq_vc_fetch_type to fix erroneous mismatches.

Change 153403 on 2004/03/08 by mearl@mearl_r400_linux_orl

 Took out LOD Correction from SC, SC/SQ interface, SQ, SQ/TP interface.

Change 153372 on 2004/03/08 by vromaker@vromaker_r400_linux_marlboro

 - hooked u0, u1, u2, and u3_TP_SP_data_valid signals up to thier respective shader pipes
 (instead of the version that ORed all the valids together)

Change 153086 on 2004/03/05 by danh@danh_xenos_linux_orl

 removed LOD changes

 Page 2 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 153085 on 2004/03/05 by danh@danh_xenos_linux_orl

 Correct Virage 90nm changes and SX gate level simulation changes

Change 153082 on 2004/03/05 by danh@danh_r400_win

 Virage 90 nm changes and SX gate level simulation changes

Change 152936 on 2004/03/05 by danh@danh_r400_win

 integrated from //depot/xenos

Change 152848 on 2004/03/05 by mmantor@mmantor_xenos_linux_test

 <fixed a bug in the loading of aluconst, back integrated removal of realtime space from
aluconst and texconst mems and control logic in rbi and all hookups, altered sq_regress per
carlos test set>

Change 152426 on 2004/03/03 by vromaker@vromaker_r400_linux_marlboro

 - bug fix for AIS update state machine: need to look at both unregistered
 and registered updates in state 0

Change 152169 on 2004/03/02 by vromaker@vromaker_r400_linux_marlboro

 - added a signal to enable/disable early thread buffer updates (it's
 called enable_early_update and it's tied high)

Change 152105 on 2004/03/02 by rramsey@rramsey_xenos_linux_orl

 Fix loop index relative addressing for negative indices and error cases

Change 151675 on 2004/02/27 by vromaker@vromaker_r400_linux_marlboro

 - fix for AIS update state machine

Change 151644 on 2004/02/27 by vromaker@vromaker_r400_linux_marlboro

 - fix for random 82d failure: reset ppb_exec_cnt when new CFI is passed to exec state
machine (was using an old
 exec count in a case where the pred condition failed)
 - removed a RT test from the sq mini regress list

Change 151466 on 2004/02/27 by danh@danh_xenos_linux_orl

 backed out change #168

Change 151457 on 2004/02/27 by danh@danh_r400_win

 Page 3 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 integration from //depot/xenos

Change 151426 on 2004/02/26 by donaldl@donaldl_xenos_linux_orl

 Integrated from xenos:
 1) Took out RT stream logic in sc_packer
 2) Integrated SC_B back with SC
 3) Updated files to accomodate GATE level sims

Change 151419 on 2004/02/26 by danh@danh_r400_win

 integrated from //depot/xenos

Change 151418 on 2004/02/26 by danh@danh_r400_win

 integrated from //depot/xenos

Change 151366 on 2004/02/26 by danh@danh_r400_win

 integrated from //depot/xenos

Change 151318 on 2004/02/26 by rramsey@rramsey_xenos_linux_orl

 Fix exec machine so it doesn't change resource or serialize bits when
 sending back non-exec instr (pred jump, loop_end, etc)

Change 151211 on 2004/02/26 by bhankins@bhankins_xenos_linux_orl

 Add support for generating event quads from sx to bc/rb.
 Support is disabled for now in src/common/sx_defines.v
 This code supports behavioral memory only for now.

Change 151177 on 2004/02/25 by rramsey@rramsey_xenos_linux_orl

 Change cfs eject to use bit from cf instr, and fix bug with ejection
 of a partially executed instr.
 Change status reg and vtx_ctl to use vgt define for fetch_done

Change 151101 on 2004/02/25 by donaldl@donaldl_xenos_linux_orl

 Removed real-time stream reg mems in SX and removed the i/o signal
 SQ_SX_rt_sel between the SQ and SX.

Change 151067 on 2004/02/25 by vromaker@vromaker_r400_linux_marlboro

 - waterfall fix for pipelined AIS thread buffer update (found by random 80e)

Change 150962 on 2004/02/25 by llefebvr@llefebvr_r400_linux_marlboro

 Page 4 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 This is fixing the RS_FULL and GPR_STALL performance counters.

Change 150374 on 2004/02/21 by mmantor@mmantor_xenos_linux_test

 <fixed a synthesis error and enabled the 256 deep export buffers>

Change 150220 on 2004/02/20 by rramsey@rramsey_xenos_linux_orl

 replace the old vtx/pix tex cf trackers with a new unified tracker
 add vc cf tracker
 move some r400-only sx signals inside an ifdef
 delete obsolete trackers

Change 150184 on 2004/02/20 by llefebvr@llefebvr_r400_linux_marlboro

 Adding another minor fix on the latency counters.

Change 150005 on 2004/02/19 by vromaker@vromaker_r400_linux_marlboro

 - fixed a bug in the pipelined thread buffer update that was causing a failure in random
testing

Change 149787 on 2004/02/18 by rramsey@rramsey_xenos_linux_orl

 Add register bits for disabling arb and cfs eject.
 Add clause eject capability to cfsm and logic to the thread arb
 to drive the eject.
 Remove a stage from the cfs ppb and the isr from the tif in order
 to reduce the amount of work that can be ahead of the next best thread.
 Fix a bug with SQ_SP_fetch_swizzle mux between tp and vc values.
 Swap phasing of fetch and alu instruction fetch is reads to match up
 better with when the cfs can deliver an instr.
 Update control flow tracker to be able to handle clause ejection.
 Fix some compile warnings in tb_sqsp.

Change 149566 on 2004/02/17 by rramsey@rramsey_xenos_linux_orl

 fix some bad logic that synopsys was complaining about

Change 149537 on 2004/02/17 by jhoule@jhoule_r400_linux_marlboro

 tp_sqsp.dmp tracker update

 TP_SQSP_Dump:
 - Changed serialization to be exactly what the RTL spits instead of the bastardized 4x32
cycling; controlled with Use_New_TP_SQSP_Dump environment variable)
 - Added RSP data per pipe (only available when using new serialization)

ATI 2049
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1431 of 1898

 Page 5 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 - Added rf_expand_enable ***RIGHT AFTER xyzw_parity*** in order to get packed
formats to work properly

 TexturePipe:
 - Added functions to prepare RSP data for the TP_SQSP_Dump

 Testbench:
 - Added rf_expand_enable *JUST AFTER* xyzw_parity (this affects the old path); was
tied to 0
 - Connected data_format instead of tying it to 6'h26 (FMT_32_32_32_32_FLOAT)

 FormatOracle:
 - Added column representing the encoded format sent to the formatter
 - Kept weird issue where DXN (and other formats) have 2x16 channels in TP instead of
2x8(.8). Doesn't seem to be used anyways.

Change 149472 on 2004/02/17 by mmantor@mmantor_xenos_linux_test

 <back out usage of 512 export buffer locations until problem debugged>

Change 149458 on 2004/02/17 by mmantor@mmantor_xenos_linux_orl

 <the remainder of my previous check in that got left out by error>

Change 149382 on 2004/02/15 by mmantor@mmantor_xenos_linux_orl

 <added counter to sq for flow control of sx alloc table, hook up state control for depth of
sx buffers and set the default depth to 256 and initial hook up of event quads for sq and sx>

Change 149262 on 2004/02/13 by llefebvr@llefebvr_r400_linux_marlboro

 Adding Event performance counters.

Change 149131 on 2004/02/13 by vromaker@vromaker_r400_linux_marlboro

 - fix for AIS update to take waterfalling into account
 - only change to CFS was to assign some signals to logic expressions

Change 149113 on 2004/02/13 by llefebvr@llefebvr_r400_linux_marlboro

 Fixing latency counters. They were incorectly counting event threads.

Change 149058 on 2004/02/13 by donaldl@donaldl_xenos_linux_orl

 Bug fix: delay no_compare flags to line up with SP to SX data.

Change 148947 on 2004/02/12 by rramsey@rramsey_xenos_linux_orl

 change a loop int to a unique name for synthesis

 Page 6 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 148704 on 2004/02/11 by vromaker@vromaker_r400_linux_marlboro

 - signal name change only in CFS (changed cfi_no_pred to cfi_pred_clean)
 - added reset for pc_base and export_id fields of status register

Change 148410 on 2004/02/10 by vromaker@vromaker_r400_linux_marlboro

 - change to handle concurrent updates from all 4 AIS's that go to an ALU State Memory
 - the update info from each AIS is registered, and a state machine sequences the writes

Change 148380 on 2004/02/10 by bhankins@bhankins_xenos_linux_orl

 Send simd_id to sx from sq one clock earlier, then register and break up selects to
redundancy muxes in sx.

Change 148246 on 2004/02/09 by donaldl@donaldl_xenos_linux_orl

 Added flat_shading signal for use in the SX parameter subtract function.
 (ie. if flat_shading is true, ignore infinity checks; just do subtract. Result
 should be zero.)

Change 148140 on 2004/02/09 by rramsey@rramsey_xenos_linux_orl

 Changes to allow the thread arbiters to pick the best thread every four
 clocks, rather than picking one and holding it until the cf machine takes
 it.
 Also breaks ties between export_arb and thread_arbs by having the space
 allocs happen as a separate process not requiring the thread_arbs.

Change 147861 on 2004/02/06 by vromaker@vromaker_r400_linux_marlboro

 - fix for non-delayed AIS update of thread buffer
 - required that all ais update inputs to the thread buffer be qualified with thread type
 before being used

Change 147453 on 2004/02/05 by donaldl@donaldl_xenos_linux_orl

 Allow disabling of clocks to each of the vsp's in the SP. Disabling clocks is
 done either when redundancy is used or when disabling of a simd pipe.

Change 147418 on 2004/02/05 by mearl@mearl_r400_win

 update status

Change 147410 on 2004/02/05 by amys@amys_xenos_lnxrgs_orl

 added path for xenos path for fullchip, so trackers won't break xenos build every time an
integration is done

 Page 7 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 147378 on 2004/02/04 by danh@danh_r400_win

 status update

Change 147377 on 2004/02/04 by danh@danh_xenos_linux_orl

 Changed type1_export_size generation, now when vs_export_mode = 0 or 7 it will be a 1
position export.

Change 147106 on 2004/02/03 by danh@danh_r400_win

 status update

Change 147059 on 2004/02/03 by danh@danh_r400_win

 status update

Change 147047 on 2004/02/03 by mearl@mearl_r400_win

 update status

Change 147045 on 2004/02/03 by danh@danh_r400_win

 status update

Change 146966 on 2004/02/03 by mearl@mearl_r400_win

 update status

Change 146945 on 2004/02/03 by danh@danh_r400_win

 status update

Change 146923 on 2004/02/02 by danh@danh_r400_win

 status update

Change 146705 on 2004/02/01 by mmantor@mmantor_xenos_linux_orl

 <moved a register from sq to sp for tc and vc fetch address so the min latency through sp
is 3 clocks in prep for intrinsity and moved extra register to back of sp for either future remove
or use for top level routing and sent export simd sel 2 clocks later once for minimal latency and
other for register movement. also changed trackers and mvoed register in rsp>

Change 146511 on 2004/01/30 by vromaker@vromaker_r400_linux_marlboro

 - AIS now asserts ais_done back to the thread buffer without any delays

 Page 8 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 - AIS now asserts ais_update back to the thread buffer without any delays if the last
instruction
 of a clause is not a pred_set or a kill (if it is, the update is delayed until the SP data is
 written back to the SQ)

Change 146497 on 2004/01/30 by danh@danh_r400_win

 status update

Change 146431 on 2004/01/30 by danh@danh_r400_win

 status update

Change 146361 on 2004/01/30 by vromaker@vromaker_r400_linux_marlboro

 picked two tests

Change 146353 on 2004/01/30 by danh@danh_r400_win

 status update

Change 146329 on 2004/01/30 by danh@danh_r400_win

 status update

Change 146132 on 2004/01/29 by danh@danh_r400_win

 status update

Change 146066 on 2004/01/29 by rramsey@RRAMSEY_P4_r400_win

 get rid of some invalid testcases

Change 145994 on 2004/01/28 by danh@danh_r400_win

 status update

Change 145934 on 2004/01/28 by danh@danh_r400_win

 status update

Change 145919 on 2004/01/28 by mearl@mearl_r400_win

 update status

Change 145847 on 2004/01/28 by rramsey@RRAMSEY_P4_r400_win

 update with 1/28 regression results

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1432 of 1898

 Page 9 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 145615 on 2004/01/27 by bhankins@bhankins_xenos_win_orl

 update status

Change 145611 on 2004/01/27 by smoss@smoss_crayola_linux_orl_regress

 new path

Change 145568 on 2004/01/27 by vromaker@vromaker_r400_linux_marlboro

 status update on r400sq_flow_control_rts_16 and _19

Change 145549 on 2004/01/27 by danh@danh_r400_win

 status update, picked new test

Change 145535 on 2004/01/27 by danh@danh_xenos_linux_orl

 |tx_instr[4:0] is now used for the mux select of tfetch_swapped_bit

Change 145533 on 2004/01/27 by danh@danh_xenos_linux_orl

 |tx_instr[4:0] is now used for the mux select of tfetch_swapped_bit

Change 145355 on 2004/01/26 by llefebvr@llefebvr_r400_linux_marlboro

 Added 4 performance counters to the SQ to measure the latency of pixel and vertex
threads from the time they enter te Sq to the time they leave.

Change 145135 on 2004/01/23 by rramsey@rramsey_xenos_linux_orl

 Update yield_optimize test so it tests the logic better
 Fix cfsm clause boundary detection for yield_optimize and add setting
 of exsm_updating to EX_EXEC state when it is going to update

Change 145037 on 2004/01/23 by mearl@mearl_r400_win

 update status

Change 144945 on 2004/01/23 by ctaylor@ctaylor_xenos_linux_orl

 Fixed tracker bug for
NOP,RETURN,LOOP_START,LOOP_END,COND_CALL,COND_JUMP and ALLOC where
vc_request field was left out of tracker compare so all subsequent fields came from the wrong
column in the dump file.

Change 144878 on 2004/01/23 by rramsey@RRAMSEY_P4_r400_win

 update with 1/22 regression results

 Page 10 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 144816 on 2004/01/22 by smoss@smoss_xenos_linux_orl

 correct brain dump

Change 144711 on 2004/01/22 by rramsey@rramsey_xenos_linux_orl

 Add vs fetch done to SQ
 Fix testbench handling of vizq events again

Change 144679 on 2004/01/22 by mearl@mearl_r400_win

 update status

Change 144656 on 2004/01/22 by vromaker@vromaker_r400_linux_marlboro

 updated status and picked a test

Change 144611 on 2004/01/22 by llefebvr@llefebvr_r400_emu_montreal

 Update status.

Change 144609 on 2004/01/22 by llefebvr@llefebvr_r400_linux_marlboro

 Putting back the fix of Dan Harmon for back to back exports inadvertly reverted by Mike
M.

Change 144482 on 2004/01/22 by llefebvr@llefebvr_r400_emu_montreal

 picking up some tests.

Change 144466 on 2004/01/22 by smoss@smoss_crayola_linux_orl_regress

 updated test.cfg for some missing dumps

Change 144373 on 2004/01/21 by danh@danh_r400_win

 picked a new test

Change 144326 on 2004/01/21 by rramsey@RRAMSEY_P4_r400_win

 update status with 1/21 results

Change 144186 on 2004/01/21 by danh@danh_xenos_linux_orl

 fixed ps_const_max typo

Change 144030 on 2004/01/20 by llefebvr@llefebvr_r400_emu_montreal

 Page 11 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 update status for kill tests.

Change 144029 on 2004/01/20 by rramsey@rramsey_xenos_linux_orl

 clean up ctl_flow_seq
 add ais_thread_type to ais_update snoop in cfs

Change 143983 on 2004/01/20 by vromaker@vromaker_r400_linux_marlboro

 - small update to load and hold the vtx and pix constant base registers the same
 way as the input staging register

Change 143952 on 2004/01/20 by mearl@mearl_xenos_linux_orl

 1. Added EOP to sc_pix_vec_grp_out.dmp file to keep track of RT streams for tb_sqsp
testbench
 sc_dumps.cpp
 sc_dumps.h
 sc_interp.cpp
 tb_sqsp.v
 2. Fixed bug; when SIMD w/ 0 bad pipes is followed by SIMD w/ 2 bad pipes,
wrong SP is selected.
 sq_vtx_ctl.v
 3. Made timing fixes.
 sc_packer.v

Change 143929 on 2004/01/20 by danh@danh_r400_win

 status update

Change 143883 on 2004/01/20 by vromaker@vromaker_r400_linux_marlboro

 status update, picked new test

Change 143755 on 2004/01/19 by vromaker@vromaker_r400_linux_marlboro

 status update, picked another test

Change 143726 on 2004/01/19 by bhankins@bhankins_xenos_linux_orl

 Mods to support tb_sqsp testing with xenos

Change 143618 on 2004/01/18 by rramsey@rramsey_xenos_linux_orl

 Rework ctl flow sequencer so it can start a new thread every 4 clocks

Change 143377 on 2004/01/16 by danh@danh_r400_win

 status update

 Page 12 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 143312 on 2004/01/15 by vromaker@vromaker_r400_linux_marlboro

 - removed the SQ_SP thread ID and type ports from the SQ; they were
 conditionally compiled 'ifdef SIM, but that was not working for
 xenos
 - the trackers now reference these signals at the SQ level

Change 143243 on 2004/01/15 by vromaker@vromaker_r400_linux_marlboro

 - fixed input to AIQ FIFO by adding an input staging register and
 loading it on valid transfers from the instr fetcher

Change 143160 on 2004/01/15 by vromaker@vromaker_r400_linux_marlboro

 - fixes for unconnected ports
 - had to make some changes to tb_sqsp and sim.cfg based on the removal of
 SQ_SP_instruct_start
 - also qualified predicate and valid bit writes with waterfall mask in ais_output

Change 143119 on 2004/01/14 by danh@danh_r400_win

 status update

Change 142926 on 2004/01/14 by rramsey@rramsey_xenos_linux_orl

 change tracker to look at sq port rather than connecting signal

Change 142689 on 2004/01/13 by danh@danh_r400_win

 status update

Change 142672 on 2004/01/13 by dclifton@dclifton_r400

 Update for changes in sp.

Change 142573 on 2004/01/13 by danh@danh_xenos_linux_orl

 SQ_SP_vsr_rd_addr is now only compared when SQ_SP_gpr_input_mux = 2 (VSRs
selected)

Change 142569 on 2004/01/13 by bhankins@bhankins_xenos_win_orl

 update status

Change 142543 on 2004/01/13 by bhankins@bhankins_xenos_win_orl

 update

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1433 of 1898

 Page 13 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 142536 on 2004/01/13 by bhankins@bhankins_xenos_win_orl

 pick test

Change 142533 on 2004/01/13 by bhankins@bhankins_xenos_win_orl

 update status

Change 142219 on 2004/01/12 by rramsey@RRAMSEY_P4_r400_win

 update with 1/11 regression results

Change 142212 on 2004/01/12 by mmantor@mmantor_xenos_linux_orl

 <this is val's change for a timing fix in the pa and Vic's changes for the sq which include
coding of special flow control optimizations and some timing fixes for the sq>

Change 142124 on 2004/01/10 by danh@danh_r400_win

 Status update.

Change 141976 on 2004/01/09 by danh@danh_r400_win

 Status update.

Change 141969 on 2004/01/09 by danh@danh_xenos_linux_orl

 aiq_instr[15] (export bit) now forces prev_vector_mask_q and prev_scalar_mask_q to 0,
this allows back to back export instructions to work properly.

Change 141964 on 2004/01/09 by danh@danh_xenos_linux_orl

 gen_index_cycle now forces a count_match[3:0]

Change 141926 on 2004/01/09 by mearl@mearl_r400_win

 update status

Change 141921 on 2004/01/09 by rramsey@RRAMSEY_P4_r400_win

 updating status

Change 141806 on 2004/01/09 by amys@amys_xenos_linux_orl

 modified read-back of sq_flow_control_reg by inserting a bit so that the read-back
matches the spec

Change 141650 on 2004/01/08 by rramsey@rramsey_xenos_linux_orl

 Page 14 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 Add SQ_CP_vs_fetch_done to sq, tied low for now
 Fix the way vizq_start events are handled in tb_sqsp

Change 141418 on 2004/01/08 by vromaker@vromaker_r400_linux_marlboro

 updated status - picked tests

Change 141401 on 2004/01/08 by rramsey@RRAMSEY_P4_r400_win

 update with 1/8 results

Change 141385 on 2004/01/08 by bhankins@bhankins_xenos_linux_orl

 Initial add of thread done/event logic in sx

Change 141155 on 2004/01/07 by rramsey@rramsey_xenos_linux_orl

 Fix a bug that was sending writes to the wrong phys addr if a new
 pa was allocated before the write actually happened

Change 140800 on 2004/01/06 by rramsey@RRAMSEY_P4_r400_win

 update with 1/6 status, pick a test

Change 140782 on 2004/01/06 by mmantor@mmantor_xenos_linux_orl

 <more timing fixes>

Change 140701 on 2004/01/05 by rramsey@rramsey_xenos_linux_orl

 add an sc state push for the vs_done event

Change 140615 on 2004/01/05 by vromaker@vromaker_r400_linux_marlboro

 updated status, picked new tests

Change 140594 on 2004/01/05 by rramsey@RRAMSEY_P4_r400_win

 update with 1/1 regression results

Change 140576 on 2004/01/05 by danh@danh_r400_win

 Status update.

Change 140556 on 2004/01/05 by smoss@smoss_crayola_win

 update with latest status

Change 140496 on 2004/01/04 by mmantor@mmantor_xenos_linux_orl

 Page 15 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 <removed o_rbi_rd_data from the reset clk process>

Change 140451 on 2004/01/02 by mmantor@mmantor_xenos_linux_orl

 <another timing fix>

Change 140441 on 2004/01/02 by mmantor@mmantor_xenos_linux_orl

 <fixes for timing paths in the sq and pav>

Change 140380 on 2003/12/31 by vromaker@vromaker_r400_linux_marlboro

 - fix for dropped real_time flag: moved export_pos bit into the "flags" field
 (it was using a bit that was set aside for the extra_in field)

Change 140350 on 2003/12/31 by rramsey@rramsey_xenos_linux_orl

 Fix a bug that was allowing the texconst mem to be written when full (no phys addr
 available)

Change 140331 on 2003/12/31 by mearl@mearl_xenos_linux_orl

 Fixed bug; was using thread type instead of fetch type.

Change 140313 on 2003/12/31 by jcarroll@jcarroll_r400_win

 added latest status; picked new test

Change 140270 on 2003/12/30 by danh@danh_r400_win

 Status update.

Change 140205 on 2003/12/30 by rramsey@RRAMSEY_P4_r400_win

 update test status, pick another one

Change 140203 on 2003/12/30 by danh@danh_r400_win

 Status update.

Change 140174 on 2003/12/30 by rramsey@RRAMSEY_P4_r400_win

 update status

Change 140155 on 2003/12/30 by rramsey@RRAMSEY_P4_r400_win

 update with 12/30 regression results

 Page 16 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 140117 on 2003/12/30 by danh@danh_r400_win

 Status update.

Change 140051 on 2003/12/29 by mearl@mearl_r400_win

 update status

Change 140050 on 2003/12/29 by vromaker@vromaker_r400_linux_marlboro

 status update - emulator fix was made for scalar const opcodes

Change 140036 on 2003/12/29 by jcarroll@jcarroll_r400_win

 Updated jcarroll status

Change 139909 on 2003/12/28 by mmantor@mmantor_xenos_linux_orl

 <timing fixes>

Change 139795 on 2003/12/23 by danh@danh_r400_win

 Status update.

Change 139383 on 2003/12/23 by ctaylor@ctaylor_xenos_linux_orl

 Fixed bug in control flow sequencer where when thread was put back onto thread
buffer due to alloc cfi, the no-serialize bit was being taken from bit 40 of the cfs opcode instead
of the execute state machine opcode so it was the right bit from the wrong instruction. Things
have been working mostly due to the fact that bit 40 of most of the other CFI opcodes is reserved
and therefore 0.

Change 139373 on 2003/12/23 by llefebvr@llefebvr_r400_emu_montreal

 updated status for SX->PA missmatches.

Change 139338 on 2003/12/23 by vromaker@vromaker_r400_linux_marlboro

 - fix for scalar const ops: y and x swizzle fields used for gpr address bits [5:4]
 and [3:2] were swapped

Change 139327 on 2003/12/23 by rramsey@rramsey_xenos_linux_orl

 add simd_id to sp_out mismatch message
 make sx_rb_color tracker multi-threaded per sx/rb interface

Change 139310 on 2003/12/23 by vromaker@vromaker_r400_linux_marlboro

 status update - took another test

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1434 of 1898

 Page 17 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 139223 on 2003/12/22 by llefebvr@llefebvr_r400_emu_montreal

 Now working on SX->PA missmatches.

Change 139193 on 2003/12/22 by rramsey@RRAMSEY_P4_r400_win

 update status

Change 139142 on 2003/12/22 by llefebvr@llefebvr_r400_emu_montreal

 The SX->RB tracker is bad. Added a comment to explain the situation.

Change 139097 on 2003/12/22 by ctaylor@ctaylor_xenos_linux_orl

 Fixed bug related to clamping of GPR addresses which are out of range. Old code
clamped to absolute zero instead of the base for the current thread.

Change 139066 on 2003/12/22 by bhankins@bhankins_xenos_linux_orl

 Add tbtrk_sx_bc_quad tracker (C1 version only)

Change 139057 on 2003/12/22 by rramsey@RRAMSEY_P4_r400_win

 update more tests, pick another one

Change 139050 on 2003/12/22 by rramsey@RRAMSEY_P4_r400_win

 Update with new regression results, pick a test

Change 139045 on 2003/12/22 by rramsey@rramsey_xenos_linux_orl

 Fix phasing of thread_count in sq_ais_output.
 Fix o_gprsm_busy from sq_vtx_ctl and change thread counter to only
 reset on RST_VTX_CNT event.

Change 138986 on 2003/12/20 by mmantor@mmantor_xenos_linux_orl

 <changed csim to only make one pass for param gen and gen index and write the dump
files correctly, fixed a timing loop in pix tthread buffer >

Change 138662 on 2003/12/19 by mearl@mearl_r400_win

 update status

Change 138650 on 2003/12/19 by danh@danh_r400_win

 Status update.

 Page 18 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 138588 on 2003/12/19 by vromaker@vromaker_r400_linux_marlboro

 - fixed a copy-paste error in the new code that generates src_c_sel for scalar const ops

Change 138586 on 2003/12/19 by mearl@mearl_r400_win

 update status

Change 138491 on 2003/12/18 by llefebvr@llefebvr_r400_emu_montreal

 I'll leave the _const_add test to Vic since he is working on it with Dan. I'll focus instead
on coissue_frac_01.

Change 138489 on 2003/12/18 by mearl@mearl_r400_win

 update status

Change 138486 on 2003/12/18 by danh@danh_r400_win

 Status update.

Change 138455 on 2003/12/18 by mearl@mearl_r400_win

 update status

Change 138309 on 2003/12/18 by danh@danh_r400_win

 Status update.

Change 138289 on 2003/12/17 by rramsey@rramsey_xenos_linux_orl

 Fix a bug with pred_override that can occur when a clause starts
 with two predicated alu instructions. pred_override needs to use
 the isr version of the pred bits in this case because the pred register
 can't be intit'ed until after the the last instr of the prev clause has
 a chance to return its pred values and push them back to the thread buffer.
 This fixes r400sc_sp_sample_cntl_47 and hopefully many more.

Change 138288 on 2003/12/17 by vromaker@vromaker_r400_linux_marlboro

 - fix for scalar const opcodes: src_c_sel and gpr_read_en logic was updated

Change 138212 on 2003/12/17 by mearl@mearl_r400_win

 update status

Change 138152 on 2003/12/17 by danh@danh_r400_win

 Status Update.

 Page 19 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 138138 on 2003/12/17 by bhankins@bhankins_xenos_linux_orl

 1. Modify detailed quad fifo to keep mrt quads and mem export quads together
 2. Change NEW_BC defines to C1

Change 138087 on 2003/12/17 by rramsey@RRAMSEY_P4_r400_win

 latest regression status

Change 137864 on 2003/12/16 by rramsey@rramsey_xenos_linux_orl

 Change emulator so param cache reads for params not exported by the VS
 still show up in sq_sx_pcaddr.
 Fix cf_resource_change logic in the cfs so it catches the clause boundary
 where a cf instr with only tex instr gets sent to the alu cfs.

Change 137773 on 2003/12/16 by vromaker@vromaker_r400_linux_marlboro

 - fixed a predicate override bug: pred_overide is driven from the done bits if
 the previous operation was a waterfall, but it must only be driven for the first
 instruction following a waterfall. The bug occurred on back-to-back waterfalls
 where the pred_override was being driven for all cycles of the second waterfall.
 - this fix caused r400sq_gpr_index_01 to pass

Change 137753 on 2003/12/16 by danh@danh_r400_win

 Status update.

Change 137701 on 2003/12/15 by rramsey@rramsey_xenos_linux_orl

 Add new _sf (single-file) versions of PLI routines that allow trackers
 to only open their dump files one time.
 Modify a few trackers and models to use the new _sf routines to verify
 they are working.
 Fix a problem with the cfsm not ignoring clause boundaries for unexecuted
 predicate control flow instr.

Change 137566 on 2003/12/15 by donaldl@donaldl_xenos_linux_orl

 Added tracker for RSP to SX data.

Change 137560 on 2003/12/15 by danh@danh_r400_win

 Updated status.

Change 137415 on 2003/12/15 by jcarroll@jcarroll_r400_win

 Picked tests

 Page 20 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 137401 on 2003/12/15 by rramsey@RRAMSEY_P4_r400_win

 update with weekend's results

Change 137238 on 2003/12/12 by vromaker@vromaker_r400_linux_marlboro

 took a few more tests

Change 137205 on 2003/12/12 by mearl@mearl_r400_win

 updated status

Change 137188 on 2003/12/12 by rramsey@RRAMSEY_P4_r400_win

 update with latest regression results

Change 137166 on 2003/12/12 by vromaker@vromaker_r400_linux_marlboro

 - increased the depth of the sq-vc request fifo; this is a temporary fix while the
 mini and mega dec signals from the VC are added to the vc_rp_sp dump file

Change 137165 on 2003/12/12 by mearl@mearl_r400_win

 updated status

Change 137146 on 2003/12/12 by vromaker@vromaker_r400_linux_marlboro

 updated status

Change 137105 on 2003/12/12 by mmantor@mmantor_xenos_linux_orl

 <fixed bug in the emu for redundancy control, added new input to the sq called
sx_sp_alloc_table_free >

Change 137104 on 2003/12/12 by mmantor@mmantor_xenos_linux_orl

 <This changed changed SQ and SX top level ports by added thread_type from sq_alloc
through the sx so tracker at sx_rb works correct and fixed some other minor bugs>

Change 136917 on 2003/12/11 by mearl@mearl_r400_win

 updated status

Change 136893 on 2003/12/11 by mearl@mearl_r400_win

 updated status

Change 136888 on 2003/12/11 by bhankins@bhankins_xenos_linux_orl

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1435 of 1898

 Page 21 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 Change defined "C1" switch to "NEW_BC" in sx rtl and related vcpp files

Change 136871 on 2003/12/11 by mearl@mearl_r400_win

 updated status

Change 136867 on 2003/12/11 by rramsey@rramsey_xenos_linux_orl

 don't reset current_context at eo_rt load

Change 136773 on 2003/12/10 by danh@danh_r400_win

 Updated status.

Change 136758 on 2003/12/10 by bhankins@bhankins_xenos_linux_orl

 fix ifdef/endif mismatch

Change 136713 on 2003/12/10 by vromaker@vromaker_r400_linux_marlboro

 updated status

Change 136691 on 2003/12/10 by bhankins@bhankins_xenos_linux_orl

 1. Add ability for both r400 and xenos versions of sx to coexist
 2. Rewrite memory read mux select logic in sx_bc_if.v for better synthesis
 3. Add quad_x and quad_y signals to BC interface.
 4. Update 'copy_virage_' files to reflect memory updates
 5. Change 'ENABLE_SX_TO_BC' compile switch to 'C1'
 6. Remove obsolete code (sx_export_buffers_common.v logic is now in sx_rb_if.v)
 7. Update virage .cnt files

Change 136672 on 2003/12/10 by mearl@mearl_r400_win

 updated status

Change 136596 on 2003/12/09 by vromaker@vromaker_r400_linux_marlboro

 - added a couple wire names for ppb read data in cfs
 - added fsdb dump for tbtrk_sq_vtx_rs_input in tb_sqsp
 - changed checking of predicate to registered version in above trk to fix false mismatch
 - bit 95 of vc/tp instruction was wired to 0 causing a mismatch, so
 I changed it to the actual instruction bit 95 (which is only used by the sq)

Change 136574 on 2003/12/09 by danh@danh_r400_win

 Updated r400sc_rts_* status

 Page 22 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 136557 on 2003/12/09 by mmantor@mmantor_xenos_linux_orl

 <fixed allocation counter for ea and cleaned up controls for rest of the counters and fixed
a bug in the spi_sp tracker by removing delay on sq_sp_simd_id because of pipelining the vertex
and pixel input data>

Change 136424 on 2003/12/09 by mearl@mearl_r400_win

 update status

Change 136358 on 2003/12/09 by vromaker@vromaker_r400_linux_marlboro

 updated status for r400sq_auto_wrapping_memories_01 (test issue)

Change 136334 on 2003/12/09 by rramsey@RRAMSEY_P4_r400_win

 update dot2add status, take more tests

Change 136332 on 2003/12/09 by mmantor@FL_mmantorLT_r400_win

 <took test with >2 exports>

Change 136326 on 2003/12/09 by mearl@mearl_r400_win

 took a few tests

Change 136192 on 2003/12/08 by mearl@mearl_r400_win

 Removed more SC pipe disable tests.

Change 136174 on 2003/12/08 by danh@danh_r400_win

 Updated r400sc_* status

Change 136166 on 2003/12/08 by llefebvr@llefebvre_laptop_r400_emu

 working on r400sp_coissue_add_01.cpp

Change 136153 on 2003/12/08 by vromaker@vromaker_r400_linux_marlboro

 added my name by a few tests

Change 136141 on 2003/12/08 by mearl@mearl_r400_win

 Removed pipe disable tests, renamed and moved to the ROM block

Change 136135 on 2003/12/08 by rramsey@rramsey_xenos_linux_orl

 Add a bit to pix thread counter to handle larger thread buffer.

 Page 23 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 136102 on 2003/12/08 by rramsey@RRAMSEY_P4_r400_win

 update 'sorted by type' page with latest results

Change 136063 on 2003/12/08 by mmantor@mmantor_xenos_linux_orl

 <another synthesis issue>

Change 135995 on 2003/12/08 by danh@danh_r400_win

 Updated r400sc_sp_sample_cntl* status

Change 135987 on 2003/12/08 by rramsey@RRAMSEY_P4_r400_win

 update with status from 12/8/2003

Change 135983 on 2003/12/08 by dclifton@dclifton_r400

 Updated for new sq rams

Change 135975 on 2003/12/08 by mmantor@mmantor_xenos_linux_orl

 <fixed leda errors for synthesis>

Change 135943 on 2003/12/07 by vromaker@vromaker_r400_linux_marlboro

 - connected resource management register to thread buffers
 (programmable thread buffer size)
 - fixed typo and leda error in sq_vtx_ctl

Change 135932 on 2003/12/07 by rramsey@rramsey_xenos_linux_orl

 fix a problem with vizq_start events and how they cause state locks in the tb.
 this should fix the vgt_event tests

Change 135879 on 2003/12/05 by mmantor@mmantor_xenos_linux_orl

 <fixed a synthesis problem during elaboration in the sq_input_arb.v and fixed a problem
with redunancy so that both vertex and pixel input controllers would send simd_id with there
respective request to the spi. This change renamed a top level port between the sq and sp
sq_sp_interp_simd_id changed to sq_sp_simd_id >

Change 135600 on 2003/12/05 by bhankins@bhankins_xenos_linux_orl

 1. add behavioral support for sx to bc interface. Disabled.
 2. fixed bug in alloc/dealloc block to hold off resetting alloc bit until the last bank of
memory is read for a particular address.

 Page 24 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 3. fixed bug in alloc/dealloc block where free logic was searching all 256 locations of
the buffer when only 128 are enabled.
 4. connect SX_SQ_free_export_address_buf to indicate last quad of memory export has
been created and written to the detailed quad fifo.
 5. fix minor bug in sx-rb interface logic that would have shown up with larger export
buffer.

Change 135598 on 2003/12/05 by smoss@smoss_crayola_linux_orl_regress

 removed reference to internal tracker

Change 135584 on 2003/12/05 by rramsey@rramsey_xenos_linux_orl

 absolute address mode (const_addr_mode = 3'b001) should apply to all src constants

Change 135537 on 2003/12/04 by vromaker@vromaker_r400_linux_marlboro

 - increased size of thread buffers: vtx from 16 to 32 threads, pix from 48 to 64 thread
 - fixed gpr dealloc bug that resulted in reduced performance
 - testbench and tracker changes were made to support the larger number of threads
 - emualtor change (separate checkin) was also made for the bigger thread buffers

Change 135234 on 2003/12/04 by mmantor@mmantor_xenos_linux_orl

 <1. wired simd2 and simd3 pipe_disable_vtx for proper vertex steering with 2 and 3
simds.
 2. Improved usaged of gpr input (Interp/Vtx data) port by pipline the vtx input
controller
 data and changing input arbiter. Still need to make a changed in sq_pix_ctl to
remove
 busy signal on last 4clockcycle so interleaving can be tighter and in both machines
load
 to the thread buffer sooner once commmitted.
 3. changed SIMD2_PRESENT_TMP to SIMD2_PRESENT in sq code, still needs to
be removed from
 tb_sqsp and check other parts of the design such as the sp and rsp.>

Change 135151 on 2003/12/03 by mearl@mearl_xenos_linux_orl

 Took out the SC_SP_last_quad signal from the top of the SC
 and SPI.

Change 135088 on 2003/12/03 by rramsey@rramsey_xenos_linux_orl

 Add a unique vc/tp update for pending bits to the thread status regs
 so they don't clobber each other.
 Don't compare fetch constants for VC mini_fetches.
 Change tex_instr_seq so fetch type (vc/tp) is determined based on the fetch opcode
 rather than thread type.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1436 of 1898

 Page 25 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 Fix a problem in sx_export_control when a pos free_done happened on the same clk as a
 pos_dec when exporting aux vectors.

Change 134818 on 2003/12/02 by llefebvr@llefebvr_r400_linux_marlboro

 Now using the sq_aiq_bX_rts signal to drive the alu active counter. It used to be driven
by ais_busy which was also high when doing TP and VC fetches.

Change 134653 on 2003/12/02 by bhankins@bhankins_xenos_linux_orl

 - replace rf implementation of the quad buffer fifo from the sc with an implememtation
using hs ram
 - add new star processor to support hs ram

Change 134460 on 2003/12/01 by smoss@smoss_crayola_linux_orl_regress

 removed bad path for sx_defines.v

Change 134408 on 2003/12/01 by rramsey@rramsey_xenos_linux_orl

 Fix HI/LO instruction split

Change 134404 on 2003/12/01 by bhankins@bhankins_xenos_linux_orl

 1. Added SX_INDEX_SIZE and SX_INDEX_SIZE_EQ_8 defines to the rtl, defined in
sx_defines.v and set equal t
 2. Moved sx_defines.v to parts_lib/src/common
 3. Renamed sx inputs that connect to the STAR processors to match the names in the
TST module

Change 134359 on 2003/11/30 by mmantor@mmantor_xenos_linux_orl

 <removed delay in/outs from tb_sqsp>

Change 134302 on 2003/11/28 by mmantor@mmantor_xenos_linux_orl

 <remove delay chain from sq>

Change 134126 on 2003/11/26 by donaldl@donaldl_xenos_linux_orl

 Updated tbmod_fake_rb to create multiple file pointers based on thread_id[5:0] and
 thread_type. Needed because the quad_index[7:0] can come in out of order from the
 SX. The quad_index[7:0] and op bit are stored in a fifo and eventually sent back
 to the SX.

Change 134100 on 2003/11/26 by donaldl@donaldl_xenos_linux_orl

 Removed pred_kill_type and pred_kill_valid input signals since no longer used.
 (ie. they are being delayed internally.

 Page 26 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 133815 on 2003/11/25 by bhankins@bhankins_xenos_linux_orl

 Increase depth of color buffer to 256. Only the first 128 locations are enabled for now.

Change 133588 on 2003/11/24 by dclifton@dclifton_r400

 Removed delay chain I/O from SP's

Change 133300 on 2003/11/21 by vromaker@vromaker_r400_linux_marlboro

 timing fix - stopped using any unregistered status read bits

Change 133275 on 2003/11/21 by mearl@mearl_xenos_linux_orl

 1. Took out delay chain in the SC and SC_B blocks.
 chip_sc.tree
 chip_sc_b.tree
 sc.v
 sc_b.v
 tb_sqsp_sc_iter.v
 2. Timing related changes.
 sc_packer.v
 sc_packer_pkg.v
 3. Real-Time tracker changes
 sc_block_model.cpp
 sc_interp.cpp
 sc_types.h
 out_compare.v
 tb_sc.v
 tbtrk_sc.v

Change 133264 on 2003/11/21 by bhankins@bhankins_xenos_linux_orl

 1. Restructured sx to have an sx-rb interface block sx_rb_if, readying it for
 a similar sx_bc_if block for xenos.
 2. Removed delay chain
 3. Changed input quad fifo to dum_mem for now.
 4. Removed some unused signals.
 5. Changed pav.tree per Vivian's request to change test signal name.

Change 132894 on 2003/11/19 by rramsey@rramsey_xenos_linux_orl

 Fix SQ_VC dec signals in tb_sqsp.
 Change tbtrk_sqvc so it does not compare fetch addr for mini fetches.
 Fix problem in tex_instr_seq that was allowing mini fetches to start
 out of phase.
 Add more info to msgs from pcdata tracker to tell which set of pc data
 is mismatching. Also turn off sx1 compare since it is redundant now that

 Page 27 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 all the sx data comes from usx_0.

Change 132675 on 2003/11/18 by danh@danh_xenos_linux_orl

 Added the tbtrk_sq_sx_pcaddr tracker.

Change 132667 on 2003/11/18 by danh@danh_xenos_linux_orl

 Initial Release.

Change 132649 on 2003/11/18 by vromaker@vromaker_r400_linux_marlboro

 - alu_instr_seq timing fixes for constant store read: first the register stage
 on the offset was moved after the sum2 adder; then the init_done_bits signal
 was changed from a combinational ACS state machine output to a registered
 one-bit state machine output to help the path to the new sum2 register
 - thread buff status read timing fix - moved the status read back one cycle by
 sending the unregistered, rotated request vector to the arbiter and registering
 the winner out of the arbiter; the output of the status read mux was
 then registered

Change 132516 on 2003/11/18 by rramsey@rramsey_xenos_linux_orl

 Add a mova test to the sq regression.
 Change no_inc in pix_ctl to use sr version instead of nxt value
 out of the ppb.
 Fix instr base calc in rbbm_if so rt/nrt determination is correct.
 Stop vec_grp tracker from comparing pix auto_count cycles.

Change 132219 on 2003/11/16 by smoss@smoss_crayola_linux_orl_regress

 <Orlando Hardware Regression Results >

Change 132123 on 2003/11/14 by rramsey@rramsey_xenos_linux_orl

 Fix a bug in aluconst_mem related to rt constant reads.
 Fix const_map_cntl so deallocate_cnt gets updated correctly when alloc and
 context_done happen on same clk.
 tb_sqsp was missing some primitive boundaries in the pkr for RT prims.

Change 131826 on 2003/11/13 by rramsey@rramsey_xenos_linux_orl

 get rid of ifndefs so vcs will compile

Change 131814 on 2003/11/13 by dclifton@dclifton_xenos_linux_orl

 Added register for undriven signal

Change 131722 on 2003/11/13 by rramsey@rramsey_xenos_linux_orl

 Page 28 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 Add capability to dump Cadence shm instead of fsdb. Enabled by defining
 DUMP_SHM in tb_sqsp/vcsopts.f file

Change 131537 on 2003/11/12 by llefebvr@llefebvr_r400_linux_marlboro

 1) added register stage to line up pred_override bits with SP phase
 2) made the waterfall/predicated override an or instead of an and.

Change 131465 on 2003/11/11 by donaldl@donaldl_xenos_linux_orl

 When in the VS_EVENT state and going to IDLE, update d_sp_sel[3:0] as a default
 based on disable_vtx_3,2,1,0 instead of 0. This is to fix a bug where the correct
 o_sp_vsr_valid bit was not being set because the disable simd flags were not being
 considered (when going from VS_EVENT to IDLE).

Change 131241 on 2003/11/11 by kmeekins@kmeekins_xenos_linux_orl

 Removed event window from VC counters.

Change 131082 on 2003/11/10 by kmeekins@kmeekins_xenos_linux_orl

 tb_vc.v

 Fixed instantiation of vc now that delay is removed.

 sq_fetch_arb.v

 Changed the bus width of vc_mini_count_q to accomidate the +2 modification.

 vcmi_requestor.v

 Increased the uvcmi_input_fifo FIFO depth to 8.
 Added the FIFO full to the performance monitor.

 tp.blk,
 vc.v,
 vc_perf_config.txt,
 vc_perfmon.v,
 vcmi.v

 Added the FIFO full for the vcmi_input_fifo to the performance monitor.

Change 130763 on 2003/11/07 by llefebvr@llefebvr_r400_linux_marlboro

 Reverting timing fix that broke r400sq_const_index_04.cpp test.

Change 130661 on 2003/11/07 by rramsey@rramsey_xenos_linux_orl

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1437 of 1898

 Page 29 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 Another attempt to keep the pc_out_ppb from overflowing

Change 130571 on 2003/11/06 by llefebvr@llefebvr_r400_linux_marlboro

 This fixes the bad pix/vtx GPR input arbitration performance counter.

Change 130421 on 2003/11/06 by bhankins@bhankins_xenos_linux_orl

 - sq-sx thread id added to sq output and into and through the sx
 - updated sx-rb trackers to use sq-sx thread id
 - removed obsolete code from sx
 - fixed sx bug where an ea from one export to memory was resetting the valid bits for
the other export to memory

Change 130346 on 2003/11/05 by danh@danh_xenos_linux_orl

 Removed spi delay_in and delay_out ports.

Change 130127 on 2003/11/04 by vromaker@vromaker_r400_linux_marlboro

 - instruction writes to the different SIMD memories now happen
 independently and no longer wait for all SIMD memories to be
 available

Change 130094 on 2003/11/04 by rramsey@rramsey_xenos_linux_orl

 Fix scalar tracker so it compares all 128 bits based on write masks
 It was only comparing the lower 32 bits based on bit 0 of the write mask

Change 130079 on 2003/11/04 by rramsey@rramsey_xenos_linux_orl

 Couple of timing fixes for aiq and cfs
 Fix a bug in the rbbm if that was allowing map copies to happen before
 memory writes
 Fix a problem in the testbench that was causing some incompletes

Change 130072 on 2003/11/04 by rramsey@rramsey_xenos_linux_orl

 Update tracker to work with new sp_sx dump file that has all free-done
 entries as unique lines between exports

Change 129980 on 2003/11/03 by smoss@smoss_crayola_linux_orl_regress

 some housekeeping and removed bad path

Change 129723 on 2003/11/01 by vromaker@vromaker_r400_linux_marlboro

 - fixed pix ctl output buffer overwrite bug
 - backed timing fix out of status reg and pix thread buff

 Page 30 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 129444 on 2003/10/30 by llefebvr@llefebvr_r400_linux_marlboro

 Fixing dangling wires in the sq related to performance module.
 Fixing shader due to Kill opcode assembler change.
 Fixing trakcer problem in the TB_SQSP when autocount vtx is on.

Change 129408 on 2003/10/30 by rramsey@rramsey_xenos_linux_orl

 Move some continuous assignments into always blocks to help sim time
 Rework cfs_rtr/arb_xfc path to help timing
 Fix a problem with detecting serialize for the cf state machine

Change 129348 on 2003/10/30 by mearl@mearl_xenos_linux_orl

 Added two primitive interpolation back in.

Change 129259 on 2003/10/29 by danh@danh_xenos_linux_orl

 - spi_interp_ctl IJ buffer changed from one 16x200 memory to two 16x100 memories.
 - added additional SQ_SP_interp_qd[0:1]_prim_sela signals to improve spi input
timing.

Change 129213 on 2003/10/29 by llefebvr@llefebvr_r400_linux_marlboro

 Added VC_PERF_ACTUAL_STARVED performance counter in the SQ.

Change 129150 on 2003/10/29 by llefebvr@llefebvr_r400_linux_marlboro

 Increasing VC mini count to l1_fifo_size +2.

Change 129066 on 2003/10/28 by vromaker@vromaker_r400_linux_marlboro

 - added vtx input optimization for autocount on and continued off
 - fixed initialization problem for vtx autocount
 - made pix thread buff timing fixes: reduced load on status read
 data bit 19, which is the event bit, and also tried to reduce
 the load on pop_thread (part of the same path) in the status register
 - backed out a timing fix in alu_instr_seq that was causing a mova
 test to fail
 - fixed the AUTO_COUNT_SIZE definition

Change 128816 on 2003/10/27 by llefebvr@llefebvr_r400_linux_marlboro

 Adding VC performance counters in the SQ.
 Removed the SX->RB warnings on non-initialized GPR channels.

Change 128675 on 2003/10/27 by smoss@smoss_xenos_linux_orl

 Page 31 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 combined ncverilog and vcs simulators to one build

Change 128659 on 2003/10/27 by donaldl@donaldl_xenos_linux_orl

 Delayed rom_rsp_shift*_* mux shift selects 1 clk to fix synthesis timing.

Change 128656 on 2003/10/27 by donaldl@donaldl_xenos_linux_orl

 Changed vc_req's and tex_req's dependencies on vc_pending_q and
 tp_pending_q.

Change 128647 on 2003/10/27 by rramsey@rramsey_xenos_linux_orl

 Change ais so PS src sel gets priority over PV
 Add predicated jumps and calls to cfs
 Fix fetch_type connection in sq and tex_instr_seq

Change 128645 on 2003/10/27 by llefebvr@llefebvr_r400_linux_marlboro

 Incrementing the number of in flight testure requests from 6 to 7.

Change 128601 on 2003/10/27 by mmantor@mmantor_xenos_linux_orl

 <Enable SQ use of 128 locations in export memmory instead of 112 locations. Also
added counters in sq arbiter to give priority to instruction pipe that has the fewest instructions
when both control flow machines are available. This changlist reguires both an emulator and
hardware rtl code updates>

Change 128592 on 2003/10/26 by danh@danh_xenos_linux_orl

 Changed sc_rt_valid to fix the condition when end_of_prim and end_of_vector do not
occur at the same time, the sc_packer will send real time fill quads.

Change 128526 on 2003/10/24 by mearl@mearl_xenos_linux_orl

 Took out two prim per clock to get regression to pass.

Change 128393 on 2003/10/24 by llefebvr@llefebvr_r400_linux_marlboro

 This should fix the instruction count being off. The bad machine (cfs) was used to
determine the thread type and hence some pixel shader instructions were counted as vertex ones
and vice versa.

Change 128365 on 2003/10/24 by mearl@mearl_xenos_linux_orl

 Added 2 primitive interpolation in SQ and SPI. Fixed a bug in sx_parameter_cache.
Fixed synthesis
 bugs in SC.

 Page 32 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 128209 on 2003/10/23 by vromaker@vromaker_r400_linux_marlboro

 - timing fixes for constant store read address

Change 128195 on 2003/10/23 by rramsey@rramsey_xenos_linux_orl

 Fix a problem with yield_optimize

Change 128048 on 2003/10/23 by llefebvr@llefebvr_r400_linux_marlboro

 Fixed problem in the active counters when both pixels and vertexes were processing at
the same time.

Change 128019 on 2003/10/23 by rramsey@rramsey_xenos_linux_orl

 go back to prev version

Change 127895 on 2003/10/22 by vromaker@vromaker_r400_linux_marlboro

 - timing fixes for gpr alloc

Change 127872 on 2003/10/22 by rramsey@rramsey_xenos_linux_orl

 fixes for MT3 functions

Change 127861 on 2003/10/22 by llefebvr@llefebvr_r400_linux_marlboro

 Fixing TP and VC sync stalls for both pixel and vertex threads.

Change 127742 on 2003/10/22 by llefebvr@llefebvr_r400_linux_marlboro

 Removed the warnings from the sp->sx trackers and sx->sp.
 Now emulator is always executing the scalar instruction even in the case of a 3 operand
vector opcode. This is to match with random shaders.

Change 127730 on 2003/10/22 by rramsey@rramsey_xenos_linux_orl

 Fix a bug with start_of_clause

Change 127580 on 2003/10/21 by danh@danh_xenos_linux_orl

 Changed any_pred_hi and any_pred_lo generation, now the predicate and valid bits are
now related to the thread that the CFS is working on.

Change 127397 on 2003/10/20 by llefebvr@llefebvr_r400_linux_marlboro

 Added an event window for pixels. There was a problem in the global event window as if
both pixels and vertexes were turned on at the same time, as soon as one went off it was turning
off the whole window. This fixes pixel counters being 0 for some tests.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1438 of 1898

 Page 33 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 127325 on 2003/10/20 by vromaker@vromaker_r400_linux_marlboro

 - updated VC injector to handle multi-cycle returns (the number of cycles, 1 to 4, is
 read from the vc_rp_sp.dmp file)

Change 127313 on 2003/10/20 by dclifton@dclifton_r400

 Updated to testbench changes.

Change 127269 on 2003/10/19 by rramsey@rramsey_xenos_linux_orl

 Change behave mem_model in spi so its read dly matches the real mem
 Send interp_valid and ij_line 1clk early to account for 2clk read dly
 Fix spi_sp tracker so it works with early valid
 Change thread_buf and cfs machines so only fetches can modify the
 fetch pending bit. The alu machines only read the value out of the buffer.
 Get rid of a bunch of extra 'else' clauses

Change 127091 on 2003/10/17 by rramsey@RRAMSEY_P4_r400_win

 udpate spreadsheet with 10/17/03 results
 modify script so it automatically handles reports with/without runtime

Change 127079 on 2003/10/17 by smoss@smoss_xenos_linux_orl

 initialized memory controller for sc and sx to allow real memories to work in tb_sqsp

Change 126983 on 2003/10/16 by vromaker@vromaker_r400_linux_marlboro

 fixed code that was causing a latch in synthesis

Change 126908 on 2003/10/16 by rramsey@rramsey_xenos_linux_orl

 absolute modifier for constants should apply to all source constants

Change 126823 on 2003/10/15 by rramsey@rramsey_xenos_linux_orl

 Add sqvc tracker to gc testbench when running with orlando trackers
 Rework some of the alu/tex constant logic to get rid of the bug that
 was allowing threads to start processing before all of the constants for
 their context had been loaded.

Change 126796 on 2003/10/15 by vromaker@vromaker_r400_linux_marlboro

 - hooked up the new alu_arb_policy and tx_cache_sel register bits (but
 temporarily tied the tx_cache_sel input to the vtx thread buff low
 since it is being incorrectly set to 1 by Primlib)

 Page 34 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 126483 on 2003/10/13 by mearl@mearl_xenos_linux_orl

 Fix One Prim Per Clock bug in sq_ptr_buff. Revert changes in sq_pix_ctl to make
 2 prim interp changes easier. Put known primdata data on all quads across packer
 to iterator interface. Fix dumps for no_inc_pix_cnt signal.

Change 126450 on 2003/10/13 by donaldl@donaldl_xenos_linux_orl

 Delayed SQ_SX_sp_simd_id an extra clock to line up for reduduncy use.

Change 126362 on 2003/10/13 by rramsey@rramsey_xenos_linux_orl

 Change sq_sp_interp dump so it contains all of the pass_count and wrap passes
 through the interpolator
 Add spi_sp tracker (enabled with ENABLE_SPI_TRACKER define)

Change 126324 on 2003/10/13 by dougd@dougd_r400_linux_marlboro

 Added logic to generate read enables for the 4 map rams in sq_aluconst_rams.v
 Added SQ_CONTEXT_MISC_YEILD_OPTIMIZE register to sq_rbbm_interface.v

Change 126234 on 2003/10/10 by vromaker@vromaker_r400_linux_marlboro

 - added export arbiter module that will limit the number of color buffer export
 threads to one every 4 clocks
 - hooked up the export blocker outputs and commented out the previous export
 blocking code
 - added export alloc arbiter inputs to exp_alloc_ctl module so that the buf_avail
 counter will be updated by the export allocs
 - added logic to support the export arbiter to the vertex and pixel thread buffers
 - added logic to support the export arbiter to the thread arbiter
 - separated the export alloc request out of the alu request logic in the status register,
 and added an output for the export alloc request

Change 126226 on 2003/10/10 by cbrennan@cbrennan_r400_emu

 Release from my emu branch: texture stacks for TP as well.
 Leda rule tweaks
 add more .rg files

Change 125806 on 2003/10/09 by cbrennan@cbrennan_r400_release

 Temporarily reduce the num SQ_TP vectors in flight back to 6 until fifo overflows can be
fixed.

Change 125780 on 2003/10/09 by bhankins@bhankins_xenos_linux_orl

 update sx test inputs to match the established convention

 Page 35 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 125697 on 2003/10/08 by dougd@dougd_r400_linux_marlboro

 fixed bug in eqn for *sync_alu_stall

Change 125660 on 2003/10/08 by rramsey@rramsey_xenos_linux_orl

 Fix compile warnings for sq (several missing ports)
 Fix compile warning in sx_parameter_caches
 Fix SQ_SP_fetch_simd_sel so it lines up with the data coming out of the GPRs

Change 125598 on 2003/10/08 by dougd@dougd_r400_linux_marlboro

 Expanded the read back mux for rbbm diagnostic reads
 to include the extra memories for SIMD2 and SIMD3.

Change 125550 on 2003/10/08 by rramsey@rramsey_xenos_linux_orl

 Increase sq_tp_maxcount from 6 to 7
 Fix a problem with the simd mux for vtx_alloc_size in export_alloc
 Fix a problem with pc_alloc_free_cnt in export_alloc (alloc and dealloc on same clk
 was broken)
 Make alu ctl_flow and instr trackers work with multiple simd's
 Also change these trackers to use common code for pix/vtx by selecting the type with
 a parameter

Change 125540 on 2003/10/08 by dclifton@dclifton_r400

 Added needed include files. Strange how these compiled before this.

Change 125509 on 2003/10/07 by dougd@dougd_r400_linux_marlboro

 change perfcounters alu(0/1)_fifo_empty_simd* to count
 alu(0/1)_stall_simd* instead.

Change 125370 on 2003/10/07 by mearl@mearl_xenos_linux_orl

 Fixed the SQ bug when bad pipe exists before a good pipe. Also, updated
 the RT trackers in the SC testbench.

Change 125278 on 2003/10/07 by dougd@dougd_r400_linux_marlboro

 Added a new state register, vc_fifo_depths_l1_req_fifo_depth to
 sq_rbbm_interface.v and wired it up to the compare logic for
 vc_mini_count_q in sq_fetch_arb.v.

 Corrected a typo in sq_vtx_ctl.v that affected synthesis.

Change 125260 on 2003/10/07 by dclifton@dclifton_r400

 Page 36 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 Updates for a couple of fifos in sq and new block in sp

Change 125059 on 2003/10/06 by rramsey@rramsey_xenos_linux_orl

 Fix sq_sx file read in tb_sqsp
 Add new tracker for shader writes to gpr
 Add myself to failing regression email list

Change 124864 on 2003/10/03 by rramsey@rramsey_xenos_linux_orl

 add some missing wire declarations

Change 124850 on 2003/10/03 by rramsey@rramsey_xenos_linux_orl

 move an adder in front of a register and change to a fifo with registered
 outputs to help timing

Change 124792 on 2003/10/03 by dougd@dougd_r400_linux_marlboro

 Removed all references to SIMD1_DISABLE in sq.v and sq_rbbm_interface.v.

 Added 32 new performance counters: many are for SIMD2 and SIMD3 but
 other existing counters were expanded to differentiate between vertex
 and pixel counts. There are now 95 performance counters in the sq.

Change 124774 on 2003/10/03 by smoss@smoss_crayola_linux_orl_regress

 re-enabled behavioral memories until real memories are working

Change 124741 on 2003/10/03 by bhankins@bhankins_xenos_linux_orl

 fix name on sx test pin

Change 124738 on 2003/10/03 by smoss@smoss_crayola_linux_orl_regress

 <Orlando Hardware Regression Results >

Change 124634 on 2003/10/02 by rramsey@rramsey_xenos_linux_orl

 adding cond_pred optimize to control flow seq

Change 124434 on 2003/10/01 by mmang@mmang_xenos_linux_orl

 1. Turned on 3 simds in emulator (sc_interp.cpp,
 sq_block_model.cpp, and user_block_model.cpp).
 2. Turned on 3 simds in rtl (sc_packer.v,
 tb_sqsp.v, and vgt.v).
 3. Fixed bug in chip_vc.tree to get SQ_VC_simd_id
 and TC_VC_simd hooked up correctly.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1439 of 1898

 Page 37 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 4. Fixed bug in sc_packer.v related to having a 2
 bit simd_id_sel.

Change 124292 on 2003/10/01 by rramsey@rramsey_xenos_linux_orl

 Change sq_vgt_rtr to be driven based on fifo full, rather than by the vsr
 load state machine

Change 124203 on 2003/10/01 by dougd@dougd_r400_linux_marlboro

 The four existing SYNC_STALL counters were separated into
 (8) pix and vtx stall counters.
 The two ALU INSTRUCTION ISSUED counters were made to increment
 by 1,2,3 or 4.
 The two CF INSTRUCTION ISSUED counters were made to increment
 by 1,2,3,4,5 or 6.

 Added `ifdef's to sq_perfmon_wrapper for SIMD1, SIMD2, SIMD3.

 perfmon event window:
 An enable for the performance counters is generated by events received
 from the VGT and/or SC which create a window of time when the counters
 will be active. All of the perf counters are now controlled by this enable.

Change 123984 on 2003/09/30 by bhankins@bhankins_xenos_linux_orl

 change names of sx i/o ROM_MCn_disable signals

Change 123966 on 2003/09/30 by smoss@smoss_xenos_linux_orl

 using real memories for sqsp

Change 123952 on 2003/09/30 by mmantor@mmantor_xenos_linux_orl

 <added changes for 2 prim interpolation to the spi and sq and all top level interconnects,
and sq_sx_sp_simd_id for redundancy control, and all changes to test bench as well as some
ncverilog error messages. Some other misc top level clean up>

Change 123918 on 2003/09/29 by rramsey@rramsey_xenos_linux_orl

 Change tp_sqsp dump to use FMT_32_32_32_32_FLOAT
 Remove a monitor from tbtrk_sc for now since it is broken for ONEPPC
 Need to register the if inputs to aiq since they are put in the fifo
 one clk after the transfer
 Fix the exec_sm so it is 4 clks even when switching clauses
 Remove one clk of latency on tp_dec from fetch_arb
 Fix the strap bits in sq.v so the tp and vc cfs and if machines get
 two read cycles out of 8 when we have two instruction stores
 Change the tp_sq dec input and force the tp_sp format in tb_sqsp

 Page 38 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 Fix the tif so its state machine is 4 clks between clauses and change
 it so 0 count execs can be merged into the instruction ahead of them
 Fix the tex_instr_seq for the case where tp_dec happens on the same
 clk the fcs state machine kicks off (instr were getting dropped)
 Check in Scott's vgt change to clamp vtx_reuse based on good pipes

Change 123798 on 2003/09/29 by donaldl@donaldl_xenos_linux_orl

 Temporary hook-up of SQ_SX_interp_2prim to zero going to SX until
 SQ changes for 2 prims is complete.

Change 123755 on 2003/09/29 by mearl@mearl_xenos_linux_orl

 Fix for timing problems, submitting new memories, using real memories for regressions.

Change 123528 on 2003/09/26 by llefebvr@llefebvr_r400_linux_marlboro

 The sp->sx, sq->tp and sq->vc trackers now all use the post steered valid bits to know
what is valid. Thus they are now compatible with the redundant pipe. They should track correctly
in any bad pipe configuration. They however don't compare the RSP data for now (waits for the
HW implementation)

Change 123515 on 2003/09/26 by bhankins@bhankins_xenos_linux_orl

 - add sx_redundancy.v to hierarchy to try and improve on timing
 - add EXP_BUF_112_DEEP switch. comment out in sx_defines.v to enable
 all 128 locations of the color export buffer to be used
 - add ONE_STAR_PROCESSOR switch. comment out in sx_defines.v to use
 two star processors.
 - add support for thread id and thread type for debug.
 - misc changes for timing which don't change the logic.

Change 123485 on 2003/09/26 by dougd@dougd_r400_linux_marlboro

 I removed these files prematurely.

Change 123462 on 2003/09/26 by dclifton@dclifton_r400

 disabled USE_BEHAVE_MEM. Changed 8x104 ram in sq to 8x105.

Change 123343 on 2003/09/25 by dougd@dougd_r400_linux_marlboro

 adding the x105 virage memories and deleting the x104 used in the sq_vc_skid_buf

Change 123331 on 2003/09/25 by dougd@dougd_r400_linux_marlboro

 usq_alu01_state_mem is used twice as the instance name so I changed
 the 2nd one to usq_alu23_state_mem.

 Page 39 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 123260 on 2003/09/25 by mmang@mmang_xenos_linux_orl

 1. For Vivian E., added new simd memories and star patch in/out wires.
 2. In vertex thread buffer, fixed bug in simd3 alu state registers.
 3. In pixel thread buffer, fixed bug in simd2/3 cf state read data.
 4. Adjusted simd id bus width for sq to tp tracker.
 5. In sq.v, added vertex shader and pixel shader constant base and
 size connections to simd2/3 alu instruction sequencers.

Change 123113 on 2003/09/24 by llefebvr@llefebvr_r400_linux_marlboro

 Fixed the autocount pixel timing by removing 5 pipeline registers in the SQ control path.
Also fixed the counter's with back to 17 bits (from 19) int both the vertex and pixel path such
that when it hits the SP it is of the correct 23 bits width (17 bits count + 2 bits phase + 4 bits
index). This fixes r400vgt_multi_pass_pix_shader_01 at the sqspsx testbench level.

Change 123082 on 2003/09/24 by mearl@mearl_crayola_linux_orl

 tb files updated for ONE_PRIM_PER_CLOCK, bug fix in interpolators for
ONE_PRIM_PER_CLOCK

Change 123076 on 2003/09/24 by donaldl@donaldl_xenos_linux_orl

 Connected ROM block redundancy signals.
 Added sq export address buffer support.

Change 122865 on 2003/09/23 by dougd@dougd_r400_linux_marlboro

 fixed typo

Change 122699 on 2003/09/23 by dougd@dougd_r400_linux_marlboro

 fix typo (change blocking to non-blocking assignment)

Change 122683 on 2003/09/23 by mearl@mearl_crayola_linux_orl

 One primitieve per clock changes in the back of the SC and front of the SQ. Right now,
the ONE_PRIM_PER_CLOCK define in
 header.v and SC_SQ_interface.v are needed for this change. Will update this to
ONEPPC, since this already exists in
 header.v. Also, the sim.cfg file does not have an ifdef, so is hardcoded to one prim
per clock.

Change 122558 on 2003/09/22 by dougd@dougd_r400_linux_marlboro

 1. changed sq_stdrfsdks2p8x104cm1sw0 to sq_stdrfsdks2p8x105cm1sw0 in
sq_vc_skid_buf.v
 2. added timing fixes to sq_aluconst_mem.v, sq_aluconst_rams.v and
sq_instruction_store.v

 Page 40 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 122520 on 2003/09/22 by vromaker@vromaker_r400_linux_marlboro

 timing fixes - added registers for vs and ps base and size after the
 context register read mux

Change 122402 on 2003/09/20 by mmang@mmang_crayola_linux_orl

 1. Added simd2 and simd3 to code.
 2. Added simd2 to synthesized code.
 3. In sq.blk and sq_rbbm_interface, added
 DB_READ_MEMORY, DB_WEN_MEMORY_2, and DB_WEN_MEMORY_3
 to SQ_MISC_DEBUG register.
 4. In header.v, turned on SIMD2_PRESENT.
 5. In sc_packer.v, turned on SIMD2 but don't use it
 with SIMD2_PRESENT_TEMP.
 6. In sq_aluconst_mem.v, sq_aluconst_top.v, sq_cfc.v,
 and sq_instruction_store.v, hooked up DB_WEN_MEMORY_2
 and DB_WEN_MEMORY_3 to appropriate SIMD2/3 memories.
 7. In sq_export_alloc.v, handle position/main export id
 and parameter cache thread base for simd2/3. Be able
 to handle one type down simd0/1 and a different type
 down simd2/3 on the same clock.
 8. In sq_pix_ctl.v and sq_vtx_ctl.v, multiple simd
 gpr_alloc blocks return different acks, gpr bases,
 and gpr maxes.
 9. In sq_exp_alloc_ctrl.v, handle position/main export
 buffer management. Be able handle one type down
 simd0/1 and a different type down simd2/3 on the same
 clock.
 10. In sq_pix_thread_buff.v and sq_vtx_pix_thread_buff.v,
 added muxing and memories to handle status bits, cfs
 state, and alu state. Simd2 mirrors simd0, while
 simd3 mirrors simd1.
 11. In sq_status_reg.v, added simd2/3 arb requests and
 status bit writing from simd2/3.
 12. In tb_sqsp.v, fixed some bugs related to pspv_wr_en,
 pred_override, const_addr, and const_valid hook ups.
 13. In tbtrk_spsx.v, SIMD_PRESENT conditional delaying
 and management of thread_id and thread_type for
 tracker.
 14. In tbtrk_sq_pix_rs_input.v and tbtrk_sq_vtx_rs_input.v,
 temporary klug to hook up b0b1_predicate instead of
 predicate.
 15. In tbtrk_sq_sp_vec_gpr.v, added simd2/3 tracking of
 gpr_int_wen interface.
 16. In sq_tex_instr_queue.v, get gpr_max from appropriate
 simd data.<enter description here>

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1440 of 1898

 Page 41 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 121731 on 2003/09/17 by rramsey@RRAMSEY_P4_r400_win

 add runtime to report
 update spreadsheet with 9/17/2003 results

Change 121629 on 2003/09/16 by danh@danh_crayola1_linux_orl

 Removed XY pipe delay, XY data is now processed by the interpolators

Change 121559 on 2003/09/16 by tien@tien_r500_emu

 Reverse order of TP (vfetch and tfetch) const

Change 121537 on 2003/09/16 by smoss@smoss_crayola_linux_orl_regress

 increasing interface idle timeout for randoms

Change 121348 on 2003/09/15 by dougd@dougd_r400_linux_marlboro

 1. corrected the trigger events for VTX_SWAP_IN, VTX_SWAP_OUT,
 PIX_SWAP_IN, PIX_SWAP_OUT, CONSTANTS_USED_SIMD0 and
CONSTANTS_USED_SIMD0.
 2. made event counters for these used multibit increment values
 3. added "+incdir+$PARTS_LIB/src/gfx/sp" to vcs_top.ini to pick up
 sp_defines.v included in sq_ais_output.v

Change 121332 on 2003/09/15 by rramsey@rramsey_crayola_linux_orl

 Change pix_ctl so deallocs with real pixel vectors don't free param
 cache space until interpolation is almost complete
 Wire up the vc_sp valid signals correctly
 Fix sx_sp_pcdata tracker

Change 121292 on 2003/09/15 by vromaker@vromaker_r400_linux_marlboro

 fixed incorrect loading of loop indices from the thread buffer into
 the ctl flow sequencer; this was causing a problem with the test
 r400sq_const_index_07

Change 121278 on 2003/09/15 by dclifton@dclifton_r400

 Added to SQ include directory list

Change 121219 on 2003/09/14 by smoss@smoss_crayola_linux_orl_regress

 <Orlando Hardware Regression Results >

Change 121157 on 2003/09/13 by smoss@smoss_crayola_linux_orl_regress

 Page 42 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 xenos updates

Change 121065 on 2003/09/12 by donaldl@donaldl_crayola_linux_orl

 Registered ROM_EN_RSP and ROM_PIPE_SEL[3:0].

Change 120910 on 2003/09/12 by donaldl@donaldl_crayola_linux_orl

 Removed SPtoSQ kill_type and kill_valid signals and added them internally
 in the SQ. Done to save some gates and also to avoid having to add
 redundancy logic to them.

Change 120887 on 2003/09/12 by bhankins@bhankins_crayola_linux_orl

 - Add sx_mem_export.v module to capture pixel addresses and
 calculate rb id values for use in export to memory.
 - Add support for redundancy logic. Inputs are currently
 tied low in tb_sqsp.v and chip_sx.tree.
 - Add non-synthesizable logic to route thread id and thread
 type from sq through sx and out to rb for test. Allows
 tracker to identify export to memories, and to distinguish
 between them. Tied low in chip_sx.tree and tb_sqsp.v
 All associated I/O and logic is qualified on `ifdef SIM.
 - Remove the register in sx_export_control_common.v that was
 requiring some signals on the sq alloc interface to be present
 one clock before the valid. Now, all sq_sx_exp_ signals are
 expected to be valid only when sq_sx_exp_valid == 1.
 - Add a register in the generation of the final pixel address
 value for export to memory, to try and improve on timing.

Change 120645 on 2003/09/11 by rramsey@rramsey_crayola_linux_orl

 Remove some unused defines
 Add reset condition for primdata pipe stages in qdpr_proc
 Fix a bug with tp_count in fetch_arb when running with the VC
 Increase loop_cnt for vc inject in tb_sqsp

Change 120592 on 2003/09/10 by vromaker@vromaker_r400_linux_marlboro

 changed SQ_hs_bclk, TST_SQ_rf_star_wrck, TST_SQ_hs_star_wrck so they
 are defined without the [0:0] range

Change 120510 on 2003/09/10 by vromaker@vromaker_r400_linux_marlboro

 fix for SQ_VC_simd_id typo

Change 120426 on 2003/09/10 by donaldl@donaldl_crayola_linux_orl

 Added redundancy logic.

 Page 43 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 120423 on 2003/09/10 by donaldl@donaldl_crayola_linux_orl

 Added redundancy logic.

Change 120397 on 2003/09/10 by rramsey@rramsey_crayola_linux_orl

 Add code to keep the vc and tp inject routines from clobbering each other
 Fix vc inject routine so it handles formats that require double returns

Change 120296 on 2003/09/09 by dougd@dougd_r400_linux_marlboro

 added `include "register_addr.v"

Change 120270 on 2003/09/09 by llefebvr@llefebvr_r400_linux_marlboro

 Now reading the SIMD_ID from the dump in the tracker. Not doing anything with it
however. It is just read in order to get to the valid data after it.

Change 120190 on 2003/09/09 by dougd@dougd_r400_linux_marlboro

 changed SQ_RB_event to SQ_RB_event_pulse and declared as output from sq.v

Change 120087 on 2003/09/08 by dougd@dougd_r400_linux_marlboro

 Fixed 2 bugs in Real Time address logic in aluconst.
 Added correct default value for INST_BASE_VTX in sq_rbbm_interface.v
 Fixed bug in Real Time write data buffer in sq_instruction_store.v
 Added missing input/output declarations for SIMD2 & SIMD3 signals to
sq_aluconst_top.v
 Clean up missing SIMD2, SIMD3 wire declarations in sq.v for the aluconst, is and cfc

Change 119982 on 2003/09/08 by vromaker@vromaker_r400_linux_marlboro

 added defaults to case statements

Change 119853 on 2003/09/06 by rramsey@rramsey_crayola_linux_orl

 Changes to make quad processing resources programmable

Change 119747 on 2003/09/05 by danh@danh_crayola1_linux_orl

 Removed SQ_SP_interp_mode, SQ_SP_interp_buff_swap, added all SPI Redundant SP
ports/connections.

Change 119736 on 2003/09/05 by danh@danh_crayola1_linux_orl

 removed SQ_SP_interp_mode, SQ_SP_interp_buff_swap, added SQ_SP_interp_simd_id
for Redundant SP

 Page 44 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 119733 on 2003/09/05 by danh@danh_crayola1_linux_orl

 removed SQ_SP_interp_mode, added SQ_SP_interp_simd_id for Redundant SP
capability.

Change 119457 on 2003/09/04 by dclifton@dclifton_r400

 added sq_export_blocker to makefile
 Fixed TP_SP_data_valid signal

Change 119422 on 2003/09/04 by mmang@mmang_crayola_linux_orl

 removed vc_sp for now

Change 119294 on 2003/09/03 by vromaker@vromaker_r400_linux_marlboro

 - instatiation of sq export blocker at sq top level
 - thread buffer timing fix related to status read/export count update

Change 119195 on 2003/09/03 by vromaker@vromaker_r400_linux_marlboro

 new file for arbitrating between exporting threads

Change 119127 on 2003/09/02 by dougd@dougd_r400_linux_marlboro

 Added the extra memories and their support to the instruction and
 constant stores to support 4 SIMD's. These memories and their
 required wiring and control are instantiated with `ifdef and use
 the SIMDn_PRESENT macros defined in header.v
 Removed the use of SIMD1 macro.

Change 118878 on 2003/08/30 by rramsey@rramsey_crayola_linux_orl

 fix a deadlock condition between the input arb and vtx input controller

Change 118743 on 2003/08/29 by viviana@viviana_crayola2_syn

 Configuration file to build the virage memories with a register in the
 320x32 cfc memory.

Change 118694 on 2003/08/29 by rramsey@rramsey_crayola_linux_orl

 changes for random backpressure

Change 118622 on 2003/08/28 by llefebvr@llefebvr_r400_emu_montreal

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1441 of 1898

 Page 45 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 Modified the Orlando trackers to only compare valid channels. This replaces the
0xDEADDEAD values we had previously. Note that any uninitialized channel will generate a
tracker warning still.
 Modified interfaces are:

 1) SX->SP parameter cache data
 2) SP->SX
 3) SX->RB

 I left alone the SX->PA interface as we did not have problems over it. The qualifiers are
there however if anyone wants to do it.

Change 118589 on 2003/08/28 by vromaker@vromaker_r400_linux_marlboro

 - fix for loop index clamping and constant address generation (both index and offset
relative)
 - changed the connection of the real time bit such that it now goes directly from the AIQ
to the
 AIS output mux (and not thru the AIS)
 - sq_tests.simple_reg_indexing tests now pass

Change 118581 on 2003/08/28 by dclifton@dclifton_r400

 tied the upper bit of sq_tp_trk_simd_id low.

Change 118490 on 2003/08/28 by dclifton@dclifton_r400

 Clean up of unused signals, fix of STAR signals in sp.v

Change 118397 on 2003/08/27 by smoss@smoss_crayola_linux_orl_regress

 <Orlando Hardware Regression Results >

Change 118215 on 2003/08/26 by vromaker@vromaker_r400_linux_marlboro

 changed define for SQ_VC_MINI_MAXCOUNT from 16 to 32

Change 118200 on 2003/08/26 by rramsey@rramsey_crayola_linux_orl

 Increase number of clks the tp_sq inject routine can loop through input data
 Fix a problem with the sx_rb color tracker when the sx sends 0 mask quads, or
 the rb kills quads

Change 118130 on 2003/08/26 by dclifton@dclifton_r400

 Added tbtrk_sqvc, fixed vector engine assignments.

Change 118128 on 2003/08/26 by dclifton@dclifton_r400

 Page 46 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 Added definable # of simd's to sp.

Change 117957 on 2003/08/25 by dougd@dougd_r400_linux_marlboro

 Fixed some wiring errors in the wrapper that prevented some counters from working.

Change 117706 on 2003/08/22 by mmantor@mmantor_crayola_linux_orl

 <added new ports and/or expanded to two bits to vgt, sq, and pa for simd_id with
modifications to their test benches and added
 ifdefs with bad pipe signals to input of vgt, replaced SIMD1 macro with
SIMD1_PRESENT macro in the SC files>

Change 117704 on 2003/08/22 by mmantor@mmantor_crayola_linux_orl

 <Fixed conflict between vec_3op_no_swap and scalar_const_op to control swizzle
correctly for the scalar engine and deliever the special gpr read address created in the
sq_ais_output block>

Change 117631 on 2003/08/21 by vromaker@vromaker_r400_linux_marlboro

 - fix for VC_SQ_data_rdy (this was being asserted too often, but did not
 cause any of the tests to fail...)

Change 117627 on 2003/08/21 by vromaker@vromaker_r400_linux_marlboro

 VC tracker added to tb_sqsp

Change 117504 on 2003/08/21 by mmang@mmang_crayola_linux_orl

 1. Increased simd_id wires to 2 bits throughout SQ. SQ external
 interfaces are still only 1 bit.
 2. Made SQ simd 1 blocks conditional based on SIMD1_PRESENT in
 header.v. Realigned some code in anticipation of SIMD2 and SIMD3.

Change 117311 on 2003/08/20 by rramsey@rramsey_crayola_linux_orl

 Changes to sc for 4 qd/clk picker in KILL_ALL_PIXELS mode
 Check in sc memory updates for Vivian
 Add some missing connections in sqsp to fix compile warnings
 Go to a global define for all trackers to control x vs 0 mismatch/warning
(MISMATCH_X_VS_0)

Change 116887 on 2003/08/18 by dougd@dougd_r400_linux_marlboro

 restore the `ifdef USE_BEHAVE_MEM that was removed for
 testing of virage behavioral models.

Change 116795 on 2003/08/15 by vromaker@vromaker_r400_linux_marlboro

 Page 47 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 adding sq-vc tracker (not debugged yet - just checking in working copy)

Change 116380 on 2003/08/13 by mmang@mmang_crayola_linux_orl

 1. Added separate gpr allocation/deallocation
 management for multiple simds (sq_gpr_alloc,
 sq_exit_sm, sq_pix_thread_buff, sq_status_reg,
 sq_vtx_thread_buff, sq_pix_ctl, and sq_vtx_ctl)
 2. Made thread_arb poll cfs rtr on a 4 clock
 interval in order to ensure the arbiters
 stayed in phase between simds.
 3. Created new interface signal between
 thread_arb and export_alloc to lock export_id
 and parameter cache base for each simd. In
 addition, created registers for these values
 for each simd in order to ensure they got
 allocated in order.
 4. In ais_output, used simd to mask pix_ctl gpr
 writes to different simds.
 5. In tb_sqsp, added simd_id and gpr write address
 to texture latency fifo to help trackers and
 read inject return files.
 6. In tex_instr_queue, grab appropriate gpr_max
 based on simd id.

Change 116303 on 2003/08/13 by danh@danh_r400_win

 Updated failing tests status.

Change 115781 on 2003/08/11 by rramsey@RRAMSEY_P4_r400_win

 update sq status
 add runtime column to report so it works with the spreadsheet script

Change 115728 on 2003/08/10 by rramsey@rramsey_crayola_linux_orl

 Change SQ to hold off popping the RBBM skid fifo while map copies are in
 progress. This fixes the problem where gfx_copy writes were being missed
 if they were less than 8 clks apart.
 Get rid of extra write into RBBM skid fifo for reads, and instead zero out
 we and re out of fifo if it's empty. The fifo was overflowing if the filling
 entry was a read, since one additional entry was getting pushed.
 sx_sp_pcdata tracker now ignores 4f5eaddf (unwritten pc locations)
 Fix a problem in the sqsp testbench that was causing rbbm writes to be dropped
 if the sq exerted back pressure.

Change 115620 on 2003/08/08 by dougd@dougd_r400_linux_marlboro

 Page 48 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 1. change all hs virage memories & files to have subword size in name
 2. added diagnostic write enable from rbbm interface register to the modules
 with extra memories to support multiple SIMDs

Change 115595 on 2003/08/08 by dougd@dougd_r400_linux_marlboro

 fixed the path for the real time bit down the alu pipeline
 to reach the constant and instruction stores.

Change 115581 on 2003/08/08 by rramsey@RRAMSEY_P4_r400_win

 update sq status

Change 115492 on 2003/08/07 by mmang@mmang_crayola_linux_orl

 change order of include paths for register_addr.v

Change 115430 on 2003/08/07 by danh@danh_r400_win

 Updated status (lines 271-284).

Change 115426 on 2003/08/07 by dclifton@dclifton_r400

 Added another block

Change 115274 on 2003/08/06 by smoss@smoss_crayola_win

 monitor strange ncsim errors

Change 115254 on 2003/08/06 by smoss@smoss_crayola_win

 fixing deaddead

Change 115241 on 2003/08/06 by dougd@dougd_r400_linux_marlboro

 1. corrected the connections to sq_perfmon_wrapper to enable the
 ALU active counters.

 2. changed a few 1 bit vector declarations ([0:0]) to scalar
 on SQ outputs because it caused errors in synthesis.

Change 115159 on 2003/08/06 by rramsey@rramsey_crayola_linux_orl

 Change sq_alu_instr_seq so gpr_rd_en is not asserted when reading constants
 Changes to thread_arb, ctl_flow_seq, and status_reg to get mem exports flowing

Change 115122 on 2003/08/06 by rramsey@RRAMSEY_P4_r400_win

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1442 of 1898

 Page 49 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 Update with Aug6 sanity results and add a new worksheet that has failures sorted by
failure type

Change 115115 on 2003/08/06 by smoss@smoss_crayola_linux_orl_regress

 Randy's keeping me honest

Change 115114 on 2003/08/06 by rramsey@rramsey_crayola_linux_orl

 add some missing dummy dump files

Change 115049 on 2003/08/05 by rramsey@RRAMSEY_P4_r400_win

 Put some comments on all of the failing tests so we can try to bin the issues for
debugging

Change 115047 on 2003/08/05 by rramsey@rramsey_crayola_linux_orl

 Add register to hold pipe disable bits to tb_sqsp
 Hook sx instance up to correct set of RBBM signals in tb_sqsp
 Increase depth of sc state avail fifo since some events need
 to go through that path
 Change sx pa tracker to always opens its files so it doesn't
 cause hangs when the files are empty
 Add deaddead and a selectable x_vs_0 mismatch disable (reports
 a warning rather than a mismatch) to tbtrk_sx_rb.v

Change 114774 on 2003/08/04 by rramsey@RRAMSEY_P4_r400_win

 update sqspsx status

Change 114706 on 2003/08/04 by danh@danh_r400_win

 Updated r400sq_* status.

Change 114427 on 2003/08/01 by smoss@smoss_crayola_linux_orl_regress

 added rb_sx dump

Change 114404 on 2003/08/01 by amys@amys_r400_regress_linux

 changes made to fix running ncsim using Orlando trackers

Change 114305 on 2003/07/31 by vromaker@vromaker_r400_linux_marlboro

 cleaned up the path of ism_state down through the
 instruction pipelines and removed the defparams used in the
 multiple instantiations of several modules.

 Page 50 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 114167 on 2003/07/31 by danh@danh_r400_win

 Updated the r400sq_* status.

Change 114159 on 2003/07/31 by rramsey@RRAMSEY_P4_r400_win

 update status. remove some CP tests that don't anything at sqsp.

Change 113990 on 2003/07/30 by rramsey@rramsey_crayola_linux_orl

 Changes to support real time prims.
 Tests that draw rt only now drive sc inputs
 RBBM stream is held off while each rt prim processes so
 rt code/const/params are not clobbered

Change 113953 on 2003/07/30 by danh@danh_r400_win

 Updated r400sq_* status.

Change 113550 on 2003/07/28 by dougd@dougd_r400_linux_marlboro

 added define+virage_ignore_read_addx to support virage behavoral models

Change 113548 on 2003/07/28 by dougd@dougd_r400_linux_marlboro

 Added missing register stage in memory address path that caused
 memory failures only with the virage behavoral model.

Change 113503 on 2003/07/28 by rramsey@RRAMSEY_P4_r400_win

 update sq stats

Change 113302 on 2003/07/25 by danh@danh_r400_win

 Updated r400sq_* status.

Change 113293 on 2003/07/25 by rramsey@RRAMSEY_P4_r400_win

 update sq status

Change 113286 on 2003/07/25 by vromaker@vromaker_r400_linux_marlboro

 - a few more fixes for SQ_VC/TP interfaces; the sq mini-regress now passes
 with the VC turned on

Change 113223 on 2003/07/25 by rramsey@rramsey_crayola_linux_orl

 uncomment driver for SQ_SP_interp_xyline

 Page 51 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 113207 on 2003/07/25 by danh@danh_r400_win

 Updated the r400sq_* status.

Change 113039 on 2003/07/24 by danh@danh_crayola1_linux_orl

 Changed src_c_const_addr_rel generation so it matches the emulator code.

Change 112899 on 2003/07/24 by danh@danh_crayola1_linux_orl

 Changed src_c_const_addr_rel generation.

Change 112882 on 2003/07/24 by rramsey@RRAMSEY_P4_r400_win

 update sqspsx status

Change 112600 on 2003/07/23 by rramsey@rramsey_crayola_linux_orl

 Change sx-rb trackers so they always open their files at time 0,
 that way they don't cause hangs for tests that don't hit any quads
 Hook up the real pixel mask in the sx_rb color tracker

Change 112375 on 2003/07/22 by vromaker@vromaker_r400_linux_marlboro

 - fixed VC interface counter

Change 112335 on 2003/07/22 by danh@danh_r400_win

 Updated the r400sq* status.

Change 112289 on 2003/07/22 by dclifton@dclifton_r400

 Updated staging registers in sp_macc.
 Revised sp_scalar_lut.
 Test signals connected.

Change 112108 on 2003/07/21 by rramsey@RRAMSEY_P4_r400_win

 update with 07/21 status and some comments on the failing tests

Change 112073 on 2003/07/21 by vromaker@vromaker_r400_linux_marlboro

 - fix for SQ_VC interface
 - TP_SQ_dec was hooked up to the interface counter
 - timing fix in vtx thread buffer
 - simd_num connected thru ptr buff and pix ctl to pix thread buff
 - performance fix in pix ctl

Change 112034 on 2003/07/19 by rramsey@rramsey_crayola_linux_orl

 Page 52 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 Change vcs build script so cover is off by default
 Get rid of some compile warnings in tb_sqsp
 Change sx_rb color tracker so it doesn't use the sx_rb_quad dump
 to get pixel masks

Change 111986 on 2003/07/18 by dougd@dougd_r400_linux_marlboro

 Added dummy mems for all virage memorie that didn't already have them.
 Moved memory data output register in sq_cfc.v into the memory and dummy memory.
 Replaced all virage memories, etc. to get the memory needed for sq_cfc.v

Change 111905 on 2003/07/18 by ygiang@ygiang_r400_pv2_marlboro

 added: new perf counters for sq hardware

Change 111807 on 2003/07/18 by mmantor@mmantor_crayola_linux_orl

 <added new dummy file for test cases that needed it>

Change 111736 on 2003/07/17 by mmang@mmang_crayola_linux_orl

 Added sp->sx export arbitration between multiple simd engines.
 Added register after instr_start OR of multiple simd engines by
 taking unregistered signal out of sq_ais_output.

Change 111732 on 2003/07/17 by rramsey@RRAMSEY_P4_r400_win

 Update with regression results, plus a couple of my own

Change 111726 on 2003/07/17 by smoss@smoss_crayola_linux_orl_regress

 modified $value$plusargs to keep cadence happy

Change 111692 on 2003/07/17 by danh@danh_r400_win

 Updated the r400sq* status.

Change 111650 on 2003/07/17 by rramsey@rramsey_crayola_linux_orl

 Add pasx done to testbench timeout logic

Change 111628 on 2003/07/17 by smoss@smoss_crayola_linux_orl_regress

 changed tbmod_fake_pa for ncsim because all requests weren't occurring this was also
true for vcs but sim was passing. changed buildt for nc to not run a sim after a compile

Change 111612 on 2003/07/17 by moev@moev2_r400_linux_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1443 of 1898

 Page 53 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 Clean up files no longer used by the verification flow

Change 111603 on 2003/07/17 by moev@moev2_r400_linux_marlboro

 SQ changes to test Virage's HS memories.

Change 111419 on 2003/07/16 by rramsey@rramsey_crayola_linux_orl

 Connect TST_awt_enable to vc_skid_buf and wire it up to the top level

Change 111381 on 2003/07/16 by rramsey@rramsey_crayola_linux_orl

 Fix compile result check in buildtb
 Tie off sx related done signals when the sx is not there
 and spit them out if it is there and the tb hangs
 Don't source sx_sp_pcdata stimulus when using live sx
 Remove extra ifdef

Change 111353 on 2003/07/16 by bhankins@bhankins_crayola_linux_orl

 when the sx is present, include the sx trackers in on the decision to stop the simulation

Change 111345 on 2003/07/16 by rramsey@RRAMSEY_P4_r400_win

 Fix the update script to handle 'run time' being reported
 Redo the last status update to the spreadsheet since 'run time'
 caused all the fields to get shifted

Change 111342 on 2003/07/16 by smoss@smoss_crayola_linux_orl_regress

 <Orlando Hardware Regression Results >

Change 111317 on 2003/07/15 by mmang@mmang_crayola_linux_orl

 Blocking/non-blocking fix found by synthesis.

Change 111305 on 2003/07/15 by smoss@smoss_crayola_win

 update

Change 111303 on 2003/07/15 by rramsey@rramsey_crayola_linux_orl

 allow pa/sx requests before the rbbm file is empty

Change 111280 on 2003/07/15 by rramsey@rramsey_crayola_linux_orl

 need to wait for vc_done if serialize and vc_pending

Change 111275 on 2003/07/15 by rramsey@rramsey_crayola_linux_orl

 Page 54 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 add SX_BLOCK_SIM so the sx trackers know where they are running

Change 111132 on 2003/07/15 by smoss@smoss_crayola_linux_orl

 just copying randy

Change 111123 on 2003/07/15 by rramsey@rramsey_crayola_linux_orl

 had a typo in the vc_pending logic

Change 111107 on 2003/07/15 by smoss@smoss_crayola_linux_orl

 updated

Change 111093 on 2003/07/15 by smoss@smoss_crayola_linux_orl

 decapitating tb_sc

Change 111008 on 2003/07/14 by dougd@dougd_r400_linux_marlboro

 added logic to support programmable memory size for texconst and
 aluconst stores.

Change 110899 on 2003/07/14 by rramsey@rramsey_crayola_linux_orl

 change tp/vc pending bits so they look at tgt_instr_str_vc_q bits to
 determine what type of fetch is being issued

Change 110886 on 2003/07/14 by rramsey@rramsey_crayola_linux_orl

 mask off serial bit for first instruction of a clause.
 this change fixes e2blit_src_8888 and probably some other hanging
 e2/cp tests

Change 110884 on 2003/07/14 by rramsey@RRAMSEY_P4_r400_win

 update with latest regression results

Change 110880 on 2003/07/14 by rramsey@rramsey_crayola_linux_orl

 Add back in a signal declaration to fix the no SX build
 Move some signals to the other half of a REMOVE_SX ifdef

Change 110669 on 2003/07/12 by smoss@smoss_crayola_linux_orl_regress

 removed errant else

Change 110640 on 2003/07/12 by mmantor@mmantor_crayola_linux_orl

 Page 55 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 <1. Enlarge export memories for performance fill rate (emulator, sq, sx, rb, ferret gc,
tb_sqsp, tb_sx)
 2. Fix Sx diff engine (interpolators) for shift bug with added guard bit
 3. Fix compile/src code problem with s-blocks memories
 4. Added the sx to tb_sqsp by default, can still disable by macro
 5. Added mode to tb_sqsp and tb_sx to run interfaces at max rate
 6. Initialized state in vc to allow cp surface synchronizer micro code to invalidate tc/vc
 7. Added test signals to sc.v, sc_b.v, sq, sp, spi, sx and testbenches
 THIS CHANGES REQUIRES THE RELEASE OF SC, SC_B, SQ, SPI, SP, SX, RB,
src/chip/chip_**.tree files,
 parts_lib/sim/test/gc/vcs_top.ini, gc/tb_sqsp/tb_sx updates and the emulator togeather
 >

Change 110512 on 2003/07/11 by mmang@mmang_crayola_linux_orl

 Fix for Vivian for synthesis in loop i07 and i15.

Change 110467 on 2003/07/11 by llefebvr@llefebvr_r400_emu_montreal

 Disabling the COND_EXEC_PRED optimization. a COND_EXEC_PRED in the SQ is
now threated like a regular EXEC. We can re-enable this optimization in the future by putting
the thread back to the RS BEFORE making the predicate compare because now we are
comapring a dirty predicate bit set and it causes corruptions. This fixes mova_test.cpp
TEST_CASE=pMova_const.

Change 110451 on 2003/07/11 by dclifton@dclifton_r400

 Fixed typo for spi ram compile

Change 110401 on 2003/07/11 by viviana@viviana_crayola2_syn

 Changed the sq/vc 103 memory to 104.

Change 110310 on 2003/07/10 by viviana@viviana_crayola2_syn

 Changed the vc memory to 104 bits wide, deleted the 103 memory and rebuilt all
 memories with latest version of virage.

Change 110177 on 2003/07/10 by rramsey@rramsey_crayola_linux_orl

 Changes to get simd_id piped down the vertex side and into the thread
 buffer. Also only write the active simd's gprs and mux pipe_disable bits.
 The memory in sq_vc_skid_buf increased by 1 bit, so this will require
 a new memory to be checked in before running without USE_BEHAVE_MEM.

Change 110083 on 2003/07/09 by dougd@dougd_r400_linux_marlboro

 added data output mux to select between the two memories (SIMD1, SIMD0)

 Page 56 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 for RBBM diagnostic reads. The mux is controlled by a rbbm register bit
 in the SQ_DEBUG_MISC register.

Change 110066 on 2003/07/09 by vromaker@vromaker_r400_linux_marlboro

 - fixed a bug in tex instr seq related to back-to-back constant reads

Change 110035 on 2003/07/09 by moev@moev2_r400_linux_marlboro

 Changed the HS Star Processor connections to match the clients. In particular BiraFail &
Err_pip_or

Change 109951 on 2003/07/09 by llefebvr@llefebvr_r400_emu_montreal

 Fixing yet another mova problem when the mova is not back to back with it's use and
there is only one waterfall pass, PVPS detection wasn't re-enabled correctly. Fixes
mova_tests.cpp TEST_CASE=mova512_nop_check

Change 109814 on 2003/07/08 by vromaker@vromaker_r400_linux_marlboro

 - contains RT bit connection from pix input ctl to pix thread buff
 - added SQ_TP_simd_id output to top level

Change 109777 on 2003/07/08 by vromaker@vromaker_r400_linux_marlboro

Change 109679 on 2003/07/08 by llefebvr@llefebvr_r400_emu_montreal

 Fixed r400sp_mova_tests.cpp TEST_CASE=mova512.

 The PVPS detection was rightly disabled during the waterfall but wasn't re-enabled for
the following instructions of the clause. I used the waterfall_done signal to re-enable the PVPS
detection after the waterfalling.

Change 109671 on 2003/07/08 by vromaker@vromaker_r400_linux_marlboro

 - updated tex instr seq to sync to the texconst phase
 - changed fetch arb to output both the mega grant and the mini
 grant to the tex instr seq

Change 109590 on 2003/07/07 by viviana@viviana_crayola2_syn

 Corrected another non-blocking assignment to blocking in a combinational logic block.

Change 109565 on 2003/07/07 by viviana@viviana_crayola2_syn

 Corrected non-blocking assignments to blocking in combinational block.

Change 109466 on 2003/07/07 by dougd@dougd_r400_linux_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1444 of 1898

 Page 57 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 fixed error in bit width of ais_real_time

Change 109126 on 2003/07/03 by dougd@dougd_r400_linux_marlboro

 pipelined the Real Time bit from the pix thread buffer down through
 both arbiters, the vc, tex and alu instruction pipelines to the alu,
 tex and cfc constant stores to enable reading the real time constants.

Change 109043 on 2003/07/03 by vromaker@vromaker_r400_linux_marlboro

 made all loop counter variables unique for sythesis

Change 108947 on 2003/07/02 by dclifton@dclifton_r400

 Updated makefile for latest changes. Fixed testbench test signals into SP and SPI.

Change 108763 on 2003/07/01 by llefebvr@llefebvr_r400_emu_montreal

 Updates for r400sq_const_index_0x.cpp

Change 108760 on 2003/07/01 by llefebvr@llefebvr_r400_linux_marlboro

 Fixed r400sq_const_index_03.cpp. Now works on the SQSP testbench. Still has issues on
the GC because of bad ferret/cp ring buffer synchronization.

 Fixed:

 1) Bad clamping of the address register in the SP
 2) Bad error handling of an out of range address in the SQ.

Change 108744 on 2003/07/01 by vromaker@vromaker_r400_linux_marlboro

 - registered winner_ack out of thread arb for timing
 - connected correct instruction store read output based on SIMD1
 for VC ctl flow instruction reads; now SQ_VC interface appears to
 be driven correctly
 - minor change to tb_sqsp (commented out random stall for TP_SQ_fetch
 stall, which no longer exists)

Change 108676 on 2003/07/01 by dougd@dougd_r400_linux_marlboro

 generated trigger signals for SIMD0,SIMD1 perfmon counters

Change 108585 on 2003/06/30 by rramsey@rramsey_crayola_linux_orl

 hook up the sx_rb_quad_mask signals to the fake_rb's
 not sure how this was working at all with the live SX

 Page 58 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 108536 on 2003/06/30 by smoss@smoss_crayola_linux_orl_regress

 removed rand function warning

Change 108524 on 2003/06/30 by dougd@dougd_r400_linux_marlboro

 generate read enable for sq_hs_sms_sq_shsd1_320x96cm4 in sq_texconst_mem
 and read enable for sq_stdrfsdks2p64x32cm4sw0 in sq_texconst_rams

Change 108511 on 2003/06/30 by rramsey@rramsey_crayola_linux_orl

 changes for new sp top level

Change 108315 on 2003/06/27 by mmang@mmang_crayola_linux_orl

 Qualify constant address register write using constant waterfalling mask

Change 108250 on 2003/06/27 by rramsey@rramsey_crayola_linux_orl

 left some signals out of a sensitivity list

Change 108222 on 2003/06/27 by smoss@smoss_crayola_linux_orl_regress

 I have too many i's

Change 108208 on 2003/06/26 by dclifton@dclifton_r400

 Changes to get the tb_sqsp to work in modelsim

Change 108188 on 2003/06/26 by mmang@mmang_crayola_linux_orl

 For pixel quads, enable all pixels of a quad when any pixel is hit
 for gpr write enables and constant address waterfalling sequencing.
 Another update will fix constant address register writing.

Change 108140 on 2003/06/26 by rramsey@rramsey_crayola_linux_orl

 Split src_swizzle out of SQ_SP_instr bus so fetch swizzle can be
 driven during unused phase
 Add interp_xyline from SQ to SPI to drive read address for xy buffer
 Clean up some compile warnings in sc_iter
 Change the existing macc to handle the swizzle being driven for all
 4 phases and add the fetch address swizzling
 Fix param_gen and gen_index pipeline length around the interpolators
 Replace src_c_swizzle.z with src_c_swizzle.x for all instructions
 other then MULADD and CNDx
 Fix the generation of init_cycle_cnt_q in sq_pix_ctl for interpolation
 involving param_gen and gen_index params
 Add compares for SQ_SX_export_mask_we and SQ_SX_kill_mask to tbtrk_spsx

 Page 59 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 Fix the fetch_addr swizzle generation for vertex fetches (need to use
 [31:30] instead of [27:26])
 Fix a bug in sq_vtx_ctl related to gpr allocation (size requested was
 off by a clock)

Change 108063 on 2003/06/26 by viviana@viviana_crayola2_syn

 Regenerated the high speed memories to add two instances of the 1280x128 and two
instances of the
 4096x96.

Change 108024 on 2003/06/26 by mmantor@FL_mmantorLT_r400_win

 remove template file having problems in ncverilog

Change 107822 on 2003/06/25 by rramsey@RRAMSEY_P4_r400_win

 and another syntax error

Change 107820 on 2003/06/25 by rramsey@RRAMSEY_P4_r400_win

 fix decimal vs hex problem

Change 107817 on 2003/06/25 by fhsien@fhsien_r400_LT

 correct syntax error

Change 107801 on 2003/06/25 by grayc@grayc_crayola2_linux_orl

 fix syntax

Change 107757 on 2003/06/25 by mmantor@mmantor_crayola_linux_orl

 < 1. sq_alu_instr_seq.v - Use the Queue pop signal to qualify last_in_clause
 and last_in_shader out of the queue.
 2. sq_target_instr_fetch.v - Fixed a buf in the the target_instruct_fetch
 write to the queue to prevent dropping last_in_shader and last_in_clause
 if the queue is full when first trying to send instruction. >

Change 107717 on 2003/06/24 by mmantor@mmantor_crayola_linux_orl

 <added new regression test for cyl_wrap and changed vcs for texconst mem and fixed
wrap bug in controller during interpolation and added a dum mem config for the texconst
memory >

Change 107579 on 2003/06/24 by dougd@dougd_r400_linux_marlboro

 ncverilog will error with
 output [0:0] SQ_SP_instruct_start

 Page 60 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 wire SQ_SP_instruct_start
 because it considers the 1st declaration a vector and
 the 2nd one a scalar.

Change 107389 on 2003/06/22 by mmang@mmang_crayola_linux_orl

 1. made change sp_vector.v to grab pred/kill results
 a clock sooner since Vic a register delay to
 sp_scalar_lut.bvrl. May have to change back later.
 2. Took away register delay in sq_ais_output to account
 for extra register needed for muxing and registering
 both simd engines for SQ_SX_sp signals.
 3. In sq_alu_instr_seq.v, backed out Laurent's previous
 fix for constant waterfalling and made different change
 where ism registers are loaded based on ais_start
 instead of ais_rtr. With waterfalling, the ais_rtr
 does not happen early enough for ism registers to be
 available for AIS state machine.
 4. In sq_export_alloc.v, added connections for second simd
 engine to handle sx export allocation and deallocation.
 5. In sq.v, added muxing between simd0 and simd1
 sq_ais_output for SQ_SX signals.
 6. In sq_exp_alloc_ctrl.v, added simd1 connections for
 sx export control logic.
 7. In sq_pix_thread_buff.v and sq_vtx_thread_buff.v, added
 A) Simd1 logic for ALU memory write (register delayed
 simd1 information to avoid overlap with simd0)
 B) Appropriate read mux for simd0/simd1 for control
 flow memory (based on status simd num).
 C) Added simd1 status register write data connections.
 8. In sq_status_reg.v, added connections and muxing for second
 simd engine status bits write.
 9. Added a variety of connections for simd1 to tb_sqsp.v.
 10. Added delay pipe for thread_id and thread_type for simd1
 in order to correctly track sp to sx interface. (tbtrk_spsx.v)
 11. Fixed bug in sx related to using correct export id during
 free done process of pixel to rb buffers
 (sx_export_control_common.v)

Change 107266 on 2003/06/20 by vromaker@vromaker_r400_linux_marlboro

 reverted a change that was made for VC testing (and that did not work correctly)

Change 107174 on 2003/06/20 by vromaker@vromaker_r400_linux_marlboro

 - swapped PS and ID gpr write phases

Change 107015 on 2003/06/19 by viviana@viviana_crayola2_syn

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1445 of 1898

 Page 61 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 Re-ran cover on the high speed memories to add fuse_box318 files previously deleted.
 Also deleted fuse_box29 files no longer used.

Change 107009 on 2003/06/19 by smoss@smoss_crayola_linux_orl_regress

 update

Change 106949 on 2003/06/19 by smoss@smoss_crayola_linux_orl_regress

 removed sq_tp_stall signal in anticipation of new sq_tp interface

Change 106751 on 2003/06/18 by danh@danh_r400_win

 Updated r400sq_* status.

Change 106611 on 2003/06/17 by danh@danh_crayola1_linux_orl

 Changed the cfs_return_addrs_q[51:0] generation so the correct cfs_return_addr[3:0]_q
order
 will be written into the thread buffer CFS mem when a thread is returned to the thread
buffer.

Change 106597 on 2003/06/17 by rramsey@RRAMSEY_P4_r400_win

 more status

Change 106528 on 2003/06/17 by rramsey@rramsey_crayola_linux_orl

 hook up iterator_SP_cntx0 so realtime works correctly

Change 106375 on 2003/06/16 by danh@danh_r400_win

 Updated the r400sq* status.

Change 106357 on 2003/06/16 by rramsey@rramsey_crayola_linux_orl

 fix latency of tp/sp signals in tb_sqsp after tp_formatter change
 clean up the fetch swizzle warning msg in tb_sqsp
 add new memory to sq/tb.f
 fix fech_swizzle signal width in tex_instr_seq

Change 106293 on 2003/06/16 by vromaker@vromaker_r400_linux_marlboro

 code fix to prevent latches

Change 106277 on 2003/06/16 by viviana@viviana_crayola2_syn

 Extra bit added to pixel state data.

 Page 62 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 106273 on 2003/06/16 by danh@danh_crayola1_linux_orl

 Changed TB_TP_REQ_FIFO_DEPTH (128 to 256) &
TB_TP_REQ_FIFO_ADDR_WIDTH (7 to 8) to resolve fifo overflow.

Change 106191 on 2003/06/14 by viviana@viviana_crayola2_syn

 48x154 memory changed to 48x155.

Change 106190 on 2003/06/14 by viviana@viviana_crayola2_syn

 Changed the width of the state memory to 155 bits.

Change 106078 on 2003/06/13 by rramsey@RRAMSEY_P4_r400_win

 more status updates

Change 105982 on 2003/06/13 by bhankins@bhankins_crayola_linux_orl

 advance sq-sx control signals by one clock to solve sx timing issues
 add support for updated sx hierarchy

Change 105943 on 2003/06/12 by dougd@dougd_r400_linux_marlboro

 Added a 2nd write buffer to aluconst, texconst and instruction store to handle
 real time writes from cp mixed with non real time writes. This code passes the
 mini-regress on tb_sqsp and cp_lcc_tex, cp_lcc_alu, cp_im_load_basic on the gc
 testbench but fails cp_lcc_tex_rt and cp_lcc_alu_rt. It appears work for non-realtime.

 Added real time prim bit from pix_ctl to ISM in pix_thread_buff when loading a
 pixel thread. This bit will allow reading real time constants from the constant stores.

 Added VC_wake_up logic.

Change 105924 on 2003/06/12 by vromaker@vromaker_r400_linux_marlboro

 timing fixes

Change 105914 on 2003/06/12 by danh@danh_r400_win

 Updated r400cl* status.

Change 105891 on 2003/06/12 by rramsey@RRAMSEY_P4_r400_win

 more status updates

Change 105889 on 2003/06/12 by danh@danh_crayola1_linux_orl

 Page 63 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 Changed the "pix: check for buf avail and export count < 16" section of the alu_req
generation,
 added parentheses around the alloc_size_q & sx_buf_avail logic.

Change 105811 on 2003/06/12 by rramsey@rramsey_crayola_linux_orl

 update spsx tracker so msg signal names match the rtl signal names
 fix a typo in a pix_rs_input msg

Change 105809 on 2003/06/12 by rramsey@rramsey_crayola_linux_orl

 some of the compares had not been updated with the new
 vc field in the dump file

Change 105784 on 2003/06/12 by rramsey@rramsey_crayola_linux_orl

 fix width of num_params_q

Change 105770 on 2003/06/12 by rramsey@RRAMSEY_P4_r400_win

 picking more tests, adding comments to tests with known issues

Change 105750 on 2003/06/12 by smoss@smoss_crayola_linux_orl_regress

 removed sq_sp_simd1_instruct_start to coincide with @105565

Change 105592 on 2003/06/11 by llefebvr@llefebvr_r400_linux_marlboro

 Added storage element in the SQ to store the valid addresses of the mova so that they can
de restored at any instruction that uses the address register. The way it was currently would only
work if the use of the address was directly following the MOVA instruction. This fixes
r400sq_const_index_02.cpp.

Change 105537 on 2003/06/11 by vromaker@vromaker_r400_linux_marlboro

 - added sq_fetch_arb to and removed sq_thread_buff_cntl from system_sq.vcpp
 - made a timing fix to gpr alloc

Change 105525 on 2003/06/11 by rramsey@RRAMSEY_P4_r400_win

 picking more tests

Change 105465 on 2003/06/10 by vromaker@vromaker_r400_linux_marlboro

 - timing fix in pix_thread_buff
 - VC interface is connected to vc instruction seq
 - TP_SQ_fetch stall replaced by TP_SQ_dec (but not tested at GC level)
 - SQ_TP_gpr_wr_addr and SQ_TP_clause removed from top level (and tb updated)
 - fetch arbitration for VC and TP updated

 Page 64 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 - recoded a few lines in gpr alloc to see if it will help timing

Change 105457 on 2003/06/10 by danh@danh_r400_win

 Made changes in regards to my simulation results.

Change 105437 on 2003/06/10 by rramsey@RRAMSEY_P4_r400_win

 picking some tests to debug

Change 105417 on 2003/06/10 by rramsey@RRAMSEY_P4_r400_win

 update status for jun 9 regression

Change 105283 on 2003/06/10 by llefebvr@llefebvr_r400_linux_marlboro

 I have added the write enables to qualify the data sent to the SX. This is needed when
doing predicated exports or constant waterfalling on exports. This fixed
r400sq_const_index_01.cpp test.

Change 105277 on 2003/06/10 by dougd@dougd_r400_linux_marlboro

 added output VC_clk_en to sq_rbbm_interface.v and wired it to
 SQ_VC_wake_up in sq.v

Change 105052 on 2003/06/09 by smoss@smoss_crayola_linux_orl_regress

 a few cadence related changes
 1) moved rbbm_event_type to occur after the read of rbbm_re
 2) temporarily disabled randomization on the clock for the tb_sqsp dump file

Change 104848 on 2003/06/08 by grayc@grayc_crayola2_linux_orl

 fix simd1_valid -> simd1_const_valid

Change 104797 on 2003/06/07 by grayc@grayc_crayola2_linux_orl

 add VC ports
 modify SP-SQ port names

Change 104715 on 2003/06/06 by danh@danh_r400_win

 Updated per simulation results.

Change 104661 on 2003/06/06 by dougd@dougd_r400_linux_marlboro

 fixed typo

Change 104616 on 2003/06/06 by llefebvr@llefebvr_r400_linux_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1446 of 1898

 Page 65 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 HW was clamping to 0 on a GPR addressing error. It should clamp to GPR_base of the
shader.

Change 104600 on 2003/06/06 by dougd@dougd_r400_linux_marlboro

 added missing case value that was causing synopsys to infer latches

Change 104555 on 2003/06/06 by danh@danh_r400_win

 Made changes per simulation results.

Change 104554 on 2003/06/06 by dougd@dougd_r400_linux_marlboro

 fixed typo -
 d_rd0_addr was assigned in two process blocks
 and d_rd1_addr was not being assigned at all.

Change 104302 on 2003/06/05 by ashishs@fl_ashishs_r400_win

 upadted the script since it was just fetching data till 4000 rows. Now it will fetch data till
10000 rows (break after it finds null rows) and then sort them accordingly....

Change 104261 on 2003/06/05 by rramsey@rramsey_crayola_linux_orl

 Fix some wiring issues in tb_sqsp
 Add warning msg to tb_sqsp to tell when a test is trying to swizzle
 fetch addresses since this is not supported yet in the SP
 (didn't make it a failure since some tests are passing with swizzle
 -- they must have the same value in all channels)
 Fix predicate compare in pix_rs_input tracker
 fetch_swizzle bit of instr needed to be muxed based on thread_type
 in sqtp tracker

Change 104211 on 2003/06/05 by rramsey@RRAMSEY_P4_r400_win

 status from 6_4_2003

Change 104159 on 2003/06/04 by danh@danh_crayola1_linux_orl

 Changed count_match[3:0] generation, when param_gen_cycle is high all
count_match[3:0] bits will now go high.

Change 104139 on 2003/06/04 by rramsey@rramsey_crayola_linux_orl

 turn off debug print for this one too

Change 104076 on 2003/06/04 by dougd@dougd_r400_linux_marlboro

 Page 66 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 fixed bug in the loading of the write data buffer.

Change 104075 on 2003/06/04 by dclifton@dclifton_r400

 added test controller

Change 104046 on 2003/06/04 by smoss@smoss_crayola_linux_orl_regress

 removed print statements

Change 104031 on 2003/06/04 by rramsey@rramsey_crayola_linux_orl

 Fix trackers so they actually compare, and compare the correct data

Change 104026 on 2003/06/04 by rramsey@RRAMSEY_P4_r400_win

 update makefile with spi block, memory changes, etc

Change 103932 on 2003/06/03 by mmantor@mmantor_crayola_linux_orl

 update for new pipe disable routing

Change 103931 on 2003/06/03 by danh@danh_r400_win

 Updated per simulation results.

Change 103849 on 2003/06/03 by rramsey@rramsey_crayola_linux_orl

 Fix a bug in sq_input_arb that was allowing the state machine to go
 to IDLE even though a pixel thread was active. This could allow a vtx
 and pix thread to try and write into the GPRs at the same time.
 Turn tex ctlflow trackers back on in tb_sqsp
 Fix TP_SP_data_valid connections in tb_sqsp
 Modify alu ctlflow trackers so they can skip over expected instr
 with serialize bits set if the rtl does not serialize them

Change 103379 on 2003/05/30 by danh@danh_r400_win

 updated per simulation results.

Change 103369 on 2003/05/30 by vromaker@vromaker_r400_linux_marlboro

 - fix for width mismatch on thread_id input of vtx TB status regs
 - initial pass of VC/TP fetch arbiter (not instantiated in sq.v yet)

Change 103365 on 2003/05/30 by dougd@dougd_r400_linux_marlboro

 Added missing wire declaration for param_wrap_0_set

 Page 67 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 103256 on 2003/05/30 by dougd@dougd_r400_linux_marlboro

 fixed bug in wrapping logic for rtn_ptr, read_ptr and stop_ptr for addressing the mapping
table address freelist

Change 103204 on 2003/05/29 by dougd@dougd_r400_linux_marlboro

 initial submit of a submodule to count and bin pixels for perfmon

Change 103141 on 2003/05/29 by vromaker@vromaker_r400_linux_marlboro

 - added simd_num input to the thread buffers (tied low in sq.v) and connected
 it down to the status regs
 - added simd_num to the staging registers in the CFS
 - connected simd_num thru the target_instr_fetch and tex_instr_queue
 modules (so it is an output of the tex_instr_queue)

Change 103074 on 2003/05/29 by viviana@viviana_crayola2_syn

 Added a `include of sq_reg.v for synthesis purposes.

Change 102924 on 2003/05/28 by viviana@viviana_crayola2_syn

 Added an additional 48x170 and 16x170 and rebuilt the memories.

Change 102411 on 2003/05/23 by dougd@dougd_r400_linux_marlboro

 Simulation only protocol checking logic was moved to a clock process block
 to prevent a difference in order of evaluation between vcs and ncverilog
 from causing a false error assertion due to a race condition in simulation.

Change 102365 on 2003/05/23 by vromaker@vromaker_r400_linux_marlboro

 moved wire declaration of sx_exp_buff_full_0 (and others) before the
 instantiation of the status registers to fix ncverilog warning

Change 102264 on 2003/05/23 by vromaker@vromaker_r400_linux_marlboro

 - updated pix thread buffer for simd1 (and removed ctl sub module and redundant logic)
 - renamed state_read_phase to arb_phase
 - fixed CFSM serialize detection (had to add case of fetch initiated by current clause)
 - removed reference to sq_thread_buff_cntl in tracker

Change 102193 on 2003/05/22 by danh@danh_r400_win

 updated per simulation results.

Change 102154 on 2003/05/22 by rramsey@RRAMSEY_P4_r400_win

 Page 68 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 Update with 5/17/03 status

Change 102095 on 2003/05/22 by dougd@dougd_r400_linux_marlboro

 Added the following new fields to control registers in the rbbm interface:
 SQ_CONTEXT_MISC_PERFCOUNTER_REF
 SQ_CONTEXT_MISC_YEILD_OPTIMIZE
 SQ_FLOW_CONTROL_VC_ARBITRATION_POLICY
 SQ_FLOW_CONTROL_SIMD1_DISABLE
 SQ_DEBUG_MISC_DB_READ_MEMORY

Change 102052 on 2003/05/22 by danh@danh_crayola1_linux_orl

 instr_ptr and instr_ptr_q are now only compared when event_vld_q is low.

Change 102042 on 2003/05/22 by danh@danh_r400_win

 updated per simulation results.

Change 102039 on 2003/05/22 by dougd@dougd_r400_linux_marlboro

 restored the missing line ".pb_event_state (pb_event_state)," to the
instantiation of sq_export_alloc in sq.v that somehow was removed when a merge was done in
the last submit

Change 102013 on 2003/05/21 by danh@danh_r400_win

 Made changes per the simulations I ran today.

Change 101908 on 2003/05/21 by mmang@mmang_crayola_linux_orl

 Fixed bug in waterfalling by grabbing register input of done_bits
 instead of registered value when performing init_done_bits operation.

Change 101906 on 2003/05/21 by dougd@dougd_r400_linux_marlboro

 added a 2nd read port for VC to texconst and redesigned sq_texconst_wrt_buff to
perform opportunistic writes because the write access slot was given up for VC reads

Change 101883 on 2003/05/21 by rramsey@rramsey_crayola_linux_orl

 fix pc write addr generation in ais_output
 fix cf state machine so unexecuted conditionals don't cause a thread
 to end
 turn off cf trackers for now
 fix a problem in the test bench related to draw pkts with no draw inits
 (some cp tests do this)

Change 101881 on 2003/05/21 by danh@danh_crayola1_linux_orl

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1447 of 1898

 Page 69 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 Changed PB_READ_3 state, it now uses pi_interp_cnt_q instead of interp_cnt_q.

Change 101841 on 2003/05/20 by askende@askende_r400_linux_marlboro

 checking in the interpolator control latency changes in SQ and SP.

Change 101642 on 2003/05/19 by vromaker@vromaker_r400_linux_marlboro

 - made top level SQ signal changes/additions for SP simd0 and simd1
 - added an alu thread arbiter, pairs of alu ctl flow seq, instr
 fetch, instr que, and instr seq modules, and ais_output for simd1
 - thread buff cntl sub module removed from vtx thread buffer, and its
 logic moved up to the thread buff level (this still needs to be done
 for the pix thread buffer)
 - only one status reg read mux and arb request shifter is needed in the
 thread buffer to support 4 arbiters (since the state mem can only be
 read by one arbiter per cycle), so the duplicates were removed

Change 101575 on 2003/05/19 by smoss@smoss_crayola_linux_orl_regress

 changed delay on tp_sp signals

Change 101378 on 2003/05/16 by smoss@smoss_crayola_linux_orl_regress

 added field for TP_SP_rf_expand_enable

Change 101314 on 2003/05/16 by moev@moev_r400_linux_marlboro

 updates

Change 101168 on 2003/05/15 by rramsey@rramsey_crayola_linux_orl

 fix a problem with my param cache allocate fix and fill the hole
 in our spsx tracker that let the problem slip through my regressions
 (pc write addr was not being checked)

Change 101103 on 2003/05/14 by smoss@smoss_crayola_linux_orl_regress

 <Orlando Hardware Regression Results >

Change 101064 on 2003/05/14 by danh@danh_r400_win

 Updated fields in regards to my simulation results.

Change 101009 on 2003/05/14 by rramsey@rramsey_crayola_linux_orl

 Changes for parameter cache deallocation. Need to multiply dealloc
 count by (vs_export_count +1) so the correct number of lines are

 Page 70 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 freed.

Change 100885 on 2003/05/14 by rramsey@RRAMSEY_P4_r400_win

 update validation report

Change 100881 on 2003/05/14 by danh@danh_r400_win

 Changed the lines of the simulations that I have run.

Change 100877 on 2003/05/14 by rramsey@rramsey_crayola_linux_orl

 Fix 3 issues related to parameter cache allocation/deallocation
 1) Move allocate subtract for pc_free_cnt so it happens when
 an allocating vtx thread wins arbitration instead of when
 the thread is sent to the CFS. This puts the arbitration/
 allocate path at four clks (from six) so we can correctly
 allocate every four clocks.
 2) Deallocs were being dropped in sq_ptr_buff on back to back
 row transfers if the first of the pair was the last row
 (end of buffer) and the second of the pair had dealloc.
 3) Deallocs need to be accumulated in sq_ptr_buff since multiple
 row transfers of a pixel vector can be marked with dealloc
 and the deallocs are put in the event fifo at end_of_buffer.

 Clean up some duplicate code in tb_sqsp and set the default dump
 level back to 1 (instead of 3).

Change 100801 on 2003/05/13 by dougd@dougd_r400_linux_marlboro

 corrected port width mismatches in sq_aluconst_top; removed unused input and output
from sq_const_map_cntl and in it's instantiations in sq_aluconst_top and sq_texconst_top

Change 100795 on 2003/05/13 by dougd@dougd_r400_linux_marlboro

 corrected signal names to b1 ports of sq_cfc

Change 100748 on 2003/05/13 by danh@danh_crayola1_linux_orl

 instr_ptr and instr_ptr_q are now only compared when event_vld_q is low.

Change 100631 on 2003/05/13 by dougd@dougd_r400_linux_marlboro

 Added `define SIMD1 to header.v and corrected connections for SIMD1 in sq.v

Change 100629 on 2003/05/13 by rramsey@rramsey_crayola_linux_orl

 Update tb_sqsp for latest SP top level changes
 Zero out rbbm fifo data when writing for re_dly

 Page 71 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 Add a couple of missing wire declarations to sq

Change 100468 on 2003/05/12 by dougd@dougd_r400_linux_marlboro

 removed incorrect bit width assignments to eo_rt_aluconst and eo_rt_texconst to prevent
compile errors with ncverilog

Change 100453 on 2003/05/12 by rramsey@rramsey_crayola_linux_orl

 Update for top level sp changes

Change 100310 on 2003/05/10 by smoss@smoss_crayola_linux_orl_regress

 ncsim for sqsp and sx

Change 100167 on 2003/05/09 by rramsey@RRAMSEY_P4_r400_win

 Updating status

Change 100164 on 2003/05/09 by dougd@dougd_r400_linux_marlboro

 ifdef'd connections in sq.v to sq_aluconst_top.v for the extra SIMD1 memory

Change 100154 on 2003/05/09 by rramsey@rramsey_crayola_linux_orl

 Changes for instruction store addressing (wrapping and absolute)
 Add absolute addressing for cf and exec addresses to cfs
 Add wrapping for jumps and calls to cfs
 Add wrapping for execute addresses to cfs
 Fix wrapping in instr_fetch (vtx wrap at pix_base-1)

 These changes fix cp_event_timestamp_instruction_loading_stall at tb_sqsp

Change 100118 on 2003/05/09 by dougd@dougd_r400_linux_marlboro

 added 2nd memory to sq_cfc to support SIMD1 and ifdef'd the connections in sq_cfc and
sq.v

Change 100015 on 2003/05/08 by mmantor@mmantor_crayola_linux_orl

 <sq_ais_output - re-ordered kill_mask going to the sx so bits flow in order msb->lsg
sp2(v3-v0)sp0(v3-v0)) to match exp_mask
 - removed improper final update of kill mask with predication mask
 - enable export_mask for all exports
 SX_PA_interfaces.v - fixed checker for back to back transfers
 SX_RB_interfaces.v - hooked up to 7 bit sx_rb_index and rb_sx_index instead of
incorrect 8 bits
 sx.v - changed interfaces for sx_rb and rb_sx interfaces to become 7 bits instead of 8
bits

 Page 72 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 tb_sx.v - changed sx inputs to be 7 bits instead of 8 bits on the above index interfaces
 tbmod_fake_sp.v - reordered the kill mask and enabled channel mask for exports
 sx_export_buffers.v - moved register after export mems and only load when memory
read, mimized client read muxes added input rotate muxes for export to memory operations and
indivual write address for each memory and set up predication, kill_mask, alpha kill,and channel
mask in the determination of writing data into the export buffers
 sx_export_control.v - removed dead clock on rb and pa data fetch interface and client
and made arbiter behave as round robin and removed unecessary second input register, added
support for z render targets and multiple render targets and clean up items
 ex_export_alloc_dealloc.v - enabled channel mask, kill mask, export_mask, and apha
test conditioning of valid bitsa doubled the free rate>

Change 99918 on 2003/05/08 by dougd@dougd_r400_linux_marlboro

 fixed typo

Change 99912 on 2003/05/08 by dougd@dougd_r400_linux_marlboro

 doubled the instruction store memory, changed the access allocation to accomdate
SIMD1 and VC, and `ifdef'd the connections for SIMD1 in sq.v

Change 99520 on 2003/05/07 by mmang@mmang_crayola_linux_orl

 Bug occurred where first_in_clause was getting lost when instr_queue
 was full. Previously, internal first_in_clause register was cleared
 with tif_rts. Had to delay clearing to tif_rts & tiq_rtr.

Change 99346 on 2003/05/06 by mmang@mmang_crayola_linux_orl

 Fixed bug (I created) related to initializing the constant address
 register valids at the beginning of a clause. I used ais_init_pred
 which in some cases was too late. Created new ais_init_const_addr
 that is 3 clocks sooner.

Change 99315 on 2003/05/06 by vromaker@vromaker_r400_linux_marlboro

 fixed typos that were causing cp_e2polyscanlines_simple to fail

Change 99123 on 2003/05/05 by rramsey@rramsey_crayola_linux_orl

 Add some control to hold off inputs at vs/ps done events
 Increase utb_tp_req_fifo depth
 Change writes into vtx/pix done fifos so they only happen on the first
 draw_init for a context

Change 99043 on 2003/05/05 by vromaker@vromaker_r400_linux_marlboro

 - added VC ctl flow seq, instr fetch, instr que and instr seq, and top level IOs
 - made some leda fixes

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1448 of 1898

 Page 73 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 - added non time multiplexed gpr write address output to VC and TP (gpr_dst_addr[6:0])

Change 99041 on 2003/05/05 by rramsey@RRAMSEY_P4_r400_win

 Regression results from 5/4/03
 3451 tests: 66% Pass, 12% Fail, 23% incomplete

Change 98861 on 2003/05/02 by smoss@smoss_crayola_linux_orl_regress

 more sq stuff

Change 98818 on 2003/05/02 by smoss@smoss_crayola_linux_orl_regress

 added missing dump

Change 98793 on 2003/05/02 by rramsey@rramsey_crayola_linux_orl

 Check in Dan's fixes for the control flow trackers
 Turn internal trackers back on in tb_sqsp

Change 98773 on 2003/05/02 by mmang@mmang_crayola_linux_orl

 1. Added constant address register valids to validate the
 address register data. The valid is set when address register
 is written. If valid is not set, sequencer will not waterfall
 those vertices or pixels. This disables waterfalling for
 predicated off writes and improperly initialized contant
 address registers.
 2. Fixed bug in sqs_alu_instr_seq for phase 3 snooping of
 constant address registers bus. Previously, this snooping
 did not account for predication of those registers.
 3. Fixed bug where ais_load_done_bits was not hooked up. This
 signal disables previous vector/scalar management which needs
 to be turned off during constant waterfalling. With bug,
 pvps logic went unknown which caused unknowns to eventually
 propagate in and out of the gprs.
 4. Fixed bug where non-optimized offset was not being determined
 properly. non_opt_offset is determined by a priority encoder
 of p0_done, p1_done, p2_done, and p3_done.
 5. With advent of constant address register valids, created
 waterfall_active_q to properly init and avoid re-initing of
 different pixel and vertex done bits.

Change 98750 on 2003/05/02 by viviana@viviana_crayola2_syn

 Memory increased from 48x155 to 48x170.

Change 98577 on 2003/05/01 by smoss@smoss_crayola_linux_orl_regress

 Page 74 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 reverting changes due to over-engineered process

Change 98571 on 2003/05/01 by smoss@smoss_crayola_linux_orl_regress

 sometime it helps when you save the file first

Change 98569 on 2003/05/01 by smoss@smoss_crayola_linux_orl_regress

 added FSDB_DUMP option for VCS

Change 98509 on 2003/05/01 by smoss@smoss_crayola_linux_orl_regress

 removed tb_sqsp

Change 98462 on 2003/05/01 by vromaker@vromaker_r400_linux_marlboro

 - added bits and re-arranged the order of bits in the status register
 - added VC support in thread buffers (vc request from status register,
 read muxes, connections to other modules, etc.)
 - removed is_subphase and made is_phase 3 bits
 - removed cfc_phase
 - expanded state_read_phase to 2 bits
 - changed the strapping and phase relationships on the ctl flow seqs
 - SQ_SP_fetch_swizzle and SQ_SP_fetch_resource outputs added
 - disabled internal SQ trackers and changed to DEBUG_PRINT ifdef in tb_sqsp.v

Change 98398 on 2003/04/30 by smoss@smoss_crayola_linux_orl_regress

 new sq stuff

Change 98397 on 2003/04/30 by grayc@grayc_crayola2_linux_orl

 new tb

Change 98367 on 2003/04/30 by rramsey@rramsey_crayola_linux_orl

 these trackers were looking at the wrong register stage to determine
 thread_id and thread_type

Change 98343 on 2003/04/30 by ashishs@fl_ashishs_r400_win

 Correcting an error from script since it wasn't updating the user's comments and locked
by user correctly. Also adding an empty XLS file which is used by the script to add and merge
data

Change 98307 on 2003/04/30 by ashishs@fl_ashishs_r400_win

 fixed a small error in the script because of which it wasnt getting the comments from the
report. Also updated some comments.

 Page 75 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 98283 on 2003/04/30 by viviana@viviana_crayola2_syn

 Files no longer used in the SQ.

Change 98274 on 2003/04/30 by rramsey@rramsey_crayola_linux_orl

 change if(`DEBUG_PRINT) to `ifdef DEBUG_PRINT so trackers
 work at gc level

Change 98261 on 2003/04/30 by ashishs@fl_ashishs_r400_win

 added the script for updating the XLS hadware regression data. Can have more
enhancements depending on requirements

Change 98144 on 2003/04/29 by rramsey@rramsey_crayola_linux_orl

 Add internal trackers to tb_sqsp, clean up memory files listed in tb.f
 Remove DEBUG_PRINT from tb.f, it should be specified in vcsopts.f

Change 98142 on 2003/04/29 by rramsey@rramsey_crayola_linux_orl

 timing fix for rbi_addr

Change 98140 on 2003/04/29 by rramsey@rramsey_crayola_linux_orl

 fix a typo in a signal path

Change 98132 on 2003/04/29 by rramsey@rramsey_crayola_linux_orl

 update trackers for new fields in dump files and make them
 work for events

Change 98079 on 2003/04/29 by rramsey@rramsey_crayola_linux_orl

 Fix a bug with alu1's trigger
 Add define control for comment printing

Change 98067 on 2003/04/29 by danh@danh_crayola_linux_orl

 Made type_serialize_1 and vc_request_1 changes.

Change 97992 on 2003/04/28 by dougd@dougd_r400_linux_marlboro

 fixed some Leda reported problems

Change 97991 on 2003/04/28 by dougd@dougd_r400_linux_marlboro

 added R500 dual read ports and extra memories.

 Page 76 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 97962 on 2003/04/28 by danh@danh_crayola_linux_orl

 Made signal changes in regards to .dmp file changes.

Change 97961 on 2003/04/28 by danh@danh_crayola_linux_orl

 Made signal name changes in regards to .dmp file changes.

Change 97958 on 2003/04/28 by danh@danh_crayola_linux_orl

 Made signal changes in regards to the .dmp file changes.

Change 97956 on 2003/04/28 by danh@danh_crayola_linux_orl

 Added jump_call_addr registers.

Change 97892 on 2003/04/28 by danh@danh_crayola_linux_orl

 no changes made.

Change 97732 on 2003/04/25 by danh@danh_crayola_linux_orl

 Changed signal names per sq_pix_control_flow_alu.dmp

Change 97708 on 2003/04/25 by rramsey@rramsey_crayola_linux_orl

 Move inc for event thread count to front of event fifo
 They were still happening on the same clk as real threads

Change 97670 on 2003/04/25 by rramsey@rramsey_crayola_linux_orl

 Change buildtb and buildkdb to use tb.f for libraries and compile options
 to keep from having to add files in two places
 Couple of bug fixes/enhancements for tb_sqsp
 Fix path define for sp_macc tracker when running tb_sqsp

Change 97538 on 2003/04/24 by ygiang@ygiang_r400_pv2_marlboro

 added: more sq perf counters

Change 97402 on 2003/04/24 by kmeekins@kmeekins_crayola_linux_orl

 Initial release.
 Tracker used to test the inputs and outputs of all MACC units within the shader pipes.

Change 97152 on 2003/04/23 by dougd@dougd_r400_linux_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1449 of 1898

 Page 77 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 added logic to control vtx perf counters to sq_vtx_ctl.v and sq.v; fixed bug in write logic
in sq_aluconst_wrt_buf.v

Change 96990 on 2003/04/22 by viviana@viviana_crayola2_syn

 Ran cover on the sq_rf.cnt to add the new 16x170 and 48x170 memories.

Change 96981 on 2003/04/22 by viviana@viviana_crayola2_syn

 Added TST_awt_enable to the interfaces with ss/sq_pix_thread_buff.v and
 ss/sq_vtx_thread_buff.v.
 Replaced the 16x155 and 48x155 memories with 16x170 and 48x170 respectively.
 Replaced the memory to be compiled in buildtb from the 155 to the 170.

Change 96948 on 2003/04/22 by viviana@viviana_crayola2_syn

 Changed the name of the FIFO.

Change 96947 on 2003/04/22 by viviana@viviana_crayola2_syn

 Removed width from paramenter definitions.

Change 96946 on 2003/04/22 by viviana@viviana_crayola2_syn

 Added done_vector to sensitivity list at line 902.
 Removed `SQ_SRCB_PHASE from sensitivity list at line 1018.
 Added isr_thread_type_q to sensitivity list at line 1233.

Change 96876 on 2003/04/22 by rramsey@rramsey_crayola_linux_orl

 only compare if one of the vector unit bits is valid

Change 96738 on 2003/04/21 by mmang@mmang_crayola_linux_orl

 Fixed bug in sq_ais_output.v related to address register write and
 predication. Fixed a variety of tests to not use uninitialized gpr
 or address registers. 2 tests still fail because of previous vector
 scalar swizzle bug, 1 test still fails because of MOVA hardware bug, and
 1 test still fails because of predicated address register write causes
 XXXXXX which causes waterfalling to hang.

Change 96623 on 2003/04/21 by bhankins@bhankins_crayola_linux_orl

 add support for including SX units into tb_sqsp.v

Change 96455 on 2003/04/18 by bhankins@bhankins_crayola_linux_orl

 initial checkin to optionally include (not included by default) two SX units
 with associated support logic and trackers.

 Page 78 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 96445 on 2003/04/18 by rramsey@rramsey_crayola_linux_orl

 Move compares into a task, add a flag
 to enable marking x vs 0 compares as warnings

Change 96389 on 2003/04/18 by mzini@mzini_crayola_linux_orl

 Temporarily removed the checking of control bits until the hardware catches up

Change 96318 on 2003/04/17 by rramsey@rramsey_crayola_linux_orl

 change Openning to Opening

Change 96278 on 2003/04/17 by scamlin@scamlin_crayola_unix_orl

 .

Change 96252 on 2003/04/17 by rramsey@rramsey_crayola_linux_orl

 Add new signal between sq_vtx_ctl and sq_input_arb to mark gpr_ld_busy
 which fixes a deadlock condition where gpr_ld state machine is waiting
 on an ack from the arb, which is waiting on vsr_ld machine not busy, which
 is waiting on the gpr_ld machine to finish.
 Add a reset for sp_sel in sq_vtx_ctl when the vsr_ld machine goes from ld
 to idle. This is needed if there is valid data sitting in the vgt fifo since
 a vsr load will happen on the following clock.
 Connect pred_kill_valid bits in tb_sqsp.
 Fix typo in visr_wr tracker.

Change 95859 on 2003/04/16 by rramsey@rramsey_crayola_linux_orl

 fix width

Change 95847 on 2003/04/16 by rramsey@rramsey_crayola_linux_orl

 script to build the verdi kdb for tb_sqsp

Change 95839 on 2003/04/16 by rramsey@rramsey_crayola_linux_orl

 Multiple changes throughout the SQ to get tb_sqsp working, and to fix bugs
 uncovered by the new testbench
 sq_gpr_alloc - wrap was broken for vertex side if ptr wrapped exactly at max
 sq_rbbm_interface - context/new_ld sent to constant mems was being pulled from
wrong
 side of skid buffer
 sq_pix_thread_buff - change to send context_done event back to CP on the pixel side
 buildtb, tb_sqsp, tbtrk_* - changes for new sp/spi configuration and new dump file
 fields

 Page 79 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 95810 on 2003/04/16 by dougd@dougd_r400_linux_marlboro

 fixed bug in the pix_cntx counter increment signal where both event and pix were trying
to increment during the same cycle

Change 95623 on 2003/04/15 by mzini@mzini_crayola_linux_orl

 New SQ trackers

Change 95621 on 2003/04/15 by mzini@mzini_crayola_linux_orl

 Using an unregistered data-ready signal now to trigger compare

Change 95490 on 2003/04/14 by vromaker@vromaker_r400_linux_marlboro

 fix for CFSM end-of-clause detection

Change 95457 on 2003/04/14 by danh@danh_crayola_linux_orl

 Initial Release.

Change 95404 on 2003/04/14 by rramsey@rramsey_crayola_linux_orl

 Temporary fix to let flush events flow through the SC if they are not
 preceded by a draw_init.
 Note flushes are still broken if you want to use them for syncing state changes,
 for example changing bad_pipe.

Change 95391 on 2003/04/14 by rramsey@rramsey_crayola_linux_orl

 Change SQ_DEBUSSY option to control only SQ dumping
 Add SP_DEBUSSY option to control dumping of SPs
 Add some internal trackers
 Fix width on tp_sqsp_thread_id

Change 95174 on 2003/04/11 by hartogs@fl_hartogs

 Added hooked up new "thread_type" signal from SQ module. Enhanced timeout
detection.

Change 94999 on 2003/04/10 by ygiang@ygiang_r400_pv2_marlboro

 fixed: sq perf counter "sq_vertex_vectors_sub"

Change 94873 on 2003/04/10 by askende@askende_r400_linux_marlboro

 releasing the following changes:
 1. creation of the new SPI block

 Page 80 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 2. top level changes to support 8 SP instances
 3. tracker changes to support a few IO name changes

Change 94834 on 2003/04/09 by mmantor@mmantor_crayola_linux_orl

 <fixed a problem in ptr_buff where he hangs on an event that is not a pixel event>

Change 94830 on 2003/04/09 by mmantor@mmantor_crayola_linux_orl

 <SQ/SX/SP out of order thread completion and remove redundant storage in sp for sq/sx
communitcations some sq cfs bug fixed and texture kill mask generation and other misc things>

Change 94724 on 2003/04/09 by mzini@mzini_crayola_linux_orl

 New SQ trackers

Change 94718 on 2003/04/09 by viviana@viviana_crayola_linux_orl

 SQ trackers for the sequencer control flow instructions.

Change 94518 on 2003/04/08 by vromaker@vromaker_r400_linux_marlboro

 fix for bug caused by resource change between EXEC control flow
 instructions

Change 94505 on 2003/04/08 by rramsey@rramsey_crayola_linux_orl

 don't inc vtx thread counter if thread is an event

Change 94211 on 2003/04/07 by hartogs@fl_hartogs

 Template Debussy waveform file.

Change 93959 on 2003/04/04 by vromaker@vromaker_r400_linux_marlboro

 temporarily disabled PVPS src select swizzle because it was causing SP tests
 from Andi's mini_regress to fail

Change 93788 on 2003/04/03 by dougd@dougd_r400_linux_marlboro

 added event_context register to correctly capture context when sending a vtx event to the
thread buffer.

Change 93640 on 2003/04/03 by hartogs@fl_hartogs

 Added include file "vgt_reg.v" to prevent compiler errors during Modelsim compile.
 Fixed wire definition to match output port definition.

Change 93585 on 2003/04/03 by dougd@dougd_r400_linux_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1450 of 1898

 Page 81 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 move event filters to inputs of SQ in ptr_buff and vtx_ctl and remove from
thread_buff_cntl, modify cntx0-17 busy counters in ptr_buff to use new event logic, add
RST_VTX_CNT functionality to sq_vtx_ctl, add SQ_CP_event and SQ_RB event functionality
to pix_thread_buff and vtx_thread_buf, remove obsolete SQ_CP_event functionality from
thread_buff_cntl.

Change 93489 on 2003/04/02 by vromaker@vromaker_r400_linux_marlboro

 added end of clause detection for serialization and resource change to CFSM;
 fix for first_in_clause related to PVPS detection;
 added SQ_SP_thread_type and SQ_TP_thread_type outputs to sq.v;
 added predicate to Tex IQ - now predicate goes from TCFS, thru TIF, thru TIQ, to the
TIS;
 removed q1 pipeline stage for SP predicate data in AIS Output;

Change 93099 on 2003/04/01 by hartogs@fl_hartogs

 Fixed logic that holds off SC injector.
 Fixed bug in threaded empty signal for tp_sqsp_dmp_not_empty.
 Hacked logic that frees state contexts so that it sorta works.

Change 93054 on 2003/04/01 by rramsey@rramsey_crayola_linux_orl

 PV/PS determinations need to be made on post-swizzled component selects

Change 93053 on 2003/04/01 by dougd@dougd_r400_linux_marlboro

 added context_id or state to event info stored in the status_reg to correct a bug in the state
logic supporting cntx0 and cntx17 busy

Change 93026 on 2003/03/31 by grayc@grayc_crayola_linux_orl

 minor changes for gc testbench

Change 92970 on 2003/03/31 by dougd@dougd_r400_linux_marlboro

 added pix event_id to qualify events to increment the cntx17 busy counter. Also added
`include "vgt_reg.v" and removed hard coded parameters.

Change 92904 on 2003/03/31 by hartogs@fl_hartogs

 Added TP_SP latency controls requested by Mantor.

Change 92884 on 2003/03/31 by hartogs@fl_hartogs

 Cleaned-up some "TODO" items.

Change 92679 on 2003/03/28 by hartogs@fl_hartogs

 Page 82 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 Hooked-up new thread-id ports on SQ. Testbench should now handle most tests.

Change 92451 on 2003/03/27 by hartogs@fl_hartogs

 Added several missing input ports to sub-modules.

Change 92428 on 2003/03/27 by hartogs@fl_hartogs

 Deleted reduntant wire declaration that was causing an error in modelsim.
 Added explicit declarations for a bunch of implicitly used wires. The lack of the
explicit declarations was causing warnings in Modelsim.

Change 92324 on 2003/03/27 by dougd@dougd_r400_linux_marlboro

 fixed bug with address wrapping in the gpr_wr_addr generation for pix and vtx

Change 92303 on 2003/03/27 by mmantor@mmantor_crayola_linux_orl

 <export_id expanded from one to four bit, end_of_clause added to CFS-TIF interface and
last_in_clause flag passed down with instruction to eventually trigger a free_done. thread_id
outputs added to the SQ_SP and SQ_TP interfaces for testbench, and added sq_sx control signals
for exp_table read >

Change 92262 on 2003/03/26 by hartogs@fl_hartogs

 Added untested code for random backpressure on the SQ_TP interface.
 Added untested code for random starve pressure on the TP_SP interface.

Change 92142 on 2003/03/25 by hartogs@fl_hartogs

 This version passes milestone_tri. Trackers and injectors are ready for multi-threading
when those signals become available.

Change 92139 on 2003/03/25 by hartogs@fl_hartogs

 This version passes the "milestone_tri" test completely. First working version for texture
fetch.

Change 91978 on 2003/03/25 by hartogs@fl_hartogs

 Incremental check-in. This version will run "milestone_tri" to completion (including
injecting the texture fetch data); however the simulation mismatches on the SPSX tracker.

Change 91977 on 2003/03/25 by hartogs@fl_hartogs

 Changed "check flags" on one of the SQ memories to minimize garbage output during
simulation.

 Page 83 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 91976 on 2003/03/25 by hartogs@fl_hartogs

 Changed dump file name from tp_sq.dmp to tp_sqsp.dmp.

Change 91763 on 2003/03/24 by hartogs@fl_hartogs

 Qualified use of "q_skid_rbbm_a" with "!q_skid_empty". This was done to avoid X's on
"sel_gfx_vgt_draw_initiator" which corrupted a counter "map_copy_cntr". The corruption of
"map_copy_cntr" could only be corrected by reset.

Change 91754 on 2003/03/24 by rramsey@rramsey_crayola_linux_orl

 Fix for gpr write tracker

Change 91569 on 2003/03/21 by dougd@dougd_r400_linux_marlboro

 added Real Time input to each of the constant store to enable the correct addressing of
RT constants from the SQ

Change 91422 on 2003/03/20 by dougd@dougd_r400_linux_marlboro

 fixed bugs in the rbi_rd_state machine

Change 91219 on 2003/03/20 by dougd@dougd_r400_linux_marlboro

 fix bug in real time write address logic

Change 91126 on 2003/03/19 by dougd@dougd_r400_linux_marlboro

 fixed bug in incrementing pix_cntx17_cnt with back to back events

Change 90960 on 2003/03/19 by smoss@smoss_crayola_linux_orl

 added new sq trackers

Change 90915 on 2003/03/19 by dougd@dougd_r400_linux_marlboro

 added I/O TEST PORTS for bist and scan

Change 90861 on 2003/03/19 by rramsey@rramsey_crayola_linux_orl

 Changes to sp_sel and valid logic to get bad_pipe working

Change 90773 on 2003/03/18 by dougd@dougd_r400_linux_marlboro

 added logic to drive SQ_CNTX0_BUSY, SQ_CNTX17_BUSY. This change should
complete this functionality.

Change 90733 on 2003/03/18 by dougd@dougd_r400_linux_marlboro

 Page 84 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 added counters and control for pix cntx0, cntx17 busy

Change 90622 on 2003/03/17 by hartogs@fl_hartogs_linux

 First crack at VCS build script for tb_sqsp

Change 90551 on 2003/03/17 by dougd@dougd_r400_linux_marlboro

 added code in sq_status_reg to decement the thread counters in sq_vtx_cntl used for
SQ_CNTX0_busy, SQ_CNTX17_busy

Change 90313 on 2003/03/14 by hartogs@fl_hartogs

 Added multi-threaded code to tbtrk_sqtp.v. (Thread id and type are hard-coded to 0 and
1, respectively, until these signals are available from the sq.)
 Fixed port name typos in tbtrk_spsx.v.

Change 90002 on 2003/03/13 by viviana@viviana_crayola_linux_orl

 Corrected some signal paths to work at the gc level testench.

Change 89954 on 2003/03/13 by viviana@viviana_crayola_linux_orl

 Tracker to test the interface between the Vertex Input Control of the sq and the
 VSR's of the SP, during a write.

Change 89810 on 2003/03/12 by hartogs@fl_hartogs

 Minor corrections to tbtrk_sqtp.
 Modularized the SP/SX tracker.

Change 89746 on 2003/03/12 by hartogs@fl_hartogs

 Modularized the SQTP tracker (per Chris Gray's request).

Change 89740 on 2003/03/12 by hartogs@fl_hartogs

 Somehow this one slipped through the cracks. This one should have been changed when
the "pc_free_cnt_q" signal width
 was increased from 7 to 8 bits.

Change 89588 on 2003/03/11 by hartogs@fl_hartogs

 Added tp_sq.dmp to list.

Change 89538 on 2003/03/11 by hartogs@fl_hartogs

 Interim Check-in

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1451 of 1898

 Page 85 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 89518 on 2003/03/11 by hartogs@fl_hartogs

 Dummy files currently uses by tb_sqsp testbench.

Change 89516 on 2003/03/11 by hartogs@fl_hartogs

 Interim check-in.

Change 89515 on 2003/03/11 by hartogs@fl_hartogs

 Changed "pc_free_cnt_q" to 8 bits so that it could represent the maximum free count of
128. Propagated this change to
 ss/sq_status_reg.v and to ss/sq_vtx_thread_buff.v. Added ifdef SIM code to check for
overflow and underflow of this
 counter.
 Added condition for simultaneous occurrance of pc_alloc and pb_dealloc_vld.

Change 89474 on 2003/03/11 by vromaker@vromaker_r400_linux_marlboro

 change to make texture requests wait on alu_instr_pending

Change 89448 on 2003/03/10 by mmantor@mmantor_crayola_linux_orl

 <1. Added timestamp to dum_mem read and write from same location error message. 2.
Moved flat/gouroud shading and provoking vertex to sq-pc from the sx and worked on ptr
instead of data 3.Added control for the texture cylinderical wrapsubcycling. 4. Add rt parameter
cache ptr selection in sq 5.Clamped and wrapped pc_ptrs in sq 6. Added support for points and
lines in the parameter cache ptr determination. 7. prep seperate write address for export to
memory 8. tmp fix for deallocation of export memory deallocation. 9. remove some old
comment out code and redundant logic >

Change 89039 on 2003/03/07 by dougd@dougd_r400_linux_marlboro

 added `include "register_addr.v"

Change 88929 on 2003/03/06 by vromaker@vromaker_r400_linux_marlboro

 fix to CFS that prevents a new thread from entering when the thread ID
 in the input pipe stage is different than the thread ID in the output pipe stage;
 also changed triangle size to 150 for sq_tests test case pred_eq_vec

Change 88816 on 2003/03/06 by dougd@dougd_r400_linux_marlboro

 added ports to support cntx0_busy, cntx17_busy

Change 88639 on 2003/03/05 by vromaker@vromaker_r400_linux_marlboro

 a few minor updates, mostly comment related; added q2 verison of

 Page 86 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 state_head_ptr for use in state read addr calcualtion in vtx thread buff

Change 88552 on 2003/03/05 by dougd@dougd_r400_linux_marlboro

 needed to subtract RT base address (`SQ_FETCH_RT_0) from incoming address for RT
writes and reads.

Change 88512 on 2003/03/05 by rramsey@rramsey_crayola_linux_orl

 Fix a bug with the valid bit inits that was causing tri128_pix4 to fail
 Change the vsr_ld machine to alternate between buf0 and buf1 so pattern
 is deterministic and can be compared vs emulator

Change 88400 on 2003/03/04 by vromaker@vromaker_r400_linux_marlboro

 fix for dealloc_space width; status register and thread buffer updates for
 status register writes; status register fix for clearing the event_valid (and all
 other bits) on a pop; new_thread flag now generated in the instr fetch module and
 send dowm thru the AIQ; fix for the setting of thread_valid status

Change 88117 on 2003/03/03 by hartogs@fl_hartogs

 Added dum_mem_p2 model back into the code with USE_BEHAVE_MEM compiler
directive.

Change 87997 on 2003/03/03 by dougd@dougd_r400_linux_marlboro

 missing term in eqn for skid_re_hold for tex_rt_rd caused tex_rt_rd_req to assert for only
1 cycle and not wait for the data ack

Change 87726 on 2003/02/28 by vromaker@vromaker_r400_linux_marlboro

 another merge fix

Change 87675 on 2003/02/28 by rramsey@rramsey_crayola_linux_orl

 Change cf machine to use program_base derived off of isr, and then
 register that value on load_osr for sending to the tip

Change 87632 on 2003/02/28 by vromaker@vromaker_r400_linux_marlboro

 another merge fix

Change 87622 on 2003/02/28 by vromaker@vromaker_r400_linux_marlboro

 bad merge - retry...

Change 87620 on 2003/02/28 by vromaker@vromaker_r400_linux_marlboro

 Page 87 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 MOVA related change - due to the extra cycle required by SP for timing,
 had to conditionally mux the interface register on the last phase of the address
 load into the constant waterfalling logic (to be used instead of last quarter
 of the address register since the start of the CWF logic now overlaps the
 address register load by one cycle)

Change 87440 on 2003/02/27 by mmang@mmang_crayola_linux_orl

 Predicated parameter cache writes.

Change 87408 on 2003/02/27 by vromaker@vromaker_r400_linux_marlboro

Change 87398 on 2003/02/27 by donaldl@donaldl_crayola_linux_orl

 Created early version of pix_winner_q going from sq_alu_thread_arb to
 sq_pix_thread_buff in order to create a registered version of alu_winner_final.
 Done to reduce critical path of the allocation_available signals in
 sq_exp_alloc_ctrl.v

Change 87269 on 2003/02/27 by donaldl@donaldl_crayola_linux_orl

 Removed allocation of 48 locations for vtx pass thru

Change 87207 on 2003/02/26 by hartogs@fl_hartogs

 Added comments that question a few lines of code.
 Added ifdef SIM check for overflow and underflow on the the pc_free_cnt_q signal.

Change 87206 on 2003/02/26 by hartogs@fl_hartogs

 Changed dealloc_cnt signal going into the event fifo so that it is masked-out (zeroed) for
two_clock_xfer that is not end_of_buiffer. This change was made because I observed the logic
push the new signal into the event fifo with the dealloc count, and then pushing the dealloc count
in again with the pix_vector_valid signal later.
 Changed ef_pop signal so that it will not pop a non-zero dealloc unless the new bit is
not set. This change was made because the absence of the change above allowed a new signal to
go in with a non-zero dealloc_cnt which was then permaturely popped instead of waiting for the
vertex vector to be done.
 Added some TODO comments for some hardcoded parameters that should come from
autoreg include files.
 Added some ifdef SIM code that checks for under flow of vtx_sync_cnt_q (which was
an observable result of the problems above).

Change 87184 on 2003/02/26 by dougd@dougd_r400_linux_marlboro

 when vgt_end_of_vector occurs on the 1st and only data, the data sent to the SP is
delayed by 1 cycle but the vsr_wrt_addr was not. Fixed

 Page 88 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 86670 on 2003/02/25 by vromaker@vromaker_r400_linux_marlboro

 fixed gpr address calculation for CONST scalar opcodes

Change 86509 on 2003/02/24 by dougd@dougd_r400_linux_marlboro

 corrected error introduced in the last version

Change 86412 on 2003/02/24 by dougd@dougd_r400_linux_marlboro

 fixed bit width mismatch in the wrt addr assignment when doing RT

Change 86136 on 2003/02/21 by dougd@dougd_r400_linux_marlboro

 fixed bug in o_vector_valid - it counted a single vert as two when there was only one vert
in the vector and end_of_vector was also asserted.

Change 86121 on 2003/02/21 by vromaker@vromaker_r400_linux_marlboro

 changed context_id (state) used for CFC reads to be that from the input
 pipeline register

Change 86092 on 2003/02/21 by vromaker@vromaker_r400_linux_marlboro

 added code to disable PVPS detection on 2nd thru last iterations of a
 const waterfall loop; added last_in_shader output from CFS that is separate
 from the cfs_last_instr status bit that is sent back to the thread buffer

Change 85975 on 2003/02/21 by hartogs@fl_hartogs

 The version has code in the testench to track the SX buffer availability and to free buffers
after
 the SP has exported the data to the SX. It also has the SQ/SP instruction interface time
de-multiplexed
 and split out by field.

Change 85737 on 2003/02/20 by donaldl@donaldl_crayola_linux_orl

 Fixed alu_req equation for handling last_instr_q and first_thread_q.
 Changed nxt_pix_last_alloc counter to nxt_pix_last counter.

Change 85660 on 2003/02/20 by vromaker@vromaker_r400_linux_marlboro

 updated fifo ctl to output a registered count, and changed the ctl
 logic to use the counter for full, empty, etc.

Change 85659 on 2003/02/20 by vromaker@vromaker_r400_linux_marlboro

 now enable PVPS detection only on 2nd to last consective instructions

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1452 of 1898

 Page 89 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 of a thread; also added more support for MUL_CONST (force src_c_sel.x to GPR)

Change 85653 on 2003/02/20 by vromaker@vromaker_r400_linux_marlboro

 fixed so that only vertex valid bits are swapped (pixel valid bits are
 swapped on input from SC)

Change 85650 on 2003/02/20 by vromaker@vromaker_r400_linux_marlboro

 fixed thread changed detection logic - the first_in_group and last_in_group
 outputs now mark the start and end of an uninterrupted stream of target instructions
 from the same thread

Change 85640 on 2003/02/20 by vromaker@vromaker_r400_linux_marlboro

 reorderd LOD correction bits to match valid_bits

Change 85595 on 2003/02/20 by scamlin@scamlin_crayola_unix_orl

 added testreg

Change 85525 on 2003/02/20 by scamlin@scamlin_crayola_unix_orl

 change test port name

Change 85487 on 2003/02/20 by dougd@dougd_r400_linux_marlboro

 fixed bug in "double mode" vsr address generation. Also added logic to choose correct
SP from the IDLE state when some SP's have been disabled by the BAD_SP bits.

Change 85405 on 2003/02/19 by dougd@dougd_r400_linux_marlboro

 modified system_sq.vcpp and vcs.ini to find the new virage hs memories. Backed out the
new hs ram in texconst because it doesn't work.

Change 85398 on 2003/02/19 by pmitchel@pmitchel_r400_laptop

 recovering deleted file

Change 85337 on 2003/02/19 by scamlin@scamlin_crayola_unix_orl

 delete these files and use the _rtl.v versions

Change 85336 on 2003/02/19 by scamlin@scamlin_crayola_unix_orl

 new virage hs memories
 modified default parameter values to work around a synthesis hang

Change 85215 on 2003/02/19 by donaldl@donaldl_crayola_linux_orl

 Page 90 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 Added nxt_pix_alloc and nxt_pix_last_alloc counters.

Change 85031 on 2003/02/18 by vromaker@vromaker_r400_linux_marlboro

 'last' optimization within EXEC_END added; also fixed last so that without
 optimization, it will be set on the last target instruction in the EXEC_END (was
 setting it on the first instruction of an EXEC_END, which for the majority of
 our tests is the same as the last instruction of an EXEC_END)

Change 84707 on 2003/02/16 by vromaker@vromaker_r400_linux_marlboro

 the EXSM was draining valid instructions from the exec ppb on a thread buffer update -
fixed by
 adding the thread id to the ppb, then checking it to see if it is the same as
 the thread that's being updated before removing it (if the thread id is
 different then it is not removed and the drain is complete)

Change 84689 on 2003/02/16 by vromaker@vromaker_r400_linux_marlboro

 another CFS fix - this time for subroutine calls, but in general it should affect all flow
control instructions

Change 84625 on 2003/02/15 by vromaker@vromaker_r400_linux_marlboro

 fix for loops - was using nest_level from the register that was changed to the output pipe
stage

Change 84577 on 2003/02/14 by ygiang@ygiang_r400_pv2_marlboro

 added: more sq performance counters

Change 84449 on 2003/02/14 by mmang@mmang_crayola_linux_orl

 Made init_pred dependent upon new_thread instead of first_in_group.

Change 84438 on 2003/02/14 by dougd@dougd_r400_linux_marlboro

 changed logic for exp_buf_empty to used only the buffer counts and not their control
(update) signals. This signal is used to turn off the clocks for the SP,SX and TP.

Change 84436 on 2003/02/14 by dougd@dougd_r400_linux_marlboro

 added logic and wires up to sq to provide events to trigger the perfmon counters

Change 84405 on 2003/02/14 by vromaker@vromaker_r400_linux_marlboro

 minor updates: some comments added/removed; also removed winner_ack input from
status reg

 Page 91 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 84304 on 2003/02/13 by vromaker@vromaker_r400_linux_marlboro

 removed some commented out code from ais_output; added a pipeline stage to the
ctl_flow_seq and decoupled the CFS and EXEC state machines - the arbiters now issue a thread
every four cycles

Change 84229 on 2003/02/13 by ygiang@ygiang_r400_pv2_marlboro

 added: more sq perf counters

Change 84111 on 2003/02/13 by dougd@dougd_r400_linux_marlboro

 fixed a bug in the VGT_SQ interface to allow both _indx_valid and _end_of_vector on
the first and only data transfer of a vector. Also added a simulation only protocol monitor to
detect _end_of_vector when no data at all had been sent for the vector.

Change 83696 on 2003/02/11 by ygiang@ygiang_r400_pv2_marlboro

 added: more performance counters for sq

Change 83645 on 2003/02/11 by hartogs@fl_hartogs

 Update. Testbench can run non-fetch tests.

Change 83482 on 2003/02/11 by dougd@dougd_r400_linux_marlboro

 changed sq_vtx_thread_buffer to use the status_reg at state_head_ptr_q for events instead
of always using status_data_0

Change 83434 on 2003/02/10 by donaldl@donaldl_crayola_linux_orl

 Updated nxt_pos_alloc_incr and nxt_pc_alloc_incr equations to use thread_valid_q
 instead of alu_req to validate them.

Change 83323 on 2003/02/10 by hartogs@fl_hartogs

 Updated... still in progress.

Change 83322 on 2003/02/10 by hartogs@fl_hartogs

 Added unconnected port to modules with new perfmon signals.

Change 83315 on 2003/02/10 by vromaker@vromaker_r400_linux_marlboro

 minor updates (a few comment changes, insignificant code change)

Change 83246 on 2003/02/10 by vromaker@vromaker_r400_linux_marlboro

 Page 92 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 fix for bug 1255 - src c z swizzle set to src c x swizzle for dot2add

Change 83159 on 2003/02/09 by dougd@dougd_r400_linux_marlboro

 perfmon signals

Change 83028 on 2003/02/08 by vromaker@vromaker_r400_linux_marlboro

 fixed pos and pc alloc terms by using winner_sel instead of winner_ack

Change 83012 on 2003/02/07 by donaldl@donaldl_crayola_linux_orl

 Added next parameter cache allocation counter.

Change 83008 on 2003/02/07 by vromaker@vromaker_r400_linux_marlboro

 some kill/pred fixes

Change 83001 on 2003/02/07 by dougd@dougd_r400_linux_marlboro

 rbi_addr in was shifted down by two bits incorrectly.

Change 82694 on 2003/02/06 by dougd@dougd_r400_linux_marlboro

 brought signals up to sq for perfmon

Change 82630 on 2003/02/06 by donaldl@donaldl_crayola_linux_orl

 Created exp_buf_empty signal to indicate the export buffers are empty.
 This replaces the old SX-SQ export buffer interface signals with the new ones.

Change 82515 on 2003/02/06 by vromaker@vromaker_r400_linux_marlboro

 ALU IQ gpr address wrapping; MUL_CONST support; DOT2ADD fix

Change 82428 on 2003/02/06 by donaldl@donaldl_crayola_linux_orl

 Created next position allocation counter to determine if all positions have
 been allocated for the previous threads.

Change 82207 on 2003/02/05 by vromaker@vromaker_r400_linux_marlboro

 tex IQ gpr address wrapping; removal of pop_pending logic

Change 82200 on 2003/02/05 by scamlin@scamlin_crayola_unix_orl

 forgot these fuseboxes

Change 82192 on 2003/02/05 by hartogs@fl_hartogs

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1453 of 1898

 Page 93 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 Changed wire declaration to match associated port declaration.

Change 82190 on 2003/02/05 by hartogs@fl_hartogs

 Changed to reflect changes in unit under test.

Change 82186 on 2003/02/05 by hartogs@fl_hartogs

 Deleted extra comma at the end of the argument list. THis comma was creating a port
mis-match during sim load.

Change 82113 on 2003/02/05 by dougd@dougd_r400_linux_marlboro

 internal module signals brought up to sq level for perfmon

Change 81944 on 2003/02/04 by donaldl@donaldl_crayola_linux_orl

 Changes for new SX-SQ export buffer availability interface.

Change 81943 on 2003/02/04 by donaldl@donaldl_crayola_linux_orl

 Changes for new SX-SQ export buffer availability interface.

Change 81893 on 2003/02/04 by dougd@dougd_r400_linux_marlboro

 fix bug in rt wrt logic

Change 81633 on 2003/02/03 by vromaker@vromaker_r400_linux_marlboro

 fixed alu phase for ld_pred

Change 81624 on 2003/02/03 by vromaker@vromaker_r400_linux_marlboro

 new one-clk ld_pred signal

Change 81559 on 2003/02/03 by vromaker@vromaker_r400_linux_marlboro

 misc updates

Change 81558 on 2003/02/03 by dougd@dougd_r400_linux_marlboro

 corrected a typo to the last submit

Change 81528 on 2003/02/03 by dougd@dougd_r400_linux_marlboro

 added input regs to TP_SQ_thread_id and TP_SQ_stall

Change 81249 on 2003/02/01 by vromaker@vromaker_r400_linux_marlboro

 Page 94 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 misc updates - need latest merged versions of files...

Change 81227 on 2003/01/31 by vromaker@vromaker_r400_linux_marlboro

 inverted kill mask data from SP

Change 81099 on 2003/01/31 by rramsey@rramsey_crayola_linux_orl

 change arbitration policy for sq instruction store so each client has
 its own phase in the 8 clock cycle, with CP accesses happening
 opportunistically

Change 80876 on 2003/01/30 by vromaker@vromaker_r400_linux_marlboro

 pred_override update (for waterfall); instr store read requests output from CFS and TIF

Change 80801 on 2003/01/30 by dougd@dougd_r400_linux_marlboro

 fixed typos that caused warnings in synopsys

Change 80742 on 2003/01/30 by dougd@dougd_r400_linux_marlboro

 removed reset from the register for VGT_send and VGT_event to comply with
convention of block input going only to input of one register and no gates

Change 80731 on 2003/01/30 by dougd@dougd_r400_linux_marlboro

 added ati_dff_in to ROM_SPx_disable_vtx, TP_SQ_data_rdy, TP_SQ_type

Change 80540 on 2003/01/29 by hartogs@fl_hartogs

 Added SC tracker (tbtrk_sc) to the tb_sqsp testbench.

Change 80494 on 2003/01/29 by donaldl@donaldl_crayola_linux_orl

 Initial

Change 80177 on 2003/01/28 by mmantor@FL_mmantorLT_r400_win

 got basic sc stimulas to work for sq/sp test bench and reset multipass counter during reset

Change 80168 on 2003/01/28 by vromaker@vromaker_r400_linux_marlboro

 fix for 48:16 priority mux

Change 80102 on 2003/01/28 by hartogs@fl_hartogs

 Added sc_iterator module wrapped specifically for sqsp testbench.

 Page 95 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 80057 on 2003/01/28 by vromaker@vromaker_r400_linux_marlboro

 updates for mova, kill mask, absolute constants

Change 79927 on 2003/01/28 by dougd@dougd_r400_linux_marlboro

 fixed bug in vsr_ld_state VSR_LD

Change 79871 on 2003/01/28 by dougd@dougd_r400_linux_marlboro

 corrected range on sp_prd_data_q[15:0] from [i] to [i-48] in for loop

Change 79731 on 2003/01/27 by dougd@dougd_r400_linux_marlboro

 fixes bug where vsr_ld_state gets stuck in state VSR_LD

Change 79716 on 2003/01/27 by vromaker@vromaker_r400_linux_marlboro

 fix for thread arbiter priority encoder; updates to kill mask and predicate loading from SP

Change 79542 on 2003/01/26 by dougd@dougd_r400_linux_marlboro

 added inputs i_rbi_rt_rd_req and address logic to support diagnostic read support for Real
Time

Change 79540 on 2003/01/26 by dougd@dougd_r400_linux_marlboro

 fixed typo that produced latches in synthesis

Change 79498 on 2003/01/25 by vromaker@vromaker_r400_linux_marlboro

 updates for kill mask

Change 79443 on 2003/01/25 by hartogs@fl_hartogs

 Made two wire declarations match their associated port declarations.

Change 79383 on 2003/01/24 by dougd@dougd_r400_linux_marlboro

 changes to SQ_FLOW_CONTROL register

Change 79347 on 2003/01/24 by dougd@dougd_r400_linux_marlboro

 fixed bug in vgt interface (end_of_vtx_vector can be valid when indx_valid is not)

Change 78932 on 2003/01/23 by dougd@dougd_r400_linux_marlboro

 changes necessary to simulate with rf rams from latest virage compiler

 Page 96 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 78924 on 2003/01/23 by donaldl@donaldl_crayola_linux_orl

 Initial

Change 78850 on 2003/01/23 by scamlin@scamlin_crayola_unix_orl

 add rtl versions

Change 78849 on 2003/01/23 by scamlin@scamlin_crayola_unix_orl

 add rtl version

Change 78805 on 2003/01/23 by dougd@dougd_r400_linux_marlboro

 replaced latest version of this virage rf ram with the one from previous virage compiler
because latest version doesn't work

Change 78788 on 2003/01/23 by mmantor@mmantor_crayola_linux_orl

 <fixed bugs created by seperation of alloc machine and interp machine to align all data to
the sx and sp interfaces and moved thread counter after delay pipe>

Change 78700 on 2003/01/22 by vromaker@vromaker_r400_linux_marlboro

 fixes for pred_set/kill; tex_arb_policy added

Change 78428 on 2003/01/22 by scamlin@scamlin_crayola_unix_orl

 virage a04 new register files

Change 78427 on 2003/01/22 by scamlin@scamlin_crayola_win

 mod for a04

Change 78248 on 2003/01/21 by hartogs@fl_hartogs

 Updated for VGT and RBBM stimulus.
 Updated for changes in unit under test.

Change 78247 on 2003/01/21 by hartogs@fl_hartogs

 Added this port to the instance "uscalar" to file sp/vector/sp_vector.v.
 .oPRED_SET_EXECUTE(), // TODO -- added unconnected output port to avoid
warnings during sim load
 Apparently the sp_scalar_lut module added an output port (single bit).

 Also added these ports to the instance "u_sq_tex_ctl_flow_seq" in sq.v
 .ais_update(), // listed unconnected port to avoid load warning

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1454 of 1898

 Page 97 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 .ais_thread_id(), // listed unconnected port to avoid load
warning
 ais_update is single bit, and ais_thread_id is 6 bits.

Change 78147 on 2003/01/21 by ygiang@ygiang_r400_pv2_marlboro

 added: SQ performance counters

Change 77896 on 2003/01/20 by vromaker@vromaker_r400_linux_marlboro

 fix for opt. const waterfall (const sel delayed one cycle)

Change 77794 on 2003/01/19 by vromaker@vromaker_r400_linux_marlboro

 fix for const waterfall optimization (decode signal was missing a bit); also fix for
multiple free_done

Change 77751 on 2003/01/18 by mmantor@mmantor_crayola_linux_orl

 <fixed a bug with sc_sample_cntrl by adding an isr register version to mantain during
interpolation while the alloc machine moves ahead. Also fixed the context_id in the event fifo
for 2clk transfers>

Change 77460 on 2003/01/17 by vromaker@vromaker_r400_linux_marlboro

 fix for early push into exec ppb - was pushing conditional executes without testing the
condition...

Change 77449 on 2003/01/17 by mmantor@mmantor_crayola_linux_orl

 <fixed a buf with ij read address generation when using centers and centroids, sent
free_buff a clock earlier so they (cneters and centriods can run at rate continously and added
flow control to the alloc sm for max_pass_rd_cnt independant of pb_rts >

Change 77428 on 2003/01/17 by vromaker@vromaker_r400_linux_marlboro

 fix for Exec SM state EX_NEXT_CFI - if ppb_op is not ALLOC, assumes it's some type
of EXEC and jumps to EXEC

Change 77426 on 2003/01/17 by vromaker@vromaker_r400_linux_marlboro

 another fix for tmp_max_rd_pass_cnt (had to be delared as 2 bits before the PPB)

Change 77421 on 2003/01/17 by dougd@dougd_r400_linux_marlboro

 added ports to sq_rbbm_interface and wires to support rbbm access for the new
sq_perfmon module

Change 77419 on 2003/01/17 by vromaker@vromaker_r400_linux_marlboro

 Page 98 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 fix for max_rd_pass count

Change 77199 on 2003/01/16 by vromaker@vromaker_r400_linux_marlboro

 update for mova interface

Change 77182 on 2003/01/16 by vromaker@vromaker_r400_linux_marlboro

Change 77173 on 2003/01/16 by vromaker@vromaker_r400_linux_marlboro

Change 77133 on 2003/01/16 by scamlin@scamlin_crayola_win

 .

Change 77107 on 2003/01/16 by mmantor@mmantor_crayola_linux_orl

 <Fixed performance bug preventing at rate interpolation with two interpolants>

Change 76992 on 2003/01/15 by fhsien@fhsien_r400_linux_marlboro

 Change MES_ALL parameter for more virage memory

Change 76991 on 2003/01/15 by dougd@dougd_r400_linux_marlboro

 fixed typo in last submit of this file

Change 76949 on 2003/01/15 by askende@askende_r400_linux_marlboro

 releasing top IO changes related to the new Export Status Control interface between SQ
and SX

Change 76829 on 2003/01/15 by dougd@dougd_r400_linux_marlboro

 added SX_SP_exp_buf_avail, SX_SQ_exp_count_rdy to support clock gating

Change 76813 on 2003/01/15 by vromaker@vromaker_r400_linux_marlboro

 CFS now looks at ais_update to clear alu_instr_pending; also const waterfall fixes

Change 76810 on 2003/01/15 by fhsien@fhsien_r400_linux_marlboro

 Change MES_ALL parameter to OFF

Change 76802 on 2003/01/15 by scamlin@fl_regress_p4j_crayola_win

 .

 Page 99 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 76791 on 2003/01/15 by dougd@dougd_r400_linux_marlboro

 some of the TP,SP,SX clock gating logic added

Change 76773 on 2003/01/15 by dougd@dougd_r400_linux_marlboro

 delete obsolete files

Change 76676 on 2003/01/14 by scamlin@scamlin_crayola_win

 update hs ports

Change 76588 on 2003/01/14 by scamlin@scamlin_crayola_win

 virage star simulation

Change 76327 on 2003/01/13 by vromaker@vromaker_r400_linux_marlboro

Change 76236 on 2003/01/13 by dougd@dougd_r400_linux_marlboro

 fixed bug that loaded v_gpr_addr and v_gpr_base too early

Change 76086 on 2003/01/12 by dougd@dougd_r400_linux_marlboro

 adding missing signal to sensitivity list

Change 76016 on 2003/01/11 by vromaker@vromaker_r400_linux_marlboro

 fixes for constant waterfalling

Change 75969 on 2003/01/10 by hartogs@fl_hartogs

 Added unconnected ports in instantiations to avoid warning message while loading into
the simulator.

Change 75887 on 2003/01/10 by dougd@dougd_r400_linux_marlboro

 routed gated clocks from sq_rbbm_interface up to sq.v and then back to get around a
problem with Power Compiler

Change 75798 on 2003/01/10 by dougd@dougd_r400_linux_marlboro

 fixed bug with fifo control when the SP GPRs are full

Change 75472 on 2003/01/09 by dougd@dougd_r400_linux_marlboro

 Page 100 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 changed "input [0:0] sclk_global" to "input sclk_global" to prevent problems with
synopsys

Change 75456 on 2003/01/09 by vromaker@vromaker_r400_linux_marlboro

 re-release of AIQ, AIS, and CFS; mova dependency stall added

Change 75419 on 2003/01/08 by hartogs@fl_hartogs

 First submission -- no trackers / no injector / no synchro-nothing. Just an SQ and four
SP's

Change 75418 on 2003/01/08 by hartogs@fl_hartogs

 Fixed not-smart compiler error that shows up in Modelsim (but presumably not in VCS).

Change 75417 on 2003/01/08 by vromaker@vromaker_r400_linux_marlboro

 testing

Change 75416 on 2003/01/08 by vromaker@vromaker_r400_linux_marlboro

 testing

Change 75398 on 2003/01/08 by vromaker@vromaker_r400_linux_marlboro

 what the heck again

Change 75397 on 2003/01/08 by vromaker@vromaker_r400_linux_marlboro

 what the heck is going on with sq_alu_instr_seq.v

Change 75344 on 2003/01/08 by dougd@dougd_r400_linux_marlboro

 edit comments

Change 75343 on 2003/01/08 by dougd@dougd_r400_linux_marlboro

 changes for vgt-sq-sp vertex vector loading performance improvement

Change 75340 on 2003/01/08 by vromaker@vromaker_r400_linux_marlboro

 fix for NOP in CFS; reduced triangle size in sq_tests

Change 75023 on 2003/01/07 by dougd@dougd_r400_linux_marlboro

 fixed bug in d_rtr when data_cnt == 2

Change 74776 on 2003/01/06 by vromaker@vromaker_r400_linux_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1455 of 1898

 Page 101 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 fix for bug1035: tgt instr fetch updated to pass last_in_group correctly

Change 74489 on 2003/01/04 by dougd@dougd_r400_linux_marlboro

 "interp_cnt_q =" was changed to "interp_cnt_q <="

Change 74435 on 2003/01/03 by dougd@dougd_r400_linux_marlboro

 removed unused signal from port lists

Change 74403 on 2003/01/03 by vromaker@vromaker_r400_linux_marlboro

 fix for bug 1011 (last_in_group/last_in_shader issues with multiple consecutive EXEC's,
and multiple instr's in the last EXEC)

Change 74242 on 2003/01/02 by vromaker@vromaker_r400_linux_marlboro

 added last optimiztion enable to exec ppb

Change 74199 on 2003/01/02 by vromaker@vromaker_r400_linux_marlboro

 more fixes for milestone_tri (gpr_base was off for both gpr read and write)

Change 74166 on 2003/01/02 by vromaker@vromaker_r400_linux_marlboro

 fixes for milestone_tri tests

Change 74008 on 2003/01/01 by vromaker@vromaker_r400_linux_marlboro

 split the pixel input state machine in two

Change 73136 on 2002/12/23 by dougd@dougd_r400_linux_marlboro

 added output o_sq_soft_srst to sq_rbbm_interface

Change 72904 on 2002/12/20 by vromaker@vromaker_r400_linux_marlboro

 fix for pix_ctl (buff_swap used instead of free_buff in ptr_buff)

Change 72839 on 2002/12/20 by vromaker@vromaker_r400_linux_marlboro

 more pix_ctl (pc) and vtx_ctl (vc) stuff; added some _q's to registered signal names;
made performance chages to pix_ctl (pism)

Change 72723 on 2002/12/20 by vromaker@vromaker_r400_linux_marlboro

 more updates for pism name change to pix_ctl (PC)

 Page 102 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 72720 on 2002/12/20 by vromaker@vromaker_r400_linux_marlboro

 input arb fix for pix req while pix busy; renamed pism to pix_ctl and vism to vtx_ctl and
make new directories pc and vc

Change 72632 on 2002/12/19 by dougd@dougd_r400_linux_marlboro

 fixed bug in loading texture constants when there are stalls in the data stream from the
rbbm

Change 72217 on 2002/12/18 by vromaker@vromaker_r400_linux_marlboro

 fix for CFC read from ALU CFS 1

Change 71817 on 2002/12/17 by vromaker@vromaker_r400_linux_marlboro

Change 71495 on 2002/12/16 by vromaker@vromaker_r400_linux_marlboro

Change 71347 on 2002/12/16 by dougd@dougd_r400_linux_marlboro

 Changes for synthesis: added a register stage to sq_const_map_cntl to improve timing;
changed direction of TST_SQ_rf_star_fb_out_fusebox in sq.v to output because fusebox is
internal to sq

Change 71059 on 2002/12/13 by vromaker@vromaker_r400_linux_marlboro

 fix for SC packer optimization (quad ctl interface to SQ)

Change 70462 on 2002/12/11 by dougd@dougd_r400_linux_marlboro

 made integer variable names unique for each process block

Change 70353 on 2002/12/11 by dougd@dougd_r400_linux_marlboro

 default clause in case statement was 1st in list of cases - it must be last (or synopsys
chokes)

Change 70341 on 2002/12/11 by vromaker@vromaker_r400_linux_marlboro

 fix for lod_correct bit width change

Change 70330 on 2002/12/11 by dougd@dougd_r400_linux_marlboro

 added 1 bit to the width of isr_loop_index_q to make it match it's connections

Change 70179 on 2002/12/10 by vromaker@vromaker_r400_linux_marlboro

 Page 103 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 update

Change 70178 on 2002/12/10 by vromaker@vromaker_r400_linux_marlboro

 fix for consts; top level changes

Change 69908 on 2002/12/10 by dougd@dougd_r400_linux_marlboro

 brought SQ_hs_<signals> to gc level and tied to logic low there

Change 69710 on 2002/12/09 by vromaker@vromaker_r400_linux_marlboro

 more const waterfall fixes

Change 69670 on 2002/12/09 by vromaker@vromaker_r400_linux_marlboro

 misc fixes for vcs compile

Change 69656 on 2002/12/09 by dougd@dougd_r400_linux_marlboro

 add hs wrapper files

Change 69651 on 2002/12/09 by vromaker@vromaker_r400_linux_marlboro

 constant waterfalling code added to AIQ, AIS, and AIO

Change 69125 on 2002/12/06 by dougd@dougd_r400_linux_marlboro

 added hs memories and processors to perforce. added gc level connections to sq.v. ifdef
in sq.v to enable hs behavorial memories for simulation.

Change 68379 on 2002/12/04 by dougd@dougd_r400_linux_marlboro

 instantiated STAR hs processor, fuse_box and wiring

Change 68158 on 2002/12/03 by vromaker@vromaker_r400_linux_marlboro

 fix for event_id to CP (4 to 5 bits); vism fix for continued & end of vector;
 addition of ij buffer optimization for centers only/centroids only

Change 67902 on 2002/12/02 by vromaker@vromaker_r400_linux_marlboro

 control flow updates; thread buff/status register clean-up

Change 67336 on 2002/11/27 by dougd@dougd_r400_linux_marlboro

 fixed typo

Change 67331 on 2002/11/27 by dougd@dougd_r400_linux_marlboro

 Page 104 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 type in port name of unused input

Change 67098 on 2002/11/26 by vromaker@vromaker_r400_linux_marlboro

 ctl flow update

Change 67077 on 2002/11/26 by vromaker@vromaker_r400_linux_marlboro

 fixes for milestone_event bugs; functional changes to ctl flow

Change 66948 on 2002/11/26 by dougd@dougd_r400_linux_marlboro

 initial submit of sq rf proc and fusebox

Change 66939 on 2002/11/26 by dougd@dougd_r400_linux_marlboro

 STAR RF memories for synthesis and simulation: includes the rf proc and fuse_box in
sq.v and all of the necessary wiring

Change 66739 on 2002/11/25 by vromaker@vromaker_r400_linux_marlboro

 fix for sq_busy

Change 66458 on 2002/11/23 by vromaker@vromaker_r400_linux_marlboro

 fix for thread buffer read address wrapping

Change 66229 on 2002/11/22 by dougd@dougd_r400_linux_marlboro

 added missing connections between sq_rbbm_interface and the constant store modules

Change 66186 on 2002/11/22 by vromaker@vromaker_r400_linux_marlboro

 fix for predicate0_q

Change 66177 on 2002/11/22 by dougd@dougd_r400_linux_marlboro

 fixed synopsys warning of cip_q[0] not being in the event list: changed it to cip_q

Change 66043 on 2002/11/21 by vromaker@vromaker_r400_linux_marlboro

 fix for bug 818 (thread buffer head and tail ptr wrap problem)

Change 66017 on 2002/11/21 by dougd@dougd_r400_linux_marlboro

 add the new Virage STAR rf memories (.v and .ctmc)

Change 65839 on 2002/11/21 by dougd@dougd_r400_linux_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1456 of 1898

 Page 105 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 fix bugs for synthesis. replaced dum_mem_p2 on Virage rf with Virage verilog models
for simulation

Change 65700 on 2002/11/20 by vromaker@vromaker_r400_linux_marlboro

 fix for bug 799 - a typo in the generation of pvps_disable was causing the problem

Change 65386 on 2002/11/19 by dougd@dougd_r400_linux_marlboro

 fix minor coding error introduced in last version

Change 65321 on 2002/11/19 by dougd@dougd_r400_linux_marlboro

 fixed a bug in new clock gating logic and changed the clock to the sq_phase_gen module
from sclk_sq to sclk_const_mem to generate is_phase when the instruction_store is being loaded
from the RBBM and sclk_sq has not yet been turned on. sq_vtx_thread had a port size mismatch
on the read addr input

Change 65065 on 2002/11/18 by dougd@dougd_r400_linux_marlboro

 added scan test bus. divided sq modules into 9 groups and generated a reset in the
rbbm_interface for each group

Change 65064 on 2002/11/18 by dougd@dougd_r400_linux_marlboro

 changed default value of parameters to prevent errors in synthesis

Change 65063 on 2002/11/18 by dougd@dougd_r400_linux_marlboro

 correct coding errors in the instantiations of the virage memories

Change 64944 on 2002/11/18 by vromaker@vromaker_r400_linux_marlboro

 fix for simple_loop

Change 64899 on 2002/11/18 by vromaker@vromaker_r400_linux_marlboro

 misc bug fixes

Change 64341 on 2002/11/15 by dougd@dougd_r400_linux_marlboro

 fixed bug in clk gater enable signal

Change 64304 on 2002/11/15 by dougd@dougd_r400_linux_marlboro

 the ROM_SPx_disable_vtx inputs were not connected to sq_vism.v

Change 64138 on 2002/11/14 by vromaker@vromaker_r400_linux_marlboro

 Page 106 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 dot2add srcC.z swizzle = x

Change 64003 on 2002/11/14 by dougd@dougd_r400_linux_marlboro

 allow the mapping tables to be copied only on the 1st draw command after a
gfx_copy_state

Change 63931 on 2002/11/14 by dougd@dougd_r400_linux_marlboro

 fixed bug in sq_rd_addr remapping

Change 63882 on 2002/11/13 by dougd@dougd_r400_linux_marlboro

 fixed connection errors introduced by merge of files modified to add new Virage STAR
memories

Change 63879 on 2002/11/13 by desiree@desiree_r400_sun_marlboro

 added Virage STAR memories and interconnections to them

Change 63878 on 2002/11/13 by desiree@desiree_r400_sun_marlboro

 added connections for Virage STAR memory in vism_skid_buf

Change 63877 on 2002/11/13 by desiree@desiree_r400_sun_marlboro

 added Virage STAR memory

Change 63876 on 2002/11/13 by desiree@desiree_r400_sun_marlboro

 added connections to Virage STAR memory in rbbm_skid_buf

Change 63875 on 2002/11/13 by desiree@desiree_r400_sun_marlboro

 added Virage STAR memory

Change 63874 on 2002/11/13 by desiree@desiree_r400_sun_marlboro

 added Virage STAR memory and interconnect

Change 63873 on 2002/11/13 by desiree@desiree_r400_sun_marlboro

 added Virage STAR memory

Change 63870 on 2002/11/13 by desiree@desiree_r400_sun_marlboro

 added Virage STAR memories and interconnect

 Page 107 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 63869 on 2002/11/13 by desiree@desiree_r400_sun_marlboro

 added Virage STAR memories and interconnect

Change 63865 on 2002/11/13 by desiree@desiree_r400_sun_marlboro

 added STAR Virage memories

Change 63828 on 2002/11/13 by vromaker@vromaker_r400_linux_marlboro

 fix for tri32_pix4 (pism was asserting RTR to ptr_buff incorrectly)

Change 63824 on 2002/11/13 by dougd@dougd_r400_linux_marlboro

 added bad SP disable logic

Change 63821 on 2002/11/13 by dougd@dougd_r400_linux_marlboro

 added rbbm diag read support and fixed RT operation

Change 63820 on 2002/11/13 by dougd@dougd_r400_linux_marlboro

 numerous changes to add rbbm read diagnostic feature. Also: corrected the
map_copy_context in the const_map_cntl; made all non-constant store rbbm accesses decode
before going thru skid buffer.

Change 63494 on 2002/11/12 by vromaker@vromaker_r400_linux_marlboro

 removed forcing of PS on _PREV opcodes

Change 63373 on 2002/11/12 by vromaker@vromaker_r400_linux_marlboro

 another fix for pspv_wr_en - alu_phase swapped for loading of pipeline registers

Change 63245 on 2002/11/11 by vromaker@vromaker_r400_linux_marlboro

 delayed mask and predicate input to pspv_gpr_we by two cycles instead of delaying the
alu_phase mux select two cycles

Change 62913 on 2002/11/08 by vromaker@vromaker_r400_linux_marlboro

 fix for valid bits (they were swapped in ais_output)

Change 62866 on 2002/11/08 by vromaker@vromaker_r400_linux_marlboro

 fixed pspv_gpr write enables

Change 62309 on 2002/11/07 by vromaker@vromaker_r400_linux_marlboro

 Page 108 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 input arbitration fix - added pipelined pix_wr_busy to PISM

Change 61975 on 2002/11/06 by vromaker@vromaker_r400_linux_marlboro

 updates for new gpr write enables

Change 61827 on 2002/11/05 by dougd@dougd_r400_linux_marlboro

 make o_sp_vsr_read assert 1 tick earlier to correct a problem with changes in the SQ_SP
interface

Change 61651 on 2002/11/05 by vromaker@vromaker_r400_linux_marlboro

 more predicate updates including pred_override, and delayed thread buffer
 write back

Change 61285 on 2002/11/03 by vromaker@vromaker_r400_linux_marlboro

 had to move vtx input grant out one cycle to get the VSR grp writes
 lined up with the correct phase

Change 60956 on 2002/11/01 by vromaker@vromaker_r400_linux_marlboro

 - removed special case for scalar PREV opcodes
 - removed old gpr write enable from SQ_SP interface

Change 60919 on 2002/11/01 by vromaker@vromaker_r400_linux_marlboro

 predicate and SP write enable updates

Change 60678 on 2002/10/31 by dougd@dougd_r400_linux_marlboro

 remove wire declarations that use `defines for real time paramater registers

Change 60544 on 2002/10/30 by dougd@dougd_r400_linux_marlboro

 remove _rt_param* regs to coincide with new emulator

Change 60095 on 2002/10/29 by vromaker@vromaker_r400_linux_marlboro

 - added special case for scalar _PREV opcodes
 - started predicate updates

Change 59942 on 2002/10/29 by dougd@dougd_r400_linux_marlboro

 added "`ifdef" for virage memories

Change 59546 on 2002/10/26 by dougd@dougd_r400_linux_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1457 of 1898

 Page 109 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 added clock gaters and flops for resets

Change 59428 on 2002/10/25 by vromaker@vromaker_r400_linux_marlboro

 updates

Change 59279 on 2002/10/25 by vromaker@vromaker_r400_linux_marlboro

 minor updates

Change 59186 on 2002/10/24 by dougd@dougd_r400_linux_marlboro

 many changes to support RBBM diagnostic read access to the constant memories in
aluconst and texconst

Change 59171 on 2002/10/24 by vromaker@vromaker_r400_linux_marlboro

 delayed const to SP by one cycle

Change 59080 on 2002/10/24 by vromaker@vromaker_r400_linux_marlboro

 - big update for pv/ps detection (it was moved from in front of the
 AIQ to after the AIQ)
 - constants fixed to properly add base and index (no waterfalling yet)
 - constants fixed to properly map src A,B,C onto c0 and c1
 - ALU instr queue uses new reg storage (also, controller was renamed)

Change 58116 on 2002/10/18 by vromaker@vromaker_r400_linux_marlboro

 new Instr Queue files

Change 57672 on 2002/10/17 by vromaker@vromaker_r400_linux_marlboro

 minor fixes related to CFS state mem expansion

Change 57639 on 2002/10/17 by vromaker@vromaker_r400_linux_marlboro

 - more control flow updates
 - output rotated requests from vtx thread buffer

Change 57520 on 2002/10/16 by dougd@dougd_r400_linux_marlboro

 add 1 bit to size of vsim_event_id

Change 57405 on 2002/10/16 by dougd@dougd_r400_linux_marlboro

 fix bug introduced in the previous version that caused o_new_context_ld to go to "X" just
after reset

 Page 110 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 57379 on 2002/10/16 by dougd@dougd_r400_linux_marlboro

 fixed bug in decoding GFX_COPY_STATE

Change 57210 on 2002/10/15 by vromaker@vromaker_r400_linux_marlboro

 CFS: added control flow instructions

Change 56923 on 2002/10/14 by dougd@dougd_r400_linux_marlboro

 added barrel shifter and arbitration winner translation logic needed to remove shifting
function of sq_status_reg

Change 56824 on 2002/10/13 by dougd@dougd_r400_linux_marlboro

 increase size of pix thread buffer from 16 to 48: fixed bugs in the arbitration winner
address translation

Change 56409 on 2002/10/10 by vromaker@vromaker_r400_linux_marlboro

 update to cond exec

Change 56155 on 2002/10/09 by vromaker@vromaker_r400_linux_marlboro

 updates for conditional execution

Change 56142 on 2002/10/09 by vromaker@vromaker_r400_linux_marlboro

 - fix for tp_done/ais_pop collision
 - added conditional execution to CFS

Change 55772 on 2002/10/08 by dougd@dougd_r400_linux_marlboro

 changed sq_cfc to have three sets of read ports controlled by i_is_sub_phase

Change 55732 on 2002/10/07 by dougd@dougd_r400_linux_marlboro

 modified port list of instantiations of sq_status_register to match latest version of that
module.

Change 55670 on 2002/10/07 by dougd@dougd_r400_linux_marlboro

 increased number of status registers from 16 to 48

Change 55666 on 2002/10/07 by dougd@dougd_r400_linux_marlboro

 changed output name of alu(tex)_req_q to alu(tex)_req_out_q on sq_pix_thread_buff

Change 55620 on 2002/10/07 by vromaker@vromaker_r400_linux_marlboro

 Page 111 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 - fixes to param cache write ptr, and param cache free counter

Change 55389 on 2002/10/04 by vromaker@vromaker_r400_linux_marlboro

 param cache write and dealloc update

Change 55202 on 2002/10/03 by dougd@dougd_r400_linux_marlboro

 fixes bug reported in Bugzilla: Bug 405 where wrong data was written to
sq_instruction_store memory due to interruption or pause of write data on rbbm bus

Change 55025 on 2002/10/03 by dougd@dougd_r400_linux_marlboro

 add FIFO_NAME to skid buffer ati_fifo_cntl in rbbm and vism

Change 55017 on 2002/10/03 by dougd@dougd_r400_linux_marlboro

 added "FIFO_NAME" to skid buffer ati_fifo_cntl in rbbm and vism

Change 54932 on 2002/10/02 by vromaker@vromaker_r400_linux_marlboro

 pism updated for case when param_gen and gen_index detected

Change 54925 on 2002/10/02 by dougd@dougd_r400_linux_marlboro

 added the following rbbm register outputs from rbbm_interface:
context_misc_sc_output_screen_xy_set, context_misc_sc_sample_cntl_set, gen_index_pix_set
and gen_index_vtx_set

Change 54872 on 2002/10/02 by vromaker@vromaker_r400_linux_marlboro

 - double buffer for dealloc space added to exit SM so it can handle
 a second dealloc request while the first one is still in progress

Change 54688 on 2002/10/01 by vromaker@vromaker_r400_linux_marlboro

 event_vld was collideing with cfs_update : fixed

Change 54647 on 2002/10/01 by vromaker@vromaker_r400_linux_marlboro

 - exp_cnt_q (export count) added to sq_export_alloc
 - pulse_sx update
 - pc_we fixed (export_pc fixed - added thread_type into logic)

Change 54498 on 2002/10/01 by dougd@dougd_r400_linux_marlboro

 changed the REN input on the single port use of dum_mem_p2 from 1'b1 to ~wen to
prevent the warning messages displayed during simulation

 Page 112 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 54445 on 2002/09/30 by dougd@dougd_r400_linux_marlboro

 changed bit fields on i_addr_in to match rbbm_addr to make a direct match of bit fields
(just to make it easier to understand)

Change 54212 on 2002/09/28 by dougd@dougd_r400_linux_marlboro

 corrected bit widths on some signals that caused errors in synthesis

Change 54202 on 2002/09/28 by dougd@dougd_r400_linux_marlboro

 increased size of vtx_alloc_space because vs_num_reg is 1 less than the actual value we
want to req

Change 54201 on 2002/09/28 by dougd@dougd_r400_linux_marlboro

 corrected the `defines in the parameter list of the instantiation of sq_thread_buff_cntl
from those for "vtx" to those for "pix"

Change 54166 on 2002/09/27 by vromaker@vromaker_r400_linux_marlboro

 - SC_SQ interface updates
 - also connected VGT_SQ_event to sq_vism

Change 53873 on 2002/09/26 by dougd@dougd_r400_linux_marlboro

 defined wires for vss and vdd for virage memories

Change 53800 on 2002/09/26 by vromaker@vromaker_r400_linux_marlboro

 - fixes for events flowing thru SQ
 - cleared up issues with making individial vtx and pix thread buffers (and shared
thread_buff_cntl)
 - fixed PV,PS bugs

Change 53737 on 2002/09/25 by dougd@dougd_r400_linux_marlboro

 reduced size of cfc constant store

Change 53736 on 2002/09/25 by dougd@dougd_r400_linux_marlboro

 added 2 bits to width of vism skid buffer

Change 53735 on 2002/09/25 by dougd@dougd_r400_linux_marlboro

 changed sizes of virage rams for mapping tables

Change 53730 on 2002/09/25 by dougd@dougd_r400_linux_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1458 of 1898

 Page 113 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 set all generate flags to "true"

Change 53434 on 2002/09/24 by vromaker@vromaker_r400_linux_marlboro

 a few port mismatch fixes

Change 53376 on 2002/09/24 by dougd@dougd_r400_linux_marlboro

 removed redundant declaration that caused synopsys compile error

Change 53375 on 2002/09/24 by vromaker@vromaker_r400_linux_marlboro

 - fixes for moving event thru the SQ
 - fixes for dealloc, and state_diff in thread buffers

Change 53204 on 2002/09/23 by dougd@dougd_r400_linux_marlboro

 corrected mix of assigments: next_old_context <= old_context_q; // synopsys doesn't
like "<=" mixed with "="

Change 53136 on 2002/09/23 by dougd@dougd_r400_linux_marlboro

 remove "wire [7:0] temp6 = i_addr_in/6;" which cause synthesis error

Change 53039 on 2002/09/23 by dougd@dougd_r400_linux_marlboro

 new modules to increase size of pixel thread buffer

Change 52738 on 2002/09/20 by vromaker@vromaker_r400_linux_marlboro

 event fifo to pism/ptb fixes

Change 52350 on 2002/09/18 by vromaker@vromaker_r400_linux_marlboro

 ptr buff fix to work correctly with split 2-cycle transfers

Change 52270 on 2002/09/18 by dougd@dougd_r400_linux_marlboro

 corrected width of constant assigned to alloc_size_q from 2 to 4

Change 52212 on 2002/09/18 by dougd@dougd_r400_linux_marlboro

 modified fix to sq_valid_2_q that was entered in the previous version

Change 52164 on 2002/09/17 by dougd@dougd_r400_linux_marlboro

 added more to fix for sq_qual_2_q of previous version

 Page 114 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 52160 on 2002/09/17 by dougd@dougd_r400_linux_marlboro

 make sc_valid_2_q stay asserted until there is a SC_SQ_valid

Change 51789 on 2002/09/16 by dougd@dougd_r400_linux_marlboro

 fixed bug with SQ_RBB_rs outputting x's; fixed bug with code added to support rbbm
diagnostic read of constant store memories

Change 51740 on 2002/09/16 by tien@tien_r400_devel_marlboro

 Interface change for post-June 15th inst/const

Change 51675 on 2002/09/15 by dougd@dougd_r400_linux_marlboro

 fixed bug in rbbm diagnostic read interface

Change 51559 on 2002/09/13 by dougd@dougd_r400_linux_marlboro

 connect acs_rd_req to sq_aluconst_top (that input was floating)

Change 51526 on 2002/09/13 by vromaker@vromaker_r400_linux_marlboro

 - gpr dealloc connected
 - static gpr allocation added (but not enabled)
 - ppb btwn pism and ptb added

Change 51368 on 2002/09/13 by dougd@dougd_r400_linux_marlboro

 added some of the port connections necessary to support RBBM reading of the constant
store memories

Change 50967 on 2002/09/12 by dougd@dougd_r400_linux_marlboro

 changed port name "i_context_switch" to "i_map_copy_start" for aluconst and texconst;
changed "i_state_change_flag" to "i_read_base_ld" and added ports based on state change based
on gfx_copy_state to sq_cfc

Change 50916 on 2002/09/11 by dougd@dougd_r400_linux_marlboro

 connect context_switch based on gfx_copy_state in rbi; connect loading mechanism for
eo_rt start addresses for aluconst and texconst

Change 50806 on 2002/09/11 by vromaker@vromaker_r400_linux_marlboro

 fixes for bug326 and 329 - tests still fail, but for different reasons

Change 50723 on 2002/09/11 by dougd@dougd_r400_linux_marlboro

 Page 115 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 added support for real time mode

Change 50564 on 2002/09/10 by vromaker@vromaker_r400_linux_marlboro

 update

Change 50503 on 2002/09/10 by vromaker@vromaker_r400_linux_marlboro

 another PV/PS phase swap bug fix

Change 50458 on 2002/09/10 by dougd@dougd_r400_linux_marlboro

 these files moved to directory where they are used

Change 50294 on 2002/09/09 by vromaker@vromaker_r400_linux_marlboro

 update to write enables due to PV, PS cycle swap

Change 50193 on 2002/09/09 by vromaker@vromaker_r400_linux_marlboro

 updated kill_mask out to SX

Change 50165 on 2002/09/09 by vromaker@vromaker_r400_linux_marlboro

 fix for pc write one cycle early

Change 50034 on 2002/09/06 by dougd@dougd_r400_linux_marlboro

 initial submission of skid buf ram for sq_rbbm_interface

Change 49970 on 2002/09/06 by vromaker@vromaker_r400_linux_marlboro

 minor udpates

Change 49848 on 2002/09/05 by vromaker@vromaker_r400_linux_marlboro

 - added predicate, kill mask, pv/ps detection
 - swapped PV and PS write gpr phase

Change 49671 on 2002/09/05 by dougd@dougd_r400_sun_marlboro

 changed sizes of new_map_ram, map_ram and freelist to cover full size of texconst_mem

Change 49291 on 2002/09/03 by dougd@dougd_r400_linux_marlboro

 removed context_misc_screen_xy_in_gpr0_set from sq.v and sq_rbbm_interface.v.
added address decoding for real time constants in sq_rbbm_interface.v

Change 49226 on 2002/09/02 by dougd@dougd_r400_sun_marlboro

 Page 116 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 initial checkin

Change 49220 on 2002/09/02 by dougd@dougd_r400_linux_marlboro

 brought in 3 more bits of rbi_addr and divide it by 6 to get the correct texture constant
address because the 6 Dwords in each constant are no longer packed on boundaries of 8 Dwords
but on boundaries of 6 Dwords.

Change 49065 on 2002/08/30 by dougd@dougd_r400_linux_marlboro

 add "vs_num_reg + 1" logic and increase port size by 1 bit

Change 49059 on 2002/08/30 by vromaker@vromaker_r400_linux_marlboro

 fixed a few typos for the new SP instruction decode

Change 48976 on 2002/08/30 by dougd@dougd_r400_linux_marlboro

 make o_v_ld_cntl_pkt deassert the next clk after receiving i_vtb_rtr

Change 48974 on 2002/08/30 by vromaker@vromaker_r400_linux_marlboro

 - needed to drive acfs_reading one cycle earlier for ACFS IS read
 - updated/added new SQ_SP instruction interface

Change 48932 on 2002/08/29 by dougd@dougd_r400_linux_marlboro

 replaced address constant with value defined in sq_reg.v

Change 48844 on 2002/08/29 by dougd@dougd_r400_linux_marlboro

 added support for gen_index (auto-count), vgt events and fixed some bugs

Change 48558 on 2002/08/28 by vromaker@vromaker_r400_linux_marlboro

 - fix for out-of-order thread processing: the 2 alu ctl flow sequencers
 now share one instr store read slot instead of alternating between two
 different slots (which allowed one to get ahead opf the other)
 - thread counts from VISM and PISM to ais_output added at SQ level

Change 48384 on 2002/08/27 by vromaker@vromaker_r400_linux_marlboro

 - updates for ptr_buff/pism to align quad mask correctly
 - additions for thread_count

Change 48164 on 2002/08/26 by vromaker@vromaker_r400_linux_marlboro

 - fixes for individual macc write enables

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1459 of 1898

 Page 117 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 - added the prev_pos_alloc inputs to the status regs (and logic to
 generate them in the tread buffer)

Change 47553 on 2002/08/22 by vromaker@vromaker_r400_linux_marlboro

 - ptr buff changed for out-of-order quads
 - pism: now add 1 to ps_num_reg to get the number of GPRs to alloc

Change 47160 on 2002/08/20 by vromaker@vromaker_r400_linux_marlboro

 connected param_gen_pos to pism

Change 47110 on 2002/08/20 by dougd@dougd_r400_linux_marlboro

 added the two rbbm registers that were missed in the last version

Change 47072 on 2002/08/20 by vromaker@vromaker_r400_linux_marlboro

 updated param_wrap wires

Change 46976 on 2002/08/20 by dougd@dougd_r400_linux_marlboro

 adding the remaining rbbm register outputs to sq_rbbm_interface and wired them up in
sq.v

Change 46800 on 2002/08/19 by vromaker@vromaker_r400_linux_marlboro

 updated pism connections to local registers

Change 46714 on 2002/08/19 by vromaker@vromaker_r400_linux_marlboro

 updated local register inputs to PISM

Change 46643 on 2002/08/16 by dougd@dougd_r400_linux_marlboro

 added vgt_event to port list

Change 46642 on 2002/08/16 by dougd@dougd_r400_linux_marlboro

 added register outputs from rbbm_interface and vgt_event from sq_vism

Change 46637 on 2002/08/16 by vromaker@vromaker_r400_linux_marlboro

 fix for alloc size

Change 46629 on 2002/08/16 by vromaker@vromaker_r400_linux_marlboro

 more fixes for alloc size

 Page 118 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 46574 on 2002/08/16 by vromaker@vromaker_r400_linux_marlboro

 fix for SQ_SX_export_id (was connected to wrong signal)

Change 46517 on 2002/08/16 by vromaker@vromaker_r400_linux_marlboro

 fixed thread read state machine typo

Change 46382 on 2002/08/15 by vromaker@vromaker_r400_linux_marlboro

 fixed pop_thread to be only one cycle

Change 46251 on 2002/08/15 by vromaker@vromaker_r400_linux_marlboro

 updates for pop/winner_ack status reg conflict

Change 45784 on 2002/08/13 by dougd@dougd_r400_linux_marlboro

 fixed synchronization of writes to RAM by removing input flop on i_texconst_phase to
be compatible with same change made in sq_texconst_mem.v sometime ago. Also updated local
testbench for sq_texconst block.

Change 45466 on 2002/08/12 by askende@askende_r400_sun_marlboro

 checking in with Vic's permission changes related to vsr_vu_valid

Change 45406 on 2002/08/12 by dougd@dougd_r400_linux_marlboro

 add change to deassert q_ins_sel when i_ins_rtr is returned.

Change 45291 on 2002/08/09 by dougd@dougd_r400_linux_marlboro

 removed "[0:0]" from "input [0:0] clk;" in sq_status_reg.v to prevent synopsys tcl script
error during synthesis. Removed divide-by-3 code in sq_instruction_store.v to prevent synthesis
error.

Change 45271 on 2002/08/09 by dougd@dougd_r400_linux_marlboro

 add i_texconst_rtr to deassert q_tex_sel

Change 45079 on 2002/08/08 by efong@efong_crayola_linux_cvd

 removed all the hacked files

Change 44548 on 2002/08/06 by vromaker@vromaker_r400_linux_marlboro

 - status register shift connection bug fixed

Change 44376 on 2002/08/06 by dougd@dougd_r400_linux_marlboro

 Page 119 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 changed default parameter values STATE_WIDTH =64; CFS_STATE_WIDTH = 32;
STATUS_WIDTH = 32; to prevent index select errors in synthesis

Change 44356 on 2002/08/06 by dougd@dougd_r400_linux_marlboro

 changed default parameter value of 16 to STATUS_WIDTH = 32; to prevent error: slice
direction does not match array direction in synthesis

Change 44355 on 2002/08/06 by dougd@dougd_r400_linux_marlboro

 changed default parameter values (was 8): STATE_WIDTH = 64; STATUS_WIDTH =
32; so that select index would not be out of bounds and cause synthesis to error

Change 44314 on 2002/08/05 by vromaker@vromaker_r400_linux_marlboro

 more delay for free_done

Change 44294 on 2002/08/05 by vromaker@vromaker_r400_linux_marlboro

 - 3 cycle delay added for free_done
 - port width fixes

Change 44234 on 2002/08/05 by sallen@sallen_r400_lin_marlboro

 ferret: finish up backdoor ucode loading, pli changes, etc

Change 44201 on 2002/08/05 by vromaker@vromaker_r400_linux_marlboro

 - free_done fix: don't send on param_cache (vtx shdr) done
 - sq: added SQ_SP_vsr_vu_valid
 - updates to VISM to handle end_of_vector with invalid data

Change 44010 on 2002/08/02 by vromaker@vromaker_r400_linux_marlboro

 - multi pixel vector fixes
 - VISM fixed for 32 vertex test

Change 43237 on 2002/07/30 by vromaker@vromaker_r400_linux_marlboro

 - temp fix to ptr buff to delay free_buff to SC
 - comments in thread arb
 - re-enabled alu interleaving

Change 42997 on 2002/07/29 by vromaker@vromaker_r400_linux_marlboro

 - input arb now grants pix while pix is busy
 - pism skips idle if request is present
 - interleaving disabled in sq.v

 Page 120 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 42996 on 2002/07/29 by vromaker@vromaker_r400_linux_marlboro

 - fixed priority encoders (was reversed)

Change 42684 on 2002/07/26 by vromaker@vromaker_r400_linux_marlboro

 - reverted valid_bits to go from lsb to msb

Change 42415 on 2002/07/25 by dougd@dougd_r400_linux_marlboro

 added ati_rbbm_intf to complete the RBB_rd path

Change 42246 on 2002/07/24 by vromaker@vromaker_r400_linux_marlboro

 - fixed thread_id width (caused 2nd pix vector to be same as 1st)

Change 42150 on 2002/07/24 by vromaker@vromaker_r400_linux_marlboro

 - fixed ais_acs_rd_addr for synthesis

Change 42144 on 2002/07/24 by vromaker@vromaker_r400_linux_marlboro

 - thread_id width fixes

Change 42107 on 2002/07/23 by markf@markf_r400_linux_marlboro

 Updated SC->SQ interface

Change 42096 on 2002/07/23 by vromaker@vromaker_r400_linux_marlboro

 - forced sq-tp pix_mask to 0xF

Change 42084 on 2002/07/23 by vromaker@vromaker_r400_linux_marlboro

 - fixed SQ_SC interface connections

Change 42069 on 2002/07/23 by vromaker@vromaker_r400_linux_marlboro

 - reversed order of valid_bits (aka pix_mask)

Change 41959 on 2002/07/23 by vromaker@vromaker_r400_linux_marlboro

 - right shift 1 into MSB of valid_bit string (instead of left shift into LSB)

Change 41839 on 2002/07/22 by vromaker@vromaker_r400_linux_marlboro

 - new, wider SC interface

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1460 of 1898

 Page 121 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 41838 on 2002/07/22 by vromaker@vromaker_r400_linux_marlboro

 delete

Change 41831 on 2002/07/22 by dougd@dougd_r400_linux_marlboro

 added `include "../misc/sq_defs.v"

Change 41826 on 2002/07/22 by dougd@dougd_r400_linux_marlboro

 changed parameter STATUS_WIDTH value from 4 to 16 to prevent compilation
problems in synthesis

Change 41823 on 2002/07/22 by dougd@dougd_r400_linux_marlboro

 changed order of output declarations to come before their reg declarations so that
synopsys would not declare the outputs as wires

Change 41804 on 2002/07/22 by dougd@dougd_r400_linux_marlboro

 created sq_rbbm_skid_buf with virage mem to replace ati_skid_buff

Change 41796 on 2002/07/22 by vromaker@vromaker_r400_linux_marlboro

 - make the thread_id width consistent at 6 bits (except at the state mem address port)
 - updated the SQ_TP and TP_SQ interface (got rid of SQ_TP_clause_num)

Change 41748 on 2002/07/22 by vromaker@vromaker_r400_linux_marlboro

 fixed state width for sythesis

Change 41592 on 2002/07/19 by vromaker@vromaker_r400_linux_marlboro

 - interleaving is enabled
 - fix for interleaving: cfs_type strap on ALU CFS 1 corrected to 2

Change 41459 on 2002/07/19 by vromaker@vromaker_r400_linux_marlboro

 - more thread_id updates due to new location of thread_id in status register

Change 41453 on 2002/07/19 by vromaker@vromaker_r400_linux_marlboro

 - ppb logic fix
 - fixed updated field position of thread_id w/in status (was causing
 a state_mem read address error since SMRA = winner[status[thread_id]]

Change 41326 on 2002/07/18 by vromaker@vromaker_r400_linux_marlboro

 - corrected exp_type for pix w/o z

 Page 122 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 - fixed cfs_export_id_q to load global_export_id_q only when allocating
 - or'd more signals together in TIF to get a solid busy output

Change 41297 on 2002/07/18 by dougd@dougd_r400_linux_marlboro

 fix typo in previous checkin

Change 41259 on 2002/07/18 by dougd@dougd_r400_linux_marlboro

 intitial checkin of skid buffer used in sq_vism.v

Change 41218 on 2002/07/18 by dougd@dougd_r400_linux_marlboro

 more changes to support synthesis

Change 41217 on 2002/07/18 by vromaker@vromaker_r400_linux_marlboro

 - fixes for sq-sx export

Change 41188 on 2002/07/17 by efong@efong_crayola_linux_cvd

 put in `endif

Change 40943 on 2002/07/16 by dougd@dougd_r400_linux_marlboro

 original submission of virage memory *.ctmc files. The *.v files were modified to
support synthesis.

Change 40937 on 2002/07/16 by vromaker@vromaker_r400_linux_marlboro

 - added alu_instr_pending status bit
 - added new SQ_SX_exp and SQ_SX_free interfaces (free is not functional)

Change 40686 on 2002/07/15 by vromaker@vromaker_r400_linux_marlboro

 - updated decode for exports to be the same as in the AIQ: this
 fixes extraneous GPR writes

Change 40659 on 2002/07/15 by vromaker@vromaker_r400_linux_marlboro

 - added 2nd alu cfs update interface to thread buff
 - state read addr now status_thread_id[winner] as it should have been
 - reg'd cfs_phase in thread buff to match reg'd update data

Change 39972 on 2002/07/12 by vromaker@vromaker_r400_linux_marlboro

 fixes for 2 pixel vectors

Change 39731 on 2002/07/11 by vromaker@vromaker_r400_linux_marlboro

 Page 123 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 fixes for 2 pix vectors

Change 39002 on 2002/07/09 by vromaker@vromaker_r400_linux_marlboro

 misc

Change 38998 on 2002/07/09 by vromaker@vromaker_r400_linux_marlboro

 temp file

Change 38997 on 2002/07/09 by vromaker@vromaker_r400_linux_marlboro

 not sure - checked in due to clean up

Change 36278 on 2002/06/25 by dougd@dougd_r400_linux_marlboro

 added input VGT_SQ_event; changed VGT_SQ_vsisr_double to
VGT_SQ_vsisr_continued

Change 36192 on 2002/06/25 by dougd@dougd_r400_linux_marlboro

 added connections and function to support SQ_RBBM_cntx17_busy &
SQ_RBBM_cntx0_busy, however, at this time both of these signals are the same

Change 36176 on 2002/06/25 by markf@markf_r400_linux_marlboro

 Tied SQ_RBBM_nrtrtr to SQ_RBBM_rtr

Change 35120 on 2002/06/20 by vromaker@vromaker_r400_linux_marlboro

 changes for latest emulator

Change 35005 on 2002/06/19 by vromaker@vromaker_r400_linux_marlboro

 more busy bits

Change 34969 on 2002/06/19 by vromaker@vromaker_r400_linux_marlboro

 fix for CFI fetch (alloc had to update CFI ptr); added a few busy signals

Change 34833 on 2002/06/18 by vromaker@vromaker_r400_linux_marlboro

 fix for wrong thread type

Change 34806 on 2002/06/18 by vromaker@vromaker_r400_linux_marlboro

 took away 4 cycles of delay on pix_gpr_wr{addr, en}

 Page 124 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 34778 on 2002/06/18 by vromaker@vromaker_r400_linux_marlboro

 fix for pix shader alu instruction

Change 34632 on 2002/06/17 by dougd@dougd_r400_linux_marlboro

 added a full subtract of the instruction store base address from the rbi_addr before doing
the divide by 3 to get the memory addr

Change 34631 on 2002/06/17 by vromaker@vromaker_r400_linux_marlboro

 hack to delay SC input 16 cycles

Change 34606 on 2002/06/17 by dougd@dougd_r400_linux_marlboro

 commented out the change made in the last version because it needs to be released at the
same time as another change in the sq to work properly

Change 34588 on 2002/06/17 by vromaker@vromaker_r400_linux_marlboro

 added delays for SQ_SP_interp ctl and SQ_SP_gpr_write for interp data

Change 34547 on 2002/06/17 by dougd@dougd_r400_linux_marlboro

 fixed bug in o_vector_valid where it was setting one too many bits.

Change 34539 on 2002/06/17 by vromaker@vromaker_r400_linux_marlboro

 temp hack to param cache write addr and enable to move them out 1 cycle

Change 34347 on 2002/06/15 by vromaker@vromaker_r400_linux_marlboro

 fixes for sending interp ctl to SX/SP

Change 34111 on 2002/06/14 by vromaker@vromaker_r400_linux_marlboro

 got rid of temp hack

Change 34086 on 2002/06/14 by rbell@crayola_misc_linux

 Fixed runsim to return rc no larger than 255.
 Fixes for the full chip build

Change 34083 on 2002/06/14 by vromaker@vromaker_r400_linux_marlboro

 sending correct export address in SP instruction

Change 34062 on 2002/06/14 by dougd@dougd_r400_linux_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1461 of 1898

 Page 125 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 replaced the v2k indexed part select implementation with muxes

Change 33977 on 2002/06/13 by vromaker@vromaker_r400_linux_marlboro

 changed polarity of exp_pix

Change 33940 on 2002/06/13 by vromaker@vromaker_r400_linux_marlboro

 many updates... some v2k removal

Change 33853 on 2002/06/13 by rbell@rbell_crayola_sun_cvd

 Had to create more "hacked" files...port mismatches. Must be fixed later

Change 33801 on 2002/06/13 by rbell@rbell_crayola_sun_cvd

 Fixes/hacks to get the first chip integration compile to work.

Change 33723 on 2002/06/13 by dougd@dougd_r400_linux_marlboro

 added context_valid from aluconst_top to sq_vism to enable/stall loading of control
packet from vgt until the alu constant store has been loaded for this state.

Change 33615 on 2002/06/12 by vromaker@vromaker_r400_linux_marlboro

 misc updates... alu_req logic updated in sq_status_reg

Change 33554 on 2002/06/12 by vromaker@vromaker_r400_linux_marlboro

 moved gpr_rd_en one cycle earlier for srcA

Change 33536 on 2002/06/12 by vromaker@vromaker_r400_linux_marlboro

 sending srcA gpr read addr one cycle earlier

Change 33519 on 2002/06/12 by dougd@dougd_r400_linux_marlboro

 fix bug in o_context_valid being set correctly

Change 33509 on 2002/06/12 by vromaker@vromaker_r400_linux_marlboro

 fixed exporting bit by putting pred_sel bit in correctly

Change 33492 on 2002/06/12 by vromaker@vromaker_r400_linux_marlboro

 various updates - instr start asserted to SP

Change 33348 on 2002/06/11 by vromaker@vromaker_r400_linux_marlboro

 Page 126 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 fixed tex instruction read pointer

Change 33233 on 2002/06/11 by vromaker@vromaker_r400_linux_marlboro

 SX exp added; tgt instr cnt from CFS to TIF fixed; alloc stuff added

Change 32898 on 2002/06/10 by vromaker@vromaker_r400_linux_marlboro

 fixed sq-sp gpr_rd_en; changed "state" to "context_id" in instr pipes

Change 32795 on 2002/06/07 by vromaker@vromaker_r400_linux_marlboro

 more updates

Change 32774 on 2002/06/07 by dougd@dougd_r400_linux_marlboro

 fix typo bug in last version

Change 32767 on 2002/06/07 by dougd@dougd_r400_linux_marlboro

 added input i_vtb_rtr to complement o_v_ld_cntl_pkt to form handshake

Change 32678 on 2002/06/07 by dougd@dougd_r400_linux_marlboro

 fix bug in address decode logic

Change 32472 on 2002/06/06 by vromaker@vromaker_r400_linux_marlboro

 thread buff - arb interface updates

Change 32366 on 2002/06/06 by dougd@dougd_r400_linux_marlboro

 initial checkin

Change 32295 on 2002/06/06 by vromaker@vromaker_r400_linux_marlboro

 commented out fsdbdumpmem

Change 32275 on 2002/06/06 by vromaker@vromaker_r400_linux_marlboro

 updated tex instr const_index field to the new format

Change 32269 on 2002/06/06 by dougd@dougd_r400_linux_marlboro

 remove input register on i_texconst_phase to sync data xfer to sq

Change 32225 on 2002/06/06 by dougd@dougd_r400_linux_marlboro

 Page 127 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 fix bug in o_context_switch in sq_rbbm_interface and set map_copy_cntr to 3'd7 at reset
in sq_const_map_cntl

Change 32159 on 2002/06/05 by dougd@dougd_r400_linux_marlboro

 add decode of gfx_draw_initiator to rbbm_interface to generate context switch to force a
map_copy operation in const_map_cntl

Change 32104 on 2002/06/05 by vromaker@vromaker_r400_linux_marlboro

 connected SQ_TP_send to internal SQ_TP_vld

Change 31996 on 2002/06/05 by dougd@dougd_r400_linux_marlboro

 o_v_grp_addr was being incremented 1 cycle too early. Fixed.

Change 31953 on 2002/06/05 by vromaker@vromaker_r400_linux_marlboro

 updated texture pipe output format

Change 31884 on 2002/06/04 by dougd@dougd_r400_linux_marlboro

 initial checkin

Change 31883 on 2002/06/04 by dougd@dougd_r400_linux_marlboro

 fixed bug

Change 31880 on 2002/06/04 by dougd@dougd_r400_linux_marlboro

 changed the timing of the CP write to use the same non-registered input address mux as
the reads

Change 31875 on 2002/06/04 by vromaker@vromaker_r400_linux_marlboro

 updates

Change 31866 on 2002/06/04 by dougd@dougd_r400_linux_marlboro

 added connections to o_inst_base_vtx and o_inst_base_pix

Change 31821 on 2002/06/04 by dougd@dougd_r400_linux_marlboro

 fix bug in previous version

Change 31818 on 2002/06/04 by dougd@dougd_r400_linux_marlboro

 removed register stage for address into RAM

 Page 128 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 31805 on 2002/06/04 by dougd@dougd_r400_linux_marlboro

 connected o_is_data to read_data

Change 31700 on 2002/06/04 by dougd@dougd_r400_linux_marlboro

 changed <= to = in combinatorial blocks to satisfy Leda

Change 31699 on 2002/06/04 by dougd@dougd_r400_linux_marlboro

 initial checkin of useful files

Change 31693 on 2002/06/04 by vromaker@vromaker_r400_linux_marlboro

 updates

Change 31621 on 2002/06/03 by vromaker@vromaker_r400_linux_marlboro

 updates

Change 31586 on 2002/06/03 by vromaker@vromaker_r400_linux_marlboro

 updates

Change 31449 on 2002/06/03 by dougd@dougd_r400_linux_marlboro

 made temporary fix (marked with FIXME comment) to continue using
TP_SQ_clause_num in the port list instead of the newer (replacement) TP_SQ_thread_id which
was declared a wire set to "0" to keep gc_test.v working.

Change 31428 on 2002/06/03 by dougd@dougd_r400_linux_marlboro

 added tempory wire o_vs_base_set = o_vs_program_base_set;

Change 31427 on 2002/06/03 by dougd@dougd_r400_linux_marlboro

 replaced i_cf_addr with i_alu0_cf_addr, i_alu1_cf_addr, i_tex_cf_addr and replaced
i_alu_phase with i_is_sub_phase.

Change 31389 on 2002/06/03 by vromaker@vromaker_r400_linux_marlboro

 updated

Change 31361 on 2002/06/02 by vromaker@vromaker_r400_linux_marlboro

 updates

Change 31279 on 2002/05/31 by vromaker@vromaker_r400_linux_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1462 of 1898

 Page 129 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 updates

Change 31031 on 2002/05/31 by dougd@dougd_r400_linux_marlboro

 added functionality for o_vs_first_thread

Change 30987 on 2002/05/30 by dougd@dougd_r400_linux_marlboro

 added vs_instr_ptr, vs_resource and vs_first_thread as outputs from sq_vism

Change 30971 on 2002/05/30 by vromaker@vromaker_r400_linux_marlboro

 updates

Change 30816 on 2002/05/30 by vromaker@vromaker_r400_linux_marlboro

 fixed blocking assignment on SQ_SP_gpr_wr_en

Change 30762 on 2002/05/29 by dougd@dougd_r400_linux_marlboro

 fixed various bugs

Change 30562 on 2002/05/29 by vromaker@vromaker_r400_linux_marlboro

 fixed input_sel output

Change 30559 on 2002/05/29 by vromaker@vromaker_r400_linux_marlboro

 connected the gpr input mux sel

Change 30516 on 2002/05/29 by dougd@dougd_r400_linux_marlboro

 added connection to gen_index_set output from sq_rbbm_interface

Change 30462 on 2002/05/28 by dougd@dougd_r400_linux_marlboro

 o_v_gpr_we was "X" so hardwired o_v_gpr_we = 1'b1; as a temporary fix.

Change 30458 on 2002/05/28 by vromaker@vromaker_r400_linux_marlboro

 updates

Change 30340 on 2002/05/28 by dougd@dougd_r400_linux_marlboro

 wired up outputs from new registers to old versions of same outputs. This is tempory
until we switch over completely to the new register spec.

Change 30289 on 2002/05/28 by dougd@dougd_r400_linux_marlboro

 Page 130 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 added output "o_context_switch" to sq_rbbm_interface and connected it to
sq_aluconst_top and sq_texconst_top in sq.v
 <enter description here>

Change 30286 on 2002/05/28 by vromaker@vromaker_r400_linux_marlboro

 removing from tis

Change 30284 on 2002/05/28 by vromaker@vromaker_r400_linux_marlboro

 moved file from tis to cfs

Change 30282 on 2002/05/28 by vromaker@vromaker_r400_linux_marlboro

 updates...

Change 30159 on 2002/05/27 by vromaker@vromaker_r400_linux_marlboro

 updates

Change 30053 on 2002/05/24 by dougd@dougd_r400_linux_marlboro

 rbi_acs_rts was wired to both o_aluconst_rts and o_texconst_rts from sq_rbbm_interface:
fixed

Change 30048 on 2002/05/24 by vromaker@vromaker_r400_linux_marlboro

 checkpoint update

Change 30021 on 2002/05/24 by dougd@dougd_r400_linux_marlboro

 extended duration of i_map_copy_active to hold rtr inactive 1 more tick to allow pa to be
allocated.

Change 29966 on 2002/05/24 by dougd@dougd_r400_linux_marlboro

 changed include file

Change 29948 on 2002/05/24 by dougd@dougd_r400_linux_marlboro

 sq_rbbm_interface supports both old and new register `defines and has all the new state
registers. sq.v instantiates this sq_rbbm_interface.

Change 29802 on 2002/05/23 by dougd@dougd_r400_linux_marlboro

 fixed various bugs

Change 29768 on 2002/05/23 by vromaker@vromaker_r400_linux_marlboro

 Page 131 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 initial version

Change 29767 on 2002/05/23 by vromaker@vromaker_r400_linux_marlboro

 updates

Change 29750 on 2002/05/23 by vromaker@vromaker_r400_linux_marlboro

 updates.. now has clk and reset inputs...

Change 29311 on 2002/05/21 by vromaker@vromaker_r400_linux_marlboro

 added SQ_CTL_PKT_WIDTH back in

Change 29136 on 2002/05/20 by vromaker@vromaker_r400_linux_marlboro

 updates...

Change 28916 on 2002/05/17 by vromaker@vromaker_r400_linux_marlboro

 new sq files for clause-less state management : initial, not complete, versions

Change 28866 on 2002/05/17 by dougd@dougd_r400_linux_marlboro

 minor logic fixes

Change 28533 on 2002/05/16 by dougd@dougd_r400_linux_marlboro

 tempory use to allow compile until new register spec is implemented.

Change 28531 on 2002/05/16 by dougd@dougd_r400_linux_marlboro

 added temporary include of ../sq_reg_old.v to allow compile until the new register spec is
implemented

Change 27919 on 2002/05/14 by dougd@dougd_r400_linux_marlboro

 this is the old register spec which is needed while we are still using rtl based on this spec

Change 27917 on 2002/05/14 by dougd@dougd_r400_sun_marlboro

 changed `include "register_addr.v to `include "../sq_register_addr.v to allow compilation
of rtl based on old register spec

Change 27837 on 2002/05/14 by dougd@dougd_r400_linux_marlboro

 added prefix sq_ to module and file name

Change 27828 on 2002/05/14 by vromaker@vromaker_r400_linux_marlboro

 Page 132 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 added fifo_regs_ctl to sq/misc

Change 27332 on 2002/05/10 by dougd@dougd_r400_sun_marlboro

 added a divide by 3 to the incoming RBI address to generate the correct instruction
memory address

Change 27179 on 2002/05/09 by dougd@dougd_r400_sun_marlboro

 changed size of outputs o_inst_base_vtx and o_inst_base_pix from 8x because they are
not state(context) registers

Change 27099 on 2002/05/08 by dougd@dougd_r400_sun_marlboro

 added outputs for the initial set of state registers in sq.v

Change 27093 on 2002/05/08 by dougd@dougd_r400_sun_marlboro

 changed the values assigned to i_is_phase

Change 27092 on 2002/05/08 by dougd@dougd_r400_sun_marlboro

 added sq_ as prefix to module and file names

Change 27088 on 2002/05/08 by dougd@dougd_r400_sun_marlboro

 added sq_ as prefix to module and file

Change 27087 on 2002/05/08 by dougd@dougd_r400_sun_marlboro

 added sq_ prefix to module and file names

Change 27050 on 2002/05/08 by vromaker@vromaker_r400_linux_marlboro

 updates

Change 26913 on 2002/05/08 by dougd@dougd_r400_sun_marlboro

 this module was renamed to sq_instruction_store.v

Change 26907 on 2002/05/08 by dougd@dougd_r400_sun_marlboro

 this file was renamed to sq_vism.v

Change 26905 on 2002/05/08 by dougd@dougd_r400_sun_marlboro

 changed some IO names

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1463 of 1898

 Page 133 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 26903 on 2002/05/08 by dougd@dougd_r400_sun_marlboro

 changed module name from vism to sq_vism. changed some IO names.

Change 26852 on 2002/05/07 by dougd@dougd_r400_sun_marlboro

 renamed module from is.v to sq_instruction_store.v

Change 26785 on 2002/05/07 by dougd@dougd_r400_sun_marlboro

 initial version is incomplete and in development.

Change 26731 on 2002/05/07 by vromaker@vromaker_r400_linux_marlboro

 delete

Change 26729 on 2002/05/07 by vromaker@vromaker_r400_linux_marlboro

 delete

Change 26726 on 2002/05/07 by vromaker@vromaker_r400_sun_marlboro

 submitting all...

Change 26717 on 2002/05/07 by vromaker@vromaker_r400_sun_marlboro

 sadf

Change 26716 on 2002/05/07 by vromaker@vromaker_r400_sun_marlboro

 asdf

Change 26713 on 2002/05/07 by vromaker@vromaker_r400_sun_marlboro

 asdf

Change 26584 on 2002/05/06 by dougd@dougd_r400_sun_marlboro

 added outputs o_vism_busy (to arbiter) and o_sp_vsr_read to shader pipe to control
reading VSR during GPR loading. Removed input i_gpr_phase_mux as it was unused.

Change 26219 on 2002/05/03 by dougd@dougd_r400_sun_marlboro

 initial submit for sq/vism rtl

Change 26218 on 2002/05/03 by dougd@dougd_r400_sun_marlboro

 initial submit for sq/is rtl

 Page 134 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 26217 on 2002/05/03 by dougd@dougd_r400_sun_marlboro

 initial submit for sq/cfc rtl

Change 26216 on 2002/05/03 by dougd@dougd_r400_sun_marlboro

 initial submit for sq/texconst rtl

Change 26214 on 2002/05/03 by dougd@dougd_r400_sun_marlboro

 initial submit for sq/aluconst rtl

Change 26208 on 2002/05/03 by dougd@dougd_r400_sun_marlboro

 intitial submit.

Change 25779 on 2002/05/01 by vromaker@vromaker_r400_sun_marlboro

 latest updates

Change 25625 on 2002/04/30 by vromaker@vromaker_r400_sun_marlboro

 updates

Change 25183 on 2002/04/26 by vromaker@vromaker_r400_sun_marlboro

 file updates

Change 24711 on 2002/04/24 by vromaker@vromaker_r400_sun_marlboro

 ping-pong buffer (ctl and storage, width parameterized)

Change 24469 on 2002/04/23 by vromaker@vromaker_r400_sun_marlboro

 mux to select gfx register data based on state (context)

Change 24081 on 2002/04/19 by vromaker@vromaker_r400_sun_marlboro

 initial versions

Change 23514 on 2002/04/16 by vromaker@vromaker_r400_sun_marlboro

 updating with latest versions

Change 21716 on 2002/04/03 by vromaker@vromaker_r400_sun_marlboro

 update

Change 21714 on 2002/04/03 by vromaker@vromaker_r400_sun_marlboro

 Page 135 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

 update

Change 21642 on 2002/04/03 by vromaker@vromaker_r400_sun_marlboro

 SP_TP_const to 48 bits

Change 21626 on 2002/04/03 by vromaker@vromaker_r400_sun_marlboro

 latest fixes

Change 21468 on 2002/04/02 by vromaker@vromaker_r400_sun_marlboro

 more fixes

Change 21425 on 2002/04/02 by vromaker@vromaker_r400_sun_marlboro

 latest fixes

Change 21081 on 2002/03/29 by vromaker@vromaker_r400_sun_marlboro

Change 21079 on 2002/03/29 by vromaker@vromaker_r400_sun_marlboro

 initial version

Change 21075 on 2002/03/29 by vromaker@vromaker_r400_sun_marlboro

 initial version

Change 21074 on 2002/03/29 by vromaker@vromaker_r400_sun_marlboro

 update

Change 21073 on 2002/03/29 by vromaker@vromaker_r400_sun_marlboro

 initial version

Change 20660 on 2002/03/27 by vromaker@vromaker_r400_sun_marlboro

 module name updated to sq

Change 20657 on 2002/03/27 by vromaker@vromaker_r400_sun_marlboro

 position_space -> pos_avail, buffer_space -> buf_avail

Change 20655 on 2002/03/27 by vromaker@vromaker_r400_sun_marlboro

 added SQ_TP_type, SQ_TP_send, un_TP_SQ_type, TP_SQ_rdy

 Page 136 of 136

Ex. 2049 --- Sequencer Parts Development FH --- folder_history

Change 20654 on 2002/03/27 by vromaker@vromaker_r400_sun_marlboro

 un_SQ_TP_pmask -> un_SQ_TP_pix_mask (for n = 0..3)

Change 20652 on 2002/03/27 by vromaker@vromaker_r400_sun_marlboro

 latest version - renamed from sequencer_top.v

Change 19789 on 2002/03/20 by vromaker@vromaker_r400_sun_marlboro

 re-added SQ_SP_ijline, fixed SP_TP instr and const widths

Change 19752 on 2002/03/20 by vromaker@vromaker_r400_sun_marlboro

 put SQ_SP_stall back in

Change 19726 on 2002/03/20 by vromaker@vromaker_r400_sun_marlboro

 updates

Change 19653 on 2002/03/19 by vromaker@vromaker_r400_sun_marlboro

 updated sq top

Change 18260 on 2002/03/08 by vromaker@vromaker_r400_sun_marlboro

 initial version

Change 18257 on 2002/03/08 by vromaker@vromaker_r400_sun_marlboro

 initial version

Change 18256 on 2002/03/08 by vromaker@vromaker_r400_sun_marlboro

 initial version

Change 11107 on 2001/12/03 by pmitchel@pmitchel_r400_win_marlboro

 mv block dirs to gfx

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1464 of 1898

 Page 1 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 216876 on 2005/04/08 by vromaker@MA_VIC_P4

 updated overview, removed some out-of-data info

Change 216874 on 2005/04/08 by vromaker@MA_VIC_P4

 update

Change 191268 on 2004/10/12 by rramsey@rramsey_xenos_win_orl

 Add a page for newCurCnt table

Change 188248 on 2004/09/17 by lseiler@lseiler_win_l_r400

 Fixed a minor bug in the stencil function table

Change 149989 on 2004/02/19 by lseiler@lseiler_r400_win_marlboro1

 Fixed bug in Zplane figure

Change 138566 on 2003/12/19 by fliljero@fl_frank

 Added 3 new packets for improved type-0 packet processing:
 Incremental_Update_State/Const/Instr

Change 137750 on 2003/12/16 by fliljero@fl_knarf

 Added optimized Event_Write* packets & new opcodes

Change 137101 on 2003/12/12 by fliljero@fl_frank

 Added Wait_Reg_Eq & Wait_Reg_Gte PM4 packet descriptions

Change 137025 on 2003/12/11 by fliljero@fl_knarf

 updated documentation on error checking and removed reference to type-1 packet.

Change 136800 on 2003/12/10 by fliljero@fl_knarf

 Updated description for MEM_WRITE_CNTR to include how to change the core clock
interval from 1 <--> 16.

Change 136780 on 2003/12/10 by fliljero@fl_knarf

 Updated Me_Init packet for Header Dumps & Error checking...added note about
recompiling microcode to enable these debug only features.

Change 136762 on 2003/12/10 by fliljero@fl_knarf

 Page 2 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Updates related to CP_MEQ

Change 136302 on 2003/12/08 by fliljero@fl_frank

 Updates to MEQ related registers & busy signals

Change 135746 on 2003/12/05 by fliljero@fl_knarf

 Updated CP Interrupt packet for performance

Change 134564 on 2003/12/01 by fliljero@fl_knarf

 Max Buffer Size in Indirect Buffer Packets is [19:0]...Spec had [22:0]

Change 133990 on 2003/11/25 by jhoule@jhoule_doc_lt

 v1.80 - Indicated that NO_ZERO srf mode is unsupported for Xenos (will currently only
work in the VC path)

Change 133807 on 2003/11/25 by alleng@alleng_r400_win_marlboro_8200

 Deleting old files...

Change 133806 on 2003/11/25 by alleng@alleng_r400_win_marlboro_8200

 Deleted old files...

Change 133805 on 2003/11/25 by alleng@alleng_r400_win_marlboro_8200

 Deleted old files...

Change 132833 on 2003/11/19 by fliljero@fl_knarf

 changed R400 reference to Xenos

Change 131864 on 2003/11/13 by frising@frising_r400_win_marlboro

 -For cube instruction SrcA swizzle is now .zzxy. Also tried to clarify the differences
between what's shown in the numerics doc and what actually happens in the HW for cube
instruction.

Change 130982 on 2003/11/10 by mpersaud@mpersaud_r400_win_tor

 Submit delta doc for R400_R500 tvout changes

Change 130037 on 2003/11/04 by fliljero@fl_knarf

 Added registers and PM4 packet changes related to the Software Managed Instruction
Store...

 Page 3 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 129511 on 2003/10/30 by tien@ma_spinach

 Some additional info on perf and debug regs

Change 128832 on 2003/10/27 by tien@ma_spinach

 Added info to perf and debug regs..

Change 127821 on 2003/10/22 by bbuchner@fl_bbuchner_r400_win

 Updates

Change 127682 on 2003/10/21 by tien@ma_spinach

 A little more one perf regs
 New debug regs doc

Change 127599 on 2003/10/21 by tien@ma_spinach

 Added some info the the perf counters for TP/TPC
 This is tough :-) but kinda fun :-)

Change 127541 on 2003/10/21 by tien@ma_spinach

 Filled in results for all cases
 Added tri_juice cases
 Added mip_frac = 0 case
 Added z_frac = 0 case
 Will define perf counters for TPC/TP here for the heck of it..

Change 126714 on 2003/10/15 by jayw@ma_jayw_lt

 old update with John's change

Change 126588 on 2003/10/14 by tien@ma_spinach

 Filled in numbers for a bunch of cases

Change 126058 on 2003/10/10 by frising@frising_r400_win_marlboro

 -update scalar mova instructions to return MAX_S(SrcC)

Change 125972 on 2003/10/09 by frising@frising_r400_win_marlboro

 -update vector mova instruction to be two operand with result to GPR being max of
operands. Scalar mova instructions were updated to always return srcC.w.

Change 125952 on 2003/10/09 by beiwang@bei_pc

 Page 4 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Added description and restrictions on RB->MH and MH->RB requests routed through
MCCI.

Change 125904 on 2003/10/09 by jhoule@jhoule_doc_lt

 v1.79

 - Added stack map support
 - Changed SIZE packing for 2D to allow for common decoding between stack maps and
2D maps
 - Stated that SIZE values must contain w-1, h-1, and d-1
 - Added "Stack" line to the maximum texture sizes

Change 125618 on 2003/10/08 by jiezhou@jiezhou_r400_win

 small updating

Change 125614 on 2003/10/08 by jiezhou@jiezhou_r400_win

 fix Hyperlink, add DTO description, Test counter description

Change 124923 on 2003/10/03 by jhoule@jhoule_doc_lt

 v1.78

 TFetchInstr:
 - Removed unsupported opcodes for the sake of clarity

 TFetchConst:
 - Moved DIM field to last DWORD (kept the old one temporarily)
 - Added ANISO_BIAS field

 Formats:
 - Added FMT_DXT3A_AS_1_1_1_1

 Deprecated the ARBITRARY_FILTER fields from TFetch instr+const.

Change 124599 on 2003/10/02 by fliljero@fl_knarf

 no change

Change 124344 on 2003/10/01 by lseiler@lseiler_r400_win_marlboro

 Changes to depth formats to make HW more efficient

Change 124325 on 2003/10/01 by fliljero@fl_knarf

 added 2nd interrupt from MC to RBBM

ATI 2050
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1465 of 1898

 Page 5 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 124280 on 2003/10/01 by fliljero@fl_knarf

 added MC0|MC1_RBBM_int signals

Change 123990 on 2003/09/30 by fliljero@fl_knarf

 added changes to set_state and load_constant_context

Change 123796 on 2003/09/29 by vbhatia@vbhatia_r400_win_marlboro

 Slight update of fmt49, to reflect changes in tp_fmt_encode hardware

Change 123793 on 2003/09/29 by tien@ma_spinach

 First check-in

Change 123764 on 2003/09/29 by vgoel@fl_vgoel2

 closed bug 104

Change 123315 on 2003/09/25 by fliljero@fl_knarf

 Updated Const_Prefetch packet to issue only once per LCC packet. When the LCC
ordinals repeat, they also repeat in the Const_Prefetch packet. Formerly, there was a new
Const_Prefetch packet for each repeat of the ordinals.

Change 123064 on 2003/09/24 by fliljero@fl_knarf

 Updated Subblk_Prefetch packet to send the Header only once, followed optionally by
each ordinal on a mismatch.

Change 123059 on 2003/09/24 by ashishs@fl_ashishs_r400_win

 closing bug 40 and 116

Change 123057 on 2003/09/24 by tien@ma_spinach

 Upadted for the week 9/24

Change 123011 on 2003/09/24 by csampayo@fl_csampayo_r400

 Closed bug #s 121, 123

Change 122955 on 2003/09/24 by mkelly@fl_mkelly_r400_win_laptop

 Closed bugs 90 and 91...

Change 122800 on 2003/09/23 by fliljero@fl_knarf

 Page 6 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 made drawing change to reflect changes to SRC0 & SRC1 removal of MICROM, MRL
& MRM as possible sources. also removed the BOOLEANs as a possible source for SRC1.

Change 122794 on 2003/09/23 by jhoule@jhoule_doc_lt

 Update for the new Ws which has 11b mantissa (12b total)

Change 122741 on 2003/09/23 by csampayo@fl_csampayo_r400

 Closed bug# 117. Some housekeeping

Change 122572 on 2003/09/22 by efong@efong_r400_win_tor_doc

 added in dglen

Change 121971 on 2003/09/18 by efong@efong_r400_win_tor_doc

 New update to remove people who have left and new PEYs

Change 121907 on 2003/09/17 by alleng@alleng_r400_win_marlboro_8200

 Minor fixes, rearranged, added SC efficiency, vector ratios, etc...

Change 121820 on 2003/09/17 by vliu@vliu_r400_cnnbdv3_win_cvd

 Initial revision

Change 121788 on 2003/09/17 by tien@ma_spinach

 Updates for the week

Change 121752 on 2003/09/17 by koyu@kyu

 added SQ spreadsheet, added -optimize to pm4opt redundant LCC and SET_CONST pkts

Change 121616 on 2003/09/16 by alleng@alleng_r400_win_marlboro_8200

 Added new perl script to go direct from phantom.csv to the file.xls file.

 Currently need to take this file, phantom_template.xls (in pv), and the phantom.csv and
test_sum.txt files created by running the test in one directory and execute this script (perl
perf2xls.pl).

 Cannot be run on linux and requires the OLE32 perl module installed...

Change 121318 on 2003/09/15 by ctaylor@fl_ctaylor_r400_win_marlboro

 Removed as these were redundant drawings.

 Page 7 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 121306 on 2003/09/15 by vliu@vliu_r400_cnnbdv3_win_cvd

 Test tiling library

Change 120795 on 2003/09/11 by fliljero@fl_knarf

 added zpass_done info to the event_write packet

Change 120701 on 2003/09/11 by lkang@lkang_r400_win_tor

 deletion

Change 120508 on 2003/09/10 by tien@ma_spinach

 More updates afetr email from JOcelyn

Change 120486 on 2003/09/10 by tien@ma_spinach

 Updates for the week

Change 120303 on 2003/09/09 by fliljero@fl_knarf

 added predicated bin test results (RT/nRT) to State Management register w/index=0xD

Change 120271 on 2003/09/09 by fliljero@fl_knarf

 Update Event Write packet for new functionality for the zpass_done event ... clears the
context valid flag, which in turn will cause the context to be rolled on the next state packet.

Change 120048 on 2003/09/08 by jayw@ma_jayw_lt

 changed pmask order in cache for 4-sample
 John found better arrangement. one read for pmask and stencil
 no ram line overlap.

Change 119978 on 2003/09/08 by fghodrat@ma_fghodrat

 moved to xenos tree

Change 119939 on 2003/09/08 by fliljero@fl_knarf

 added 128-bit write enable to the MH field to the CP_DEBUG register.

Change 119760 on 2003/09/05 by alleng@alleng_r400_win_marlboro_8200

 Added new tests to pv_results
 Added VGT and PA rates to the phantom template

 Page 8 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 119726 on 2003/09/05 by fliljero@fl_knarf

 added predicate_disable bit to CP_DEBUG

Change 119667 on 2003/09/05 by fliljero@fl_knarf

 removed DATA ordinal from the MEM_WRITE_CNTR packet description

Change 119663 on 2003/09/05 by fliljero@fl_knarf

 added MEM_WRITE_CNTR opcode
 moved SET_BIN_MASK/SELECT opcodes to unused locations

Change 119540 on 2003/09/04 by tien@ma_spinach

 UPdated some missing fields

Change 119483 on 2003/09/04 by frising@frising_r400_win_marlboro

 v.1.77
 -Added new compressed texture formats: FMT_DXT3A, FMT_DXT5A and FMT_CTX1
along with associated documentation.
 -all these formats support degamma
 -DXN now also supports degamma
 -removed some cruft :)
 -closed open question on supporting color keying

Change 119460 on 2003/09/04 by mkelly@fl_mkelly_r400_win_laptop

 Branching example slides.

Change 119373 on 2003/09/04 by fghodrat@ma_fghodrat

 update todo list

Change 119321 on 2003/09/03 by tien@ma_spinach

 MOre changes

Change 119315 on 2003/09/03 by tien@ma_spinach

 Something wacky with the clientspec, need to check in to re-update, plus some more
updates form mtg.

Change 119301 on 2003/09/03 by fliljero@fl_knarf

 made updates to the event write packet and added new associated register:
CP_ME_CF_EVENT_SRC

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1466 of 1898

 Page 9 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 119277 on 2003/09/03 by fghodrat@ma_fghodrat

 Rename cg_pm_r500.doc To cg_pm_xenos.doc

Change 119259 on 2003/09/03 by tien@ma_spinach

 Updated for this week

Change 119253 on 2003/09/03 by bbloemer@ma_bbloemer

 Added new document.

Change 119223 on 2003/09/03 by fliljero@fl_knarf

 added CP_PROG_COUNTER,
 related update to CP_ME_CNTL,
 related update to EVENT_WRITE packet, &
 related new PM4 packet MEM_WRITE_CNTR

Change 119196 on 2003/09/03 by fghodrat@ma_fghodrat

 cg and pm spec for xenos

Change 118796 on 2003/08/29 by keli@keli_r400_win_tor

 updates

Change 118786 on 2003/08/29 by keli@keli_r400_win_tor

 Toronto Virage Memories Generation

Change 118771 on 2003/08/29 by llefebvr@llefebvr_r400_montreal

 Fixing number of bits in the auto-count.

Change 118731 on 2003/08/29 by keli@keli_r400_win_tor

 Document for Code coverage, formal verification, leda and synthesis report and web page
generation

Change 118709 on 2003/08/29 by fliljero@fl_fliljeros

 added real-time versions of the predicate registers: BIN_MASK & BIN_SELECT

Change 118570 on 2003/08/28 by kryan@kryan_r400_win_marlboro_DOCS

 - Clean up

 - Update some references and outdated facts.

 Page 10 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 118408 on 2003/08/27 by fliljero@fl_knarf

 updated/added coherency registers and interface
 updated/added predicate registers and description

Change 118393 on 2003/08/27 by tien@ma_spinach

 Updated the list
 Merged c1 and non-c1 rtl tasks

Change 118362 on 2003/08/27 by fliljero@fl_knarf

 added type-3 predicated packet related information

Change 117997 on 2003/08/25 by lkang@lkang_r400_win_tor

 incremental update for physical partition

Change 117602 on 2003/08/21 by tien@ma_spinach

 Updated

Change 117591 on 2003/08/21 by mkelly@fl_mkelly_r400_win_laptop

 Slides for Perforce Branching presentation.

Change 117496 on 2003/08/21 by frising@frising_r400_win_marlboro

 v.1.76
 -changed polarity of INDEX_ROUND bit in vertex fetch instruction

Change 117394 on 2003/08/20 by tien@ma_spinach

 Gradient task added

Change 117320 on 2003/08/20 by jyarasca@jyarasca_r400_win_cvd

 Updated scheduling information on 247 Linux and 247 Chip Linux

Change 117312 on 2003/08/20 by tien@ma_spinach

 ...

Change 117236 on 2003/08/20 by tien@ma_spinach

 Added some more tasks to list

Change 117002 on 2003/08/18 by tien@ma_spinach

 Page 11 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Added to Perforce so I can edit it on multiple machines :-)

Change 116974 on 2003/08/18 by tien@ma_spinach

 Fixed the encoding. 16_EXPAND are going to need their own :-)

Change 116968 on 2003/08/18 by tien@ma_spinach

 Describes how DATA_FORMAT is encoded to reduce logic after walker.

Change 116959 on 2003/08/18 by tien@ma_spinach

 Filled in more stuff for test list
 Added to-do list

Change 116958 on 2003/08/18 by ctaylor@fl_ctaylor_r400_win_marlboro

 Added SC block diagrams from Mike Mantor

Change 116957 on 2003/08/18 by jayw@MA_JAYW

 updated pmask and stencil

Change 116952 on 2003/08/18 by beiwang@bei_pc

 Added reminder for tPDEX test during Dynamic CKE test

Change 116866 on 2003/08/18 by jayw@ma_jayw_lt

 no change

Change 116789 on 2003/08/15 by jayw@MA_JAYW

 1 and 4 sample cache line arrangement updated

Change 116785 on 2003/08/15 by tmartin@tmartin_r400_win

 added r400vc_fetch_mode_01 and r400vc_array_size_01

Change 116764 on 2003/08/15 by tien@ma_spinach

 Added info

Change 116749 on 2003/08/15 by tien@ma_spinach

 Added some info.

Change 116748 on 2003/08/15 by tien@ma_spinach

 Page 12 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Adding...

Change 116699 on 2003/08/15 by jayw@ma_jayw_lt

 visio bugs present

Change 116634 on 2003/08/14 by ashishs@fl_ashishs_r400_win

 updated the tracker with 5 more ALU instruction tests. Also updated the total count on
ALU instructions thereby increasing the project overall % complete

Change 116622 on 2003/08/14 by mkelly@fl_mkelly_r400_win_laptop

 Update comment in _11
 Copy _11 to _12 and use 144 vertices per packet
 Update test_list and tracker accordingly.

Change 116617 on 2003/08/14 by csampayo@fl_csampayo_r400

 Renamend sheet1, updated schedule

Change 116407 on 2003/08/13 by jasif@jasif_r400_win_tor

 Made some additions. Will add some more tomorrow.

Change 116385 on 2003/08/13 by ygiang@ygiang_r400_win_marlboro_p4

 updated:pv results

Change 116378 on 2003/08/13 by ygiang@ygiang_r400_win_marlboro_p4

 updated: performance excel sheets

Change 116369 on 2003/08/13 by frising@frising_r400_win_marlboro

 no changes, just a test.

Change 116347 on 2003/08/13 by jimmylau@jimmylau_r400_win_tor

 Add a section on clock muxing conditions to the R500 BIF implementation specs.
 Add a table of R500 pin and ROM straps.

Change 116338 on 2003/08/13 by jcox@FL_JCOX3

 Make ready to post test plan status on web

Change 116194 on 2003/08/12 by tmartin@tmartin_r400_win

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1467 of 1898

 Page 13 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 added r400vc_endian_swap_01 and r400vc_endian_swap_02

Change 115764 on 2003/08/11 by ashishs@fl_ashishs_r400_win

 updated

Change 115683 on 2003/08/08 by koyu@kyuCA

 added cycles/inst for vertex shader and pixel shader

Change 115607 on 2003/08/08 by mkelly@fl_mkelly_r400_win_laptop

 Negative ALU VS constant clamping, negative index clamping with negative stepping

Change 115561 on 2003/08/08 by fliljero@fl_knarf

 renamed references from R400 to Crayola

Change 115547 on 2003/08/08 by fliljero@fl_knarf

 Removed all references to PIO/Push mode and its associated registers:
 CP_CSQ_CNTL
 CP_ 'RING | INDIRECT1 | INDIRECT2 | REAL_TIME | IB_ST | RT_ST'_PUSH

Change 115546 on 2003/08/08 by fliljero@fl_knarf

 renamed to use Crayola rather than R400

Change 115480 on 2003/08/07 by mkelly@fl_mkelly_r400_win_laptop

 First test of series which checks positive alu constant index clamping.

Change 115463 on 2003/08/07 by fliljero@fl_knarf

 Baseline for the PM4 Spec (after the start of Xenos)

Change 115462 on 2003/08/07 by fliljero@fl_knarf

 added note to cover to see PM4 Spec Crayola for the latest PM4 data

Change 115461 on 2003/08/07 by fliljero@fl_knarf

 Baseline for Crayola CP Spec (after the start of Xenos)

Change 115460 on 2003/08/07 by fliljero@fl_knarf

 added note on cover to see CP Spec Crayola for the latest CP data.

Change 115388 on 2003/08/07 by ashishs@fl_ashishs_r400_win2

 Page 14 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 updating the tracker for all the tests added in last week and current week

Change 115373 on 2003/08/07 by csampayo@fl_csampayo_r400

 Updated status for the test r400sx_vtx_export_full_sequential_01

Change 115276 on 2003/08/06 by jhoule@jhoule_doc_lt

 Changed the weights to give less pointy tents.
 This forces a mutliplier instead of a shifter, but quality is deemed important enough to
warrant those.

Change 115225 on 2003/08/06 by jhoule@jhoule_doc_lt

 Document describing the new HiColor accumulation scheme

Change 115185 on 2003/08/06 by kevino@kevino_r400_win_marlboro

 Updated document to reflect what is in RTL code for tca regs

Change 115176 on 2003/08/06 by mzhu@mzhu_crayola_win_tor

 Add 3.4.9.21 for the cases right edge of icon/cursor is aligned with right edge of graphics
window.

Change 115166 on 2003/08/06 by koyu@kyuCA

 added new fields for SQ

Change 115088 on 2003/08/05 by jimmylau@jimmylau_r400_win_tor

 rename scan ports from *BIF_* to *BIF_TOP_*

Change 114954 on 2003/08/05 by mkelly@fl_mkelly_r400_win_laptop

 Add 3 simple tests

Change 114824 on 2003/08/04 by alleng@alleng_r400_win_marlboro_8200

 Fixed hyperlinks

Change 114814 on 2003/08/04 by alleng@alleng_r400_win_marlboro_8200

 Updates...

Change 114724 on 2003/08/04 by llefebvr@llefebvr_r400_montreal

 Corrected the max number for mem exports to be 5 instead of 9.

 Page 15 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 114564 on 2003/08/01 by aashkar@aashkar2_crayola_win

 Updated Spec with the addition of bit 19 in the interrupt registers for the software
interrupt (SW_INT). This interrupt is moving to the CP from the MH.

Change 114555 on 2003/08/01 by tmartin@tmartin_r400_win

 fixed the total test count because some tests were left out

Change 114550 on 2003/08/01 by tmartin@tmartin_r400_win

 added r400vc_fetch_mode_01 and r400vc_fetch_mode_02

Change 114343 on 2003/07/31 by csampayo@fl_csampayo_r400

 Add memory export test, update test list and tracker

Change 114314 on 2003/07/31 by kryan@kryan_r400_win_marlboro_DOCS

 Update with latest changes to Shader Assembler

 - Update CUBE Vector ALU operation opcode syntax to take two source

 operands.

 - VFETCH instruction modifications

 . Update offset field in VFETCH instruction to be 23 bit signed value

 instead of unsigned 8 bits from previous definition.

 . Modified syntax to add FETCH_TYPE (MEGA/MINI) and COUNT

 optional fields from Vfetch instruction.

Change 114266 on 2003/07/31 by tmartin@tmartin_r400_win

 added r400vc_addr_spanning_01

Change 114220 on 2003/07/31 by jiezhou@jiezhou_r400_win

 add description of fcp clock

Change 114162 on 2003/07/31 by alleng@alleng_r400_win_marlboro_8200

 Page 16 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Run with updated hw

Change 114063 on 2003/07/30 by tmartin@tmartin_r400_win

 moved the section of the clamping test

Change 114059 on 2003/07/30 by jhoule@jhoule_doc_lt

 Hardcoded weights for anisotropy fix (not yet official).

Change 114044 on 2003/07/30 by csampayo@fl_csampayo_r400

 Updated description of section 1.2.7

Change 114018 on 2003/07/30 by tmartin@tmartin_r400_win

 added strides/offsets tests

Change 113992 on 2003/07/30 by csampayo@fl_csampayo_r400

 Update individual requirements based on combined interaction

Change 113980 on 2003/07/30 by jimmylau@jimmylau_r400_win_tor

 Remove ROM_strap_vcoref & ROM_strap_calref from the interface with strap block
because they are shared with ROM_strap_pad_rx_manual_impedance &
ROM_strap_pad_tx_manual_impedance.

 Add ROM strap B_PRX_LBACK_EN, which shares with bit 0 of ROM strap
PAD_CURRENT

Change 113956 on 2003/07/30 by jiezhou@jiezhou_r400_win

 Initial release

Change 113883 on 2003/07/29 by alleng@alleng_r400_win_marlboro_8200

 Included initial idle and busy counts.
 Rearranged a bit...

Change 113792 on 2003/07/29 by csampayo@fl_csampayo_r400

 Adjusted block schedules as per latest plan

Change 113761 on 2003/07/29 by mzhu@mzhu_crayola_win_tor

 Test data clamping in test case 3 for fix point alpha format in 3.4.9.18 64bpp graphics
with graphics and overlay alpha blending mode 1

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1468 of 1898

 Page 17 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 113507 on 2003/07/28 by csampayo@fl_csampayo_r400

 Some housekeeping

Change 113483 on 2003/07/28 by ashishs@fl_ashishs_r400_win

 updated

Change 113282 on 2003/07/25 by csampayo@fl_csampayo_r400

 Updated status for tests r400sx_vtx_point_size_export_01-04 and added them to test_list

Change 113280 on 2003/07/25 by jayw@ma_jayw_lt

 Working document for register read allocation across RB and DBs.

Change 113262 on 2003/07/25 by tmartin@tmartin_r400_win

 no new tests just some updates

Change 113136 on 2003/07/25 by bbloemer@ma_bbloemer

 Updated test descriptions.

Change 113130 on 2003/07/25 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 113128 on 2003/07/25 by kevino@kevino_r400_win_marlboro

 updated tables with reg addresses

Change 112980 on 2003/07/24 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 112914 on 2003/07/24 by alleng@alleng_r400_win_marlboro_8200

 Bringing the R400 docs up to date and checking in pm4play.bat

Change 112872 on 2003/07/24 by tmartin@tmartin_r400_win

 added r400vc_base_addr_range_pci_01

Change 112683 on 2003/07/23 by chwang@chwang_r400_doc_win

 Update.

 Page 18 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 112655 on 2003/07/23 by kevino@kevino_r400_win_marlboro

 Made table titles captions and updated table of tables

Change 112640 on 2003/07/23 by kevino@kevino_r400_win_marlboro

 Added fetch gen and TCD debug tables

Change 112628 on 2003/07/23 by efong@efong_r400_win_tor_doc

 updated visio diagrams

Change 112627 on 2003/07/23 by efong@efong_r400_win_tor_doc

 Updated the test_control section of the document

Change 112623 on 2003/07/23 by jowang@jowang_R400_win

 submit for kaleidoscope snapshot

Change 112603 on 2003/07/23 by jimmylau@jimmylau_r400_win_tor

 Elaborate when the strap valid signals should be asserted in the ROM straps section.

Change 112518 on 2003/07/22 by tmartin@tmartin_r400_win

 added r400vc_base_addr_range_agp_01

Change 112513 on 2003/07/22 by cbrennan@cbrennan_r400_win_marlboro

 Allocated most of Ray's ports.
 Added headings for more stuff to come.

Change 112496 on 2003/07/22 by brianf@ma_bfavela

 Updated performance numbers with "better" architecture

Change 112470 on 2003/07/22 by paulv@MA_PVELLA

 Fixed Table 22 to include the MH_TC_mcNsource bit.

Change 112465 on 2003/07/22 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 112329 on 2003/07/22 by jhoule@jhoule_doc_lt

 Updated notes below in order to explain the 16.2 and 32.2 precision decision.

 Page 19 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 112321 on 2003/07/22 by jhoule@jhoule_doc_lt

 Updated with full channel separation, meaning that the 8b can now be OR'd together to
create Mid and HiColor.

Change 112257 on 2003/07/21 by frising@frising_r400_win_marlboro

 0.99n
 -fixed small typo in CUBE instruction comments

Change 112232 on 2003/07/21 by tmartin@tmartin_r400_win

 Added 5 tests. All test the dynamic addressing range of the VC when vertex buffers are
stored in the frame buffer.

Change 112229 on 2003/07/21 by cbrennan@cbrennan_r400_win_marlboro

 Add the beginnings of a TC debug registers document for review.

Change 112227 on 2003/07/21 by enewman@enewman_r400_linux_marlboro

 fixed port_matcher command line switches and p4 label command line switches

Change 112113 on 2003/07/21 by rthambim@rthambim_r400_win_tor

 Modified top level diagram and added comments.

Change 112100 on 2003/07/21 by frising@frising_r400_win_marlboro

 v.1.75
 -remove per-quad value for USE_REG_LOD since we can do it per-pixel full speed.
Note that value 1 is now the only 'Yes'.

Change 112085 on 2003/07/21 by jyarasca@jyarasca_r400_win_cvd

 Updated times

Change 112078 on 2003/07/21 by jimmylau@jimmylau_r400_win_tor

 Updates on sections about slave interface changes and ROM strap location table, after
specs review.

Change 112077 on 2003/07/21 by jasif@jasif_r400_win_tor

 Updated schedules for simulation regressions.

Change 111975 on 2003/07/18 by csampayo@fl_csampayo_r400

 Adding point size export mode test. Updated test_list and test tracker accordingly.

 Page 20 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 111957 on 2003/07/18 by frising@frising_r400_win_marlboro

 v.1.74
 -Give a real explanation of how FMT_1_REVERSE differs from FMT_1

Change 111949 on 2003/07/18 by frising@frising_r400_win_marlboro

 v.0.99m
 -fix MAX4 instruction. Had comparision order backwards.

Change 111666 on 2003/07/17 by jimmylau@jimmylau_r400_win_tor

 Minor changes to fix typos and to reword some paragraphs slightly.

Change 111558 on 2003/07/16 by jimmylau@jimmylau_r400_win_tor

 Initial Revision

Change 111554 on 2003/07/16 by csampayo@fl_csampayo_r400

 Some housekeeping

Change 111517 on 2003/07/16 by lseiler@lseiler_r400_win_marlboro

 Minor fixes, additional test routines

Change 111482 on 2003/07/16 by tmartin@tmartin_r400_win

 added r400vc_addr_alignment_01

Change 111413 on 2003/07/16 by smburu@smburu_r400_win_marlboro

 tp_ch_blend update.

Change 111386 on 2003/07/16 by frising@frising_r400_win_marlboro

 v.0.99l
 -add scalar sin and cos instructions

Change 111385 on 2003/07/16 by frising@frising_r400_win_marlboro

 v.1.99
 -add scalar sin and cos instructions

Change 111285 on 2003/07/15 by gregs@gregs_r400_win_marlboro

 typo in a signal name - corrected

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1469 of 1898

 Page 21 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 111281 on 2003/07/15 by brianf@ma_bfavela

 More changes

Change 111229 on 2003/07/15 by brianf@ma_bfavela

 Updated summary to include MH.

Change 111206 on 2003/07/15 by alleng@alleng_r400_win_marlboro_8200

 Added a couple more tidbits regarding capture

Change 111200 on 2003/07/15 by brianf@ma_bfavela

 Fixed hyperlinks

Change 111187 on 2003/07/15 by ashishs@fl_ashishs_r400_win

 updated test tracker

Change 111168 on 2003/07/15 by paulv@MA_PVELLA

 Updates concerning the MHS.

Change 111147 on 2003/07/15 by ashishs@fl_ashishs_r400_win

 updated tracker

Change 111109 on 2003/07/15 by brianf@ma_bfavela

 More performance updates

Change 111030 on 2003/07/14 by alleng@alleng_r400_win_marlboro_8200

 Added more data to the results tab...

Change 110917 on 2003/07/14 by mzhu@mzhu_crayola_win_tor

 Add 3.4.9.20 Multiply overlay alpha with global alpha for per pixel overlay alpha blend
mode

Change 110885 on 2003/07/14 by brianf@ma_bfavela

 Fixed DC so it doesn't error

Change 110883 on 2003/07/14 by brianf@ma_bfavela

 Updated performance

 Page 22 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 110825 on 2003/07/14 by jacarey@fl_jcarey2

 Fix Typo in RBBM Spec Diagram

Change 110516 on 2003/07/11 by jiezhou@jiezhou_r400_win

 Update PLL dividers' values

Change 110504 on 2003/07/11 by jiezhou@jiezhou_r400_win

 update pll divider's value

Change 110337 on 2003/07/10 by vbhatia@vbhatia_r400_win_marlboro

 Updated tp and vc path formatter status

Change 110255 on 2003/07/10 by lseiler@lseiler_r400_win_marlboro2

 Minor text edits, updated pdf version

Change 110230 on 2003/07/10 by mzhu@mzhu_crayola_win_tor

 Add Multiplying overlay alpha with global alpha in 11.10 Overlay Keyer. It is used for
overlay per-pixel alpha blending mode.

Change 110173 on 2003/07/10 by dglen@dglen_r400

 Deleted file
 Superceded by R500 Display Colour Spaces.xls

Change 110159 on 2003/07/10 by dglen@dglen_r400

 Spreadsheet for matrix, gamma and color conversions in R500 display path (DCP and TV
out)

Change 109959 on 2003/07/09 by jimmylau@jimmylau_r400_win_tor

 Update to the BIF slave interface specs after the review meeting

Change 109954 on 2003/07/09 by llefebvr@llefebvr_r400_montreal

 Fixing VC table.

Change 109817 on 2003/07/08 by rthambim@rthambim_r400_win_tor

 Fixed naming convention.

Change 109812 on 2003/07/08 by jhoule@jhoule_doc_lt

 Page 23 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Major change, with left-alignment instead or right shifts.

Change 109715 on 2003/07/08 by rthambim@rthambim_r400_win_tor

 Updated the spec with review feedback.

Change 109709 on 2003/07/08 by rthambim@rthambim_r400_win_tor

 updated the spec with review feedback - included ordering info to read req; modified
timing diags; added comments to unused ports.

Change 109670 on 2003/07/08 by jimmylau@jimmylau_r400_win_tor

 Fix typo in the MH-BIF signal in the master specs

Change 109493 on 2003/07/07 by csampayo@fl_csampayo_r400

 Some housekeeping

Change 109402 on 2003/07/06 by gregs@laptop1

 ...

Change 109352 on 2003/07/04 by jimmylau@jimmylau_r400_win_tor

 Update the section on strap interface after the review meeting.

Change 109187 on 2003/07/03 by jowang@jowang_R400_win

 Includes 30bpp for twin single and dual-link TMDS

Change 109175 on 2003/07/03 by ashishs@fl_ashishs_r400_win

 updated test_list and trackers

Change 109106 on 2003/07/03 by alleng@alleng_r400_win_marlboro_8200

 Removed one of the RB tabs

Change 109104 on 2003/07/03 by alleng@alleng_r400_win_marlboro_8200

 Added a few minor updates from Ko...

Change 109094 on 2003/07/03 by moev@moev

 updates to the status of the tests.

Change 108965 on 2003/07/02 by alleng@alleng_r400_win_marlboro_8200

 Page 24 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Updated with specific registry settings for capture

Change 108939 on 2003/07/02 by ashishs@fl_ashishs_r400_win

 corrected small error with SU

Change 108933 on 2003/07/02 by ashishs@fl_ashishs_r400_win

 updated the tracker to include author for CL/VTE tests so that its easy for debugging the
number of tests in each block

Change 108927 on 2003/07/02 by ashishs@fl_ashishs_r400_win

 updated tracker to include this weeks PA tests

Change 108905 on 2003/07/02 by ygiang@ygiang_r400_win_marlboro_p4

 added: Test list for Perfsuite performace tests

Change 108866 on 2003/07/02 by ashishs@fl_ashishs_r400_win

 updated for some bugs

Change 108861 on 2003/07/02 by rthambim@rthambim_r400_win_tor

 Added source/frequency information for clock signals.

Change 108824 on 2003/07/02 by jacarey@fl_jcarey_desktop

 Update Min / Max functions in emulator to match hardware.
 Hardware produces a 32-bit signed extended result of 16-bit comparision value.

Change 108746 on 2003/07/01 by smburu@smburu_r400_win_marlboro

 tp_hicolor update.

Change 108740 on 2003/07/01 by paulv@MA_PVELLA

 Fixed a mistake about the size of the RB queue. It is 2, not 4.

Change 108736 on 2003/07/01 by smburu@smburu_r400_win_marlboro

 tp_hicolor update.

Change 108702 on 2003/07/01 by alleng@alleng_r400_win_marlboro_8200

 Added RB(C1) tab, added tests to vtx tab, et al

Change 108692 on 2003/07/01 by georgev@devel_georgevh2_r400_win_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1470 of 1898

 Page 25 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Added bsub run options

Change 108680 on 2003/07/01 by jacarey@fl_jcarey_desktop

 Add section documenting CP Idling before writing certain control registers.

Change 108579 on 2003/06/30 by jasif@jasif_r400_win_tor

 Updated.

Change 108520 on 2003/06/30 by ashishs@fl_ashishs_r400_win

 updated the tracker

Change 108516 on 2003/06/30 by frising@frising_r400_win_marlboro

 v.0.99k
 -remove references to R400_TP_NAN

Change 108514 on 2003/06/30 by gregs@gregs_r400_win_marlboro

 new

Change 108418 on 2003/06/27 by jiezhou@jiezhou_r400_win

 major updating for DC split

Change 108407 on 2003/06/27 by frising@frising_r400_win_marlboro

 -fixed small typo, no version bump

Change 108406 on 2003/06/27 by frising@frising_r400_win_marlboro

 v.1.73
 -Add FMT_32_32_32_FLOAT vertex only format
 -remove fast float stuff
 -remove TP NAN support

Change 108359 on 2003/06/27 by gregs@gregs_r400_win_marlboro

 added CG_VC_pm_enb register bit

Change 108350 on 2003/06/27 by sbagshaw@sbagshaw

 minor updates to contents & table of contents

Change 108338 on 2003/06/27 by frising@frising_r400_win_marlboro

 Page 26 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 v.1.98
 -show scalar instructions SUB_CONST_0 and SUB_CONST_1 as negated adds to be
consistent with other subtraction instructions.

Change 108325 on 2003/06/27 by frising@frising_r400_win_marlboro

 v.0.99j
 -misc updates and clean-up

Change 108322 on 2003/06/27 by rthambim@rthambim_r400_win_tor

 Initial revision for R500.

Change 108317 on 2003/06/27 by brianf@ma_bfavela

 MCMH Performance Spreadsheet

Change 108311 on 2003/06/27 by rthambim@rthambim_r400_win_tor

 Added pci-express changes. Initial revision for R500.

Change 108284 on 2003/06/27 by gregs@gregs_r400_win_marlboro

 fixed bug in PMESTBCLY macro

Change 108282 on 2003/06/27 by jiezhou@jiezhou_r400_win

 add pclk as a slave mode for one-shot debug control

Change 108273 on 2003/06/27 by jimmylau@jimmylau_r400_win_tor

 Update BIF slave interface specs for R500.

Change 108167 on 2003/06/26 by vbhatia@vbhatia_r400_win_marlboro

 Update status for addresser and formatter

Change 108103 on 2003/06/26 by sbagshaw@sbagshaw

 Programming Guide updated for R500.
 Includes information on the Scaler

Change 107862 on 2003/06/25 by smburu@smburu_r400_win_marlboro

 tp_hicolor update.

Change 107724 on 2003/06/24 by csampayo@fl_csampayo_r400

 Add footer (this time saved update)

 Page 27 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 107722 on 2003/06/24 by csampayo@fl_csampayo_r400

 Added footer

Change 107709 on 2003/06/24 by frising@frising_r400_win_marlboro

 0.99i
 -fix typos with set* scalar instructions
 -document correct behavior with not equal predicate instructions and NaNs

Change 107687 on 2003/06/24 by frising@frising_r400_win_marlboro

 0.99h
 -add cube instruction updates (two operand, etc)

Change 107637 on 2003/06/24 by moev@moev

 update to current state of testing

Change 107634 on 2003/06/24 by bbuchner@fl_bbuchner_r400_win

 updated slides

Change 107630 on 2003/06/24 by frising@frising_r400_win_marlboro

 v.1.97
 -update cube instruction to take two operands. Output produced in a different order too.

Change 107622 on 2003/06/24 by smburu@smburu_r400_win_marlboro

 hicolor status update.

Change 107617 on 2003/06/24 by georgev@devel_georgevh2_r400_win_marlboro

 Added "nodump" message to instructions.

Change 107537 on 2003/06/23 by georgev@devel_georgevh2_r400_win_marlboro

 Added new way of doing things.

Change 107536 on 2003/06/23 by bbuchner@fl_bbuchner_r400_win

 added review
 updated block diagram of cache

Change 107479 on 2003/06/23 by bbuchner@fl_bbuchner_r400_win

 added RP block diagrams for L1 and L2 request processing

 Page 28 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 107419 on 2003/06/23 by ashishs@fl_ashishs_r400_win

 updating trackers and test_list

Change 107282 on 2003/06/20 by moev@moev

 Status as of 6/20/03

Change 107253 on 2003/06/20 by llefebvr@llefebvr_r400_montreal

 Backup, no major changes.

Change 107197 on 2003/06/20 by vbhatia@vbhatia_r400_win_marlboro

 Status update for formatter

Change 107080 on 2003/06/19 by bbuchner@fl_bbuchner_r400_win

 ADDed MI block diagram and description. Minor fixes.

Change 106800 on 2003/06/18 by mkelly@fl_mkelly_r400_win_laptop

 First VC test documented...

Change 106777 on 2003/06/18 by smburu@smburu_r400_win_marlboro

 tp_hicolor status update.

Change 106696 on 2003/06/18 by smburu@smburu_r400_win_marlboro

 Update of tp_hicolor tests.

Change 106645 on 2003/06/17 by csampayo@fl_csampayo_r400

 Updated FC column to contain selected test counter

Change 106643 on 2003/06/17 by csampayo@fl_csampayo_r400

 Added full chip column

Change 106642 on 2003/06/17 by csampayo@fl_csampayo_r400

 Updated schedule, added full chip column

Change 106640 on 2003/06/17 by csampayo@fl_csampayo_r400

 Added full chip column

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1471 of 1898

 Page 29 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 106634 on 2003/06/17 by csampayo@fl_csampayo_r400

 Updated schedule, added full chip column

Change 106631 on 2003/06/17 by csampayo@fl_csampayo_r400

 Updated schedule, added full chip column

Change 106623 on 2003/06/17 by georgev@devel_georgevh2_r400_win_marlboro

 Added changes from TP meeting.

Change 106525 on 2003/06/17 by csampayo@fl_csampayo_r400

 Update header

Change 106524 on 2003/06/17 by csampayo@fl_csampayo_r400

 Update header

Change 106523 on 2003/06/17 by csampayo@fl_csampayo_r400

 Update header take 2

Change 106521 on 2003/06/17 by csampayo@fl_csampayo_r400

 Header update

Change 106519 on 2003/06/17 by csampayo@fl_csampayo_r400

 Header update

Change 106516 on 2003/06/17 by csampayo@fl_csampayo_r400

 Some housekeeping

Change 106509 on 2003/06/17 by csampayo@fl_csampayo_r400

 Some housekeeping

Change 106493 on 2003/06/17 by csampayo@fl_csampayo_r400

 Some housekeeping

Change 106436 on 2003/06/16 by ashishs@fl_ashishs_r400_win

 minor updates

Change 106410 on 2003/06/16 by alleng@alleng_r400_win_marlboro_8200

 Page 30 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Updates to standalone playback info

Change 106395 on 2003/06/16 by jasif@jasif_r400_win_tor

 DAC Report.

Change 106329 on 2003/06/16 by alleng@alleng_r400_win_marlboro_8200

 Initial submission

Change 106294 on 2003/06/16 by ashishs@fl_ashishs_r400_win

 updated

Change 106291 on 2003/06/16 by ashishs@fl_ashishs_r400_win

 updated

Change 105958 on 2003/06/12 by vbhatia@vbhatia_r400_win_marlboro

 Updated weekly regression status for deriv and aniso

Change 105882 on 2003/06/12 by jbrady@jbrady_r400_win

 Remove border color, add thread_type.

Change 105862 on 2003/06/12 by jbrady@jbrady_r400_win

 Update to reflect current vcrg partitioning.
 Added clamp module.

Change 105849 on 2003/06/12 by ashishs@fl_ashishs_r400_win

 adding place holder for some of the tests that will be planned for later

Change 105838 on 2003/06/12 by ashishs@fl_ashishs_r400_win

 added 2 bugs that were currently found in SQ waterfalling

Change 105834 on 2003/06/12 by alleng@alleng_r400_win_marlboro_8200

 Added miscellaneous test, added results column for a couple of sheets

Change 105776 on 2003/06/12 by smburu@smburu_r400_win_marlboro

 tp_hicolor status.

Change 105768 on 2003/06/12 by sbagshaw@sbagshaw

 Page 31 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Presentation for R500 DCDO Debug bus included.
 Changes started to R400 Debug Bus specification document to describe changes to debug
required for DC/DO split.

Change 105676 on 2003/06/11 by csampayo@fl_csampayo_r400

 Update tests reqs and to include more functionality

Change 105633 on 2003/06/11 by jowang@jowang_R400_win

 programming guide: bypass mode only

Change 105615 on 2003/06/11 by beiwang@bei_pc

 Added items left from line coverage.

Change 105476 on 2003/06/10 by csampayo@fl_csampayo_r400

 Initial check in

Change 105436 on 2003/06/10 by bbuchner@fl_bbuchner_r400_win

 removed null request from L2A FIFO when clamping is true

Change 105426 on 2003/06/10 by bbuchner@fl_bbuchner_r400_win

 updated all external I/O
 modified clamping

Change 105407 on 2003/06/10 by georgev@devel_georgevh2_r400_win_marlboro

 Added things to check test descriptions.

Change 105349 on 2003/06/10 by ygiang@ygiang_r400_win_marlboro_p4

 added: excel perf results template

Change 105347 on 2003/06/10 by mzhu@mzhu_crayola_win_tor

 Add 3.4.9.19 data clamping in LUT PWL mode

Change 105335 on 2003/06/10 by ygiang@ygiang_r400_win_marlboro_p4

 testing auto update for web

Change 105333 on 2003/06/10 by ygiang@ygiang_r400_win_marlboro_p4

 removed auto update

 Page 32 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 105310 on 2003/06/10 by moev@moev

 Updated tested blocks

Change 105299 on 2003/06/10 by ygiang@ygiang_r400_win_marlboro_p4

 updated:pv Xsheet

Change 105286 on 2003/06/10 by pmitchel@pmitchel_entire_depot_win

 moving results to doc_lib/pv_results

Change 105058 on 2003/06/09 by csampayo@fl_csampayo_r400

 Updated header. Some housekeeping

Change 105039 on 2003/06/09 by ashishs@fl_ashishs_r400_win

 updated

Change 105017 on 2003/06/09 by mzhu@mzhu_crayola_win_tor

 Update clamping and rounding for PWL LUT mode in 11.8

Change 104949 on 2003/06/09 by mzhu@mzhu_crayola_win_tor

 Update floating point LUT fill pattern in 3.4.4.

Change 104946 on 2003/06/09 by bbloemer@ma_bbloemer

 Updated test descriptions.

Change 104736 on 2003/06/06 by ashishs@fl_ashishs_r400_win

 updated the tracker and test_list for the newly added 4 tests

Change 104633 on 2003/06/06 by jacarey@fl_jcarey_desktop

 Document resetting of read registers to zero on reset.

Change 104629 on 2003/06/06 by paulv@MA_PVELLA

 Updates to the MHS.

Change 104557 on 2003/06/06 by efong@efong_r400_win_tor_doc

 Updated Linux machines assignments

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1472 of 1898

 Page 33 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 104473 on 2003/06/05 by jowang@jowang_R400_win

 added/modified after test plan review

Change 104460 on 2003/06/05 by vbhatia@vbhatia_r400_win_marlboro

 Update LodDeriv and LodAniso status of 06/05/03
 Also added latest tcd status as mentioned by Kevin O.

Change 104360 on 2003/06/05 by ygiang@ygiang_r400_win_marlboro_p4

 added: new pv sheet

Change 104355 on 2003/06/05 by ygiang@ygiang_r400_win_marlboro_p4

 relocated: pef excel sheets

Change 104347 on 2003/06/05 by ygiang@ygiang_r400_win_marlboro_p4

 relocating files

Change 104338 on 2003/06/05 by moev@moev

 changed WSO connectivity to WSO_P

Change 104330 on 2003/06/05 by ygiang@ygiang_r400_win_marlboro_p4

 fixed:link

Change 104325 on 2003/06/05 by ygiang@ygiang_r400_win_marlboro_p4

 added: performance excel sheets to perforce

Change 104324 on 2003/06/05 by jacarey@fl_jcarey_desktop

 Reset VS & PS De-alloc fifos when ME overwrites the *_Avail_Count counters

Change 104320 on 2003/06/05 by smburu@smburu_r400_win_marlboro

 Updated status fot tp_hicolor.

Change 104298 on 2003/06/05 by kcorrell@kcorrell_r400_docs_marlboro_nb

 documented change in DC tag definition - increased request sequence field

Change 104273 on 2003/06/05 by jmarsano@MA_JMARSANO

 Added ATPG and DBIST sections

 Page 34 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 104244 on 2003/06/05 by mzhu@mzhu_crayola_win_tor

 Update alpha pattern in 3.4.9.18

Change 104156 on 2003/06/04 by ashishs@fl_ashishs_r400_win

 updated the tracker

Change 104154 on 2003/06/04 by bbuchner@fl_bbuchner_r400_win

 updated L1 and L2 request fifo contents

Change 104036 on 2003/06/04 by rfevreau@rfevreau_r400_win

 Updates

Change 104014 on 2003/06/04 by jacarey@fl_jcarey_desktop

 Documentation for new debug bit in the CP.

Change 103838 on 2003/06/03 by mzhu@mzhu_crayola_win_tor

 Rename 2 LUT modes: 256-entry table mode and piece wise linear mode
 Add clamping and rounding for PWL LUT mode

Change 103836 on 2003/06/03 by mzhu@mzhu_crayola_win_tor

 Rename 2 LUT modes: 256-entry table mode and piece wise linear mode

Change 103818 on 2003/06/03 by jhoule@jhoule_doc_lt

 Updated RF expand table.
 Negative indices indicate added precision (8.8 -> 7..-8, 16.8 -> 15..-8, 32.8 -> 31..-8).

Change 103794 on 2003/06/03 by tien@ma_spinach

 Added a litte bit more info

Change 103783 on 2003/06/03 by tien@ma_spinach

 Initial Checkin

Change 103568 on 2003/06/02 by mzhu@mzhu_crayola_win_tor

 Update 3.4.9.18 for 64bpp graphics with graphics and overlay alpha blending mode 1
(per pixel graphics alpha mode)

Change 103567 on 2003/06/02 by mzhu@mzhu_crayola_win_tor

 Page 35 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Update for 64 bpp graphics bit depth and graphics/overlay blend using per-pixel alpha
from graphics channel (chapter 11.9 Graphic Keyer).

Change 103433 on 2003/05/30 by ashishs@fl_ashishs_r400_win

 updated

Change 103432 on 2003/05/30 by ashishs@fl_ashishs_r400_win

 updated

Change 103380 on 2003/05/30 by omesh@ma_omesh

 Mostly complete spreadsheet. What is missing is:
 1) Tests yet to be written: HiC and RB Register Read tests.
 2) The correct test writer information for some of the tests.
 3) Filenames and testcases for some of Frank Hsien's tests.

 However, I believe the counts are accurate of the existing tests.

Change 103349 on 2003/05/30 by khabbari@khabbari2_r400_win

 test plan updated

Change 103343 on 2003/05/30 by gregs@gregs_r400_win_marlboro

 added two signals for DC/DO debug bus connections

Change 103310 on 2003/05/30 by llefebvr@llefebvr_r400_montreal

 Added comments about address register.

Change 103185 on 2003/05/29 by khabbari@khabbari2_r400_win

 r500 test plan added

Change 103148 on 2003/05/29 by kmahler@kmahler_r400_doc_lib

 Updates for Random Shader Generator

Change 103144 on 2003/05/29 by omesh@ma_omesh

 Made some more updates to reflect current status. Still need to update Frank Hsien and
Mark's tests into the spreadsheet, along with Hier Stencil and Hier Z tests. Other categories to
add include the ZPASS counter tests, etc.

Change 103099 on 2003/05/29 by jacarey@fl_jcarey_desktop

 Added oper=comp to document.

 Page 36 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 103063 on 2003/05/29 by csampayo@fl_csampayo_r400

 Updated status for r400sq_const_index_03.

Change 103060 on 2003/05/29 by csampayo@fl_csampayo_r400

 Added max constant memory addrs reg indexing test. Updated test_list and test tracker
accordingly.

Change 103041 on 2003/05/29 by ashishs@fl_ashishs_r400_win

 updated some description as well as TBD's

Change 103035 on 2003/05/29 by ashishs@fl_ashishs_r400_win

 added the r400sq_trunc_01 test bug

Change 103033 on 2003/05/29 by ashishs@fl_ashishs_r400_win

 added r400sq_floor_01 test to the tracker

Change 103025 on 2003/05/29 by ashishs@fl_ashishs_r400_win

 corrected the schedule. Had incorrectly put the new 7 tests under APril20 when they were
supposed to be in May25

Change 103018 on 2003/05/29 by ashishs@fl_ashishs_r400_win

 added 6 new tests to the tracker

Change 102980 on 2003/05/28 by jowang@jowang_R400_win

 add dual-link TMDS tests (not complete)

Change 102957 on 2003/05/28 by gregs@gregs_r400_win_marlboro

 new part

Change 102954 on 2003/05/28 by omesh@ma_omesh

 Updated atleast some more of the RB Test plan spreadsheet. WIll try to finish by
tommorow.

Change 102893 on 2003/05/28 by mdesai@MA_MDESAI

 Added status for week ending 5/30

Change 102744 on 2003/05/27 by jiezhou@jiezhou_r400_win

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1473 of 1898

 Page 37 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 new fb divider slip test

Change 102708 on 2003/05/27 by smburu@smburu_r400_win_marlboro

 First tp_ch_blend status report.

Change 102686 on 2003/05/27 by mpersaud@mpersaud_r400_win_tor

 Rev 0.2 Mahendra Persaud
 Date: May 27, 2003
 Update test flow section plus other general clean up.

Change 102623 on 2003/05/26 by mpersaud@mpersaud_r400_win_tor

 Added new tests for R500.

Change 102613 on 2003/05/26 by mpersaud@mpersaud_r400_win_tor

 Initial Rev.

Change 102612 on 2003/05/26 by rfevreau@rfevreau_r400_win

 Updated with due dates

Change 102610 on 2003/05/26 by jasif@jasif_r400_win_tor

 Updated.

Change 102608 on 2003/05/26 by chwang@chwang_r400_doc_win

 Latest update.

Change 102603 on 2003/05/26 by mpersaud@mpersaud_r400_win_tor

 Initial Rev.

Change 102413 on 2003/05/23 by mzhu@mzhu_crayola_win_tor

 Update 3.4.9.17 for 8K virtual desktop support

Change 102406 on 2003/05/23 by georgev@devel_georgevh2_r400_win_marlboro

 Documented gnuzip feature for mcmh test bench.

Change 102376 on 2003/05/23 by enewman@enewman_r400_linux_marlboro

 initial p4 submission

 Page 38 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 102326 on 2003/05/23 by mdesai@MA_MDESAI

 Added addresser section

Change 102323 on 2003/05/23 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated for R500

Change 102292 on 2003/05/23 by mzhu@mzhu_crayola_win_tor

 Add GRPH/OVL_SURFACE_OFFSET programming in 3.4.9.17 for 8K virtual desktop
support

Change 102205 on 2003/05/22 by mzhu@mzhu_crayola_win_tor

 Add 3.4.9.17 for 8K virtual desktop support
 Add 3.4.9.18 for 64bpp graphics with graphics and overlay alpha blending mode 1 (per
pixel graphics alpha mode)

Change 102146 on 2003/05/22 by mkelly@fl_mkelly_r400_win_laptop

 Final, 4 textures on an RT rectangle...

Change 102113 on 2003/05/22 by rfevreau@rfevreau_r400_win

 Updates

Change 102018 on 2003/05/21 by csampayo@fl_csampayo_r400

 Updated test description, test_list and test tracker

Change 102016 on 2003/05/21 by mzhu@mzhu_crayola_win_tor

 Add support for 64 bpp graphics bit depth and graphics/overlay blend using per-pixel
alpha from graphics channel (chapter 11.9 Graphic Keyer).
 Increase GRPH/OVL_X/Y_END from 13 bits to 14 bits to support 8K virtual desktop

Change 102014 on 2003/05/21 by mzhu@mzhu_crayola_win_tor

 Increase GRPH/OVL_X_END registers from 13 bits to 14 bits to support 8K virtual
desktop
 Add registers DxGRPH_16BIT_ALPHA_MODE and
DxGRPH_16BIT_FIXED_ALPHA_RANGE for 64 bpp graphics bit depth and graphics/overlay
blend using per-pixel alpha from graphics channel.

Change 102004 on 2003/05/21 by vbhatia@vbhatia_r400_win_marlboro

 TP/TC Standalone testbenches weekly progress spreadsheet.

 Page 39 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 101984 on 2003/05/21 by llefebvr@llefebvre_laptop_r400

 more precisions on XYST generated register.

Change 101957 on 2003/05/21 by khabbari@khabbari2_r400_win

 r500 changes

Change 101939 on 2003/05/21 by bbuchner@fl_bbuchner_r400_win

 cleaned up interface names
 added 8 Dword L1 changes

Change 101923 on 2003/05/21 by jacarey@fl_jcarey_desktop

 Clarification that Isync flushing occurs only before the first "draw" packet after the
transition.

Change 101917 on 2003/05/21 by mzhu@mzhu_crayola_win_tor

 Add a new test (test 28) in chapter 3.4.8.4 for the case moving cursor hot spot from
outside of cursor image size to inside and only capture the second frame.

Change 101892 on 2003/05/21 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated R500DVwork.xls

Change 101800 on 2003/05/20 by jacarey@fl_jcarey_desktop

 Correction to Gradfill prim type for rectangles.

Change 101688 on 2003/05/19 by csampayo@fl_csampayo_r400

 Added bug# 116

Change 101680 on 2003/05/19 by llefebvr@llefebvre_laptop_r400

 added arbiter to TP/VC output control flow machines.

Change 101645 on 2003/05/19 by mmantor@FL_mmantorLT_r400_win

 minor changes to the sq_vc interface drawing.

Change 101630 on 2003/05/19 by ashishs@fl_ashishs_r400_win

 updated for the new perspective tests added...

Change 101625 on 2003/05/19 by jacarey@fl_jcarey_desktop

 Page 40 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Miscellaneous Corrections to documents w.r.t. 2D Coherency Rectangle Updates.

Change 101602 on 2003/05/19 by bbuchner@fl_bbuchner_r400_win

 added clamping logic

Change 101476 on 2003/05/17 by gregs@gregs_r400_win_cc

 memory interface changes

Change 101380 on 2003/05/16 by jacarey@fl_jcarey_desktop

 Clarifications to pre-write-timer and pre-write-limit usage.

Change 101350 on 2003/05/16 by bbuchner@fl_bbuchner_r400_win

 update L2 drawing
 update snoop signals

Change 101317 on 2003/05/16 by csampayo@fl_csampayo_r400

 Update tests req counts

Change 101315 on 2003/05/16 by csampayo@fl_csampayo_r400

 Update test req counts

Change 101307 on 2003/05/16 by csampayo@fl_csampayo_r400

 Initial check-in

Change 101304 on 2003/05/16 by bbuchner@fl_bbuchner_r400_win

 fixed L2 raddr and waddr signal names

Change 101278 on 2003/05/16 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 101259 on 2003/05/15 by ashishs@fl_ashishs_r400_win

 updated for r400sq_trunc_01

Change 101256 on 2003/05/15 by csampayo@fl_csampayo_r400

 Updated status for test r400sq_pressure_context_combo_01

Change 101247 on 2003/05/15 by gabarca@gabarca_crayola_win_cvd

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1474 of 1898

 Page 41 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Added clear to the new interface

Change 101236 on 2003/05/15 by jasif@jasif_r400_win_tor

 Updated.

Change 101225 on 2003/05/15 by bbuchner@fl_bbuchner_r400_win

 Added C1 changes, modifications to drawings.
 Describe the RG index processor
 add L1 drawing
 add clamping interface

Change 101205 on 2003/05/15 by gregs@gregs_r400_win_marlboro

 update

Change 101188 on 2003/05/15 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 101155 on 2003/05/15 by ashishs@fl_ashishs_r400_win

 labeled myself in the owner column of some tests

Change 101137 on 2003/05/15 by csampayo@fl_csampayo_r400

 Updated test status for tests:
 r400sq_auto_wrapping_memories_01
 r400sq_vs_memory_wrap_01
 Sorted test_list

Change 101040 on 2003/05/14 by jasif@jasif_r400_win_tor

 Added section on random delays

Change 101037 on 2003/05/14 by llefebvr@llefebvr_r400_montreal

 Fixing the spec some more to match R500. Added some diagrams (SQ internals)

Change 101033 on 2003/05/14 by chwang@chwang_r400_doc_win

 Formatting update.

Change 100995 on 2003/05/14 by jasif@jasif_r400_win_tor

 Updated state diagrams and errors that the model will print.

Change 100993 on 2003/05/14 by chwang@chwang_r400_doc_win

 Page 42 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 TMDS update spec.

Change 100991 on 2003/05/14 by chwang@chwang_r400_doc_win

 Updated.

Change 100975 on 2003/05/14 by ashishs@fl_ashishs_r400_win

 updated the tracker and test_list

Change 100964 on 2003/05/14 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 100945 on 2003/05/14 by jacarey@fl_jcarey_desktop

 Clarifications to Set_Constant and LCC packets w.r.t. write enables for each CONST_ID
type.

Change 100888 on 2003/05/14 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 100832 on 2003/05/13 by jasif@jasif_r400_win_tor

 Updated request state machine diagram.

Change 100802 on 2003/05/13 by jasif@jasif_r400_win_tor

 Expanded forcible signals section.

Change 100704 on 2003/05/13 by frising@frising_r400_win_marlboro

 v.1.72
 -GRAD_EXP_ADJUST_H|V only exists in texture constant now.
 -SetFIlter4Weights marked as not supported on r400
 -Add 1024 bit option to REQUEST_SIZE for C1

Change 100627 on 2003/05/13 by kcorrell@kcorrell_r400_docs_marlboro_nb

 Fixed info field width and vc field width in TC/MH interface tables

Change 100583 on 2003/05/12 by gabarca@gabarca_crayola_win_cvd

 R500 interface changes

Change 100549 on 2003/05/12 by jacarey@fl_jcarey_desktop

 Page 43 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Microcode Update for 2D surface coherency

Change 100274 on 2003/05/09 by jowang@jowang_R400_win

 updated hot-plug detection logic to support dual-link

Change 100246 on 2003/05/09 by ashishs@fl_ashishs_r400_win

 updated the excel tracker sheet and the test_list up-to-date

Change 100222 on 2003/05/09 by gregs@gregs_r400_win_marlboro

 update

Change 100163 on 2003/05/09 by rramsey@RRAMSEY_P4_r400_win

 drawing to describe instruction store address wrapping in the
 control_flow_seq and target_instr_fetch blocks

Change 100159 on 2003/05/09 by jacarey@fl_jcarey_desktop

 Document setting of bit 20 in 2D Booleans as Default_Sel

Change 100132 on 2003/05/09 by alleng@alleng_r400_win_marlboro_8200

 Updated these two files with new information

Change 100004 on 2003/05/08 by llefebvr@llefebvr_r400_montreal

 Some interface updates.

Change 99995 on 2003/05/08 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 99985 on 2003/05/08 by lseiler@lseiler_r400_win_marlboro2

 New 2D tiling formats

Change 99957 on 2003/05/08 by lseiler@lseiler_r400_win_marlboro2

 Update HierStencil description

Change 99927 on 2003/05/08 by moev@moev

 Virage Star Memory System verification test plan (block level)

Change 99921 on 2003/05/08 by jmarsano@MA_JMARSANO

 Page 44 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Added SAMPLE instruction to list

Change 99916 on 2003/05/08 by bbuchner@fl_bbuchner_r400_win

 added L1/L2 request processing description
 updated for 512 bit wide cache
 updated external interface signals

Change 99909 on 2003/05/08 by mkelly@fl_mkelly_r400_win_laptop

 Update with some more useful info on control flow looping...

Change 99782 on 2003/05/07 by mdoggett@mdoggett_r400_win_platypus

 Format 22, 23 moved to 32BPP in format conversion table.
 Interlace selection bit changed from Z0 to C0.
 Format 40 moved with Format 11 and 12 in format conversion table.
 SM4 removed.
 Completed updates to R500 version of TC.
 Many unlisted changes.

Change 99777 on 2003/05/07 by frising@frising_r400_win_marlboro

 v.1.96
 -update rules for masking with Color/Fog export.

Change 99536 on 2003/05/07 by csampayo@fl_csampayo_r400

 Updated tests status

Change 99510 on 2003/05/07 by jacarey@fl_jcarey_desktop

 Updates to document for usage of "flush done" flag in the microcode.

Change 99502 on 2003/05/07 by jmarsano@MA_JMARSANO

 TST validation documents

Change 99471 on 2003/05/06 by csampayo@fl_csampayo_r400

 Initial check-in

Change 99456 on 2003/05/06 by ashishs@fl_ashishs_r400_win

 removed the modules from the excel sheet

Change 99452 on 2003/05/06 by frising@frising_r400_win_marlboro

 v.1.95

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1475 of 1898

 Page 45 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 -Update spec to show that masking of exports is allowed for all exports now (possible
only exception fog - TBD).

Change 99445 on 2003/05/06 by ashishs@fl_ashishs_r400_win

 removing the button from the sheet, since it wasn't enabled

Change 99433 on 2003/05/06 by csampayo@fl_csampayo_r400

 Some housekeeping

Change 99386 on 2003/05/06 by jacarey@fl_jcarey_desktop

 Update

Change 99385 on 2003/05/06 by mkelly@fl_mkelly_r400_win_laptop

 Update comments, new tests checking RT Constant indexing...

Change 99380 on 2003/05/06 by jacarey@fl_jcarey_desktop

 Fix for 2D Coherency (Flushing TC)

Change 99190 on 2003/05/05 by gregs@gregs_r400_win_marlboro

 update

Change 99076 on 2003/05/05 by kcorrell@kcorrell_r400_docs_marlboro_nb

 First update for R500. Includes changes to AIC and TC interface for R500 feature
support.

Change 99068 on 2003/05/05 by mkelly@fl_mkelly_r400_win_laptop

 SQ RT constants and flow control testing

Change 98890 on 2003/05/02 by gregs@gregs_r400_win_marlboro

 names changes again ..

Change 98760 on 2003/05/02 by llefebvr@llefebvr_r400_montreal

 forgot to remove 1 waterfall signal.

Change 98670 on 2003/05/01 by jbrady@jbrady_r400_win

 Add signals to SQ interface for flow control, count_lo, fetch_type. Add L1_request signal
first_instr_of_vv.

 Page 46 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 98628 on 2003/05/01 by frising@frising_r400_win_marlboro

 0.99g
 -fixed typo in float16<->float32 conversion table

Change 98626 on 2003/05/01 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 98544 on 2003/05/01 by mkelly@fl_mkelly_r400_win_laptop

 Added detail on loop

Change 98539 on 2003/05/01 by kmahler@kmahler_r400_doc_lib

 Some minor updates.

Change 98518 on 2003/05/01 by enewman@enewman_r400_linux_marlboro

 fixed typos, cleaned up some stuff

Change 98500 on 2003/05/01 by llefebvr@llefebvr_r400_montreal

 Refreshing the interfaces per Andi's last mail.

Change 98409 on 2003/04/30 by gregs@gregs_r400_win_marlboro

 update

Change 98401 on 2003/04/30 by llefebvr@llefebvr_r400_montreal

 Updated the SQ->SP interfaces for the R500.

Change 98394 on 2003/04/30 by bbloemer@ma_bbloemer

 Updated description of DRAM software command unit.

Change 98305 on 2003/04/30 by moev@moev

 Updated Tile Enable control register to match verilog

Change 98296 on 2003/04/30 by jayw@ma_jayw_lt

 minor updates

Change 98285 on 2003/04/30 by fliljero@fl_frank

 latest updates

 Page 47 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 98162 on 2003/04/29 by mkelly@fl_mkelly_r400_win_laptop

 Maximum pixel shader nested, control flow subroutines in RTS, with
 non-RTS in front and back containing simple pixel and vertex shaders.

 Updated SQ doc with RTS tests needed.

Change 97906 on 2003/04/28 by ashishs@fl_ashishs_r400_win

 added a bug for the 2 failing CL tests

Change 97768 on 2003/04/25 by gregs@laptop1

 all names on DC interface changed.

Change 97727 on 2003/04/25 by mzhu@mzhu_crayola_win_tor

 Update 11.2.1 DCP Window Controller for DCP_DMIF_SIZE

Change 97706 on 2003/04/25 by jacarey@fl_jcarey_desktop

 Add RBBM_DB_soft_reset to RBBM

Change 97673 on 2003/04/25 by mpersaud@mpersaud_r400_win_tor

 Rev 0.06 Mahendra Persaud
 Date: April 25, 2003
 Expanded CLIENT_DCCIF_wc?_reg_align64byte to 2 bits

Change 97672 on 2003/04/25 by mpersaud@mpersaud_r400_win_tor

 Rev 0.02 Mahendra Persaud
 Date: April 25, 2003
 Updated CLIENT_DCCIF_reg_wc?_align64byte functionality.
 Expanded on some block descriptions
 Updated diagrams

Change 97636 on 2003/04/25 by bbuchner@fl_bbuchner_r400_win

 added L2 cache drawing
 fixed cache tag size (stored) to 22 bits
 fixed memory request to include 26 bits of address and sec. mask

Change 97613 on 2003/04/25 by khabbari@khabbari2_r400_win

 not_last_line_pair is added

Change 97525 on 2003/04/24 by lkang@lkang_r400_win_tor

 Page 48 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 dc split update

Change 97523 on 2003/04/24 by bbuchner@fl_bbuchner_r400_win

 added top level cache controller

Change 97450 on 2003/04/24 by llefebvr@llefebvre_laptop_r400

 Updated stall conditions.
 Made swizzle changes.
 Added more R500 specifics.

Change 97441 on 2003/04/24 by mpersaud@mpersaud_r400_win_tor

 Rev 0.01 Mahendra Persaud
 Date: April 24, 2003
 Initial revision.

Change 97440 on 2003/04/24 by mpersaud@mpersaud_r400_win_tor

 Rev 0.05 Mahendra Persaud
 Date: April 24, 2003
 Added CLIENT_DCCIF_wc?_reg_align64byte signal to interface.
 Fixed some signal descriptions and updated some of the timing diagrams

Change 97403 on 2003/04/24 by jacarey@fl_jcarey_desktop

 RBBM Document Updates for DB

Change 97280 on 2003/04/23 by jowang@jowang_R400_win

 try to update diagram so that it looks nice after rotate.
 didn't work.

Change 97278 on 2003/04/23 by jowang@jowang_R400_win

 modified after design review 04/23/03

Change 97277 on 2003/04/23 by jowang@jowang_R400_win

 updated after the design review 04/23/03

Change 97272 on 2003/04/23 by frising@frising_r400_win_marlboro

 Spazzed out on that last check-in. Should have read that 1bpp textures are filterable. No
version bump.

Change 97261 on 2003/04/23 by frising@frising_r400_win_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1476 of 1898

 Page 49 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 v.1.71
 -show that 1D textures formats are filterable
 -remove REQUEST_LATENCY fields
 -misc clean-up

Change 97254 on 2003/04/23 by bbuchner@fl_bbuchner_r400_win

 added Request Generator Drawing

Change 97181 on 2003/04/23 by bbuchner@fl_bbuchner_r400_win

 0.1 of Vertex cache document

Change 97161 on 2003/04/23 by llefebvr@llefebvre_laptop_r400

 interface name changes for the SQ->SP fetch swizzles.

Change 97140 on 2003/04/23 by csampayo@fl_csampayo_r400

 Update using Laurent's inputs

Change 97092 on 2003/04/23 by llefebvr@llefebvre_laptop_r400

 Added SP stall conditions to the SQ spec.

Change 97084 on 2003/04/23 by mpersaud@mpersaud_r400_win_tor

 Rev 0.04 Mahendra Persaud
 Date: April 23, 2003
 Fixed some of the port names to make them more consistent.

Change 97077 on 2003/04/23 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 97063 on 2003/04/23 by kcorrell@kcorrell_r400_docs_marlboro_nb

 update MH_TCn_rtr signal description

Change 97033 on 2003/04/22 by frising@frising_r400_win_marlboro

 v.1.94
 -update mova* instructions to return SrcA (like a mov) on the vector side and SrcC.W
replicated on the scalar side.
 -update pred* instructions to only use W channel of operands.
 -update GPR write-back table to show that scalar component is used when both scalar
and vector write masks are enabled.

Change 97032 on 2003/04/22 by frising@frising_r400_win_marlboro

 Page 50 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 v.0.99f
 -misc updates/corrections/clean-up

Change 97009 on 2003/04/22 by lchen@lchen_crayola0

 update

Change 96906 on 2003/04/22 by bbuchner@fl_bbuchner_r400_win

 VC DOCS

Change 96888 on 2003/04/22 by jasif@jasif_r400_win_tor

 Keep track of R500 DV work.

Change 96884 on 2003/04/22 by jasif@jasif_r400_win_tor

 Keep track of outstanding DV work.

Change 96881 on 2003/04/22 by jiezhou@jiezhou_r400_win

 dual link tmds clock

Change 96875 on 2003/04/22 by fliljero@fl_frank

 changed data from one pass to the next to better insure proper validation

Change 96872 on 2003/04/22 by jiezhou@jiezhou_r400_win

 delete old diagram

Change 96860 on 2003/04/22 by mpersaud@mpersaud_r400_win_tor

 New delta doc.
 Updated test list.

Change 96854 on 2003/04/22 by mpersaud@mpersaud_r400_win_tor

 Rev 0.03 Mahendra Persaud
 Date: April 21, 2003
 Update after interface review.

 - general description cleanup
 - update interface names
 - moved surface number to address bits [5:4] during surface register write
 - added functionality to rcd signal(not wired to zero anymore)
 - removed client id's from read return interface.
 - update timing diagrams

 Page 51 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 96851 on 2003/04/22 by jacarey@fl_jcarey_desktop

 1. Add detection of Type-0/1 Packets in IBs if Enabled in ME_INIT Packet.
 2. Unit-Level Test Added to verify.
 3. Update to PM4 Spec to document addition.

Change 96715 on 2003/04/21 by jowang@jowang_R400_win

 Rotate the diagram by 90 degrees for r500_tmds_dual_link.doc

Change 96713 on 2003/04/21 by jowang@jowang_R400_win

 updated dataSynchronizer document for R500

Change 96699 on 2003/04/21 by mkelly@fl_mkelly_r400_win_laptop

 Test all 32 RTS boolean bits in the pixel shader...

Change 96592 on 2003/04/20 by gregs@gregs_r400_win_cc

 update

Change 96572 on 2003/04/19 by llefebvr@llefebvr_r400_montreal

 Documentation changes for R500.

Change 96524 on 2003/04/18 by jhoule@jhoule_doc_lt

 Changed GetCompTexLOD and SetTexLOD opcodes to work with a single LOD
component.
 Removed 1D restriction for FMT_1* formats.
 Indicated that arbitrary filters are now unsupported.
 Realigned every row with auto-fit to fix incomplete last lines.

Change 96500 on 2003/04/18 by fliljero@fl_frank

 latest updates

Change 96403 on 2003/04/18 by jacarey@fl_jcarey_desktop

 Type 0/1 Error Checking in IBs (ME_INIT, Interrupt Registers)
 Un-Link Diagrams from PM4 Spec

Change 96286 on 2003/04/17 by jacarey@fl_jcarey_desktop

 1. Add INVALID_TAG to bit 31 of CP_MIU_TAG_STAT2 register
 2. Added enumeration for the perfomance counter selects in the CP and RBBM

 Page 52 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 96284 on 2003/04/17 by georgev@devel_georgevh2_r400_win_marlboro

 Added MCMH coverage.

Change 96130 on 2003/04/17 by mpersaud@mpersaud_r400_win_tor

 Update port names to match R500 naming convention.

Change 96064 on 2003/04/16 by gregs@gregs_r400_win_marlboro

 update

Change 95964 on 2003/04/16 by jacarey@fl_jcarey_desktop

 Add new debug registers that record when read tags are outstanding to the CP.

Change 95946 on 2003/04/16 by jacarey@fl_jcarey2

 Removed Snooping Connections to DMA Engine from Diagram

Change 95802 on 2003/04/16 by mpersaud@mpersaud_r400_win_tor

 Add to source control

Change 95773 on 2003/04/15 by jowang@jowang_R400_win

 First rev of dual link TMDS block diagram

Change 95760 on 2003/04/15 by sbagshaw@sbagshaw

 added detail that power management for DC block must be enabled to use "one shot"
clock or clock branch stopping feature of test debug circuitry

Change 95740 on 2003/04/15 by gregs@gregs_r400_win_marlboro

 update

Change 95666 on 2003/04/15 by csampayo@fl_csampayo_r400

 Some housekeeping

Change 95655 on 2003/04/15 by csampayo@fl_csampayo_r400

 Add "Owner" column

Change 95625 on 2003/04/15 by jacarey@fl_jcarey2

 Updates to Document

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1477 of 1898

 Page 53 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 95606 on 2003/04/15 by jacarey@fl_jcarey2

 Baseline of Ideas for Pre-emptive Ring Hardware in CP

Change 95542 on 2003/04/14 by sbagshaw@sbagshaw

 Changed references to PIXCLK to refer to pixel PLL source clock branch instead of a
particular display controller's pixel clock branch.
 Changed all references of DISP1_PCLK to PIX1CLK.
 Changed all references of DISP2_PCLK to PIX2CLK.
 All prior references to "Primary display controller pixel clock" changed to "Primary pixel
PLL source clock". Similarly, all prior references to "Secondary display controller pixel clock"
changed to "Secondary pixel PLL source clock".

Change 95512 on 2003/04/14 by jacarey@fl_jcarey2

 Miscellaneous Updates

Change 95471 on 2003/04/14 by jacarey@fl_jcarey2

 Added some packet restrictions for BitBlt and HostDataBlt:

 For HostData_Blt: Never identify a brush even though the ROP code is set to 0xCC

 For BitBlt:Never do a simple BitBlt with a mono opaque source, SRC_TYPE=0, or a
mono transparent source, SRC_TYPE=1, and a ROP code set to source copy, 0xCC.

Change 95460 on 2003/04/14 by frising@frising_r400_win_marlboro

 v.1.69
 -Add fields to vertex fetch instruction to support mega/mini fetches.

Change 95443 on 2003/04/14 by jasif@jasif_r400_win_tor

 Fixed section on integration.

Change 95223 on 2003/04/11 by gregs@gregs_r400_win_marlboro

 update

Change 95214 on 2003/04/11 by jacarey@fl_jcarey2

 Baseline CP Review Slides

Change 95139 on 2003/04/11 by jiezhou@jiezhou_r400_win

 for sclk_r_vga_rst

Change 95109 on 2003/04/11 by mkelly@fl_mkelly_r400_win_laptop

 Page 54 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Test smallest Z offset and scale to produce a discernable difference
 in the Zbuffer (1 lsb).

Change 95068 on 2003/04/10 by gregs@laptop1

 update

Change 95039 on 2003/04/10 by gabarca@gabarca_crayola_win_cvd

 Fixed case c6 of crtc display parameters tests

Change 95022 on 2003/04/10 by khabbari@khabbari2_r400_win

 r500 changes

Change 94731 on 2003/04/09 by rfevreau@rfevreau_r400_win

 Took out dispout_gpios from block level regression

Change 94703 on 2003/04/09 by jasif@jasif_r400_win_tor

 Updated.

Change 94683 on 2003/04/09 by jasif@jasif_r400_win_tor

 Updated

Change 94680 on 2003/04/09 by jasif@jasif_r400_win_tor

 Added section on managing devel and dcsplit branch.

Change 94556 on 2003/04/08 by gregs@gregs_r400_win_marlboro

 update

Change 94544 on 2003/04/08 by rfevreau@rfevreau_r400_win

 Updates to xls files and Makefile

Change 94458 on 2003/04/08 by jasif@jasif_r400_win_tor

 Describes how to use perforce branching mechanism for dc split changes.

Change 94419 on 2003/04/08 by jacarey@fl_jcarey2

 Proposal #2 for test interface

Change 94395 on 2003/04/08 by rramsey@RRAMSEY_P4_r400_win

 Page 55 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 update

Change 94342 on 2003/04/07 by sbagshaw@sbagshaw

 Added new test, "DISPOUT_INTERFACES_powerstate", to verify the Display Output
data output interfaces function properly in different power states.

Change 94201 on 2003/04/07 by jacarey@fl_jcarey2

 Test Bus Proposal

Change 94195 on 2003/04/07 by ashishs@fl_ashishs_r400_win

 closed a bug

Change 94183 on 2003/04/07 by vgoel@fl_vgoel2

 updated bug status

Change 94179 on 2003/04/07 by ashishs@fl_ashishs_r400_win

 updated

Change 94030 on 2003/04/04 by paulv@MA_PVELLA

 Updates to the MHS section.

Change 93969 on 2003/04/04 by gregs@gregs_r400_win_marlboro

 update

Change 93958 on 2003/04/04 by sbagshaw@sbagshaw

 R400 DC Test Debug document put into proper documentation template. Section
explaining how to specify clock domain for each bit of DC_TEST_DEBUG_DATA added.

Change 93888 on 2003/04/04 by jacarey@fl_jcarey_desktop

 Updated Documentation for addition of Pre-Fetch Matching for Loop and Boolean
Constants

Change 93733 on 2003/04/03 by vgoel@fl_vgoel2

 closed a bug

Change 93664 on 2003/04/03 by fliljero@fl_frank

 latest passing updates

 Page 56 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 93520 on 2003/04/02 by jowang@jowang_R400_win

 no dithering done in blank pixel for DVOA

Change 93501 on 2003/04/02 by ashishs@fl_ashishs_r400_win

 updated

Change 93481 on 2003/04/02 by csampayo@fl_csampayo_r400

 Initial check-in

Change 93465 on 2003/04/02 by jacarey@fl_jcarey_desktop

 1. Move RB_CLRCMP_MSK_HI and RB_CLRCMP_DST_HI initialization for 2D to
the 2D Indirect Buffer
 2. Mask for RB_CLRCMP_MSK_LO is dependant on the pixel type
 3. Updated PM4 Spec Accordingly
 4. Updated CP Unit-Level Tests Accordingly

Change 93456 on 2003/04/02 by llefebvr@llefebvr_r400_montreal

 update to the control flow instruction.
 Adding timing diagram for the SQ->VC/TP transfers.

Change 93409 on 2003/04/02 by ygiang@ygiang_r400_win_marlboro_p4

 updated sp test excel sheet

Change 93373 on 2003/04/02 by ashishs@fl_ashishs_r400_win

 filed bug for SQ tests failing due to Laurent's change # 92966

Change 93269 on 2003/04/01 by gabarca@gabarca_crayola_win_cvd

 fixed horz parameters cases c8, c9, still don't know why c7 does not emulate properly

Change 93211 on 2003/04/01 by paulv@MA_PVELLA

 Initial version.

Change 93199 on 2003/04/01 by gregs@gregs_r400_win_marlboro

 update

Change 93176 on 2003/04/01 by gregs@gregs_r400_win_marlboro

 first power estimate

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1478 of 1898

 Page 57 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 93130 on 2003/04/01 by nbarbier@nbarbier_r400_win_tor

 Updated Power Management Section.

Change 93121 on 2003/04/01 by vgoel@fl_vgoel2

 updated to remove bug 788

Change 93110 on 2003/04/01 by jiezhou@jiezhou_r400_win

 updating table

Change 93065 on 2003/04/01 by jiezhou@jiezhou_r400_win

 updating in pclk src selection

Change 92948 on 2003/03/31 by jiezhou@jiezhou_r400_win

 take debug_test out from test plan.

Change 92850 on 2003/03/31 by efong@efong_r400_win_tor_doc

 Added in Verdi Training docs

Change 92846 on 2003/03/31 by ashishs@fl_ashishs_r400_win

 updated

Change 92637 on 2003/03/28 by fliljero@fl_frank

 added dummy writes to instruction memory so that it does not return unknowns when
read

Change 92627 on 2003/03/28 by alleng@alleng_r400_win_marlboro_8200

 Initial submit

Change 92587 on 2003/03/28 by llefebvr@llefebvre_laptop_r400

 added swizzle codes to the spec.

Change 92433 on 2003/03/27 by mpersaud@mpersaud_r400_win_tor

 Rev 0.98 Mahendra Persaud
 Date: March 26, 2003
 Update section 4.1 with new display parameters and formulas.

Change 92425 on 2003/03/27 by jiezhou@jiezhou_r400_win

 Page 58 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 initial release

Change 92381 on 2003/03/27 by dwong@cndwong2

 Added CP_RBBM_dma_busy to Bit 2 of the RT discrete signals

Change 92378 on 2003/03/27 by mkelly@fl_mkelly_r400_win_laptop

 Add test requirement...

Change 92370 on 2003/03/27 by jacarey@fl_jcarey_desktop

 Fix typo in RB_BUFSZ equation in the CP_RB_CNTL register

Change 92347 on 2003/03/27 by jiezhou@jiezhou_r400_win

 update

Change 92330 on 2003/03/27 by ashishs@fl_ashishs_r400_win

 filed bug for the hang caused by Laurent's change #92184

Change 92325 on 2003/03/27 by kcorrell@kcorrell_r400_docs_marlboro_nb

 updated address translation diagram for rom reads, removed summary of registers in
favor of a reference to the block file

Change 92272 on 2003/03/26 by rfevreau@rfevreau_r400_win

 Updated numbers

Change 92265 on 2003/03/26 by jimmylau@jimmylau_r400_win_tor

 Initial revision of BIF test plan.

Change 92238 on 2003/03/26 by jiezhou@cn_jiezhou

 updating

Change 92204 on 2003/03/26 by ashishs@fl_ashishs_r400_win

 documented the SQ bug by Laurent

Change 92175 on 2003/03/26 by gregs@laptop1

 reverted ROM_AP_SIZE definition

Change 92174 on 2003/03/26 by mkelly@fl_mkelly_r400_win_laptop

 Page 59 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Update with SC test coverage...

Change 92165 on 2003/03/26 by jacarey@fl_jcarey_desktop

 Visio Updates to Scratch Register Interrupt Function in the CP

Change 92090 on 2003/03/25 by rfevreau@rfevreau_r400_win

 Submitted

Change 92030 on 2003/03/25 by abeaudin@abeaudin_r400_win_marlboro

 added build sequence

Change 91961 on 2003/03/25 by bbloemer@ma_bbloemer

 Updated test plan with more test description and effort estimate.

Change 91878 on 2003/03/24 by jacarey@fl_jcarey_desktop

 Add Test_Select to R400 documentation for the scratch register compare interrupt

Change 91821 on 2003/03/24 by jacarey@fl_jcarey_desktop

 Scratch Register Interrupt

Change 91812 on 2003/03/24 by mzhu@mzhu_crayola_win_tor

 Double MCLK frequency to reduce MH latency to less than 40% of HTOTAL for
MH_DC_LATENCY1 test
 Set SCLK to 440MHz for all MH_DMIF_DCP tests
 Force dmif model rts delay signals to 0 on block level simulation for all MH_DMIF_DCP
tests

Change 91806 on 2003/03/24 by jacarey@fl_jcarey_desktop

 Fix typo in section 7.2

Change 91790 on 2003/03/24 by ashishs@fl_ashishs_r400_win

 updated

Change 91783 on 2003/03/24 by kcorrell@kcorrell_r400_docs_marlboro_nb

 Update to reflect changes to address decision tree and that primary target is now pci-
express

Change 91625 on 2003/03/21 by nbarbier@nbarbier_r400_win_tor

 Page 60 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Made additional change to tmds hpd override test.

Change 91582 on 2003/03/21 by gregs@gregs_r400_win_marlboro

 various minor changes

Change 91540 on 2003/03/21 by jacarey@fl_jcarey2

 Scratch Compare Interrupt Diagram for R400

 This is the same logic that is being added for R390 as requested
 by Jeffrey Cheng. The difference from R390 is the location of the
 interrupt control and status bits. This is indicated on the diagram.

Change 91514 on 2003/03/21 by abeaudin@abeaudin_r400_win_marlboro

 added directory description

Change 91495 on 2003/03/21 by csampayo@fl_csampayo_r400

 Updated status for the following tests:
 r400sq_flow_control_02
 r400sq_flow_control_03

Change 91489 on 2003/03/21 by csampayo@fl_csampayo_r400

 Some housekeeping

Change 91474 on 2003/03/21 by jacarey@fl_jcarey_desktop

 1. Removed PREFETCH_DISABLE_OVERRIDE from CP_DEBUG register in CP
Spec.
 2. Updated PFP pseudocode for Indirect_Buffer and Indirect_Buffer_PFD packets.

Change 91438 on 2003/03/20 by csampayo@fl_csampayo3

 VGT output path stress tests

Change 91354 on 2003/03/20 by dwong@cndwong2

 include descriptions on FDCT compression

Change 91347 on 2003/03/20 by mdoggett@mdoggett_r400_win_platypus

 Major change to cache design. Partial spec update to new design.
 L1 removed, L2 replaced with 4 read port 128 word memories.
 Added new Set, Halfline, Slice creation in Cacheline Formats section, removed old L1
Tags.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1479 of 1898

 Page 61 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 3D 64BPP and 128BPP special cases removed.

Change 91332 on 2003/03/20 by jhoule@jhoule_doc_lt

 Minor correction to the Numbers table.
 uINT gamma'd gave values from 0 to 15, but the 'range' entry was [-8..8) instead of [0,
16).
 (reported by Daniel Willhite)
 No version bump.

Change 91280 on 2003/03/20 by abeaudin@abeaudin_r400_win_marlboro

 added gfx engine description

Change 91277 on 2003/03/20 by gregs@gregs_r400_win_marlboro

 iodft insertion complete

Change 91262 on 2003/03/20 by dglen@dglen_r400

 Updated with R500 line buffer size and core clock speed

Change 91227 on 2003/03/20 by mzhu@mzhu_crayola_win_tor

 For MH_DC_LATENCY tests in chapter 3.3, force_read_delay_busy is forced to be less
than or equal to force_read_delay_idle. This makes dmif model to send overlay data not later
than graphics data for the first chunk of each line

Change 91209 on 2003/03/20 by jacarey@fl_jcarey_desktop

 1. Updated bit width of Non-Prefetch counters in the CP_Non_Prefetch_Cntrs register in
CP Spec.
 2. Addition of INDIRECT_BUFFER_PFD packet to the PM4 Spec.

Change 91124 on 2003/03/19 by gregs@laptop1

 differential pads dft + clean-up

Change 90952 on 2003/03/19 by sbagshaw@sbagshaw

 DMIF tests clarified to use maximum pixel clock of 400 MHz. MH-DMIF latency tests
modified so some use graphics & overlay surfaces whereas others only use a graphics surface
 Details and procedure for CRTC interrupt test clarified.

Change 90883 on 2003/03/19 by mkelly@fl_mkelly_r400_win_laptop

 SC debug register coverage...

Change 90874 on 2003/03/19 by abeaudin@abeaudin_r400_win_marlboro

 Page 62 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 more emulator information

Change 90871 on 2003/03/19 by abeaudin@abeaudin_r400_win_marlboro

 remove doc

Change 90870 on 2003/03/19 by abeaudin@abeaudin_r400_win_marlboro

 new emulator emulator information

Change 90869 on 2003/03/19 by abeaudin@abeaudin_r400_win_marlboro

 remove doc

Change 90785 on 2003/03/18 by sbagshaw@sbagshaw

 DMIF System and Stress tests (section 3.3 and 4.3) modified to utilize real display mode
timings and clock speeds.

Change 90763 on 2003/03/18 by abeaudin@abeaudin_r400_win_marlboro

 answers to software questions

Change 90744 on 2003/03/18 by mkelly@fl_mkelly_r400_win_laptop

 Test para_enable bit, update register coverage...

Change 90739 on 2003/03/18 by jacarey@fl_jcarey_desktop

 Add stall conditions for IB2D init w.r.t. in-flight indirect buffer inits.

Change 90715 on 2003/03/18 by vgoel@fl_vgoel2

 added r400vgt_hos_pnt_adaptive_complex bug

Change 90699 on 2003/03/18 by gregs@gregs_r400_win_marlboro

 DRAM_RST, TEST_YCLK, TEST_MCLK pads

Change 90670 on 2003/03/18 by mdoggett@MA_MDOGGETT_LT

 some modifications towards version 0.5.
 version 0.5 not yet completed.

Change 90659 on 2003/03/18 by mkelly@fl_mkelly_r400_win_laptop

 Update...

 Page 63 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 90613 on 2003/03/17 by csampayo@fl_csampayo_r400

 Control flow, predicate and multi-context and multi-prim test. Upfdated test_list
accordingly

Change 90606 on 2003/03/17 by gabarca@gabarca_crayola_win_cvd

 added timin lines

Change 90592 on 2003/03/17 by moev@moev

 updates to include dbist

Change 90492 on 2003/03/17 by khabbari@khabbari_r400_win

 r400 last release

Change 90257 on 2003/03/14 by gregs@gregs_r400_win_marlboro

 memory strobe signals' names back to MnWDQSn and MnRQDSn

Change 90251 on 2003/03/14 by mkelly@fl_mkelly_r400_win_laptop

 sc_sp centers/centroids parameters 13, 14, 15

Change 90225 on 2003/03/14 by rthambim@rthambim_r400_win_tor

 Added pci/agp address expansion, initiator register list.

Change 90161 on 2003/03/14 by mkelly@fl_mkelly_r400_win_laptop

 sc_sp sample control parameters 8 - 13

Change 90160 on 2003/03/14 by jacarey@fl_jcarey_desktop

 Another Stall Condition for Indirect_Buffer packet

Change 90158 on 2003/03/14 by jacarey@fl_jcarey_desktop

 Updated Pseudocode for PREFETCH_DISABLE mode.

Change 90122 on 2003/03/13 by gregs@laptop1

 update

Change 90107 on 2003/03/13 by georgev@devel_georgevh2_r400_win_marlboro

 Fix _ to / typo.

 Page 64 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 90102 on 2003/03/13 by georgev@devel_georgevh2_r400_win_marlboro

 Updated sheets.

Change 90076 on 2003/03/13 by gregs@gregs_r400_win_marlboro

 update

Change 90033 on 2003/03/13 by mkelly@fl_mkelly_r400_win_laptop

 sc_sp sampling through interpolators, parameters 3 - 8

Change 90005 on 2003/03/13 by jacarey@fl_jcarey_desktop

 Updates for Prefetch-Disable Mode to Fetching Indirect Buffers

Change 89973 on 2003/03/13 by georgev@devel_georgevh2_r400_win_marlboro

 First Revision.

Change 89959 on 2003/03/13 by georgev@ma_georgev

 Empty for first rev.

Change 89951 on 2003/03/13 by mkelly@fl_mkelly_r400_win_laptop

 Prim type detection on gpr position 0, and 9 - 15

Change 89899 on 2003/03/12 by gregs@laptop1

 parallel ROM supports 2 and 4Mbit parts.

Change 89876 on 2003/03/12 by jimmylau@jimmylau_r400_win_tor

 Add details for the following R400 changes :

 1. BIF coherency
 2. 64-byte PCI and AGP writes
 3. BIF performance counter
 4. FW splitter that splits 128-bit data from FW to 64-bit data to HDP
 5. Bug fix for AGP8x AD calibration

Change 89800 on 2003/03/12 by mkelly@fl_mkelly_r400_win_laptop

 Primtype detection in the pixel shader, gpr positions 2 - 8

Change 89764 on 2003/03/12 by gregs@laptop1

 update

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1480 of 1898

 Page 65 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 89759 on 2003/03/12 by georgev@devel_georgevh2_r400_win_marlboro

 Added some more description.

Change 89756 on 2003/03/12 by mdoggett@MA_MDOGGETT_LT

 Minor modifications

Change 89739 on 2003/03/12 by jacarey@fl_jcarey_desktop

 Update to proposal.

Change 89737 on 2003/03/12 by gregs@laptop1

 strap for "rom on vip" is 0001 now.

Change 89729 on 2003/03/12 by sbagshaw@sbagshaw

 Sections 3.1 and 4.1 for DCCIF tests updated with new parameters from Mahendra's
testing.

Change 89601 on 2003/03/11 by jacarey@fl_jcarey2

 Proposal for Pre-Fetch Disabling

Change 89596 on 2003/03/11 by gregs@gregs_r400_win_marlboro

 update

Change 89577 on 2003/03/11 by tien@ma_spinach

 Added extra location for SAMPLE_LOCATION bit

Change 89569 on 2003/03/11 by mkelly@fl_mkelly_r400_win_laptop

 Check POLY, POINT, LINE prim type detection in SP on parameter 0

Change 89556 on 2003/03/11 by gregs@gregs_r400_win_marlboro

 update

Change 89544 on 2003/03/11 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 89501 on 2003/03/11 by jiezhou@cn_jiezhou

 update from testplan review

 Page 66 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 89429 on 2003/03/10 by csampayo@fl_csampayo_r400

 Updated VGT tests status to 100% for all tests that pass hardware compare

Change 89424 on 2003/03/10 by csampayo@fl_csampayo_r400

 Update VGT and SU sections

Change 89384 on 2003/03/10 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 89375 on 2003/03/10 by ygiang@ygiang_r400_win_marlboro_p4

 updated: sp verification spreadsheet

Change 89331 on 2003/03/10 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 89313 on 2003/03/10 by csampayo@fl_csampayo_r400

 Some housekeeping updates.

Change 89312 on 2003/03/10 by csampayo@fl_csampayo_r400

 Housekeeping schedule

Change 89118 on 2003/03/07 by csampayo@fl_csampayo_r400

 New test checking single/dual vertex vectors of various sizes. Updated test_list and test
tracker accordingly

Change 89108 on 2003/03/07 by omesh@ma_omesh

 Updated the spreadsheet to some extent, but still haven't finished....

Change 89075 on 2003/03/07 by fliljero@fl_frank

 latest pass/fail results

Change 89066 on 2003/03/07 by moev@moev

 r400 structure test

Change 89032 on 2003/03/07 by csampayo@fl_csampayo_r400

 Page 67 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Added pass-thru test with large (>64 indices) vertex vectors. Updated test_list and test
tracker accordingly

Change 89021 on 2003/03/07 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 88919 on 2003/03/06 by jiezhou@cn_jiezhou

 update

Change 88913 on 2003/03/06 by csampayo@fl_csampayo_r400

 Adding mixed VGT 2/1 output vectors tests

Change 88910 on 2003/03/06 by ashishs@fl_ashishs_r400_win

 updated

Change 88905 on 2003/03/06 by gabarca@gabarca_crayola_win_cvd

 updated reg table adding timing calcs

Change 88847 on 2003/03/06 by jacarey@fl_jcarey_desktop

 Fix typo in pm4 spec.

Change 88832 on 2003/03/06 by gregs@gregs_r400_win_marlboro

 update

Change 88766 on 2003/03/06 by ashishs@fl_ashishs_r400_win

 updated for texture wrap bug which has been closed now

Change 88746 on 2003/03/06 by mkelly@fl_mkelly_r400_win_laptop

 Completes initial check of prim type detection in the pixel shader
 checking SQ POINT (r400sc_sp_sample_cntl_09), SQ LINE
(r400sc_sp_sample_cntl_11)
 and SQ POLY (this checkin).

Change 88591 on 2003/03/05 by mzhu@mzhu_crayola_win_tor

 Change overlay base address to be different with graphics base address in chapter 3.4.8.8.

Change 88577 on 2003/03/05 by gregs@gregs_r400_win_marlboro

 update

 Page 68 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 88553 on 2003/03/05 by nbarbier@nbarbier_r400_win_tor

 Updated section 9.4.

Change 88534 on 2003/03/05 by mkelly@fl_mkelly_r400_win_laptop

 MultiPass Indirect Buffer multiple looping...

Change 88515 on 2003/03/05 by mkelly@fl_mkelly_r400_win_laptop

 MultiPass Indirect Buffer / SC pixel LOOP interaction / 2 Segment / 2 Pass

Change 88445 on 2003/03/04 by csampayo@fl_csampayo_r400

 More VGT pass-thru tests checking grouper data types

Change 88405 on 2003/03/04 by mzhu@mzhu_crayola_win_tor

 Add BASE_ADDRESS = 384MB - 4KB case for graphics, overlay, icon and cursor in
chapter 3.4.7.2, 3.4.7.3, 3.4.8.4 and 3.4.8.8.

Change 88370 on 2003/03/04 by gregs@gregs_r400_win_marlboro

 update

Change 88360 on 2003/03/04 by grayc@grayc_r400_win

 initial release of block validation blocks

Change 88347 on 2003/03/04 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 88327 on 2003/03/04 by fliljero@fl_frank

 added wait_gfx_idle(); to force synchronization

Change 88312 on 2003/03/04 by fliljero@fl_frank

 mem-mapped real-time SQ constant regs moved to a 16 word alignment - from 0x124a0
to 12500

Change 88220 on 2003/03/03 by jiezhou@cn_jiezhou

 first testplan review

Change 88147 on 2003/03/03 by tien@ma_spinach

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1481 of 1898

 Page 69 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Let's try this again. same as prev rev.

Change 88146 on 2003/03/03 by tien@ma_spinach

 Updated to include new bits in r400TxVtxInstConstSqTp.xls

Change 88116 on 2003/03/03 by mzhu@mzhu_crayola_win_tor

 Change overlay gamma correction register default values to be linear.

Change 88023 on 2003/03/03 by ashishs@fl_ashishs_r400_win

 updated CL special cases %

Change 88004 on 2003/03/03 by georgev@devel_georgevh2_r400_win_marlboro

 Updated to reflect new tests.

Change 87906 on 2003/03/01 by gregs@gregs_r400_win_cc

 CXTAL1SHV2, PGTMDSSHVA4

Change 87776 on 2003/02/28 by fliljero@fl_frank

 update

Change 87764 on 2003/02/28 by smoss@smoss_crayola_win

 SU tests

Change 87762 on 2003/02/28 by llefebvr@llefebvr_r400

 Added the new SX interface.

Change 87752 on 2003/02/28 by frising@frising_r400_win_marlboro

 v.1.68
 -add CLAMP_DISABLE to vertex fetch constant.

Change 87636 on 2003/02/28 by gregs@gregs_r400_win_marlboro

 update

Change 87501 on 2003/02/27 by mzhu@mzhu_crayola_win_tor

 Update 5.9.10

Change 87476 on 2003/02/27 by fliljero@fl_frank

 Page 70 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 excel spreadsheet to track progress of test run the the gc testbench

Change 87468 on 2003/02/27 by gregs@gregs_r400_win_marlboro

 update

Change 87452 on 2003/02/27 by mzhu@mzhu_crayola_win_tor

 Add 5.9.9 More tests to improve code coverage
 Add 5.9.10 Read F, V and H count when CRTC is disabled

Change 87298 on 2003/02/27 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 87190 on 2003/02/26 by gregs@laptop1

 updated widths of new memory pads + initial distribution

Change 87189 on 2003/02/26 by gregs@laptop1

 <updated board straps + added TVDAC placement>

Change 87175 on 2003/02/26 by csampayo@fl_csampayo_r400

 Update test to use all 8 contexts, update test tracker accordingly

Change 87168 on 2003/02/26 by csampayo@fl_csampayo_r400

 Add new VGT pass-thru tests

Change 87160 on 2003/02/26 by sbagshaw@sbagshaw

 fixed some details of SCL_CP_coefficient_ram SCL system test

Change 87131 on 2003/02/26 by sbagshaw@sbagshaw

 procedure and description for SCL_CP_coefficient_ram system test changed to correct
methods.

Change 86921 on 2003/02/25 by gregs@gregs_r400_win_marlboro

 ESD power and groud pads for memory interface

Change 86915 on 2003/02/25 by gregs@gregs_r400_win_marlboro

 new crayola memory pads (breaks, corners, dcap, etc.)

Change 86894 on 2003/02/25 by csampayo@fl_csampayo_r400

 Page 71 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Closing Bug# 72

Change 86772 on 2003/02/25 by jiezhou@cn_jiezhou

 update

Change 86764 on 2003/02/25 by nbarbier@nbarbier_r400_win_tor

 More updates to the Code Coverage Section.

Change 86735 on 2003/02/25 by hdong@hdong_r400_win-_tor

 revert #11

Change 86713 on 2003/02/25 by ashishs@fl_ashishs_r400_win

 updated for r400sq_16tex_interp_combo_01

Change 86709 on 2003/02/25 by jacarey@fl_jcarey_desktop

 Initial Baseline

Change 86701 on 2003/02/25 by hdong@hdong_r400_win-_tor

 delete disp1(2)_x_end, and disp1(2)_y_end.

Change 86691 on 2003/02/25 by donaldl@fl_donaldl_p4

 SC clock diagram

Change 86673 on 2003/02/25 by scamlin@scamlin_crayola_win

 sq clocks

Change 86661 on 2003/02/25 by mkelly@fl_mkelly_r400_win_laptop

 Simple RTS for Christeen...

Change 86605 on 2003/02/24 by csampayo@fl_csampayo_r400

 Adding pass-thru tests with 32 bit indices

Change 86600 on 2003/02/24 by nbarbier@nbarbier_r400_win_tor

 More updates to Code Coverage Section.

Change 86575 on 2003/02/24 by jacarey@fl_jcarey2

 Page 72 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Clarification of write confirm interval as experimental for R400
 in the ME_INIT packet.

Change 86490 on 2003/02/24 by jennho@jennho_crayola0

 New schematics for NPL.

Change 86489 on 2003/02/24 by jennho@jennho_crayola0

 Updated schematics based on the lastest RTL changes.

Change 86488 on 2003/02/24 by gregs@gregs_r400_win_marlboro

 update

Change 86444 on 2003/02/24 by nbarbier@nbarbier_r400_win_tor

 Added section for additional tests required to satisfy code coverage (Section 9).

Change 86429 on 2003/02/24 by gabarca@gabarca_crayola_win_cvd

 Fixed viewport x, y start becauase the surface also rotates

Change 86428 on 2003/02/24 by tshah@fl_tshah

 Fixed wrong connection in VGT

Change 86415 on 2003/02/24 by jacarey@fl_jcarey_desktop

 Comment to cp_int_cntl register

Change 86414 on 2003/02/24 by tshah@fl_tshah

 Clock diagram for KS tile (RBBM+VGT+IDCT)

Change 86410 on 2003/02/24 by rramsey@RRAMSEY_P4_r400_win

 Add clock gating diagram for sc_b

Change 86390 on 2003/02/24 by jacarey@fl_jcarey_desktop

 Fix typo in indirect_buffer packet

Change 86374 on 2003/02/24 by jiezhou@cn_jiezhou

 update

Change 86371 on 2003/02/24 by gabarca@gabarca_crayola_win_cvd

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1482 of 1898

 Page 73 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Clarified 7.3.2: we want underline and blink at the same time

Change 86350 on 2003/02/24 by mkelly@fl_mkelly_r400_win_laptop

 Update SC status, re-assign most of the remaining cases to STRESS testing.

Change 86308 on 2003/02/23 by gregs@laptop1

 added DRAM_SEL pins

Change 86288 on 2003/02/23 by gregs@gregs_r400_win_cc

 new memory pads updated

Change 86181 on 2003/02/21 by gabarca@gabarca_crayola_win_cvd

 after code coverage

Change 86144 on 2003/02/21 by nbarbier@nbarbier_r400_win_tor

 Test Plan Update.

Change 86098 on 2003/02/21 by csampayo@fl_csampayo_r400

 Some housekeeping

Change 86022 on 2003/02/21 by sbagshaw@sbagshaw

 R400 DC test plan with updated numbers for CRTC timings for most modes to account
for latency from Memory Hub (MH) to Display Composite Pipe (DCP).

Change 86005 on 2003/02/21 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 85948 on 2003/02/21 by mdoggett@MA_MDOGGETT_LT

 Updated conditions for instruction and slice state transistions.

Change 85933 on 2003/02/21 by ashishs@fl_ashishs_r400_win

 updated

Change 85893 on 2003/02/21 by mzhu@mzhu_crayola_win_tor

 Update 3.4.9.13 and 3.4.9.14 to cover three cases in different display area, icon only,
cursor only and icon is overlaped by cursor.

Change 85774 on 2003/02/20 by csampayo@fl_csampayo_r400

 Page 74 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Adding point size clamping tests

Change 85692 on 2003/02/20 by mzhu@mzhu_crayola_win_tor

 Set different surface address from 0 - 256MB for graphics, overlay, icon and cursor in
chapter 3.4.7.2, 3.4.7.3, 3.4.8.4 and 3.4.8.8.

Change 85669 on 2003/02/20 by rfevreau@rfevreau_r400_win

 Added 3 new tests for code coverage: 1) x2 on D2
 2) x2 with cursor codes 1, 2, 3

Change 85602 on 2003/02/20 by mzhu@mzhu_crayola_win_tor

 Update tests in 3.4.9.13 and 3.4.9.14

Change 85539 on 2003/02/20 by mdoggett@MA_MDOGGETT_LT

 version 1.0 of out of order data return for TC. Will be eventually merged into TC spec.

Change 85504 on 2003/02/20 by gregs@gregs_r400_win_marlboro

 update

Change 85486 on 2003/02/20 by gregs@gregs_r400_win_marlboro

 update

Change 85475 on 2003/02/20 by mkelly@fl_mkelly_r400_win_laptop

 RTS rectangle walk direction x_dir = 0, y_dir = 1

Change 85417 on 2003/02/19 by csampayo@fl_csampayo_r400

 Some format cleanup

Change 85416 on 2003/02/19 by csampayo@fl_csampayo_r400

 Some schedule update

Change 85411 on 2003/02/19 by smoss@smoss_crayola_win

 update

Change 85403 on 2003/02/19 by gregs@gregs_r400_win_marlboro

 minor update

 Page 75 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 85397 on 2003/02/19 by ashishs@fl_ashishs_r400_win

 updated

Change 85388 on 2003/02/19 by ashishs@fl_ashishs_r400_win

 updated for the week of Feb 22nd

Change 85360 on 2003/02/19 by ashishs@fl_ashishs_r400_win

 updated for 3 tests (need to be updated for 7 more)

Change 85345 on 2003/02/19 by ashishs@fl_ashishs_r400_win

 updated

Change 85340 on 2003/02/19 by jiezhou@cn_jiezhou

 Change FRC crtc from interlaces mode to progress mode

Change 85335 on 2003/02/19 by georgev@devel_georgevh2_r400_win_marlboro

 Updated.

Change 85316 on 2003/02/19 by tshah@fl_tshah

 clock diagram for the PD team

Change 85294 on 2003/02/19 by fliljero@fl_fliljeros

 changed name of regclk_active signal coming from RBBM.
 divided logic cloud into 2 separate clouds for the enables since they do not use the same
logic to generate the enables.

Change 85269 on 2003/02/19 by frising@ma_frising

 v.1.67
 -FMT_10_11_11_AS_16_16_16_16 and FMT_11_11_10_AS_16_16_16_16 are not
degammable.

Change 85204 on 2003/02/19 by jacarey@fl_jcarey_desktop

 Fix typo for trans_bitblt for clr_cmp_src fields

Change 85203 on 2003/02/19 by csampayo@fl_csampayo_r400

 More format updates

Change 85182 on 2003/02/19 by bhankins@fl_bhankins_r400_win

 Page 76 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Initial checkin

Change 85164 on 2003/02/19 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 85140 on 2003/02/18 by csampayo@fl_csampayo_lt_r400

 Added charts

Change 85126 on 2003/02/18 by gregs@laptop1

 DRENB for dvo clock and control is high

Change 85118 on 2003/02/18 by jling@jling_crayola0

 Added OE signal from Strobe to data nearpad in visio diagram

Change 85008 on 2003/02/18 by scamlin@scamlin_crayola_win

 renamed and added stuff based on PD feedback

Change 84981 on 2003/02/18 by jiezhou@cn_jiezhou

 updating test plan to reflect hardware changes.

Change 84967 on 2003/02/18 by gregs@laptop1

 update

Change 84922 on 2003/02/18 by csampayo@fl_csampayo_r400

 Initial checkin

Change 84920 on 2003/02/18 by mzhu@mzhu_crayola_win_tor

 Correct register setting in 3.4.9.13 and 3.4.9.14

Change 84914 on 2003/02/18 by mzhu@mzhu_crayola_win_tor

 Add 3.4.9.16 Data pattern for Graphics and Overlay Keyer Code Coverage

Change 84903 on 2003/02/18 by gregs@laptop1

 improvements

Change 84807 on 2003/02/17 by mzhu@mzhu_crayola_win_tor

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1483 of 1898

 Page 77 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Add 3.4.9.13 Test YCbCr -> sRGB -> YCbCr
 Add 3.4.9.14 Icon and Cursor Data Clamping
 Add 3.4.9.15 Color Space Conversion Data Clamping

Change 84773 on 2003/02/17 by jiezhou@cn_jiezhou

 updating for the second review

Change 84568 on 2003/02/14 by jhoule@MA_JHOULE

 v 1.66:

 Changed FMT_24_8* formats to only fetch the Z value, as this was the original scheme.
 Stencil reads can be done by using FMT_8_8_8_8 using another constant.

 Updated degamma comments to account for the fact that NUM_FORMAT_ALL must be
set to RF, since degamma only makes sense on uRF source.

Change 84541 on 2003/02/14 by jling@jling_crayola0

 Removed VMODE0/1 from memory section

Change 84535 on 2003/02/14 by vgoel@fl_vgoel2

 updated register coverage

Change 84527 on 2003/02/14 by jling@jling_crayola0

 R400 io pad drawing (premlinimary)

Change 84505 on 2003/02/14 by mkelly@fl_mkelly_r400_win_laptop

 Real Time Stream Line List Primitive

Change 84420 on 2003/02/14 by csampayo@fl_csampayo_r400

 Added multi context tests

Change 84336 on 2003/02/13 by jowang@jowang_R400_win

 updated after code coverage review

Change 84290 on 2003/02/13 by mkelly@fl_mkelly_r400_win_laptop

 RTS intertwined with Hi-Z viz query

Change 84278 on 2003/02/13 by georgev@devel_georgevh2_r400_win_marlboro

 Updated with new tests.

 Page 78 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 84270 on 2003/02/13 by gabarca@gabarca_crayola_win_cvd

 Fixed

Change 84264 on 2003/02/13 by alleng@alleng_r400_win_marlboro

 Initial submission of R400 notes

Change 84235 on 2003/02/13 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 84122 on 2003/02/13 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 83959 on 2003/02/12 by ygiang@ygiang_r400_win_marlboro_p4

 updated: cp cntrl reg for perf counters

Change 83839 on 2003/02/12 by mdoggett@mdoggett_r400_win_platypus

 Changed all Two Layer L2 Block Offsets.
 Changed SM3.
 Added formats 54,55,56 changed 7,16, 17.
 Updated top level to reflect block split.

Change 83798 on 2003/02/12 by mdoggett@MA_MDOGGETT_LT

 Changed all Two Layer L2 Block Offsets.
 Changed SM3.
 Added formats 54,55,56 changed 7,16, 17.
 Updated top level to reflect block split.

Change 83705 on 2003/02/11 by jiezhou@cn_jiezhou

 updating from the design review

Change 83646 on 2003/02/11 by jiezhou@cn_jiezhou

 update

Change 83605 on 2003/02/11 by ashishs@fl_ashishs_r400_win

 updated

Change 83597 on 2003/02/11 by jhoule@MA_JHOULE

 Page 79 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Final description of mipfilter point (potential reuse of trijuice)

Change 83555 on 2003/02/11 by jiezhou@cn_jiezhou

 clock diagram for design review

Change 83549 on 2003/02/11 by jacarey@fl_jcarey_desktop

 Allow SRC_H/W != DST_H/W for all AlphaBlend OPs in Microcode
 Updated associated documents.

Change 83530 on 2003/02/11 by jhoule@MA_JHOULE

 0.9.20
 Added mip rounding in LOD computation pseudo-code

Change 83515 on 2003/02/11 by jiezhou@cn_jiezhou

 Increase H-total in DMIF stress tests.

Change 83493 on 2003/02/11 by jimmylau@jimmylau_r400_win_tor

 Update the table for AP_SIZE in section 6.1 because AP_SIZE is the same for a
particular aperture size strap, regardless of multifunction.

Change 83389 on 2003/02/10 by nbarbier@nbarbier_r400_win_tor

 Updated document with list of signals in DC/IO interface that don't go through DCIO
block.

Change 83328 on 2003/02/10 by jhoule@MA_JHOULE

 Updated replication table

Change 83253 on 2003/02/10 by csampayo@fl_csampayo_r400

 Housekeeping SU section

Change 83238 on 2003/02/10 by csampayo@fl_csampayo_r400

 Update real time parameter registers

Change 83233 on 2003/02/10 by mkelly@fl_mkelly_r400_win_laptop

 Use all 4 SQ parameters for RT streams...

Change 83130 on 2003/02/09 by gregs@laptop1

 update for netlist rev4.

 Page 80 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 83084 on 2003/02/08 by jimmylau@jimmylau_r400_win_tor

 Modify diagram on section 6.1 to illustrate change of HDP/VGA/RBBM interface
 Add tables in section 6.1 to illustrate the new strap settings for memory/register/ROM
aperture size
 Add description to the PCI spec. Rev2.3 support

Change 83080 on 2003/02/08 by gregs@laptop1

 MC_IO_wr_strb + DRAM_SEL + VREFs

Change 82947 on 2003/02/07 by csampayo@fl_csampayo_r400

 Updates to SQ_PROGRAM_CNTL

Change 82944 on 2003/02/07 by jacarey@fl_jcarey2

 Update Spec

Change 82939 on 2003/02/07 by jowang@jowang_R400_win

 added Early1 and Early2 states

Change 82927 on 2003/02/07 by nbarbier@nbarbier_r400_win_tor

 Minor changes.

Change 82845 on 2003/02/07 by csampayo@fl_csampayo_r400

 Add missing sq_basic_test test case

Change 82838 on 2003/02/07 by llefebvr@llefebvr_r400

 small update regarding the implementation change for the Pos Allocated / PC allocated
bits.

Change 82808 on 2003/02/07 by mkelly@fl_mkelly_r400_win_laptop

 Validate dummy quad deallocation in pixel vector buffer is good.

Change 82734 on 2003/02/06 by gregs@laptop1

 added VREFs

Change 82699 on 2003/02/06 by csampayo@fl_csampayo_r400

 Remove non-existing tests (randomized)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1484 of 1898

 Page 81 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 82684 on 2003/02/06 by nbarbier@nbarbier_r400_win_tor

 Updated Section 8.

Change 82683 on 2003/02/06 by csampayo@fl_csampayo_r400

 Adding Marl test list tracker

Change 82639 on 2003/02/06 by georgev@devel_georgevh2_r400_win_marlboro

 Really SQ, that's why it's deleted.

Change 82560 on 2003/02/06 by ashishs@fl_ashishs_r400_win

 updated to CL/VTE to 99% . Changed the %formula to account for the CL_POINT_SIZE
register not being used.

Change 82554 on 2003/02/06 by rfevreau@rfevreau_r400_win

 First test using ico file for data

Change 82543 on 2003/02/06 by dwong@cndwong2

 added details on reset schemes

Change 82508 on 2003/02/06 by jacarey@fl_jcarey_desktop

 Update NQ Flag for Micro Engine's DMA Engine

Change 82497 on 2003/02/06 by gregs@gregs_r400_win_marlboro

 update

Change 82489 on 2003/02/06 by ashishs@fl_ashishs_r400_win

 updated

Change 82429 on 2003/02/06 by mkelly@fl_mkelly_r400_win_laptop

 Simplified version of r400sc_rts_12 for regress_e

Change 82426 on 2003/02/06 by ashishs@fl_ashishs_r400_win

 updated

Change 82278 on 2003/02/05 by csampayo@fl_csampayo_r400

 Update to better see register coverage

 Page 82 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 82256 on 2003/02/05 by csampayo@fl_csampayo_r400

 Add field to PA_CL_ENHANCE

Change 82239 on 2003/02/05 by ashishs@fl_ashishs_r400_win

 updated

Change 82235 on 2003/02/05 by gregs@gregs_r400_win_marlboro

 netlist revision 4

Change 82213 on 2003/02/05 by jacarey@fl_jcarey_desktop

 Correct miscellaneous typo's in the documetn

Change 82184 on 2003/02/05 by csampayo@fl_csampayo_r400

 Increase max memory size for tests. Update spreadsheet

Change 82156 on 2003/02/05 by georgev@ma_georgev

 Renamed file.

Change 82059 on 2003/02/05 by gregs@gregs_r400_win_marlboro

 revision 4 netlist release

Change 81881 on 2003/02/04 by llefebvr@llefebvr_r400

 added some more comments in the spreadsheet.

Change 81860 on 2003/02/04 by jacarey@fl_jcarey_desktop

 Miscellaneous Documentation Updates

Change 81791 on 2003/02/04 by mkelly@fl_mkelly_r400_win_laptop

 RTS intertwined with Viz Query and kill_pix_post_detail_mask.

Change 81731 on 2003/02/04 by mkelly@fl_mkelly_r400_win_laptop

 Viz Query intertwined with RT streams, complete...

Change 81712 on 2003/02/04 by jacarey@fl_jcarey_desktop

 Update write-only status of microcode read address registers.

Change 81667 on 2003/02/03 by gregs@laptop1

 Page 83 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 fixed bug introduced earlier

Change 81620 on 2003/02/03 by gregs@gregs_r400_win_marlboro

 cleaned JTAG interface

Change 81538 on 2003/02/03 by llefebvr@llefebvr_r400

 Missed bits 41 and 42 in the SQ_EXEC instruction format. Those are RESERVED as
well.

Change 81486 on 2003/02/03 by ygiang@ygiang_r400_win_marlboro_p4

 added: sp coverage

Change 81412 on 2003/02/03 by ashishs@fl_ashishs_r400_win

 updated

Change 81401 on 2003/02/03 by llefebvr@llefebvr_r400

 refined the interfaces to the SP to specify wich signals should or shouldn't be pipelined.

Change 81382 on 2003/02/03 by jacarey@fl_jcarey_desktop

 Add clock gating diagram to spec.
 Add note that debug data I/O is asynchronous.

Change 81347 on 2003/02/02 by gregs@laptop1

 update

Change 81312 on 2003/02/02 by gregs@gregs_r400_win_cc

 update

Change 81261 on 2003/02/01 by gregs@gregs_r400_win_cc

 added note that debug bus is asynchronous and there shopuld be no registers on inputs or
outputs.

Change 81219 on 2003/01/31 by lchen@lchen_crayola0

 MEM IO schematics and netlist

Change 81215 on 2003/01/31 by lchen@lchen_crayola0

 version 4

 Page 84 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 81159 on 2003/01/31 by vgoel@fl_vgoel2

 updated VGT register coverage from TE setup

Change 81126 on 2003/01/31 by fliljero@fl_frank

 new drawing for PD team

Change 81080 on 2003/01/31 by jacarey@fl_jcarey_desktop

 Fix Typo in ME_INIT packet.

Change 81008 on 2003/01/31 by jacarey@fl_jcarey_desktop

 1. Correct Width of Microcode RAM read and write registers.
 2. Fix re-ordering queue data available determination
 3. Document updates for #1.

Change 80832 on 2003/01/30 by llefebvr@llefebvre_laptop_r400

 wording change for the predicate override bit.

Change 80785 on 2003/01/30 by jacarey@fl_jcarey_desktop

 Clarify that ME_INIT invalidates pointers only if processed in a non-real-time stream.
 This does not happen if it is processed in a real-time stream.

Change 80783 on 2003/01/30 by georgev@ma_georgev

 First part of register list for tests. Not finished due to pending changes.

Change 80707 on 2003/01/30 by mkelly@fl_mkelly_r400_win_laptop

 Update comments, RTS with SC quad order enable toggling...

Change 80686 on 2003/01/30 by mkelly@fl_mkelly_r400_win_laptop

 RTS and SC FIFO sizing combinations...

Change 80682 on 2003/01/30 by jacarey@fl_jcarey_desktop

 Pseudocode Update #2 for today

Change 80680 on 2003/01/30 by jacarey@fl_jcarey_desktop

 Update ME_INIT in Pseudocode Land

Change 80679 on 2003/01/30 by mkelly@fl_mkelly_r400_win_laptop

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1485 of 1898

 Page 85 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 RTS combinations with Vtx and Pix pipes 0/2 disabled with
 SC one quad per clock toggled, shader back pressure,
 interpolator shading toggling

Change 80664 on 2003/01/30 by jacarey@fl_jcarey_desktop

 1. Reserved bits in CP_DEBUG register are preserved.
 2. Added default for CP_INT_STAT register.
 3. Add number_dword=0 check for PolyScanLines and HostData_Blt packets.
 4. Associated documentation updates for above items.
 5. Update full chip tests for above items.

Change 80503 on 2003/01/29 by csampayo@fl_csampayo_r400

 Updated VGT section

Change 80479 on 2003/01/29 by mkelly@fl_mkelly_r400_win_laptop

 Vtx and pix pipes 2 and 3 disabled with RTS triangles and rectangles and non-RTS
stipple lines, complete

Change 80426 on 2003/01/29 by rfevreau@rfevreau_r400_win

 Changed tests to use bitmaps for cursor data

Change 80422 on 2003/01/29 by jacarey@fl_jcarey_desktop

 Add note to spec regarding the preservation of "reserved" bits in the cp_debug register.

Change 80420 on 2003/01/29 by jennho@jennho_crayola0

 Added ADDR/Command/RD_DATA/DIM signals floorplan.

Change 80401 on 2003/01/29 by csampayo@fl_csampayo_r400

 Update VGT section

Change 80398 on 2003/01/29 by csampayo@fl_csampayo_r400

 Adding new VGT test for missing reg coverage

Change 80305 on 2003/01/29 by mkelly@fl_mkelly_r400_win_laptop

 Check stippled line integrity with real time streams, complete.

Change 80022 on 2003/01/28 by nkociuk@ma_nkociuk

 update TP perfcounter events

 Page 86 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 79996 on 2003/01/28 by gregs@gregs_r400_win_marlboro

 first release of the new memory pads.

Change 79984 on 2003/01/28 by mkelly@fl_mkelly_r400_win_laptop

 Polymode RTS test

Change 79957 on 2003/01/28 by kcorrell@kcorrell_r400_docs_marlboro_nb

 edited hi interface description

Change 79899 on 2003/01/28 by hartogs@fl_hartogs

 Updated VGT_SQ interface descripttion.

Change 79824 on 2003/01/27 by csampayo@fl_csampayo_r400

 Updated VGT status

Change 79818 on 2003/01/27 by csampayo@fl_csampayo_r400

 Adding new VGT fifo tests

Change 79762 on 2003/01/27 by tshah@fl_tshah

 added RBBM_CGM_soft_reset (hardware+emulator+tests+doc)

Change 79738 on 2003/01/27 by llefebvr@llefebvre_laptop_r400

 some updates.

Change 79725 on 2003/01/27 by gregs@gregs_r400_win_marlboro

 mem interface tests PASSED.

Change 79674 on 2003/01/27 by georgev@ma_georgev

 First revision.

Change 79649 on 2003/01/27 by lchen@lchen_crayola0

 checked in the shivah NPL schematics

Change 79613 on 2003/01/27 by ashishs@fl_ashishs_r400_win

 added test description and updated tracker

 Page 87 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 79549 on 2003/01/26 by gregs@laptop1

 update

Change 79547 on 2003/01/26 by gregs@laptop1

 update

Change 79527 on 2003/01/26 by gregs@laptop1

 mem interface clean (except address from MCs)

Change 79368 on 2003/01/24 by gregs@gregs_r400_win_marlboro

 update

Change 79284 on 2003/01/24 by georgev@ma_georgev

 Added a few tests. Yung needs file for his nefarious purposes.

Change 79270 on 2003/01/24 by jimmylau@jimmylau_r400_win_tor

 First draft of BIF coherency test cases for R400

Change 79256 on 2003/01/24 by ashishs@fl_ashishs_r400_win

 updated

Change 79235 on 2003/01/24 by mkelly@fl_mkelly_r400_win_laptop

 RT provoking vertex looking good through interpolator on one parameter.

Change 79191 on 2003/01/24 by efong@efong_r400_win_tor_doc

 moved gord to ltis188 and syang to ltis186

Change 79181 on 2003/01/24 by csampayo@fl_csampayo_r400

 Updated VGT section

Change 79176 on 2003/01/24 by jhoule@MA_JHOULE

 Changed DXT from 5/6 to 8 always.
 Only kept first 2 sheets (should be enough).

Change 79174 on 2003/01/24 by mkelly@fl_mkelly_r400_win_laptop

 Add modified and shortened version of r400sc_rts_09 (back face check on nonRT vs RT
prims) to regress_e

 Page 88 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 79161 on 2003/01/24 by mkelly@fl_mkelly_r400_win_laptop

 Final, validating Pixel Shader face bit detection from sc_sp with nonRT and RT primtives

Change 79155 on 2003/01/24 by jacarey@fl_jcarey_desktop

 Clarify update of constant write enables for LCC packet.

Change 79094 on 2003/01/23 by ashishs@fl_ashishs_r400_win

 updated to remove the clip error detect 0%

Change 79063 on 2003/01/23 by csampayo@fl_csampayo_r400

 Initial checkin

Change 78984 on 2003/01/23 by llefebvr@llefebvr_r400

 small correction on memory export buffer sizes.

Change 78972 on 2003/01/23 by khabbari@khabbari_r400_win

 changed the syncgen test list

Change 78962 on 2003/01/23 by mzhu@mzhu_crayola_win_tor

 Update for MH-DC latency tests in chapter 3.3

Change 78947 on 2003/01/23 by jimmylau@jimmylau_r400_win_tor

 Update after review on Jan 23, 03

Change 78917 on 2003/01/23 by jacarey@fl_jcarey_desktop

 Fix LCC and Set Constant for incremental register updates.

Change 78913 on 2003/01/23 by efong@efong_r400_win_tor_doc

 Added in Project linux assignments excel spreadsheet

Change 78876 on 2003/01/23 by mkelly@fl_mkelly_r400_win_laptop

 Validate face bit in pixel shader for multi-tile coverage prims

Change 78874 on 2003/01/23 by ashishs@fl_ashishs_r400_win

 updated to have percentages for the CL/VTE registers with comments

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1486 of 1898

 Page 89 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 78771 on 2003/01/22 by jennho@jennho_crayola0

 Preliminary r400 MEM IO ring visio diagram.

Change 78733 on 2003/01/22 by ashishs@fl_ashishs_r400_win

 updated

Change 78717 on 2003/01/22 by jimmylau@jimmylau_r400_win_tor

 Initial Action items for BIF

Change 78693 on 2003/01/22 by gregs@gregs_r400_win_cc

 update

Change 78663 on 2003/01/22 by gregs@gregs_r400_win_cc

 update

Change 78658 on 2003/01/22 by jacarey@fl_jcarey_desktop

 Update for AlphaBlend for ARGB1555 and Alpha_Source Blending

Change 78557 on 2003/01/22 by jhoule@MA_JHOULE

 Changed *_FLOAT formats to have fast path available under VFetch only.
 This means TFetches only do 32b/clock.

 Corrected cycle multiplier for FMT_32_32_32_32 (was set to x3 instead of x4).

 Added REQUEST_LATENCY field to constants. Controls out-of-order behavior.

Change 78432 on 2003/01/22 by jacarey@fl_jcarey_desktop

 Fix Typo in Boolean Descriptions

Change 78374 on 2003/01/21 by lkang@lkang_r400_win_tor

 update

Change 78369 on 2003/01/21 by gregs@gregs_r400_win_cc

 Tuesday

Change 78345 on 2003/01/21 by ashishs@fl_ashishs_r400_win

 updated

 Page 90 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 78304 on 2003/01/21 by frising@ma_frising

 v.1.93
 -Z export from pixel sahder now in X channel.
 -updated mova, kill and predicate instructions coissue rules now that we have a separate
bus for mova results.
 -add note saying input modifiers do not apply to PreviousScalar.
 -show not used opcodes.
 -add clamping to mova result sent to SQ.
 -add 6 new scalar instructions that operate on a constant and GPR and associated
documentation.

Change 78286 on 2003/01/21 by grayc@grayc_r400_win

 connections of gfx pipeline

Change 78267 on 2003/01/21 by jennho@jennho_crayola0

 Preliminary NPL schematics; not simulated yet.

Change 78098 on 2003/01/21 by gregs@gregs_r400_win_cc

 Monday update

Change 78045 on 2003/01/20 by alleng@alleng_r400_win_marlboro

 Added updated information regarding the RB performance counters...

Change 77987 on 2003/01/20 by csampayo@fl_csampayo_r400

 Initial checkin

Change 77984 on 2003/01/20 by mzhu@mzhu_crayola_win_tor

 Update DMIF model force signal names for MH-DC latency tests in chapter 3.3

Change 77922 on 2003/01/20 by ashishs@fl_ashishs_r400_win

 updated

Change 77916 on 2003/01/20 by jacarey@fl_jcarey_desktop

 1. Pixel Shader and Microcode to Set B6 for AAFONT packets.
 2. Vertex Shader to ignore B10 for packets with Embedded Source.
 3. Updated RB_BlendControl Settings for AlphaBlend Packet.
 4. Associated Documentation for above changes.

Change 77910 on 2003/01/20 by mzhu@mzhu_crayola_win_tor

 Page 91 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Add MH-DC latency tests in chapter 3.3

Change 77887 on 2003/01/20 by csampayo@fl_csampayo_r400

 Some CL housekeeping

Change 77866 on 2003/01/20 by ashishs@fl_ashishs_r400_win

 updated

Change 77848 on 2003/01/20 by jacarey@fl_jcarey_desktop

 Note to Ply_NextScan and NextChar packets about required preceeding packets.

Change 77665 on 2003/01/17 by jennho@jennho_crayola0

 <Preliminary R400 MEM IO timing spreadsheet.>

Change 77661 on 2003/01/17 by jennho@jennho_crayola0

 <Preliminary R400 MEM IO timing spreadsheet.>

Change 77619 on 2003/01/17 by gregs@gregs_r400_win_marlboro

 Friday update

Change 77558 on 2003/01/17 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 77554 on 2003/01/17 by mkelly@fl_mkelly_r400_win_laptop

 Rectangle and triangle real time stream initial functional

Change 77520 on 2003/01/17 by jacarey@fl_jcarey2

 Miscellaneous Comments to Registers

Change 77493 on 2003/01/17 by georgev@ma_georgev

 Added descriptions of SQ_TESTS.

Change 77490 on 2003/01/17 by ashishs@fl_ashishs_r400_win

 updated

Change 77459 on 2003/01/17 by lchen@lchen_crayola0

 initial release of the MEM IO schematics and spice netlist

 Page 92 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 77457 on 2003/01/17 by jacarey@fl_jcarey_desktop

 1. Updated RB_BlendControl for AlphaBlend Packet
 2. Added Microcode for Source Rotation for 2D.
 3. Updated Documentation for Source Rotation and RB_BlendControl

Change 77306 on 2003/01/16 by gregs@gregs_r400_win_marlboro

 fixed AGP clock layer (damaged by accident ..)

Change 77297 on 2003/01/16 by gregs@gregs_r400_win_marlboro

 Thursday update

Change 77273 on 2003/01/16 by ashishs@fl_ashishs_r400_win

 updated

Change 77174 on 2003/01/16 by georgev@ma_georgev

 Added new list of SQ tests for Florida.

Change 77167 on 2003/01/16 by jennho@jennho_crayola0

 <rv350 mem IO timing spreadsheet>

Change 77102 on 2003/01/16 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 77097 on 2003/01/16 by kcorrell@kcorrell_r400_docs_marlboro_nb

 Fixed error in mhr_mhs_word, mhb_mhs_word (made description match hardware).
Updated update path to read cache from merge logic.

Change 77093 on 2003/01/16 by llefebvr@llefebvr_r400

 Modified the alloc instruction to include a no-serial bit.

Change 77086 on 2003/01/16 by mkelly@fl_mkelly_r400_win_laptop

 12 non real time packets of one triangle, each with 16 real time rectangle streams...

Change 77014 on 2003/01/15 by gregs@laptop1

 updated address and CKE pads.

Change 77001 on 2003/01/15 by llefebvr@llefebvr_r400

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1487 of 1898

 Page 93 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Interface change from the SX (alloc dealloc bus) and interface change from the SP
(predicates and kill mask).

Change 76917 on 2003/01/15 by mzhu@mzhu_crayola_win_tor

 Add test 3 for full width icon and cursor at 3.4.9.12

Change 76894 on 2003/01/15 by ashishs@fl_ashishs_r400_win

 removed vap_vte_vec0_13 since redundant with vap_vte_vec0_05

Change 76893 on 2003/01/15 by ashishs@fl_ashishs_r400_win

 updated

Change 76880 on 2003/01/15 by vgoel@fl_vgoel2

 updated bug report to date

Change 76868 on 2003/01/15 by lseiler@lseiler_r400_win_marlboro

 Fixed a bug in the 3D tiling equation

Change 76849 on 2003/01/15 by gregs@laptop1

 updated MCLK templates, macros, connections.

Change 76833 on 2003/01/15 by frising@ma_frising

 v.1.64
 -no functional changes just clean-up.
 --make description of unused field in texture fetch instruction state that it is unused.
 --add a missing outline border to above unused field.
 --merge comments 14.) and 16.) in R400_DATA_FORMAT table section.
 --make texture constant fields fit on to two pages.

Change 76816 on 2003/01/15 by ashishs@fl_ashishs_r400_win

 updated

Change 76812 on 2003/01/15 by ashishs@fl_ashishs_r400_win

 updated

Change 76807 on 2003/01/15 by ashishs@fl_ashishs_r400_win

 removed r400vte_pos_neg_combo_04 since redundant with r400vte_pos_neg_combo_01

 Page 94 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 76746 on 2003/01/14 by gregs@laptop1

 updated DIM pads and macro.

Change 76730 on 2003/01/14 by gregs@laptop1

 Tuesday (01-14-03) work in progress

Change 76723 on 2003/01/14 by ashishs@fl_ashishs_r400_win

 updated

Change 76708 on 2003/01/14 by jhoule@MA_JHOULE

 1.63
 FMT_2_10_10_10 was wrongly set as degamma'able.
 The new FMT_2_10_10_10_AS_16_16_16_16 must be used instead.

Change 76701 on 2003/01/14 by jiezhou@cn_jiezhou

 updating frc settings

Change 76644 on 2003/01/14 by csampayo@fl_csampayo_r400

 Updated HOS status

Change 76582 on 2003/01/14 by mkelly@fl_mkelly_r400_win_laptop

 Update plan chart...

Change 76578 on 2003/01/14 by mkelly@fl_mkelly_r400_win_laptop

 Update SC...

Change 76576 on 2003/01/14 by kcorrell@kcorrell_r400_docs_marlboro_nb

 Added position of 3 bit endian field in Tag Buffer Contents table.
 Changed mhr_mhs interface definition to support 128 bit transfers.
 Fixed a couple of typo's.

Change 76557 on 2003/01/14 by mkelly@fl_mkelly_r400_win_laptop

 OGL Rasterization validation...

Change 76417 on 2003/01/14 by mkelly@fl_mkelly_r400_win_laptop

 Simple test, validate DX rasterization rules...

Change 76391 on 2003/01/13 by grayc@grayc_r400_win

 Page 95 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 updated for read test

Change 76388 on 2003/01/13 by gregs@laptop1

 work in progress on memory interface.
 Monday 01-13-03.
 data and strobe templates + data PadList

Change 76366 on 2003/01/13 by ashishs@fl_ashishs_r400_win

 CL/VTE final synch complete

Change 76364 on 2003/01/13 by ashishs@fl_ashishs_r400_win

 added 3 tests (2 barycentric and 1 DX/OGL space test to individual submission count)

Change 76361 on 2003/01/13 by ashishs@fl_ashishs_r400_win

 CL/VTE are perfectly updated after this submission

Change 76311 on 2003/01/13 by ashishs@fl_ashishs_r400_win

 updated

Change 76298 on 2003/01/13 by jiezhou@cn_jiezhou

 update dto increment (13bits frac represents 20bits frac)

Change 76290 on 2003/01/13 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 76278 on 2003/01/13 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 76269 on 2003/01/13 by ashishs@fl_ashishs_r400_win

 updated for r400vte_coverage_02(removed)

Change 76263 on 2003/01/13 by ashishs@fl_ashishs_r400_win

 updated for r400vte_coverage_02 since that test is deleted. Just decreased the count from
the VT coverage.

Change 76199 on 2003/01/13 by jacarey@fl_jcarey_desktop

 Documentation for the 2D Endian Mode Programming

 Page 96 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 76196 on 2003/01/13 by jhoule@MA_JHOULE

 1.62:
 - Added formats FMT_2_10_10_10_AS_16_16_16_16,
FMT_10_11_11_AS_16_16_16_16, and FMT_11_11_10_AS_16_16_16_16, which is
equivalent to the old TFetch values.
 - Changed FMT_2_10_10_10, FMT_10_11_11, and FMT_11_11_10 to be fast and
unfilterable (equivalent
 to the old VFetch).
 - Added Filterable? column.
 - Added comments regarding undefined behavior when filter is not set to Point.

Change 76174 on 2003/01/13 by jhoule@MA_JHOULE

 1.61:
 Single LOD_BIAS, located where LOD_BIAS_H was.
 Added GRAD_EXP_ADJUST_{H|V} which should achieve the intended functionality of
the dual-bias scheme (non-square-pixel resolve, and scanline-interleaved rendering under multi-
chip).

 Corrected minor typo (performace -> performance) on Features page.

Change 76169 on 2003/01/13 by csampayo@fl_csampayo_r400

 Revised plan for the VGT and SU and updated status for the following tests:
 r400vgt_dma_index_primtypes_02
 r400vgt_real_time_events_07

Change 76117 on 2003/01/13 by ashishs@fl_ashishs_r400_win

 updated

Change 76067 on 2003/01/12 by gregs@laptop1

 update - pad ring - work in progress

Change 76066 on 2003/01/12 by jiezhou@cn_jiezhou

 Initial release

Change 75932 on 2003/01/10 by gregs@gregs_r400_win_marlboro

 update

Change 75926 on 2003/01/10 by rherrick@ma_rherrick_crayola

 Implemented DC Urgent latency checker... Also implemented parser hooks to support
Bandwidth checking parameters.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1488 of 1898

 Page 97 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 75914 on 2003/01/10 by jiezhou@cn_jiezhou

 make tests smaller

Change 75815 on 2003/01/10 by jacarey@fl_jcarey_desktop

 Update equation used by micro engine for 1D sources for the SRC_X / Y terms.

Change 75811 on 2003/01/10 by rfevreau@rfevreau_r400_win

 Cursor test fixes

Change 75642 on 2003/01/09 by csampayo@fl_csampayo_r400

 Added 1 VGT performance and 1 VGT debug case, updated test_list and tracker
accordingly

Change 75512 on 2003/01/09 by jacarey@fl_jcarey_desktop

 1. Add level of indirection to the And_Mask and Or_Mask in the Reg_RMW packet.
 2. Updated Associated Unit Test.
 3. Updated PM4 Spec Accordingly.
 4. Added Note to Polyline packet, that the scan_count needs to be 1 or greater.

Change 75356 on 2003/01/08 by hartogs@fl_hartogs

 See version update info in document.

Change 75303 on 2003/01/08 by mkelly@fl_mkelly_r400_win_laptop

 Stress vtx and pix pipe disable combinations with stippled LINE_LIST

Change 75236 on 2003/01/08 by ashishs@fl_ashishs_r400_win

 updated for clip disable count

Change 75232 on 2003/01/08 by ashishs@fl_ashishs_r400_win

 updated for new tests. Also reduced the count for clip disable tests from 4 to 1

Change 75199 on 2003/01/08 by ashishs@fl_ashishs_r400_win

 updated(removed r400cl_ucp_pointlist_01)

Change 75197 on 2003/01/08 by jacarey@fl_jcarey_desktop

 1. Reduction of queue sizes in CP for area savings.

 Page 98 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 75191 on 2003/01/08 by jhoule@MA_JHOULE

 Added TC/TP replication table and associated explanation.
 Added a few tables to table of content.

Change 75183 on 2003/01/08 by vromaker@MA_VIC_P4

 latest version of sq top level block diagram

Change 75173 on 2003/01/08 by csampayo@fl_csampayo_r400

 Added new VGT pass-thru block test, updated test_list and test tracker accordingly.

Change 75002 on 2003/01/07 by gregs@gregs_r400_win_marlboro

 DDC1data, DDC1clk, VSYNCA, HSYNCA, VSYNCB, and HSYNCB now incluided in
DFT chain.

Change 74942 on 2003/01/07 by llefebvr@llefebvre_laptop_r400

 New revision of the spec.

Change 74928 on 2003/01/07 by jiezhou@cn_jiezhou

 update FRC DTO_INC parameters

Change 74922 on 2003/01/07 by jiezhou@cn_jiezhou

 See the reversion description

Change 74919 on 2003/01/07 by mdoggett@mdoggett_r400_win_platypus

 Fixed figure for TCA

Change 74887 on 2003/01/07 by gregs@gregs_r400_win_marlboro

 update

Change 74783 on 2003/01/06 by gregs@gregs_r400_win_marlboro

 added bad pipe disable register drawing.

Change 74742 on 2003/01/06 by ashishs@fl_ashishs_r400_win

 updated comments for r400cl_ucp_cube_01

Change 74715 on 2003/01/06 by jacarey@fl_jcarey_desktop

 Clarification of Invalidate_State packet w.r.t. use of Mem_Write

 Page 99 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 74689 on 2003/01/06 by ashishs@fl_ashishs_r400_win

 updated

Change 74686 on 2003/01/06 by ashishs@fl_ashishs_r400_win

 updated

Change 74684 on 2003/01/06 by jacarey@fl_jcarey_desktop

 Update width of brush offset to reflect 24 bits supported by the VGT.

Change 74668 on 2003/01/06 by vgoel@fl_vgoel2

 added bug 1040

Change 74619 on 2003/01/06 by sbagshaw@sbagshaw

 completed subsections of section 7 regarding the DAC output interface and DAC
automatic device detection circuit

Change 74589 on 2003/01/06 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 74510 on 2003/01/04 by gregs@laptop1

 added BAD_PIPE_DISBLE_REGISTER logic diagram

Change 74357 on 2003/01/03 by mkelly@fl_mkelly_r400_win_laptop

 256 points per packet, all 15 legal combinations of vtx pipe disable

Change 74351 on 2003/01/03 by rfevreau@rfevreau_r400_win

 New goldens, put rg files back to 31 tests

Change 74331 on 2003/01/03 by csampayo@fl_csampayo_r400

 Closed bugs# 102 and 103

Change 74279 on 2003/01/03 by smoss@smoss_crayola_win

 gave credit to vivian for her three read tests

Change 74201 on 2003/01/02 by jiezhou@cn_jiezhou

 update for frame rate conversion SCL_VIDCAP_frame_rate_conv

 Page 100 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 74196 on 2003/01/02 by frising@ma_frising

 v.0.99e

 -MUL_PREV2 scalar instruction now checks if PreviousScalar or input1.x is a NaN and
returns -MAX_FLOAT if so.

Change 74194 on 2003/01/02 by frising@ma_frising

 v.1.92

 -MUL_PREV2 scalar instruction now checks if PreviousScalar or SrcC.X is a NaN and
returns -MAX_FLOAT if so.

Change 74184 on 2003/01/02 by csampayo@fl_csampayo_lt_r400

 Updated test and test_list for test r400vgt_real_time_events_06 and updated
description/status on the test tracker for tests:
 r400vgt_real_time_events_04
 r400vgt_real_time_events_05
 r400vgt_real_time_events_06

Change 74154 on 2003/01/02 by gregs@gregs_r400_win_marlboro

 update

Change 74152 on 2003/01/02 by gregs@gregs_r400_win_marlboro

 update

Change 74142 on 2003/01/02 by gregs@gregs_r400_win_marlboro

 update

Change 74133 on 2003/01/02 by gregs@gregs_r400_win_marlboro

 update

Change 74124 on 2003/01/02 by gregs@gregs_r400_win_marlboro

 < ROM straps re-arranged >

Change 74109 on 2003/01/02 by csampayo@fl_csampayo_lt_r400

 Some housekeeping

Change 74083 on 2003/01/02 by sbagshaw@sbagshaw

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1489 of 1898

 Page 101 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Added description of Scaler double buffered registers in section 9.5, section 7 started
with description of functionality and controls of DAC output interface

Change 74027 on 2003/01/01 by gregs@laptop1

 update

Change 73990 on 2003/01/01 by gregs@gregs_r400_win_cc

 xyz

Change 73877 on 2002/12/31 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 73655 on 2002/12/29 by nbarbier@nbarbier_r400_win_tor

 Added Stress test for dispout.

Change 73552 on 2002/12/27 by lchen@lchen_crayola0

 fix a typo

Change 73548 on 2002/12/27 by lchen@lchen_crayola0

 update the r400 MEM IO spec based on latest info

Change 73425 on 2002/12/26 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 73424 on 2002/12/26 by mkelly@fl_mkelly_r400_win_laptop

 Update tracker...

Change 73328 on 2002/12/24 by gregs@gregs_r400_win_cc

 added iodft modules configuration in column AC + modifications in VBA write pad_data
routine.

Change 73234 on 2002/12/23 by enewman@enewman_r400_linux_marlboro

 updated for NL 3.0

Change 72971 on 2002/12/20 by jhoule@MA_JHOULE

 Minor corrections and additions to the LOD calculation

Change 72964 on 2002/12/20 by jhoule@MA_JHOULE

 Page 102 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 v0.9.16
 Better description of LOD computation.
 Updated pseudo-code.
 Update TP_TC interface (pitches).

Change 72948 on 2002/12/20 by nbarbier@nbarbier_r400_win_tor

 Added Genlocking test to dispout stress test section.

Change 72807 on 2002/12/20 by gabarca@gabarca_crayola_win_cvd

 fixed viewport start spec

Change 72717 on 2002/12/20 by gregs@gregs_r400_win_marlboro

 rev 3 netlist

Change 72710 on 2002/12/20 by smoss@smoss_crayola_win

 SU tests

Change 72657 on 2002/12/19 by csampayo@fl_csampayo_r400

 Updated ststus for tests:
 r400vgt_real_time_events_04
 r400vgt_real_time_events_05

Change 72591 on 2002/12/19 by beiwang@bei_depot

 Copied over white box testing item from testenv/verification/MC MH Test Plan.doc

 Added in color preliminary thoughts of how to implement these tests/checks/monitors.

Change 72541 on 2002/12/19 by ashishs@fl_ashishs_r400_win

 update

Change 72527 on 2002/12/19 by smoss@smoss_crayola_win

 SU tests

Change 72526 on 2002/12/19 by jasif@jasif_r400_win_tor

 Added mono_colour_reg_test, misc_reg_test, ovsc_col_sel1, ovsc_col_sel2, and
ovsc_col_sel3.

Change 72483 on 2002/12/19 by jiezhou@cn_jiezhou

 Page 103 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 small update

Change 72481 on 2002/12/19 by mdoggett@mdoggett_r400_win_platypus

 Changed formats 50, 51, 52, 53 in format conversion table. Added format 51 to source
address table.
 Added 3D linear L1 Tag, removed 3D noise L1 Tag.

Change 72477 on 2002/12/19 by jhoule@MA_JHOULE

 Renamed lod to lod_comp in the pseudocode

Change 72429 on 2002/12/19 by csampayo@fl_csampayo_lt_r400

 Closed bug# 70

Change 72392 on 2002/12/19 by kcorrell@kcorrell_r400_docs_marlboro_nb

 updated implementation description

Change 72323 on 2002/12/18 by gregs@laptop1

 added speed sensor register

Change 72297 on 2002/12/18 by gregs@laptop1

 re-arranged analog and other display pads

Change 72284 on 2002/12/18 by jacarey@fl_jcarey_desktop

 AlphaBlend PM4 Packet Update

 1. Microcode Updates
 2. Documentation Updates
 3. Unit Test

Change 72262 on 2002/12/18 by jhoule@MA_JHOULE

 LOD computation update, with more complete anisotropy.
 Explanation of clamping, which must be done after LOD biases are applied, itself done
after all of the specified pseudo-code.

 Also updated some Visio links, but some are screwed up =(

Change 72248 on 2002/12/18 by jacarey@fl_jcarey_desktop

 Add note for holding "event triggered" on the visio diagram.

Change 72164 on 2002/12/18 by jacarey@fl_jcarey_desktop

 Page 104 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Add register to arm signal to mask false falling/rising edge triggering.

Change 72149 on 2002/12/18 by smoss@smoss_crayola_win

 SU tests

Change 72082 on 2002/12/18 by csampayo@fl_csampayo_r400

 Updated test status and test_list for the following tests:
 r400cl_clip_edgeflags_frustum_corners_01
 r400cl_clip_edgeflags_frustum_corners_02

Change 72057 on 2002/12/18 by jasif@jasif_r400_win_tor

 Updated.

Change 71957 on 2002/12/17 by gregs@gregs_r400_win_marlboro

 new order of Toronto pads

Change 71955 on 2002/12/17 by gregs@gregs_r400_win_marlboro

 added DEBUG_legacy_test_en signal

Change 71837 on 2002/12/17 by gregs@gregs_r400_win_marlboro

 update

Change 71819 on 2002/12/17 by smoss@smoss_crayola_win

 SU tests

Change 71728 on 2002/12/17 by lseiler@lseiler_r400_win_marlboro

 Fixed a bug in address.c for computing 3D tiled addresses (the spec had it right) and in
finding the 3d Y address for a device address (both address.c and the spec were wrong)

Change 71718 on 2002/12/17 by csampayo@fl_csampayo_r400

 Some housekeeping

Change 71667 on 2002/12/17 by jacarey@fl_jcarey_desktop

 Add AA_Font Micrococode
 Add associated unit-level test
 Update PM4 Spec for AA_Font and AlphaBlend PM4 Packets

Change 71577 on 2002/12/16 by vgoel@fl_vgoel2

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1490 of 1898

 Page 105 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 added bug 957

Change 71575 on 2002/12/16 by scroce@scroce_r400_win_marlboro

 Updated for new tests written

Change 71562 on 2002/12/16 by gregs@gregs_r400_win_marlboro

 update

Change 71536 on 2002/12/16 by csampayo@fl_csampayo_r400

 Added Bug# 101 and 102

Change 71459 on 2002/12/16 by jiezhou@cn_jiezhou

 make the viewport size smaller

Change 71390 on 2002/12/16 by rbell@rbell_crayola_win_cvd

 More updates for full chip sims

Change 71336 on 2002/12/15 by scroce@scroce_r400_home

 Updated tests that were recently written

Change 71334 on 2002/12/15 by gregs@laptop1

 fixed DEF file generation

Change 71291 on 2002/12/15 by gregs@laptop1

 added fake connections to memory pads

Change 71194 on 2002/12/13 by ashishs@fl_ashishs_r400_win

 updated for change # 71014 by mmang

Change 71184 on 2002/12/13 by csampayo@fl_csampayo_lt_r400

 Updated status for the following tests:
 r400su_polymode_culling_face_01
 r400su_polymode_culling_face_02
 r400su_polymode_lines_degen_triangle_03

Change 71169 on 2002/12/13 by rfisette@rfisette

 Updated TST block spec to reflect ports in the IODFT block

 Page 106 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 71138 on 2002/12/13 by gregs@gregs_r400_win_marlboro

 IO<->MC interface cleaned (the interface is not functional).

Change 71137 on 2002/12/13 by gregs@gregs_r400_win_marlboro

 < ROM_ON_VIP straps changed >

Change 70998 on 2002/12/13 by rherrick@ma_rherrick_crayola

 New deposit... Turning over to Steve for an edit...

Change 70939 on 2002/12/13 by jiezhou@cn_jiezhou

 Add in SCL stress tests

Change 70929 on 2002/12/13 by jacarey@fl_jcarey_desktop

 Clarify that "dummy" dwords in the ib_prefetch* packets are set to 0xdeadbeef
 by the Pre-Fetch Parser.

 The emulator is being updated to match the RTL.

Change 70842 on 2002/12/12 by csampayo@fl_csampayo3_r400

 Some housekeeping

Change 70691 on 2002/12/12 by smoss@smoss_crayola_win

 update for new tests

Change 70670 on 2002/12/12 by jiezhou@cn_jiezhou

 Add detailed discription for Frame rate conversion test
"SCL_VIDCAP_frame_rate_conv"

Change 70564 on 2002/12/11 by gregs@laptop1

 ROM_ON_VIP straps changed to 0011

Change 70479 on 2002/12/11 by mzhu@mzhu_crayola_win_tor

 Add description for CRTC_TRIG_OCCURRED and CRTC_TRIG_INTERRUPT

Change 70453 on 2002/12/11 by vgoel@fl_vgoel2

 added bug 928 and closed bug 898

 Page 107 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 70436 on 2002/12/11 by jhoule@MA_JHOULE

 Described serialize heuristic for both ALU and TEX instructions.

Change 70411 on 2002/12/11 by rbell@rbell_crayola_win_cvd

 Added EXCLUDE_PRIMLIB for primlib tests

Change 70337 on 2002/12/11 by rbell@rbell_crayola_win_cvd

 Removed HDCP env var settings

Change 70324 on 2002/12/11 by mdoggett@mdoggett_r400_win_platypus

 Updated format 29 in L2 cacheline format conversion table required adding new SM10
and SM11.

Change 70285 on 2002/12/11 by ashishs@fl_ashishs_r400_win

 updated count for frustum clip block. CHECKPOINT for test tracker for CL/VTE

Change 70281 on 2002/12/11 by ashishs@fl_ashishs_r400_win

 updated the test tracker. Increased the count for blocks where new tests were added. As
of this checking the tests required match up the tests required in the approach plan.

Change 70269 on 2002/12/11 by rherrick@ma_rherrick_crayola

 Updated Register Write section...

Change 70230 on 2002/12/10 by gregs@gregs_r400_win_marlboro

 update

Change 70229 on 2002/12/10 by gregs@gregs_r400_win_marlboro

 <ROM_ON_VIP strap is 0101 >

Change 70221 on 2002/12/10 by csampayo@fl_csampayo_r400

 Updated status of VGT tests r400vgt_real_time_events_02, _03
 Some housekeeping

Change 70128 on 2002/12/10 by gregs@gregs_r400_win_marlboro

 update

Change 69936 on 2002/12/10 by jowang@jowang_R400_win

 Page 108 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 1 test in manual ratio / accum init
 2 tests in CRC generation
 1 test in mode change
 1 test in black pixel / line generation

Change 69929 on 2002/12/10 by scroce@scroce_r400_win_marlboro

 Added test lists

Change 69887 on 2002/12/10 by rherrick@ma_rherrick_crayola

 Turning it over to Steve for the next update...

Change 69867 on 2002/12/10 by moev@P4CLIENT=moev_r400_sun_marlboro

 Spread sheet describing port interfaces between system blocks,
 TST block and IO.

Change 69865 on 2002/12/10 by rherrick@ma_rherrick_crayola

 New update including Multiple Client random test coverage

Change 69847 on 2002/12/10 by scroce@scroce_r400_home

 Added some test names

Change 69780 on 2002/12/09 by rherrick@ma_rherrick_crayola

 More details included... Still missing multiple client random section and a review of the
DRAM/RBBM features...

Change 69736 on 2002/12/09 by scroce@scroce_r400_win_marlboro

 Added test tallies

Change 69684 on 2002/12/09 by rthambim@rthambim_r400_win_tor

 Initial revision.

Change 69683 on 2002/12/09 by rthambim@rthambim_r400_win_tor

 Updated the strap table.

Change 69583 on 2002/12/09 by rherrick@ma_rherrick_crayola

 Checkpoint on the MC testplan for Steve Croce to use...

Change 69544 on 2002/12/08 by gregs@laptop1

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1491 of 1898

 Page 109 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 removed MODE_DDC2CLK

Change 69460 on 2002/12/07 by gregs@laptop1

 added comments on ROM_PORT usage.

Change 69270 on 2002/12/06 by mdoggett@mdoggett_r400_win_platypus

 Table of contents, figures and tables updated.

Change 69217 on 2002/12/06 by gregs@laptop1

 added delay chains

Change 69208 on 2002/12/06 by mdoggett@mdoggett_r400_win_platypus

 Version 0.36.
 Corrected labeling of SA10 to SA9.
 Corrected positions of sectors for SM7 and SM8.
 Updated TCA, TCB and TCO block diagrams and descriptions to match current
hardware.

Change 69151 on 2002/12/06 by rherrick@ma_rherrick_crayola

 Update environment spec to be closer to reality... Included randomization controls
section...

Change 69066 on 2002/12/06 by jacarey@fl_jcarey2

 Clarify Ring Buffer Size in DWORDs.

Change 68997 on 2002/12/05 by gregs@gregs_r400_win_marlboro

 update

Change 68985 on 2002/12/05 by vgoel@fl_vgoel2

 added bug 898

Change 68982 on 2002/12/05 by rthambim@rthambim_r400_win_tor

 Initial revision.

Change 68965 on 2002/12/05 by lchen@lchen_crayola0

 fix the DIFFSTR name

Change 68962 on 2002/12/05 by lchen@lchen_crayola0

 Page 110 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 update the spec based on discussions with BOB

Change 68961 on 2002/12/05 by jasif@jasif_r400_win_tor

 Updated register settings of vcountBy2 and seqpclkby2 testcases.

Change 68928 on 2002/12/05 by ashishs@fl_ashishs_r400_win

 added bug for r400cl_edgeflags_05/06/07

Change 68917 on 2002/12/05 by vgoel@fl_vgoel2

 updated to added bug 897

Change 68908 on 2002/12/05 by ashishs@fl_ashishs_r400_win

 updated

Change 68825 on 2002/12/05 by dglen@dglen_r400

 Added 30 bpp option to progressive YPbPr timings

Change 68775 on 2002/12/05 by ashishs@fl_ashishs_r400_win

 cancelled 2 tests from the Approach plan and updated tracker since were redundant
 tests :
 1. r400cl_frustum_simple_01(tcl_clip_frustum_simple_01)
 2. r400cl_frustum_simple_02(tcl_clip_frustum_simple_02)

Change 68762 on 2002/12/05 by scamlin@scamlin_crayola_win

 12/4/2002 area update for orlando blocks

Change 68506 on 2002/12/04 by rherrick@ma_rherrick_crayola

 I hope I waited long enough for the file to write out befire submitting... (I didn't last
time)...

Change 68503 on 2002/12/04 by rherrick@ma_rherrick_crayola

 Updated Table of Contents...

Change 68499 on 2002/12/04 by rherrick@ma_rherrick_crayola

 First pass at permutations of surface accesses...

Change 68439 on 2002/12/04 by rherrick@ma_rherrick_crayola

 Beginning of MH Testplan... NOT READY FOR CONSUMPTION!!

 Page 111 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 68428 on 2002/12/04 by jacarey@fl_jcarey_desktop

 Fix Typo in Cond_Write Packet in PM4 Spec.

Change 68327 on 2002/12/04 by jacarey@fl_jcarey_desktop

 Update Alignment of the Ring, Indirects, and Real-Time Bases

Change 68323 on 2002/12/04 by rherrick@ma_rherrick_crayola

 Further described the DC client characterization with the MH queues and RB queues...

Change 68322 on 2002/12/04 by rherrick@ma_rherrick_crayola

 Feedback from Testplan review (December 3, 2002) incorporated into document...
Sections still needing detail include the DRAM Tuning register verification support, power
management verification support, and IKOS parameter verification support..

Change 68167 on 2002/12/03 by frising@ma_frising

 v.0.99d

 -Update FLOOR opcodes to match r400 shaders.doc v.1.91.
 -Updated LIT macro

Change 68164 on 2002/12/03 by marklee@marklee_crayola

 2nd attempt at changing permissions

Change 68162 on 2002/12/03 by marklee@marklee_crayola

 delete

Change 68160 on 2002/12/03 by marklee@marklee_crayola

 attempt to change permissions

Change 68148 on 2002/12/03 by gregs@gregs_r400_win_marlboro

 update

Change 68144 on 2002/12/03 by frising@ma_frising

 v.1.91

 -FLOOR opcode was not producing correct results for negative 'integer' inputs.

 Changed from:

 Page 112 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 FLOOR:

 If (SrcA < 0.0f)
 Result = TRUNC(SrcA) + -1.0f;
 Else
 Result = TRUNC(SrcA)

 To:
 FLOOR:

 Result = TRUNC(SrcA)
 If ((SrcA < 0.0f) && (SrcA != Result))
 Result += -1.0f;

 -Note that emulator was calling math library floor function so this should not be an
emulation issue.

Change 68140 on 2002/12/03 by marklee@marklee_crayola

 check in global_clocks diagram for Eric N.

Change 68139 on 2002/12/03 by marklee@marklee_crayola

 check in this file for Eric N.

Change 68133 on 2002/12/03 by gregs@gregs_r400_win_marlboro

 update

Change 68062 on 2002/12/03 by jiezhou@cn_jiezhou

 change DMIF stress tests active size from 2560x64 to 2560x16

Change 68048 on 2002/12/03 by scroce@scroce_r400_win_marlboro

 Added a line

Change 68034 on 2002/12/03 by rherrick@ma_rherrick_crayola

 Initial Deposit... Describes Black Box MC Verification requirements...

Change 67940 on 2002/12/02 by mearl@mearl_r400_win

 fixed the offset problem

Change 67933 on 2002/12/02 by frising@ma_frising

 v.1.90

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1492 of 1898

 Page 113 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 -While we don't allow CLI relative addressing into the export file on r400, future chips
based on r400 may. This check-in moves the export masking behavior bit (bit[6] of vector
destination pointer) to bit[14] (bit[6] of scalar destination pointer). Bit[6] of vector destination
pointer now controls logical vs. CLI relative addressing into the register or export file. When
exporting, this is a Must Be Zero (logical) field for for software on r400. This will provide
binary compatibility.

 -Software will need to coordinate this change with emulator release.

Change 67917 on 2002/12/02 by ctaylor@fl_ctaylor_r400_win_marlboro

 Add Multipass Pixel Shader Description.

Change 67873 on 2002/12/02 by kcorrell@kcorrell_r400_docs_marlboro_nb

 update, especially in the implementation section

Change 67866 on 2002/12/02 by jiezhou@cn_jiezhou

 initial release

Change 67842 on 2002/12/02 by mkelly@fl_mkelly_r400_win_laptop

 Delete test requirement for rect_v0-v3, covered in CP legacy tests

Change 67834 on 2002/12/02 by jacarey@fl_jcarey_desktop

 Remove ME_HALT and ALU_COUT32 Booleans

Change 67779 on 2002/12/02 by ashishs@fl_ashishs_r400_win

 updated

Change 67702 on 2002/11/30 by gregs@gregs_r400_win_cc

 W45B512/012, SST45LF010, and ROM on VIP straps changed.

Change 67647 on 2002/11/30 by gregs@gregs_r400_win_cc

 updated memory clock domain - work in progess.

Change 67590 on 2002/11/29 by sbagshaw@sbagshaw

 added new document sections and reorganized existing document to new section
headings

Change 67572 on 2002/11/29 by dglen@dglen_r400

 Page 114 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Added some IBM Bertha panel cases

Change 67519 on 2002/11/28 by dglen@dglen_r400

 Added lots of detail for all TV timings, all panel and projector timings except IBM T221.

Change 67376 on 2002/11/27 by bbloemer@ma_bbloemer

 Update.

Change 67343 on 2002/11/27 by tshah@fl_tshah

 typo fix in EXTERN_TRIG_CNTL register

Change 67276 on 2002/11/27 by jhoule@MA_JHOULE

 Updated with more optimal values (easier precision to reach in hardware).

Change 67275 on 2002/11/27 by jhoule@MA_JHOULE

 Updated packing scheme.

Change 67273 on 2002/11/27 by mkelly@fl_mkelly_r400_win_laptop

 Verify SU_SC_MODE persp corr disable

Change 67258 on 2002/11/27 by bbloemer@ma_bbloemer

 First draft of IO pad functional spec.

Change 67215 on 2002/11/27 by jowang@jowang_R400_win

 updated start phase

Change 67172 on 2002/11/27 by smoss@smoss_crayola_win

 update

Change 67066 on 2002/11/26 by gregs@gregs_r400_win_marlboro

 update

Change 67058 on 2002/11/26 by frising@ma_frising

 v.1.60
 -add MAG_ANISO_WALK and MIN_ANISO_WALK fields to texture constant to
conform to D3D.
 Here's how it works:

 Page 115 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 MAG_ANISO_WALK controls if aniso walk is done when anisotropy filter is enabled
and magnifying.
 MIN_ANISO_WALK controls if aniso walk is done when anisotropy filter is enabled
and minifying.

 ANISO_FILTER still controls if anisotropy is enabled. When enabled the minor axis
controls the LOD calculation so having MAG_ANISO_WALK and MIN_ANISO_WALK
disabled while having ANISO_FILTER enabled is allowed. When ANISO_FILTER is disabled,
MAG_ANISO_WALK and MIN_ANISO_WALK are ignored.

 This allows the anisotropy walk to be completely orthogonal to mag and mig filters
meaning we support anisotropy walking with point, linear and arbitrary filters min/mag filters.

 This is actually more powerful than the D3D API. D3D drivers should program the HW
as follows to be compliant with the refrast:

 if ((mag==ansio) || (min==aniso)) {
 ANSIO_FILTER = enabled, max set as specified.

 if (mag==aniso) {
 MAG_ANISO_WALK = enabled;
 MAG_FILTER = linear;
 } else {
 MAG_ANISO_WALK = disabled;
 // program MAG_FILTER as usual
 }

 if (min==aniso) {
 MIN_ANISO_WALK = enabled;
 MIN_FILTER = linear;
 } else {
 MIN_ANISO_WALK = disabled;
 // program MIN_FILTER as usual
 }

 } else {
 ANISO_FILTER = disabled;
 // program MAG_FILTER and MIN_FILTER as usual
 }

 --
 Other notes:
 -MAG_ANISO_WALK and MIN_ANISO_WALK are not available in instruction word
and must be programmed through constant.
 -MAG_ANISO_WALK and MIN_ANISO_WALK are forced to 1 (enabled) when
anisotropy is enabled for FetchMultiSample.

Change 66971 on 2002/11/26 by gabarca@gabarca_crayola_win_cvd

 Page 116 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 The prevention of negatifve oversan is only done if one or both displays are in VGA
timing

Change 66688 on 2002/11/25 by mkelly@fl_mkelly_r400_win_laptop

 Update SC HW coords tests...

Change 66670 on 2002/11/25 by gabarca@gabarca_crayola_win_cvd

 VGA DISP interface signals change to avoid negative overscan

Change 66640 on 2002/11/25 by jasif@jasif_r400_win_tor

 Updated.

Change 66603 on 2002/11/25 by ashishs@fl_ashishs_r400_win

 updated

Change 66550 on 2002/11/24 by gregs@laptop1

 update

Change 66367 on 2002/11/22 by csampayo@fl_csampayo_r400

 Updated test list and test tracker for the following tests:
 r400vgt_real_time_events_01
 r400vgt_real_time_events_02

Change 66356 on 2002/11/22 by gregs@gregs_r400_win_marlboro

 Friday update

Change 66347 on 2002/11/22 by sbagshaw@sbagshaw

 Revised 0.5 DC System testplan based on feedback from meetings and
 wrote detailed test descriptions and procedures for many tests.

Change 66283 on 2002/11/22 by jiezhou@cn_jiezhou

 Add two more tests and more parameter settings.

Change 66270 on 2002/11/22 by rfisette@rfisette_r400_sun_marlboro

 Design specification for the Test Controller (TST) block.

Change 66256 on 2002/11/22 by gregs@gregs_r400_win_marlboro

 <fixed R300 number of instances value >

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1493 of 1898

 Page 117 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 66176 on 2002/11/22 by jacarey@fl_jcarey_desktop

 Update Address Mask for Reg_RMW PM4 Packet.
 Associated Documentation Updated

Change 66168 on 2002/11/22 by mkelly@fl_mkelly_r400_win_laptop

 Close a bug...

Change 66127 on 2002/11/21 by gabarca@gabarca_crayola_win_cvd

 de skew should only affect h disp start

Change 66124 on 2002/11/21 by gregs@gregs_r400_win_marlboro

 update

Change 66118 on 2002/11/21 by dglen@dglen_r400

 Updated with some new modes for digital TV.
 Added V start phase for progressive.

Change 66089 on 2002/11/21 by csampayo@fl_csampayo_r400

 Added bug# 97

Change 66088 on 2002/11/21 by jowang@jowang_R400_win

 updated with a column for required # of taps

Change 66034 on 2002/11/21 by mzhu@mzhu_crayola_win_tor

 Add LB_DATA_GAP_BETWEEN_CHUNKS

Change 66006 on 2002/11/21 by jacarey@fl_jcarey_desktop

 Update to Reg_RMW Packet...Streamlined Thanks to Harry...

Change 65997 on 2002/11/21 by gregs@gregs_r400_win_marlboro

 update

Change 65972 on 2002/11/21 by jiezhou@cn_jiezhou

 minor text updated

Change 65964 on 2002/11/21 by mkelly@fl_mkelly_r400_win_laptop

 Page 118 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Refresh for tommorow's status meeting...

Change 65958 on 2002/11/21 by frising@ma_frising

 v.1.59
 -A marco that computed texture constant offsets somehow got corrupted with the 1.58
check-in causing offsets to be off by one. Folks should move to this version immediately. Sorry.
Thanks to John Carey for catching this.

Change 65950 on 2002/11/21 by jacarey@fl_jcarey_desktop

 Add Reg_RMW (Read/Modify/Write) to the PM4 Packets
 Documentation Update
 Associated Unit-Level Test

Change 65863 on 2002/11/21 by jacarey@fl_jcarey_desktop

 Revert B7 2D Boolean Setting.
 It is only set based on the src_type==5

 1. Emulator Update to CP
 2. Verilog Update to Micro Engine
 3. Remove Unit Test
 4. Update CP Documentation

Change 65731 on 2002/11/20 by dglen@dglen_r400

 Minor clean up

Change 65722 on 2002/11/20 by dglen@dglen_r400_dell

 Major update of formulas.
 Corrected many TV timings.

Change 65679 on 2002/11/20 by sbagshaw@sbagshaw

 added block select addresses for BIF debug blocks
 added placeholders for lists of BIF debug values on debug bus

Change 65637 on 2002/11/20 by jacarey@fl_jcarey_desktop

 Rename two fields in the RBBM_Status Register.

 Block Name Machine #Tests #ExpectedRuns #Runs #Fail #Pass #NotRun
#NoGold #NoRef #Error Passing %
 --

 cl FL_JOHNC 3 3 3 0 3 0 0 0 0 100.00%

 Page 119 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 cp FL_JOHNC 12 12 12 0 12 0 0 0 0
100.00%
 perf FL_JOHNC 3 3 3 0 3 0 0 0 0 100.00%
 quickemu FL_JOHNC 16 16 16 0 16 0 0 0 0
100.00%
 rb FL_JOHNC 7 7 7 0 7 0 0 0 0 100.00%
 sc FL_JOHNC 20 20 20 0 20 0 0 0 0
100.00%
 su FL_JOHNC 3 3 3 0 3 0 0 0 0 100.00%
 vgt FL_JOHNC 3 3 3 0 3 0 0 0 0 100.00%
 vte FL_JOHNC 1 1 1 0 1 0 0 0 0 100.00%

Change 65599 on 2002/11/20 by csampayo@fl_csampayo_r400

 Some VGT housekeeping

Change 65588 on 2002/11/20 by jacarey@fl_jcarey_desktop

 8bpp-to-16bpp TLU Issue for 2D

Change 65570 on 2002/11/20 by rbell@rbell_crayola_win_cvd3

 Added CP to the chip_vidfull conf

Change 65561 on 2002/11/20 by rbell@rbell_crayola_win_cvd3

 Added a section for Video IP fullchip sims

Change 65539 on 2002/11/20 by rthambim@rthambim_r400_win_tor

 Fixed syntax in naming.

Change 65537 on 2002/11/20 by rthambim@rthambim_r400_win_tor

 Added 3gio ports.

Change 65500 on 2002/11/20 by jiezhou@cn_jiezhou

 initial release

Change 65351 on 2002/11/19 by csampayo@fl_csampayo_r400

 Closed bug# 73

Change 65312 on 2002/11/19 by frising@ma_frising

 v.0.99c
 -change R400_FP_NAN to 0xFFC00000 (from 0x7FC00000) to match intel for indefinite
floating point operations.

 Page 120 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 65310 on 2002/11/19 by vgoel@fl_vgoel2

 updated to include bug 788

Change 65307 on 2002/11/19 by vgoel@fl_vgoel2

 updated for number of HOS tests written

Change 65303 on 2002/11/19 by nluu@nluu_r400_doclib_cnnb

 - update

Change 65297 on 2002/11/19 by nluu@nluu_r400_doclib_cnnb

 - update

Change 65274 on 2002/11/19 by mkelly@fl_mkelly_r400_win_laptop

 Update regress_e tests...

Change 65267 on 2002/11/19 by mkelly@fl_mkelly_r400_win_laptop

 Update local Orlando bug tracking matrix...

Change 65263 on 2002/11/19 by ashishs@fl_ashishs_r400_win

 updated

Change 65254 on 2002/11/19 by vgoel@fl_vgoel2

 added second export related bug

Change 65237 on 2002/11/19 by sbagshaw@sbagshaw

 Updated DC Debug Bus document to include 3 changes that are necessary for
AUTOREG generated block files.
 Updated indirect debug register allocations for each major subblock in DC
 Updated debug trigger logic descriptions for value and edge pattern triggering
functionality

Change 65234 on 2002/11/19 by csampayo@fl_csampayo_r400

 Added 3 new VGT tests and updated test_list and test tracker accordingly

Change 65229 on 2002/11/19 by vgoel@fl_vgoel2

 added bug 785

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1494 of 1898

 Page 121 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 65172 on 2002/11/19 by mpersaud@mpersaud_r400_win_tor

 Added DCCIF_clk_on description.

Change 65072 on 2002/11/18 by jowang@jowang_R400_win

 update with interlaced nomeclature

Change 65066 on 2002/11/18 by gregs@gregs_r400_win_marlboro

 <rev 8.0 - dft >

Change 65042 on 2002/11/18 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated test doc

Change 64983 on 2002/11/18 by jowang@jowang_R400_win

 updated with more M3 tests and testlist

Change 64857 on 2002/11/18 by jacarey@fl_jcarey_desktop

 RB_BLENDCONTROL.Color_Dither_Mode is set to DITHER_LUT for GradFill
packets
 where the DST_TYPE != 32bpp.

Change 64852 on 2002/11/18 by jasif@jasif_r400_win_tor

 Updated.

Change 64849 on 2002/11/18 by sbagshaw@sbagshaw

 added new column for test type -- chip level or chip and block level
 added more test descriptions.

Change 64846 on 2002/11/18 by jasif@jasif_r400_win_tor

 Updated.

Change 64833 on 2002/11/18 by jacarey@fl_jcarey_desktop

 Add note for ME_RTS generation for read operations initiated by the micro engine.

Change 64829 on 2002/11/18 by ashishs@fl_ashishs_r400_win

 added triangles with edgeflags and texture test to the tracker

Change 64701 on 2002/11/16 by gregs@laptop1

 Page 122 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 update

Change 64590 on 2002/11/15 by donaldl@fl_donaldl_p4

 Added sc_packer debug bus (DEBUG_PKR_0).

Change 64571 on 2002/11/15 by gregs@gregs_r400_win_marlboro

 update

Change 64546 on 2002/11/15 by sbagshaw@sbagshaw

 Debug document modified to include interface to 12 bit debug bus value and enable
directly from DC block.

Change 64447 on 2002/11/15 by vgoel@fl_vgoel2

 updated for HOS tests written so far

Change 64418 on 2002/11/15 by frising@ma_frising

 v.1.89

 -show FRACT instructions being implemented as: SRC + -FLOOR(SRC)
 -This should now sync the instructions with v.0.99b of numerics doc.

Change 64403 on 2002/11/15 by frising@ma_frising

 v.0.99b

 -checkpoint
 --implement shader pipe instructions is WZYX order.
 --fix a couple typos
 --start sync to v.1.89 of shader pipe spec.

Change 64389 on 2002/11/15 by jasif@jasif_r400_win_tor

 Updated.

Change 64381 on 2002/11/15 by frising@ma_frising

 v.1.88

 -specify that Result.X of CUBE instruction returns 2.0f * MajorAxis instead of max to
avoid confusion. See numerics doc for details of CUBE instruction.

 -specify function of all instructions in WZYX order. Nothing changing here; it's just for
spec consistency (and happens to reflect the actual order of operations in the shader pipe
hardware).

 Page 123 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 64379 on 2002/11/15 by gabarca@gabarca_crayola_win_cvd

 Mode 13, mode 62, mode X have ATTR_PCLKBY2 = 1

Change 64309 on 2002/11/15 by mkelly@fl_mkelly_r400_win_laptop

 Log an SC bugzilla on color prob on prim edges...

Change 64144 on 2002/11/14 by jacarey@fl_jcarey_desktop

 1. RTL Update to Set 2D Boolean B0 for LUT Color Sources
 2. CP Spec Updates for #1
 3. CP Spec Update for the CP_DMA_STAT Register

Change 64064 on 2002/11/14 by mkelly@fl_mkelly_r400_win_laptop

 Update local, Orlando bug tracking info....

Change 64050 on 2002/11/14 by vgoel@fl_vgoel2

 updated

Change 64022 on 2002/11/14 by mkelly@fl_mkelly_r400_win_laptop

 Add textured line to regress_e

Change 64000 on 2002/11/14 by gregs@gregs_r400_win_marlboro

 < fixed some wire in DVO interface >

Change 63978 on 2002/11/14 by jasif@jasif_r400_win_tor

 Updated.

Change 63959 on 2002/11/14 by gabarca@gabarca_crayola_win_cvd

 split the DisplayEnable test in three

Change 63920 on 2002/11/14 by grayc@grayc_r400_win

 needs to be updated ... will add back in later

Change 63819 on 2002/11/13 by dglen@dglen_r400_dell

 Major update to outline. VGA block spec is now best source for details.

Change 63811 on 2002/11/13 by csampayo@fl_csampayo_r400

 Page 124 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Added bug# 87

Change 63793 on 2002/11/13 by gregs@gregs_r400_win_marlboro

 added CGM clock monitoring pin

Change 63776 on 2002/11/13 by csampayo@fl_csampayo_r400

 Closed bug# 86

Change 63751 on 2002/11/13 by jasif@jasif_r400_win_tor

 Updated.

Change 63732 on 2002/11/13 by frising@ma_frising

 v.1.87

 -when using absolute constant addressing all constants in instruction are absolute. This
allows compiler to easily perform mov operations on absolute constants.

 -Document instruction word in WZYX order (i.e. high bits to low bits). Documentation
issue only.

 -lots more work cleaning up instruction word documentation (please study).

 -It may not have been clear in the past but indexing of exports is not permitted. This
update should make that obvious.

 -removed following export restriction which no longer applies: '1) When doing a Scalar
export of 'pixels' or 'position', only the 'W' component will contain the scalar result. The other 3
components will be expanded to 0.0. When exporting to 'parameters' the scalar result is put into
all 4 components.'

 Users should just use the scalar and vector destination masks appropriately to achieve
whatever result they want.

 -when exporting, bit 6 in instruction word now controls masking behavior during
parameter exports when both scalar and vector masks for a component are 0. See table 3.2.1.4

Change 63680 on 2002/11/13 by jacarey@fl_jcarey_desktop

 Im_Load and Im_Load_Immediate packets write the SQ_PS_PROGRAM register for
real-time shader code
 updates. This is documented in the PM4 spec now.

Change 63675 on 2002/11/13 by gregs@gregs_r400_win_marlboro

 <TEST_MCLK tste bug fixed >

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1495 of 1898

 Page 125 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 63654 on 2002/11/13 by beiwang@bei_depot

 Updated for mc_client_intfc block AGP/Multi-Sample functionality as well as more
details for Protocol engine

Change 63653 on 2002/11/13 by mzhu@mzhu_crayola_win_tor

 Update the 3rd milestone tests

Change 63604 on 2002/11/13 by donaldl@fl_donaldl_p4

 Initial -- Debug bus, bit definitions.

Change 63562 on 2002/11/12 by gregs@laptop1

 ccc

Change 63552 on 2002/11/12 by csampayo@fl_csampayo_lt_r400

 Updated test_list and test tracker for the following tests:
 r400vgt_multi_pass_pix_shader_07
 r400vgt_multi_pass_pix_shader_08

Change 63509 on 2002/11/12 by frising@ma_frising

 v.1.86

 -add note that Constant0 refers to the first constant in the instruction while Constant1 and
Constant2 refer to the second and third constants in the instruction respectively.

 -added note that the GPR write-back table rules only apply when the scalar and vector
destination pointers are the same. This should be obvious, but clarity never hurts.

 -when doing an export and both scalar and vector channels are masked a 0.0f is now
generated.

 -updated Exports Types and Addresses section to match what is in SQ doc.

 -tried to clean-up export rules section.

 -removed previous vector and previous scalar from source selects in instruction word.

 -added clamping code to LOG_CLAMPED instruction.

 -fixed a bunch of typos and other misc clean-up including a couple places where I was
mixing ABGRs with my WZYXs in the instruction definitions. Tried to be consistent when
refering to bits in instruction word.

 Page 126 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 63500 on 2002/11/12 by csampayo@fl_csampayo_lt_r400

 Some housekeeping

Change 63490 on 2002/11/12 by jacarey@fl_jcarey_desktop

 Add Write Confirm Signals to CP_STAT Register

Change 63478 on 2002/11/12 by rramsey@RRAMSEY_P4_r400_win

 Update quadorder drawing and add it to the sc spec

Change 63454 on 2002/11/12 by ashishs@fl_ashishs_r400_win

 update

Change 63447 on 2002/11/12 by mzhu@mzhu_crayola_win_tor

 Update 11.16 Cursor_Cntl

Change 63398 on 2002/11/12 by ctaylor@fl_ctaylor_r400_win_marlboro

 Adding SC visio and xls files for documentation

Change 63336 on 2002/11/12 by jacarey@fl_jcarey_desktop

 Baseline Debug Documents for the CP and RBBM

Change 63285 on 2002/11/11 by peterp@MA_PETE_LT

 Added common format to CG, ROM, DBG

Change 63274 on 2002/11/11 by csampayo@fl_csampayo_r400

 Closed bug# 83

Change 63262 on 2002/11/11 by gregs@gregs_r400_win_marlboro

 backup of drawings

Change 63258 on 2002/11/11 by gregs@gregs_r400_win_marlboro

 update

Change 63197 on 2002/11/11 by rramsey@RRAMSEY_P4_r400_win

 details intra-tile quad processing order when
pa_su_sc_model_cntl.QUAD_ORDER_ENABLE is set

 Page 127 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 63189 on 2002/11/11 by peterp@MA_PETE_LT

 Added common format for MC and MH

Change 63174 on 2002/11/11 by peterp@MA_PETE_LT

 Added common format to cp and rbbm

Change 63155 on 2002/11/11 by jacarey@fl_jcarey_desktop

 Add CP_RT_STAT register to spec.

Change 63149 on 2002/11/11 by jowang@jowang_R400_win

 add full/empty tests

Change 63148 on 2002/11/11 by gabarca@gabarca_crayola_win_cvd

 Added VGA_DISP_sync_en

Change 63098 on 2002/11/11 by jacarey@fl_jcarey_desktop

 1. Performance Signals for RTEE
 2. Split Busy Signal from the CSF into a real-time and non-real-time version

Change 63094 on 2002/11/11 by jacarey@fl_jcarey_desktop

 1. Add register to micro engine guts for timing
 2. Add FIFOs for Timing in the Synchronization Logic
 3. Update CP's Performance Counter Selects in perfcount.doc

Change 63077 on 2002/11/11 by sbagshaw@sbagshaw

 Revision 0.35 of R400 DC (Toront) Test Plan for System and Stress tests

Change 63062 on 2002/11/11 by jasif@jasif_r400_win_tor

 Updated

Change 63053 on 2002/11/11 by mpersaud@mpersaud_r400_win_tor

 Added debug signals and WAIT/FREQUENCY/SIZE values to the dccif interface.

Change 62983 on 2002/11/09 by peterp@MA_PETE_LT

 Added common format for Analog and BIF

Change 62925 on 2002/11/08 by jhoule@MA_JHOULE

 Page 128 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Latest uRF expand positionings for 16 or 32 bpp post-blender conversion (before
fix2float convert, which happens on SP side).

 First 2 sheets are current POR.
 Others are dropped alternatives.

Change 62910 on 2002/11/08 by csampayo@fl_csampayo_lt_r400

 Updated status in test tracker and added to test_list: r400vgt_real_time_events_01

Change 62909 on 2002/11/08 by bbloemer@ma_bbloemer

 Added MC MH Test Plan

Change 62868 on 2002/11/08 by csampayo@fl_csampayo_lt_r400

 Added bug# 86. Some housekeeping

Change 62857 on 2002/11/08 by mpersaud@mpersaud_r400_win_tor

 Added VIP block select and group debug signals.

Change 62813 on 2002/11/08 by jacarey@fl_jcarey_desktop

 1. Update CP Spec for Debug Signals
 2. Update One of the 2D Unit Tests to Read Back Debug Information

Change 62808 on 2002/11/08 by mzhu@mzhu_crayola_win_tor

 Update 3.4.9.4 Color Space Conversion

Change 62771 on 2002/11/08 by gregs@gregs_r400_win_marlboro

 update

Change 62759 on 2002/11/08 by mzhu@mzhu_crayola_win_tor

 Add DxCRTC_FLOW_CONTROL_POLARITY, DxCRTC_TRIG_INPUT_STATUS
and
 DxCRTC_TRIG_POLARITY_STATUS register bits

Change 62748 on 2002/11/08 by ashishs@fl_ashishs_r400_win

 update

Change 62743 on 2002/11/08 by jacarey@fl_jcarey_desktop

 Add RBBM_BIF_int to the RBBM's performance counters.
 RTL and Spec Update.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1496 of 1898

 Page 129 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 62732 on 2002/11/08 by mpersaud@mpersaud_r400_win_tor

 Added state machine diagrams.

Change 62711 on 2002/11/08 by ashishs@fl_ashishs_r400_win

 updated for last 3 vte tests viz r400vte_pos_neg_combos_01/02/03

Change 62511 on 2002/11/07 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated

Change 62447 on 2002/11/07 by jacarey@fl_jcarey_desktop

 Added note to RBBM spec regarding the performance counters.

Change 62444 on 2002/11/07 by jacarey@fl_jcarey_desktop

 Updates for the CP_STAT register

Change 62432 on 2002/11/07 by gabarca@gabarca_crayola_win_cvd

 added perf count signals

Change 62338 on 2002/11/07 by jasif@jasif_r400_win_tor

 Updated

Change 62301 on 2002/11/07 by csampayo@fl_csampayo_r400

 Housekeeping update

Change 62266 on 2002/11/07 by jacarey@fl_jcarey_desktop

 Updates for Soft Reset to Register Descriptions

Change 62198 on 2002/11/06 by gregs@laptop1

 <enter description hupdate
 ere>

Change 62131 on 2002/11/06 by gabarca@gabarca_crayola_win_cvd

 One test in each set of the VGA to CRTC parameters section should do display capture.
Tests in the display section normally do capture

Change 62066 on 2002/11/06 by mpersaud@mpersaud_r400_win_tor

 Page 130 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 added VIP_DISP_eof_fcp and VIP_DISP_pol_fcp to interface with DISP/CRTC

Change 62062 on 2002/11/06 by peterp@MA_PETE_LT

 Added common synthesis report format to DC block. Combined DC and VIP results into
the DC results.

Change 62055 on 2002/11/06 by mzhu@mzhu_crayola_win_tor

 Update 3.4.9.4 Color Space Conversion

Change 62037 on 2002/11/06 by mzhu@mzhu_crayola_win_tor

 Update constant matrix for TVRGB output in 11.18 Matrix Transform and Adjustment.

Change 62033 on 2002/11/06 by lkang@lkang_r400_win_tor

 update on SCLK dynamic clocking

Change 61984 on 2002/11/06 by beiwang@bei_depot

 Updated the bus interface to MH and RB

Change 61964 on 2002/11/06 by jacarey@fl_jcarey_desktop

 Update Soft Reset Description

Change 61936 on 2002/11/06 by gabarca@gabarca_crayola_win_cvd

 clarified grph_pack in spreadsheet

Change 61912 on 2002/11/06 by jacarey@fl_jcarey_desktop

 Update to GradFill Description in PM4 Spec

Change 61857 on 2002/11/05 by jasif@jasif_r400_win_tor

 Change name of overscan test to overscanColourSelect.

Change 61850 on 2002/11/05 by jasif@jasif_r400_win_tor

 Updated.

Change 61843 on 2002/11/05 by gregs@gregs_r400_win_marlboro

 dft update

Change 61837 on 2002/11/05 by mzhu@mzhu_crayola_win_tor

 Page 131 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Update 3.4.9.4 Color Space Conversion

Change 61803 on 2002/11/05 by jacarey@fl_jcarey_desktop

 Update format of the Grad_Fill packet per discussion on 11-05-2002.

Change 61761 on 2002/11/05 by dwong@cndwong2

 Added details on endian swap and an extra field for indirect buffer swap setting

Change 61728 on 2002/11/05 by gabarca@gabarca_crayola_win_cvd

 Added description of VESA mode tests

Change 61698 on 2002/11/05 by imuskatb@imuskatb_r400_win_laptop

 updated docs

Change 61664 on 2002/11/05 by gregs@gregs_r400_win_marlboro

 adding id module + new straps

Change 61642 on 2002/11/05 by mzhu@mzhu_crayola_win_tor

 Add one intermediate result fraction bit for Overlay Matrix Transform in chapter 11.6
and Matrix Transform and Adjustment in chapter 11.18

Change 61620 on 2002/11/05 by mzhu@mzhu_crayola_win_tor

 add "Out SRGB->YCbCr" and "Out sRGB->TVRGB" for overlay pixels

Change 61592 on 2002/11/05 by vgoel@fl_vgoel2

 updated to close bug 608

Change 61582 on 2002/11/05 by mpersaud@mpersaud_r400_win_tor

 Added to source control

Change 61541 on 2002/11/04 by jasif@jasif_r400_win_tor

 Updated.

Change 61526 on 2002/11/04 by rfevreau@rfevreau_r400_win

 X2 Mag tests

Change 61518 on 2002/11/04 by jowang@jowang_R400_win

 Page 132 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 added back-to-back writes to HOST

Change 61484 on 2002/11/04 by dwong@cndwong2

 added in performance counter

Change 61480 on 2002/11/04 by jacarey@fl_jcarey_desktop

 Fix Typo in MPEG_INDEX packet documentation.

Change 61470 on 2002/11/04 by peterp@MA_PETE_LT

 VGT, PA and SC updated with common format for area and synthesis date

Change 61467 on 2002/11/04 by grayc@grayc_r400_win

 better debug statements

Change 61453 on 2002/11/04 by jacarey@fl_jcarey_desktop

 Update MPEG Index Packet
 1. Remove "Dummy" and "Mask" DWORDs
 2. RectList primtype is assumed, so CP only outputs 3 indices (Original +2)

Change 61449 on 2002/11/04 by jasif@jasif_r400_win_tor

 Updated

Change 61444 on 2002/11/04 by peterp@MA_PETE_LT

 Updated SQ with common format of reporting area and synthesis date

Change 61429 on 2002/11/04 by bbloemer@ma_bbloemer

 Improved figure insertion, I hope.

Change 61416 on 2002/11/04 by jacarey@fl_jcarey_desktop

 Update the Microcode RAM Size(s)

Change 61403 on 2002/11/04 by ashishs@fl_ashishs_r400_win

 updated

Change 61360 on 2002/11/04 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated

Change 61342 on 2002/11/04 by frising@ma_frising

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1497 of 1898

 Page 133 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 v.1.58
 -At request of SW merged TYPE/STATE fields in constants. These are SW only bits
used by PM4 capture utilities.
 -Fixed 3D size typo, had width, height, height instead of width, height, depth
 -Make addressing mode names consistent with SP; now have logical and current loop
index relative addressing
 -Mark R400_DATA_FORMAT 63 as reserved
 -Clean up and clarify R400_DATA_FORMAT Notes sections based on feedback

Change 61310 on 2002/11/04 by jacarey@fl_jcarey_desktop

 Update per Lili Sinclair's E-mail.

Change 61187 on 2002/11/01 by mdoggett@mdoggett_r400_win_platypus

 Added degamma dxt. Updated format table with new _as_16_16_16_16 formats.
Updated L2 cacheline format conversion table. Added degamma dxt section with equations for
calculating different dxt interpolations.

Change 61163 on 2002/11/01 by ashishs@fl_ashishs_r400_win

 updated

Change 61151 on 2002/11/01 by frising@ma_frising

 v.1.85
 -clarifed how constant and register addressing works. For nomenclature I settled on
absolute, logical and relative addressing. New tables added.
 -documented how constant2 works.
 -Wrote a blurb and added a table on GPR write-back precedence.
 -Cleaned up ALU instruction format table

Change 61074 on 2002/11/01 by vgoel@fl_vgoel2

 updated tracker for closed bugs

Change 61068 on 2002/11/01 by gregs@gregs_r400_win_marlboro

 update

Change 61055 on 2002/11/01 by gabarca@gabarca_crayola_win_cvd

 Added viewport X and Y start

Change 61036 on 2002/11/01 by jacarey@fl_jcarey2

 Update RBBM's Performance Counter Signal List

 Page 134 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 60996 on 2002/11/01 by nbarbier@nbarbier_r400_win_tor

 Updated GENERICA & GENERICB muxes.
 Added GENERICC pad to interface.

Change 60992 on 2002/11/01 by peterp@MA_PETE_LT

 Synthesis results from SP/SX

Change 60988 on 2002/11/01 by rthambim@rthambim_r400_win_tor

 Updated the strap table.

Change 60985 on 2002/11/01 by dwong@cndwong2

 Added in xDCT performance counter details

Change 60981 on 2002/11/01 by rthambim@rthambim_r400_win_tor

 Added new clock enable signal - BIF_VGA_busy.

Change 60937 on 2002/11/01 by mkelly@fl_mkelly_r400_win_laptop

 Broken out line list cases from parameterized test
 Update tracker

Change 60934 on 2002/11/01 by mpersaud@mpersaud_r400_win_tor

 Rev 0.7 - Update port names to CP

Change 60913 on 2002/11/01 by peterp@MA_PETE_LT

 Started entry of date field for synthesis results - corrected RB/RC area

Change 60910 on 2002/11/01 by jacarey@fl_jcarey2

 Update CP's Performance Monitoring Signals.

Change 60859 on 2002/10/31 by beiwang@bei_depot

 Updated Protocol Engine Drawing

Change 60850 on 2002/10/31 by vgoel@fl_vgoel2

 updated with new bugs and closed dates for some bugs

Change 60825 on 2002/10/31 by gregs@gregs_r400_win_marlboro

 update

 Page 135 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 60810 on 2002/10/31 by csampayo@fl_csampayo_r400

 Added new SU test, updated test_list and test tracker accordingly

Change 60808 on 2002/10/31 by bbloemer@ma_bbloemer

 Updates for the design review.

Change 60786 on 2002/10/31 by mzhu@mzhu_crayola_win_tor

 Update for re-organizing the MH data in read_buff module.
 Add MH-DC interface signal list, MH return data format and DMIF output data format in
Appendix

Change 60768 on 2002/10/31 by jacarey@fl_jcarey_desktop

 Fix Name of Signal From the RBBM.

Change 60738 on 2002/10/31 by hartogs@fl_hartogs

 Added section for determining the required input data size based on the draw initiator and
the grouper programming registers.
 Added section on general sanity checks for grouper programming in major mode 1.
 Updated event enumeration to match block file (added several events).
 Added DI_PT_2D_TRI_STRIP to the prim type enumeration in the
VGT_DRAW_INITIATOR register.
 Added VGT_GRP_2D_TRI enumeration to prim type field of
VGT_GROUP_PRIM_TYPE register (and deleted some unused prim type enumerations).
 Updated Major Mode 0 settings table for 2D compond index changes. Added
2D_TRI_STRIP entry to this table.
 Changed address of many of the GFX registers registers to match addresses in the block
file.
 Added VGT_MULTI_PRIM_IB_RESET_INDX register with description.
 Changed VGT_VTX_TIMEOUT_REG to VGT_ VGT_VTX_VECT_EJECT_REG
register
 Added VGT_DMA_DATA_FIFO_DEPTH register· Added
VGT_DMA_REQ_FIFO_DEPTH register
 Added VGT_DRAW_INIT_FIFO_DEPTH register
 Added VGT_LAST_COPY_STATE register.
 Added section called “Draw Initiator Programming” containing two subsections:
“Number of Indices” and “Using the Multi-prim Index Buffer Reset Functionality”

Change 60701 on 2002/10/31 by georgev@ma_georgev

 Put in documentation for floating point numbers.

Change 60669 on 2002/10/31 by gabarca@gabarca_crayola_win_cvd

 Page 136 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 ODD_EVEN_MD_PGSEL is 1 in all modes

Change 60634 on 2002/10/31 by mpersaud@mpersaud_r400_win_tor

 Rev 1.1 Mahendra PersaudDate: Oct 31, 2002
 Added VIP signals to CP
 Moved and renamed document to ...\doc_lib\design\blocks\chip\R400 - DC_CP
Interface.doc

Change 60628 on 2002/10/31 by smoss@smoss_crayola_win

 su tests

Change 60627 on 2002/10/31 by mzhu@mzhu_crayola_win_tor

 Add dual display tests in 3.4.9.12

Change 60624 on 2002/10/31 by khabbari@khabbari_r400_win

 disp signals added to disp/cp inteface doc

Change 60620 on 2002/10/31 by mkelly@fl_mkelly_r400_win_laptop

 Update screen scissor and window scissor tests for tracking...

Change 60565 on 2002/10/30 by gregs@laptop1

 update

Change 60393 on 2002/10/30 by jacarey@fl_jcarey2

 Fix Typo in CP_PERFMON_CNTL register description

Change 60376 on 2002/10/30 by mpersaud@mpersaud_r400_win_tor

 Updated with Appendix A - MH_DCC Interface

Change 60360 on 2002/10/30 by gregs@laptop1

 added IO_RBBM_genericc_y signal

Change 60295 on 2002/10/30 by mzhu@mzhu_crayola_win_tor

 Update 3.4.9.4 Color Space Conversion
 Add 3.4.9.10 double buffer registers
 Add 3.4.9.11 DCP CRC

Change 60294 on 2002/10/30 by rbell@rbell_crayola_win_cvd

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1498 of 1898

 Page 137 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 updated

Change 60264 on 2002/10/30 by frising@ma_frising

 v.1.8
 -bring up to date with v.0.99a of R400numerics.doc. Includes adding new instructions,
updating existing instructions, and moving to counter based predicate scheme.

Change 60178 on 2002/10/29 by frising@ma_frising

 v.0.99a

 -Sync up with v.1.8 of shaders.doc that I've been editing and will check-in soon.

Change 60167 on 2002/10/29 by gregs@gregs_r400_win_marlboro

 update

Change 60126 on 2002/10/29 by rbell@rbell_crayola_win_cvd

 Finished MS3 D2 tests

Change 60112 on 2002/10/29 by vgoel@fl_vgoel2

 added rpatch bug for tessellation 11.5

Change 60078 on 2002/10/29 by jowang@jowang_R400_win

 added CRC generation

Change 59994 on 2002/10/29 by jacarey@fl_jcarey2

 Add registers for the CP Performance Counter

Change 59989 on 2002/10/29 by jacarey@fl_jcarey2

 RBBM Performance Counters

Change 59944 on 2002/10/29 by csampayo@fl_csampayo_r400

 Added bug# 83

Change 59941 on 2002/10/29 by llefebvr@llefebvre_laptop_r400

 backup and SQ->SP interface change.

Change 59932 on 2002/10/29 by nluu@nluu_r400_doclib_cnnb

 - update interface to add start_of_cycle and op code signals

 Page 138 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 - cycle is 1 clock shorter, strobe is asserted 1 clock after data is driven instead of 2
clocks
 - decodes are don't cares when not in active cycle
 - ready should be high by default

Change 59930 on 2002/10/29 by gregs@gregs_r400_win_marlboro

 added Test Controller connections to IO DFT cells.

Change 59904 on 2002/10/29 by jacarey@fl_jcarey_desktop

 Source clipping is only done by the CP for ROPs that include a source term.

Change 59873 on 2002/10/28 by gregs@gregs_r400_win_marlboro

 io dft cells inserted - fixes.

Change 59867 on 2002/10/28 by frising@ma_frising

 v.0.99
 -updated to counter based predicate instructions.
 -lots of work on 32-bit rounding issues. Still more to do especially for 16-bit FP and
conversion between formats and things like RF expansions.

Change 59820 on 2002/10/28 by mzhu@mzhu_crayola_win_tor

 Add matrix transform constant in 11.18

Change 59816 on 2002/10/28 by rfevreau@rfevreau_r400_win

 New goldens

Change 59789 on 2002/10/28 by jacarey@fl_jcarey2

 AlphaBlend, AAFONT and Load_Execute marked as "Not Currently Supported"

Change 59706 on 2002/10/28 by csampayo@fl_csampayo_r400

 Added bug# 82

Change 59693 on 2002/10/28 by jacarey@fl_jcarey2

 Swap bits for oper=gmcdecode flags

Change 59683 on 2002/10/28 by csampayo@fl_csampayo_r400

 Try again

Change 59682 on 2002/10/28 by csampayo@fl_csampayo_r400

 Page 139 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Added Bugzilla report# to bug# 81

Change 59681 on 2002/10/28 by csampayo@fl_csampayo_r400

 Some housekeeping

Change 59677 on 2002/10/28 by jacarey@fl_jcarey2

 Add:
 1. ROP7:4 != ROP3:0 flag for oper=gmcdecode
 2. Src_Clip_Disable Flag for oper=gmcdecode

Change 59592 on 2002/10/27 by csampayo@fl_csampayo_lt_r400

 Updated test_list and test tracker status for the following tests:
 r400vgt_multi_pass_pix_shader_01
 r400vgt_multi_pass_pix_shader_02
 r400vgt_multi_pass_pix_shader_03
 r400vgt_multi_pass_pix_shader_04
 r400vgt_multi_pass_pix_shader_05
 r400vgt_multi_pass_pix_shader_06

Change 59437 on 2002/10/25 by ashishs@fl_ashishs_r400_win

 update

Change 59405 on 2002/10/25 by lseiler@lseiler_r400_win_marlboro

 Added a column for device address

Change 59397 on 2002/10/25 by gregs@gregs_r400_win_marlboro

 updated the buscfg strap encodings.

Change 59395 on 2002/10/25 by jacarey@fl_jcarey2

 Remove CP_CONTEXT_ID register it will be in the VGT

Change 59371 on 2002/10/25 by jacarey@fl_jcarey2

 Update Performance Conections.

Change 59342 on 2002/10/25 by jacarey@fl_jcarey_desktop

 Document CP_CONTEXT_ID register.

Change 59317 on 2002/10/25 by jacarey@fl_jcarey2

 Page 140 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Update RBBM Debug Register.

Change 59314 on 2002/10/25 by jacarey@fl_jcarey2

 Updates to RBBM spec to clarify wait_until, nqwait, and Isync wait conditions.

Change 59255 on 2002/10/24 by grayc@grayc_r400_win

 initial release

Change 59211 on 2002/10/24 by ashishs@fl_ashishs_r400_win

 update

Change 59151 on 2002/10/24 by frising@ma_frising

 v.1.57
 - Rework of degamma control to be more in line with hardware schedule :) Perhaps
surprisingly, this resulted in a cleaner SW interface and easier HW implementation. This
involved:

 - Removing of DEGAMMA_CNTL_ALL

 - Adding 4 new DATA_FORMATs: FMT_8_8_8_8_AS_16_16_16_16,
FMT_DXT1_AS_16_16_16_16, FMT_DXT2_3_AS_16_16_16_16 and
FMT_DXT4_5_AS_16_16_16_16.

 - Updated DATA_FORMAT table. This is now much cleaner. FOLKS SHOULD
STUDY THIS CLOSELY.

 - FMT_DXN is no longer a degammable format.

 - Update DATA_FORMAT note 7.) to say:
 "7.) Channels being degamm'd remain unsigned repeating fraction after degamma.
 Enabling degamma in any channel does not change the format in which the data is stored
in the L2 cache. This enables software to make trade-offs between high quality degamma and
performance. Specifically, formats FMT_8_8_8_8, FMT_DXT1, FMT_DXT2_3, and
FMT_DXT4_5 are stored in the L2 cache as 4x8 while their *_AS_16_16_16_16 counterparts
are stored as 4x16."

Change 59115 on 2002/10/24 by jacarey@fl_jcarey2

 RBBM Spec:
 1. Add Extern_Trig_Cntl Register and Diagram
 2. Update text for nqwait and gui_active related items.

Change 59100 on 2002/10/24 by ashishs@fl_ashishs_r400_win

 update

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1499 of 1898

 Page 141 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 59060 on 2002/10/24 by tshah@fl_tshah

 included description for CP_PIPE busy for Wait until condition. Hysteresis for
GUI_ACTIVE

Change 59054 on 2002/10/24 by mkelly@fl_mkelly_r400_win_laptop

 Update screen scissor test name in works..

Change 59053 on 2002/10/24 by mkelly@fl_mkelly_r400_win_laptop

 SC Clip Rect tests, LINE_LOOP, STIPPLE, FSAA permutations...

Change 58970 on 2002/10/23 by ashishs@fl_ashishs_r400_win

 Tests guard band clipping
 4 primitives in 4 quadrants.
 Each primitive has 6 vertices and first vert on vertical guard band.

 Top Left Quadrant, gouraud shading
 Top Right Quadrant, FLAT SHADING with START vertex as provoking vtx
 Lower Right Quadrant, FLAT SHADING with END vertex as provoking vtx
 Lower Left Quadrant, SIX TEXTURES, with COLOR0 as transparent

 Method: 6 Vert Strip, first vert on vertical guard band
 Expected Results: 4 primitives, four quadrants, no clipping, no discarding

Change 58948 on 2002/10/23 by rthambim@rthambim_r400_win_tor

 Initial revision.

Change 58906 on 2002/10/23 by mzhu@mzhu_crayola_win_tor

 Add in Colour Spaces.xls in perforce

Change 58841 on 2002/10/23 by frising@ma_frising

 v.1.56
 -fix up mapping of YCrCb to GPR in DATA_FORMAT table. Now Z(B)=Cb, Y(G)=Y,
X(R)=Cr. (Cb are Cr were swapped before)
 -coorespondingly rename border colors to ACbYCr Black and ACbCrY Black. Note this
is just a rename and does not affect actual values since Cr and Cb use the same value.

Change 58817 on 2002/10/23 by vgoel@fl_vgoel2

 added vertex export bug report resulting from r400vgt_hos_PNT_adaptive

Change 58806 on 2002/10/23 by rbell@rbell_crayola_win_cvd

 Page 142 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 updated

Change 58801 on 2002/10/23 by jacarey@fl_jcarey2

 Add ROP comment to GradFill Packet

Change 58743 on 2002/10/22 by frising@ma_frising

 0.98
 -added cube instruction implementation
 -misc clean-up.

Change 58728 on 2002/10/22 by gregs@gregs_r400_win_marlboro

 update

Change 58697 on 2002/10/22 by smoss@smoss_crayola_win

 su tests

Change 58679 on 2002/10/22 by gregs@gregs_r400_win_marlboro

 fixed Generic pads

Change 58630 on 2002/10/22 by rbell@rbell_crayola_win_cvd

 Completed some more D2 tests

Change 58617 on 2002/10/22 by jacarey@fl_jcarey2

 Update for Clearing the Register Update Flag

Change 58615 on 2002/10/22 by jacarey@fl_jcarey2

 Document Updates for Incremental Register Updates

Change 58606 on 2002/10/22 by gregs@gregs_r400_win_marlboro

 <added CONFIG_XSTRAP3 register and number of straps >

Change 58603 on 2002/10/22 by kmahler@kmahler_r400_doc_lib

 Added More details and added Proposal for new PM4 Library and Real-Time support.

Change 58563 on 2002/10/22 by llefebvr@llefebvre_laptop_r400

 Defined the memory exports better.

 Page 143 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 58562 on 2002/10/22 by llefebvr@llefebvre_laptop_r400

 Updated the SX interfaces.

Change 58525 on 2002/10/22 by jowang@jowang_R400_win

 Modified M3 Test Plan after the review

Change 58522 on 2002/10/22 by georgev@ma_georgev

 Updated to reflect changes and new stuff.

Change 58425 on 2002/10/21 by khabbari@khabbari_r400_win

 added frame rate conv test list

Change 58419 on 2002/10/21 by frising@ma_frising

 0.97
 -initial check-in.

Change 58369 on 2002/10/21 by frising@ma_frising

 v.1.55

 - Added DEGAMMA_CNTL_ALL field to texture constant to indicate if degammed
textures should be stored as 8-bit or 16-bit in TC. Noted that this field is not currently supported.
Also noted what the default conversion are in lieu of this support along with bringing all the
degamma documentation inline with the current degamma plans.

 - Added REQUEST_SIZE field to texture and vertex constant to indicate if read requests
should be 256 or 512 bit.

 - Defined R400_TP_NAN to be 0x7FE00000 (used for out of range vertex fetches)

 - *16_EXPAND is converted to 16.16 signed fixed point now.

 - *MPEG is clamped to [-256..255] pre filter (was [-255..255])

Change 58350 on 2002/10/21 by rfevreau@rfevreau_r400_win

 New goldens with PClk set to 165MHz
 Test list update

Change 58329 on 2002/10/21 by mzhu@mzhu_crayola_win_tor

 Update DxGRPH_PITCH and DxOVL_PITCH

Change 58321 on 2002/10/21 by jowang@jowang_R400_win

 Page 144 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 added M3 comments

Change 58318 on 2002/10/21 by mzhu@mzhu_crayola_win_tor

 Update interface signals, DCP_DMIF_grph1_pitch, DCP_DMIF_grph2_pitch,
DCP_DMIF_ovl1_pitch and DCP_DMIF_ovl2_pitch.

Change 58308 on 2002/10/21 by paulv@MA_PVELLA

 Updated MHS portion of spec with latest and greatest features, info, etc.

Change 58307 on 2002/10/21 by csampayo@fl_csampayo_lt_r400

 Cleaned up tests, added 1 new VGT test to test_list and updated the test tracker
accordingly

Change 58257 on 2002/10/21 by khabbari@khabbari_r400_win

 added frame rate conv

Change 58254 on 2002/10/21 by mzhu@mzhu_crayola_win_tor

 Update 11.1.2 and 11.1.3 for D1GRPH and D2GRPH double buffer register
 Add 11.20 for DCP CRC

Change 58253 on 2002/10/21 by mzhu@mzhu_crayola_win_tor

 Add 8-bit 2101010 mode tests in 3.4.9.9

Change 58251 on 2002/10/21 by mzhu@mzhu_crayola_win_tor

 Update DxGRPH double buffer register
 Add DCP CRC register

Change 58213 on 2002/10/20 by gregs@laptop1

 update

Change 58161 on 2002/10/19 by gregs@laptop1

 initial device id numbers

Change 58120 on 2002/10/18 by csampayo@fl_csampayo_r400

 Added bug# 88

Change 58095 on 2002/10/18 by vgoel@fl_vgoel2

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1500 of 1898

 Page 145 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 updated for new bug

Change 58080 on 2002/10/18 by gregs@gregs_r400_win_marlboro

 update

Change 58073 on 2002/10/18 by gregs@gregs_r400_win_marlboro

 device_id update

Change 58032 on 2002/10/18 by jacarey@fl_jcarey2

 Update diagram for clock gating

Change 58003 on 2002/10/18 by jasif@jasif_r400_win_tor

 Updated test names and status.

Change 57994 on 2002/10/18 by ashishs@fl_ashishs_r400_win

 updated a comment

Change 57991 on 2002/10/18 by jacarey@fl_jcarey2

 Update documents for Incremental Register Update

Change 57976 on 2002/10/18 by ashishs@fl_ashishs_r400_win

 Highlighted the bug "r400cl_bary_texture_08.cpp"

Change 57941 on 2002/10/18 by bbloemer@ma_bbloemer

 Updated .doc file.

Change 57939 on 2002/10/18 by ashishs@fl_ashishs_r400_win

 updated test_list and Tracker for the corresponding change in file name viz
r400cl_gabnd_04 to r400cl_gband_06

Change 57935 on 2002/10/18 by ashishs@fl_ashishs_r400_win

 Deleted test r400cl_gband_04 and renamed it to r400cl_gband_06. Also updated the
Validation_Approach_plan.doc since it had some errors with tests name and numberings.

Change 57933 on 2002/10/18 by jacarey@fl_jcarey2

 1. Remove legacy versions of packets that were struck through
 2. Add Incremental Register Write Support

 Page 146 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 57890 on 2002/10/18 by jacarey@fl_jcarey2

 Added src_data_format to the alphablend packet.

Change 57866 on 2002/10/17 by grayc@grayc_r400_win

 for safekeeping ... expanded on test description

Change 57848 on 2002/10/17 by csampayo@fl_csampayo_r400

 Added bug# 78

Change 57834 on 2002/10/17 by gregs@gregs_r400_win_marlboro

 added R300 power

Change 57824 on 2002/10/17 by gregs@gregs_r400_win_marlboro

 scaled from R300 part - ready.

Change 57784 on 2002/10/17 by jacarey@fl_jcarey2

 Refer to the PA register spec for the format of the destination clipping parameters in the
PM4 spec.

Change 57667 on 2002/10/17 by gregs@gregs_r400_win_marlboro

 update

Change 57661 on 2002/10/17 by gregs@gregs_r400_win_marlboro

 added to the discription of ROM_CLK register

Change 57576 on 2002/10/16 by gregs@laptop1

 work in progress

Change 57574 on 2002/10/16 by gregs@laptop1

 work in progress

Change 57527 on 2002/10/16 by llefebvr@llefebvre_laptop_r400

 Clarifications and minor updates. Version 2.08.

Change 57510 on 2002/10/16 by csampayo@fl_csampayo_r400

 Added 1 new HOS with index reset test, updated test_list and test tracker

 Page 147 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 57494 on 2002/10/16 by smoss@smoss_crayola_win

 update

Change 57475 on 2002/10/16 by ashishs@fl_ashishs_r400_win

 updated

Change 57471 on 2002/10/16 by rbell@rbell_crayola_win_cvd

 Completed host arbitration tests.

Change 57470 on 2002/10/16 by jacarey@fl_jcarey2

 Documentation Updates for Programming Max Count while processing.

Change 57459 on 2002/10/16 by mkelly@fl_mkelly_r400_win_laptop

 Add r400sc_parameterized_line_list_01 to tracker...

Change 57435 on 2002/10/16 by ashishs@fl_ashishs_r400_win

 update

Change 57394 on 2002/10/16 by mzhu@mzhu_crayola_win_tor

 Add 8-bit 2101010 graphics format
 Add PIX_TYPE for selecting color space conversion parameters

Change 57382 on 2002/10/16 by jacarey@fl_jcarey2

 Update to transfifo clock

Change 57363 on 2002/10/16 by efong@efong_r400_win_tor_doc

 Coverage Metrics Proposal and users guide

Change 57337 on 2002/10/16 by jacarey@fl_jcarey2

 Update for sclk_reg

Change 57253 on 2002/10/15 by csampayo@fl_csampayo_r400

 VGT housekeeping

Change 57252 on 2002/10/15 by csampayo@fl_csampayo_r400

 Added bug# 77

 Page 148 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 57247 on 2002/10/15 by csampayo@fl_csampayo_r400

 Added 5 new VGT index reset tests and updated test_list and test tracker

Change 57202 on 2002/10/15 by csampayo@fl_csampayo_r400

 Updated test_list and test tracker for the following VGT tests:
 r400vgt_vtx_export_very_very_simple_01
 r400vgt_vtx_export_very_very_simple_02
 r400vgt_vtx_export_very_very_simple_03

Change 57196 on 2002/10/15 by jacarey@fl_jcarey2

 Update for SCLK_REG

Change 57184 on 2002/10/15 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 57177 on 2002/10/15 by beiwang@bei_depot

 Updated the MCCI block diagram with the latest AGP path

Change 57175 on 2002/10/15 by jacarey@fl_jcarey2

 1. Add CP_PERFMON_CNTL to CP register set
 2. Documentation Updates for Clock Gating

Change 57165 on 2002/10/15 by jowang@jowang_R400_win

 updated test plan with M3 features for 20bpp and CRC

Change 57157 on 2002/10/15 by smorein@smorein_r400

 updated with register names

Change 57146 on 2002/10/15 by kmahler@kmahler_r400_doc_lib

 Added some minor details, but not sure what?

Change 57086 on 2002/10/15 by jhoule@MA_JHOULE

 1.54:
 Added MIP_PACKING bit allowing to disable packing of the mip tail.

Change 57052 on 2002/10/15 by jacarey@fl_jcarey2

 Clarify the number of DWORDs for ALU and Texture constant updates.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1501 of 1898

 Page 149 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 56993 on 2002/10/14 by csampayo@fl_csampayo_r400

 Closed bugs# 63,71,74. Added bug# 76

Change 56977 on 2002/10/14 by ashishs@fl_ashishs_r400_win

 update

Change 56944 on 2002/10/14 by jacarey@fl_jcarey2

 Update Diagram for Dynamic Clocking in the CP

Change 56936 on 2002/10/14 by csampayo@fl_csampayo_r400

 Added 3 new VGT tests, updated test_list and test tracker

Change 56928 on 2002/10/14 by mkelly@fl_mkelly_r400_win_laptop

 update...

Change 56918 on 2002/10/14 by csampayo@fl_csampayo_lt_r400

 Some VGT housekeeping

Change 56881 on 2002/10/14 by llefebvr@llefebvre_laptop_r400

 Loops, jumps and calls are now using a 13 bit address which allows to jump and call and
loop around any control flow addresses (does not requires to be even anymore).

Change 56872 on 2002/10/14 by lseiler@lseiler_r400_win_marlboro

 Updated Zplane format to include MultiSample bit

Change 56865 on 2002/10/14 by vgoel@fl_vgoel2

 added frame buffer dump mismatch issue for tiled on and off mode.

Change 56855 on 2002/10/14 by smoss@smoss_crayola_win

 su tests

Change 56838 on 2002/10/14 by kcorrell@kcorrell_r400_docs_marlboro_nb

 update of MH document up to chapter 13

Change 56659 on 2002/10/11 by jayw@MA_JAYW

 old needs updating

 Page 150 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 56612 on 2002/10/11 by jacarey@fl_jcarey2

 Update for DP_SRC_SOURCE

Change 56604 on 2002/10/11 by llefebvr@llefebvre_laptop_r400

 Revision 2.06 of the spec.

Change 56601 on 2002/10/11 by rbell@rbell_crayola_win_cvd

 Completed b&w offset floating point tests

Change 56593 on 2002/10/11 by jacarey@fl_jcarey2

 Make SQ_CP_*_eventid buses 5 bits to cover all defined events.

Change 56586 on 2002/10/11 by dwong@cndwong2

 changed the real-time signal names wired into CP (from overlay)

 bits 5 and 6 of connections to the CP_rts_discretes input bus are changed to
DISPx_CP_flip_proceed

Change 56581 on 2002/10/11 by tshah@fl_tshah

 description of RBBM_DEBUG register write - snoop in RBBM's BIF_PIPE

Change 56579 on 2002/10/11 by kmahler@kmahler_r400_doc_lib

 Some updates to support Random Shader Generator.

Change 56574 on 2002/10/11 by kmahler@kmahler_r400_doc_lib

 Some more updates; This document is now mostly ready for the initial review to allow
the first phase of development to begin.

Change 56558 on 2002/10/11 by jacarey@fl_jcarey2

 B4 and B9 Booleans need to be set for NextChar

Change 56544 on 2002/10/11 by jhoule@MA_JHOULE

 0.9.15:
 Various updates in descriptions.
 Updated TP_TC interface to 9 bits of pitch everywhere.

Change 56495 on 2002/10/10 by csampayo@fl_csampayo_r400

 Added bug# 74

 Page 151 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 56475 on 2002/10/10 by mzhu@mzhu_crayola_win_tor

 Fix LUT fill for Floating point 16161616 mode - (0x0000 - 0x3BFF)

Change 56461 on 2002/10/10 by nbarbier@nbarbier_r400_win_tor

 Added CRTC1 & CRTC2 enable and freeze signals.
 Added CRTC1 & CRTC2 interrupts.

Change 56403 on 2002/10/10 by jasif@jasif_r400_win_tor

 Updated test names and status.

Change 56398 on 2002/10/10 by grayc@grayc_r400_win

 updates

Change 56386 on 2002/10/10 by rherrick@ma_rherrick_crayola

 Implement Mult-sample stimulus application by TC client...

Change 56354 on 2002/10/10 by gregs@gregs_r400_win_marlboro

 added block_busy_extender

Change 56350 on 2002/10/10 by jacarey@fl_jcarey2

 Update pseudocode for LCC packet as processed by Real-time

Change 56318 on 2002/10/10 by rfevreau@rfevreau_r400_win

 Added a sleep to the job file and added new DVO testlist

Change 56314 on 2002/10/10 by jacarey@fl_jcarey2

 Clarification on ME_INIT for Mask Bit 9

Change 56313 on 2002/10/10 by csampayo@fl_csampayo_r400

 Adeed bug# 73

Change 56303 on 2002/10/10 by jacarey@fl_jcarey2

 Added Default Reset Control to ME init packet (bit 9 of mask)

Change 56213 on 2002/10/09 by gregs@laptop1

 update

 Page 152 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 56212 on 2002/10/09 by csampayo@fl_csampayo_r400

 Some VGT housekeeping

Change 56171 on 2002/10/09 by csampayo@fl_csampayo_r400

 1. Updated tests r400vgt_index_min_max_01 and _02 for multi-context
 2. Added new VGT tests r400vgt_index_min_max_03 and _04
 3. Updated test_list and the test tracker

Change 56126 on 2002/10/09 by mpersaud@mpersaud_r400_win_tor

 Bumped document revision

Change 56123 on 2002/10/09 by mpersaud@mpersaud_r400_win_tor

 Added TV_DOUT_interlace_en and TV_DOUT_tvout_en to interface.

Change 56082 on 2002/10/09 by jacarey@fl_jcarey2

 Added VIP_CP_eof_ack to list.

Change 56051 on 2002/10/09 by gregs@laptop1

 pin_strap_buscfg is 2 bits widw now (was 3 bits)

Change 56048 on 2002/10/09 by jacarey@fl_jcarey2

 Invert polarity of the MH_CP_writeclean signal

Change 56033 on 2002/10/09 by mkelly@fl_mkelly_r400_win_laptop

 Packed color example usage for VFD

Change 56008 on 2002/10/09 by mkelly@fl_mkelly_r400_win_laptop

 * Rasterize 256 triangles, 1 packet. Each triangle should hit 4 quads.
 The test moves the triangle 2 quads at a time in X and
 2 quads in increasing Y.
 * Update test_list
 * Update test documentation in test tracker

Change 55960 on 2002/10/08 by nbarbier@nbarbier_r400_win_tor

 Added description of 2nd DVO CRC.
 Added description of TMDS data synchronizer.

Change 55950 on 2002/10/08 by gregs@gregs_r400_win_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1502 of 1898

 Page 153 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 < DEVICE_ID - work in progress >

Change 55945 on 2002/10/08 by ashishs@fl_ashishs_r400_win

 update

Change 55935 on 2002/10/08 by jacarey@fl_jcarey2

 Update description of the B0 2D Boolean for monochrome sources.

Change 55922 on 2002/10/08 by jacarey@fl_jcarey2

 Only Set B0 Boolean for solid brushes if SRC_TYPE != Mono

Change 55904 on 2002/10/08 by bryans@bryans_crayola_doc

 Update schedule to minimize Linux usage after midnight

Change 55891 on 2002/10/08 by rherrick@ma_rherrick_crayola

 Removing FETCH_SHADOW from queuemgr/checker... Implementing setting of SCLK
period in parser... Changing IDLE to work on SCLK instead of MCLK... Beginning
implementation Fetch Multisample in checker (wanted to regress and check this change in before
heading forward from this point)...

Change 55869 on 2002/10/08 by smoss@smoss_crayola_win

 su tests

Change 55848 on 2002/10/08 by mpersaud@mpersaud_r400_win_tor

 Update port names to match verilog implementation

Change 55816 on 2002/10/08 by jacarey@fl_jcarey2

 Update spec for dst clip parameters to be positive only.

Change 55795 on 2002/10/08 by smoss@smoss_crayola_win

 su tests

Change 55763 on 2002/10/08 by grayc@grayc_r400_win

 initial release

Change 55758 on 2002/10/08 by mkelly@fl_mkelly_r400_win_laptop

 Add Clay's multi-chip tests to SC special cases documentation

 Page 154 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 55731 on 2002/10/07 by csampayo@fl_csampayo_r400

 Added bug# 72

Change 55727 on 2002/10/07 by csampayo@fl_csampayo_r400

 Added VGT index size test and updated test_list and test tracker

Change 55696 on 2002/10/07 by gregs@gregs_r400_win_marlboro

 AGP bug "AD_20 stitch" - fixed

Change 55679 on 2002/10/07 by jacarey@fl_jcarey2

 Added write confirm function for DMA engine at end of table.

Change 55669 on 2002/10/07 by rbell@rbell_crayola_win_cvd

 Completed half res tests

Change 55570 on 2002/10/07 by csampayo@fl_csampayo_lt_r400

 Added bug# 71

Change 55555 on 2002/10/07 by chwang@chwang_doc_r400_win_cvd

 Update.

Change 55544 on 2002/10/07 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated

Change 55527 on 2002/10/07 by smoss@smoss_crayola_win

 SU tests

Change 55513 on 2002/10/06 by ashishs@fl_ashishs_r400_win

 update

Change 55506 on 2002/10/06 by lkang@lkang_r400_win_tor

 updates

Change 55494 on 2002/10/05 by gregs@laptop1

 update - tests passed.

 Page 155 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 55440 on 2002/10/04 by gregs@gregs_r400_win_marlboro

 update

Change 55399 on 2002/10/04 by jacarey@fl_jcarey2

 Miscellaneous Updates for New 2D Packets

Change 55398 on 2002/10/04 by jacarey@fl_jcarey2

 1. Removed Width from compound indices
 2. Added 2D_Tri_Strip compound indice
 3. Misc. Comments.

Change 55342 on 2002/10/04 by gregs@gregs_r400_win_marlboro

 update

Change 55332 on 2002/10/04 by llefebvr@llefebvr_r400

 Small update regarding allocs.

Change 55327 on 2002/10/04 by alleng@alleng_r400_win_marlboro

 Additional information regarding the color and depth cache tests...

Change 55302 on 2002/10/04 by jimmylau@jimmylau_r400_win_tor

 Updates SCL-CRTC interface specs based on interface review on Sept 25, 02

Change 55285 on 2002/10/04 by mkelly@fl_mkelly_r400_win_laptop

 Enter new SC perf test

Change 55209 on 2002/10/03 by csampayo@fl_csampayo_r400

 Added bug# 70

Change 55208 on 2002/10/03 by gregs@laptop1

 added issues/notes related to pad ring.

Change 55199 on 2002/10/03 by csampayo@fl_csampayo_r400

 Added 4 new DMA swap tests and updated test_list and the test tracker

Change 55179 on 2002/10/03 by gregs@laptop1

 Page 156 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 added DVO power pads + added ESD pads (not distributed yet) + equlized sides to
approximately the same size + clean-up

Change 55164 on 2002/10/03 by mzhu@mzhu_crayola_win_tor

 Modify the 3rd milestone tests

Change 55163 on 2002/10/03 by jacarey@fl_jcarey2

 Updates to Gradfill packet
 Update to comment on setting the 2D B3 Boolean

Change 55162 on 2002/10/03 by jacarey@fl_jcarey2

 Boolean B3 should be '0' for SRC_TYPE=0.
 Mark Earl will check-in the emulator update.

Change 55136 on 2002/10/03 by mpersaud@mpersaud_r400_win_tor

 Updated interface as per interface spec review on September 27.

Change 55094 on 2002/10/03 by kmahler@kmahler_r400_doc_lib

 Another intermediate revision.... getting closer :)

Change 55083 on 2002/10/03 by smorein@smorein_r400

 initial version of performance counter spec, block leads and arch need to view and edit

Change 55036 on 2002/10/03 by csampayo@fl_csampayo_r400

 VGT housekeeping

Change 54988 on 2002/10/03 by rbell@rbell_crayola_win_cvd

 Completed digital output tests and teapot test.

Change 54971 on 2002/10/03 by jacarey@fl_jcarey2

 Minor updates to register default values and minimal power-up sequence.

Change 54899 on 2002/10/02 by gregs@gregs_r400_win_marlboro

 open issues update

Change 54893 on 2002/10/02 by gregs@gregs_r400_win_marlboro

 Fixed the PadLIst name :)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1503 of 1898

 Page 157 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 54882 on 2002/10/02 by gregs@gregs_r400_win_marlboro

 DEF generator pages cleaned-up.

Change 54810 on 2002/10/02 by csampayo@fl_csampayo_r400

 Forgot to save previous updates

Change 54802 on 2002/10/02 by csampayo@fl_csampayo_r400

 Added 3 new VGT tests with negative index offsets and updated test_list and the test
tracker

Change 54725 on 2002/10/02 by kmahler@kmahler_r400_doc_lib

 Another intermediate revision of the initial spec.

Change 54701 on 2002/10/01 by gregs@gregs_r400_win_marlboro

 update (Tuesday)

Change 54679 on 2002/10/01 by tshah@fl_tshah

 vgt skew count changes in decoument and code -- threshold must be a non-zero even
number

Change 54634 on 2002/10/01 by smoss@smoss_crayola_win

 SU tests

Change 54610 on 2002/10/01 by mzhu@mzhu_crayola_win_tor

 Add LUT and frame buffer fill pattern for digital output

Change 54584 on 2002/10/01 by mkelly@fl_mkelly_r400_win_laptop

 Update more stipple test documentation....

Change 54567 on 2002/10/01 by gregs@gregs_r400_win_marlboro

 added mux for core_volt_cntl[1:0] pins

Change 54550 on 2002/10/01 by jacarey@fl_jcarey2

 Partial updates for new 2D packets

Change 54523 on 2002/10/01 by mkelly@fl_mkelly_r400_win_laptop

 Update new window offset tests.

 Page 158 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 54518 on 2002/10/01 by mpersaud@mpersaud_r400_win_tor

 Added to CRTC_TV.doc

Change 54490 on 2002/10/01 by jacarey@fl_jcarey_desktop

 Miscellaneous clarifications to the RT event engine diagram.

Change 54476 on 2002/09/30 by kmahler@kmahler_r400_doc_lib

 More updates to the initial design doc.

Change 54464 on 2002/09/30 by gregs@gregs_r400_win_marlboro

 added DEBUG bus connections

Change 54447 on 2002/09/30 by gregs@gregs_r400_win_marlboro

 closed ring with corners.

Change 54416 on 2002/09/30 by mdoggett@MA_MDOGGETT_LT

 Added FetchMultiSample.

Change 54370 on 2002/09/30 by jacarey@fl_jcarey2

 Added compound index details for Stretch Blit Support.

Change 54347 on 2002/09/30 by jacarey@fl_jcarey2

 Add register to the poll_valid signal to align with data.

Change 54321 on 2002/09/30 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated

Change 54301 on 2002/09/30 by chwang@chwang_doc_r400_win_cvd

 Update.

Change 54279 on 2002/09/30 by vgoel@fl_vgoel2

 added bugzilla number 435

Change 54269 on 2002/09/30 by jcox@jcox_r400

 fix size of chart

 Page 159 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 54264 on 2002/09/30 by jcox@jcox_r400

 Fix macro for dating chart

Change 54263 on 2002/09/30 by jcox@jcox_r400

 Fix miscellaneous issues with Emulation regression summary and detail charts

Change 54261 on 2002/09/30 by mkelly@fl_mkelly_r400_win_laptop

 Update usage of regress_r400

Change 54252 on 2002/09/29 by csampayo@fl_csampayo_lt_r400

 Updated status for the VGT tests:
 r400vgt_index_offset_04
 r400vgt_index_offset_05

Change 54248 on 2002/09/29 by gregs@laptop1

 Sunday update

Change 54184 on 2002/09/27 by rfevreau@rfevreau_r400_win

 Added new job file and rg files for VIP full chip run
 DVO Testlist update

Change 54165 on 2002/09/27 by jcox@jcox_r400

 Add Emulator test plans to web

Change 54162 on 2002/09/27 by gregs@laptop1

 Friday update

Change 54124 on 2002/09/27 by jcox@web_sync

 Changes to publish charts to web (add close workbook macro)

Change 54120 on 2002/09/27 by gabarca@gabarca_crayola_win_cvd

 updated, still not with the meeting conclussions

Change 54118 on 2002/09/27 by jcox@fl_jcox2_web

 Add macros to output charts to web

Change 54069 on 2002/09/27 by csampayo@fl_csampayo_r400

 Page 160 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Updated bug# 67

Change 54055 on 2002/09/27 by dougd@doug

 Updated area of sq block based on netlist submitted 9/27/02

Change 54049 on 2002/09/27 by csampayo@fl_csampayo_r400

 Some housekeeping...

Change 54045 on 2002/09/27 by kevino@kevino_r400_win_marlboro

 latest

Change 54028 on 2002/09/27 by jacarey@fl_jcarey2

 Clean Up Spec per actual connections.

Change 53988 on 2002/09/26 by gregs@gregs_r400_win_marlboro

 update

Change 53953 on 2002/09/26 by smoss@smoss_crayola_win

 SU tests

Change 53900 on 2002/09/26 by jacarey@fl_jcarey_desktop

 Make 2D Default registers write only. Readable via the ME_STATMUX

Change 53857 on 2002/09/26 by jacarey@fl_jcarey_desktop

 Update Event_Write packet to include all events

Change 53850 on 2002/09/26 by nbarbier@nbarbier_r400_win_tor

 Updated interface document after review meeting.

Change 53842 on 2002/09/26 by rfevreau@rfevreau_r400_win

 Docs updates

Change 53804 on 2002/09/26 by rbell@rbell_crayola_win_cvd

 updated

Change 53802 on 2002/09/26 by vgoel@fl_vgoel2

 updated for closed bugs

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1504 of 1898

 Page 161 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 53795 on 2002/09/26 by prunstad@prunstad_r400_win_marl

 Updated mh area.

Change 53760 on 2002/09/26 by mkelly@fl_mkelly_r400_win_laptop

 Close out two bugs

Change 53709 on 2002/09/25 by imuskatb@imuskatb_r400_win_cnimuskatb

 1st draft of sample counter test

Change 53699 on 2002/09/25 by gregs@gregs_r400_win_marlboro

 update

Change 53678 on 2002/09/25 by csampayo@fl_csampayo_r400

 Closed bug# 66.

Change 53638 on 2002/09/25 by tien@ma_spinach

 updated TP and TC areas

Change 53622 on 2002/09/25 by smoss@smoss_crayola_win

 update

Change 53614 on 2002/09/25 by jasif@jasif_r400_win_tor

 Updated regression test names.

Change 53607 on 2002/09/25 by mkelly@fl_mkelly_r400_win_laptop

 Poly offset / scale tests

Change 53556 on 2002/09/25 by jacarey@fl_jcarey_desktop

 Update CP's Buffer Sizes to a 2^20 DWORD limit.

Change 53534 on 2002/09/25 by csampayo@fl_csampayo_r400

 Added Bugzilla report# to bug# 67

Change 53531 on 2002/09/25 by tshah@fl_tshah

 Logic for Field Affecting Operation (FAO)

 Page 162 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 53503 on 2002/09/25 by mkelly@fl_mkelly_r400_win_laptop

 Log potential bug

Change 53502 on 2002/09/25 by mkelly@fl_mkelly_r400_win_laptop

 Log potential bug

Change 53499 on 2002/09/25 by mkelly@fl_mkelly_r400_win_laptop

 Poly Offset combinations...

Change 53496 on 2002/09/25 by mkelly@fl_mkelly_r400_win_laptop

 Document r400sc_poly_offset_03 test

Change 53477 on 2002/09/24 by gregs@gregs_r400_win_marlboro

 update

Change 53472 on 2002/09/24 by gregs@gregs_r400_win_marlboro

 update

Change 53466 on 2002/09/24 by csampayo@fl_csampayo_r400

 Try again

Change 53464 on 2002/09/24 by csampayo@fl_csampayo_r400

 Added bug#67

Change 53454 on 2002/09/24 by efong@efong_r400_win_tor_doc

 Initial Leda Proposal

Change 53451 on 2002/09/24 by csampayo@fl_csampayo_r400

 Added new VGT test. Updated test_list and test tracker

Change 53423 on 2002/09/24 by csampayo@fl_csampayo_r400

 Closed bug# 61 and added bug# 66

Change 53396 on 2002/09/24 by gregs@gregs_r400_win_marlboro

 package.xls is now the official r400 spreadsheet.

Change 53395 on 2002/09/24 by gregs@gregs_r400_win_marlboro

 Page 163 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 < NEW - using rv350 pads now >

Change 53382 on 2002/09/24 by imuskatb@imuskatb_r400_win_cnimuskatb

 first pass for M3 test

Change 53372 on 2002/09/24 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated test lib

Change 53368 on 2002/09/24 by khabbari@khabbari_r400_win

 test plan for lb released

Change 53367 on 2002/09/24 by mkelly@fl_mkelly_r400_win_laptop

 Log bug, rectangle list broken when CL clipping enabled and clipped

Change 53361 on 2002/09/24 by georgev@ma_georgev

 Added PV to master document.

Change 53359 on 2002/09/24 by alleng@alleng_r400_win_marlboro

 Initial checkin of Performance Verification test plan...

Change 53356 on 2002/09/24 by khabbari@khabbari_r400_win

 added HTOTAL_BY_8 to the interface

Change 53347 on 2002/09/24 by frivas@FL_FRivas

 Update to HOS test description.

Change 53280 on 2002/09/24 by jacarey@fl_jcarey_desktop

 Add Fix2Flt_Reg PM4 Packet for Video Folks.
 PM4 Spec Update for Packet
 Add Opcode to pm4_it_opcodes
 New Unit Test Included

Change 53266 on 2002/09/24 by efong@efong_r400_win_tor_doc

 The Excel spreadsheet version of the R400 Regression milestones.doc

Change 53242 on 2002/09/24 by gabarca@gabarca_crayola_win_cvd

 added blink_sequence1 test

 Page 164 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 53200 on 2002/09/23 by csampayo@fl_csampayo_r400

 Added new VGT index reset test. Updated test_list and test tracker

Change 53167 on 2002/09/23 by jacarey@fl_jcarey_desktop

 1. Comment Only Correction to the Microcode
 2. Update Brush_X and Brush_Y pointers in PM4 spec to be of the range 0.0 to 7.0

Change 53165 on 2002/09/23 by frising@ma_frising

 v.1.53
 Updates to FetchMultiSample:
 -Added Point Filter to MSAA_FILTER_FUNCTION. This will be used to return a
specific sample.
 -OFFSET_Z will be used to specify which sample to return.
 -For fetchmultisample constant, renamed OUT fileds to RESULT and COLOR0 fields to
MSAA. Also swapped their locations. This may be slightly unexpected for SW but makes
RESULT_FORMAT align with DATA_FORMAT which is more consistent for TC/TP. Note
these fields may go under an additional name change once the new MSAA registers had been
named...all in the name of consistency.

Change 53162 on 2002/09/23 by jacarey@fl_jcarey_desktop

 Clarifications to LCC and Set_Constant Packet

Change 53111 on 2002/09/23 by tshah@fl_tshah

 Only CPQ_DATA_SWAP bit controls the CP_PUSH_* data swap

Change 53072 on 2002/09/23 by efong@efong_r400_win_tor_doc

 Updated

Change 53056 on 2002/09/23 by jacarey@fl_jcarey_desktop

 Documented ROP3's that are supported in R400 for 2D.

Change 53020 on 2002/09/23 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated

Change 53019 on 2002/09/23 by mkelly@fl_mkelly_r400_win_laptop

 Poly Offset, 8 MSAA, HOS

Change 53007 on 2002/09/23 by jacarey@fl_jcarey_desktop

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1505 of 1898

 Page 165 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 1. Update for oper=clrrepack function for Dst_Type==2
 2. Update sizes for physical memories.

Change 52992 on 2002/09/23 by mpersaud@mpersaud_r400_win_tor

 Rev 0.7 Mahendra Persaud
 Added TV_CRTC_framestart_freq[1:0] port.

Change 52951 on 2002/09/22 by rthambim@rthambim_r400_win_tor

 Expanded the address width from MH to BIF.

Change 52950 on 2002/09/22 by rthambim@rthambim_r400_win_tor

 Added status signals.

Change 52949 on 2002/09/22 by rthambim@rthambim_r400_win_tor

 Included Multi-Function changes.

Change 52866 on 2002/09/20 by csampayo@fl_csampayo_r400

 Added 2 new VGT tests and updated test_list and the test tracker accordingly

Change 52854 on 2002/09/20 by mzhu@mzhu_crayola_win_tor

 Add test plan for 3rd Milestone features

Change 52843 on 2002/09/20 by gregs@gregs_r400_win_marlboro

 Friday's update

Change 52804 on 2002/09/20 by mkelly@fl_mkelly_r400_win_laptop

 Log potential texture / baryc bug

Change 52794 on 2002/09/20 by mkelly@fl_mkelly_r400_win_laptop

 Review and update SC test validation tracking...

Change 52756 on 2002/09/20 by csampayo@fl_csampayo_lt_r400

 Added bug# 63

Change 52730 on 2002/09/20 by rherrick@ma_rherrick_crayola

 Implementing SWAP mode in parser through to client interface... Change all tests to
include SWAP_NONE required field...

 Page 166 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Also implementing parts of RANDOM mode on address transactions...

Change 52722 on 2002/09/20 by rbell@rbell_crayola_win_cvd

 Updated

Change 52648 on 2002/09/19 by csampayo@fl_csampayo_r400

 Added 1 new VGT event handling test and updated the test_list and test tracker
accordingly

Change 52615 on 2002/09/19 by mzhu@mzhu_crayola_win_tor

 Update test plan for third milestone

Change 52610 on 2002/09/19 by csampayo@fl_csampayo_lt_r400

 Some VGT housekeeping

Change 52551 on 2002/09/19 by rramsey@RRAMSEY_P4_r400_win

 Clean up RTS data in the SC
 Change sc_walker so that hw_scissor is passed down instead of recalculated in the walker
 Remove registry check for covered edge bias fix, it's always on now
 Add covered edge bias fix to RTL (sc_pipe)
 Clean up some compile warnings in the qpp
 Add some documentation on line_stipple

Change 52531 on 2002/09/19 by gabarca@gabarca_crayola_win_cvd

 updated

Change 52506 on 2002/09/19 by mkelly@fl_mkelly_r400_win_laptop

 Cycle SC_SAMPLE_CNTL permutations with all primtypes
 Cycle MSAA, 192 packets

Change 52487 on 2002/09/19 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated test list

Change 52482 on 2002/09/19 by mkelly@fl_mkelly_r400_win_laptop

 Primitive should be gouraud shaded, it is flat shaded.
 Related to PARAM_GEN = true, CENTERS_ONLY, and SAMPLE_CENTER
 If PARAM_GEN = false, gouraud shading works as expected.

Change 52475 on 2002/09/19 by gregs@gregs_r400_win_marlboro

 Page 167 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 added deafult values for rom_pads_reg

Change 52449 on 2002/09/19 by kmahler@kmahler_r400_doc_lib

 Added Primlib documents to doc_lib.

Change 52431 on 2002/09/18 by gregs@gregs_r400_win_marlboro

 It passes read_write test.

Change 52430 on 2002/09/18 by gregs@gregs_r400_win_marlboro

 added note about auto-increment of index register

Change 52429 on 2002/09/18 by csampayo@fl_csampayo_r400

 Added 5 new VGT prim tests and updated test_list and test tracker accordingly

Change 52426 on 2002/09/18 by gregs@gregs_r400_win_marlboro

 added ROM pads control register

Change 52411 on 2002/09/18 by bryans@bryans_crayola_doc

 Update for 09/16

Change 52401 on 2002/09/18 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated test list and dates

Change 52388 on 2002/09/18 by gregs@gregs_r400_win_marlboro

 fixed couple of bit fields XSTRAP2 register

Change 52382 on 2002/09/18 by mdoggett@MA_MDOGGETT_LT

 Added DXN

Change 52363 on 2002/09/18 by mzhu@mzhu_crayola_win_tor

 Add more description in 11.1.2 and 11.1.3 for double buffer in horizontal retrace

Change 52342 on 2002/09/18 by mkelly@fl_mkelly_r400_win_laptop

 close bug

Change 52334 on 2002/09/18 by mpersaud@mpersaud_r400_win_tor

 Added vsync and hsync going to dac capture model

 Page 168 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 52324 on 2002/09/18 by jacarey@fl_jcarey_desktop

 Intrinsic function for unpacking colors to 8888 format

Change 52300 on 2002/09/18 by mkelly@fl_mkelly_r400_win_laptop

 Cycle primitive types through all MSAA and JSS modes.

Change 52295 on 2002/09/18 by nbarbier@nbarbier_r400_win_tor

 Added DOUT_I2C tests for M3.

Change 52294 on 2002/09/18 by jhoule@MA_JHOULE

 Adding it for Tien (he had problems)

Change 52268 on 2002/09/18 by csampayo@fl_csampayo_r400

 Added bug# 61

Change 52265 on 2002/09/18 by jacarey@fl_jcarey_desktop

 Update for Alpha Color Defaults for RGB565 brush color format.

Change 52257 on 2002/09/18 by rbell@rbell_crayola_win_cvd

 updated

Change 52230 on 2002/09/18 by jacarey@fl_jcarey_desktop

 Update to SRC terms for small_text and hostdata_blt* packets (i.e. 32-bit SRC_OFFSET)
 Updated the fixed constants that are in the C7 vertex shader constant.

Change 52229 on 2002/09/18 by jacarey@fl_jcarey_desktop

 Update for 32-bit SRC_Offset term for Small_Text and HostData_Blt* packets
 Clarification for Foreground and Background Colors = Dst_Type format

Change 52226 on 2002/09/18 by efong@efong_r400_win_tor_doc

 Added in a whole bunch of visio diagrams for some of the models

Change 52221 on 2002/09/18 by jacarey@fl_jcarey_desktop

 Update CP_STQ_AVAIL register fields

Change 52204 on 2002/09/18 by mkelly@fl_mkelly_r400_win_laptop

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1506 of 1898

 Page 169 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 RB asserts when polygon with MSAA = 0,1,2,3 followed
 by point list MSAA = 5. If polygon MSAA = 5 or 7 the
 test completes as expected.

 $/r400/devel/test_list/src/chip/gfx/pa/bugs

 make r400sc_sp_sample_cntl_08_bug.emu

 Assertion failed: (coverage&errmask) == 0, file ../../../../emu_lib/model/gfx/rb
 /rb_color_model.cpp, line 334
 make[2]: [run_emu] Error 3 (ignored)

Change 52182 on 2002/09/17 by nbarbier@nbarbier_r400_win_tor

 Updated DAC, TMDS & DVO sections for M3 requirements.

Change 52181 on 2002/09/17 by csampayo@fl_csampayo_r400

 Housekeeping update

Change 52180 on 2002/09/17 by csampayo@fl_csampayo_r400

 Added 4 new VGT prim tests and updated test_list and the test tracker accordingly.

Change 52165 on 2002/09/17 by sbagshaw@sbagshaw

 modified to add additional details to one-shot mode
 renamed all of the registers to have a DC_ prefix

Change 52045 on 2002/09/17 by kevino@kevino_r400_win_marlboro

 tcfux for texture offsets (sample shift)

Change 52031 on 2002/09/17 by vgoel@fl_vgoel2

 added bugs 385, 386

Change 52030 on 2002/09/17 by imuskatb@imuskatb_r400_win_cnimuskatb

 update

Change 52025 on 2002/09/17 by smoss@smoss_crayola_win

 bug in primlib

Change 52024 on 2002/09/17 by rfevreau@rfevreau_r400_win

 Updates

 Page 170 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 52020 on 2002/09/17 by chwang@chwang_doc_r400_win_cvd

 Update.

Change 52018 on 2002/09/17 by csampayo@fl_csampayo_r400

 Housekeeping update

Change 52009 on 2002/09/17 by mdoggett@MA_MDOGGETT_LT

 Added L2 Block Offsets

Change 51990 on 2002/09/17 by frivas@FL_FRivas

 Update to status of a HOS test.

Change 51904 on 2002/09/16 by sbagshaw@sbagshaw

 R400 Test Debug Bus for Toronto Crayola blocks

Change 51897 on 2002/09/16 by csampayo@fl_csampayo_r400

 Added 3 new VGT prim tests and updated test_list and the test tracker accordingly.

Change 51864 on 2002/09/16 by mpersaud@mpersaud_r400_win_tor

 Added Q_DCCIF_W256ONLY and Q_DCCIF_WC_TIMEOUT[5:0] to interface

Change 51792 on 2002/09/16 by frising@ma_frising

 v.1.52
 -MSAA_NUM_SAMPLES now replaces ARBITRARY_FILTER in FetchMultiSample
constant. Users will be expected to set ARBITRARY_FILTER via the instruction when/if
needed. Use of constant value for this case will be undefined (and will likely result in
MSAA_NUM_SAMPLES being used).

Change 51786 on 2002/09/16 by kmahler@kmahler_r400_doc_lib

 Added description for using Control Flow Boolean Constants and Control Flow Loop
Constants.

Change 51784 on 2002/09/16 by kmahler@kmahler_r400_doc_lib

 Changed format of Fetch Instruction that only perform "Set" type operations by removing
the destination operand and the 'base' source operand (the constant register operand).

 Added the following syntax changes:

 Page 171 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 1) Predicate stack as a destination operand cannot be an export register, thus all predicate
setting operation must have a GPR as the destination.

 2) Predicate setting operations CANNOT specify clamp, negate and absolute modifiers.

 3) Kill operations CANNOT specify CLAMP.

 4) ALU instructions that export to Position, Color, or Fog cannot be predicated.

 5) KILL, MOVA, and PRED_SET type instructions may not be coissued with each other.

 Added restriction that the shader program cannot use the Address Register Relative Mode
within an exec_end or a cexec_end low-level control flow instruction.

Change 51767 on 2002/09/16 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 51748 on 2002/09/16 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 51741 on 2002/09/16 by vgoel@fl_vgoel2

 added potential bug with dumpview in displaying output of test with high tessellation
level

Change 51672 on 2002/09/15 by gregs@laptop1

 < added comments about TST_CG_test_sel signal >

Change 51561 on 2002/09/13 by gregs@gregs_r400_win_marlboro

 Friday update

Change 51495 on 2002/09/13 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 51490 on 2002/09/13 by csampayo@fl_csampayo_lt_r400

 Added to test_list and updated status for test:
 r400vgt_multi_prim_reset_index_all_01

Change 51449 on 2002/09/13 by gregs@gregs_r400_win_marlboro

 <minor updates>

Change 51438 on 2002/09/13 by jacarey@fl_jcarey_desktop

 Page 172 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Adjust Registers for Visibility

Change 51430 on 2002/09/13 by vgoel@fl_vgoel2

 updated bugs which are resolved

Change 51331 on 2002/09/13 by gregs@gregs_r400_win_marlboro

 < SDI and SDP swapped >

Change 51314 on 2002/09/13 by jacarey@fl_jcarey_desktop

 Removed ROP=0xCC note from PM4 spec for brush types 0x6 and 0x7

Change 51233 on 2002/09/12 by vgoel@fl_vgoel2

 added bug 365, PA hanging if vertex export is enabled.

Change 51228 on 2002/09/12 by whui@whui_r400_win_tor

 update idct_status

Change 51201 on 2002/09/12 by csampayo@fl_csampayo_r400

 1. Added 5 new VGT provoking vtx tests
 2. Updated test_list and test tracker

Change 51196 on 2002/09/12 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated test after picasso change

Change 51090 on 2002/09/12 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 51069 on 2002/09/12 by jacarey@fl_jcarey_desktop

 Update for oper=gmcdecode: Brush Type 0x6 and 0x7 set bit 15 of result

Change 51068 on 2002/09/12 by jacarey@fl_jcarey_desktop

 32x1 Brush Types are not converted to 32bpp by the CP.

Change 51044 on 2002/09/12 by rbell@rbell_crayola_win_cvd

 updated

Change 51003 on 2002/09/12 by jowang@jowang_R400_win

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1507 of 1898

 Page 173 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 add large v downscale case to debug

Change 51001 on 2002/09/12 by jowang@jowang_R400_win

 added debug scaling tests

Change 50985 on 2002/09/12 by mzhu@mzhu_crayola_win_tor

 Update STEREOSYNC algorithm

Change 50910 on 2002/09/11 by gregs@gregs_r400_win_marlboro

 update

Change 50873 on 2002/09/11 by efong@efong_r400_win_tor_doc

 Updated

Change 50836 on 2002/09/11 by kmahler@kmahler_r400_doc_lib

 Made the following changes:

 1) Removed ALL references of clauses.

 2) Moved Texture Instrution definitions from chapter 3 into Appendix.

 3) Removed remaining portion of Chapter 3, since the information was duplicated in
Chapter 4. Chapter 4 is now chapter 3.

 4) Made major revisions to Chapter 8 "Programming Syntax And Usage".

 - Re-ordered sections to improve flow.
 - Updated the low-level control flow syntax.
 - Added details for the mid-level control flow syntax.
 - Updated predication instruction syntax and description.
 - Removed previous vector and previous scalar syntax from ALU source operands.
 - Enhanced register indexing.
 - Updated ALU instruction syntax to properly describe vector and scalar operations that
do not conform to the general syntax; mova type, kill type, and predicate setting type operations.
 - Corrected the usage of 'instruction' where 'operation' was meant in the description of
ALU instructions.

 5) Removed chapter 10 "Program text file format" since it was redundent information.

 6) Made minor enhancements to descriptions.

 7) Added Cross-References where appropriate and started using a standard for these
using the form:

 Page 174 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 see section header_number:"header_text" on page #

 This allows hardcopy readers the ability to easily locate a reference (see section
8.4.2.3.1:"Vector Operations" on page 38 for an example).

 8) Modified the Appendix:

 - Removed the following due to duplication:
 - Syntax Reference.
 - Control Flow from Instruction Reference.
 - Moved BNF further down.
 - Revised Instruction Reference.
 - Updated examples to mid-level syntax.

Change 50802 on 2002/09/11 by jcox@jcox_r400_win

 Moving to r400/web directory

Change 50800 on 2002/09/11 by jcox@jcox_r400_win

 Initial Checkin of R400 Web

Change 50799 on 2002/09/11 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 50758 on 2002/09/11 by csampayo@fl_csampayo_r400

 Some housekeeping updates

Change 50728 on 2002/09/11 by mkelly@fl_mkelly_r400_win_laptop

 Logged sq dump bug for record keeping

Change 50722 on 2002/09/11 by rfevreau@rfevreau_r400_win

 Test #7

Change 50707 on 2002/09/11 by mkelly@fl_mkelly_r400_win_laptop

 Simple triangle, polymode back face tri fill

Change 50647 on 2002/09/10 by gregs@gregs_r400_win_marlboro

 update (only 3 ERRORs in build_io.log)

Change 50632 on 2002/09/10 by smoss@smoss_crayola_win

 Page 175 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 bug fix

Change 50623 on 2002/09/10 by smoss@smoss_crayola_win

 su tests

Change 50615 on 2002/09/10 by rbell@rbell_crayola_win_cvd

 updated

Change 50605 on 2002/09/10 by subad@MA_SUBA

 Updated Area numbers of TCD with the new code

Change 50578 on 2002/09/10 by jacarey@fl_jcarey_desktop

 Update POLYLINE pseudocode.

Change 50566 on 2002/09/10 by grayc@grayc_r400_win

 added minutes for last two meetings

Change 50539 on 2002/09/10 by mkelly@fl_mkelly_r400_win_laptop

 Updates...

Change 50485 on 2002/09/10 by csampayo@fl_csampayo_r400

 Format update

Change 50456 on 2002/09/10 by llefebvr@llefebvre_laptop_r400

 New spin of the SQ spec including some interface changes and auto-counter architectural
changes (for multipass pixel/vertex shaders).

Change 50441 on 2002/09/10 by jimmylau@jimmylau_r400_win_tor

 Minor changes in CRTC testplan document

Change 50413 on 2002/09/10 by jacarey@fl_jcarey_desktop

 Added Cache_Flush_and_Invalidate_TS to Event_TimeStamp_Write packet

Change 50403 on 2002/09/10 by jacarey@fl_jcarey_desktop

 Add Result Reuse to Diagram

Change 50398 on 2002/09/10 by jacarey@fl_jcarey_desktop

 Page 176 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Update Indice count for Polyline packet

Change 50347 on 2002/09/09 by csampayo@fl_csampayo_r400

 1. Added SU multi-context test
 2. Updated test_list and test tracker accordingly

Change 50340 on 2002/09/09 by gabarca@gabarca_crayola_win_cvd

 updated after meeting

Change 50339 on 2002/09/09 by gregs@gregs_r400_win_marlboro

 update

Change 50332 on 2002/09/09 by gabarca@gabarca_crayola_win_cvd

 added timing for each VGA mode

Change 50326 on 2002/09/09 by nbarbier@nbarbier_r400_win_tor

 Updated DVO specs.

Change 50296 on 2002/09/09 by hartogs@fl_hartogs

 Added section on determining the required amount of input data based on the draw
initiator and the grouper regsters.
 Added section on sanity checks for programming the grouper in major mode 1.

Change 50249 on 2002/09/09 by vgoel@fl_vgoel2

 closed bug issue for PNTQL

Change 50246 on 2002/09/09 by mzhu@mzhu_crayola_win_tor

 Update ICON and CURSOR X2 magnification algorithm.

Change 50213 on 2002/09/09 by frising@ma_frising

 v.1.51
 -Add in 32-bit clear color to texture constant layout for FetchMultiSample.

 This involved replacing CLAMP_Z (which did nothing for FetchMultiSample) with
FILTER_FUNCTION. Note that FILTER_FUNCTION is 3 bits (from 6).

 Drivers will be required to do a resolve pass when using fast color clear for multisample
render targets > 32 bits prior to a multisampe fetch. Currently we only have one such format
(4x16).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1508 of 1898

 Page 177 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 In the future (r[v]450?), it may be desireable to fetch individual samples into the shader
pipe. This might be accomplished by a FILTER_FUNCTION opcode that usurps the clear color
bits. In this case (low performance anyways) a fast color expand might always be required. But
again, this has not yet be designed and is future looking...

Change 50206 on 2002/09/09 by smoss@smoss_crayola_win

 su tests

Change 50185 on 2002/09/09 by imuskatb@imuskatb_r400_win_cnimuskatb

 change test to crtc2
 updated test list

Change 50184 on 2002/09/09 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated

Change 50171 on 2002/09/09 by efong@efong_r400_win_tor_doc

 Updated

Change 50160 on 2002/09/09 by chwang@chwang_doc_r400_win_cvd

 Update.

Change 50156 on 2002/09/09 by csampayo@fl_csampayo_r400

 Updated status for bug# 48

Change 50147 on 2002/09/09 by mzhu@mzhu_crayola_win_tor

 Update STEREOSYNC algorithm

Change 50142 on 2002/09/09 by grayc@grayc_r400_win

 update to add cp functions for mti_pli.dll compile

Change 50127 on 2002/09/09 by efong@efong_r400_win_tor_doc

 Updated

Change 50052 on 2002/09/06 by gregs@gregs_r400_win_marlboro

 io_internal.v ready - memory connection missing.

Change 50032 on 2002/09/06 by kevino@kevino_r400_win_marlboro

 Page 178 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Updated to give more3 detail about which tests need to be covered for which tex
dimensions

Change 50014 on 2002/09/06 by mkelly@fl_mkelly_r400_win_laptop

 Initial check of sc sample control for centers and centroids in the sc_sp

Change 50011 on 2002/09/06 by mzhu@mzhu_crayola_win_tor

 Date: September 6, 2002
 Add more description for LUT BLACK_OFFSET and WHITE_OFFSET in chapter 11.8
 Change icon mix algorithm for data clamping in chapter 11.14
 Change cursor mix algorithm for data clamping in chapter 11.16

Change 49997 on 2002/09/06 by mkelly@fl_mkelly_r400_win_laptop

 Update new stipple tests

Change 49994 on 2002/09/06 by jacarey@fl_jcarey_desktop

 Correct booleans again for transbitblt

Change 49991 on 2002/09/06 by jacarey@fl_jcarey_desktop

 Update boolean settings for

Change 49986 on 2002/09/06 by gabarca@gabarca_crayola_win_cvd

 updated after meeting

Change 49983 on 2002/09/06 by rbell@rbell_crayola_win_cvd

 updated for review

Change 49982 on 2002/09/06 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 49952 on 2002/09/06 by rbell@rbell_crayola_win_cvd

 updated list (all tests should be done now)!

Change 49943 on 2002/09/06 by vgoel@fl_vgoel2

 entered bug 48

Change 49938 on 2002/09/06 by csampayo@fl_csampayo_r400

 Updated Viz Query controls. Updated test status

 Page 179 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 49903 on 2002/09/06 by mkelly@fl_mkelly_r400_win_laptop

 Update with msaa tests from yesterday

Change 49888 on 2002/09/06 by jacarey@fl_jcarey_desktop

 Document clearing of B4 and C2.x boolean if ROP[7:4] != ROP[3:0] for Blt and Text
packets.

Change 49883 on 2002/09/06 by jacarey@fl_jcarey_desktop

 Update for Timing

Change 49873 on 2002/09/05 by gabarca@gabarca_crayola_win_cvd

 updated disp doc

Change 49860 on 2002/09/05 by csampayo@fl_csampayo_r400

 Added bug# 47

Change 49850 on 2002/09/05 by vgoel@fl_vgoel2

 added bugzill bug 337

Change 49832 on 2002/09/05 by csampayo@fl_csampayo_r400

 Added and closed bug# 45

Change 49828 on 2002/09/05 by mpersaud@mpersaud_r400_win_tor

 Updated interface and top level diagram net names to match code.

Change 49822 on 2002/09/05 by csampayo@fl_csampayo_r400

 1. Added 1 new VGT test for event handling
 2. Updated test_list and test tracker accordingly

Change 49810 on 2002/09/05 by frising@ma_frising

 v.1.50
 -Remove FMASK_BASE from FetchMultiSample constant. Larry tells me this is now
encoded at a fixed offset from COLOR0_BASE.

Change 49802 on 2002/09/05 by frivas@FL_FRivas

 Added a HOS Tri-Patch test.

 Page 180 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 49786 on 2002/09/05 by askende@andi_r400_docs

 new rev. 1.7

Change 49760 on 2002/09/05 by kcorrell@kcorrell_r400_docs_marlboro_nb

 updated version - submitted now to update gart documentation

Change 49722 on 2002/09/05 by frivas@FL_FRivas

 Added two HOS tests (Tri-Patch and Line-Patch).

Change 49717 on 2002/09/05 by llefebvr@llefebvre_laptop_r400

 updated spec.

Change 49704 on 2002/09/05 by mkelly@fl_mkelly_r400_win_laptop

 Log a local sc bug

Change 49698 on 2002/09/05 by bbuchner@fl_bbuchner_r400_win

 updated spec to match changes made for TE timing

Change 49695 on 2002/09/05 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 49681 on 2002/09/05 by rbell@rbell_crayola_win_cvd

 Added CSC tests, and updated LUT list (gamma 2.5 fill)

Change 49595 on 2002/09/04 by csampayo@fl_csampayo_r400

 1. Added bug test case
 2. Updated bug# 43 on Bug Tracker

Change 49594 on 2002/09/04 by vgoel@fl_vgoel2

 added bug 32 to bugzilla (bug 333)

Change 49574 on 2002/09/04 by smoss@smoss_crayola_win

 SU test

Change 49572 on 2002/09/04 by efong@efong_r400_win_tor_doc

 Initial version

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1509 of 1898

 Page 181 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 49564 on 2002/09/04 by bryans@bryans_crayola_doc

 Update for new regression times

Change 49562 on 2002/09/04 by bbuchner@fl_bbuchner_r400_win

 removed unused interfaces.
 fixed output unit data types for don't care data.

Change 49547 on 2002/09/04 by mkelly@fl_mkelly_r400_win_laptop

 Update to be current with Bugzilla

Change 49546 on 2002/09/04 by rfevreau@rfevreau_r400_win

 Minor fix

Change 49543 on 2002/09/04 by jowang@jowang_R400_win

 updated with testcase names

Change 49525 on 2002/09/04 by mkelly@fl_mkelly_r400_win_laptop

 Change test name, update tracker...

Change 49479 on 2002/09/04 by mpersaud@mpersaud_r400_win_tor

 Updated interface and top level diagram to reflect removal of hdslewfilt and addition of
syncgen.

Change 49477 on 2002/09/04 by jacarey@fl_jcarey2

 Clarified Brush Expansion

Change 49462 on 2002/09/04 by bryans@bryans_crayola_doc

 Update as per status meeting

Change 49417 on 2002/09/03 by gabarca@gabarca_crayola_win_cvd

 Finished cleaning up the test plan and gave a name to each test

Change 49374 on 2002/09/03 by mmantor@mmantor_r400_win

 added sc output of centers and xy data. Also passed the xy data on the ij bus between the
SC and SQ

Change 49354 on 2002/09/03 by mkelly@fl_mkelly_r400_win_laptop

 Page 182 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Initial check of MSAA centermost determination.

Change 49340 on 2002/09/03 by efong@efong_r400_win_tor_doc

 Updated to the last review

Change 49336 on 2002/09/03 by bryans@bryans_crayola_doc

 Update

Change 49332 on 2002/09/03 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 49306 on 2002/09/03 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated

Change 49296 on 2002/09/03 by jhoule@MA_JHOULE

 Bringing back the PostJune15 into official location.
 Version is 1.49

Change 49290 on 2002/09/03 by jhoule@MA_JHOULE

 Renamed SAMPLE_POSITION to SAMPLE_LOCATION in TFetchInstr.
 Helps to reduce confusion with TP loops (esp. anisotropy walk taking
point/bilinear/arbitrary samples at different positions).

Change 49285 on 2002/09/03 by gregs@gregs_r400_win_marlboro

 Update ROM/CG/CGM/DBG

Change 49282 on 2002/09/03 by chwang@chwang_doc_r400_win_cvd

 Update.

Change 49267 on 2002/09/03 by efong@efong_r400_win_tor_doc

 Updated

Change 49244 on 2002/09/03 by llefebvr@llefebvre_laptop_r400

 new spec

Change 49234 on 2002/09/02 by gabarca@gabarca_crayola_win_cvd

 updated

 Page 183 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 49232 on 2002/09/02 by askende@andi_r400_docs

 fixed a typo on MUL_PREV2

Change 49141 on 2002/08/31 by askende@andi_r400_docs

 new rev of the spec ...rev.1.6

Change 49139 on 2002/08/30 by gabarca@gabarca_crayola_win_cvd

 updated test names

Change 49133 on 2002/08/30 by csampayo@fl_csampayo_r400

 Revised tests requirements for VGT and SU

Change 49074 on 2002/08/30 by csampayo@fl_csampayo_r400

 Closed bug# 24

Change 49072 on 2002/08/30 by rfevreau@rfevreau_r400_win

 Updated to documentation

Change 49066 on 2002/08/30 by csampayo@fl_csampayo_r400

 Updated status for the following tests:
 r400vgt_suppress_eop_01
 r400vgt_suppress_eop_02
 r400vgt_suppress_eop_03
 r400vgt_suppress_eop_04

Change 49055 on 2002/08/30 by khabbari@khabbari_r400_win

 added start phase

Change 49040 on 2002/08/30 by grayc@grayc_r400_win

 added initial notes for running a chip level graphic tests

Change 49017 on 2002/08/30 by jayw@MA_JAYW

 added 3d addressing to tile address

Change 48997 on 2002/08/30 by mzhu@mzhu_r400_win_tor

 Update chapter 10.6 - 10.12

Change 48971 on 2002/08/30 by mkelly@fl_mkelly_r400_win_laptop

 Page 184 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Potential bug in line texturing/window scissor

Change 48962 on 2002/08/30 by jacarey@fl_jcarey_desktop

 Removed StatMux Connections from Visio Diagram
 The connections are listed in the CP Spec.

Change 48937 on 2002/08/29 by gabarca@gabarca_crayola_win_cvd

 assigned test names except render graphics text display

Change 48903 on 2002/08/29 by khabbari@khabbari_r400_win

 added urgency signal to lb/dcp interface

Change 48900 on 2002/08/29 by jacarey@fl_jcarey_desktop

 Updates for controlling queued vs. non-queued transactions from micro engine.

Change 48890 on 2002/08/29 by jayw@MA_JAYW

 first try at fragment surface addresses and formats

Change 48888 on 2002/08/29 by jacarey@fl_jcarey_desktop

 Update sign extension note for the PLY_NEXTSCAN packet.

Change 48882 on 2002/08/29 by gregs@gregs_r400_win_marlboro

 <pad-ring in progress >

Change 48874 on 2002/08/29 by lkang@lkang_r400_win_tor

 update

Change 48865 on 2002/08/29 by mkelly@fl_mkelly_r400_win_laptop

 * Basic multi-texture tests
 * 16 parameter, 64 dword texture test
 * Expand VFD to handle up to 16 textures,
 see r400sc_tri_16_par_64_dwords_01.cpp for example useage

Change 48858 on 2002/08/29 by rbell@rbell_crayola_win_cvd

 Finished more D2 tests

Change 48839 on 2002/08/29 by llefebvr@llefebvre_laptop_r400

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1510 of 1898

 Page 185 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Updated the SQ->SP interface. Added comment on the Constant load bus.

Change 48832 on 2002/08/29 by jacarey@fl_jcarey_desktop

 Remove direct access to the Ib1 and Ib2 base/size fetchers

Change 48824 on 2002/08/29 by jacarey@fl_jcarey_desktop

 Clarification for memory usage for Brush and Palette

Change 48814 on 2002/08/29 by mdoggett@MA_MDOGGETT_LT

 Updated L2 formats table. Added L2 sector address maps. Started adding new L1 block
offset calcs per format.

Change 48813 on 2002/08/29 by kevino@kevino_r400_win_marlboro

 added rb_assert test case.

Change 48810 on 2002/08/29 by efong@efong_r400_win_tor_doc

 Updated

Change 48805 on 2002/08/29 by frivas@FL_FRivas

 Update to HOS section for new RECT patch tests.

Change 48786 on 2002/08/29 by jacarey@fl_jcarey2

 Micro Engine Updates for NQ Flag

Change 48778 on 2002/08/29 by jacarey@fl_jcarey2

 Add NQ Flag Processing....

Change 48768 on 2002/08/29 by csampayo@fl_csampayo_r400

 Updated description for the following tests:
 r400vgt_multi_context_04
 r400vgt_multi_context_05
 r400vgt_multi_context_06
 r400vgt_multi_context_07
 r400vgt_multi_context_08
 r400vgt_multi_context_09
 r400vgt_multi_context_10
 r400vgt_multi_context_11

Change 48756 on 2002/08/29 by rbell@rbell_crayola_win_cvd

 Page 186 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 finished premultiplied alpha, some date changes

Change 48677 on 2002/08/28 by gabarca@gabarca_crayola_win_cvd

 Updated the ATTR_PPAN =8, 8 dot case

Change 48669 on 2002/08/28 by jowang@jowang_R400_win

 updated for tests and precision

Change 48668 on 2002/08/28 by jayw@MA_JAYW

 frag in progress

Change 48649 on 2002/08/28 by vgoel@fl_vgoel2

 entered non-reported bug reports to bugzilla and entered their bug number

Change 48638 on 2002/08/28 by vgoel@fl_vgoel2

 added few more tests (hos and tone mapping, stereo vision)

Change 48623 on 2002/08/28 by jacarey@fl_jcarey2

 Mono Brush Unpacking

Change 48596 on 2002/08/28 by khabbari@khabbari_r400_win

 tvout spec for standard tv released

Change 48557 on 2002/08/28 by imuskatb@imuskatb_r400_win_cnimuskatb

 fixed contorl signal crc calculation
 updated quick_dacb test
 added hpd to API
 added hpd test

Change 48547 on 2002/08/28 by georgev@ma_georgev

 Better support for floats and ints in range.

Change 48537 on 2002/08/28 by mkelly@fl_mkelly_r400_win_laptop

 JSS 4x4 simple triangle

Change 48505 on 2002/08/28 by rbell@rbell_crayola_win_cvd

 updates

 Page 187 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 48487 on 2002/08/28 by ashishs@fl_ashishs_r400_win

 CL tests: adding more UCP combo tests and updating tracker.

Change 48463 on 2002/08/28 by jacarey@fl_jcarey_desktop

 Miscellaneous Spec Updates
 Comments in Microcode for 2D Processing.

Change 48462 on 2002/08/28 by jacarey@fl_jcarey_desktop

 Add B19 Boolean and Remove SRC_SC_BOTTOM_RIGHT_GMC default value

Change 48429 on 2002/08/27 by tshah@fl_tshah

 performance counters added with document changes

Change 48421 on 2002/08/27 by ashishs@fl_ashishs_r400_win

 opened bug r400cl_bary_texture_08_bug.cpp again and modified desciption.

Change 48419 on 2002/08/27 by vgoel@fl_vgoel2

 updated bug report

Change 48414 on 2002/08/27 by ashishs@fl_ashishs_r400_win

 deleted a redundant row related with the bug test r400cl_bary_texture_08_bug.cpp

Change 48409 on 2002/08/27 by ashishs@fl_ashishs_r400_win

 deleted a redundant row related with the bug test r400cl_bary_texture_08_bug.cpp

Change 48406 on 2002/08/27 by gregs@gregs_r400_win_marlboro

 Based onb RV350 design - R400 package definition (FC BGA pinout done (first
revision)).

Change 48402 on 2002/08/27 by csampayo@fl_csampayo_r400

 1. Updated test VFD for sourcing tex coord from vertex
 2. Updated Bug Tracker accordingly

Change 48389 on 2002/08/27 by mzhu@mzhu_r400_win_tor

 Update description for overlay gamma correction

Change 48371 on 2002/08/27 by grayc@grayc_r400_win

 Page 188 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 update for 8/23/2002 minutes

Change 48341 on 2002/08/27 by jacarey@fl_jcarey2

 Final Update from Joe

Change 48327 on 2002/08/27 by ygiang@ygiang_r400_win_marlboro_p4

 added: more sp tests

Change 48323 on 2002/08/27 by jacarey@fl_jcarey2

 Update Foreground and Background Color Processing

Change 48322 on 2002/08/27 by ashishs@fl_ashishs_r400_win

 update

Change 48290 on 2002/08/27 by jacarey@fl_jcarey2

 Correction to CP_STAT

Change 48289 on 2002/08/27 by bryans@bryans_crayola_doc

 Update status

Change 48284 on 2002/08/27 by gregs@gregs_r400_win_marlboro

 < fixed PLL post divider control registers >

Change 48283 on 2002/08/27 by jacarey@fl_jcarey2

 Update CP_STAT register bits

Change 48267 on 2002/08/27 by jacarey@fl_jcarey2

 Add Boolean 19 (Misc Command)

Change 48266 on 2002/08/27 by jacarey@fl_jcarey2

 More Updates

Change 48264 on 2002/08/27 by csampayo@fl_csampayo_r400

 Bug test case

Change 48259 on 2002/08/27 by csampayo@fl_csampayo_r400

 1. Added 1 new SU point sprite test

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1511 of 1898

 Page 189 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 2. Updated test_list and test tracker accordingly

Change 48244 on 2002/08/27 by tshah@fl_tshah

 rbbm interrupt logic and few changes in documentation

Change 48235 on 2002/08/27 by jimmylau@jimmylau_r400_win_tor

 Update CRTC implementation specs :
 update section on forcing H_COUNT & V_COUNT

Change 48226 on 2002/08/27 by bryans@bryans_crayola_doc

 Update for arch/arch_<archname>.h change

Change 48223 on 2002/08/27 by jacarey@fl_jcarey2

 Updated Small_Text Utility

Change 48218 on 2002/08/27 by mkelly@fl_mkelly_r400_win_laptop

 Bug...

Change 48210 on 2002/08/27 by jacarey@fl_jcarey2

 Utility to generate small_text characters.

Change 48187 on 2002/08/26 by georgev@ma_georgev

 Added a few more comments.

Change 48184 on 2002/08/26 by gabarca@gabarca_crayola_win_cvd

 added actual VESA mode test

Change 48183 on 2002/08/26 by gabarca@gabarca_crayola_win_cvd

 detailed VESA modes

Change 48179 on 2002/08/26 by rbell@rbell_crayola_win_cvd

 Updated schedule (lut bypass, d2 tests).

Change 48168 on 2002/08/26 by gregs@gregs_r400_win_marlboro

 update ...

Change 48155 on 2002/08/26 by mmantor@mmantor_r400_win

 Page 190 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 updated 1st clk transfer of the sc to sq interface to define quad mask bits in the correct
hardware/emulator order sp3 => sp0

Change 48144 on 2002/08/26 by csampayo@fl_csampayo_r400

 Expanded format to include Bugzilla report# and, sorted by date.

Change 48123 on 2002/08/26 by efong@efong_r400_win_tor_doc

 Updated with the chip level archs and configs

Change 48097 on 2002/08/26 by nbarbier@nbarbier_r400_win_tor

 HPD Updates

Change 48096 on 2002/08/26 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 48092 on 2002/08/26 by llefebvr@llefebvre_laptop_r400

 Added the new SQ->SP instruction interface.

Change 48070 on 2002/08/26 by efong@efong_r400_win_tor_doc

 Updated

Change 48064 on 2002/08/26 by chwang@chwang_doc_r400_win_cvd

 Update.

Change 48060 on 2002/08/26 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated

Change 48051 on 2002/08/26 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 48043 on 2002/08/26 by rbell@rbell_crayola_win_cvd

 updated

Change 48042 on 2002/08/26 by ashishs@fl_ashishs_r400_win

 update

Change 48039 on 2002/08/26 by mkelly@fl_mkelly_r400_win_laptop

 Page 191 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Memory crash when shader file doesn't exist..

Change 48035 on 2002/08/26 by rfevreau@rfevreau_r400_win

 Update

Change 48028 on 2002/08/26 by tshah@fl_tshah

 more description for rbbm_int_* registers for reset condition

Change 48021 on 2002/08/26 by mkelly@fl_mkelly_r400_win_laptop

 Textured line where ST are exported directly to RGBA to visulize texture coordinates
 in color. Current there is a bug in the LLC quad pixel ST value when the primitive is
 not quad-aligned.

Change 48009 on 2002/08/26 by rfevreau@rfevreau_r400_win

 Updates

Change 47998 on 2002/08/26 by kevino@kevino_r400_win_marlboro

 Renamed TP to TPTC
 changed "L2 filter no grouping" to "64 unique probe addresses"

Change 47985 on 2002/08/26 by efong@efong_r400_win_tor_doc

 New version of it after review

Change 47982 on 2002/08/26 by efong@efong_r400_win_tor_doc

 Deleted User Simulation Model Guide because renamed to VideoIp User Simulation
Model Guide

Change 47981 on 2002/08/26 by efong@efong_r400_win_tor_doc

 Changed name from the R400 User Simulation Model guide to VideoIP

Change 47968 on 2002/08/25 by gabarca@gabarca_crayola_win_cvd

 updated list of tests

Change 47967 on 2002/08/25 by csampayo@fl_csampayo_r400

 1. Added 1 new SU point sprite tests
 2. Updated test_list and the test tracker accordingly

Change 47954 on 2002/08/25 by gabarca@gabarca_crayola_win_cvd

 Page 192 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 changed mono_reg_test name with mono_and_memory_mapped_reg_test

Change 47927 on 2002/08/23 by gabarca@gabarca_crayola_win_cvd

 updated test plan

Change 47906 on 2002/08/23 by mzhu@mzhu_r400_win_tor

 Add CRTC Event Trigger Signal Generation
 Add Force V_COUNT, H_COUNT and field polarity now
 Add Force H_COUNT now
 Update StereoSync
 Update digital TV timing
 Re-order chapter 10.6 - 10.10

Change 47895 on 2002/08/23 by mkelly@fl_mkelly_r400_win_laptop

 * Line list, start vertex at -8190 in HW space, clipped at -4096 Screen Space
 * Line list, textured

Change 47874 on 2002/08/23 by frising@ma_frising

 -remove statement about always using centriod sampling with jittered super-sampling.
We may give meaning to both. No version bump.

Change 47867 on 2002/08/23 by frising@ma_frising

 v.1.48
 -Added SAMPLE_POSITION to texture instruction.

 Specifies sampling position for gradient/LOD correction. Centroid of fragment should
always be used with jittered super-sampling.
 0=Centroid of fragment
 1=Center of fragment

Change 47781 on 2002/08/23 by rbell@rbell_crayola_win_cvd

 Some D2 updates

Change 47777 on 2002/08/23 by rbell@rbell_crayola_win_cvd

 Completed B&W offset tests

Change 47775 on 2002/08/23 by kevino@kevino_r400_win_marlboro

 Updates

Change 47774 on 2002/08/23 by omesh@ma_omesh

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1512 of 1898

 Page 193 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 An upto date spreadsheet with accurate numbers showing RB directed tests status. This
does not yet include tests for Gamma/Degamma and I also think Frank may need to update his
section.

Change 47768 on 2002/08/23 by kevino@kevino_r400_win_marlboro

 1st cut at TP verification xls

Change 47743 on 2002/08/23 by csampayo@fl_csampayo_r400

 Update format

Change 47741 on 2002/08/23 by vgoel@fl_vgoel2

 closed bug 6 and added bug 14

Change 47720 on 2002/08/23 by ygiang@ygiang_r400_win_marlboro_p4

 update

Change 47717 on 2002/08/23 by mkelly@fl_mkelly_r400_win_laptop

 Simple single line list

Change 47687 on 2002/08/22 by efong@efong_r400_win_tor_doc

 Updated

Change 47632 on 2002/08/22 by vliu@vliu_r400_cnvliu100_win_cvd

 Fixed colour space Excel sheet.

Change 47601 on 2002/08/22 by mzhu@mzhu_r400_win_tor

 Add 64bpp digital output format

Change 47595 on 2002/08/22 by tshah@fl_tshah

 typo fix for real time busy equation page-29

Change 47579 on 2002/08/22 by dglen@dglen_r400_dell

 Adding new file

Change 47535 on 2002/08/22 by vgoel@fl_vgoel2

 updated status of bug reports

Change 47522 on 2002/08/22 by csampayo@fl_csampayo_r400

 Page 194 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 1. Added 10 new VGT multi-context tests
 2. Updated test_list and the test tracker accordingly

Change 47517 on 2002/08/22 by dglen@dglen_r400_dell

 Added CRTC snapshot description

Change 47509 on 2002/08/22 by mpersaud@mpersaud_r400_win_tor

 Removed some signals between dispout, crtc and the tvout.
 Added interface with DCCG

Change 47491 on 2002/08/22 by mkelly@fl_mkelly_r400_win_laptop

 Add two test descriptions, update comments in test

Change 47461 on 2002/08/21 by csampayo@fl_csampayo_r400

 Updated for new vgt tests

Change 47454 on 2002/08/21 by ashishs@fl_ashishs_r400_win

 CL test:r400cl_ucp_pointlist_01
 64 point sprites with 6 textures and 6 ucp's enabled with point size set in PA_SU state
register and also in PA_CL_POINT registers for clipping. Point Sprite UCP mode set to '3' viz.
always expand and clip.

Change 47447 on 2002/08/21 by efong@efong_r400_win_tor_doc

 updated

Change 47434 on 2002/08/21 by dglen@dglen_r400_dell

 Change in section 7.7

Change 47424 on 2002/08/21 by rbell@rbell_crayola_win_cvd

 Updated for blending tests

Change 47411 on 2002/08/21 by gregs@gregs_r400_win_marlboro

 <display names changes update ++ >

Change 47344 on 2002/08/21 by vgoel@fl_vgoel2

 added issue related with loading floating point texture image in local tone-mapping

Change 47336 on 2002/08/21 by askende@andi_r400_docs

 Page 195 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 modified the instruction interface from SQ to SP

Change 47324 on 2002/08/21 by vgoel@fl_vgoel2

 vertex export bug related with number of position exports

Change 47305 on 2002/08/21 by jimmylau@jimmylau_r400_win_tor

 Make changes to CRTC Controller Implementation specs
 modify sections on : Generation of V_UPDATE
 add sections on : CRTC_BLACK_COLOR
 disable CRTC in a safe place within the frame
 force VSYNC next line mode
 digital TV timings
 sample CRTC counts
 CRTC snapshots
 CRTC flow control

Change 47242 on 2002/08/21 by jacarey@fl_jcarey_desktop

 Document Brush_Decode_Idle boolean

Change 47232 on 2002/08/21 by jacarey@fl_jcarey_desktop

 1. Clarify clearing of 2D Allocation Flags
 2. Added Brush_Decode_Busy boolean as bit 19...

Change 47229 on 2002/08/21 by vgoel@fl_vgoel2

 added bug report for vertex export instruction em0

Change 47219 on 2002/08/21 by jacarey@fl_jcarey_desktop

 Fix order of background and foreground colors

Change 47176 on 2002/08/20 by frising@ma_frising

 v.1.47
 -Make TRI_JUICE field 2 bits (like r350) with values: 0=0, 1=1/6, 2=1/4, 3=3/8. Also
noted that trilinear filtering remains piecewise linear and continuous.
 -Fix COLOR_FORMAT_OUT and COLOR_NUMBER_OUT fields in texture constant
(used for fetchmulitsample) that were accidentally munged in a prior check-in.

Change 47174 on 2002/08/20 by dglen@dglen_r400_dell

 Minor fixes to section 7

Change 47173 on 2002/08/20 by mzhu@mzhu_r400_win_tor

 Page 196 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 update DxGRPH register double buffer with STEREO_SELECT

Change 47131 on 2002/08/20 by frising@ma_frising

 v.1.46
 -Updated descriptions of get opcodes. Most notably specified that GetWeights now
returns a horizontal and vertical lerp factor.
 -Specified that the DATA_FORMAT field in texture constant can use any of the data
formats in the DATA_FORMAT table while the cooresponding field in the vertex instruction
can only use data formats valid for vertex data (also documented in DATA_FORMAT table).

Change 47120 on 2002/08/20 by mzhu@mzhu_r400_win_tor

 Update test plan for third milestone

Change 47113 on 2002/08/20 by rbell@rbell_crayola_win_cvd

 Completed alpha mode 2 tests

Change 47111 on 2002/08/20 by mpersaud@mpersaud_r400_win_tor

 Updated interface diagram and added hd slew filter as its own block.

Change 47099 on 2002/08/20 by mzhu@mzhu_r400_win_tor

 Add test plan for third milestone. Update black/white offset tests

Change 47065 on 2002/08/20 by mzhu@mzhu_r400_win_tor

 Add LUT floating point data process, update DxGRPH register double buffer with
STEREO_SELECT

Change 47061 on 2002/08/20 by dglen@dglen_r400_dell

 Update to Display Outline for new CRTC features

Change 47035 on 2002/08/20 by rbell@rbell_crayola_win_cvd

 Added totals, first D2 test is done.

Change 47021 on 2002/08/20 by vliu@vliu_r400_cnvliu100_win_cvd

 Initial revision

Change 47007 on 2002/08/20 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1513 of 1898

 Page 197 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 47004 on 2002/08/20 by vliu@vliu_r400_cnvliu100_win_cvd

 Initial revision

Change 46950 on 2002/08/20 by mdoggett@MA_MDOGGETT_LT

 Updated DCC0 clients and GRB0 clients. Added separate VGA input to MHC.

Change 46945 on 2002/08/20 by jacarey@fl_jcarey2

 Clarifications to Source and Destination formats for 2D.

Change 46924 on 2002/08/19 by gabarca@gabarca_crayola_win_cvd

 updated registers

Change 46914 on 2002/08/19 by csampayo@fl_csampayo_r400

 1. Added 2 new VGT test for multi context coverage
 2. Updated test_list and the test tracker appropriately

Change 46911 on 2002/08/19 by nluu@nluu_r400_doclib_cnnb

 - update forces

Change 46895 on 2002/08/19 by mkelly@fl_mkelly_r400_win_laptop

 Primlib utility to check for double hit pixels in sc_quad_pair_proc_out.dmp

 Concentric circle test to do a preliminary check on the new utility

Change 46891 on 2002/08/19 by lkang@lkang_r400_win_tor

 updated for M2 & M3

Change 46883 on 2002/08/19 by nluu@nluu_r400_doclib_cnnb

 - update forces

Change 46851 on 2002/08/19 by rbell@rbell_crayola_win_cvd

 Added double-buffer tests

Change 46850 on 2002/08/19 by rfevreau@rfevreau_r400_win

 Updated Status

Change 46847 on 2002/08/19 by csampayo@fl_csampayo_r400

 Page 198 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Added instructions at the top

Change 46813 on 2002/08/19 by smoss@smoss_crayola_win

 Bug

Change 46778 on 2002/08/19 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated

Change 46777 on 2002/08/19 by csampayo@fl_csampayo_r400

 1. Added 4 new SU polymode degenerate tests
 2. Updated test_list and test tracker accordingly

Change 46766 on 2002/08/19 by rbell@rbell_crayola_win_cvd

 updated

Change 46761 on 2002/08/19 by efong@efong_r400_win_tor_doc

 Updated

Change 46758 on 2002/08/19 by nluu@nluu_r400_doclib_cnnb

 - update

Change 46751 on 2002/08/19 by ashishs@fl_ashishs_r400_win

 corrected last submission

Change 46750 on 2002/08/19 by ashishs@fl_ashishs_r400_win

 Hardware Accuracy related bug reported and documented.
(r400cl_bary_texture_08_bug.cpp, interpolator bug)

Change 46749 on 2002/08/19 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 46735 on 2002/08/19 by jasif@jasif_r400_win_tor

 Updated.

Change 46726 on 2002/08/19 by sbagshaw@sbagshaw

 R400 Programming Guide for Toronto R400 Blocks
 Kaleidoscope IP

 Page 199 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 46724 on 2002/08/19 by chwang@chwang_doc_r400_win_cvd

 Update.

Change 46695 on 2002/08/18 by csampayo@fl_csampayo_r400

 1. Added 8 new SU polymode tests
 2. Updated test_list and the test tracker accordingly

Change 46651 on 2002/08/16 by gabarca@gabarca_crayola_win_cvd

 Updated interface with display

Change 46594 on 2002/08/16 by grayc@grayc_r400_win

 doc to track minutes of validation meeting

Change 46565 on 2002/08/16 by peterp@MA_PETE_LT

 Corrected SQ and TC "RV400 Qty" factors

Change 46560 on 2002/08/16 by rbell@rbell_crayola_win_cvd

 updated

Change 46559 on 2002/08/16 by vgoel@fl_vgoel2

 updated the "bug closed" and "change number" for bugs 4 & 5

Change 46554 on 2002/08/16 by vgoel@fl_vgoel2

 added bug report for multi-context HOS test (bug 8)

Change 46547 on 2002/08/16 by jacarey@fl_jcarey2

 Update for 2D Constants

Change 46536 on 2002/08/16 by jacarey@fl_jcarey2

 Miscellaneous

Change 46530 on 2002/08/16 by vgoel@fl_vgoel2

 added description for fix for bug 5 and 6 reported and added bug 7 description

Change 46513 on 2002/08/16 by rbell@rbell_crayola_win_cvd

 updated

 Page 200 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 46512 on 2002/08/16 by rbell@rbell_crayola_win_cvd

 Updates

Change 46500 on 2002/08/16 by jacarey@fl_jcarey2

 Updates for 2D Brush Decoding.

Change 46385 on 2002/08/15 by jowang@jowang_R400_win

 changed coefficient range tests

Change 46324 on 2002/08/15 by vgoel@fl_vgoel2

 added black pixels in white triangle bug

Change 46270 on 2002/08/15 by gregs@gregs_r400_win_marlboro

 < changed direction of analog ports in io.v >

Change 46269 on 2002/08/15 by gregs@gregs_r400_win_marlboro

 < added scratch register >

Change 46267 on 2002/08/15 by jacarey@fl_jcarey2

 Update for Immediate Data Writes

Change 46260 on 2002/08/15 by csampayo@fl_csampayo_r400

 Updated format

Change 46255 on 2002/08/15 by csampayo@fl_csampayo_r400

 1. Added 3 new SU tests
 2. Updated test_list and the test tracker accordingly

Change 46243 on 2002/08/15 by ygiang@ygiang_r400_win_marlboro_p4

 update

Change 46239 on 2002/08/15 by vgoel@fl_vgoel2

 reported two bugs

Change 46236 on 2002/08/15 by rbell@rbell_crayola_win_cvd

 Updated schedule

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1514 of 1898

 Page 201 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 46206 on 2002/08/15 by jacarey@fl_jcarey2

 Update Description of Vertex and Pixel Constants for 2D Processing.

Change 46187 on 2002/08/14 by georgev@ma_georgev

 Updated spreadsheets.

Change 46183 on 2002/08/14 by gabarca@gabarca_crayola_win_cvd

 Added handshake section

Change 46163 on 2002/08/14 by mzhu@mzhu_r400_win_tor

 Update alpha blend and force graphics or overlay data to "0" for overlay-only or
graphics-only case

Change 46138 on 2002/08/14 by llefebvr@llefebvre_laptop_r400

 Changed the MASK mnemonics to KILL.
 Added DST opcode.
 Added MUL_PREV2 opcode.
 Reordered the opcodes in primlib and SP.
 Implemented the new KILL and SET SCALAR opcodes, they are now all comparing the
ALPHA channel to 0.0f (instead of comapring against the RED channel).

Change 46126 on 2002/08/14 by efong@efong_r400_win_tor_doc

 New document on chip integration tests

Change 46125 on 2002/08/14 by efong@efong_r400_win_tor_doc

 Updated

Change 46111 on 2002/08/14 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 46099 on 2002/08/14 by askende@andi_r400_docs

 new rev of the spec.

Change 46096 on 2002/08/14 by mpersaud@mpersaud_r400_win_tor

 Updated specs to match Xilleon's tvout.

Change 46024 on 2002/08/14 by mzhu@mzhu_r400_win_tor

 Update black/white offset

 Page 202 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 46010 on 2002/08/14 by jacarey@fl_jcarey2

 Update Setting 2D Boolean B0 if Brush_Type=0xF and SRC_TYPE = Color

Change 45994 on 2002/08/14 by jhoule@MA_JHOULE

 TFetchInstr:
 Added SetGradientsH and SetGradientsV opcodes.
 Changed SetFilter4Weights opcode number.
 LOD_BIAS_{H|V} are now 7 bits, range [-4, 4).
 Added USE_REG_GRADIENTS.

 TFetchConst:
 Changed description of TRI_JUICE.

Change 45907 on 2002/08/14 by bryans@bryans_crayola_doc

 Updated...

Change 45889 on 2002/08/14 by jacarey@fl_jcarey2

 Updates to Diagrams for Timing...

Change 45888 on 2002/08/14 by jacarey@fl_jcarey2

 Update for Im_Load

Change 45863 on 2002/08/13 by gabarca@gabarca_crayola_win_cvd

 put chapter 16 in a table

Change 45832 on 2002/08/13 by gabarca@gabarca_crayola_win_cvd

 updated list of functional changes respect to previous chips

Change 45810 on 2002/08/13 by gabarca@gabarca_crayola_win_cvd

 updated functional changes respect to previous chips

Change 45754 on 2002/08/13 by gregs@gregs_r400_win_marlboro

 added examples of power state transitions programming via CP real time command
streams + added description of spread spectrum circuits and registers.

Change 45743 on 2002/08/13 by jacarey@fl_jcarey2

 Correct SRC_X calculation for HostData* Packets

 Page 203 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 45680 on 2002/08/13 by gabarca@gabarca_crayola_win_cvd

 Updated sec 16

Change 45674 on 2002/08/13 by gabarca@gabarca_crayola_win_cvd

 Added section 16 Changes respect to previous ATI chips

Change 45673 on 2002/08/13 by mkelly@fl_mkelly_r400_win_laptop

 Expand line width basic functionality...

Change 45657 on 2002/08/13 by csampayo@fl_csampayo_r400

 1. Started log for bug #3
 2. Expanded format to include accounting of bugs

Change 45615 on 2002/08/13 by jhoule@MA_JHOULE

 Updated various TP/TC features.

Change 45512 on 2002/08/12 by askende@andi_r400_docs

 new rev. 1.4

Change 45507 on 2002/08/12 by mzhu@mzhu_r400_win_tor

 Update alpha blend mode 1 and 3

Change 45462 on 2002/08/12 by chwang@chwang_doc_r400_win_cvd

 Update.

Change 45423 on 2002/08/12 by efong@efong_r400_win_tor_doc

 Updated

Change 45420 on 2002/08/12 by chwang@chwang_doc_r400_win_cvd

 Update.

Change 45414 on 2002/08/12 by csampayo@fl_csampayo_lt_r400

 Updated status for the following tests:
 r400su_point_sprite_01
 r400su_point_sprite_02
 r400su_point_sprite_03
 r400su_point_sprite_04
 r400su_point_sprite_05

 Page 204 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 r400su_point_sprite_06

Change 45405 on 2002/08/12 by mzhu@mzhu_r400_win_tor

 Update for alpha blend key mode

Change 45398 on 2002/08/12 by imuskatb@imuskatb_r400_win_cnimuskatb

 Updated DISPOUT
 Added TAKEN to double buffer
 M2 Dispout test
 Updated Quick Emu

Change 45391 on 2002/08/12 by tshah@fl_tshah

 typo - CP_RBBM_dma_busy is used for one of the wait until conditions

Change 45379 on 2002/08/12 by ashishs@fl_ashishs_r400_win

 2nd bug tested and documented

Change 45364 on 2002/08/11 by ygiang@ygiang_r400_win_marlboro_p4

 added: dot3 and dot4 shader tests

Change 45316 on 2002/08/09 by csampayo@fl_csampayo_r400

 1. Updated image size for tests: r400su_point_sprite_01 and _02
 2. Added 4 more SU point sprite tests
 3. Updated test_list and test tracker accordingly

Change 45308 on 2002/08/09 by tho@tho_r400_win

 new doc`

Change 45305 on 2002/08/09 by tho@tho_r400_win

 run regress docs

Change 45292 on 2002/08/09 by whui@whui_r400_win_tor

 update surface properties registers

Change 45262 on 2002/08/09 by georgev@ma_georgev

 Updated.

Change 45232 on 2002/08/09 by mkelly@fl_mkelly_r400_win_laptop

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1515 of 1898

 Page 205 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Update...

Change 45220 on 2002/08/09 by mkelly@fl_mkelly_r400_win_laptop

 Nan retain/kill on 2 vector exports from shader bug...

Change 45195 on 2002/08/09 by nbarbier@nbarbier_r400_win_tor

 Initial Revision

Change 45180 on 2002/08/09 by bryans@bryans_crayola_doc

 Update per last meeting

Change 45177 on 2002/08/09 by gregs@gregs_r400_win_marlboro

 updated direct access to ROM pins (for writing).

Change 45156 on 2002/08/09 by dclifton@dclifton_r400

 Updated zmin/zmax pinout info, updated area estimate

Change 45045 on 2002/08/08 by ashishs@fl_ashishs_r400_win

 CL test:
 A test to determine if the clip guard band works properly and that trivial reject works.
update to test tracker and test list.

Change 45021 on 2002/08/08 by nbarbier@nbarbier_r400_win_tor

 Updated GENERICA & GENERICB inputs.

Change 45018 on 2002/08/08 by frivas@FL_FRivas

 Update to HOS tests. Added edge detector test to "sheet 1" and accounted for it in the
totals.

Change 44992 on 2002/08/08 by frivas@FL_FRivas

 Updated status of different HOS tests.

Change 44907 on 2002/08/08 by csampayo@fl_csampayo_r400

 1. Initial check in of Bug Tracker
 2. Added bug test case

Change 44840 on 2002/08/08 by jacarey@fl_jcarey2

 Correct note for vgt_busy status signal.

 Page 206 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 44839 on 2002/08/08 by jacarey@fl_jcarey2

 Remove 3D from the GradFill and AlphaBlend 2D packets.

Change 44771 on 2002/08/07 by jacarey@fl_jcarey2

 Corrections to Packet Pseudocode.

Change 44759 on 2002/08/07 by dclifton@dclifton_r400

 Updated for clipped polymode lines and points and updated point-line geometry drawing.

Change 44741 on 2002/08/07 by csampayo@fl_csampayo_r400

 Updated status for the following tests:
 r400su_point_sprite_01.cpp
 r400su_point_sprite_02.cpp

Change 44684 on 2002/08/07 by lkang@lkang_r400_win_tor

 2nd milestone review

Change 44680 on 2002/08/07 by imuskatb@imuskatb_r400_win_cnimuskatb

 TMDS M2 Test
 Updated Test list

Change 44665 on 2002/08/07 by jacarey@fl_jcarey2

 1. Specify limit of ordinal #3 and #4 replications for the LCC packet.

Change 44663 on 2002/08/07 by grayc@grayc_r400_win

 describes block owners/chip level verification

Change 44636 on 2002/08/07 by mkelly@fl_mkelly_r400_win_laptop

 More JSS coverage...

Change 44537 on 2002/08/06 by gregs@gregs_r400_win_marlboro

 spread spectrum

Change 44519 on 2002/08/06 by jacarey@fl_jcarey2

 1. Document oper=gmcdecode in instruction table
 2. Add 4 gprs to the micro engine

 Page 207 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 44512 on 2002/08/06 by mkelly@fl_mkelly_r400_win_laptop

 Textured pixel shader anti-aliased line example with VFD support.

Change 44469 on 2002/08/06 by jacarey@fl_jcarey2

 Updated Interface from SQ for Events...4-bit event ID.
 CP can ignore events that it does nothing for...

Change 44458 on 2002/08/06 by ashishs@fl_ashishs_r400_win

 update

Change 44454 on 2002/08/06 by jasif@jasif_r400_win_tor

 Updated.

Change 44416 on 2002/08/06 by tho@tho_r400_win

 updated

Change 44406 on 2002/08/06 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 44397 on 2002/08/06 by chwang@chwang_doc_r400_win_cvd

 Update.

Change 44375 on 2002/08/06 by jacarey@fl_jcarey2

 Update for oper=gmcdecode

Change 44372 on 2002/08/06 by efong@efong_r400_win_tor_doc

 Updated

Change 44358 on 2002/08/06 by imuskatb@imuskatb_r400_win_cnimuskatb

 Updated emulator to new crtc Block file
 Updated Picasso to new register names
 Updated Display Manager to handle TMDS stream
 Completed Tmds stream library
 Added one tmds test for M2

Change 44282 on 2002/08/05 by scroce@scroce_r400_win_marlboro

 Update setup document

 Page 208 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 44272 on 2002/08/05 by scroce@scroce_r400_win_marlboro

 Some added info for the setup document

Change 44228 on 2002/08/05 by csampayo@fl_csampayo_r400

 Added section 1.8

Change 44211 on 2002/08/05 by jacarey@fl_jcarey2

 Update CP_STAT register and clarified that the CP_RBBM_rt_busy signal is not active
if the RTEE is just performing polling operations.

Change 44192 on 2002/08/05 by wlawless@wlawless

 new sample mask diagram

Change 44179 on 2002/08/05 by jacarey@fl_jcarey2

 More Updates for Timing.

Change 44178 on 2002/08/05 by jcox@jcox_r400_win_orlando

 added web macro

Change 44176 on 2002/08/05 by jacarey@fl_jcarey2

 Shallow FIFOs Added Between PFP and Micro Engine for Timing..

Change 44096 on 2002/08/02 by mkelly@fl_mkelly_r400_win_laptop

 * Implement vertex kill in the VFD for vertex buffer and constant
 * Create a new class called PRIMITIVE_AA for AA dump file analysis
 * Update tracker / test list

Change 44081 on 2002/08/02 by efong@efong_r400_win_tor_doc

 updated

Change 44071 on 2002/08/02 by jayw@MA_JAYW

 pre vacation check in.

Change 44063 on 2002/08/02 by mkelly@fl_mkelly_r400_win_laptop

 Simple Poly offset check, needs SC fix to work...

Change 44053 on 2002/08/02 by jacarey@fl_jcarey2

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1516 of 1898

 Page 209 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Update 2D Spec for SRC_X pointer for small_text and host_data_blt
 Most of microcode for Hostdata_Blt* packets...
 Bitblt packets share subroutine with hostdata_blt packets...

Change 44048 on 2002/08/02 by gregs@gregs_r400_win_marlboro

 <updates>

Change 44021 on 2002/08/02 by llefebvr@llefebvre_laptop_r400

 New parameter generation scheme included in the spec.

Change 43966 on 2002/08/02 by mkelly@fl_mkelly_r400_win_laptop

 Run line and point prims through JSS and MSAA...

Change 43913 on 2002/08/02 by jacarey@fl_jcarey2

 Added oper=SIGNEXT for Micro Engine.

Change 43841 on 2002/08/01 by mzhu@mzhu_r400_win_tor

 Update alpha fill pattern

Change 43815 on 2002/08/01 by mzhu@mzhu_r400_win_tor

 Update LUT_INC, add UPDATE_TAKEN

Change 43814 on 2002/08/01 by scamlin@scamlin_crayola_win

 orlando updates

Change 43779 on 2002/08/01 by jacarey@fl_jcarey2

 Update bit widths of texture constants that are written
 for Small_Text and HostData_Blt* packets.

Change 43775 on 2002/08/01 by mkelly@fl_mkelly_r400_win_laptop

 Bresenham Control, converted R200 test...

Change 43773 on 2002/08/01 by jacarey@fl_jcarey2

 Added Soft Reset control for the ROM block.

Change 43751 on 2002/08/01 by frivas@FL_FRivas

 Update to HOS tests. Added complex model tests to tracker.

 Page 210 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 43728 on 2002/08/01 by vgoel@fl_vgoel2

 modified tracker to update hos status

Change 43710 on 2002/08/01 by mzhu@mzhu_r400_win_tor

 Update for color cursor mode 2, LUT_BLACK_OFFSET/LUT_WHITE_OFFSET and
LUT_INC implementation

Change 43706 on 2002/08/01 by csampayo@fl_csampayo_r400

 Update

Change 43699 on 2002/08/01 by frivas@FL_FRivas

 Added two HOS tests for precision.

Change 43687 on 2002/08/01 by ashishs@fl_ashishs_r400_win

 update

Change 43685 on 2002/08/01 by rbagley@rbagley_ltxp

 R400 Shader Programming Model

 Checking in Laurent's revision of sequencer related updates. Also added initial
specification of two language levels; this is out of date; updates in progress.

Change 43638 on 2002/08/01 by mkelly@fl_mkelly_r400_win_laptop

 JSS 3x4 simple triangle

Change 43631 on 2002/08/01 by jacarey@fl_jcarey2

 Update pseudocode for the ME_INIT packet.

Change 43571 on 2002/07/31 by csampayo@fl_csampayo_r400

 Updates

Change 43543 on 2002/07/31 by gregs@gregs_r400_win_marlboro

 <added IO_DC_xtalin signal>

Change 43509 on 2002/07/31 by jacarey@fl_jcarey2

 Documentation Updates:
 1. Viz Query
 2. Memory Size Updates

 Page 211 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 3. Jump Address Added to Micro Instruction Format

Change 43496 on 2002/07/31 by rherrick@ma_rherrick_crayola

 Implement absolute register directives for INFINITE control over specifying register
offset values.

Change 43493 on 2002/07/31 by mkelly@fl_mkelly_r400_win_laptop

 Testing lots of SC features with stipple enabled...

Change 43483 on 2002/07/31 by peterp@MA_PETE_LT

 Corrected excel cell definition used by "Top" from "SQ" tab to remove !REF error.
 Changed utilization factor to 70%.

Change 43423 on 2002/07/31 by jhoule@MA_JHOULE

 Renamed TX_COORD_NORM to a more accurate TX_COORD_DENORM, keeping
values intact, but sense more consistent.

Change 43417 on 2002/07/31 by frising@ma_frising

 0.98 check-in

Change 43325 on 2002/07/31 by jacarey@fl_jcarey2

 Add16 and Sub16 instructions sign-extend bit 13 (Used for 2D)
 Min/Max and SCOMP assume that sign bit is bit 13 (Used for 2D)

Change 43240 on 2002/07/30 by semara@semara_r400_win_tor

 add the smooth scrolling for the gfx

Change 43229 on 2002/07/30 by mkelly@fl_mkelly_r400_win_laptop

 Line stipple variations...

Change 43220 on 2002/07/30 by jacarey@fl_jcarey2

 Update Which Booleans are Set for 2D Packets with Source
 Update Pitch = Pixels/32 in SRC/DST_PITCH_OFFSET values.

Change 43105 on 2002/07/30 by frivas@FL_FRivas

 Update to HOS auto indexing tests.

Change 43095 on 2002/07/30 by smoss@smoss_crayola_win

 Page 212 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 SU tests

Change 43084 on 2002/07/30 by kcorrell@kcorrell_r400_docs_marlboro

 updated area estimate for MH

Change 43077 on 2002/07/30 by efong@efong_r400_win_tor_doc

 Updated

Change 43005 on 2002/07/29 by hartogs@fl_hartogs

 Updated register addresses.

Change 42958 on 2002/07/29 by imuskatb@imuskatb_r400_win_cnimuskatb

 Updated dc_crtc interface
 Added some more M2 test to CRTC

Change 42949 on 2002/07/29 by mkelly@fl_mkelly_r400_win_laptop

 128 packets, one triangle per packet, each hitting a subsample
 in one JSS pixel. For each JSS_SAMPLE_SEL, each of 16 JSS pixels
 are tested. JSS_SAMPLE_SEL is cycled from from 0 to 8. This test
 ensures the tested JSS_SAMPLE_SEL is a unique value when compared
 to all non-tested JSS_SAMPLE_SELs.

Change 42844 on 2002/07/29 by efong@efong_r400_win_tor_doc

 updated

Change 42788 on 2002/07/26 by csampayo@fl_csampayo_r400

 1. Added 2 new SU tests
 2. Updated test_list and tracker, accordingly

Change 42781 on 2002/07/26 by fhsien@fhsien_r400_win_marlboro

 Update Depth tests

Change 42737 on 2002/07/26 by scroce@scroce_r400_win_marlboro

 Forgot to update TOC

Change 42735 on 2002/07/26 by scroce@scroce_r400_win_marlboro

 Updating a bit to reflect changes in the release procedure and environment.

Change 42725 on 2002/07/26 by jasif@jasif_r400_win_tor

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1517 of 1898

 Page 213 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Updated after Testlist review meeting.

Change 42718 on 2002/07/26 by semara@semara_r400_win_tor

 fix the index

Change 42654 on 2002/07/26 by jasif@jasif_r400_win_tor

 Updated.

Change 42652 on 2002/07/26 by semara@semara_r400_win_tor

 edit section 11 in the test plan
 edit section 4 in the display interface

Change 42596 on 2002/07/26 by rbell@rbell_crayola_win_cvd

 test list for ms2

Change 42530 on 2002/07/25 by ashishs@fl_ashishs_r400_win

 CL TESTS: testing guard band clipping of edgeflags.

Change 42514 on 2002/07/25 by dougd@doug

 updated area for SQ based on synthesis results

Change 42504 on 2002/07/25 by jasif@jasif_r400_win_tor

 Finished graphics section.

Change 42499 on 2002/07/25 by mkelly@fl_mkelly_r400_win_laptop

 Basic MSAA functionality tests...

Change 42442 on 2002/07/25 by gabarca@gabarca_crayola_win_cvd

 improved description of LUT and fixed test case

Change 42367 on 2002/07/25 by mzhu@mzhu_r400_win_tor

 Update DCP_tests_ms2.xls from Richard

Change 42362 on 2002/07/25 by mzhu@mzhu_r400_win_tor

 Update graphics and overlay alpha blending

Change 42269 on 2002/07/24 by jasif@jasif_r400_win_tor

 Page 214 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Fininshed hdp section and revised text section.

Change 42258 on 2002/07/24 by semara@semara_r400_win_tor

 adding section 7, 8, and 9

Change 42234 on 2002/07/24 by mkelly@fl_mkelly_r400_win_laptop

 * Update to JSS tests
 * New MSAA test verifying all 8 subsamples in basic hit tests
 * Update tracker
 * Update SC test_list

Change 42233 on 2002/07/24 by nluu@nluu_r400_doclib_cnnb

 - update specs for fast client protocol

Change 42140 on 2002/07/24 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated crtc.cpp to consider h_sync_start
 fixed crtc_test.cpp
 wrap around conter test in picasso
 updated test list

Change 42100 on 2002/07/23 by frising@ma_frising

 v.1.44
 -It just occurred to me that having just one bit is insufficient for this. You really need 3
(one each for x,y,z), otherwise you'd get the wrong results if, for example, the user set WRAP_S
to CLAMP and WRAP_T to CLAMP_TO_BORDER. I don't want to use three bits, so I've
reworked things. The bit is now called NEAREST_CLAMP_POLICY and has the following
behavior when nearest filtering:

 Wrap/Repeat -> Wrap/Repeat
 Mirror -> Mirror
 Clamp to last texel -> Clamp to last texel
 MirrorOnce to last texel -> MirrorOnce to last texel
 Clamp half way to border color -> Clamp to last texel
 MirrorOnce half way to border color -> MirrorOnce to last texel
 Clamp to border color -> Clamp to border color
 MirrorOnce to border color -> MirrorOnce to border color

 This should allow D3D and OGL to set this bit 'once' and forget about it.

Change 42086 on 2002/07/23 by ashishs@fl_ashishs_r400_win

 update

 Page 215 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 42033 on 2002/07/23 by mkelly@fl_mkelly_r400_win_laptop

 Update and corrected schedule test count versus sheet 1 counts.

Change 42000 on 2002/07/23 by gabarca@gabarca_crayola_win_cvd

 added the VGA_CURSOR_BLINK_INVERT register

Change 41983 on 2002/07/23 by smoss@smoss_crayola_win

 SU tests

Change 41973 on 2002/07/23 by jasif@jasif_r400_win_tor

 Finished text mode testlist.

Change 41971 on 2002/07/23 by frising@ma_frising

 v.1.43
 -Add NEAREST_NO_BORDER bit to texture constant which controls if nearest filtering
will every sample border color/texel. When this bit is asserted the mapping for the clamping
policy when nearest filtering should be:
 Wrap/Repeat -> Wrap/Repeat
 Mirror -> Mirror
 Clamp to last texel -> Clamp to last texel
 MirrorOnce to last texel -> MirrorOnce to last texel
 Clamp half way to border color -> Clamp to last texel
 MirrorOnce half way to border color -> MirrorOnce to last texel
 Clamp to border color -> Clamp to last texel
 MirrorOnce to border color -> MirrorOnce to last texel

Change 41921 on 2002/07/23 by subad@MA_SUBA

 updated area. Area decreased by re-structuring tx_fmt, oned and tiled muxes

Change 41905 on 2002/07/23 by ashishs@fl_ashishs_r400_win

 update

Change 41898 on 2002/07/23 by smoss@smoss_crayola_win

 shortened tests

Change 41883 on 2002/07/22 by gabarca@gabarca_crayola_win_cvd

 Updated as per Joveria's test leist and last meetings

Change 41881 on 2002/07/22 by csampayo@fl_csampayo_r400

 Page 216 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 1. Added 2-D primitives to VGT section
 2. Various format updates

Change 41867 on 2002/07/22 by gabarca@gabarca_crayola_win_cvd

 updated

Change 41862 on 2002/07/22 by jasif@jasif_r400_win_tor

 Updated.

Change 41822 on 2002/07/22 by mkelly@fl_mkelly_r400_win_laptop

 * Basic JSS functional coverage
 * Update test list
 * Update tracker
 * Added Plan vs. Actual graph to tracker sheet "schedule"

Change 41808 on 2002/07/22 by jasif@jasif_r400_win_tor

 Updated.

Change 41784 on 2002/07/22 by gregs@gregs_r400_win_marlboro

 <registers update>

Change 41781 on 2002/07/22 by frivas@FL_FRivas

 Update. Changed name of a VGT HOS test to be completed.

Change 41778 on 2002/07/22 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 41774 on 2002/07/22 by imuskatb@imuskatb_r400_win_cnimuskatb

 Updated

Change 41756 on 2002/07/22 by chwang@chwang_doc_r400_win_cvd

 Update.

Change 41743 on 2002/07/22 by tho@tho_r400_win

 updated

Change 41742 on 2002/07/22 by tien@ma_spinach

 updated TP/TC area estimates

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1518 of 1898

 Page 217 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 41731 on 2002/07/22 by efong@efong_r400_win_tor_doc

 Updated

Change 41730 on 2002/07/22 by mkelly@fl_mkelly_r400_win_laptop

 Improve test description and conveyance of test purpose in the image

Change 41729 on 2002/07/22 by efong@efong_r400_win_tor_doc

 Updated

Change 41720 on 2002/07/22 by rbell@rbell_crayola_win_cvd

 updated

Change 41717 on 2002/07/22 by georgev@ma_georgev

 First revision from verification spec.

Change 41663 on 2002/07/19 by jacarey@fl_jcarey2

 Fix Number of Bits Needed in the Brush, Palette, and Immed Base
 Pointers.

Change 41654 on 2002/07/19 by gabarca@gabarca_crayola_win_cvd

 updated

Change 41643 on 2002/07/19 by jasif@jasif_r400_win_tor

 Updated.

Change 41620 on 2002/07/19 by mkelly@fl_mkelly_r400_win_laptop

 1. Re-wrote JSS test to match latest SC spec.
 2. Update test_list
 3. Update tracker

Change 41600 on 2002/07/19 by llefebvr@llefebvre_laptop_r400

 SQ backup.

Change 41597 on 2002/07/19 by jhoule@MA_JHOULE

 Pre-SIGGRAPH submit (since it's exclusive open)

Change 41582 on 2002/07/19 by dclifton@dclifton_r400

 Page 218 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Added description of rectangle primitive output. Updated state register description.

Change 41550 on 2002/07/19 by smoss@smoss_crayola_win

 new x,y dim

Change 41531 on 2002/07/19 by bryans@bryans_crayola_doc

 Update

Change 41524 on 2002/07/19 by bryans@bryans_crayola_doc

 Minor changes to doc

Change 41450 on 2002/07/19 by jacarey@fl_jcarey2

 Correct typo in diagram for write confirmation logic.

Change 41447 on 2002/07/19 by jacarey@fl_jcarey2

 Write Confirmation Counter for CP/SC data coherency.

Change 41401 on 2002/07/18 by csampayo@fl_csampayo_r400

 1. Added 4 new SU edgeflag tests
 2. Updated framebuffer size for 2 tests
 3. Updated test_list and test tracker accordingly

Change 41388 on 2002/07/18 by gabarca@gabarca_crayola_win_cvd

 linked the test list excel into the "regression test table" icon at the end of the document

Change 41374 on 2002/07/18 by gabarca@gabarca_crayola_win_cvd

 moved to the blocks/VGA directory

Change 41371 on 2002/07/18 by gabarca@gabarca_crayola_win_cvd

 moved to the design/block/VGA directory

Change 41353 on 2002/07/18 by gabarca@gabarca_crayola_win_cvd

 updated

Change 41352 on 2002/07/18 by jasif@jasif_r400_win_tor

 Format change only.

 Page 219 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 41332 on 2002/07/18 by jacarey@fl_jcarey2

 Update Brush Address Range

Change 41330 on 2002/07/18 by jacarey@fl_jcarey2

 Updates

Change 41321 on 2002/07/18 by jacarey@fl_jcarey2

 Data written to Immd_Write_Confirm address generates a write confirmation.

Change 41308 on 2002/07/18 by bryans@bryans_crayola_doc

 Update...

Change 41298 on 2002/07/18 by mzhu@mzhu_r400_win_tor

 update for 2nd milestone part

Change 41296 on 2002/07/18 by gregs@gregs_r400_win_marlboro

 <fixing previous mistake>

Change 41294 on 2002/07/18 by gregs@gregs_r400_win_marlboro

 <moving from parts_lib to doc_lib>

Change 41293 on 2002/07/18 by georgev@ma_georgev

 Updated for new tests.

Change 41287 on 2002/07/18 by gabarca@gabarca_crayola_win_cvd

 updated

Change 41275 on 2002/07/18 by bryans@bryans_crayola_doc

 Document that explains the new Chip Init library (usage and organization)

Change 41267 on 2002/07/18 by jacarey@fl_jcarey2

 Clarification to LCC packet on preservation/setting of valid flag.

Change 41260 on 2002/07/18 by jacarey@fl_jcarey2

 Update pseudocode for the issuance of event initiators to the scan converter for write
confirm.

 Page 220 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 41257 on 2002/07/18 by jayw@MA_JAYW

 Thursday morning, minor updates

Change 41255 on 2002/07/18 by jasif@jasif_r400_win_tor

 Updated.

Change 41225 on 2002/07/18 by jacarey@fl_jcarey2

 Revert Last Change

Change 41213 on 2002/07/18 by jacarey@fl_jcarey2

 1. Update LCC and Constant_Prefetch Packet formats
 2. Constant write enables cleared for incremental update of constants.

Change 41208 on 2002/07/18 by fliljero@fl_frank

 updated Load_Constant_Context write to BUFFER_BASE to match latest spec

Change 41183 on 2002/07/17 by csampayo@fl_csampayo_r400

 1. Added 2 new tests to SU
 2. Updated SU test_list
 3. Updated test tracker accordingly

Change 41155 on 2002/07/17 by jacarey@fl_jcarey2

 Updates for interpreting the 2D constants in the GMC.

Change 41148 on 2002/07/17 by jacarey@fl_jcarey2

 Describe how the 2D Default Values are Applied by the CP.

Change 41112 on 2002/07/17 by smoss@smoss_crayola_win

 SU Tests

Change 41107 on 2002/07/17 by jacarey@fl_jcarey2

 1. Update Bit Width for Brush Address to HW support Logic
 2. Revise 2D Default Registers

Change 41083 on 2002/07/17 by ashishs@fl_ashishs_r400_win

 update

Change 41075 on 2002/07/17 by jowang@jowang_R400_win

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1519 of 1898

 Page 221 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 more complete test plan

Change 41032 on 2002/07/17 by jayw@MA_JAYW

 adding tile doc and minor depth address correction.

Change 40985 on 2002/07/17 by rbell@rbell_crayola_win_cvd

 initial release

Change 40978 on 2002/07/17 by gabarca@gabarca_crayola_win_cvd

 updated new fields

Change 40950 on 2002/07/16 by csampayo@fl_csampayo_r400

 1. Added 2 new tests to SU
 2. Updated test_list and test tracker

Change 40947 on 2002/07/16 by imuskatb@imuskatb_r400_win_cnimuskatb

 Updated test list for M2

Change 40929 on 2002/07/16 by jacarey@fl_jcarey2

 Update text for 2D/3D transition determination.

Change 40885 on 2002/07/16 by jayw@MA_JAYW

 fixed error in tile address

Change 40881 on 2002/07/16 by mpersaud@mpersaud_r400_win_tor

 Simplified write acknowledge return interface between dccif and client.

Change 40873 on 2002/07/16 by smoss@smoss_crayola_win

 update

Change 40854 on 2002/07/16 by fhsien@fhsien_r400_win_marlboro

 Update for Z tests

Change 40782 on 2002/07/15 by efong@efong_r400_win_tor_doc

 Updated with M2 tests

Change 40771 on 2002/07/15 by csampayo@fl_csampayo_r400

 Page 222 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 1. Added SU test to validate provoking vertex
 2. Updated SU's test_list accordingly
 3. Updated the VGT test r400vgt_provoking_vtx_all_01
 4. Updated test tracker with status for the test: r400su_provoking_vtx_rectangle_01

Change 40710 on 2002/07/15 by jayw@MA_JAYW

 finished start of depth tile address calc

Change 40698 on 2002/07/15 by jacarey@fl_jcarey2

 Update to ME_INIT for Header Dump Function

Change 40697 on 2002/07/15 by jasif@jasif_r400_win_tor

 Updated.

Change 40693 on 2002/07/15 by tho@tho_r400_win

 updated

Change 40691 on 2002/07/15 by llefebvr@llefebvre_laptop_r400

 New sequencer spec.

Change 40666 on 2002/07/15 by jacarey@fl_jcarey2

 Header Dump Can Be Used for Real-Time Streams

Change 40660 on 2002/07/15 by jacarey@fl_jcarey2

 Update Header Dump Base Address Size

Change 40647 on 2002/07/15 by jasif@jasif_r400_win_tor

 M2 VGA testlist.

Change 40632 on 2002/07/15 by jacarey@fl_jcarey2

 Added a couple paragraphs to describe the Brush Decode support logic for the ME.

Change 40630 on 2002/07/15 by jacarey@fl_jcarey2

 Added Local Addresses for Brush Decode Hardware

Change 40620 on 2002/07/15 by gregs@gregs_r400_linux_marlboro

 <update>

 Page 223 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 40609 on 2002/07/15 by jasif@jasif_r400_win_tor

 Updated.

Change 40605 on 2002/07/15 by rbell@rbell_crayola_win_cvd

 updated

Change 40600 on 2002/07/15 by jayw@MA_JAYW

 Monday morning release.
 start of cam and non-cam tags and
 address generation

Change 40599 on 2002/07/15 by chwang@chwang_doc_r400_win_cvd

 Update.

Change 40595 on 2002/07/15 by rbell@rbell_crayola_win_cvd

 updated after test plan review

Change 40592 on 2002/07/15 by imuskatb@imuskatb_r400_win_cnimuskatb

 Updated

Change 40589 on 2002/07/15 by tho@tho_r400_win

 updated

Change 40582 on 2002/07/15 by tho@tho_r400_win

 update

Change 40574 on 2002/07/15 by efong@efong_r400_win_tor_doc

 Updated

Change 40571 on 2002/07/15 by nluu@nluu_r400_doclib_cnnb

 - update

Change 40564 on 2002/07/15 by jacarey@fl_jcarey2

 Updated Draw_Indx

Change 40535 on 2002/07/15 by jacarey@fl_jcarey2

 Page 224 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 ME_INIT side affect: Invalidates "valid flags" in the PFP.

Change 40473 on 2002/07/14 by vliu@vliu_r400_cnvliu100_win_cvd

 Added conditional_write(...) function.

Change 40132 on 2002/07/12 by gabarca@gabarca_crayola_win_cvd

 updated

Change 40121 on 2002/07/12 by jayw@MA_JAYW

 Friday night checkin with template

Change 40120 on 2002/07/12 by fhsien@fhsien_r400_win_marlboro

 Update for Z_functions

Change 40039 on 2002/07/12 by efong@efong_r400_win_tor_doc

 Updated for VCD and FSDB and VPD support

Change 39993 on 2002/07/12 by frising@ma_frising

 v.1.42
 -allow TP to use FORMAT_COMP_* and related number format info for multisample
fetches. Typically, the driver will want to make sure COLOR_FORMAT_OUT is consistent
with these.

Change 39979 on 2002/07/12 by rbell@rbell_crayola_win_cvd

 Secondary surface address test

Change 39977 on 2002/07/12 by rbell@rbell_crayola_win_cvd

 updated for more milestone 2 and 3 tests

Change 39969 on 2002/07/12 by mzhu@mzhu_r400_win_tor

 Update test plan for 2nd milestone

Change 39915 on 2002/07/12 by mkelly@fl_mkelly_r400_win_laptop

 Update CL status

Change 39912 on 2002/07/12 by lkang@lkang_r400_win_tor

 update

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1520 of 1898

 Page 225 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 39862 on 2002/07/11 by gabarca@gabarca_crayola_win_cvd

 t

Change 39847 on 2002/07/11 by csampayo@fl_csampayo_lt_r400

 Updated VGT section categories

Change 39830 on 2002/07/11 by csampayo@fl_csampayo_lt_r400

 Updated the HOS Primitive Tessellation sub-section of the VGT section

Change 39819 on 2002/07/11 by frising@ma_frising

 v.1.41
 -multisample fetch basically done (note a few unused fields had to be moved in the tex
constants)
 -updated note on how degamma'd textures are stored in L2 (always 16 bit urf)

Change 39812 on 2002/07/11 by jacarey@fl_jcarey2

 Real-Time Micro Engine does not have the direct write-back path as the Non-RT micro
engine.

Change 39809 on 2002/07/11 by jacarey@fl_jcarey2

 1. Boolean B0 is set for trans_bitblt packet
 2. ME_INIT
 - Fixed typo of for vertex shader base size
 - Added note that pixel shader base must be greater than vertex
 shader base address.
 3. Added notes to set B0 boolean for some of the new 2D packets.

Change 39764 on 2002/07/11 by georgev@ma_georgev

 Fixed registers.

Change 39759 on 2002/07/11 by imuskatb@imuskatb_r400_win_cnimuskatb

 Updated v1.2

Change 39739 on 2002/07/11 by mkelly@fl_mkelly_r400_win_laptop

 Update showing priorities for Friday's meeting...

Change 39700 on 2002/07/11 by jacarey@fl_jcarey2

 Fix Typos in Instr_Prefetch and Set_State Packets

 Page 226 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 39679 on 2002/07/11 by jayw@MA_JAYW

 0.1 rev mark

Change 39678 on 2002/07/11 by jayw@MA_JAYW

 thursday update

Change 39662 on 2002/07/11 by rbell@rbell_crayola_win_cvd

 updated schedule

Change 39637 on 2002/07/11 by smoss@smoss_crayola_win

 account for differences in tests written and schedule

Change 39578 on 2002/07/10 by jacarey@fl_jcarey2

 Miscellaneous

Change 39572 on 2002/07/10 by jimmylau@jimmylau_r400_win_tor

 Update sections 5.6 and 5.7 after test plan review, to add more end cases and more
detailed explanation to each test cases.

Change 39571 on 2002/07/10 by jacarey@fl_jcarey2

 Clarifications for ALU and Texture write enables for LCC and
 Set_Constant packets.

Change 39567 on 2002/07/10 by jacarey@fl_jcarey2

 Miscellanesous Corrections for 2D Packets

Change 39565 on 2002/07/10 by csampayo@fl_csampayo_r400

 Minor textual updates

Change 39563 on 2002/07/10 by csampayo@fl_csampayo_r400

 Modified Provoking Vertex sub-section to include provoking vertex and edge flags

Change 39552 on 2002/07/10 by csampayo@fl_csampayo_r400

 Added Rectangle List Processing sub-section to the SU section

Change 39486 on 2002/07/10 by khabbari@khabbari_r400_win

 line buffer test plan for phase 2 released

 Page 227 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 39399 on 2002/07/10 by jimmylau@jimmylau_r400_win_tor

 Add section 10.4 in CRTC architecture and implementation specs, for double buffered
registers
 Add sections 5.6 to 5.8 in CRTC testplan, for overscan, interlaced timing mode and
double buffered registers.

Change 39359 on 2002/07/10 by rbell@rbell_crayola_win_cvd

 Updated for Kscope

Change 39350 on 2002/07/10 by rbell@rbell_crayola_win_cvd

 Changed name of doc

Change 39347 on 2002/07/10 by smoss@smoss_crayola_win

 SU tests

Change 39346 on 2002/07/10 by rbell@rbell_crayola_win_cvd

 Updated file capture format, added optional macro signal capture

Change 39331 on 2002/07/10 by smoss@smoss_crayola_win

 SU Tests

Change 39273 on 2002/07/09 by jacarey@fl_jcarey_desktop

 Context is on data bits 12:10 !!!

Change 39245 on 2002/07/09 by jacarey@fl_jcarey_desktop

 Micro Engine Updates

Change 39237 on 2002/07/09 by jacarey@fl_jcarey_desktop

 1. Direct write path from micro engine behavior
 2. Adjusted address of immd_swap in local address

Change 39220 on 2002/07/09 by csampayo@fl_csampayo_r400

 1. Added 1 test to SU suite
 2. Updated test_list accordingly
 3. Updated relevant status on the test tracker

Change 39124 on 2002/07/09 by ygiang@ygiang_r400_win_marlboro_p4

 Page 228 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 added: shader test for debug

Change 39088 on 2002/07/09 by rbell@rbell_crayola_win_cvd

 Updated status for LUT Host RW

Change 39078 on 2002/07/09 by csampayo@fl_csampayo_r400

 Updated status for the following tests:
 r400vgt_edgeflags_triangle_fan_01
 r400vgt_edgeflags_triangle_wflags_01
 r400vgt_edgeflags_triangle_strip_01
 r400vgt_edgeflags_triangle_list_01
 r400vgt_edgeflags_quad_strip_01
 r400vgt_edgeflags_quad_list_01
 r400vgt_edgeflags_polygon_01

Change 39062 on 2002/07/09 by mkelly@fl_mkelly_r400_win_laptop

 VFD Edge flag support for Constant to EX1 operation with example test.

Change 39045 on 2002/07/09 by jayw@MA_JAYW

 no change

Change 39016 on 2002/07/09 by mpersaud@mpersaud_r400_win_tor

 Updated revision number

Change 39015 on 2002/07/09 by mpersaud@mpersaud_r400_win_tor

 Tie off ICON_DCCARB_rswap & CURSOR_DCCARB_rswap to zero in DCCARB as
it is not generated by either block

Change 39004 on 2002/07/09 by bryans@bryans_crayola_doc

 There are 2 copies in the depot of this document: This one (version 4.2) is out of date.
The most up to date one (version 4.4) resides in doc_lib/testenv. I left that copy there since it
applies to both emulation and simulation.

Change 39003 on 2002/07/09 by bryans@bryans_crayola_doc

 Updated as per status meeting

Change 38911 on 2002/07/08 by jacarey@fl_jcarey_desktop

 1. Remove Set_Cf_Constant Packet
 2. Added code for new Set_Constant packet
 3. Preparations for writing constants to external memory

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1521 of 1898

 Page 229 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 38829 on 2002/07/08 by lseiler@lseiler_r400_win_marlboro

 RB Arch spec: modified export buffer depth storage, added explanations

Change 38815 on 2002/07/08 by tho@tho_r400_win

 updated

Change 38813 on 2002/07/08 by mmantor@mmantor_r400_win

 assigned quad id to the lod correct term

Change 38785 on 2002/07/08 by csampayo@fl_csampayo_r400

 Added status for the following SU tests:
 r400su_provoking_vtx_point_01
 r400su_provoking_vtx_line_01
 r400su_provoking_vtx_triangle_01

Change 38743 on 2002/07/08 by mzhu@mzhu_r400_win_tor

 Update for double buffer register

Change 38735 on 2002/07/08 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated (1st draft) of Dispout Test plan

Change 38722 on 2002/07/08 by rbell@rbell_crayola_win_cvd

 updated test list after test plan review

Change 38697 on 2002/07/08 by imuskatb@imuskatb_r400_win_cnimuskatb

 Updated

Change 38670 on 2002/07/08 by chwang@chwang_doc_r400_win_cvd

 Update.

Change 38661 on 2002/07/08 by efong@efong_r400_win_tor_doc

 Updated

Change 38658 on 2002/07/08 by jasif@jasif_r400_win_tor

 Updated.

Change 38654 on 2002/07/08 by nluu@nluu_r400_doclib_cnnb

 Page 230 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 - update

Change 38652 on 2002/07/08 by tho@tho_r400_win

 updated

Change 38648 on 2002/07/08 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 38643 on 2002/07/08 by imuskatb@imuskatb_r400_win_cnimuskatb

 Updated files for TMDS
 Added new CMDKeys for DAC

Change 38642 on 2002/07/08 by efong@efong_r400_win_tor_doc

 updated

Change 38618 on 2002/07/08 by rbell@rbell_crayola_win_cvd

 updated

Change 38421 on 2002/07/05 by gabarca@gabarca_crayola_win_cvd

 updated open items

Change 38412 on 2002/07/05 by nbarbier@nbarbier_r400_win_tor

 Updated TMDS test descriptions

Change 38392 on 2002/07/05 by csampayo@fl_csampayo_lt_r400

 Added Edge Flag Processing and Provoking Vertex Processing sub-sections (in the SU
Section). Updated format of complete SU Section.

Change 38371 on 2002/07/05 by csampayo@fl_csampayo_lt_r400

 1. Added edge flag and provoking vertex sections to SU Polygon Mode 2. Moved
r400su_edge_flag_01 to appropriate section

Change 38348 on 2002/07/05 by gabarca@gabarca_crayola_win_cvd

 updated as pre meeting July 3

Change 38347 on 2002/07/05 by mkelly@fl_mkelly_r400_win_laptop

 Page 231 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 VFD edge flag support and example, note: waiting on bug fix in ccgen.cpp to be checked
in.

Change 38344 on 2002/07/05 by gregs@gregs_r400_win_marlboro

 <added indirect access to ROM memory

Change 38339 on 2002/07/05 by subad@MA_SUBA

 updated area of tcd. Area increased by 2 sq.mm. bcos the correct area estimate of
degamma logic was entered. Originally an estimate was entered.

Change 38338 on 2002/07/05 by jasif@jasif_r400_win_tor

 Updated.

Change 38312 on 2002/07/05 by jacarey@fl_jcarey2

 Clears 2D Flag when writing to the CONTEXT_ALLOCATION_FLAGS

Change 38294 on 2002/07/05 by jacarey@fl_jcarey2

 New Addresses for Setting the Context Allocation Flags and the associated 2D flag.

Change 38285 on 2002/07/05 by jacarey@fl_jcarey2

 Updates to ME_INIT

 1. Instruction Thresholds need to be programmed for Real-Time
 2. Side affects that occur when re-programming MAX_CONTEXT

Change 38275 on 2002/07/05 by tho@tho_r400_win

 -updated test document
 -updated model document

Change 38271 on 2002/07/05 by rbell@rbell_crayola_win_cvd

 Added auto fill tests

Change 38257 on 2002/07/05 by bryans@bryans_crayola_doc

 Add legacy version of display format (this needs to be updated)

Change 38254 on 2002/07/05 by bryans@bryans_crayola_doc

 Update with misc. tasks

Change 38126 on 2002/07/04 by rbell@rbell_crayola_win_cvd

 Page 232 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Added autofill test

Change 38125 on 2002/07/04 by mzhu@mzhu_r400_win_tor

 Update for double buffer register

Change 38097 on 2002/07/04 by lkang@lkang_r400_win_tor

 update

Change 38095 on 2002/07/04 by bryans@bryans_crayola_doc

 Update for July 1 week

Change 38070 on 2002/07/04 by nbarbier@nbarbier_r400_win_tor

 Updated Milestone 2 Tests

Change 37973 on 2002/07/03 by jasif@jasif_r400_win_tor

 Updated.

Change 37951 on 2002/07/03 by llefebvr@llefebvre_laptop_r400

 Backup

Change 37950 on 2002/07/03 by jasif@jasif_r400_win_tor

 Updated.

Change 37926 on 2002/07/03 by jacarey@fl_jcarey2

 Updates for Small_Text and HostData_Blt packets w.r.t. SRC_X term calculation.

Change 37925 on 2002/07/03 by mmantor@mmantor_r400_win

 updated the sc_sq interface definition

Change 37905 on 2002/07/03 by rbell@rbell_crayola_win_cvd

 Updated schedule, added more alpha blending tests

Change 37852 on 2002/07/03 by mkelly@fl_mkelly_r400_win_laptop

 Good test for basic checks of sequence/scan conversion/shader operation...

Change 37847 on 2002/07/03 by rbell@rbell_crayola_win_cvd

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1522 of 1898

 Page 233 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Added zero expansion tests

Change 37832 on 2002/07/03 by mzhu@mzhu_r400_win_tor

 Update for MH data return

Change 37831 on 2002/07/03 by hartogs@fl_hartogs

 In description of register VGT_HOS_MAX_TESS_LEVEL, changed valid discrete
levels from 1 thru 15 inclusive to 1 thu 14 inclusive.
 This change was actually checked in by Brian Buchner yesterday, but he did not update
the revision number or log.

Change 37798 on 2002/07/03 by imuskatb@imuskatb_r400_win_cnimuskatb

 Updated

Change 37794 on 2002/07/03 by efong@efong_r400_win_tor_doc

 updated

Change 37742 on 2002/07/02 by csampayo@fl_csampayo_r400

 Updates:
 1. Updated description/status for the following tests in the tracker:
r400vgt_provoking_vtx_all_01 r400vgt_hos_cubic_pos_pnt_discrete_01
 2. Sorted test_list

Change 37706 on 2002/07/02 by gabarca@gabarca_crayola_win_cvd

 Cleaned up descriptions of legacy non-standard VGA registers, added that
DISP_START, BYTE PAN and ATTR_PPAN are loaded every line

Change 37705 on 2002/07/02 by tho@tho_r400_win

 updated cursor test goldens
 updated milestone 2 test list

Change 37702 on 2002/07/02 by jasif@jasif_r400_win_tor

 Updated.

Change 37690 on 2002/07/02 by jhoule@MA_JHOULE

 Changed format to removed level skipping.

Change 37681 on 2002/07/02 by bbuchner@fl_bbuchner_r400_win

 tessellation engine creation

 Page 234 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 37677 on 2002/07/02 by bbuchner@fl_bbuchner_r400_win

 updated tess level constraints

Change 37675 on 2002/07/02 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 37664 on 2002/07/02 by jacarey@fl_jcarey2

 Added Microcode for 2D Paint Packet
 Includes use of subroutines ... i.e. Call & Return Instructions.

Change 37642 on 2002/07/02 by jayw@MA_JAYW

 initial rev

Change 37613 on 2002/07/02 by frivas@FL_FRivas

 update to number of tests in "Schedule" sheet

Change 37607 on 2002/07/02 by gregs@gregs_r400_win_marlboro

 added hardwired at the top of chip.v options (straps).

Change 37595 on 2002/07/02 by chwang@chwang_doc_r400_win_cvd

 Update.

Change 37594 on 2002/07/02 by efong@efong_r400_win_tor_doc

 Updated

Change 37563 on 2002/07/02 by jacarey@fl_jcarey2

 Update for the arbitration in the RCIU

Change 37562 on 2002/07/02 by tho@tho_r400_win

 updated

Change 37557 on 2002/07/02 by jasif@jasif_r400_win_tor

 Updated.

Change 37549 on 2002/07/02 by rbell@rbell_crayola_win_cvd

 updated for alpha blending

 Page 235 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 37536 on 2002/07/02 by jacarey@fl_jcarey2

 1. Update PFP Pseudocode for the case where the INDX_BASE/Size are not present in
the draw_indx packet.
 2. Updated algorithm for draw_indx in the PM4 Spec.

Change 37534 on 2002/07/02 by jacarey@fl_jcarey2

 1. Update description for LCC packet.
 2. Strike through packets that were obsolete/changed as of June 15th

Change 37477 on 2002/07/01 by csampayo@fl_csampayo_r400

 1. Updated the display size, test description and other minor test format changes for the
following tests:
 r400vgt_dma_swap_indx16_01.cpp
 r400vgt_dma_swap_indx32_01.cpp

 2. Updated the tests descriptions on the test tracker for above tests

 3. Deleted the following test from the test tracker and adjusted
 Schedule accordingly:
 r400vgt_hos_PNQ_lp_ln_cont_13_16_texture_lighting_projection.cpp

Change 37456 on 2002/07/01 by gregs@gregs_r400_linux_marlboro

 <reset bring-up >

Change 37429 on 2002/07/01 by ashishs@fl_ashishs_r400_win

 update

Change 37376 on 2002/07/01 by mkelly@fl_mkelly_r400_win_laptop

 More tests validating reference vertex delta pixel calcs for baryc interp.

Change 37217 on 2002/06/28 by lkang@lkang_r400_win_tor

 update

Change 37199 on 2002/06/28 by gabarca@gabarca_crayola_win_cvd

 updated VGAHDP

Change 37174 on 2002/06/28 by csampayo@fl_csampayo_r400

 Added the following new VGT tests and updated test tracker and test_list.

 Page 236 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 37170 on 2002/06/28 by jasif@jasif_r400_win_tor

 Updated.

Change 37101 on 2002/06/28 by jasif@jasif_r400_win_tor

 Updated.

Change 36997 on 2002/06/28 by lkang@lkang_r400_win_tor

 clock specs for bif and dc

Change 36991 on 2002/06/28 by gregs@gregs_r400_linux_marlboro

 <type fix>

Change 36985 on 2002/06/28 by jacarey@fl_jcarey2

 Add Defaults to the Spreadsheet

Change 36929 on 2002/06/27 by gregs@gregs_r400_linux_marlboro

 < added IO_CG_refclk >

Change 36895 on 2002/06/27 by mzhu@mzhu_r400_win_tor

 Update overlay zero expansion

Change 36880 on 2002/06/27 by jasif@jasif_r400_win_tor

 Updated status. Reorganized features into more subsections.

Change 36872 on 2002/06/27 by gabarca@gabarca_crayola_win_cvd

 Completed VGAHDP spec (except performance)

Change 36862 on 2002/06/27 by frising@ma_frising

 Changes:
 -Add INDEX_ROUND field to vfetch instruction (0=round, 1=truncate to negative
infinity)
 -Make OFFSET_X in vfetch instruction a signed 23-bit integer.

Change 36843 on 2002/06/27 by mpersaud@mpersaud_r400_win_tor

 Updated documents to reflect actual DCCIF implementation

Change 36842 on 2002/06/27 by mpersaud@mpersaud_r400_win_tor

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1523 of 1898

 Page 237 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Cleared up operation of IDCT interface.
 General document clean up and maintenance.

Change 36836 on 2002/06/27 by mkelly@fl_mkelly_r400_win_laptop

 Perspective-Correct barycentric coordinate interpolation simple tests verifying combos of
ref v0 locations.

Change 36831 on 2002/06/27 by jayw@MA_JAYW

 pre-1st triange render check in

Change 36824 on 2002/06/27 by jacarey@fl_jcarey2

 Document Polarity Inversion of the Deallocation FIFO Booleans
 used by the Micro Engine.

Change 36802 on 2002/06/27 by mzhu@mzhu_r400_win_tor

 Correct Y_alpha for graphics and overlay alpha blending

Change 36792 on 2002/06/27 by tho@tho_r400_win

 emu feature list added

Change 36785 on 2002/06/27 by frising@ma_frising

 Another 1.40 checkpoint.
 -declare noise texture and related funcrionality as being unsupported on r400.
 -adjust fetch opcodes for future growth. 0..15 = fetches, 16..23 = gets, 24..31 = sets
 -move height specifier in SIZE field up 3-bits to allow for future growth of max 2D
texture size.
 -added DXN compressed 2 channel texture format for normals (and colors)
 -specify that number format conversion will happen for compressed texture formats (e.g.
DXT/DXN)
 -make SIGNED_RF_MODEL_ALL apply to unsigned biased RF numbers. Evan
pointed out that this is needed to do the *2-1 type mapping. Persumably since we have this for
signed numbers this is straight forward to add.

 -Until we understand what MS really wants, we are keeping our getgradients as is and not
adding a setgradients/texldd.

Change 36784 on 2002/06/27 by gregs@gregs_r400_linux_marlboro

 <remove ROM_strap_emu_desktop >

Change 36778 on 2002/06/27 by csampayo@fl_csampayo_r400

 Updated status for the following VGT tests:

 Page 238 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 r400vgt_immed_index_tri_wflags_01
 r400vgt_immed_index_tri_strip_01
 r400vgt_immed_index_tri_list_01
 r400vgt_immed_index_tri_fan_01
 r400vgt_immed_index_rectangle_list_01
 r400vgt_immed_index_polygon_01
 r400vgt_immed_index_quad_strip_01
 r400vgt_immed_index_quad_list_01

Change 36772 on 2002/06/27 by mzhu@mzhu_r400_win_tor

 Correct REDD_LINE_COUNT logic for color cursor

Change 36755 on 2002/06/27 by jacarey@fl_jcarey2

 Add Pixel and Vertex Shader Booleans and Status Signals.

Change 36747 on 2002/06/27 by jacarey@fl_jcarey2

 Update Pseudocode for the POLYLINE PM4 Packet.

Change 36731 on 2002/06/27 by jacarey@fl_jcarey2

 Add Vertex and Pixel Dealloc FIFO Full Signals to Boolean Register.

Change 36718 on 2002/06/27 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 36697 on 2002/06/27 by jacarey@fl_jcarey2

 Miscellaneous Typos

Change 36614 on 2002/06/26 by csampayo@fl_csampayo_r400

 Updated status for the following tests:
 r400vgt_dma_index_quad_list_01
 r400vgt_dma_index_quad_strip_01
 r400vgt_dma_index_polygon_01

Change 36531 on 2002/06/26 by mzhu@mzhu_r400_win_tor

 Add DMIF data return order

Change 36526 on 2002/06/26 by gregs@gregs_r400_win_marlboro

 DRAM_select

Change 36521 on 2002/06/26 by mzhu@mzhu_r400_win_tor

 Page 239 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Add more details for ICON and CURSOR implementation. Update LUT host read/write.

Change 36510 on 2002/06/26 by mkelly@fl_mkelly_r400_win_laptop

 Update SC plan test approach for baryc interpolation reference pixel delta calculation.

Change 36508 on 2002/06/26 by gregs@gregs_r400_linux_marlboro

 <resolving top level chip connections ... >

Change 36488 on 2002/06/26 by whui@whui_r400_win_tor

 Test plan for R400 DCT

Change 36480 on 2002/06/26 by chwang@chwang_doc_r400_win_cvd

 Rename.

Change 36479 on 2002/06/26 by chwang@chwang_doc_r400_win_cvd

 Feature list for R400 IDCT.

Change 36476 on 2002/06/26 by rramsey@RRAMSEY_P4_r400_win

 Clean up SC dumps
 Remove pa_sc.dmp since it is redundant
 Add sc_rbbm.dmp which only contains sc relevant reg writes so tb_sc runs faster
 Rearrange dump levels so only block level interfaces are dumped at level 1,
 hw accurate internals are dumped at level 2, and non-hw accurate are dumped
 at level 3
 Update emu_dumps block diagram to reflect changes

Change 36473 on 2002/06/26 by imuskatb@imuskatb_r400_win_cnimuskatb

 Updated

Change 36431 on 2002/06/26 by rherrick@ma_rherrick_crayola

 Documentation for Multi-streamed RB Client interface...

Change 36394 on 2002/06/26 by jacarey@fl_jcarey2

 Updates for Constant Write Enables Controlled by the LCC Packet
 and not the Set_Constant packet.

Change 36302 on 2002/06/25 by csampayo@fl_csampayo_r400

 Updated status for following tests:

 Page 240 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 r400vgt_dma_index_tri_list_01
 r400vgt_dma_index_tri_fan_01
 r400vgt_dma_index_tri_strip_01
 r400vgt_dma_index_tri_wflags_01

Change 36274 on 2002/06/25 by ashishs@fl_ashishs_r400_win

 update

Change 36258 on 2002/06/25 by lkang@lkang_r400_win_tor

 updates

Change 36191 on 2002/06/25 by gregs@gregs_r400_linux_marlboro

 <misc names changes >

Change 36171 on 2002/06/25 by jowang@jowang_R400_win

 added SHIFT_IN_BLACK and BLACK_COLOR_*

Change 36163 on 2002/06/25 by dclifton@dclifton_r400

 Identified gradients as subpixel gradients.

Change 36159 on 2002/06/25 by jacarey@fl_jcarey2

 Update draw_indx pseudocode.

Change 36157 on 2002/06/25 by efong@efong_r400_win_tor_doc

 Updated with autoreplication and autocentering for extended is done

Change 36154 on 2002/06/25 by jacarey@fl_jcarey2

 Make microh to microm and mrh to mrm

Change 36145 on 2002/06/25 by csampayo@fl_csampayo_r400

 Various updates to VGT section. Added test numbering to CL/VTE section

Change 36134 on 2002/06/25 by rfevreau@rfevreau_r400_win

 Updated TMDS schedule

Change 36124 on 2002/06/25 by rbell@rbell_crayola_win_cvd

 Added alpha blending tests, update schedule for this

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1524 of 1898

 Page 241 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 36091 on 2002/06/25 by jacarey@fl_jcarey2

 Add note on management of the external memory surfaces for 2D.

Change 35994 on 2002/06/24 by csampayo@fl_csampayo_lt_r400

 Update to fix counters for some tests in the CL/VTE section

Change 35974 on 2002/06/24 by jasif@jasif_r400_win_tor

 Updated.

Change 35961 on 2002/06/24 by csampayo@fl_csampayo_lt_r400

 Updated status for the following VGT tests:
 r400vgt_dma_engine_09
 r400vgt_dma_engine_10

Change 35947 on 2002/06/24 by gregs@gregs_r400_linux_marlboro

 intel agp stp/busy protocol.

Change 35890 on 2002/06/24 by gregs@gregs_r400_linux_marlboro

 fixing i/o

Change 35867 on 2002/06/24 by jacarey@fl_jcarey2

 Status Spreadsheet Updated

Change 35862 on 2002/06/24 by rvelez@rvelez_r400_win_tor

 Updated 6/24

Change 35830 on 2002/06/24 by frivas@FL_FRivas

 Update. Finished HOS PNQ test.

Change 35826 on 2002/06/24 by jacarey@fl_jcarey2

 Updates for Post-June15th Packet Changes

Change 35818 on 2002/06/24 by frivas@FL_FRivas

 update to HOS PNQ test

Change 35817 on 2002/06/24 by efong@efong_r400_win_tor_doc

 Updated so that 06/22/02 done on 06/30/02

 Page 242 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 35814 on 2002/06/24 by efong@efong_r400_win_tor_doc

 Updated

Change 35807 on 2002/06/24 by frivas@FL_FRivas

 update to test counts in Schedule sheet

Change 35804 on 2002/06/24 by frivas@FL_FRivas

 update to HOS PNQ test

Change 35799 on 2002/06/24 by chwang@chwang_doc_r400_win_cvd

 Update.

Change 35795 on 2002/06/24 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 35787 on 2002/06/24 by frivas@FL_FRivas

 no change

Change 35784 on 2002/06/24 by tho@tho_r400_win

 updated

Change 35773 on 2002/06/24 by rbell@rbell_crayola_win_cvd

 Added overlay matrix transform tests

Change 35769 on 2002/06/24 by ctaylor@fl_ctaylor_r400_win_marlboro

 Added Baryc description to help define Shader Pipe usage for pixel interpolation.

Change 35765 on 2002/06/24 by jacarey@fl_jcarey2

 Updates for Microcode Width Increase to 74 bits

Change 35762 on 2002/06/24 by rbell@rbell_crayola_win_cvd

 updated

Change 35746 on 2002/06/24 by ashishs@fl_ashishs_r400_win

 update

 Page 243 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 35743 on 2002/06/24 by frivas@FL_FRivas

 Update

Change 35739 on 2002/06/24 by jacarey@fl_jcarey2

 1. Microcode RAM is single-ported

 Updated Sections:
 6.11
 7.28
 7.29
 7.13
 7.14

Change 35732 on 2002/06/24 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 35641 on 2002/06/21 by ashishs@fl_ashishs_r400_win

 update

Change 35639 on 2002/06/21 by csampayo@fl_csampayo_r400

 Updated status for the following tests:
 r400vgt_reuse_index_triangle_list_02
 r400vgt_reuse_index_triangle_list_03

Change 35617 on 2002/06/21 by frivas@FL_FRivas

 update to HOS PNT tests

Change 35604 on 2002/06/21 by jasif@jasif_r400_win_tor

 Updated.

Change 35597 on 2002/06/21 by khabbari@khabbari_r400_win

 auto coef cal released

Change 35571 on 2002/06/21 by jasif@jasif_r400_win_tor

 Updated.

Change 35548 on 2002/06/21 by jacarey@fl_jcarey2

 Add TC_RBBM_busy and add to RBBM_STATUS register
 Change TP_RBBM_busy to TPC_RBBM_busy

 Page 244 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 35546 on 2002/06/21 by jhoule@MA_JHOULE

 Check in for Tien to look at a bit.

Change 35545 on 2002/06/21 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 35527 on 2002/06/21 by jacarey@fl_jcarey2

 Clarify Event Initiators that generate signals from SQ and RC>

Change 35517 on 2002/06/21 by jacarey@fl_jcarey2

 Update Documents

Change 35508 on 2002/06/21 by mkelly@fl_mkelly_r400_win_laptop

 Simple CL test

Change 35501 on 2002/06/21 by rbell@rbell_crayola_win_cvd

 Updated some graphics tests in testplan
 Added two overlay basic tests (8888 and 2101010)

Change 35494 on 2002/06/21 by jacarey@fl_jcarey2

 Fix Typo: T1 Constant should be T0 for Source informatoin.

Change 35352 on 2002/06/20 by jasif@jasif_r400_win_tor

 Updated.

Change 35330 on 2002/06/20 by ashishs@fl_ashishs_r400_win

 update

Change 35315 on 2002/06/20 by jasif@jasif_r400_win_tor

 Updated.

Change 35282 on 2002/06/20 by jacarey@fl_jcarey2

 1. Increased Depth of the Scratch Memory
 2. Added Incremental_Update Boolean
 3. Added Context_Dirty Boolean

Change 35264 on 2002/06/20 by fhsien@fhsien_r400_win_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1525 of 1898

 Page 245 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Update errors

Change 35218 on 2002/06/20 by georgev@ma_georgev

 Added changes from Lauraunt.

Change 35199 on 2002/06/20 by jasif@jasif_r400_win_tor

 Updated.

Change 35176 on 2002/06/20 by jacarey@fl_jcarey2

 Document that Type-0 packets cannot be used for instruction memory
 updates.

Change 35157 on 2002/06/20 by ashishs@fl_ashishs_r400_win

 update

Change 35153 on 2002/06/20 by georgev@ma_georgev

 Added new tests to list.

Change 35101 on 2002/06/20 by jacarey@fl_jcarey2

 SRC1 into shifter is only 5 bits.

Change 35097 on 2002/06/20 by jacarey@fl_jcarey2

 Fix Height and Width parameter sizes in packets

Change 35084 on 2002/06/19 by csampayo@fl_csampayo_r400

 Updated status for the following tests:
 r400vgt_dma_engine_01
 r400vgt_dma_engine_02
 r400vgt_dma_engine_03
 r400vgt_dma_engine_04
 r400vgt_dma_engine_05
 r400vgt_dma_engine_06
 r400vgt_dma_engine_07
 r400vgt_dma_engine_08

Change 35082 on 2002/06/19 by mpersaud@mpersaud_r400_win_tor

 Updated spec to be inline with actual implementation

Change 35053 on 2002/06/19 by rvelez@rvelez_r400_win_tor

 Page 246 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Updated 6/19/02

Change 35048 on 2002/06/19 by lkang@lkang_r400_win_tor

 updated emulation in vga, scaler, crtc, lb, & dispout.

Change 35028 on 2002/06/19 by jowang@jowang_R400_win

 updated

Change 35008 on 2002/06/19 by jacarey@fl_jcarey2

 Updates for IM_Load_Immediate Support

Change 35007 on 2002/06/19 by tho@tho_r400_win

 -2x magnify cursor complete
 -color cursor complete

Change 34985 on 2002/06/19 by jacarey@fl_jcarey2

 1. Preparations for Context Management
 2. Event Timestamp Discards Data If Event ID Does Not Match
 3. Added DMA_Data_Source and Context_Dirty local Addresses.

Change 34977 on 2002/06/19 by jacarey@fl_jcarey2

 Additions to Micro Engine Address Map
 1. DMA_Data_Source
 2. Context_Dirty Boolean

Change 34959 on 2002/06/19 by jacarey@fl_jcarey2

 Update Base Addresses for Determining Incremental Updates.

Change 34953 on 2002/06/19 by mkelly@fl_mkelly_r400_win_laptop

 Update to include control of Z_WRITE_ENABLE and ZFUNC... awaiting support
updates to RB emu_lib...

Change 34936 on 2002/06/19 by imuskatb@imuskatb_r400_win_cnimuskatb

 Updated

Change 34920 on 2002/06/19 by jowang@jowang_R400_win

 updated version

 Page 247 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 34918 on 2002/06/19 by frising@ma_frising

 Another 1.40 chechpoint.
 -go only with YUV replication (remove YUV interpolation)
 -rough in DXN1 and DXN2 compressed normal formats

Change 34914 on 2002/06/19 by bryans@bryans_crayola_doc

 Add emulate/simulate updated command line options (used for launching the emulation
and simulation from the Makefiles/perl scripts)

Change 34769 on 2002/06/18 by efong@efong_r400_win_tor_doc

 Updated ... changed overscan to be done

Change 34756 on 2002/06/18 by tho@tho_r400_win

 -matrix transform and adjustment complete with debug test
 -ycbcr subsampling complete with debug test

Change 34750 on 2002/06/18 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated

Change 34747 on 2002/06/18 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated

Change 34731 on 2002/06/18 by bryans@bryans_crayola_doc

 Update to reflect the additions in TESTINFO object:

 getArchitecture()
 getConfiguration()
 getSimMode()
 getSimType()
 getTimingMode()
 getTestMode()

 - removed reference to Architecture object (this is retired for the new chip library)

Change 34730 on 2002/06/18 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated

Change 34722 on 2002/06/18 by rfevreau@rfevreau_r400_win

 TMDS schedule updated

 Page 248 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 34690 on 2002/06/18 by efong@efong_r400_win_tor_doc

 Updated and put in who is responsible for M2 stuff

Change 34679 on 2002/06/18 by jasif@jasif_r400_win_tor

 Updated.

Change 34654 on 2002/06/18 by jacarey@fl_jcarey2

 Multiplier in the Micro Engine is 14x14

Change 34629 on 2002/06/17 by jasif@jasif_r400_win_tor

 Updated.

Change 34623 on 2002/06/17 by tho@tho_r400_win

 update

Change 34614 on 2002/06/17 by jowang@jowang_R400_win

 updated horizontal filter (not complete)

Change 34608 on 2002/06/17 by snezana@snezana_crayola_win_cvd

 updated

Change 34601 on 2002/06/17 by jasif@jasif_r400_win_tor

 Updated.

Change 34591 on 2002/06/17 by rbell@rbell_crayola_win_cvd

 updated

Change 34582 on 2002/06/17 by bryans@bryans_crayola_doc

 update...

Change 34571 on 2002/06/17 by paulv@MA_PVELLA

 Forgot to save changes from previous submission.

Change 34567 on 2002/06/17 by paulv@MA_PVELLA

 Updated MHS with latest specifications and hardware changes.

Change 34557 on 2002/06/17 by jasif@jasif_r400_win_tor

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1526 of 1898

 Page 249 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Updated.

Change 34552 on 2002/06/17 by jacarey@fl_jcarey2

 Remove Slow Client Protocol from the RBBM documentation.

Change 34550 on 2002/06/17 by gabarca@gabarca_crayola_win_cvd

 updated table of vga extended registers

Change 34534 on 2002/06/17 by frivas@FL_FRivas

 Update to PNL tests

Change 34530 on 2002/06/17 by ashishs@fl_ashishs_r400_win

 update

Change 34527 on 2002/06/17 by frivas@FL_FRivas

 Update to HOS PNL test.

Change 34515 on 2002/06/17 by frivas@FL_FRivas

 Update to HOS PNT using discrete tessellation with lighting and texturing.

Change 34508 on 2002/06/17 by frivas@FL_FRivas

 Update to HOS PNT with discrete tessellation and orthographic projection.

Change 34500 on 2002/06/17 by frivas@FL_FRivas

 Update to HOS PNT test.

Change 34498 on 2002/06/17 by mkelly@fl_mkelly_r400_win_laptop

 Test SC rectangle list vertex order interpretation...

Change 34491 on 2002/06/17 by frivas@FL_FRivas

 Update to PNT HOS test that uses only a single PNT in wireframe mode for continuous
tessellation that varies between 1.0-14. with reuse 4-16.

Change 34485 on 2002/06/17 by frivas@FL_FRivas

 Update to HOS PNT texture and lighting test.

Change 34479 on 2002/06/17 by frivas@FL_FRivas

 Page 250 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Update to HOS PNT texture and lighting test

Change 34475 on 2002/06/17 by rramsey@RRAMSEY_P4_r400_win

 Add documentation on sc dump points

Change 34457 on 2002/06/17 by tho@tho_r400_win

 updated

Change 34454 on 2002/06/17 by frivas@FL_FRivas

 Update to HOS PNT test with changing normals.

Change 34452 on 2002/06/17 by jasif@jasif_r400_win_tor

 Updated.

Change 34443 on 2002/06/17 by chwang@chwang_doc_r400_win_cvd

 Update

Change 34439 on 2002/06/17 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated

Change 34438 on 2002/06/17 by imuskatb@imuskatb_r400_win_cnimuskatb

 Updated

Change 34437 on 2002/06/17 by jacarey@fl_jcarey2

 Remove Constant Flag from the write requesters.

Change 34436 on 2002/06/17 by frivas@FL_FRivas

 Update to HOS PNT texture test

Change 34431 on 2002/06/17 by jacarey@fl_jcarey2

 1. Set_Constant: Qualified incrementing coherency counter with
CONST_WRITE_ENABLE.
 2. Updated 2D-to-3D mode determination.

Change 34417 on 2002/06/17 by frivas@FL_FRivas

 Update to HOS PNT test that adjusts normals during runtime.

 Page 251 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 34415 on 2002/06/17 by rbell@rbell_crayola_win_cvd

 Changed to testchip.arch and testchip.conf

Change 34414 on 2002/06/17 by chwang@chwang_doc_r400_win_cvd

 Update.

Change 34413 on 2002/06/17 by rbell@rbell_crayola_win_cvd

 updated

Change 34412 on 2002/06/17 by imuskatb@imuskatb_r400_win_cnimuskatb

 Disconnect Test + golden
 updated crtc emu doc

Change 34403 on 2002/06/17 by efong@efong_r400_win_tor_doc

 Updated

Change 34369 on 2002/06/16 by ashishs@fl_ashishs_r400_win

 update

Change 34294 on 2002/06/14 by jasif@jasif_r400_win_tor

 Updated.

Change 34290 on 2002/06/14 by csampayo@fl_csampayo_lt_r400

 Various document updates

Change 34281 on 2002/06/14 by lkang@lkang_r400_win_tor

 updated scaler emulation schedule

Change 34269 on 2002/06/14 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 34264 on 2002/06/14 by nbarbier@nbarbier_r400_win_tor

 Updated Auto-detection section.

Change 34242 on 2002/06/14 by kcorrell@kcorrell_r400_docs_marlboro

 update

 Page 252 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 34221 on 2002/06/14 by efong@efong_r400_win_tor_doc

 Added in new vertical replication tests

Change 34207 on 2002/06/14 by rvelez@rvelez_r400_win_tor

 Updated 6/14

Change 34205 on 2002/06/14 by snezana@snezana_crayola_win_cvd

 updated for alu inside framecntl

Change 34183 on 2002/06/14 by efong@efong_r400_win_tor_doc

 Just strikethrough on the tap configuration

Change 34146 on 2002/06/14 by mmantor@mmantor_r400_win

 moved spec to sc directory and added a test bench document to the directory

Change 34141 on 2002/06/14 by tien@ma_spinach

 Updated TP and TC areas

Change 34061 on 2002/06/14 by imuskatb@imuskatb_r400_win_cnimuskatb

 Updated

Change 33916 on 2002/06/13 by jasif@jasif_r400_win_tor

 Updated.

Change 33910 on 2002/06/13 by mzhu@mzhu_r400_win_tor

 add test cases for grphics/overlay blend

Change 33835 on 2002/06/13 by mzhu@mzhu_r400_win_tor

 add test plan for second milestone

Change 33820 on 2002/06/13 by hartogs@fl_hartogs

 New revision is 0.96
 Added diagram to show VGT configurations.
 Updated Tessellation Engine fixed function table.

Change 33807 on 2002/06/13 by gabarca@gabarca_crayola_win_cvd

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1527 of 1898

 Page 253 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Added in open issues add register bit to select if line compare happens in compared line
of the next

Change 33796 on 2002/06/13 by gabarca@gabarca_crayola_win_cvd

 updated open issue: readback of VGA DISP interface

Change 33794 on 2002/06/13 by gabarca@gabarca_crayola_win_cvd

 Updated open issues and legacy reg list

Change 33757 on 2002/06/13 by lkang@lkang_r400_win_tor

 Incorporated emulation, netlist, & chip integration schedules

Change 33619 on 2002/06/12 by imuskatb@imuskatb_r400_win_cnimuskatb

 wrap around test
 updated display config to support sync_a_start
 vga render test V1.0 - test run only

Change 33577 on 2002/06/12 by hartogs@fl_hartogs

 New revision number is 0.95
 Updated all register definitions to reflect new “driver friendly” address assignments.
 This was architecture-wide change made on 5/15/02.
 Changed GFX_COPY_STATE register description to reflect actual hardware
implementation.
 Deleted GFX_PIPE_CNTL register.
 Added enumerations to the VGT_EVENT_INITIATOR register.
 Added section about restrictions for fields in VGT_GRP_PRIM_TYPE register.
 Removed TESS_INPUT_MODE field from VGT_HOS_CNTL register.
 Changed VGT_SQ interface (in agreement with Laurent Lefebvre) so that the
 VGT_SQ_end_of_vtx_vect and VGT_SQ_state signals are “don’t care” if the
 VGT_SQ_continued signal is set.

Change 33532 on 2002/06/12 by frising@ma_frising

 Another checkpoint. Start cleaning up usage tables.

Change 33518 on 2002/06/12 by frivas@FL_FRivas

 Update - Added a test to HOS PNT section. The new test implements lighting with
moving normals.

Change 33490 on 2002/06/12 by frivas@FL_FRivas

 Update to HOS PNQ test.

 Page 254 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 33464 on 2002/06/12 by jasif@jasif_r400_win_tor

 Updated.

Change 33362 on 2002/06/11 by frising@ma_frising

 Post June 15 1.40 checkpoint.

Change 33349 on 2002/06/11 by ashishs@fl_ashishs_r400_win

 update

Change 33339 on 2002/06/11 by frivas@FL_FRivas

 Update to PNQ HOS test.

Change 33329 on 2002/06/11 by mkelly@fl_mkelly_r400_win_laptop

 update, sc point tests....

Change 33299 on 2002/06/11 by jayw@MA_JAYW

 more FB and cache line formats

Change 33282 on 2002/06/11 by frivas@FL_FRivas

 Update to HOS test for single PNT with cubic position and quadratic normal using
continuous tessellation.

Change 33275 on 2002/06/11 by tho@tho_r400_win

 updated, matrix transform and adjustment emulation block completed

Change 33219 on 2002/06/11 by nbarbier@nbarbier_r400_win_tor

 Updated description of TMDS reduction block.

Change 33215 on 2002/06/11 by frivas@FL_FRivas

 Update to HOS test of a single PNT with linear interpolation and continuous tessellation.

Change 33201 on 2002/06/11 by frivas@FL_FRivas

 Update to status of HOS test of PNT's with lighting and texturing.

Change 33199 on 2002/06/11 by frivas@FL_FRivas

 Update to HOS tests for continuous tessellation of PNT's

 Page 255 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 33195 on 2002/06/11 by csampayo@fl_csampayo_r400

 Edited Windows Registry, Test Format and Test Samples sections

Change 33177 on 2002/06/11 by jowang@jowang_R400_win

 modified spreadsheet for 10 tap H
 updated lbscfp to output fixed point coefs to file

Change 33172 on 2002/06/11 by csampayo@fl_csampayo_r400

 Update status for the following test:
 r400vgt_hos_PNT_cp_qn_disc_14_04_lit_tex_proj_01

Change 33148 on 2002/06/11 by frivas@FL_FRivas

 Update to HOS tests of PNT and PNL

Change 33147 on 2002/06/11 by frivas@FL_FRivas

 Progress on HOS tests documented.

Change 33098 on 2002/06/10 by bryans@bryans_crayola_doc

 Update based on today's discussion

Change 33070 on 2002/06/10 by tho@tho_r400_win

 icon cursor testlist updated

Change 33054 on 2002/06/10 by mkelly@fl_mkelly_r400_win_laptop

 Update, sc tests...

Change 33041 on 2002/06/10 by jayw@MA_JAYW

 initial checkin

Change 33040 on 2002/06/10 by jayw@MA_JAYW

 several 'admin' type signals
 clean and busy
 resets
 clocks
 removed shadow from queue encoding.

Change 33029 on 2002/06/10 by jacarey@fl_jcarey2

 Check In All Files.

 Page 256 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 33023 on 2002/06/10 by vromaker@MA_VIC_P4

 updated sq top block diagram

Change 33021 on 2002/06/10 by ashishs@fl_ashishs_r400_win

 update

Change 33002 on 2002/06/10 by jacarey@fl_jcarey2

 Added RT_GUI_ACTIVE to rbbm_status

Change 32990 on 2002/06/10 by nluu@nluu_r400_doclib_cnnb

 - update

Change 32988 on 2002/06/10 by jacarey@fl_jcarey2

 Remove hirq_pending from gui_active determination.

Change 32987 on 2002/06/10 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 32981 on 2002/06/10 by jacarey@fl_jcarey2

 Fix typo in sub-blk_prefetch packet.
 DWORD count should be 7:0 because the largest size is 128 DWORDs.

Change 32973 on 2002/06/10 by jacarey@fl_jcarey2

 Add descriptions of packets for after June15th Milestone.

Change 32963 on 2002/06/10 by csampayo@fl_csampayo_r400

 Updated status for the following tests:
 r400vgt_line_list_01
 r400vgt_quad_strip_01
 r400vgt_quad_list_01
 r400vgt_rectangle_list_01
 r400vgt_polygon_01
 r400vgt_line_loop_01
 r400vgt_point_list_01
 r400vgt_line_strip_01
 r400vgt_triangle_fan_01
 r400vgt_triangle_list_01
 r400vgt_triangle_strip_01
 r400vgt_triangle_wflags_01

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1528 of 1898

 Page 257 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 32960 on 2002/06/10 by tho@tho_r400_win

 updated

Change 32947 on 2002/06/10 by chwang@chwang_doc_r400_win_cvd

 Update. Added self to Icon and Cursor for test API.

Change 32939 on 2002/06/10 by jasif@jasif_r400_win_tor

 Updated.

Change 32935 on 2002/06/10 by jasif@jasif_r400_win_tor

 Updated.

Change 32921 on 2002/06/10 by rvelez@rvelez_r400_win_tor

 Updated 6/10

Change 32907 on 2002/06/10 by jacarey@fl_jcarey2

 Clarification on CMDFIFO Entries in Wait_Until

Change 32903 on 2002/06/10 by rbell@rbell_crayola_win_cvd

 updated

Change 32899 on 2002/06/10 by rbell@rbell_crayola_win_cvd

 updated

Change 32897 on 2002/06/10 by imuskatb@imuskatb_r400_win_cnimuskatb

 Updated

Change 32872 on 2002/06/09 by jimmylau@jimmylau_r400_win_tor

 Major update of DCCG specs after specs review.

Change 32809 on 2002/06/07 by efong@efong_r400_win_tor_doc

 updated

Change 32807 on 2002/06/07 by efong@efong_r400_win_tor_doc

 updated

 Page 258 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 32805 on 2002/06/07 by rvelez@rvelez_r400_win_tor

 Updated 6/7

Change 32785 on 2002/06/07 by jhoule@MA_JHOULE

 Added separable variation, showing it still works.
 Weights stored now mean something else (a little bit).

Change 32749 on 2002/06/07 by dclifton@dclifton_r400

 Added description of VTE and VE

Change 32729 on 2002/06/07 by jasif@jasif_r400_win_tor

 Updated.

Change 32718 on 2002/06/07 by jacarey@fl_jcarey2

 Added missing signal: CG_CP_pm_enb to external interfaces.

Change 32683 on 2002/06/07 by efong@efong_r400_win_tor_doc

 Updated

Change 32679 on 2002/06/07 by jayw@MA_JAYW

 new depth blocks

Change 32662 on 2002/06/07 by jacarey@fl_jcarey2

 Add note on 2D/3D transition detection to PFP section.

Change 32653 on 2002/06/07 by jacarey@fl_jcarey2

 Document method of determining 2D/3D transitions....

Change 32647 on 2002/06/07 by bryans@bryans_crayola_doc

 Update with new top level targets:

 gen_block_list
 detailed_summary

 Add: block_list.txt description to appendix

Change 32643 on 2002/06/07 by dclifton@dclifton_r400

 Update with increased z precision, latest I/O and register spec.

 Page 259 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 32641 on 2002/06/07 by jacarey@fl_jcarey2

 Add 2D/3D Mode switch assumptions to pseudocode.

Change 32621 on 2002/06/07 by jasif@jasif_r400_win_tor

 Updated.

Change 32619 on 2002/06/07 by jacarey@fl_jcarey2

 Update CMDFIFO_AVAIL for RBBM_STATUS

Change 32609 on 2002/06/07 by jasif@jasif_r400_win_tor

 Updated.

Change 32600 on 2002/06/07 by jacarey@fl_jcarey2

 Update Soft Reset Register Text

Change 32582 on 2002/06/07 by jhoule@MA_JHOULE

 Arbitrary filter weight description.

Change 32574 on 2002/06/07 by vgoel@fl_vgoel2

 added description for test r400vgt_hos_PNT_disc_cp_qn_14_4_light_texture_stress.cpp
and changed status of (% done) for couple of tests.

Change 32569 on 2002/06/07 by lseiler@lseiler_r400_win_marlboro

 Changed SX_RB_mask_type to SX_RB_quad_type, removed RB_SX_index_next, added
text and SX_RB signals for new memory export method.

Change 32562 on 2002/06/07 by gregs@gregs_r400_win_marlboro

 removed 3 of the CG_CP RT signals.

Change 32473 on 2002/06/06 by georgev@ma_georgev

 First cut.

Change 32451 on 2002/06/06 by bryans@bryans_crayola_doc

 Update status - add DCCIF enhancement request

Change 32444 on 2002/06/06 by askende@andi_r400_docs

 Page 260 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 updated the RB_SX_index interface to include "RB_SX_index_op"

Change 32443 on 2002/06/06 by rbell@rbell_crayola_win_cvd

 Added keyer tests

Change 32438 on 2002/06/06 by mzhu@mzhu_r400_win_tor

 Update description for ICON and CURSOR width and height registers.

Change 32433 on 2002/06/06 by vgoel@fl_vgoel2

 removed a repeated test and changed PNL test to require linear normal instead of
quadratic normal

Change 32428 on 2002/06/06 by vgoel@fl_vgoel2

 added status of HOS test (% done)

Change 32374 on 2002/06/06 by jacarey@fl_jcarey2

 Fix Typo in Section Name

Change 32373 on 2002/06/06 by gregs@gregs_r400_linux_marlboro

 vcs compiles.

Change 32369 on 2002/06/06 by jacarey@fl_jcarey2

 1. Add Section for 2D Indirect Buffer Contents to 2D Appendix
 2. Updated CP Initialization Sequence.

Change 32353 on 2002/06/06 by jacarey@fl_jcarey2

 Fix Typo in the Trans_Bitblt packet description

Change 32350 on 2002/06/06 by markf@markf_r400_win_marlboro

 Updated Status

Change 32334 on 2002/06/06 by semara@semara_r400_win_tor

 update for the text section

Change 32300 on 2002/06/06 by rbell@rbell_crayola_win_cvd

 update after review

Change 32289 on 2002/06/06 by vgoel@fl_vgoel2

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1529 of 1898

 Page 261 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 changed description of tests for continuous tessellation of PNT, PNQ and PNL.

Change 32283 on 2002/06/06 by lseiler@lseiler_r400_win_marlboro

 Updated pdf to match current MemCtl.doc

Change 32279 on 2002/06/06 by dclifton@dclifton_r400

 Connected up some rcpeng signals

Change 32274 on 2002/06/06 by lseiler@lseiler_r400_win_marlboro

 Moved and renamed to design/chip/memory/R400_Memory*

Change 32272 on 2002/06/06 by lseiler@lseiler_r400_win_marlboro

 Moved to design/chip/memory

Change 32271 on 2002/06/06 by lseiler@lseiler_r400_win_marlboro

 Moved here from design/blocks/mc

Change 32265 on 2002/06/06 by vgoel@fl_vgoel2

 Changed discrete tessellation tests.

Change 32166 on 2002/06/05 by csampayo@fl_csampayo_r400

 Updated status for the following VGT tests:
 r400vgt_index_offset_01
 r400vgt_index_offset_02
 r400vgt_index_offset_03

Change 32156 on 2002/06/05 by rvelez@rvelez_r400_win_tor

 Updated 6/5

Change 32143 on 2002/06/05 by csampayo@fl_csampayo_r400

 Updated status for the following VGT tests:
 r400vgt_index_dealloc_points_01
 r400vgt_index_dealloc_line_list_01
 r400vgt_index_dealloc_triangle_list_01

Change 32140 on 2002/06/05 by gregs@gregs_r400_linux_marlboro

 display section updated for r400.

 Page 262 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 32122 on 2002/06/05 by jacarey@fl_jcarey2

 Add more qualifications to the generation of the destination load
 signals.

Change 32114 on 2002/06/05 by tho@tho_r400_win

 updated

Change 32097 on 2002/06/05 by jacarey@fl_jcarey2

 Remove queued_path_busy from rbbm_status register.

Change 32080 on 2002/06/05 by jacarey@fl_jcarey2

 Removed Queued_Path_Busy from the RBBM_STATUS Register

Change 32073 on 2002/06/05 by gregs@gregs_r400_win_marlboro

 update

Change 32061 on 2002/06/05 by nbarbier@nbarbier_r400_win_tor

 Updated TMDSA section.

Change 32055 on 2002/06/05 by rbell@rbell_crayola_win_cvd

 Added overlay/VP window swap tests

Change 32040 on 2002/06/05 by vgoel@fl_vgoel2

 Created descriptions for HOS tests : PNT (discrete, continuous), PNQ (continuous), PNL
(continuous)

Change 31999 on 2002/06/05 by jacarey@fl_jcarey2

 Added CP_NRT_BUSY to CP_STAT register

Change 31979 on 2002/06/05 by jacarey@fl_jcarey2

 RBBM Spec Updates

Change 31964 on 2002/06/05 by mmantor@mmantor_r400_win

 added initial sc_packer code to the sc.v and a test bench for it

Change 31919 on 2002/06/05 by jacarey@fl_jcarey2

 Miscellaneous Updates to Diagram to Match the Design.

 Page 263 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 31878 on 2002/06/04 by lseiler@lseiler_r400_win_marlboro

 Rev 0.8 Memory Format document with revisions removed

Change 31877 on 2002/06/04 by lseiler@lseiler_r400_win_marlboro

 Memory Format spec: extensive revision, also moved from the MC block to a chip-level
location

Change 31859 on 2002/06/04 by rbell@rbell_crayola_win_cvd

 updated

Change 31858 on 2002/06/04 by gregs@gregs_r400_linux_marlboro

 added parallel ROM muxes ...

Change 31798 on 2002/06/04 by jimmylau@jimmylau_r400_win_tor

 fix the problem that DCCG top level diagram cannot be accessed from the DCCG specs.
 add sections 3.1, 3.2 and 3.3.

Change 31794 on 2002/06/04 by jacarey@fl_jcarey2

 1. Added TOC
 2. Added clarification of location for vertex and Pixel ALU constants for 2D processing.

Change 31779 on 2002/06/04 by rbell@rbell_crayola_win_cvd

 updated

Change 31748 on 2002/06/04 by frivas@FL_FRivas

 Entered 4 tests for HOS in Sheet 1, section 1.5.1.1.9.6

Change 31740 on 2002/06/04 by bryans@bryans_crayola_doc

 Renamed LB_feature_list.doc to LB_emu_schedule.doc

Change 31737 on 2002/06/04 by jacarey@fl_jcarey2

 1. Remove Unneeded Booleans
 2. Remove Clamping from ALU
 3. Temporary Depth Increase for Microcode RAM

Change 31730 on 2002/06/04 by jacarey@fl_jcarey2

 Clarifications to which constants to write.

 Page 264 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 31713 on 2002/06/04 by vgoel@fl_vgoel2

 no change

Change 31711 on 2002/06/04 by markf@markf_r400_win_marlboro

 nop

Change 31707 on 2002/06/04 by markf@markf_r400_win_marlboro

 Initial rev

Change 31701 on 2002/06/04 by csampayo@fl_csampayo_r400

 Updated schedule

Change 31695 on 2002/06/04 by jimmylau@jimmylau_r400_win_tor

 Initial Revision of DCCG specs with diagrams for R400.

Change 31680 on 2002/06/04 by smoss@smoss_crayola_win

 new tests

Change 31674 on 2002/06/04 by mkelly@fl_mkelly_r400_win

 Update

Change 31662 on 2002/06/04 by efong@efong_r400_win_tor_doc

 added in another kludge

Change 31607 on 2002/06/03 by frivas@FL_FRivas

 Number of tests written updated.

Change 31592 on 2002/06/03 by jacarey@fl_jcarey2

 Checkpoint All Files

Change 31591 on 2002/06/03 by jacarey@fl_jcarey2

 Fix Typos for Brush Decode Text

Change 31580 on 2002/06/03 by csampayo@fl_csampayo_r400

 Updated hos test description

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1530 of 1898

 Page 265 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 31567 on 2002/06/03 by frising@ma_frising

 Added post June15 staging version of texture insts/consts.

Change 31560 on 2002/06/03 by gregs@gregs_r400_linux_marlboro

 vip + most of dvo interfaces.

Change 31543 on 2002/06/03 by omesh@ma_omesh

 Updated top level spreadsheet with latest information about RB Color blending test
information. I was asked to defer the fog related tests to later and Yung had agreed to do the "No
Blend" related tests as they are related to Shader Pipe.
 Also added blending test names and new section on stress testing to my RBC document.

Change 31529 on 2002/06/03 by bryans@bryans_crayola_doc

 Initial regression distribution schedule for TO

Change 31506 on 2002/06/03 by gregs@gregs_r400_win_marlboro

 DVODATA is 24 bits wide.

Change 31476 on 2002/06/03 by dclifton@dclifton_r400

 Update to include changes for Z precision, major change in I, J, and W gradient
calculation. Update to I/O.

Change 31475 on 2002/06/03 by jacarey@fl_jcarey2

 1. Removed CP_DMA_Busy as a boolean
 2. Result[31:0] is write data for scratch memory.

Change 31473 on 2002/06/03 by jacarey@fl_jcarey2

 Update DMA Data Path

Change 31465 on 2002/06/03 by jayw@MA_JAYW

 added sx export buffers register
 updated several lesser items

Change 31454 on 2002/06/03 by jasif@jasif_r400_win_tor

 Updated.

Change 31453 on 2002/06/03 by jasif@jasif_r400_win_tor

 Updated.

 Page 266 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 31433 on 2002/06/03 by llefebvr@llefebvre_laptop_r400

 Backup and minor updates.

Change 31432 on 2002/06/03 by tho@tho_r400_win

 updated

Change 31422 on 2002/06/03 by efong@efong_r400_win_tor_doc

 Updated

Change 31415 on 2002/06/03 by csampayo@fl_csampayo_r400

 Updated status for the following test:
 r400vgt_hos_cubic_pos_pnt_discrete_01

Change 31409 on 2002/06/03 by chwang@chwang_doc_r400_win_cvd

 Update.

Change 31401 on 2002/06/03 by rbell@rbell_crayola_win_cvd

 updated

Change 31395 on 2002/06/03 by jacarey@fl_jcarey2

 Checkpoint Planning Spreadsheets

Change 31384 on 2002/06/03 by gregs@gregs_r400_win_marlboro

 Updated rom_clk register

Change 31275 on 2002/05/31 by rvelez@rvelez_r400_win_tor

 Updated 5/31

Change 31273 on 2002/05/31 by mkelly@fl_mkelly_r400_win_laptop

 Basic diamond exit tests....

Change 31262 on 2002/05/31 by gabarca@gabarca_crayola_win_cvd

 Added GENS1 and GENFC_WT to list od mono/color registers

Change 31248 on 2002/05/31 by jacarey@fl_jcarey2

 Misc. Updates to RBIU Diagram

 Page 267 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 31228 on 2002/05/31 by tho@tho_r400_win

 updated testlist

Change 31210 on 2002/05/31 by csampayo@fl_csampayo_r400

 Adding Francisco (HOS)

Change 31194 on 2002/05/31 by gabarca@gabarca_crayola_win_cvd

 Write combining done by DCCIF
 Skid buffer between BIF and VGAHDP

Change 31169 on 2002/05/31 by jayw@MA_JAYW

 register index and some formatting

Change 31160 on 2002/05/31 by semara@semara_r400_win_tor

 re-submit

Change 31144 on 2002/05/31 by gabarca@gabarca_crayola_win_cvd

 Moved write combiming to DCCIF, added skid buffer in BIF_VGA doc

Change 31097 on 2002/05/31 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 31096 on 2002/05/31 by gabarca@gabarca_crayola_win_cvd

 Updated VGAHDP section

Change 31082 on 2002/05/31 by rbagley@rbagley_ltxp

 Adding Jocelyn's recent revision.

Change 31076 on 2002/05/31 by jacarey@fl_jcarey2

 Added Source Select to Read Input

Change 31044 on 2002/05/31 by efong@efong_r400_win_tor_doc

 Updated

Change 31043 on 2002/05/31 by bryans@bryans_crayola_doc

 Update...

 Page 268 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 31034 on 2002/05/31 by jacarey@fl_jcarey2

 Make Source Select a Counter which is controlled by Micro Engine.

Change 31026 on 2002/05/31 by jasif@jasif_r400_win_tor

 Updated.

Change 31023 on 2002/05/31 by efong@efong_r400_win_tor_doc

 put in another problem

Change 30961 on 2002/05/30 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 30959 on 2002/05/30 by jacarey@fl_jcarey2

 Add hook to generate real-time microcode...

Change 30955 on 2002/05/30 by jacarey@fl_jcarey2

 Fix name of context_done event used for state management.

Change 30934 on 2002/05/30 by jacarey@fl_jcarey2

 Fix typo in instr_prefetch packet

Change 30909 on 2002/05/30 by jacarey@fl_jcarey2

 Update for error checking.

Change 30893 on 2002/05/30 by jacarey@fl_jcarey2

 Fix Typos

Change 30886 on 2002/05/30 by jacarey@fl_jcarey2

 Updates for Protected Mode Error Checking...

Change 30864 on 2002/05/30 by jacarey@fl_jcarey2

 Update for Conditional Continue Micro Instruction

Change 30854 on 2002/05/30 by rbell@rbell_crayola_win_cvd

 updated

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1531 of 1898

 Page 269 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 30853 on 2002/05/30 by ashishs@fl_ashishs_r400_win

 update

Change 30814 on 2002/05/30 by bryans@bryans_crayola_doc

 Update for week of May 27

Change 30804 on 2002/05/30 by gregs@gregs_r400_win_marlboro

 updated regs.

Change 30750 on 2002/05/29 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 30747 on 2002/05/29 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 30734 on 2002/05/29 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 30732 on 2002/05/29 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 30722 on 2002/05/29 by tho@tho_r400_win

 test list for icon and cursor

Change 30715 on 2002/05/29 by jowang@jowang_R400_win

 Includes Vertical Filter control

Change 30713 on 2002/05/29 by rbell@rbell_crayola_win_cvd

 updated

Change 30696 on 2002/05/29 by gabarca@gabarca_crayola_win_cvd

 Put VGAHDP tests

Change 30694 on 2002/05/29 by jacarey@fl_jcarey2

 Added GMC to opcodes for new 2D packets.

Change 30673 on 2002/05/29 by jayw@MA_JAYW

 Page 270 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 for larry's review

Change 30626 on 2002/05/29 by jhoule@MA_JHOULE

 0.9.12: Update all the external interfaces.

Change 30615 on 2002/05/29 by rbell@rbell_crayola_win_cvd

 updated

Change 30609 on 2002/05/29 by rbell@rbell_crayola_win_cvd

 Added Milestone 2 tests

Change 30601 on 2002/05/29 by jayw@MA_JAYW

 ROP3 and Chroma Keying

Change 30595 on 2002/05/29 by gregs@gregs_r400_win_marlboro

 pm software review.

Change 30588 on 2002/05/29 by lseiler@lseiler_r400_win_marlboro

 Memory Format spec: final submission before changing file name and location.

Change 30546 on 2002/05/29 by jacarey@fl_jcarey2

 Remove reference of "Go" signals from the RBBM Spec.
 This was a typo.

Change 30502 on 2002/05/29 by jacarey@fl_jcarey2

 Change COND_MEM_WRITE TO COND_WRITE

Change 30466 on 2002/05/28 by gabarca@gabarca_crayola_win_cvd

 Updated write modes

Change 30448 on 2002/05/28 by jasif@jasif_r400_win_tor

 Updated.

Change 30415 on 2002/05/28 by jacarey@fl_jcarey2

 Removed CP_CG_2D_Mode signal per power management meeting...

Change 30406 on 2002/05/28 by khabbari@khabbari_r400_win

 Page 271 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 auto coef cal added

Change 30401 on 2002/05/28 by efong@efong_r400_win_tor_doc

 Added in Kaleidoscope Kludge document

Change 30348 on 2002/05/28 by rbell@rbell_crayola_win_cvd

 updated

Change 30342 on 2002/05/28 by jacarey@fl_jcarey2

 1. Added 8 more bios scratch registers
 2. DMA engine waits for MH to accept last write transaction before raising the interrupt.

Change 30277 on 2002/05/28 by ashishs@fl_ashishs_r400_win

 update

Change 30191 on 2002/05/27 by gabarca@gabarca_crayola_win_cvd

 Added more description to VGAHDP features

Change 30178 on 2002/05/27 by imuskatb@imuskatb_r400_win_cnimuskatb

 Updated

Change 30157 on 2002/05/27 by rvelez@rvelez_r400_win_tor

 Updated 5/27

Change 30152 on 2002/05/27 by gabarca@gabarca_crayola_win_cvd

 Updated Worksheet

Change 30151 on 2002/05/27 by gabarca@gabarca_crayola_win_cvd

 Updated worsheet

Change 30148 on 2002/05/27 by gabarca@gabarca_crayola_win_cvd

 Updated VGA modes spreadsheet

Change 30143 on 2002/05/27 by efong@efong_r400_win_tor_doc

 Updated

Change 30140 on 2002/05/27 by gabarca@gabarca_crayola_win_cvd

 Page 272 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 updated excel spreadsheet whit modes

Change 30139 on 2002/05/27 by chwang@chwang_doc_r400_win_cvd

 Update (nothing listed).

Change 30089 on 2002/05/25 by jimmylau@jimmylau_r400_win_tor

 Add test cases to verify composite H sync and also feature to disable H sync cutoff in
section 5.1.1.
 Add section 5.4 to test dual CRTCs in progressive scanning mode.

Change 30088 on 2002/05/25 by jimmylau@jimmylau_r400_win_tor

 Explain the algorithm to generate composite H sync, under section 6.2

Change 30067 on 2002/05/24 by mmang@fl_mmang_r400_win

 Updated spec for design review.

Change 30055 on 2002/05/24 by gabarca@gabarca_crayola_win_cvd

 Cleaned up, added tables

Change 30020 on 2002/05/24 by jacarey@fl_jcarey2

 Check everything in...

Change 30019 on 2002/05/24 by nbarbier@nbarbier_r400_win_tor

 Updated TMDS, DVO & HPD sections.

Change 29999 on 2002/05/24 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 29936 on 2002/05/24 by rvelez@rvelez_r400_win_tor

 Updated 5/24

Change 29926 on 2002/05/24 by jacarey@fl_jcarey2

 Update packet restrictions for Real-Time Processing.

Change 29916 on 2002/05/24 by jacarey@fl_jcarey2

 Updates to clarify what to do for real-time stream processing.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1532 of 1898

 Page 273 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 29909 on 2002/05/24 by gregs@gregs_r400_win_marlboro

 added to PM programming guide (still under construction).

Change 29907 on 2002/05/24 by jacarey@fl_jcarey2

 Add "invert" to real-time signal conditioning selects.

Change 29884 on 2002/05/24 by rherrick@ma_rherrick_crayola

 Once again, I think I submitted before WORD had actually written the changes to the
disk... Hopefully this time it makes it in correctly...

Change 29876 on 2002/05/24 by rherrick@ma_rherrick_crayola

 Update spec to reflect RB_ACCESS_TYPE modes implemented in the parser..

Change 29794 on 2002/05/23 by fhsien@fhsien_r400_win_marlboro

 UPDATE NAME

Change 29784 on 2002/05/23 by gregs@gregs_r400_win_marlboro

 programmer's guide - initial.

Change 29733 on 2002/05/23 by tho@tho_r400_win

 updated

Change 29703 on 2002/05/23 by jacarey@fl_jcarey2

 Update Compare Function of CP_RT*_Command Register

Change 29691 on 2002/05/23 by jacarey@fl_jcarey2

 Update Status and Planning Documents

Change 29643 on 2002/05/23 by jacarey@fl_jcarey2

 Document Updates

Change 29613 on 2002/05/23 by smoss@smoss_crayola_win

 su test

Change 29593 on 2002/05/22 by jimmylau@jimmylau_r400_win_tor

 Fill in section for CG interface.

 Page 274 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 29577 on 2002/05/22 by imuskatb@imuskatb_r400_win_cnimuskatb

 New Dispout reg test
 Updated CRTC reg test
 Updated Dispout xls doc

Change 29563 on 2002/05/22 by rvelez@rvelez_r400_win_tor

 Updated 5/22

Change 29558 on 2002/05/22 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 29553 on 2002/05/22 by jacarey@fl_jcarey2

 Checkpoint Validation Plan and To Liest

Change 29506 on 2002/05/22 by jacarey@fl_jcarey2

 Clarified that Sub-block Offset is DWORD offset for ME_INTI.

Change 29488 on 2002/05/22 by snezana@snezana_crayola_win_cvd

 small update, no real change

Change 29485 on 2002/05/22 by nbarbier@nbarbier_r400_win_tor

 Updated Macro Interface & IO Interface.

Change 29484 on 2002/05/22 by gregs@gregs_r400_win_marlboro

 Core Sclk clock PLL connection table + minor updates.

Change 29470 on 2002/05/22 by jacarey@fl_jcarey2

 Clarified Swap Controls

Change 29449 on 2002/05/22 by jacarey@fl_jcarey2

 Added RBBM_STATUS2 Register
 Added CP_RBBM_rt_enable to RBBM_STATUS register

Change 29438 on 2002/05/22 by jacarey@fl_jcarey2

 Clarify that DST_TYPE=7 not used in R400...since R128

Change 29437 on 2002/05/22 by jacarey@fl_jcarey2

 Page 275 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Corrections for 2D GMC Processing.

Change 29358 on 2002/05/21 by lseiler@lseiler_r400_win_marlboro

 RB Spec: Updated SX section, other updates in process

Change 29343 on 2002/05/21 by jacarey@fl_jcarey2

 Update CP Specs to Reflect 4KByte Alignment for Surfaces.

Change 29335 on 2002/05/21 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated crc test
 first crtc register test

Change 29322 on 2002/05/21 by rvelez@rvelez_r400_win_tor

 Added +l to disallow multiple file checkouts

Change 29320 on 2002/05/21 by efong@efong_r400_win_tor_doc

 changed it to +l to allow for locking by just one person

Change 29310 on 2002/05/21 by askende@andi_r400_docs

 fixed typo

Change 29305 on 2002/05/21 by jacarey@fl_jcarey2

 Clarify compare function for Cond_Mem_Write and Wait_Reg_Mem

Change 29286 on 2002/05/21 by jacarey@fl_jcarey2

 Clarification of signals used by the Wait_Until and RTS_WAIT_Until
 registers.

Change 29275 on 2002/05/21 by rvelez@rvelez_r400_win_tor

 Updated 5/17

Change 29272 on 2002/05/21 by tho@tho_r400_win

 updated

Change 29262 on 2002/05/21 by rvelez@rvelez_r400_win_tor

 Updated Top-level DC interface to match source code 5/21

Change 29256 on 2002/05/21 by chwang@chwang_doc_r400_win_cvd

 Page 276 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Weekly update.

Change 29237 on 2002/05/21 by efong@efong_r400_win_tor_doc

 Updated to be the same as the test plan

Change 29234 on 2002/05/21 by jasif@jasif_r400_win_tor

 Updated status.

Change 29231 on 2002/05/21 by jacarey@fl_jcarey2

 Updated compare function bit width for Cond_Mem_Write and Wait_Reg_Mem.
 Text Updates to MPEG_Index packet

Change 29227 on 2002/05/21 by efong@efong_r400_win_tor_doc

 changed from x130 to x132

Change 29223 on 2002/05/21 by efong@efong_r400_win_tor_doc

 Updated

Change 29199 on 2002/05/21 by jacarey@fl_jcarey2

 Updates to register descriptions and fix typos.

Change 29108 on 2002/05/20 by pmitchel@pmitchel_entire_depot_win

 add to depot

Change 29100 on 2002/05/20 by pmitchel@pmitchel_entire_depot_win

 adding file to depot

Change 29071 on 2002/05/20 by gregs@gregs_r400_win_marlboro

 added few gnd/pwr pins for TMDS and DACs.

Change 29061 on 2002/05/20 by csampayo@fl_csampayo_r400

 Udated status for the following test:
 r400vgt_hos_simple_linear_PNT_discrete_01

Change 29012 on 2002/05/20 by kcorrell@kcorrell_r400_docs_marlboro

 updated tc interface and display interface

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1533 of 1898

 Page 277 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 29003 on 2002/05/20 by gregs@gregs_r400_win_marlboro

 update

Change 28998 on 2002/05/20 by jacarey@fl_jcarey2

 Fix Typos in the MPEG_INDEX packet.

Change 28980 on 2002/05/19 by fhsien@fhsien_r400_win_marlboro

 Update

Change 28859 on 2002/05/17 by mzhu@mzhu_r400_win_tor

 Add LUT bypassing registers. Update LUT register descriptions

Change 28801 on 2002/05/17 by smoss@smoss_crayola_win

 SU tests with golds

Change 28787 on 2002/05/17 by jacarey@fl_jcarey2

 Updates to:
 1. Wait_Reg_Mem
 2. Cond_Mem_Write

Change 28768 on 2002/05/17 by kmahler@kmahler_r400_doc_lib

 Revised Paramtterized Test Case chapter to inlcude changes for specifying the Test Case
Number and other enhancements.

 Added section "Specify Input Arguments to the Test Program".

Change 28720 on 2002/05/17 by jacarey@fl_jcarey2

 No Clamping required by the CP for UR & LL compound indices.

Change 28718 on 2002/05/17 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 28711 on 2002/05/17 by jacarey@fl_jcarey2

 Remove reference to non-queued path for BIF transaction.

Change 28679 on 2002/05/17 by fhsien@fhsien_r400_win_marlboro

 Update RBD

 Page 278 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 28662 on 2002/05/17 by vliu@vliu_r400_cnvliu100_win_cvd

 Reformat

Change 28651 on 2002/05/17 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 28572 on 2002/05/16 by csampayo@fl_csampayo_r400

 Updated status for the following tests:
 r400vgt_dma_swap_indx16_01
 r400vgt_pass_thru_all_prims_01

Change 28562 on 2002/05/16 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 28532 on 2002/05/16 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 28526 on 2002/05/16 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 28512 on 2002/05/16 by jacarey@fl_jcarey2

 Max Context resets to 7

Change 28507 on 2002/05/16 by jacarey@fl_jcarey2

 Misc Updates

Change 28493 on 2002/05/16 by rbell@rbell_crayola_win_cvd

 updated

Change 28483 on 2002/05/16 by jacarey@fl_jcarey2

 Add Max Context to address

Change 28455 on 2002/05/16 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 28437 on 2002/05/16 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

 Page 279 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 28435 on 2002/05/16 by gregs@gregs_r400_win_marlboro

 added interrupt registers.

Change 28429 on 2002/05/16 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 28423 on 2002/05/16 by jacarey@fl_jacarey

 Update All

Change 28418 on 2002/05/16 by jacarey@fl_jacarey

 Update source clipping equation

Change 28412 on 2002/05/16 by jimmylau@jimmylau_r400_win_tor

 Fine adjust the parameter values in normal CRTC tests in section 5.1.1

Change 28404 on 2002/05/16 by ashishs@fl_ashishs_r400_win

 update

Change 28392 on 2002/05/16 by omesh@ma_omesh

 Added some more comments for the test group levels, to specify the goal of each group
of tests.

Change 28385 on 2002/05/16 by rbell@rbell_crayola_win_cvd

 Updated

Change 28367 on 2002/05/16 by jasif@jasif_r400_win_tor

 Updated after VGA testplan review.

Change 28362 on 2002/05/16 by omesh@ma_omesh

 Checking in top-level details of RBC related tests. Document (*.doc) links are not yet in
place, as document to be linked (RBC.doc) is not yet "section labelled".

Change 28348 on 2002/05/16 by bryans@bryans_crayola_doc

 Weekly DV goals for Video IP (Summary)

Change 28327 on 2002/05/16 by jacarey@fl_jacarey

 Page 280 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Checkpoint Everything

Change 28325 on 2002/05/16 by jacarey@fl_jacarey

 Microcode Update
 Update 2D Appendix for source clipping
 Update PM4 spec for Reg-to-Mem Code

Change 28275 on 2002/05/15 by fhsien@fhsien_r400_win_marlboro

 Update RBD part of list

Change 28261 on 2002/05/15 by bryans@bryans_crayola_doc

 Change emulation to M1/M2/M3 lineup

Change 28256 on 2002/05/15 by omesh@ma_omesh

 Made some corrections to misleading wording and added some more information to
document.

Change 28232 on 2002/05/15 by jacarey@fl_jacarey

 Update Number Formats for the 2D Packets.

Change 28224 on 2002/05/15 by fhsien@fhsien_r400_win_marlboro

 Update RBD testplan

Change 28223 on 2002/05/15 by jacarey@fl_jacarey

 Fix typo in Width format -- changed to 13:0

Change 28196 on 2002/05/15 by jacarey@fl_jacarey

 Update Top-Level Diagrams

Change 28149 on 2002/05/15 by gregs@gregs_r400_win_marlboro

 general update

Change 28148 on 2002/05/15 by rbell@rbell_crayola_win_cvd

 Updated test plan

Change 28138 on 2002/05/15 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1534 of 1898

 Page 281 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 28130 on 2002/05/15 by gabarca@gabarca_crayola_win_cvd

 Finished for Milestone 1, in bold

Change 28104 on 2002/05/15 by kmahler@kmahler_r400_doc_lib

 Added more detailed explanation of using RENDER_STATE's low-level interface per
Carlos' note.

Change 28098 on 2002/05/15 by jasif@jasif_r400_win_tor

 Added testlist.

Change 28095 on 2002/05/15 by georgev@ma_georgev

 Examples added.

Change 28092 on 2002/05/15 by csampayo@fl_csampayo_r400

 Updated status for the following test:
 r400vgt_dma_swap_indx32_01

Change 28087 on 2002/05/15 by omesh@ma_omesh

 Added some more stuff.... Document still incomplete with lots of areas of construction.
Will add test total counts today and update spreadsheet....

Change 28055 on 2002/05/15 by imuskatb@imuskatb_r400_win_cnimuskatb

 add new crtc test under debug
 updated crtc doc

Change 28047 on 2002/05/15 by jacarey@fl_jacarey

 1. CP Spec : Update Real-Time Register Names
 2. PM4 Spec : Updates to ME_Init and Event_Timestamp_Write

Change 28046 on 2002/05/15 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 28011 on 2002/05/14 by kmahler@kmahler_r400_doc_lib

 Added documentation for the following:

 1) Revised Parameterized Test Cases using input arguments and the
"Set_Default_Values()" function.

 2) VFD section from Michael Kelly.

 Page 282 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 28006 on 2002/05/14 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated

Change 28004 on 2002/05/14 by gabarca@gabarca_crayola_win_cvd

 tried to finish

Change 28003 on 2002/05/14 by mzhu@mzhu_r400_win_tor

 move dcp test plan to design/blocks directory
 add test plan for first milestone

Change 27980 on 2002/05/14 by jacarey@fl_jacarey

 Fixed typo on data width for writing to scratch memory.

Change 27974 on 2002/05/14 by vliu@vliu_r400_cnvliu100_win_cvd

 Update.

Change 27956 on 2002/05/14 by jayw@MA_JAYW

 added lower precision for majority of DeGamma table.
 New dither documentation in blend

Change 27949 on 2002/05/14 by rbell@rbell_crayola_win_cvd

 small fix

Change 27946 on 2002/05/14 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 27945 on 2002/05/14 by rvelez@rvelez_r400_win_tor

 Updated May 14

Change 27943 on 2002/05/14 by rbell@rbell_crayola_win_cvd

 Added more tests for Milestone 1

Change 27926 on 2002/05/14 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated all crtc test to include DACA_EN
 Updated crtc emu features doc
 updated display_out to include crc computation
 added one debug test for dispout

 Page 283 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 27914 on 2002/05/14 by jacarey@fl_jacarey

 Update Local Address Map

Change 27876 on 2002/05/14 by lseiler@lseiler_r400_win_marlboro

 RB register and architecture overview

Change 27869 on 2002/05/14 by jacarey@fl_jacarey

 Baseline CP Validation Plans

Change 27866 on 2002/05/14 by jacarey@fl_jacarey

 Added CGM rtr signals back to the RBBM.

Change 27861 on 2002/05/14 by jacarey@fl_jacarey

 Updated Scratch Memory Connections
 Updated Me_Debug_data Connections

Change 27848 on 2002/05/14 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 27835 on 2002/05/14 by efong@efong_r400_win_tor_doc

 changed the h/v_total for 600 and setup some more worksheets for printing

Change 27832 on 2002/05/14 by jacarey@fl_jacarey

 ME_Init Shader Base addresses are in Instructions, not DWORDs

Change 27824 on 2002/05/14 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 27823 on 2002/05/14 by efong@efong_r400_win_tor_doc

 line buffer test description

Change 27822 on 2002/05/14 by gregs@gregs_r400_win_marlboro

 update

Change 27818 on 2002/05/14 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

 Page 284 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 27761 on 2002/05/13 by gabarca@gabarca_crayola_win_cvd

 Updated features for milestone 1

Change 27752 on 2002/05/13 by rbell@rbell_crayola_win_cvd

 Update

Change 27751 on 2002/05/13 by jayw@MA_JAYW

 updated mc interface to eliminate access_subset and not the
 offsetting of the access_address by the frame buffer offset for
 non-external accesses.

Change 27729 on 2002/05/13 by jacarey@fl_jacarey

 Changed Num_Constants to Max_Contexts in the ME_Init Packet.

Change 27717 on 2002/05/13 by llefebvr@llefebvre_laptop_r400

 Changed CF opcodes, SQ->SP interface and SP->SQ constant index load interface.

Change 27714 on 2002/05/13 by jhoule@MA_JHOULE

 TP corrections

Change 27713 on 2002/05/13 by georgev@ma_georgev

 Some extra clarification.

Change 27707 on 2002/05/13 by georgev@ma_georgev

 Added sections from verifcatin spec.

Change 27706 on 2002/05/13 by rvelez@rvelez_r400_win_tor

 Updated 5/13

Change 27695 on 2002/05/13 by jacarey@fl_jacarey

 Update Address Map
 Top-Level Diagram Updates

Change 27679 on 2002/05/13 by jacarey@fl_jacarey

 Update Local Addresses

Change 27673 on 2002/05/13 by jasif@jasif_r400_win_tor

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1535 of 1898

 Page 285 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Updated.

Change 27670 on 2002/05/13 by imuskatb@imuskatb_r400_win_cnimuskatb

 Updated test to 4 active lines
 updated crtc test desp

Change 27669 on 2002/05/13 by chwang@chwang_doc_r400_win_cvd

 Added a few missing models.

Change 27665 on 2002/05/13 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 27664 on 2002/05/13 by rbell@rbell_crayola_win_cvd

 Graphics/Overlay tests for milestone 1

Change 27658 on 2002/05/13 by mdoggett@MA_MDOGGETT_LT

 Added vertex fetch slide

Change 27657 on 2002/05/13 by jhoule@MA_JHOULE

 Added EXP_ADJUST, pseudo-assembly for border color, and fast-path mention

Change 27654 on 2002/05/13 by efong@efong_r400_win_tor_doc

 Updated

Change 27653 on 2002/05/13 by semara@semara_r400_win_tor

 update the render secation

Change 27651 on 2002/05/13 by mdoggett@MA_MDOGGETT_LT

 Merged TC slides in

Change 27650 on 2002/05/13 by tho@tho_r400_win

 updated

Change 27648 on 2002/05/13 by mdoggett@MA_MDOGGETT_LT

 First version of TC SW review

Change 27645 on 2002/05/13 by jhoule@MA_JHOULE

 Page 286 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 For merging with Michael

Change 27644 on 2002/05/13 by jacarey@fl_jacarey

 Instruction Load packets support loading of the entire instruction
 memory.

Change 27640 on 2002/05/13 by rbell@rbell_crayola_win_cvd

 Added

Change 27634 on 2002/05/13 by jacarey@fl_jacarey

 update cp spec.

Change 27623 on 2002/05/13 by chwang@chwang_doc_r400_win_cvd

 Small update

Change 27621 on 2002/05/13 by csampayo@fl_csampayo_lt_r400

 Updated VGT tests status

Change 27596 on 2002/05/13 by rbell@rbell_crayola_win_cvd

 updated

Change 27592 on 2002/05/13 by ygiang@ygiang_r400_win_marlboro_p4

 update

Change 27591 on 2002/05/13 by gregs@gregs_r400_sun_marlboro

 new model.

Change 27589 on 2002/05/13 by fhsien@fhsien_r400_win_home_marlboro

 Change little at home

Change 27588 on 2002/05/13 by smoss@smoss_crayola_win

 update

Change 27536 on 2002/05/10 by ashishs@fl_ashishs_r400_win

 update

Change 27525 on 2002/05/10 by fhsien@fhsien_r400_win_marlboro

 Page 287 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Update with new info

Change 27523 on 2002/05/10 by csampayo@fl_csampayo_r400

 Updated status for the following test:
 r400vgt_dma_index_rectangle_list_01

Change 27510 on 2002/05/10 by frising@ma_frising

 v.1.39
 -4KB aligned for all textures
 -Update data format table to be consistent with RB, add interpolate
 and replicate YUV formats
 -Move to Larry's convention for endian swapping
 -Remove FETCH_VALID_ONLY in vertex instruction and replace with
MUST_BE_ONE
 -Start to clean up usage tables. Lots to do still.

Change 27502 on 2002/05/10 by georgev@ma_georgev

 First revision so that everyone else can get it in Perforce.

Change 27499 on 2002/05/10 by jasif@jasif_r400_win_tor

 Updated dccif model owner.

Change 27488 on 2002/05/10 by rbell@rbell_crayola_win_cvd

 Updated for milestone 1 GRP/OVL features

Change 27467 on 2002/05/10 by jacarey@fl_jacarey

 Fix Typo

Change 27463 on 2002/05/10 by jhoule@MA_JHOULE

 For SW review (unfinished)

Change 27455 on 2002/05/10 by gregs@gregs_r400_win_marlboro

 update

Change 27439 on 2002/05/10 by jacarey@fl_jacarey

 Update

Change 27431 on 2002/05/10 by jacarey@fl_jacarey

 Page 288 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Instructions Added to Simplify Reading the Micro RAM
 Fix Typo in the Pseudocode.

Change 27421 on 2002/05/10 by jacarey@fl_jacarey

 Updates for ME_INIT Packet

Change 27415 on 2002/05/10 by jacarey@fl_jacarey

 Update for Registers and Text Update to the CP Specification.

Change 27406 on 2002/05/10 by jacarey@fl_jacarey

 Update to Internal Address Map (Comments Only)

Change 27386 on 2002/05/10 by imuskatb@imuskatb_r400_win_cnimuskatb

 Updated crtc_contorller to handle boundary conditions
 golden for the first 4 test of crtc
 dispout updated7

Change 27385 on 2002/05/10 by jacarey@fl_jacarey

 Checkpoint Updates to Specification
 Update list of things to do.

Change 27373 on 2002/05/10 by omesh@ma_omesh

 Added test cases for Destination Color Blending as derived from Source Color Blending
and also added notes on Source Alpha Blending test strategy.

Change 27329 on 2002/05/10 by jhoule@MA_JHOULE

 Changed PREDICATE_CONDITION to PRED_CONDITION in PRED_SELECT
description.

Change 27325 on 2002/05/10 by llefebvr@llefebvre_laptop_r400

 Presentation for the 5/13.

Change 27323 on 2002/05/10 by jhoule@MA_JHOULE

 1.38
 Instruction changes:
 Added PRED_SELECT and PRED_CONDITION for the sequencer to manage pixel
masks.
 Moved FETCH_VALID_ONLY to bit 19 in TFetch, and added it to VFetch.

Change 27322 on 2002/05/10 by jacarey@fl_jacarey

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1536 of 1898

 Page 289 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 1. Remove CONST_PREFETCH Packet
 2. Update LCC pseudocode for PFP

Change 27316 on 2002/05/10 by jacarey@fl_jacarey

 Optional processing of Type-2 and Type-3 NOPs by ME.

Change 27314 on 2002/05/10 by rherrick@ma_rherrick_crayola

 Not sure what was checked in for last revision since SAMBA was acting flaky on me...
Rechecking in the changes

Change 27313 on 2002/05/10 by rherrick@ma_rherrick_crayola

 Fixed ADDRESS documentation to match implementation...

Change 27302 on 2002/05/10 by smorein@smorein_r400

 First rewrite of programing guide. Some parts still missing, will go in on monday.

Change 27264 on 2002/05/09 by jowang@jowang_R400_win

 VF Control -- RGB

Change 27254 on 2002/05/09 by jacarey@fl_jacarey

 STQ is now 114 deep.

Change 27251 on 2002/05/09 by jacarey@fl_jacarey

 Update CNT register loading

Change 27241 on 2002/05/09 by jacarey@fl_jacarey

 Update PM4 spec for me_init

Change 27237 on 2002/05/09 by jacarey@fl_jacarey

 Updated Picture

Change 27233 on 2002/05/09 by grayc@grayc_r400_win

 describes test bench for cp/rbbm

Change 27230 on 2002/05/09 by jasif@jasif_r400_win_tor

 Vga emulator features and test schedule.

 Page 290 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 27223 on 2002/05/09 by ashishs@fl_ashishs_r400_win

 update

Change 27221 on 2002/05/09 by gregs@gregs_r400_win_marlboro

 updated with Y25LF05 info.

Change 27214 on 2002/05/09 by omesh@ma_omesh

 Added RBC Verification Plan (new file), currently under development, as well as a link
to it from the main RB Verification Plan document.

Change 27208 on 2002/05/09 by chwang@chwang_doc_r400_win_cvd

 Small update.

Change 27188 on 2002/05/09 by jacarey@fl_jacarey

 Update

Change 27153 on 2002/05/09 by jacarey@fl_jacarey

 Checkpoint Partial Update of CP Registers.

Change 27152 on 2002/05/09 by ygiang@ygiang_r400_win_marlboro_p4

 update

Change 27127 on 2002/05/09 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 27064 on 2002/05/08 by nbarbier@nbarbier_r400_win_tor

 Updated register test information.

Change 27053 on 2002/05/08 by gabarca@gabarca_crayola_win_cvd

 submit

Change 27048 on 2002/05/08 by jacarey@fl_jacarey

 Corrections for 8 Sub Blocks

Change 27046 on 2002/05/08 by jacarey@fl_jacarey

 Checkpoint Specifications
 1. ME_INIT Packet

 Page 291 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 2. Updates to CP Registers

 ... Still Not Done Yet ...

Change 27042 on 2002/05/08 by imuskatb@imuskatb_r400_win_cnimuskatb

 Updated documents
 fix latest lb, fix chunck_size
 new crtc_test with golden

Change 27039 on 2002/05/08 by sallen@sallen_r400_win_marlboro

 updates

Change 27038 on 2002/05/08 by rvelez@rvelez_r400_win_tor

 Updated schedule for CRTC/DISPOUT

Change 27021 on 2002/05/08 by jimmylau@jimmylau_r400_win_tor

 H sync and V sync polarities are set to different values for normal CRTC and VGA
CRTC test cases.
 Add a list of CRTC registers that are not tested in normal CRTC register test because
they are either read-only or write only.

Change 27009 on 2002/05/08 by rvelez@rvelez_r400_win_tor

 Updated May 8

Change 26998 on 2002/05/08 by jacarey@fl_jacarey

 Add Booleans to Source Select

Change 26996 on 2002/05/08 by khabbari@khabbari_r400_win

 lb test plan changes

Change 26991 on 2002/05/08 by tien@ma_spinach

 Updated the tp area page.

Change 26984 on 2002/05/08 by rbagley@ma_rbagley_ltxp

 Updates include a round of revision from Andi Skende, including updates to the shader
pipe related material.

Change 26978 on 2002/05/08 by ygiang@ygiang_r400_win_marlboro_p4

 v1

 Page 292 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 26959 on 2002/05/08 by jacarey@fl_jacarey

 Update Invalidate_State and Subblock_Prefetch packets
 to support eight sub-blocks.

Change 26949 on 2002/05/08 by jacarey@fl_jacarey

 Fix typo in rbbm_perf_cntl register.

Change 26934 on 2002/05/08 by tho@tho_r400_win

 -name of document changed
 -icon/cursor status updated

Change 26928 on 2002/05/08 by khabbari@khabbari_r400_win

 added the start of line to lb/dcp interface doc

Change 26924 on 2002/05/08 by efong@efong_r400_win_tor_doc

 moved this file

Change 26923 on 2002/05/08 by efong@efong_r400_win_tor_doc

 moved to be with the design block.

Change 26922 on 2002/05/08 by nbarbier@nbarbier_r400_win_tor

 Added register test for DCIO block.

Change 26920 on 2002/05/08 by tho@tho_r400_win

 updated document w/ icon cursor status

Change 26919 on 2002/05/08 by efong@efong_r400_win_tor_doc

 1st rev of the scaler feature list for emulator

Change 26901 on 2002/05/08 by jacarey@fl_jacarey

 1. Set_State supports eight sub-blocks
 2. Updates to Set_CF_Constant

Change 26886 on 2002/05/08 by jacarey@fl_jacarey

 Update name of register that CP writes for the Booleans.

Change 26885 on 2002/05/08 by jacarey@fl_jacarey

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1537 of 1898

 Page 293 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 1. Set_State:
 a. Eight Sub-Blocks
 b. Sub-Block Size Encoding = (n+1)*8

 2. New Packet : Set_CF_Constant

Change 26884 on 2002/05/08 by jacarey@fl_jacarey

 Sub-block Size Encoding Update

Change 26854 on 2002/05/07 by csampayo@fl_csampayo_r400

 Updated VGT test status, as well as, limited other units test status to 99%

Change 26843 on 2002/05/07 by jowang@jowang_R400_win

 Totally out of date.

Change 26842 on 2002/05/07 by imuskatb@imuskatb_r400_win_cnimuskatb

 Test and Feature list. First pass

Change 26841 on 2002/05/07 by jowang@jowang_R400_win

 Initial VF design.

Change 26839 on 2002/05/07 by jowang@jowang_R400_win

 renamed to VF Block.vsd

Change 26835 on 2002/05/07 by jowang@jowang_R400_win

 Initial VF Design

Change 26821 on 2002/05/07 by rvelez@rvelez_r400_win_tor

 Split up DCCIF and DCCARB documents

Change 26819 on 2002/05/07 by gregs@gregs_r400_sun_marlboro

 changed paths to chip directory + revision history + verified that it works.

Change 26808 on 2002/05/07 by jacarey@fl_jacarey

 Moving Microcode Source

Change 26798 on 2002/05/07 by jacarey@fl_jacarey

 Page 294 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Update Revision

Change 26795 on 2002/05/07 by jacarey@fl_jacarey

 Added Type-0 Packet Support to Microcode.

Change 26792 on 2002/05/07 by jayw@MA_JAYW

 added notebook

Change 26784 on 2002/05/07 by jayw@MA_JAYW

 DeGamma increased precision to avoid
 errors when temporarily over 1.0 due to
 0.055 add.

Change 26779 on 2002/05/07 by rvelez@rvelez_r400_win_tor

 Updated 5/7/02

Change 26762 on 2002/05/07 by gregs@gregs_r400_sun_marlboro

 This is unchanged R300 file.

Change 26760 on 2002/05/07 by ygiang@ygiang_r400_win_marlboro_p4

 updated: test list

Change 26759 on 2002/05/07 by bryans@bryans_crayola_doc

 Updated as per status meeting

Change 26727 on 2002/05/07 by smoss@smoss_crayola_win

 SU tests

Change 26721 on 2002/05/07 by llefebvr@llefebvre_laptop_r400

 presentation for the SW meeting (draft)

Change 26711 on 2002/05/07 by ashishs@fl_ashishs_r400_win

 update

Change 26701 on 2002/05/07 by rbell@rbell_crayola_win_cvd

 First draft of DCP feature list

Change 26642 on 2002/05/06 by jimmylau@jimmylau_r400_win_tor

 Page 295 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Add feature to start H and V counter at some even offset other than 0.
 Add feature to choose whether to cutoff H sync A/B at when H blank ends.

Change 26638 on 2002/05/06 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 26627 on 2002/05/06 by lkang@lkang_r400_win_tor

 update on tristate h/vsync's in d1, D2 & D3

Change 26614 on 2002/05/06 by jacarey@fl_jacarey

 Checkpoint Code

Change 26605 on 2002/05/06 by jacarey@fl_jacarey

 Update to Micro Instructions

Change 26598 on 2002/05/06 by jacarey@fl_jacarey

 Update to Access Jump Table in RAM

Change 26574 on 2002/05/06 by rvelez@rvelez_r400_win_tor

 Updated May 6/02

Change 26555 on 2002/05/06 by mdoggett@MA_MDOGGETT_LT

 Updates to TP, TPC, MH interfaces; L1 Tags; TCO diagram; TCD Padding; L2 cache
pixel formats table; L2 cacheline format conversions table; 2d l2 one lyaer cacheline format

Change 26554 on 2002/05/06 by jacarey@fl_jacarey

 MicroCode for Type1 packets.

Change 26532 on 2002/05/06 by lkang@lkang_r400_win_tor

 Toronto milestone #1 schedule

Change 26529 on 2002/05/06 by jimmylau@jimmylau_r400_win_tor

 Change registers DxCRTC_H/V_SYNC_A_END to 13 bits, due to added feature of
testing H/V counter wrap around.
 Update VGA vertical timing parameters to 11 bits.

Change 26525 on 2002/05/06 by jimmylau@jimmylau_r400_win_tor

 Page 296 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Change register name from DxCRTC_H/V_COUNT_OFFSET to
DxCRTC_H/V_SYNC_A_START.
 Change test cases for H/V counter wrap around so that H/V_SYNC_A_START are even
numbers,
 since hardware does not support odd number H/V_SYNC_A_START.

Change 26510 on 2002/05/06 by tho@tho_r400_win

 updated

Change 26506 on 2002/05/06 by vliu@vliu_r400_cnvliu100_win_cvd

 Rename the file

Change 26505 on 2002/05/06 by jacarey@fl_jacarey

 2D Indirect Buffer Invalidates Pointers instead
 of the hardware doing this implicitly.

Change 26504 on 2002/05/06 by vliu@vliu_r400_cnvliu100_win_cvd

 emulation / simulation feature list

Change 26500 on 2002/05/06 by nluu@nluu_r400_doclib_cnnb

 - update

Change 26495 on 2002/05/06 by chwang@chwang_doc_r400_win_cvd

 Update.

Change 26491 on 2002/05/06 by efong@efong_r400_win_tor_doc

 Updated

Change 26487 on 2002/05/06 by jasif@jasif_r400_win_tor

 Updated.

Change 26484 on 2002/05/06 by mmantor@mmantor_r400_win

 update per comments from Doug

Change 26478 on 2002/05/06 by ygiang@ygiang_r400_win_marlboro_p4

 added: more coments and tests to list

Change 26474 on 2002/05/06 by jacarey@fl_jacarey

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1538 of 1898

 Page 297 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Checkpoint Microcode Before CPP Updates

Change 26473 on 2002/05/06 by rbell@rbell_crayola_win_cvd

 Added VeriBench User's Guide

Change 26470 on 2002/05/06 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated

Change 26465 on 2002/05/06 by rbell@rbell_crayola_win_cvd

 updated

Change 26395 on 2002/05/03 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 26388 on 2002/05/03 by mmantor@mmantor_r400_win

 added state module description

Change 26377 on 2002/05/03 by gregs@gregs_r400_win_marlboro

 update.

Change 26371 on 2002/05/03 by scroce@scroce_r400_win_marlboro

 update

Change 26370 on 2002/05/03 by jayw@MA_JAYW

 friday night gamma fixed

Change 26364 on 2002/05/03 by rvelez@rvelez_r400_win_tor

 Update May 3/02

Change 26354 on 2002/05/03 by hartogs@fl_hartogs

 Fixed order of selections for VGT_OTUPUT_PATH_CNTL register.

Change 26332 on 2002/05/03 by jacarey@fl_jacarey

 Checkpoint All Documents and Microcode.

Change 26326 on 2002/05/03 by georgev@ma_georgev

 Changes for first primlib tests, changes to tg.cpp to support

 Page 298 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 ranges, SX spreadsheet and verification document, and a tg.h
 that is out of date, but the good one is missing.

Change 26301 on 2002/05/03 by jacarey@fl_jacarey

 1. Baseline Checklist for Post June 15th
 2. Microcode Update
 a. Main Loop

Change 26292 on 2002/05/03 by gregs@gregs_r400_win_marlboro

 added to verification section.

Change 26281 on 2002/05/03 by ygiang@ygiang_r400_win_marlboro_p4

 updated: comments

Change 26252 on 2002/05/03 by jimmylau@jimmylau_r400_win_tor

 removed test features : stereosync and dual CRTCs
 add test features : H/V counter tests, CRTC register tests

Change 26250 on 2002/05/03 by gregs@gregs_r400_win_marlboro

 spelling

Change 26242 on 2002/05/03 by jacarey@fl_jacarey

 1. REPL command Added to OPER field.
 2. Clarification that SUB* implies "SRC0 - SRC1"
 3. MOV instruction is translated to:
 oper=shl;immed=0x00000000;

Change 26237 on 2002/05/03 by jacarey@fl_jacarey

 Indicate input stage as a repeater.

Change 26229 on 2002/05/03 by ashishs@fl_ashishs_r400_win

 update

Change 26224 on 2002/05/03 by bryans@bryans_crayola_doc

 Renamed: R400 VideoIP DV Methodology -> VideoIP DV Methodology
 Moved document to simulator/environment directory

Change 26205 on 2002/05/03 by jacarey@fl_jacarey

 Microcode:

 Page 299 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Changed jbit bool=<bit> @<address>;
 to: jbit @<address>;bool=<bit>;

Change 26166 on 2002/05/02 by rvelez@rvelez_r400_win_tor

 Split up DCCIF Interface Spec to separate DCCIF and DCCARB interfaces

Change 26165 on 2002/05/02 by rvelez@rvelez_r400_win_tor

 Split up DCCIF and DCCARB interfaces into two documents

Change 26154 on 2002/05/02 by fhsien@fhsien_r400_win_marlboro

 Update Depth tests

Change 26152 on 2002/05/02 by vliu@vliu_r400_cnvliu100_win_cvd

 Modify the structure of the test_lib/src tree.

Change 26149 on 2002/05/02 by jayw@MA_JAYW

 more fixes now starting monotinicity

Change 26138 on 2002/05/02 by smoss@smoss_crayola_win

 SU tests and golds

Change 26118 on 2002/05/02 by gregs@gregs_r400_win_marlboro

 changed default value of SUBSYS_ID ROM based strap.

Change 26111 on 2002/05/02 by efong@efong_r400_win_tor_doc

 Initial revision

Change 26110 on 2002/05/02 by scroce@scroce_r400_win_marlboro

 Added examples and a lot of info.

Change 26103 on 2002/05/02 by smoss@smoss_crayola_win

 SU tests, golds

Change 26067 on 2002/05/02 by rvelez@rvelez_r400_win_tor

 Updated 5/2

Change 26066 on 2002/05/02 by aashkar@fl_aashkar

 Page 300 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Removed unused address

Change 26065 on 2002/05/02 by aashkar@fl_aashkar

 fixed typo

Change 26057 on 2002/05/02 by llefebvr@llefebvre_laptop_r400

 Modification on the Control flow instructions.

Change 26055 on 2002/05/02 by rherrick@ma_rherrick_crayola

 Parser is working... Producing same results as Hard coded version... Documentation
updated to reflect new byteEnable and Tag inclusion in ADDRESS directive...

Change 26054 on 2002/05/02 by ygiang@ygiang_r400_win_marlboro_p4

 Added: Test list for SP

Change 26046 on 2002/05/02 by khabbari@khabbari_r400_win

 small changes

Change 26037 on 2002/05/02 by aashkar@fl_aashkar

 Added RT_ENABLE to address map

Change 26036 on 2002/05/02 by lseiler@lseiler_r400_win_marlboro

 Replaced by the Autoreg generated register description

Change 26035 on 2002/05/02 by jacarey@fl_jacarey

 Type 1 Packet Corrections

Change 26033 on 2002/05/02 by bryans@bryans_crayola_doc

 Update to include emulator diagram/flow with reify

Change 26030 on 2002/05/02 by aashkar@fl_aashkar

 Added missing Address for Write Confirm ID FIFO

Change 26028 on 2002/05/02 by jayw@MA_JAYW

 added example and fixed some gamma bugs

Change 26025 on 2002/05/02 by jacarey@fl_jacarey

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1539 of 1898

 Page 301 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Microcode
 1. Type1 Packet
 2. NOP Packet
 3. Reserved Bit Check Routine
 4. Invalid Opcode Check Routine

Change 26013 on 2002/05/02 by kcorrell@kcorrell_r400_docs_marlboro

 updated TC interface, DC interface and buffering, added auxiliary logic section.
Modified address translation to include HDP_FB_START and ROM_BASE.

Change 25975 on 2002/05/02 by jacarey@fl_jacarey

 Clarified use of the texture constants.

Change 25958 on 2002/05/02 by jacarey@fl_jacarey

 Partial Update to Top-Level Diagram

Change 25957 on 2002/05/02 by jacarey@fl_jacarey

 Partial updates for supporting new 2D packets.

Change 25955 on 2002/05/02 by jacarey@fl_jacarey

 Removed signals that no longer exist:
 RBBM_CP_3d_idle
 CP_RBBM_2d_idle

Change 25917 on 2002/05/01 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 25912 on 2002/05/01 by nbarbier@nbarbier_r400_win_tor

 Made changes following test plan review for first milestone.

Change 25896 on 2002/05/01 by lkang@lkang_r400_win_tor

 update on 5/1

Change 25850 on 2002/05/01 by jayw@MA_JAYW

 Only Gamma monotinicity left.

Change 25824 on 2002/05/01 by jacarey@fl_jacarey

 Update signal names for the memory hub power management.

 Page 302 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 25816 on 2002/05/01 by jhoule@MA_JHOULE

 0.9.9-0.9.10:
 Inserted complete size restriction from .xls file.
 Wrapping/Clamping description.
 TP->TC interface suggestion.

Change 25806 on 2002/05/01 by jacarey@fl_jacarey

 Update

Change 25805 on 2002/05/01 by gregs@gregs_r400_win_marlboro

 added another open issue.

Change 25804 on 2002/05/01 by jacarey@fl_jacarey

 Micro Engine Details

Change 25802 on 2002/05/01 by gregs@gregs_r400_win_marlboro

 added another ROM: Y25LF05

Change 25778 on 2002/05/01 by jacarey@fl_jacarey

 Renamed MH_CP_coherency_busy to MH_RBBM_coherency_busy

Change 25772 on 2002/05/01 by jacarey@fl_jacarey

 Update Docuents with ME details.

Change 25770 on 2002/05/01 by gregs@gregs_r400_win_marlboro

 added default value of MEM_AP_SIZE as an open issue.

Change 25763 on 2002/05/01 by jacarey@fl_jacarey

 Added RT Enable Flag

Change 25719 on 2002/05/01 by gabarca@gabarca_crayola_win_cvd

 updated

Change 25694 on 2002/05/01 by jacarey@fl_jacarey

 Checkpoint Code

Change 25685 on 2002/05/01 by gregs@gregs_r400_win_marlboro

 Page 303 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 added comments on TMDS pwr/gnd requirements.

Change 25652 on 2002/04/30 by jayw@MA_JAYW

 minor update in progress

Change 25629 on 2002/04/30 by jacarey@fl_jacarey

 Update Micro Engine Local Addresses

Change 25628 on 2002/04/30 by jacarey@fl_jacarey

 Details to Micro Engine
 Local Addresses for Micro Engine

Change 25624 on 2002/04/30 by scroce@scroce_r400_win_marlboro

 added PLI info

Change 25622 on 2002/04/30 by gabarca@gabarca_crayola_win_cvd

 updated

Change 25596 on 2002/04/30 by hartogs@fl_hartogs

 Version 0.93
 Added conversion method "VGT_GRP_FIX_1_23_TO_FLOAT" to the list of specifiable
conversion methods in the register VGT_GROUP_VECT_0_FMT_CNTL. This conversion
method is, at the time of this revision, used solely by the tessellation engine to convert
interpolation weights from fixed point 1.23 format to 32-bit IEEE floating point.
 Added "RETAIN_ORDER" and "RETAIN_QUADS" fields to the register
VGT_GROUP_PRIM_TYPE.
 Added description of how the prim type information flows through the VGT to section
5.2.1.

Change 25586 on 2002/04/30 by efong@efong_r400_win_tor_doc

 updated with crtc_en signal

Change 25581 on 2002/04/30 by ashishs@fl_ashishs_r400_win

 update

Change 25570 on 2002/04/30 by ashishs@fl_ashishs_r400_win

 update

Change 25561 on 2002/04/30 by ashishs@fl_ashishs_r400_win

 Page 304 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 update

Change 25558 on 2002/04/30 by gabarca@gabarca_crayola_win_cvd

 Finished establisshing features and sub-features to be tested, developed the VGA HDP
section, almost finished the VGA HDP test table spreadsheet

Change 25550 on 2002/04/30 by jacarey@fl_jacarey

 Checkpoint Micro Engine Documentation

Change 25547 on 2002/04/30 by lkang@lkang_r400_win_tor

 update on 4/30

Change 25540 on 2002/04/30 by ashishs@fl_ashishs_r400_win

 update

Change 25521 on 2002/04/30 by ashishs@fl_ashishs_r400_win

 update

Change 25508 on 2002/04/30 by jacarey@fl_jacarey

 Update for Local Micro Engine Addresses

Change 25458 on 2002/04/29 by gabarca@gabarca_crayola_win_cvd

 updated

Change 25457 on 2002/04/29 by gabarca@gabarca_crayola_win_cvd

 updated

Change 25450 on 2002/04/29 by csampayo@fl_csampayo_r400

 Update status for the following VGT test
 r400vgt_index_size_01

Change 25418 on 2002/04/29 by sbagshaw@sbagshaw

 VIP status for chip integration as of April 23rd, 2002

Change 25415 on 2002/04/29 by jayw@MA_JAYW

 must run

Change 25413 on 2002/04/29 by jacarey@fl_jacarey

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1540 of 1898

 Page 305 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Checkpoint Specifications

Change 25386 on 2002/04/29 by jasif@jasif_r400_win_tor

 Updated forcible signals section to use prefix "force" for all forcible signal names.

Change 25372 on 2002/04/29 by gabarca@gabarca_crayola_win_cvd

 updated

Change 25354 on 2002/04/29 by lkang@lkang_r400_win_tor

 update on 4/29

Change 25346 on 2002/04/29 by fhsien@fhsien_r400_win_marlboro

 Only change the format of the template for RB verification

Change 25339 on 2002/04/29 by jasif@jasif_r400_win_tor

 Updated

Change 25335 on 2002/04/29 by rbell@rbell_crayola_win_cvd

 updated

Change 25334 on 2002/04/29 by gabarca@gabarca_crayola_win_cvd

 Put in VGA HDP

Change 25326 on 2002/04/29 by nluu@nluu_r400_doclib_cnnb

 - update

Change 25324 on 2002/04/29 by mmantor@mmantor_r400_win

 updated spec for PA_SC_su interface changes
 updated sc.v and created tb directories

Change 25305 on 2002/04/29 by efong@efong_r400_win_tor_doc

 Updated

Change 25304 on 2002/04/29 by chwang@chwang_doc_r400_win_cvd

 Update.

Change 25303 on 2002/04/29 by askende@andi_r400_docs

 Page 306 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 modifications to RB-SX interfaces

Change 25296 on 2002/04/29 by omesh@ma_omesh

 Just changed the heading/title of document. Nothing else.

Change 25295 on 2002/04/29 by gabarca@gabarca_crayola_win_cvd

 Cahnged name

Change 25280 on 2002/04/29 by jacarey@fl_jacarey

 No special logic in the RBBM for detecting IDCT register transactions. Any logic needed
will be in the CP's micro engine.

Change 25278 on 2002/04/29 by gabarca@gabarca_crayola_win_cvd

 Cahnged name

Change 25277 on 2002/04/29 by tho@tho_r400_win

 updated

Change 25275 on 2002/04/29 by gabarca@gabarca_crayola_win_cvd

 Update

Change 25273 on 2002/04/29 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 25268 on 2002/04/29 by jacarey@fl_jacarey

 Update Pre-Fetch Parser

Change 25197 on 2002/04/26 by csampayo@fl_csampayo_lt_r400

 Added status for the following tests:
 r400vgt_index_offset_01
 r400vgt_index_offset_02
 r400vgt_index_offset_03

Change 25193 on 2002/04/26 by csampayo@fl_csampayo_lt_r400

 Resubmit previous

Change 25192 on 2002/04/26 by csampayo@fl_csampayo_lt_r400

 Page 307 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Added index offset to VGT section

Change 25187 on 2002/04/26 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 25148 on 2002/04/26 by ashishs@fl_ashishs_r400_win

 just checked out

Change 25145 on 2002/04/26 by ashishs@fl_ashishs_r400_win

 update

Change 25135 on 2002/04/26 by scroce@scroce_r400_win_marlboro

 Added some new features and modified some current features

Change 25134 on 2002/04/26 by jayw@MA_JAYW

 minor tweak to the exponent table, adding one to exponent
 added +1.0 bybass in front of degamma.

Change 25105 on 2002/04/26 by jacarey@fl_jacarey

 1. Remove GEN_INT_* references
 2. No Shared Registers -- Update read return bus
 3. Added MASTER_INT_SIGNAL register

Change 25075 on 2002/04/26 by jacarey@fl_jacarey

 Update Documents

Change 25056 on 2002/04/25 by gregs@gregs_r400_win_marlboro

 update

Change 25055 on 2002/04/25 by gregs@gregs_r400_win_marlboro

 updated number of analog sipply pins + descriptions.

Change 25046 on 2002/04/25 by jayw@MA_JAYW

 added MS gamma blech

Change 25020 on 2002/04/25 by ashishs@fl_ashishs_r400_win

 update

 Page 308 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 25014 on 2002/04/25 by ashishs@fl_ashishs_r400_win

 update

Change 24968 on 2002/04/25 by georgev@ma_georgev

 First Rev.

Change 24961 on 2002/04/25 by ctaylor@fl_ctaylor_r400_win_marlboro

 Spec Updates

Change 24941 on 2002/04/25 by jayw@MA_JAYW

 fixed a missing zero in DeGamma example and improved formatting of the result.

Change 24919 on 2002/04/25 by rherrick@ma_rherrick_crayola

 Updated spec to reflect two Texture Cache interface clients

Change 24910 on 2002/04/25 by csampayo@fl_csampayo_r400

 Updated the schedule and the status for the following tests:
 r400vgt_index_min_max_01
 r400vgt_index_min_max_02

Change 24905 on 2002/04/25 by jacarey@fl_jacarey

 Fixed typo of force_mismatch

Change 24904 on 2002/04/25 by lkang@lkang_r400_win_tor

 update on 4/24

Change 24902 on 2002/04/25 by lkang@lkang_r400_win_tor

 update on 4/24

Change 24901 on 2002/04/25 by lkang@lkang_r400_win_tor

 update after spec review

Change 24899 on 2002/04/25 by rherrick@ma_rherrick_crayola

 Improve documentation to reflect implementation (including data-spec definition)

Change 24888 on 2002/04/25 by jayw@jayw_r400_win_home

 Added example of DeGamma to blend doc and

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1541 of 1898

 Page 309 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 added exponent table documentation

Change 24832 on 2002/04/24 by bryans@bryans_crayola_doc

 Added general flow diagrams (more to come)

Change 24827 on 2002/04/24 by jayw@MA_JAYW

 Added graph around DEBUGX

Change 24822 on 2002/04/24 by jayw@MA_JAYW

 made debugging a particular x easier

Change 24810 on 2002/04/24 by jayw@MA_JAYW

 added debug lines at the end

Change 24807 on 2002/04/24 by jayw@MA_JAYW

 fixed with no implicit leading one and exponent
 bias of +15 as per Paul Vella's request.

Change 24796 on 2002/04/24 by gregs@gregs_r400_win_marlboro

 SPLL registers update.

Change 24713 on 2002/04/24 by georgev@ma_georgev

 Opened for edit.

Change 24712 on 2002/04/24 by smoss@smoss_crayola_win

 updated su tests

Change 24707 on 2002/04/24 by bryans@bryans_crayola_doc

 Update directory tree (parts_lib) for virage/testchip_vid subdirs

Change 24676 on 2002/04/24 by jacarey@fl_jacarey

 Added Read Request Ports to the MIU

Change 24675 on 2002/04/24 by jacarey@fl_jacarey

 Powerpoint slides from 2D PM4 Review

Change 24674 on 2002/04/24 by jacarey@fl_jacarey

 Page 310 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Checkpoint All Documents.

Change 24673 on 2002/04/24 by jayw@jayw_r400_win_home

 missing files added

Change 24639 on 2002/04/23 by csampayo@fl_csampayo_lt_r400

 Updated status for the following tests:
 r400vgt_reuse_depth_triangle_list_01
 r400vgt_reuse_depth_line_list_01

Change 24615 on 2002/04/23 by jimmylau@jimmylau_r400_win_tor

 move CRTC test plan documents under doc_lib/design/blocks/dc/crtc

Change 24604 on 2002/04/23 by gregs@gregs_r400_win_marlboro

 update

Change 24574 on 2002/04/23 by rbagley@ma_rbagley_ltxp

 Some updates (far from complete) to the syntax. More important, the doc is reorganized.

Change 24542 on 2002/04/23 by lkang@lkang_r400_win_tor

 update on 4/23

Change 24540 on 2002/04/23 by tien@ma_spinach

 Updated TP area estimate

Change 24536 on 2002/04/23 by lkang@lkang_r400_win_tor

 update on 4/23

Change 24519 on 2002/04/23 by jayw@MA_JAYW

 changed tag between MC and RB to 9 bits.

Change 24516 on 2002/04/23 by jayw@MA_JAYW

 fixed perl bug, more usefull X's found now.

Change 24489 on 2002/04/23 by jimmylau@jimmylau_r400_win_tor

 Add crtc_en signal in the SCL-CRTC interface specs.

Change 24484 on 2002/04/23 by frising@ma_frising

 Page 311 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 24 bit floating point format is E4M20 not E5M19. No version bump.

Change 24462 on 2002/04/23 by nbarbier@nbarbier_r400_win_tor

 Initial Revision.

Change 24445 on 2002/04/23 by jacarey@fl_jacarey

 Misc. Updates to 2D Appendix
 Reset "Valid" flags on 3D-to-2D Transitions in PFP.

Change 24416 on 2002/04/22 by csampayo@fl_csampayo_r400

 Updated status for the test
 r400vgt_reuse_depth_point_list_01

Change 24406 on 2002/04/22 by bryans@bryans_crayola_doc

 Update per status meeting

Change 24387 on 2002/04/22 by mmantor@mmantor_r400_win

 update to sc dumps and added last tile to walker out dump in sc_walker. Also updated the
standslone exe and the scan converter spec for the new sc=>sq interface

Change 24385 on 2002/04/22 by gregs@gregs_r400_win_marlboro

 update

Change 24353 on 2002/04/22 by lkang@lkang_r400_win_tor

 vga integration

Change 24352 on 2002/04/22 by lkang@lkang_r400_win_tor

 display integration plan

Change 24266 on 2002/04/22 by chwang@chwang_doc_r400_win_cvd

 Addition of BIF Model test plan.

Change 24243 on 2002/04/22 by gabarca@gabarca_crayola_win_cvd

 VGAREG_VGA_MEMORY_BASE_ADDRESS [31:25] Represents the start of
the 32 Meg aligned, 32 Meg sized area of memory where the VGA HDP and rendering reads and
writes.

Change 24234 on 2002/04/22 by chwang@chwang_doc_r400_win_cvd

 Page 312 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Updated with some implementation details.

Change 24230 on 2002/04/22 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 24218 on 2002/04/22 by jasif@jasif_r400_win_tor

 Updated.

Change 24209 on 2002/04/22 by efong@efong_r400_win_tor_doc

 Updated

Change 24195 on 2002/04/22 by chwang@chwang_doc_r400_win_cvd

 Update.

Change 24191 on 2002/04/22 by tho@tho_r400_win

 updated

Change 24187 on 2002/04/22 by imuskatb@imuskatb_r400_win_cnimuskatb

 Updated

Change 24173 on 2002/04/22 by rbell@rbell_crayola_win_cvd

 updated

Change 24170 on 2002/04/22 by gregs@gregs_r400_win_marlboro

 removed ROM sram area, as we are not going to have any memory in ROM.

Change 24082 on 2002/04/19 by csampayo@fl_csampayo_r400

 Updated status for following tests
 r400vgt_reuse_index_triangle_list_01
 r400vgt_reuse_index_line_list_01
 r400vgt_reuse_index_point_list_01

Change 24050 on 2002/04/19 by jacarey@fl_jacarey

 Remove constant flag from MIU logic.

Change 24049 on 2002/04/19 by pmitchel@pmitchel_r400_win_marlboro

 add

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1542 of 1898

 Page 313 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 24024 on 2002/04/19 by jacarey@fl_jacarey

 PM4 Spec Updates for Write Confirmation
 Microcode Updates for write confirmation.

Change 24008 on 2002/04/19 by gregs@gregs_r400_win_marlboro

 update.

Change 23984 on 2002/04/19 by georgev@ma_georgev

 Master and sub documents for verification plan

Change 23961 on 2002/04/19 by smoss@smoss_crayola_win

 added culling

Change 23958 on 2002/04/19 by bryans@bryans_crayola_doc

 Add macros:

 CHIP_EMU_ARCHS_CONFS
 CHIP_SIM_ARCHS_CONFS
 <test>_emu_archs_confs
 <test>_sim_archs_confs

 to support specifying pairs of arch/conf within the Makefile.

 Note: CHIPARCH= and CHIPCONF= can be used on the command line to override

Change 23957 on 2002/04/19 by llefebvr@llefebvre_laptop_r400

 The new control flow scheme is now included in v2.0 of the sequencer spec.

Change 23946 on 2002/04/19 by llefebvr@llefebvre_laptop_r400

 Last version of the spec with the old control flow scheme

Change 23940 on 2002/04/19 by jacarey@fl_jacarey

 Updated signal name to CP_CG_2d_mode.

Change 23939 on 2002/04/19 by jacarey@fl_jacarey

 Added CG_CP_2d_mode to real-time stream connections document.

Change 23926 on 2002/04/19 by mkelly@fl_mkelly_r400_win_laptop

 Page 314 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Update

Change 23893 on 2002/04/18 by csampayo@fl_csampayo_r400

 Updated status for following tests:
 r400vgt_ext2int_index_line_loop_01
 r400vgt_ext2int_index_triangle_strip_01
 r400vgt_ext2int_index_quad_strip_01
 r400vgt_ext2int_index_triangle_fan_01
 r400vgt_ext2int_index_quad_list_01
 r400vgt_ext2int_index_polygon_01
 r400vgt_ext2int_index_triangle_list_01

Change 23851 on 2002/04/18 by gabarca@gabarca_crayola_win_cvd

 Added working version of VGA test plan:

Change 23836 on 2002/04/18 by jacarey@fl_jacarey

 1. Add TBD to RBBM spec for interrupts
 2. Update packets for "write confirmation"

Change 23835 on 2002/04/18 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 23767 on 2002/04/18 by jacarey@fl_jacarey

 Update Connections to MIU

Change 23726 on 2002/04/17 by csampayo@fl_csampayo_r400

 Updated status for the following tests:
 r400vgt_ext2int_index_points_01
 r400vgt_ext2int_index_line_list_01
 r400vgt_ext2int_index_line_strip_01

Change 23722 on 2002/04/17 by askende@andi_r400_docs

 new rev. 03 checked in.

Change 23718 on 2002/04/17 by abeaudin@abeaudin_r400_win_marlboro

 update transaction engine

Change 23714 on 2002/04/17 by vromaker@MA_VIC_P4

 updated SQ memory sizes

 Page 315 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 23661 on 2002/04/17 by efong@efong_r400_win_tor_doc

 changed from VGA_DISP_d1_rotate_90_deg to VGA_DISP_d2_rotate_90_deg

Change 23635 on 2002/04/17 by efong@efong_r400_win_tor_doc

 Updated due to review as well as new pin (CRTC_SCL_display_read_request_dis)

Change 23617 on 2002/04/17 by jacarey@fl_jacarey

 Checkpoint Micro Engine Diagrams
 Microcode includes the main loop (Packet Dispatch)

Change 23597 on 2002/04/17 by gregs@gregs_r400_win_marlboro

 updated register fields.

Change 23590 on 2002/04/17 by jayw@MA_JAYW

 MaxErr, better error range checking with quatization effects.

Change 23573 on 2002/04/17 by efong@efong_r400_win_tor_doc

 Updated due to review as well as new spec still have to update the reify file stuff

Change 23566 on 2002/04/17 by gregs@gregs_r400_win_marlboro

 updated MEM_AP_SIZE encodings + strap readback table.

Change 23535 on 2002/04/16 by csampayo@fl_csampayo_r400

 Updated r400vgt_provoking_vtx_all_01 test status

Change 23529 on 2002/04/16 by jacarey@fl_jacarey

 Checkpoint Microcode -- A lot of Updates

Change 23525 on 2002/04/16 by smoss@smoss_crayola_win

 updated su stuff

Change 23395 on 2002/04/15 by whui@whui_r400_win_tor

 Update open issue

Change 23370 on 2002/04/15 by jacarey@fl_jacarey

 Baseline Micro Engine Address Map
 Check-Point Microcode

 Page 316 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 ME_INIT packet for PM4 Spec
 Register Updates for Cp Spec

Change 23345 on 2002/04/15 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 23309 on 2002/04/15 by jacarey@fl_jacarey

 Update FIFO sizes and fix placement of the "rcd" signal.

Change 23307 on 2002/04/15 by jacarey@fl_jacarey

 Document ati_rbbm_intf usage in cp's rbiu

Change 23302 on 2002/04/15 by efong@efong_r400_win_tor_doc

 Update the date

Change 23300 on 2002/04/15 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated

Change 23296 on 2002/04/15 by jasif@jasif_r400_win_tor

 Updated.

Change 23289 on 2002/04/15 by chwang@chwang_doc_r400_win_cvd

 Update.

Change 23287 on 2002/04/15 by dwong@cndwong2

 xDCT test plan version 0.1

 Only sections 3 (3.1..3.3) and 7 (7.2) contain valid information

Change 23282 on 2002/04/15 by nluu@nluu_r400_doclib_cnnb

 - update

Change 23262 on 2002/04/15 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 23259 on 2002/04/15 by tho@tho_r400_win

 updated

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1543 of 1898

 Page 317 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 23242 on 2002/04/15 by efong@efong_r400_win_tor_doc

 Updated

Change 23237 on 2002/04/15 by gregs@gregs_r400_win_marlboro

 update.

Change 23234 on 2002/04/15 by gregs@gregs_r400_win_marlboro

 added table of strap output signals

Change 23233 on 2002/04/15 by rbell@rbell_crayola_win_cvd

 updated

Change 23227 on 2002/04/15 by jacarey@fl_jacarey

 Details of Idle and Clean for wait until logic.

Change 23203 on 2002/04/14 by jiezhou@jiezhou_r400_win_tor

 1)Change icon read return data format (P0 start from LSB)
 to keep the same format with R300.

 2)Change cursor read return data format (P0 start from LSB)

Change 23188 on 2002/04/13 by jimmylau@jimmylau_r400_win_tor

 Initial test plan for CRTC

Change 23164 on 2002/04/12 by lkang@lkang_r400_win_tor

 overall updating

Change 23163 on 2002/04/12 by csampayo@fl_csampayo_r400

 Added description of r400vgt_index_source_switch_01

Change 23124 on 2002/04/12 by gregs@gregs_r400_win_marlboro

 removed apad_strength3_3V straps.

Change 23112 on 2002/04/12 by khabbari@khabbari_r400_win

 frame controller changes reflecting the review

Change 23075 on 2002/04/12 by jayw@MA_JAYW

 Page 318 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Friday night check-in

Change 23074 on 2002/04/12 by jayw@MA_JAYW

 Initial Gamma and DeGamma derivation code.

Change 23038 on 2002/04/12 by grayc@grayc_r400_win

 described generic fifo

Change 23036 on 2002/04/12 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 22989 on 2002/04/12 by gregs@gregs_r400_win_marlboro

 1. added registers for fuse box for "bad pipes"
 2. added support for new devices: W45B512, W45B012

Change 22966 on 2002/04/11 by jiezhou@jiezhou_r400_win_tor

 no changing

Change 22965 on 2002/04/11 by jiezhou@jiezhou_r400_win_tor

 Update sub-block
 "graphic and overlay alpha blending" -> include GRPH_EN and OVL_EN control
 "Window Controller" -> Add more description of surface updating infomation
 Updated state machine for graphic and overlay request
 Remove "Y shift 1 bit" at 32 bpp digital output case and
 overlay half resolution case
 Section 5.1 -> Add signal desciption of 1/8 of H-total from CRTC as we don't have
 interface spec of DCP-CRTC

 "LUT" -> update register name and autofill data value for 8-bit mode.

Change 22920 on 2002/04/11 by rbell@rbell_crayola_win_cvd

 Updates

Change 22919 on 2002/04/11 by jimmylau@jimmylau_r400_win_tor

 Major update on CRTC specs :
 remove AUXWIN and related registers
 remove VGA timing and mode registers. Get signals from VGA block instead.
 major updates on register fields
 updates on CRTC interface signals and subblock interface signals
 major updates on section 6 : Data Processing Algorithms

 Page 319 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 22903 on 2002/04/11 by gregs@gregs_r400_win_marlboro

 typo error fixed.

Change 22894 on 2002/04/11 by mkelly@fl_mkelly_r400_win_laptop

 update

Change 22890 on 2002/04/11 by gregs@gregs_r400_win_marlboro

 added ROM straps and fuse box.

Change 22886 on 2002/04/11 by nbarbier@nbarbier_r400_win_tor

 Updated signal names.

Change 22883 on 2002/04/11 by nbarbier@nbarbier_r400_win_tor

 Initial revision.

Change 22878 on 2002/04/11 by jacarey@fl_jacarey

 Update addresses for incremental update tests for constants and instruction memory.

Change 22868 on 2002/04/11 by csampayo@fl_csampayo_r400

 Added status of following tests:
 r400su_parallel_orientation_all_01
 r400su_parallel_orientation_all_02

Change 22867 on 2002/04/11 by jacarey@fl_jacarey

 Clear the VS and PS valid flags in the PFP if the driver
 writes the shader instruction code directly.

Change 22866 on 2002/04/11 by semara@semara_r400_win_tor

 adding the pixelwriter

Change 22843 on 2002/04/11 by rbell@rbell_crayola_win_cvd

 Renamed doc file name

Change 22831 on 2002/04/11 by pmitchel@MA_PAULM_P4

 move to proper place

Change 22818 on 2002/04/11 by georgev@MA_YVALCOUR

 Page 320 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Old version.

Change 22814 on 2002/04/11 by georgev@MA_YVALCOUR

 Change property again.

Change 22805 on 2002/04/11 by georgev@MA_YVALCOUR

 Changed edit protection to lock.

Change 22800 on 2002/04/11 by gregs@gregs_r400_win_marlboro

 minor corrections

Change 22799 on 2002/04/11 by gregs@gregs_r400_win_marlboro

 removed the BUSY signals table.

Change 22761 on 2002/04/10 by csampayo@fl_csampayo_r400

 Added status of the following tests:
 r400vgt_dma_index_points_01
 r400vgt_dma_index_line_list_01
 r400vgt_dma_index_line_strip_01
 r400vgt_dma_index_line_loop_01
 r400vgt_immed_index_points_01
 r400vgt_immed_index_line_list_01
 r400vgt_immed_index_line_strip_01
 r400vgt_immed_index_line_loop_01

Change 22755 on 2002/04/10 by jiezhou@jiezhou_r400_win_tor

 Change "DxOVL_MATRIX_TRANSFORM_EN"
 "DxOVL_PWL_TRANSFORM_EN"
 "DxCOLOR_SUBSAMPLE_CRCB_MODE[1:0]"
 "DxCOLOR_MATRIX_TRANSFORM_EN"
 from attribute of "double buffered" to "single buffered"

 Add "DxGRPH_FLIP_MODE" to Graphic group

 Move "DxGRPH_ENABLE" to Graphic group
 "DxOVL_ENABLE" to Overlay group

 Some change in LUT group:

 Move "DxGRPH_LUT_SEL" to Graphic group
 Change "DxLUT_AUTOFILL" to "DC_LUT_AUTOFILL"
 Change "DC_LUT_MODE" to "DC_LUT_RW_MODE" with single buffered
attribute

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1544 of 1898

 Page 321 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Change "DC_LUT_READb_WRITE_SELECT" to "DC_LUT_RW_SEL"
 Change "DC_LUT_INDEX[7:0]" to "DC_LUT_RW_INDEX[7:0]"
 Change "DC_LUT_WRITE_EN_MASK[5:0]" from "double buffered" to "single
buffered"

Change 22709 on 2002/04/10 by llefebvr@llefebvre_laptop_r400

 Control flow proposal updated

Change 22708 on 2002/04/10 by jacarey@fl_jacarey

 Remove mention of single ring mode for the instruction memory management.

Change 22700 on 2002/04/10 by jacarey@fl_jacarey

 Removal of Dual Ring Mode for Instruction Memory

Change 22683 on 2002/04/10 by gregs@gregs_r400_win_marlboro

 static screen update

Change 22680 on 2002/04/10 by georgev@MA_YVALCOUR

 First revision

Change 22679 on 2002/04/10 by georgev@MA_YVALCOUR

 No Change.

Change 22669 on 2002/04/10 by khabbari@khabbari_r400_win

 frame controller for scaler released

Change 22628 on 2002/04/10 by jacarey@fl_jacarey

 Updates:
 1. Synchronization
 2. Performance Counters

Change 22594 on 2002/04/10 by bryans@bryans_crayola_doc

 Update

Change 22589 on 2002/04/10 by jacarey@fl_jacarey

 Update to Specifications for Synchronization

Change 22577 on 2002/04/09 by beiwang@bei_mcspec

 Page 322 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Updated to reflect deletion of Address Return Bus and updates to RB bus interface

Change 22544 on 2002/04/09 by sallen@sallen_r400_win_marlboro

 Move ferret and rename spec

Change 22510 on 2002/04/09 by mkelly@fl_mkelly_r400_win_laptop

 Scissor rect tests...

Change 22507 on 2002/04/09 by khabbari@khabbari_r400_win

 removed DCP_LB_P1_EN from lb/dcp interface

Change 22491 on 2002/04/09 by khabbari@khabbari_r400_win

 added subsample modes signal to both lb/dcp and lb/scl interface docs

Change 22483 on 2002/04/09 by hartogs@fl_hartogs

 Updated draw initiator comments for "INDEX_SIZE" and "SOURCE_SELECT" fields
based on behaviors learned from the emulator.

Change 22476 on 2002/04/09 by frising@ma_frising

 v.1.37
 -make surface alignment for 2d/3d linear textures be 4KB.

Change 22473 on 2002/04/09 by abeaudin@abeaudin_r400_win_marlboro

 documentation for registers and the gfx transaction engine

Change 22450 on 2002/04/09 by georgev@MA_YVALCOUR

 First revision.

Change 22443 on 2002/04/09 by kcorrell@kcorrell_r400_docs_marlboro

 Next update

Change 22393 on 2002/04/08 by khabbari@khabbari_r400_win

 lb/scaler and lb/dcp interface update

Change 22359 on 2002/04/08 by jasif@jasif_r400_win_tor

 Updated.

Change 22348 on 2002/04/08 by bryans@bryans_crayola_doc

 Page 323 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Fix dc configuration to include VIP

Change 22319 on 2002/04/08 by bbloemer@ma-jasonh

 Added DRAM bank pin names, separate from address pins.

Change 22317 on 2002/04/08 by mkelly@fl_mkelly_r400_win_laptop

 Simple scissor rectangle test...

Change 22316 on 2002/04/08 by llefebvr@llefebvre_laptop_r400

 The control flow proposal

Change 22313 on 2002/04/08 by jacarey@fl_jacarey

 Updates for synchronization

Change 22302 on 2002/04/08 by gregs@gregs_r400_win_marlboro

 clock names

Change 22293 on 2002/04/08 by mkelly@fl_mkelly_r400_win_laptop

 SC scissor rectangle test

Change 22291 on 2002/04/08 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 22281 on 2002/04/08 by gregs@gregs_r400_win_marlboro

 clock names and spelling

Change 22277 on 2002/04/08 by jowang@jowang_R400_win

 For first milestone

Change 22276 on 2002/04/08 by nluu@nluu_r400_doclib_cnnb

 - update

Change 22275 on 2002/04/08 by jacarey@fl_jacarey

 Checkpoint Specifications

Change 22273 on 2002/04/08 by chwang@chwang_doc_r400_win_cvd

 Page 324 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Update.

Change 22264 on 2002/04/08 by efong@efong_r400_win_tor_doc

 Updated

Change 22261 on 2002/04/08 by tho@tho_r400_win

 updated

Change 22260 on 2002/04/08 by gregs@gregs_r400_win_marlboro

 updated clock names

Change 22259 on 2002/04/08 by imuskatb@imuskatb_r400_win_cnimuskatb

 updated

Change 22253 on 2002/04/08 by abeaudin@abeaudin_r400_win_marlboro

 removed old schedules

Change 22243 on 2002/04/08 by jasif@jasif_r400_win_tor

 Updated.

Change 22241 on 2002/04/08 by jacarey@fl_jacarey

 Updates to diagram.

Change 22239 on 2002/04/08 by rbell@rbell_crayola_win_cvd

 Small update for config example

Change 22237 on 2002/04/08 by rbell@rbell_crayola_win_cvd

 updated

Change 22231 on 2002/04/08 by jacarey@fl_jacarey

 1. Update to PFP Pseudocode
 2. Diagram for CP-to-Driver Synchronization
 3. Checkpoint Microcode
 4. Checkpoint RBBM Specification

Change 22162 on 2002/04/05 by jiezhou@jiezhou_r400_win_tor

 update some field name to be consistent with verilog register file.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1545 of 1898

 Page 325 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 22152 on 2002/04/05 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 22149 on 2002/04/05 by jacarey@fl_jacarey

 Small clarification for event_timestamp_write packet.

Change 22143 on 2002/04/05 by jacarey@fl_jacarey

 Updated EVENT_TIMESTAMP_WRITE PM4 packet.
 Updated count fields for PFP-to-ME intermediate packets.

Change 22135 on 2002/04/05 by chwang@chwang_doc_r400_win_cvd

 Minor update about model arguments.

Change 22130 on 2002/04/05 by chwang@chwang_doc_r400_win_cvd

 Added updated Reify spec.

Change 22120 on 2002/04/05 by nluu@nluu_r400_doclib_cnnb

 - add more details to the implementation section

Change 22101 on 2002/04/05 by chwang@chwang_doc_r400_win_cvd

 Update to the Coding Standard.

Change 22094 on 2002/04/05 by jacarey@fl_jacarey

 Renamed CP_RBBM_rt_idle to CP_RBBM_rt_busy

Change 22079 on 2002/04/05 by lkang@lkang_r400_win_tor

 display device power management update

Change 22078 on 2002/04/05 by semara@semara_r400_win_tor

 adding VGA_DISP_d1/2_rotate_90_deg signals

Change 22068 on 2002/04/05 by semara@semara_r400_win_tor

 Updating the interface to use display width/height to interface to the scalar.
 adjust the vertical parameters indexes from [9:0] to [10:0].

Change 22067 on 2002/04/05 by jacarey@fl_jacarey

 Remove Discrete signals for RT streams from CP Specification.

 Page 326 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 22066 on 2002/04/05 by jacarey@fl_jacarey

 Update to reflect "start of frame" counters for Display Engines.

Change 22065 on 2002/04/05 by jacarey@fl_jacarey

 Document for Discrete RT stream connections instead
 of placing this information in the CP Specification.

Change 22056 on 2002/04/05 by llefebvr@llefebvre_laptop_r400

 The new control flow proposal.

Change 22037 on 2002/04/05 by bryans@bryans_crayola_doc

 Add dc_disp configuration

Change 21976 on 2002/04/04 by nluu@nluu_r400_doclib_cnnb

 - add implementation specs to DCCIF Model.

Change 21973 on 2002/04/04 by csampayo@fl_csampayo_r400

 Updated VGT section with tests written

Change 21964 on 2002/04/04 by gregs@gregs_r400_win_marlboro

 update

Change 21919 on 2002/04/04 by nluu@nluu_r400_doclib_cnnb

 - add bit width to signals in diagrams

Change 21906 on 2002/04/04 by nluu@nluu_r400_doclib_cnnb

 - mark don't cares on all relevant signals

Change 21904 on 2002/04/04 by khabbari@khabbari_r400_win

 the lb test plan for phase1

Change 21894 on 2002/04/04 by jimmylau@jimmylau_r400_win_tor

 Change SC-CRTC interface specs. Add signals to disable display requests for display1
and display2.

Change 21890 on 2002/04/04 by bryans@bryans_crayola_doc

 Page 327 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Brief doc on environment variables and standard makefile defines

Change 21870 on 2002/04/04 by gregs@gregs_r400_win_marlboro

 added input registers for RBBM_active and MH_active and pm_en.

Change 21859 on 2002/04/04 by gregs@gregs_r400_win_marlboro

 moved ROM based straps table

Change 21853 on 2002/04/04 by gregs@gregs_r400_win_marlboro

 reset -> srst

Change 21844 on 2002/04/04 by bhankins@fl_bhankins_r400_win

 Initial checkin

Change 21831 on 2002/04/04 by gregs@gregs_r400_win_marlboro

 verilog examples of clock gating

Change 21816 on 2002/04/04 by gregs@gregs_r400_win_marlboro

 sclk gating example files.

Change 21798 on 2002/04/04 by jacarey@fl_jacarey

 Miscellaneous Corrections to PM4 Specification.

Change 21771 on 2002/04/03 by jiezhou@jiezhou_r400_win_tor

 small updating

Change 21770 on 2002/04/03 by csampayo@fl_csampayo_r400

 PA Validation Tests Tracking Document

Change 21733 on 2002/04/03 by nluu@nluu_r400_doclib_cnnb

 - change title in properties

Change 21719 on 2002/04/03 by nluu@nluu_r400_doclib_cnnb

 - add more test cases

Change 21712 on 2002/04/03 by nluu@nluu_r400_doclib_cnnb

 - add a no-reset test case

 Page 328 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 - change to revision 1.0

Change 21710 on 2002/04/03 by nluu@nluu_r400_doclib_cnnb

 - Add implementation specs to rbbmif model doc

Change 21650 on 2002/04/03 by hartogs@fl_hartogs

 changed VGT_SQ_end_of_vector to VGT_SQ_end_of_vtx_vect.
 changed VGT_PA_clip_p_start_vector to VGT_PA_clip_p_new_vtx_vect.
 fixed stride and shift entries for vector 0 in Major Mode 0 table.
 Updated the "Active Issues" list.
 Added the SWAP_MODE field to the DMA_SIZE register.
 Changed the implied value of bit 2 of the VGT_MH_ad interface from a zero to a one.
This indicates that the VGT is always doing 256-bit requests.

Change 21638 on 2002/04/03 by jacarey@fl_jacarey

 Updated Invalidate_State packet to swap VS and PS bit order

Change 21634 on 2002/04/03 by abeaudin@abeaudin_r400_win_marlboro

 cleaned up documentaion

Change 21620 on 2002/04/03 by jacarey@fl_jacarey

 Clarified that the MH has a slip FIFO

Change 21619 on 2002/04/03 by gregs@gregs_r400_win_marlboro

 Updated MH section

Change 21589 on 2002/04/03 by jacarey@fl_jacarey

 Added memclk active feedback to MIU.

Change 21586 on 2002/04/03 by jacarey@fl_jacarey

 Added CP_MH_reqmem signal to the CP.

Change 21533 on 2002/04/03 by jacarey@fl_jacarey

 Update to All Documents

Change 21517 on 2002/04/02 by csampayo@fl_csampayo_r400

 For documenting PA validation environment/processes

Change 21492 on 2002/04/02 by kcorrell@kcorrell_r400_docs_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1546 of 1898

 Page 329 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 updated interfaces

Change 21467 on 2002/04/02 by bryans@bryans_crayola_doc

 more updates (open issues)

Change 21423 on 2002/04/02 by jasif@jasif_r400_win_tor

 Updated.

Change 21396 on 2002/04/02 by bryans@bryans_crayola_doc

 Update status based on Lili's changes

Change 21382 on 2002/04/02 by efong@efong_r400_win_tor_doc

 prefixed all the forciable signals with force_

Change 21381 on 2002/04/02 by efong@efong_r400_win_tor_doc

 prefixed the forciable signals with force_.

Change 21380 on 2002/04/02 by efong@efong_r400_win_tor_doc

 changed the names of the forciable signals to be prefixed with force_.
 changed the bus_timeout to be 100 from 50 because rbbmif will timeout after 68 cycles.
 fixed up the table with the commands and removed 0x200 from all the write cycles
 put down some extra limitations of the model
 put in a small section in the rd file section for timeout

Change 21377 on 2002/04/02 by jayw@MA_JAYW

 added RB_MH_queuecount
 and removed tile_done from RBs.

Change 21366 on 2002/04/02 by jayw@MA_JAYW

 complement for RB_HW_design_spec.doc
 area estimates, etc.

Change 21365 on 2002/04/02 by jayw@MA_JAYW

 MH_RB_queuecount_external is now MH_RB_queuecount

Change 21349 on 2002/04/02 by rbell@rbell_crayola_win_cvd

 updated

 Page 330 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 21345 on 2002/04/02 by jacarey@fl_jacarey

 Interface Updates for CP.

Change 21314 on 2002/04/01 by jiezhou@jiezhou_r400_win_tor

 Initial release for dcp test plan

Change 21308 on 2002/04/01 by bryans@bryans_crayola_doc

 Post status meeting update

Change 21290 on 2002/04/01 by jasif@jasif_r400_win_tor

 Modified description of timing diagram.

Change 21277 on 2002/04/01 by gregs@gregs_r400_win_marlboro

 added pin_strap_DRAM_select

Change 21253 on 2002/04/01 by lkang@lkang_r400_win_tor

 Move the file from devel/doc_lib to doc_lib

Change 21251 on 2002/04/01 by jasif@jasif_r400_win_tor

 Updated unterface signal names to match released dccif.v top level.

Change 21222 on 2002/04/01 by bryans@bryans_crayola_doc

 Update status

Change 21220 on 2002/04/01 by lkang@lkang_r400_win_tor

 milestones

Change 21216 on 2002/04/01 by jasif@jasif_r400_win_tor

 Added assumptions section.

Change 21207 on 2002/04/01 by nluu@nluu_r400_doclib_cnnb

 - update status

Change 21206 on 2002/04/01 by jasif@jasif_r400_win_tor

 Updated Error Section.

Change 21204 on 2002/04/01 by efong@efong_r400_win_tor_doc

 Page 331 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Updated

Change 21201 on 2002/04/01 by jasif@jasif_r400_win_tor

 Updated.

Change 21198 on 2002/04/01 by chwang@chwang_doc_r400_win_cvd

 Update.

Change 21195 on 2002/04/01 by dclifton@dclifton_r400

 Moved perspective correction of I and J to VTE. Updated the RBIU interface to very
latest concept of state variable storage (subject to change again).

Change 21191 on 2002/04/01 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 21189 on 2002/04/01 by jasif@jasif_r400_win_tor

 Updated

Change 21182 on 2002/04/01 by jayw@MA_JAYW

 Monday morning checkin.
 Some tile cache drawings in Visio.

Change 21177 on 2002/04/01 by tho@tho_r400_win

 updated

Change 21161 on 2002/04/01 by rbell@rbell_crayola_win_cvd

 updated

Change 21134 on 2002/03/31 by beiwang@bei_mcspec

 Deleted text descriptions on Address return bus to be consistent w/ the bus interface
tables

Change 21122 on 2002/03/31 by semara@semara_r400_win_tor

 updating the address gen section

Change 20941 on 2002/03/28 by bbloemer@ma-jasonh

 Updated dc queue text.

 Page 332 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 20934 on 2002/03/28 by hartogs@fl_hartogs

 More clean-up. From this point on, revisions to the spec will be detailed in the revision
section.

Change 20912 on 2002/03/28 by jacarey@fl_jacarey

 Added soft reset for VGT to RBBM.
 Multiple Updates to CP specs for 2D.

Change 20890 on 2002/03/28 by rherrick@ma_rherrick_crayola

 Fixed Table Of Contents...

Change 20883 on 2002/03/28 by gregs@gregs_r400_win_marlboro

 added block to block timing

Change 20880 on 2002/03/28 by rherrick@ma_rherrick_crayola

 Revamped specification to include relative transaction methods (instead of directed vs
pattern methods)... Also added client synchronization...

Change 20861 on 2002/03/28 by rbell@rbell_crayola_win_cvd

 updated

Change 20859 on 2002/03/28 by whui@whui_r400_win_tor

 updated section 8: power management

Change 20808 on 2002/03/28 by hartogs@fl_hartogs

 Added and deleted several state registers.
 Updated interface tables.

Change 20799 on 2002/03/28 by jacarey@fl_jacarey

 Added clock gating information to the CP Specification.

Change 20769 on 2002/03/27 by mmantor@mmantor_r400_win

 updated for interface integration changes

Change 20739 on 2002/03/27 by jasif@jasif_r400_win_tor

 Added force prefix for signal names forcible from tests.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1547 of 1898

 Page 333 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 20721 on 2002/03/27 by jayw@MA_JAYW

 removed bogus offset x and offset y from detail bus.
 added event bit to coarse bus.

Change 20720 on 2002/03/27 by nluu@nluu_r400_doclib_cnnb

 - initial revision of DCCIF Model test plan

Change 20718 on 2002/03/27 by gregs@gregs_r400_win_marlboro

 Updated with the global core clock idea.

Change 20715 on 2002/03/27 by nluu@nluu_r400_doclib_cnnb

 - correct links - model documents were re-organized

Change 20711 on 2002/03/27 by bryans@bryans_crayola_doc

 Update the arch/conf spec for simulation

Change 20710 on 2002/03/27 by jacarey@fl_jacarey

 Update RBBM Interfaces

Change 20699 on 2002/03/27 by jacarey@fl_jacarey

 Update Spec for Interfaces

Change 20692 on 2002/03/27 by jayw@MA_JAYW

 fixed a couple of minor signal names.

Change 20678 on 2002/03/27 by askende@andi_r400_docs

 a new rev of the shader export spec.

Change 20664 on 2002/03/27 by jacarey@fl_jacarey

 Interface Updates

Change 20641 on 2002/03/27 by jacarey@fl_jacarey

 Added "Read Combine Disable" to diagrams.

Change 20632 on 2002/03/27 by dglen@dglen_r400_dell

 Doing major update. Still not complete.

 Page 334 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 20606 on 2002/03/26 by rvelez@rvelez_r400_win_tor

 Latest DCCIF changes - fixed typos in docs

Change 20601 on 2002/03/26 by jacarey@fl_jacarey

 Update CP Interfaces

Change 20589 on 2002/03/26 by khabbari@khabbari_r400_win

 tvout/dispout interface doc released

Change 20584 on 2002/03/26 by jacarey@fl_jacarey

 Sweeping Update to the Interface Signal List.

Change 20580 on 2002/03/26 by jayw@MA_JAYW

 Missing file, disappeared mysteriously

Change 20578 on 2002/03/26 by jayw@MA_JAYW

 Released to match rb.v and rc.v

Change 20574 on 2002/03/26 by jowang@jowang_R400_win

 Action Items 02/07

Change 20573 on 2002/03/26 by jayw@MA_JAYW

 Several bus name changes.
 Added RB->RC system context bus.

Change 20571 on 2002/03/26 by mpersaud@mpersaud_r400_win_tor

 Changes for Feb 28 Design Review

Change 20560 on 2002/03/26 by jacarey@fl_jacarey

 Interface Update for VIP, BIF reviews

Change 20531 on 2002/03/26 by jasif@jasif_r400_win_tor

 Updated.

Change 20524 on 2002/03/26 by nluu@nluu_r400_doclib_cnnb

 - update

 Page 335 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 20513 on 2002/03/26 by dwong@cndwong2

 R400 xDCT design review presentation material

Change 20512 on 2002/03/26 by jasif@jasif_r400_win_tor

 Initial revision.

Change 20471 on 2002/03/26 by rthambim@rthambim_r400_win_tor

 Added skid buffer structure diagram.

Change 20444 on 2002/03/25 by rthambim@rthambim_r400_win_tor

 Updated write combining info.

Change 20442 on 2002/03/25 by rthambim@rthambim_r400_win_tor

 Added skid buffer timing diagram.

Change 20426 on 2002/03/25 by askende@andi_r400_docs

 a new rev (0.2)

Change 20403 on 2002/03/25 by jacarey@fl_jacarey

 Clarify the fix-to-float is not normalized.

Change 20375 on 2002/03/25 by jayw@MA_JAYW

 Weekend updates

Change 20364 on 2002/03/25 by jiezhou@jiezhou_r400_win_tor

 small updating

Change 20357 on 2002/03/25 by semara@semara_r400_win_tor

 rev 0.6

Change 20347 on 2002/03/25 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 20339 on 2002/03/25 by jacarey@fl_jacarey

 Checkpoint Diagram and Micro Code.

Change 20335 on 2002/03/25 by efong@efong_r400_win_tor_doc

 Page 336 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 updated

Change 20332 on 2002/03/25 by chwang@chwang_doc_r400_win_cvd

 Update.

Change 20320 on 2002/03/25 by llefebvr@llefebvre_laptop_r400

 Upated the interfaces and added an exporting rule section.

Change 20316 on 2002/03/25 by nluu@nluu_r400_doclib_cnnb

 - update

Change 20313 on 2002/03/25 by jasif@jasif_r400_win_tor

 Updated.

Change 20309 on 2002/03/25 by tho@tho_r400_win

 updated

Change 20308 on 2002/03/25 by rbell@rbell_crayola_win_cvd

 updates

Change 20303 on 2002/03/25 by nluu@nluu_r400_doclib_cnnb

 - update

Change 20302 on 2002/03/25 by imuskatb@imuskatb_dv_win_cvd

 update

Change 20294 on 2002/03/25 by jiezhou@jiezhou_r400_win_tor

 combine DCP_Controller.doc into Display_Composite_Pipe.doc

Change 20293 on 2002/03/25 by rbell@rbell_crayola_win_cvd

 changes

Change 20292 on 2002/03/25 by jiezhou@jiezhou_r400_win_tor

 update

Change 20291 on 2002/03/25 by jiezhou@jiezhou_r400_win_tor

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1548 of 1898

 Page 337 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 major release to support architecture change:

 1) add graphic/overlay alpha blending feature
 2) add overlay matrix transformation block
 3) add overlay gamma correction block
 4) add 512 offset to icon expander
 5) add 512 offset to cursor expander
 6) add "pick-up" odd pixels in Sub-sampline block
 7) some precision issues along the data path
 8) remove supporting for liear mode
 9) remove supporting for one pipe enabled at tiled-mode
 10) combine DCP_Controller.doc into Display_Composite_Pipe.doc
 11) DCP_register_list.doc separate from Display_Composite_Pipe.doc

Change 20289 on 2002/03/25 by jacarey@fl_jacarey

 clarified the brush offset value format

Change 20288 on 2002/03/25 by jacarey@fl_jacarey

 Update cp_interrupt packet to help the micro engine design.

Change 20287 on 2002/03/25 by jacarey@fl_jacarey

 Fix Typos in the number formats

Change 20286 on 2002/03/25 by jacarey@fl_jacarey

 Clarification on Packet Restrictions

Change 20269 on 2002/03/24 by rthambim@rthambim_r400_win_tor

 Updated ROM cycle info.

Change 20268 on 2002/03/24 by rthambim@rthambim_r400_win_tor

 Updated write combining info.

Change 20267 on 2002/03/24 by rthambim@rthambim_r400_win_tor

 Fixed syntax.

Change 20237 on 2002/03/22 by jiezhou@jiezhou_r400_win_tor

 Major update for DCP register list

Change 20234 on 2002/03/22 by rthambim@rthambim_r400_win_tor

 Included strap table, updated review feedback.

 Page 338 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 20219 on 2002/03/22 by askende@andi_r400_docs

 first cut of the document

Change 20215 on 2002/03/22 by jacarey@fl_jacarey

 Update Interface list

Change 20199 on 2002/03/22 by llefebvr@llefebvre_laptop_r400

 Some minor changes to the SQ interfaces.

Change 20194 on 2002/03/22 by jacarey@fl_jacarey

 Update Interfaces

Change 20192 on 2002/03/22 by mzhu@mzhu_r400_win_tor

 remove support for single DCP pipeline

Change 20189 on 2002/03/22 by gregs@gregs_r400_win_marlboro

 things copied from r300 and not yet modified - in red color.

Change 20187 on 2002/03/22 by gregs@gregs_r400_win_marlboro

 Initial version - notes on pins, pad sizes, die and package sizes.

Change 20157 on 2002/03/22 by jacarey@fl_jacarey

 Baseline CP Microcode
 Typos in PM4 Spec

Change 20144 on 2002/03/22 by frising@ma_frising

 No version change.
 -added in bit field definitions for texture width/height/depth that we keep forgetting to
add :)

Change 20142 on 2002/03/22 by mmantor@mmantor_r400_win

 updated interface tables to represent actual planned hardware interfaces

Change 20131 on 2002/03/22 by dclifton@dclifton_r400

 Updated drawings and interface to Scan Converter

Change 20130 on 2002/03/22 by jacarey@fl_jacarey

 Page 339 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Miscellaneous corrections to references to VGT registers

Change 20129 on 2002/03/22 by jacarey@fl_jacarey

 Rename vtg_index_offset to vgt_indx_offset

Change 20124 on 2002/03/22 by jowang@jowang_R400_win

 added signals which are passed upstream from CRTC

Change 20114 on 2002/03/22 by jayw@MA_JAYW

 Largely formatting.
 Revamped MC interface and added RBBM.

Change 20102 on 2002/03/22 by jacarey@fl_jacarey

 Update Draw_Indx and Viz_Query Pseudocode.

Change 20098 on 2002/03/22 by jhoule@MA_JHOULE

 1.36:
 Changed DST_SEL_* names from XYZW to SRC_X, SRC_Y, SRC_Z, and SRC_W.
 Equivalent in SRC_SEL* to GRP_X, GPR_Y, and GPR_W.
 Consistent capitalized first letter in fields.
 Enable/Disable FORCE_BC_W_TO_MAX now Enabled/Disabled.

Change 20097 on 2002/03/22 by gregs@gregs_r400_win_marlboro

 minor mod.

Change 20094 on 2002/03/22 by jowang@jowang_R400_win

 reviewed and corrected description

Change 20092 on 2002/03/22 by jhoule@MA_JHOULE

 Rev 0.9.8:
 Updated SQ and SP interface from respective specs.

Change 20086 on 2002/03/22 by gregs@gregs_r400_win_marlboro

 Updated memory interface.

Change 20058 on 2002/03/21 by abeaudin@abeaudin_r400_win_marlboro

 new emulator documentation for adding blocks

 Page 340 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 20018 on 2002/03/21 by jacarey@fl_jacarey

 Clarifications on Set_state usage.
 2D Updates.

Change 20015 on 2002/03/21 by jacarey@fl_jacarey

 Removed Erroneous Note

Change 19995 on 2002/03/21 by bryans@bryans_crayola_doc

 updated

Change 19979 on 2002/03/21 by bryans@bryans_crayola_doc

 Realign goals

Change 19960 on 2002/03/21 by jacarey@fl_jacarey

 Clarification of C0 and C1 constant loading from CP for 2D

Change 19914 on 2002/03/21 by rherrick@ma_rherrick_crayola

 First Release for general consumption/review... Changes include:

 More completed requirements documentation (in the form of Configuration Spec File
Documentation)

 Configuration File in a loose BNF format

Change 19865 on 2002/03/20 by nbarbier@nbarbier_r400_win_tor

 Initial Release

Change 19858 on 2002/03/20 by efong@efong_r400_win_tor_doc

 Updated with new BIF-VGA requirements

Change 19843 on 2002/03/20 by abeaudin@abeaudin_r400_win_marlboro

 new documentation for emulator

Change 19820 on 2002/03/20 by jacarey@fl_jacarey

 Updated Registers Per .blk file and Emulator

Change 19728 on 2002/03/20 by gregs@gregs_r400_win_marlboro

 Initial version - copied (and re-arranged) from R300.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1549 of 1898

 Page 341 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 19718 on 2002/03/20 by jacarey@fl_jacarey

 Fix equation for load_constant_context packet.

Change 19705 on 2002/03/20 by efong@efong_r400_win_tor_doc

 Updated revision stuff

Change 19704 on 2002/03/20 by efong@efong_r400_win_tor_doc

 removed all the power stuff.

Change 19656 on 2002/03/19 by jacarey@fl_jacarey

 Clarification for auto-generation of indices.

Change 19650 on 2002/03/19 by jacarey@fl_jacarey

 Update to 2D Register Definitions.

Change 19631 on 2002/03/19 by jacarey@fl_jacarey

 Update interface signals to RCIU.

Change 19629 on 2002/03/19 by jacarey@fl_jacarey

 Fix typos on interface signals from CP and HI.

Change 19619 on 2002/03/19 by jacarey@fl_jacarey

 Checkpoint Spec
 1. PFP Constant coherency
 2. Register Updates

Change 19595 on 2002/03/19 by jacarey@fl_jacarey

 Update POLYLINE information.
 Update line brush processing.

Change 19590 on 2002/03/19 by scroce@scroce_r400_win_marlboro

 Updated Table of Contents

Change 19568 on 2002/03/19 by jacarey@fl_jacarey

 Updated Brush_Offset plan for POLYLINE packet.

Change 19520 on 2002/03/18 by jiezhou@jiezhou_r400_win_tor

 Page 342 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 update

Change 19506 on 2002/03/18 by jiezhou@jiezhou_r400_win_tor

 feature change to add alpha blending

Change 19503 on 2002/03/18 by llefebvr@llefebvre_laptop_r400

 Changed the interfaces to reflect the fact that the PCs are now in the SX blocks

Change 19496 on 2002/03/18 by paulv@MA_PVELLA

 Minor update to MHS section, including the DBR block diagram.

Change 19492 on 2002/03/18 by fhsien@fhsien_r400_win_marlboro

 del for yung

Change 19485 on 2002/03/18 by kcorrell@kcorrell_r400_docs_marlboro

 added files describing how mh treats chips addresses, minor tweaks to text

Change 19482 on 2002/03/18 by jacarey@fl_jacarey

 Checkpoint CP Specification
 * Partial Register Updates
 - BIOS Scratch Registers
 - Push Register Apertures
 - Updates to Register Text

Change 19478 on 2002/03/18 by jasif@jasif_r400_win_tor

 Updated.

Change 19437 on 2002/03/18 by efong@efong_r400_win_tor_doc

 Updated to new crtc spec. Also changed the DE to read_request

Change 19436 on 2002/03/18 by jacarey@fl_jacarey

 Update Renderer Backend registers that are written by the CP
 during the GUI Master Control handler. This is based on e-mail
 from Larry Seiler.

Change 19424 on 2002/03/18 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

 Page 343 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 19419 on 2002/03/18 by frising@ma_frising

 Initial check-in.

Change 19417 on 2002/03/18 by efong@efong_r400_win_tor_doc

 Updated

Change 19415 on 2002/03/18 by jimmylau@jimmylau_r400_win_tor

 Update interface signal list based on CRTC block specs.

Change 19413 on 2002/03/18 by nluu@nluu_r400_doclib_cnnb

 - update

Change 19409 on 2002/03/18 by chwang@chwang_doc_r400_win_cvd

 Update.

Change 19406 on 2002/03/18 by jacarey@fl_jacarey

 Update to wait_until conditions per e-mail from D. Glen on
 1st and 2nd display/overlay controllers.

Change 19405 on 2002/03/18 by jasif@jasif_r400_win_tor

 Updated.

Change 19380 on 2002/03/18 by jacarey@fl_jacarey

 Add INDEX_OFFSET to the 3D Draw Packets.

Change 19369 on 2002/03/18 by tho@tho_r400_win

 updated

Change 19346 on 2002/03/17 by jacarey@fl_jacarey

 Illustration for 2D Surface Coherency

Change 19345 on 2002/03/17 by jacarey@fl_jacarey

 Updates from Reviews

Change 19240 on 2002/03/15 by rbell@rbell_crayola_win_cvd

 updates

 Page 344 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 19217 on 2002/03/15 by semara@semara_r400_win_tor

 update

Change 19216 on 2002/03/15 by rherrick@ma_rherrick_crayola

 More completion of first pass spec...

Change 19201 on 2002/03/15 by scroce@scroce_r400_win_marlboro

 Added info about alias file creation

Change 19156 on 2002/03/15 by frising@ma_frising

 no version change
 -fixed very minor typo on DATA_FORMAT page pointed out by Larry.

Change 19094 on 2002/03/15 by rherrick@ma_rherrick_crayola

 More progress made... Still not complete... Redefined window setting directives...
Worked on first pass of Pattern Reads

Change 19057 on 2002/03/14 by lkang@lkang_r400_win_tor

 updated section 6 on power state management

Change 19056 on 2002/03/14 by semara@semara_r400_win_tor

 update section 10

Change 19051 on 2002/03/14 by frising@ma_frising

 v.1.35
 -moved some fields around in texture constants to faciliate 2D.
 -add per quad and per pixel register lod to texture instruction.
 -moved SIGNED_RF_MODE_ALL up one bit in vertex instruction.
 -cleaned up a few comments.

Change 19034 on 2002/03/14 by nbarbier@nbarbier_r400_win_tor

 Updated Interface

Change 19002 on 2002/03/14 by rherrick@ma_rherrick_crayola

 Yet another deposit along the way... Not ready for review yet...

Change 18959 on 2002/03/14 by lseiler@ma_lseiler

 Memory Formats: minor updates

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1550 of 1898

 Page 345 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 18958 on 2002/03/14 by lseiler@ma_lseiler

 Render Backend minor updates

Change 18909 on 2002/03/14 by lkang@lkang_r400_win_tor

 updated power management on pclk domain.

Change 18875 on 2002/03/14 by rherrick@nashua_rherrick_crayola

 Progress on Spec.. No milestone...

Change 18834 on 2002/03/13 by nluu@nluu_r400_doclib_cnnb

 - test plan for RBBMIF model

Change 18697 on 2002/03/13 by nluu@nluu_r400_doclib_cnnb

 - correct comment about timeout and shared-registers

Change 18690 on 2002/03/13 by rvelez@rvelez_r400_win_tor

 Top Level DC Spec

Change 18682 on 2002/03/13 by scroce@scroce_r400_win_marlboro

 Quick comments

Change 18669 on 2002/03/13 by jacarey@fl_jacarey

 Baseline Overview Presentations
 Checkpoint PM4 Specification

Change 18660 on 2002/03/13 by rherrick@ma_rherrick_crayola

 Documentation for MC/MH Test Environment

Change 18629 on 2002/03/12 by jasif@jasif_r400_win_tor

 Updated arbitration between read and write requests. Added open issue of skid buffers.

Change 18616 on 2002/03/12 by nluu@nluu_r400_doclib_cnnb

 - forgot to delete one doc in previous submit

Change 18607 on 2002/03/12 by khabbari@khabbari_r400_win

 added fields to the register section of LB arch doc

 Page 346 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 18594 on 2002/03/12 by nluu@nluu_r400_doclib_cnnb

 - re-org, rename files to all lowercase

Change 18582 on 2002/03/12 by efong@efong_r400_win_tor_doc

 forgot to change some of the names from HSYNC to HSYNCA/B and VSYNC to
VSYNCA/B

Change 18564 on 2002/03/12 by khabbari@khabbari_r400_win

 EOL removed from lb_dcp interface doc

Change 18552 on 2002/03/12 by jhoule@MA_JHOULE

 0.9.7:
 Added mipmap packing scheme description (with images).
 Moved Addressing in a Varia section.
 Changed some sub-block names.

Change 18486 on 2002/03/11 by dglen@dglen_r400_dell

 Major update for first time in far too long.

Change 18483 on 2002/03/11 by semara@semara_r400_win_tor

 rev 0.3

Change 18457 on 2002/03/11 by bbloemer@ma-jasonh

 Updated clock naming convention.

Change 18454 on 2002/03/11 by nluu@nluu_r400_doclib_cnnb

 - Legacy => legacy

Change 18450 on 2002/03/11 by nluu@nluu_r400_doclib_cnnb

 - re-organize model docs.

Change 18437 on 2002/03/11 by jacarey@fl_jacarey

 Updated Surface Coherence Equations for Lines and Fix Problems

Change 18421 on 2002/03/11 by jacarey@fl_jacarey

 Miscellaneous Updates and Corrections

 Page 347 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 18415 on 2002/03/11 by wlawless@wlawless

 Revision 0.8 has updates to the color block cache, and its tag descriptions... Also a RB
full data flow diagram and description was added.

Change 18385 on 2002/03/11 by jasif@jasif_r400_win_tor

 Updated

Change 18379 on 2002/03/11 by rbell@rbell_crayola_win_cvd

 update

Change 18376 on 2002/03/11 by khabbari@khabbari_r400_win

 added new signals to the lb_dcp interface doc

Change 18357 on 2002/03/11 by jimmylau@jimmylau_r400_win_tor

 Finalize CRTC naming convention to CRTC1/CRTC2
 Remove the notation of internal/external overscan in CRTC. Overscan width is
determined by scaler only.
 Change the definition of ending timing parameters to be exclusive.
 Add power management signals to CRTC-Scaler interface.

Change 18356 on 2002/03/11 by nluu@nluu_r400_doclib_cnnb

 - update

Change 18355 on 2002/03/11 by chwang@chwang_doc_r400_win_cvd

 Update

Change 18343 on 2002/03/11 by efong@efong_r400_win_tor_doc

 Updated

Change 18342 on 2002/03/11 by tho@tho_r400_win

 update

Change 18341 on 2002/03/11 by rthambim@rthambim_r400_win_tor

 Fixed syntax.

Change 18331 on 2002/03/11 by jacarey@fl_jacarey

 R400 Memory Map Diagram

 Page 348 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 18323 on 2002/03/11 by jacarey@fl_jacarey

 Implicit Sync Only in CF Pipe

Change 18322 on 2002/03/11 by jacarey@fl_jacarey

 Updates from Comments
 Update Surface Coherency Intersect Equation

Change 18320 on 2002/03/11 by jacarey@fl_jacarey

 CP Overview
 Updates to RBBM Specification

Change 18318 on 2002/03/10 by rthambim@rthambim_r400_win_tor

 Added skid buffer timing diagram.

Change 18317 on 2002/03/10 by rthambim@rthambim_r400_win_tor

 Fixed naming convention in timing diagram.

Change 18308 on 2002/03/10 by rthambim@rthambim_r400_win_tor

 Fixed the block diagram.

Change 18305 on 2002/03/10 by rthambim@rthambim_r400_win_tor

 Added fifo info, fixed slave implementation diagram.

Change 18292 on 2002/03/09 by frising@ma_frising

 v.1.34
 -introduced arbitrary_filter field. A few other feilds had to be juggled in the process.

Change 18284 on 2002/03/08 by paulv@MA_PVELLA

 Forgot to update table of contents, etc. Fixed.

Change 18283 on 2002/03/08 by paulv@MA_PVELLA

 Updated MHS portion of spec with latest specifications/fixes, including block diagrams.

Change 18280 on 2002/03/08 by rthambim@rthambim_r400_win_tor

 Initial revision.

Change 18263 on 2002/03/08 by jacarey@fl_jacarey

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1551 of 1898

 Page 349 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Update RBBM Top-Level Diagram

Change 18240 on 2002/03/08 by rthambim@rthambim_r400_win_tor

 Modified the RBBM-BIF timing diagram, address width, RBBMIF naming.

Change 18216 on 2002/03/08 by jacarey@fl_jacarey

 Miscellaneous Corrections

Change 18211 on 2002/03/08 by jacarey@fl_jacarey

 Updates for Reviews

Change 18181 on 2002/03/08 by bryans@bryans_crayola_doc

 Updated status with dccif change

Change 18152 on 2002/03/08 by jacarey@fl_jacarey

 Miscellaneous Updates

Change 18140 on 2002/03/08 by scroce@scroce_r400_win_marlboro

 Updated for MKTREE changes

Change 18128 on 2002/03/08 by khabbari@khabbari_r400_win

 small fix in line buffer arch

Change 18125 on 2002/03/08 by jacarey@fl_jacarey

 Miscellaneous Updates

Change 18109 on 2002/03/08 by jacarey@fl_jacarey

 Updates

Change 18094 on 2002/03/08 by mdoggett@MA_MDOGGETT_LT

 Update TCO section, figure and subblock descriptions. Updated TC top level figure.
Added L1 Tag Index to L1 Tag.

Change 18087 on 2002/03/08 by jacarey@fl_jacarey

 Updates to Pre-Fetch Parser Diagram and Pseudocode.

Change 18082 on 2002/03/08 by jacarey@fl_jacarey

 Page 350 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Update to CP Internal Packets

Change 18077 on 2002/03/08 by jacarey@fl_jacarey

 Add Input Register Stage

Change 18071 on 2002/03/08 by rvelez@rvelez_r400_win_tor

 DCCIF Architectural Spec

Change 18055 on 2002/03/07 by khabbari@khabbari_r400_win

 added interlace mode and supporting 2 pipe line for 20bpp

Change 18041 on 2002/03/07 by jacarey@fl_jacarey

 Updates for Arbitration of Streams to Global register Bus.

Change 18032 on 2002/03/07 by jacarey@fl_jacarey

 Set_State and Load_Palette are 2D State Packets

Change 18025 on 2002/03/07 by jacarey@fl_jacarey

 Update to the CP_STAT register definition.

Change 17930 on 2002/03/07 by kcorrell@kcorrell_r400_docs_marlboro

 update of spec

Change 17926 on 2002/03/07 by jacarey@fl_jacarey

 Document that the Load_Palette packet may not be needed.

Change 17924 on 2002/03/07 by bbloemer@ma-jasonh

 Revised signal naming convention to allow for MKTREE-generated prefix. Also added
clock nameing convention and removed convention for instantiating flip flops.

Change 17922 on 2002/03/07 by jacarey@fl_jacarey

 Updates to CP <--> MH Interface

Change 17859 on 2002/03/07 by jacarey@fl_jacarey

 Update Queue Available Sizes
 Update CP_STAT register definitions.

Change 17849 on 2002/03/07 by jacarey@fl_jacarey

 Page 351 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Clarify Usage of Busy Signals Out of MIU

Change 17845 on 2002/03/07 by jasif@jasif_r400_win_tor

 Changed busy signals to go to client instead of PLL model.

Change 17836 on 2002/03/07 by jasif@jasif_r400_win_tor

 Changed request address to start from bit 31 instead of 29. Added separate client id's for
read and write ack requests.

Change 17834 on 2002/03/07 by jasif@jasif_r400_win_tor

 Added open issues: Arbitration between reads and writes, checking whether request
address falls within surface information.

Change 17824 on 2002/03/07 by jacarey@fl_jacarey

 Update Fetchers

Change 17822 on 2002/03/07 by jacarey@fl_jacarey

 Update Buses in MIU

Change 17820 on 2002/03/07 by jacarey@fl_jacarey

 Separate Path Through PFP for Real-Time

Change 17773 on 2002/03/06 by jacarey@fl_jacarey

 Checkpoint Spec

Change 17771 on 2002/03/06 by nluu@nluu_r400_doclib_cnnb

 - forgot to change the path

Change 17770 on 2002/03/06 by nluu@nluu_r400_doclib_cnnb

 - change Last Updated field to 'file save date' instead of current date

Change 17768 on 2002/03/06 by nluu@nluu_r400_doclib_cnnb

 - title => filename in header section

Change 17767 on 2002/03/06 by nluu@nluu_r400_doclib_cnnb

 - change Last Updated field to 'file save date' from 'current date'

 Page 352 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 17766 on 2002/03/06 by nluu@nluu_r400_doclib_cnnb

 - move rom controller model test plan to test_plan subdirectory

Change 17762 on 2002/03/06 by nluu@nluu_r400_doclib_cnnb

 - correct spelling and typos

Change 17760 on 2002/03/06 by nluu@nluu_r400_doclib_cnnb

 - very small spelling correction

Change 17753 on 2002/03/06 by efong@efong_r400_win_tor

 Added in SCL_CRTC and VGA_DISP model specs

Change 17751 on 2002/03/06 by nluu@nluu_r400_doclib_cnnb

 - correct typos and stuff

Change 17736 on 2002/03/06 by jacarey@fl_jacarey

 Memory Controller 0-3 each has their own go/active clock pair.

Change 17706 on 2002/03/06 by nluu@nluu_r400_doclib_cnnb

 - move visio drawings to a separate directory

Change 17689 on 2002/03/06 by efong@efong_r400_win_tor

 changed the pin names to i and o for input and output pins to models

Change 17670 on 2002/03/06 by jacarey@fl_jacarey

 Update for Command Queue Size Update
 * Registers Updated

Change 17658 on 2002/03/06 by semara@semara_r400_win_tor

 doc update

Change 17632 on 2002/03/06 by gregs@gregs_r400_win_marlboro

 update

Change 17629 on 2002/03/06 by rbell@rbell_crayola_win_cvd

 Renamed doc

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1552 of 1898

 Page 353 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 17622 on 2002/03/06 by jacarey@fl_jacarey

 Update RBBM FIFO depths on Top-Level Diagram

Change 17621 on 2002/03/06 by jacarey@fl_jacarey

 Stall condition for wait_until.

Change 17583 on 2002/03/05 by jiezhou@jiezhou_r400_win_tor

 update

Change 17582 on 2002/03/05 by bbloemer@ma-jasonh

 Updated pdf file.

Change 17580 on 2002/03/05 by bbloemer@ma-jasonh

 Updated the description of the ordering engine to include A/B vs C/D
 fairness and the TEXTURE_WIN_COUNT.

Change 17578 on 2002/03/05 by jacarey@fl_jacarey

 Checkpoint Specification

Change 17575 on 2002/03/05 by jacarey@fl_jacarey

 Renamed RBBM_HI_WRTR to RBBM_HI_RDY
 Added Stage_Inc for repeaters between BIF and RBBM.

Change 17556 on 2002/03/05 by rbell@rbell_crayola_win_cvd

 Updates after review

Change 17549 on 2002/03/05 by jacarey@fl_jacarey

 Split the Re-Ordering Queue from the Pre-fetch Parser

Change 17533 on 2002/03/05 by jacarey@fl_jacarey

 Updated Streams by CP for IB2 Packet Restrictions

Change 17523 on 2002/03/05 by jacarey@fl_jacarey

 Update to Fetcher Diagram

Change 17512 on 2002/03/05 by jacarey@fl_jacarey

 Bitwise OR

 Page 354 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 17507 on 2002/03/05 by jacarey@fl_jacarey

 Update IB_PREFETCH_START packet format

Change 17504 on 2002/03/05 by scroce@scroce_r400_win_marlboro

 many modifications due to changes in the next release of vcsbuild.pl

Change 17489 on 2002/03/05 by jacarey@fl_jacarey

 Remove Ring State Queue

Change 17461 on 2002/03/05 by mdoggett@MA_MDOGGETT_LT

 Added L1 Tag formats. Updated TCB section, figure, subblock descriptions.

Change 17452 on 2002/03/05 by semara@semara_r400_win_tor

 update

Change 17450 on 2002/03/05 by bryans@bryans_crayola_doc

 Update as per status meeting

Change 17449 on 2002/03/05 by semara@semara_r400_win_tor

 rev 0.3

Change 17445 on 2002/03/05 by fhsien@fhsien_r400_win_marlboro

 First draft of RB testbench plan

Change 17437 on 2002/03/05 by nbarbier@nbarbier_r400_win_tor

 Initial Release.

Change 17436 on 2002/03/05 by jacarey@fl_jacarey

 2D Scratch Memory Renamed to 2D Defaults Memory

Change 17431 on 2002/03/05 by lseiler@ma_lseiler

 Version 0.7 of the Memory Format spec, with address equations, revised 2D and 3D
tiling formats, and 2D mipmap packing.

Change 17427 on 2002/03/05 by rbell@rbell_crayola_win_cvd

 Print warning if linear mode is used.

 Page 355 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 17424 on 2002/03/05 by jacarey@fl_jacarey

 Added ROM Go/Active Pair

Change 17422 on 2002/03/05 by rvelez@rvelez_r400_win_tor

 Changed address range to start from bit 31
 Added Client ID to Write Ack Interface

Change 17405 on 2002/03/04 by whui@whui_r400_win_tor

 updated section 10

Change 17404 on 2002/03/04 by nbarbier@nbarbier_r400_win_tor

 Updated signal names.

Change 17395 on 2002/03/04 by jiezhou@jiezhou_r400_win_tor

 update register list

Change 17387 on 2002/03/04 by jiezhou@jiezhou_r400_win_tor

 update register list

Change 17386 on 2002/03/04 by jiezhou@jiezhou_r400_win_tor

 update register list

Change 17380 on 2002/03/04 by llefebvr@llefebvre_laptop_r400

 New revision of the sequencer spec.

Change 17351 on 2002/03/04 by bryans@bryans_crayola_doc

 Update for 01/03/02

Change 17345 on 2002/03/04 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 17337 on 2002/03/04 by nluu@nluu_r400_doclib_cnnb

 - update

Change 17321 on 2002/03/04 by tho@tho_r400_win

 updated

 Page 356 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 17320 on 2002/03/04 by chwang@chwang_doc_r400_win_cvd

 Update

Change 17315 on 2002/03/04 by efong@efong_r400_win_tor

 Updated

Change 17313 on 2002/03/04 by jacarey@fl_jacarey

 Update to CP's 2D Appendix

Change 17310 on 2002/03/04 by jasif@jasif_r400_win_tor

 Updated

Change 17305 on 2002/03/04 by jacarey@fl_jacarey

 Update Opcodes for Packets

Change 17190 on 2002/03/01 by lkang@lkang_r400_win_tor

 updated dynamic clocking on SCLK domain.

Change 17187 on 2002/03/01 by frising@ma_frising

 v.1.33
 -removed support for DXV textures
 -updated texture size table for new max size restriction with 3Da 128bit textures with
borders.
 -closed open issue about interaction of border color with depth
 and shadow textures.

Change 17184 on 2002/03/01 by jayw@MA_JAYW

 weekend check-in

Change 17182 on 2002/03/01 by jacarey@fl_jacarey

 Updates

Change 17169 on 2002/03/01 by mzhu@mzhu_r400_win_tor

 remove support for linear surface mode

Change 17167 on 2002/03/01 by khabbari@khabbari_r400_win

 small corrections to line buffer arch doc

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1553 of 1898

 Page 357 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 17166 on 2002/03/01 by mzhu@mzhu_r400_win_tor

 remove support for linear surface mode
 add more details for FIFO write control

Change 17156 on 2002/03/01 by rbell@rbell_crayola_win_cvd

 Changed name of model to LB_DCP

Change 17155 on 2002/03/01 by rbell@rbell_crayola_win_cvd

 Changed name of doc file.

Change 17154 on 2002/03/01 by rbell@rbell_crayola_win_cvd

 update

Change 17150 on 2002/03/01 by jacarey@fl_jacarey

 Update SRC_X calculation for Small_Text PM4 packet

Change 17149 on 2002/03/01 by jacarey@fl_jacarey

 Updated repeater flop usage text.
 STAGE_INC used instead of N_STRAP

Change 17122 on 2002/03/01 by jiezhou@jiezhou_r400_win_tor

 change ICON1_X_POS to ICON1_X_START
 ICON2_X_POX to ICON2_X_START
 ICON1_Y_POS to ICON1_Y_START
 ICON2_Y_POX to ICON2_Y_START

Change 17119 on 2002/03/01 by jowang@jowang_R400_win

 added description for re-sync FIFO and some more diagrams

Change 17089 on 2002/02/28 by rbell@rbell_crayola_win_cvd

 Removed sub-word write enable

Change 17084 on 2002/02/28 by jacarey@fl_jacarey

 Fix Typo in the IM_Load and IM_Load_Immediate packets

Change 17066 on 2002/02/28 by jacarey@fl_jacarey

 1. Added IM_LOAD_IMMEDIATE packet.

 Page 358 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 2. Update to HOSTDATA_BLT2 and HOSTDATA_BLT_PNTR packets.

Change 17053 on 2002/02/28 by jiezhou@jiezhou_r400_win_tor

 update

Change 17016 on 2002/02/28 by jacarey@fl_jacarey

 Update Interrupt Signals Into RBBM

Change 17010 on 2002/02/28 by rbell@rbell_crayola_win_cvd

 Initial draft (and merge from older docs).

Change 16932 on 2002/02/27 by jowang@jowang_R400_win

 Block Spec: read buffer, re-sync FIFO, p2s sync, and line controller
 diagram + description for read buffer

Change 16927 on 2002/02/27 by frising@ma_frising

 Crap! fix cut and paste error. No version change.

Change 16925 on 2002/02/27 by frising@ma_frising

 v.1.32
 -removed TT_CMD from texture instruction.

Change 16924 on 2002/02/27 by lkang@lkang_r400_win_tor

 Added power state managment. section 6.0

Change 16917 on 2002/02/27 by lkang@lkang_r400_win_tor

 Added 5.2 for dynamic clocking in display clocks

Change 16914 on 2002/02/27 by jiezhou@jiezhou_r400_win_tor

 update after spec review Feb. 26

Change 16906 on 2002/02/27 by jacarey@fl_jacarey

 Version 0.02 has Pre-Fetch Parser Algorithm Updates

Change 16897 on 2002/02/27 by tho@tho_r400_win

 updated with section regarding the IO Model generating Perl Script

Change 16896 on 2002/02/27 by jacarey@fl_jacarey

 Page 359 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Updates to Packets and Pseudocode for Pre-Fetch Parser

Change 16878 on 2002/02/27 by mpersaud@mpersaud_r400_win_tor

 * Updated link to Figure 1.2-1 VIP DMA Top Level Diagram

Change 16867 on 2002/02/27 by mpersaud@mpersaud_r400_win_tor

 * Updated Section 4.1 Pin interface, added DCIO enable signals
 * Updated Appendix for delta between R300 and R400

Change 16859 on 2002/02/27 by lseiler@ma_lseiler

 new 3D tile patterns and initial 3D equations

Change 16856 on 2002/02/27 by jacarey@fl_jacarey

 Updates

Change 16850 on 2002/02/27 by jacarey@fl_jacarey

 Pre-Fetch Parser Top-Level State Machine

Change 16849 on 2002/02/27 by khabbari@khabbari_r400_win

 correction to read pointer section in line buffer arch doc

Change 16843 on 2002/02/27 by rbell@rbell_crayola_win_cvd

 Updates to macro name and pin out

Change 16815 on 2002/02/27 by markf@markf_r400_win_marlboro

 Updated Analog section to R300 numbers. Fixed quantity of DLL's for RV400 and
R400. Removed LVDS from R400.

Change 16809 on 2002/02/27 by nluu@nluu_r400_doclib_cnnb

 - update

Change 16799 on 2002/02/27 by nluu@nluu_r400_doclib_cnnb

 - update

Change 16794 on 2002/02/27 by jacarey@fl_jacarey

 Updates to 2D Packets

 Page 360 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 16793 on 2002/02/27 by mmantor@mmantor_r400_win

 updated memory areas based on the memory compilation of memories in the following
blocks for the VGT, PA, SC blocks and updated labeling for current planned blocks

Change 16779 on 2002/02/26 by semara@semara_r400_win_tor

 update doc

Change 16778 on 2002/02/26 by semara@semara_r400_win_tor

 doc updates

Change 16762 on 2002/02/26 by jayw@MA_JAYW

 typo fixes

Change 16734 on 2002/02/26 by jacarey@fl_jacarey

 Checkpoint Specifications

Change 16731 on 2002/02/26 by lseiler@ma_lseiler

 Spreadsheets of 2D address conversions

Change 16730 on 2002/02/26 by lseiler@ma_lseiler

 Updated 1D and 2D formats and address equations

Change 16718 on 2002/02/26 by efong@efong_r400_win_tor

 updated io spec due to change in dcio spec

Change 16710 on 2002/02/26 by jacarey@fl_jacarey

 Updates to packets.

Change 16688 on 2002/02/26 by jacarey@fl_jacarey

 Update Diagram

Change 16661 on 2002/02/26 by jacarey@fl_jacarey

 Update RTEE Diagram (Gated and Permanent Clocks)

Change 16660 on 2002/02/26 by rbell@rbell_crayola_win_cvd

 First draft of what env will look like.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1554 of 1898

 Page 361 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 16658 on 2002/02/26 by mpersaud@mpersaud_r400_win_tor

 * added Section 4.1 Pin interface
 * updated Appendix for delta between R300 and R400
 * update Figure 1.2-1 VIP Top Level Diagram to move uvip_rbbmif to DC level and
rename to RBBMIF

Change 16657 on 2002/02/26 by mpersaud@mpersaud_r400_win_tor

 Move uvip_rbbmif to DC level and rename to RBBMIF

Change 16653 on 2002/02/26 by jacarey@fl_jacarey

 Update Interfaces to RBBM from BIF and CP
 Fix Type on MIU Diagram

Change 16648 on 2002/02/26 by jhoule@MA_JHOULE

 v1.31:
 Brought back DIM_3D in case we get rid of dual format 3D texture (if noise gets dropped
out).
 Moved BORDER_* together.
 Only affects TFetch Const.

Change 16646 on 2002/02/26 by jiezhou@jiezhou_r400_win_tor

 update

Change 16632 on 2002/02/26 by nbarbier@nbarbier_r400_win_tor

 Updated document after resolving open issues.

Change 16602 on 2002/02/26 by jacarey@fl_jacarey

 Updated clock name for RBBM

Change 16565 on 2002/02/25 by jiezhou@jiezhou_r400_win_tor

 update

Change 16552 on 2002/02/25 by dclifton@dclifton_r400

 Updates to interface, drawings, lines, points, and polymode.

Change 16546 on 2002/02/25 by khabbari@khabbari_r400_win

 added more details to the lb arch doc

Change 16537 on 2002/02/25 by rbell@rbell_crayola_win_cvd

 Page 362 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Updates after review

Change 16533 on 2002/02/25 by markf@markf_r400_win_marlboro

 Updated SX w/ parameter caches

Change 16521 on 2002/02/25 by rbell@rbell_crayola_win_cvd

 update

Change 16505 on 2002/02/25 by jacarey@fl_jacarey

 Checkpoint CP Spec.

Change 16503 on 2002/02/25 by jacarey@fl_jacarey

 Update Command Stream Fetcher Diagram

Change 16499 on 2002/02/25 by jimmylau@jimmylau_r400_win_tor

 Add a section on stereoscopic display. Change CRTC naming convention to CRTC0 /
CRTC1.

Change 16495 on 2002/02/25 by jacarey@fl_jacarey

 Update Queues on Diagram for PFP

Change 16494 on 2002/02/25 by mpersaud@mpersaud_r400_win_tor

 added state machine appendix

Change 16493 on 2002/02/25 by mpersaud@mpersaud_r400_win_tor

 update to add uvip_rbbmif

Change 16492 on 2002/02/25 by mpersaud@mpersaud_r400_win_tor

 general clean up

Change 16490 on 2002/02/25 by mpersaud@mpersaud_r400_win_tor

 * added Appendix - R300 vs. R400 delta
 * updated VIP Top Level diagram
 * updated structure section

Change 16489 on 2002/02/25 by mpersaud@mpersaud_r400_win_tor

 * moved uvipdmaregs into uvipdma

 Page 363 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 * renamed uvip_rbbm to uvip_rbbmif
 * added ORing of interrupts

Change 16488 on 2002/02/25 by vliu@vliu_r400_cnvliu100_win_cvd

 Update

Change 16484 on 2002/02/25 by rbell@rbell_crayola_win_cvd

 updated

Change 16482 on 2002/02/25 by chwang@chwang_r400_win_cvd

 Update.

Change 16470 on 2002/02/25 by tho@tho_r400_win

 update

Change 16469 on 2002/02/25 by jasif@jasif_r400_win_tor

 Updated

Change 16462 on 2002/02/25 by efong@efong_r400_win_tor

 Updated

Change 16450 on 2002/02/25 by jacarey@fl_jacarey

 Add ROM pins back to the RBBM Spec.

Change 16412 on 2002/02/22 by nluu@nluu_r400_doclib_cnnb

 - update

Change 16411 on 2002/02/22 by jiezhou@jiezhou_r400_win_tor

 1) add Overlay Format Expansion block
 2) remove dynamic expansion for Graphic/overlay keyer
 3) add host read/write description for LUT palette
 4) add ignore_alpha for graphic/overlay keyer
 5) update graphic/overlay Mux function
 6) add constant format for matrix conversion

Change 16407 on 2002/02/22 by lkang@lkang_r400_win_tor

 Added dynamic clocking on display clock domain. sec. 5.1

Change 16359 on 2002/02/22 by gregs@gregs_r400_win_marlboro

 Page 364 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Added interface to CG_PM.

Change 16349 on 2002/02/22 by gregs@gregs_r400_win_marlboro

 daily update.

Change 16322 on 2002/02/22 by lseiler@ma_lseiler

 Updated with 1D and 2D access equations

Change 16319 on 2002/02/22 by jacarey@fl_jacarey

 Removed ROM's RTR signals from RBBM interface. BIF forwards transactions to the
MH instead of through the RBBM.

Change 16309 on 2002/02/22 by jacarey@fl_jacarey

 Update RBIU to show that read return data is registed on permanent clock.

Change 16304 on 2002/02/22 by jacarey@fl_jacarey

 1. Updated interrupt signals to the RBBM

 ** Senders of interrupts need to do their own combining.

Change 16288 on 2002/02/22 by bryans@bryans_crayola_doc

 Update VideoIP DV Methodology to include CRTC configuration

Change 16284 on 2002/02/22 by efong@efong_r400_win_tor

 added in sentence for MV_DISABLE and VGA_DISABLE to be hooked up to BIF
model

Change 16283 on 2002/02/22 by efong@efong_r400_win_tor

 fixed up the spec due to the 0.1 version of the power management spec

Change 16217 on 2002/02/21 by fhsien@fhsien_r400_win_marlboro

 Added command chart
 change runtest --> runtest.pl

Change 16213 on 2002/02/21 by rbell@rbell_crayola_win_cvd

 First draft of this

Change 16210 on 2002/02/21 by mdoggett@MA_MDOGGETT_LT

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1555 of 1898

 Page 365 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Updated formats. Added 2d interlace format and 3d four layer format. Added L2 read
synchronisation description.

Change 16207 on 2002/02/21 by frising@ma_frising

 v.1.30

Change 16194 on 2002/02/21 by lkang@lkang_r400_win_tor

 Power management spec for DC

Change 16178 on 2002/02/21 by hartogs@fl_hartogs

 Minor Cleanup

Change 16177 on 2002/02/21 by jacarey@fl_jacarey

 No Change

Change 16175 on 2002/02/21 by rbell@rbell_crayola_win_cvd

 More updates since the last reviews

Change 16174 on 2002/02/21 by jacarey@fl_jacarey

 Checkpoint All Specifications

Change 16170 on 2002/02/21 by hartogs@fl_hartogs

 Fixed up some tessellation stuff.

Change 16147 on 2002/02/21 by scroce@scroce_r400_win_marlboro

 Some small changes to the doc

Change 16146 on 2002/02/21 by rbell@rbell_crayola_win_cvd

 Updates to both palette models

Change 16145 on 2002/02/21 by mpersaud@mpersaud_r400_win_tor

 Initial Revision

Change 16142 on 2002/02/21 by mpersaud@mpersaud_r400_win_tor

 Changed Text Box

Change 16138 on 2002/02/21 by jacarey@fl_jacarey

 Page 366 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Revision of RBBM and CP areas

Change 16109 on 2002/02/20 by dwong@cndwong2

 version 0.4

Change 16106 on 2002/02/20 by nluu@nluu_r400_doclib_cnnb

 - update

Change 16100 on 2002/02/20 by nluu@nluu_r400_doclib_cnnb

 - update

Change 16095 on 2002/02/20 by fhsien@fhsien_r400_win_marlboro

 DOC for Runtest Script

Change 16083 on 2002/02/20 by jacarey@fl_jacarey

 Updated CP and RBBM Areas

Change 16079 on 2002/02/20 by gregs@gregs_r400_win_marlboro

 daily update.

Change 16075 on 2002/02/20 by mpersaud@mpersaud_r400_win_tor

 General update and/or addition to depot.

Change 16053 on 2002/02/20 by rbell@rbell_crayola_win_cvd

 New spec for R400

Change 16041 on 2002/02/20 by scroce@scroce_r400_win_marlboro

 Clearing up some things once again

Change 16033 on 2002/02/20 by csampayo@fl_csampayo_r400

 Updated VGT and SU sections and schedule

Change 16009 on 2002/02/20 by scroce@scroce_r400_win_marlboro

 Trying to clarify the setup doc

Change 16007 on 2002/02/20 by rramsey@RRAMSEY_P4_r400_win

 Page 367 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Update rect description

Change 15992 on 2002/02/20 by efong@efong_r400_win_tor

 changed from dispout inject to scaler inject model

Change 15972 on 2002/02/20 by jasif@jasif_r400_win_tor

 Partially updated after document review.

Change 15952 on 2002/02/19 by ctaylor@fl_ctaylor_r400_win_marlboro

 Most of top-level arch done.

Change 15923 on 2002/02/19 by bryans@bryans_crayola_win_cvd

 Add test plan templates for VID core

Change 15920 on 2002/02/19 by bryans@bryans_crayola_win_cvd

 Update for this week

Change 15919 on 2002/02/19 by efong@efong_r400_win_tor

 fixed up the spec due to the review

Change 15914 on 2002/02/19 by gregs@gregs_r400_win_marlboro

 Update.

Change 15878 on 2002/02/19 by bryans@bryans_crayola_win_cvd

 Source tree for display core

Change 15862 on 2002/02/19 by efong@efong_r400_win_tor

 renamed top level diagram from hdcp disable to hdcp_enable
 changed the forciable signals section to be more standardized

Change 15860 on 2002/02/19 by ygiang@ygiang_r400_win_marlboro

 added: Ferrt Shader Docs and Test environment cook book

Change 15851 on 2002/02/19 by efong@efong_r400_win_tor

 updated due to review and some pad changes

Change 15837 on 2002/02/19 by tho@tho_r400_win

 Page 368 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 updated

Change 15828 on 2002/02/19 by nbarbier@nbarbier_r400_win_tor

 Initial revision of DCIO Interface.

Change 15770 on 2002/02/18 by beiwang@bei_mcspec

 deleted CAM and address return queues from mcci diagram, modified the cam diagram,
added note on bank ABCD->bank 0,1,2,3

Change 15752 on 2002/02/18 by tho@tho_r400_win

 update cursor test plan

Change 15742 on 2002/02/18 by jasif@jasif_r400_win_tor

 Updated.

Change 15741 on 2002/02/18 by bryans@bryans_crayola_win_cvd

 Update status/dates

Change 15727 on 2002/02/18 by vliu@vliu_r400_cnvliu100_win_cvd

 Update the status.

Change 15723 on 2002/02/18 by efong@efong_r400_win_tor

 Updated dates

Change 15720 on 2002/02/18 by chwang@chwang_r400_win_cvd

 Update.

Change 15718 on 2002/02/18 by efong@efong_r400_win_tor

 after final review ...

Change 15716 on 2002/02/18 by jasif@jasif_r400_win_tor

 Added new forcible signals table.

Change 15713 on 2002/02/18 by jasif@jasif_r400_win_tor

 Updated Error section. Added open issue on dynamic clocking.

Change 15711 on 2002/02/18 by tho@tho_r400_win

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1556 of 1898

 Page 369 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 update

Change 15709 on 2002/02/18 by rbell@rbell_crayola_win_cvd

 Changes

Change 15689 on 2002/02/16 by jimmylau@jimmylau_r400_win_tor

 Major revision of CRTC block specs after the first specs review.

Change 15679 on 2002/02/15 by jiezhou@jiezhou_r400_win_tor

 modified state machine

Change 15678 on 2002/02/15 by jiezhou@jiezhou_r400_win_tor

 add 32 bpp digital output for graphic request

Change 15676 on 2002/02/15 by jiezhou@jiezhou_r400_win_tor

 Initial release

Change 15671 on 2002/02/15 by jacarey@fl_jacarey

 Checkpoint Specifications

Change 15669 on 2002/02/15 by mzhu@mzhu_r400_win_tor

 initial version of DMIF block spec

Change 15667 on 2002/02/15 by mzhu@mzhu_r400_win_tor

 define pixel order for tiling mode with one DCP pipeline enabled

Change 15664 on 2002/02/15 by kcorrell@kcorrell_r400_docs_marlboro

 Updated GART area in MH

Change 15658 on 2002/02/15 by gregs@gregs_r400_win_marlboro

 Added parallel ROM support on the DVO interface.

Change 15627 on 2002/02/15 by gregs@gregs_r400_win_marlboro

 ROM+DEBUG blocks: increased are by 25% and added 640x8 SRAM area.

Change 15593 on 2002/02/15 by lseiler@ma_lseiler

 Restored the unrevised text that I deleted for review version 0.4, removed change bars

 Page 370 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 15586 on 2002/02/15 by gregs@gregs_r400_win_marlboro

 increased CG area by 50% (an estimate for new power management functionality).

Change 15585 on 2002/02/15 by jacarey@fl_jacarey

 Clarify Byte Enable Support Through the RBBM.

Change 15570 on 2002/02/15 by jacarey@fl_jacarey

 1. Skew Control Update
 2. Update Command FIFO Depth

Change 15564 on 2002/02/15 by kcorrell@kcorrell_r400_docs_marlboro

 updated MH area

Change 15563 on 2002/02/15 by efong@efong_r400_win_tor

 closed some open issues

Change 15562 on 2002/02/15 by efong@efong_r400_win_tor

 updated a ton of things

Change 15544 on 2002/02/14 by rvelez@rvelez_r400_win_tor

 Added more details to the spec

Change 15543 on 2002/02/14 by jasif@jasif_r400_win_tor

 Updated.

Change 15541 on 2002/02/14 by gregs@gregs_r400_win_marlboro

 daily changes

Change 15534 on 2002/02/14 by csampayo@fl_csampayo_r400

 Updated SU section, both docs

Change 15533 on 2002/02/14 by beiwang@bei_r400_area

 Added some MC skid buffer

Change 15529 on 2002/02/14 by beiwang@bei_r400_area

 Added MC changes

 Page 371 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 15508 on 2002/02/14 by vromaker@MA_VIC_P4

 updated SQ macro area numbers to those obtained with .13 compiler

Change 15492 on 2002/02/14 by jasif@jasif_r400_win_tor

 Updated with recommendations made during the review.

Change 15455 on 2002/02/14 by rbell@rbell_crayola_win_cvd

 Added open issues, and changes as per Jie.

Change 15450 on 2002/02/14 by rbell@rbell_crayola_win_cvd

 Changes after the DMIF design review

Change 15446 on 2002/02/14 by jacarey@fl_jacarey

 Update Diagrams

Change 15418 on 2002/02/13 by csampayo@fl_csampayo_r400

 Updated most of the SU section.

Change 15404 on 2002/02/13 by jacarey@fl_jacarey

 Checkpoint CP Specifications

Change 15392 on 2002/02/13 by jacarey@fl_jacarey

 Update Interface to Memory Hub on Diagram

Change 15390 on 2002/02/13 by gregs@gregs_r400_win_marlboro

 daily update

Change 15387 on 2002/02/13 by gregs@gregs_r400_win_marlboro

 daily update

Change 15377 on 2002/02/13 by jacarey@fl_jacarey

 Update Internal Register Bus Connections

Change 15375 on 2002/02/13 by jasif@jasif_r400_win_tor

 Updated.

 Page 372 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 15371 on 2002/02/13 by jacarey@fl_jacarey

 Minor Updates to RBBM.

Change 15369 on 2002/02/13 by jacarey@fl_jacarey

 Update Diagrams

Change 15358 on 2002/02/13 by gregs@gregs_r400_win_marlboro

 daily update

Change 15333 on 2002/02/13 by jacarey@fl_jacarey

 Updates to RTEE Diagram

Change 15325 on 2002/02/13 by jacarey@fl_jacarey

 Update for Review

Change 15304 on 2002/02/12 by tho@tho_r400_win

 removed MV_DISABLE strap from doc.

Change 15301 on 2002/02/12 by tho@tho_r400_win

 Changed strap value generation, updated forcible signal section

Change 15297 on 2002/02/12 by jacarey@fl_jacarey

 Incremental Update to the Spec.

Change 15296 on 2002/02/12 by jacarey@fl_jacarey

 Revision 0.06 of RBBM Spec

Change 15295 on 2002/02/12 by hartogs@fl_hartogs

 Updated the RBBM interface table.

Change 15281 on 2002/02/12 by jacarey@fl_jacarey

 Update Diagrams

Change 15279 on 2002/02/12 by jasif@jasif_r400_win_tor

 Updated dynamic clocking document. Changed file name from RBBM_model.doc to
RBBMIF_model.doc.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1557 of 1898

 Page 373 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 15276 on 2002/02/12 by jacarey@fl_jacarey

 Update connections to command stream fetcher

Change 15273 on 2002/02/12 by jacarey@fl_jacarey

 Separate RB_RPTR write requests to MIU

Change 15271 on 2002/02/12 by jacarey@fl_jacarey

 Updates to Diagram of RBBM Top-Level

Change 15265 on 2002/02/12 by gregs@gregs_r400_win_marlboro

 new spec - initial version.

Change 15264 on 2002/02/12 by efong@efong_r400_win_tor

 Fixed up IO model after new review

Change 15222 on 2002/02/12 by jhoule@MA_JHOULE

 0.9.5:
 Added WR_MASK_{XYZW} in SQ<--TPC interface.
 Updated TOC and LOF.

Change 15216 on 2002/02/12 by efong@efong_r400_win_tor

 Updated PLL model because of the review as well as added in GO and BUSY signals

Change 15215 on 2002/02/12 by efong@efong_r400_win_tor

 put documentation for VIP_DEVICE being inverted.

Change 15191 on 2002/02/11 by jasif@jasif_r400_win_tor

 Changed name of document.

Change 15190 on 2002/02/11 by jasif@jasif_r400_win_tor

 Updated.

Change 15188 on 2002/02/11 by bryans@bryans_crayola_win_cvd

 Update with feedback from meeting; add model code reviews, weekly issues

Change 15182 on 2002/02/11 by nluu@nluu_r400_cnnb

 - update

 Page 374 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 15167 on 2002/02/11 by jasif@jasif_r400_win_tor

 Added section on avoiding race conditions and behavioural coding styles for
performance.

Change 15166 on 2002/02/11 by jacarey@fl_jacarey

 Update Waveforms for Slow Clients

Change 15165 on 2002/02/11 by gregs@gregs_r400_win_marlboro

 Corrected typos.

Change 15164 on 2002/02/11 by khabbari@khabbari_r400_win

 the first released version of crtc tv interface document.
 Also added some details to line buffer arch document.

Change 15156 on 2002/02/11 by scroce@scroce_r400_win_marlboro

 Added some little things about v2html

Change 15154 on 2002/02/11 by jacarey@fl_jacarey

 Remove Skew Control Signal Between RBBM and CP

Change 15151 on 2002/02/11 by dclifton@dclifton_r400

 Updates to drawings

Change 15139 on 2002/02/11 by nluu@nluu_r400_cnnb

 - update

Change 15133 on 2002/02/11 by nluu@nluu_r400_cnnb

 - update

Change 15126 on 2002/02/11 by nluu@nluu_r400_cnnb

 - update

Change 15121 on 2002/02/11 by csampayo@fl_csampayo_lt_r400

 SU updates

Change 15120 on 2002/02/11 by nluu@nluu_r400_cnnb

 Page 375 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 - update status

Change 15115 on 2002/02/11 by hartogs@fl_hartogs

 Refreshed early diagrams and text.

Change 15108 on 2002/02/11 by bryans@bryans_crayola_win_cvd

 Update milestone dates

Change 15106 on 2002/02/11 by nluu@nluu_r400_cnnb

 - check in so I don't lose the changes

Change 15100 on 2002/02/11 by jasif@jasif_r400_win_tor

 Updated.

Change 15099 on 2002/02/11 by efong@efong_r400_win_tor

 Updated DV status

Change 15096 on 2002/02/11 by dglen@dglen_r400_dell

 Added section on update and control of double buffered register fields.

Change 15095 on 2002/02/11 by vliu@vliu_r400_cnvliu100_win_cvd

 Updating the dates.

Change 15091 on 2002/02/11 by dclifton@dclifton_r400

 Changed a few diagrams and equations slightly

Change 15079 on 2002/02/11 by chwang@chwang_r400_win_cvd

 Update

Change 15073 on 2002/02/11 by tho@tho_r400_win

 updated status report

Change 15068 on 2002/02/11 by dclifton@dclifton_r400

 Updated top level block diagram

Change 15067 on 2002/02/11 by rbell@rbell_crayola_win_cvd

 Updates

 Page 376 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 15066 on 2002/02/11 by wlawless@wlawless

 Nothing major

Change 15018 on 2002/02/08 by jasif@jasif_r400_win_tor

 Initial revision.

Change 15017 on 2002/02/08 by rvelez@rvelez_r400_win_tor

 Added more description for the interface

Change 15016 on 2002/02/08 by gregs@gregs_r400_win_marlboro

 Updated after David Glen and John Carey reviews.

Change 15002 on 2002/02/08 by jowang@jowang_R400_win

 added a column for # of horizontal filter taps

Change 15001 on 2002/02/08 by jowang@jowang_R400_win

 updated with overscan and interlace interface signals

Change 15000 on 2002/02/08 by jasif@jasif_r400_win_tor

 Updated Joveria's status.

Change 14967 on 2002/02/08 by khabbari@khabbari_r400_win

 added write/read pointer des to the LB ARCH doc

Change 14962 on 2002/02/08 by gregs@gregs_r400_win_marlboro

 ROM spec is ready for verilog coding phase.

Change 14961 on 2002/02/08 by efong@efong_r400_win_tor

 Updated document after initial review

Change 14959 on 2002/02/08 by rbell@rbell_crayola_win_cvd

 Added sample test code.

Change 14955 on 2002/02/08 by rbell@rbell_crayola_win_cvd

 Initial draft

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1558 of 1898

 Page 377 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 14948 on 2002/02/08 by rbell@rbell_crayola_win_cvd

 Updates after review

Change 14934 on 2002/02/08 by paulv@MA_PVELLA

 Updated MHS with most recent changes and updates.

Change 14912 on 2002/02/07 by csampayo@fl_csampayo_r400

 Added unit/function owners and hyperlinks to the
R400_PA_Functional_Validation_Approach_Plan document

Change 14904 on 2002/02/07 by jasif@jasif_r400_win_tor

 Modified dynamic clock section.

Change 14895 on 2002/02/07 by hartogs@fl_hartogs

 Completed description of de-stripping, de-fanning, decomposition of quads and polygons
into triangles, prprovoking vertex (flat shading), and line stipple wireframe fill mode issues.

Change 14883 on 2002/02/07 by jhoule@MA_JHOULE

 Added 32-bit channels blending.
 Described math foundations.
 Updated TOC.

Change 14878 on 2002/02/07 by grayc@grayc_r400_win

 initial checkin

Change 14877 on 2002/02/07 by grayc@grayc_r400_win

 moving files

Change 14861 on 2002/02/07 by grayc@grayc_r400_win

 Initial checkin

Change 14855 on 2002/02/07 by mdoggett@MA_MDOGGETT_LT

 Updates according to TC spec review and many more discussion. Changes to TCD
figure, L1 and L2 tags, L2 formats, padding and degamma.

Change 14849 on 2002/02/07 by efong@efong_r400_win_tor

 Made some changes due to the review of the strap model.

 Page 378 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 14842 on 2002/02/07 by rbell@rbell_crayola_win_cvd

 Changed CP to DCP

Change 14824 on 2002/02/07 by jhoule@MA_JHOULE

 Forgot the usage tables. Now updated!

Change 14823 on 2002/02/07 by jhoule@MA_JHOULE

 Moved fields (VTX_FORMAT, EXP_ADJUST) from VFetch instr so that they are byte-
aligned.

Change 14818 on 2002/02/07 by jhoule@MA_JHOULE

 Aesthetic

Change 14817 on 2002/02/07 by jhoule@MA_JHOULE

 Brought SRC_SEL* in same DWORD.

Change 14806 on 2002/02/06 by jiezhou@jiezhou_r400_win_tor

 update window control

Change 14797 on 2002/02/06 by efong@efong_r400_win_tor

 New version of the IO model with the names fixed up and some of the issues closed.

Change 14796 on 2002/02/06 by jhoule@MA_JHOULE

 Changed instruction fields so that they match between VFetch and TFetch.
 This helps the SQ (fields are always at the same place).
 Also added cool macro for bit numbers.

Change 14785 on 2002/02/06 by bbloemer@ma-jasonh

 Removed address return bus and base and coord from RB access bus.

Change 14698 on 2002/02/05 by jacarey@fl_jacarey

 Checkpoint the CP's PM4 Specification

Change 14697 on 2002/02/05 by jimmylau@jimmylau_r400_win_tor

 Rev 0.3. Decided to keep notation of internal & external overscan.

Change 14696 on 2002/02/05 by fhsien@fhsien_r400_win_marlboro

 Page 379 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Add Running eum_only. (no build is done).

Change 14694 on 2002/02/05 by jacarey@fl_jacarey

 Checkpoint 2D Appendix

Change 14691 on 2002/02/05 by jacarey@fl_jacarey

 Checkpoint RBBM Spec

Change 14687 on 2002/02/05 by jacarey@fl_jacarey

 Update CP's Memory Interface Unit Diagram

Change 14685 on 2002/02/05 by jacarey@fl_jacarey

 Update RBBM Top-Level Diagram

 1. Slip Buffer Registers
 2. Add RBBM_CP_DMA_DRAW_DEC signal
 3. Update Switch to Send Host Data through Non-Queued Path

Change 14677 on 2002/02/05 by hartogs@fl_hartogs

 Added more information on the primitive types and provoking vertex.

Change 14674 on 2002/02/05 by rbell@rbell_crayola_win_cvd

 initial draft

Change 14667 on 2002/02/05 by jacarey@fl_jacarey

 Update

Change 14661 on 2002/02/05 by jacarey@fl_jacarey

 Update PFP to ME Diagram
 Remove Diagram for Old Fetchers

Change 14643 on 2002/02/05 by khabbari@khabbari_r400_win

 added a block diagram for write data path in the line buffer doc

Change 14631 on 2002/02/05 by tho@tho_r400_win

 updated Data Processing Algorithms section regarding PLI/CLI usage

Change 14621 on 2002/02/05 by efong@efong_r400_win_tor

 Page 380 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Updated PLL model to support stop and go signals

Change 14587 on 2002/02/04 by khabbari@khabbari_r400_win

 added some description to data processing algorithm in line buffer arch document

Change 14582 on 2002/02/04 by jasif@jasif_r400_win_tor

 Updated finish dates.

Change 14568 on 2002/02/04 by vromaker@MA_VIC_P4

 updates

Change 14551 on 2002/02/04 by jasif@jasif_r400_win_tor

 Updated.

Change 14543 on 2002/02/04 by rbell@rbell_crayola_win_cvd

 Final draft

Change 14540 on 2002/02/04 by gregs@gregs_r400_win_marlboro

 Added/updated after implementation analysis and adding parallel PROM support.

Change 14528 on 2002/02/04 by frising@ma_frising

 v.1.19
 -Fixed up how certain texture formats go into the L2 cache in order
 to guarantee consistency within a texture family (e.g. 8, 8_8,
 8_8_8_8).

Change 14527 on 2002/02/04 by jasif@jasif_r400_win_tor

 Updated.

Change 14526 on 2002/02/04 by jasif@jasif_r400_win_tor

 Added section on dynamic clocking.

Change 14509 on 2002/02/04 by paulv@MA_PVELLA

 Updated block diagram to match changes and updates to the MHS section in the spec.

Change 14500 on 2002/02/04 by nluu@nluu_r400_cnnb

 - update

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1559 of 1898

 Page 381 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 14499 on 2002/02/04 by rbell@rbell_crayola_win_cvd

 Added assumptions, stubs, model terminology, etc.

Change 14495 on 2002/02/04 by jacarey@fl_jacarey

 Updates to RTEE Event Engine Diagram

Change 14492 on 2002/02/04 by vromaker@MA_VIC_P4

 updates, new figures

Change 14481 on 2002/02/04 by chwang@chwang_r400_win_cvd

 Update.

Change 14476 on 2002/02/04 by rbell@rbell_crayola_win_cvd

 Updates

Change 14475 on 2002/02/04 by rbell@rbell_crayola_win_cvd

 Updates after reviews, added errors warnings and assumptions.

Change 14474 on 2002/02/04 by jimmylau@jimmylau_r400_win_tor

 Revision 0.2 of CRTC block specs. Remove notation of external/internal overscan.
Overscan is always outside the active display area.

Change 14472 on 2002/02/04 by jasif@jasif_r400_win_tor

 Updated.

Change 14470 on 2002/02/04 by tho@tho_r400_win

 updated status report

Change 14469 on 2002/02/04 by vromaker@MA_VIC_P4

 new figures

Change 14468 on 2002/02/04 by efong@efong_r400_win_tor

 Updated

Change 14466 on 2002/02/04 by llefebvr@llefebvre_laptop_r400

 Version 1.7 of the Sequencer spec.

 Page 382 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 14465 on 2002/02/03 by jiezhou@jiezhou_r400_win_tor

 Add some control management

Change 14464 on 2002/02/03 by vromaker@MA_VIC_P4

 changes

Change 14444 on 2002/02/01 by jasif@jasif_r400_win_tor

 Updated open issues.

Change 14441 on 2002/02/01 by jasif@jasif_r400_win_tor

 Updated after spec review.

Change 14440 on 2002/02/01 by efong@efong_r400_win_tor

 Added in IO model and strap model

Change 14439 on 2002/02/01 by jasif@jasif_r400_win_tor

 Updated

Change 14436 on 2002/02/01 by mzhu@mzhu_r400_win_tor

 change CP to DCP

Change 14426 on 2002/02/01 by rbagley@MA_RBAGLEY_LTXP

 0.1 (d) Intermediate check-in. Additional comments. The bloat of the container doc has
been remedied.

Change 14424 on 2002/02/01 by jacarey@fl_jacarey

 Checkpoint Specifications

Change 14416 on 2002/02/01 by khabbari@khabbari_r400_win

 small fixes

Change 14411 on 2002/02/01 by khabbari@khabbari_r400_win

 The first draft of line buffer doc

Change 14402 on 2002/02/01 by rbell@rbell_crayola_win_cvd

 Changes some arch/conf names, added BFMs section.

 Page 383 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 14400 on 2002/02/01 by jasif@jasif_r400_win_tor

 Updated

Change 14399 on 2002/02/01 by semara@semara_r400_win_tor

 rev 2

Change 14395 on 2002/02/01 by rbagley@MA_RBAGLEY_LTXP

 1.0 (c) Revisions to instructions and miscellaneous corrections.

Change 14379 on 2002/02/01 by nbarbier@nbarbier_r400_win_tor

 First revision of CRTC/DISPOUT interface

Change 14377 on 2002/02/01 by frising@ma_frising

 -Change GetBorderColorPercentage to GetBorderColorFraction. Thanks
 Jocelyn.
 -no version change.

Change 14366 on 2002/01/31 by jimmylau@jimmylau_r400_win_tor

 Initial revision

Change 14365 on 2002/01/31 by frising@ma_frising

 v.1.18
 -Added 6 new multimedia texture formats
 -remove FetchWhiteTexture, replace with GetBorderColorPercentage
 -remove mask option from DST_SEL_ in texture constant
 -move mask option of DST_SEL in insts from 6 to 7
 -Add new YCbCr black border color

Change 14363 on 2002/01/31 by vromaker@MA_VIC_P4

 new

Change 14362 on 2002/01/31 by vromaker@MA_VIC_P4

 updates

Change 14356 on 2002/01/31 by hartogs@fl_hartogs

 Still in progress.
 New block diagrams.
 Checked-in for backup.

 Page 384 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 14339 on 2002/01/31 by jacarey@fl_jacarey

 Update Busy Signals on Diagrams

Change 14333 on 2002/01/31 by chwang@chwang_r400_win_cvd

 Updated Status.

Change 14313 on 2002/01/31 by efong@efong_r400_win_tor

 Fixed up a ton of things from the review meeting

Change 14301 on 2002/01/31 by lkang@lkang_r400_win_tor

 new directories

Change 14300 on 2002/01/31 by lkang@lkang_r400_win_tor

 This directory is for DC-MH interface block architecture and implementation specs

Change 14299 on 2002/01/31 by wlawless@wlawless

 This version was updated to match the new Arch spec. The diagrams were updated.. The
depth logic is still old because we are working the color right now.

Change 14292 on 2002/01/30 by rbagley@MA_RBAGLEY_LTXP

 1.0 (b) Further revision.

Change 14287 on 2002/01/30 by dwong@cndwong2

 xDCT document, v0.2

 Adding in implementation details as well as updating open issues.

Change 14275 on 2002/01/30 by rbell@rbell_crayola_win_cvd

 more changes

Change 14267 on 2002/01/30 by lseiler@ma_lseiler

 Version 0.4: major update of sections 1-3, remaining sections temporarily removed until
they can be fully updated.

Change 14265 on 2002/01/30 by jacarey@fl_jacarey

 Streams Processed by CP Diagram

Change 14263 on 2002/01/30 by jacarey@fl_jacarey

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1560 of 1898

 Page 385 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Baseline New Documents in Perforce

Change 14260 on 2002/01/30 by jacarey@fl_jacarey

 Checkpoint Specifications

Change 14250 on 2002/01/30 by nluu@nluu_r400_cnnb

 - fix typo

Change 14244 on 2002/01/30 by gregs@gregs_r400_win_marlboro

 Updated with the new CP based power management ideas. Added startup description.

Change 14239 on 2002/01/30 by khabbari@khabbari_r400_win

 added some description in "Interface Functional Description and Purpose" section

Change 14238 on 2002/01/30 by jasif@jasif_r400_win_tor

 Updated.

Change 14237 on 2002/01/30 by askende@andi_r400_docs

 new rev of the document.

Change 14236 on 2002/01/30 by tho@tho_r400_win

 updated rom controller model test plan

Change 14212 on 2002/01/30 by nluu@nluu_r400_cnnb

 - update

Change 14202 on 2002/01/29 by dclifton@dclifton_r400

 Updated with new diagrams to match pinout, added zoffset info

Change 14198 on 2002/01/29 by jiezhou@jiezhou_r400_win_tor

 remove

Change 14197 on 2002/01/29 by jiezhou@jiezhou_r400_win_tor

 to remove CP

Change 14196 on 2002/01/29 by jiezhou@jiezhou_r400_win_tor

 Page 386 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Change name CP to DCP

Change 14193 on 2002/01/29 by jasif@jasif_r400_win_tor

 Initial Revision of DCCIF Model Spec

Change 14184 on 2002/01/29 by mdoggett@MA_MDOGGETT_LT

 Updated TCD section. New top level diagram. Algorithm for DXT added.

Change 14183 on 2002/01/29 by rthambim@rthambim_r400_win_tor

 Modified naming convention and removed SWAP bits.

Change 14180 on 2002/01/29 by lseiler@ma_lseiler

 Preliminary version, pdf update

Change 14179 on 2002/01/29 by lseiler@ma_lseiler

 Preliminary RB spec update

Change 14164 on 2002/01/29 by mpersaud@mpersaud_r400_win_tor

 Initial rev

Change 14156 on 2002/01/29 by rbell@rbell_crayola_win_cvd

 Added straps

Change 14155 on 2002/01/29 by rbell@rbell_crayola_win_cvd

 First draft.

Change 14143 on 2002/01/29 by lseiler@ma_lseiler

 Version 0.6, with depth and color compression formats

Change 14139 on 2002/01/29 by smoss@smoss_crayola_win

 updated su_sc interface

Change 14138 on 2002/01/29 by markf@markf_r400_win_marlboro

 R400 Area Estimate

Change 14136 on 2002/01/29 by kcorrell@kcorrell_r400_docs_marlboro

 Page 387 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 updates as a result of the design review and further discussion with designers of MH
clients

Change 14135 on 2002/01/29 by jasif@jasif_r400_win_tor

 Added InterModel Bus Interface Spec.

Change 14124 on 2002/01/29 by scroce@scroce_r400_win_marlboro

 Some additional touches

Change 14115 on 2002/01/29 by bryans@bryans_crayola_win_cvd

 Update for week of Jan 28

Change 14113 on 2002/01/29 by hartogs@fl_hartogs

 Updated -- still in progress.

Change 14108 on 2002/01/29 by vromaker@MA_VIC_P4

 updates, new vsds

Change 14102 on 2002/01/28 by rbagley@MA_RBAGLEY_LTXP

 0.1 (a) : partial reorganization and instruction updates.

Change 14098 on 2002/01/28 by semara@semara_r400_win_tor

 correct the links

Change 14093 on 2002/01/28 by semara@semara_r400_win_tor

 remove

Change 14089 on 2002/01/28 by semara@semara_r400_win_tor

 initial release

Change 14071 on 2002/01/28 by semara@semara_r400_win_tor

 remove vcd files

Change 14068 on 2002/01/28 by semara@semara_r400_win_tor

 adding vga docs

Change 14057 on 2002/01/28 by smoss@smoss_crayola_win

 Page 388 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Updated registers and functionality

Change 14055 on 2002/01/28 by rbell@rbell_crayola_win_cvd

 Fixed entry function names

Change 14052 on 2002/01/28 by jhoule@MA_JHOULE

 V 1.17
 Changed TX_FMT_* and VTX_FMT_* to plain FMT_*

Change 14008 on 2002/01/28 by bryans@bryans_crayola_win_cvd

 Initial high level description of DV environment for Video IP (DC)

Change 13999 on 2002/01/28 by gregs@gregs_r400_win_marlboro

 Added current serge control circuits and more info in general.

Change 13994 on 2002/01/28 by tho@tho_r400_win

 updated dv status report

Change 13993 on 2002/01/28 by jasif@jasif_r400_win_tor

 Updated Joveria's status.

Change 13979 on 2002/01/28 by efong@efong_r400_win_tor

 Updated Status

Change 13969 on 2002/01/28 by rbell@rbell_crayola_win_cvd

 Changes

Change 13966 on 2002/01/28 by bryans@bryans_crayola_win_cvd

 Add C++ test environment documents to depot

Change 13965 on 2002/01/28 by rbell@rbell_crayola_win_cvd

 Added user model read/write commands

Change 13963 on 2002/01/28 by bryans@bryans_crayola_win_cvd

 Update ifgen in schedule

Change 13948 on 2002/01/25 by chwang@chwang_r400_win_cvd

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1561 of 1898

 Page 389 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Added emulation coding standard and updated tutorial.

Change 13944 on 2002/01/25 by rvelez@rvelez_r400_win_tor

 Changes based on 1/18 Interface Spec Review

Change 13942 on 2002/01/25 by rbell@rbell_crayola_win_cvd

 More changes

Change 13940 on 2002/01/25 by beiwang@bei_mcspec

 Updated the spec to include issues resolved after the spec review as well as other open
issues. Most of the changes are in pink. Also updated the bus interface description.
 Updated the visio drawing on address format

Change 13939 on 2002/01/25 by tho@tho_r400_win

 updated test plan

Change 13933 on 2002/01/25 by scroce@scroce_r400_win_marlboro

 Added info about Module Compiler support.

Change 13929 on 2002/01/25 by tho@tho_r400_win

 rom_controller_model_test_plan rev 0.2

Change 13890 on 2002/01/25 by jasif@jasif_r400_win_tor

 Updated BIF_RBBM interface to user new signal names. Added error checking section.
Fixed mistakes in top-level diagram.

Change 13884 on 2002/01/25 by wlawless@wlawless

 just saving

Change 13860 on 2002/01/25 by rbell@rbell_crayola_win_cvd

 Final version

Change 13823 on 2002/01/25 by jacarey@fl_jacarey

 Checkpoint Specification

Change 13817 on 2002/01/24 by rbagley@MA_RBAGLEY_LTXP

 Deleting obsolete version.

 Page 390 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 13816 on 2002/01/24 by rbagley@MA_RBAGLEY_LTXP

 Intermediate checkin for version 0.1 of newly revised and reorganized shader
programming model doc. The doc had been
 correctly renamed; the previous version is here deleted.
 We also delete the former assembly syntax doc from its deprecated
 location.

Change 13815 on 2002/01/24 by jasif@jasif_r400_win_tor

 Updated

Change 13814 on 2002/01/24 by semara@semara_r400_win_tor

 bif-vga doc

Change 13812 on 2002/01/24 by vromaker@MA_VIC_P4

 update

Change 13809 on 2002/01/24 by jayw@MA_JAYW

 wrong filename is RB_BlendLogic.doc

Change 13808 on 2002/01/24 by jayw@MA_JAYW

 more initial writings

Change 13787 on 2002/01/24 by wlawless@wlawless

 just in case

Change 13761 on 2002/01/24 by jasif@jasif_r400_win_tor

 Updated

Change 13739 on 2002/01/24 by jacarey@fl_jacarey

 Note added to RBBM spec indicating that the RBBM_CNTL and RBBM_SOFT_RESET
registers are in the IO and MMR decode spaces.

Change 13709 on 2002/01/23 by efong@efong_r400_win_tor

 PLL model simulation model spec

Change 13693 on 2002/01/23 by jhoule@MA_JHOULE

 Diagrams showing multiple piecewise linear equations for the mipmap weight
optimization suggested.

 Page 391 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 13692 on 2002/01/23 by jhoule@MA_JHOULE

 Changed SQ to better reflect it's a separate block.

Change 13690 on 2002/01/23 by jhoule@MA_JHOULE

 Drawing representing the texels used in a filter around a sample point.
 Containt point/bilinear/4x4 filters.

Change 13689 on 2002/01/23 by jhoule@MA_JHOULE

 R300 figures showing the wraping policies.

Change 13687 on 2002/01/23 by jhoule@MA_JHOULE

 0.9.3:
 Updated interfaces to match current specs.
 Added comments on various issues.
 Described LOD optimization approach.
 Added diagrams.

Change 13648 on 2002/01/23 by wlawless@wlawless

 new block diagrams

Change 13646 on 2002/01/23 by rbell@rbell_crayola_win_cvd

 Video IP archs and confs doc

Change 13637 on 2002/01/23 by chwang@chwang_r400_win_cvd

 Another fix.

Change 13624 on 2002/01/23 by nluu@nluu_r400_cnnb

 - update

Change 13623 on 2002/01/23 by jacarey@fl_jacarey

 Clarification on Accessing IO and Memory-Mapped registers.
 These must have the same address.

Change 13617 on 2002/01/23 by nluu@nluu_r400_cnnb

 - update

Change 13603 on 2002/01/23 by chwang@chwang_r400_win_cvd

 Page 392 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Emulation tutorial.

Change 13570 on 2002/01/22 by tho@tho_r400_win

 cursor & icon documents added

Change 13546 on 2002/01/22 by bryans@bryans_crayola_win_cvd

 Update status 01/22/02

Change 13534 on 2002/01/22 by mzhu@mzhu_r400_win_tor

 Remove CP_DMIF_read_start signal, Add more timing diagrams.

Change 13521 on 2002/01/22 by jiezhou@jiezhou_r400_win_tor

 updated Jan 22

Change 13514 on 2002/01/22 by askende@andi_r400_docs

 new rev 1.2

Change 13512 on 2002/01/22 by askende@andi_r400_docs

 new rev.

Change 13476 on 2002/01/21 by rbeaudin@rbeaudin_r400_win_marlboro

 UPDATED REGRESSION INSTRUCTIONs

Change 13474 on 2002/01/21 by askende@andi_r400_docs

 new rev. 1.1

Change 13473 on 2002/01/21 by rthambim@rthambim_r400_win_tor

 Initial Revision

Change 13471 on 2002/01/21 by askende@andi_r400_docs

 new rev 1.1 of the shader pipe

Change 13465 on 2002/01/21 by askende@andi_r400_docs

 first time check-in

Change 13449 on 2002/01/21 by vromaker@MA_VIC_P4

 update

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1562 of 1898

 Page 393 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 13446 on 2002/01/21 by jacarey@fl_jacarey

 Checkpoint Specifications

Change 13434 on 2002/01/21 by jayw@MA_JAYW

 working documents on the alpha blend data path

Change 13427 on 2002/01/21 by frising@ma_frising

 -Moved Usage tabs towards back. I think this makes the spec a little more manageable
than the interleaved usages.
 -no version change

Change 13422 on 2002/01/21 by jiezhou@jiezhou_r400_win_tor

 major updated revision

Change 13421 on 2002/01/21 by jiezhou@jiezhou_r400_win_tor

 spec update

Change 13397 on 2002/01/21 by jacarey@fl_jacarey

 Update CP_DEBUG and CP_STAT register fields.

Change 13391 on 2002/01/21 by efong@efong_r400_win_tor

 Put in Bif model document as well as the test_control_server and verilog document from
HW_modelling

Change 13383 on 2002/01/21 by jacarey@fl_jacarey

 1. Outputs to VGT for 2D
 2. Raster Order Determination for 2D Rectangles

Change 13380 on 2002/01/21 by chwang@chwang_r400_win_cvd

 Updated.

Change 13372 on 2002/01/21 by tho@tho_r400_win

 upated status report

Change 13364 on 2002/01/21 by jasif@jasif_r400_win_tor

 Updated status.

 Page 394 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 13361 on 2002/01/21 by jacarey@fl_jacarey

 Checkpoint Updates to 2D Appendix

Change 13356 on 2002/01/21 by efong@efong_r400_win_tor

 Updated % done

Change 13347 on 2002/01/21 by rbell@rbell_crayola_win_cvd

 update

Change 13333 on 2002/01/18 by jacarey@fl_jacarey

 Update Open Issues List
 Update Go/Active Assertion Control Register

Change 13332 on 2002/01/18 by jacarey@fl_jacarey

 Document Double-Registered Discrete Signals for Better Chip Timing.

Change 13331 on 2002/01/18 by jacarey@fl_jacarey

 Checkpoint CP Spec

Change 13327 on 2002/01/18 by tho@tho_r400_win

 ROM controller model test plan

Change 13323 on 2002/01/18 by gregs@gregs_r400_win_marlboro

 initial version, based on current designs.

Change 13318 on 2002/01/18 by beiwang@bei_mcspec

 Things noted from the spec review.
 Spec: Changes are highlighted in pink.
 MCCI drawing: reduced the number of lines going into MH read bus mux

Change 13316 on 2002/01/18 by scroce@scroce_r400_win_marlboro

 Added info about v2html support and new command line switches

Change 13308 on 2002/01/18 by jasif@jasif_r400_win_tor

 Updated signal interface list and top level diagram.

Change 13293 on 2002/01/18 by jowang@jowang_R400_win

 Page 395 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 area estimation for Lili

Change 13281 on 2002/01/18 by khabbari@khabbari_r400_win

 added columns to see if line buffer has enough bandwidth

Change 13272 on 2002/01/18 by rbeaudin@rbeaudin_r400_win_marlboro

 doc update

Change 13268 on 2002/01/18 by rbell@rbell_crayola_win_cvd

 Added ati_mempak doc

Change 13263 on 2002/01/18 by rvelez@rvelez_r400_win_tor

 Rev 1.1

Change 13255 on 2002/01/17 by mdoggett@MA_MDOGGETT_LT

 Finished integrating and cleaning out old L1 spec details.

Change 13238 on 2002/01/17 by jacarey@fl_jacarey

 Updated Size for Tag Memory and FIFO

Change 13235 on 2002/01/17 by askende@andi_r400_docs

 new rev.

Change 13231 on 2002/01/17 by askende@andi_r400_docs

 new shader rev of the shader spec checked in.

Change 13227 on 2002/01/17 by askende@andi_r400_docs

 new rev of the shader spec

Change 13226 on 2002/01/17 by askende@andi_r400_docs

 first time check-in

Change 13209 on 2002/01/17 by dglen@dglen_r400_dell

 Some updates

Change 13184 on 2002/01/17 by nluu@nluu_r400_cnnb

 - update

 Page 396 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 13179 on 2002/01/17 by nluu@nluu_r400_cnnb

 - RBBMIF block specs, timing and block diagrams

Change 13167 on 2002/01/16 by nluu@nluu_r400_cnnb

 - edit

Change 13160 on 2002/01/16 by rbell@rbell_crayola_win_cvd

 Another draft of the spec

Change 13143 on 2002/01/16 by nluu@nluu_r400_cnnb

 - update rbbmif - autoreg spec

Change 13137 on 2002/01/16 by rbeaudin@rbeaudin_r400_win_marlboro

 new R400 Emulator Specification

Change 13133 on 2002/01/16 by nluu@nluu_r400_cnnb

 - update action items for RBBMIF

Change 13119 on 2002/01/16 by bryans@bryans_crayola_win_cvd

 Update task list for week: 01/14/01

Change 13091 on 2002/01/15 by scroce@scroce_r400_win_marlboro

 Changed some features. MKTREE is now disabled by default but can be enabled on
Command line. Also, incremental compile can now be disabled

Change 13085 on 2002/01/15 by jiezhou@jiezhou_r400_win_tor

 delete

Change 13075 on 2002/01/15 by nluu@nluu_r400_cnnb

 - move interface doc to dc/Interface directory

Change 13074 on 2002/01/15 by rbell@rbell_crayola_win_cvd

 Added the System Memory model

Change 13073 on 2002/01/15 by lseiler@ma_lseiler

 revision 0.3, as checked in before Christmas

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1563 of 1898

 Page 397 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 13069 on 2002/01/15 by jasif@jasif_r400_win_tor

 Initial revision for RBBM Model Document.

Change 13066 on 2002/01/15 by wlawless@wlawless

 ok

Change 13059 on 2002/01/15 by jacarey@fl_jacarey

 Checkpoint Specifications

Change 13058 on 2002/01/15 by llefebvr@llefebvre_laptop_r400

 redondant opcodes corrected.

Change 13057 on 2002/01/15 by llefebvr@llefebvre_laptop_r400

 There was a small error in the control flow section. Checked in the spec so that Richard
has a correct version to build the assembler on.

Change 13054 on 2002/01/14 by askende@andi_r400_docs

 added for the first time

Change 13015 on 2002/01/14 by jayw@MA_JAYW

 Fixed visio drawing, try 2

Change 13013 on 2002/01/14 by lseiler@ma_lseiler

 Version 0.7

Change 13011 on 2002/01/14 by bbloemer@ma-jasonh

 Final update for release 0.7

Change 13010 on 2002/01/14 by jayw@MA_JAYW

 fixed typo in Figure 7: Pixel Format winin 2D Micro-Tiles
 wrong numeric bit positions

Change 13007 on 2002/01/14 by beiwang@bei_mcspec

 Mods to MEMCtl and MCProtocol drawings

Change 13006 on 2002/01/14 by beiwang@bei_mcspec

 Page 398 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Modifications to open issues, wordvalid field of access bus, tile+host queues depth,
synchronization over valid&allocated bits of read data buffer, etc

Change 12989 on 2002/01/14 by yvalcour@yvalcour_r400_win_marlboro

 fixed format and updated section 4.

Change 12984 on 2002/01/12 by beiwang@bei_mcspec

 - Drawings: Modified MCaddressformat dawing. Slight mod to MCordering. Added
MCdramcmd drawing.
 - Spec: Modified address format description. Modified description to MCP and added
description to SW dram cmd

Change 12983 on 2002/01/11 by nluu@nluu_r400_win

Change 12981 on 2002/01/11 by bbloemer@ma-jasonh

 Another step closer to release 0.7

Change 12975 on 2002/01/11 by mdoggett@MA_MDOGGETT_LT

 More updates on TCB, TCD, TCM, TCO and Formats, including document
reorganisation and out dated sections removed

Change 12973 on 2002/01/11 by rvelez@rvelez_r400_win_tor

 Line Buffer-Scaler Interface Spec

Change 12966 on 2002/01/11 by scroce@scroce_r400_win_marlboro

 Document about the Build script

Change 12960 on 2002/01/11 by jacarey@fl_jacarey

 Update Tag Memory Size

Change 12949 on 2002/01/11 by jowang@jowang_R400_win

 delete #2

Change 12947 on 2002/01/11 by jowang@jowang_R400_win

 first draft after 1/10/02 review

Change 12905 on 2002/01/11 by jhoule@MA_JHOULE

 Current document is now R400_Texture_Pipe.doc

 Page 399 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 12880 on 2002/01/10 by rvelez@rvelez_r400_win_tor

 LB - Composite Pipe Interface Spec

Change 12878 on 2002/01/10 by jiezhou@jiezhou_r400_win_tor

 initial release

Change 12840 on 2002/01/10 by frising@ma_frising

 Closed issue 1.) about mapping of signed normalized vertex data.
 No version change.

Change 12839 on 2002/01/10 by jacarey@fl_jacarey

 Add diagram

Change 12827 on 2002/01/10 by rbell@rbell_crayola_win_cvd

 Another draft.

Change 12826 on 2002/01/10 by rbell@rbell_crayola_win_cvd

 Additions

Change 12824 on 2002/01/10 by jacarey@fl_jacarey

 Fix Internal Bus Write Transaction

Change 12809 on 2002/01/10 by jacarey@fl_jacarey

 Update RBBM Spec and Top-Level
 1. CPQ_DATA_SWAP
 2. NQ_WAIT_UNTIL

Change 12795 on 2002/01/10 by jacarey@fl_jacarey

 Diagram Updates

Change 12786 on 2002/01/10 by jasif@jasif_r400_win_tor

 Add Joveria's tasks.

Change 12774 on 2002/01/10 by jacarey@fl_jacarey

 Update diagrams

Change 12755 on 2002/01/09 by jacarey@fl_jacarey

 Page 400 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Checkpoint Specifications

Change 12749 on 2002/01/09 by jhoule@MA_JHOULE

 Put SQ in bold to indicate a separate block (beurk).

Change 12748 on 2002/01/09 by jhoule@MA_JHOULE

 Updated TC interfaces.
 SP<--TC interface described.
 Pre-filter FIFO more complete.
 Minor corrections here and there.

Change 12728 on 2002/01/09 by dglen@dglen_r400_dell

 Updated OpenGL and started section on control of display pipe

Change 12723 on 2002/01/09 by mzhu@mzhu_r400_win_tor

 DMIF-CP interface spec

Change 12708 on 2002/01/09 by llefebvr@llefebvre_laptop_r400

 new revision of the sequencer spec v1.6

Change 12704 on 2002/01/09 by rbell@rbell_crayola_win_cvd

 First draft of the DMIF simulation model spec.

Change 12691 on 2002/01/09 by nluu@nluu_r400_win

 - update action items for rbbmif

Change 12690 on 2002/01/09 by yvalcour@yvalcour_r400_win_marlboro

 add mc/mh test plan to correct location.

Change 12689 on 2002/01/09 by nluu@nluu_r400_win

 - rename doc

Change 12677 on 2002/01/09 by jacarey@fl_jacarey

 Update CP_RBIU Interfaces

Change 12667 on 2002/01/09 by nluu@nluu_r400_win

 - action items for RBBMIF

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1564 of 1898

 Page 401 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 12661 on 2002/01/09 by rbeaudin@rbeaudin_r400_win_marlboro

 update golden image release procedure

Change 12657 on 2002/01/09 by rbeaudin@rbeaudin_r400_win_marlboro

 added regression information

Change 12631 on 2002/01/09 by rbeaudin@rbeaudin_r400_win_marlboro

 new doc stuff

Change 12624 on 2002/01/08 by bbloemer@ma-jasonh

 Partial Update for rev 0.6

Change 12621 on 2002/01/08 by rvelez@rvelez_r400_win_tor

 DCC Interface-Client Spec

Change 12618 on 2002/01/08 by nluu@nluu_r400_win

 - name change

Change 12612 on 2002/01/08 by frising@ma_frising

 fixed a spelling typo

Change 12611 on 2002/01/08 by frising@ma_frising

 v.1.16
 -remove cubemap opcode and add cubemap to DIM field.
 -added a DIM_3D field to select between 3Da and 3Db sizes.
 -replace references to state with constant
 -rename base_offset to base_address
 -rename sec_offset to mip_address

Change 12604 on 2002/01/08 by jacarey@fl_jacarey

 Update Strobes and Data from Internal CP Clients to RBIU

Change 12591 on 2002/01/08 by nluu@nluu_r400_win

 - revised docs

Change 12589 on 2002/01/08 by dglen@dglen_r400_dell

 Updated to current plan

 Page 402 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 12586 on 2002/01/08 by jacarey@fl_jacarey

 Checkpoint Updates for Registers

Change 12579 on 2002/01/08 by jiezhou@jiezhou_r400_win_tor

 initial release

Change 12576 on 2002/01/08 by jiezhou@jiezhou_r400_win_tor

 initial release

Change 12568 on 2002/01/07 by jiezhou@jiezhou_r400_win_tor

 Initial release

Change 12560 on 2002/01/07 by vromaker@MA_VIC_P4

 added info on remapping tables

Change 12557 on 2002/01/07 by jacarey@fl_jacarey

 Checkpoint Unit Specs

Change 12527 on 2002/01/07 by mmantor@mmantor_r400

 added visio files for the Hardware state management document

Change 12509 on 2002/01/07 by nluu@nluu_r400_win

 - initial revision

Change 12488 on 2002/01/07 by jacarey@fl_jacarey

 Clarify cp_rbiu register read bus.

Change 12486 on 2002/01/07 by jacarey@fl_jacarey

 Update CP and RBBM Interfaces
 RBBM can access up to 128K Bytes in the register space.

Change 12481 on 2002/01/07 by jacarey@fl_jacarey

 Updated Register Fields in CP Spec

Change 12472 on 2002/01/07 by frising@ma_frising

 Update with OGL feedback.

 Page 403 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 12464 on 2002/01/04 by rthambim@rthambim_r400_win_tor

 Fixed syntax.

Change 12462 on 2002/01/04 by rthambim@rthambim_r400_win_tor

 intial release

Change 12459 on 2002/01/04 by vromaker@MA_VIC_P4

 added details to gpr allocation section

Change 12458 on 2002/01/04 by rbell@rbell_crayola_win_cvd

 ROM Controller model spec.

Change 12444 on 2002/01/04 by kcorrell@kcorrell_r400_docs_marlboro

 a few more details on some of the hardware aspects

Change 12433 on 2002/01/04 by wlawless@wlawless

 nothing

Change 12423 on 2002/01/04 by frising@ma_frising

 Fixed a typo

Change 12421 on 2002/01/04 by jhoule@MA_JHOULE

 Fixed typos (didn't even change version number)

Change 12416 on 2002/01/04 by frising@ma_frising

 Added features and caveats page. Resolved many of the open questions.

Change 12412 on 2002/01/04 by mdoggett@MA_MDOGGETT_LT

 Added L2 data ready signal, removed TCB to TCM signal.

Change 12406 on 2002/01/04 by mdoggett@MA_MDOGGETT_LT

 New version of TC spec. Updated discriptions and L1 and L2 access and decompression
diagrams.

Change 12395 on 2002/01/04 by rbell@rbell_crayola_win_cvd

 Added Toronto DV status

 Page 404 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 12335 on 2002/01/03 by llefebvr@llefebvre_laptop_r400

 backup of the spec

Change 12333 on 2002/01/03 by jacarey@fl_jacarey

 Updates: RBIU, RCIU, and RTEE Sub-units

Change 12332 on 2002/01/03 by jacarey@fl_jacarey

 Miscellaneous Updates to RTEE Diagram

Change 12331 on 2002/01/03 by vromaker@MA_VIC_P4

 fixed links (hopefully)

Change 12330 on 2002/01/03 by jacarey@fl_jacarey

 Add Internal Read Interfaces to RBIU Design

Change 12318 on 2002/01/02 by jacarey@fl_jacarey

 Update Memory Interface Unit Diagram

Change 12317 on 2002/01/02 by jacarey@fl_jacarey

 Update cp_rciu Diagram

Change 12315 on 2002/01/02 by jacarey@fl_jacarey

 Checkpoint

Change 12313 on 2002/01/02 by scroce@scroce_r400_win_marlboro

 Information about dk system

Change 12310 on 2002/01/02 by vromaker@MA_VIC_P4

 HW Spec

Change 12302 on 2002/01/02 by wlawless@wlawless

 just didn't want to lose my edits

Change 12297 on 2002/01/02 by smorein@smorein_r400

 adding updated docs to final resting place

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1565 of 1898

 Page 405 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 12292 on 2001/12/31 by rbeaudin@rbeaudin_r400_win_marlboro

 Moved compliation of mc.cpp to top of DLL so that module can use DLL imports and
exports.

 Added definitions for exporting Ferret functions.

Change 12291 on 2001/12/31 by jiezhou@jiezhou_r400_win_tor

 updated

Change 12290 on 2001/12/31 by jiezhou@jiezhou_r400_win_tor

 updated

Change 12286 on 2001/12/31 by jiezhou@jiezhou_r400_win_tor

 Initial release

Change 12280 on 2001/12/28 by frising@ma_frising

 Official v. 1.14. Add tables describing L2 interactions with texture, vertex, gamma,
multicycle. Lots more clean up and clarifications. Started an open questions tab.

Change 12277 on 2001/12/28 by pmitchel@pmitchel_r400_win_marlboro

 documenting partial release procedure

Change 12269 on 2001/12/28 by frising@ma_frising

 another checkpoint

Change 12268 on 2001/12/28 by jiezhou@jiezhou_r400_win_tor

 updated

Change 12266 on 2001/12/27 by frising@ma_frising

 This version of 1.14 is a checkpoint.

Change 12259 on 2001/12/27 by jowang@jowang_R400_win

 test images

Change 12256 on 2001/12/27 by rbeaudin@rbeaudin_r400_win_marlboro

 fixed error underlines

Change 12222 on 2001/12/24 by rbell@rbell_crayola_win_cvd

 Page 406 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Added Perforce and building libs

Change 12221 on 2001/12/24 by semara@semara_r400_win_tor

 adding ffirst release to the VGA display interface document
 updating the bif interface documents

Change 12220 on 2001/12/24 by jiezhou@jiezhou_r400_win_tor

 Initial release

Change 12219 on 2001/12/24 by jiezhou@jiezhou_r400_win_tor

 Initial release

Change 12218 on 2001/12/24 by jowang@jowang_R400_win

 supports YCbCr and regression testing

Change 12161 on 2001/12/21 by jacarey@fl_jacarey

 Check-In for the Holidays

Change 12136 on 2001/12/21 by smorein@smorein_r400

 added initial rom spec

Change 12121 on 2001/12/21 by jacarey@fl_jacarey

 Update

Change 12089 on 2001/12/20 by lseiler@ma_travel_micro

 Updated micro-tiling format and updates to the depth/stencil and multi-sample color
formats.

Change 12088 on 2001/12/20 by jacarey@fl_jacarey

 Checkpointing Specifications

Change 12085 on 2001/12/20 by jacarey@fl_jacarey

 Fix Signals on RBBM Top Level diagram

Change 12080 on 2001/12/20 by jhoule@MA_JHOULE

 3Db format: changed max value from 12 to 11 (saving 1 bit in tag helps TC logic to meet
area)

 Page 407 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 12073 on 2001/12/19 by frising@ma_frising

 remove this crusty old thing.

Change 12058 on 2001/12/19 by frising@ma_frising

 Added some more notes on alignment constraints + misc cleanup. Removed SAD
opcodes.

Change 12053 on 2001/12/19 by semara@semara_r400_win_tor

 update the directory content

Change 12052 on 2001/12/19 by semara@semara_r400_win_tor

 update

Change 12047 on 2001/12/19 by jhoule@MA_JHOULE

 Wrong opcode order in TFetch instruction usage

Change 12044 on 2001/12/19 by jhoule@MA_JHOULE

 Changed opcode order.
 Offsets are now 26 bits (64-byte aligned).
 Comments added (LOD equation, DWORD computation)
 Footer and common header added to keep track when printing.

Change 12026 on 2001/12/19 by semara@semara_r400_win_tor

 first release

Change 12025 on 2001/12/19 by semara@semara_r400_win_tor

 using # of pix to interface to the display

Change 12024 on 2001/12/19 by semara@semara_r400_win_tor

 first release

Change 12023 on 2001/12/19 by semara@semara_r400_win_tor

 add the files for first relaease

Change 12022 on 2001/12/19 by semara@semara_r400_win_tor

 update the block diagram

 Page 408 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 12016 on 2001/12/19 by semara@semara_r400_win_tor

 update top level diagram

Change 12014 on 2001/12/19 by semara@semara_r400_win_tor

 vga top level block diagram first release

Change 12012 on 2001/12/19 by jowang@jowang_R400_win

 moved into Scaler directory

Change 12010 on 2001/12/19 by jowang@jowang_R400_win

 initial revision

Change 12006 on 2001/12/19 by jowang@jowang_R400_win

 initial revision

Change 12004 on 2001/12/19 by jowang@jowang_R400_win

 initial design: 1-D separable filters, scaling

Change 12000 on 2001/12/19 by jowang@jowang_R400_win

 initial

Change 11999 on 2001/12/19 by lseiler@ma_lseiler

 File check-in prior to vacation

Change 11970 on 2001/12/18 by jowang@jowang_R400_win

 initial design: 1-D filters for scaling

Change 11953 on 2001/12/18 by paulv@MA_PVELLA

 Minor fix.

Change 11952 on 2001/12/18 by paulv@MA_PVELLA

 Modifications to MHS to reflect new changes/fixes. Some other minor fixes throughout
spec (mainly in tables).

Change 11925 on 2001/12/18 by rbell@rbell_crayola_win_cvd

 Updated doc

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1566 of 1898

 Page 409 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 11923 on 2001/12/18 by jacarey@fl_jacarey

 Small Text Character Mapping Diagram

Change 11921 on 2001/12/18 by paulv@MA_PVELLA

 Updated block diagram to reflect recent MH (and MC interface) changes.

Change 11919 on 2001/12/18 by rbell@rbell_crayola_win_cvd

 Added docs for simulation

Change 11915 on 2001/12/18 by scroce@scroce_r400_win_marlboro

 chmod the .cshrc

Change 11914 on 2001/12/18 by scroce@scroce_r400_win_marlboro

 Remember to set P4CLIENT in UNIX setup

Change 11911 on 2001/12/18 by scroce@scroce_r400_win_marlboro

 Reminded people to set $EDITOR if they do not like vi

Change 11895 on 2001/12/17 by askende@andi_r400_docs

 new updates of the spec with regards to ALU instruction word definition,
 scalar opcode list and the hardware definition of the scalar unit.

Change 11885 on 2001/12/17 by jacarey@fl_jacarey

 Updates to CP MIU Diagram

Change 11854 on 2001/12/17 by jacarey@fl_jacarey

 Misc.

Change 11839 on 2001/12/17 by jacarey@fl_jacarey

 Interface Update for RCIU

Change 11833 on 2001/12/17 by llefebvr@llefebvre_laptop_r400

 backup

Change 11824 on 2001/12/17 by lseiler@ma_lseiler

 PDF file for rev 0.4a RB register spec

 Page 410 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 11820 on 2001/12/17 by rbeaudin@rbeaudin_r400_win_marlboro

 fixed reference to regression test

Change 11819 on 2001/12/17 by rbeaudin@rbeaudin_r400_win_marlboro

 fixed typo

Change 11810 on 2001/12/15 by frising@ma_frising

 v. 1.11 Lots of misc clean-up, comments, and formatting.

Change 11793 on 2001/12/14 by jhoule@MA_JHOULE

 Changed filetype for exclusive check-out.

Change 11792 on 2001/12/14 by jhoule@MA_JHOULE

 New diagrams used in the TP spec.

Change 11791 on 2001/12/14 by jhoule@MA_JHOULE

 Removed duplicate of top-level diagram.
 Removed Addressing step (now part of TC).
 Changed features.
 Added SP_TP diagram.
 Changed filetype to exclusive open.
 Rewrote Blending description (now contains Mark's LERPs with precision information).
 Added Special Operations section for weird opcodes (Noise/Shadow/SADs/...)

Change 11790 on 2001/12/14 by jhoule@MA_JHOULE

 Changed formats cell height (printing issues).
 New SIZE (with DIM in same DWORD) ==> 3da=10:10:10, 3db=12:12:4lg
 Added FETCH_VALID_ONLY for culling invalid pixels fetches (important for
dependent fetches).

Change 11785 on 2001/12/14 by lseiler@ma_lseiler

 RB registers with review comments and preliminary register names

Change 11754 on 2001/12/14 by rbeaudin@rbeaudin_r400_win_marlboro

 fix doc

Change 11752 on 2001/12/14 by wlawless@wlawless

 Update Tile Logic section

 Page 411 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 11747 on 2001/12/14 by mpersaud@mpersaud_r400_win_tor

 Initial Revision

Change 11728 on 2001/12/13 by lseiler@ma_lseiler

 Register update for review

Change 11686 on 2001/12/13 by kcorrell@KCORRELL

 update to version 6.3 of Memory Hub.doc

Change 11665 on 2001/12/13 by kcorrell@KCORRELL

 updated RB - MC and MH - MC interface tables

Change 11540 on 2001/12/11 by jhoule@MA_JHOULE

 Changed filetype (no multiple opens)

Change 11535 on 2001/12/11 by jhoule@MA_JHOULE

 Now 4 DEGAMMA values.
 Better DWORD equation (all automatic).
 Added BORDER_SIZE for border texels.
 Moved SIGNED_RF_MODE before NUM_FORMAT.

Change 11528 on 2001/12/11 by scroce@scroce_r400_win_marlboro

 Trying to make Doc easier to follow.

Change 11503 on 2001/12/11 by llefebvr@llefebvre_laptop_r400

 Version 1.5 of the sequencer spec. See Revision changes of the document for details.

Change 11484 on 2001/12/10 by scroce@scroce_r400_win_marlboro

 Clarified a few commands

Change 11479 on 2001/12/10 by askende@andi_r400_docs

 new revision

Change 11452 on 2001/12/10 by scroce@scroce_r400_win_marlboro

 Added the actual command lines to use the client template in UNIX

Change 11443 on 2001/12/10 by llefebvr@llefebvre_laptop_r400

 Page 412 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 backup. Updated the constant memory management section by copying stuff from the
R400 state management document by Mike Mantor.

Change 11411 on 2001/12/07 by kryan@kryan_r400_win_marlboro

 Updated sanity test instructions to use perf_test.cpp.

Change 11401 on 2001/12/07 by jhoule@MA_JHOULE

 Minor modifs.

Change 11399 on 2001/12/07 by jhoule@MA_JHOULE

 Added usage tables.
 Minor modifications (e.g. no more WHICH_DWORD since it uses Z instead but isn't
there a problem for 3D hi-color textures?).

Change 11393 on 2001/12/07 by llefebvr@llefebvre_laptop_r400

 backup.

Change 11337 on 2001/12/06 by paulv@MA_PVELLA

 Made corrections/updates to MHS. Added new subsection (L2 Cache Invalidate Arbiter).

Change 11336 on 2001/12/06 by paulv@MA_PVELLA

 Added Tags (I/O) and Sends (output). Changed buffer sizes. GMB = GRB.

Change 11335 on 2001/12/06 by paulv@MA_PVELLA

 Changed instances GMB to GRB.

Change 11329 on 2001/12/06 by wlawless@wlawless

 new RB to MC interface

Change 11319 on 2001/12/06 by paulv@MA_PVELLA

 Minor modification (mostly to DISP functional block).

Change 11306 on 2001/12/06 by llefebvr@llefebvre_laptop_r400

 New revision of the sequencer spec.

Change 11287 on 2001/12/06 by ctaylor@fl_ctaylor_r400_win_marlboro

 Added Scan Converter Spec to P4

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1567 of 1898

 Page 413 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 11271 on 2001/12/06 by mpersaud@mpersaud_r400_win_tor

 Added to depot - Needs major work

Change 11264 on 2001/12/05 by kcorrell@KCORRELL

 updated to include top level description of GART and new MC interface.

Change 11241 on 2001/12/05 by rbeaudin@rbeaudin_r400_win_marlboro

 fixed client spec

Change 11229 on 2001/12/05 by frising@ma_frising

 Move TX/VTX const+inst to tp dir.

Change 11227 on 2001/12/05 by jhoule@MA_JHOULE

 Renamed file for better consistency.

Change 11226 on 2001/12/05 by llefebvr@llefebvre_laptop_r400

 Updated the register spec.

Change 11193 on 2001/12/05 by scroce@scroce_r400_win_marlboro

 Fixed Capitalization issues in perforce client names

Change 11191 on 2001/12/05 by jacarey@fl_jacarey

 Context Allocation Flags

Change 11185 on 2001/12/04 by rbeaudin@rbeaudin_r400_win_marlboro

 added more emulator documentation

Change 11096 on 2001/12/03 by mmantor@mmantor_r400

 temp for backup purposes only

Change 11095 on 2001/12/03 by mmantor@mmantor_r400

 error in placement

Change 11093 on 2001/12/03 by mmantor@mmantor_r400

 Preliminary for back up only at current time

Change 11072 on 2001/12/03 by pmitchel@pmitchel_r400_win_marlboro

 Page 414 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 change tx to tp for consistency

Change 11070 on 2001/12/03 by pmitchel@pmitchel_r400_win_marlboro

 adding directories to depot

Change 11063 on 2001/12/03 by pmitchel@pmitchel_r400_win_marlboro

 delete

Change 11061 on 2001/12/03 by pmitchel@pmitchel_r400_win_marlboro

 mv doc_lib/parts to doc_lib/design/blocks

Change 11056 on 2001/12/03 by wlawless@wlawless

 version 0.4

Change 11055 on 2001/12/03 by jacarey@fl_jacarey

 Submit so directory can be moved.

Change 11052 on 2001/12/03 by hartogs@fl_hartogs

 Interim check-in for move.

Change 11049 on 2001/12/03 by kcorrell@KCORRELL

 temporary checkin to allow Paul to move things around again

Change 11048 on 2001/12/03 by llefebvr@llefebvre_laptop_r400

 submited for Paul to move stuff around again.

Change 11047 on 2001/12/03 by askende@andi_r400_docs

 more updates

Change 11006 on 2001/11/30 by scroce@scroce_r400_win_marlboro

 Addded some NT specific fixes

Change 11004 on 2001/11/30 by scroce@scroce_r400_win_marlboro

 Clarified some of the directions

Change 11002 on 2001/11/30 by pmitchel@pmitchel_r400_win_marlboro

 Page 415 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 moving to r400/parts_lib/

Change 10988 on 2001/11/30 by semara@semara_r400_win_tor

 add the vga doc to r400/doc_lib/parts/vga

Change 10974 on 2001/11/30 by jacarey@fl_jacarey

 CP's General Purpose DMA Engine

Change 10956 on 2001/11/29 by dglen@dglen_r400_dell

 Updated templates

Change 10942 on 2001/11/29 by hartogs@fl_hartogs

 Updated the section for the VGT to Shader interfaces.

Change 10936 on 2001/11/29 by jacarey@fl_jacarey

 Checkpoint CP Specifications

Change 10889 on 2001/11/29 by jacarey@fl_jacarey

 Updates to CP Memory Interface Unit Diagram

Change 10879 on 2001/11/29 by jacarey@fl_jacarey

 Baseline 2D Appendix for CP Spec (Separate Document)

Change 10852 on 2001/11/28 by scroce@scroce_r400_win_marlboro

 Added some more info on perforce setup

Change 10832 on 2001/11/28 by jacarey@fl_jacarey

 Diagram of 2D Surface Definitions

Change 10810 on 2001/11/27 by pmitchel@pmitchel_r400_win_marlboro

 mv to doc_lib/parts/sp

Change 10809 on 2001/11/27 by askende@andi_r400_docs

 new rev of the spec.

Change 10807 on 2001/11/27 by pmitchel@pmitchel_r400_win_marlboro

 mv to doc_lib/parts

 Page 416 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 10806 on 2001/11/27 by hartogs@fl_hartogs

 Check-in for relocation.

Change 10791 on 2001/11/27 by hartogs@fl_hartogs

 Requested check-in. The document is in a interim state.

Change 10784 on 2001/11/27 by pmitchel@pmitchel_r400_win_marlboro

 mv to doc_lib/parts

Change 10774 on 2001/11/27 by llefebvr@llefebvre_laptop_r400_emu

 opened the files with the wrong client

Change 10773 on 2001/11/27 by pmitchel@pmitchel_r400_win_marlboro

 dlete

Change 10772 on 2001/11/27 by pmitchel@pmitchel_r400_win_marlboro

 mv to doc_lib/parts

Change 10771 on 2001/11/27 by pmitchel@pmitchel_r400_win_marlboro

 mv to doc_lib/parts

Change 10770 on 2001/11/27 by pmitchel@pmitchel_r400_win_marlboro

 change filetype to +l

Change 10769 on 2001/11/27 by pmitchel@pmitchel_r400_win_marlboro

 mv to doc_lib/parts

Change 10767 on 2001/11/27 by pmitchel@pmitchel_r400_win_marlboro

 mv to doc_lib/parts

Change 10766 on 2001/11/27 by pmitchel@pmitchel_r400_win_marlboro

 mv to doc_lib/parts

Change 10765 on 2001/11/27 by lseiler@ma_lseiler

 Render Backend: temporary version, not a complete release

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1568 of 1898

 Page 417 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 10764 on 2001/11/27 by lseiler@ma_lseiler

 Memory Format v0.4: intermediate form, not a complete release

Change 10763 on 2001/11/27 by pmitchel@pmitchel_r400_win_marlboro

 mv to doc_lib/parts

Change 10752 on 2001/11/27 by scroce@scroce_r400_win_marlboro

 Fixed up some menu issues

Change 10745 on 2001/11/27 by ctaylor@fl_ctaylor

 Updated SC->SU interface and a few words on performance.

Change 10738 on 2001/11/27 by pmitchel@pmitchel_r400_win_home

 creation of spec areas

Change 10736 on 2001/11/27 by lseiler@ma_lseiler

 Multisample: spec, preliminary version that needs lots of changes

Change 10732 on 2001/11/27 by pmitchel@pmitchel_r400_win_home

 rename into parts/cp & parts/rbbm

Change 10717 on 2001/11/26 by jacarey@fl_jacarey

 Check-In for Moving of Document Area

Change 10705 on 2001/11/26 by pmitchel@pmitchel_r400_win_marlboro

 another rename to match r300

Change 10699 on 2001/11/26 by pmitchel@pmitchel_r400_win_marlboro

 doing rename properly

Change 10698 on 2001/11/26 by pmitchel@pmitchel_r400_win_marlboro

 fix mistake

Change 10697 on 2001/11/26 by pmitchel@pmitchel_r400_win_marlboro

 recover

Change 10695 on 2001/11/26 by pmitchel@pmitchel_r400_win_marlboro

 Page 418 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 rename

Change 10693 on 2001/11/26 by llefebvr@llefebvre_laptop_r400

 closing for Paul to move files around

Change 10691 on 2001/11/26 by pmitchel@pmitchel_r400_win_marlboro

 rename "blocks" to "parts_lib"

Change 10676 on 2001/11/26 by llefebvr@llefebvre_laptop_r400

 changed the file type to binary and locked

Change 10675 on 2001/11/26 by llefebvr@llefebvre_laptop_r400

 new spin on the other documents regarding the sequencer spec

Change 10674 on 2001/11/26 by llefebvr@llefebvre_laptop_r400

 new spin on the sequencer spec

Change 10673 on 2001/11/26 by pmitchel@pmitchel_r400_win_marlboro

 test

Change 10668 on 2001/11/26 by paulv@MA_PVELLA

 Minor changes/fixes.

Change 10667 on 2001/11/26 by paulv@MA_PVELLA

 Major revision of block diagram.

Change 10666 on 2001/11/26 by scroce@scroce_r400_win_marlboro

 Added info regarding the toold menu in p4win

Change 10665 on 2001/11/26 by paulv@MA_PVELLA

 Updated and fixed MHS section.

Change 10644 on 2001/11/26 by pmitchel@pmitchel_r400_win_marlboro

 deleting

Change 10632 on 2001/11/26 by jacarey@fl_jacarey

 Page 419 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Checkpoint CP Specifications

Change 10501 on 2001/11/21 by askende@andi_r400_docs

 opcode update

Change 10500 on 2001/11/21 by askende@andi_r400_docs

 updated a couple of opcodes

Change 10489 on 2001/11/21 by kcorrell@KCORRELL

 update of architectural description

Change 10396 on 2001/11/20 by rbeaudin@rbeaudin_r400_win_marlboro

 new directions

Change 10365 on 2001/11/20 by pmitchel@pmitchel_r400_win_marlboro

 adding file

Change 10333 on 2001/11/19 by pmitchel@pmitchel_r400_win_marlboro

 release

Change 10318 on 2001/11/19 by rbeaudin@rbeaudin_r400_win_marlboro

 more reg release changes

Change 10294 on 2001/11/19 by pmitchel@pmitchel_r400_win_marlboro

 checkpoint

Change 10281 on 2001/11/19 by rbeaudin@rbeaudin_r400_win_marlboro

 more instructions for changing block files

Change 10255 on 2001/11/19 by kcorrell@KCORRELL

 Initial revision

Change 10254 on 2001/11/19 by kcorrell@KCORRELL

 AIC block diagram initial revision

Change 10253 on 2001/11/19 by kcorrell@KCORRELL

 update

 Page 420 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 10199 on 2001/11/16 by jacarey@fl_jacarey

 Checkpoint CP Specs

Change 10197 on 2001/11/16 by mdoggett@MA_MDOGGETT

 friday check in

Change 10157 on 2001/11/16 by jacarey@fl_jacarey

 RBBM Version 0.04 Specification Release.

Change 10156 on 2001/11/16 by pmitchel@pmitchel_r400_win_home

 change filetype

Change 10153 on 2001/11/16 by pmitchel@pmitchel_r400_win_home

 initial checkin

Change 10151 on 2001/11/16 by jacarey@fl_jacarey

 Update Multi-target Slow Client Diagram

Change 10149 on 2001/11/16 by jacarey@fl_jacarey

 Single Slow Client Waveform

Change 10144 on 2001/11/16 by jacarey@fl_jacarey

 Update RT stream Event Engine Diagram

Change 10114 on 2001/11/16 by pmitchel@pmitchel_r400_win_marlboro

 changed file types to disallow multiple edits

Change 10112 on 2001/11/16 by pmitchel@pmitchel_r400_win_marlboro

 added explicit sync to release label as part of windows setup

Change 10056 on 2001/11/15 by dglen@dglen_r400_dell

 Top level block diagrams

Change 10055 on 2001/11/15 by jhoule@MA_JHOULE

 Contains instruction filed (both usage in commands, and meanings) as well as constant
store fields.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1569 of 1898

 Page 421 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 10053 on 2001/11/15 by jacarey@fl_jacarey

 Add RBBM Diagrams to Perforce

Change 10042 on 2001/11/15 by jacarey@fl_jacarey

 Checkpoint RBBM Specification

Change 10031 on 2001/11/15 by rbeaudin@rbeaudin_r400_win_marlboro

 schedules

Change 9986 on 2001/11/15 by jacarey@fl_jacarey

 Diagram for Real-Time Stream Event Engine.

Change 9981 on 2001/11/15 by mdoggett@MA_MDOGGETT

 TC diagrams

Change 9979 on 2001/11/15 by mdoggett@MA_MDOGGETT

 major rearrangement and integration of old texture pipe material.

Change 9967 on 2001/11/15 by mdoggett@MA_MDOGGETT_LT

 no changes

Change 9941 on 2001/11/14 by dglen@dglen_r400_dell

 First pass on list of required specs for Toronto

Change 9940 on 2001/11/14 by mdoggett@MA_MDOGGETT

 First check-in of new TC spec. Brings together L1 access from TP spec and old TD spec,
plus some additional diagrams and format information.

Change 9934 on 2001/11/14 by dglen@dglen_r400_dell

 Updated paths and added section on used part of shared bus

Change 9923 on 2001/11/14 by jhoule@MA_JHOULE

 Changed Wrapping/Clamping to Clamping/Wrapping for subblock naming issues.
 Now at 0.8.9.

Change 9915 on 2001/11/14 by jhoule@MA_JHOULE

 Page 422 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Blending scheme diagrams.
 Modifs here and there.

Change 9910 on 2001/11/14 by dglen@dglen_r400_dell

 Moved from arch/doc to devel/doc_lib/parts

Change 9903 on 2001/11/14 by jacarey@fl_jacarey

 Update to RBBM Top-Level Diagram (Interfaces)

Change 9896 on 2001/11/14 by jacarey@fl_jacarey

 Update RBBM Top-Level Per Interfaces

Change 9885 on 2001/11/14 by dglen@dglen_r400_dell

 Moving files to doc_lib/parts from arch/doc

Change 9883 on 2001/11/14 by jacarey@fl_jacarey

 Diagram of CP's Interface to Register Backbone.

Change 9882 on 2001/11/14 by jacarey@fl_jacarey

 Update FIFO widths and depths for write interface.

Change 9878 on 2001/11/14 by jacarey@fl_jacarey

 Update to CP's Memory Interface Unit (MIU) Diagram
 1. Added Write Confirm Signal
 2. Removed i's and o's from Interface Signals

Change 9872 on 2001/11/14 by jacarey@fl_jacarey

 Update CP's View of Instruction Memory
 Checkpoint other CP Specs

Change 9826 on 2001/11/13 by jhoule@MA_JHOULE

 Put Sampling in a separate section than Walking, because it is closer to Wrapping.
 Safety check-in.

Change 9739 on 2001/11/12 by paulv@MA_PVELLA

 Initial release.

Change 9738 on 2001/11/12 by paulv@MA_PVELLA

 Page 423 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Fixed any grammatical errors found and update of Read Bus Switch, including
completion (?) of Tag Sequencer subsection.

Change 9737 on 2001/11/12 by paulv@MA_PVELLA

 Updated with latest architectural changes.

Change 9724 on 2001/11/12 by scroce@scroce_r400_win_marlboro

 Clarified some instructions.

Change 9723 on 2001/11/12 by askende@andi_r400_docs

 new revision

Change 9720 on 2001/11/12 by scroce@scroce_r400_win_marlboro

 Made setup doc instructions for perforce client more explicit

Change 9710 on 2001/11/12 by scroce@scroce_r400_win_marlboro

 Fixed client spec naming from _unix_ to _sun_

Change 9653 on 2001/11/09 by jhoule@MA_JHOULE

 Week end check-in.
 Almost finished stripping out the TC stuff.

Change 9648 on 2001/11/09 by jhoule@MA_JHOULE

 Caching is dotted line to indicate sharing between the 4 TPs.

Change 9646 on 2001/11/09 by jacarey@fl_jacarey

 CP's View of Instruction Memory

Change 9627 on 2001/11/09 by jhoule@MA_JHOULE

 Isolated TC.
 Getting ready to strip it out to be plugged in TC (which Michael will check-in
afterwards).

Change 9586 on 2001/11/08 by dclifton@dclifton_r400

 new specs

Change 9561 on 2001/11/08 by scroce@scroce_r400_win_marlboro

 Added some commands to build the emulator once things are set up

 Page 424 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 9522 on 2001/11/08 by scroce@scroce_r400_win_marlboro

 Document about the new DK_* Environment we will be using for R400

Change 9517 on 2001/11/08 by jacarey@fl_jacarey

 Revision 0.03 for Preliminary Review

Change 9493 on 2001/11/08 by jacarey@fl_jacarey

 Checkpoint Revision 0.02 of the PM4 Specification

Change 9396 on 2001/11/07 by kcorrell@KCORRELL

 continuation of major update working towards review mid Nov

Change 9393 on 2001/11/07 by kcorrell@KCORRELL

 updated diagram

Change 9278 on 2001/11/06 by jacarey@fl_jacarey

 Update to RBBM Top-Level Diagram (Index DMA Request Path)

Change 9277 on 2001/11/06 by jacarey@fl_jacarey

 Update CP Interface Diagrams.

Change 9214 on 2001/11/05 by jacarey@fl_jacarey

 Checkpoint Updates to CP Spec and PM4 Spec:
 1. Viz Query
 2. Removal of Obsolete Draw Packets
 3. Add DRAW_INDX and VIZ_QUERY packets
 4. Add MPEG_INDEX packet.
 5. Some Updates for RT streams

Change 9194 on 2001/11/05 by dwong@cndwong2

 first draft of R400_IDCT

Change 9156 on 2001/11/05 by jacarey@fl_jacarey

 Updates to CP's Memory Interface Unit Diagram

Change 9105 on 2001/11/02 by ctaylor@fl_ctaylor

 First Rev of PA Top Level Spec,

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1570 of 1898

 Page 425 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 VGT_Spec
 CLIP/VTE Spec.

Change 9067 on 2001/11/02 by jacarey@fl_jacarey

 Checkpoint CP Spec

Change 9045 on 2001/11/02 by jacarey@fl_jacarey

 Diagram addition of Shader Instruction Fetch Path through RBBM.

Change 9028 on 2001/11/01 by jacarey@fl_jacarey

 Checkpoint All RBBM and CP Documents and Diagrams.

Change 9022 on 2001/11/01 by jacarey@fl_jacarey

 Update RCIU

Change 9014 on 2001/11/01 by jacarey@fl_jacarey

 Update CP's MIU diagram per 32-bit interface POR.

Change 9001 on 2001/11/01 by jacarey@fl_jacarey

 Rename CP-to-RBBM Interface

Change 8999 on 2001/11/01 by jacarey@fl_jacarey

 Diagram of CP-to-RBBM Interface Unit

Change 8988 on 2001/11/01 by jacarey@fl_jacarey

 Diagram of Index DMA Engine in CP for the PA.

Change 8961 on 2001/11/01 by wlawless@wlawless

 .

Change 8932 on 2001/10/31 by kcorrell@KCORRELL

 oops this is what was supposed to be submitted the last time...

Change 8927 on 2001/10/31 by kcorrell@KCORRELL

 adding some new block diagrams and did a major reorg of the MH document

Change 8597 on 2001/10/26 by pmitchel@pmitchel_iris

 Page 426 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 fixed tabular state machine description

Change 8595 on 2001/10/26 by pmitchel@pmitchel_iris

 added dff vs always description

Change 8571 on 2001/10/26 by pmitchel@pmitchel_iris

 changed filetype to exclusive edit

Change 8551 on 2001/10/26 by bbloemer@ma-jasonh

 Release with updates from review meetings.

Change 8404 on 2001/10/24 by mdoggett@MA_MDOGGETT

 Small interface corrections and additions.

Change 8386 on 2001/10/24 by kcorrell@KCORRELL

 block diagram of MHC and MHA

Change 8369 on 2001/10/24 by rbeaudin@MA_RAYB

 moved location of autoreg doc

Change 8358 on 2001/10/24 by lseiler@ma_lseiler

 Render Backend Registers v0.2: Various changes from one-on-one reviews

Change 8332 on 2001/10/24 by rbeaudin@MA_RAYB

 more doc info

Change 8286 on 2001/10/23 by jacarey@fl_jacarey

 Checkpoint CP & RBBM Requirements Matrix

Change 8283 on 2001/10/23 by jacarey@fl_jacarey

 Checkpoint of All CP Specs (Not Complete)

Change 8282 on 2001/10/23 by jacarey@fl_jacarey

 Checkpoint RBBM Spec:
 1. Byte-Enables are now: BE
 2. Clarifications on CP "non-queued" data path.

Change 8280 on 2001/10/23 by rbeaudin@MA_RAYB

 Page 427 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 added new block interfaces

Change 8256 on 2001/10/23 by paulv@MA_PVELLA

 Updated DBR and RRA sections, with updates to functional and architectural
descriptions, along with updates to the block diagrams. Also started Tag Sequencer subsection.

Change 8200 on 2001/10/22 by bbloemer@ma-jasonh

 Some of the changes from the style guide meetings.

Change 8170 on 2001/10/22 by jacarey@fl_jacarey

 Baseline Beginnings of Stream Fetcher Diagram

Change 8167 on 2001/10/22 by paulv@MA_PVELLA

 Forgot to fix the DISP routing. It is done.

Change 8161 on 2001/10/22 by wlawless@wlawless

 new file

Change 8153 on 2001/10/22 by jacarey@fl_jacarey

 Update CP Memory Interface Unit Diagram.

Change 8146 on 2001/10/22 by paulv@MA_PVELLA

 Fixed block diagram to reflect recent functional/architectural changes.

Change 8114 on 2001/10/19 by kcorrell@KCORRELL

 Modified connections to AIC interface block (HMB)

Change 8111 on 2001/10/19 by jacarey@fl_jacarey

 Memory Hub Interface Unit Diagram for CP.

Change 8106 on 2001/10/19 by jayw@MA_JAYW

 Jay's exploration of recip

Change 8050 on 2001/10/18 by jacarey@fl_jacarey

 RBBM Specification Version 0.02
 Checkpoint CP Specification and PM4 Specification

 Page 428 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 8011 on 2001/10/18 by mdoggett@MA_MDOGGETT

 a few interface changes

Change 7974 on 2001/10/17 by paulv@MA_PVELLA

 Refixed block diagram (what I had before last revision was mostly correct).

Change 7923 on 2001/10/17 by jhoule@MA_JHOULE

 Removed PRINT field.

Change 7884 on 2001/10/16 by jhoule@MA_JHOULE

 Added constant store and instruction store in the interface portion.

Change 7824 on 2001/10/16 by jhoule@MA_JHOULE

 Cleaning up of interfaces. Removed duplicates.

Change 7809 on 2001/10/15 by paulv@MA_PVELLA

 Fixed DBR and RRA sections with new I/O and logic adjustments.

Change 7808 on 2001/10/15 by paulv@MA_PVELLA

 Updated block diagram to fix I/O and some logic changes.

Change 7806 on 2001/10/15 by paulv@MA_PVELLA

 Updated block diagram to include AIC address and byte swap I/O.

Change 7779 on 2001/10/15 by jhoule@MA_JHOULE

 Minor corrections here and there.

Change 7722 on 2001/10/12 by paulv@MA_PVELLA

 Minor fix the the RRA block diagram (changed the tag info FIFO to a tag info RAM).

Change 7703 on 2001/10/12 by jacarey@fl_jacarey

 Update Interrupt Registers in the CP.

Change 7684 on 2001/10/12 by jhoule@MA_JHOULE

 Major reorganization of sections.
 Not revision-savvy.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1571 of 1898

 Page 429 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 7683 on 2001/10/12 by jhoule@MA_JHOULE

 Added Output Formatter at the end (regroups into a quad, and converts to floats).

Change 7667 on 2001/10/12 by jacarey@fl_jacarey

 Checkpoint write-up of interrupt generation.

Change 7645 on 2001/10/11 by paulv@MA_PVELLA

 Fixed Data Bus Router (HDP client needed to be added).

Change 7631 on 2001/10/11 by jhoule@MA_JHOULE

 New Block Description (reorganization underway).

Change 7615 on 2001/10/11 by paulv@MA_PVELLA

 Minor fix.

Change 7611 on 2001/10/11 by lseiler@ma_lseiler

 First draft of Render Backend register field list

Change 7581 on 2001/10/11 by paulv@MA_PVELLA

 Updated block diagram to reflect recent changes (see spec).

Change 7580 on 2001/10/11 by paulv@MA_PVELLA

 Updated Data Bus Router section.

Change 7554 on 2001/10/10 by jacarey@fl_jacarey

 Updated some state PM4 packets -- Checkpoint of document.

Change 7487 on 2001/10/09 by jhoule@MA_JHOULE

 Accepted all changes.
 Various minor tweaks here and there (notably, issues aren't headings anymore).

Change 7461 on 2001/10/09 by jhoule@MA_JHOULE

 Better add the top-level diagram if I want people to see it...

Change 7460 on 2001/10/09 by jhoule@MA_JHOULE

 Added new top-level diagram.
 Description of pipe in features to give a good idea of where we are heading.

 Page 430 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 7420 on 2001/10/08 by jacarey@fl_jacarey

 Incremental Update

Change 7418 on 2001/10/05 by paulv@MA_PVELLA

 Another big update to RRA (with new understanding of subblock, functionality defined
in much better detail). Also fixed DBR subblock section to reflect removal of BUFFER_FULL
flags (now done in RRA).

Change 7417 on 2001/10/05 by paulv@MA_PVELLA

 Updated diagram to reflect recent changes/adjustments.

Change 7411 on 2001/10/05 by jhoule@MA_JHOULE

 Week end check in (minor corrections, mostly formatting).

Change 7371 on 2001/10/05 by mdoggett@MA_MDOGGETT

 small changes to MC interfaces

Change 7370 on 2001/10/05 by mdoggett@MA_MDOGGETT

 0.4 revision, final check in for major changes
 (that's the idea at least)

Change 7361 on 2001/10/05 by jhoule@MA_JHOULE

 Walkers more up-to-date.
 Described a bit the samples fetching (pt, bilin, arbi).

Change 7350 on 2001/10/04 by paulv@MA_PVELLA

 New block diagram for Read Return Arbitrator (RRA).

Change 7349 on 2001/10/04 by paulv@MA_PVELLA

 Added block diagram to RRA section along with more documentation
(functional/interface).

Change 7335 on 2001/10/04 by jhoule@MA_JHOULE

 Updated the LOD computation pseudo-code.
 This has to update walkers (with diagram), and the clamp logic (since it's now in float
around [0,1] with clamp and mirror flags).

Change 7290 on 2001/10/04 by rbeaudin@Crayola_NT_Emu

 Page 431 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 more doc

Change 7242 on 2001/10/03 by rbeaudin@MA_RAYB

 numbers library

Change 7231 on 2001/10/03 by rbeaudin@Crayola_NT_Emu

 more docs

Change 7224 on 2001/10/03 by rbeaudin@MA_RAYB

 new doc stuff

Change 7192 on 2001/10/02 by paulv@MA_PVELLA

 Some minor updates.

Change 7185 on 2001/10/02 by rbeaudin@MA_RAYB

 corrected documentation

Change 7149 on 2001/10/01 by wlawless@wlawless

 nothing

Change 7102 on 2001/09/28 by paulv@MA_PVELLA

 Fixed the data bus router's block diagram. Some minor document tweaks.

Change 7088 on 2001/09/28 by mdoggett@MA_MDOGGETT

 More changes.

Change 7050 on 2001/09/27 by paulv@MA_PVELLA

 A portion of the old Read Return Arbiter has become what is now known as the Data Bus
Router. This is the block diagram.

Change 7044 on 2001/09/27 by jhoule@MA_JHOULE

 Aesthetic modifications.
 Table of contents now has correct number sizes!!! (hurray!)
 Thanks to Mike "Vege-mate" Doggett for this...

Change 6992 on 2001/09/27 by rbeaudin@MA_RAYB

 more doc stuff

 Page 432 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 6989 on 2001/09/27 by rbeaudin@MA_RAYB

 more doc stuff

Change 6970 on 2001/09/26 by jacarey@fl_jacarey

 Lots of Update on:

 1. Real-Time Stream Algorithm and Description
 2. State Management Processing

 Updated requirement matrix for CP.

Change 6889 on 2001/09/25 by askende@andi_docs

 newest version

Change 6878 on 2001/09/25 by mdoggett@MA_MDOGGETT

 major changes to document structure and content.
 progress checkin before version 0.4

Change 6859 on 2001/09/24 by rbeaudin@MA_RAYB

 more doc stuff

Change 6840 on 2001/09/24 by jacarey@fl_jacarey

 Add CP/RBBM Requirements Matrix to Perforce

Change 6839 on 2001/09/24 by jacarey@fl_jacarey

 Checkpoint On-Going Updates to Documents.

Change 6833 on 2001/09/24 by wlawless@wlawless

 updated revision code

Change 6832 on 2001/09/24 by rbeaudin@MA_RAYB

 doc update

Change 6790 on 2001/09/21 by llefebvr@llefebvre_laptop_r400

 RE spec backup + HZ stats + SC spec backup

Change 6758 on 2001/09/20 by wlawless@wlawless

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1572 of 1898

 Page 433 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 Slight update

Change 6757 on 2001/09/20 by jacarey@fl_jacarey

 CP Spec:
 1. Added registers for Real-Time Event Engine Control
 2. Added some registers for state management control

 PM4 SPec:
 1. Updated text for the state management packets.
 2. Updated text for synchronization packets.

Change 6739 on 2001/09/20 by rbeaudin@MA_RAYB

 more documentation

Change 6724 on 2001/09/20 by rbeaudin@Crayola_NT_Emu

 more documentation

Change 6529 on 2001/09/14 by ccoveney@chrisc_r400_docs

 Finished this most of the way up.. may still need to correct some things but this is the
fairly close to final version

Change 6478 on 2001/09/14 by rbeaudin@MA_RAYB

 new doc

Change 6438 on 2001/09/13 by rbeaudin@MA_RAYB

 emulator documentation

Change 6425 on 2001/09/13 by sallen@ma_sallen

 Final update. Needs cons information...

Change 6317 on 2001/09/11 by jhoule@MA_JHOULE

 Minor LODBias correction in LOD computation pseudo-code.

Change 6274 on 2001/09/10 by ccoveney@chrisc_r400_docs

 Added description and screenshots of how to change clients in perforce

Change 6252 on 2001/09/10 by ccoveney@chrisc_r400_docs

 This file has a short description of some specific details that help out with running
perforce integrated with Developer Studio.

 Page 434 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 6251 on 2001/09/10 by ccoveney@chrisc_r400_docs

 This is the documentation file for using the new parameterized test library that's found in
//depot/r400/verification/param_test

Change 6091 on 2001/09/05 by jacarey@fl_jacarey

 General Checkpoint of Documentation

Change 5777 on 2001/08/28 by lseiler@ma_lseiler

 Version 0.5a -- fixed typos in the bus interface tables

Change 5537 on 2001/08/21 by wlawless@wlawless

 RB Hardware Design Spec

Change 5466 on 2001/08/17 by askende@andi_docs

 new rev of the spec

Change 5465 on 2001/08/17 by jhoule@MA_JHOULE

 Better LOD algorithm (leaner and better... now uses log2)

Change 5384 on 2001/08/15 by jhoule@MA_JHOULE

 Initial check-in.
 This file gives supplemental information on design decisions, notations, algorithms and
various other underlying stuff.
 It helps explain more, but reduce the already too big texture spec.

Change 5383 on 2001/08/15 by jhoule@MA_JHOULE

 File wasn't saved (sorry).

Change 5382 on 2001/08/15 by jhoule@MA_JHOULE

 Added LOD computation (with correction), samples walking (trilinear and anistropic),
and texel fetching (with wrapping policy table) in the logic description.

Change 5365 on 2001/08/15 by pmitchel@pmitchel_iris

 changed `define section

Change 5275 on 2001/08/13 by pmitchel@pmitchel_iris

 fixed `define section

 Page 435 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 5175 on 2001/08/09 by lseiler@ma_lseiler

 Memory Controller, v0.5: removed autotag feature, changed bus/signal names and other
stuff

Change 5141 on 2001/08/08 by pmitchel@pmitchel_test_client

 add

Change 5136 on 2001/08/08 by bbloemer@ma-jasonh

 More coding guidelines stuff.

Change 5129 on 2001/08/08 by pmitchel@pmitchel_test_client

 test

Change 5090 on 2001/08/07 by pmitchel@pmitchel_test_client

 add

Change 5049 on 2001/08/06 by pmitchel@pmitchel_test_client

 additional comments on style guide

Change 5038 on 2001/08/03 by pmitchel@pmitchel_r400_docs

 filled paragraphs to get rid of overly long lines

Change 5016 on 2001/08/03 by llefebvr@llefebvre_laptop_r400

 setup unit revised spec

Change 4980 on 2001/08/01 by llefebvr@llefebvre_laptop_r400

 new spec for SC and RE. Changed a bit the interface to encompass the fact that RE is
now using the full precision normalized slopes from the SU because it takes the same number of
bits than doing a per tile compression for the barycentric coordinates and it also simplifies a lot
the SC.

Change 4960 on 2001/08/01 by askende@andi_docs

 new rev

Change 4929 on 2001/07/31 by askende@andi_docs

 a new rev

 Page 436 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 4919 on 2001/07/31 by bbloemer@ma-jasonh

 Added Verilog style guide stuff.

Change 4854 on 2001/07/30 by mdoggett@MA_MDOGGETT

 Updates to most sections.

Change 4769 on 2001/07/26 by jacarey@fl_jacarey

 Update Visio Diagrams
 1. Chip Arch with RBBM
 2. Read Data Path Diagram

Change 4756 on 2001/07/26 by pmitchel@pmitchel_iris

 see if John Carey gets email

Change 4736 on 2001/07/26 by jacarey@fl_jacarey

 Moved Original CP and RBBM Specs from ../arch/doc to ../doc_lib/chip/<unit> areas.

Change 4711 on 2001/07/25 by jacarey@fl_jacarey

 Visio Diagram Used in the RBBM Specification

Change 4710 on 2001/07/25 by jacarey@fl_jacarey

 Sweeping Updates to RBBM Spec:
 1. Obsolete text deleted or crossed-out.
 2. Questions inserted in document text.
 3. Interfaces should be correct.

 ** Have Fun ! **

Change 4674 on 2001/07/24 by askende@andi_docs

 new rev

Change 4597 on 2001/07/20 by jhoule@MA_JHOULE

 Many minor corrections: some aesthetic, some (hopefully) helpful to understand more
clearly, others are comments for Steve.

Change 4586 on 2001/07/20 by jhoule@MA_JHOULE

 Minor changes: changed header for cleaner ones as well as Title Field (no more Top
Level Spec).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1573 of 1898

 Page 437 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 4359 on 2001/07/16 by askende@andi_docs

 new rev

Change 4207 on 2001/07/11 by askende@andi_docs

 new rev

Change 4206 on 2001/07/11 by askende@andi_docs

 fixed a few typos

Change 4205 on 2001/07/11 by lseiler@ma_lseiler

 More v0.2 files

Change 4200 on 2001/07/11 by lseiler@ma_lseiler

 Render Backend: version 0.2 with greatly revised Paramater Buffer and Tile Logic
sections

Change 4162 on 2001/07/10 by askende@andi_docs

 new rev of the hardware spec

Change 4033 on 2001/07/06 by askende@andi_docs

 update of the specs

Change 4010 on 2001/07/06 by smorein@smorein_r400

 major texture pipe spec update- complete except for addresing logic.
 Could use some more editing, and probably more block diagrams.

Change 4001 on 2001/07/05 by llefebvr@llefebvre_laptop_r400

 lockin is on

Change 3994 on 2001/07/05 by llefebvr@llefebvre_laptop_r400

 updated scan converter spec

Change 3988 on 2001/07/05 by jacarey@fl_jacarey

 Initial Baseline from R300 plus listing of some open items.

Change 3980 on 2001/07/05 by jacarey@fl_jacarey

 Baseline PM4 Packet Spec for CP from R300 (Khan)

 Page 438 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 ** Note: Entire document may become obsolete or be revised depending
 on architecture decisions for the CP ***

Change 3979 on 2001/07/05 by jacarey@fl_jacarey

 Baseline R300's CP Test Bus Spec for R400

Change 3975 on 2001/07/05 by jacarey@fl_jacarey

 Baseline RBBM Unit Spec and Test Bus Document from R300.
 Included sections from the R400 RBBM Spec.doc in the ../arch/chip area.
 ** Document is Initial Version ONLY - Lot of work is still required **

Change 3908 on 2001/07/03 by lseiler@ma_lseiler

 FrameBuf v0.3: some extra compressed and 3d formats, minor changes

Change 3871 on 2001/07/02 by mdoggett@MA_MDOGGETT

 Minor updates to Memory Hub spec

Change 3680 on 2001/06/25 by lseiler@ma_lseiler

 Frame Buffer Format, v0.2: complete rewrite

Change 3588 on 2001/06/21 by smorein@smorein_r400

 Major update. There are still a bunch of inconsistancies (and misspellings) but enough
there for people closely associated with the block to need to go through it.

Change 3585 on 2001/06/20 by askende@andi_docs

 new rev

Change 3574 on 2001/06/20 by askende@andi_docs

 new rev

Change 3565 on 2001/06/19 by askende@andi_docs

 new rev

Change 3560 on 2001/06/19 by askende@andi_docs

 new rev

Change 3558 on 2001/06/19 by askende@andi_docs

 Page 439 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 another rev

Change 3553 on 2001/06/19 by askende@andi_docs

 another rev (rev.03) of the shader spec

Change 3476 on 2001/06/13 by smorein@smorein_r400

 Texture pipe update

Change 3446 on 2001/06/12 by smorein@smorein_r400

 simple update, need to do a more complete update

Change 3445 on 2001/06/12 by smorein@smorein_r400

 added old version of chip presentation

Change 3428 on 2001/06/11 by smorein@smorein_r400

 Adding a bunch of files

Change 3371 on 2001/06/08 by llefebvr@llefebvre_laptop_r400

 spec backup

Change 3330 on 2001/06/07 by llefebvr@llefebvre_laptop_r400

 safety backup

Change 3311 on 2001/06/06 by lseiler@ma_lseiler

 Memory Controller: version 0.4, added internal interfaces and improved the Ordering
Engine

Change 3141 on 2001/05/29 by smorein@smorein_r400

 added memory hub spec. I am not happy with it, and this block wins the prize for most
likely to be conpleatly redesigned.

Change 3138 on 2001/05/29 by askende@andi_docs

 more updates to the spec

Change 3104 on 2001/05/25 by llefebvr@llefebvre_laptop_r400

 new spin on RE, SC, Bary

Change 3020 on 2001/05/21 by askende@andi_docs

 Page 440 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

 another revision of the shader spec

Change 3008 on 2001/05/21 by smorein@smorein_r400

 partial update to texture spec

Change 2720 on 2001/05/10 by lseiler@ma_lseiler

 Memory Controller rev 0.3: lots more details, including the external interface

Change 2712 on 2001/05/09 by askende@andi_docs

 more updates

Change 2709 on 2001/05/09 by sallen@ma_sallen

 add testenv spec

Change 2700 on 2001/05/09 by askende@andi_docs

 Shader specifications

Change 2679 on 2001/05/09 by ccoveney@chrisc_r400

 added some possible command descriptions and a sample header from the
pp6_blend_all_param.dat file

Change 2651 on 2001/05/08 by ccoveney@chrisc_r400

 proofread and updates a few things

Change 2650 on 2001/05/08 by ccoveney@chrisc_r400

 This file contains the proposal for the new parameterized test methodology that will
implemented for R400 verification.

Change 2649 on 2001/05/08 by llefebvr@llefebvre_laptop_r400

 New version of the scan converter, ready for review

Change 2570 on 2001/05/04 by llefebvr@llefebvre_laptop_r400

 Spin on some specs, not all complete be checked in for safety

Change 2569 on 2001/05/04 by llefebvr@llefebvre_laptop_r400

 new spin on setup

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1574 of 1898

 Page 441 of 441

Ex. 2050 --- R400 Document Library FH --- folder_history

Change 2508 on 2001/05/02 by llefebvr@llefebvre_laptop_r400

 about to change the walking algorithm and want to keep the old one...

Change 2358 on 2001/04/26 by lseiler@ma_lseiler

 Render Backend first spec version

Change 2240 on 2001/04/17 by lseiler@ma_lseiler

 Memory controller architectural specs and related documents

Change 2107 on 2001/04/09 by llefebvr@llefebvr_r400

 revised specs and walker

Change 1716 on 2001/03/14 by llefebvr@llefebvr_r400

 specs for Raster block, SC, SU, HZ + stats for HZ precision

Change 1551 on 2001/02/27 by llefebvr@llefebvr_r400

 SC and RS specs

Change 1489 on 2001/02/23 by llefebvr@llefebvr_r400

 specs for the raster engine and scan converter

Change 1461 on 2001/02/22 by llefebvr@llefebvr_r400

 SC specs and stats for the raster efficiencies...

Change 871 on 2001/02/02 by smorein@smorein_r400

 Added a bunch of new documents, also updated area

Change 400 on 2000/11/01 by pmitchel@_pmitchel

 Initial creation of r400 area under //depot

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1575 of 1898

 Page 1 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 137161 on 2003/12/12 by lseiler@lseiler_r400_win_marlboro1

 Changed sfloat<> to mfloat<>

Change 125144 on 2003/10/06 by jhoule@MA_JHOULE

 Old CacheSim modifications

Change 125143 on 2003/10/06 by jhoule@MA_JHOULE

 Old project file update

Change 121475 on 2003/09/16 by bbloemer@ma_bbloemer

 New specs.

Change 118602 on 2003/08/28 by jasony@ma-jasony-intern

 Added stop rendering and a few other features

Change 118600 on 2003/08/28 by jasony@ma-jasony-intern

 Added some comments
 brought back denorms in computegradient

Change 118379 on 2003/08/27 by jasony@ma-jasony-intern

 Clean

Change 118378 on 2003/08/27 by jasony@ma-jasony-intern

 Clean - commented out extraneous and old key functions; adapted to large texture sizes

Change 118377 on 2003/08/27 by jasony@ma-jasony-intern

 Clean - odd + even samples; moved step size calculation to aniso calculation

Change 118376 on 2003/08/27 by jasony@ma-jasony-intern

 Clean - Keeping Denorms in Subtract

Change 118373 on 2003/08/27 by jasony@ma-jasony-intern

 Added a member to QuadData to faciliate AA Correction. Changed interpolator
precision to 23 mantissa. Shouldn't affect existing code.

Change 118358 on 2003/08/27 by jasony@ma-jasony-intern

 Clean

 Page 2 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 118348 on 2003/08/27 by jasony@ma-jasony-intern

 Fixed so that color map remains constant across texture loads (if same tex size)

Change 118337 on 2003/08/27 by jasony@ma-jasony-intern

 Checkin before final cleanup

Change 117581 on 2003/08/21 by bbloemer@ma_bbloemer

 Update.

Change 116353 on 2003/08/13 by jasony@ma-jasony-intern

 Save before playing with 8kx8k textures

Change 116158 on 2003/08/12 by jasony@ma-jasony-intern

 Save point - before cleanup and bringing in emulator changes

Change 116025 on 2003/08/12 by jasony@ma-jasony-intern

 Save before playing with precision

Change 115775 on 2003/08/11 by bbuchner@fl_bbuchner2_r400_win

 modify some simulation parameters

Change 115043 on 2003/08/05 by jasony@ma-jasony-intern

 Added the new optimizations and aniso bias

Change 114558 on 2003/08/01 by jasony@ma-jasony-intern

 Sorta working fix for magnification case

Change 114090 on 2003/07/30 by jasony@ma-jasony-intern

 Temp save - Added odd and even samples (not working yet)

Change 111136 on 2003/07/15 by jasony@ma-jasony-intern

 Added pixel shader capability

Change 110188 on 2003/07/10 by jasony@ma-jasony-intern

 cleaned up some code

 Page 3 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 110154 on 2003/07/10 by jasony@ma-jasony-intern

 update the readme

Change 110153 on 2003/07/10 by jasony@ma-jasony-intern

 D3D Anisotropic filtering viewing program.

 Uses FilterSim .scn and texture files.

Change 108690 on 2003/07/01 by jasony@ma-jasony-intern

 Save point before doing Geforce FX comparison

Change 108689 on 2003/07/01 by jasony@ma-jasony-intern

 Added lod corrector

Change 107694 on 2003/06/24 by jasony@ma-jasony-intern

 Added LOD corrector (had to edit quaddata.h and walker.cpp by adding another field in
the quad structure so that the subsample is passed to to the aniso code)

Change 107693 on 2003/06/24 by jasony@ma-jasony-intern

 Added and fixed makeCylinder

Change 106801 on 2003/06/18 by jasony@ma-jasony-intern

 LOD Corrector from emulator

Change 106614 on 2003/06/17 by jasony@ma-jasony-intern

 log2 approx with 4 modes - full prec, linear approx, 5bit and 6bit table

Change 106522 on 2003/06/17 by jasony@ma-jasony-intern

 Checkin before adding LOD correction for multisampling

Change 106356 on 2003/06/16 by bbloemer@ma_bbloemer

 Added Artisan pad cells.

Change 106146 on 2003/06/13 by jasony@ma-jasony-intern

 added back old log2 approx for testing

Change 106145 on 2003/06/13 by jasony@ma-jasony-intern

 Page 4 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 can switch to full precision with preprocessor REDUCEPREC define in header

Change 106144 on 2003/06/13 by jasony@ma-jasony-intern

 minor changes - should have no effect

Change 106143 on 2003/06/13 by jasony@ma-jasony-intern

 added emulator LOD path

 minor fixes

Change 106142 on 2003/06/13 by jasony@ma-jasony-intern

 Added makecircle and make cylinder (need to update)

Change 105665 on 2003/06/11 by jasony@ma-jasony-intern

 Modified so that emulator code will use the log2 table

Change 105423 on 2003/06/10 by jasony@ma-jasony-intern

 Working filtersim incorporating the emulator code

 important keys are

 'W' for R400 emulator aniso

 'h' for R400 full precision

 'g' for R300 full precision

Change 104930 on 2003/06/09 by jasony@ma-jasony-intern

 Checkin before hooking in EMU files

Change 104891 on 2003/06/09 by jasony@ma-jasony-intern

 Check in before precision experiments

Change 104588 on 2003/06/06 by jasony@ma-jasony-intern

 Full precision aniso tests

 1) R400: equal weights vs. weight tables [ues 'y' and 'i' keys]

 2) R300 samples vs. R400 samples (equal weight, no determinant) [use 'g' and 'u' keys]

 3) R300 vs. R400 (use 'g' and 'h' keys)

ATI 2051
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1576 of 1898

 Page 5 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 104340 on 2003/06/05 by jasony@ma-jasony-intern

 Added R300 aniso

 also 'b' changes btween color mipmaps

Change 104248 on 2003/06/05 by jasony@ma-jasony-intern

 Fixed and added R300 LOD and R400 LOD and Aniso calculations

 added Mimap code for colored levels

Change 103884 on 2003/06/03 by jhoule@MA_JHOULE

 Quick submit for Jason

Change 103799 on 2003/06/03 by jasony@ma-jasony-intern

 Recover Deleted

Change 103796 on 2003/06/03 by jasony@ma-jasony-intern

 deleting
 figuring out perforce

Change 103793 on 2003/06/03 by jasony@ma-jasony-intern

 Anisotropic Filter comparision between the R300 and R400.

 The code is a modified filtersim program.

Change 99923 on 2003/05/08 by bbloemer@ma_bbloemer

 klsf

Change 99291 on 2003/05/06 by bbloemer@ma_bbloemer

 First GDDR4 spec.

Change 97686 on 2003/04/25 by bbloemer@ma_bbloemer

 rev05 spec

Change 95532 on 2003/04/14 by bbloemer@ma_bbloemer

 Originally named: JESD79-2_20030404.pdf
 Release 1.0; supposedly the final for JEDEC standard.

 Page 6 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 93434 on 2003/04/02 by bbloemer@ma_bbloemer

 Updated 128Mb GDDR2 spec.

 Added new 256Mb GDDR2 spec.

Change 88396 on 2003/03/04 by bbuchner@fl_bbuchner2_r400_win

 Cache Perf Modeling -- track many more statistics.

Change 87661 on 2003/02/28 by jhoule@MA_JHOULE

 Added R400 rasterization order.

Change 87226 on 2003/02/27 by smorein@stephen-moreins-Computer

 correct area version of floorplan 4

Change 86554 on 2003/02/24 by smorein@stephen-moreins-Computer

 fix sp order

Change 86541 on 2003/02/24 by smorein@stephen-moreins-Computer

 first 4.0 floorplan

Change 82506 on 2003/02/06 by smorein@stephen-moreins-Computer

 Initial docs for features r500 and DX10

Change 82306 on 2003/02/05 by ctaylor@fl_ctaylor_r400_win_marlboro

 still trying

Change 82297 on 2003/02/05 by ctaylor@fl_ctaylor_r400_win_marlboro

 Added code to share for cache simulation

Change 81019 on 2003/01/31 by bbloemer@ma_bbloemer

 Later version of 4M x 16 TSOP.

Change 79151 on 2003/01/24 by bbloemer@ma_bbloemer

 Rev075_2 from Micron.

Change 75866 on 2003/01/10 by mdoggett@MA_MDOGGETT_LT

 small updates

 Page 7 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 74970 on 2003/01/07 by bbloemer@ma_bbloemer

 Rev 1.5

Change 74896 on 2003/01/07 by bbloemer@ma_bbloemer

 Deleted duplicate copy.

Change 73431 on 2002/12/26 by smorein@stephen-moreins-Computer

 cleaned up plan0.11, saved as 0.12.

Change 72690 on 2002/12/20 by smorein@stephen-moreins-Computer

 first netlist 3.0 floorplan

Change 71886 on 2002/12/17 by smorein@stephen-moreins-Computer

 adding floorplans

Change 71885 on 2002/12/17 by smorein@stephen-moreins-Computer

 Three more floorplans

Change 71853 on 2002/12/17 by bbloemer@ma_bbloemer

 Latest update - the special IP is included!

Change 71155 on 2002/12/13 by smorein@stephen-moreins-Computer

 two more floorplans

Change 69955 on 2002/12/10 by smorein@stephen-moreins-Computer

 Added first set of candidate floorplans

Change 67094 on 2002/11/26 by bbloemer@ma_bbloemer

 DDR I spec.

Change 64756 on 2002/11/18 by bbloemer@ma_bbloemer

 0288E10_draft2 version

Change 58862 on 2002/10/23 by bbloemer@ma_bbloemer

 SGRAM - OLD!

 Page 8 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 55651 on 2002/10/07 by bbloemer@ma_bbloemer

 DDR II data sheet.

Change 51711 on 2002/09/16 by bbloemer@ma_bbloemer

 Micron verilog model.

Change 51357 on 2002/09/13 by bbloemer@ma_bbloemer

 Info

Change 51347 on 2002/09/13 by bbloemer@ma_bbloemer

 First draft. Elpida 4Mx32 0288E10_draft2.pdf

Change 50587 on 2002/09/10 by bbloemer@ma_bbloemer

 A slightly later version, sent 8/12, but still no IP. Rev 3 is latest with IP.

Change 50574 on 2002/09/10 by bbloemer@ma_bbloemer

 Latest version, dated 20020916. They added tRTP.

Change 49008 on 2002/08/30 by jasony@ma_jasony

 Shadow Sim instructions

Change 48247 on 2002/08/27 by lseiler@lseiler_r400_win_marlboro2

 Supports testing new Zrange format

Change 46146 on 2002/08/14 by bbloemer@ma_bbloemer

 GDDR III Data sheets.

Change 46137 on 2002/08/14 by bbloemer@ma_bbloemer

 Added GDDR II data sheet. Like JEDEC DDR II, but has built in termination.

Change 45642 on 2002/08/13 by jasony@ma_jasony

 Final Checkin

Change 45641 on 2002/08/13 by jasony@ma_jasony

 Added code to facilitate plane calculations using triangle verticies.
 (Does not affect previous operations)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1577 of 1898

 Page 9 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 If using ShadowSim you should comment out the precision reduction in Interpolate()

Change 45637 on 2002/08/13 by jasony@ma_jasony

 Added to QuadData and Walker to facilitate plane calculation using triangle verticies

Change 45635 on 2002/08/13 by jasony@ma_jasony

 Final Check In

Change 45210 on 2002/08/09 by jasony@ma_jasony

 Save before code cleanup

Change 44911 on 2002/08/08 by bbloemer@ma_bbloemer

 Added Samsung spec; it's really the same part as K4D263238A-GC.

 New version of GDDRIII spec, but WITHOUT the new IP. Need the previous version
for that.

Change 44909 on 2002/08/08 by bbloemer@ma_bbloemer

 Latest version from Infineon.

Change 44908 on 2002/08/08 by bbloemer@ma_bbloemer

 Fixed naming problem.

Change 44904 on 2002/08/08 by bbloemer@ma_bbloemer

 Deleted file under one name and added under a better name.

Change 44660 on 2002/08/07 by jasony@ma_jasony

 fixed to arbitrary shadow buffer size up to 1024

Change 44579 on 2002/08/06 by jasony@ma_jasony

 z calc based on triangle verticies done

 now fixing ctrl-mouse click to display slope calcs

Change 44315 on 2002/08/05 by alleng@alleng_screendiv2

 Fixed data gathering problem where stencil compression data was being double counted
in some cases...

Change 44309 on 2002/08/05 by jasony@ma_jasony

 Page 10 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Convereted to calcualtions of planes from triangle verticies

 save point - now fixing offset for interpolation

Change 44307 on 2002/08/05 by jasony@ma_jasony

 Convereted to calcualtions of planes from triangle verticies

 save point - now fixing offset for interpolation

Change 44090 on 2002/08/02 by alleng@alleng_screendiv2

 Add quad mask binning

Change 44065 on 2002/08/02 by jasony@ma_jasony

 Working shadow simulator

 save point before figuring out what causes precision reduction error

Change 43809 on 2002/08/01 by alleng@alleng_screendiv2

 Added Z and S pass/fail numbers for quads
 Bunch of reformatting to make interpretation less ambiguous

Change 43557 on 2002/07/31 by jasony@ma_jasony

 Working in bilenear interpolation

 'y' turn on/off interpolation
 'h' save precision file

Change 43487 on 2002/07/31 by alleng@alleng_screendiv2

 Fixed blending bug to correctly determine RMW's
 Added stencil function binning

Change 43195 on 2002/07/30 by jasony@ma_jasony

 Save point

 'u' increase bias
 'i' decrease bias

Change 43090 on 2002/07/30 by alleng@alleng_screendiv2

 Added data gathering for tile, quad, and depth cache counts during the shadow passes

 Page 11 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 42948 on 2002/07/29 by alleng@alleng_screendiv2

 Added logic to determine if tile was dirty
 + Added dirty flag to depth cache (Z and S)
 + Add ptr to link tile with entry in depth cache
 + Don't count flushes when the Z or S caches aren't dirty
 Fixed two typos in stencil compression logic
 Don't count flushes/fills when Z and S disabled

Change 42752 on 2002/07/26 by alleng@alleng_screendiv2

 Added early out for tiles w/ zero pixels
 Minor change to output format
 Slight mod to determination of depthProcEn
 Slight change to depth cache flush/fill data calculations

Change 42658 on 2002/07/26 by alleng@alleng_screendiv2

 Added stencil buffer support

Change 42135 on 2002/07/24 by bbloemer@ma-jasonh

 Latest rev adds special IP description as an appendix.

Change 41803 on 2002/07/22 by alleng@alleng_screendiv2

 Add alpha blend stats
 Add scissor functionality

Change 41600 on 2002/07/19 by llefebvr@llefebvre_laptop_r400

 SQ backup.

Change 41362 on 2002/07/18 by alleng@alleng_screendiv2

 Properly prevent z writes when they are masked off

Change 41351 on 2002/07/18 by jasony@ma_jasony

 Save Point - modified precision controls

 '(' - modify rendering precision
 ')' - modify shadow map/plane precision
 '<' - reset shadow map/plane precision
 '>' - reset rendering precision
 'up'/'down' - pick operation to modify
 'left'/'right' - decrease/increase precision

Change 41316 on 2002/07/18 by jasony@ma_jasony

 Page 12 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Save Point - Looking into Precision Calculation

 Added:
 'g' - load precision values for calculations
 '<', '>' - increase decrease Shadowfunc precision
 '(', ')' - increase decrease shadowfuncAA precision

Change 41166 on 2002/07/17 by alleng@alleng_screendiv2

 Don't update z if depth is disabled
 Add tile and quad counters for various state settings
 Reformat depth complexity output
 Moved pkt->Init() to only be called for valid frame

Change 40917 on 2002/07/16 by alleng@alleng_screendiv2

 + Added pixel counts (redundant but per frame...)
 + Modified depth test to use the actual depth test function; this included beginFrame
support to clear the depth buffer with the correct value at the correct time)
 + Fixed calcDepthCacheFlush/Fill routines to fall back to expanded mode when number
of zplanes is > 16 and to treat stencil separate from depth

Change 40694 on 2002/07/15 by alleng@alleng_screendiv2

 Added total number of tiles to hz output
 Added support for stencil only pass
 Split the calcDepthCacheTransfer routine into two; one for flushes and one for fills...

Change 40021 on 2002/07/12 by alleng@alleng_screendiv2

 Fix frame processing (can now run multiple Doom3 frames)
 Fixed bug that was mishandling EndOfFrame events
 Fixed bug in previous checkin that cleared the zbuffer prematurely

Change 39936 on 2002/07/12 by jasony@ma_jasony

 Changed Buffer.cpp and ShadowSim.cpp to allow for arbitrary sized shadow maps

Change 39928 on 2002/07/12 by alleng@alleng_screendiv2

 Convert countZplanes() to use 64 bit mask
 Added ability to pass in resX (-sx) and resY (-sy)
 Many small formatting chnages
 Disabled sample frame initially
 Flush depth cache every frame

Change 39817 on 2002/07/11 by jasony@ma_jasony

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1578 of 1898

 Page 13 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Working ShadowAA - still need to explain ragged edges

 '%' Turn on and off highlight of selected point

Change 39544 on 2002/07/10 by alleng@alleng_screendiv2

 Significant changes to screendiv, including (but not limited to):

 + removing testMode
 + use 8x8 tile by default
 + rework spitQuads
 + provided mechanism to model depth cache
 + added code to gather stats on depth complexity
 + cleaned up a whole lot
 + fixed bug in countZplanes that changed baseline (break vs continue)
 + changed countZplane interface
 + isolating individual print routines within respective classes to modularize things and
simplify the output

 Did test this against a baselevel using d3-combat-1.bin dump file. The bug fix will force a
new base line but so far the tool is reporting the same info that it did originally with a whole
bunch more functionality.

Change 39478 on 2002/07/10 by jasony@ma_jasony

 Save Point - Sorta working Shadow AA

Change 39477 on 2002/07/10 by bbloemer@ma-jasonh

 Elpida's description of special IP. Overview only.

Change 39352 on 2002/07/10 by jasony@ma_jasony

 Lets you see the multiple shadow planes in the view shadow plane mode by using the up
and down cursor keys

Change 39155 on 2002/07/09 by jasony@ma_jasony

 Save Pont - Rough working Shadowing with AA

 -Added '$' to turn on/off AA for shadowing

Change 39106 on 2002/07/09 by jasony@ma_jasony

 Save point - Shadowing working in Buffer::RenderAA (moving out to Buffer::Render)

Change 38811 on 2002/07/08 by jasony@ma_jasony

 Page 14 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Modified to work with ShadowSim (added ls,lt,lq,lr coords to Vertex and QuadData)

Change 38810 on 2002/07/08 by jasony@ma_jasony

 Working shadows

Change 37971 on 2002/07/03 by jasony@ma_jasony

 Added mouse code to check points on the image

 Control+mouse click sets a position (can be seen in corresponding light space)

 shift+mouse click will print out screen coordinates (origin is lower left)

Change 37825 on 2002/07/03 by jhoule@MA_JHOULE

 Added hooks for cam/light control.
 F5: cam view
 F6: light view
 F7: ctrl cam
 F8: ctrl light
 !: Refresh light map
 #: Camera mode (old '!' functionality)

 Clamped position in light map to prevent crash (equivalent to clamp to last).

Change 37809 on 2002/07/03 by jasony@ma_jasony

 Semi-working shadowing

Change 37645 on 2002/07/02 by jasony@ma_jasony

 save point: semi working plane equation

Change 37436 on 2002/07/01 by jasony@ma_jasony

 Save point - before using shadow function

Change 37383 on 2002/07/01 by jasony@ma_jasony

 Save point

Change 34813 on 2002/06/18 by jasony@ma_jasony

 New check-in of shadow buffer simulator (based on filtersim)

Change 34556 on 2002/06/17 by jasony@ma_jasony

 sampling pattern candidates

 Page 15 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 34541 on 2002/06/17 by jasony@ma_jasony

 Added 3-sample options

Change 34133 on 2002/06/14 by jasony@ma_jasony

 removed very old patterns

Change 34132 on 2002/06/14 by jasony@ma_jasony

 Changed to allow arbitrary number of samples for anti-aliasing

Change 34129 on 2002/06/14 by jasony@ma_jasony

 Recommended sampling patterns

Change 33763 on 2002/06/13 by bbloemer@ma-jasonh

 M. Litt's Status.

Change 33744 on 2002/06/13 by bbloemer@ma-jasonh

 Added ati GDDR-III spec update and SEC's GDDR-II spec.

Change 33609 on 2002/06/12 by jasony@ma_jasony

 Changed menus

Change 33482 on 2002/06/12 by jasony@ma_jasony

 updated loadSamplingPattern to accept arbitrary number of points up to 8

Change 33480 on 2002/06/12 by jasony@ma_jasony

 Changed makePinWheel to take angle in degrees

Change 33456 on 2002/06/12 by jasony@ma_jasony

 fixed steping

Change 33455 on 2002/06/12 by jasony@ma_jasony

 changed menu

Change 33454 on 2002/06/12 by jasony@ma_jasony

 changed random generation

 Page 16 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 33190 on 2002/06/11 by alleng@alleng_screendiv2

 Several new functions and some bug fixes (due to new parser lib updates) and logistical
modifications:

 + Added 'correct' depth check for pixels rendered w/ depth test disabled; required new
routine GetPrimState and some additional back pointers for HZ and ZBUFFER to get back to the
Rasterizer class
 + Added coverage bins for tiles and quads
 + Modified file I/O to use the 'standard' parser lib syntax (see usage text in main() for
details

Change 32959 on 2002/06/10 by jasony@ma_jasony

 fixed bug in updateWalkerSamples

Change 32696 on 2002/06/07 by jasony@ma_jasony

 makePinWheel

Change 32695 on 2002/06/07 by jasony@ma_jasony

 Added Sampling and makePinWheel

Change 32650 on 2002/06/07 by jhoule@MA_JHOULE

 Solved a few multisampling issues.
 Now uses 8 samples by default.
 Can now correctly blend the samples together (old scheme lost precision for small
values).
 Background color is now black by default.

Change 32611 on 2002/06/07 by jasony@ma_jasony

 Added (makePinWheel radius number angle)

Change 32610 on 2002/06/07 by jasony@ma_jasony

 fixed loading of samples

Change 32592 on 2002/06/07 by jasony@ma_jasony

 Added loading of sampling patterns

Change 32385 on 2002/06/06 by jhoule@MA_JHOULE

 Cleaned up for easier usage.
 Added sampling pattern load hooks.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1579 of 1898

 Page 17 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 32160 on 2002/06/05 by jasony@ma_jasony

 No Discrepancy Function

Change 31840 on 2002/06/04 by jasony@ma_jasony

 Changed to work with relative paths

Change 31839 on 2002/06/04 by jasony@ma_jasony

 Fixed to work with Driectx 8.1

Change 31757 on 2002/06/04 by jasony@ma_jasony

 Relevant sample patterns

Change 31756 on 2002/06/04 by jasony@ma_jasony

 fixed image inversion

Change 31753 on 2002/06/04 by jasony@ma_jasony

 program to generate fourier transform
 required by the browser

Change 31751 on 2002/06/04 by jasony@ma_jasony

 removed libtiff links

Change 31750 on 2002/06/04 by jasony@ma_jasony

 Incorporated Tiff reading (this version does not need libtiff)

Change 31712 on 2002/06/04 by jasony@ma_jasony

 Added search for divers.exe

Change 31620 on 2002/06/03 by jasony@ma_jasony

 Changed string code

Change 31507 on 2002/06/03 by jasony@ma_jasony

 Jason's antialiasing browser

Change 30945 on 2002/05/30 by bbloemer@ma-jasonh

 First GDDR III spec.

 Page 18 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 29844 on 2002/05/24 by bbloemer@ma-jasonh

 New spec version. Original file name: JESD90-24May2002.prn.pdf

Change 29762 on 2002/05/23 by alleng@alleng_screendiv2

 Added error handler to main loop to catch any errors that the Parser library (et al) may
throw. The lack of a handler was apparently causing a problem when a dmp file with an error
was being read.

Change 29738 on 2002/05/23 by jhoule@MA_JHOULE

 Added better LOD computation schemes, with runtime control.
 Added Sampler class, to control sampling position as well as ROM table to LOD
correction (plane scheme).
 Changed sampling pattern to something rather good.

Change 29325 on 2002/05/21 by lseiler@lseiler_r400_win_marlboro

 Removed outmoded code, cleaned up some comments

Change 29309 on 2002/05/21 by lseiler@lseiler_r400_win_marlboro

 Fix missing jobs.txt parameter in project file

Change 29270 on 2002/05/21 by lseiler@lseiler_r400_win_marlboro

 Updated workspace and project files

Change 29236 on 2002/05/21 by lseiler@lseiler_r400_win_marlboro2

 List of dump files to test

Change 29131 on 2002/05/20 by lseiler@lseiler_r400_win_marlboro

 Altered to look in /r400/parser for PM4tools files

Change 29109 on 2002/05/20 by lseiler@lseiler_r400_win_marlboro2

 Updated ScreenDiv2: eliminates TorontoParser to use PM4tools directory

Change 29004 on 2002/05/20 by bbloemer@ma-jasonh

 Call notes.

Change 28342 on 2002/05/16 by bbloemer@ma-jasonh

 Minutes.

 Page 19 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 26690 on 2002/05/07 by bbloemer@ma-jasonh

 Added documents.

Change 25117 on 2002/04/26 by jhoule@MA_JHOULE

 Added many LOD computations schemes.
 Also added various length approximations.
 Hooked keyboard keys to control those.
 Changed camera behaviour.

Change 24979 on 2002/04/25 by jhoule@MA_JHOULE

 Spin wrongly multiplied angle by 180

Change 23311 on 2002/04/15 by bbloemer@ma-jasonh

 Presentations used in telecon.

Change 23151 on 2002/04/12 by mdoggett@MA_MDOGGETT

 Adding first version of Address Translate. Uses previous function types, needs to be
updated for new version. Only checking it in so Ken can see it.

Change 22619 on 2002/04/10 by bbloemer@ma-jasonh

 Material from April 9/10 face to face.

Change 21863 on 2002/04/04 by lseiler@lseiler_r400_win_marlboro2

 Random updates

Change 21661 on 2002/04/03 by lseiler@SEILER2

 Includes tile Zrange comparisons

Change 21210 on 2002/04/01 by bbloemer@ma-jasonh

 Added Michael's notes.

Change 21052 on 2002/03/29 by lseiler@SEILER2

 Updated with 128-bit Zplane compression ratios

Change 20653 on 2002/03/27 by jhoule@MA_JHOULE

 New (hopefully, non-crashing) project files.

 Page 20 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 20651 on 2002/03/27 by jhoule@MA_JHOULE

 Update with various LOD computation algos.

Change 20650 on 2002/03/27 by jhoule@MA_JHOULE

 Uses same jitter table for all pixels of all quads.

Change 20476 on 2002/03/26 by rbagley@MA_RBAGLEY

 This has been moved to r400/doc_libs/design/chip

Change 20066 on 2002/03/21 by bbloemer@ma-jasonh

 Adding history of Samsung-Elpida-ATI 3-way calls.

Change 19442 on 2002/03/18 by bbloemer@ma-jasonh

 Added new memory matrix.

Change 19073 on 2002/03/15 by mdoggett@MA_MDOGGETT

 Removed old L1 Tag compare.

Change 18687 on 2002/03/13 by bbloemer@ma-jasonh

 Hynix presentation of 3/16/02 (not sure when actually given) and Etron data sheet.

Change 18686 on 2002/03/13 by mdoggett@MA_MDOGGETT

 Fixed old L1 Miss calculation. changed flushL1 to set tagaddr to -1 instead of 0

Change 18618 on 2002/03/12 by bbloemer@ma-jasonh

 Spec.

Change 18598 on 2002/03/12 by mdoggett@MA_MDOGGETT

 Added simple L1Tag compare. Fixed bugs in older L1 Tag compare

Change 18597 on 2002/03/12 by mdoggett@MA_MDOGGETT

 added new l1tag compare

Change 18171 on 2002/03/08 by lseiler@SEILER2

 HiZ 2x2 test version

Change 16292 on 2002/02/22 by lseiler@SEILER2

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1580 of 1898

 Page 21 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Updated HiZ test results

Change 16291 on 2002/02/22 by lseiler@SEILER2

 Updated for latency tests, streak tests, and cache miss effects

Change 16286 on 2002/02/22 by bbloemer@ma-jasonh

 Spice simulation results for OD driver.

Change 16210 on 2002/02/21 by mdoggett@MA_MDOGGETT_LT

 Updated formats. Added 2d interlace format and 3d four layer format. Added L2 read
synchronisation description.

Change 16010 on 2002/02/20 by bbloemer@ma-jasonh

 Elpida presentation.

Change 16001 on 2002/02/20 by bbloemer@ma-jasonh

 Elpida material for next week's face to face.

Change 14507 on 2002/02/04 by jhoule@MA_JHOULE

 Added dynamic filterKernel pass after rendering (only when AA).
 Emu integration (unfinished).

Change 14506 on 2002/02/04 by jhoule@MA_JHOULE

 Added emuWrap stuff (absolute path, though)

Change 14412 on 2002/02/01 by bbloemer@ma-jasonh

 Added 18 Jan. 2002 version.

Change 14410 on 2002/02/01 by bbloemer@ma-jasonh

 Added 10Sep2001 version of spec.

Change 14409 on 2002/02/01 by bbloemer@ma-jasonh

 The initial 30-Nov2000 spec version.

Change 14300 on 2002/01/31 by lkang@lkang_r400_win_tor

 This directory is for DC-MH interface block architecture and implementation specs

 Page 22 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 14161 on 2002/01/29 by bbloemer@ma-jasonh

 DRAM model documentation.

Change 14060 on 2002/01/28 by lseiler@SEILER2

 Zplane charts and statistics for the 8 benchmark cases

Change 13938 on 2002/01/25 by lseiler@SEILER2

 Updated with MaxMin tests

Change 13902 on 2002/01/25 by bbloemer@ma-jasonh

 Data from Elpida, Samsung, ATI face to face. Moved Elpida file from Elpida directory
to here.

Change 13816 on 2002/01/24 by rbagley@MA_RBAGLEY_LTXP

 Intermediate checkin for version 0.1 of newly revised and reorganized shader
programming model doc. The doc had been
 correctly renamed; the previous version is here deleted.
 We also delete the former assembly syntax doc from its deprecated
 location.

Change 13768 on 2002/01/24 by bbloemer@ma-jasonh

 Elpida presentation of new IP; 4 new Hynix specs, inc. > 300 MHz.;
 Samsung and Nanya DRAMs > 300 Mhz.

Change 13295 on 2002/01/18 by lseiler@SEILER2

 Updated with 0-, 8-, and 64-entry cache data

Change 13236 on 2002/01/17 by lseiler@ma_lseiler

 Update to account for direct mapped caching on the tiles

Change 13123 on 2002/01/16 by jayw@MA_JAYW

 Split out SX and RC on page and added a FIFO to SX

Change 13096 on 2002/01/15 by rbagley@MA_RBAGLEY_LT

 Assembly Syntax

Change 13088 on 2002/01/15 by wlawless@wlawless

 New RB estimates

 Page 23 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 13066 on 2002/01/15 by wlawless@wlawless

 ok

Change 13030 on 2002/01/14 by llefebvr@llefebvre_laptop_r400

 updated the barycentric document

Change 12990 on 2002/01/14 by llefebvr@llefebvre_laptop_r400

 2 samples now available

Change 12961 on 2002/01/11 by lseiler@ma_travel_micro

 Updates made during vacation (needs to be debugged)

Change 12805 on 2002/01/10 by lseiler@SEILER2

 Added table for fully covered pixels and quads

Change 12572 on 2002/01/07 by lseiler@ma_travel_micro

 Updated to compute the number of Zplanes per tile and per quad

Change 12030 on 2001/12/19 by lseiler@ma_lseiler

 Spreadsheets added before vacation

Change 12021 on 2001/12/19 by lseiler@SEILER2

 checkins of spreadsheet result files (prior to vacation)

Change 11800 on 2001/12/14 by rbagley@MA_RBAGLEY_LT

 Corrections to control flow.
 Updated control flow syntax.
 Misc. local corrections.
 Format corrections, prior to conversion to Programming Model doc.

Change 11756 on 2001/12/14 by llefebvr@llefebvre_laptop_r400

 Constant management model simulator for the R400

Change 11729 on 2001/12/13 by lseiler@SEILER2

 Update to support variable precision HiZ values

Change 11560 on 2001/12/12 by rbagley@MA_RBAGLEY_LT

 Page 24 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Interrim check-in.

Change 11553 on 2001/12/11 by rbagley@MA_RBAGLEY_LT

 Extension of instruction reference to fetch instruction.
 Revision of alu syntax and guide (in progress).
 Miscellaneous corrections and revisions.

Change 11538 on 2001/12/11 by lseiler@SEILER2

 more screendiv1 files

Change 11537 on 2001/12/11 by lseiler@SEILER2

 HiZ test code (Screendiv1 for R100 and Screendiv2 for R200)

Change 11536 on 2001/12/11 by lseiler@SEILER2

 Update

Change 11332 on 2001/12/06 by rbagley@MA_RBAGLEY_LT

 Intermediate check-in.
 Midway through updates of fetch syntax.
 We also revised the register indexing.
 Several other additions, including a table of resources.

Change 11124 on 2001/12/03 by rbagley@MA_RBAGLEY_LT

 Corrections and improvements following Ken's reading of Dec 3.

Change 11013 on 2001/11/30 by rbagley@MA_RBAGLEY_LT

 Corrections to indexing mode specification.

Change 10869 on 2001/11/28 by rbagley@MA_RBAGLEY_LT

 Indexing modes description, syntax, and examples.

 Interrim check-in towards version 0.4.

Change 10839 on 2001/11/28 by rbagley@MA_RBAGLEY_LT

 Syntax for control flow instructions.

 Began register indexing; in progress.

 (Interrim check-in for version 0.4)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1581 of 1898

 Page 25 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 10824 on 2001/11/27 by rbagley@MA_RBAGLEY_LT

 Interrim check-in for version 0.4.

Change 10810 on 2001/11/27 by pmitchel@pmitchel_r400_win_marlboro

 mv to doc_lib/parts/sp

Change 10807 on 2001/11/27 by pmitchel@pmitchel_r400_win_marlboro

 mv to doc_lib/parts

Change 10806 on 2001/11/27 by hartogs@fl_hartogs

 Check-in for relocation.

Change 10791 on 2001/11/27 by hartogs@fl_hartogs

 Requested check-in. The document is in a interim state.

Change 10784 on 2001/11/27 by pmitchel@pmitchel_r400_win_marlboro

 mv to doc_lib/parts

Change 10772 on 2001/11/27 by pmitchel@pmitchel_r400_win_marlboro

 mv to doc_lib/parts

Change 10771 on 2001/11/27 by pmitchel@pmitchel_r400_win_marlboro

 mv to doc_lib/parts

Change 10769 on 2001/11/27 by pmitchel@pmitchel_r400_win_marlboro

 mv to doc_lib/parts

Change 10767 on 2001/11/27 by pmitchel@pmitchel_r400_win_marlboro

 mv to doc_lib/parts

Change 10766 on 2001/11/27 by pmitchel@pmitchel_r400_win_marlboro

 mv to doc_lib/parts

Change 10765 on 2001/11/27 by lseiler@ma_lseiler

 Render Backend: temporary version, not a complete release

 Page 26 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 10764 on 2001/11/27 by lseiler@ma_lseiler

 Memory Format v0.4: intermediate form, not a complete release

Change 10763 on 2001/11/27 by pmitchel@pmitchel_r400_win_marlboro

 mv to doc_lib/parts

Change 10745 on 2001/11/27 by ctaylor@fl_ctaylor

 Updated SC->SU interface and a few words on performance.

Change 10736 on 2001/11/27 by lseiler@ma_lseiler

 Multisample: spec, preliminary version that needs lots of changes

Change 10704 on 2001/11/26 by rbagley@MA_RBAGLEY_LT

 Correction to export syntax.

Change 10690 on 2001/11/26 by rbagley@MA_RBAGLEY_LT

 Updated export syntax. We also include a preliminary look at the
 export address mapping.

Change 10668 on 2001/11/26 by paulv@MA_PVELLA

 Minor changes/fixes.

Change 10667 on 2001/11/26 by paulv@MA_PVELLA

 Major revision of block diagram.

Change 10665 on 2001/11/26 by paulv@MA_PVELLA

 Updated and fixed MHS section.

Change 10635 on 2001/11/26 by lseiler@SEILER2

 final screendiv update before branching off to a separate source set

Change 10503 on 2001/11/21 by lseiler@ma_lseiler

 Revised summary of frames used by tile tests

Change 10501 on 2001/11/21 by askende@andi_r400_docs

 opcode update

 Page 27 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 10500 on 2001/11/21 by askende@andi_r400_docs

 updated a couple of opcodes

Change 10489 on 2001/11/21 by kcorrell@KCORRELL

 update of architectural description

Change 10464 on 2001/11/21 by lseiler@SEILER2

 Modified to eliminate pointless warning messages

Change 10431 on 2001/11/20 by rbagley@MA_RBAGLEY_LT

 A first cut at the export syntax and language guide for version 0.4.

Change 10416 on 2001/11/20 by lseiler@SEILER2

 Changed depth test from < to <= (second try at update)

Change 10404 on 2001/11/20 by lseiler@SEILER2

 Depth test changed from < to <=

Change 10348 on 2001/11/19 by rbagley@MA_RBAGLEY_LT

 Interrim check-in for version 0.4. Syntax for exports and fetches in progress.

Change 10323 on 2001/11/19 by lseiler@SEILER2

 Updated to provide more HiZ information

Change 10322 on 2001/11/19 by lseiler@SEILER2

 Updated to report more HiZ data (this time for real)

Change 10289 on 2001/11/19 by lseiler@SEILER2

 Private version of numbers.h and numbers.cpp for screendiv -- need to change over to
using the official versions in devel/cmn_lib

Change 10274 on 2001/11/19 by lseiler@ma_lseiler

 update

Change 10255 on 2001/11/19 by kcorrell@KCORRELL

 Initial revision

 Page 28 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 10254 on 2001/11/19 by kcorrell@KCORRELL

 AIC block diagram initial revision

Change 10253 on 2001/11/19 by kcorrell@KCORRELL

 update

Change 10203 on 2001/11/16 by rbagley@MA_RBAGLEY_LT

 Interim check-in of revision 0.4. In progress.

Change 10197 on 2001/11/16 by mdoggett@MA_MDOGGETT

 friday check in

Change 10184 on 2001/11/16 by lseiler@SEILER2

 various updates

Change 10182 on 2001/11/16 by lseiler@ma_lseiler

 Tiling code, just before splitting off the heir directory

Change 10172 on 2001/11/16 by llefebvr@llefebvre_laptop_r400

 chikin in order to move to documents to the new branch

Change 10146 on 2001/11/16 by jhoule@MA_JHOULE

 baseAddr has mipID and gBaseTexOffset

Change 10122 on 2001/11/16 by bbloemer@ma-jasonh

 From Michael Litt's far east trip

Change 10117 on 2001/11/16 by bbloemer@ma-jasonh

 Updated DDR II spec

Change 10055 on 2001/11/15 by jhoule@MA_JHOULE

 Contains instruction filed (both usage in commands, and meanings) as well as constant
store fields.

Change 9981 on 2001/11/15 by mdoggett@MA_MDOGGETT

 TC diagrams

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1582 of 1898

 Page 29 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 9979 on 2001/11/15 by mdoggett@MA_MDOGGETT

 major rearrangement and integration of old texture pipe material.

Change 9967 on 2001/11/15 by mdoggett@MA_MDOGGETT_LT

 no changes

Change 9964 on 2001/11/14 by jhoule@MA_JHOULE

 Extensive clock management numbers.

 FIFO stalling implemented.

 L2Filter implemented using deque for FIFOs of requests at each cacheline.

 Created XYBAddr for easier management (the L1 miss sends the exact same texel
request to the L2).

 Uses a static L2Cache to get correct tags, as well as L2Cache numbers.

Change 9963 on 2001/11/14 by jhoule@MA_JHOULE

 Boolean b is now a signed char (%uc was failing).

 faf supported in cache config file.

 Introduction of baseAddr for read commands (same as mipID for now).

 Call of clock() moved before end_of_prim because it uses qQuadPixelCount which
would otherwise reset to 0.

 STATIC_L2 support.

Change 9962 on 2001/11/14 by jhoule@MA_JHOULE

 Uses PRINT_DEBUG define instead of #if 0/1.

Change 9961 on 2001/11/14 by jhoule@MA_JHOULE

 Disabled USES_TWO_TAGS.

Change 9940 on 2001/11/14 by mdoggett@MA_MDOGGETT

 First check-in of new TC spec. Brings together L1 access from TP spec and old TD spec,
plus some additional diagrams and format information.

Change 9923 on 2001/11/14 by jhoule@MA_JHOULE

 Page 30 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Changed Wrapping/Clamping to Clamping/Wrapping for subblock naming issues.
 Now at 0.8.9.

Change 9915 on 2001/11/14 by jhoule@MA_JHOULE

 Blending scheme diagrams.
 Modifs here and there.

Change 9910 on 2001/11/14 by dglen@dglen_r400_dell

 Moved from arch/doc to devel/doc_lib/parts

Change 9908 on 2001/11/14 by jowang@jowang_R400_win

 add 1536 line size so that 1280 doesn't use 4 tap

Change 9886 on 2001/11/14 by dglen@dglen_r400_dell

 Moved to doc_lib/parts/dc

Change 9885 on 2001/11/14 by dglen@dglen_r400_dell

 Moving files to doc_lib/parts from arch/doc

Change 9859 on 2001/11/14 by lseiler@ma_lseiler

 Computes % per bin for HiZ deltas

Change 9850 on 2001/11/14 by llefebvr@llefebvre_laptop_r400

 screendiv simulator for HZ precision

Change 9830 on 2001/11/13 by bbloemer@ma-jasonh

 Materials from M. Litt's trip to the far east.

Change 9826 on 2001/11/13 by jhoule@MA_JHOULE

 Put Sampling in a separate section than Walking, because it is closer to Wrapping.
 Safety check-in.

Change 9759 on 2001/11/13 by lseiler@ma_lseiler

 numbers library, fixed to eliminate warning messages

Change 9739 on 2001/11/12 by paulv@MA_PVELLA

 Initial release.

 Page 31 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 9738 on 2001/11/12 by paulv@MA_PVELLA

 Fixed any grammatical errors found and update of Read Bus Switch, including
completion (?) of Tag Sequencer subsection.

Change 9737 on 2001/11/12 by paulv@MA_PVELLA

 Updated with latest architectural changes.

Change 9723 on 2001/11/12 by askende@andi_r400_docs

 new revision

Change 9715 on 2001/11/12 by lseiler@ma_lseiler

 program to test tiling with heirarchical data

Change 9708 on 2001/11/12 by dglen@dglen_r400_dell

 Template for display related interface bus specs

Change 9707 on 2001/11/12 by dglen@dglen_r400_dell

 Should be ready for the masses.

Change 9653 on 2001/11/09 by jhoule@MA_JHOULE

 Week end check-in.
 Almost finished stripping out the TC stuff.

Change 9648 on 2001/11/09 by jhoule@MA_JHOULE

 Caching is dotted line to indicate sharing between the 4 TPs.

Change 9627 on 2001/11/09 by jhoule@MA_JHOULE

 Isolated TC.
 Getting ready to strip it out to be plugged in TC (which Michael will check-in
afterwards).

Change 9586 on 2001/11/08 by dclifton@dclifton_r400

 new specs

Change 9513 on 2001/11/08 by jhoule@MA_JHOULE

 Started implementing FIFO stalls with clock notion.

Change 9512 on 2001/11/08 by jhoule@MA_JHOULE

 Page 32 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Assert replaced with runtime error message (was crashing because PrimData was NULL).

Change 9511 on 2001/11/08 by jhoule@MA_JHOULE

 Cleaner output

Change 9510 on 2001/11/08 by jhoule@MA_JHOULE

 QUAKE_HACK (similar to R200_PARSER) to keep rendering within scissor zone.

 More robust cache flushing.

 Better TAG bits computation (total of 12).

Change 9396 on 2001/11/07 by kcorrell@KCORRELL

 continuation of major update working towards review mid Nov

Change 9393 on 2001/11/07 by kcorrell@KCORRELL

 updated diagram

Change 9346 on 2001/11/06 by llefebvr@llefebvre_laptop_r400

 sequencer spec backup

Change 9255 on 2001/11/06 by jhoule@MA_JHOULE

 Single boolean flip hack scheme.

Change 9254 on 2001/11/06 by jhoule@MA_JHOULE

 Invalid tag detection for better flushing of cache.

Change 9206 on 2001/11/05 by jhoule@MA_JHOULE

 Implement clock(), with FIFO accounting.

 Better flip hack scheme (more robust, and simpler to specify).

Change 9204 on 2001/11/05 by jhoule@MA_JHOULE

 Support 5 params fa and fa2 (for 2x1 and 2x2 hack of delta 1).

 Calls clock().

Change 9199 on 2001/11/05 by jhoule@MA_JHOULE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1583 of 1898

 Page 33 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Added second tag

Change 9198 on 2001/11/05 by jhoule@MA_JHOULE

 Added clock() function.

Change 9197 on 2001/11/05 by jhoule@MA_JHOULE

 Added clock() function.

Change 9194 on 2001/11/05 by dwong@cndwong2

 first draft of R400_IDCT

Change 9118 on 2001/11/02 by jhoule@MA_JHOULE

 Reactivated ParseArgs path.

 Cleaner support for R200 parser (#defined); also considers TP0 bug workaround from
driver!

 Wrong pkt deletion solved (crashed after last frame read).

 Function isOneTexelTri() added to remove weird (and cache helping) 1-texel triangles
(same texCoord at 3 vertices).

 RENDER_PRINT_POLY added.

 Changed output of 0-textures tris from ! to @.

Change 9116 on 2001/11/02 by jhoule@MA_JHOULE

 Removed getchar() when verbosing.

Change 9115 on 2001/11/02 by jhoule@MA_JHOULE

 CACHE_VERBOSE came back to 0... (!)

Change 9105 on 2001/11/02 by ctaylor@fl_ctaylor

 First Rev of PA Top Level Spec,
 VGT_Spec
 CLIP/VTE Spec.

Change 9046 on 2001/11/02 by bbloemer@ma-jasonh

 AGP 8x spec.

 Page 34 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 8961 on 2001/11/01 by wlawless@wlawless

 .

Change 8932 on 2001/10/31 by kcorrell@KCORRELL

 oops this is what was supposed to be submitted the last time...

Change 8927 on 2001/10/31 by kcorrell@KCORRELL

 adding some new block diagrams and did a major reorg of the MH document

Change 8718 on 2001/10/29 by jhoule@MA_JHOULE

 Added HACK_2x1 for 2x1 cachelines that are effectively EE...

Change 8717 on 2001/10/29 by jhoule@MA_JHOULE

 Moved CACHE_VERBOSE to AbsCache for global control.

Change 8716 on 2001/10/29 by jhoule@MA_JHOULE

 Aesthetic (output, default caches, etc.)

Change 8687 on 2001/10/29 by jhoule@MA_JHOULE

 Uses R200Parser.
 Various debug functions and calls.

Change 8675 on 2001/10/29 by jhoule@MA_JHOULE

 Uses diags/PM4Tools ParserLib file.

Change 8674 on 2001/10/29 by jhoule@MA_JHOULE

 Changed library for diags/PM4Tools one (requires PM4_TOOLS environment variable).
 RTTI for CacheSim.cpp only.

Change 8611 on 2001/10/26 by dglen@dglen_r400_dell

 Added MH interface detail

Change 8606 on 2001/10/26 by llefebvr@llefebvre_laptop_r400

 Sequencer spec V1.0.

Change 8413 on 2001/10/24 by jowang@jowang_R400_win

 1) added some new scaling situations

 Page 35 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 2) made max VTAP equal to 4 in in 30BPP

Change 8404 on 2001/10/24 by mdoggett@MA_MDOGGETT

 Small interface corrections and additions.

Change 8386 on 2001/10/24 by kcorrell@KCORRELL

 block diagram of MHC and MHA

Change 8377 on 2001/10/24 by jowang@jowang_R400_win

 just testing

Change 8376 on 2001/10/24 by jowang@jowang_R400_win

 just testing

Change 8371 on 2001/10/24 by jowang@jowang_R400_win

 no change

Change 8358 on 2001/10/24 by lseiler@ma_lseiler

 Render Backend Registers v0.2: Various changes from one-on-one reviews

Change 8326 on 2001/10/24 by jhoule@MA_JHOULE

 Added $(R400_EMU) to include paths

Change 8325 on 2001/10/24 by jhoule@MA_JHOULE

 Key 'K' uses emulator wrapper function.

 Key '@' get monochromatic mipmaps.

Change 8324 on 2001/10/24 by jhoule@MA_JHOULE

 6 bits for mipW

 mipmap nearest LOD bias reactived

 3 bits LOD correction factors

 getLODUsingEmu wrapper for emulator comparisons

Change 8321 on 2001/10/23 by dglen@dglen_r400_dell

 Add more detail to interlaced display modes.

 Page 36 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 8319 on 2001/10/23 by dglen@dglen_r400_dell

 Top level architectural outline of new display system.

Change 8256 on 2001/10/23 by paulv@MA_PVELLA

 Updated DBR and RRA sections, with updates to functional and architectural
descriptions, along with updates to the block diagrams. Also started Tag Sequencer subsection.

Change 8211 on 2001/10/22 by dglen@dglen_r400_dell

 Updated revision history

Change 8209 on 2001/10/22 by dglen@dglen_r400_dell

 Top level outline of the front end VGA core unit.

Change 8207 on 2001/10/22 by dglen@dglen_r400_dell

 Template for Display Block Architectural Specs

Change 8206 on 2001/10/22 by dglen@dglen_r400_dell

 Display output image scaler modes and BW requirements

Change 8175 on 2001/10/22 by llefebvr@llefebvre_laptop_r400

 sequencer v1.0 BACKUP ONLY not yet complete.

Change 8167 on 2001/10/22 by paulv@MA_PVELLA

 Forgot to fix the DISP routing. It is done.

Change 8161 on 2001/10/22 by wlawless@wlawless

 new file

Change 8152 on 2001/10/22 by beiwang@MA_BEIWANG

 Power management related links

Change 8148 on 2001/10/22 by rbeaudin@MA_RAYB_LT

 moved numbers stuff

Change 8146 on 2001/10/22 by paulv@MA_PVELLA

 Fixed block diagram to reflect recent functional/architectural changes.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1584 of 1898

 Page 37 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 8114 on 2001/10/19 by kcorrell@KCORRELL

 Modified connections to AIC interface block (HMB)

Change 8108 on 2001/10/19 by askende@andi_r400_docs

 deleted ..it was used as a test only

Change 8106 on 2001/10/19 by jayw@MA_JAYW

 Jay's exploration of recip

Change 8105 on 2001/10/19 by askende@andi_r400_docs

 test

Change 8081 on 2001/10/19 by llefebvr@llefebvre_laptop_r400

 One before last major architectural revision of the sequencer before the implementation
spec. Control flow is complete and was accepted by SW team. Remains before freezing 1.0 :
external and internal interfaces.

Change 8039 on 2001/10/18 by lseiler@ma_lseiler

 Moved sized int definitions into standard_typedefs.h

Change 8011 on 2001/10/18 by mdoggett@MA_MDOGGETT

 a few interface changes

Change 7974 on 2001/10/17 by paulv@MA_PVELLA

 Refixed block diagram (what I had before last revision was mostly correct).

Change 7934 on 2001/10/17 by llefebvr@llefebvre_laptop_r400

 diagrams that go with the sequencer spec

Change 7930 on 2001/10/17 by llefebvr@llefebvre_laptop_r400

 version 0.8 of the sequencer spec. It contains the new control flow porcedure as well as
updated external interfaces.

Change 7923 on 2001/10/17 by jhoule@MA_JHOULE

 Removed PRINT field.

Change 7884 on 2001/10/16 by jhoule@MA_JHOULE

 Page 38 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Added constant store and instruction store in the interface portion.

Change 7850 on 2001/10/16 by lseiler@SEILER2

 Changed int8 etc. to #define constants protected by #ifndef
 This avoids an error if they are defined in another file

Change 7824 on 2001/10/16 by jhoule@MA_JHOULE

 Cleaning up of interfaces. Removed duplicates.

Change 7809 on 2001/10/15 by paulv@MA_PVELLA

 Fixed DBR and RRA sections with new I/O and logic adjustments.

Change 7808 on 2001/10/15 by paulv@MA_PVELLA

 Updated block diagram to fix I/O and some logic changes.

Change 7806 on 2001/10/15 by paulv@MA_PVELLA

 Updated block diagram to include AIC address and byte swap I/O.

Change 7779 on 2001/10/15 by jhoule@MA_JHOULE

 Minor corrections here and there.

Change 7722 on 2001/10/12 by paulv@MA_PVELLA

 Minor fix the the RRA block diagram (changed the tag info FIFO to a tag info RAM).

Change 7717 on 2001/10/12 by mdoggett@MA_MDOGGETT

 First version of a document describing how shadow map calculations can be performed
on the R400 using plane equations.

Change 7705 on 2001/10/12 by rbagley@MA_RBAGLEY_LT

 First version of investigation into worst-case consequences of software features and
hardware attributes for shader programs.

Change 7684 on 2001/10/12 by jhoule@MA_JHOULE

 Major reorganization of sections.
 Not revision-savvy.

Change 7683 on 2001/10/12 by jhoule@MA_JHOULE

 Page 39 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Added Output Formatter at the end (regroups into a quad, and converts to floats).

Change 7645 on 2001/10/11 by paulv@MA_PVELLA

 Fixed Data Bus Router (HDP client needed to be added).

Change 7631 on 2001/10/11 by jhoule@MA_JHOULE

 New Block Description (reorganization underway).

Change 7616 on 2001/10/11 by bbloemer@ma-jasonh

 Power management

Change 7615 on 2001/10/11 by paulv@MA_PVELLA

 Minor fix.

Change 7611 on 2001/10/11 by lseiler@ma_lseiler

 First draft of Render Backend register field list

Change 7581 on 2001/10/11 by paulv@MA_PVELLA

 Updated block diagram to reflect recent changes (see spec).

Change 7580 on 2001/10/11 by paulv@MA_PVELLA

 Updated Data Bus Router section.

Change 7572 on 2001/10/11 by bbloemer@ma-jasonh

 New material

Change 7553 on 2001/10/10 by bbloemer@ma-jasonh

 Power management spec.

Change 7487 on 2001/10/09 by jhoule@MA_JHOULE

 Accepted all changes.
 Various minor tweaks here and there (notably, issues aren't headings anymore).

Change 7461 on 2001/10/09 by jhoule@MA_JHOULE

 Better add the top-level diagram if I want people to see it...

Change 7460 on 2001/10/09 by jhoule@MA_JHOULE

 Page 40 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Added new top-level diagram.
 Description of pipe in features to give a good idea of where we are heading.

Change 7418 on 2001/10/05 by paulv@MA_PVELLA

 Another big update to RRA (with new understanding of subblock, functionality defined
in much better detail). Also fixed DBR subblock section to reflect removal of BUFFER_FULL
flags (now done in RRA).

Change 7417 on 2001/10/05 by paulv@MA_PVELLA

 Updated diagram to reflect recent changes/adjustments.

Change 7416 on 2001/10/05 by paulv@MA_PVELLA

 No longer valid. Replaced by MH-RRA.vsd.

Change 7411 on 2001/10/05 by jhoule@MA_JHOULE

 Week end check in (minor corrections, mostly formatting).

Change 7380 on 2001/10/05 by llefebvr@llefebvre_laptop_r400

 version 0.7 of the sequencer. Interfaces and control managment added.

Change 7371 on 2001/10/05 by mdoggett@MA_MDOGGETT

 small changes to MC interfaces

Change 7370 on 2001/10/05 by mdoggett@MA_MDOGGETT

 0.4 revision, final check in for major changes
 (that's the idea at least)

Change 7361 on 2001/10/05 by jhoule@MA_JHOULE

 Walkers more up-to-date.
 Described a bit the samples fetching (pt, bilin, arbi).

Change 7350 on 2001/10/04 by paulv@MA_PVELLA

 New block diagram for Read Return Arbitrator (RRA).

Change 7349 on 2001/10/04 by paulv@MA_PVELLA

 Added block diagram to RRA section along with more documentation
(functional/interface).

Change 7335 on 2001/10/04 by jhoule@MA_JHOULE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1585 of 1898

 Page 41 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Updated the LOD computation pseudo-code.
 This has to update walkers (with diagram), and the clamp logic (since it's now in float
around [0,1] with clamp and mirror flags).

Change 7311 on 2001/10/04 by bbloemer@ma-jasonh

 Early rev of spec.

Change 7261 on 2001/10/03 by llefebvr@llefebvre_laptop_r400

 backup of the sequencer + register loading diagram

Change 7192 on 2001/10/02 by paulv@MA_PVELLA

 Some minor updates.

Change 7149 on 2001/10/01 by wlawless@wlawless

 nothing

Change 7113 on 2001/10/01 by bbloemer@ma-jasonh

 Another Elpida spec

Change 7102 on 2001/09/28 by paulv@MA_PVELLA

 Fixed the data bus router's block diagram. Some minor document tweaks.

Change 7088 on 2001/09/28 by mdoggett@MA_MDOGGETT

 More changes.

Change 7080 on 2001/09/28 by llefebvr@llefebvre_laptop_r400

 New sequencer diagram

Change 7050 on 2001/09/27 by paulv@MA_PVELLA

 A portion of the old Read Return Arbiter has become what is now known as the Data Bus
Router. This is the block diagram.

Change 7044 on 2001/09/27 by jhoule@MA_JHOULE

 Aesthetic modifications.
 Table of contents now has correct number sizes!!! (hurray!)
 Thanks to Mike "Vege-mate" Doggett for this...

Change 7027 on 2001/09/27 by bbloemer@ma-jasonh

 Page 42 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Added Chaplin RAM

Change 7008 on 2001/09/27 by paulv@MA_PVELLA

 This is the initial checkin of the read return abitrator block diagram.

Change 6931 on 2001/09/26 by lseiler@SEILER2

 This tests printing uint8 and int8

Change 6889 on 2001/09/25 by askende@andi_docs

 newest version

Change 6878 on 2001/09/25 by mdoggett@MA_MDOGGETT

 major changes to document structure and content.
 progress checkin before version 0.4

Change 6865 on 2001/09/24 by llefebvr@llefebvre_laptop_r400

 new spec of the Sequencer.

Change 6843 on 2001/09/24 by lseiler@ma_lseiler

 This version eliminates most templating on the tiling.h classes and eliminates the more
complex caching classes. This is more efficient and makes the code easier to understand. Now
that we are fixed on 8x8 tiles and a cache with a small number of sets (maybe just 1), we don't
need the extra complexity.

Change 6833 on 2001/09/24 by wlawless@wlawless

 updated revision code

Change 6790 on 2001/09/21 by llefebvr@llefebvre_laptop_r400

 RE spec backup + HZ stats + SC spec backup

Change 6789 on 2001/09/21 by llefebvr@llefebvre_laptop_r400

 new diagrams for the sequencer

Change 6758 on 2001/09/20 by wlawless@wlawless

 Slight update

Change 6722 on 2001/09/20 by bbloemer@ma-jasonh

 Page 43 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 For tonight's call.

Change 6561 on 2001/09/17 by llefebvr@llefebvre_laptop_r400

 more statistical data on HZ

Change 6526 on 2001/09/14 by lseiler@SEILER2

 Added int8 and uint8 ostream operation: now outputs number, not char
 Added andField, orField, and xorField functions (old names: and, or, xor)
 Added bits and mode fields to floor, trunc, round, ceil for fixed_hw types (were already
defined for the software types)

Change 6317 on 2001/09/11 by jhoule@MA_JHOULE

 Minor LODBias correction in LOD computation pseudo-code.

Change 6309 on 2001/09/11 by rbagley@MA_RBAGLEY

 Several emendations.

Change 6243 on 2001/09/10 by lseiler@ma_lseiler

 Changed to 8x8 tiling to compute EmptyQuad slots for render backend

Change 6200 on 2001/09/07 by lseiler@ma_lseiler

 Tiling: added code to compute extra quads processed by the shader pipe due to RB
crossbar swizzling

Change 6184 on 2001/09/07 by lseiler@SEILER2

 Update to fix compatibility bug with gcc v3.0

Change 6183 on 2001/09/07 by lseiler@SEILER2

 Fixes a compatiability problem with gcc v3.0

Change 5994 on 2001/08/31 by llefebvr@llefebvre_laptop_r400

 removed dead code

Change 5970 on 2001/08/30 by bbloemer@ma-jasonh

 Infineon updates.

Change 5872 on 2001/08/29 by jhoule@MA_JHOULE

 Frequency dumping code added, different clamping scheme.

 Page 44 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 5871 on 2001/08/29 by jhoule@MA_JHOULE

 Camera dumping added.

Change 5786 on 2001/08/28 by sallen@devel_sallen

 fix compile errors

Change 5777 on 2001/08/28 by lseiler@ma_lseiler

 Version 0.5a -- fixed typos in the bus interface tables

Change 5776 on 2001/08/28 by jhoule@MA_JHOULE

 Various crap (safety check-in)

Change 5720 on 2001/08/24 by bbloemer@ma-jasonh

 300 MHz. Chaplain class parts.

Change 5711 on 2001/08/24 by llefebvr@llefebvre_laptop_r400

 new version of the registry file allocation mechanism

Change 5702 on 2001/08/24 by bbloemer@ma-jasonh

 8/23/01 Samsung Documents

Change 5698 on 2001/08/24 by llefebvr@llefebvre_laptop_r400

 version 0.4 of the sequencer

Change 5537 on 2001/08/21 by wlawless@wlawless

 RB Hardware Design Spec

Change 5466 on 2001/08/17 by askende@andi_docs

 new rev of the spec

Change 5465 on 2001/08/17 by jhoule@MA_JHOULE

 Better LOD algorithm (leaner and better... now uses log2)

Change 5456 on 2001/08/17 by jhoule@MA_JHOULE

 Converted to log2 everywhere for AnisoNew

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1586 of 1898

 Page 45 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 5448 on 2001/08/16 by rbagley@MA_RBAGLEY_LT

 Bit formats for preliminary fetch instructions, discussion and
 handling of defaults, MOV macros, and miscellaneous corrections.

Change 5433 on 2001/08/16 by jhoule@MA_JHOULE

 R400AnisoNew modified to represent current state of spec.

Change 5387 on 2001/08/15 by jhoule@MA_JHOULE

 Changed R400AnisoNew to an odd number of samples, with half-weighted endpoints
(pretty good looking!!! still got the LOD transition to fix).

Change 5384 on 2001/08/15 by jhoule@MA_JHOULE

 Initial check-in.
 This file gives supplemental information on design decisions, notations, algorithms and
various other underlying stuff.
 It helps explain more, but reduce the already too big texture spec.

Change 5383 on 2001/08/15 by jhoule@MA_JHOULE

 File wasn't saved (sorry).

Change 5382 on 2001/08/15 by jhoule@MA_JHOULE

 Added LOD computation (with correction), samples walking (trilinear and anistropic),
and texel fetching (with wrapping policy table) in the logic description.

Change 5313 on 2001/08/14 by jhoule@MA_JHOULE

 New R200 scheme (hopefully more closely matching).

 Aslo #if...#endif correction factors printing.

Change 5289 on 2001/08/13 by llefebvr@llefebvre_laptop_r400

 added an exemple of registry file management

Change 5278 on 2001/08/13 by llefebvr@llefebvre_laptop_r400

 A more optimized version without while loops

Change 5260 on 2001/08/13 by llefebvr@llefebvre_laptop_r400

 updated spec for sequencer

Change 5259 on 2001/08/13 by llefebvr@llefebvre_laptop_r400

 Page 46 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Reference version for registry file management. Working but costly.

Change 5240 on 2001/08/10 by llefebvr@llefebvre_laptop_r400

 project was missing some files

Change 5239 on 2001/08/10 by llefebvr@llefebvre_laptop_r400

 working visual simulation of the dynamic allocation of the register file

Change 5197 on 2001/08/09 by rbagley@MA_RBAGLEY

 Updates to scalar alu and fetch operations, and miscellaneous correction.

Change 5175 on 2001/08/09 by lseiler@ma_lseiler

 Memory Controller, v0.5: removed autotag feature, changed bus/signal names and other
stuff

Change 5163 on 2001/08/09 by jhoule@MA_JHOULE

 Missed the author field. Fixed also.

Change 5161 on 2001/08/09 by jhoule@MA_JHOULE

 Put title in a title field.

Change 5159 on 2001/08/09 by jhoule@MA_JHOULE

 Changed the year from 2000 to 2001.

Change 5055 on 2001/08/07 by jhoule@MA_JHOULE

 getLODR{23}00Corrected disappeared (wrapped inside the getLODR{23}00.

 Added approxLength for sqrt(a,b) approximation.

Change 5054 on 2001/08/07 by jhoule@MA_JHOULE

 Different LODfunc scheme (now has independent control over LOD correction with '-')

Change 5053 on 2001/08/07 by mdoggett@MA_MDOGGETT

 Updated table of contents

Change 5052 on 2001/08/07 by mdoggett@MA_MDOGGETT

 Added new visio diagrams. Updates to most sections, particularly Logic Descriptions.

 Page 47 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 5046 on 2001/08/06 by jhoule@MA_JHOULE

 Added #if 1...#endif for selecting 1 jitter/pixel or 1jitter/quad

Change 5045 on 2001/08/06 by llefebvr@llefebvre_laptop_r400

 multiple jiitering patterns for the simulator

Change 5036 on 2001/08/03 by jhoule@MA_JHOULE

 Cleanup of centroid-related functions.

Change 5032 on 2001/08/03 by jhoule@MA_JHOULE

 New centroids support (jittered pattern).

 New anisotropies also.

 Bool flag for when anisotropy is 1x1 (r200 aniso can use trilinear).

Change 5031 on 2001/08/03 by jhoule@MA_JHOULE

 RGBA in QuadData now is float (new scheme will support any type).

 New anistropies supported.

Change 5029 on 2001/08/03 by jhoule@MA_JHOULE

 New sampling patterns implemented.

Change 5028 on 2001/08/03 by jhoule@MA_JHOULE

 Aesthetic

Change 5027 on 2001/08/03 by llefebvr@llefebvre_laptop_r400

 new rasteriser simulator using a real jitter table

Change 5016 on 2001/08/03 by llefebvr@llefebvre_laptop_r400

 setup unit revised spec

Change 5015 on 2001/08/02 by rbagley@MA_RBAGLEY

 Clarfication of texture fetch instruction.

Change 4989 on 2001/08/01 by rbagley@MA_RBAGLEY

 Page 48 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 First version of texture instructions and some further emendations.

Change 4987 on 2001/08/01 by jhoule@MA_JHOULE

 Seems to have solved R200 anisotropy (check for trilinear artifacts).

 LOD shows in R400.

Change 4980 on 2001/08/01 by llefebvr@llefebvre_laptop_r400

 new spec for SC and RE. Changed a bit the interface to encompass the fact that RE is
now using the full precision normalized slopes from the SU because it takes the same number of
bits than doing a per tile compression for the barycentric coordinates and it also simplifies a lot
the SC.

Change 4960 on 2001/08/01 by askende@andi_docs

 new rev

Change 4955 on 2001/08/01 by jhoule@MA_JHOULE

 Changed R200 aniso (and it now supports trilinear when aniso == 1).

 Solved bug (fabs was too early, and lost when sign was different).

 Added setColor.

Change 4929 on 2001/07/31 by askende@andi_docs

 a new rev

Change 4922 on 2001/07/31 by lseiler@SEILER2

 Added support for floating point and group exponent ranges smaller than [0..1)
 Added an optional parameter to round, ceil, etc. that specicies how many low order bits
of destination precision to ignore in the conversion (defaults to zero)

Change 4897 on 2001/07/31 by bbloemer@ma-jasonh

 Non-confidential description of IML technology.

Change 4866 on 2001/07/30 by jhoule@MA_JHOULE

 Trilinear anisotropy (R400 style).

Change 4854 on 2001/07/30 by mdoggett@MA_MDOGGETT

 Updates to most sections.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1587 of 1898

 Page 49 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 4849 on 2001/07/30 by lseiler@SEILER2

 Added code to find real MIN and MAX for class number::

Change 4816 on 2001/07/27 by jhoule@MA_JHOULE

 Added changeLODFunc(delta)

 Cleaner switch with anisotropy and others.

Change 4811 on 2001/07/27 by jhoule@MA_JHOULE

 Added anisotropy support.

 'k' resets LOD technique (because aniso breaks it).

Change 4810 on 2001/07/27 by jhoule@MA_JHOULE

 Working R200 anisotropy implemented.

 Added various functions, code is not cleaned up.

Change 4779 on 2001/07/26 by rbagley@MA_RBAGLEY

 Corrections and additions to the export specification.

Change 4736 on 2001/07/26 by jacarey@fl_jacarey

 Moved Original CP and RBBM Specs from ../arch/doc to ../doc_lib/chip/<unit> areas.

Change 4722 on 2001/07/25 by rbagley@MA_RBAGLEY

 Emendations to the export specification.

Change 4694 on 2001/07/25 by llefebvr@llefebvre_laptop_r400

 new version of Pnm for better sampling the noise

Change 4668 on 2001/07/24 by jhoule@MA_JHOULE

 Added @mipmap support ('i').

 LOD technique selection uses increment count (easier add-ins).

Change 4666 on 2001/07/24 by lseiler@SEILER2

 added debug printouts for disallowed cases

Change 4659 on 2001/07/24 by jhoule@MA_JHOULE

 Page 50 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 strncpy doesn't access NULL string as source.

Change 4644 on 2001/07/23 by rbagley@MA_RBAGLEY

 First version of the export specification and additional corrections.

Change 4640 on 2001/07/23 by jhoule@MA_JHOULE

 Added getLODTheo to distinguish artifacts that are from LOD error in opposition to
multi-sampling ones.

Change 4639 on 2001/07/23 by jhoule@MA_JHOULE

 Better default directory support (I think this is how it works... anyways, it seems to work
OK).

Change 4629 on 2001/07/23 by lseiler@SEILER2

 Changed name from Test.h to test.h

Change 4628 on 2001/07/23 by lseiler@SEILER2

 Deleting to change name to lower case

Change 4627 on 2001/07/23 by lseiler@SEILER2

 About to change the name to lower case

Change 4619 on 2001/07/23 by lseiler@SEILER2

 Minor bug fix for comparing integer classes

Change 4598 on 2001/07/20 by jhoule@MA_JHOULE

 Can now decrement LOD technique (2-way).

Change 4597 on 2001/07/20 by jhoule@MA_JHOULE

 Many minor corrections: some aesthetic, some (hopefully) helpful to understand more
clearly, others are comments for Steve.

Change 4593 on 2001/07/20 by lseiler@SEILER2

 Fixed rounding/truncation etc., eliminated minor bugs and warning messages

Change 4586 on 2001/07/20 by jhoule@MA_JHOULE

 Page 51 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Minor changes: changed header for cleaner ones as well as Title Field (no more Top
Level Spec).

Change 4584 on 2001/07/20 by jhoule@MA_JHOULE

 Integrated LOD correction.

 Default path for scenes and textures.

 Quad and Dome creation (for Scn files).

 Added AA support (walker variables set for texture).

 Print(QuadData) now shows bits for aamask.

Change 4581 on 2001/07/20 by jhoule@MA_JHOULE

 LOD correction mostly solved (requires simple H & V factors to account for width &
height of pixel with samples).

 Added LOD functions (w or w/o correction) as well as correction functions.

Change 4542 on 2001/07/19 by lseiler@SEILER2

 Supports group exponent numbers

Change 4537 on 2001/07/19 by mdoggett@MA_MDOGGETT

 Fixed header to not have different odd and even headers.

Change 4517 on 2001/07/18 by jhoule@MA_JHOULE

 Temp check-in (for old LOD correction)

Change 4431 on 2001/07/17 by lseiler@ma_lseiler

 (shouldn't have been checked in)

Change 4425 on 2001/07/17 by lseiler@ma_lseiler

 automatically generated files that don't need to be checked in

Change 4424 on 2001/07/17 by lseiler@ma_lseiler

 DirectX shared files

Change 4423 on 2001/07/17 by lseiler@ma_lseiler

 Animation test for multisampling (from R300 team)

 Page 52 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 4420 on 2001/07/17 by jhoule@MA_JHOULE

 Added makeQuad for AA testing.

Change 4400 on 2001/07/16 by jhoule@MA_JHOULE

 Anti-aliasing support added.

Change 4399 on 2001/07/16 by jhoule@MA_JHOULE

 Added clamped and convert functions.

Change 4398 on 2001/07/16 by jhoule@MA_JHOULE

 Calls renderAA and endRender at appropriate places.

 Removed old makeMovie trace code.

Change 4397 on 2001/07/16 by jhoule@MA_JHOULE

 Anti-aliasing support added.

Change 4384 on 2001/07/16 by jhoule@MA_JHOULE

 Starting AA buffer (recoded the render to iterate from 0 to 3)

Change 4366 on 2001/07/16 by jhoule@MA_JHOULE

 Depth and color types can be changed.

Change 4322 on 2001/07/13 by jhoule@MA_JHOULE

 Wrongly associated w&h with t&s in getLODRx00 (didn't show because of square
textures).

 (some traces must be removed)

Change 4310 on 2001/07/13 by jhoule@MA_JHOULE

 Last mipmap level is now gray instead of white.

Change 4258 on 2001/07/12 by jhoule@MA_JHOULE

 Mipmap dumping with 'd' key.

 Added area LOD computation.

Change 4230 on 2001/07/11 by rbagley@MA_RBAGLEY

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1588 of 1898

 Page 53 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 A skein of corrections and minor changes have been made. The
 version of the document remains 1.0.

Change 4205 on 2001/07/11 by lseiler@ma_lseiler

 More v0.2 files

Change 4203 on 2001/07/11 by lseiler@ma_lseiler

 These files are outmoded

Change 4201 on 2001/07/11 by lseiler@ma_lseiler

 These files are outmoded

Change 4200 on 2001/07/11 by lseiler@ma_lseiler

 Render Backend: version 0.2 with greatly revised Paramater Buffer and Tile Logic
sections

Change 4179 on 2001/07/11 by jhoule@MA_JHOULE

 Consistent default filter values between OpenGL and SW renderer.

Change 4178 on 2001/07/11 by jhoule@MA_JHOULE

 Color mipmap now has white as end colors.

Change 4173 on 2001/07/10 by rbagley@MA_RBAGLEY

 Add first version of a syntax specification for the R400 shader
 programming language.

Change 4033 on 2001/07/06 by askende@andi_docs

 update of the specs

Change 4020 on 2001/07/06 by jhoule@MA_JHOULE

 RELEASE_04_June/20/01

 1. VB reconstruction optimized. Indx_Buffer packet implemented but currently not
working properly.
 2. Pm4stats finalized and now working properly on pixel counting
 3. Dword-aligned indx_buffer packet support
 4. Modified code to avoid WatCom compiling warnings. (Though some lines look
stupid).

 Page 54 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 4019 on 2001/07/06 by jhoule@MA_JHOULE

 New version coming.

Change 4015 on 2001/07/06 by jhoule@MA_JHOULE

 Changed RS_TRACE to LS_TRACE

Change 4010 on 2001/07/06 by smorein@smorein_r400

 major texture pipe spec update- complete except for addresing logic.
 Could use some more editing, and probably more block diagrams.

Change 4006 on 2001/07/05 by jhoule@MA_JHOULE

 Fast OpenGL refresh with @ sign.

Change 4001 on 2001/07/05 by llefebvr@llefebvre_laptop_r400

 lockin is on

Change 4000 on 2001/07/05 by llefebvr@llefebvre_laptop_r400

 sequencer checkin

Change 3999 on 2001/07/05 by pmitchel@pmitchel_iris

 change file type to lock

Change 3996 on 2001/07/05 by pmitchel@pmitchel_iris

 change filetype to prevent simultaneous open for edit

Change 3995 on 2001/07/05 by pmitchel@pmitchel_iris

 change file type to prevent simultaneous open for edit

Change 3994 on 2001/07/05 by llefebvr@llefebvre_laptop_r400

 updated scan converter spec

Change 3993 on 2001/07/05 by jhoule@MA_JHOULE

 Support for negative or 0 loops.

Change 3991 on 2001/07/05 by lseiler@ma_lseiler

 Tiling: deletes and recreates the RasterMain class between files -- hopefully this will
keep the virtual memory required from increasing over multi-file runs

 Page 55 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 3990 on 2001/07/05 by jhoule@MA_JHOULE

 Better screenshot support (more intelligent prompting)

Change 3987 on 2001/07/05 by pmitchel@pmitchel_iris

 changed filetype to strict locking

Change 3982 on 2001/07/05 by jhoule@MA_JHOULE

 Pretty versatile animation support (all camera).

 Added loop support, as well as screen refresh (for previews).

Change 3976 on 2001/07/05 by lseiler@ma_lseiler

 Tiling Code: defining MEM_OUT outputs memory access files

Change 3908 on 2001/07/03 by lseiler@ma_lseiler

 FrameBuf v0.3: some extra compressed and 3d formats, minor changes

Change 3905 on 2001/07/03 by jhoule@MA_JHOULE

 Slightly better sampling (thanks to MD)

Change 3901 on 2001/07/03 by jhoule@MA_JHOULE

 More robust parsing.

 Can now save a snapshot of ColorBuffer.

Change 3897 on 2001/07/03 by jhoule@MA_JHOULE

 Cleaner code (using macro)

Change 3896 on 2001/07/03 by jhoule@MA_JHOULE

 Added and integrated superFilter, which makes multiple samples for every pixel.

Change 3888 on 2001/07/03 by jhoule@MA_JHOULE

 Removed old commented trilinear code (now works with muliPass2)

Change 3885 on 2001/07/03 by jhoule@MA_JHOULE

 loadScene supports recursive loads (with loadScene "filename")

 Page 56 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 3884 on 2001/07/02 by jhoule@MA_JHOULE

 Added loadTexture in scene file.

Change 3882 on 2001/07/02 by jhoule@MA_JHOULE

 Removed forcePerspective.

 Added loadScene with interface hooks.

Change 3879 on 2001/07/02 by jhoule@MA_JHOULE

 Aesthetic

Change 3878 on 2001/07/02 by jhoule@MA_JHOULE

 Added toGL and createColorMimap (each level is a different color).

Change 3877 on 2001/07/02 by jhoule@MA_JHOULE

 Trilinear fully functional.

Change 3871 on 2001/07/02 by mdoggett@MA_MDOGGETT

 Minor updates to Memory Hub spec

Change 3870 on 2001/07/02 by jhoule@MA_JHOULE

 Working filter (min/mag with nearest/{bi}linear and mipmaps!)

Change 3867 on 2001/07/02 by jhoule@MA_JHOULE

 Initial check-in.

Change 3866 on 2001/07/02 by jhoule@MA_JHOULE

 Removed old filter code.

Change 3842 on 2001/06/29 by jhoule@MA_JHOULE

 GlutMouseEvent added (with other stuff)

Change 3841 on 2001/06/29 by jhoule@MA_JHOULE

 Camera is integrated (with a cool bounding box for OpenGL depths)

Change 3838 on 2001/06/29 by jhoule@MA_JHOULE

 Towards camera integration.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1589 of 1898

 Page 57 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 3834 on 2001/06/29 by jhoule@MA_JHOULE

 Added numLevels and getLevel(int)

Change 3833 on 2001/06/29 by jhoule@MA_JHOULE

 Removed trace

Change 3832 on 2001/06/29 by jhoule@MA_JHOULE

 Added bilinearFetch.

 Distinction between TexColor (copy, read-write) and TexColorP (pointer, read-only)

Change 3830 on 2001/06/29 by jhoule@MA_JHOULE

 These files don't need RTTI.

Change 3812 on 2001/06/28 by jhoule@MA_JHOULE

 Mipmap files added.

Change 3811 on 2001/06/28 by jhoule@MA_JHOULE

 Mipmap integration.

 Added fetcher (for a per pixel basis). Added TexColor to clean up interface to GLMap<>.

Change 3810 on 2001/06/28 by jhoule@MA_JHOULE

 Mipmap integration.

 LOD limiting in interface.

Change 3767 on 2001/06/27 by wlawless@wlawless_ws

 Updated the stencil area

Change 3764 on 2001/06/27 by bbloemer@ma-jasonh

 kj

Change 3755 on 2001/06/27 by jhoule@MA_JHOULE

 Missed a 1 for non-square sizes.

Change 3754 on 2001/06/27 by jhoule@MA_JHOULE

 Page 58 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Added copyTo and numChannels

Change 3753 on 2001/06/27 by jhoule@MA_JHOULE

 Initial CI.

 Creation from GLMap done.

 Only accepts power of 2 textures.

 Non-square downSampling not tested (but should work).

Change 3749 on 2001/06/26 by bbloemer@ma-jasonh

 Timing diagram.

Change 3709 on 2001/06/26 by jhoule@MA_JHOULE

 Added mirrorOnce support.

Change 3705 on 2001/06/26 by jhoule@MA_JHOULE

 Precision-removing code for interpolator weights done by hand.

Change 3697 on 2001/06/25 by beiwang@MA_BEIWANG

 test

Change 3691 on 2001/06/25 by wlawless@wlawless_ws

 Added a total block

Change 3681 on 2001/06/25 by lseiler@ma_lseiler

 Superceded by R400_FrameBuf.vsd

Change 3680 on 2001/06/25 by lseiler@ma_lseiler

 Frame Buffer Format, v0.2: complete rewrite

Change 3665 on 2001/06/22 by jhoule@MA_JHOULE

 Added numeric library.

Change 3664 on 2001/06/22 by jhoule@MA_JHOULE

 Added translateScene and makeMovie.

 Uses dumpTIFF instead of dumpRGB.

 Page 59 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 3663 on 2001/06/22 by jhoule@MA_JHOULE

 Week end check-in.

 Precision integration with numerical library.

Change 3658 on 2001/06/22 by bbloemer@ma-jasonh

 For biweekly call.

Change 3656 on 2001/06/22 by jhoule@MA_JHOULE

 dumpRGB is now dumpTIFF (but use it only for RGB{A} GLMaps.

Change 3652 on 2001/06/22 by jhoule@MA_JHOULE

 Added title support.

Change 3632 on 2001/06/22 by wlawless@wlawless_ws

 Added color and depth compress to RB Size

Change 3614 on 2001/06/21 by jhoule@MA_JHOULE

 OpenGL matching of supported WRAP and FILTER

Change 3609 on 2001/06/21 by jhoule@MA_JHOULE

 Better printing when necessary.

Change 3608 on 2001/06/21 by jhoule@MA_JHOULE

 R200 rasterizer.
 Tile size should be 4x4, and even with that, texture coordinates seem to be wrong with
magnification cases.
 Project dropped (this is if we ever come back to it)

Change 3607 on 2001/06/21 by jhoule@MA_JHOULE

 Removed R200 rasterizer.

Change 3606 on 2001/06/21 by jhoule@MA_JHOULE

 Added makeDefaultTexture.

 Support for R200 rasterizer (to be removed).

Change 3590 on 2001/06/21 by jhoule@MA_JHOULE

 Page 60 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 RELEASE_03_June/20/01

 1. VB reconstruction for Rage200 implemented except indx_buff packet
 2. pm4stats finished
 3. Fixed bugs in culling function and 3d_draw_indx packet
 4. Added register initialization function
 5, Added more defensive code warning the unimplemented packets
 6. Added version info in client programs. Parser class release date and version showes in
usage info.

Change 3589 on 2001/06/21 by jhoule@MA_JHOULE

 New version (3) coming in...

Change 3588 on 2001/06/21 by smorein@smorein_r400

 Major update. There are still a bunch of inconsistancies (and misspellings) but enough
there for people closely associated with the block to need to go through it.

Change 3585 on 2001/06/20 by askende@andi_docs

 new rev

Change 3582 on 2001/06/20 by jhoule@MA_JHOULE

 FileDialog integration.

 Added loadTexture and takeSnapshot.

 Different makeScene (more versatile once more).

 Uses 'm,./' for wrapping policy.

Change 3581 on 2001/06/20 by jhoule@MA_JHOULE

 Added mirror. Solved bug in repeat (had to floor, not just truncate).

 Many traces (commented) need to be cleaned up a bit.

Change 3575 on 2001/06/20 by wlawless@wlawless_ws

 Added a new RB page with more detail

Change 3574 on 2001/06/20 by askende@andi_docs

 new rev

Change 3569 on 2001/06/20 by wlawless@wlawless_ws

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1590 of 1898

 Page 61 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 r400 area

Change 3565 on 2001/06/19 by askende@andi_docs

 new rev

Change 3564 on 2001/06/19 by bbloemer@ma-jasonh

 500 MHz. presentation

Change 3563 on 2001/06/19 by jhoule@MA_JHOULE

 Clamping functions now in class (with pointer-to-method for easy selection at runtime)

Change 3562 on 2001/06/19 by jhoule@MA_JHOULE

 Initial check-in.

Change 3561 on 2001/06/19 by jhoule@MA_JHOULE

 Little more robust loading.

Change 3560 on 2001/06/19 by askende@andi_docs

 new rev

Change 3558 on 2001/06/19 by askende@andi_docs

 another rev

Change 3557 on 2001/06/19 by jhoule@MA_JHOULE

 Very minor modifs (was a project file problem)

Change 3556 on 2001/06/19 by jhoule@MA_JHOULE

 Remade from scratch

Change 3555 on 2001/06/19 by jhoule@MA_JHOULE

 Remade the file from scratch

Change 3553 on 2001/06/19 by askende@andi_docs

 another rev (rev.03) of the shader spec

Change 3550 on 2001/06/19 by jhoule@MA_JHOULE

 Page 62 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 mFrameBuffer is now mColorBuffer (dependencies were screwed)

Change 3549 on 2001/06/19 by jhoule@MA_JHOULE

 Added refreshBuffer().

 Interface can now change filtering in R400 rasterization also.

 More versatile scene creation.

Change 3547 on 2001/06/18 by jhoule@MA_JHOULE

 Working bilinear with wrapping.

Change 3546 on 2001/06/18 by jhoule@MA_JHOULE

 New wrapping, all done in integer (strictly positive).

 Bilinear filter roughly coded.

Change 3537 on 2001/06/18 by jhoule@MA_JHOULE

 Removed unnecessary wrap.

Change 3536 on 2001/06/18 by jhoule@MA_JHOULE

 Added beginText/endText so that we can more easily distinguish OpenGL/R400.

 Changed the scene a bit.

Change 3535 on 2001/06/18 by jhoule@MA_JHOULE

 Changed default color.

Change 3523 on 2001/06/15 by jhoule@MA_JHOULE

 Added TexUnit, and integrated filtering.

 Copied texture params & such from other project.

 Cool ascii texture (commented).

Change 3522 on 2001/06/15 by jhoule@MA_JHOULE

 Added wrap and clamp (needs cleaner interface).

Change 3521 on 2001/06/15 by jhoule@MA_JHOULE

 Page 63 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 ImageLoader and TexUnit added.

 ZBuffer removed.

Change 3520 on 2001/06/15 by jhoule@MA_JHOULE

 Other defaut buffer color.

Change 3508 on 2001/06/15 by jhoule@MA_JHOULE

 Initial check-in.

 Nearest filter works.

 Can change filter at will.

 Still quite some work to do.

Change 3500 on 2001/06/14 by jhoule@MA_JHOULE

 Added renderBuffer which updates gBuffer as needed (removes need for reshape, and is
more efficient).

 Added special to activate/deactivate texturing, etc. under OpenGL.

 Uses ImageLoader instead of TexLoader (better name).

Change 3499 on 2001/06/14 by jhoule@MA_JHOULE

 Added texImage to call glTexImage2D with correct parameters.

Change 3498 on 2001/06/14 by jhoule@MA_JHOULE

 mFrameBuffer is now mColorBuffer.

 Default clearColor (black) added.

Change 3497 on 2001/06/14 by jhoule@MA_JHOULE

 Initial check-in.

 Works pretty well for PPM (other not implemented yet).

Change 3494 on 2001/06/14 by jhoule@MA_JHOULE

 Removed unnecessary output.

 Uses vertex arrays for rendering.

 Page 64 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 New scene.

 Added reshape (which otherwise screwed driver big time).

 Partly integrated texture loading.

Change 3488 on 2001/06/14 by jhoule@MA_JHOULE

 changed color type from int to unsigned char

Change 3483 on 2001/06/14 by lseiler@SEILER2

 Added support for mad, lrp, and floor/ceil/trunc/round (the latter only for software mode
fixed point and rf, as yet)

Change 3481 on 2001/06/13 by jhoule@MA_JHOULE

 Added makeScene, renderScene, renderSceneGL.

 Can now compare between GL and R400Raster on screen (simple scheme, no arbitrary
camera yet).

Change 3480 on 2001/06/13 by jhoule@MA_JHOULE

 Added width() and height() retrievers.

Change 3476 on 2001/06/13 by smorein@smorein_r400

 Texture pipe update

Change 3471 on 2001/06/13 by jhoule@MA_JHOULE

 Removed ZBuffer completely: now uses Buffer from frame and depth.

 Output of framebuffer in a GLUT window (warning: shrinking window screws display).

Change 3470 on 2001/06/13 by jhoule@MA_JHOULE

 Finished clearColorBuffer (with default alpha value)

Change 3458 on 2001/06/12 by jhoule@MA_JHOULE

 Safety check-in.

Change 3453 on 2001/06/12 by jhoule@MA_JHOULE

 Added WITH_PARSER #define for looser coupling.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1591 of 1898

 Page 65 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 3452 on 2001/06/12 by jhoule@MA_JHOULE

 Precision turned back to 8 bits instead of the full 23.

Change 3451 on 2001/06/12 by llefebvr@llefebvre_laptop_r400

 changed the delta precision of the interpolators to 8

Change 3450 on 2001/06/12 by lseiler@SEILER2

 Added left and right shift, eliminated gnu floating point comparison errors due to
compiler bugs.

Change 3434 on 2001/06/12 by lseiler@SEILER2

 Numeric library: Quick fix for Laurent

Change 3428 on 2001/06/11 by smorein@smorein_r400

 Adding a bunch of files

Change 3414 on 2001/06/11 by lseiler@SEILER2

 Numeric Library with shift instructions and OFFSET macro

Change 3402 on 2001/06/11 by lseiler@SEILER2

 Numeric Library: Changed operator return values from scaled to const scaled &, for
example, to convert copy constructor to a const reference. Gnu compiler was somehow
producing an invalid address in the copy constructor.

Change 3395 on 2001/06/11 by bbloemer@ma-jasonh

 Samsung sim results.

Change 3392 on 2001/06/11 by llefebvr@llefebvre_laptop_r400

 new interpolation scheme integrated with the parser files

Change 3371 on 2001/06/08 by llefebvr@llefebvre_laptop_r400

 spec backup

Change 3370 on 2001/06/08 by pmitchel@pmitchel_r400_docs

 added for Alex G.

Change 3360 on 2001/06/08 by lseiler@ma_lseiler

 Page 66 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Numeric Library: Supports big fixed point numbers

Change 3330 on 2001/06/07 by llefebvr@llefebvre_laptop_r400

 safety backup

Change 3313 on 2001/06/06 by lseiler@ma_lseiler

 Superceded by R400_MemCtl.vsd

Change 3311 on 2001/06/06 by lseiler@ma_lseiler

 Memory Controller: version 0.4, added internal interfaces and improved the Ordering
Engine

Change 3285 on 2001/06/05 by jhoule@MA_JHOULE

 "Solved" mipmap generation (some weird bugs, I tell ya!).
 Better take a look with the GL guy... (when I know who did it)

Change 3271 on 2001/06/05 by lseiler@ma_lseiler

 Numeric Library: minor fix to avoid gnu problem

Change 3259 on 2001/06/05 by lseiler@ma_lseiler

 Numeric Library: This version eliminates floating point template parameters, since gnu's
g++ can't handle them. As a result, fixed point OFFSET is specified differently. This version also
eliminates a variety of gnu false warning messages.

Change 3250 on 2001/06/04 by bbloemer@ma-jasonh

 Pinout and schedule update.

Change 3244 on 2001/06/04 by jhoule@MA_JHOULE

 Added Utils (Debug.h, Globals.h, STLTricks.h)

Change 3242 on 2001/06/04 by jhoule@MA_JHOULE

 Cleaner interface for faster rendering.

 Added prevDT and changed default order.

Change 3234 on 2001/06/04 by jhoule@MA_JHOULE

 Somehow, previous modifications didn't see the light.

 New files are added, and old ones were removed.

 Page 67 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 3233 on 2001/06/04 by jhoule@MA_JHOULE

 Some files were included, but didn't exist anymore.
 Other files were missing (showed up in dependencies).

Change 3232 on 2001/06/04 by jhoule@MA_JHOULE

 Trying to solve an MSDEV-crashing issue (seems to work)

Change 3225 on 2001/06/04 by jhoule@MA_JHOULE

 MouseEvent now has correct default initializer
 Added displayTexture
 printMipmapInfos utility function + min/max LODs limiting
 renderExtendedTri now uses GL_LINE and offset (for neighboring faces)
 Removed flipping of TexY (since we use GENERATE_MIPMAP_SGIS)
 Cleaned some places (removed dead code and such).

Change 3222 on 2001/06/04 by jhoule@MA_JHOULE

 Not using PBuffer as texture anymore (removed the ATIX call)

Change 3193 on 2001/05/30 by lseiler@ma_lseiler

 Numeric package: fixed numerous gnu warnings and errors, added MIN and MAX
parameters to the internal classes as an optimization

Change 3141 on 2001/05/29 by smorein@smorein_r400

 added memory hub spec. I am not happy with it, and this block wins the prize for most
likely to be conpleatly redesigned.

Change 3138 on 2001/05/29 by askende@andi_docs

 more updates to the spec

Change 3137 on 2001/05/29 by lseiler@ma_lseiler

 Numeric Library: new template parameter definitions

Change 3105 on 2001/05/25 by llefebvr@llefebvre_laptop_r400

 backup sequencer

Change 3104 on 2001/05/25 by llefebvr@llefebvre_laptop_r400

 new spin on RE, SC, Bary

 Page 68 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 3101 on 2001/05/25 by lseiler@ma_lseiler

 Tiling: latest version checks for empty primitives

Change 3098 on 2001/05/24 by jhoule@MA_JHOULE

 Major reorganisation of functions.

 Quite a bit a cleanup also.

 Still got some problems with edges (sometimes), and automipmap doesn't seem to
allocate all the levels.

Change 3091 on 2001/05/24 by lseiler@ma_lseiler

 Updated RB and MC block diagrams

Change 3088 on 2001/05/24 by lseiler@ma_lseiler

 Numeric Library

Change 3075 on 2001/05/23 by jhoule@MA_JHOULE

 Added setGL function to set light parameters

Change 3073 on 2001/05/23 by jhoule@MA_JHOULE

 A more recent version of the file (contains GL_SGIS_generate_mipmap)

Change 3071 on 2001/05/23 by smorein@smorein_r400

 added base and improved area estimate

Change 3066 on 2001/05/23 by jhoule@MA_JHOULE

 TexCoord4d instead of TexCoord2d (this class isn't used anymore)

Change 3065 on 2001/05/23 by jhoule@MA_JHOULE

 TexCoord4d instead of 2d (no need for 2d in this app)

Change 3055 on 2001/05/23 by jhoule@MA_JHOULE

 Quad + tri on top + quad on top

Change 3050 on 2001/05/22 by jhoule@MA_JHOULE

 Lightmap issues

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1592 of 1898

 Page 69 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 3033 on 2001/05/22 by lseiler@ma_lseiler

 Numeric Library: fixed default constructor problem

Change 3032 on 2001/05/22 by bbloemer@ma-jasonh

 Revision from Samsung

Change 3031 on 2001/05/22 by jhoule@MA_JHOULE

 Working shadow buffer (with artefacts).

 Some functions don't have a prototype yet (need to refactor)

Change 3026 on 2001/05/22 by jhoule@MA_JHOULE

 PBuffer, TexCoord, ATI's gl headers and LMTri added

Change 3025 on 2001/05/22 by jhoule@MA_JHOULE

 Added a great many things, notably a split interface, a PBuffer, bounding box mesh
rendering, and such.

Change 3024 on 2001/05/22 by jhoule@MA_JHOULE

 Working texture binding (but corruptions when window is minimized)

Change 3020 on 2001/05/21 by askende@andi_docs

 another revision of the shader spec

Change 3011 on 2001/05/21 by lseiler@ma_lseiler

 Number Library: major revision with software mode working
 New class names, lots of operations defined, test routine coded.

Change 3008 on 2001/05/21 by smorein@smorein_r400

 partial update to texture spec

Change 3007 on 2001/05/21 by jhoule@MA_JHOULE

 Added width/height in ctor

Change 3006 on 2001/05/21 by jhoule@MA_JHOULE

 Reverted to binding the texture.

Change 3002 on 2001/05/18 by llefebvr@llefebvre_laptop_r400

 Page 70 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 stats on vertex grouping (lenght of vectors between state changes)

Change 3000 on 2001/05/18 by jhoule@MA_JHOULE

 Initial CI

Change 2998 on 2001/05/18 by jhoule@MA_JHOULE

 Initial CI (taken from other project)

 Gives access to ATI-specific OGL functions/variables/defines.

Change 2994 on 2001/05/18 by jhoule@MA_JHOULE

 Use TorontoParser for now on... (now keeps attributes)

Change 2991 on 2001/05/18 by pmitchel@FL_ALEXG

 added for Alex G.

Change 2990 on 2001/05/18 by bbloemer@ma-jasonh

 Info from Samsung on DDR II working documents.

Change 2987 on 2001/05/18 by jhoule@MA_JHOULE

 New parser.
 Keeps (and clips) attributes.
 Working textures.

Change 2986 on 2001/05/18 by jhoule@MA_JHOULE

 Clean slate

Change 2985 on 2001/05/18 by jhoule@MA_JHOULE

 These weren't in, it seems.

Change 2984 on 2001/05/18 by jhoule@MA_JHOULE

 Deleting old parser (to be replaced by new)

Change 2973 on 2001/05/18 by jhoule@MA_JHOULE

 Integrated recent changes from Laurent (int turned to float, Interpolate, etc.)
 texLoad works (but leaks the texture)

Change 2972 on 2001/05/18 by jhoule@MA_JHOULE

 Page 71 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Datacol is now float

Change 2971 on 2001/05/18 by jhoule@MA_JHOULE

 New parser integration (no skip ApplyTransform, loads textures, outputs every frame)

Change 2961 on 2001/05/18 by jhoule@MA_JHOULE

 Parser modifications.
 Since a new parser keeps all the attributes, you are now advised to use this one...
 (will be checked-in soon)

Change 2960 on 2001/05/18 by bbloemer@ma-jasonh

 Update for 5/22/01 call.

Change 2959 on 2001/05/18 by jhoule@MA_JHOULE

 Modifications activated (new parser has arrived, so forget these)

Change 2950 on 2001/05/17 by smorein@smorein_r400

 updated spec, finally checked in

Change 2934 on 2001/05/17 by llefebvr@llefebvre_laptop_r400

 HZ new simulations data

Change 2930 on 2001/05/17 by lseiler@ma_lseiler

 Number Library: includes sized base types (int8, uint8) etc.

Change 2929 on 2001/05/17 by jhoule@MA_JHOULE

 Defautl alpha is 1

Change 2914 on 2001/05/16 by beiwang@MA_BEIWANG

 L2P (Level 2 Performance evaluation tool from Toronto, Daniel Wong)

Change 2913 on 2001/05/16 by llefebvr@llefebvre_laptop_r400

 there was an error in the simulation these stats are wrong. They will be replaced by
accurate data soon.

Change 2912 on 2001/05/16 by beiwang@MA_BEIWANG

 Cabo Sequencer detailed diagrams. Contains breakdown of R6 sequencer in first chapter.

 Page 72 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 2911 on 2001/05/16 by bbloemer@ma-jasonh

 MC waveforms from initial chaplin debug, by Dae Hyun Jun

Change 2901 on 2001/05/15 by lseiler@ma_lseiler

 Numeric Package: fixed a compilation bug for Laurent

Change 2900 on 2001/05/15 by bbloemer@ma-jasonh

 Infineon presentation.

Change 2898 on 2001/05/15 by jhoule@MA_JHOULE

 Added printing functions.

Change 2897 on 2001/05/15 by jhoule@MA_JHOULE

 Added lmfaces.

Change 2873 on 2001/05/15 by jhoule@MA_JHOULE

 Initial check-in

Change 2872 on 2001/05/15 by jhoule@MA_JHOULE

 Initial check-in

Change 2869 on 2001/05/15 by lseiler@ma_lseiler

 R400 numeric library: class names changed and now supports floor() etc. for fixed point
to floating point

Change 2867 on 2001/05/15 by jhoule@MA_JHOULE

 Added IdxTri to project.

Change 2865 on 2001/05/15 by jhoule@MA_JHOULE

 Changed number of probes from 2 to 4.

Change 2861 on 2001/05/15 by jhoule@MA_JHOULE

 Integrated IdxTri in the structure.
 Namespace issues solved more elegantly.

Change 2860 on 2001/05/15 by jhoule@MA_JHOULE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1593 of 1898

 Page 73 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Integration changes.
 Default constructor added (for no parameter).
 Changed 3 params ctor to account for new.
 Added toGL method.

Change 2857 on 2001/05/15 by llefebvr@llefebvre_laptop_r400

 coarse coverage mask dumps added

Change 2856 on 2001/05/15 by jhoule@MA_JHOULE

 Old typo

Change 2851 on 2001/05/14 by smorein@smorein_r400

 added initial texture decompression spec

Change 2830 on 2001/05/14 by jhoule@MA_JHOULE

 Ready to renderLightMap correctly.

Change 2829 on 2001/05/14 by jhoule@MA_JHOULE

 Added setFrontAndBack.

 Added render with skipping of face.

Change 2828 on 2001/05/14 by jhoule@MA_JHOULE

 Solved gShowWire{F|f}rame discrepency.

 Added setFrontAndBack.

 Added render with skipping of face.

Change 2825 on 2001/05/14 by llefebvr@llefebvre_laptop_r400

 backup of RE spec (not finished yet)

Change 2823 on 2001/05/14 by jhoule@MA_JHOULE

 Added computeBoundingBox.

Change 2822 on 2001/05/14 by jhoule@MA_JHOULE

 Added computeBoundingBox.

 Removed traces.

 Page 74 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 2819 on 2001/05/14 by jhoule@MA_JHOULE

 Solved namespace issues.

Change 2818 on 2001/05/14 by jhoule@MA_JHOULE

 Changed format for GLformat.

 Added some specializations.

Change 2817 on 2001/05/14 by jhoule@MA_JHOULE

 A little cleaner GLformat instread of format.

 Now has accessor for data (called mData).

Change 2816 on 2001/05/14 by jhoule@MA_JHOULE

 Solved namespace issues.

Change 2815 on 2001/05/14 by jhoule@MA_JHOULE

 Solved namespace issues.

Change 2814 on 2001/05/14 by jhoule@MA_JHOULE

 Added bounding box management in gBB (getFrontAndBack + setCamera + loadModel).

 Modified renderLightMap.

Change 2813 on 2001/05/14 by jhoule@MA_JHOULE

 Solved namespace issues.

 Added bounding box management (getFrontAndBack + setCamera).

 Added renderLightMap.

Change 2812 on 2001/05/14 by jhoule@MA_JHOULE

 Added BoundingBox to project.

Change 2796 on 2001/05/11 by bbloemer@ma-jasonh

 Elpida low cost memory specs and Boris' message on needed R6X MC changes to
support.

Change 2790 on 2001/05/11 by bbloemer@ma-jasonh

 Page 75 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Latest Samsung roadmap.

Change 2784 on 2001/05/11 by jhoule@MA_JHOULE

 Added projectOn

Change 2781 on 2001/05/11 by jhoule@MA_JHOULE

 Solved namespace issues.

 Added ostream to print as argument.

Change 2780 on 2001/05/11 by jhoule@MA_JHOULE

 Solved namespace issues.

 Changed print method to enable ostream specification.

Change 2779 on 2001/05/11 by jhoule@MA_JHOULE

 Solved namespace issues

Change 2778 on 2001/05/11 by jhoule@MA_JHOULE

 Solved namespace issues

Change 2777 on 2001/05/11 by jhoule@MA_JHOULE

 Solved namespace issues

Change 2776 on 2001/05/11 by jhoule@MA_JHOULE

 Solved namespace issues

Change 2775 on 2001/05/11 by jhoule@MA_JHOULE

 Solved namespace issues

Change 2774 on 2001/05/11 by jhoule@MA_JHOULE

 Solved namespace issues

Change 2773 on 2001/05/11 by jhoule@MA_JHOULE

 Not using namespace Ad anymore (moved in instead)

Change 2772 on 2001/05/10 by smorein@smorein_r400

 added file

 Page 76 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 2761 on 2001/05/10 by jhoule@MA_JHOULE

 Added DirLight and GLMap

Change 2760 on 2001/05/10 by jhoule@MA_JHOULE

 Added NewCam and Ref

Change 2759 on 2001/05/10 by jhoule@MA_JHOULE

 Aesthetic

Change 2758 on 2001/05/10 by jhoule@MA_JHOULE

 Namespace issues

Change 2757 on 2001/05/10 by jhoule@MA_JHOULE

 Namespace issues

Change 2756 on 2001/05/10 by jhoule@MA_JHOULE

 Added a few things (like drawFrustum)

 Towards a working shadow map.

Change 2755 on 2001/05/10 by jhoule@MA_JHOULE

 Initial CI

Change 2735 on 2001/05/10 by jhoule@MA_JHOULE

 New camera using Ref and Quat.

 Unfinished.

Change 2731 on 2001/05/10 by jhoule@MA_JHOULE

 Added lookAt

Change 2730 on 2001/05/10 by jhoule@MA_JHOULE

 Working lookAt (quite robust, actually).

 W2R and R2W were a little screwed up.

Change 2729 on 2001/05/10 by jhoule@MA_JHOULE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1594 of 1898

 Page 77 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Some cleanup. Quat(Vec, Vec, Vec) should be removed.

Change 2728 on 2001/05/10 by jhoule@MA_JHOULE

 Some cleanup. Quat(Vec, Vec, Vec) should be removed.

Change 2726 on 2001/05/10 by lseiler@ma_lseiler

 R400 Numeric Library, initial version
 This code compiles, but doesn't yet do anything very useful

Change 2725 on 2001/05/10 by lseiler@ma_lseiler

 R400 Numeric Library, initial version
 This code compiles, but doesn't yet do anything very useful

Change 2724 on 2001/05/10 by lseiler@ma_lseiler

 Deleted memory controller files have been moved to doc/gfx/mc

Change 2723 on 2001/05/10 by lseiler@ma_lseiler

 Deleted memory controller files have been moved to doc/gfx/mc

Change 2720 on 2001/05/10 by lseiler@ma_lseiler

 Memory Controller rev 0.3: lots more details, including the external interface

Change 2713 on 2001/05/09 by askende@andi_docs

 more updates

Change 2712 on 2001/05/09 by askende@andi_docs

 more updates

Change 2711 on 2001/05/09 by askende@andi_docs

 modifications to instruction format for the shaders

Change 2700 on 2001/05/09 by askende@andi_docs

 Shader specifications

Change 2697 on 2001/05/09 by jhoule@MA_JHOULE

 Changed oper*(Vec) comparison for > 1e-5

 (not sure if it's valid, though)

 Page 78 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 2695 on 2001/05/09 by jhoule@MA_JHOULE

 Quat->Mat{34}d had wrong signs in many places.

 Solved using RTRendering

Change 2676 on 2001/05/09 by jhoule@MA_JHOULE

 Working orbit.

Change 2667 on 2001/05/08 by jhoule@MA_JHOULE

 Added orbit.

 Now a child of Ref.

Change 2666 on 2001/05/08 by jhoule@MA_JHOULE

 Added orbit

Change 2663 on 2001/05/08 by jhoule@MA_JHOULE

 Initial CI.

 Rotate shouldn't be used.

 Otherwise, it seems rather robust.

Change 2662 on 2001/05/08 by jhoule@MA_JHOULE

 Added constuctor for quat between two vectors (both Vec3d and Vec4d).

 Weird >= instead of < gave a few warnings.

Change 2661 on 2001/05/08 by jhoule@MA_JHOULE

 Added constructor for quat between two vectors (both Vec3d and Vec4d).

Change 2660 on 2001/05/08 by jhoule@MA_JHOULE

 cross(Vec4d, Vec4d) wasn't in Ad namespace.

Change 2658 on 2001/05/08 by jhoule@MA_JHOULE

 Quaternion transform (i.e. oper*(Quat)) added.

Change 2649 on 2001/05/08 by llefebvr@llefebvre_laptop_r400

 Page 79 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 New version of the scan converter, ready for review

Change 2637 on 2001/05/07 by markf@r400_markf

 Initial Revision

Change 2636 on 2001/05/07 by markf@r400_markf

 file creation

Change 2635 on 2001/05/07 by jhoule@MA_JHOULE

 Somewhat working dirLights

Change 2633 on 2001/05/07 by jhoule@MA_JHOULE

 Directional light class (child of Camera from AdLib)

Change 2632 on 2001/05/07 by jhoule@MA_JHOULE

 Small quad over a larger one

Change 2631 on 2001/05/07 by jhoule@MA_JHOULE

 Partially working dirLight funcs

Change 2630 on 2001/05/07 by jhoule@MA_JHOULE

 Partially working dirLight functionality

Change 2629 on 2001/05/07 by jhoule@MA_JHOULE

 Const-correctness of retrival methods

Change 2628 on 2001/05/07 by jhoule@MA_JHOULE

 Const-correctness of retrival methods

Change 2626 on 2001/05/07 by jhoule@MA_JHOULE

 Added DirLight (partially)

 Added various draw methods (for Ref/Vec/etc.)

Change 2625 on 2001/05/07 by jhoule@MA_JHOULE

 Added DirLight (partially)

 Added various draw methods (for Ref/Vec/etc.)

 Page 80 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 2622 on 2001/05/07 by jhoule@MA_JHOULE

 Added const& for structs (Vec3d and Pt3d)

 Removed load prototype

Change 2621 on 2001/05/07 by jhoule@MA_JHOULE

 Added const& for the structs (Vec3d and Pt3d)

 Removed load prototype.

Change 2619 on 2001/05/07 by jhoule@MA_JHOULE

 *ToGL now const

Change 2618 on 2001/05/07 by jhoule@MA_JHOULE

 *ToGL now const

Change 2617 on 2001/05/07 by jhoule@MA_JHOULE

 Added const toGL member functions

Change 2616 on 2001/05/07 by jhoule@MA_JHOULE

 Added renderScene()

Change 2615 on 2001/05/07 by jhoule@MA_JHOULE

 Added renderScene()

Change 2614 on 2001/05/07 by jhoule@MA_JHOULE

 Cleaning

Change 2613 on 2001/05/07 by jhoule@MA_JHOULE

 Cleaning

Change 2612 on 2001/05/07 by jhoule@MA_JHOULE

 Source files moved to Source directory.

 Added the Scene.m file also.

Change 2611 on 2001/05/07 by jhoule@MA_JHOULE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1595 of 1898

 Page 81 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Removed old variables (changes showInfos)

Change 2610 on 2001/05/07 by jhoule@MA_JHOULE

 Better output in case of error (LoadModel)

Change 2609 on 2001/05/07 by jhoule@MA_JHOULE

 Cleaned up LoadModel function.

Change 2608 on 2001/05/07 by jhoule@MA_JHOULE

 Removed old objects (from previous project).

Change 2607 on 2001/05/07 by jhoule@MA_JHOULE

 Removed old objects (from previous project).

Change 2606 on 2001/05/07 by jhoule@MA_JHOULE

 Quad on XZ plane, face +Y

Change 2605 on 2001/05/07 by jhoule@MA_JHOULE

 A HW-assisted implementation of shadow buffers using depth maps.

Change 2604 on 2001/05/07 by jhoule@MA_JHOULE

 My (dated) numerical library, with more evolved stuff that grew in.

Change 2597 on 2001/05/07 by bbloemer@ma-jasonh

 JEDEC document

Change 2587 on 2001/05/04 by smorein@smorein_r400

 very minor update

Change 2571 on 2001/05/04 by llefebvr@llefebvre_laptop_r400

 stats on 4x4 tiles HZ

Change 2570 on 2001/05/04 by llefebvr@llefebvre_laptop_r400

 Spin on some specs, not all complete be checked in for safety

Change 2569 on 2001/05/04 by llefebvr@llefebvre_laptop_r400

 new spin on setup

 Page 82 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 2544 on 2001/05/03 by smorein@smorein_r400

 Updated RBBM spec, needs more detail to be final
 Added CPneeds to driver CP spec completion

Change 2524 on 2001/05/03 by lseiler@ma_lseiler

 Traces: readme file for the standard set of traces and the subset of frames used within
each

Change 2508 on 2001/05/02 by llefebvr@llefebvre_laptop_r400

 about to change the walking algorithm and want to keep the old one...

Change 2482 on 2001/05/01 by bbloemer@ma-jasonh

 300 MHz. spec

Change 2464 on 2001/05/01 by bbloemer@ma-jasonh

 Samsung's 4/26/01 presentation materials.

Change 2364 on 2001/04/26 by jhoule@MA_JHOULE

 Removed unnecessary traces.

 Changed ParserRage128::TriangleData type to the correct
Parser::dcPixelGen3dPolygons.

 ->

Change 2359 on 2001/04/26 by llefebvr@llefebvre_laptop_r400

 updated top level spec to match RE and SC specs

Change 2358 on 2001/04/26 by lseiler@ma_lseiler

 Render Backend first spec version

Change 2357 on 2001/04/26 by jhoule@MA_JHOULE

 Changed super-sampling to multi-sampling.

Change 2356 on 2001/04/26 by jhoule@MA_JHOULE

 A simple ReadMe file to give some infos about how to use the library.

 Page 83 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 2353 on 2001/04/26 by jhoule@MA_JHOULE

 A small example use of the TorontoParser.

Change 2352 on 2001/04/26 by jhoule@MA_JHOULE

 Initial check-in.
 It is a crude R400 rasterizer.
 (I only put it up in a library... Laurent did all the actual coding)

Change 2347 on 2001/04/25 by lseiler@ma_lseiler

 Added text about the RB and MC plus descriptions of some RB features

Change 2340 on 2001/04/25 by beiwang@MA_BEIWANG

 DDR I Spec from JEDEC

Change 2325 on 2001/04/24 by jhoule@MA_JHOULE

 Added attributes conservation when no clipping occurs.

Change 2324 on 2001/04/24 by jhoule@MA_JHOULE

 Added CopySelectAttributes() inline method to VERTEX structure (used in
Transform::Apply)

Change 2314 on 2001/04/23 by smorein@smorein_r400

 Updated area to new area estimate, post texture path changes
 checked in top level spec for larry to add to it

Change 2307 on 2001/04/23 by bbloemer@ma-jasonh

 Added R200 I/O impedance control documents.

Change 2300 on 2001/04/23 by llefebvr@llefebvre_laptop_r400

 New version of the rasterizer. Fixed a bug where the parameters where interpolated from
the wrong vertices.

Change 2246 on 2001/04/18 by llefebvr@llefebvre_laptop_r400

 new walker, rasterizer, zbuffer supporting textures and sample point movement. The
movement takes center if in or any other point inside the triangle. Works well for colors but not
for textures. Will experiment now with the real centroid instead.

Change 2241 on 2001/04/17 by bbloemer@ma-jasonh

 Page 84 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Boris updated tDQSS to match JEDEC definition.

Change 2240 on 2001/04/17 by lseiler@ma_lseiler

 Memory controller architectural specs and related documents

Change 2238 on 2001/04/17 by jhoule@MA_JHOULE

 Added a zeroing constructor (solves clipping bug)

Change 2237 on 2001/04/17 by jhoule@MA_JHOULE

 Does not skip ApplyTransform (OK except for Quake)

Change 2236 on 2001/04/17 by jhoule@MA_JHOULE

 Solved issues with non-square mipmaps.

 Some debugging code added (some asserts, as well as a getchar() in DEBUG when
fileNotFound)

Change 2228 on 2001/04/17 by lseiler@ma_lseiler

 version 0.2

Change 2179 on 2001/04/12 by beiwang@MA_BEIWANG

 MC programming guide and interface documents from Boris

Change 2153 on 2001/04/11 by llefebvr@llefebvre_laptop_r400

 fixed a bug in the z interpolation + new stats on R400 vs R300

Change 2137 on 2001/04/11 by bbloemer@ma-jasonh

 Some info on 500 MHz. DRAM

Change 2132 on 2001/04/10 by llefebvr@llefebvre_laptop_r400

 clean R400 rasterizer

Change 2113 on 2001/04/09 by jhoule@MA_JHOULE

 Solved a few files misnamings.

 Seems to be some legacy dependency left (rodney parser)

Change 2112 on 2001/04/09 by jhoule@MA_JHOULE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1596 of 1898

 Page 85 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Added a few files...

 Uses the new TorontoParser

Change 2111 on 2001/04/09 by jhoule@MA_JHOULE

 Added size() for output

Change 2110 on 2001/04/09 by jhoule@MA_JHOULE

 L2Probe hack integration (with XYAddr class)

Change 2109 on 2001/04/09 by jhoule@MA_JHOULE

 Added L2Probe hack with correct flushing.

Change 2108 on 2001/04/09 by jhoule@MA_JHOULE

 Moved output of gQuadPixelFlushLimit

 New parser integration (Polygon vs. Triangle)

 Minor memory leaks solved.

 No mipmapping when specified (l == 0)

 Rectangular texture w/h computation solved.

Change 2107 on 2001/04/09 by llefebvr@llefebvr_r400

 revised specs and walker

Change 2097 on 2001/04/06 by bbloemer@ma-jasonh

 Added April memory matrix.

Change 2082 on 2001/04/05 by jhoule@MA_JHOULE

 Toronto Parser, task #6452, 2001-04-04 (retrieved by Rodney Andre and copied here on
the 2001-04-05)

Change 2058 on 2001/04/04 by jhoule@MA_JHOULE

 Values weren't initialized (gave wrong clipping for notcl dumps)

Change 2057 on 2001/04/04 by jhoule@MA_JHOULE

 Non-activated modifs (currently testing wrong clipping)

 Page 86 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 1951 on 2001/03/30 by jhoule@MA_JHOULE

 Added L1_L2_INTERACTION definition for flushing issues (see flush())

Change 1950 on 2001/03/30 by jhoule@MA_JHOULE

 Added L1_L2_INTERACTION preprocessor definition for flushing issues.

 Changed UINT_MAX to 0xFFFFFFFF for flushed tag (but shouldn't matter after all)

Change 1948 on 2001/03/30 by jhoule@MA_JHOULE

 Added new mipmap LOD calculation (which correctly changes W and H of level).

 test_raster code is more versatile because of default texSize in global parameters

Change 1919 on 2001/03/29 by jhoule@MA_JHOULE

 Added things to solve wrong w/h in mipID != 0

Change 1882 on 2001/03/27 by jhoule@MA_JHOULE

 Sanity testing code in test_raster()

Change 1877 on 2001/03/26 by bbloemer@ma-jasonh

 DDR 2 Specification

Change 1836 on 2001/03/22 by bbloemer@ma-jasonh

 Moved files to under mc.

Change 1835 on 2001/03/22 by bbloemer@ma-jasonh

 Moved Samsung directory from under mc.R200 Memory to under mc.

Change 1834 on 2001/03/21 by bbloemer@ma-jasonh

 Hyundai 3/20 road map presentation.

Change 1826 on 2001/03/21 by jhoule@MA_JHOULE

 One too many endl

Change 1825 on 2001/03/21 by jhoule@MA_JHOULE

 Was a wrong FACache for L1

Change 1824 on 2001/03/21 by bbloemer@ma-jasonh

 Page 87 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Added Micron directory and presentation.

Change 1823 on 2001/03/21 by jhoule@MA_JHOULE

 MultiLevelCache added (but probaby won't be used)

 Unlimit mipmap reactivated

Change 1822 on 2001/03/21 by jhoule@MA_JHOULE

 Removed duplicate output

Change 1821 on 2001/03/21 by jhoule@MA_JHOULE

 Moved some printing stuff.

 Removed the MultiLevelCache, and hard-coded direclty (this why I changed the print
from FACache to reflect L1/L2 difference)

Change 1820 on 2001/03/21 by jhoule@MA_JHOULE

 Removed flushing for L2 caches (when there is an mParentCache)

Change 1818 on 2001/03/21 by jhoule@MA_JHOULE

 Initial check in

Change 1817 on 2001/03/21 by jhoule@MA_JHOULE

 Added "fa2" before "fa" (for parsing reasons)

Change 1815 on 2001/03/20 by jhoule@MA_JHOULE

 Added setParent so that we can send pointers, and change specify the parent later.

Change 1802 on 2001/03/20 by jhoule@MA_JHOULE

 Removed "tex" to insist it is a generic memory model.

 Added parent cache (pCache) in constructor (default is NULL)

Change 1801 on 2001/03/20 by jhoule@MA_JHOULE

 Better comments.

 Removed every "tex" I found (generic memory model, not just texture).

 Added parentCache in constructor.

 Page 88 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 1800 on 2001/03/20 by jhoule@MA_JHOULE

 Removed trace

 Note: cerr << "B" << flush; is actually cerr << "B" << AbdCache::flush; Hence, it prints
B1 instead of B.

Change 1799 on 2001/03/20 by jhoule@MA_JHOULE

 readParent added

Change 1797 on 2001/03/20 by jhoule@MA_JHOULE

 Added parentCache support (with readParent, which doesn't need to be virtual)

Change 1796 on 2001/03/20 by jhoule@MA_JHOULE

 Aesthetic

Change 1779 on 2001/03/19 by jhoule@MA_JHOULE

 Argument faking added.

 Differences in test code.

Change 1757 on 2001/03/16 by bbloemer@ma-jasonh

 Moved to Infineon directory.

Change 1756 on 2001/03/16 by bbloemer@ma-jasonh

 Created Infineon directory; moved 128M spec to it. Added 2 schedules.

Change 1755 on 2001/03/16 by jhoule@MA_JHOULE

 Uses an if instead of a modulo...

 Will have to test with an unloaded system

Change 1752 on 2001/03/15 by jhoule@MA_JHOULE

 Semicolon missing

Change 1751 on 2001/03/15 by jhoule@MA_JHOULE

 Performance tweaking... (unsuccessful)

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1597 of 1898

 Page 89 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 The modulo seems dreadfully slow... Is it the P4? Or simply too many calls?

 Tried various inline/Int32/.size() keeping to no avail...

Change 1750 on 2001/03/15 by jhoule@MA_JHOULE

 popNpush doesn't return a value (initial thought was performance, but I'm wrong)

Change 1749 on 2001/03/15 by jhoule@MA_JHOULE

 Integrated CircularFIFO

Change 1748 on 2001/03/15 by jhoule@MA_JHOULE

 Integrated CircularFIFO

Change 1742 on 2001/03/15 by jhoule@MA_JHOULE

 Added DEFINEs so that we could easily remove statistics computation (but not output,
yet)

 After verification, it accounts for less than 5%.

Change 1741 on 2001/03/15 by smorein@smorein_r400

 adding first real version of top level spec.

Change 1739 on 2001/03/15 by jhoule@MA_JHOULE

 Removed unnecessary function template

Change 1738 on 2001/03/15 by jhoule@MA_JHOULE

 Fully-associative cache

 Adds a single argument (depth), which will yield direct-mapped caches when at 1.

Change 1737 on 2001/03/15 by jhoule@MA_JHOULE

 Solves const-correctness

Change 1736 on 2001/03/15 by jhoule@MA_JHOULE

 Solves const-correctness

Change 1735 on 2001/03/15 by jhoule@MA_JHOULE

 Major cleanup in initCache.

 Page 90 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Added readCacheConfigFile function to lighten the code.

Change 1734 on 2001/03/15 by jhoule@MA_JHOULE

 Added readCacheConfigFile (solves partly the const correctness, still some work to do)

 Includes FACache

Change 1733 on 2001/03/15 by jhoule@MA_JHOULE

 Cleaned things up.

 Constructor takes no parameter (must call setTag)

 Destructor wasn't necessary (uses the compiler's)

 match uses getTag (inline = incurs no cost penalty)

 Added climits header

Change 1732 on 2001/03/15 by bbloemer@ma-jasonh

 2M x 16b Hyundai data sheet. Couldn't find a x 32b.

Change 1727 on 2001/03/15 by jhoule@MA_JHOULE

 A simple CacheLine cache that simply contains the tag (for now)

 Simplifies reading and construction of other constructs.

Change 1726 on 2001/03/15 by jhoule@MA_JHOULE

 Explicit virtual constructor

Change 1716 on 2001/03/14 by llefebvr@llefebvr_r400

 specs for Raster block, SC, SU, HZ + stats for HZ precision

Change 1700 on 2001/03/13 by jhoule@MA_JHOULE

 Added UNLIMIT_MIPMAP #if/#endif

Change 1699 on 2001/03/13 by jhoule@MA_JHOULE

 Cleaner reading for default values of cache tag bits.

 Reactivated the UNLIMIT thingy

Change 1698 on 2001/03/13 by jhoule@MA_JHOULE

 Page 91 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Removed mipmap conflict workaround (changes less than 0.5%!!!)

 Could be turned back on simply...

Change 1696 on 2001/03/12 by beiwang@MA_BEIWANG

 Micron DesignLine: DDR SDRAM Functionality and Controller Read Data Capture

Change 1694 on 2001/03/12 by beiwang@MA_BEIWANG

 Winbond info

Change 1690 on 2001/03/12 by jhoule@MA_JHOULE

 Main loop reactivated (was testing caches)

Change 1689 on 2001/03/12 by jhoule@MA_JHOULE

 Flushes after n quads reactivated

Change 1688 on 2001/03/12 by jhoule@MA_JHOULE

 Added Mag/Min count

Change 1687 on 2001/03/12 by jhoule@MA_JHOULE

 Added findIndex with baseTexAddr

Change 1686 on 2001/03/12 by jhoule@MA_JHOULE

 Added findIndex with baseTexAddr as paramter choice

Change 1680 on 2001/03/09 by llefebvr@llefebvr_r400

 HZ precision simulations

Change 1663 on 2001/03/08 by beiwang@MA_BEIWANG

 Information related to memory controller, memory chips, roadmaps, past generation mc
specs, etc

Change 1658 on 2001/03/08 by lseiler@ma_lseiler

 Word files and pdf files describing the memory controller and the frame buffer formats.

Change 1657 on 2001/03/08 by lseiler@ma_lseiler

 Page 92 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Viso files with figures for my R400 documents. These files are divided up by the type of
figure, rather than by the document that uses them. The Word documents contain links to these
files.

Change 1656 on 2001/03/08 by lseiler@ma_lseiler

 Updated tiling test that checks for a wide range of cache sizes, swizzling the cache blocks
to improve the efficiency for a 2-block cache.

Change 1655 on 2001/03/08 by jhoule@MA_JHOULE

 Added another scheme (also does vertical quad spitting)

Change 1653 on 2001/03/07 by jhoule@MA_JHOULE

 Came back with old output scheme

Change 1652 on 2001/03/07 by jhoule@MA_JHOULE

 Added a new output scheme (untested, but straitforward)

Change 1651 on 2001/03/07 by jhoule@MA_JHOULE

 Use -fq instead of -fp

 Removes Steve's NO-MAG hack

Change 1641 on 2001/03/07 by pmitchel@pmitchel_r400_docs

 test

Change 1640 on 2001/03/07 by pmitchel@pmitchel_r400_docs

 test

Change 1639 on 2001/03/07 by pmitchel@pmitchel_r400_docs

 test

Change 1618 on 2001/03/05 by pmitchel@smcs9

 submit for Steve M.

Change 1605 on 2001/03/02 by jhoule@MA_JHOULE

 UINT_MAX used for default flushing limit.

 Wrongfully used / instead or \ for specials C characters

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1598 of 1898

 Page 93 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 1604 on 2001/03/02 by jhoule@MA_JHOULE

 InitCache has the char* unconst (because of exception ErrFileNotFound)

Change 1603 on 2001/03/02 by jhoule@MA_JHOULE

 CacheConfig integrated..

 Solved a bug that never happened: use multiCache to gCacheStat->add and NOT gCache
(method is overloaded)

Change 1594 on 2001/03/01 by jhoule@MA_JHOULE

 Added initCache()

Change 1593 on 2001/03/01 by jhoule@MA_JHOULE

 Added initCache().

 Corrected a few hard-coded caches.

Change 1590 on 2001/03/01 by jhoule@MA_JHOULE

 Output of flush limit (if there is one)

Change 1588 on 2001/03/01 by jhoule@MA_JHOULE

 Correction caches (use a temporary multiCache2 to be removed)

Change 1585 on 2001/03/01 by jhoule@MA_JHOULE

 Inverted two caches (4x4 2x4 and 4x4 4x2)

Change 1584 on 2001/03/01 by llefebvr@llefebvr_r400

 revised the end graph of the spec because of an error

Change 1578 on 2001/02/28 by jhoule@MA_JHOULE

 A lot of cache cleaning.

 Added comments on bit settings.

 Removed output in init().

Change 1577 on 2001/02/28 by jhoule@MA_JHOULE

 Output sent only if CACHE_VERBOSE high enough

 Page 94 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 1576 on 2001/02/28 by jhoule@MA_JHOULE

 Changed the cache sizes in define (removed 2048, addd back eventually?)

Change 1572 on 2001/02/28 by jhoule@MA_JHOULE

 Added offset textureFetch calls.

 Integrated FLUSH_AFTER_N_QUADS scheme to arbitrarily flush the cache after a
certain number of pixels.

 Better comments.

 Added getMipID based on Chaplin (outdated) docs.

 Calls getchar() automatically at end of program.

 The strncmp calls now include the \0 at the end (differentiate -f -fp)

Change 1571 on 2001/02/28 by jhoule@MA_JHOULE

 Added offset parameter to textureFetch.

 Added FLUSH_AFTER_N_QUADS to support arbitrary quad cache flushing.

Change 1568 on 2001/02/28 by smorein@smorein_r400

 new document, pre early draft

Change 1554 on 2001/02/27 by pmitchel@pmitchel_r400_docs

 cron test

Change 1553 on 2001/02/27 by pmitchel@pmitchel_r400_docs

 cron test

Change 1551 on 2001/02/27 by llefebvr@llefebvr_r400

 SC and RS specs

Change 1544 on 2001/02/27 by pmitchel@pmitchel_r400_docs

 last test of cron

Change 1543 on 2001/02/27 by pmitchel@pmitchel_r400_docs

 cron test...

 Page 95 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 1540 on 2001/02/27 by pmitchel@pmitchel_r400_docs

 test of cron job for syncing web site

Change 1536 on 2001/02/27 by jhoule@MA_JHOULE

 Added getMipID

Change 1535 on 2001/02/27 by jhoule@MA_JHOULE

 Cache sizes selection with DEFINE.

 Indentation of comments.

 Added 512 cache sizes to test.

Change 1534 on 2001/02/27 by jhoule@MA_JHOULE

 Cache sizes DEFINE to simplify selection

Change 1533 on 2001/02/27 by jhoule@MA_JHOULE

 Few corrections here and there (concerning quadBucket)

 Flushing the cache after every new texture.

Change 1532 on 2001/02/27 by jhoule@MA_JHOULE

 Cleaner output (total cache size is easier to see)

Change 1525 on 2001/02/26 by jhoule@MA_JHOULE

 Reads returns garbage (always 0).

Change 1524 on 2001/02/26 by jhoule@MA_JHOULE

 Removed traces.

 quadpixel has (commented out) code for skipping computation

Change 1522 on 2001/02/26 by jhoule@MA_JHOULE

 Removed and replaced by CacheSim.h (somewhat at least)

Change 1521 on 2001/02/26 by jhoule@MA_JHOULE

 Added MultiCache{Stat} and QuadRearranger

 Page 96 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 1520 on 2001/02/26 by jhoule@MA_JHOULE

 static_casts

 Commented unused arguments.

 Better info on namespace explicit instantiation bug of VC++

Change 1519 on 2001/02/26 by jhoule@MA_JHOULE

 Major function reorganization.

 Should help reading

Change 1518 on 2001/02/26 by jhoule@MA_JHOULE

 Replaces the weird CacheSimSetup.h (soon to be removed)

Change 1517 on 2001/02/26 by jhoule@MA_JHOULE

 Pragma put here (should solve many occurances)

Change 1513 on 2001/02/26 by jhoule@MA_JHOULE

 Integrated QuadRearranger...

 A bigger triangle in test_raster

Change 1512 on 2001/02/26 by jhoule@MA_JHOULE

 Condition in flushing method (wasn't checking if the quad was valid).

 Some output traces.

 Upper-left corner is now updated correctly (regardless of delta size)

Change 1511 on 2001/02/26 by jhoule@MA_JHOULE

 Added iostream

Change 1509 on 2001/02/26 by jhoule@MA_JHOULE

 Initial CI

Change 1490 on 2001/02/23 by llefebvr@llefebvr_r400

 deletion of obsolete stats

Change 1489 on 2001/02/23 by llefebvr@llefebvr_r400

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1599 of 1898

 Page 97 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 specs for the raster engine and scan converter

Change 1488 on 2001/02/23 by jhoule@MA_JHOULE

 New, better, faster tests!

Change 1484 on 2001/02/23 by jhoule@MA_JHOULE

 Removed fetch distribution for now

Change 1483 on 2001/02/23 by jhoule@MA_JHOULE

 Different test, no getchar() at end

Change 1482 on 2001/02/23 by jhoule@MA_JHOULE

 Size of cache in bits

Change 1476 on 2001/02/23 by jhoule@MA_JHOULE

 MultiCache{Stats} used.

 Added gFramesDone (useful when skipping)

 Cleaner printing scheme.

Change 1475 on 2001/02/23 by jhoule@MA_JHOULE

 Initial CI

Change 1474 on 2001/02/23 by jhoule@MA_JHOULE

 MultiCacheStat is friend (can now read mCaches)

Change 1473 on 2001/02/23 by jhoule@MA_JHOULE

 Added a few header files (and the pragma for Windows damn message!)

 Print now also prints the cache info.

 Removed legacy code (was commented)

Change 1468 on 2001/02/23 by jhoule@MA_JHOULE

 First insertion...

 Tested moderately

 Page 98 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 1466 on 2001/02/23 by jhoule@MA_JHOULE

 Added {unsigned} __int64 => {U}Int64

 _WIN32 also used

Change 1465 on 2001/02/23 by jhoule@MA_JHOULE

 baseAddr instead of texBaseAddr (could be anything, really)

Change 1464 on 2001/02/23 by jhoule@MA_JHOULE

 XY addressing size reduced to 12 bits (4098 max tex size)

 Now catches ErrFileNotFound exception

Change 1463 on 2001/02/23 by jhoule@MA_JHOULE

 TIO command-line support

Change 1462 on 2001/02/22 by smorein@smorein_r400

 Update area, release changes to raster engine

Change 1461 on 2001/02/22 by llefebvr@llefebvr_r400

 SC specs and stats for the raster efficiencies...

Change 1453 on 2001/02/22 by jhoule@MA_JHOULE

 Integrated -cl (cache line arrangement) and -co (cache line organization).

 Added blockStr2bits function (used for both).

 NOTE: this supposes X&Y addresses have 16 bits (65536 max tex size)

Change 1452 on 2001/02/22 by jhoule@MA_JHOULE

 Again, some overflow issues (because of the *100)

Change 1438 on 2001/02/21 by llefebvr@llefebvr_r400

 working scan converter with quad based pipes, and R300 simulation

Change 1437 on 2001/02/21 by jhoule@MA_JHOULE

 Solved UInt32 overflow by typecasting to double before multiplying by bandwidth().

 Should now be consistently giving the same as: avgPixelMiss*missBandwidth()

 Page 99 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 1436 on 2001/02/21 by jhoule@MA_JHOULE

 Commented the last getchar() (now that I have a decent shell to work on)

Change 1431 on 2001/02/21 by jhoule@MA_JHOULE

 Cleaner init/term placement.

 Integrated new DMCache constructor with print member function.

Change 1430 on 2001/02/21 by jhoule@MA_JHOULE

 Added a print function.

Change 1429 on 2001/02/21 by jhoule@MA_JHOULE

 Added new constructor (with all the bits), a str2TileDef (obsoleted by the constructor) as
well as a print function.

Change 1427 on 2001/02/21 by jhoule@MA_JHOULE

 Added str2TileDef (which shouldn't be used)

 Added also a new constructor (with all the bits set up).

 Finally added a print function.

Change 1425 on 2001/02/21 by llefebvr@llefebvr_r400

 New stats on GUP efficiency

Change 1422 on 2001/02/21 by lseiler@ma_lseiler

 Supports specifying separate x and y tile sizes

Change 1421 on 2001/02/21 by jhoule@MA_JHOULE

 Uses left-right and bottom-top for interpolation.

 Comments were erronous. Some added also.

Change 1420 on 2001/02/21 by jhoule@MA_JHOULE

 x and y initialisation moved after declarations

Change 1419 on 2001/02/21 by jhoule@MA_JHOULE

 texXb and texYb weren't initialized

 Page 100 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 1397 on 2001/02/20 by jhoule@MA_JHOULE

 Bandwidth info corrected (full precision + typo)

Change 1396 on 2001/02/20 by jhoule@MA_JHOULE

 Better comments.

 Legacy code removed.

Change 1391 on 2001/02/20 by jhoule@MA_JHOULE

 Added total bandwidth printing

Change 1390 on 2001/02/20 by jhoule@MA_JHOULE

 gFrameCount wasn't incremented in main loop.

 Memory deallocation of pkt wasn't done for frame pakets.

 Changed output for last frame.

Change 1387 on 2001/02/20 by jhoule@MA_JHOULE

 RTTI in Release

Change 1386 on 2001/02/20 by jhoule@MA_JHOULE

 RTTI in Release

Change 1385 on 2001/02/20 by jhoule@MA_JHOULE

 Auto Precomp Headers in Release

Change 1381 on 2001/02/16 by jhoule@MA_JHOULE

 Distributions passed through ostream instead of printf (uses temporary strings)

Change 1380 on 2001/02/16 by jhoule@MA_JHOULE

 Skipping frames trace enabled

Change 1375 on 2001/02/16 by jhoule@MA_JHOULE

 Accompanying documentation for the Toronto Parser.

Change 1374 on 2001/02/16 by jhoule@MA_JHOULE

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1600 of 1898

 Page 101 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Examples that came with the continuum directory.
 Moved here for clarity.

Change 1373 on 2001/02/16 by jhoule@MA_JHOULE

 Toronto Parser (Corrina Lee, Michael Liu et al.)
 Code from Continuum (Feb. 2 2001)
 Builds as a library (see ReadMe file)
 Adds VTX_Texture in VERTEX (but ApplyTransform scraps infos).

Change 1372 on 2001/02/16 by jhoule@MA_JHOULE

 Mark Fowler's rasterizer with QuadData structure put in by Larry Seiler.
 The project builds a library (see ReadMe.txt file)

Change 1371 on 2001/02/16 by jhoule@MA_JHOULE

 Initial check-in.
 This does some texture cache modeling.

Change 1335 on 2001/02/13 by llefebvr@llefebvr_r400

 per pixel validity testing

Change 871 on 2001/02/02 by smorein@smorein_r400

 Added a bunch of new documents, also updated area

Change 830 on 2001/01/31 by llefebvr@llefebvr_r400

 rasterizer with variable tile size and some pipe statistics gathering + stats on fifo deepness

Change 802 on 2001/01/30 by llefebvr@llefebvr_r400

 Spreadsheet and graphs on pipe efficiency

Change 801 on 2001/01/30 by llefebvr@llefebvr_r400

 working rasterizer. Not optimized only to be used to gather stats...

Change 761 on 2001/01/26 by llefebvr@llefebvr_r400

 Working full precision block scan converter

Change 683 on 2001/01/23 by smorein@smorein_r400

 added new document

Change 655 on 2001/01/19 by llefebvr@llefebvr_r400

 Page 102 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 updated excel render state sheet and stats

Change 654 on 2001/01/19 by llefebvr@llefebvr_r400

 state changes presentation + crayola template

Change 631 on 2001/01/16 by lseiler@ma_lseiler

 Updated to support direct-mapped caching and to fix bugs in counting the number of
flushed cache entries

Change 625 on 2001/01/15 by llefebvr@llefebvr_r400

 stats on the number of new render states per frame and total

Change 619 on 2001/01/12 by llefebvr@llefebvr_r400

 completed stats on efficiency, streaks, and caching. Added an excel sheet on caching in
doc/system.

Change 616 on 2001/01/11 by smorein@smorein_r400

 Updates area to include some of the comments from andy gruber in his email of january
2, 2001

Change 614 on 2001/01/10 by llefebvr@llefebvr_r400

 the list of possible instructions for the unified shader

Change 610 on 2001/01/08 by llefebvr@llefebvr_r400

 adding data for evolva and proCDRS

Change 609 on 2001/01/08 by llefebvr@llefebvr_r400

 updating statistics and adding vertex vs pixel worlkload

Change 592 on 2000/12/22 by lseiler@ma_lseiler

 New files needed for the updated PM4 parser

Change 591 on 2000/12/22 by lseiler@ma_lseiler

 Version used for data at 12/22/2000 meeting;
 uses new parser and works with quake & ProCDRS.

Change 587 on 2000/12/19 by lseiler@ma_lseiler

 Page 103 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

 Supports limits on cache size

Change 585 on 2000/12/19 by smorein@smorein_r400

 new area estimate and intial re spec.

Change 575 on 2000/12/18 by lseiler@ma_lseiler

 Uses class FragCache to compute cache merging

Change 571 on 2000/12/15 by llefebvr@llefebvr_r400

 added cache statistics gathering class

Change 568 on 2000/12/15 by llefebvr@llefebvr_r400

 render state cache statistics

Change 557 on 2000/12/13 by llefebvr@llefebvr_r400

 statistics on render states along with explanatory readme file

Change 528 on 2000/12/12 by llefebvr@llefebvr_r400

 revised statistics on the number of pixels drawn between state changes and 2x2 raster
stamp efficiency. renderpixelsstats.doc is a document explaining how and what was gathered in
the excel spreadsheets.

Change 526 on 2000/12/12 by lseiler@ma_lseiler

 ReadMe files for traces that are available on \\ma_lseiler\perforce

Change 506 on 2000/12/11 by lseiler@ma_lseiler

 These files describe PM4 traces and show where to find them in the sharable on my local
disk. They are not checked in to perforce since they exist on the Toronto server and because they
are so large.

Change 501 on 2000/12/11 by llefebvr@llefebvr_r400

 Useless and obsolete. Do not consider the stats in those files as they are wrong

Change 500 on 2000/12/11 by llefebvr@llefebvr_r400

 Corrupted numbers do not use...

Change 496 on 2000/12/11 by smorein@smorein_r400

 added block descriptions, added tiling

 Page 104 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 493 on 2000/12/08 by llefebvr@llefebvr_r400

 documents explaining the stats and new stats

Change 489 on 2000/12/08 by lseiler@ma_lseiler

 Program to test tile sizes in R400

Change 480 on 2000/12/07 by llefebvr@llefebvr_r400

 new parser

Change 476 on 2000/12/07 by llefebvr@llefebvr_r400

 submit befor switch to new parser

Change 466 on 2000/12/06 by lseiler@ma_lseiler

 quadpixel() call now includes the Z slope as part of the prim parameter.

Change 465 on 2000/12/06 by lseiler@ma_lseiler

 rasterization block size is now settable by variables BlockWidth and BlockHeight,
defined in ew.cpp and declared external in raster.h. Formerly, the block size was fixed at 32x8.

Change 451 on 2000/12/04 by llefebvr@llefebvr_r400

 creating new shadow buffer project

Change 450 on 2000/12/01 by lseiler@ma_lseiler

 quadpixel() now takes object parameters

Change 448 on 2000/11/30 by llefebvr@llefebvr_r400

 cleanup

Change 447 on 2000/11/30 by llefebvr@llefebvr_r400

 new projcet files for perfsim using shared directory

Change 446 on 2000/11/30 by llefebvr@llefebvr_r400

 creation of a shared directory

Change 445 on 2000/11/30 by llefebvr@llefebvr_r400

 guard clipping added

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1601 of 1898

 Page 105 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 444 on 2000/11/27 by llefebvr@llefebvr_r400

 stats with new 2x2 rasterizer for pixel streaks

Change 443 on 2000/11/22 by llefebvr@llefebvr_r400

 stats on quads efficiency for vectors of 4,8,16,32

Change 442 on 2000/11/21 by llefebvr@llefebvr_r400

 new corrected data

Change 441 on 2000/11/21 by llefebvr@llefebvr_r400

 old files

Change 439 on 2000/11/21 by llefebvr@llefebvr_r400

 added stats for quad efficiency and vectors of 4 quads efficiency

Change 437 on 2000/11/20 by llefebvr@llefebvr_r400

 old rasteriser files

Change 436 on 2000/11/20 by llefebvr@llefebvr_r400

 changed the rasterizer to a 2x2 quad based rasterizer

Change 435 on 2000/11/17 by llefebvr@llefebvr_r400

 added pixel_streaks stats (pixels streaks between state changes) and raw data plus
program to generate those numbers

Change 431 on 2000/11/16 by llefebvr@llefebvr_r400

 Simulations of the performance of the rasterisers

Change 430 on 2000/11/15 by smorein@smorein_r400

 Adding the initial versions of several specs.

Change 417 on 2000/11/09 by llefebvr@llefebvr_r400

 test

Change 416 on 2000/11/09 by pmitchel@ma_shusaku

 test

 Page 106 of 106

Ex. 2051 --- R400 Architecture FH --- folder_history

Change 415 on 2000/11/09 by llefebvr@llefebvr_r400

 bit shifts optimisations for the precomputed tables

Change 414 on 2000/11/07 by llefebvr@llefebvr_r400

 updated rng and completed documenting the whole thing

Change 413 on 2000/11/07 by llefebvr@llefebvr_r400

 documentation about mipmaped noise (optimized version)

Change 412 on 2000/11/07 by llefebvr@llefebvr_r400

 8 different small gradient tables instead of one identical one

Change 411 on 2000/11/06 by llefebvr@llefebvr_r400

 working mipmaping using precomputed tables

Change 410 on 2000/11/06 by pmitchel@ma_shusaku

 test of perforce word plugin

Change 408 on 2000/11/03 by llefebvr@llefebvr_r400

 nothing done

Change 407 on 2000/11/03 by llefebvr@llefebvr_r400

 added VC++ project file and removed useless files

Change 406 on 2000/11/03 by llefebvr@llefebvr_r400

 not needed anymore in this folder

Change 405 on 2000/11/03 by llefebvr@llefebvr_r400

 initial submission of all the files of the noise project

Change 404 on 2000/11/03 by llefebvr@llefebvr_r400

 Media files needed by the noise project

Change 400 on 2000/11/01 by pmitchel@_pmitchel

 Initial creation of r400 area under //depot

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1602 of 1898

 Page 1 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 238013 on 2005/10/06 by lseiler@lseiler_win_l_r400

 Delete most unused Crayola tiling formats, which required changing
addrR5xxArrayToAddr to addrCoordToAddr to distinguish z and s (always z in Xenos)

Change 210508 on 2005/02/28 by lseiler@lseiler_win_m_r400

 Restore some changes made to find ADDR_64 bug

Change 210295 on 2005/02/27 by lseiler@lseiler_linux_r400

 Linux gold images with 64-bit device addresses

Change 210279 on 2005/02/27 by lseiler@lseiler_win_h_r400

 Verify addr_64 to uint32 conversions

Change 210266 on 2005/02/26 by lseiler@lseiler_win_h_r400

 Gold images (with 32-bit device addresses) for tests that fail sim with 64-bit device
addresses

Change 207027 on 2005/02/04 by lseiler@lseiler_win_m_r400

 Eliminate references to addrenum

Change 205811 on 2005/01/28 by lseiler@lseiler_win_m_r400

 Pad pitch and height for R5xx tilings

Change 202171 on 2005/01/05 by lseiler@lseiler_win_m_r400

 update address library naming convention

Change 201801 on 2005/01/03 by lseiler@lseiler_win_m_r400

 Changed address library naming convention

Change 187224 on 2004/09/10 by lseiler@lseiler_win_m_r400

 Changed to 64-bit device addresses

Change 186463 on 2004/09/02 by jhoule@jhoule_r400_linux_marl

 Integrated latest emulator testbench files from Xenos.

Change 180013 on 2004/07/22 by mkelly@fl_mkelly_r400_xp

 copy

 Page 2 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 180011 on 2004/07/22 by mkelly@fl_mkelly_r400_xp

 copy from xenos, need to integ up to pele

Change 180000 on 2004/07/22 by mkelly@fl_mkelly_r400_xp

 copy to r400 for integ to pele

Change 173946 on 2004/06/16 by lseiler@lseiler_linux_r400

 Adding gold image for multiwrites test

Change 172559 on 2004/06/09 by lseiler@lseiler_win_m_r400

 Breaking RB into RBT, RBD, and RBC

Change 172507 on 2004/06/08 by lseiler@lseiler_win_m_r400

 Move RB registers to RBT, RBD, or RBC

Change 172322 on 2004/06/08 by lseiler@lseiler_win_m_r400

 Split RB block some more, move RB_FETCH registers to RBC

Change 171396 on 2004/06/02 by lseiler@lseiler_win_m_r400

 RB registers separated into RBT, RBD, and RBC blocks

Change 171053 on 2004/06/01 by mkelly@fl_mkelly_r400_xp

 comment out until revised to work with the new MP IB packet

Change 168831 on 2004/05/19 by jhoule@jhoule_r400_linux_marl

 Integrating tp_checksum and associated files to verify register write path

Change 168643 on 2004/05/18 by fliljero@fl_knarf_xenos

 removed multipass test as it will not be applicable until the test itself & primlib are back
integrated from Xenos.

Change 165023 on 2004/04/29 by vgoel@fl_vgoel2

 order of acessing vertices was causing tessellation factor mismatches

Change 164313 on 2004/04/26 by jhoule@jhoule_r400_linux_marlboro

 Page 3 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Reverse integrating latest TP/TC emulator code from Xenos in order to eventually get
going with R600 developement.

Change 162605 on 2004/04/15 by lseiler@lseiler_win_l_r400

 adding a golden image to test a failure case

Change 161203 on 2004/04/09 by lseiler@lseiler_win_l_r400

 Switch r400 addr library names to r600 names

Change 158336 on 2004/03/29 by mangeshn@fl_mangeshn

 edited test.

Change 158300 on 2004/03/29 by ashishs@fl_ashishs_r400_win

 if Test PASSES then remove the FAIL REASON comment

Change 157701 on 2004/03/24 by lseiler@lseiler_win_l_r400

 replaced old r400 names with r600 names

Change 157214 on 2004/03/22 by ashishs@fl_ashishs_r400_win

 swapping the fb backgorund to match xenos

Change 157188 on 2004/03/22 by ashishs@fl_ashishs_xenos_xp

 integrating the latest changes in r400

Change 156636 on 2004/03/19 by ashishs@fl_ashishs_xenos_xp2

 integrating the change in r400

Change 156223 on 2004/03/18 by vgoel@fl_vgoel2

 modified vertex shaders which were using uninitialzed GPRs components.

Change 155953 on 2004/03/17 by ashishs@fl_ashishs_xenos_xp2

 integrating the changes from xenos back to r400

Change 155877 on 2004/03/17 by ashishs@fl_ashishs_r400_win

 changing the gold path to t:\xenos\gold_r400

Change 155287 on 2004/03/15 by ashishs@fl_ashishs_r400_win

 Page 4 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 reverting the tests back to their R400 version and replacing events 25,26 and 27 with 24
as Frank had suggested that those events were removed

Change 155244 on 2004/03/15 by ashishs@fl_ashishs_r400_win2

 correcting the shaders since had uninitialised exports

Change 155209 on 2004/03/15 by ashishs@fl_ashishs_xenos_xp2

 files from xenos to R400

Change 155197 on 2004/03/15 by ashishs@fl_ashishs_r400_win

 changed the script so that we can use the "fail reason" inside the xls

Change 155161 on 2004/03/15 by ashishs@fl_ashishs_r400_win2

 same as xenos. removing some uninitialised export registers not used so as to avoid
failing in hardware

Change 154507 on 2004/03/11 by ashishs@fl_ashishs_r400_win2

 copying from xenos

Change 154471 on 2004/03/11 by ashishs@fl_ashishs_r400_win2

 enabling the stress test (still need to add actual test data, will be done soon)

Change 154182 on 2004/03/10 by csampayo@fl_csampayo1_r400_win

 Changed background color to display the same as Xenos

Change 154181 on 2004/03/10 by csampayo@fl_csampayo1_r400_win

 Update from Xenos and, change background color to display the same as Xenos.

Change 154032 on 2004/03/10 by csampayo@fl_csampayo1_r400_win

 Update from Xenos version

Change 153947 on 2004/03/10 by mkelly@fl_mkelly_r400_win_laptop

 update

Change 153946 on 2004/03/10 by mkelly@fl_mkelly_r400_win_laptop

 update

Change 153944 on 2004/03/10 by mkelly@fl_mkelly_r400_win_laptop

ATI 2052
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1603 of 1898

 Page 5 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 update

Change 153511 on 2004/03/08 by ashishs@fl_ashishs_r400_win2

 adding loop export tests

Change 153356 on 2004/03/08 by ashishs@fl_ashishs_r400_win2

 adding sq_debug register tests

Change 153078 on 2004/03/05 by csampayo@fl_csampayo4_r400_win

 Increased image buffer size to 160 (multiple of both 40 and 32)

Change 152998 on 2004/03/05 by ashishs@fl_ashishs_r400_win2

 removing TCL dump since not necessary in R400 dumps

Change 152991 on 2004/03/05 by mangeshn@fl_mangeshn

 added looped pred_set_pop test checking result register behavior and clamp value

Change 152931 on 2004/03/05 by ashishs@fl_ashishs_r400_win2

 adding an imnportant comment

Change 152930 on 2004/03/05 by ashishs@fl_ashishs_r400_win2

 converted from xenos back to R400

Change 152915 on 2004/03/05 by mangeshn@fl_mangeshn

 added test : executing pred_sete_push in a loop

Change 152907 on 2004/03/05 by ashishs@fl_ashishs_r400_win2

 adding tests over from xenos

Change 152884 on 2004/03/05 by ashishs@fl_ashishs_r400_win2

 adding the jump and call pred tests

Change 152880 on 2004/03/05 by ashishs@fl_ashishs_r400_win2

 call pred simple test

Change 152879 on 2004/03/05 by ashishs@fl_ashishs_r400_win2

 Page 6 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 removed a comment

Change 152877 on 2004/03/05 by ashishs@fl_ashishs_r400_win2

 adding another jmp pred test

Change 152848 on 2004/03/05 by mmantor@mmantor_xenos_linux_test

 <fixed a bug in the loading of aluconst, back integrated removal of realtime space from
aluconst and texconst mems and control logic in rbi and all hookups, altered sq_regress per
carlos test set>

Change 152790 on 2004/03/04 by ashishs@fl_ashishs_r400_win2

 adding another jump pred test

Change 152667 on 2004/03/04 by ashishs@fl_ashishs_r400_win2

 adding IM_LOAD in all so that they don't fail in hardware

Change 152525 on 2004/03/03 by ashishs@fl_ashishs_r400_win2

 correcting the shader

Change 152484 on 2004/03/03 by ashishs@fl_ashishs_r400_win

 oops...corrected

Change 152483 on 2004/03/03 by ashishs@fl_ashishs_r400_win

 updating comment

Change 152480 on 2004/03/03 by ashishs@fl_ashishs_r400_win

 simple test to show that the conditional jump doesn't work correctly

Change 152451 on 2004/03/03 by ashishs@fl_ashishs_r400_win

 just to show that the cond jmp doesn't work correctly

Change 152438 on 2004/03/03 by ashishs@fl_ashishs_r400_win

 adding another cond call test

Change 152431 on 2004/03/03 by ashishs@fl_ashishs_r400_win

 adding another cond call

Change 152404 on 2004/03/03 by ashishs@fl_ashishs_r400_win

 Page 7 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 finalizing the test

Change 152380 on 2004/03/03 by ashishs@fl_ashishs_r400_win

 simple test to check the cond call

Change 152363 on 2004/03/03 by ashishs@fl_ashishs_r400_win

 adding serialize keyword since failing in hardware

Change 151670 on 2004/02/27 by csampayo@fl_csampayo1_r400_win

 Adding tests for hardware sanity checking

Change 151660 on 2004/02/27 by mkelly@fl_mkelly_r400_win_laptop

 remove real time tests from regression

Change 151658 on 2004/02/27 by mkelly@fl_mkelly_r400_win_laptop

 remove rts test

Change 151547 on 2004/02/27 by ashishs@fl_ashishs_r400_win2

 adding new short tests

Change 151544 on 2004/02/27 by ashishs@fl_ashishs_r400_win2

 adding the shortened versions to r400 also(already aded to xenos)

Change 151507 on 2004/02/27 by tmartin@tmartin_r400_win

 improved test

Change 151484 on 2004/02/27 by ashishs@fl_ashishs_r400_win

 correcting a small error in the script

Change 150972 on 2004/02/25 by ashishs@fl_ashishs_r400_win

 Adding loop, subroutine, REP, UNTIL combo tests

Change 150971 on 2004/02/25 by ashishs@fl_ashishs_r400_win

 removing xenos related settings since they were copied from xenos

Change 150803 on 2004/02/24 by ashishs@fl_ashishs_r400_win2

 Page 8 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 adding test with nested LOOP and REP and UNTIL

Change 150706 on 2004/02/24 by ashishs@fl_ashishs_r400_win2

 having one outer for loop and 3 inner nested REP loops and each rep loop using the outer
for loop "i"

Change 150548 on 2004/02/23 by ashishs@fl_ashishs_r400_win2

 correcting the test, i was expecting the wrong answer when the test was generating the
correct answer

Change 150336 on 2004/02/20 by ashishs@fl_ashishs_r400_win2

 initial checkin for the test

Change 150333 on 2004/02/20 by ashishs@fl_ashishs_r400_win2

 The simplest nested LOOP and REP

Change 150304 on 2004/02/20 by ashishs@fl_ashishs_r400_win2

 another loop rep test

Change 150285 on 2004/02/20 by ashishs@fl_ashishs_r400_win2

 correcting the test

Change 150261 on 2004/02/20 by ashishs@fl_ashishs_r400_win2

 adding test to show problem

Change 150182 on 2004/02/20 by lseiler@lseiler_r400_win_marlboro1

 Change address library r400 names to r600 names

Change 149968 on 2004/02/19 by mkelly@fl_mkelly_r400_win_laptop

 add pipe 0 to rsp_07, test simd 1, pipes 0 - 15

Change 149850 on 2004/02/18 by csampayo@fl_csampayo1_r400_win

 Adding new mem export test

Change 149824 on 2004/02/18 by mkelly@fl_mkelly_r400_win_laptop

 more rsp

Change 149823 on 2004/02/18 by mkelly@fl_mkelly_r400_win_laptop

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1604 of 1898

 Page 9 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 more rsp coverage

Change 149631 on 2004/02/17 by mkelly@fl_mkelly_r400_win_laptop

 changed disp dim

Change 149619 on 2004/02/17 by mkelly@fl_mkelly_r400_win_laptop

 Changed to 4 cases only, added predication on SIMD/PIPE combination

Change 149490 on 2004/02/17 by ashishs@fl_ashishs_r400_win2

 checkin final test for LOOP REP after the instruction was fixed

Change 149487 on 2004/02/17 by smoss@smoss_xenos_linux_orl

 get all .sp files

Change 149273 on 2004/02/13 by ashishs@fl_ashishs_r400_win2

 test to show that the loop rep doesnt work correctly

Change 149238 on 2004/02/13 by ashishs@fl_ashishs_r400_win

 removing 2 tests from depot and test_list

Change 149195 on 2004/02/13 by ashishs@fl_ashishs_r400_win

 adding "serialize" in the shader to not use assembler clauses

Change 149175 on 2004/02/13 by llefebvr@llefebvr_r400_emu_montreal

 Fixing this test by insertion of serialize statement.

Change 149129 on 2004/02/13 by mkelly@fl_mkelly_r400_win_laptop

 fixed test bug, vertex buffer override

Change 149093 on 2004/02/13 by mkelly@fl_mkelly_r400_win_laptop

 update

Change 149092 on 2004/02/13 by mkelly@fl_mkelly_r400_win_laptop

 Revised test

Change 149089 on 2004/02/13 by ashishs@fl_ashishs_r400_win2

 Page 10 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 temp checkin for the cond call test, need to correct the syntax for instruction

Change 148880 on 2004/02/12 by ashishs@fl_ashishs_r400_win2

 test for LOOP REP

Change 148561 on 2004/02/11 by jayw@jayw_r400_linux_marlboro3

 added regrss6 targer and major reduction in db_depth_cache_raddr.v

Change 148482 on 2004/02/10 by ashishs@fl_ashishs_r400_win2

 same as loop pred_03 but does the predicate checking just before the end of the loop. But
also shows that the UNTIL behaves like a loop rather than REPEAT...UNTIL

Change 148470 on 2004/02/10 by ashishs@fl_ashishs_r400_win2

 correcting the test

Change 148390 on 2004/02/10 by ashishs@fl_ashishs_r400_win2

 just simplifying the shader to show the error

Change 148368 on 2004/02/10 by jhoule@jhoule_r400_linux_marlboro

 Updates from Xenos land.
 Updated align_display.h to align to 32 under R400-R600, and to 40 for Xenos.

Change 148366 on 2004/02/10 by jhoule@jhoule_r400_linux_marlboro

 Integrating back from Xenos

Change 148112 on 2004/02/09 by domachi@diotargetxp

 - Prevent the random selection of a mip filter if the texture format does not support
mipmapping - Bugzilla 3239
 - In the uber_rand test, bias the lod bias value so that it will select values closer to 0.0
more often.

Change 148062 on 2004/02/09 by ashishs@fl_ashishs_r400_win2

 adding the missing retain_prev tests to the test_list

Change 148061 on 2004/02/09 by ashishs@fl_ashishs_r400_win2

 currently seems problems in emulator regarding the nested loop with exit condition, so
waiting till this is fixed. The test has yet to be finalised

Change 148027 on 2004/02/09 by mkelly@fl_mkelly_r400_win_laptop

 Page 11 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 update

Change 148026 on 2004/02/09 by mkelly@fl_mkelly_r400_win_laptop

 update

Change 147832 on 2004/02/06 by mkelly@fl_mkelly_r400_win_laptop

 finalize

Change 147734 on 2004/02/06 by csampayo@fl_csampayo2_r400

 Add new export tests (for SX)

Change 147686 on 2004/02/06 by ashishs@fl_ashishs_r400_win2

 test having 4 nested loops with the outer 2 loops exiting when pred condition is true

Change 147599 on 2004/02/05 by ashishs@fl_ashishs_r400_win2

 exiting in nested loop , still need to add more

Change 147532 on 2004/02/05 by ashishs@fl_ashishs_r400_win2

 renaming tests for better organizatiion

Change 147531 on 2004/02/05 by mkelly@fl_mkelly_r400_win_laptop

 checkpoint

Change 147527 on 2004/02/05 by ashishs@fl_ashishs_r400_win2

 adding loop break test when the pred condition is false

Change 147434 on 2004/02/05 by ashishs@fl_ashishs_r400_win2

 updating some comments

Change 147431 on 2004/02/05 by ashishs@fl_ashishs_r400_win2

 finalising the test with loop being terminated on condition turning true

Change 147424 on 2004/02/05 by ashishs@fl_ashishs_r400_win

 checkin for pred loop test

Change 147423 on 2004/02/05 by mkelly@fl_mkelly_r400_win_laptop

 Page 12 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 checkpoint...

Change 147417 on 2004/02/05 by ashishs@fl_ashishs_r400_win

 removed r400sc_simple_triangle_rts_01

Change 147249 on 2004/02/04 by ashishs@fl_ashishs_r400_win

 adding files over from xenos for the newly created tests

Change 147151 on 2004/02/04 by mkelly@fl_mkelly_r400_win_laptop

 set constant after SQ const resource setup

Change 147146 on 2004/02/04 by jayw@jayw_r400_linux_marlboro3

 memory address generation fix for number of pipes. heavily commented and greatly
simplified from original. 'missing' casses added too.

Change 146971 on 2004/02/03 by mkelly@fl_mkelly_r400_win_laptop

 Load RT constants after changing eo_rt and ps_const

Change 146970 on 2004/02/03 by llefebvr@llefebvre_laptop_r400_emu

 Removed the explicit alloc for the parameters. When doing an explicit alloc you must put
all allocs as explicit which was not done in this test.

Change 146943 on 2004/02/03 by mkelly@fl_mkelly_r400_win_laptop

 set constant %4

Change 146942 on 2004/02/03 by mkelly@fl_mkelly_r400_win_laptop

 set constant %4

Change 146641 on 2004/01/31 by ashishs@fl_ashishs_r400_win

 fixing the shaders for the FAILING tests

Change 146519 on 2004/01/30 by vromaker@vromaker_r400_linux_marlboro

 - this file is written by the test so it must not be under perforce control (or it will be
 read-only and the test will not be able to write it)

Change 146470 on 2004/01/30 by ashishs@fl_ashishs_r400_win

 re-enabling all the tests and sorting

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1605 of 1898

 Page 13 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 146460 on 2004/01/30 by ashishs@fl_ashishs_r400_win

 correcting shaders for the these tests. Re-enabling the tests in the test_list, these tests
were commented out since they didnt generate image after Laurent put the MOVA error

Change 146455 on 2004/01/30 by ashishs@fl_ashishs_r400_win

 correcting shaders for the these tests. Re-enabling the tests in the test_list, these tests
were commented out since they didnt generate image after Laurent put the MOVA error

Change 146454 on 2004/01/30 by ashishs@fl_ashishs_r400_win

 correcting tests since the coissue and scalar shader was incorrectly interchanged causing
it to execute scalar twice (needed coissue twice)

Change 146450 on 2004/01/30 by ashishs@fl_ashishs_r400_win

 copying over the correct shaders from xenos

Change 146427 on 2004/01/30 by csampayo@fl_csampayo_r400

 Adding more stress tests and updated test_list and Test Tracker accordingly

Change 146423 on 2004/01/30 by danh@danh_xenos_linux_orl

 Added 2 additional ALU constant writes so now 4 ALU constants are written (must be a
muliple of 4)

Change 146255 on 2004/01/29 by csampayo@fl_csampayo2_r400

 Sort list and re-enabled the following tests since they got fixed:
 r400sq_flow_control_02
 r400sq_flow_control_03

Change 146253 on 2004/01/29 by csampayo@fl_csampayo2_r400

 Update for mova constraints

Change 146237 on 2004/01/29 by csampayo@fl_csampayo_r400

 Adjust image size to be compatible with Xenos also

Change 146020 on 2004/01/28 by csampayo@fl_csampayo_r400

 Sorted list

Change 145823 on 2004/01/28 by jhoule@jhoule_r400_linux_marlboro

 Squashed a warning

 Page 14 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 145759 on 2004/01/27 by csampayo@fl_csampayo_r400

 Remove transform since it is not really used because pixels are all being killed.

Change 145661 on 2004/01/27 by llefebvr@llefebvr_r400_emu_montreal

 Fixing bad shader (was writing to r60 instead of r48 causing the use of an unintialized
GPR)

Change 145541 on 2004/01/27 by smoss@smoss_xenos_linux_orl

 new output path

Change 145425 on 2004/01/26 by jayw@jayw_r400_linux_marlboro3

 added db_depth_mux8to1 and _muxbus8 for state consolidation and cleanup.

Change 145327 on 2004/01/26 by jhoule@jhoule_r400_linux_marlboro

 Cleaner solution: tp_g1 should now use {n}s_{w}x{h} format, where n is the number of
samples, and w and h are the dimension of the texture.

 Samples: 4s_32x32

Change 145318 on 2004/01/26 by jhoule@jhoule_r400_linux_marlboro

 Cleanup of the tp_g* tests.
 tp_g1 is 1 sample
 tp_g2 is 2 samples
 tp_g4 is 4 samples

Change 145316 on 2004/01/26 by jhoule@jhoule_r400_linux_marlboro

 Fixing test to NOT do resolve pass by default.
 Also killed it from C1 (to avoid compile errors).

Change 145299 on 2004/01/26 by jayw@jayw_r400_linux_marlboro3

 Added db_depth_state.v

Change 145135 on 2004/01/23 by rramsey@rramsey_xenos_linux_orl

 Update yield_optimize test so it tests the logic better
 Fix cfsm clause boundary detection for yield_optimize and add setting
 of exsm_updating to EX_EXEC state when it is going to update

Change 145018 on 2004/01/23 by danh@danh_xenos_linux_orl

 Page 15 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Added a SERIALIZE; after the vfetch line in the sub buf7 routine because the vfetch is
writing r8 and the next instruction uses r8 as a source

Change 144978 on 2004/01/23 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added tests to regression to do 2 by multisample.

Change 144967 on 2004/01/23 by georgev@devel_georgev_r400_lin2_marlboro_tott

 First rev of new tests. They don't work yet.

Change 144907 on 2004/01/23 by danh@danh_xenos_linux_orl

 fixed typo (changed SERIALIZE: to SERIALIZE;)

Change 144882 on 2004/01/23 by mkelly@fl_mkelly_r400_win_laptop

 move placement of CP idle

Change 144877 on 2004/01/23 by mkelly@fl_mkelly_r400_win_laptop

 add two more RT constants

Change 144871 on 2004/01/23 by mkelly@fl_mkelly_r400_win_laptop

 update

Change 144819 on 2004/01/22 by smoss@smoss_xenos_linux_orl

 added r400vgt_suppress back in after #CL144818

Change 144818 on 2004/01/22 by smoss@smoss_crayola_win

 modified these from Kevin Ryan's mail to force IM_LOAD instead of type 0

Change 144802 on 2004/01/22 by csampayo@fl_csampayo_r400

 Update for R400/Xenos compatibility

Change 144790 on 2004/01/22 by jayw@jayw_r400_linux_marlboro3

 added msaac and msaad targets. split off db_depth_cache_flushdata.v

Change 144782 on 2004/01/22 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Fixed test to display resolved multitexture surface.

Change 144779 on 2004/01/22 by csampayo@fl_csampayo_r400

 Page 16 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Adding tests and updating test list and tracker accordingly

Change 144767 on 2004/01/22 by mkelly@fl_mkelly_r400_win_laptop

 update

Change 144760 on 2004/01/22 by mkelly@fl_mkelly_r400_win_laptop

 update

Change 144751 on 2004/01/22 by mkelly@fl_mkelly_r400_win_laptop

 update

Change 144708 on 2004/01/22 by mkelly@fl_mkelly_r400_win_laptop

 Add changes learned from other RTS tests, including eo_rt, base and size writes

Change 144642 on 2004/01/22 by mangeshn@fl_mangeshn

 edited test

Change 144639 on 2004/01/22 by kryan@kryan_r400_win_marlboro_XP

 Modified test to setup surface_height and surface_slice registers in

 RB. Also removed unnecessary code for allocation.

Change 144581 on 2004/01/22 by mangeshn@fl_mangeshn

 edited test

Change 144477 on 2004/01/22 by mkelly@fl_mkelly_r400_win_laptop

 wait !cp_rt_busy before each RT context write of sq interp control

Change 144382 on 2004/01/21 by mangeshn@fl_mangeshn

 edited tests

Change 144173 on 2004/01/21 by mkelly@fl_mkelly_r400_win_laptop

 Export the 16th parameter to the pixel shader, to guarantee gpr 15 is initialized.

Change 144055 on 2004/01/20 by jhoule@jhoule_r400_linux_marlboro

 Fixed lowercase vs uppercase clamping mode

Change 143981 on 2004/01/20 by mangeshn@fl_mangeshn

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1606 of 1898

 Page 17 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 edited test

Change 143915 on 2004/01/20 by csampayo@fl_csampayo_r400

 Switched loading of shaders to use IM_LOAD packets

Change 143800 on 2004/01/19 by mangeshn@fl_mangeshn

 changed test for MUL_PREV2 opcode to handle Src X as well as W conditions

Change 143716 on 2004/01/19 by kevino@kevino_r400_release

 Updated tp_multitexture?_pix.sp shader programs to fix bugs in them.

Change 143697 on 2004/01/19 by jhoule@jhoule_r400_linux_marlboro

 Fixed tc_simple_3d tests which are in the tc directory, not the tp.

Change 143645 on 2004/01/19 by tmartin@tmartin_r400_win

 updated DIM field due to texture changes in the emulator

Change 143576 on 2004/01/16 by csampayo@fl_csampayo_r400

 Adding more mem export tests.
 Updated test_list and test tracker accordingly

Change 143469 on 2004/01/16 by tmartin@tmartin_r400_win

 updated for DIM texture change

Change 143457 on 2004/01/16 by tmartin@tmartin_r400_win

 updated for DIM texture change

Change 143444 on 2004/01/16 by tmartin@tmartin_r400_win

 updated to work with the DIM texture change

Change 143382 on 2004/01/16 by mkelly@fl_mkelly_r400_win_laptop

 SQ.SQ_CONTEXT_MISC.INST_PRED_OPTIMIZE, YEILD_OPTIMIZE enabling

Change 143378 on 2004/01/16 by mkelly@fl_mkelly_r400_win_laptop

 SQ_CONTEXT_MISC.YEILD_OPTIMIZE = 0x1, otherwise, same test as
r400sq_data_dep_pred_18.cpp

 Page 18 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 143333 on 2004/01/15 by csampayo@fl_csampayo_r400

 Adding new channel masking test

Change 143323 on 2004/01/15 by tmartin@tmartin_r400_win

 moved the DIM texture field to dword 5

Change 143279 on 2004/01/15 by jhoule@jhoule_r400_linux_marlboro

 Fixed test so that RSP_PIPE really driver up to 4b worth.
 Added real simd as a third parameter.
 Changed scene and texture to ultimately drive all 3 simds.

Change 143278 on 2004/01/15 by tmartin@tmartin_r400_win

 DIM texture settings was moved to dword 5

Change 143069 on 2004/01/14 by jhoule@jhoule_r400_linux_marlboro

 tp_g1 now compiles

Change 143030 on 2004/01/14 by ashishs@fl_ashishs_r400_win

 disabling some tests which were causing a hang

Change 142925 on 2004/01/14 by georgev@devel_georgev_r400_lin2_marlboro_tott

 No changes.

Change 142909 on 2004/01/14 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Fix screen sizes for ..._mask_check and ..._max_addr_2 tests

Change 142463 on 2004/01/12 by csampayo@fl_csampayo_r400

 Updated shaders to be the same as _03

Change 142341 on 2004/01/12 by tmartin@tmartin_r400_win

 packed vertex constants so there are a total of 96 constants referenced in the vertex
shader.

Change 142026 on 2004/01/09 by jhoule@jhoule_r400_linux_marlboro

 RSP test

Change 142012 on 2004/01/09 by csampayo@fl_csampayo_r400

 Page 19 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Update to use loop index within subroutines called from inside loop

Change 141965 on 2004/01/09 by cbrennan@cbrennan_r400_release

 Try again to fix the miss_stall case in a timing performant way.

Change 141950 on 2004/01/09 by rramsey@rramsey_xenos_linux_orl

 Increase DB_TSTATE_SIZE to 2x num constants (64)

Change 141913 on 2004/01/09 by jhoule@jhoule_r400_linux_marlboro_reg

 Adding new GetWeights testcase to verify flipping situations.

Change 141911 on 2004/01/09 by mearl@mearl_xenos_linux_orl

 Updated shader so only valid texture fetches will occur.

Change 141891 on 2004/01/09 by tien@tien_r400_devel_marlboro

 Moved DIM to the right place and added ANISO_BIAS

Change 141880 on 2004/01/09 by mearl@mearl_xenos_linux_orl

 Updated shader so only valid texture fetches will occur.

Change 141817 on 2004/01/09 by ashishs@fl_ashishs_r400_win

 disabled some tests which were causing a hang

Change 141811 on 2004/01/09 by amys@amys_xenos_linux_orl

 initial add of files for sq register write/read test

Change 141789 on 2004/01/09 by mkelly@fl_mkelly_r400_win_laptop

 need this

Change 141653 on 2004/01/08 by mkelly@fl_mkelly_r400_win_laptop

 RSP remainder combos

Change 141609 on 2004/01/08 by kevino@kevino_r400_release

 Added first set of aniso_bias testcases and fixed tp_input.v to select aniso_bias from
the correct place.

Change 141593 on 2004/01/08 by tmartin@tmartin_r400_win

 Page 20 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 added a vfetch to VS so the index would be initialized for the PS

Change 141541 on 2004/01/08 by mkelly@fl_mkelly_r400_win_laptop

 Simplify to one framebuffer output, instancing PrimLib only once.

Change 141538 on 2004/01/08 by ashishs@fl_ashishs_r400_win

 removed some tests temporarily

Change 141537 on 2004/01/08 by cbrennan@cbrennan_r400_emu

 Reverse integrate rg changes from xenos. only really has fixed directory on smoke.rg.

Change 141424 on 2004/01/08 by tmartin@tmartin_r400_win

 set r2 in the VS so r0 isn't X's in the PS

Change 141321 on 2004/01/07 by rramsey@rramsey_xenos_linux_orl

 increase DB_ALUCST_SIZE setting to 64

Change 141171 on 2004/01/07 by mkelly@fl_mkelly_r400_win_laptop

 SIMD0, pipes 0-15 EN_RSP

Change 141149 on 2004/01/07 by mkelly@fl_mkelly_r400_win_laptop

 Write 0 to DISABLE_MC included

Change 141090 on 2004/01/07 by tmartin@tmartin_r400_win

 idle added after cache flush

Change 141085 on 2004/01/07 by tmartin@tmartin_r400_win

 idle added after cache flush

Change 141031 on 2004/01/06 by csampayo@fl_csampayo_r400

 Added new counter selects and increased FB size

Change 140975 on 2004/01/06 by jhoule@jhoule_r400_linux_marlboro

 Adding tp_special test to verify some obscure situations.

 First testcase added (aligner_cycle_loop) which tests the 4xEE cycling.

Change 140910 on 2004/01/06 by smoss@smoss_crayola_win

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1607 of 1898

 Page 21 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 coverage changes
 1) added wait for idle after register writes
 2) increased number of registers for debug control
 3) increased number of registers for perf

Change 140790 on 2004/01/06 by tmartin@tmartin_r400_win

 added r400vc_fetch_addr_range_05

Change 140789 on 2004/01/06 by tmartin@tmartin_r400_win

 changed to program a minimum of 4 constants

Change 140709 on 2004/01/05 by csampayo@fl_csampayo_r400

 Update to refresh addrs reg

Change 140631 on 2004/01/05 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 140621 on 2004/01/05 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 140618 on 2004/01/05 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 140607 on 2004/01/05 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 140605 on 2004/01/05 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 140603 on 2004/01/05 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 140590 on 2004/01/05 by kevino@kevino_r400_release

 Added a second instroverride aniso case as well as a 3D_minmag case in order to
cover some holes that Tien found in coverage.

Change 140584 on 2004/01/05 by vromaker@vromaker_r400_linux_marlboro

 Page 22 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 - fixed shader problems

Change 140578 on 2004/01/05 by kevino@kevino_r400_release

 Added a couple test cases to smoke.rg that seem to hit some types of fails others
don't.
 Added a multitexture stress test (e.g. 1 tex low lat, low hit, other high lat, high hit)

Change 140548 on 2004/01/05 by tmartin@tmartin_r400_win

 removed an unnecessesary case so the SQ doesn't export without a fetch

Change 140536 on 2004/01/05 by mkelly@fl_mkelly_r400_win_laptop

 Fix constant loading...

Change 140284 on 2003/12/30 by dclifton@dclifton_xenos_linux_orl

 Fixed scalar MOVA_FLOOR opcode;

Change 139405 on 2003/12/23 by jayw@jayw_r400_linux_marlboro2

 LEDA fixes, format from 3 to 2 bits, fix for zcache invalidate, some signal renames.

Change 139403 on 2003/12/23 by mkelly@fl_mkelly_r400_win_laptop

 Pipe 0, SimD 0 RSP'd

Change 139275 on 2003/12/23 by smoss@smoss_xenos_linux_orl

 removed failing tests

Change 139204 on 2003/12/22 by jayw@jayw_r400_linux_marlboro2

 Sync up to 139017.

Change 138887 on 2003/12/19 by jhoule@jhoule_r400_linux_marlboro

 Removed warnings.
 Dumping of PPMs is now activated by using 'setenv tp_cubemap_dump_ppm 1'.

Change 138868 on 2003/12/19 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Updates and new tests.

Change 138580 on 2003/12/19 by mkelly@fl_mkelly_r400_win_laptop

 update RT param writes from RT to RB

 Page 23 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 138461 on 2003/12/18 by amys@amys_xenos_linux_orl

 modify test such that fifo depths will be programmed to be less than the physical depths
of the fifos, so test errors won't occur

Change 138459 on 2003/12/18 by mkelly@fl_mkelly_r400_win_laptop

 one change.

Change 138346 on 2003/12/18 by jayw@jayw_r400_linux_marlboro2

 Fix for hiz failure. wrong depth swizzled for updating quad cache.

Change 138338 on 2003/12/18 by amys@amys_xenos_linux_orl

 updated to include new registers

Change 138106 on 2003/12/17 by csampayo@fl_csampayo_r400

 Updating the test description

Change 138105 on 2003/12/17 by mdesai@mdesai_r400_linux

 Resolved all hardware issues on bug3077.
 Fixed Y & Z overflow case

Change 138098 on 2003/12/17 by csampayo@fl_csampayo_r400

 Adding vtx shader non-sequential mem exports

Change 138093 on 2003/12/17 by csampayo@fl_csampayo_r400

 Adding pix shader non-sequential mem exports

Change 138077 on 2003/12/17 by amys@amys_xenos_linux_orl

 add/delete registers as needed to update test

Change 137953 on 2003/12/16 by tmartin@tmartin_r400_win

 updated to program alu constants in groups of 4
 updated to program loop constants when boolean constants are changed

Change 137842 on 2003/12/16 by csampayo@fl_csampayo_r400

 Adding test with channel masking (VS,PS) and pixel kill

Change 137837 on 2003/12/16 by amys@amys_xenos_linux_orl

 Page 24 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 remove read-only and write-only registers from write/read test

Change 137799 on 2003/12/16 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 137728 on 2003/12/16 by mkelly@fl_mkelly_r400_win_laptop

 update.

Change 137727 on 2003/12/16 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 137679 on 2003/12/15 by csampayo@fl_csampayo_r400

 Adding new channel masking test

Change 137545 on 2003/12/15 by mkelly@fl_mkelly_r400_win_laptop

 update...

Change 137540 on 2003/12/15 by mkelly@fl_mkelly_r400_win_laptop

 update.

Change 137470 on 2003/12/15 by rmanapat@rmanapat_r400_sun_marlboro

 Changes for TCF, TCR, TCM chicken registers

Change 137469 on 2003/12/15 by cbrennan@cbrennan_r400_emu

 Turn off mipmapping and packing with interlaced textures. Also disallow interlaced
stacks.

Change 137456 on 2003/12/15 by kryan@kryan_r400_win_marlboro_XP

 Update test to use IM_LOAD packet to load shader programs.

 This is to avoid errors found in HW when using the Type0

 where the shader programs were not reloaded after the first

 time they had been loaded.

Change 137453 on 2003/12/15 by mkelly@fl_mkelly_r400_win_laptop

 Update...

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1608 of 1898

 Page 25 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 137441 on 2003/12/15 by mkelly@fl_mkelly_r400_win_laptop

 Add one extra RT param

Change 137394 on 2003/12/15 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 137390 on 2003/12/15 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 137387 on 2003/12/15 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 137372 on 2003/12/14 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 137366 on 2003/12/14 by smoss@smoss_xenos_linux_orl

 removing two tests that fail hw until they are resolved

Change 137203 on 2003/12/12 by kevino@kevino_r400_release

 Switched over to the low lat fifos in tca, fetch fifo , and tcd.
 Added tcd_ipbuf_fifo_top.v and switched overe to using 2 16x141 mems instead a 1
32x141 mems.
 Put latency params in for latency fifo prog depth testcases

Change 137189 on 2003/12/12 by mangeshn@fl_mangeshn

 updated test

Change 137179 on 2003/12/12 by mkelly@fl_mkelly_r400_win_laptop

 change again

Change 137162 on 2003/12/12 by mkelly@fl_mkelly_r400_win_laptop

 Modify eo_rt write timing

Change 137157 on 2003/12/12 by mkelly@fl_mkelly_r400_win_laptop

 change eo_rt, insert constant 0 to make test match gold

Change 137138 on 2003/12/12 by mkelly@fl_mkelly_r400_win_laptop

 Page 26 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 eo_rt packet type change

Change 137111 on 2003/12/12 by mkelly@fl_mkelly_r400_win_laptop

 Smiles for Dan

Change 137074 on 2003/12/11 by mkelly@fl_mkelly_r400_win_laptop

 Change postion of eo_rt write and packet type

Change 137030 on 2003/12/11 by cbrennan@cbrennan_r400_emu

 Flipped nibble order of DXT3A_AS_1_1_1_1 to really match dx spec this time.

Change 136941 on 2003/12/11 by csampayo@fl_csampayo_r400

 Use IM_LOAD packets to load shaders

Change 136835 on 2003/12/10 by csampayo@fl_csampayo_r400

 Adding channel write mask with predicate stress test

Change 136700 on 2003/12/10 by mkelly@fl_mkelly_r400_win_laptop

 try this

Change 136697 on 2003/12/10 by mkelly@fl_mkelly_r400_win_laptop

 update

Change 136692 on 2003/12/10 by rramsey@rramsey_xenos_linux_orl

 Change eo_rt from RT packet to Ring Buffer directly

Change 136682 on 2003/12/10 by kevino@kevino_r400_release

 Added low latency fifo controllers to some fifos, but have disabled them with ifdefs
until the controller works for all cases. Added programmable depth for latency fifos along with
corresponding test cases

Change 136643 on 2003/12/10 by amys@amys_xenos_linux_orl

 move constant writes to one packet

Change 136496 on 2003/12/09 by tmartin@tmartin_r400_win

 streamlined the loop constant programming

Change 136464 on 2003/12/09 by tmartin@tmartin_r400_win

 Page 27 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 set loop constants with each draw command because the boolean constant was also
changing

Change 136261 on 2003/12/08 by cbrennan@cbrennan_r400_release

 Convert tests to use a common function for generating a nice distribution of texture sizes.

Change 136251 on 2003/12/08 by ashishs@fl_ashishs_r400_win2

 Adding tests to test_list and adding another test for AND operation

Change 136239 on 2003/12/08 by cbrennan@cbrennan_r400_emu

 Add common header for tc tests which starts with a random_texsize function for better
distributions of texture sizes.

Change 136208 on 2003/12/08 by tmartin@tmartin_r400_win

 removed r400vc_fetch_addr_range_05

Change 136205 on 2003/12/08 by tmartin@tmartin_r400_win

 added r400vc_array_size_03

Change 136202 on 2003/12/08 by tmartin@tmartin_r400_win

 tests a non-zero buffer size constant that is smaller than the true buffer size. This is
actually illegal programming.

Change 136181 on 2003/12/08 by tmartin@tmartin_r400_win

 updated the description

Change 136168 on 2003/12/08 by ashishs@fl_ashishs_r400_win2

 Adding a CL test which shows the problem in vtx kill flag with "VTX_KILL" in the
CLIP_CNTL register set to "OR" mode

Change 136157 on 2003/12/08 by tmartin@tmartin_r400_win

 cleaned up the test a little

Change 136109 on 2003/12/08 by jayw@jayw_r400_linux_marlboro2

 depth regression

Change 136106 on 2003/12/08 by tmartin@tmartin_r400_win

 Page 28 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 fixed some mistakes

Change 136094 on 2003/12/08 by jhoule@jhoule_r400_win_lt

 New test to verify cube and stack maps.

Change 136093 on 2003/12/08 by jhoule@jhoule_r400_win_lt

 Updated allocate call
 Some errors now correctly return error code

Change 135863 on 2003/12/05 by csampayo@fl_csampayo3

 Updated test_list and test tracker status for tests:
 r400sq_gpr_index_05
 r400sq_gpr_index_06
 r400sq_gpr_index_07
 r400sq_gpr_index_08

Change 135853 on 2003/12/05 by csampayo@fl_csampayo_r400

 More GPR indexing tests

Change 135793 on 2003/12/05 by tmartin@tmartin_r400_win

 fixed some typos that were not affecting the final image output

Change 135651 on 2003/12/05 by ashishs@fl_ashishs_r400_win

 updating the tests and the tracker for CL_BUSY. commenting out CL_BUSY from the
tests

Change 135555 on 2003/12/04 by ashishs@fl_ashishs_r400_win2

 Perf counters reg coverage for SX

Change 135522 on 2003/12/04 by csampayo@fl_csampayo_r400

 Updated test tracker status and added to test_list the following tests:
 r400sq_gpr_index_03
 r400sq_gpr_index_04

Change 135512 on 2003/12/04 by csampayo@fl_csampayo_r400

 Testing pixel shader GPR indexing with clamping

Change 135509 on 2003/12/04 by csampayo@fl_csampayo_r400

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1609 of 1898

 Page 29 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Updated image size to accomodate both Xenos and R500 and changed background color
for better visibility

Change 135464 on 2003/12/04 by kevino@kevino_r400_linux_marlboro

 Fixed some .sp files that had not gotten integrated properly.

Change 135457 on 2003/12/04 by ashishs@fl_ashishs_r400_win2

 permuting the registers of SQ_DEBUG_MISC_0

Change 135436 on 2003/12/04 by cbrennan@cbrennan_r400_emu

 Enabling the randomizing mip packing.

Change 135420 on 2003/12/04 by ashishs@fl_ashishs_r400_win2

 Adding a test in which the alternate points clamp on address register. The
SQ_DEBUG_MISC_0.DB_PROB_ON = true and SQ_DEBUG_MISC_0.DB_PROB_BREAK
= false always inside the test

 Need to know why the test ahngs if DB_PROB_BREAK is turned true
 And also how to read the context register SQ_DEBUG_MISC_0 after wrtiing to it

Change 135378 on 2003/12/04 by ashishs@fl_ashishs_r400_win2

 simple test just setting the DB_PROB_ON in this test

Change 135353 on 2003/12/04 by mkelly@mkelly_r400_win_orl

 Update...

Change 135344 on 2003/12/04 by domachi@diotargetxp

 Avoid creating a 1D interlaced texture. Bugzilla 3067

Change 135334 on 2003/12/04 by tien@tien_r500_emu

 Turned off crippling on the "not all" cases

Change 135330 on 2003/12/04 by smburu@smburu_r400_linux_marlboro

 Fixed the Randomized testcase.

Change 135306 on 2003/12/04 by mkelly@mkelly_r400_win_orl

 Remove one commented test

Change 135297 on 2003/12/04 by ashishs@fl_ashishs_r400_win2

 Page 30 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 checkin in again to initalise all the other bits of that register

Change 135283 on 2003/12/04 by kevino@kevino_r400_release

 Integrate of the .sp files somehow went wrong, so it looks like this one was somehow
missed from checkin last time (even though it was updated in my area and not reported as
opened.)

Change 135281 on 2003/12/04 by ashishs@fl_ashishs_r400_win2

 checking the test back in to report problem to Kevin

Change 135270 on 2003/12/04 by kevino@kevino_r400_release

 fmt61 -only version of tp_multitexture_02.cpp

Change 135188 on 2003/12/03 by csampayo@fl_csampayo3

 Initial check in

Change 135140 on 2003/12/03 by kevino@kevino_r400_release

 Updated tc .sp files with serialize between fetches and alu operations
 Added fmt61 tests to tp_multitexture_02

Change 135048 on 2003/12/03 by ashishs@fl_ashishs_r400_win2

 making the bug case true to show the problem

Change 135046 on 2003/12/03 by ashishs@fl_ashishs_r400_win2

 removing the vertex buffer writing and using the index_offset feature of the VGT to
access the nest packet

Change 135009 on 2003/12/03 by jhoule@jhoule_r400_linux_marlboro

 Removed last failing directed test

Change 134992 on 2003/12/03 by tmartin@tmartin_r400_linux

 removed some extra spaces at the end of the files that were causing compile errors on
Linux

Change 134957 on 2003/12/03 by ashishs@fl_ashishs_r400_win2

 Added the GPR declaration

Change 134950 on 2003/12/03 by ashishs@fl_ashishs_r400_win2

 Page 31 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 by mistake had commented out the wait_gfx_idle, so uncommenting back

Change 134949 on 2003/12/03 by ashishs@fl_ashishs_r400_win2

 just switching between the 8 shaders now, earlier was just using 1 shader

Change 134947 on 2003/12/03 by kevino@kevino_r400_release

 Added serialize to shader programs under tp/data/pix and vtx

Change 134946 on 2003/12/03 by ashishs@fl_ashishs_r400_win2

 removing loop from all the shaders

Change 134845 on 2003/12/02 by llefebvr@llefebvr_r400_emu_montreal

 moved up the seting of the VS shader

Change 134837 on 2003/12/02 by kevino@kevino_r400_release

 Updated tp shader program files to be 2.0 and inserted SERIALIZED directive
between fetches and ALU commands.
 Updated tp_multitexture_01 and _02 tests that create their own shader programs to
give them a unique name based on testname, testcase, and seed.

Change 134831 on 2003/12/02 by ashishs@fl_ashishs_r400_win2

 checking in all the shaders for the test

Change 134829 on 2003/12/02 by domachi@diotargetxp

 - TConst::ValidateTexDim() must return valse for a CubeMap using an Interlaced format.
 - Fix tc_random and uber_rand test so that they never attempt a CubeMap-Interlaced
texture.

Change 134782 on 2003/12/02 by jhoule@jhoule_r400_linux_marlboro

 Added support for randomization.
 Fixed size-parsing code (wasn't working).

Change 134742 on 2003/12/02 by ashishs@fl_ashishs_r400_win2

 test for SQ_DEBUF_MISC_0 register, currently under review

Change 134732 on 2003/12/02 by mkelly@fl_mkelly_r400_win_laptop

 move eo_rt to top

 Page 32 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 134674 on 2003/12/02 by ashishs@fl_ashishs_r400_win2

 changing shader....

Change 134668 on 2003/12/02 by ashishs@fl_ashishs_r400_win2

 updating description for perf counters reg coverage test

Change 134607 on 2003/12/01 by ashishs@fl_ashishs_r400_win2

 Finalising the test for GPR management, cannot affect image but we can see the register
printed out at the end of the test, just to verify not being overwritten by anyone else

Change 134596 on 2003/12/01 by jhoule@jhoule_r400_win_lt

 Updated tp_bigmaps: now works with most sizes.

 Had to update the Makefile since this test uses the address library directly, and must
therefore be linked against it.

Change 134580 on 2003/12/01 by jhoule@jhoule_r400_linux_marlboro

 Updated text to be gray in order to distinguish between border and texture when using
either black or white border color.

Change 134566 on 2003/12/01 by ashishs@fl_ashishs_r400_win2

 removing the GPR declaration from the shaders

Change 134552 on 2003/12/01 by kevino@kevino_r400_linux_marlboro

 Fixed tp_multitexture tests to force signed_rf_mode to never use NoZero.
 Updated tp_simple_02 tests to add 4th vertex for round_point testcases. These tests
can round the index up to 3, requiring the fourth vertex.

Change 134466 on 2003/12/01 by tmartin@tmartin_r400_win

 removed r400vc_stress_02 from test_list for r400. will be changed and enabled for xenos

Change 134456 on 2003/12/01 by csampayo@fl_csampayo_r400

 Corrected list to include tests:
 r400sx_multi_chan_pos_param_pred_export_03
 r400sx_multi_chan_pos_param_pred_export_04
 r400sx_multi_chan_pos_param_pred_export_05
 r400sx_multi_chan_pos_param_pred_export_06

Change 134449 on 2003/12/01 by mkelly@fl_mkelly_r400_win_laptop

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1610 of 1898

 Page 33 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Wait gfx idle before starting test, ie wait for constant writes to complete..

Change 134428 on 2003/12/01 by ashishs@fl_ashishs_r400_win2

 Adding another render() as suggested by Laurent

Change 134406 on 2003/12/01 by amys@amys_xenos_lnxrgs_orl

 corrected format for kille instruction

Change 134405 on 2003/12/01 by amys@amys_xenos_lnxrgs_orl

 modified alu constant offset to be 0

Change 134238 on 2003/11/26 by csampayo@fl_csampayo_r400

 Added to test_list and updated status on tracker:
 r400sx_multi_chan_pos_param_pred_export_03
 r400sx_multi_chan_pos_param_pred_export_04
 r400sx_multi_chan_pos_param_pred_export_05
 r400sx_multi_chan_pos_param_pred_export_06

Change 134235 on 2003/11/26 by csampayo@fl_csampayo2_r400

 Updated for R400/Xenos image size compatibility

Change 134234 on 2003/11/26 by csampayo@fl_csampayo2_r400

 New SX chan mask and pred tests

Change 134210 on 2003/11/26 by lseiler@lseiler_r400_win_marlboro

 Updated slope delta

Change 134206 on 2003/11/26 by lseiler@lseiler_r400_win_marlboro

 Test of Xenos quad depth accuracy

Change 134176 on 2003/11/26 by ashishs@fl_ashishs_r400_win2

 Added new test to test_list

 Removed bugs from the tracker. The bugs were as follows :
 In the grand total in the tracker sheet E284 was 2 times, E272 and E542 were not present
therby not giving a correct total and therby not matching the schedule.
 Now the tracker is correct and matches the schedule total

Change 134171 on 2003/11/26 by georgev@devel_georgev_r400_lin2_marlboro_coverage_tc

 Page 34 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Updated script for tp and tc testbenches.

Change 134167 on 2003/11/26 by ashishs@fl_ashishs_r400_win2

 SQ perf register coverage test. Need to know if the HI and LOW registers can be written
and read the same way as SEL registers

Change 134165 on 2003/11/26 by llefebvr@llefebvr_r400_emu_montreal

 Automatic serialization was seriously broken in this test. I changed it to manual and place
the serial points where they made sense.

Change 134132 on 2003/11/26 by cbrennan@cbrennan_r400_emu

 updated list of directed test failures.

Change 134094 on 2003/11/26 by georgev@devel_georgev_r400_lin2_marlboro_coverage

 Added to script so that tc tests don't have to be processed by hand.

Change 134092 on 2003/11/26 by ashishs@fl_ashishs_r400_win

 small correction for r400

Change 134018 on 2003/11/25 by ashishs@fl_ashishs_r400_win

 Test to check the SQ_GPR_MANAGEMENT register. Currently this register is being
overwritten by PRIMLIB logic

Change 134012 on 2003/11/25 by lseiler@lseiler_r400_win_marlboro1

 Update after changing RF16 precision

Change 133998 on 2003/11/25 by jhoule@jhoule_r400_linux_marlboro

 Forgot the actual test file... [INCOMPLETE]

Change 133996 on 2003/11/25 by jhoule@jhoule_r400_linux_marlboro

 Added sparse texture test to verify very large coordinates without having to generate
huge maps.

 The test simply allocates and renders the corners (4 x 64x64 tiles).

 [INCOMPLETE!!!]

Change 133903 on 2003/11/25 by tmartin@tmartin_r400_win

 Page 35 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 added r400sq_const_map_alu_rts_01, r400sq_const_map_alu_rts_02,
r400sq_const_map_fetch_rts_01.
 fixed some cell formulas

Change 133899 on 2003/11/25 by tmartin@tmartin_r400_win

 Uses the max number of 32 real time texture constants in a pixel shader

Change 133884 on 2003/11/25 by ashishs@fl_ashishs_r400_win

 Adding the ability to sync to top and store the sync number so that it can be used to
display on emails thereby keeping track. (xenos already has this ability)

Change 133847 on 2003/11/25 by rmanapat@rmanapat_r400_release

 Just a update to the rg file

Change 133839 on 2003/11/25 by tmartin@tmartin_r400_win

 Uses the max number of 256 real time constants in a pixel shader

Change 133817 on 2003/11/25 by tmartin@tmartin_r400_win

 Uses real time streams with room for only one constant to be allocated. The pixel shader
reads a constant outside of this range. This is invalid programming, but it should still be handled
without stalling.

Change 133813 on 2003/11/25 by amys@amys_xenos_lnxrgs_orl

 change KILLe to all lower case--otherwise assembler error when run linux

Change 133753 on 2003/11/24 by tmartin@tmartin_r400_win

 added r400sq_const_map_alu_07, r400sq_const_map_fetch_01,
r400sq_const_map_fetch_02, r400sq_const_map_fetch_07, r400sq_const_map_fetch_08

Change 133751 on 2003/11/24 by tmartin@tmartin_r400_win

 reduced the size of the texture constant store is reduced in order to help stall the loading
of the re-mapping tables.

Change 133749 on 2003/11/24 by tmartin@tmartin_r400_win

 Uses 31 texture fetch constants in a PS with one vertex fetch constant. Tests all 8
contexts. The constants are reprogrammed for each context to make sure all 160 fetch constant
store locations are used.

Change 133747 on 2003/11/24 by tmartin@tmartin_r400_win

 Page 36 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Uses 31 texture fetch constants in a PS with one vertex fetch constant

Change 133746 on 2003/11/24 by tmartin@tmartin_r400_win

 Stalls the loading of the alu constant re-mapping tables

Change 133738 on 2003/11/24 by ashishs@fl_ashishs_r400_win2

 updating tracker and description for the latest 2 new tests added for RETAIN_PREV
opcodes

Change 133735 on 2003/11/24 by ashishs@fl_ashishs_r400_win2

 Adding this weeks test as well as description to the SQ test

Change 133696 on 2003/11/24 by ashishs@fl_ashishs_r400_win2

 testing PREV_RETAIN instruction with all different types of data. Needed to do mem
export 2 times inside the shader since the combination of 2 scalar instructions (ADD and MAX)
does cover the whole of data values input to prev_retain opcode

Change 133695 on 2003/11/24 by mkelly@fl_mkelly_r400_win_laptop

 Increase timeout.

Change 133672 on 2003/11/24 by tmartin@tmartin_r400_win

 test all 1280 constant store locations. previously only test 1024 locations.

Change 133639 on 2003/11/24 by jhoule@jhoule_r400_linux_marlboro

 Used the scalpel: major modification.

 Recoded the cylinder generation in order to solve memory overflows, use less memory,
allocate automatically, use triangles instead of strips (simpler than to split in multiple strips).

 Killed non-relevant testcases+functions+variables.

 Testcase is now parsed to determine texture size; this potentially changes the behavior of
previous testcases since they weren't properly setting the height ('construct_texture_h_size' was
used for both dimensions in the only useful buildLevel call). Format of the testcase is
'tex_WxH', where W and H can take any valid value for 2D textures.

Change 133613 on 2003/11/24 by domachi@diotargetxp

 Ensure cubemap textures using an interlaced format use an even height

Change 133587 on 2003/11/24 by ashishs@fl_ashishs_r400_win2

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1611 of 1898

 Page 37 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 precision test for retain_prev instruction

Change 133579 on 2003/11/24 by mkelly@fl_mkelly_r400_win_laptop

 Fix constant loading

Change 133572 on 2003/11/24 by ashishs@fl_ashishs_r400_win2

 Test for RETAIN_PREV instruction. Does have retain_prev with all different types of
instructions thereby stressing the opcode.

Change 133461 on 2003/11/21 by kevino@kevino_r400_release

 Modified channel mask tests to put color in register than make sure texture channel
doens't overwrite it when masked out. This way, the exported color has all channels defined.

Change 133455 on 2003/11/21 by tmartin@tmartin_r400_win

 updated and added r400sq_const_map_fetch_01 and 07

Change 133436 on 2003/11/21 by tmartin@tmartin_r400_win

 updated descriptions

Change 133385 on 2003/11/21 by cbrennan@cbrennan_r400_emu

 Cripple formats that crash emu until fixed.. Cripple tc random testcases as well for
same reason.

Change 133328 on 2003/11/21 by kevino@kevino_r400_release

 Made the tp_simple_02* aniso cases smaller so they won't take as log to run. The
non-PC cases still hit all aniso ratios. Made the tcdenorm tests smaller as well.

Change 133290 on 2003/11/21 by jhoule@jhoule_r400_linux_marlboro

 Updated list with fixes brought by border color fix.
 Also, the aniso_2D got fixed somewhere as well, but can't figure out the CL.

Change 133217 on 2003/11/20 by kevino@kevino_r400_release

 Made randomized test cases smaller by making prims smaller.

Change 133206 on 2003/11/20 by kevino@kevino_r400_release

 Changes to make some of the tests run a bit faster.

Change 133193 on 2003/11/20 by tmartin@tmartin_r400_win

 Page 38 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Move the VS and PS base addresses in the constant re-mapping tables to make sure the
entire range can be used. Every context is used to make sure all 1024 constants are active.

Change 133192 on 2003/11/20 by tmartin@tmartin_r400_win

 updated to make sure all 1024 alu constants are programed

Change 133173 on 2003/11/20 by domachi@diotargetxp

 Ensure textures with interlaced formats have an even height.

Change 133167 on 2003/11/20 by cbrennan@cbrennan_r400_emu

 Crippled border color until it works.

Change 133166 on 2003/11/20 by cbrennan@cbrennan_r400_emu

 Shrunk random test size down.

Change 133145 on 2003/11/20 by domachi@diotargetxp

 Add all avaliable texture formats.

Change 133117 on 2003/11/20 by cbrennan@cbrennan_r400_emu

 Fixed test to not go above 8192 width textures.

Change 133077 on 2003/11/20 by cbrennan@cbrennan_r400_emu

 Fix for stacks with border size set.

Change 133060 on 2003/11/20 by tmartin@tmartin_r400_win

 disabled real time streams so context 0 would be tested

Change 133053 on 2003/11/20 by rmanapat@rmanapat_r400_release

 Removed passing tests from list

Change 133048 on 2003/11/20 by ashishs@fl_ashishs_r400_win2

 adding some 12 more tests in SQ from last week and this week. Also re-enabled
r400sq_auto_wrapping_memories_01

Change 133047 on 2003/11/20 by amys@amys_xenos_linux_orl

 Modified all cpp and shader files to pick up changes made to vc tests

Change 133041 on 2003/11/20 by ashishs@fl_ashishs_r400_win2

 Page 39 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Not finalised the test yet. Need to know when we have all parameters having the same
attributes on all the edges (same as flat shading) it just uses the param0 color of first vertex to be
FLAT.

Change 133033 on 2003/11/20 by rmanapat@rmanapat_r400_release

 Updated rg file...

Change 133030 on 2003/11/20 by ashishs@fl_ashishs_r400_win2

 same as 2 but keeping another side as constant

Change 133024 on 2003/11/20 by ashishs@fl_ashishs_r400_win2

 Testing all 16 parameters with permuting one of the parameter having consatnt attributes
on one of the edge.

Change 133021 on 2003/11/20 by amys@amys_xenos_lnxrgs_orl

 add SERIALIZE statment before dependent fetch or operation

Change 133017 on 2003/11/20 by amys@amys_xenos_linux_orl

 replace INT_MAX with tex_map_size for pitch

Change 132956 on 2003/11/19 by kevino@kevino_r400_release

 Update to rg file to put in comment about which changelist cubic_2D_MipBaseMap was
fixed in

Change 132955 on 2003/11/19 by ashishs@fl_ashishs_r400_win2

 changing the shaders and removing the pred optimization.

Change 132954 on 2003/11/19 by kevino@kevino_r400_release

 Several fixes for emu errors (mostly timeouts) in tp_multitexture_02_stress.
 Change to tcb_fetch_generator to make TF_PIPE1 a wire instead of a parameter.
Apparently synthesis has some difficulty with characterizing multiple instantiations of the same
module with different parameters.

Change 132942 on 2003/11/19 by ashishs@fl_ashishs_r400_win2

 Final checkin for the test. The test does 16 textures while doing combinations of
switching the constant attrib between parameters over 16 parameters

Change 132919 on 2003/11/19 by kevino@kevino_r400_win_marlboro

 Page 40 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 rg file of the tp_multitexture_02_stress tests failing with emu errors

Change 132906 on 2003/11/19 by kevino@kevino_r400_release

 cubic_2D_MipBaseMap fix is coming soon, so commented this out in the rg file so no
one else would work on it. It is a test error.

Change 132878 on 2003/11/19 by tmartin@tmartin_r400_win

 more tests were added to coincide with some emulator fixes for addressing the upper end
of memory.

Change 132867 on 2003/11/19 by cbrennan@cbrennan_r400_emu

 Fixed precision errors on stack maps. Removed redundant code in addresser. Updated rg
file with passing tests. DOWN TO 10!

Change 132842 on 2003/11/19 by chammer@chammer_xenos_linux_orl

 Added changes for Xenos, enabled with `define XENOS
 Includes new rb_id, edram copy mode, zplane changes.

Change 132810 on 2003/11/19 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added test to cover get weights function.

Change 132793 on 2003/11/19 by ashishs@fl_ashishs_r400_win2

 Testing interpolation of 1 color when 2 or more attributes of triangle are same with
polymode and clipping

Change 132751 on 2003/11/18 by csampayo@fl_csampayo_r400

 Fix bad shader version and logic

Change 132743 on 2003/11/18 by ashishs@fl_ashishs_r400_win2

 initial checkin for the test

Change 132722 on 2003/11/18 by ashishs@fl_ashishs_r400_win2

 Added 2 more tests

Change 132709 on 2003/11/18 by ashishs@fl_ashishs_r400_win2

 Adding test using the same structure as before but having clip. Need to know if seperate
shaders need to be input for this test or the test1 shaders would suffice

Change 132670 on 2003/11/18 by ashishs@fl_ashishs_r400_win2

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1612 of 1898

 Page 41 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 test for interpolation of constant attributes

Change 132661 on 2003/11/18 by csampayo@fl_csampayo_r400

 Update to predicate processing compound indices

Change 132621 on 2003/11/18 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Drew too many triangles that were undefined. This has been corrected.

Change 132613 on 2003/11/18 by tmartin@tmartin_r400_win

 changed images sizes to 160x160 so the dimensions are divisible by 32 and 20

Change 132610 on 2003/11/18 by rmanapat@rmanapat_r400_release

 Regression file that holds all failed tests from last night regression runs

Change 132596 on 2003/11/18 by cbrennan@cbrennan_r400_emu

 Cripple stacks because they are known to be broken right now.

Change 132505 on 2003/11/18 by kevino@kevino_r400_release

 Change to CUBE instruction to corrrespond to llefebr's chanelist 132250: "Changing
emulator and tests to meet with the new cube swizzles wich now are for SRCA zzxy (instead of
zzyx). Also change the assembler to accept the new swizzle code.". This is a shader program
that was missed in the update.

Change 132419 on 2003/11/17 by ashishs@fl_ashishs_r400_win

 Initial checkin for test with GPR management

Change 132417 on 2003/11/17 by kevino@kevino_r400_release

 All tc*agp512 testcases

Change 132401 on 2003/11/17 by tmartin@tmartin_r400_win

 r400sq_const_map_alu_01
 r400sq_const_map_alu_03
 r400sq_const_map_alu_04
 r400sq_const_map_alu_05
 r400sq_const_map_alu_06
 r400sq_const_map_fetch_03
 r400sq_const_map_fetch_04
 r400sq_const_map_fetch_05
 r400sq_const_map_fetch_06

 Page 42 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 132400 on 2003/11/17 by tmartin@tmartin_r400_win

 uses the max number of constants in a VS and PS and stresses all 8 contexts.

Change 132388 on 2003/11/17 by tmartin@tmartin_r400_win

 r400sq_const_map_fetch_04 - Uses 31 tfetch constants in a PS with one vfetch constant

Change 132386 on 2003/11/17 by kevino@kevino_r400_win_marlboro

 TC tests for request size = 512bit

Change 132364 on 2003/11/17 by llefebvr@llefebvr_r400_emu_montreal

 The test wasn't exporting to all 4 channels causing corruption on the input VC bus.

Change 132339 on 2003/11/17 by ashishs@fl_ashishs_r400_win

 Reverted back the changes to the original state. Need to talk to Carlos about the tests
since error seems to be something different than what I was thinking.

Change 132313 on 2003/11/17 by ashishs@fl_ashishs_r400_win

 The shaders had index swizzles which according to me causes problems on hardware.
Hence this checkin fixes the same.

Change 132312 on 2003/11/17 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Not finished. Added to keep track of while we're looking at the TC tests.

Change 132284 on 2003/11/17 by tmartin@tmartin_r400_win

 removed unused texture constants

Change 132273 on 2003/11/17 by tmartin@tmartin_r400_win

 modified to program 1024 constants even though only 512 are used

Change 132270 on 2003/11/17 by ashishs@fl_ashishs_r400_win

 Changing the swizzle for the tests from zzyx -> zzxy on SrcA

Change 132265 on 2003/11/17 by tmartin@tmartin_r400_win

 checkpoint

Change 132250 on 2003/11/17 by llefebvr@llefebvr_r400_linux_marlboro

 Page 43 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Changing emulator and tests to meet with the new cube swizzles wich now are for SRCA
zzxy (instead of zzyx). Also change the assembler to accept the new swizzle code.

Change 132136 on 2003/11/14 by ashishs@fl_ashishs_r400_win2

 test to load shaders at any chosen location. The shader doesnt wrap in this case as
expected and also need to allocate sufficient memory for shader before hand. But currently
aborts in emu ...need to know why.....

Change 132103 on 2003/11/14 by ashishs@fl_ashishs_r400_win2

 Finally correcting the test (debugged by Carlos). Now wraps vtx and pix shader both. The
vtx and pix shader have just 1 extra slot of memory more than their size and thats how they wrap
everytime they try to load

Change 132054 on 2003/11/14 by kevino@kevino_r400_release

 integrate from branch to tott. These changes include making several testcases use
smaller textures.

Change 132040 on 2003/11/14 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Went to 4 (from 8) multisamples per pixel.

Change 132031 on 2003/11/14 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Testing center vs. centroid.

Change 132006 on 2003/11/14 by cbrennan@cbrennan_r400_emu

 Randoms don't need to be that big.

Change 131991 on 2003/11/14 by mangeshn@fl_mangeshn

 update to mul_prev2 opcode

Change 131984 on 2003/11/14 by mangeshn@fl_mangeshn

 updated mul_prev2 opcode in the shader

Change 131980 on 2003/11/14 by mangeshn@fl_mangeshn

 updated opcode for mul_prev2

Change 131977 on 2003/11/14 by tmartin@tmartin_r400_win

 fixed alu constant programming to use groups of 4

Change 131975 on 2003/11/14 by llefebvr@llefebvre_laptop_r400_emu

 Page 44 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Porting shader to 2.0.

Change 131974 on 2003/11/14 by ashishs@fl_ashishs_r400_win2

 Changinng the description inside the test, to have clear description of the test intention as
well as why it is FAILING

Change 131971 on 2003/11/14 by llefebvr@llefebvre_laptop_r400_emu

 porting shader tests to v2.0.

Change 131970 on 2003/11/14 by ashishs@fl_ashishs_r400_win2

 Test to show that currently instruction memory wrapping has some problems

Change 131965 on 2003/11/14 by tmartin@tmartin_r400_win

 Move the VS and PS base addresses in the constant re-mapping tables to make sure the
entire range can be used

Change 131950 on 2003/11/14 by smoss@smoss_crayola_win

 add missing test

Change 131909 on 2003/11/13 by kevino@kevino_r400_release

 Added tp loop testcases for 32, 64, 128BPP

Change 131907 on 2003/11/13 by mangeshn@fl_mangeshn

 update - added instructions to the test

Change 131902 on 2003/11/13 by tmartin@tmartin_r400_win

 Uses the max of 32 fetch constants in a VS

Change 131896 on 2003/11/13 by rmanapat@rmanapat_r400_release

 This test was not doing fmt00 and fmt01 as advertised it was
 actually stuck on fmt02...problem found thanks to code coverage
 Now fixed

Change 131819 on 2003/11/13 by tmartin@tmartin_r400_win

 fixed alu constant programming

Change 131773 on 2003/11/13 by ashishs@fl_ashishs_r400_win2

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1613 of 1898

 Page 45 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 test foir pix and vtx shader wrapping together

Change 131740 on 2003/11/13 by tmartin@tmartin_r400_win

 now programs alu constants in groups of 4

Change 131737 on 2003/11/13 by ashishs@fl_ashishs_r400_win2

 adding test for pixel shader wrapping

Change 131719 on 2003/11/13 by kevino@kevino_r400_release

 include of control bits in tp_multitexture_01

Change 131678 on 2003/11/12 by tmartin@tmartin_r400_win

 corrected expected output comment

Change 131676 on 2003/11/12 by tmartin@tmartin_r400_win

 vc golds

Change 131675 on 2003/11/12 by tmartin@tmartin_r400_win

 vc golds

Change 131671 on 2003/11/12 by mangeshn@fl_mangeshn

 preliminary check in for the first SP stress test

Change 131666 on 2003/11/12 by ashishs@fl_ashishs_r400_win2

 changed the description of the test

Change 131658 on 2003/11/12 by ashishs@fl_ashishs_r400_win2

 removed the simple test as its not needed anymore

Change 131657 on 2003/11/12 by ashishs@fl_ashishs_r400_win2

 initial checkin for memory wrapping test for vertex shaders. We can wrap the entire
memory as many number of times as we want by changing the variable NUM_SHADERS inside
the test. But inorder to run the test fast on the emulator the test has been shortened and only
wraps the memory once (NUM_SHADERS = 14 will start the auto wrapping)

Change 131632 on 2003/11/12 by cbrennan@cbrennan_r400_emu

 Temporarily crippled border until border bugs get cleaned out.

 Page 46 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 131630 on 2003/11/12 by cbrennan@cbrennan_r400_emu

 Restricted memory footprint size of vol 3d to prevent blowing out memory while creating
the fills.

Change 131626 on 2003/11/12 by cbrennan@cbrennan_r400_win_marlboro

 texture sizes need to be at least 1.

Change 131618 on 2003/11/12 by kevino@kevino_r400_win_marlboro

 Added pixel shader program for randomized case that can handle 1-4 textures, any of
which can be cube mapped (info about which textures are on and which are cube mapped go into
control bits). Also made vertices more contained so smaller prims are produced.

Change 131566 on 2003/11/12 by kevino@kevino_r400_win_marlboro

 For randomized test case, make vertices stay within DISP_DIM ranges. Min tex size is 1
(instead of 0).

Change 131562 on 2003/11/12 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added pixel kill tests

Change 131536 on 2003/11/12 by rmanapat@rmanapat_r400_release

 Just touching these files...had to do a sync -f to have them come up
 even though they were already there...this should fix the EMU problem
 for the MaxMag1 and 2 tests

Change 131522 on 2003/11/12 by rmanapat@rmanapat_r400_release

 Fixed *_rep_* testcases for this test they were EMU error now they
 run to completion...

Change 131418 on 2003/11/11 by tmartin@tmartin_r400_win

 r400sq_const_map_alu_03 - uses all 512 constants in a VS
 r400sq_const_map_alu_04 - uses all 512 constants in a PS
 r400sq_const_map_alu_05 - tests context switching when exercising the PS
 r400sq_const_map_alu_06 - tests context switching when exercising the VS

Change 131395 on 2003/11/11 by ashishs@fl_ashishs_r400_win2

 re-enabling the vs_memory_wrap test by Carlos since now it PASSES again in emulator

Change 131276 on 2003/11/11 by llefebvr@llefebvre_laptop_r400_emu

 These shaders were all broken because the address register was not refreshed prior to use.

 Page 47 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 131212 on 2003/11/11 by mangeshn@fl_mangeshn

 edit - updatig test data to reflect denorms are now being flushed correctly

Change 131158 on 2003/11/10 by mangeshn@fl_mangeshn

 edit - changing order of additions during calculation of the expected value

Change 131152 on 2003/11/10 by mangeshn@fl_mangeshn

 edit - changed order of additions in the opcode

Change 131147 on 2003/11/10 by mangeshn@fl_mangeshn

 update - to flush FP_R400_NAN

Change 131133 on 2003/11/10 by mangeshn@fl_mangeshn

 update

Change 131129 on 2003/11/10 by jhoule@jhoule_r400_linux_marlboro

 Added *_rep_* testcases just like CL#129941 did for tp_simple_02.

Change 131121 on 2003/11/10 by mangeshn@fl_mangeshn

 update

Change 131120 on 2003/11/10 by cbrennan@cbrennan_r400_win_marlboro

 Turned off AS_8, AS_8_8 and MPEG formats from tp_cubic tests.

Change 131119 on 2003/11/10 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added extra texture for MaxMag tests.

Change 131114 on 2003/11/10 by cbrennan@cbrennan_r400_emu

 Fix test to force tiling on with FMT_1 and FMT_1_REVERSE.

Change 131110 on 2003/11/10 by ashishs@fl_ashishs_r400_win

 adding hz and rom vars

Change 131104 on 2003/11/10 by mangeshn@fl_mangeshn

 update

 Page 48 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 131102 on 2003/11/10 by mangeshn@fl_mangeshn

 update

Change 131099 on 2003/11/10 by ashishs@fl_ashishs_r400_win2

 changing the description. Also adding a var for bug tracking

Change 131084 on 2003/11/10 by ashishs@fl_ashishs_r400_win2

 Adding a simple test for bug tracking

Change 131053 on 2003/11/10 by domachi@diotargetxp

 Pick more suitable random range for S & T texcoord on 1/2/3D textures.

Change 131039 on 2003/11/10 by mangeshn@fl_mangeshn

 update

Change 131027 on 2003/11/10 by jhoule@jhoule_r400_linux_marlboro

 On second thought, this file needs more fiddling than just a simple copy...

Change 131025 on 2003/11/10 by jhoule@jhoule_r400_linux_marlboro

 Adding missing file which prevents r400tc_simple_register_indirect from compiling.
 Simply snatched the one from the VC directory.

Change 131006 on 2003/11/10 by domachi@diotargetxp

 Add CubeMaps and StackMaps to tc_random test.

Change 130857 on 2003/11/07 by ashishs@fl_ashishs_r400_win

 adding VTX_INST_BASE and PIX_INST_BASE

Change 130819 on 2003/11/07 by mangeshn@fl_mangeshn

 added export to framebuffer

Change 130810 on 2003/11/07 by ashishs@fl_ashishs_r400_win

 using 64 shaders

Change 130802 on 2003/11/07 by mangeshn@fl_mangeshn

 update - added export to memory for Nan/Inf data tracking

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1614 of 1898

 Page 49 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 130793 on 2003/11/07 by cbrennan@cbrennan_r400_emu

 Got rid of tp_1D_simple_01 test. No need to get rid of it from directed test report.

Change 130792 on 2003/11/07 by kevino@kevino_r400_release

 Removed a couple old tests that are no longer used (and now seg fault)

Change 130791 on 2003/11/07 by cbrennan@cbrennan_r400_emu

 Fix test to not ask for 1d tiled textures. illegal case.

Change 130788 on 2003/11/07 by kevino@kevino_r400_release

 Added stress tests which increase the input drive starve from 0%

Change 130774 on 2003/11/07 by mangeshn@fl_mangeshn

 updated tests

Change 130689 on 2003/11/07 by mangeshn@fl_mangeshn

 update

Change 130686 on 2003/11/07 by kevino@kevino_r400_win_marlboro

 Small change for to filter validation code for clarity (functionaly it should be identical)

Change 130673 on 2003/11/07 by kevino@kevino_r400_win_marlboro

 Copy of tp_mutlitexture_02 for fmt 16

Change 130606 on 2003/11/06 by mangeshn@fl_mangeshn

 update

Change 130596 on 2003/11/06 by cbrennan@cbrennan_r400_emu

 Change tc_simple_1d to use denormalized coords so that it could get past a size of 8192.

Change 130591 on 2003/11/06 by cbrennan@cbrennan_r400_emu

 Un crippled 1d textures.

Change 130580 on 2003/11/06 by ashishs@fl_ashishs_r400_win

 reverted the test back so that it runs (need to add inst wrap which was put by carlos and
check problem)

 Page 50 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 130570 on 2003/11/06 by mangeshn@fl_mangeshn

 update

Change 130546 on 2003/11/06 by kevino@kevino_r400_win_marlboro

 1st checkin of incomplete tp_stress test that uses AGP to have long memory latency to try
to fill up fifo.:w

Change 130520 on 2003/11/06 by kevino@kevino_r400_win_marlboro

 Made 2D aniso test cases use smaller prims (62.5x62.5 instead of 250x250). Since these
test cases are not mipmapped, and perspective is used to force the aniso ratios, I think this
should leave the functionality the same.

Change 130511 on 2003/11/06 by kevino@kevino_r400_release

 Added AGP version of tc_perf_2d.cpp. Also put in 600 cycle AGP latency for all of
these test cases into testCaseParams.pl.

Change 130506 on 2003/11/06 by ashishs@fl_ashishs_r400_win

 changing SIZE_1 var to (SIZE_1-1) since with TP_V2=3 needs the same and now since
TP_V2=3 is ON by defulat (TP_Version 2 ..i think...)

Change 130420 on 2003/11/06 by mkelly@fl_mkelly_r400_win_laptop

 Move constant writes to one packet..

Change 130418 on 2003/11/06 by ashishs@fl_ashishs_r400_win2

 setting env var TP_V2=3 in the var file

Change 130408 on 2003/11/06 by amys@amys_xenos_linux_orl

 code modified so NANs don't cause a discrepancy between windows and linux
emulations

Change 130381 on 2003/11/05 by ashishs@fl_ashishs_r400_win2

 correcting a small error in script

Change 130372 on 2003/11/05 by ashishs@fl_ashishs_r400_win2

 enabling ROM and HZ blocks in regression scripts

Change 130359 on 2003/11/05 by mangeshn@fl_mangeshn

 added coissue test for the MUL_PREV2 instruction

 Page 51 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 130352 on 2003/11/05 by kevino@kevino_r400_release

 Added tp_1D_simple_01, tp_border_02, and tp_simple_01_pos,
tp_mipmap_smallprim_02 to tp4_tc_random.rg

Change 130344 on 2003/11/05 by mkelly@fl_mkelly_r400_win_laptop

 pipe disable tests are obsolete

Change 130335 on 2003/11/05 by mangeshn@fl_mangeshn

 added coissue tests for the SIN and COS instructions

Change 130307 on 2003/11/05 by tmartin@tmartin_r400_win

 changed how vertex data was assigned because NaNs were causing a problem on Linux

Change 130299 on 2003/11/05 by eberger@eberger_r400_linux_marlboro

 Fixed some more errors in r400rb_simple_z.cpp.

Change 130290 on 2003/11/05 by eberger@eberger_r400_linux_marlboro

 Fixed one more minor error.

Change 130286 on 2003/11/05 by eberger@eberger_r400_linux_marlboro

 Corrected an error in a call to the DEPTH_SURFACE constructor.

Change 130281 on 2003/11/05 by llefebvr@llefebvr_r400_emu_montreal

 Fixing SRCC valid GPR valid channel.
 Putting the SERIAL on the right line the the cubic pixel shader program.

Change 130280 on 2003/11/05 by eberger@eberger_r400_linux_marlboro

 Changed the DEPTH_FORMAT in one test.

Change 130269 on 2003/11/05 by eberger@eberger_r400_linux_marlboro

 Created a new test very similar to Xenos's bc_simple_z.cpp.

Change 130228 on 2003/11/05 by kevino@kevino_r400_win_marlboro

 Version of tp_simple_02 where textures reside in AGP. Vertices & color buffer remain
in framebuffer.

Change 130217 on 2003/11/04 by ashishs@fl_ashishs_r400_win2

 Page 52 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Tests were failing due to a change in vcrg.cpp (address clamp disable), now have been
fixed

Change 130215 on 2003/11/04 by ashishs@fl_ashishs_r400_win2

 corrected the syntax errors in the shaders. Now the kille instruction does require a
destination register

Change 130197 on 2003/11/04 by kevino@kevino_r400_win_marlboro

 If tfc.validateFilter() returns false, set volume maps to point, and aniso to disabled.
 Previously only set min/mag to point, and mip to point if it was linear (leave basemap
otherwise).

Change 130175 on 2003/11/04 by cbrennan@cbrennan_r400_emu

 turned on uber_rand test for tp4_tc.
 Turned off 1d textures in known good version of tc_random tp tests.

Change 130153 on 2003/11/04 by ashishs@fl_ashishs_r400_win

 changing the test for TP_V2 with adding each shader for its own combination of sample
location for fetch. Also needed to goldenise the image.

Change 130133 on 2003/11/04 by ashishs@fl_ashishs_r400_win

 Changing test for TP_V2. Also needed to add different shader each fetching the texture
pixel from center/centroid location

Change 130102 on 2003/11/04 by tmartin@tmartin_r400_win

 Tests a high ratio of pixel threads to vertex threads

Change 130101 on 2003/11/04 by tmartin@tmartin_r400_win

 Tests a high ratio (3/4) of vertex threads to pixel threads

Change 130100 on 2003/11/04 by tmartin@tmartin_r400_win

 Uses each thread ID more than once in order to stress the SQ

Change 130099 on 2003/11/04 by tmartin@tmartin_r400_win

 delete

Change 130098 on 2003/11/04 by tmartin@tmartin_r400_win

 Overflows the vertex shader reservation station

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1615 of 1898

 Page 53 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 130097 on 2003/11/04 by tmartin@tmartin_r400_win

 Overflows the pixel shader reservation station

Change 130093 on 2003/11/04 by tmartin@tmartin_r400_win

 delete

Change 130092 on 2003/11/04 by tmartin@tmartin_r400_win

 delete

Change 130084 on 2003/11/04 by tmartin@tmartin_r400_win

 attempts to overflows the vertex shader reservation station

Change 130083 on 2003/11/04 by mkelly@fl_mkelly_r400_win_laptop

 Update test to match Xenos for debugging

Change 130044 on 2003/11/04 by ashishs@fl_ashishs_r400_win

 edited the tests to have BaseMapFilter for TP_V2 =3 also needed to goldenise the tests

Change 129956 on 2003/11/03 by tmartin@tmartin_r400_win

 Overflows the pixel shader reservation stations

Change 129952 on 2003/11/03 by tmartin@tmartin_r400_win

 added r400sq_thread_manage_02, r400sq_thread_manage_03,
r400sq_thread_manage_04

Change 129927 on 2003/11/03 by mangeshn@fl_mangeshn

 added coissue tests for the max and min instructions

Change 129905 on 2003/11/03 by mangeshn@fl_mangeshn

 added coissue tests for the mova and mova_floor instructions

Change 129902 on 2003/11/03 by ashishs@fl_ashishs_r400_win

 changed for TP_V2

Change 129897 on 2003/11/03 by ashishs@fl_ashishs_r400_win

 change for TP_V2

 Page 54 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 129865 on 2003/11/03 by ashishs@fl_ashishs_r400_win

 Need to change gold for this test too.

Change 129864 on 2003/11/03 by ashishs@fl_ashishs_r400_win

 changed the test as per recom from Jocelyn. Also needed to update golds since the current
images seem to be better

Change 129849 on 2003/11/03 by ashishs@fl_ashishs_r400_win

 Changing the test as suggested by Jocelyn for the TP_V2 change. Also needed to change
the gold image since earlier due to precision isssue was incorrect and now produces a more better
image now.

Change 129835 on 2003/11/03 by kevino@kevino_r400_release

 Removed some deug statements I had left in

Change 129833 on 2003/11/03 by kevino@kevino_r400_release

 1st cut at fixing interlaced formats. Still get seg faults for tex sizes about 32x32 or so
(64x64 fails)

Change 129791 on 2003/11/03 by mkelly@fl_mkelly_r400_win_laptop

 Update rt state

Change 129790 on 2003/11/03 by ashishs@fl_ashishs_r400_win

 updating golden.lst file

Change 129788 on 2003/11/03 by ashishs@fl_ashishs_r400_win

 Adding gold for one of the CL test to check under Linux

Change 129785 on 2003/11/03 by mkelly@fl_mkelly_r400_win_laptop

 Update test arrangement, sizing const and const locations.

Change 129783 on 2003/11/03 by ashishs@fl_ashishs_r400_win

 changing the test so that it PASSES under TP_V2=3

Change 129780 on 2003/11/03 by mkelly@fl_mkelly_r400_win_laptop

 Move RT const sizing before setting const

 Page 55 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 129767 on 2003/11/03 by mkelly@fl_mkelly_r400_win_laptop

 Fix test bug where RT const size is now defined before loading RT const

Change 129766 on 2003/11/03 by mkelly@fl_mkelly_r400_win_laptop

 Fixed test bug.

Change 129691 on 2003/10/31 by tmartin@tmartin_r400_win

 added r400sq_thread_manage_01

Change 129688 on 2003/10/31 by tmartin@tmartin_r400_win

 Tests that the expected number of threads are drawn

Change 129679 on 2003/10/31 by kevino@kevino_r400_win_marlboro

 Fixes for getgradients tests. Added 2D testcase. Make sp normalize gradients to 1 for
display. Add testcases to rg file.

Change 129674 on 2003/10/31 by ashishs@fl_ashishs_r400_win

 initial checkin for a test using SQ PERF counters

Change 129669 on 2003/10/31 by llefebvr@llefebvr_r400_emu_montreal

 fixing overwrites in mem-export tests.

Change 129623 on 2003/10/31 by mangeshn@fl_mangeshn

 updated test status documents

Change 129606 on 2003/10/31 by mangeshn@fl_mangeshn

 added coissue tests for mul_const, add_const and sub_const instructions

Change 129604 on 2003/10/31 by ashishs@fl_ashishs_r400_win

 updating test_list and tracker for recent vtx and pix index counter tests

Change 129585 on 2003/10/31 by kevino@kevino_r400_win_marlboro

 Added 1D, 3D, and Cubic getgradients testcases. None work properly yet.

Change 129581 on 2003/10/31 by mangeshn@fl_mangeshn

 added coissue tests for kille, killge, killgt, killne and killone instructions

 Page 56 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 129576 on 2003/10/31 by tien@tien_r400_devel_marlboro

 Backed out last sim.cfg checkin
 Added .rg file for block perf stuff

Change 129558 on 2003/10/31 by ashishs@fl_ashishs_r400_win2

 Changing these 2 tests for output_screen_xy which are currently failing in emu but the
change in test doesnt cause any difference

Change 129554 on 2003/10/31 by ashishs@fl_ashishs_r400_win2

 Adding OUTPUT_SCREEN_XY to all these tests since they has PARAM_GEN as 1.
Verified after regressing these tests.

Change 129547 on 2003/10/31 by tmartin@tmartin_r400_win

 added r400sq_fetch_arb_01 and 02

Change 129536 on 2003/10/31 by amys@amys_xenos_linux_orl

 modify tests as per r400vc tests

Change 129498 on 2003/10/30 by tmartin@tmartin_r400_win

 fetch arbitration tests

Change 129447 on 2003/10/30 by mangeshn@fl_mangeshn

 added coissue tests for mul_prev, add_prev and sub_prev

Change 129444 on 2003/10/30 by llefebvr@llefebvr_r400_linux_marlboro

 Fixing dangling wires in the sq related to performance module.
 Fixing shader due to Kill opcode assembler change.
 Fixing trakcer problem in the TB_SQSP when autocount vtx is on.

Change 129377 on 2003/10/30 by mkelly@fl_mkelly_r400_win_laptop

 Debug aid

Change 129349 on 2003/10/30 by mkelly@fl_mkelly_r400_win_laptop

 Comment out RT and rearrange a bit for full chip test.

Change 129319 on 2003/10/29 by ashishs@fl_ashishs_r400_win

 setting the mip filter to BaseMap as suggested by Jocelyn for TP_V2=3 to get PASSING

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1616 of 1898

 Page 57 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 129313 on 2003/10/29 by ashishs@fl_ashishs_r400_win2

 testing the pix counter when rendering a triangle. Understanding the way pix counter is
incremented (pix shader hit) when rendering a pixels in a triangle.

Change 129283 on 2003/10/29 by mangeshn@fl_mangeshn

 changed to scalar

Change 129272 on 2003/10/29 by mangeshn@fl_mangeshn

 adedd coissue tests for add, sub and mul

Change 129261 on 2003/10/29 by mkelly@fl_mkelly_r400_win_laptop

 Smaller test for full chip debugging...

Change 129245 on 2003/10/29 by kevino@kevino_r400_linux_marlboro

 Fixed a couple typos that left the stack depth > 64 and were causing emu errors.
 Added .rg files for tp4_tc and tc for the tp_multitexture_02 stack map tests

Change 129223 on 2003/10/29 by mkelly@fl_mkelly_r400_win_laptop

 Change a logic | to an add in address calc.

Change 129216 on 2003/10/29 by kevino@kevino_r400_win_marlboro

 Replaced error messages about base and mip maps not being allocated with warnings not
containing the word "error".

Change 129130 on 2003/10/29 by kevino@kevino_r400_win_marlboro

 Updated some more of the stackmap testcases to limit the stack depth to 64

Change 129079 on 2003/10/28 by tmartin@tmartin_r400_win

 updated to work when TP_V2 is 3

Change 129064 on 2003/10/28 by kevino@kevino_r400_win_marlboro

 Removed a couple hacks from tp_mt_tcfunc_stack_clamp.h that I had been using for
testing.

Change 129061 on 2003/10/28 by georgev@devel_georgev_r400_lin2_marlboro_tott

 First revision.

Change 129060 on 2003/10/28 by kevino@kevino_r400_win_marlboro

 Page 58 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Fixed up some of the stack filter and clamp tests. Added some new border size test cases.

Change 129058 on 2003/10/28 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Check in for Laurant to look at it.

Change 129023 on 2003/10/28 by mkelly@fl_mkelly_r400_win_laptop

 Add sc_rcq.dmp

Change 129002 on 2003/10/28 by mangeshn@fl_mangeshn

 added coissue tests for sete, setne, setge, setgt and pred_set_restore instructions

Change 128998 on 2003/10/28 by ashishs@fl_ashishs_r400_win2

 Finalising the test with vsisr_cont settings, gen vtx and pix counters and exporting them
to memory. Also toggling between the destination register for the pix counter between r1-r15
verey 64 points of total 4224 points

Change 128979 on 2003/10/28 by mangeshn@fl_mangeshn

 added simple test for kille register export

Change 128964 on 2003/10/28 by kevino@kevino_r400_win_marlboro

 Added StackMap testcases to tp_multitexture_02 that are replicas of the 3D testcases.
 Have not yet gone through the results to make sure that the testcases are behaving as
expected.

Change 128954 on 2003/10/28 by kevino@kevino_r400_win_marlboro

 Added tp_stack test. Current testcases only test getcomplod and getgradients.

Change 128943 on 2003/10/28 by mkelly@fl_mkelly_r400_win_laptop

 Remove unnecessary constant write...

Change 128936 on 2003/10/28 by ashishs@fl_ashishs_r400_win2

 Test to export pix index count to all GPR's (only possible r1-r15) Using index "i" in pix
shader so that just using one shader the shader can dynamically change the destination register
which it is using, thereby just needing one shader for pix shader as well as testing indexing on
gpr's as well as output to all gpr's

Change 128884 on 2003/10/28 by kevino@kevino_r400_win_marlboro

 uncommented remove of ppm files

 Page 59 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 128881 on 2003/10/28 by smoss@smoss_xenos_linux_orl

 updated for primlib files

Change 128876 on 2003/10/28 by mkelly@fl_mkelly_r400_win_laptop

 update...

Change 128875 on 2003/10/28 by mkelly@fl_mkelly_r400_win_laptop

 update

Change 128848 on 2003/10/27 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added two debug registers.

Change 128833 on 2003/10/27 by ashishs@fl_ashishs_r400_win2

 input the reg index in the test. The test doesnt output on higher index values like 4,5,6....
need to know the reason

Change 128771 on 2003/10/27 by mkelly@fl_mkelly_r400_win_laptop

 First HZ test, now need to migrate it to Xenos...

Change 128769 on 2003/10/27 by mkelly@fl_mkelly_r400_win_laptop

 Add handling for HZ tests

Change 128768 on 2003/10/27 by kevino@kevino_r400_win_marlboro

 Updates to getcomplod and getgradients testcases. The lod and gradients come out from
the emu differently if the opcode is 2D versus StackMap. Since R=0.0 for all vertices, I would
not expect this difference.

Change 128765 on 2003/10/27 by ashishs@fl_ashishs_r400_win

 with help from Jocelyn modified the test so that works with TP_V2=3. Please see below
for desc from Jocelyn

 OK, from what I could observe, you end up hitting mip level 1 for some quads.
 Adding the following lines right before setting the constants in the render_state solves
your issues:
 // Set BASE_MAP filter
 point_texture_constant0.setMIP_FILTER(TFetchConst::Mip_BaseMap);
 point_texture_constant1.setMIP_FILTER(TFetchConst::Mip_BaseMap);
 ...and so on

 Page 60 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 128682 on 2003/10/27 by kevino@kevino_r400_win_marlboro

 Shader programs for getcomplod and getgrad for texture stacks. New cpp file that uses
them not checked in yet.

Change 128680 on 2003/10/27 by ashishs@fl_ashishs_r400_win

 changed the test so that st could bve changed easily

Change 128677 on 2003/10/27 by domachi@diotargetxp

 Fix proper range for LOD_BIAS. SetLODBias should be set as a float.

Change 128672 on 2003/10/27 by amys@amys_xenos_linux_orl

 converted vc tests to tc tests

Change 128618 on 2003/10/27 by mkelly@fl_mkelly_r400_win_laptop

 Fix syntax error from last update.

Change 128617 on 2003/10/27 by mkelly@fl_mkelly_r400_win_laptop

 Fix syntax error from last update.

Change 128616 on 2003/10/27 by mkelly@fl_mkelly_r400_win_laptop

 Fix wrong CP word type.

Change 128498 on 2003/10/24 by ashishs@fl_ashishs_r400_win2

 initial checkin for the test. The test uses vsisr_cont with gen vtx and pix counters and
displaying them on framebuffer(currently 4224 points, generating 4224 vtx count and 4224*4
pixel count since each point is 2X2 pixels). Had to just slightly twist the test from the original
test since after at context switch 64 pixels are given to output no matter how many are rendered
(pixel vector). So the vertex data had to carry appropriate number of points so that we get a
continous pixel count. Need to still put the register indexing inside the test

Change 128491 on 2003/10/24 by mangeshn@fl_mangeshn

 added coissue tests for the pred_set_inv and pred_set_pop instructions

Change 128406 on 2003/10/24 by kevino@kevino_r400_win_marlboro

 Fixed some of the test cases. Prim dimesnions exceeded display dimensions and were
causing an rb assert. Not sure qute why, though. Maybe raster scissors need to be set up as the
display dimensions.

Change 128395 on 2003/10/24 by mangeshn@fl_mangeshn

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1617 of 1898

 Page 61 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 added coissue tests for pred_sete, pred_setne, pred_setgt and pred_setge instructions

Change 128392 on 2003/10/24 by kevino@kevino_r400_win_marlboro

 Added several large odd textures with mipmapping to tp_multitexture_02 in
tp_mt_tcfunc_2D_filter.h

Change 128356 on 2003/10/24 by kevino@kevino_r400_win_marlboro

 Added getcomplod and getgradients testcases to tp_cubic.cpp

Change 128340 on 2003/10/24 by mkelly@fl_mkelly_r400_win_laptop

 Moving and modifying pipe disable tests in sys/rom

Change 128338 on 2003/10/24 by cbrennan@cbrennan_r400_emu

 Add stacks to tc's smoke.rg

Change 128333 on 2003/10/24 by mkelly@fl_mkelly_r400_win_laptop

 Add handling for test_lib/src/chip/sys/rom

Change 128317 on 2003/10/24 by mkelly@fl_mkelly_r400_win_laptop

 Changed stipple auto reset control to "1" instead of "2", since the BOOL data type
 was removed from pa.blk.

Change 128283 on 2003/10/23 by ashishs@fl_ashishs_r400_win2

 finally got the test working perfectly with help from Carlos. Now just need to have color
same as the previous test

Change 128261 on 2003/10/23 by smoss@smoss_xenos_linux_orl

 added rom, housekeeping

Change 128252 on 2003/10/23 by jhoule@jhoule_r400_linux_marlboro

 Added ability to print input and output headers.
 Cleaned up code to be more consistent across testbenches.

Change 128247 on 2003/10/23 by kevino@kevino_r400_win_marlboro

 Adding mip packing setting to tp_multitexture_02. Defaulted to enabled.

Change 128213 on 2003/10/23 by mangeshn@fl_mangeshn

 Page 62 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 added coissue tests for sqrt_iee, fract, trunc and floor instructions

Change 128202 on 2003/10/23 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added tests for non mod 32 texture pitches.

Change 128201 on 2003/10/23 by ashishs@fl_ashishs_r400_win2

 correcting the test since the test has dounble the number of indices

Change 128193 on 2003/10/23 by ashishs@fl_ashishs_r400_win2

 initial checkin for the test with vertex counter, pix counter and the vsisr_cont enabled

Change 128161 on 2003/10/23 by mkelly@fl_mkelly_r400_win_laptop

 Change texture to work with Jocelyn's changes...

Change 128158 on 2003/10/23 by mkelly@fl_mkelly_r400_win_laptop

 Change texture to work with Jocelyn's changes...

Change 128128 on 2003/10/23 by mkelly@fl_mkelly_r400_win_laptop

 Add rts_wait_until

Change 128124 on 2003/10/23 by cbrennan@cbrennan_r400_release

 Enabled endian swap and border color randomizations..

Change 128098 on 2003/10/23 by ashishs@fl_ashishs_r400_win

 updated the descriptions and addded test in tracker

Change 128090 on 2003/10/23 by ashishs@fl_ashishs_r400_win2

 Adding test to do vertex and pixel count in the same test. Thanks for the tip from Carlos
the test works correctly

Change 128078 on 2003/10/23 by mkelly@fl_mkelly_r400_win_laptop

 Move RT idle to after initiator...

Change 128067 on 2003/10/23 by mkelly@fl_mkelly_r400_win_laptop

 Remove two tests from regressions until I fix them...

Change 128064 on 2003/10/23 by mkelly@fl_mkelly_r400_win_laptop

 Page 63 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Moved WAIT_RTS_UNTIL.wait_rt_idle to be immediately after RTS initiator.

Change 128050 on 2003/10/23 by kevino@kevino_r400_win_marlboro

 Fixed test-created sp file so that settexlod is right before the tfetches that use it. If ALu
instr's are in between them.

Change 128047 on 2003/10/23 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added debug register read on test completion.

Change 128041 on 2003/10/23 by kevino@kevino_r400_win_marlboro

 Needed by tp_multitexture_01 and _02

Change 128031 on 2003/10/23 by ashishs@fl_ashishs_r400_win

 due to s script problem we need to add new line at the end of the test_list

Change 128017 on 2003/10/23 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 128016 on 2003/10/23 by mkelly@fl_mkelly_r400_win_laptop

 Adjustments...

Change 128015 on 2003/10/23 by mkelly@fl_mkelly_r400_win_laptop

 Adjustments...

Change 128013 on 2003/10/23 by mkelly@fl_mkelly_r400_win_laptop

 Update comments...

Change 128012 on 2003/10/23 by mkelly@fl_mkelly_r400_win_laptop

 Set size correctly.

Change 127974 on 2003/10/22 by ashishs@fl_ashishs_r400_win2

 Finally got the test working with help from Carlos and Laurent. Had test issues so just
simplified the test to render as many points as needed without caring about the render packet size
in one render pass

Change 127958 on 2003/10/22 by mangeshn@fl_mangeshn

 added co-issue tests for recip_sqrt_clamped, recip_sqrt_ff and recip_sqrt_ieee. Updated
SP test list

 Page 64 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 127936 on 2003/10/22 by kevino@kevino_r400_win_marlboro

 Commented out dumpPPM commands so that the tests wouldn't write out the textures to
ppm files.

Change 127931 on 2003/10/22 by kevino@kevino_r400_win_marlboro

 Commented out SaveBaseMap and SaveMipLevels where they were set to true- no need
to dump them except for when writing the test and making sure the textures come out as
expected.

Change 127911 on 2003/10/22 by mangeshn@fl_mangeshn

 modified test data set and switch off #VERBOSE. Updated SP test list

Change 127901 on 2003/10/22 by mkelly@fl_mkelly_r400_win_laptop

 More simple texture cases

Change 127891 on 2003/10/22 by tmartin@tmartin_r400_win

 first complete version of the test pending a fix in the emulator

Change 127889 on 2003/10/22 by tmartin@tmartin_r400_win

 cleaned up a couple areas of the code so they don't cause confusion in the future

Change 127887 on 2003/10/22 by domachi@diotargetxp

 Add some output to debug random seed problem

Change 127868 on 2003/10/22 by kevino@kevino_r400_win_marlboro

 Added getcomplod tests for 1D, 3D, and Cubic maps. Tex Stacks still need to be done.

Change 127867 on 2003/10/22 by mkelly@fl_mkelly_r400_win_laptop

 More RTS texture samples...

Change 127803 on 2003/10/22 by mangeshn@fl_mangeshn

 added coissue test for exp_ieee

Change 127801 on 2003/10/22 by mangeshn@fl_mangeshn

 updated shaders

Change 127778 on 2003/10/22 by mkelly@fl_xenos_regspec

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1618 of 1898

 Page 65 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Update

Change 127770 on 2003/10/22 by mkelly@fl_mkelly_r400_win_laptop

 Update for latest simd arch

Change 127757 on 2003/10/22 by mkelly@fl_mkelly_r400_win_laptop

 VC address clamp disable by default.

Change 127756 on 2003/10/22 by mkelly@fl_mkelly_r400_win_laptop

 VC Address clamp disable by default

Change 127751 on 2003/10/22 by mkelly@fl_mkelly_r400_win_laptop

 Address clamp disable by default

Change 127740 on 2003/10/22 by mkelly@fl_mkelly_r400_win_laptop

 Disable address clamping in VC

Change 127675 on 2003/10/21 by grayc@grayc_xenos_linux_orl

 new script to generate a rg file

Change 127667 on 2003/10/21 by tmartin@tmartin_r400_win

 removed some extraneous set fifo depth commands

Change 127663 on 2003/10/21 by tmartin@tmartin_r400_win

 made some texture constant changes

Change 127654 on 2003/10/21 by mangeshn@fl_mangeshn

 added co-issue tests for log_clamped and log_ieee

Change 127636 on 2003/10/21 by mkelly@fl_mkelly_r400_win_laptop

 RECTANGLE_LIST, 4 textures, 64x64

Change 127631 on 2003/10/21 by mkelly@fl_mkelly_r400_win_laptop

 nonRTS, 4 textures, 64x64, using to debug RTS 4 textures...

Change 127627 on 2003/10/21 by mangeshn@fl_mangeshn

 Page 66 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 added recip_ieee and recip_ff coissue tests

Change 127621 on 2003/10/21 by ashishs@fl_ashishs_r400_win

 Added an option -g to goldenise the param tests in PERFORCE, but however this option
doesnt check if the image PASSED. Kept this feature for later and just got the above
functionality working

Change 127618 on 2003/10/21 by ashishs@fl_ashishs_r400_win

 had some unknown problem

Change 127613 on 2003/10/21 by kevino@kevino_r400_win_marlboro

 Added several 2D getcomplod test cases. Still need to add one for each of 1D, 3D,
Cubic, and Tex Stack.

Change 127606 on 2003/10/21 by ashishs@fl_ashishs_r400_win

 Goldenised the r400sc_multi* param tests for AMY after learning how to goldenise the
param tests from Chris

Change 127558 on 2003/10/21 by mangeshn@fl_mangeshn

 added test for - scalar recip_clamp inst tested with all vector inst for coissue

Change 127543 on 2003/10/21 by tien@tien_r400_devel_marlboro

 Sanity check-in of TP block perf tests
 Did not run release_parts_lib.pl, but as these tests
 are not in regression and are not RTL, I should be able to
 get away with it...
 No other test should be using the 2 shader programs either!!!

Change 127536 on 2003/10/21 by ashishs@fl_ashishs_r400_win

 Adding 3 new tests to test_list and Test_tracker.

 Also updating description inside the tests. Also inside pix shader test increased the count
from 512 to 16895 as earlier.

Change 127529 on 2003/10/21 by mkelly@fl_mkelly_r400_win_laptop

 Corrected textures 0-3 sizes to match gold image after Chris Brennan's CL 125305.

Change 127505 on 2003/10/21 by domachi@diotargetxp

 Ensure random shader generation is seeded with the -seed command line argument.

 Page 67 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 127450 on 2003/10/20 by ashishs@fl_ashishs_r400_win2

 Changed the test so that it uses the
RENDER_ENGINE::INDIRECT_COMMAND_STREAM_MODE as recomemded by Kevin
Ryan and Carlos so that these tests PASS in hardware.(currently FAILING in hardware due to
high number of packets). Need to verify with Dan Clifton if the same PASS in hardware now ???

Change 127429 on 2003/10/20 by ashishs@fl_ashishs_r400_win2

 Changing the test so that it uses the auto generated pixel shader counter to create an
export address.

Change 127415 on 2003/10/20 by llefebvr@llefebvr_r400_emu_montreal

 updated tp_simple_02 vertex shader to new VS 2.0 with serialize.

Change 127409 on 2003/10/20 by llefebvr@llefebvr_r400_emu_montreal

 changed the x_mask test to use shader version 2 with serialize instead of the old v1.0

Change 127381 on 2003/10/20 by tmartin@tmartin_r400_win

 added the vc test r400vc_data_format_01

Change 127380 on 2003/10/20 by mkelly@fl_mkelly_r400_win_laptop

 Load constants in multiples of 4.

Change 127375 on 2003/10/20 by kevino@kevino_r400_win_marlboro

 Some changes to tp_cubic.cpp to make sure color doesn't go to 0 when one of the tex
sizes goes to 1.

Change 127370 on 2003/10/20 by ashishs@fl_ashishs_r400_win2

 Editing the FAILING SP tests. These tests were FAILINg due to the predication
optimization put by Laurent. Were valid tests earlier, but the emulator was changed to match
hardware.

Change 127359 on 2003/10/20 by cbrennan@cbrennan_r400_emu

 add cubic rg file.

Change 127352 on 2003/10/20 by mkelly@fl_mkelly_r400_win_laptop

 Load constants in multiples of 4.

Change 127350 on 2003/10/20 by mkelly@fl_mkelly_r400_win_laptop

 Page 68 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Display exported data in framebuffer for test debugging.

Change 127343 on 2003/10/20 by mkelly@fl_mkelly_r400_win_laptop

 Load constants in multiples of 4.

Change 127340 on 2003/10/20 by mkelly@fl_mkelly_r400_win_laptop

 Load constants in multiples of 4.

Change 127335 on 2003/10/20 by mkelly@fl_mkelly_r400_win_laptop

 Load constants in multiples of 4.

Change 127331 on 2003/10/20 by tmartin@tmartin_r400_win

 first gold check in

Change 127330 on 2003/10/20 by tmartin@tmartin_r400_win

 first check in

Change 127327 on 2003/10/20 by tmartin@tmartin_r400_win

 updated texture constants

Change 127176 on 2003/10/17 by kevino@kevino_r400_win_marlboro

 Added large tex cases.

Change 127172 on 2003/10/17 by tmartin@tmartin_r400_win

 added r400vc_cntl_07

Change 127167 on 2003/10/17 by tmartin@tmartin_r400_win

 a slight twist on the cntl_04 test that stresses the coherency regs

Change 127163 on 2003/10/17 by tmartin@tmartin_r400_win

 cleaned up the code

Change 127151 on 2003/10/17 by ashishs@fl_ashishs_r400_win2

 editing the test so now it does the address export as well as the generated counter value
for pix. Just to show that the address generated is correct and still the pix shader counter value is
incorrect.

Change 127107 on 2003/10/17 by cbrennan@cbrennan_r400_emu

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1619 of 1898

 Page 69 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Aesthetic fix.

Change 127101 on 2003/10/17 by tmartin@tmartin_r400_win

 added r400vc_rsp_01

Change 127097 on 2003/10/17 by tmartin@tmartin_r400_win

 fixed typo

Change 127086 on 2003/10/17 by tmartin@tmartin_r400_win

 one case was drawn overlapping another. this is fixed

Change 127049 on 2003/10/16 by tien@tien_r400_devel_marlboro

 Updated perf tests

Change 127034 on 2003/10/16 by kevino@kevino_r400_win_marlboro

 Updated tp_multitexture_02 randomized case

Change 127032 on 2003/10/16 by smoss@smoss_crayola_win

 added vc

Change 127025 on 2003/10/16 by cbrennan@cbrennan_r400_emu

 Saving changes to test that allow me to test to make sure mip faces are flipped properly.

Change 127005 on 2003/10/16 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Made tests perspective correct by default.

Change 127003 on 2003/10/16 by tmartin@tmartin_r400_win

 test the redundant shader pipe functionality

Change 126998 on 2003/10/16 by tmartin@tmartin_r400_win

 checkpoint

Change 126989 on 2003/10/16 by cbrennan@cbrennan_r400_win_branch

 Fix shader program to new new new new new new new cube map instruction.

Change 126947 on 2003/10/16 by kevino@kevino_r400_win_marlboro

 Page 70 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Got rid of old highlat test cases that were intended for back when the TC tried to let
texture fetches slip past high-latency vtx requests

Change 126925 on 2003/10/16 by tmartin@tmartin_r400_win

 added more fifo tests and fixed a calculation error in the spreadsheet

Change 126920 on 2003/10/16 by tmartin@tmartin_r400_win

 delete

Change 126912 on 2003/10/16 by tmartin@tmartin_r400_win

 added new tests to vary the l2 fifo depth

Change 126909 on 2003/10/16 by tmartin@tmartin_r400_win

 split different fifo depth settings into separate files to work with the vc testbench

Change 126887 on 2003/10/16 by smoss@smoss_crayola_win

 build test list true

Change 126877 on 2003/10/15 by csampayo@fl_csampayo3

 Updated for the following tests:
 r400sq_gpr_index_01
 r400sq_gpr_index_02

Change 126864 on 2003/10/15 by tmartin@tmartin_r400_win

 added a better description

Change 126858 on 2003/10/15 by cbrennan@cbrennan_r400_release

 Cube mapping should clamp edge texels to get rid of seams. This is NOT the mip issue
tho.

Change 126856 on 2003/10/15 by ashishs@fl_ashishs_r400_win2

 Test to generate counter using gen_index_vtx and as well as using the 2 component
 vsisr to fetch the data and validating it to be correct. Currently the counter is
 set so that it can count till 16895 (basically 16895 points/vertices are rendered
 in the program). But can be changed to increase and decrease the number of
 points/vertices and thereby increase/decrease the auto counter generated by
 gen_index_vtx. Also the counter has been exported to memory to see the value
 that it is incremented by is correct. Also since the vtx shader uses dual component
 feature of vsisr, the vertex data as well as indices has been appropriately
 evaluated to cause a difference in the image for the same effect.

 Page 71 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 The counter can be increased or decraesed conveniently using the variable
 in the test as follows :
 const uint32 aperture = 16895 ; //atleast has to be 256 or RENDER PACKET SIZE

Change 126855 on 2003/10/15 by cbrennan@cbrennan_r400_release

 Tweaks to cache thrash test to hopefully make it better.

Change 126836 on 2003/10/15 by tmartin@tmartin_r400_win

 added the rest of the precision tests to the regression and removed the debug register from
full chip

Change 126819 on 2003/10/15 by cbrennan@cbrennan_r400_release

 Add a cache thrash test.
 edit tests to turn off back face culling because half of the randoms werent displaying the
image.
 Add some rg files i want to keep around.
 Add random tests for the cache thrashing and face crossing to the TC and TP suite.

Change 126809 on 2003/10/15 by kevino@kevino_r400_win_marlboro

 Added non-pow2 and rectangular test cases. Also added random texture format tests.
Made random tex sized non-pow2.

Change 126797 on 2003/10/15 by csampayo@fl_csampayo_r400

 Adding GPR loop indexing tests

Change 126785 on 2003/10/15 by tmartin@tmartin_r400_win

 set the texture constant pitch

Change 126759 on 2003/10/15 by kevino@kevino_r400_win_marlboro

 Added w to tp_cubic.cpp. Added persp case which changes w from 1.0.

Change 126754 on 2003/10/15 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Even more aniso 14to1 fixes.

Change 126740 on 2003/10/15 by tmartin@tmartin_r400_win

 enabled the second case

Change 126728 on 2003/10/15 by georgev@devel_georgev_r400_lin2_marlboro_tott

 More changes for 14to1 aniso.

 Page 72 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 126727 on 2003/10/15 by kevino@kevino_r400_win_marlboro

 Added various random test cases:
 randomized : random stq, ordered random xy
 random_vtx_stq : random stq, original xy
 random_vtx_xy_ordered : original stq, ordered random xy
 random_vtx_xy : original stq, random xy
 random_vtx_all : random stq, random xy

 ordered random xy means that it will draw a tri strip that does not fold back over itself.

Change 126694 on 2003/10/15 by cbrennan@cbrennan_r400_release

 Renamed tp_mip_cubic to tp_mip_face_cross

Change 126646 on 2003/10/14 by kevino@kevino_r400_win_marlboro

 Updated tp_cubic test that hits the faces correctly. Also, draw multiple rows, each
downscalled from the last to hit the various mip levels. (mip level is encoded in
green=level/16.0)

Change 126644 on 2003/10/14 by tmartin@tmartin_r400_win

 updates

Change 126613 on 2003/10/14 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Changed texture map for 14to1 aniso debug.

Change 126561 on 2003/10/14 by ashishs@fl_ashishs_r400_win2

 Test to validate the gen_index_pix counter. The test doesnt seem to produce the counter
correctly, so currently under validation.

Change 126551 on 2003/10/14 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Reactivated border fraction and get gradients (new shaders).

Change 126546 on 2003/10/14 by kevino@kevino_r400_win_marlboro

 1st cut at cubic test, but I think I am always getting just one face.

Change 126538 on 2003/10/14 by jhoule@jhoule_r400_linux_marlboro_reg

 Temporarily adding a simpler version of GetBorderColorFraction for the RTL to test
against

Change 126537 on 2003/10/14 by cbrennan@cbrennan_r400_release

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1620 of 1898

 Page 73 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Tweaked range of random coords.

Change 126523 on 2003/10/14 by domachi@diotargetxp

 Fix vertex fetch stride of position shader when using the Random Shader Generator
(RSG)

Change 126521 on 2003/10/14 by ashishs@fl_ashishs_r400_win2

 Tests changed due to Chris Brenan's change #125305 Needed to shift the texture coord
by 3 bits. Essentially "SIZE_1" in all the tests below have been shifted by 3 bits

Change 126460 on 2003/10/13 by ashishs@fl_ashishs_r400_win

 correcting the test

Change 126436 on 2003/10/13 by kevino@kevino_r400_win_marlboro

 Added new max/min mip clamp tests

Change 126406 on 2003/10/13 by ashishs@fl_ashishs_r400_win

 optimizing

Change 126403 on 2003/10/13 by ashishs@fl_ashishs_r400_win

 can safely increase the number of points to 16384 to be displayed on the screen

Change 126390 on 2003/10/13 by ashishs@fl_ashishs_r400_win

 Adding test to gen_index_vtx

Change 126360 on 2003/10/13 by kevino@kevino_r400_win_marlboro

 Set volume mag.min filter to be linear in the BLL cases.

Change 126355 on 2003/10/13 by kevino@kevino_r400_win_marlboro

 Just added a few commented lines (which show various tfetch options of using comp
and/or reg grad)

Change 126351 on 2003/10/13 by kevino@kevino_r400_win_marlboro

 Fixed getset_gradient test to get the grads, square them or double them, and set back to H
and V, then lookup texture with new grads.
 Changed texture for grad_exp_adjust tests

Change 126348 on 2003/10/13 by tien@tien_r500_emu

 Page 74 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Changed word counts for lod/coord FIFO to 32 to match RAM
 Added ati_dff_in to tp4_tc testbench for TP_SQ_dec
 Misc. changes to perf test...

Change 126346 on 2003/10/13 by kevino@kevino_r400_win_marlboro

 Added grad_exp_adjust_h and _v testcases:
 aniso_2D_grad_exp_adjust_neg_16_9
 aniso_2D_grad_exp_adjust_neg_8_1
 aniso_2D_grad_exp_adjust_pos0_7
 aniso_2D_grad_exp_adjust_pos8_15

Change 126340 on 2003/10/13 by domachi@diotargetxp

 Fix problem where multiple parameter cache allocs occured were generated using
random shader generation. The position shader should not export to the parameter cache, but let
the random shader generator do that.

Change 126339 on 2003/10/13 by kevino@kevino_r400_linux_marlboro

 Changes pos testcase to have exp_adj_all of 31, which is max, not 32.

Change 126333 on 2003/10/13 by tmartin@tmartin_r400_win

 added r400vc_fmt_precision_05 and r400vc_fmt_precision_06

Change 126328 on 2003/10/13 by cbrennan@cbrennan_r400_win_branch

 increase random fmt range to hit 61

Change 126323 on 2003/10/13 by jhoule@jhoule_r400_linux_marlboro

 Changed default test

Change 126321 on 2003/10/13 by ashishs@fl_ashishs_r400_win

 setting up constants inside the test since was being used inside the pix shader

Change 126226 on 2003/10/10 by cbrennan@cbrennan_r400_emu

 Release from my emu branch: texture stacks for TP as well.
 Leda rule tweaks
 add more .rg files

Change 126223 on 2003/10/10 by tmartin@tmartin_r400_win

 stress test 1

 Page 75 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 126194 on 2003/10/10 by ashishs@fl_ashishs_r400_win2

 Changing the tests so that they output screen XY. The tests had PARAM_GEN = 1 or
PARAM_GEN_RTS =1 but didnt have OUTPUT_SCREEN_XY = 0 or
OUTPUT_SCREEN_XY_RTS = 0 because of which it caused problem in hardware, getting
uninit data on OUTPUT_SCREEN_XY

Change 126090 on 2003/10/10 by ashishs@fl_ashishs_r400_win

 Changing the shaders for the HOS adaptive tests so that while doing the mem exports the
ea has MULADD instruction in it otherwise it asserts in SX

Change 126067 on 2003/10/10 by llefebvr@llefebvr_r400_emu_montreal

 Swaping no flush for a real gfxIdle.

Change 126063 on 2003/10/10 by llefebvr@llefebvr_r400_emu_montreal

 Put the wait in the wrong place.... It wasn't doing anything.

Change 126062 on 2003/10/10 by llefebvr@llefebvr_r400_emu_montreal

 Inserting wait GFX idle to wait for results of pass 1 before going to 2.

Change 126025 on 2003/10/10 by cbrennan@cbrennan_r400_release

 Fixed some test errors.

Change 125992 on 2003/10/09 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added S and Q values of 0.5.

Change 125990 on 2003/10/09 by ashishs@fl_ashishs_r400_win

 changing pred optimizations

Change 125987 on 2003/10/09 by ashishs@fl_ashishs_r400_win

 changing pred optimization

Change 125983 on 2003/10/09 by ashishs@fl_ashishs_r400_win

 removing pred optimizations

Change 125973 on 2003/10/09 by ashishs@fl_ashishs_r400_win2

 correcting the path to the gold (t:\r400\gold -> t:\xenos\gold)

Change 125969 on 2003/10/09 by ashishs@fl_ashishs_r400_win

 Page 76 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 changing the shders for the predication optimiztion

Change 125965 on 2003/10/09 by omesh@omesh_r400_linux_marlboro

 Added 2 and 4 sample specific versions of these tests on Larry's
 request. Verified that they compile and run on Linux.

Change 125957 on 2003/10/09 by llefebvr@llefebvr_r400_emu_montreal

 Fixing RT test.

Change 125900 on 2003/10/09 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Partialy complete files. Do not use.

Change 125897 on 2003/10/09 by ashishs@fl_ashishs_r400_win2

 changing the shaders to remove the optimizations for predications by manually putting
(P) and (!P) and removing ALL IF's

Change 125805 on 2003/10/09 by lseiler@lseiler_r400_win_marlboro1

 Removed 8-sample test from regress_rb

Change 125792 on 2003/10/09 by tmartin@tmartin_r400_win

 converted vc test to tc test

Change 125730 on 2003/10/08 by ashishs@fl_ashishs_r400_win

 Not use the optimization by setting manually (p) or (!p) before each ALU instruction
(only the ones having address register, as recom by Laurent) and remove all ifs.

Change 125726 on 2003/10/08 by smoss@smoss_xenos_linux_orl

 added vc stuff

Change 125721 on 2003/10/08 by ashishs@fl_ashishs_r400_win

 Not use the optimization by setting manually (p) or (!p) before each ALU instruction
(only the ones having address register, as recom by Laurent) and remove all ifs.

Change 125715 on 2003/10/08 by tmartin@tmartin_r400_win

 changed the texture size field to reflect the new packing order

Change 125704 on 2003/10/08 by tmartin@tmartin_r400_win

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1621 of 1898

 Page 77 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 commented out r400vc_base_addr_range_pci_02

Change 125696 on 2003/10/08 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Changed border color to white and changed wrap mode.

Change 125677 on 2003/10/08 by tmartin@tmartin_r400_win

 added "MH.HDP_FB_START.write(frame_buffer_start);" to protect against bugs in
future tests that use these as a base

Change 125671 on 2003/10/08 by ashishs@fl_ashishs_r400_win

 Not use the optimization by setting manually (p) or (!p) before each ALU instruction
(only the ones having address register, as recom by Laurent) and remove all ifs.

Change 125656 on 2003/10/08 by rmanapat@rmanapat_r400_release

 Added til_fmt00_l and til_fmt01_l testcases

Change 125622 on 2003/10/08 by cbrennan@cbrennan_r400_emu

 Integrate code from branch:
 Implemented texture stacks in the TC.
 integrated some rg files back from TOTT.
 Tweaked leda rules for tca and tcb.
 Added texture stacks to nightly tests and randoms.

Change 125613 on 2003/10/08 by lseiler@lseiler_r400_win_marlboro2

 Increase precision of bypass path for 16-bit components, so that 16-bit RF can be
generated accurately

Change 125588 on 2003/10/08 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Fix test bug with new FMT_1_1_1_1 format.

Change 125569 on 2003/10/08 by kevino@kevino_r400_linux_marlboro

 rg file to run some of the dxt formats

Change 125555 on 2003/10/08 by tmartin@tmartin_r400_win

 removed some unused code

Change 125510 on 2003/10/07 by tmartin@tmartin_r400_win

 Page 78 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 added r400vc_dword_alignment_01, r400vc_dword_alignment_02,
r400vc_dword_alignment_03, r400vc_dword_alignment_04, r400vc_sector_reuse_01,
r400vc_sector_reuse_02

Change 125484 on 2003/10/07 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added some extra code for future tests.

Change 125468 on 2003/10/07 by georgev@devel_georgev_r400_lin2_marlboro_tott

 First set of corrections.

Change 125455 on 2003/10/07 by tmartin@tmartin_r400_win

 checks sector functionality and 512 bit request sizes

Change 125451 on 2003/10/07 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Changed 1 to 1 Aniso to Disable.

Change 125443 on 2003/10/07 by georgev@devel_georgev_r400_lin2_marlboro_tott

 First round.

Change 125393 on 2003/10/07 by jhoule@jhoule_r400_linux_marlboro

 Added pix_mask

Change 125367 on 2003/10/07 by mkelly@fl_mkelly_r400_win_laptop

 Multi-pass pixel shader data dependent predication, 50% complete

Change 125358 on 2003/10/07 by tmartin@tmartin_r400_win

 fixed a typo with one of the texture coordinate fetches

Change 125347 on 2003/10/07 by tmartin@tmartin_r400_win

 test wrapping at the high end of the 32 bit address range

Change 125346 on 2003/10/07 by tmartin@tmartin_r400_win

 test clamping at the high end of the 32 bit address range

Change 125341 on 2003/10/07 by tmartin@tmartin_r400_win

 updated some non-essential code to make the test more complete

Change 125318 on 2003/10/07 by cbrennan@cbrennan_r400_emu

 Page 79 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Reenable linear filtering.

Change 125305 on 2003/10/07 by cbrennan@cbrennan_r400_emu

 Added fmt61 tests (U1111) and DXN tests that should have been there anyway.

 Had x%2=0 and x%2=1 cases swapped for DXT3A_AS_1_1_1_1.
 Also didnt have test cases defined for fmt49 in mip_cubic and stack tests.

 Changed mip stacks to be multiples of 4 instead of powers of two.

 Remove cp*e2 tests from other peoples sanity checks since TConst size field change
breaks cp microcode.

 Added FMT_DXT3A_AS_1_1_1_1 to emu, test lib, and tx_simple_* tests.

 Separated 2d and stack size tconst packing, but left both at the same 13 bit fully packed.
 Changed tconst size packing in HW
 Changed testbench to turn on TPC checking more often. Was ignoring many fields when
it thought they werent used.
 Changed tcf_no_tpc in tc testbench to just be called tcf to keep waveform .rc
compatibility with tp4_tc testbench.
 Removed tests from emulator regress_e, release_parts_lib and daily_regress that failed
with new size packing, but they are e2 tests which are no longer supported and need to have a
microcode change to pass.

 Added texture stacks to tests, primlib, cmn_lib, and emu.

Change 125302 on 2003/10/07 by tmartin@tmartin_r400_win

 test the dword alignment with strides of 16 to 1 and move the base address so the stride
reaches to the end of the cache line

Change 125295 on 2003/10/07 by cbrennan@cbrennan_r400_linux_marlboro

 Last batch.

Change 125292 on 2003/10/07 by cbrennan@cbrennan_r400_linux_marlboro

 rg file that is the release_parts_lib list.

Change 125290 on 2003/10/07 by cbrennan@cbrennan_r400_linux_marlboro

 Added some rg files.

Change 125276 on 2003/10/07 by tmartin@tmartin_r400_win

 initialized boolean constants before drawing points

 Page 80 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 125270 on 2003/10/07 by mkelly@fl_mkelly_r400_win_laptop

 Update for Xenos

Change 125262 on 2003/10/07 by tmartin@tmartin_r400_win

 fixed a typo. reset the case loop start to 0

Change 125259 on 2003/10/07 by mkelly@fl_mkelly_r400_win_laptop

 Change for Xenos msaa

Change 125255 on 2003/10/07 by mkelly@fl_mkelly_r400_win_laptop

 Change msaa 8 to msaa 4 for Xenos

Change 125174 on 2003/10/06 by tmartin@tmartin_r400_win

 the final dword of memory is now getting accessed

Change 125170 on 2003/10/06 by tmartin@tmartin_r400_win

 fixed some typos

Change 125161 on 2003/10/06 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Changed interlaced format to 4x4.

Change 125131 on 2003/10/06 by smoss@smoss_xenos_linux_orl

 increased time between bsubs

Change 125057 on 2003/10/06 by kevino@kevino_r400_emu

 Added this in so it can pick up GetEnvPath from gfx_utils

Change 125045 on 2003/10/06 by ashishs@fl_ashishs_r400_win

 Adding Chris Hammer to the nightly regressions

Change 125024 on 2003/10/06 by ashishs@fl_ashishs_r400_win

 Added Mark to nightly regressions so he could get the SC results

Change 124946 on 2003/10/03 by cbrennan@cbrennan_r400_release

 Forgot to release test change to reduce known broken cases for the time being.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1622 of 1898

 Page 81 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 124916 on 2003/10/03 by mangeshn@fl_mangeshn

 added dot2add inf/nan test to the test list

Change 124915 on 2003/10/03 by ashishs@fl_ashishs_r400_win2

 making a cp_regress_group and adding John, Alex, Frank and Mark to it

Change 124912 on 2003/10/03 by ashishs@fl_ashishs_r400_win2

 Adding Mark Earl to the nightly regressions

Change 124911 on 2003/10/03 by mkelly@fl_mkelly_r400_win_laptop

 Set num samples to 4msaa

Change 124909 on 2003/10/03 by mangeshn@fl_mangeshn

 upadting tests

Change 124902 on 2003/10/03 by tmartin@tmartin_r400_win

 added r400vc_fetch_addr_range_03

Change 124870 on 2003/10/03 by ashishs@fl_ashishs_r400_win

 updating the path for the trackers which were earlier under t:\r400\ and now under
t:\xenos\

Change 124868 on 2003/10/03 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Removed FMT_32_32_32_FLOAT from test list.

Change 124859 on 2003/10/03 by mkelly@fl_mkelly_r400_win_laptop

 Real Time Stream with max nested subroutines and loops with 4 parameter dependent
predication.

Change 124851 on 2003/10/03 by llefebvr@llefebvr_r400_emu_montreal

 Interpolation precision change to meet HW and timing.

Change 124830 on 2003/10/03 by mkelly@fl_mkelly_r400_win_laptop

 remove r400sc_template_01

Change 124817 on 2003/10/03 by mangeshn@fl_mangeshn

 update

 Page 82 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 124815 on 2003/10/03 by mangeshn@fl_mangeshn

 update

Change 124814 on 2003/10/03 by mangeshn@fl_mangeshn

 update

Change 124808 on 2003/10/03 by kevino@kevino_r400_linux_marlboro

 P4 delete of old outdated aniso test (that didn't do aniso correctly anyway)

Change 124798 on 2003/10/03 by mangeshn@fl_mangeshn

 updated DOT4 inf/nan

Change 124794 on 2003/10/03 by ashishs@fl_ashishs_r400_win2

 sorting test_list

Change 124793 on 2003/10/03 by mangeshn@fl_mangeshn

 updated DOT3 inf/nan to new template

Change 124789 on 2003/10/03 by ashishs@fl_ashishs_r400_win2

 adding tests

Change 124783 on 2003/10/03 by ashishs@fl_ashishs_r400_win2

 adding floor scalr instruction

Change 124777 on 2003/10/03 by ashishs@fl_ashishs_r400_win2

 added test for vector floor

Change 124767 on 2003/10/03 by ashishs@fl_ashishs_r400_win2

 Added test for floor vector

Change 124765 on 2003/10/03 by ashishs@fl_ashishs_r400_win2

 editing the test to make it scalar only test

Change 124764 on 2003/10/03 by tmartin@tmartin_r400_win

 fixed some bugs

 Page 83 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 124762 on 2003/10/03 by kevino@kevino_r400_linux_marlboro

 Fixed display pitch- had not set it to match disp_x_dim for aniso cases

Change 124759 on 2003/10/03 by ashishs@fl_ashishs_r400_win2

 disabling print statements and cleaning up

Change 124753 on 2003/10/03 by ashishs@fl_ashishs_r400_win2

 Added trunc vector operation

Change 124728 on 2003/10/03 by ashishs@fl_ashishs_r400_win2

 inf nan test for scalar trunc

Change 124727 on 2003/10/03 by mangeshn@fl_mangeshn

 updated to final version

Change 124725 on 2003/10/02 by ashishs@fl_ashishs_r400_win2

 adding vector instruction

Change 124724 on 2003/10/02 by ashishs@fl_ashishs_r400_win2

 seperating out scalar and vector instruction, submit scalar

Change 124722 on 2003/10/02 by ashishs@fl_ashishs_r400_win2

 finalising the shader and removing scalar instruction specific stuff

Change 124691 on 2003/10/02 by kevino@kevino_r400_linux_marlboro

 Fixed tp_multitexture_01 and _02 aniso tests so that they do the levels they say they do.

Change 124677 on 2003/10/02 by mangeshn@fl_mangeshn

 preliminary check in for dot2add inf/nan

Change 124672 on 2003/10/02 by tmartin@tmartin_r400_win

 added
 - r400vc_fmt_precision_08
 - r400vc_fmt_precision_10
 - r400vc_fetch_addr_range_02

Change 124670 on 2003/10/02 by tmartin@tmartin_r400_win

 Page 84 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 test when a negative offset causes the fetch address to be less than 0

Change 124669 on 2003/10/02 by ashishs@fl_ashishs_r400_win2

 adding 'VfUseTc = 0' instead of 'UseVC = 1'

Change 124655 on 2003/10/02 by ashishs@fl_ashishs_r400_win2

 Adding the sin-cos tests

Change 124654 on 2003/10/02 by kevino@kevino_r400_linux_marlboro

 Update the aniso tests to hit the advertised ratios. The *128x128* testcases set max
aniso to 16:1 no matter what and rely on the prim setup to hit the correct ratios.

Change 124628 on 2003/10/02 by cbrennan@cbrennan_r400_linux_marlboro

 Cripple test temporarily from doing things that we know are broken.

Change 124598 on 2003/10/02 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint on RTS parameter dependent predication

Change 124579 on 2003/10/02 by ashishs@fl_ashishs_r400_win2

 initial checkin for test to do fract vector operation

Change 124545 on 2003/10/02 by tmartin@tmartin_r400_win

 32 fixed precision tests

Change 124542 on 2003/10/02 by georgev@devel_georgev_r400_lin2_marlboro_coverage

 First revision. Private use only.

Change 124527 on 2003/10/02 by ashishs@fl_ashishs_r400_win

 Adding Mantor and Randy to the list

Change 124523 on 2003/10/02 by kevino@kevino_r400_emu

 Added "USE TC_FOR_VERTEX_FETCHES;" to remaining shader programs for
tc_vfetch

Change 124519 on 2003/10/02 by ashishs@fl_ashishs_r400_win2

 Changing the test to do just scalar operation (prev was doing vector too). Using export to
memory and also generating a compare image

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1623 of 1898

 Page 85 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 124516 on 2003/10/02 by kevino@kevino_r400_linux_marlboro

 Added rg/tc_vfetch.rg which runs all the test cases in this test.

Change 124436 on 2003/10/01 by ashishs@fl_ashishs_r400_win2

 Adding test for SIN. Currently has some problems which will need to be taken care of.

Change 124430 on 2003/10/01 by tmartin@tmartin_r400_win

 added r400vc_fmt_precision_int_09, r400vc_fmt_precision_09,
r400vc_fmt_precision_int_08

Change 124412 on 2003/10/01 by mangeshn@fl_mangeshn

 update

Change 124401 on 2003/10/01 by gregm@fl_gregm

 update

Change 124388 on 2003/10/01 by kevino@kevino_r400_linux_marlboro

 Added in 3d aniso test cases (4/format)

Change 124370 on 2003/10/01 by ashishs@fl_ashishs_r400_win2

 Adding test for INF-NAN for COS

Change 124353 on 2003/10/01 by mangeshn@fl_mangeshn

 split all scalar and vector combination tests to separate ones. Updated test list and test
tracket to reflect new tests added.

Change 124332 on 2003/10/01 by tmartin@tmartin_r400_win

 changed to test when the vertex fetch size constant is 0 and clamping is enabled.
Previously it was thought that setting the size to 0 disabled clampling.

Change 124300 on 2003/10/01 by mkelly@fl_mkelly_r400_win_laptop

 Add some comments...

Change 124299 on 2003/10/01 by kevino@kevino_r400_linux_marlboro

 Changed vtx2 to have s,t =1.0, 1.0 (under george's direction) so the aniso test now gets to
16:1

Change 124297 on 2003/10/01 by mkelly@fl_mkelly_r400_win_laptop

 Page 86 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 data dep pred in Viz Query

Change 124269 on 2003/10/01 by kevino@kevino_r400_linux_marlboro

 A large change to tp_multitexture_02. The testcases are now generated in a slightly
different way, using a common tclist file instead of individual ones for each format. The format
commp is cycled through USBG SBGU BGUS GUSB for the 4 textures in all cases. A
tfc.validateGamma() call is used to change G to U if the format is not degammable.

 Updated the tc_weekly file to run formats 7, 10, 11, 12. Updated tp4_tc_weekly.rg
files to run ALL good formats (0, 1, 43-48 not run since they fail with emu errors.) This adds
~9000 cases to tp4_tc_weekly.rg

 Finished off some integer and signed-rf mode tests.

Change 124267 on 2003/10/01 by mangeshn@fl_mangeshn

 updating tests for framebuffer dump capability

Change 124266 on 2003/10/01 by ashishs@fl_ashishs_r400_win2

 PRECISION test for COS

Change 124246 on 2003/10/01 by tmartin@tmartin_r400_win

 Tests the precision of FMT_32_32_32_32_FLOAT with an unsigned integer frame
buffer.

Change 124244 on 2003/10/01 by tmartin@tmartin_r400_win

 updated to test a finer precision

Change 124231 on 2003/10/01 by mzini@mzini_crayola_linux_orl

 No longer look at UseVc. VfUseTc in place

Change 124226 on 2003/10/01 by mkelly@fl_mkelly_r400_win_laptop

 Update comments

Change 124217 on 2003/10/01 by mkelly@fl_mkelly_r400_win_laptop

 Multi-pass pixel shading, data dep predication on pixel indice for memory export with
data dep
 pred on color import on second pixel pass.

Change 124207 on 2003/10/01 by tmartin@tmartin_r400_win

 Page 87 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 uncommented points

Change 124205 on 2003/10/01 by tmartin@tmartin_r400_win

 added r400vc_fmt_precision_int_07

Change 124140 on 2003/09/30 by mangeshn@fl_mangeshn

 adding missing test

Change 124137 on 2003/09/30 by tmartin@tmartin_r400_win

 test the precision of the 16_16_16_16_FLOAT format

Change 124136 on 2003/09/30 by ashishs@fl_ashishs_r400_win2

 test for SIN precision. Found to be very low precision (almost matching just 1 mantissa
bit, but for very low numbers)

Change 124135 on 2003/09/30 by tmartin@tmartin_r400_win

 added HDP_FB_START and make some other changes to update the test formatting

Change 124121 on 2003/09/30 by mangeshn@fl_mangeshn

 updated tests for framebuffer dumps

Change 124115 on 2003/09/30 by jhoule@jhoule_r400_linux_marlboro

 Adding endian swap cases

Change 124114 on 2003/09/30 by jhoule@jhoule_r400_linux_marlboro

 Added support for ENDIAN_SWAP

Change 124104 on 2003/09/30 by mangeshn@fl_mangeshn

 updated tests to include dumps to file for additional validation (switched off in the default
case)

Change 124079 on 2003/09/30 by mkelly@fl_mkelly_r400_win_laptop

 pred_setge_push w default check w/data dep pred secondary data fetch

Change 124054 on 2003/09/30 by mkelly@fl_mkelly_r400_win_laptop

 pred_setgt_push default w check w/data dep pred and secondary data fetch

Change 124045 on 2003/09/30 by mkelly@fl_mkelly_r400_win_laptop

 Page 88 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Update test comments

Change 124040 on 2003/09/30 by mkelly@fl_mkelly_r400_win_laptop

 pred_setne_push default w check with data dep pred fetching

Change 124027 on 2003/09/30 by tmartin@tmartin_r400_win

 set HDP_FB_START so the test doesn't hang

Change 124016 on 2003/09/30 by mkelly@fl_mkelly_r400_win_laptop

 pred_sete_push default mode w/data dep pred and secondary fetching

Change 123999 on 2003/09/30 by mkelly@fl_mkelly_r400_win_laptop

 pred_set_inv on W, data dependent secondary fetching...

Change 123961 on 2003/09/30 by gregm@fl_gregm

 max min and muladd tests

Change 123866 on 2003/09/29 by mangeshn@fl_mangeshn

 added missing test to SP test_list - thanks for pointing it out Ashish

Change 123855 on 2003/09/29 by ashishs@fl_ashishs_r400_win2

 Adding 2 missing tests

Change 123849 on 2003/09/29 by tmartin@tmartin_r400_win

 Makes sure that every select can choose every performance register type

Change 123838 on 2003/09/29 by mkelly@fl_mkelly_r400_win_laptop

 pred_set_inv primary vertex buffer data dependent memory fetching
 from a secondary buffer, cycling all fetch formats.

Change 123837 on 2003/09/29 by mangeshn@fl_mangeshn

 updating test tracker and sp test list (inserting new tests according to new alpabhetical
sorting)

Change 123829 on 2003/09/29 by ashishs@fl_ashishs_r400_win2

 sorting test_list

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1624 of 1898

 Page 89 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 123827 on 2003/09/29 by mangeshn@fl_mangeshn

 added tests for all the PRED_* instructions and inf/nan tests for the CND_* instructions

Change 123824 on 2003/09/29 by jhoule@jhoule_r400_linux_marlboro

 Adding 2 simple aniso test files

Change 123784 on 2003/09/29 by tmartin@tmartin_r400_win

 updated the description

Change 123772 on 2003/09/29 by tmartin@tmartin_r400_win

 Tests the precision of FMT_32_32_32_32 with unsigned integers

Change 123766 on 2003/09/29 by kevino@kevino_r400_linux_marlboro

 Decreased from maz tex size to max tez size -1. largetex_05 now hangs in sim, but not
sure why.

Change 123751 on 2003/09/29 by ashishs@fl_ashishs_r400_win

 Deleting test r400sc_point_jss_3X4_01

Change 123628 on 2003/09/26 by ctaylor@ctaylor_xenos_linux_orl

 Change msaa num_samples to limit to 1,2,4 sample for Xenos and disable Rand Shaders
for now.

Change 123616 on 2003/09/26 by mangeshn@fl_mangeshn

 precision and nan/inf test fro PRED_SETE_PUSH

Change 123606 on 2003/09/26 by tmartin@tmartin_r400_win

 test precision of 32_32_32_32_float

Change 123602 on 2003/09/26 by mangeshn@fl_mangeshn

 precision and nan/inf test for PRED_SET_CLR

Change 123601 on 2003/09/26 by mangeshn@fl_mangeshn

 precision and nan/inf test for PRED_SET_RESTORE

Change 123566 on 2003/09/26 by mangeshn@fl_mangeshn

 added precision and nan/inf tests for: PRED_SET_INV and PRED_SET_POP

 Page 90 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 123543 on 2003/09/26 by eberger@eberger_r400_linux_marlboro

 Created two new tests to verify address calculation with a
 variety of pitch values.

Change 123521 on 2003/09/26 by ashishs@fl_ashishs_r400_win2

 disabling debug prints

Change 123516 on 2003/09/26 by mkelly@fl_mkelly_r400_win_laptop

 Finalizing transition from 8 msaa to 4 for Xenos

Change 123514 on 2003/09/26 by ashishs@fl_ashishs_r400_win2

 test for SUB_CONST opcode

Change 123510 on 2003/09/26 by mangeshn@fl_mangeshn

 added precision and nan/inf tests for: PRED_SETE, PRED_SETNE, PRED_SETGT,
PRED_SETGE

Change 123509 on 2003/09/26 by mkelly@fl_mkelly_r400_win_laptop

 Update from 8 to 4 msaa disabled, Xenos

Change 123504 on 2003/09/26 by domachi@diotargetxp

 Fixed problem where shaders for tc_random test only fetched from 2 textures. We now
fetch from up to 4 seperate textures if specified by the test case.

Change 123501 on 2003/09/26 by mkelly@fl_mkelly_r400_win_laptop

 msaa changes for Xenos

Change 123496 on 2003/09/26 by kevino@kevino_r400_linux_marlboro

 Needed for tp_multitexture_02_perf

Change 123495 on 2003/09/26 by kevino@kevino_r400_linux_marlboro

 Added a perf case that does 2 textures as dxt1 and 8888. The waves for this case need
to be hand-checked to verify performance (and were before checkin)

Change 123494 on 2003/09/26 by mkelly@fl_mkelly_r400_win_laptop

 Page 91 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Rename
//depot/r400/devel/test_lib/src/chip/gfx/sc/r400sc_line_msaa_8_textured_01_pix.sp To
//depot/r400/devel/test_lib/src/chip/gfx/sc/r400sc_line_msaa_4_textured_01_pix.sp

Change 123490 on 2003/09/26 by eberger@eberger_r400_linux_marlboro

 Added several new tests to verify pixel formats when the
 interpolated color is exported without clamping. Changed the
 test r400rb_max_pitch.cpp to activate subtests that enable
 multisampling with a depth buffer.

Change 123488 on 2003/09/26 by mkelly@fl_mkelly_r400_win_laptop

 4 msaa changes for Xenos

Change 123487 on 2003/09/26 by mkelly@fl_mkelly_r400_win_laptop

 8 msaa to 4 for Xenos

Change 123486 on 2003/09/26 by mkelly@fl_mkelly_r400_win_laptop

 8 msaa to 4 for Xenos

Change 123484 on 2003/09/26 by mkelly@fl_mkelly_r400_win_laptop

 del and rename test

Change 123482 on 2003/09/26 by mkelly@fl_mkelly_r400_win_laptop

 Enable 4 msaa for Xenos

Change 123459 on 2003/09/26 by kevino@kevino_r400_linux_marlboro

 Added ifdef for fmt_independent cases so they don't show up everywhere.

Change 123454 on 2003/09/26 by mkelly@fl_mkelly_r400_win_laptop

 Temporarily comment out SIMD testing.

Change 123444 on 2003/09/26 by mkelly@fl_mkelly_r400_win_laptop

 del some tests
 update test_list

Change 123442 on 2003/09/26 by mkelly@fl_mkelly_r400_win_laptop

 8 to 4 msaa for Xenos...

Change 123435 on 2003/09/26 by mkelly@fl_mkelly_r400_win_laptop

 Page 92 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Add recip for new SPI requirements on prim type detection

Change 123432 on 2003/09/26 by mkelly@fl_mkelly_r400_win_laptop

 update disp size on simple line list
 del old test

Change 123428 on 2003/09/26 by mkelly@fl_mkelly_r400_win_laptop

 fix

Change 123381 on 2003/09/25 by ashishs@fl_ashishs_r400_win

 Adding 5 more tests

Change 123371 on 2003/09/25 by ashishs@fl_ashishs_r400_win

 Adding test for MUL_CONST

Change 123361 on 2003/09/25 by brianf@brianf_r400_linux_marlboro

 Removed from crayola

Change 123357 on 2003/09/25 by ashishs@fl_ashishs_r400_win

 Added test for ADD_CONST

Change 123355 on 2003/09/25 by brianf@brianf_r400_linux_marlboro

 Updated include path

Change 123352 on 2003/09/25 by tmartin@tmartin_r400_win

 added some fmt_precision tests

Change 123340 on 2003/09/25 by mkelly@fl_mkelly_r400_win_laptop

 Modify shaders for new Xenos SPI on primtype detection

Change 123336 on 2003/09/25 by brianf@brianf_r400_linux_marlboro

 Moved az_tst library tests

Change 123335 on 2003/09/25 by eberger@eberger_r400_linux_marlboro

 Initial version of a test to verify the memory export paths.

Change 123334 on 2003/09/25 by tmartin@tmartin_r400_win

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1625 of 1898

 Page 93 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 added SERIALIZE instructions

Change 123326 on 2003/09/25 by ashishs@fl_ashishs_r400_win

 PRECISION test for SUB_CONST opcode

Change 123323 on 2003/09/25 by mkelly@fl_mkelly_r400_win_laptop

 8 to 4 msaa for Xenos

Change 123320 on 2003/09/25 by ashishs@fl_ashishs_r400_win

 PRECISION test for MUL_COSNT opcode

Change 123316 on 2003/09/25 by ashishs@fl_ashishs_r400_win

 PRECISION test for ADD_CONST opcode

Change 123313 on 2003/09/25 by mkelly@fl_mkelly_r400_win_laptop

 8 to 4 msaa for Xenos

Change 123309 on 2003/09/25 by mkelly@fl_mkelly_r400_win_laptop

 8 to 4 MSAA for xenos

Change 123306 on 2003/09/25 by tmartin@tmartin_r400_win

 test precision in unsigned integer mode

Change 123305 on 2003/09/25 by tmartin@tmartin_r400_win

 test precision of FMT_16_16_16_16

Change 123304 on 2003/09/25 by tmartin@tmartin_r400_win

 updated to draw all intended points

Change 123277 on 2003/09/25 by mkelly@fl_mkelly_r400_win_laptop

 8 to 4 msaa for xenos

Change 123273 on 2003/09/25 by mkelly@fl_mkelly_r400_win_laptop

 8 to 4 msaa for xenos

Change 123267 on 2003/09/25 by mkelly@fl_mkelly_r400_win_laptop

 Page 94 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 8 -> 4 msaa for xenos

Change 123261 on 2003/09/25 by mkelly@fl_mkelly_r400_win_laptop

 Change to 4 msaa for xenos

Change 123251 on 2003/09/25 by kevino@kevino_r400_linux_marlboro

 Tp_multitexture_02 broken into tests with 5 formats each (10 doesn't compile on
windows)
 Updated tc_nightly and weekly to addd new test cases
 Added fmt_independent test cases

Change 123239 on 2003/09/25 by mkelly@fl_mkelly_r400_win_laptop

 Xenos change to 4 msaa

Change 123232 on 2003/09/25 by mkelly@fl_mkelly_r400_win_laptop

 del, renamed to r400sc_xenos* and modified...

Change 123230 on 2003/09/25 by mkelly@fl_mkelly_r400_win_laptop

 Update msaa for xenos

Change 123229 on 2003/09/25 by kevino@kevino_r400_linux_marlboro

 tp_mutlitexture_02 testcase with 5 formats instead of 10. (10 still fails on windows)

Change 123221 on 2003/09/25 by kevino@kevino_r400_linux_marlboro

 One forgotten file fromlast submit

Change 123220 on 2003/09/25 by kevino@kevino_r400_linux_marlboro

 Added 3D texoffset and texsize tetscases
 Reworked tp_multitexture_02 to be able to split it into multiple tests (since the 10K
testcases causes Windows to report too many exceptions.) The "real" tp_multitexture_02 test
code is in tp_multitexture_02_basecode.cpp. This (can be but) shouldn't be run by itself as a test.
The other tp_multitexture_02*cpp tests define which formats they want to cover then include
this basecode.
 Note that the versions I checked in cover 10 formats each.
 I also added a format06 -only test which compiles a lot faster, which is useful for
testcase development.

Change 123206 on 2003/09/25 by mkelly@fl_mkelly_r400_win_laptop

 8 MSAA -> 4 MSAA change

 Page 95 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 123195 on 2003/09/25 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 123157 on 2003/09/24 by gregm@fl_gregm

 submit

Change 123155 on 2003/09/24 by gregm@fl_gregm

 infNan & precision mul_prev2

Change 123119 on 2003/09/24 by ashishs@fl_ashishs_r400_win

 updated

Change 123102 on 2003/09/24 by mangeshn@fl_mangeshn

 added tests fro nan/inf data for vector adn scalar forms for the following: KILLGE,
KILLGT, KILLNE and KILLONE

Change 123099 on 2003/09/24 by ashishs@fl_ashishs_r400_win2

 changed the script gold path to t:\xenos\gold\

Change 123096 on 2003/09/24 by mkelly@fl_mkelly_r400_win_laptop

 xenos update...

Change 123095 on 2003/09/24 by mkelly@fl_mkelly_r400_win_laptop

 xenos update

Change 123060 on 2003/09/24 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added truncate and round tests.

Change 123045 on 2003/09/24 by mkelly@fl_mkelly_r400_win_laptop

 Rename

Change 123033 on 2003/09/24 by mkelly@fl_mkelly_r400_win_laptop

 Rename
//depot/r400/devel/test_lib/src/chip/gfx/sc/r400sc_msaa_8_simple_triangle_01.cpp To
//depot/r400/devel/test_lib/src/chip/gfx/sc/r400sc_msaa_4_simple_triangle_01.cpp

Change 123032 on 2003/09/24 by mkelly@fl_mkelly_r400_win_laptop

 Page 96 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 del for xenos

Change 123029 on 2003/09/24 by mkelly@fl_mkelly_r400_win_laptop

 xenos msaa

Change 123026 on 2003/09/24 by mkelly@fl_mkelly_r400_win_laptop

 Rename
//depot/r400/devel/test_lib/src/chip/gfx/sc/r400sc_line_expand_width_msaa_8_0*.cpp To
//depot/r400/devel/test_lib/src/chip/gfx/sc/r400sc_line_expand_width_msaa_4_0*.cpp

Change 123020 on 2003/09/24 by mkelly@fl_mkelly_r400_win_laptop

 del non xenos

Change 123018 on 2003/09/24 by mkelly@fl_mkelly_r400_win_laptop

 Update msaa for xenos

Change 123009 on 2003/09/24 by eberger@eberger_r400_linux_marlboro

 Initial version of a test to verify that the zplane value is
 different from the Z value that gets exported from the shader.

Change 122996 on 2003/09/24 by mkelly@fl_mkelly_r400_win_laptop

 Add gold

Change 122984 on 2003/09/24 by kevino@kevino_r400_linux_marlboro

 Added 3D mip and texture address offset cases. Currently available for fmt06 only.

Change 122973 on 2003/09/24 by mkelly@fl_mkelly_r400_win_laptop

 del (backed up in sc_r500)

Change 122972 on 2003/09/24 by mkelly@fl_mkelly_r400_win_laptop

 Need to back up these tests for any possibility of R500, since tests are starting to change
for Xenos.

Change 122957 on 2003/09/24 by mkelly@fl_mkelly_r400_win_laptop

 del

Change 122953 on 2003/09/24 by mkelly@fl_mkelly_r400_win_laptop

 1. regress_e tests added to Makefile for 2 and 4 MSAA

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1626 of 1898

 Page 97 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 2. changed num_samples in r400sc_poly_offset_05 to 0
 3. added 2 and 4 MSAA tests to golden.lst

Change 122948 on 2003/09/24 by mkelly@fl_mkelly_r400_win_laptop

 Remove immediately recogizable tests that are > 4 MSAA and will not
 be converted for xenos.

Change 122938 on 2003/09/24 by ashishs@fl_ashishs_r400_win2

 completed with dumping expected image and also changing VTE settings to offset the
normal data at a different place

Change 122937 on 2003/09/24 by ashishs@fl_ashishs_r400_win2

 changing the data set to show that the overflow in shader causes clamp to MAX_FLOAT
wheras on compiler causes to INF

Change 122936 on 2003/09/23 by ashishs@fl_ashishs_r400_win2

 created a simple bug case for checking combinations of hex values on the input

Change 122933 on 2003/09/23 by mangeshn@fl_mangeshn

 Added tests: INF/NAN for: SETE(scalar and vector), SETGE(scalar and vector),
SETGT(scalar and vector), SETNE(scalar and vector), KILLE saclar and KILLE vector

Change 122907 on 2003/09/23 by tmartin@tmartin_r400_win

 added more endian swap tests

Change 122905 on 2003/09/23 by tmartin@tmartin_r400_win

 test endian swap with pci and agp

Change 122898 on 2003/09/23 by ctaylor@fl_ctaylor_r400_dtwin_marlboro

 Removed 3,6,8 sample MSAA for Xenos. Removed 8-sample regression tests.

Change 122895 on 2003/09/23 by mangeshn@fl_mangeshn

 Added the source code, updated SP test_list and the test_tracker for the following tests:
Precision MOVA (both scalar and vector), Inf/Nan MOVA (scalar and vector), Precision
Mova_Floor and Inf/Nan Mova_Floor.

Change 122887 on 2003/09/23 by smoss@smoss_xenos_linux_orl

 comment out full chip only test

 Page 98 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 122826 on 2003/09/23 by mzini@mzini_r400_win

 Removed useTC flag

Change 122813 on 2003/09/23 by kevino@kevino_r400_linux_marlboro

 Had mislabeled fmts 57-59 (format number didn't match format name). Fixed this.

Change 122804 on 2003/09/23 by mkelly@fl_mkelly_r400_win_laptop

 New golds for 2/4 MSAA, Xenos...

Change 122802 on 2003/09/23 by mkelly@fl_mkelly_r400_win_laptop

 del

Change 122797 on 2003/09/23 by kevino@kevino_r400_linux_marlboro

 Added some useful .rg files to the rg subdirectory
 Added tests to move mip address and added to tc_nightly.rg
 Added tex offset cases from -8 to -4 and 4 to 7.5
 Added unfinished 3d mip cases

Change 122795 on 2003/09/23 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Shortened max address tests so that they don't blow out buffers.
 This did not work for sx_advanced_test.

Change 122770 on 2003/09/23 by mkelly@fl_mkelly_r400_win_laptop

 fix sp name

Change 122761 on 2003/09/23 by mkelly@fl_mkelly_r400_win_laptop

 rename

Change 122760 on 2003/09/23 by mkelly@fl_mkelly_r400_win_laptop

 New test for xenos

Change 122754 on 2003/09/23 by mkelly@fl_mkelly_r400_win_laptop

 New xenos test

Change 122719 on 2003/09/23 by mkelly@fl_mkelly_r400_win_laptop

 New xenos test

Change 122712 on 2003/09/23 by mzini@mzini_r400_win

 Page 99 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Changed test to force it to use the Texture Cache by default

Change 122707 on 2003/09/23 by mkelly@fl_mkelly_r400_win_laptop

 Xenos specific 4 MSAA related test...

Change 122705 on 2003/09/23 by mkelly@fl_mkelly_r400_win_laptop

 New test for 4 msaa

Change 122695 on 2003/09/23 by jhoule@jhoule_r400_win_lt

 Simple test to verify minimal functionality of opcodes

Change 122688 on 2003/09/23 by kevino@kevino_r400_linux_marlboro

 Both textures 0 and 1 were set to none. Set 0 back to an endian swap.

Change 122685 on 2003/09/23 by mkelly@fl_mkelly_r400_win_laptop

 Change from 8 Msaa to 4 Msaa

Change 122682 on 2003/09/23 by mkelly@fl_mkelly_r400_win_laptop

 4 MSAA CENTERS, CENTROIDS, CENTERS_AND_CENTROIDS

Change 122656 on 2003/09/22 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added mask tests for pixel shaders.

Change 122654 on 2003/09/22 by gregm@fl_gregm

 submit

Change 122652 on 2003/09/22 by gregm@fl_gregm

 mul_prev precision and infNan tests

Change 122646 on 2003/09/22 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Add test names to previous update.

Change 122643 on 2003/09/22 by gregm@fl_gregm

 submit

Change 122639 on 2003/09/22 by gregm@fl_gregm

 Page 100 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 update

Change 122637 on 2003/09/22 by gregm@fl_gregm

 mul tests

Change 122636 on 2003/09/22 by ashishs@fl_ashishs_r400_win

 initial checkin for infNan test for CUBE

Change 122635 on 2003/09/22 by tmartin@tmartin_r400_win

 added r400vc_debug_01

Change 122634 on 2003/09/22 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Odd size texture maps added.

Change 122633 on 2003/09/22 by tmartin@tmartin_r400_win

 tests the accessability and control of the debug registers

Change 122619 on 2003/09/22 by tmartin@tmartin_r400_win

 added the expected output to the test

Change 122598 on 2003/09/22 by tmartin@tmartin_r400_win

 test precision of FMT_16_16

Change 122582 on 2003/09/22 by rmanapat@rmanapat_r400_release

 Some of the 1D functions were not setting there dimension to 1D thus causing
 a mismatch.

Change 122573 on 2003/09/22 by ashishs@fl_ashishs_r400_win

 Adding test for precision of CUBE instruction. Performing a local CUBE function and
calculating the the cube values in the test itself and then passing those output values to the shader
and comparing with the output of the shader. This test is different from
r400sp_precision_cube_01 in terms of the data set on which it checks on. This test has data set
ranging over a larger area of the valid data range.

Change 122535 on 2003/09/22 by mangeshn@fl_mangeshn

 added NAN/INF test for the DST instruction. Added source files and updated the test
tracker and the SP test list

Change 122519 on 2003/09/22 by mangeshn@fl_mangeshn

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1627 of 1898

 Page 101 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 added precision test for the DST instruction. Adding source code files, updating the SP
test_list and the test tracker

Change 122494 on 2003/09/22 by llefebvr@llefebvr_r400_emu_montreal

 now waiting for GFX idle between each pass.

Change 122488 on 2003/09/22 by mangeshn@fl_mangeshn

 update

Change 122485 on 2003/09/22 by mangeshn@fl_mangeshn

 updated SP test list

Change 122479 on 2003/09/22 by jhoule@jhoule_r400_win_lt

 Small fix concerning number of arguments passed

Change 122469 on 2003/09/22 by mangeshn@fl_mangeshn

 updating some old tests

Change 122456 on 2003/09/22 by chammer@chammer_xenos_linux_orl

 Added RB_TILECONTROL register to list of SC registers which are randomized.

Change 122455 on 2003/09/22 by ashishs@fl_ashishs_r400_win

 Sorting the test_list and removing 3 duplicate tests which was causing the total tests to
show up as 52 and test run as 49

Change 122453 on 2003/09/22 by mangeshn@fl_mangeshn

 pending test checkins and updates to test tracker

Change 122449 on 2003/09/22 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 122442 on 2003/09/22 by tmartin@tmartin_r400_win

 added performance counter tests and some format conversion tests

Change 122425 on 2003/09/21 by smoss@smoss_xenos_linux_orl

 update

 Page 102 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 122417 on 2003/09/20 by gregm@fl_gregm

 submit

Change 122416 on 2003/09/20 by gregm@fl_gregm

 add_prev precision test

Change 122415 on 2003/09/20 by gregm@fl_gregm

 submit

Change 122414 on 2003/09/20 by gregm@fl_gregm

 add_prev infNan

Change 122412 on 2003/09/20 by gregm@fl_gregm

 update

Change 122411 on 2003/09/20 by gregm@fl_gregm

 vector fract infNan

Change 122390 on 2003/09/19 by gregm@fl_gregm

 scalar fract nan/inf

Change 122387 on 2003/09/19 by gregm@fl_gregm

 update

Change 122385 on 2003/09/19 by gregm@fl_gregm

 update

Change 122384 on 2003/09/19 by gregm@fl_gregm

 scalar fract inf/nan

Change 122382 on 2003/09/19 by gregm@fl_gregm

 Fixed problem that effected random number generation.

Change 122349 on 2003/09/19 by ashishs@fl_ashishs_r400_win

 adding tests to test_list

Change 122346 on 2003/09/19 by ashishs@fl_ashishs_r400_win

 Page 103 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Adding test for precison of Cube. Has 512 vectors over whioch the data is checked, Each
vector with random x,y,z,w ranging between -100000000 to +100000000. Built a function to
calculate cube value before hand and pass that value to the shaders for comparison with the
shader generated value

Change 122332 on 2003/09/19 by mkelly@fl_mkelly_r400_win_laptop

 Save work in progress...

Change 122317 on 2003/09/19 by domachi@domachi_xenos

 Ensure msaa num samples is not 0 when msaa is enabled. Fixes assert in emulator seen
with this test.

Change 122305 on 2003/09/19 by tmartin@tmartin_r400_win

 added printing of select values and cleaned up files

Change 122296 on 2003/09/19 by mangeshn@fl_mangeshn

 added INF/NAN data test for the SUB_PREV instruction

Change 122290 on 2003/09/19 by mangeshn@fl_mangeshn

 added precision test for the SUB_PREV instruction

Change 122278 on 2003/09/19 by ashishs@fl_ashishs_r400_win

 Also adding the ability to dump data in image, but not actually dumping the data to keep
the iamge same as earlier

Change 122275 on 2003/09/19 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added extra swizzle case for combination values.

Change 122264 on 2003/09/19 by ashishs@fl_ashishs_r400_win

 just getting the test cases to 512 to support the template and adding dummy data at the
end

Change 122263 on 2003/09/19 by mangeshn@fl_mangeshn

 added test for INF/NAN data for the SUB instruction

Change 122258 on 2003/09/19 by domachi@diotargetxp

 - Changes to do some TP random testing. Only Fetch Constants have randomized values.
Still need to add support to randomize Fetch Instruction values.

 Page 104 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 - Reverted a change where base map mip filtering was tested thereby increasing test
times. This change should reduce test times.

Change 122255 on 2003/09/19 by ashishs@fl_ashishs_r400_win

 Changed the precison cosnt to 2**21 so the image will change a little bit but has been
validated to be okay.

 Also changed the test to the new template to cause the instruction to work on all the
shader pipes as well as generalising a little bit so that we could just run the case number needed

Change 122240 on 2003/09/19 by mkelly@fl_mkelly_r400_win_laptop

 Save work in progress, data dependent vertex fetching...

Change 122187 on 2003/09/19 by smoss@smoss_xenos_linux_orl

 update for tb_vc

Change 122155 on 2003/09/19 by jayw@jayw_r400_linux_marlboro2

 Fix TB

Change 122107 on 2003/09/18 by eberger@eberger_r400_linux_marlboro

 Added code to set the WINDOW_SCISSOR correctly. Added comments.

Change 122070 on 2003/09/18 by tmartin@tmartin_r400_win

 FMT_11_11_10

Change 122069 on 2003/09/18 by tmartin@tmartin_r400_win

 FMT_10_11_11

Change 122056 on 2003/09/18 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Border tests with and without W forced to max. Formats added to
tp_simple_format_test.

Change 122042 on 2003/09/18 by mkelly@fl_mkelly_r400_win_laptop

 Update for new SPI.

Change 122040 on 2003/09/18 by mkelly@fl_mkelly_r400_win_laptop

 Updates to work with new SPI.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1628 of 1898

 Page 105 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 122038 on 2003/09/18 by tmartin@tmartin_r400_win

 performance counter tests

Change 122028 on 2003/09/18 by mkelly@fl_mkelly_r400_win_laptop

 Update to work in the new SPI.

Change 122021 on 2003/09/18 by domachi@domachi_xenos

 Checkpoint changes to random tests.

Change 122018 on 2003/09/18 by mkelly@fl_mkelly_r400_win_laptop

 Change for new SPI.

Change 122015 on 2003/09/18 by tmartin@tmartin_r400_win

 tests precision of fmt_2_10_10_10

Change 122013 on 2003/09/18 by tmartin@tmartin_r400_win

 tests precision of fmt_8_8_8_8

Change 122001 on 2003/09/18 by mkelly@fl_mkelly_r400_win_laptop

 Change shader to work with new SPI. Add catch in test for debugging help.

Change 121986 on 2003/09/18 by mkelly@fl_mkelly_r400_win_laptop

 Update test to work with new SPI implementation on prim type detection in the pixel
shader.

Change 121985 on 2003/09/18 by mkelly@fl_mkelly_r400_win_laptop

 Increase NUM_CASES = 64 from 9

Change 121976 on 2003/09/18 by tmartin@tmartin_r400_win

 set clamp_disable to 1

Change 121975 on 2003/09/18 by mkelly@fl_mkelly_r400_win_laptop

 Data dependent predicated fetch of secondary data buffer.

Change 121963 on 2003/09/18 by smoss@smoss_xenos_linux_orl

 updated for new tree

 Page 106 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 121914 on 2003/09/17 by kevino@kevino_r400_linux_marlboro

 Fix tp_mutlitexture_02 to have all formats (have a define in there to only do fmt06 to
make build faster when developing tests.)
 Added basemap, tcdenorm, and tp_multitexture_02 fmt02 tests to regressions.

Change 121910 on 2003/09/17 by ashishs@fl_ashishs_r400_win

 Currently just doing 44 bad test cases

Change 121889 on 2003/09/17 by smoss@smoss_xenos_linux_orl

 added better failure reporting, new output path

Change 121885 on 2003/09/17 by ashishs@fl_ashishs_r400_win

 changing the data since had incorrect values

Change 121882 on 2003/09/17 by gregm@fl_gregm

 Special infNan test for add instruction and vertex cache.

Change 121881 on 2003/09/17 by gregm@fl_gregm

 update

Change 121879 on 2003/09/17 by kevino@kevino_r400_linux_marlboro

 Test to put the texture basemap right at the upper edge of memory (where
tc_BaseMapOffset couldn't reach)

Change 121878 on 2003/09/17 by kevino@kevino_r400_linux_marlboro

 Updated tp_multitexture_01 and _02 to draw framebuffer correctly. Added tcdenorm
tests. Added some new texture maps to data/tex. Updated a few of the 3d testcases

Change 121829 on 2003/09/17 by georgev@devel_georgev_r400_lin2_marlboro_tott

 New file because last one had bad format.

Change 121760 on 2003/09/17 by mkelly@fl_mkelly_r400_win_laptop

 Move STATE read data out of framebuffer.

Change 121729 on 2003/09/17 by mkelly@fl_mkelly_r400_win_laptop

 Update for SPI

Change 121723 on 2003/09/17 by mkelly@fl_mkelly_r400_win_laptop

 Page 107 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Update for SPI

Change 121709 on 2003/09/17 by tmartin@tmartin_r400_win

 This test fills the Index fifo to test its handling of overflows

Change 121706 on 2003/09/17 by mkelly@fl_mkelly_r400_win_laptop

 Change for SPI

Change 121705 on 2003/09/17 by mkelly@fl_mkelly_r400_win_laptop

 Changes for new SPI...

Change 121704 on 2003/09/17 by mkelly@fl_mkelly_r400_win_laptop

 Add RECIP for faceness/XY detection in SPI.

Change 121676 on 2003/09/16 by csampayo@fl_csampayo_r400

 Adding pixel shader export test
 Updated test_list and test tracker accordingly

Change 121669 on 2003/09/16 by ashishs@fl_ashishs_r400_win2

 initial checkin for cube test, simple data set covering all of the statements inside the cube
instruction

Change 121667 on 2003/09/16 by tmartin@tmartin_r400_win

 This test fills the L2 request fifo to test its handling of overflows

Change 121637 on 2003/09/16 by domachi@diotargetxp

 Add random shader generation to sc_rand test

Change 121634 on 2003/09/16 by mkelly@fl_mkelly_r400_win_laptop

 SERIALIZE properly...

Change 121632 on 2003/09/16 by llefebvr@llefebvre_laptop_r400_emu

 Made the XYs be sent as floating point numbers instead of fix point so you can use them
directly in the shader. Also modified regress_e tests that this change broke. Also added register
fields for SIMD memory control.

Change 121628 on 2003/09/16 by mkelly@fl_mkelly_r400_win_laptop

 Page 108 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Properly SERIALIZE...

Change 121626 on 2003/09/16 by mkelly@fl_mkelly_r400_win_laptop

 SERIALIZE properly.

Change 121620 on 2003/09/16 by mkelly@fl_mkelly_r400_win_laptop

 Add SERIALIZE correctly.

Change 121618 on 2003/09/16 by mkelly@fl_mkelly_r400_win_laptop

 Need SERIALIZE after all fetch routines before first ALU dependent on fetch.

Change 121615 on 2003/09/16 by mkelly@fl_mkelly_r400_win_laptop

 Remove gpr allocation from shaders...

Change 121606 on 2003/09/16 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added extra formats. Began conversion for max W registers.

Change 121572 on 2003/09/16 by mkelly@fl_mkelly_r400_win_laptop

 Window and screen scissor set to 8192,32 render two points
 1 point at X = 8190, 1 point at X = 8191.

Change 121551 on 2003/09/16 by mkelly@fl_mkelly_r400_win_laptop

 2 vert POINT_LIST test case for scissor BR X = 8192, BR Y = 32

Change 121550 on 2003/09/16 by jhoule@jhoule_r400_win_lt

 Meaningless space to avoid make error

Change 121519 on 2003/09/16 by tmartin@tmartin_r400_win

 added more float4's to the vfetches

Change 121499 on 2003/09/16 by jhoule@jhoule_r400_win_lt

 Reactivated aniso

Change 121496 on 2003/09/16 by jhoule@jhoule_r400_win_lt

 New vertex shader program file

Change 121495 on 2003/09/16 by jhoule@jhoule_r400_win_lt

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1629 of 1898

 Page 109 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 New textures (for aniso tests)

Change 121494 on 2003/09/16 by jhoule@jhoule_r400_win_lt

 Putting simple aniso test files

Change 121418 on 2003/09/15 by tmartin@tmartin_r400_win

 added r400vc_simple_register_indirect and r400vc_fifo_l1_req_01

Change 121417 on 2003/09/15 by tmartin@tmartin_r400_win

 fixed some typos

Change 121412 on 2003/09/15 by tmartin@tmartin_r400_win

 This test fills the L1 request fifo to test its handling of overflows

Change 121405 on 2003/09/15 by eberger@eberger_r400_linux_marlboro

 Turned off the depth buffer whenever multisampling is enabled.

Change 121392 on 2003/09/15 by tmartin@tmartin_r400_win

 Register Writes/Reads

Change 121384 on 2003/09/15 by mkelly@fl_mkelly_r400_win_laptop

 Test carrying the (i) loop index down through nested subroutines, data dependecy
predication.

Change 121379 on 2003/09/15 by vromaker@vromaker_r400_linux_marlboro

 added SERIALIZE commands within the subroutines

Change 121368 on 2003/09/15 by eberger@eberger_r400_linux_marlboro

 Added tile_surface.Dump() and cleaned up some other problems.

Change 121365 on 2003/09/15 by mangeshn@fl_mangeshn

 test updates

Change 121341 on 2003/09/15 by ashishs@fl_ashishs_r400_win

 updated description of some tests. Also still some TBD's left but need to revise the test
after running them and then remove these descriptions.

Change 121329 on 2003/09/15 by mkelly@fl_mkelly_r400_win_laptop

 Page 110 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Data dependent predicate pop,inv,restore,clr nested looping and subroutines.

Change 121316 on 2003/09/15 by mkelly@fl_mkelly_r400_win_laptop

 Update to correct shader...

Change 121305 on 2003/09/15 by mangeshn@fl_mangeshn

 added precision test for the DOT2ADD instruction

Change 121304 on 2003/09/15 by mkelly@fl_mkelly_r400_win_laptop

 del unnecessary file

Change 121303 on 2003/09/15 by mkelly@fl_mkelly_r400_win_laptop

 Update comments in _11
 Further looping index testing with nested predication and subroutines.

Change 121289 on 2003/09/15 by jhoule@jhoule_r400_win_lt

 Adding Set* opcodes.

 tp_lod_deriv:
 - Added inputs (is_set_lod_command, is_set_grad_command, pix_mask, p3xyz)
 - Updated the parser and testbench program accordingly

 TexturePipe:
 - Added overrides for SetTexLOD and SetRegGradients in ComputeLODs_V2
 - Put placeholder for other opcodes

Change 121275 on 2003/09/15 by mkelly@fl_mkelly_r400_win_laptop

 Nested looping with predicated execution, boolean calling subroutines.

Change 121274 on 2003/09/15 by ashishs@fl_ashishs_r400_win

 correcting the FAILING tests. These tests were sending uninitialised data thru the alpha
channel due to which initially it was getting clamped to 1 and now it gets clamped to 0. So
initialising the alpha of verts to 1.0

Change 121235 on 2003/09/14 by gregm@fl_gregm

 update

Change 121234 on 2003/09/14 by gregm@fl_gregm

 precision scalar add

 Page 111 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 121229 on 2003/09/14 by gregm@fl_gregm

 update

Change 121228 on 2003/09/14 by gregm@fl_gregm

 scalar add

Change 121225 on 2003/09/14 by gregm@fl_gregm

 update

Change 121224 on 2003/09/14 by gregm@fl_gregm

 r400sp_infNan_add_01 (vector add)

Change 121095 on 2003/09/12 by mangeshn@fl_mangeshn

 added precision test for the SUB instruction

Change 121089 on 2003/09/12 by mangeshn@fl_mangeshn

 added precision test for the DOT3 instruction

Change 121085 on 2003/09/12 by tmartin@tmartin_r400_win

 Tests vertex reuse in the VC. A strip is drawn with a triangle list using indices mulitple
times in the index list. Vertex reuse in the VGT is disabled to ensure the only reuse is in the VC.

Change 121079 on 2003/09/12 by mangeshn@fl_mangeshn

 completed version of teh dot4 precision test. points that are red have a bit difference NOT
in the LSB. Blue points have a bit difference in teh LSB. Green points are exact matches

Change 121049 on 2003/09/12 by lseiler@lseiler_r400_win_marlboro

 Fix windows compile bug due to multiply defined for-loop variable

Change 121045 on 2003/09/12 by eberger@eberger_r400_linux_marlboro

 Initial version of a test for a frame buffer with maximum pitch.

Change 121044 on 2003/09/12 by kevino@kevino_r400_linux_marlboro

 Test with 1 case that pushes the base texture map to 8K before 512MB. Couldn't get
it to 512MB - 4K. Not sure why 32x32 32 bit texture takes > 4k even if it is linear.

Change 121025 on 2003/09/12 by mkelly@fl_mkelly_r400_win_laptop

 Page 112 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Save work in progress...

Change 121011 on 2003/09/12 by lseiler@lseiler_r400_win_marlboro2

 New rb-specific tests

Change 121008 on 2003/09/12 by lseiler@lseiler_r400_win_marlboro2

 New rb-specific tests

Change 121004 on 2003/09/12 by kevino@kevino_r400_linux_marlboro

 Varies offset of texture Basemap from 0 to just under 512MB.

Change 120977 on 2003/09/12 by lseiler@lseiler_r400_win_marlboro1

 Update local gold images (regress_rb)

Change 120976 on 2003/09/12 by lseiler@lseiler_r400_win_marlboro1

 Update local gold image list (regress_rb)

Change 120936 on 2003/09/12 by smoss@smoss_crayola_linux_orl

 new output directories

Change 120901 on 2003/09/12 by mkelly@fl_mkelly_r400_win_laptop

 Single case, 4th nested loop clamping issue.

Change 120817 on 2003/09/11 by tmartin@tmartin_r400_win

 cleaned up the tests

Change 120813 on 2003/09/11 by tmartin@tmartin_r400_win

 added r400vc_size_01

Change 120810 on 2003/09/11 by tmartin@tmartin_r400_win

 Checks the cache size and makes sure the cache ways work as expected

Change 120784 on 2003/09/11 by csampayo@fl_csampayo2_r400

 Clen up and finalize for pixel exports

Change 120776 on 2003/09/11 by omesh@omesh_r400_linux_marlboro_tott

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1630 of 1898

 Page 113 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Fixed a bug with setting the full device start address for the resolved
 surface. Earlier the resolved image appeared black, as reported by
 Larry, but now it does produce a non-black pixel.

Change 120768 on 2003/09/11 by csampayo@fl_csampayo_r400

 Initial checkin

Change 120718 on 2003/09/11 by mkelly@fl_mkelly_r400_win_laptop

 Changed write from VGT_EVENT_INITIATOR for VS_DONE_TS to an
EVENT_WRITE packet3 type.

Change 120703 on 2003/09/11 by mangeshn@fl_mangeshn

 changed test to showcase a set of 44 failing points

Change 120667 on 2003/09/11 by mkelly@fl_mkelly_r400_win_laptop

 SET_STATE, creates state buffers, writes them to framebuffer memory,
 then initiates a SET_STATE packet with pointers to the state buffers.

Change 120594 on 2003/09/10 by kevino@kevino_r400_linux_marlboro

 Don't write temp sp files to subdirectory- seemed to somehow write to subdir AND
base dir.

Change 120591 on 2003/09/10 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Fixed perspective for higher aniso ratios.

Change 120575 on 2003/09/10 by ashishs@fl_ashishs_r400_win

 adding 2 more tests

Change 120566 on 2003/09/10 by ashishs@fl_ashishs_r400_win

 test using 64 shaders with each shader uniquely exportin a chosen set of parameters and
then using sampling pattern as cetroids on the exported parameters and rest as centers

Change 120554 on 2003/09/10 by ashishs@fl_ashishs_r400_win

 removing gfx_idle_no_flush

Change 120548 on 2003/09/10 by ashishs@fl_ashishs_r400_win

 test using 64 shaders with each shader uniquely exportin a chosen set of parameters and
then using sampling pattern as centers on the exported parameters and rest as centroids

 Page 114 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 120527 on 2003/09/10 by tmartin@tmartin_r400_win

 added tfetches to shaders in order to test gpr_phase

Change 120526 on 2003/09/10 by mangeshn@fl_mangeshn

 added precision test for the DOT4 instruction

Change 120525 on 2003/09/10 by kevino@kevino_r400_linux_marlboro

 Add setalphatograyscale to tp_multitexture_02 for cases where textures are read from
file (as opposed to build, where alpha does get valid data)

Change 120524 on 2003/09/10 by kevino@kevino_r400_linux_marlboro

 For tests that create their own pixel shader files, make a unique name for each
testcase so they won't overwrite eachotehr when multiple testcases are running at once.

Change 120499 on 2003/09/10 by ashishs@fl_ashishs_r400_win

 added 2 new tests

Change 120495 on 2003/09/10 by mkelly@fl_mkelly_r400_win_laptop

 Vary packet size, conditional predicated execution max subs and loops.

Change 120470 on 2003/09/10 by omesh@omesh_r400_linux_marlboro_tott

 Fixed resolve tests so that the single render state being used to dump
 both multisampled as well as resolved surfaces does not cause incorrect
 header information (and emulator/primlib assertions) from happening. The
 tests now run to completion.

Change 120435 on 2003/09/10 by mangeshn@fl_mangeshn

 added precision test for checking NAN/INF cases for the EXP_IEEE instruction and
updated the tracker

Change 120422 on 2003/09/10 by jhoule@jhoule_r400_win_lt

 Added support for local testsuite with testcases.

 Updated the golden_tc.lst file to support the following test:
 r400rb_stencil_functions-STENCIL_STENCILFUNC_GREATER_1_S.regress_e

 Adding new test should be a matter of adding lines to CHIP_TESTS_TC and keeping the
golden_tc.lst up-to-date (note: if the test is not present in the golden_tc.lst file, it won't run).

Change 120409 on 2003/09/10 by mkelly@fl_mkelly_r400_win_laptop

 Page 115 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Pixel shader conditional predicate execute contained in maximum nested subroutines and
loops.

Change 120344 on 2003/09/09 by tmartin@tmartin_r400_win

 test coherency regs, RT and HOST

Change 120343 on 2003/09/09 by tmartin@tmartin_r400_win

 test coherency regs, RT and HOST

Change 120338 on 2003/09/09 by ashishs@fl_ashishs_r400_win

 changing the orientation of the primitive....number of samples to 2 and randomly
switching of sampling_patter in interpolator_cntl

Change 120326 on 2003/09/09 by tmartin@tmartin_r400_win

 added tests for VC_CNTL and coherency

Change 120320 on 2003/09/09 by mangeshn@fl_mangeshn

 added new tests to SP test_list

Change 120312 on 2003/09/09 by tmartin@tmartin_r400_win

 changed test names

Change 120311 on 2003/09/09 by tmartin@tmartin_r400_win

 changed test names

Change 120307 on 2003/09/09 by tmartin@tmartin_r400_win

 changed the test name

Change 120305 on 2003/09/09 by ashishs@fl_ashishs_r400_win

 permuting INTERPOLATOR_CNTL.SAMPLING_PATTERN with SC output as centers
and centroids

Change 120299 on 2003/09/09 by mkelly@fl_mkelly_r400_win_laptop

 Conditional execute predication in maximum nested subroutines using vertex stream
data.
 Exercises (!P) where r400sq_data_dep_pred_05 did (P).

Change 120287 on 2003/09/09 by mangeshn@fl_mangeshn

 Page 116 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 added precision test to handle NAN/INF cases for the LOG_CLAMPED instruction. Also
updated the Test Tracker doc

Change 120278 on 2003/09/09 by mkelly@fl_mkelly_r400_win_laptop

 Maximum nested loops with data dependent predication execution contained
 within maximum nested subroutines.

Change 120276 on 2003/09/09 by cbrennan@cbrennan_r400_emu

 Remove restriction of disallowing degamma of new DXT formats in random_level4.
 Wont actually validate unless #ifdef C1 is defined in tex lib.
 Added degamma test cases for DXN, DXT3a, DXT5a, and CTX1. Dont expect to pass
use unless kinky degamma is enabled.

Change 120255 on 2003/09/09 by lseiler@lseiler_r400_win_marlboro2

 Chroma key gold files

Change 120254 on 2003/09/09 by jhoule@jhoule_r400_linux_marlboro

 Added per-channel precision loss in the tp_ch_blend subblock.
 Precision out of the bilinear lerps are now 20, 20, 16, and 12.
 Output becomes 30, 30, 26, 22 (10 more than the above); better in hardware too.
 Added setPreWsPrecision() method to tp_ch_blend to control precision.

 Modified tp_tt to account for precision loss (calls get30bOutput() on the tp_ch_blend).

 Created a new parser which has 3 tp_ch_blend, each one with a different precision.

 Updated the dedicated testbench to use that new parser.

Change 120240 on 2003/09/09 by mangeshn@fl_mangeshn

 added precision test for INF/NAN checking for the LOG_IEEE instruction

Change 120222 on 2003/09/09 by jhoule@jhoule_r400_win_lt

 Added MIN/MAG_ANISO_WALK support in the tp_lod_aniso.
 Updated testbench ins+outs, as well as tracker outputs.

Change 120221 on 2003/09/09 by lseiler@lseiler_r400_win_marlboro

 Depth test GOLD files

Change 120197 on 2003/09/09 by mkelly@fl_mkelly_r400_win_laptop

 Pixel Shader conditional predicate execute in maximum nested subroutines,

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1631 of 1898

 Page 117 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 dependent on parameters originated from the vertex stream.

Change 120181 on 2003/09/09 by mangeshn@fl_mangeshn

 added precision test to handle NAN/INF cases for teh RECIP_SQRT_FF instruction

Change 120148 on 2003/09/09 by ashishs@fl_ashishs_r400_win

 corrected a test name

Change 120143 on 2003/09/09 by lseiler@lseiler_r400_win_marlboro1

 Zpass test

Change 120142 on 2003/09/09 by lseiler@lseiler_r400_win_marlboro1

 Stencil Zfail test

Change 120082 on 2003/09/08 by tmartin@tmartin_r400_win

 added some interface tests

Change 120079 on 2003/09/08 by tmartin@tmartin_r400_win

 Tests CC_FORCE_MISS

Change 120078 on 2003/09/08 by tmartin@tmartin_r400_win

 Tests L2_INVALIDATE

Change 120077 on 2003/09/08 by tmartin@tmartin_r400_win

 Tests the thread id's by performing vfetches in both shader program types

Change 120070 on 2003/09/08 by mangeshn@fl_mangeshn

 added precision test to handle INF/NAN cases for the RECIP_SQRT_CLAMPED
instruction

Change 120059 on 2003/09/08 by mangeshn@fl_mangeshn

 added precision test to handle INF/NAN cases for teh RECIP_SQRT_IEEE instruction

Change 120056 on 2003/09/08 by mangeshn@fl_mangeshn

 added precision test to handle INF/NAN for teh SQRT_IEEE instruction

Change 120025 on 2003/09/08 by lseiler@lseiler_r400_win_marlboro1

 Page 118 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Stencil test gold images

Change 119989 on 2003/09/08 by mkelly@fl_mkelly_r400_win_laptop

 Conditional execute predication in maximum nested
 subroutines using vertex stream data. Exercise (!P) as
 compare to _01 that exercises (P).

Change 119977 on 2003/09/08 by kevino@kevino_r400_linux_marlboro

 Same test as tp_mutlitexture_01, but now all formats are supported and testcase names
use format number instead of name. This will eventually replace tp_mutlitexture_01. Not in this
version, interlaced formats do not work.

Change 119976 on 2003/09/08 by mkelly@fl_mkelly_r400_win_laptop

 Conditional execute predication in maximum nested subroutines using vertex stream
data.

Change 119958 on 2003/09/08 by mangeshn@fl_mangeshn

 added new tests to test_lib

Change 119956 on 2003/09/08 by mangeshn@fl_mangeshn

 added precision test for the PRED_SETE instruction

Change 119925 on 2003/09/08 by kevino@kevino_r400_linux_marlboro

 Added setAlphaToGrayscale() to tp_simple_01 and _02

Change 119916 on 2003/09/08 by jayw@jayw_r400_linux_marlboro2

 Weekly re-integration. sc has changed, need new one for GC TB.

Change 119888 on 2003/09/07 by mangeshn@fl_mangeshn

 added precision tests for CNDE, CNDGE and CNDGT instructions

Change 119866 on 2003/09/06 by mangeshn@fl_mangeshn

 added precision test for the KILLNE instruction for VECTOR operations

Change 119865 on 2003/09/06 by mangeshn@fl_mangeshn

 added precision test for the KILLNE instruction for SCALAR operations

Change 119864 on 2003/09/06 by mangeshn@fl_mangeshn

 Page 119 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 added precision test for the KILLGE instruction for VECTOR operations

Change 119863 on 2003/09/06 by mangeshn@fl_mangeshn

 added precision test for the KILLGE instruction for SCALAR operations

Change 119862 on 2003/09/06 by mangeshn@fl_mangeshn

 added precision test for the KILLGT instruction for the vector operation

Change 119860 on 2003/09/06 by mangeshn@fl_mangeshn

 added precision test for the KILLGT instruction for SCALAR operation

Change 119855 on 2003/09/06 by mangeshn@fl_mangeshn

 adde precision test for KILLE instruction for the VECTOR operation

Change 119854 on 2003/09/06 by mangeshn@fl_mangeshn

 added precision test for the KILLE instruction. SCALAR evaluation only

Change 119828 on 2003/09/06 by mangeshn@fl_mangeshn

 added precision test for the SETNE instruction for both the SCALAR and VECTOR
forms

Change 119826 on 2003/09/06 by mangeshn@fl_mangeshn

 added precision test for the SETGE instruction for both the SCALAR and VECTOR
operations.

Change 119825 on 2003/09/06 by mangeshn@fl_mangeshn

 added precision test for the SETGT instruction. Handles SCALAR and VECTOR
operations.

Change 119808 on 2003/09/05 by mangeshn@fl_mangeshn

 modified the SETE test to check for both SCALAR and VECTOR operations (each
channel is tested individually)

Change 119782 on 2003/09/05 by tmartin@tmartin_r400_win

 added test r400vc_instr_fields_10 for PRED_SELECT and PRED_CONDITION in the
vfetch instruction

Change 119755 on 2003/09/05 by mangeshn@fl_mangeshn

 Page 120 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 added precision test for the SCALAR sete instruction

Change 119723 on 2003/09/05 by mkelly@fl_mkelly_r400_win_laptop

 Save work in progress.

Change 119664 on 2003/09/05 by tmartin@tmartin_r400_win

 Tests PRED_SELECT and PRED_CONDITION in the vfetch instruction

Change 119660 on 2003/09/05 by mangeshn@fl_mangeshn

 added a precision test for inf/nan handling for the recip_clamp instruction

Change 119630 on 2003/09/05 by mangeshn@fl_mangeshn

 changed the old test template to the new one with 512 points

Change 119582 on 2003/09/04 by mangeshn@fl_mangeshn

 changed test to new framework and colors to previous tests

Change 119551 on 2003/09/04 by mangeshn@fl_mangeshn

 changed color scheme of output to match previous tests

Change 119549 on 2003/09/04 by tmartin@tmartin_r400_win

 added r400vc_instr_fields_07 and 09

Change 119548 on 2003/09/04 by mangeshn@fl_mangeshn

 changed colors in result to match earlier tests

Change 119546 on 2003/09/04 by tmartin@tmartin_r400_win

 Tests SRC_GPR_AM and DST_GPR_AM

Change 119539 on 2003/09/04 by vbhatia@vbhatia_r400_linux_marlboro

 cube map related update to standalone lod_deriv testbench

Change 119523 on 2003/09/04 by mangeshn@fl_mangeshn

 adding mangesh and greg

Change 119521 on 2003/09/04 by mangeshn@fl_mangeshn

 updated

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1632 of 1898

 Page 121 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 119505 on 2003/09/04 by mangeshn@fl_mangeshn

 Added test with INF and NAN values along with valid range data tests for recip_ff
instruction

Change 119477 on 2003/09/04 by ashishs@fl_ashishs_r400_win2

 the following tests were failing since they had JSS register setting

Change 119464 on 2003/09/04 by mkelly@fl_mkelly_r400_win_laptop

 Save.

Change 119442 on 2003/09/04 by ashishs@fl_ashishs_r400_win

 Editing the test so that we can create a template test which can be used for other
instructions

Change 119424 on 2003/09/04 by mkelly@fl_mkelly_r400_win_laptop

 Different tests now than before because the random seed has changed
 due to removal of jss. It is all random based.

Change 119405 on 2003/09/04 by tmartin@tmartin_r400_win

 Tests SIGNED_RF_MODE_ALL

Change 119370 on 2003/09/04 by cbrennan@cbrennan_r400_emu

 Changed tests to target cube mapping range from 1.0 to 2.0

Change 119314 on 2003/09/03 by smoss@smoss_crayola_linux_orl

 typos in test list, removed jss from rand test

Change 119306 on 2003/09/03 by tmartin@tmartin_r400_win

 added some instruction fields tests

Change 119305 on 2003/09/03 by jhoule@jhoule_r400_win_lt

 Changed variable name to better behave with Frank Hsien's script

Change 119300 on 2003/09/03 by tmartin@tmartin_r400_win

 ests the range of EXP_ADJUST_ALL (-32 to 31)

Change 119299 on 2003/09/03 by tmartin@tmartin_r400_win

 Page 122 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Tests the upper 16 values for CONST_INDEX and all CONST_INDEX_SEL values. The
lower 16 values are tested in instr_fields_01 - 04. This test builds on r400vc_instr_fields_01

Change 119292 on 2003/09/03 by ashishs@fl_ashishs_r400_win2

 updated

Change 119282 on 2003/09/03 by ashishs@fl_ashishs_r400_win2

 updated the test to finalise the template which could be used to test a varied data range
for the instruction

Change 119228 on 2003/09/03 by jhoule@jhoule_r400_win_lt

 Added regress_rb target to be used by Larry to run a more exhaustive emulator regression
before submitting new code (some tests are currently failing).

 Tests must be listed in the LOCAL_CHIP_TESTS variable (which doesn't seem to
support testcases for now).
 Uses regress_e_local target, which is less rb-specific.

Change 119200 on 2003/09/03 by tmartin@tmartin_r400_win

 Tests SRC_SEL in the vertex fetch instruction

Change 119125 on 2003/09/02 by ashishs@fl_ashishs_r400_win

 changing the test so that it renders 128 verts in a packet at a time so that it exercises all
the shader pipes

Change 119119 on 2003/09/02 by tmartin@tmartin_r400_win

 added tests for constant and instruction fields

Change 119118 on 2003/09/02 by tmartin@tmartin_r400_win

 Tests GPRs as both source and destination

Change 119103 on 2003/09/02 by ashishs@fl_ashishs_r400_win

 initial checkin for the template test to check each instruction for inf,Nan,denorm,special
numbers along with valid data range

Change 119044 on 2003/09/02 by tmartin@tmartin_r400_win

 Tests 4 bit patterns in the base_address field. 0x55555554, 0xAAAAAAA8,
0x00007FFC, 0xFFFF0000

 Page 123 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 118842 on 2003/08/29 by jhoule@jhoule_r400_linux_marlboro

 Simple test allowing to easily test all formats.
 Simpler than the currently existing ones.

Change 118837 on 2003/08/29 by ashishs@fl_ashishs_r400_win

 adding r400sq_mova_01 after it has started PASSING now

Change 118834 on 2003/08/29 by ashishs@fl_ashishs_r400_win

 adding golds to the SQ directory using make <test_name>.golden

Change 118831 on 2003/08/29 by cbrennan@cbrennan_r400_emu

 compile fix

Change 118830 on 2003/08/29 by cbrennan@cbrennan_r400_win_marlboro

 Added seed of a test to check new cube mapping lod changes.

Change 118816 on 2003/08/29 by tmartin@tmartin_r400_win

 fixed a typo

Change 118810 on 2003/08/29 by csampayo@fl_csampayo2_r400

 Cleanup shaders

Change 118790 on 2003/08/29 by ashishs@fl_ashishs_r400_p4D

 updated the test_list to disable r400sq_vs_memory_wrap_01 test since hangs in emulator

Change 118779 on 2003/08/29 by ashishs@fl_ashishs_r400_win

 forgot to enable the option -u in the script

Change 118754 on 2003/08/29 by llefebvr@llefebvr_r400_emu_montreal

 Fixing shader

Change 118752 on 2003/08/29 by csampayo@fl_csampayo2_r400

 Adjus test to remove texture usage in pixel shader

Change 118740 on 2003/08/29 by tmartin@tmartin_r400_win

 added data_format tests

 Page 124 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 118737 on 2003/08/29 by tmartin@tmartin_r400_win

 test all vertex data formats and stress all pipes

Change 118716 on 2003/08/29 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Severely stretched all images.

Change 118698 on 2003/08/29 by jhoule@jhoule_r400_win_lt

 Added support for setAlphaToGrayscale()

Change 118582 on 2003/08/28 by omesh@omesh_r400_linux_marlboro_tott

 Fixed testcases that expand previously rendered to surfaces that use
 multisampling. During expands, surface origins must be adjusted to the
 top left corner of the top left pixel, rather than keeping it at the
 center of the top left pixel. (The former results in SC generating out
 of bound addresses towards RC/RB). Verified that the specific testcase
 that Jay pointed out does not assert any longer.

Change 118565 on 2003/08/28 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Put in more perspective so that aniso would work better.

Change 118550 on 2003/08/28 by ashishs@fl_ashishs_r400_win

 Disabling 2 of the jss tests.

 r400sc_point_jss_3X4_01
 r400sc_line_jss_3X4_01

Change 118547 on 2003/08/28 by mkelly@fl_mkelly_r400_win_laptop

 Omit resolve tests from regress for now until new RB ready.

Change 118521 on 2003/08/28 by mkelly@fl_mkelly_r400_win_laptop

 Stress the parameter cache with clipped verts and many small triangles...

Change 118466 on 2003/08/27 by csampayo@fl_csampayo2_r400

 1 Modified constant 0 in both cpp files
 2 Further cleaned up of _01 cpp and vtx

Change 118445 on 2003/08/27 by tmartin@tmartin_r400_win

 finished the remaining formats

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1633 of 1898

 Page 125 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 118436 on 2003/08/27 by ashishs@fl_ashishs_r400_win

 adding VS and PS base to the test

Change 118420 on 2003/08/27 by ashishs@fl_ashishs_r400_win

 changing the pix and vtx shaders to ver 2.0 and adding alloc for paramteres as well

Change 118355 on 2003/08/27 by csampayo@fl_csampayo2_r400

 Revert back to latest version, add alloc inst to vtx shader

Change 118349 on 2003/08/27 by ashishs@fl_ashishs_r400_win

 setting IM_LOAD inside the tests

Change 118344 on 2003/08/27 by ashishs@fl_ashishs_r400_win

 changed pixel shader to revert back to the original shader viz. Even if vtx shader
exporting 3 parameters, pixel shader only fetching the parameter needed

Change 118273 on 2003/08/26 by csampayo@fl_csampayo_r400

 Temporarily go back to rev 2 to catch problem sync

Change 118269 on 2003/08/26 by tmartin@tmartin_r400_win

 the wrong shader was being used

Change 118262 on 2003/08/26 by csampayo@fl_csampayo_r400

 Remove commented blocks and update description

Change 118255 on 2003/08/26 by ashishs@fl_ashishs_r400_win

 updated the test to include IM_LOAD function since causing problem in hardware

Change 118251 on 2003/08/26 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Removed illegal gamma cases and added tp_border_02 for forcing w to max.

Change 118224 on 2003/08/26 by omesh@omesh_r400_linux_marlboro_tott

 Also set color0 samples, fragments and depth samples and fragments
 correctly, before an xpand operation. This should REALLY fix the test
 bug. (Not yet verified on simulation though)

Change 118222 on 2003/08/26 by mkelly@fl_mkelly_r400_win_laptop

 Page 126 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 TRIANGLE_LIST stress tests of exercising parameter cache indices and wrapping with
params 1 - 16.

Change 118221 on 2003/08/26 by omesh@omesh_r400_linux_marlboro_tott

 Fixed a bug with the testcases that use the xpand function (Which was
 not enabling msaa before sending an xpand operation). Haven't verified
 this fix on simulation....

Change 118220 on 2003/08/26 by ashishs@fl_ashishs_r400_win

 correcting a optimization in the test. No problem with the test just the tests were doing
one extra rendering of 128 vertcies which has been removed now.

Change 118214 on 2003/08/26 by ashishs@fl_ashishs_r400_win

 forgot to remove a print statement...

Change 118212 on 2003/08/26 by ashishs@fl_ashishs_r400_win

 Forgot to initialise the values of the parameters which was causing an error in the script...

Change 118175 on 2003/08/26 by mkelly@fl_mkelly_r400_win_laptop

 Extensive line_list testing of the parameter cache, 1-16 parameters.
 Update tracker accordingly.

Change 118155 on 2003/08/26 by ashishs@fl_ashishs_r400_win

 Perl script Updates:

 1. Added option -g
 With this option we can check the dumps against the gold directory in each test directory

 2. Added option -u
 With this option we can update the golds. Currently all the gold files will be updated
whichever PASS and for NEW test the gold will be added. Also if the test FAILS then the
corresonding gold isn't updated
 ------Need to know if unchanged files should be reverted back to minimize the depot
checkins ?

Change 118153 on 2003/08/26 by mkelly@fl_mkelly_r400_win_laptop

 Update expected results comments in test for new constant index behaviour.

Change 118143 on 2003/08/26 by mkelly@fl_mkelly_r400_win_laptop

 Remove resolve tests until new RB ready.
 Fix line tests due to RB assert when msaa = true and samples = 0.

 Page 127 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 118120 on 2003/08/25 by ashishs@fl_ashishs_r400_win

 removing a duplicate test name

Change 118100 on 2003/08/25 by csampayo@fl_csampayo2_r400

 Correct number of loaded constants.

Change 118082 on 2003/08/25 by rmanapat@rmanapat_r400_sun_marlboro

 Tests changed so that fmts58, 59, and 60 do not use gamma

Change 118067 on 2003/08/25 by ashishs@fl_ashishs_r400_win

 adding marcos to nightly regressions

Change 118051 on 2003/08/25 by jhoule@jhoule_r400_linux_marlboro

 Changed VFetch format from 32x2+32x1 to 32+32+32 type.

Change 118050 on 2003/08/25 by mkelly@fl_mkelly_r400_win_laptop

 Exercise parameter cache indices with LINE_LIST and TRIANGLE_LIST, 16
parameters, many verts.

Change 118009 on 2003/08/25 by mkelly@fl_mkelly_r400_win_laptop

 Remainder of POINT_LIST paramater cache testing of the memory addressing and
indice
 generation.

Change 118000 on 2003/08/25 by ashishs@fl_ashishs_r400_win

 checking in all the auto generated shader files by VFD with modification regarding the
exports viz exports should be sequential starting at 0 and if a parameter is exported on higher
export register then need to export all the lower registers too or else doesnt work with hardware

Change 117969 on 2003/08/25 by mkelly@fl_mkelly_r400_win_laptop

 POINT_LIST, 16 params, exercise the full range of PC addresses with
 address wrapping.

Change 117870 on 2003/08/22 by csampayo@fl_csampayo_r400

 Partial update

Change 117865 on 2003/08/22 by tmartin@tmartin_r400_win

 Page 128 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 added r400vc_addr_clamping_02

Change 117855 on 2003/08/22 by ashishs@fl_ashishs_r400_win

 corrected the tests since i forgot to use the 4th shader while rendering

Change 117851 on 2003/08/22 by ashishs@fl_ashishs_r400_win

 editing all the tests for being able to run any number of cases

Change 117844 on 2003/08/22 by kevino@kevino_r400_linux_marlboro

 Removed some redundant test cases and relabled interlaced formats to INTERLACED
instead od INTERLACE.

Change 117841 on 2003/08/22 by ashishs@fl_ashishs_r400_win

 edited the test so that it could be run for any number of cases. For ease in Hardware
validation

Change 117821 on 2003/08/22 by tmartin@tmartin_r400_win

 made the test a little clearer by changing colors and adding better comments

Change 117808 on 2003/08/22 by tmartin@tmartin_r400_win

 tests clamp_disable

Change 117807 on 2003/08/22 by tmartin@tmartin_r400_win

 updated to test negative clamping

Change 117793 on 2003/08/22 by mkelly@fl_mkelly_r400_win_laptop

 Remove JSS state control.

Change 117783 on 2003/08/22 by ashishs@fl_ashishs_r400_win

 adding 2 mova tests which were not there in the test_list somehow

Change 117777 on 2003/08/22 by tmartin@tmartin_r400_win

 r400vc_base_addr_range_pci_02
 r400vc_stride_size_01
 r400vc_stride_size_02
 r400vc_stride_size_02

Change 117774 on 2003/08/22 by csampayo@fl_csampayo_r400

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1634 of 1898

 Page 129 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Add tests r400sq_const_index_05, _06 to tests list and tracker

Change 117766 on 2003/08/22 by csampayo@fl_csampayo2_r400

 Updated shader functionality, constant setup/data and tests description accordingly

Change 117756 on 2003/08/22 by kevino@kevino_r400_win_marlboro

 Added test case files for tp_multitexture based on fmt # instead of name

Change 117747 on 2003/08/22 by tmartin@tmartin_r400_win

 test power of 2 stride values

Change 117735 on 2003/08/22 by ashishs@fl_ashishs_r400_win

 edited the test so that it could be run for each single case seperately, easier for hardware
validation

Change 117719 on 2003/08/22 by mkelly@fl_mkelly_r400_win_laptop

 Remove test examples, check in update to one test....

Change 117713 on 2003/08/22 by tmartin@tmartin_r400_win

 added clamping at the end of pci space as an extra check

Change 117675 on 2003/08/21 by ashishs@fl_ashishs_r400_win2

 adding Chris Hammer to regressions

Change 117658 on 2003/08/21 by csampayo@fl_csampayo2_r400

 Updated to better fulfill test intentions

Change 117642 on 2003/08/21 by tmartin@tmartin_r400_win

 added r400vc_array_size_02

Change 117638 on 2003/08/21 by tmartin@tmartin_r400_win

 added and removed some comments

Change 117637 on 2003/08/21 by tmartin@tmartin_r400_win

 Sets the vertex fetch size constant to 0 and set the distance between buffers 00 and 01 to
greater than the max allowed size. If the triangles are drawn this verifies that the size constant
value of 0 effectively disables clamping and allows an extra large address to be calculated

 Page 130 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 117628 on 2003/08/21 by ashishs@fl_ashishs_r400_win

 adding Brian Buchner to regressions

Change 117617 on 2003/08/21 by tmartin@tmartin_r400_win

 added r400vc_index_rounding_01

Change 117582 on 2003/08/21 by tmartin@tmartin_r400_win

 updated now that spec fields have been reversed.

Change 117576 on 2003/08/21 by jhoule@jhoule_r400_linux_marlboro

 Testbench now does invalid fetches

Change 117469 on 2003/08/21 by ashishs@fl_ashishs_r400_win

 adding Todd to nightly regressions

Change 117382 on 2003/08/20 by csampayo@fl_csampayo_r400

 Initial checkin

Change 117381 on 2003/08/20 by csampayo@fl_csampayo_r400

 Add test r400sq_const_index_06

Change 117373 on 2003/08/20 by csampayo@fl_csampayo2_r400

 Correct vfetches when using FMT_32_FLOAT

Change 117364 on 2003/08/20 by tmartin@tmartin_r400_win

 added swizzling tests

Change 117347 on 2003/08/20 by tmartin@tmartin_r400_win

 DST_SEL_X sources are SRC_X, SRC_W
 DST_SEL_Y sources are SRC_X, SRC_Y
 DST_SEL_Z sources are SRC_Y, SRC_Z, 0
 DST_SEL_W sources are SRC_Z, SRC_W, 1

Change 117345 on 2003/08/20 by tmartin@tmartin_r400_win

 Tests swizzling.
 DST_SEL_X sources are SRC_X, 0, 1, Mask
 DST_SEL_Y sources are SRC_Y, 0, 1, Mask
 DST_SEL_Z sources are SRC_Z, 0, 1, Mask

 Page 131 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 DST_SEL_W sources are SRC_W, 0, 1, Mask

Change 117344 on 2003/08/20 by tmartin@tmartin_r400_win

 Tests swizzling.
 DST_SEL_X sources are SRC_Y, SRC_Z
 DST_SEL_Y sources are SRC_Z, SRC_W
 DST_SEL_Z sources are SRC_X, SRC_W, 0
 DST_SEL_W sources are SRC_X, SRC_Y, 1

Change 117339 on 2003/08/20 by csampayo@fl_csampayo2_r400

 Correct shaders for proper swizzle of FMT_32 and FM_32_FLOAT vfetches

Change 117319 on 2003/08/20 by csampayo@fl_csampayo2_r400

 Revise test to fit its original intentions.

Change 117313 on 2003/08/20 by tmartin@tmartin_r400_win

 changed to only use x as a write modifier when 32_float is being used.

Change 117276 on 2003/08/20 by tmartin@tmartin_r400_win

 removed some unused frame buffer so the test draws fewer pixels

Change 117227 on 2003/08/20 by jhoule@jhoule_r400_linux_marlboro

 Added ch field to the input of the hicolor block.

Change 117223 on 2003/08/20 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint 4, added expected output description.

Change 117222 on 2003/08/20 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint 3, added initial test description.

Change 117220 on 2003/08/20 by mkelly@fl_mkelly_r400_win_laptop

 2nd checkpoint, reduced test to 1 case, set all ALU store values to
 zero except for the clamp constant K0.

Change 117219 on 2003/08/20 by tmartin@tmartin_r400_win

 Removed a swizzle which broke the test when a bug in the emulator was fixed. This way
the test is less likely to fail for non-targeted reasons.

Change 117214 on 2003/08/20 by mkelly@fl_mkelly_r400_win_laptop

 Page 132 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Initial checkpoint for testing closely knit ALU constant addressing and indexing
 throughout the 512 ALU constant store.

Change 117161 on 2003/08/19 by tmartin@tmartin_r400_win

 added r400vc_fetch_addr_range_01

Change 117141 on 2003/08/19 by jhoule@jhoule_r400_win_lt

 Missing test

Change 117127 on 2003/08/19 by ashishs@fl_ashishs_r400_win

 adding new tests

Change 117124 on 2003/08/19 by tmartin@tmartin_r400_win

 changed setAddressRange to Set_Size to reflect the change in primlib

Change 117107 on 2003/08/19 by ashishs@fl_ashishs_r400_win

 adding test for log_clamp instruction. Also verifying whether log_ieee and log_clamp
have the same precision

Change 117089 on 2003/08/19 by ashishs@fl_ashishs_r400_win

 testing precision for recip_clamp and recip_ff instructions and verifying it to be the same
as recipsq_ieee in the good data range

Change 117077 on 2003/08/19 by ashishs@fl_ashishs_r400_win

 adding tests for precision of recip_clamp and recip_ff and verifying whether the precision
for both is the same as recip_ieee instruction in the good data range

Change 117061 on 2003/08/19 by mkelly@fl_mkelly_r400_win_laptop

 Remove JSS tests..

Change 117059 on 2003/08/19 by mkelly@fl_mkelly_r400_win_laptop

 Remove JSS from regress_e, back out this changelist to re-introduce JSS if ever
necessary.

Change 117038 on 2003/08/19 by tmartin@tmartin_r400_win

 test complete

Change 117037 on 2003/08/19 by tmartin@tmartin_r400_win

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1635 of 1898

 Page 133 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 test complete

Change 116971 on 2003/08/18 by cbrennan@cbrennan_r400_emu

 Shrunk max prim size in effort to reduce the maximum runtime of the test.

Change 116962 on 2003/08/18 by georgev@devel_georgev_r400_lin2_marlboro_tott

 More border tests for different formats, adding formats, and changes to regressions.

Change 116879 on 2003/08/18 by tmartin@tmartin_r400_win

 Temporarily modified. The top triangle is rgba and the bottom triangle is bgra. They
should not be equal, but they are.

Change 116797 on 2003/08/15 by ashishs@fl_ashishs_r400_win2

 cheking precision for fract instruction.
 TBD : if scalar precision and vector precision need to be checked seperately or any one
can be used for precision.

Change 116790 on 2003/08/15 by ashishs@fl_ashishs_r400_win2

 updated

Change 116785 on 2003/08/15 by tmartin@tmartin_r400_win

 added r400vc_fetch_mode_01 and r400vc_array_size_01

Change 116780 on 2003/08/15 by tmartin@tmartin_r400_win

 increased NUM_CASES to 4

Change 116778 on 2003/08/15 by tmartin@tmartin_r400_win

 support for FMT_32_32_32_FLOAT was added to primlib so the second case was
enabled in this test.

Change 116776 on 2003/08/15 by tmartin@tmartin_r400_win

 Sets the maximum value in the vertex fetch constant size field and puts vertex data up to
the boundary.

Change 116743 on 2003/08/15 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added split triangle.

Change 116632 on 2003/08/14 by jhoule@jhoule_r400_win_lt

 Page 134 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Forgot to add shader program for FMT_32_32_32_FLOAT vfetches

Change 116624 on 2003/08/14 by ashishs@fl_ashishs_r400_win

 adding ADD_CONST test. Currently ADD_CONST_0,ADD_CONST_1, scalar ADD all
have the same execution code. Also there is a problem with ADD_CONST since it doesn't pick
up the right value for the SrcGPR and just initialises to 1

Change 116622 on 2003/08/14 by mkelly@fl_mkelly_r400_win_laptop

 Update comment in _11
 Copy _11 to _12 and use 144 vertices per packet
 Update test_list and tracker accordingly.

Change 116616 on 2003/08/14 by jhoule@jhoule_r400_win_lt

 Added support for FMT_32_32_32_FLOAT

Change 116570 on 2003/08/14 by ashishs@fl_ashishs_r400_win

 adding new tests

Change 116566 on 2003/08/14 by tmartin@tmartin_r400_win

 small changes to aid in figuring out the swizzle bug with floats

Change 116416 on 2003/08/13 by ashishs@fl_ashishs_r400_win

 adding test having generalised settings for rendering number of verts per packet as well
as controlling number of packets. Also currently having a problem in which no. of vertices > 43
create a failure for the shader logic

Change 116400 on 2003/08/13 by jhoule@jhoule_r400_win_marlboro

 Old pixel shaders never submitted

Change 116365 on 2003/08/13 by omesh@omesh_r400_linux_marlboro_tott

 Added a few additional testcases to limit the number of registers tested.

Change 116364 on 2003/08/13 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 116362 on 2003/08/13 by cbrennan@cbrennan_r400_release

 Forced on mipmapping to hopefully make tests take less time.

 Page 135 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 116358 on 2003/08/13 by mkelly@fl_mkelly_r400_win_laptop

 Add

Change 116357 on 2003/08/13 by mkelly@fl_mkelly_r400_win_laptop

 Final, test combinations of addressing and indexing the ALU constant store with coissue
and single issue instructions.

Change 116319 on 2003/08/13 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 116194 on 2003/08/12 by tmartin@tmartin_r400_win

 added r400vc_endian_swap_01 and r400vc_endian_swap_02

Change 116184 on 2003/08/12 by tmartin@tmartin_r400_win

 updated to test bottom of address space and added more triangles.

Change 116174 on 2003/08/12 by tmartin@tmartin_r400_win

 Tests swizzling during vfetch instructions.

Change 116173 on 2003/08/12 by tmartin@tmartin_r400_win

 Tests index rounding with vfetch instructions.

Change 116172 on 2003/08/12 by tmartin@tmartin_r400_win

 Tests the VC's dynamic range when addressing vertex buffers stored in PCI memory.
This test shows the upper end of the address range is accessible through PCI.

Change 116171 on 2003/08/12 by tmartin@tmartin_r400_win

 Tests endian swap modes 2 and 3.

Change 116170 on 2003/08/12 by tmartin@tmartin_r400_win

 Tests endian swap modes 0 and 1.

Change 116157 on 2003/08/12 by omesh@omesh_r400_linux_marlboro_tott

 Added another testcase that fast clears, normal clears then again fast
 clears to verify h/w synchronization (2nd fast clear should wait for the
 normal clear to finish). Ran it on the emulator but haven't run it on
 h/w yet.

 Page 136 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 116139 on 2003/08/12 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 116122 on 2003/08/12 by omesh@omesh_r400_linux_marlboro_tott

 Disabled multisampling for 1 sample testcases. This fixes emulator
 assertions.

Change 116112 on 2003/08/12 by omesh@omesh_r400_linux_marlboro_tott

 Overlooked adding the FB base start address to color0 buffer base address. It should be
fine now.

Change 116109 on 2003/08/12 by jhoule@jhoule_r400_linux_marlboro

 Reverting old Toronto Makefile changes which weren't undone here

Change 116108 on 2003/08/12 by mkelly@fl_mkelly_r400_win_laptop

 Add more description in shaders, fix vertex constant on a few cases...

Change 116072 on 2003/08/12 by csampayo@fl_csampayo2_r400

 Initialize unused R1 components

Change 116022 on 2003/08/12 by ashishs@fl_ashishs_r400_win

 updating the test. Shaders with different pred instructions setting the pred reg and clr
instruction clearing out the register as well as checking MAX_FLOAT

Change 115943 on 2003/08/11 by omesh@omesh_r400_linux_marlboro_tott

 Overlooked adding the FB base start address to color0 buffer base address. It should be
fine now.

Change 115922 on 2003/08/11 by ashishs@fl_ashishs_r400_win

 initial checkin for pred_set_clr instruction. Still doubts regarding the position of this
instruction relative to other pred instructions inside shader

Change 115907 on 2003/08/11 by omesh@omesh_r400_linux_marlboro_tott

 Added indirect register R/W testing and I may have used different data structures to
access register objects. These tests
 don't all pass for various reasons: SOme bits are not testable so I have yet to mask r/w
operations on them.

Change 115904 on 2003/08/11 by cbrennan@cbrennan_r400_win_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1636 of 1898

 Page 137 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Added DXT3A, DXT5A and CTX1 to testcases and added random_level4 which
includes these.

Change 115871 on 2003/08/11 by ashishs@fl_ashishs_r400_win

 test for scalar min instruction

Change 115803 on 2003/08/11 by ashishs@fl_ashishs_r400_win

 test for max scalar instruction, testing on xyzw channels with different combination of
data

Change 115676 on 2003/08/08 by ashishs@fl_ashishs_r400_win

 wasnt using the input vertex for constant indexing

Change 115674 on 2003/08/08 by ashishs@fl_ashishs_r400_win

 wasnt correctly using the incoming vertex z value for constant indexing

Change 115673 on 2003/08/08 by ashishs@fl_ashishs_r400_win

 adding 2 more tests

Change 115672 on 2003/08/08 by ashishs@fl_ashishs_r400_win

 adding test for MAX4 instruction. testing on all pipes as well as input vertex selecting
predicates from shader therby selecting constant combination

Change 115644 on 2003/08/08 by ashishs@fl_ashishs_r400_win

 had incorrect name inside the test_list

Change 115642 on 2003/08/08 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 115641 on 2003/08/08 by mkelly@fl_mkelly_r400_win_laptop

 Update but still asserts

Change 115618 on 2003/08/08 by mkelly@fl_mkelly_r400_win_laptop

 Disable MSAA when number of samples is zero. This allows test to finish and not
 assert in RB on depth number of samples being zero when msaa is enabled.

Change 115608 on 2003/08/08 by mkelly@fl_mkelly_r400_win_laptop

 Page 138 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Add const_index tests...

Change 115607 on 2003/08/08 by mkelly@fl_mkelly_r400_win_laptop

 Negative ALU VS constant clamping, negative index clamping with negative stepping

Change 115606 on 2003/08/08 by ashishs@fl_ashishs_r400_win

 adding test for DOT2ADD

Change 115587 on 2003/08/08 by mkelly@fl_mkelly_r400_win_laptop

 Positive constant clamping with negative loop stepping...

Change 115576 on 2003/08/08 by omesh@omesh_r400_linux_marlboro_tott

 Added missing depth clear register programming.

Change 115562 on 2003/08/08 by mkelly@fl_mkelly_r400_win_laptop

 ALU positive constant index clamping and constant clamping

Change 115527 on 2003/08/08 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint VS positive constant indexing and clamping

Change 115503 on 2003/08/07 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added stress test to make big objects to fill queues.

Change 115480 on 2003/08/07 by mkelly@fl_mkelly_r400_win_laptop

 First test of series which checks positive alu constant index clamping.

Change 115428 on 2003/08/07 by ashishs@fl_ashishs_r400_win2

 adding shaders , one with predicates and sub_prev inserted in an particular order to see
the effect and in the shader_004 adding another instruction eg. mova in between the predicate
instructions to see the effects and the results have been described in the shaders.

Change 115387 on 2003/08/07 by ashishs@fl_ashishs_r400_win2

 adding 10 more tests done during last week and the current week

Change 115384 on 2003/08/07 by ashishs@fl_ashishs_r400_win2

 adding 4 shaders to cover the SUB instruction on all channels

Change 115372 on 2003/08/07 by csampayo@fl_csampayo2_r400

 Page 139 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Extended exports to span 2 framebuffer tiles.

Change 115368 on 2003/08/07 by ashishs@fl_ashishs_r400_win2

 performed a test according to Carlos's spec to test if the add and sub instruction yeild any
difference/error

Change 115331 on 2003/08/07 by llefebvr@llefebvr_r400_emu_montreal

 Conditions were not set correctly (they were swapped).

Change 115328 on 2003/08/07 by llefebvr@llefebvr_r400_emu_montreal

 The HW has a 26 bits normilizer so I increased the emulator's precision to match. This
fixes r400sq_ripple_01.cpp. I had to re-goldenize 1 test in the regress_e suite.

Change 115304 on 2003/08/06 by csampayo@fl_csampayo2_r400

 Fixed color ramp, increased export aperture.

Change 115277 on 2003/08/06 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint, temp save of worksheet as well...

Change 115267 on 2003/08/06 by smoss@smoss_crayola_linux_orl

 changed to initialize gpr channels

Change 115266 on 2003/08/06 by ashishs@fl_ashishs_r400_win

 initial checkin for testing sub_prev instruction. Seems to have a precision issue and part
of shaders 3 and 4 commented out for now.

Change 115226 on 2003/08/06 by ashishs@fl_ashishs_r400_win

 didnt have the correct shaders

Change 115220 on 2003/08/06 by ashishs@fl_ashishs_r400_win

 adding test for mul_prev with various combination of instructions

Change 115188 on 2003/08/06 by ashishs@fl_ashishs_r400_win

 updating the golden.lst file

Change 115187 on 2003/08/06 by ashishs@fl_ashishs_r400_win

 Page 140 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 updated the image since with the NEW TP using 'setenv TP_V2 3' as suggested by
Jocelyn the test produced a different image compared with old environment. But with pix center
as 0 (after test was updated) it produces the same image in old as well as new environment and
keeping all other same.

Change 115178 on 2003/08/06 by ashishs@fl_ashishs_r400_win

 changing the pixel centering, since with the NEW TP using 'setenv TP_V2 3' as
suggested by Jocelyn the test produced a different image compared with old environment. But
with pix center as 0 it produces the same image in old as well as new and keeping all other same.

Change 115063 on 2003/08/05 by mkelly@fl_mkelly_r400_win_laptop

 Check in to save, not complete

Change 115038 on 2003/08/05 by ashishs@fl_ashishs_r400_win

 adding test for add_prev instruction with different combination of instructions used to get
result in the previousScalar

Change 114967 on 2003/08/05 by ashishs@fl_ashishs_r400_win

 modifying the script since it was using different search strings in different areas of the
script for the same cause

Change 114947 on 2003/08/05 by mkelly@fl_mkelly_r400_win_laptop

 Change HOS reuse depth

Change 114930 on 2003/08/05 by jhoule@jhoule_r400_linux_marlboro

 Modified tests to set CLAMP_DISABLE bit (second dword, bit 30), since they are
setting a size of 0.

Change 114913 on 2003/08/05 by ashishs@fl_ashishs_r400_win

 forgot to update the test for Write_To_Memory function change

Change 114912 on 2003/08/05 by mkelly@fl_mkelly_r400_win_laptop

 Modify to work with non-zero FB start

Change 114905 on 2003/08/05 by smoss@smoss_crayola_linux_orl

 comment out jss* tests - no longer needed
 comment out pipe disable - hardware will change

Change 114832 on 2003/08/04 by csampayo@fl_csampayo3

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1637 of 1898

 Page 141 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Update for Write_To_Memory change,

Change 114825 on 2003/08/04 by cbrennan@cbrennan_r400_emu

 Removed clamp mode from tests since TP_V2 is enabled by default.

Change 114813 on 2003/08/04 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 114810 on 2003/08/04 by mkelly@fl_mkelly_r400_win_laptop

 Simple triangle with SET_STATE

Change 114808 on 2003/08/04 by omesh@omesh_r400_linux_marlboro_tott

 Corrected some typos that were mixing up testcase names. Also made some
 changes that make these tests run without compiler errors on Windows.

Change 114805 on 2003/08/04 by ashishs@fl_ashishs_r400_win

 adding test for killone instruction checking 1 as well as < and > 1 over all the channels
using different shaders as well as over all shader pipes

Change 114791 on 2003/08/04 by lseiler@lseiler_r400_win_marlboro

 Sets msaa_enable only with >1 sample

Change 114778 on 2003/08/04 by ashishs@fl_ashishs_r400_win

 adding test for pred_set_restore instruction

Change 114768 on 2003/08/04 by ashishs@fl_ashishs_r400_win

 adding test for pred_set_pop instruction using 4 shaders to tests each x,y,z,w channel
with different data inputs wrt (> = <) 0

Change 114764 on 2003/08/04 by mkelly@fl_mkelly_r400_win_laptop

 Test Mainline

Change 114757 on 2003/08/04 by ashishs@fl_ashishs_r400_win

 Test had a problem while running hardware since the c31 which was used in pixel shader
wasnt initialised explicitly, and in emulator it gets initialised to 0's explicitly

Change 114743 on 2003/08/04 by mkelly@fl_mkelly_r400_win_laptop

 Branch

 Page 142 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 114715 on 2003/08/04 by smoss@smoss_crayola_linux_orl

 makefile for vc

Change 114577 on 2003/08/01 by ashishs@fl_ashishs_r400_win

 adding test for pred_set_inv. each shader checks unique combination of (+,-,0,1) for
x,y,z,w channels

Change 114574 on 2003/08/01 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Partial complete test.

Change 114560 on 2003/08/01 by ashishs@fl_ashishs_r400_win

 corrected an error where the script was counting VC tests as SP tests

Change 114549 on 2003/08/01 by tmartin@tmartin_r400_win

 added r400vc_fetch_mode_02

Change 114543 on 2003/08/01 by tmartin@tmartin_r400_win

 Tests mega fetch counts of 0 thru 3.

Change 114542 on 2003/08/01 by tmartin@tmartin_r400_win

 Tests mega fetch counts of 4 - 7. Including 1 - 4 dword mini fetches.

Change 114534 on 2003/08/01 by ashishs@fl_ashishs_r400_win2

 added variables for the new changes done in AUTO_..sync.tcsh file

Change 114454 on 2003/08/01 by ashishs@fl_ashishs_r400_win

 adding vector scalar and coissue instructions

Change 114428 on 2003/08/01 by ashishs@fl_ashishs_r400_win

 adding scalar vector and coissue shaders

Change 114424 on 2003/08/01 by ashishs@fl_ashishs_r400_win

 had wrong shaders

Change 114343 on 2003/07/31 by csampayo@fl_csampayo_r400

 Add memory export test, update test list and tracker

 Page 143 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 114282 on 2003/07/31 by tmartin@tmartin_r400_win

 added r400vc_addr_spanning_01

Change 114277 on 2003/07/31 by tmartin@tmartin_r400_win

 Tests that the VC correctly spans address spaces

Change 114221 on 2003/07/31 by ashishs@fl_ashishs_r400_win

 added shaders for scalar, vector and coissue instructions

Change 114192 on 2003/07/31 by tien@tien_r400_devel_marlboro

 Bug fixes and change in tpc_out_fifo width

Change 114148 on 2003/07/31 by ashishs@fl_ashishs_r400_win2

 adding a new line at the end of test_list since my script needs a newline at the end of
test_list. Later would change my script

Change 114080 on 2003/07/30 by tmartin@tmartin_r400_win

 fixed the NUM_CASES loop

Change 114055 on 2003/07/30 by ashishs@fl_ashishs_r400_win

 added shaders for pred_sete with scalar and coissue instructions

Change 114018 on 2003/07/30 by tmartin@tmartin_r400_win

 added strides/offsets tests

Change 114004 on 2003/07/30 by tmartin@tmartin_r400_win

 Check fetch address calculations and range (including negative results)

Change 114003 on 2003/07/30 by tmartin@tmartin_r400_win

 Tests that the VC correctly clamps addresses that are outside of the constant size.

Change 113997 on 2003/07/30 by tmartin@tmartin_r400_win

 test currently works, but is restricted to a hardcoded range in the address space.
Eventually this restriction will be removed and the test will be modified to span the entire
address range.

Change 113981 on 2003/07/30 by omesh@omesh_r400_linux_marlboro_tott

 Page 144 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Fixed a bug of not setting the Z_BASE address correctly (Overlooked adding the FB start
address).
 Tests now pass, as verified by John Chen.

Change 113962 on 2003/07/30 by ashishs@fl_ashishs_r400_win

 changed the case for "TOTAL" since Joe's script on web was searching for case sensitive
"TOTAL"

Change 113896 on 2003/07/29 by ashishs@fl_ashishs_r400_win

 tried to get the automatic submit to P4 to workbut somehow there are issues related to
submit and makes it very complicated to do automatic submit.

Change 113874 on 2003/07/29 by ashishs@fl_ashishs_r400_win

 increased the length of test names from 50 to 80

Change 113871 on 2003/07/29 by tmartin@tmartin_r400_win

 updated to stress all 64 vertex pipes

Change 113869 on 2003/07/29 by ashishs@fl_ashishs_r400_win

 adding option "p"
 if the script is run with -p then it will update the web as well as tracker
 else it will just update the tracker

Change 113864 on 2003/07/29 by ashishs@fl_ashishs_r400_win

 updated so that the script could be run from any directory. Also corrected a minor error
related to the VC page. Also integrated the web script with this script.

Change 113855 on 2003/07/29 by ashishs@fl_ashishs_r400_win

 updated the changes for running from any directory

Change 113850 on 2003/07/29 by ashishs@fl_ashishs_r400_win

 removing 7 files that were duplicated

Change 113810 on 2003/07/29 by tmartin@tmartin_r400_win

 added more vertices to the scenes to saturate all 64 vertex pipes

Change 113809 on 2003/07/29 by omesh@omesh_r400_linux_marlboro_tott

 Made index buffer code less sloppy.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1638 of 1898

 Page 145 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 113795 on 2003/07/29 by omesh@omesh_r400_linux_marlboro_tott

 Added a testcase "tri3_8x8_replace_8samp" that Bill needed. Ran it and
 visually inspected/verified the FB dump.

Change 113706 on 2003/07/28 by ashishs@fl_ashishs_r400_win

 updating a minor error in update tracker script. And formatting the update web script to
have the test number and serial number as well as block name in the report. Also formatting the
output.

Change 113629 on 2003/07/28 by ashishs@fl_ashishs_r400_win

 corrected minor error while printing

Change 113627 on 2003/07/28 by ashishs@fl_ashishs_r400_win

 Upadte for script to update regression tracker
 1. Maintain a seperate worksheet for each emulator block
 2. Add numbering for each page/block
 3. Updated paths for the tracker viz put the tracker in t:\r400\ making it available for
updating to others

Change 113623 on 2003/07/28 by tien@tien_r400_devel_marlboro

 Man it's been a long time coming :-)
 formatter fix for TP to output to 1 simd only
 drive simd signal from TPC to VC (will prolly need to skew it a bit, but that will fall out
from debug)
 Clean up get/set logic

Change 113606 on 2003/07/28 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 113594 on 2003/07/28 by mkelly@fl_mkelly_r400_win_laptop

 Validate upper SIMD1/0 bits for pipe disable

Change 113593 on 2003/07/28 by ashishs@fl_ashishs_r400_win

 adding Todd to email list

Change 113470 on 2003/07/28 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 113444 on 2003/07/27 by ashishs@fl_ashishs_r400_win

 Page 146 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 adding blocks CP,RBBM,VC,BUGS,SANITY,STRESS,PERF

Change 113432 on 2003/07/27 by ashishs@fl_ashishs_r400_win

 adding option "i" using which the regress_r400 script will use the hardcoded paths for
each of the test

Change 113284 on 2003/07/25 by tmartin@tmartin_r400_win

 added tests

Change 113282 on 2003/07/25 by csampayo@fl_csampayo_r400

 Updated status for tests r400sx_vtx_point_size_export_01-04 and added them to test_list

Change 113264 on 2003/07/25 by mkelly@fl_mkelly_r400_win_laptop

 update...

Change 113261 on 2003/07/25 by mkelly@fl_mkelly_r400_win_laptop

 Update Tess level, Hos reuse, dealloc distance, reduce fb size

Change 113226 on 2003/07/25 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 113218 on 2003/07/25 by ashishs@fl_ashishs_r400_win

 changing names for output files with time stamp

Change 113206 on 2003/07/25 by tmartin@tmartin_r400_win

 Tests the VC's stride range when addressing vertex buffers stored in the frame buffer.
Stride range is 0:255.

Change 113179 on 2003/07/25 by ashishs@fl_ashishs_r400_win

 corrected the time formatting in output

Change 113176 on 2003/07/25 by ashishs@fl_ashishs_r400_win

 updated to create the statistics page based on the tracker

Change 113154 on 2003/07/25 by csampayo@fl_csampayo2_r400

 Correct test _01 to use IM_LOAD for loading shaders and, add 3 new test with different
patterns

 Page 147 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 113145 on 2003/07/25 by ashishs@fl_ashishs_r400_win

 merging the statistics data generated from report with the tracker also sorting records
with test status (PASS/FAIL)

Change 113126 on 2003/07/25 by mkelly@fl_mkelly_r400_win_laptop

 Validate new state bit, SC_LINE_CNTL.LAST_PIXEL behaviour

Change 113071 on 2003/07/24 by csampayo@fl_csampayo2_r400

 Update for non-zero FB start wrt depth buffer setup

Change 113023 on 2003/07/24 by ashishs@fl_ashishs_r400_win

 initial checkin for script which will get the TRACKER data and update it on the web

Change 112997 on 2003/07/24 by ashishs@fl_ashishs_r400_win

 using a different way to output runTimes in the Excel

Change 112984 on 2003/07/24 by llefebvr@llefebvre_laptop_r400_emu

 Fixing test that wasn't initializing all GPR fields before exporting.

Change 112980 on 2003/07/24 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 112966 on 2003/07/24 by mkelly@fl_mkelly_r400_win_laptop

 Extensive round mode testing...

Change 112965 on 2003/07/24 by smoss@smoss_crayola_linux_orl

 removed die, added gold

Change 112950 on 2003/07/24 by omesh@omesh_r400_linux_marlboro_tott

 Again, modified the condition under which the Tile Buffer is needed:
 When Stencil is Fast Expanded, this is not reflected in the Depth
 Buffer, it is only done in the Tile Buffer, so even when Stencil Expand is
 done, this means the Depth Buffer is not Fully Expanded and hence the
 Tile Buffer is needed.

Change 112946 on 2003/07/24 by omesh@omesh_r400_linux_marlboro_tott

 Added an additional condition under which the Tile Buffer needs to be

 Page 148 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 dumped (When Z is NOT Fast expanded but Stencil IS, the actual stencil
 value does not get written to the Depth Buffer and hence the tile buffer
 is needed)

Change 112925 on 2003/07/24 by omesh@omesh_r400_linux_marlboro_tott

 Added Depth Clear register programming. John/Paul, please verify that
 this problem is now fixed.

Change 112916 on 2003/07/24 by cbrennan@cbrennan_r400_emu

 Added a check for system memory allocation to tests so prevent malloc failing even when
it would compress into the frame buffer just fine.

Change 112898 on 2003/07/24 by ashishs@fl_ashishs_r400_win

 initial checkin for script which will update a centralised tracker located at TBD based on
each one's regression run

Change 112888 on 2003/07/24 by mkelly@fl_mkelly_r400_win_laptop

 PA_SU_VTX_CNTL Round and Quantization variations...

Change 112821 on 2003/07/23 by ashishs@fl_ashishs_r400_win

 corrected the scaling on the tests to match r390

Change 112805 on 2003/07/23 by ashishs@fl_ashishs_r400_win

 updating the test_list as according to all other test lists with a newline at the end for now.
Later on I will change my script to handle this.

Change 112792 on 2003/07/23 by ashishs@fl_ashishs_r400_win

 updating the newly added SIN / COS tests

Change 112788 on 2003/07/23 by ashishs@fl_ashishs_r400_win

 adding more sin tests after converting from r390

Change 112784 on 2003/07/23 by csampayo@fl_csampayo_r400

 Forgot to save updates

Change 112781 on 2003/07/23 by csampayo@fl_csampayo_r400

 Add r400vgt_vtx_export_very_very_simple_05 to _10 tests, sort list

Change 112778 on 2003/07/23 by mkelly@fl_mkelly_r400_win_laptop

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1639 of 1898

 Page 149 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Update...

Change 112777 on 2003/07/23 by ashishs@fl_ashishs_r400_win

 adding tests converted from r390

Change 112771 on 2003/07/23 by tmartin@tmartin_r400_win

 Tests the VC's dynamic range when addressing vertex buffers stored in PCI memory.

Change 112764 on 2003/07/23 by ashishs@fl_ashishs_r400_win

 changed the frame buf background color to match r390

Change 112761 on 2003/07/23 by csampayo@fl_csampayo2_r400

 Updated for FB start and added missing vtx I and pix I shaders

Change 112714 on 2003/07/23 by ashishs@fl_ashishs_r400_win

 adding test for newly added COS opcode. (converted from r390 Carlos's test)

Change 112707 on 2003/07/23 by ashishs@fl_ashishs_r400_win

 Adding test for newly added SIN opcode in emulator (converted from Carlos's r390 test)

Change 112685 on 2003/07/23 by cbrennan@cbrennan_r400_release

 Fixed test so that cubic dimension was properly loaded into constant before calling
getAllocationSizeInBytes.

Change 112675 on 2003/07/23 by rmanapat@rmanapat_r400_sun_marlboro

 Fix should reduce how long the test runs

Change 112654 on 2003/07/23 by csampayo@fl_csampayo2_r400

 Minimum number of cases that cause problem

Change 112634 on 2003/07/23 by mkelly@fl_mkelly_r400_win_laptop

 VC is always on, always use variable FB start (non-zero).

Change 112615 on 2003/07/23 by ashishs@fl_ashishs_r400_win

 Regress r400 script Update :
 1. In the Summary report add Regression Start Time and Regression End time .

 Page 150 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 2. In the Summary report add Total Emulator Elapsed Time for Each Block. So Each
block will have the time it used for regressions.
 3. Also in "s" option for the regress_r400 script now it doesn't search for the sync. It will
accept the sync_number from parameter command line and then stamp it on the output directory.
Also the code for finding the sync_number, still exists but the "s" option will no longer use that
code.
 4. Option "p" for publishing to the web will work the same way it has been working and
the code has not been touched.

Change 112598 on 2003/07/23 by smoss@smoss_crayola_linux_orl

 creating golds for one test

Change 112523 on 2003/07/22 by csampayo@fl_csampayo_r400

 Add flush before dumping image

Change 112517 on 2003/07/22 by tmartin@tmartin_r400_win

 Tests the VC's address range when addressing vertex buffers stored in AGP memory.

Change 112516 on 2003/07/22 by csampayo@fl_csampayo_r400

 Add flush before dumping image

Change 112501 on 2003/07/22 by csampayo@fl_csampayo2_r400

 Update for non-zero FB start

Change 112476 on 2003/07/22 by mkelly@fl_mkelly_r400_win_laptop

 Invalidate VC

Change 112461 on 2003/07/22 by mkelly@fl_mkelly_r400_win_laptop

 Quant mode stepping postion in 1/32 steps, varying quantization

Change 112457 on 2003/07/22 by csampayo@fl_csampayo2_r400

 Update for non-zero FB start

Change 112426 on 2003/07/22 by mkelly@fl_mkelly_r400_win_laptop

 Validate quant modes 1/16, 1/8, 1/4, 1/2, 1

Change 112409 on 2003/07/22 by ashishs@fl_ashishs_r400_win

 added test for setgt instruction with scalar vector and coissue instructions

 Page 151 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 112380 on 2003/07/22 by csampayo@fl_csampayo2_r400

 Updated pattern for testing

Change 112356 on 2003/07/22 by jyarasca@jyarasca_r400_win_cvd

 Makefile changes: WLOPTS, ULOPTS, LFLAGS_WIN, and LFLAGS_SUN variables
need only be assigned to $(DEPTH)/auto/bin
 now since .dll and .lib are all copied to that directory

Change 112350 on 2003/07/22 by ashishs@fl_ashishs_r400_win

 finalising test

Change 112342 on 2003/07/22 by ashishs@fl_ashishs_r400_win2

 initial checkin

Change 112339 on 2003/07/22 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 112332 on 2003/07/22 by llefebvr@llefebvre_laptop_r400_emu

 I had the old output order for cube: ma,faceid,sc,tc. I changed it for the new one:
tc,sc,ma,faceid.

Change 112322 on 2003/07/22 by mkelly@fl_mkelly_r400_win_laptop

 Add sx_rb.dmp compare for a test, modify regress script to handle it

Change 112312 on 2003/07/22 by jayw@jayw_r400_linux_marlboro

 Hooking up register read logic. removed dummy memory from rb_rbt_fragment_fifo.v

Change 112254 on 2003/07/21 by llefebvr@llefebvre_laptop_r400_emu

 This is the CUBE opcode change that takes into account the recent HW change. I also
modified one test case that was wrongfully picking W as the FACEID (it is Y).

Change 112249 on 2003/07/21 by ashishs@fl_ashishs_r400_win2

 updating shaders and test

Change 112226 on 2003/07/21 by tmartin@tmartin_r400_win

 Tests the VC's dynamic range when addressing vertex buffers stored in a 32 MB frame
buffer.

 Page 152 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 112225 on 2003/07/21 by tmartin@tmartin_r400_win

 Tests the VC's dynamic range when addressing vertex buffers stored in a 64 MB frame
buffer.

Change 112224 on 2003/07/21 by tmartin@tmartin_r400_win

 Tests the VC's dynamic range when addressing vertex buffers stored in a 128 MB frame
buffer.

Change 112223 on 2003/07/21 by tmartin@tmartin_r400_win

 Tests the VC's dynamic range when addressing vertex buffers stored in a 256 MB frame
buffer.

Change 112221 on 2003/07/21 by tmartin@tmartin_r400_win

 Tests the VC's dynamic range when addressing vertex buffers stored in the frame buffer.

Change 112212 on 2003/07/21 by kryan@kryan_r400_win_marlboro_XP

 Fix missing ; at end of line in shaders

Change 112197 on 2003/07/21 by mkelly@fl_mkelly_r400_win_laptop

 Invalidate vc

Change 112177 on 2003/07/21 by mkelly@fl_mkelly_r400_win_laptop

 Updates, including invalidating the VC and hos reuse depth setting...

Change 112133 on 2003/07/21 by mkelly@fl_mkelly_r400_win_laptop

 Update HOS reuse...

Change 112119 on 2003/07/21 by mkelly@fl_mkelly_r400_win_laptop

 Change vs_export from 4 to 3...

Change 112104 on 2003/07/21 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 112089 on 2003/07/21 by mkelly@fl_mkelly_r400_win_laptop

 Prim type detection on RT and non-RT update...

Change 112088 on 2003/07/21 by askende@askende_r400_linux_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1640 of 1898

 Page 153 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 updated the cube tests to comply with the new definition of the CUBE instruction

Change 111988 on 2003/07/18 by csampayo@fl_csampayo2_r400

 Updated export mode pattern

Change 111979 on 2003/07/18 by ashishs@fl_ashishs_r400_win

 initial checkin

Change 111975 on 2003/07/18 by csampayo@fl_csampayo_r400

 Adding point size export mode test. Updated test_list and test tracker accordingly.

Change 111955 on 2003/07/18 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 111951 on 2003/07/18 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Tests for extra format coverage.

Change 111944 on 2003/07/18 by mkelly@fl_mkelly_r400_win_laptop

 Update..

Change 111937 on 2003/07/18 by ashishs@fl_ashishs_r400_win

 adding vector, scalar and coissue instructions

Change 111910 on 2003/07/18 by mkelly@fl_mkelly_r400_win_laptop

 Revised tests..

Change 111753 on 2003/07/17 by ashishs@fl_ashishs_r400_win

 added shaders for vector, scalar and coissue instructions using the same test

Change 111731 on 2003/07/17 by mkelly@fl_mkelly_r400_win_laptop

 Converted test to PM4 and support two pixel shaders...

Change 111723 on 2003/07/17 by jayw@jayw_r400_linux_marlboro

 Some added tests.

Change 111720 on 2003/07/17 by cbrennan@cbrennan_r400_emu

 Added utils to calculate allocation sizes of maps in bytes.

 Page 154 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Increased ranges of most tc random tests.

Change 111663 on 2003/07/17 by omesh@omesh_r400_linux_marlboro_only_devel

 Since Primlib adds a restriction that surface heights need to be 32 aligned, I had to
increase the ZCOUNT address
 range from 256 bytes to 256*32 bytes. The tests now don't assert, although we are
dumping unnecessarily larger
 chunks of memory. Later, maybe Kevin Ryan could introduce an "overide" bit that
doesn't require surface heights
 to be multiples of 32....
 I also fixed a bug in which the correct area of memory was not being identified
(Framebuffer base address was not
 being added into the full device address)

Change 111661 on 2003/07/17 by ashishs@fl_ashishs_r400_win

 corrected an error

Change 111658 on 2003/07/17 by ashishs@fl_ashishs_r400_win

 updated so that could do 128 points/pixels per packet therby filling up shader pipes

Change 111657 on 2003/07/17 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Changed frame_buffer for multicontext texture tests.

Change 111655 on 2003/07/17 by mkelly@fl_mkelly_r400_win_laptop

 Added a separate RT shader for unique param_gen scenarios when comparing
 RT to non-RT testing..

Change 111654 on 2003/07/17 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint on upgrading this test ...

Change 111636 on 2003/07/17 by ashishs@fl_ashishs_r400_win

 added vector scalar and coissue shaders

Change 111591 on 2003/07/17 by mkelly@fl_mkelly_r400_win_laptop

 Change vs_eport from 4 to 3 on the non-RTS and modify test to work for gpr destination
4 instead
 of 5 for the generated parameter. This allows the non-RTS and RTS pixel shader to be
shared.

Change 111546 on 2003/07/16 by cbrennan@cbrennan_r400_emu

 Page 155 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Add more formats for support to getSize_bits and adjust test to properly deal with DXT
size calculations.

Change 111539 on 2003/07/16 by ashishs@fl_ashishs_r400_win

 using the same test without changing the output to render 128 pixels/points at a time in a
packet thereby filling up shader pipes

Change 111511 on 2003/07/16 by jhoule@jhoule_r400_win_lt

 Updated example file with new vtx_ fields.

Change 111500 on 2003/07/16 by mkelly@fl_mkelly_r400_win_laptop

 Updated simple reference test to work with variable FB start...

Change 111493 on 2003/07/16 by ashishs@fl_ashishs_r400_win

 updated tests same as previous with scalar, vector and coissue shaders

Change 111490 on 2003/07/16 by mkelly@fl_mkelly_r400_win_laptop

 Simple Triangle with POS,COLOR,NORMAL, does a VS_DONE_TS event at end of
triangle

Change 111459 on 2003/07/16 by ashishs@fl_ashishs_r400_win

 added shaders for scalar vector and coissue in the same test

Change 111458 on 2003/07/16 by cbrennan@cbrennan_r400_emu

 Increased ranges to 2kx2kx1k while decreasing size limit to 64meg.

Change 111431 on 2003/07/16 by ashishs@fl_ashishs_r400_win

 noticed that wasnt using w channel in scalar instructions and updated to use w channel as
well

Change 111423 on 2003/07/16 by ashishs@fl_ashishs_r400_win

 adding 3 shaders for the test with each shader being the same except they differ as being
coissue or vector or scalar shaders therby covering all types of instructions with KILLGT in a
single test

Change 111376 on 2003/07/16 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 111375 on 2003/07/16 by mkelly@fl_mkelly_r400_win_laptop

 Page 156 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Fix buffers to work with variable FB

Change 111349 on 2003/07/16 by mkelly@fl_mkelly_r400_win_laptop

 Update Z_BASE to work with variable FB...

Change 111346 on 2003/07/16 by kevino@kevino_r400_emu

 Added validateTexDim() function- tells if tfc dimension is OK for the data format

Change 111334 on 2003/07/16 by ashishs@fl_ashishs_r400_win2

 updated tests replacing Write_To_Memory function

Change 111272 on 2003/07/15 by mkelly@fl_mkelly_r400_win_laptop

 Fix Z_BASE to work with variable FB

Change 111263 on 2003/07/15 by mkelly@fl_mkelly_r400_win_laptop

 Fix Z_BASE for variable FB

Change 111253 on 2003/07/15 by mkelly@fl_mkelly_r400_win_laptop

 Fix Z_BASE to work with variable FB start...

Change 111242 on 2003/07/15 by jhoule@jhoule_r400_win_lt

 Added support for various other interesting primitives...

Change 111240 on 2003/07/15 by tmartin@tmartin_r400_win

 added r400vc_addr_alignment_01

Change 111235 on 2003/07/15 by tmartin@tmartin_r400_win

 update

Change 111225 on 2003/07/15 by ashishs@fl_ashishs_r400_win

 changed the Write_to_memory function. shouldnt affect test

Change 111212 on 2003/07/15 by ashishs@fl_ashishs_r400_win

 replacing Write_To_Memory function with new primlib function. Shouldnt affect test

Change 111210 on 2003/07/15 by kevino@kevino_r400_linux_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1641 of 1898

 Page 157 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Added 1D and 3D textures.

Change 111209 on 2003/07/15 by mkelly@fl_mkelly_r400_win_laptop

 Fix Z_BASE to work with variable FB

Change 111208 on 2003/07/15 by mkelly@fl_mkelly_r400_win_laptop

 Add rbbm_vc

Change 111194 on 2003/07/15 by omesh@omesh_r400_linux_marlboro_only_devel

 Added RB register Read/Write tests, however, haven't yet incorporated
 Read/Write Masks and masks to ignore reserved bits in registers. This
 information is not easily extractable from Autoreg even if it does
 exist, so I will add in the masks later.
 Also, I haven't yet incorporated a tracker (if one exists) for the Host
 interface to the registers, or found a way to put a test in
 "test determined pass/fail mode".
 There are 102 registers which I may trim down later.
 The tests currently don't pass, even though the script calls it a
 "Pass".

Change 111165 on 2003/07/15 by hartogs@fl_hartogs2

 CHanged the HOS_REUSE_DEPTH to reflect the pipe configuration.

Change 111130 on 2003/07/15 by ashishs@fl_ashishs_r400_win

 sorting test_list

Change 111126 on 2003/07/15 by ashishs@fl_ashishs_r400_win

 added tests

Change 111035 on 2003/07/14 by ashishs@fl_ashishs_r400_win

 disabling auto_wrapping_memories test for now

Change 111016 on 2003/07/14 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added 128 bit hi color tests and lists for coverage.

Change 110996 on 2003/07/14 by tmartin@tmartin_r400_win

 Tests writing and displaying vertex buffers to all 16 dword alignments in the VC.

Change 110994 on 2003/07/14 by ashishs@fl_ashishs_r400_win

 Page 158 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 updating the remaining failed SU tests and making sure that the update doesnt affect the
failed image

Change 110981 on 2003/07/14 by kevino@kevino_r400_linux_marlboro

 tp_perf_2d test but with 4 textures. They use the same coords, format, etc,

Change 110975 on 2003/07/14 by ashishs@fl_ashishs_r400_win2

 forgot to update this test for write_to_memory function

Change 110973 on 2003/07/14 by ashishs@fl_ashishs_r400_win

 updated test description as well as shaders

Change 110969 on 2003/07/14 by ashishs@fl_ashishs_r400_win

 updated test description and shaders

Change 110951 on 2003/07/14 by csampayo@fl_csampayo2_r400

 Cleanup cpp, remove co-issue from pix shader, fix vtx shader since, it was using r32
instead of r35 for predicate condition.

Change 110946 on 2003/07/14 by ashishs@fl_ashishs_r400_win

 updating test description and shader as well

Change 110931 on 2003/07/14 by ashishs@fl_ashishs_r400_win

 removing unwanted code

Change 110929 on 2003/07/14 by ashishs@fl_ashishs_r400_win

 updating test description as well as pix shader to output the value produced in the output
register

Change 110927 on 2003/07/14 by mkelly@fl_mkelly_r400_win_laptop

 Add vc_sq.dmp

Change 110921 on 2003/07/14 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 110911 on 2003/07/14 by mkelly@fl_mkelly_r400_win_laptop

 Fix to work with variable FB start...

 Page 159 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 110901 on 2003/07/14 by ashishs@fl_ashishs_r400_win

 using the same test as killge but making sure that that when SRC A and B have equal
values the pixel isnt killed...

Change 110891 on 2003/07/14 by ashishs@fl_ashishs_r400_win2

 updating tests replacing the new Write_To_Memory function with the new primlib
function. Also cleaning out wait_gfx_idle from inside the loop and adding gfx_idle_no_flush if
write_to_memory(index_buffer_ptr) present

Change 110856 on 2003/07/14 by ashishs@fl_ashishs_r400_win

 carefully selecting a set of pixel to be killed using constants and kill logic in pixel shader

Change 110837 on 2003/07/14 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 110790 on 2003/07/14 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 110685 on 2003/07/12 by ashishs@fl_ashishs_r400_win

 updating test to have the same output as the kille using different set of constants than kille
test and modifying the pix shader

Change 110600 on 2003/07/11 by ashishs@fl_ashishs_r400_win

 initial checkin

Change 110593 on 2003/07/11 by mkelly@fl_mkelly_r400_win_laptop

 Fix vs_eport

Change 110592 on 2003/07/11 by mkelly@fl_mkelly_r400_win_laptop

 Change VS_EXPORT from 4 to 3 for 4 parameters.

Change 110586 on 2003/07/11 by tmartin@tmartin_r400_win

 Vertex shader for testing address dword alignment in the Vertex Cache.

Change 110585 on 2003/07/11 by tmartin@tmartin_r400_win

 Pixel shader for testing address dword alignment in the Vertex Cache

Change 110584 on 2003/07/11 by tmartin@tmartin_r400_win

 Page 160 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Tests address dword alignment in the Vertex Cache.

Change 110580 on 2003/07/11 by mkelly@fl_mkelly_r400_win_laptop

 Update for FB start variable...

Change 110571 on 2003/07/11 by ashishs@fl_ashishs_r400_win

 updated such that now the shader kills every other alternate 4th pixel out of 500 points.
Each point is mapped as a pixel with the color register containing data to either kill or save the
pixel. The 512 consants and the shader have been setup such a way that it kills 3 pixels and
outputs every other alternate 4th pixel.

Change 110539 on 2003/07/11 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 110523 on 2003/07/11 by llefebvr@llefebvr_r400_emu_montreal

 Fixing shader. Was using address register wihout doing a mova at all!

Change 110515 on 2003/07/11 by mkelly@fl_mkelly_r400_win_laptop

 tesselation level ovveride added...

Change 110505 on 2003/07/11 by tien@tien_r400_devel_marlboro

 tp_lod_deriv fix (denorms -> 0 in fp_fast_mult_dno)
 formatter fix (1.0 detection for 32- and 16- bit channels)

Change 110502 on 2003/07/11 by smoss@smoss_crayola_linux_orl

 update

Change 110501 on 2003/07/11 by ashishs@fl_ashishs_r400_win

 added tests

Change 110468 on 2003/07/11 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 110466 on 2003/07/11 by jhoule@jhoule_r400_linux_marlboro

 Set the execute bit in the permission

Change 110445 on 2003/07/11 by mkelly@fl_mkelly_r400_win_laptop

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1642 of 1898

 Page 161 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Update...

Change 110433 on 2003/07/11 by ashishs@fl_ashishs_r400_win

 adding 4 cases , one for each frustum corner

Change 110430 on 2003/07/11 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 110412 on 2003/07/11 by ashishs@fl_ashishs_r400_win

 another line polymode frustum clipping perspective test

Change 110411 on 2003/07/11 by ashishs@fl_ashishs_r400_win2

 updated more than 300 CL/VTE tests with a new function that replaces
Write_To_Memory function. Also had to get wait_gfx_idle outside loop and no_flush inside
loop if write_to_memory index_buffer_ptr

Change 110385 on 2003/07/11 by ashishs@fl_ashishs_r400_win2

 added marcos to list

Change 110306 on 2003/07/10 by csampayo@fl_csampayo2_r400

 Remove accessing same register in co-issue instruction by removing scalar part

Change 110303 on 2003/07/10 by ashishs@fl_ashishs_r400_win

 renaming a test and also adding multiple cases to clip on all the frustum corners

Change 110284 on 2003/07/10 by cbrennan@cbrennan_r400_emu

 Refix test.

Change 110277 on 2003/07/10 by mkelly@fl_mkelly_r400_win_laptop

 Update..

Change 110276 on 2003/07/10 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 110270 on 2003/07/10 by mkelly@fl_mkelly_r400_win_laptop

 Invalidate VC for vertex buffer updating..

Change 110249 on 2003/07/10 by ashishs@fl_ashishs_r400_win

 Page 162 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 another clip polymode line fill persp test with one edge going thru frustum corner. also
each 2 edges having equal w's to each other

Change 110229 on 2003/07/10 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 110208 on 2003/07/10 by mkelly@fl_mkelly_r400_win_laptop

 Delete...

Change 110197 on 2003/07/10 by kevino@kevino_r400_win_marlboro

 Had to rebuild the other files from the tclist file

Change 110196 on 2003/07/10 by mkelly@fl_mkelly_r400_win_laptop

 Updated to work with variable FB start...

Change 110195 on 2003/07/10 by kevino@kevino_r400_win_marlboro

 needed to capitalize FLOAT in format

Change 110186 on 2003/07/10 by csampayo@fl_csampayo2_r400

 Disable VC caches

Change 110182 on 2003/07/10 by csampayo@fl_csampayo2_r400

 Disable VC caches

Change 110171 on 2003/07/10 by kevino@kevino_r400_win_marlboro

 added all testcases previously available in fmt8888 to the rest of the existing formats

Change 110169 on 2003/07/10 by mkelly@fl_mkelly_r400_win_laptop

 Update to work with variable FB start...

Change 110141 on 2003/07/10 by ashishs@fl_ashishs_r400_win

 another polymode line_filled test with diff frustum settings

Change 110139 on 2003/07/10 by ashishs@fl_ashishs_r400_win

 another polymode enabled line fill test with different frustum settings

Change 110134 on 2003/07/10 by mkelly@fl_mkelly_r400_win_laptop

 Page 163 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Update for variable FB start...

Change 110067 on 2003/07/09 by jhoule@jhoule_r400_win_lt

 Removed extension; changed format to 8888 instead of 2101010 (which can't be filtered
anyways).

Change 110054 on 2003/07/09 by ashishs@fl_ashishs_r400_win

 adding chris to the email_list

Change 110051 on 2003/07/09 by csampayo@fl_csampayo2_r400

 Forgot to cleanup this one.

Change 110050 on 2003/07/09 by ashishs@fl_ashishs_r400_win

 added test

Change 110048 on 2003/07/09 by csampayo@fl_csampayo2_r400

 Update for multiple discrete vertex buffers.

Change 110034 on 2003/07/09 by ashishs@fl_ashishs_r400_win

 test carried out according to Mike Mang and Carlos's requirements that show that the
clipping still fails when polymode line_fill is enabled with 2 vertices of a triangle having the
same w wheras another vertex having a different w.

Change 110001 on 2003/07/09 by llefebvr@llefebvr_r400_emu_montreal

 Fixing shader, mova and use of mova separated by a clause boundary.

Change 109999 on 2003/07/09 by cbrennan@cbrennan_r400_emu

 Width and height needed to be padded to pitches for randoms.

Change 109972 on 2003/07/09 by mkelly@fl_mkelly_r400_win_laptop

 Update for FB

Change 109968 on 2003/07/09 by ashishs@fl_ashishs_r400_win

 initial checkin for the kille test

Change 109963 on 2003/07/09 by omesh@omesh_r400_linux_marlboro_only_devel

 Framebuffer was being set twice (incorrectly the 2nd time). Fixed the

 Page 164 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 test.

Change 109937 on 2003/07/09 by mkelly@fl_mkelly_r400_win_laptop

 Update to work with any frame buffer address...

Change 109877 on 2003/07/09 by mkelly@fl_mkelly_r400_win_laptop

 Update offset from FB

Change 109869 on 2003/07/09 by mkelly@fl_mkelly_r400_win_laptop

 Change test to work with variable frame buffer start...

Change 109813 on 2003/07/08 by llefebvr@llefebvr_r400_emu_montreal

 Adding a test case to mova_tests.cpp.

Change 109802 on 2003/07/08 by vgoel@fl_vgoel2

 fixed for not using uninitialized GPR

Change 109769 on 2003/07/08 by cbrennan@cbrennan_r400_linux_marlboro

 Change tests to write unique filenames and delete them when finished. Fixes random
seg-faults.

Change 109765 on 2003/07/08 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Support of 16 bit textures and coverage for TC.

Change 109734 on 2003/07/08 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 109733 on 2003/07/08 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 109731 on 2003/07/08 by smoss@smoss_crayola_linux_orl

 link all subordinate files

Change 109727 on 2003/07/08 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 109722 on 2003/07/08 by mkelly@fl_mkelly_r400_win_laptop

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1643 of 1898

 Page 165 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Update

Change 109695 on 2003/07/08 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 109684 on 2003/07/08 by mkelly@fl_mkelly_r400_win_laptop

 Make new VB each time the VB is updated, work in progress on a few new tests..

Change 109600 on 2003/07/07 by ashishs@fl_ashishs_r400_win

 adding PRED_SETGT_PUSH test (same as SETGE test with modification to the vtx
shader). Also correcting description in the SETGE test

Change 109569 on 2003/07/07 by ashishs@fl_ashishs_r400_win2

 updated tests as per new function put in by kevin ryan in primlib repacing
Write_To_Memory function

Change 109553 on 2003/07/07 by ashishs@fl_ashishs_r400_win

 shrinking more images for faster hardware run

Change 109549 on 2003/07/07 by ashishs@fl_ashishs_r400_win

 shrinking test sizes to run faster in hardware

Change 109513 on 2003/07/07 by cbrennan@cbrennan_r400_win_marlboro

 Fix 2d random cases from erroring out.
 Enable tiled 2d unit test.

Change 109497 on 2003/07/07 by mkelly@fl_mkelly_r400_win_laptop

 Update PrimLib function call to make new VB each packet.

Change 109462 on 2003/07/07 by cbrennan@cbrennan_r400_linux_marlboro

 Turn off dumpPPMs

Change 109388 on 2003/07/05 by ashishs@fl_ashishs_r400_win

 minor correction

Change 109387 on 2003/07/05 by ashishs@fl_ashishs_r400_win

 updated test description

 Page 166 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 109200 on 2003/07/03 by ashishs@fl_ashishs_r400_win

 using PRED_SETE_PUSH description for PRED_SETNE_PUSH instruction

Change 109198 on 2003/07/03 by ashishs@fl_ashishs_r400_win

 added much needed description to the test...

Change 109175 on 2003/07/03 by ashishs@fl_ashishs_r400_win

 updated test_list and trackers

Change 109152 on 2003/07/03 by ashishs@fl_ashishs_r400_win

 added tests

Change 109134 on 2003/07/03 by georgev@devel_georgev_r400_lin2_marlboro_tott

 More support for larger textures.

Change 109125 on 2003/07/03 by ashishs@fl_ashishs_r400_win

 These 2 tests changed after change #98332. I was accessing uninitialised color array
value which started to give error color values when the service pack for VC was installed in
dk_win folder. Hence corrected the color array to correctly have all color values and also kind of
rearranged the colors so that in future could better identify if problem occurs.

Change 109105 on 2003/07/03 by cbrennan@cbrennan_r400_emu

 Enable mip packing in ferret.
 Enable mip packing in directed tests.
 Mip packing bug fixes in HW.

Change 109063 on 2003/07/03 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Fixed texture offset.

Change 109062 on 2003/07/03 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Fixed texture offset.

Change 109016 on 2003/07/03 by cbrennan@cbrennan_r400_linux_marlboro

 Fix testcase name mismatch.

Change 108972 on 2003/07/02 by omesh@omesh_r400_linux_marlboro_code_cover

 Modified all tests to include full device address into all base address register
programming. Did a simple compile for all

 Page 167 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 these tests, but haven't verified run time results.... Should be the same, as I have followed
all primlib and register
 guidelines.

Change 108919 on 2003/07/02 by ashishs@fl_ashishs_r400_win

 Using the same test as in the clipper for line texture problem and disable clipping for SU

Change 108916 on 2003/07/02 by ashishs@fl_ashishs_r400_win

 test samne as line_barycentric_clip_perspective_actualClip_01 but with 2 ucp clipping
planes clipping off portions at desired locations

Change 108895 on 2003/07/02 by ashishs@fl_ashishs_r400_win

 added some variables related to synching top level devel dir files and also to sync the
dk_win dir. Also added the option to make clean and clobber

Change 108859 on 2003/07/02 by donaldl@donaldl_crayola_linux_orl

 Added wait_gfx_idle after plgx init. Backed out previous change.

Change 108793 on 2003/07/01 by ashishs@fl_ashishs_r400_win2

 changed the shader to go back to the failed status

Change 108788 on 2003/07/01 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added new tests.

Change 108782 on 2003/07/01 by csampayo@fl_csampayo2_r400

 Updated SU test for TP accuracy. Added ME_INT packet to enable RTS in VGT test

Change 108775 on 2003/07/01 by ashishs@fl_ashishs_r400_win

 created test case according to Carlos's spec to determine problem in Clipper

Change 108758 on 2003/07/01 by hartogs@fl_hartogs2

 Changed vertex reuse depth to a legal value.

Change 108755 on 2003/07/01 by omesh@omesh_r400_linux_marlboro_code_cover

 Fixed a bug related to Framebuffer start address.

Change 108747 on 2003/07/01 by llefebvr@llefebvr_r400_emu_montreal

 Bad GPR allocation in the shader was not allocating enough GPRS...

 Page 168 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 108714 on 2003/07/01 by ashishs@fl_ashishs_r400_win2

 changed pix shader to offset recent change in emulator and also run correctly on
hardware

Change 108707 on 2003/07/01 by omesh@omesh_r400_linux_marlboro_code_cover

 Allowed Framebuffer Base address to be relocatable by adding in the base
 into the complete device address used by Color Buffer registers.
 Verified that the framebuffer still dumps correctly. Will do the other
 tests in batches.

Change 108695 on 2003/07/01 by cbrennan@cbrennan_r400_linux_marlboro

 Removed size multiple of 4 restrictions from DXT.

Change 108688 on 2003/07/01 by cbrennan@cbrennan_r400_win_marlboro

 Turned on more formats, gamma, and added testcase tri128_tex4_fb32x32

Change 108687 on 2003/07/01 by omesh@omesh_r400_linux_marlboro_only_devel

 Added the missing SMASK enable programming. In the test, other stencil
 related programming depended on this bit, so they should all work now.
 Haven't tested the fix though. Relying on Paul Vella to try it out.

Change 108646 on 2003/06/30 by hartogs@fl_hartogs2

 Reversing my previous check-in. Accidentally overwrote.

Change 108593 on 2003/06/30 by jayw@jayw_r400_linux_marlboro

 Adding 16 bit pixel mask through DB. NOTE: db_stdrfsdks2p8x136cm1sw0 is now
db_stdrfsdks2p8x152cm1sw0

Change 108576 on 2003/06/30 by jhoule@jhoule_r400_linux_marlboro

 Now stripping executables...

Change 108559 on 2003/06/30 by omesh@omesh_r400_linux_marlboro_only_devel

 Making surfaces compliant with Primlib's requirement for multiple of
 tile sized surfaces to handle assertions. Haven't tested this yet but
 need to recreate new Perforce client to move to new server.

Change 108540 on 2003/06/30 by csampayo@fl_csampayo2_r400

 Added DISABLE_PERSPECTIVE and DEBUG controls and did some cleanup.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1644 of 1898

 Page 169 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 108508 on 2003/06/30 by ashishs@fl_ashishs_r400_win

 limiting num of vertcies to 128 to speed up the test

Change 108425 on 2003/06/27 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added new tests.

Change 108423 on 2003/06/27 by ashishs@fl_ashishs_r400_win

 initial checkin for PRED_SETGE_PUSH test

Change 108313 on 2003/06/27 by mkelly@fl_mkelly_r400_win_laptop

 Temporarily remove r400sc_pm4_mp_ib_03 until invalidate VB bit is available
 in VC.

Change 108276 on 2003/06/27 by tien@tien_r400_devel_marlboro

 Fixed runme script yet again :-)
 More formatter fixes

Change 108258 on 2003/06/27 by mkelly@fl_mkelly_r400_win_laptop

 Create and use new VB on draw_initiator

Change 108257 on 2003/06/27 by mkelly@fl_mkelly_r400_win_laptop

 Create and use new vertex buffer on each draw_initiator...

Change 108248 on 2003/06/27 by mkelly@fl_mkelly_r400_win_laptop

 Fix case 11, add comments...

Change 108211 on 2003/06/26 by csampayo@fl_csampayo2_r400

 Remove flushes and unnecessary waits between packets

Change 108197 on 2003/06/26 by ashishs@fl_ashishs_r400_win

 Changing the vertex shader of the pres_sete_push to use the same data for comparisons to
yield similar results...

Change 108181 on 2003/06/26 by tien@tien_r400_devel_marlboro

 Formatter fixes

Change 108171 on 2003/06/26 by csampayo@fl_csampayo2_r400

 Page 170 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Update to write vertex buffers to unique addresses

Change 108163 on 2003/06/26 by rmanapat@rmanapat_r400_sun_marlboro

 Changed Clamp Policy for these tests except for the cubic tests which
 already had the clamp_clamptolast policy set on the x and y coords

Change 108156 on 2003/06/26 by ashishs@fl_ashishs_r400_win

 testing pred_sete_push instruction on the predicate value as well as the result in the
output of the comparison

Change 108154 on 2003/06/26 by hartogs@fl_hartogs2

 Hopefully fixed VGT alloc/dealloc for multi-SIMD vector sets
 Added simd_id fields to vgt_sq interface and vgt_ccgen interface
 Put pipedisable comments into several dump files.
 Put an "Assert(0)" into the sq_block_model.cpp to prevent access violation.

Change 108122 on 2003/06/26 by mkelly@fl_mkelly_r400_win_laptop

 Add fmt_10_11_11 case...

Change 108090 on 2003/06/26 by mkelly@fl_mkelly_r400_win_laptop

 fmt_10_11_11 on position, although all 3 verts are zero, TP returns non-zero data...

Change 108082 on 2003/06/26 by csampayo@fl_csampayo2_r400

 Update to use only the 3 valid indices from VGT

Change 108080 on 2003/06/26 by tien@tien_r400_devel_marlboro

 Fixed mini-regress script for release_* area usage
 Fixed large unnuomed coord handling (for a cp_e2* test) .. for real this time I think)
 Misc sp_tp_formatter fixes

Change 108075 on 2003/06/26 by mkelly@fl_mkelly_r400_win_laptop

 Get it right this time

Change 108074 on 2003/06/26 by mkelly@fl_mkelly_r400_win_laptop

 Changed name to keep consistent with other tests in this directory...

Change 108035 on 2003/06/26 by ashishs@fl_ashishs_r400_win

 updated description in the shaders

 Page 171 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 108010 on 2003/06/26 by mkelly@fl_mkelly_r400_win_laptop

 Debug

Change 107968 on 2003/06/25 by ashishs@fl_ashishs_r400_win

 entering COREECT description for CNDGT

Change 107965 on 2003/06/25 by ashishs@fl_ashishs_r400_win

 entering the CORRECT DESCRIPTION for the test

Change 107961 on 2003/06/25 by ashishs@fl_ashishs_r400_win

 Added CORRECT description for the test

Change 107949 on 2003/06/25 by vbhatia@vbhatia_r400_linux_marlboro

 Example usage stimulus file for standalone vc_formatter testbench

Change 107928 on 2003/06/25 by ashishs@fl_ashishs_r400_win

 editing constant data in r400sq_cnde_01 to create the test which has the same test logic to
compare.

Change 107890 on 2003/06/25 by ashishs@fl_ashishs_r400_win

 initial checkin for the CNDGE test. same as CNDE test, but changing the constant data so
that the same logic of CNDE test could be used for the CNDGE test as well.

Change 107867 on 2003/06/25 by tien@tien_r400_devel_marlboro

 Added back date to output

Change 107859 on 2003/06/25 by ashishs@fl_ashishs_r400_win

 editing r400sq_const_index_03 for coverage to create const_index_04 with diff being in
vtx_shader which uses MAX instead of MOV to putput color

Change 107852 on 2003/06/25 by ashishs@fl_ashishs_r400_win

 wasnt multiplying color with the result of comparisons (only poistion)

Change 107790 on 2003/06/25 by cbrennan@cbrennan_r400_linux_marlboro

 Added 3d til_fmt11-12_l back in.

Change 107776 on 2003/06/25 by tien@tien_r400_devel_marlboro

 Page 172 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Updated check method to work for rel area too

Change 107731 on 2003/06/24 by ashishs@fl_ashishs_r400_win

 updating test_list

Change 107730 on 2003/06/24 by ashishs@fl_ashishs_r400_win

 16 textures and no color displayed on POLYGON with clipping disabled/enabled and
toggling between TRI_FILL and LINE_FILL and also permuting
PA_SU_SC_MODE_CNTL_persp_corr_dis with primitive setup in perspective view.

Change 107705 on 2003/06/24 by ashishs@fl_ashishs_r400_win

 combo test having 1 color with 4 cases viz
 tri_fill, pers_corr_dis(false)
 tri_fill, pers_corr_dis(true)
 line_fill, pers_corr_dis(false)
 line_fill, pers_corr_dis(true)

 same except clipping setup completely removed from
r400cl_polymode_persp_1color_combo_01 test.

Change 107703 on 2003/06/24 by ashishs@fl_ashishs_r400_win

 combo test having 1 color with 4 cases viz
 tri_fill, pers_corr_dis(false)
 tri_fill, pers_corr_dis(true)
 line_fill, pers_corr_dis(false)
 line_fill, pers_corr_dis(true)

Change 107689 on 2003/06/24 by mdoggett@mdoggett_r400_linux_local

 Forgot to update the stdout for sector mask 2 change.

Change 107688 on 2003/06/24 by mdoggett@mdoggett_r400_linux_local

 Changed sector mask 2 by swapping right half of cacheline 8x2 to slice filter
performance by giving the slice filter a 8x4 instead of the old 8x2 of contiguous pixels that an
individual bilinear quad request can hit.

Change 107671 on 2003/06/24 by mkelly@fl_mkelly_r400_win_laptop

 Add 1 case for FMT_16_16_FLOAT

Change 107668 on 2003/06/24 by ashishs@fl_ashishs_r400_win

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1645 of 1898

 Page 173 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 initial checkin for CNDE test. The test checks 500 xyzw data on all components for cnde
instruction with with switching between SRC B and SRC C registers as required by the test
constarints.

Change 107665 on 2003/06/24 by tien@tien_r400_devel_marlboro

 Added >1.0 mag clamp in formatter
 A few bug fixes with normalizer mux
 Added some features to tp_formatter regression script
 Updated tp4_tc mini regression script

Change 107648 on 2003/06/24 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Removed tiling from 1D texture tests.

Change 107612 on 2003/06/24 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Removed shrinkage variable, to make tests larger.

Change 107611 on 2003/06/24 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Removed shrinking variable to bring tests up to full size.

Change 107550 on 2003/06/23 by ashishs@fl_ashishs_r400_win

 testing polymode line_fill with textures

Change 107548 on 2003/06/23 by ashishs@fl_ashishs_r400_win

 to test polymode line_fill with textures with clipping enabled for primitives...

Change 107498 on 2003/06/23 by omesh@omesh_r400_linux_marlboro_only_devel

 Added several hundred HiZ/HiStencil test combos.
 Also changed some testcase names from *_zfail_* to *_znever_* and
 zpass to *_zalways_*

Change 107458 on 2003/06/23 by jayw@jayw_r400_linux_marlboro

 right queues

Change 107432 on 2003/06/23 by rmanapat@rmanapat_r400_sun_marlboro

 Temp changes to these tests that allow only even sized texture maps

Change 107424 on 2003/06/23 by jayw@jayw_r400_linux_marlboro

 pre move

 Page 174 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 107423 on 2003/06/23 by ashishs@fl_ashishs_r400_win

 correcting test and making it eq to setne_01

Change 107419 on 2003/06/23 by ashishs@fl_ashishs_r400_win

 updating trackers and test_list

Change 107280 on 2003/06/20 by vbhatia@vbhatia_r400_linux_marlboro

 changes for new tp_formatter and vc_formatter standalone testbenches

Change 107273 on 2003/06/20 by ashishs@fl_ashishs_r400_win

 forgot to remove some debug statements

Change 107272 on 2003/06/20 by ashishs@fl_ashishs_r400_win

 updated to change as per Carlos's requirements and verifying the image with r300 which
doesn't match currently

Change 107267 on 2003/06/20 by tien@tien_r400_devel_marlboro

 Added run privs

Change 107257 on 2003/06/20 by tien@tien_r400_devel_marlboro

 Complewted first pass and vc part of formatter
 Made regression script more thorough

Change 107247 on 2003/06/20 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 107195 on 2003/06/20 by llefebvr@llefebvr_r400_emu_montreal

 Forgot to place back the right exporting register.

Change 107194 on 2003/06/20 by llefebvr@llefebvr_r400_emu_montreal

 Fixing shader, it was doing ALU operations in a texture clause.

Change 107152 on 2003/06/20 by ashishs@fl_ashishs_r400_win

 changing the test to ouput 500 points instead of triangle list. Also removing textures from
shaders and tests since wasn't necessary...

Change 107142 on 2003/06/20 by mdoggett@mdoggett_r400_linux_local

 Page 175 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Added fetch_valid_only to pixel shader.
 Switched test back to 256x256 at 0,0

Change 107102 on 2003/06/19 by ashishs@fl_ashishs_r400_win

 removing texture setup since wasnt necessary. Also adding point_list instead of
triangle_list and diplaying >500 points thereby passing enough data to fill up the shader pipe...

Change 107101 on 2003/06/19 by csampayo@fl_csampayo2_r400

 Updated for better visualizing clamped addrs reg values

Change 106982 on 2003/06/19 by csampayo@fl_csampayo_r400

 Initial checkin

Change 106981 on 2003/06/19 by ashishs@fl_ashishs_r400_win

 Adding SETNE test...

Change 106954 on 2003/06/19 by mkelly@fl_mkelly_r400_win_laptop

 Update test, but still doesn't get pixels in the RB due to many
 recent changes...

Change 106944 on 2003/06/19 by mkelly@fl_mkelly_r400_win_laptop

 Add test r400vgt_hos_pm4_01 to regression

Change 106943 on 2003/06/19 by mkelly@fl_mkelly_r400_win_laptop

 Convert hos test from auto reg unions to shadow register useage.
 Simplified includes further in vc data format 01.

Change 106897 on 2003/06/18 by tien@tien_r400_devel_marlboro

 Added mip_packed output on tpc
 More fixed to formatter

Change 106894 on 2003/06/18 by ashishs@fl_ashishs_r400_win

 forgot to remove the unused subroutine

Change 106893 on 2003/06/18 by ashishs@fl_ashishs_r400_win

 updating the test. Now checks all the 512 constants on all the components, generating the
result in a predetermined fashion to detect any errors if any...

Change 106748 on 2003/06/18 by mkelly@fl_mkelly_r400_win_laptop

 Page 176 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Translate test to use shadow registers...

Change 106733 on 2003/06/18 by llefebvr@llefebvr_r400_emu_montreal

 changing parameters slightly.

Change 106712 on 2003/06/18 by jhoule@jhoule_r400_linux_marlboro

 Moving from hicolor to tp_hicolor subdirectory.

Change 106708 on 2003/06/18 by jhoule@jhoule_r400_linux_marlboro

 Now strips binaries.

Change 106694 on 2003/06/18 by jhoule@jhoule_r400_linux_marlboro

 Now stripping binaries

Change 106687 on 2003/06/18 by smoss@smoss_crayola_win

 added to cover min max register

Change 106686 on 2003/06/18 by mkelly@fl_mkelly_r400_win_laptop

 Minor comment update...Also note previous version, case buffers
 were modified to have more unique vertex and texture data per case.

Change 106685 on 2003/06/18 by mkelly@fl_mkelly_r400_win_laptop

 Cleaned up some build warnings by initializing buffers, turned off
 tiling in dump image.

Change 106647 on 2003/06/17 by ashishs@fl_ashishs_r400_win

 initial checkin for the sete test

Change 106620 on 2003/06/17 by mkelly@fl_mkelly_r400_win_laptop

 First VC test

Change 106619 on 2003/06/17 by mkelly@fl_mkelly_r400_win_laptop

 First release, testing 4 data formats

Change 106606 on 2003/06/17 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Fixed multicontext texture tests.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1646 of 1898

 Page 177 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 106556 on 2003/06/17 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 106533 on 2003/06/17 by llefebvr@llefebvr_r400_emu_montreal

 Changing name of test per Mike Kelly's request.

Change 106529 on 2003/06/17 by llefebvr@llefebvr_r400_emu_montreal

 Cylindrical wrap precision test.

Change 106489 on 2003/06/17 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 106484 on 2003/06/17 by mkelly@fl_mkelly_r400_win_laptop

 Add support for VC

Change 106480 on 2003/06/17 by mkelly@fl_mkelly_r400_win_laptop

 Remove empty line...

Change 106415 on 2003/06/16 by ashishs@fl_ashishs_r400_win

 updating the test to perform all combinations of scalar operations like precision_mul_01
and also updating the test description

Change 106413 on 2003/06/16 by ashishs@fl_ashishs_r400_win

 testing precision of MUL instruction. Also testing all combinations of scalar as well as
vector operation in the same test.

Change 106389 on 2003/06/16 by csampayo@fl_csampayo_r400

 Updated test description

Change 106371 on 2003/06/16 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 106333 on 2003/06/16 by mkelly@fl_mkelly_r400_win_laptop

 Re-enable 3 tests that broke with non-zero FB addresses, fixed now.

Change 106332 on 2003/06/16 by mkelly@fl_mkelly_r400_win_laptop

 Updates to make tests work with any framebuffer address

 Page 178 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 106294 on 2003/06/16 by ashishs@fl_ashishs_r400_win

 updated

Change 106291 on 2003/06/16 by ashishs@fl_ashishs_r400_win

 updated

Change 106288 on 2003/06/16 by mkelly@fl_mkelly_r400_win_laptop

 Remove 3 tests that break with new frame buffer address

Change 106280 on 2003/06/16 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 106279 on 2003/06/16 by mkelly@fl_mkelly_r400_win_laptop

 Change to work with new FB start, added RTS_WAIT_UNTIL

Change 106278 on 2003/06/16 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 106107 on 2003/06/13 by ashishs@fl_ashishs_r400_win

 testing precision for the add instruction

Change 106103 on 2003/06/13 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint, not ready for test

Change 106093 on 2003/06/13 by llefebvr@llefebvr_r400_emu_montreal

 Emulator now clamps the address register to the range -256...255.

Change 106033 on 2003/06/13 by smoss@smoss_crayola_linux_orl

 unix output is $user, and compressed

Change 105938 on 2003/06/12 by ashishs@fl_ashishs_r400_win

 testing Constant memory to output buffers data path. Needed to explicitly allocate
position and parameter in shader. Also needed to reassign the address register after position
allloc ?

Change 105923 on 2003/06/12 by smoss@smoss_crayola_linux_orl

 Page 179 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 changed x,y to 128

Change 105886 on 2003/06/12 by ashishs@fl_ashishs_r400_win

 testing setgt instruction

Change 105859 on 2003/06/12 by lseiler@lseiler_r400_win_marlboro

 Changes GL_XXX blendop names to BLEND_XXX

Change 105828 on 2003/06/12 by ashishs@fl_ashishs_r400_win

 testing shader instructions

Change 105818 on 2003/06/12 by ashishs@fl_ashishs_r400_win

 initialising c31 explicitly to 0,0,0,0 since the constant wasn't initialised and was being
used in the pixel shader. The VFD uses c31 as color0 if it doesn't find any color set in the vertex
data.

Change 105736 on 2003/06/12 by jhoule@jhoule_r400_win_lt

 Changed FMT_32_AS_8_8_INTERLACED to use FMT_8_8 as faux_format instead of
FMT_8.

Change 105699 on 2003/06/11 by csampayo@fl_csampayo_r400

 Add compare file

Change 105635 on 2003/06/11 by ashishs@fl_ashishs_r400_win

 removing any code which could be the cause of suspicion for failure for the test. Just to
show that the test still fails even without the previous suspicious code in the test.

Change 105608 on 2003/06/11 by mkelly@fl_mkelly_r400_win_laptop

 Minor comment update...

Change 105606 on 2003/06/11 by mkelly@fl_mkelly_r400_win_laptop

 VGT HOS PM4 conversion

Change 105512 on 2003/06/11 by mkelly@fl_mkelly_r400_win_laptop

 Add more sq dumps

Change 105506 on 2003/06/11 by mkelly@fl_mkelly_r400_win_laptop

 Add sq_shaders.dmp

 Page 180 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 105409 on 2003/06/10 by csampayo@fl_csampayo2_r400

 Fixed problem with Export_Base_Address being erroneously changed after first pass

Change 105369 on 2003/06/10 by mkelly@fl_mkelly_r400_win_laptop

 Setup to regress for VC

Change 105365 on 2003/06/10 by mdoggett@mdoggett_r400_linux_local

 added scissor, doing 2x2 top left quad point sampled

Change 105363 on 2003/06/10 by mkelly@fl_mkelly_r400_win_laptop

 Add UseVc = 0 to both registery files

Change 105325 on 2003/06/10 by jhoule@jhoule_r400_linux_marlboro

 Adding first tp_ch_blend binary.
 Contains border bits as well as xor mask.

 Updated Makefile to allow p4_releases.

Change 105318 on 2003/06/10 by jhoule@jhoule_r400_win_lt

 Added border_color and xor mask. Removed data_format field, which is deprecated by
the previous.
 Updated example.in file to account for new columns.

Change 105074 on 2003/06/09 by csampayo@fl_csampayo_r400

 Initialize directory

Change 105039 on 2003/06/09 by ashishs@fl_ashishs_r400_win

 updated

Change 105030 on 2003/06/09 by tien@tien_r400_devel_marlboro

 CHanged TP_SQ_fetch_stall to TP_SQ_dec

Change 105019 on 2003/06/09 by ashishs@fl_ashishs_r400_win

 updated description in test

Change 105015 on 2003/06/09 by ashishs@fl_ashishs_r400_win

 same as horz_01 but with texture offsets of 0.4 and 0.6 respectively

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1647 of 1898

 Page 181 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 104999 on 2003/06/09 by ashishs@fl_ashishs_r400_win

 same as vert_01 but with texture offsets of 0.4 and 0.6 respectively

Change 104965 on 2003/06/09 by ashishs@fl_ashishs_r400_win

 testing texture wrap over T with 64 cases each with a different level of wrapping from 1
to 64

Change 104944 on 2003/06/09 by llefebvr@llefebvr_r400_emu_montreal

 Modified the emulator to generate the same number of passes than the HW on a waterfall
instruction. Only the number of passes is correct at this point not the write mask.

 Also corrected 2 MOVA tests where the address register wasn't loaded correctly before
use.

Change 104937 on 2003/06/09 by mkelly@fl_mkelly_r400_win_laptop

 Add r400sc_pm4_mp_ib_03

Change 104936 on 2003/06/09 by mkelly@fl_mkelly_r400_win_laptop

 Add a couple of VC dumps to the regression maintenance

Change 104736 on 2003/06/06 by ashishs@fl_ashishs_r400_win

 updated the tracker and test_list for the newly added 4 tests

Change 104729 on 2003/06/06 by csampayo@fl_csampayo2_r400

 Updated for FB start move

Change 104719 on 2003/06/06 by ashishs@fl_ashishs_r400_win

 testing texture wrap over S with 64 cases each with a different level of wrapping from 1
to 64

Change 104707 on 2003/06/06 by jhoule@jhoule_r400_linux_marlboro

 Changed p4_release dependencies to strip the executable.

Change 104689 on 2003/06/06 by mkelly@fl_mkelly_r400_win_laptop

 Update to make it easier to see memory management and work
 with adjustable frame buffer start.

Change 104595 on 2003/06/06 by csampayo@fl_csampayo_r400

 Page 182 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Update address for vtx shader load

Change 104594 on 2003/06/06 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added new tests for TP testing.

Change 104449 on 2003/06/05 by ashishs@fl_ashishs_r400_win

 This test is intended to validate the shader constant memory using up 256 constants in the
vertex shader program

Change 104336 on 2003/06/05 by csampayo@fl_csampayo2_r400

 Updates for new FB start

Change 104319 on 2003/06/05 by mkelly@fl_mkelly_r400_win_laptop

 Emulator rbbm.dmp coverage tool. Useful info. to determine test coverage
 on register bits. A bit is considered covered if it changes state from
 0 to 1 or 1 to 0.

 Simple steps to follow:
 1. regress_r400
 2. perl build_regspec.pl -b VGT
 3. regcover -r <root path of regress_r400 test dirs> -tl
 4. results can be found in all_regcover.txt, regcover_warnings.txt

Change 104315 on 2003/06/05 by llefebvr@llefebvr_r400_emu_montreal

 Nasty GPR allocation GPR error in the test that was causing the test to break on the HW.

Change 104312 on 2003/06/05 by ashishs@fl_ashishs_r400_win

 testing exp instruction. Has problems with texture wrapping which is being looked into
more closely

Change 104285 on 2003/06/05 by ashishs@fl_ashishs_r400_win

 changing some of the texture coords to show the difference between r300 and r400 for
texture

Change 104279 on 2003/06/05 by jhoule@jhoule_r400_linux_marlboro

 Fixed missing clamp for out-of-range result of the final subtract in the correction.
 Also added Linux binary to parts_lib/sim/gfx/tp.

Change 104271 on 2003/06/05 by tien@tien_r400_devel_marlboro

 Page 183 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Aniso fixes
 Aniso step order change

Change 104256 on 2003/06/05 by smoss@smoss_crayola_linux_orl

 added picasso.h copy, rm *.h

Change 104246 on 2003/06/05 by jhoule@jhoule_r400_linux_marlboro

 Removed countdown when releasing binary

Change 104203 on 2003/06/05 by ashishs@fl_ashishs_r400_win

 texture coords to 64 and updated texture

Change 104202 on 2003/06/05 by ashishs@fl_ashishs_r400_win

 simple test to show that currently texture wrapping currently has problem

Change 104192 on 2003/06/05 by mkelly@fl_mkelly_r400_win_laptop

 Update.

Change 104191 on 2003/06/05 by mkelly@fl_mkelly_r400_win_laptop

 Don't count a test name with sq in the sq category if it also is
 named r400sp

Change 104157 on 2003/06/04 by ashishs@fl_ashishs_r400_win

 updated the test_list fo SQ

Change 104132 on 2003/06/04 by ashishs@fl_ashishs_r400_win

 lots of mixed instructions. seems to have problem with texture(commented instructionsin
the shader)

Change 104067 on 2003/06/04 by jhoule@jhoule_r400_win_lt

 Dedicated testbench for tp_hicolor.
 Supports integer, float, and rf8.

Change 104049 on 2003/06/04 by jhoule@jhoule_r400_win_lt

 Reactivated NEAREST_CLAMP_POLICY support.

Change 104025 on 2003/06/04 by csampayo@fl_csampayo2_r400

 Add FB start offset at correct place

 Page 184 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 103999 on 2003/06/04 by llefebvr@llefebvr_r400_emu_montreal

 Missing a constant load (509)

Change 103973 on 2003/06/04 by mdoggett@MA_MDOGGETT_LT

 Changed to 256 x 256 directly mapped bilinear.

Change 103925 on 2003/06/03 by csampayo@fl_csampayo2_r400

 Update for moving framebuffer

Change 103919 on 2003/06/03 by danh@danh_crayola1_linux_orl

 Changed *_SHADER_FILE file names.

Change 103917 on 2003/06/03 by danh@danh_r400_win

 Changed the *_SHADER_FILE strings so they have the correct file names.

Change 103901 on 2003/06/03 by ashishs@fl_ashishs_r400_win

 updated the shader and the .cpp file the way it was supposed to be according to r300. The
shader had some instructions commented out and was exporting the 4th texture directly as it
recieved instead of doing the calculations but now is turned back on with the same calculations
as in r300 and works perfectly.

 the reason they were commneted out were that that time I had not developed a subroutine
for LIT instruction which was present in r300 but not on r400

Change 103896 on 2003/06/03 by ashishs@fl_ashishs_r400_win

 changing some instructions as they were supposed to be...

Change 103895 on 2003/06/03 by ashishs@fl_ashishs_r400_win

 test converted from r300. Has lots of instructions mixed together

Change 103890 on 2003/06/03 by georgev@devel_georgev_r400_lin2_marlboro_tott

 New textures for testing.

Change 103853 on 2003/06/03 by llefebvr@llefebvr_r400_linux_marlboro

 Making screen size 64x64 instead of 512x512 so test runs faster.

Change 103825 on 2003/06/03 by georgev@devel_georgev_r400_lin2_marlboro_tott

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1648 of 1898

 Page 185 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Modified for automatic files.

Change 103782 on 2003/06/03 by ashishs@fl_ashishs_r400_win

 adding comments and extending the shaders for 7th and 8th textures

Change 103779 on 2003/06/03 by ashishs@fl_ashishs_r400_win

 loop instruction test with random loop constants and some of loop "i" registers being
reused.

Change 103728 on 2003/06/02 by ashishs@fl_ashishs_r400_win

 initial checkin for the test

Change 103725 on 2003/06/02 by ashishs@fl_ashishs_r400_win2

 adding R400ZeroBufferStart to the dumps registry script

Change 103688 on 2003/06/02 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added a few comments.

Change 103685 on 2003/06/02 by georgev@devel_georgev_r400_lin2_marlboro_tott

 First revision so others could use it.

Change 103660 on 2003/06/02 by paulv@paulv_r400_linux_marlboro

 Changed r400_regression queue to r400_regression_ncv.

Change 103627 on 2003/06/02 by omesh@omesh_r400_linux_marlboro

 Added another 1152 Stencil Pass ZFail testcases for Backface Stencil
 modes.

Change 103622 on 2003/06/02 by omesh@omesh_r400_linux_marlboro

 Added another 1152 Stencil Pass ZFail testcases.

Change 103620 on 2003/06/02 by ashishs@fl_ashishs_r400_win

 corrected the files. I had exported a level higher than I was supposed to export from the
registry resulting in a lot of other my own PC related data being exported too. I have fixed that
and now these dumps have just the data which they should have. Sorry for the inconvenience and
anyone using this if breaks please let me know.

Change 103614 on 2003/06/02 by mkelly@fl_mkelly_r400_win_laptop

 Page 186 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Fix DISP_BASE to be offset from framebuffer address. If we want these tests to
 work with the frame_buffer start address, the rb base registers must be changed
 to use frame buffer start address and not DISP_BASE. Currently, these tests work
 with the registery key R400ZeroBufferStart = 1.

Change 103566 on 2003/06/02 by mkelly@fl_mkelly_r400_win_laptop

 Fix syntax error...

Change 103434 on 2003/05/30 by ashishs@fl_ashishs_r400_win

 updated the test_list

Change 103394 on 2003/05/30 by ashishs@fl_ashishs_r400_win

 changing the loop increment to match the vap_pvs_iLoop_02 test in R300 instead of
vap_pvs_loop_02

Change 103359 on 2003/05/30 by ashishs@fl_ashishs_r400_win

 testing constant memory addressing with several instruction types and different number
of operands

Change 103335 on 2003/05/30 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Skewed more texture.

Change 103332 on 2003/05/30 by mkelly@fl_mkelly_r400_win_laptop

 Change hard coded frame buffer start to use method Get_Start()...

Change 103331 on 2003/05/30 by ashishs@fl_ashishs_r400_win

 Testing MULADD instruction with multiple accesses to input and constant memories

Change 103303 on 2003/05/30 by llefebvr@llefebvr_r400_emu_montreal

 Fixing ashish's test.

Change 103288 on 2003/05/30 by ashishs@fl_ashishs_r400_win

 Testing constant memory store indexing and addr registers and exporting using constant
memory indexed by address registers.

 Currently the test has a problem which has been expained in the vtx shader of the test.

Change 103277 on 2003/05/30 by tien@tien_r400_devel_marlboro

 Mipmapping fixes

 Page 187 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 103186 on 2003/05/29 by csampayo@fl_csampayo2_r400

 Remove commented instructions

Change 103173 on 2003/05/29 by ashishs@fl_ashishs_r400_win

 Testing constant memory store indexing and addr registers using various different
swizzles

Change 103116 on 2003/05/29 by mkelly@fl_mkelly_r400_win_laptop

 Fix syntax error introduced by script which changed DISP_BASE

Change 103103 on 2003/05/29 by llefebvr@llefebvr_r400_emu_montreal

 Fixing Carlos's bug

Change 103100 on 2003/05/29 by ashishs@fl_ashishs_r400_win

 testing precision for exp instruction. Found a lot of differences between the Hardware
accurate shader emulator calculations wrt to the C compiler generated exp values. Fot the same
data set the Non Hardware acurate emulator (using C compiler functions) generates exactly equal
results (could be used for verification since both the values viz shader as well as the expected
values are generted using the same functions)

Change 103086 on 2003/05/29 by omesh@omesh_r400_linux_marlboro_only_devel

 Added 24_8_FLOAT versions of the ZFunction tests (49 testcases)

Change 103060 on 2003/05/29 by csampayo@fl_csampayo_r400

 Added max constant memory addrs reg indexing test. Updated test_list and test tracker
accordingly.

Change 103039 on 2003/05/29 by mkelly@fl_mkelly_r400_win_laptop

 Only plgx::wait_rt_idle before frame buffer dump, implement rts_wait_until

Change 102988 on 2003/05/28 by ashishs@fl_ashishs_r400_win

 testing precision of log_ieee instruction to 1/2**21 Also found that there is a possible
precision loss (same as sqrt instruction) between 0 to 1 for values less than 10^-2. Found that for
some values the comparison is exact between precomputed and shader computed values and for
some values there is a difference in even the last 3 bits of the mantissa value. Also testing in the
same test(same as sqrt test) if the instruction executes correctly on all the channels and also if the
result is replicated on all the 4 channels.

Change 102944 on 2003/05/28 by smoss@smoss_crayola_linux_orl

 Page 188 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 add sp sx

Change 102941 on 2003/05/28 by smoss@smoss_crayola_linux_orl

 add *.h files

Change 102923 on 2003/05/28 by mkelly@fl_mkelly_r400_win_laptop

 Implement RTS_WAIT_UNTIL, minimizing plgx::wait_rt_idle(s)

Change 102912 on 2003/05/28 by ashishs@fl_ashishs_r400_win

 updated the description to have more information on the problem cases. Also updated the
VTE Y scale to multiply with the very small constant (1e-038) so that all the points lie within the
Y dim of image

Change 102897 on 2003/05/28 by jhoule@jhoule_r400_linux_marlboro

 Fixed early-terminated help string.

Change 102895 on 2003/05/28 by ashishs@fl_ashishs_r400_win

 updated the description to have more information on the problem cases. Also updated the
VTE Y scale to multiply with the very small constant (1e-025) so that all the points lie within the
Y dim of image

Change 102856 on 2003/05/28 by ashishs@fl_ashishs_r400_win

 testing precision of recipsq instruction to 1/2**21 Also found that there is a possible
precision loss (same as sqrt instruction) between 0 to 1 for values less than 10^-2 . Also testing in
the same test(same as sqrt test) if the instruction executes correctly on all the channels and also if
the result is replicated on all the 4 channels.

Change 102838 on 2003/05/28 by ashishs@fl_ashishs_r400_win

 testing precision of sqrt instruction to 1/2^21 Also found that there is a possible precision
loss for values between 0 and 1 (exclusive) having values less than 10^-2. Currently some of
those points are outside the display area wrt the precision constant.

Change 102835 on 2003/05/28 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 102832 on 2003/05/28 by mkelly@fl_mkelly_r400_win_laptop

 Update for debugging...

Change 102821 on 2003/05/28 by mkelly@fl_mkelly_r400_win_laptop

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1649 of 1898

 Page 189 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Changed test to use the rbbm WAIT_RTS_IDLE before each RTS initiator
 and only use plgx::wait_rt_idle before the framebuffer dump.

Change 102777 on 2003/05/27 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 102768 on 2003/05/27 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 102722 on 2003/05/27 by mkelly@fl_mkelly_r400_win_laptop

 Update display base to start at beginning of frame_buffer.Get_Start()

Change 102717 on 2003/05/27 by omesh@omesh_r400_linux_marlboro_only_devel

 Disabled Color Blending. It seems to produce all samples for Alpha =
 1.0. Will do some further checking to find out if some other testcases
 look fine.

Change 102698 on 2003/05/27 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 102426 on 2003/05/23 by jhoule@jhoule_r400_linux_marlboro

 Removed the countdown under p4_release

Change 102399 on 2003/05/23 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Additional tests for MIP mapping and aniso.

Change 102392 on 2003/05/23 by ashishs@fl_ashishs_r400_win

 adding test

Change 102391 on 2003/05/23 by ashishs@fl_ashishs_r400_win

 changing the dataset to have more cases. Also changing the constant to 2^-23

Change 102382 on 2003/05/23 by ashishs@fl_ashishs_r400_win

 changing the precision constant to 2^-23

Change 102363 on 2003/05/23 by ashishs@fl_ashishs_r400_win

 Page 190 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Testing precision of trunc instruction (found to be same as the C compiler generated trunc
value)
 The test uses 500 points in a packet to carry the reciprocal values and visually identify the
problem
 locations. Tests both the vector as well as scalar operation.
 This test sends predetermined test data as well as random data through the z channel
 of the vertex data, as well as the precomputed TRUNC values through the y channel of
the
 vtx data. Hex values of the floating point numbers are evalauated and sent to avoid other
 rounding issues. The shader then gets the data on the z channel and TRUNCS it,
 compares with the precomputed TRUNC value passed in the y channel of vtx data,
 and plots the RELATIVE difference after multiplying with the PRECISION
CONSTANT (set to 2**42) on the Y axis
 of the image. Also to better identify problem points, a color coding scheme is given to the
points
 as follows. The point that have difference of "0" between precomputed and shader
computed values
 get BLUE color. When the same difference is between 0 and <= 1, the points get GREEN
color.
 When the difference is greater than 1 which identifies them as problem points, they get
RED color.

 TBD : Some number combinations donot work, I guess due to rounding issues. Need to
find the exact problem.
 For now those numbers are commented out.
 According to me the NAN's and INF's will still be needed to be checked seperately.

Change 102274 on 2003/05/23 by ashishs@fl_ashishs_r400_win

 removed from SX and putting it in SP, since by mistake thought them to be in SX. Also
updating the test_list for both blocks

Change 102260 on 2003/05/23 by ashishs@fl_ashishs_r400_win

 updated for the new sx precision tests

Change 102240 on 2003/05/23 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 102198 on 2003/05/22 by mdoggett@mdoggett_r400_linux_local

 Changes for testing tc cache.

Change 102171 on 2003/05/22 by ashishs@fl_ashishs_r400_win

 checking scalar as well as vector floor instruction in the same test

Change 102166 on 2003/05/22 by ashishs@fl_ashishs_r400_win

 Page 191 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Testing precision of floor instruction
 The test uses 500 points in a packet to carry the reciprocal values and visually identify the
problem
 locations. This test sends predetermined test data as well as random data through the z
channel
 of the vertex data, as well as the precomputed FLOOR values through the y channel of
the
 vtx data. Hex values of the floating point numbers are evalauated and sent to avoid other
 rounding issues. The shader then gets the data on the z channel and FLOORS it,
 compares with the precomputed FLOOR value passed in the y channel of vtx data,
 and plots the RELATIVE difference after multiplying with the PRECISION
CONSTANT (set to 2**42) on the Y axis
 of the image. Also to better identify problem points, a color coding scheme is given to the
points
 as follows. The point that have difference of "0" between precomputed and shader
computed values
 get BLUE color. When the same difference is between 0 and <= 1, the points get GREEN
color.
 When the difference is greater than 1 which identifies them as problem points, they get
RED color. TBD : According to me the NAN's and INF's will still be
needed to be checked seperately.

Change 102151 on 2003/05/22 by ashishs@fl_ashishs_r400_win

 changing to pix center as 0

Change 102146 on 2003/05/22 by mkelly@fl_mkelly_r400_win_laptop

 Final, 4 textures on an RT rectangle...

Change 102118 on 2003/05/22 by ashishs@fl_ashishs_r400_win

 Testing precision of recip_ieee instruction to 1.0f/2**23

 The test uses 500 points in a packet to carry the reciprocal values and visually identify the
problem locations.
 This test sends predetermined test data as well as random data through the z channel
 of the vertex data, and the precomputed reciprocals of those values through the y channel
of the
 vtx data. Hex values of the floating point numbers are evalauated and sent to avoid other
 rounding issues. The shader then gets the data on the z channel and reciprocates it,
 compares with the precomputed reciprocal value passed in the y channel of vtx data,
 and plots the RELATIVE difference after multiplying with the PRECISION
CONSTANT to get the difference
 between 0 and 1 and thereby be able to plot on the Y axis of the image. Also to better
identify
 problem points, a color coding scheme is given to the points as follows.
 The point that have difference of "0" between precomputed and shader computed values

 Page 192 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 get BLUE color. When the same difference is between 0 and <= 1, the points get GREEN
color.
 When the difference is greater than 1 which identifies them as problem points, they get
RED color.
 TBD : According to me the NAN's and INF's will still be needed to be checked
seperately.

Change 102069 on 2003/05/22 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint..

Change 102048 on 2003/05/22 by llefebvr@llefebvre_laptop_r400_emu

 fixing test

Change 102046 on 2003/05/22 by mkelly@fl_mkelly_r400_win_laptop

 Changed to gouraud shading...

Change 102018 on 2003/05/21 by csampayo@fl_csampayo_r400

 Updated test description, test_list and test tracker

Change 102000 on 2003/05/21 by tien@tien_r400_devel_marlboro

 Cleaned up clamping logic

Change 101947 on 2003/05/21 by mkelly@fl_mkelly_r400_win_laptop

 Break out pipe disable tests into separate tests...

Change 101931 on 2003/05/21 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added new MipMap tests.

Change 101901 on 2003/05/21 by ashishs@fl_ashishs_r400_win

 updated for 2 new tests. (also corrected problem with no new line at the end of test_list)

Change 101895 on 2003/05/21 by mkelly@fl_mkelly_r400_win_laptop

 Fix frame buffer start, fix RB asserts on samples

Change 101890 on 2003/05/21 by mkelly@fl_mkelly_r400_win_laptop

 Fix eo_rt in test for HW

Change 101865 on 2003/05/20 by csampayo@fl_csampayo_r400

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1650 of 1898

 Page 193 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 SImple address register constant indexing tests

Change 101845 on 2003/05/20 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 101830 on 2003/05/20 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 101786 on 2003/05/20 by mkelly@fl_mkelly_r400_win_laptop

 Break out simd cases into separate tests to shorten run time...

Change 101784 on 2003/05/20 by mkelly@fl_mkelly_r400_win_laptop

 Break out cases for simd into separate tests...

Change 101699 on 2003/05/19 by csampayo@fl_csampayo_r400

 Update for coissue (dual) instructions

Change 101675 on 2003/05/19 by ashishs@fl_ashishs_r400_win

 adding scalar as well as vector operation to the shader for checking, and also updating the
.cpp file since the c compiler rounded some of the values

Change 101653 on 2003/05/19 by ashishs@fl_ashishs_r400_win

 performing scalar as well as vector operation to check both

Change 101648 on 2003/05/19 by ashishs@fl_ashishs_r400_win

 test for the floor instruction...

Change 101646 on 2003/05/19 by mkelly@fl_mkelly_r400_win_laptop

 Break out simd cases into separate tests...

Change 101630 on 2003/05/19 by ashishs@fl_ashishs_r400_win

 updated for the new perspective tests added...

Change 101629 on 2003/05/19 by mkelly@fl_mkelly_r400_win_laptop

 Break out cases for simd testing

Change 101622 on 2003/05/19 by ashishs@fl_ashishs_r400_win

 Page 194 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 test with points setup on 4 corners of user defined frustum with varying z values.
horizontal as well as vertical clipping applied on all the points using ucp planes

Change 101619 on 2003/05/19 by mdoggett@mdoggett_r400_linux_local

 Added command line option to print cacheline and sector at beginning of line. Command
line option -clinesectorprint must be used to turn on printing.

Change 101616 on 2003/05/19 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 101609 on 2003/05/19 by mkelly@fl_mkelly_r400_win_laptop

 Break out simd cases to individual tests...

Change 101598 on 2003/05/19 by mkelly@fl_mkelly_r400_win_laptop

 Memory violation occurs at the end of the second packet

Change 101579 on 2003/05/19 by ashishs@fl_ashishs_r400_win

 test with points in perspective view having different z values and being clipped by ucp
(different ucp clipping modes and setting point size in vtx and su registers)

Change 101419 on 2003/05/16 by tien@tien_r400_devel_marlboro

 Moved input flops out of sp_tp_formatter

Change 101351 on 2003/05/16 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint

Change 101331 on 2003/05/16 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 101327 on 2003/05/16 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 101311 on 2003/05/16 by jhoule@jhoule_r400_win_lt

 Updated golden images, without randoms.

Change 101310 on 2003/05/16 by jhoule@jhoule_r400_win_lt

 Removed randomness in Set_Default_Values()

 Page 195 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 101259 on 2003/05/15 by ashishs@fl_ashishs_r400_win

 updated for r400sq_trunc_01

Change 101258 on 2003/05/15 by ashishs@fl_ashishs_r400_win

 test for trunc instruction created as directed by Carlos. It shows that it currently has a
problem with scalar trunc operation where it fails on -ve integer values like -1.0, -2.0.... but
doesnot fail on fractional -ve integers. A part of code missing on the scalar side for the trunc
operation.

Change 101137 on 2003/05/15 by csampayo@fl_csampayo_r400

 Updated test status for tests:
 r400sq_auto_wrapping_memories_01
 r400sq_vs_memory_wrap_01
 Sorted test_list

Change 101121 on 2003/05/15 by csampayo@fl_csampayo2_r400

 Reduce screen size and update description

Change 101092 on 2003/05/14 by csampayo@fl_csampayo2_r400

 Updated to wrap vertex and pixel shaders

Change 101048 on 2003/05/14 by jhoule@jhoule_r400_linux_marlboro

 Added strip target to reduce binary size, as well as p4_* targets for emu_tb release.

Change 101046 on 2003/05/14 by jhoule@jhoule_r400_linux_marlboro

 Added binary testbench into parts_lib

Change 101022 on 2003/05/14 by jhoule@jhoule_r400_win_lt

 Added address library to Makefile under Windows.

 Cleaned up golden.lst file.
 - Sorted tests
 - Removed duplicates
 - Removed r400tc_simple_texture since Mike uses it for personnal tests

Change 100975 on 2003/05/14 by ashishs@fl_ashishs_r400_win

 updated the tracker and test_list

Change 100972 on 2003/05/14 by mkelly@fl_mkelly_r400_win_laptop

 Page 196 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Fix for SIMD

Change 100963 on 2003/05/14 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 100956 on 2003/05/14 by vbhatia@vbhatia_r400_linux_marlboro

 Adding skeleton tp_formatter with standalone testbench

Change 100944 on 2003/05/14 by ashishs@fl_ashishs_r400_win

 testing sqrt function by using 500 points with square root values between 0 and 2 to plot
the sqrt graph

Change 100932 on 2003/05/14 by mkelly@fl_mkelly_r400_win_laptop

 Update eo_const_rt, ps_const.base and size

Change 100900 on 2003/05/14 by csampayo@fl_csampayo2_r400

 New instruction store wrap test. Updated test_list accordingly.

Change 100890 on 2003/05/14 by mkelly@fl_mkelly_r400_win_laptop

 Made test less weird :)

Change 100811 on 2003/05/13 by ashishs@fl_ashishs_r400_win

 using z and w channels in the shader to do the square root. Need to verify if the w
channel is selected by default...

Change 100797 on 2003/05/13 by ashishs@fl_ashishs_r400_win

 cleaning up code...

Change 100781 on 2003/05/13 by ygiang@ygiang_r400_pv2_marlboro

 fixed: sp tests emulation errors

Change 100779 on 2003/05/13 by ashishs@fl_ashishs_r400_win

 correcting an error in the test

Change 100778 on 2003/05/13 by mkelly@fl_mkelly_r400_win_laptop

 All kinds of RT constant indexing and clamping, using all 256 bool bits

Change 100775 on 2003/05/13 by jhoule@jhoule_r400_win_lt

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1651 of 1898

 Page 197 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Changed block name to tc (was perf).

Change 100760 on 2003/05/13 by ashishs@fl_ashishs_r400_win

 another SQRT test, same as r400sq_sqrt_ieee_comp_02, but multiplying the vertex data
with nan and inf data in x channel and then passing the inverse nan_multiplier in z channel to get
the proper vertex data back.

Change 100719 on 2003/05/13 by jhoule@jhoule_r400_linux_marlboro

 Fixed early-terminated help string.

Change 100715 on 2003/05/13 by ashishs@fl_ashishs_r400_win

 another sqrt test. plotting the difference in precision between shader and c++ complier for
square root instruction in the image.

Change 100702 on 2003/05/13 by csampayo@fl_csampayo2_r400

 Adjust the SQ_PS_CONST register BASE and SIZE fields settings as per RT
requirements

Change 100700 on 2003/05/13 by mkelly@fl_mkelly_r400_win_laptop

 Finalize RT constant indexing positive and negative clamping variations

Change 100684 on 2003/05/13 by kevino@kevino_r400_linux_marlboro

 Got rid of til fmt 11 and 12 testcases for the 3D tests. These are not valid 3D formats.

Change 100643 on 2003/05/13 by ashishs@fl_ashishs_r400_win

 testing sqrt instruction

Change 100432 on 2003/05/12 by jhoule@jhoule_r400_linux_marlboro

 Adding testbench binary for tp_addresser.
 Updated Makefile's p4 targets.

Change 100401 on 2003/05/12 by jhoule@jhoule_r400_ma-jhoule-linux

 Point sampling now sets incr_{x|y} to 0, just like hardware.
 Added p4_release target to be used for putting the binary under Perforce.

Change 100397 on 2003/05/12 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

 Page 198 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 100273 on 2003/05/09 by csampayo@fl_csampayo2_r400

 Initial check in

Change 100246 on 2003/05/09 by ashishs@fl_ashishs_r400_win

 updated the excel tracker sheet and the test_list up-to-date

Change 100229 on 2003/05/09 by ashishs@fl_ashishs_r400_win

 This test processes 112 packets of 4 vertices each. The pvs program uses the address
register to calculate color0.
 For each packet the test changes the parameter used for the address calculation randomly,
for each of the four vertices.
 Addressing of constant memory spans locations 0 thru 255

Change 100218 on 2003/05/09 by omesh@omesh_r400_linux_marlboro

 Enabled ZMASK for multisampling rendering, as described in the RB
 Register specs.

Change 100215 on 2003/05/09 by omesh@omesh_r400_linux_marlboro

 Enabled ZMASK for multisample rendering, as described in the RB Register
 specs.

Change 100214 on 2003/05/09 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 100209 on 2003/05/09 by omesh@omesh_r400_linux_marlboro

 Enabled ZMASK in these tests, as Stencil Compression does require ZMASK
 to be enabled.

Change 100173 on 2003/05/09 by mkelly@fl_mkelly_r400_win_laptop

 Fix ps_const and eo_rt variables to work in HW.

Change 100143 on 2003/05/09 by ashishs@fl_ashishs_r400_win

 This test processes 18 packets of 1 vertex each. The pvs program uses the address
register to calculate color0. For each packet the test changes the parameter used for the address
calculation for each vertex.

Change 100138 on 2003/05/09 by ashishs@fl_ashishs_r400_win

 This test processes 6 packets of 2 vertices each. The pvs program uses the address
register to calculate color0.For each packet the test changes the parameter used for the address

 Page 199 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

calculation for each of the two vertices, permuting all possibilities where some of the parameters
are equal to each other.

Change 100130 on 2003/05/09 by ashishs@fl_ashishs_r400_win

 This test processes 10 packets of 3 vertices each. The pvs program uses the address
register to calculate color0. For each packet the test changes the parameter used for the a0
calculation for each of the three vertices, permuting all possibilities where some of the
parameters are equal to each other, while the remaider are also equal to each other

Change 100126 on 2003/05/09 by ashishs@fl_ashishs_r400_win

 r400sq_addrs_reg_waterfall_03: This test processes 10 packets of 3 vertices each. The
pvs program uses the addr register to calculate color0. For each packet the test changes the
parameter used for the a0 calculation for each of the three vertices, permuting all possibilities
where some of the parameters are equal to each other, while the remaider are not equal to each
other
 r400sq_addrs_reg_waterfall_02: cleaned up the test

Change 100120 on 2003/05/09 by ashishs@fl_ashishs_r400_win

 This test processes 18 packets of 4 vertices each. The shader program uses the address
register to calculate color0. For each packet the test changes the parameter used for the address
calculation for each of the four vertices, permuting all possibilities where some of the parameters
are equal to each other, while the remaider are also equal to each other.

Change 99995 on 2003/05/08 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 99994 on 2003/05/08 by ashishs@fl_ashishs_r400_win

 somehow again there were some incorrect names...

Change 99993 on 2003/05/08 by ashishs@fl_ashishs_r400_win

 somehow there was a wrong test name...

Change 99982 on 2003/05/08 by jhoule@jhoule_r400_win_lt

 Changed opcode_enc from 2 hex to a single one (since it's 3b)

Change 99971 on 2003/05/08 by llefebvr@llefebvr_r400_emu_montreal

 test had an error...

Change 99966 on 2003/05/08 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

 Page 200 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 99953 on 2003/05/08 by mkelly@fl_mkelly_r400_win_laptop

 Zero out eo_rt and ps_const registers at test beginning..

Change 99948 on 2003/05/08 by omesh@omesh_r400_linux_marlboro

 Added 1152 Backface versions of the same Multisample tests.

Change 99872 on 2003/05/08 by ashishs@fl_ashishs_r400_win

 removing a small error with the script which made it to loop infinitely

Change 99807 on 2003/05/07 by jhoule@jhoule_r400_win_lt

 Added tp_addresser testbench.

 tp_types.h
 - Added PackedCoord_32, intented to be shared by addresser as well as TP_TC interface

Change 99797 on 2003/05/07 by mdoggett@mdoggett_r400_linux_local

 Removed setting frame buffer to 256M. In attempt to fix emulator assert on tptc
testbench.
 General clean up of file.

Change 99795 on 2003/05/07 by ashishs@fl_ashishs_r400_win

 added variables for the AUTO_R400_REGRESS_getError script. The variables have to
be present while executing that script or else not needed.

Change 99775 on 2003/05/07 by ashishs@fl_ashishs_r400_win

 The script will now check the boundary values if at the end of the script if the test fails all
over the range and then give the user appropriate error message. Changed some formatting also.
Updated the description for the test in the header.
 For more information on the script pls see the script header.

Change 99652 on 2003/05/07 by mkelly@fl_mkelly_r400_win_laptop

 This should fix regress_e, I needed to update the pix shader to
 use k0 instead of c0 since that is the way I set up the constant
 store for RT.

Change 99646 on 2003/05/07 by mkelly@fl_mkelly_r400_win_laptop

 I fixed the assert by programming eo_rt,ps_cons.size and base but
 now image is not right, will continue debugging...

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1652 of 1898

 Page 201 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 99593 on 2003/05/07 by mkelly@fl_mkelly_r400_win_laptop

 Nice Assert, reverted back to original test...

Change 99589 on 2003/05/07 by omesh@omesh_r400_linux_marlboro

 Changed an earlier enumeration to match a revised emulator enumeration.
 Verified that Primlib now supports the .Fill_Data function for
 multisample depth correctly and verified that the dumped file looks ok.

Change 99566 on 2003/05/07 by ashishs@fl_ashishs_r400_win

 sorry ...a bad error due to my mistake

Change 99564 on 2003/05/07 by ashishs@fl_ashishs_r400_win

 removed some small errors again relating to email: the attachment of log_file with email

Change 99556 on 2003/05/07 by llefebvr@llefebvr_r400_emu_montreal

 fixing the RT assertion.

Change 99551 on 2003/05/07 by ashishs@fl_ashishs_r400_win

 removed some small errors...

Change 99548 on 2003/05/07 by ashishs@fl_ashishs_r400_win

 logging actions to a log file as the script progresses...

Change 99547 on 2003/05/07 by mkelly@fl_mkelly_r400_win_laptop

 Update comments...

Change 99518 on 2003/05/07 by mkelly@fl_mkelly_r400_win_laptop

 Positive and Negative Constant Index clamping for RT...

Change 99435 on 2003/05/06 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Fix some of the missing tests.

Change 99385 on 2003/05/06 by mkelly@fl_mkelly_r400_win_laptop

 Update comments, new tests checking RT Constant indexing...

Change 99375 on 2003/05/06 by ygiang@ygiang_r400_pv2_marlboro

 Page 202 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 fixed: VTXs out side of frame buffer problem for sp tests

Change 99344 on 2003/05/06 by mkelly@fl_mkelly_r400_win_laptop

 Update comments on 06, finalized 07

Change 99319 on 2003/05/06 by ashishs@fl_ashishs_r400_win

 can now accept command line parameter "To Group" to be used as group values while
running the script
 usage
 perl AUTO_R400_REGRESS_getError [group1,group2....]

 p.s. groups have been defined in the pa_regress/email_list

Change 99317 on 2003/05/06 by mdoggett@mdoggett_r400_linux_local

 Fixed two layer formats to swizzle x,y in the 2nd layer.

Change 99286 on 2003/05/06 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 99281 on 2003/05/06 by smoss@smoss_crayola_linux_orl

 fixed small error

Change 99257 on 2003/05/05 by ashishs@fl_ashishs_r400_win

 also uncommenting the print to screen option

Change 99256 on 2003/05/05 by ashishs@fl_ashishs_r400_win

 forgot to change the MIME directory permissions in the script for the email to work..

Change 99223 on 2003/05/05 by ashishs@fl_ashishs_r400_win

 adding time related details to the output viz start time, end time, elapsed time for each
time the script performs sync-make-regress . Also the script based on the values gives the sync
numbers on which the test status has changed. (But I would prefer to look at the log of all the
sync number runs in the email to be sure)

Change 99195 on 2003/05/05 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added new anisotropic tests.

Change 99178 on 2003/05/05 by kevino@kevino_r400_linux_marlboro

 Removed setting of max mip level to 5 or 6 to keep tests from going to the x1 mip level.

 Page 203 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 99136 on 2003/05/05 by mkelly@fl_mkelly_r400_win_laptop

 Change reg naming for pipe disable...

Change 99130 on 2003/05/05 by smoss@smoss_crayola_linux_orl

 added scissor to remove rb asserts

Change 99117 on 2003/05/05 by mkelly@fl_mkelly_r400_win_laptop

 Change Bad pipe reg naming

Change 99110 on 2003/05/05 by mkelly@fl_mkelly_r400_win_laptop

 Change bad pipe reg naming / field naming...

Change 99101 on 2003/05/05 by mkelly@fl_mkelly_r400_win_laptop

 Update nonRT shader names...

Change 99098 on 2003/05/05 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 99082 on 2003/05/05 by smoss@smoss_crayola_linux_orl

 add *.h

Change 99068 on 2003/05/05 by mkelly@fl_mkelly_r400_win_laptop

 SQ RT constants and flow control testing

Change 98922 on 2003/05/02 by ashishs@fl_ashishs_r400_win

 adding few more template variables for the AUTO_R400_REGRESS_getError script

Change 98921 on 2003/05/02 by ashishs@fl_ashishs_r400_win

 added to do list

Change 98918 on 2003/05/02 by ashishs@fl_ashishs_r400_win

 checkin for initally changing the file permissions on some files to writable and then at the
end of the script change the file permissions to read only.

Change 98917 on 2003/05/02 by csampayo@fl_csampayo2_r400

 New channel mask tests

 Page 204 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 98911 on 2003/05/02 by kryan@kryan_r400_win_marlboro_XP

 chip/gfx/tc/ golden images

 chip/gfx/tc/Makefile

 Add basic gold files for standard test cases for each of the

 tests in the gfx/tc branch. This is to aid the regression

 of the PrimLib library to make sure 1d, 2d, and 3d textures

 always work.

 Ideally these golden images should be updated by people working

 on the TC, but will at least be updated if PrimLib regression

 finds a difference in them that is supposed to be there.

 Also updated the tc/Makefile to add the tests so that they

 can all be run with the command make emu.

 These tests are NOT and should NOT be added to the Emulator regression.

Change 98908 on 2003/05/02 by jhoule@jhoule_r400_ma-jhoule-linux

 Added 'copy' target to help binary releases.

Change 98874 on 2003/05/02 by ashishs@fl_ashishs_r400_win

 Initial checkin for Script used for finding the error sync(sync on which the test fails).
Depending on the range provided (pass..fail range), it will search for the sync at which the test
started first failing. This is done using the binary search with the starting range as the PASS
range and the ending range as the FAIL range. Currently, according to my estimates the script
takes an less than an hour to find out the error sync on average, but I guess with more testing and
heuristics this should be decreased.

 Please also consider that you have to take in consideration of the range values while
taking in account time taken for this script. The estimated time is less than 1 hour for a range of
1000 sync's(93000..94000 pass..fail range) currently.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1653 of 1898

 Page 205 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 98859 on 2003/05/02 by mmang@mmang_crayola_linux_orl

 Fix compile - bad previous merge

Change 98858 on 2003/05/02 by mkelly@fl_mkelly_r400_win_laptop

 Remap pipe disable

Change 98852 on 2003/05/02 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 98850 on 2003/05/02 by mkelly@fl_mkelly_r400_win_laptop

 Remap for new pipe disable registers...

Change 98830 on 2003/05/02 by mkelly@fl_mkelly_r400_win_laptop

 Fix test bug where RT prim was going outside of surface...

Change 98829 on 2003/05/02 by omesh@omesh_r400_linux_marlboro

 Removed multiple occurences of ZRange enabling.

Change 98824 on 2003/05/02 by omesh@omesh_r400_linux_marlboro

 Enabled Z Range, in order to enable HiZ.

Change 98819 on 2003/05/02 by viviana@viviana_crayola_linux_orl

 Changed the values written into PA_SC_AA_CONFIG.MSAA_NUM_SAMPLES to a
legal value.

Change 98815 on 2003/05/02 by omesh@omesh_r400_linux_marlboro

 Instead of disabling Z_ENABLE (this would not allow me access to the
 STENCILZFAIL operation), I enabled HiZ, so that both ZPass and ZFail are
 possible outcomes, depending on the specific testcase.

Change 98804 on 2003/05/02 by mkelly@fl_mkelly_r400_win_laptop

 Change pipe disable register and fields...

Change 98803 on 2003/05/02 by csampayo@fl_csampayo2_r400

 Update

 Page 206 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 98800 on 2003/05/02 by csampayo@fl_csampayo2_r400

 Position and color channel mask and predicate mask tests

Change 98798 on 2003/05/02 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 98791 on 2003/05/02 by jhoule@jhoule_r400_win_lt

 Changed GRAD_EXP_ADJUST from 3b (instr) to 5b (const).

Change 98782 on 2003/05/02 by llefebvr@llefebvr_r400_emu_montreal

 Fixing RT read constant test. Also fixed the eo_rt register to 8 bits (max aperture prevents
us to go bigger anyways).

Change 98777 on 2003/05/02 by ashishs@fl_ashishs_r400_win

 deleting and building test_list from blocks only if respective variables for regressions is
turned ON. If all of the regression variables are off then by defualt the script uses the test_list in
the pa_regress directory

Change 98773 on 2003/05/02 by mmang@mmang_crayola_linux_orl

 1. Added constant address register valids to validate the
 address register data. The valid is set when address register
 is written. If valid is not set, sequencer will not waterfall
 those vertices or pixels. This disables waterfalling for
 predicated off writes and improperly initialized contant
 address registers.
 2. Fixed bug in sqs_alu_instr_seq for phase 3 snooping of
 constant address registers bus. Previously, this snooping
 did not account for predication of those registers.
 3. Fixed bug where ais_load_done_bits was not hooked up. This
 signal disables previous vector/scalar management which needs
 to be turned off during constant waterfalling. With bug,
 pvps logic went unknown which caused unknowns to eventually
 propagate in and out of the gprs.
 4. Fixed bug where non-optimized offset was not being determined
 properly. non_opt_offset is determined by a priority encoder
 of p0_done, p1_done, p2_done, and p3_done.
 5. With advent of constant address register valids, created
 waterfall_active_q to properly init and avoid re-initing of
 different pixel and vertex done bits.

Change 98758 on 2003/05/02 by kevino@kevino_r400_linux_marlboro

 modified for mini regress

 Page 207 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 98756 on 2003/05/02 by mkelly@fl_mkelly_r400_win_laptop

 Change bad pipe register and field names...

Change 98753 on 2003/05/02 by kevino@kevino_r400_linux_marlboro

 set max mip lvel so we never get to a mip level with a texture width/height of 1. The
emu tp_tc has problems with this currently. Remove once this is fixed.

Change 98745 on 2003/05/02 by mkelly@fl_mkelly_r400_win_laptop

 Fix bug in test where RT prim was written outside of Surface extents in RB.

Change 98673 on 2003/05/01 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Fix z buffer problem.

Change 98672 on 2003/05/01 by mdoggett@mdoggett_r400_linux_local

 Added RF expand from 13 bit output from DXN to 16 bits.
 1D linear for 4x16 expanding formats didn't do correct 1d linear ordering.
 Fixed RF expand for 16 16 16 16 EXPAND. It was commented out for unknown
reason.

Change 98651 on 2003/05/01 by llefebvr@llefebvr_r400_emu_montreal

 minor update... not fixed...

Change 98622 on 2003/05/01 by mkelly@fl_mkelly_r400_win_laptop

 Check clamping on RT loop indexing...

Change 98603 on 2003/05/01 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Changed for max loops macro.

Change 98602 on 2003/05/01 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Changed for new max_loops macro.

Change 98600 on 2003/05/01 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Changed for new max_loops variables.

Change 98594 on 2003/05/01 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Removed some mc_motion stuff.

 Page 208 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 98591 on 2003/05/01 by omesh@omesh_r400_linux_marlboro

 Adding 55 Alpha to Sample Mask tests. However, have to clarify the
 expected output for some testcases from Larry to confirm that the
 emulator is doing the right thing. H/W isn't ready yet, so I'm not
 adding these tests to the nightly regression.

Change 98558 on 2003/05/01 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 98549 on 2003/05/01 by scarter@scarter_emul_r400_linux_marlboro

 Per George V.

 Added:
 #include <primlib/shader_program/control_flow/loop_id.h>

 Changed:
 CONTROL_DEFINITION_TABLE::MAX_LOOP_ID
 to
 LOOP_ID::MAX_ID

Change 98527 on 2003/05/01 by ashishs@fl_ashishs_r400_win

 updated the regress_r400 script to always write to the email_contents file.

Change 98468 on 2003/05/01 by markf@markf_r400_lt_marlboro

 Fixed tp_unsigned32_01.cpp to dump 1D surfaces correctly.

Change 98454 on 2003/05/01 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 98438 on 2003/04/30 by ashishs@fl_ashishs_r400_win

 corrected a minor error with the script and also updated the variables file to add the new
variable compare_list which will be used to copy the compare list from the respective directory

Change 98437 on 2003/04/30 by ashishs@fl_ashishs_r400_win

 adding code to use compare_list from a regression directory based on the value of the
variable set in auto regress. If the variable not set then uses the compare_list from the current
directory

Change 98354 on 2003/04/30 by omesh@omesh_r400_linux_marlboro

 Fixed this particular emulator assertion by disabling Color and Alpha

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1654 of 1898

 Page 209 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 blending for non blendable color formats. Verified that the particular
 seeded random testcase no longer asserts.

Change 98345 on 2003/04/30 by ashishs@fl_ashishs_r400_win

 forgot to put a comment

Change 98338 on 2003/04/30 by georgev@devel_georgev_r400_lin2_marlboro

 Added to help coverage.

Change 98337 on 2003/04/30 by georgev@devel_georgev_r400_lin2_marlboro

 Added some cases to cover neg infinity and max negative numbers.

Change 98303 on 2003/04/30 by ashishs@fl_ashishs_r400_win

 In the variables file if the sync_number is set to "0" viz.
 set sync_number = "0"
 then the script wont perform sync and make but will directly jump to the regressions

Change 98281 on 2003/04/30 by llefebvr@llefebvr_r400_emu_montreal

 Using 4 loops but only setting up one... I have corrected the shader to use only loop 0.

Change 98273 on 2003/04/30 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 98264 on 2003/04/30 by mkelly@fl_mkelly_r400_win_laptop

 Check point...

Change 98258 on 2003/04/30 by ashishs@fl_ashishs_r400_win

 added variables for SP and SX regressions

Change 98255 on 2003/04/30 by ashishs@fl_ashishs_r400_win

 added support for SP and SX regressions

Change 98249 on 2003/04/30 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint....

Change 98247 on 2003/04/30 by mkelly@fl_mkelly_r400_win_laptop

 Add support for SP and SX regressions...

 Page 210 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 98216 on 2003/04/29 by smoss@smoss_crayola_linux_orl

 update

Change 98202 on 2003/04/29 by csampayo@fl_csampayo2_r400

 Initial check-in

Change 98201 on 2003/04/29 by csampayo@fl_csampayo2_r400

 Fine tuned this test to simplify and add more failure detection at output.

Change 98176 on 2003/04/29 by omesh@omesh_r400_linux_marlboro

 Added the 1152 Stencil Multisample tests. However, the initialization
 for the Stencil per sample is not correct:
 1) Primlib's Fill_Data routine is not populating the entire multisampled
 Depth buffer (Will file a Bugzilla for this soon. Kevin already knows
 about this).
 2) Haven't completely verified if Larry's Address routine is corrrectly
 addressing each sample of the Depth Multisample buffer.
 Will not add these testcases to nightly regression yet because of the
 above reasons. Also, these 1152 testcases only represent 1/32nd of the
 total Stencil Multisample directed testcase possibilities. If a scheme
 of cycling testcase groups comes up soon that would be nice, else many
 test conditions may go untested.

Change 98175 on 2003/04/29 by markf@markf_r400_lt_marlboro

 Temp change to tc_simple_1d.cpp and tc_simple_2d.cpp randoms to only use maps w/
even dimensions.

Change 98162 on 2003/04/29 by mkelly@fl_mkelly_r400_win_laptop

 Maximum pixel shader nested, control flow subroutines in RTS, with
 non-RTS in front and back containing simple pixel and vertex shaders.

 Updated SQ doc with RTS tests needed.

Change 98121 on 2003/04/29 by ygiang@ygiang_r400_linux_marlboro

 fixed: test is using indirect buffer now

Change 98097 on 2003/04/29 by markf@markf_r400_lt_marlboro

 Added 24_8 to tc_simple_mip_2d.cpp

Change 98087 on 2003/04/29 by mkelly@fl_mkelly_r400_win_laptop

 Page 211 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Copied in Makefile from VGT for consistency and to fix a build problem.

Change 98051 on 2003/04/29 by markf@markf_r400_lt_marlboro

 Adding trilinear performance test

Change 98004 on 2003/04/28 by csampayo@fl_csampayo_r400

 Initial check-in

Change 97980 on 2003/04/28 by mdoggett@mdoggett_r400_linux_local

 Fixed bug in Source Address for 32_AS_8_INTERLACE 2D tiled.

Change 97908 on 2003/04/28 by omesh@omesh_r400_linux_marlboro

 Added 30 multisample testcases that use color blending (SRC+DEST).

Change 97883 on 2003/04/28 by markf@markf_r400_lt_marlboro

 Removed some TC performance tests, added some others.

Change 97711 on 2003/04/25 by dougd@dougd_r400_linux_marlboro

 changed the shader programs for the *_max_aluconst test cases in order to cause the alu
constant store to be read

Change 97640 on 2003/04/25 by markf@markf_r400_lt_marlboro

 Added more full set of formats to 3D map tc tests

Change 97602 on 2003/04/25 by mdoggett@mdoggett_r400_linux_local

 Added DXT2345_as_4x16.
 Fixed (hopefully) 1bpp as 2d tiled.

Change 97596 on 2003/04/25 by ashishs@fl_ashishs_r400_win

 deleting the registry export since can be done through all dumps off and on

Change 97595 on 2003/04/25 by ashishs@fl_ashishs_r400_win

 correcting the TP_NoMipPointRound value to the correct key

Change 97592 on 2003/04/25 by ashishs@fl_ashishs_r400_win

 inputting the registry key for TP_NoMipPointRound

Change 97546 on 2003/04/24 by omesh@omesh_r400_linux_marlboro

 Page 212 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Fixed extent of x, y fan rendering to screen_width_x - 1 and
 screen_height_y - 1 in the random number generator.
 Verified that this fixed atleast 1 of the asserting testcases in the
 last nightly regression and it will probably fix all 31 others too.

Change 97545 on 2003/04/24 by mdoggett@MA_MDOGGETT_LT

 Added DXT1_AS_4x16 2D Linear.
 Added DXT2_3/4_5_AS_4x16 - not tested.

Change 97524 on 2003/04/24 by ashishs@fl_ashishs_r400_win

 updated

Change 97517 on 2003/04/24 by ashishs@fl_ashishs_r400_win

 another flt2fix test

Change 97504 on 2003/04/24 by ashishs@fl_ashishs_r400_win

 cleaned up code

Change 97500 on 2003/04/24 by ashishs@fl_ashishs_r400_win

 Float to fix conversion for address register loads

Change 97483 on 2003/04/24 by mdoggett@mdoggett_r400_linux_local

 Added DXT1_AS_4x16 2D tiled.

Change 97409 on 2003/04/24 by ashishs@fl_ashishs_r400_win

 Needed to put scissor settings for the tests. The tests caused assertion due to

 Change 96878 by lseiler@lseiler_r400_win_marlboro on 2003/04/22 10:34:50
 Asserts if the tile (X,Y) address is beyond (pitch, height).

Change 97246 on 2003/04/23 by ashishs@fl_ashishs_r400_win

 adding laurent to the email groups

Change 97228 on 2003/04/23 by vgoel@fl_vgoel2

 changed test for loading texture image early in the program and changed texture
 register to T3 for fetching

Change 97226 on 2003/04/23 by omesh@omesh_r400_linux_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1655 of 1898

 Page 213 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Added 144 Multisample Z tests. Next on the list is Multisample Stencil tests. These will
be run in
 tonight's regression. Looked at the emulator output of 1 or 2 testcases, but haven't
completely
 visually verified most testcases.

Change 97139 on 2003/04/23 by jayw@jayw_r400_linux_marlboro

 updates

Change 97113 on 2003/04/23 by jayw@jayw_r400_linux_marlboro

 AB removal and LEDA fixes, fix for 3 and 6 sample MSAA.

Change 97072 on 2003/04/23 by mkelly@fl_mkelly_r400_win_laptop

 Access full range of GPRs, 32 Booleans, Control Flow, 256 RT Constants
 4 levels of nested subroutines, Looping, Maximum pixel shader instruction size 4096

Change 96993 on 2003/04/22 by ashishs@fl_ashishs_r400_win

 added the TP_NoMipPointRound=1 to the dumps on and off

Change 96987 on 2003/04/22 by ashishs@fl_ashishs_r400_win

 adding the TP_NoMipPointRound.reg to the all dumps on and off

Change 96983 on 2003/04/22 by ashishs@fl_ashishs_r400_win

 need to set this registry key for some of the failing CL/VTE tests.
 (r400vte_z_fmt_02,r400vte_combos_02,r400cl_point_rectangular_vtxXport_clip_01,r40
0cl_point_rectangular_vtxXport_actualClip_01)

Change 96954 on 2003/04/22 by omesh@omesh_r400_linux_marlboro

 Added 3 and 6 sample testcase (6 each) versions for the various triangle
 sizes.

Change 96900 on 2003/04/22 by mdoggett@mdoggett_r400_linux_local

 Added 4x16expand.

Change 96787 on 2003/04/21 by csampayo@fl_csampayo_r400

 Initial chaeck-in of test using mova_floor in vtx shader

Change 96785 on 2003/04/21 by mdoggett@mdoggett_r400_linux_local

 Added basic 64 and 128bpp formats. Also 32bpp that expand to 64bpp.

 Page 214 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 96742 on 2003/04/21 by mkelly@fl_mkelly_r400_win_laptop

 During Publish = "true" output vectors to t:/r400/regress instead of
 the old fl_mkelly2 path...

Change 96738 on 2003/04/21 by mmang@mmang_crayola_linux_orl

 Fixed bug in sq_ais_output.v related to address register write and
 predication. Fixed a variety of tests to not use uninitialized gpr
 or address registers. 2 tests still fail because of previous vector
 scalar swizzle bug, 1 test still fails because of MOVA hardware bug, and
 1 test still fails because of predicated address register write causes
 XXXXXX which causes waterfalling to hang.

Change 96699 on 2003/04/21 by mkelly@fl_mkelly_r400_win_laptop

 Test all 32 RTS boolean bits in the pixel shader...

Change 96676 on 2003/04/21 by csampayo@fl_csampayo_r400

 Update to version 2.0

Change 96551 on 2003/04/19 by markf@markf_r400_lt_marlboro

 Disabled mip packing in TC tests.

Change 96522 on 2003/04/18 by csampayo@fl_csampayo3

 Updated to print pixel shader multiplier

Change 96513 on 2003/04/18 by csampayo@fl_csampayo3

 Adjust pix shader constant from 765.1 to 765.01

Change 96512 on 2003/04/18 by mdoggett@mdoggett_r400_linux_local

 Updated to corrected decompression and compression code.

Change 96496 on 2003/04/18 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint, first 16 RT bools with control flow and huge pixel shader...

Change 96481 on 2003/04/18 by ashishs@fl_ashishs_r400_win

 oops forgot to make total cases = 170

Change 96479 on 2003/04/18 by omesh@omesh_r400_linux_marlboro

 Page 215 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Changed 128x128 tests to be 0 to 127 rather than 0 to 128, as earlier
 erroneously typed.

Change 96478 on 2003/04/18 by ashishs@fl_ashishs_r400_win

 extending the test to 512 constants...

Change 96477 on 2003/04/18 by csampayo@fl_csampayo3

 Some ALU constants reordering

Change 96462 on 2003/04/18 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added no blend buffers.

Change 96451 on 2003/04/18 by ashishs@fl_ashishs_r400_win

 checking in the test so that carlos could further debug it

Change 96450 on 2003/04/18 by jhoule@jhoule_r400_win_lt

 Adding dimmed version for degamma sanity tests

Change 96433 on 2003/04/18 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint on a simple test...

Change 96407 on 2003/04/18 by ashishs@fl_ashishs_r400_win

 added few mysteriously missing tests...

Change 96387 on 2003/04/18 by csampayo@fl_csampayo3

 Initial check-in

Change 96365 on 2003/04/18 by mkelly@fl_mkelly_r400_win_laptop

 Enhance the hard code option -w to handle c:/proj/crayola client root.

Change 96281 on 2003/04/17 by jhoule@jhoule_r400_win_lt

 Adding tp_ch_blend testbench app code

Change 96264 on 2003/04/17 by mdoggett@mdoggett_r400_linux_local

 Added formats 45, 46, 47, 48.

Change 96221 on 2003/04/17 by jhoule@jhoule_r400_win_lt

 Page 216 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Added RTL generator for ABCD table.
 The emulator can now completely generate all tables as well as input index.
 Still missing index clamping in RTL generator (for invalid sample IDs).

 Fixed wrong ABCD float format.

 Added missing assignment which gave garbage values when
SAMPLE_LOCATION=Center.

Change 96217 on 2003/04/17 by omesh@omesh_r400_linux_marlboro

 Added 8 other minor missing testcase scenarios.

Change 96080 on 2003/04/16 by csampayo@fl_csampayo_r400

 Added Vineet

Change 96079 on 2003/04/16 by omesh@omesh_r400_linux_marlboro

 Added another 12 sub_* testcases to cover non tile aligned clear areas
 to test the combination of tile clear logic as well as non-fully covered
 tile pixels falling through the shader pipe. These will show up on the
 day after tommorow's nightly regression, as I just missed tonight's
 regression.

Change 96068 on 2003/04/16 by omesh@omesh_r400_linux_marlboro

 Added 13 Stencil Fast Clear and Expand testcases.

Change 96050 on 2003/04/16 by dougd@dougd_r400_linux_marlboro

 added many test cases for multi context testing of each of the constant stores

Change 95986 on 2003/04/16 by ashishs@fl_ashishs_r400_win

 finalising the script. Ready for use currently.

Change 95970 on 2003/04/16 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 95958 on 2003/04/16 by ashishs@fl_ashishs_r400_win

 updated to have the correct formatting

Change 95957 on 2003/04/16 by omesh@omesh_r400_linux_marlboro

 Added a filler testcase to take the place of an earlier misnamed
 testcase. This new one has value too....

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1656 of 1898

 Page 217 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 95954 on 2003/04/16 by ashishs@fl_ashishs_r400_win

 updated some groups

Change 95913 on 2003/04/16 by ashishs@fl_ashishs_r400_win

 corrected the usage details for the script

Change 95888 on 2003/04/16 by ashishs@fl_ashishs_r400_win

 script now ready for email with -e option. Please see usage for more details.

Change 95887 on 2003/04/16 by ashishs@fl_ashishs_r400_win

 corrected script to have each line of the "email body" on a new line

Change 95874 on 2003/04/16 by omesh@omesh_r400_linux_marlboro

 Changed the misleading 64x32 testcase names to 32x64 and also fixed some
 warnings.

Change 95861 on 2003/04/16 by jhoule@jhoule_r400_win_lt

 Renamed into example.in

Change 95860 on 2003/04/16 by jhoule@jhoule_r400_win_lt

 Renamed bug.in into example.in

Change 95848 on 2003/04/16 by ashishs@fl_ashishs_r400_win

 updated to have correct paths for all the files (independent of the user's machine config,
but depends on r400 environment config)

Change 95775 on 2003/04/15 by ashishs@fl_ashishs_r400_win

 adding the base module for the email script

Change 95772 on 2003/04/15 by ashishs@fl_ashishs_r400_win

 utility for sending emails from other applications. Please review readme if you would like
to use it for your own application.

Change 95710 on 2003/04/15 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 95665 on 2003/04/15 by mkelly@fl_mkelly_r400_win_laptop

 Page 218 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Add option -e for email.

Change 95662 on 2003/04/15 by omesh@omesh_r400_linux_marlboro

 Split all SMASK accumulation tests into 2 groups: hier_stencil enabled,
 and hier_stencil disabled (r400rb_stencil_compression.cpp). All the Hi
 Stencil enabled tests can only run on the GC level testbench and the Hi
 Stencil disabled tests will run on the RBRC testbench. I will update the
 .rg nightly rbrc regression file soon....

Change 95556 on 2003/04/14 by omesh@omesh_r400_linux_marlboro

 Changed test to use an explicit Fragment Data fill operation, recently
 added to Primlib by Kevin. Also used Larry's routine to calculate Slice
 Size, which enforces the 4KB slice boundary alignment.
 I chose not to use the higher level multisample Primlib functions to
 preserve clarity of the test (enumarating all multisample registers set,
 to make the test more readable).

Change 95546 on 2003/04/14 by smoss@smoss_crayola_linux_orl

 update

Change 95544 on 2003/04/14 by markf@markf_r400_lt_marlboro

 Made MSAA test use minimum surface size of 64x64

Change 95539 on 2003/04/14 by smoss@smoss_crayola_linux_orl

 update

Change 95536 on 2003/04/14 by smoss@smoss_crayola_linux_orl

 more updates

Change 95520 on 2003/04/14 by jayw@jayw_r400_linux_marlboro

 Added John's scripts.

Change 95492 on 2003/04/14 by omesh@omesh_r400_linux_marlboro

 Changed test to use an explicit Fragment Data fill operation, recently
 added to Primlib by Kevin. Also used Larry's routine to calculate Slice
 Size, which enforces the 4KB slice boundary alignment.
 Checked many (but not all) earlier asserting random testcases which were
 asserting due to the 4KB alignment problem and they now don't assert.

Change 95408 on 2003/04/14 by markf@markf_r400_lt_marlboro

 Page 219 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Simple texture performance test

Change 95208 on 2003/04/11 by csampayo@fl_csampayo2_r400

 Updated to use new SX MULTIPASS feature

Change 95194 on 2003/04/11 by ashishs@fl_ashishs_r400_win

 removed the unsetting of env variable since being unset in sync.tcsh

Change 95191 on 2003/04/11 by ashishs@fl_ashishs_r400_win

 unsetting the variable ...

Change 95189 on 2003/04/11 by jayw@jayw_r400_linux_marlboro

 Fixed missing 'not' for Alpha Saturate.

Change 95185 on 2003/04/11 by mkelly@fl_mkelly_r400_win_laptop

 Test all 32 booleans in RTS pixel shader...

Change 95168 on 2003/04/11 by mdoggett@mdoggett_r400_linux_local

 Fixed 16_EXPAND bugs.
 Stdout debug only printed if -debug flag used on commandline.

Change 95157 on 2003/04/11 by smoss@smoss_crayola_linux_orl

 update

Change 95154 on 2003/04/11 by smoss@smoss_crayola_linux_orl

 update

Change 95148 on 2003/04/11 by smoss@smoss_crayola_linux_orl

 rev 1

Change 95140 on 2003/04/11 by csampayo@fl_csampayo_r400

 Add sc

Change 95136 on 2003/04/11 by ashishs@fl_ashishs_r400_win

 changed file names, hence deleted old

Change 95135 on 2003/04/11 by ashishs@fl_ashishs_r400_win

 Page 220 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 files for auto sync make regression on windows. See readme file for more details

Change 95109 on 2003/04/11 by mkelly@fl_mkelly_r400_win_laptop

 Test smallest Z offset and scale to produce a discernable difference
 in the Zbuffer (1 lsb).

Change 95069 on 2003/04/10 by ashishs@fl_ashishs_r400_win

 updated scripts so that doesnt require any environment variable to be set...

Change 95001 on 2003/04/10 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 94987 on 2003/04/10 by omesh@omesh_r400_linux_marlboro

 Checking in the other 1536 testcases.... I visually verified a few on the emulator. Some
look wrong on the emulator FB
 output. Will file bugs after consultation with Larry.

Change 94977 on 2003/04/10 by ashishs@fl_ashishs_r400_win

 updated test_list

Change 94888 on 2003/04/10 by ashishs@fl_ashishs_r400_win

 Files added for auto sync, make , regression and emailing results.

 For these scripts to work the following environment variables have to be set permanently
in the Windows system.
 AUTO = false // has to be set false all the time
 SC_REGRESS = false
 SQ_REGRESS = false
 VGT_REGRESS = false
 SU_REGRESS = false
 CL_REGRESS = false
 VTE_REGRESS = false
 The other env var's could be set to true or false depending on the user's choice. Also these
var's are used only in auto mode so the sync.tcsh script isn't affected.

 ===========================
 sync.tcsh from Steve Moss :
 ===========================

 This script when run manually will prompt for the blocks whose regression is to be
performed. On setting value of those

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1657 of 1898

 Page 221 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 blocks true or false, the script will sync to the top of the tree, make build and then
perform the regressions of the blocks that were selected.

 When the script is run in auto mode, the script performs the same task of sync, make and
regressions but the only difference being that it performs the regressions of the blocks, whose
value is set in the environment variable by the user. So please setup the environment variable
accordingly so that everyday only those regressions will be performed.

 Currently the script only sync's the following dir's : cmn_lib,emu_lib,test_lib . On request
more could be added.

 =============
 auto.bat
 =============

 This is a batch file for auto sync, make, regress and email the report. This batch file
should be started by the Windows scheduler at the time of your preference, preferably at night.
 Following are the steps that you need to carry out for this to work.
 1) You will need a sync.tcsh in the pa_regress directory. See pa_regress dir in test_lib for
more details.
 2) Set an environment variable "auto" as "false" using Windows Control Panel, System,
Environment Variable.
 2) You will also need to modify your .tcshrc file so that , if the value of the env variable
auto is true you can bypass the prompt and source the sync.tcsh as mentioned in step 1

 This batch file is used to start the auto sync, make and regress.

Change 94879 on 2003/04/10 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 94869 on 2003/04/10 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 94819 on 2003/04/09 by smoss@smoss_crayola_linux_orl

 added another dump

Change 94813 on 2003/04/09 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 94664 on 2003/04/09 by mdoggett@mdoggett_r400_linux_local

 Added format 43 (8bpp interlace). Fixed inputtcd.txt to have sector address in high
bits of 4 bit sector value.

Change 94520 on 2003/04/08 by ashishs@fl_ashishs_r400_win

 Page 222 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 testing address register

Change 94509 on 2003/04/08 by mkelly@fl_mkelly_r400_win_laptop

 If only test name exists in test_list_parameterized, then run all
 DEFINE_TEST_CASE test cases in test .cpp file

Change 94460 on 2003/04/08 by omesh@omesh_r400_linux_marlboro

 Fixed Bugzilla#1664. Fixed test by using the max_sample_dist table, as
 used earlier for the r400rb_msaa tests. Verified that sample#2 of pixel
 (2,3) was broken before the fix and was fixed after the fix, as verified
 by the DumpView image produced by the emulator (ignoring tile buffer
 file). This fix also fixed some missing sample#3 pixels.

Change 94412 on 2003/04/08 by smoss@smoss_crayola_linux_orl

 update

Change 94360 on 2003/04/07 by omesh@omesh_r400_linux_marlboro

 Added 25% of intended testcases. Will add these to regression too.

Change 94324 on 2003/04/07 by ashishs@fl_ashishs_r400_win

 testing address register with different set of data

Change 94233 on 2003/04/07 by ashishs@fl_ashishs_r400_win

 testing address instruction

Change 94230 on 2003/04/07 by omesh@omesh_r400_linux_marlboro

 Fixed a stupid problem with the test.

Change 94213 on 2003/04/07 by mdoggett@mdoggett_r400_linux_local

 Fixed degamma bugs. Degamma channel bits not set correctly. (uint8) cast truncated
uint16 values.

Change 94170 on 2003/04/07 by smoss@smoss_crayola_linux_orl

 bunch of dumps

Change 94143 on 2003/04/06 by ashishs@fl_ashishs_r400_win

 updated

 Page 223 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 94035 on 2003/04/04 by omesh@omesh_r400_linux_marlboro

 A compiler error involving enums was not being caught on Linux and this
 was causing the emulator to hang when it was running the test!!
 Test fixed.... and now runs on the emulator.

Change 94020 on 2003/04/04 by jhoule@jhoule_r400_win_lt

 Fixed missing inputs (register memory). Appropriately modified the writeInput function
in the tp_lod_aniso_parser.

 Added the standalone testbench which was previously missing.

Change 93992 on 2003/04/04 by omesh@omesh_r400_linux_marlboro

 Added Hi Stencil tests. Finished most of the testing logic, just need to
 populate extensive testcases. I may use a script to generate this.
 The "standard" testcase seems to be hanging the emulator.

Change 93962 on 2003/04/04 by jhoule@jhoule_r400_win_lt

 tp_lod_aniso dedicated testbench.

Change 93948 on 2003/04/04 by mdoggett@mdoggett_r400_linux_local

 Added YUV, 32a8, 32a88

Change 93940 on 2003/04/04 by markf@markf_r400_linux_marlboro

 Fixed random TC tests

Change 93873 on 2003/04/04 by ashishs@fl_ashishs_r400_win

 corrected the shader to a much better simpler algorithm for LIT

Change 93777 on 2003/04/03 by ashishs@fl_ashishs_r400_win

 correted vte setup error, also added some documentation inside the shader

Change 93750 on 2003/04/03 by ashishs@fl_ashishs_r400_win

 implemented LIT instruction in the shader (implemented using subroutine can be
reused). still some modifications needed...

Change 93610 on 2003/04/03 by ashishs@fl_ashishs_r400_win

 testing DST instruction

Change 93593 on 2003/04/03 by mdoggett@mdoggett_r400_linux_local

 Page 224 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Added cycle to commented input format line.

Change 93589 on 2003/04/03 by mdoggett@mdoggett_r400_win_platypus

 Added DXT1 2D tiled and linear.

Change 93550 on 2003/04/02 by markf@markf_r400_lt_marlboro

 Constrained TC randoms to subset of formats for now

Change 93547 on 2003/04/02 by markf@markf_r400_lt_marlboro

 Added 2D tiled 1bpp format

Change 93478 on 2003/04/02 by llefebvr@llefebvr_r400_emu_montreal

 This is yet another case where not enough GPRs were reserved. Vineet please be extra
carefull with these they take forever to debug. It was in the pass 1 vertex shader where 10 gprs
were alloc. but 16 were used. Remove the GPR line to allow the assembler to automatically
detect the number of GPRs this is a lot safer. Test works fine now.

Change 93463 on 2003/04/02 by ashishs@fl_ashishs_r400_win

 testing call instruction. test gets position, color and 8 textures data from the constant
memory, pointer to constant memory is passed to the vertex shader which extracts the data and
exports it. Test has 2 subroutines, one for fetching the data from the constant memory into the
internal registers and the second is to output the data.

Change 93455 on 2003/04/02 by markf@markf_r400_lt_marlboro

 Switched filter to bilinear in TC video format tests

Change 93449 on 2003/04/02 by markf@markf_r400_lt_marlboro

 Added TC tests for texture formats used in video (ex. interlaced)

Change 93448 on 2003/04/02 by ashishs@fl_ashishs_r400_win

 testing call instruction. Test with 64 triangle list prim packets, vertex shader with 16 call
instructions and each subroutine incrementing the value of x or y, thereby toggling between the
16 different subroutines to match the r300 image.

Change 93446 on 2003/04/02 by ashishs@fl_ashishs_r400_win

 testing call instruction. Test having 256 triangle_list primitive packets , with the vertex
shader having 16 call instructions and sequentially calling each subroutine in way that the input
is transferred to output unchanged.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1658 of 1898

 Page 225 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 93213 on 2003/04/01 by ashishs@fl_ashishs_r400_win

 The test has 16 jump instructions, doing various calculations on input while jumping
through various addresses but still keeping output data same as input. The input data is stored in
the contsant memory and pointer to that is passed to the vertex shader.

Change 93168 on 2003/04/01 by ashishs@fl_ashishs_r400_win

 testing JMP instruction. vertex shader having 16 jumps and randomly switching booleans
thereby controlling jump addresses.

Change 93158 on 2003/04/01 by markf@markf_r400_lt_marlboro

 TC 1bpp format test

Change 93147 on 2003/04/01 by ashishs@fl_ashishs_r400_win

 added headers to all the shaders

Change 93128 on 2003/04/01 by markf@markf_r400_lt_marlboro

 Reduced # of random formats in tc_random.cpp

Change 93112 on 2003/04/01 by markf@markf_r400_lt_marlboro

 Updated shaders in TC tests to work w/ random formats

Change 93107 on 2003/04/01 by mdoggett@mdoggett_r400_win_platypus

 example input file for tcd standalone testbench

Change 93103 on 2003/04/01 by mdoggett@mdoggett_r400_win_platypus

 TCD standalone emulator executable.

Change 93101 on 2003/04/01 by ashishs@fl_ashishs_r400_win

 testing JMP instruction. 256 packets of a simple small triangle processed thru the vertex
shader each time using 16 jump addresses.

Change 93034 on 2003/03/31 by markf@markf_r400_lt_marlboro

 Adding TC randoms

Change 92981 on 2003/03/31 by ashishs@fl_ashishs_r400_win

 test for LOOP instruction. the test has 7 loops and fetches all of the vertex data from the
constant memory using pointers to the constant memory address.

 Page 226 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 92956 on 2003/03/31 by markf@markf_r400_lt_marlboro

 Added simple endian test for TC

Change 92954 on 2003/03/31 by markf@markf_r400_lt_marlboro

 Adding simple Vfetch format tests

Change 92931 on 2003/03/31 by jhoule@jhoule_r400_win_lt

 uber_map.h:

 setMapType now kills dimension sizes in order to set correct packing behavior in
UberChain::packLastLevels.

 Added various downsample_* routines (including 3D ones). Still missing odd-sized ones
though.
 This should fix 1D/2D/3D mipmap generation, as long as sizes are even.

 tp_simple_mip_1d.cpp:

 Changed buildLevel's height from 1 to 0, since this now correctly works in the UberMap.

Change 92929 on 2003/03/31 by abeaudin@abeaudin_r400_win_marlboro

 The test were writing the texture into the frame buffer twice.
 I removed the write to the start of the framebuffer where the image
 was also being drawn

Change 92849 on 2003/03/31 by ashishs@fl_ashishs_r400_win

 updated

Change 92837 on 2003/03/31 by ashishs@fl_ashishs_r400_win

 changed to compile on linux

Change 92823 on 2003/03/31 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 92696 on 2003/03/28 by ashishs@fl_ashishs_r400_win

 testing loop instruction

Change 92692 on 2003/03/28 by markf@markf_r400_lt_marlboro

 More cubic env map tests

 Page 227 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 92687 on 2003/03/28 by ygiang@ygiang_r400_linux_marlboro

 fixed: default params values for tests result: min instructions calculation is corrected

Change 92656 on 2003/03/28 by jayw@jayw_r400_linux_marlboro

 New AB fixes for avoiding neg zero out of blender.

Change 92646 on 2003/03/28 by ashishs@fl_ashishs_r400_win

 testing loop instruction

Change 92634 on 2003/03/28 by llefebvr@llefebvre_laptop_r400_emu

 In this test Z is exported in R1 from the vertex shader. Pixel shader was incorectly
reading it from R0. Hence the missmatch. I fixed the shader and now the test works fine.

Change 92632 on 2003/03/28 by markf@markf_r400_lt_marlboro

 Cubic mipmpapped tests for TC

Change 92612 on 2003/03/28 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint..

Change 92583 on 2003/03/28 by mkelly@fl_mkelly_r400_win_laptop

 Update RT state for pixel shader...

Change 92581 on 2003/03/28 by omesh@omesh_r400_linux_marlboro_only_devel

 Allowed each testcase to customize screen space size, to allow for
 minimal FB file sizes.

Change 92567 on 2003/03/28 by markf@markf_r400_lt_marlboro

 Added cubic environment map tests for TC

Change 92564 on 2003/03/28 by smoss@smoss_crayola_linux_orl

 added sq stuff

Change 92560 on 2003/03/28 by ashishs@fl_ashishs_r400_win

 testing some instructions together

Change 92430 on 2003/03/27 by ygiang@ygiang_r400_linux_marlboro

 Page 228 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 fixed: random test time out and number of random instructions

Change 92422 on 2003/03/27 by jayw@jayw_r400_linux_marlboro

 -j 10

Change 92414 on 2003/03/27 by mkelly@fl_mkelly_r400_win_laptop

 Two important tests for regress_e

Change 92329 on 2003/03/27 by kevino@kevino_r400_win_marlboro

 Added formats 2_10_10_10, 10_11_11, and 11_11_10 to check_tfc_overrides code to
turn off filtering in tp_multitexture_01.h

Change 92282 on 2003/03/26 by markf@markf_r400_lt_marlboro

 Added volume map tests

Change 92216 on 2003/03/26 by omesh@omesh_r400_linux_marlboro_only_devel

 Added other triangle sizes (quad coverage, multiple quad coverage, etc.)
 for 2 and 4 samples.

Change 92213 on 2003/03/26 by omesh@omesh_r400_linux_marlboro_only_devel

 Added some basic tests for 2 sample and 4 sample modes.

Change 92193 on 2003/03/26 by kryan@kryan_r400_win_marlboro_XP

 Edit test to avoid compilation error on Windows since cannot

 have auto variable for first index of multi-dimensional array.

Change 92118 on 2003/03/25 by markf@markf_r400_lt_marlboro

 Updated texture_manager.cpp to do gradient fills in the buildlevel function. Added some
utility functions to tconst.cpp / tconst.h. Added several tc tests.

Change 92076 on 2003/03/25 by ashishs@fl_ashishs_r400_win

 testing SETGE inbstruction

Change 92057 on 2003/03/25 by ashishs@fl_ashishs_r400_win

 initial checkin for testing muladd instruction

Change 92049 on 2003/03/25 by ygiang@ygiang_r400_linux_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1659 of 1898

 Page 229 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 fixed: random shaders test

Change 92029 on 2003/03/25 by markf@markf_r400_lt_marlboro

 Fixed HiZ enable

Change 91967 on 2003/03/25 by jhoule@jhoule_r400_win_lt

 Added allocate/fillColor/genCheckerBoard in tp_uber_test.
 Added appropriate support functions to UberMap and UberChain.
 Updated tp_uber_test to enable specifying those.

Change 91881 on 2003/03/24 by csampayo@fl_csampayo_r400

 Update to not use w component of input

Change 91839 on 2003/03/24 by omesh@omesh_r400_linux_marlboro_only_devel

 Added several directed color channel mask tests in combo with
 swap_lowblue (Apparently this combo was found to be bugged in the random
 regressions on the emulator)

Change 91819 on 2003/03/24 by ashishs@fl_ashishs_r400_win

 testing MAX instruction

Change 91814 on 2003/03/24 by ashishs@fl_ashishs_r400_win

 testing MIN instruction

Change 91802 on 2003/03/24 by ashishs@fl_ashishs_r400_win

 testing fract instruction

Change 91633 on 2003/03/21 by ashishs@fl_ashishs_r400_win

 plotting points to get logarithmic curve

Change 91627 on 2003/03/21 by ashishs@fl_ashishs_r400_win

 plotting points to get an exponential curve

Change 91611 on 2003/03/21 by markf@markf_r400_linux_marlboro

 Simple texture test for formats

Change 91585 on 2003/03/21 by llefebvr@llefebvr_r400_emu_montreal

 Fixing wrong aluId number in arbiter.

 Page 230 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Fixing mem exports some more.

Change 91564 on 2003/03/21 by ashishs@fl_ashishs_r400_win

 test for LOG INSTRUCTION

Change 91503 on 2003/03/21 by jhoule@jhoule_r400_ma-jhoule-linux

 Added -lstdc++ to ULLIBS

Change 91486 on 2003/03/21 by lseiler@lseiler_r400_win_marlboro2

 Depth buffering was disabled for the pred_ez test case, which exports depth.

Change 91479 on 2003/03/21 by markf@markf_r400_win_marlboro

 random shader test

Change 91438 on 2003/03/20 by csampayo@fl_csampayo3

 VGT output path stress tests

Change 91302 on 2003/03/20 by jhoule@jhoule_r400_win_lt

 tp_lod_deriv dedicated testbench modifications.

 emu_lib/model/tp:
 - Added tp_lod_deriv.{h|cpp} and tp_lod_deriv_parser.{h|cpp}
 - Fixed bugs in the tp_lod_corrector (precision loss forced A into BCD)
 - Added BD-AC term in ABCD class
 - Cleaned up print routines in the corrector
 - Added Float_32b, Float_16b, and Float_24b in tp_types.h (used by Gradients)

 test_lib/src/chip/gfx/tp/standalone/tp_lod_deriv:
 - Links statically with gfx_model.lib in order to remove exported symbol issues
 - Options parsing enabling dumping of the ABCD terms

 Note: this subblock is NOT yet integrated in tp.cpp.

Change 91276 on 2003/03/20 by jhoule@jhoule_r400_ma-jhoule-linux

 Adding simple test to check TP_TC testbench

Change 91174 on 2003/03/20 by mkelly@fl_mkelly_r400_win_laptop

 Updated based on advise from Harry...
 I recommend setting the registry key to speed up the validation

 Page 231 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 environment:
 [HKEY_LOCAL_MACHINE\SOFTWARE\ATI Technologies\Debug]
 "pm4MicroLoadDisable"=dword:00000001

 This key will allow the CP Microcode to be loaded via a back
 door load rather than many register writes.

Change 91034 on 2003/03/19 by ashishs@fl_ashishs_r400_win

 Testing RECIPSQ_IEEE instruction

Change 91028 on 2003/03/19 by jhoule@jhoule_r400_win_lt

 Changed VFetch to ready __X1 instead of __Z1 when using FMT_32_FLOAT.
 Better test citizen for RTL code, since HiColor channel replication is not a HW
requirement.

Change 90991 on 2003/03/19 by omesh@omesh_r400_linux_marlboro

 Added fragment data surface and initialized it (0xab......) within the address space
 of the color buffer surface.

Change 90985 on 2003/03/19 by ashishs@fl_ashishs_r400_win

 Testing: RECIP instruction
 This program moves the reciprocal of the input to the output using the RCP instruction
with swizzle controls and write enables

Change 90925 on 2003/03/19 by ashishs@fl_ashishs_r400_win

 Testing MUL instruction using input memory, constant memory and output This
program loads the constant memory with random and constants using the loaded constants and
the MUL instruction it massages the position, textures, colors.The results are output to the
output buffers and should be the same as passing input thru to output

Change 90907 on 2003/03/19 by omesh@omesh_r400_linux_marlboro

 Changed Destination Compare and Color Mask Compare programming to be
 non-replicating of values (Higher order 0 filled instead), in accordance
 with spec change. Haven't verified that it does/ does not assert with
 new emulator changes.

Change 90898 on 2003/03/19 by ashishs@fl_ashishs_r400_win

 Testing Move input to output with swizzle and write enables .This shader moves the
input to the output using swizzle controls and write enables

Change 90883 on 2003/03/19 by mkelly@fl_mkelly_r400_win_laptop

 Page 232 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 SC debug register coverage...

Change 90769 on 2003/03/18 by ashishs@fl_ashishs_r400_win

 Testing DOT3 instruction using input memory, constant memory and output buffers
 This program loads the constant memory with matrices and
constants using the loaded matrices it
rotates the position and textures input
 vectors and scales the input color, fog and The results are output
 to the output buffers and should be the same as passing input thru to output

Change 90744 on 2003/03/18 by mkelly@fl_mkelly_r400_win_laptop

 Test para_enable bit, update register coverage...

Change 90741 on 2003/03/18 by ashishs@fl_ashishs_r400_win

 Testing DP4 instruction using input memory, constant memory and output buffers
 This program loads the constant memory with
matrices and constants using the
loaded matrices it rotates the position and textures input
 vectors and scales the input color. The results are output to the output
 buffers and should be the same as passing input thru to output .

Change 90713 on 2003/03/18 by ashishs@fl_ashishs_r400_win

 same as r400sq_add_01 but with different set of constant data such that the operations lie
within the ieee floating point limits

Change 90711 on 2003/03/18 by ashishs@fl_ashishs_r400_win

 This test is intended to check the ADD instruction. After adding and subtractiong
random constants to the input vertex data it moves the final result to the output buffers,
effectively passing inputs to outputs.
 Single triangle with XYZW, 4 colors and 6 textures.
 The constants are setup in such a way that the register operations go in and out of the
limits of ieee floating point limits during run time.

Change 90698 on 2003/03/18 by omesh@omesh_r400_linux_marlboro

 Fixed the test problem involving max_sample_dist. The test now produces
 the missing 7th sample (0-7 samples).

Change 90685 on 2003/03/18 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 90673 on 2003/03/18 by jayw@jayw_r400_linux_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1660 of 1898

 Page 233 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 new regress scripts

Change 90655 on 2003/03/18 by omesh@omesh_r400_linux_marlboro

 Added a fan1_8samp_color8888_bug testcase that scissors the missing
 sample pixel in question. This will aid the SC people to debug the
 symptom better.

Change 90613 on 2003/03/17 by csampayo@fl_csampayo_r400

 Control flow, predicate and multi-context and multi-prim test. Upfdated test_list
accordingly

Change 90525 on 2003/03/17 by markf@markf_r400_lt_marlboro

 Added some HiZ tests

Change 90501 on 2003/03/17 by smoss@smoss_crayola_linux_orl

 lsf makefile for sq

Change 90475 on 2003/03/17 by csampayo@fl_csampayo_r400

 Adusted timeout setting in cpp (+some cleanup), enabled LOOP 0 in vertex shader and
updated some sub-routines for co-issue instructions

Change 90373 on 2003/03/15 by ygiang@ygiang_r400_pv2_marlboro

 fixed: cube random test
 added: vector random tests for sp

Change 90309 on 2003/03/14 by kmeekins@kmeekins_r400_win

 Clamped the FIFO size to use a minimum depth of 8.

Change 90251 on 2003/03/14 by mkelly@fl_mkelly_r400_win_laptop

 sc_sp centers/centroids parameters 13, 14, 15

Change 90244 on 2003/03/14 by jhoule@jhoule_r400_win_marlboro

 Contains 3 forms of VFetches:
 - FMT_32_FLOAT
 - FMT_32_32_FLOAT + FMT_32_FLOAT
 - FMT_32_32_32_32_FLOAT

 Current set to the middle one.

Change 90230 on 2003/03/14 by mkelly@fl_mkelly_r400_win_laptop

 Page 234 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 8 MSAA masked sample 1 with resolve...

Change 90221 on 2003/03/14 by csampayo@fl_csampayo_r400

 Update for co-issue instructions

Change 90179 on 2003/03/14 by csampayo@fl_csampayo2_r400

 Sort

Change 90164 on 2003/03/14 by ashishs@fl_ashishs_r400_win

 corrected texture maps in the test to match R300 test

Change 90161 on 2003/03/14 by mkelly@fl_mkelly_r400_win_laptop

 sc_sp sample control parameters 8 - 13

Change 90144 on 2003/03/14 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 90081 on 2003/03/13 by georgev@devel_georgev_r400_lin2_marlboro_tott

 More texture registers.

Change 90069 on 2003/03/13 by jayw@jayw_r400_linux_marlboro

 More LEDA.

Change 90054 on 2003/03/13 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Made texture bigger.

Change 90047 on 2003/03/13 by llefebvr@llefebvr_r400_emu_montreal

 fixing test to use center instead of centroid on p2.

Change 90042 on 2003/03/13 by ashishs@fl_ashishs_r400_win

 updated

Change 90039 on 2003/03/13 by ashishs@fl_ashishs_r400_win

 This test processes a single triangle with input/output vertex data: xyzw0; colors 0-3 and
textures 0-7
 Two sets of vertex data are stored in constant memory and only pointers to them are set
in vertex buffer.

 Page 235 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 The vertex shader program loaded has several loops jumps and calls. The test processes
16 packets
 randomly selecting booleans so that one or the other set of vertex data is processed and
loop controls
 are also randomly set.

Change 90038 on 2003/03/13 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Fix /0 error.

Change 90035 on 2003/03/13 by mkelly@fl_mkelly_r400_win_laptop

 Add dummy file for script

Change 90033 on 2003/03/13 by mkelly@fl_mkelly_r400_win_laptop

 sc_sp sampling through interpolators, parameters 3 - 8

Change 90031 on 2003/03/13 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added new tests to parameterized list.

Change 90011 on 2003/03/13 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Changed to do textures only for 1 test. It's faster that way.

Change 89996 on 2003/03/13 by mkelly@fl_mkelly_r400_win_laptop

 Sampling methods on parameter 3...

Change 89992 on 2003/03/13 by jayw@jayw_r400_linux_marlboro

 LEDA fixes.

Change 89989 on 2003/03/13 by mkelly@fl_mkelly_r400_win_laptop

 Sample combinations on 2nd parameter in interpolators via sc_sp

Change 89951 on 2003/03/13 by mkelly@fl_mkelly_r400_win_laptop

 Prim type detection on gpr position 0, and 9 - 15

Change 89904 on 2003/03/12 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added last tests.

Change 89860 on 2003/03/12 by markf@markf_r400_lt_marlboro

 Fixed depth clear value and stencil clear value for r400rb_zwave

 Page 236 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 89829 on 2003/03/12 by ashishs@fl_ashishs_r400_win

 added some VS and PS base and size control statements for random changes. commented
for now , the test uses VS and PS loaded at 0 and 256 respectively and similarly for constants.

Change 89800 on 2003/03/12 by mkelly@fl_mkelly_r400_win_laptop

 Primtype detection in the pixel shader, gpr positions 2 - 8

Change 89765 on 2003/03/12 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 89699 on 2003/03/12 by mkelly@fl_mkelly_r400_win_laptop

 Check prim type in the shader for parameter gen pos 2

Change 89574 on 2003/03/11 by ashishs@fl_ashishs_r400_win

 changed pix center to better match equivalent r300 test

Change 89570 on 2003/03/11 by mkelly@fl_mkelly_r400_win_laptop

 Update comments

Change 89569 on 2003/03/11 by mkelly@fl_mkelly_r400_win_laptop

 Check POLY, POINT, LINE prim type detection in SP on parameter 0

Change 89567 on 2003/03/11 by ashishs@fl_ashishs_r400_win

 This test is intended to validate the ALU constant and instruction memory
 auto wrapping function. The test processes 64 packets each with
 one 8 primitive triangle list containing 9 vertices with input/output
 vertex data: XYZW, 4 colors and 8 textures . For each packet the test
 sends a new matrix to the constant memory so that the shader rotates
 vertices differently from the others. The shader uses up all 256 entries
 of the constant memory and the instruction memory size is 256. Also, for
 each packet the conastant and code memory offsets are updated with random
 values, as well as, the loading method is selected between 32/128 bits
 randomly.
 Currently the test hasnt been tested with loading shaders at different
 offsets and thereby checking the wrapping of memory.

Change 89553 on 2003/03/11 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Changes for bug 1449. Still not done.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1661 of 1898

 Page 237 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 89535 on 2003/03/11 by mkelly@fl_mkelly_r400_win_laptop

 Test XY on parameters 11 - 15 and 0 for sc_sp interface

Change 89507 on 2003/03/11 by csampayo@fl_csampayo_r400

 Update...

Change 89503 on 2003/03/11 by mkelly@fl_mkelly_r400_win_laptop

 XY position from SC to SP on parameters 8 - 10

Change 89471 on 2003/03/11 by mkelly@fl_mkelly_r400_win_laptop

 Validate XY position from SC to SP, parameters 2 - 7

Change 89419 on 2003/03/10 by jayw@jayw_r400_linux_marlboro

 Fixes for very 16 bit srepeat and urepeat precision. hang fix, bad state for tiling,
unknowns for rc cache signal

Change 89382 on 2003/03/10 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 89369 on 2003/03/10 by mkelly@fl_mkelly_r400_win_laptop

 Export position as color 0 to the pixel shader to avoid SQ Deallocation Assert
 on an empty parameter store on a Position Only vertex.

Change 89364 on 2003/03/10 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 89359 on 2003/03/10 by omesh@omesh_r400_linux_marlboro_only_devel

 Increased framebuffer size for some larger testcases. Also added
 RB_SURFACE_EXTENT (pitch) field programming. Also added some more
 testcases.

Change 89343 on 2003/03/10 by mkelly@fl_mkelly_r400_win_laptop

 Update test based on recommendation from Kevin to fix RB assert for pitch

Change 89328 on 2003/03/10 by mkelly@fl_mkelly_r400_win_laptop

 Finish checking all parameters for face bit in pixel shader...

Change 89311 on 2003/03/10 by mkelly@fl_mkelly_r400_win_laptop

 Page 238 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Back face bit check parameters 3 through 8

Change 89297 on 2003/03/10 by mkelly@fl_mkelly_r400_win_laptop

 Back face bit check on parameter 2...

Change 89296 on 2003/03/10 by kryan@kryan_r400_win_marlboro_XP

 - Modified test to generate the correct resolve surface for the case when HEIGHT >
32, specifically:

 SURFACE_PITCH = 128

 SURFACE_HEIGHT = 64

 Had to add lines to the resolve_buffer() function to set

 the RB_SURFACE_EXTENTS pitch and height fields.

 - Also modified the render_state parameter to pass by reference (&render_state)
rather than by value in the

 resolve_buffer() function.

 The test gfx/sc/r400sc_msaa_8_resolve_01.cpp should update its

 resolve_buffer() function to match these new changes.

Change 89289 on 2003/03/10 by mkelly@fl_mkelly_r400_win_laptop

 Changed test name, added to emu regression since it touches perf regs

Change 89285 on 2003/03/10 by mkelly@fl_mkelly_r400_win_laptop

 Removed separate render state function for resolve and integrated it
 into Main part of test using same render state throughout.

Change 89120 on 2003/03/07 by csampayo@fl_csampayo_r400

 Try and add the right test this time.

Change 89118 on 2003/03/07 by csampayo@fl_csampayo_r400

 New test checking single/dual vertex vectors of various sizes. Updated test_list and test
tracker accordingly

 Page 239 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 89106 on 2003/03/07 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added some new tests for Vic and Doug.

Change 89093 on 2003/03/07 by omesh@omesh_r400_linux_marlboro_only_devel

 Added some more basic multisample testcases that stress the fragment
 cache.

Change 89060 on 2003/03/07 by smoss@smoss_crayola_linux_orl

 queue modified to remove lfcs25

Change 89059 on 2003/03/07 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 89047 on 2003/03/07 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Fixed back jump labels.

Change 89037 on 2003/03/07 by llefebvr@llefebvr_r400_emu_montreal

 fixing dumps and memory export test

Change 89032 on 2003/03/07 by csampayo@fl_csampayo_r400

 Added pass-thru test with large (>64 indices) vertex vectors. Updated test_list and test
tracker accordingly

Change 89025 on 2003/03/07 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 89020 on 2003/03/07 by llefebvr@llefebvr_r400_emu_montreal

 bad GPR alloc on this test

Change 89016 on 2003/03/07 by mkelly@fl_mkelly_r400_win_laptop

 Shader face bit check on parameter 2

Change 89008 on 2003/03/07 by csampayo@fl_csampayo_r400

 Cleanup

Change 89006 on 2003/03/07 by mkelly@fl_mkelly_r400_win_laptop

 Page 240 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Multi-Pass Pixel shader, segment 0 color exported to segment 1...

Change 89001 on 2003/03/07 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added new tests, whacked on old ones.

Change 88929 on 2003/03/06 by vromaker@vromaker_r400_linux_marlboro

 fix to CFS that prevents a new thread from entering when the thread ID
 in the input pipe stage is different than the thread ID in the output pipe stage;
 also changed triangle size to 150 for sq_tests test case pred_eq_vec

Change 88913 on 2003/03/06 by csampayo@fl_csampayo_r400

 Adding mixed VGT 2/1 output vectors tests

Change 88912 on 2003/03/06 by ashishs@fl_ashishs_r400_win

 deleted since added the test r400sq_16tex_flatShade_combo_allFlat_01

Change 88911 on 2003/03/06 by ashishs@fl_ashishs_r400_win

 updated

Change 88904 on 2003/03/06 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added max GPR multi context tests.

Change 88902 on 2003/03/06 by ashishs@fl_ashishs_r400_win

 updated

Change 88901 on 2003/03/06 by ashishs@fl_ashishs_r400_win

 flatShading all the parameters with ability to determine exact parameter failing using
different color combinations

Change 88885 on 2003/03/06 by ashishs@fl_ashishs_r400_win

 updated

Change 88877 on 2003/03/06 by dougd@dougd_r400_linux_marlboro

 added " DEFINE_TEST_CASE_NAME(reg_indexing_max_gpr);" for the new test case

Change 88872 on 2003/03/06 by llefebvr@llefebvr_r400_emu_montreal

 fixed shader.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1662 of 1898

 Page 241 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 88867 on 2003/03/06 by ashishs@fl_ashishs_r400_win

 adding test same as r400sq_16tex_flatShade_combo_first_01 with provoking vtx as
LAST

Change 88865 on 2003/03/06 by ashishs@fl_ashishs_r400_win

 changed file names by deleting the old files

Change 88864 on 2003/03/06 by ashishs@fl_ashishs_r400_win

 SQ Interpolation test. This tests checks the "param_shade" field of the
SQ_INTERPOLATOR_CNTL register. The 16 textures are transferred on 16 different
parameters with the texture corners giving the vertex color. 64 different combinations (out of
2^16 possible) of the 16 bit param_shade register thereby having combination of flat as well as
gouraud shading on different parameters with first vertex as the provoking vtx.

Change 88852 on 2003/03/06 by georgev@devel_georgev_r400_lin2_marlboro_tott

 New test for GPR registers. Updates to MC test.

Change 88770 on 2003/03/06 by ashishs@fl_ashishs_r400_win

 changed nan retain to default(false)

Change 88746 on 2003/03/06 by mkelly@fl_mkelly_r400_win_laptop

 Completes initial check of prim type detection in the pixel shader
 checking SQ POINT (r400sc_sp_sample_cntl_09), SQ LINE
(r400sc_sp_sample_cntl_11)
 and SQ POLY (this checkin).

Change 88740 on 2003/03/06 by mkelly@fl_mkelly_r400_win_laptop

 Finalize test now that emu_lib bugs have been squashed...

Change 88691 on 2003/03/05 by ashishs@fl_ashishs_r400_win

 forgot to add Part2

Change 88690 on 2003/03/05 by ashishs@fl_ashishs_r400_win

 removed a test error. checked nan_retain bits with CLIPPING DISABLED.

 if nan_retain is false for x,y,z,w the clipper discards the primitives having infinite data
and the vte generates a null primitive for each of the discarded primitive, also if the vte generates
infinity/nan data for the primitive (using scale/offset) primitive is clamped to -4k to 12k (as seen
in ClipGa_alg.dmp)

 Page 242 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 if nan_retain is true for x,y,z,w the clipper retains the primitives even if they have
nan/infinite data in the vertex, and the primitive is clamped in the vte which has nan/infinite data
(nan/inf data passed from the clipper as well as generated by the vte using scale/offset)

Change 88687 on 2003/03/05 by llefebvr@llefebvr_r400_emu_montreal

 Fixing +/-0 bug in emu and type setting.

Change 88665 on 2003/03/05 by vromaker@vromaker_r400_linux_marlboro

 reduced default triangle size to 15, reduced multi_context triangle size to 5

Change 88659 on 2003/03/05 by jayw@jayw_r400_linux_marlboro

 Bug fix for missing define.

Change 88634 on 2003/03/05 by mkelly@fl_mkelly_r400_win_laptop

 Update shader

Change 88624 on 2003/03/05 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 88592 on 2003/03/05 by mkelly@fl_mkelly_r400_win_laptop

 Update to demonstrate issue

Change 88588 on 2003/03/05 by mkelly@fl_mkelly_r400_win_laptop

 Pixel shader primtype LINE detection from SC / SQ / SP

Change 88584 on 2003/03/05 by mkelly@fl_mkelly_r400_win_laptop

 Comment update...

Change 88581 on 2003/03/05 by ygiang@ygiang_r400_pv2_marlboro

 added: more sp cube tests

Change 88578 on 2003/03/05 by mkelly@fl_mkelly_r400_win_laptop

 Zero out event initiator value in test before writing the event field

Change 88575 on 2003/03/05 by csampayo@fl_csampayo_r400

 Do not index vector w component since, it does not get to SQ.

Change 88535 on 2003/03/05 by mkelly@fl_mkelly_r400_win_laptop

 Page 243 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Gold for multipass IBs and SC loop signaling...

Change 88534 on 2003/03/05 by mkelly@fl_mkelly_r400_win_laptop

 MultiPass Indirect Buffer multiple looping...

Change 88518 on 2003/03/05 by mkelly@fl_mkelly_r400_win_laptop

 Change a comment...

Change 88517 on 2003/03/05 by smoss@smoss_crayola_linux_orl

 update

Change 88515 on 2003/03/05 by mkelly@fl_mkelly_r400_win_laptop

 MultiPass Indirect Buffer / SC pixel LOOP interaction / 2 Segment / 2 Pass

Change 88514 on 2003/03/05 by smoss@smoss_crayola_linux_orl

 update

Change 88511 on 2003/03/05 by omesh@omesh_r400_linux_marlboro_only_devel

 Added all the current changes for multisampling tests recently proved to be pass on h/w
vs. emulator in the
 basic multisample testcase.

Change 88508 on 2003/03/05 by mkelly@fl_mkelly_r400_win_laptop

 POINT primtype detection in the pixel shader...

Change 88503 on 2003/03/05 by mkelly@fl_mkelly_r400_win_laptop

 Update screen to 128x64 to show resolve dump bug...

Change 88445 on 2003/03/04 by csampayo@fl_csampayo_r400

 More VGT pass-thru tests checking grouper data types

Change 88419 on 2003/03/04 by smoss@smoss_crayola_linux_orl

 add lsf makefile

Change 88351 on 2003/03/04 by jhoule@jhoule_r400_win_marlboro

 Better colors.
 Values are now 0x00, 0x40, 0x80, 0xB0, 0xFF.

 Page 244 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 88350 on 2003/03/04 by jhoule@jhoule_r400_win_marlboro

 Added support for clipping in frame_buffer block.
 Use clip_x, clip_y to specify the top left corner, and clip_w, clip_h to specify the size of
the clipped area.

Change 88298 on 2003/03/04 by mkelly@fl_mkelly_r400_win_laptop

 Set scissors to process exactly 2 pixel vectors

Change 88293 on 2003/03/04 by smoss@smoss_crayola_linux_orl

 <Orlando Hardware Regression Results >

Change 88290 on 2003/03/04 by llefebvr@llefebvr_r400_emu_montreal

 multiple state setting related issues with this test.

Change 88211 on 2003/03/03 by ashishs@fl_ashishs_r400_win

 updated

Change 88187 on 2003/03/03 by ashishs@fl_ashishs_r400_win

 commenetd out r400sq_plane.cpp

Change 88186 on 2003/03/03 by ashishs@fl_ashishs_r400_win

 updated to include the SQ block

Change 88142 on 2003/03/03 by ashishs@fl_ashishs_r400_win

 checkin for regress_e

Change 88123 on 2003/03/03 by kevino@kevino_r400_win_marlboro

 Fixed test

Change 88118 on 2003/03/03 by mkelly@fl_mkelly_r400_win_laptop

 Detect point/non-point primtype in shader

Change 88104 on 2003/03/03 by kevino@kevino_r400_linux_marlboro

 a couple test fixes

Change 88076 on 2003/03/03 by kevino@kevino_r400_linux_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1663 of 1898

 Page 245 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Tests compile (but not checked)

Change 88068 on 2003/03/03 by kevino@kevino_r400_win_marlboro

 Added a couple simple highlat tests

Change 88039 on 2003/03/03 by smoss@smoss_crayola_linux_orl

 added .h and .sp copy

Change 88036 on 2003/03/03 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Updated for test name changes.

Change 88028 on 2003/03/03 by omesh@omesh_r400_linux_marlboro_only_devel

 Added background clear color register programming to make sure h/w flushes out the
right color during
 color expansion.

Change 88003 on 2003/03/03 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Changed test names for Vic.

Change 87844 on 2003/02/28 by jhoule@jhoule_r400_win_marlboro

 Support for scissoring in frame_buffer block.

Change 87816 on 2003/02/28 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added Franks test for MC stuff.

Change 87780 on 2003/02/28 by jhoule@jhoule_r400_win_marlboro

 Missing texture for clamping tests.

Change 87769 on 2003/02/28 by ashishs@fl_ashishs_r400_win

 updated to change the texture coords

Change 87765 on 2003/02/28 by mkelly@fl_mkelly_r400_win_laptop

 You will need this vtx shader for the multi-pass test...

Change 87764 on 2003/02/28 by smoss@smoss_crayola_win

 SU tests

Change 87761 on 2003/02/28 by mkelly@fl_mkelly_r400_win_laptop

 Page 246 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Changed scissor so SC has more pixel vectors to process...

Change 87756 on 2003/02/28 by mkelly@fl_mkelly_r400_win_laptop

 Getting closer on multi-pass IB / SC interaction....

Change 87750 on 2003/02/28 by smoss@smoss_crayola_win

 added 0x8000 line

Change 87730 on 2003/02/28 by ashishs@fl_ashishs_r400_win

 to test the SQ parameter wrapping for para 0 on S and T bits.

 The test has 2 very simple cases with the first case being wrapped on S
 and the second case being wrapped on T.

 To demonstrate this 2 color band textures(one vertical and one horizontal color band)
 are loaded in the texture memory. 2 Shaders are generated using the VFD such that
 in 1 shader texture 0 is fetched using parameter 0 and in the second shader texture
 1 is fetched using the same parameter 0.

 Currently you can see that the texture is being just wrapped in T and the
 parameter wrapping in S fails.

Change 87727 on 2003/02/28 by smoss@smoss_crayola_linux_orl

 build test list is true

Change 87688 on 2003/02/28 by smoss@smoss_crayola_win

 update

Change 87678 on 2003/02/28 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint on multi-pass indirect buffers with SC signaling...

Change 87677 on 2003/02/28 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 87651 on 2003/02/28 by csampayo@fl_csampayo2_r400

 Renamed all multi-context tests

Change 87464 on 2003/02/27 by ashishs@fl_ashishs_r400_win

 initial checkin

 Page 247 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 87462 on 2003/02/27 by ashishs@fl_ashishs_r400_win

 temporary checkin for test

Change 87440 on 2003/02/27 by mmang@mmang_crayola_linux_orl

 Predicated parameter cache writes.

Change 87392 on 2003/02/27 by smoss@smoss_crayola_linux_orl

 removed timestamp for unix

Change 87280 on 2003/02/27 by csampayo@fl_csampayo2_r400

 Sorted list

Change 87279 on 2003/02/27 by mkelly@fl_mkelly_r400_win_laptop

 Update geometry to black and white pinwheel...

Change 87252 on 2003/02/27 by mkelly@fl_mkelly_r400_win_laptop

 Name changes for Steve...

Change 87248 on 2003/02/27 by mkelly@fl_mkelly_r400_win_laptop

 Name changes for Steve...

Change 87247 on 2003/02/27 by mkelly@fl_mkelly_r400_win_laptop

 Name changes for Steve...

Change 87175 on 2003/02/26 by csampayo@fl_csampayo_r400

 Update test to use all 8 contexts, update test tracker accordingly

Change 87168 on 2003/02/26 by csampayo@fl_csampayo_r400

 Add new VGT pass-thru tests

Change 87165 on 2003/02/26 by ashishs@fl_ashishs_r400_win

 initial checkin for flat shading interpolation on all the 16 parameters each with a different
texture and blending color at texture corners for flatShading

Change 87146 on 2003/02/26 by smoss@smoss_crayola_linux_orl

 update

 Page 248 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 87056 on 2003/02/26 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 87051 on 2003/02/26 by mkelly@fl_mkelly_r400_win_laptop

 Msaa 8 with resolve

Change 87048 on 2003/02/26 by kryan@kryan_r400_win_marlboro_XP

 Modified test to initialize background of Fragment Data portion of the Color Surface with
fragment_background_color.

Change 87045 on 2003/02/26 by ygiang@ygiang_r400_pv2_marlboro

 added:sq control flow test

Change 87018 on 2003/02/26 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added fixes for windows loop counter bug.

Change 86896 on 2003/02/25 by smoss@smoss_crayola_linux_orl

 update

Change 86822 on 2003/02/25 by ashishs@fl_ashishs_r400_win

 checking flat shading on each respective parameter export , using 16 shaders for each
export, for first as well as last vtx as provoking vtx.

Change 86793 on 2003/02/25 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Put in constant register writes for Doug.

Change 86782 on 2003/02/25 by markf@markf_r400_linux_marlboro

 Added bilinear

Change 86728 on 2003/02/25 by mkelly@fl_mkelly_r400_win_laptop

 Need PrimLib to add example useage, thank you.

Change 86721 on 2003/02/25 by mkelly@fl_mkelly_r400_win_laptop

 Add cp_pfp_ib1.dmp

Change 86718 on 2003/02/25 by csampayo@fl_csampayo2_r400

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1664 of 1898

 Page 249 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Updated to change max mem to 128M

Change 86713 on 2003/02/25 by ashishs@fl_ashishs_r400_win

 updated for r400sq_16tex_interp_combo_01

Change 86702 on 2003/02/25 by ashishs@fl_ashishs_r400_win

 added GFX_IDLE_NO_FLUSH

Change 86695 on 2003/02/25 by ashishs@fl_ashishs_r400_win

 generating 64 shaders, each unique in terms of combination of parameters it exports,
thereby permuting selected few testcases out of the possible 2^16 combinations for parameter
exports.

Change 86686 on 2003/02/25 by mkelly@fl_mkelly_r400_win_laptop

 Fix test bug

Change 86661 on 2003/02/25 by mkelly@fl_mkelly_r400_win_laptop

 Simple RTS for Christeen...

Change 86653 on 2003/02/25 by smoss@smoss_crayola_linux_orl

 update

Change 86622 on 2003/02/24 by jhoule@jhoule_r400_win_marlboro

 Added support for including tp_uber_test.

 Recipe:
 #define INCLUDE_TP_UBER_TEST
 #include "tp_uber_test.cpp"

 void ParseTestInfo()
 {
 //Read TESTINFO structure here
 }

 Added clamping test, which parses the TEST_CASE name to extract filename, clamping
policies, clamping mode, border size, and filter type.

Change 86614 on 2003/02/24 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Fixed multi context tests to run quicker.

 Page 250 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 86605 on 2003/02/24 by csampayo@fl_csampayo_r400

 Adding pass-thru tests with 32 bit indices

Change 86601 on 2003/02/24 by ashishs@fl_ashishs_r400_win

 correcting the test_list so that there are 21 tests for SQ non parameterised

Change 86593 on 2003/02/24 by csampayo@fl_csampayo2_r400

 Remove duplicate test name

Change 86528 on 2003/02/24 by mkelly@fl_mkelly_r400_win_laptop

 Multi-Pass Pixel shading test, needs CP Indirect Buffer Multi-Pass mode

Change 86472 on 2003/02/24 by jayw@jayw_r400_linux_marlboro_rbrc

 Fixed SREPEAT negative values rounding.

Change 86426 on 2003/02/24 by omesh@omesh_r400_linux_marlboro_only_devel

 Added an explicit No Blend programming, as emulator was recently
 asserting.

Change 86423 on 2003/02/24 by ashishs@fl_ashishs_r400_win

 updated

Change 86397 on 2003/02/24 by omesh@omesh_r400_linux_marlboro_only_devel

 Added an explicit No Blend programming, as emulator was recently asserting.

Change 86391 on 2003/02/24 by georgev@devel_georgev_r400_lin2_marlboro_tott

 First version to build all tests for diag.

Change 86351 on 2003/02/24 by mkelly@fl_mkelly_r400_win_laptop

 Adding enhancement list for next project at end of script

Change 86147 on 2003/02/21 by jhoule@jhoule_r400_win_marlboro

 Adding Clamping tests

Change 86146 on 2003/02/21 by jhoule@jhoule_r400_win_marlboro

 Modified test to be able to specify texture information in multiple texture{} blocks,
potentially spread across multiple files (using includes).

 Page 251 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 86072 on 2003/02/21 by smoss@smoss_crayola_linux_orl

 use root branch

Change 86069 on 2003/02/21 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 86067 on 2003/02/21 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 86064 on 2003/02/21 by mkelly@fl_mkelly_r400_win_laptop

 Update gradient on Line RTS...

Change 86036 on 2003/02/21 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 86035 on 2003/02/21 by jayw@jayw_r400_linux_marlboro_rbrc

 Fix for one pass fog ONLY precision down to 1.5.12

Change 86020 on 2003/02/21 by omesh@omesh_r400_linux_marlboro_only_devel

 Changed test to use non symmetrical colors for vertices for more interesting testing.

Change 85994 on 2003/02/21 by mkelly@fl_mkelly_r400_win_laptop

 Finish coverage of all x_dir y_dir walk directions for RTS prims

Change 85982 on 2003/02/21 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Made buffers indirect.

Change 85930 on 2003/02/21 by omesh@omesh_r400_linux_marlboro_only_devel

 Fixed bug in test (color buffer was allocated AFTER the tile buffer, which resulted in an
overlap).
 Verified that Primlib now produces a non zero and sensible Tile Buffer Base Address.

Change 85917 on 2003/02/21 by ashishs@fl_ashishs_r400_win

 added new tests using flat shading in the older tests..

Change 85915 on 2003/02/21 by jayw@jayw_r400_linux_marlboro

 Page 252 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 added DIFF.

Change 85891 on 2003/02/21 by ashishs@fl_ashishs_r400_win

 changing test names

Change 85886 on 2003/02/21 by mkelly@fl_mkelly_r400_win_laptop

 Add Larry's latest RB change control, default to 0
 User must set it to 1 to get old RB blender

Change 85871 on 2003/02/21 by mkelly@fl_mkelly_r400_win_laptop

 Add RB setup, extend timeout...

Change 85868 on 2003/02/21 by mkelly@fl_mkelly_r400_win_laptop

 Extend timeout

Change 85867 on 2003/02/21 by mkelly@fl_mkelly_r400_win_laptop

 Extend idle timeout, add RB setup for MSAA, disable JSS when MSAA = true,
 set msaa num samples = 0 when JSS = true.

Change 85774 on 2003/02/20 by csampayo@fl_csampayo_r400

 Adding point size clamping tests

Change 85752 on 2003/02/20 by lseiler@lseiler_r400_win_marlboro2

 Fix RB blender precision problem and release updated golden images for regress_e

Change 85711 on 2003/02/20 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added predicated Z test (first revision).

Change 85667 on 2003/02/20 by smoss@smoss_crayola_linux_orl

 removed illegal .write tests

Change 85628 on 2003/02/20 by omesh@omesh_r400_linux_marlboro_only_devel

 Fixed a typo in the test that was causing some testcases to assert. This
 should fix about 4 assertions.

Change 85626 on 2003/02/20 by mkelly@fl_mkelly_r400_win_laptop

 Update..

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1665 of 1898

 Page 253 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 85578 on 2003/02/20 by smoss@smoss_crayola_win

 only look at rd_r file for read tests

Change 85577 on 2003/02/20 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 85558 on 2003/02/20 by mkelly@fl_mkelly_r400_win_laptop

 Increased idle timeout, taking longer now that stipple is reset at
 each primitive.

Change 85502 on 2003/02/20 by smoss@smoss_crayola_linux_orl_regress

 <Orlando Hardware Regression Results >

Change 85500 on 2003/02/20 by ashishs@fl_ashishs_r400_win

 deleting files

Change 85499 on 2003/02/20 by ashishs@fl_ashishs_r400_win

 now passes with new VFD change (just removed errorneous data from VFD description)
Also removed the shader files since will be generated automatically using the new VFD change.

Change 85495 on 2003/02/20 by smoss@smoss_crayola_linux_orl_regress

 changed the queue

Change 85493 on 2003/02/20 by jhoule@jhoule_r400_win_marlboro

 Removing addrtile and addrenum: look for them in address.
 This reduces the number of libraries to link against, as well as removing static library
dependency issues,

 Under cmn_lib/src:
 - Moved addrenum.{h|c} and addrtile.{h|c} to address directory, removing them for their
old location in the process.
 - Changed addrtile and addrenum to import/export symbols correctly (using Larry's
defines, ready to be used!).
 - Changed malloc prototype with an #include <stdlib.h>.

 Makefiles:
 - Changed to NOT link with the static libraries

 Other source files:
 - Changed to look at directory 'address' for addrtile.h or addrenum.h

 Page 254 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Notes:
 - This change was tested with full clobber/sanitize of the environment to make sure old
binaries weren't erroneously linked.
 - Impact should now be minimal, since programs using the old static libraries were
already using the address library.
 - Some large modifications might only be tabs->spaces, or trailing spaces removal
(changed default editor behavior in the middle of the process to reduce those).

Change 85491 on 2003/02/20 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 85475 on 2003/02/20 by mkelly@fl_mkelly_r400_win_laptop

 RTS rectangle walk direction x_dir = 0, y_dir = 1

Change 85419 on 2003/02/19 by csampayo@fl_csampayo_r400

 Added r400sq_pressure_context_combo_01 to the list

Change 85377 on 2003/02/19 by smoss@smoss_crayola_linux_orl_regress

 lsf test generation

Change 85354 on 2003/02/19 by smoss@smoss_crayola_linux_orl_regress

 makefiles for test generation

Change 85334 on 2003/02/19 by ashishs@fl_ashishs_r400_win

 updated description in the test

Change 85331 on 2003/02/19 by ashishs@fl_ashishs_r400_win

 SQ interpolation test generating 16 shaders each shader exporting different number of
paramteres. Thus depending on the number of parameters exported the image gets corresponding
number of textures.

Change 85288 on 2003/02/19 by llefebvr@llefebvr_r400_emu_montreal

 Adding a context pressure test to the SQ test list. This test exercices the arbiters to make
sure no threads pass each other in any circomstance. It has overlaping primitives (32) and uses 4
different shaders of different lenghts. The overlaping primitives are used to make sure the
primitives are rendered in the right order.

Change 85275 on 2003/02/19 by kryan@kryan_r400_win_marlboro_XP

 Page 255 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 - Modify test to use IM_LOAD packet for loading Shader Programs. The default is
to use Type-0 PM4 packets,

 and this was causing the test to not behave correctly.

 - Also had to increase the timeout to 2000 after modifying shader program load
method.

Change 85235 on 2003/02/19 by jhoule@jhoule_r400_win_lt

 Adding FMT_24_8* formats

Change 85026 on 2003/02/18 by mkelly@fl_mkelly_r400_win_laptop

 Real Time Stream primitive type = point, intermixed w/non-RT

Change 84987 on 2003/02/18 by ashishs@fl_ashishs_r400_win

 SQ interpolation test generating 16 shaders each shader exporting different number of
paramteres

Change 84986 on 2003/02/18 by vbhatia@vbhatia_r400_linux_marlboro

 Deleted to save space

Change 84984 on 2003/02/18 by vbhatia@vbhatia_r400_linux_marlboro

 Deleted some files to save space

Change 84977 on 2003/02/18 by pmitchel@pmitchel_r400_laptop

 moving tp_formatter files to proper place

Change 84974 on 2003/02/18 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Changed names.

Change 84948 on 2003/02/18 by jhoule@jhoule_r400_win_lt

 Template and common files for Formats4x4 tests

Change 84913 on 2003/02/18 by ashishs@fl_ashishs_r400_win

 wrapping each of the 16 parameters (16 textures) on either S, T, or ST (test maybe used
for hardware verification)

Change 84899 on 2003/02/18 by mkelly@fl_mkelly_r400_win_laptop

 Page 256 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Add CP parameterized tests to Full Emulator Regression and Steve's HW Simulations.

 Use script $r400/devel/test_lib/src/chip/gfx/pa_regress/runp to run parameterized tests.

 Edit file $r400/devel/test_lib/src/chip/sys/cp/test_list_paramterized for controlling
 which tests are run in the full paramterized emulator regression for the non -t option.

 Golds for these test cases should be copied to \\fl00fsr02\TestVectors\R400\gold

 This checked in file is for full regression running locally in the pa_regress directory
which
 is one of three options in running the parameterized tests. Just for a reminder, here
 are the options to running paramterized tests:

 -h display useage
 -c use compare list in pa_regress dir by default
 -d maximum delta allowed between src and gold image and still PASS
 -p copy regression results to Orlando R400 Web
 -s get current sync and stamp it on output directory name
 -t build and use test_list_parameterized from all unit test_list_parameterized files
 -z gzip test output files after compare

 1, you can run "runp" script in the unit directory and it will use the local file
test_list_paramterized
 2, you can run "runp" in the pa_regress directory and it will use the local file
test_list_paramterized
 3, you can run "runp" in the pa_regress directory with option -t as described above

Change 84890 on 2003/02/18 by mkelly@fl_mkelly_r400_win_laptop

 32 single quad prims in one packet, each vert with a different color.

Change 84881 on 2003/02/18 by mkelly@fl_mkelly_r400_win_laptop

 ...

Change 84553 on 2003/02/14 by ashishs@fl_ashishs_r400_win

 updated

Change 84550 on 2003/02/14 by ashishs@fl_ashishs_r400_win

 updated

Change 84526 on 2003/02/14 by ashishs@fl_ashishs_r400_win

 to test the SQ parameter wrapping 0 and 1 registers for para 0-15 on S and T bits.
Loading 16 shaders with each shader export on its respective parameter export.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1666 of 1898

 Page 257 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 84510 on 2003/02/14 by jhoule@jhoule_r400_win_marlboro

 First try for multiple texture loas with the TM.

Change 84506 on 2003/02/14 by vgoel@fl_vgoel2

 added test r400vgt_hos_PNQ_lp_strip_no_proj_01

Change 84505 on 2003/02/14 by mkelly@fl_mkelly_r400_win_laptop

 Real Time Stream Line List Primitive

Change 84500 on 2003/02/14 by csampayo@fl_csampayo_r400

 Remove test cases that are not complete or obsolete

Change 84486 on 2003/02/14 by pauld@pauld_r400_win_marlboro

 sync verification and diag files

Change 84481 on 2003/02/14 by pauld@pauld_r400_win_marlboro

 sync verification and diags files

Change 84452 on 2003/02/14 by omesh@omesh_r400_linux_marlboro_only_devel

 Changed tests to use the new COLOR_SURFACE class instead of the
PIXEL_SURFACE class.
 Dumps using the render state for the PIXEL_SURFACE class are not implemented.

Change 84441 on 2003/02/14 by mkelly@fl_mkelly_r400_win_laptop

 Change base color from C1 to C31

Change 84406 on 2003/02/14 by mkelly@fl_mkelly_r400_win_laptop

 32 1 quad prims, random color on each vert, each prim

Change 84403 on 2003/02/14 by csampayo@fl_csampayo2_r400

 Add new tests created by George

Change 84333 on 2003/02/13 by ygiang@ygiang_r400_pv2_marlboro

 added: mova random vtx test case

Change 84293 on 2003/02/13 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint

 Page 258 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 84290 on 2003/02/13 by mkelly@fl_mkelly_r400_win_laptop

 RTS intertwined with Hi-Z viz query

Change 84286 on 2003/02/13 by ashishs@fl_ashishs_r400_win

 SQ 16 texture interpolation test (changed cl_barycentric_perspective tests with 16
textures)

Change 84281 on 2003/02/13 by omesh@omesh_r400_linux_marlboro_only_devel

 Used the tile surface class instead of the earlier one and verified that the test dumps a tile
buffer. However, this
 probably doesn't contain accurate data as the emulator doesn't do tile buffer operations.
When I run this on h/w, it will
 hopefully produce a valid tile buffer dump which can be used by Kevin's code and
DumpView for an intelligent compare. Will
 try that next....

Change 84276 on 2003/02/13 by omesh@omesh_r400_linux_marlboro_only_devel

 Added another testcase for Paul Vella (which seems to assert on the
 emulator for no aparent reason). I have contacted Larry about this.

Change 84239 on 2003/02/13 by ashishs@fl_ashishs_r400_win

 to test sq interpolation with 16 textures

Change 84235 on 2003/02/13 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 84202 on 2003/02/13 by mkelly@fl_mkelly_r400_win_laptop

 Finalized using RB_TILECONTROL to mimic Hi-Z culling by returning zeroed masks

Change 84174 on 2003/02/13 by ashishs@fl_ashishs_r400_win

 clipping with wrapping texture in S and T for 16 parameters

Change 84167 on 2003/02/13 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added random test.

Change 84162 on 2003/02/13 by ashishs@fl_ashishs_r400_win

 to test the SQ wrapping 0 and 1 registers for para 0 -15 on S and T bits.

 Page 259 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 84118 on 2003/02/13 by mkelly@fl_mkelly_r400_win_laptop

 Disable poly offset for non-RT

Change 84112 on 2003/02/13 by mkelly@fl_mkelly_r400_win_laptop

 Remove some comments in _03
 new VIZ Query pixel post hi-z kill test
 new VIZ Query pixel post detail mask kill test

Change 84110 on 2003/02/13 by mkelly@fl_mkelly_r400_win_laptop

 update rb settings...

Change 84106 on 2003/02/13 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 84018 on 2003/02/12 by ashishs@fl_ashishs_r400_win

 changed colors for better visibility

Change 84014 on 2003/02/12 by omesh@omesh_r400_linux_marlboro_only_devel

 Added a special testcase that Paul Vella wanted to check out.

Change 83987 on 2003/02/12 by ashishs@fl_ashishs_r400_win

 rearranged texture coordinates

Change 83978 on 2003/02/12 by omesh@omesh_r400_linux_marlboro_only_devel

 Added all tile buffer base address programming. This test should now have tiling
enabled. Will work with Kevin to make sure it produces the
 right data for compressed multisampled images to display correctly.

Change 83921 on 2003/02/12 by omesh@omesh_r400_linux_marlboro_only_devel

 Added some more testcases and also fixed some.

Change 83880 on 2003/02/12 by ashishs@fl_ashishs_r400_win

 enabled clipping

Change 83879 on 2003/02/12 by ashishs@fl_ashishs_r400_win

 removed extra data in VTX

Change 83876 on 2003/02/12 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Page 260 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Change for windows disk.

Change 83870 on 2003/02/12 by ashishs@fl_ashishs_r400_win

 clipping 16 textured triangle_list

Change 83834 on 2003/02/12 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Made useful.

Change 83832 on 2003/02/12 by georgev@devel_georgevhw_r400_win_marlboro

 no comment

Change 83830 on 2003/02/12 by georgev@ma_georgev

 Temp file for messing about.

Change 83828 on 2003/02/12 by ashishs@fl_ashishs_r400_win

 Test to check context switching in SQ using large number of paramters in first packet and
very less parameters in second packet and switching between the 2 types

 The test is similar to the r400sq_1col_15tex_interp_01 except that this test
 generates 32 packets. The first 16 packets have alternating data as polygon with
 15 textures and gouraud shaded triangle. The next 16 packets are randomly
 switched between the 2 types of packets.

Change 83815 on 2003/02/12 by georgev@devel_georgevhw_r400_win_marlboro

 Took out sleep function so it would compile and run on windows.

Change 83812 on 2003/02/12 by ashishs@fl_ashishs_r400_win

 test updated to generate shaders using VFD and deleting the old shaders

Change 83782 on 2003/02/12 by ashishs@fl_ashishs_r400_win

 made gouraud triangle hit only 4 pixels (single quad)

Change 83779 on 2003/02/12 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 83766 on 2003/02/12 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1667 of 1898

 Page 261 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 83761 on 2003/02/12 by mkelly@fl_mkelly_r400_win_laptop

 Add full tracking and reporting of the SQ block.

Change 83731 on 2003/02/11 by ashishs@fl_ashishs_r400_win

 adding test list for SQ tests

Change 83730 on 2003/02/11 by ashishs@fl_ashishs_r400_win

 vtx and pix shaders for r400sq_1col_15tex_interp_01

Change 83727 on 2003/02/11 by ashishs@fl_ashishs_r400_win

 Test to check context switching in SQ using large number of paramters in first packet and
very less parameters in second packet.

Change 83666 on 2003/02/11 by ygiang@ygiang_r400_win_marlboro_p4

 fixed:pixel vector sizes

Change 83642 on 2003/02/11 by mkelly@fl_mkelly_r400_win_laptop

 Handle only blending of textures in pixel shader. Requires setting
 CONSTANT 1 at the test level for the first blend stage.
 See r400sc_tri_16_par_64_dwords_02.cpp for example useage.

Change 83640 on 2003/02/11 by mkelly@fl_mkelly_r400_win_laptop

 Update gold

Change 83630 on 2003/02/11 by kryan@kryan_r400_win_marlboro

 - Modify test to more closely match r400rb_multisample_fragmented*.cpp tests

 by setting the number of samples in the RB_COLOR0_INFO and RB_DEPTH_INFO

 registers.

 - Modify test to pass RENDER_STATE into Dump() function of COLOR_SURFACE
so

 that proper header is generated for DumpView.

Change 83617 on 2003/02/11 by ashishs@fl_ashishs_r400_win

 updated

 Page 262 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 83583 on 2003/02/11 by georgev@devel_georgev_r400_lin2_marlboro_tott

 Added multiple context tests.

Change 83577 on 2003/02/11 by omesh@omesh_r400_linux_marlboro_only_devel

 Even though there are some assertions I get on the emulator for some of the testcases, I
believe
 these assertions are invalid. I will clarify this with Larry.

Change 83559 on 2003/02/11 by ashishs@fl_ashishs_r400_win

 changed test name

Change 83551 on 2003/02/11 by mkelly@fl_mkelly_r400_win_laptop

 update RB setup

Change 83526 on 2003/02/11 by mkelly@fl_mkelly_r400_win_laptop

 update rb setup

Change 83519 on 2003/02/11 by mkelly@fl_mkelly_r400_win_laptop

 update rb setup

Change 83511 on 2003/02/11 by mkelly@fl_mkelly_r400_win_laptop

 Update RB setup

Change 83496 on 2003/02/11 by mkelly@fl_mkelly_r400_win_laptop

 Update RB setup for MSAA

Change 83490 on 2003/02/11 by mkelly@fl_mkelly_r400_win_laptop

 Update RB setup for MSAA

Change 83489 on 2003/02/11 by mkelly@fl_mkelly_r400_win_laptop

 Disable polyoffset in nonRTS, disable stipple in RTS

Change 83487 on 2003/02/11 by jhoule@jhoule_r400_win_marlboro

 Addind the FMT_*_EXPAND formats

Change 83483 on 2003/02/11 by ashishs@fl_ashishs_r400_win

 to test SQ parameter wrapping for 8 textures with clipping(initial checkin)

 Page 263 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 83479 on 2003/02/11 by mkelly@fl_mkelly_r400_win_laptop

 Disable polyoffset in nonRTS packets.

Change 83476 on 2003/02/11 by mkelly@fl_mkelly_r400_win_laptop

 Disable polyoffset in the NON RTS packets.

Change 83423 on 2003/02/10 by ygiang@ygiang_r400_win_marlboro_p4

 added: more mova tests

Change 83406 on 2003/02/10 by ygiang@ygiang_r400_win_marlboro_p4

 added: another random mova test for sq

Change 83335 on 2003/02/10 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 83266 on 2003/02/10 by mkelly@fl_mkelly_r400_win_laptop

 Add new dumps...

Change 83233 on 2003/02/10 by mkelly@fl_mkelly_r400_win_laptop

 Use all 4 SQ parameters for RT streams...

Change 83218 on 2003/02/10 by jhoule@jhoule_r400_win_marlboro

 Added a bunch of useful textures; closer to regression suite integration.

Change 82977 on 2003/02/07 by markf@markf_r400_lt_marlboro

 Modified r400rb_zwave tests to use the tile buffer (depth will now be compressed).

Change 82948 on 2003/02/07 by vromaker@vromaker_r400_linux_marlboro

 one pixel vector version

Change 82945 on 2003/02/07 by ygiang@ygiang_r400_win_marlboro_p4

 add: new sp const opcode tests

Change 82937 on 2003/02/07 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

 Page 264 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 82921 on 2003/02/07 by csampayo@fl_csampayo_r400

 Add back some missing tests

Change 82912 on 2003/02/07 by smoss@smoss_crayola_linux_orl_regress

 changed unix output directory and hopefully output from stderr

Change 82907 on 2003/02/07 by ygiang@ygiang_r400_win_marlboro_p4

 added: sp dot2add test with swizzle

Change 82884 on 2003/02/07 by kryan@kryan_r400_win_marlboro

 Add PrimLib support for multisample Color Surfaces.

 Still in progress.

 COLOR_SURFACE

 - Modified Dump(RENDER_STATE&) function to reformat the

 dump for multisample Color Surfaces so that DumpView can

 display them correctly.

 PIXEL_SURFACE

 - Modified Fill_Solid() function to take into account

 the number of samples for multisample Color Surfaces.

 Please see gfx/rb/r400rb_msaa.cpp

 r400rb_basic_multisample.cpp

 r499rb_multisample_fragmented.cpp

 for examples of how to setup your COLOR_SURFACE class for

 multisample Color Surfaces.

 gfx/rb/tests

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1668 of 1898

 Page 265 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 - Modify to pass RENDER_STATE into COLOR_SURFACE::Dump() routine.

 r400_multisample_fragmented_resolve.cpp

 - Make sure to dump multisample Color Surface before modifying

 RENDER_STATE for resolve Color Surface.

Change 82816 on 2003/02/07 by mkelly@fl_mkelly_r400_win_laptop

 golds for Bob...

Change 82814 on 2003/02/07 by viviana@viviana_crayola_linux_orl

 Removed the write/read of PA_SC_ENHANCE and PA_SC_WINDOW_OFFSET since
they
 are read by the SC.

Change 82808 on 2003/02/07 by mkelly@fl_mkelly_r400_win_laptop

 Validate dummy quad deallocation in pixel vector buffer is good.

Change 82792 on 2003/02/07 by viviana@viviana_crayola_linux_orl

 Removed PA_SC_CNTL_STATUS from both tests (read only register). Changed the
data
 written to the PA_SC_FIFO_SIZE so that the maximum of 84 would not be exceeded
for
 the PRIM FIFO.

Change 82705 on 2003/02/06 by csampayo@fl_csampayo_r400

 Updated to include first known tests

Change 82558 on 2003/02/06 by mkelly@fl_mkelly_r400_win_laptop

 Comment out poly_offset_03/10 until debugged

Change 82518 on 2003/02/06 by jhoule@jhoule_r400_win_marlboro

 Added Fake_SP_TP_Formatter::prepare function to set things up:
 - Put old hardware-accurate code in there
 - Replaced NaNs with 0, since this is what the HW does (that zeroing is done in the
FSTF)

 Changed looping code to better match the xyzw_parity.

 Page 266 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 TPBlender:
 - Added kCS and kCE to localize loop count boundary calculations
 - Added mOutputPtr to speed up accesses using pixel and channel IDs
 - Changed exponent adjust code to work only on modified channels

Change 82516 on 2003/02/06 by mkelly@fl_mkelly_r400_win_laptop

 Reset line stipple at each primitive

Change 82507 on 2003/02/06 by mkelly@fl_mkelly_r400_win_laptop

 Initialize stipple state = 0x0

Change 82504 on 2003/02/06 by mkelly@fl_mkelly_r400_win_laptop

 Initialize pa_sc_line_stipple_state = 0x0

Change 82503 on 2003/02/06 by markf@markf_r400_linux_marlboro

 Random pixel shader test

Change 82494 on 2003/02/06 by mkelly@fl_mkelly_r400_win_laptop

 Enter some sq sx tests into main test_list_paramterized

Change 82490 on 2003/02/06 by mkelly@fl_mkelly_r400_win_laptop

 Enable SX and SQ for regression and gold compares using runp

Change 82474 on 2003/02/06 by mkelly@fl_mkelly_r400_win_laptop

 Parameterized cases for regressions and gold candidates

Change 82444 on 2003/02/06 by mkelly@fl_mkelly_r400_win_laptop

 Update for debug

Change 82441 on 2003/02/06 by llefebvr@llefebvr_r400_emu_montreal

 not requesting enough GPRs...

Change 82438 on 2003/02/06 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 82433 on 2003/02/06 by mkelly@fl_mkelly_r400_win_laptop

 Fix interpolator selection on shading...

 Page 267 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 82431 on 2003/02/06 by mkelly@fl_mkelly_r400_win_laptop

 Fix interpolator selection on shading.

Change 82429 on 2003/02/06 by mkelly@fl_mkelly_r400_win_laptop

 Simplified version of r400sc_rts_12 for regress_e

Change 82423 on 2003/02/06 by ashishs@fl_ashishs_r400_win

 converted r400cl_ucp_combos_01 to write into the CL_ENHANCE (num of Clip Seq
and Clip Prim Seq Stall) register and monitor any changes. Also read the CL_BUSY register

Change 82420 on 2003/02/06 by kevino@kevino_r400_win_marlboro

 Added 512x512 texture point sampled to 512x512 square case

Change 82396 on 2003/02/06 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 82392 on 2003/02/06 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 82391 on 2003/02/06 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 82386 on 2003/02/06 by mkelly@fl_mkelly_r400_win_laptop

 Fix stipple auto reset cntl, lines are now clipped, interpolate p0, not p1

Change 82378 on 2003/02/06 by mkelly@fl_mkelly_r400_win_laptop

 Stipple auto reset control = true always now

Change 82230 on 2003/02/05 by mkelly@fl_mkelly_r400_win_laptop

 Shortened to assertion.

Change 82220 on 2003/02/05 by mkelly@fl_mkelly_r400_win_laptop

 Fix stipple auto_reset_cntl, enable CL, change line generation method

Change 82191 on 2003/02/05 by csampayo@fl_csampayo_r400

 Forgot to save changes for this one

 Page 268 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 82184 on 2003/02/05 by csampayo@fl_csampayo_r400

 Increase max memory size for tests. Update spreadsheet

Change 82178 on 2003/02/05 by ashishs@fl_ashishs_r400_win

 tests with various primitive types and edgeflag and ucp clipping. removing textures from
the previous tests and using gouraud shading to check the interpolation

Change 82172 on 2003/02/05 by ygiang@ygiang_r400_win_marlboro_p4

 fixed: z16 does not support 32x32 depth buffer

Change 82090 on 2003/02/05 by mkelly@fl_mkelly_r400_win_laptop

 Fix syntax error introduced in last checkin...

Change 82083 on 2003/02/05 by mkelly@fl_mkelly_r400_win_laptop

 Fix syntax error from previous checkin.

Change 82082 on 2003/02/05 by mkelly@fl_mkelly_r400_win_laptop

 Fix syntax error from previous check in.

Change 82081 on 2003/02/05 by mkelly@fl_mkelly_r400_win_laptop

 Fixed syntax error preventing build from previous check in by Omesh.

Change 82067 on 2003/02/05 by mkelly@fl_mkelly_r400_win_laptop

 Check point...

Change 82043 on 2003/02/05 by llefebvr@llefebvr_r400_emu_montreal

 This is a test problem. R0 is used whenever the pixel shader is sending front face
information. Thus it is parameter 0 which should be FLAT shaded NOT parameter 1 (parameter
1 is the generated one with XYST). I changed line 669 in the test from FFFD to FFFE (flat shade
param 0 instead of 1). Now the test works great.

Change 82035 on 2003/02/05 by mkelly@fl_mkelly_r400_win_laptop

 Flat/Gouraud Shade interpolation bug

Change 81927 on 2003/02/04 by ashishs@fl_ashishs_r400_win

 combination of rectangular points clipped by 6 clipping planes

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1669 of 1898

 Page 269 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 81889 on 2003/02/04 by omesh@omesh_r400_linux_marlboro_only_devel

 Added RB programming related to multisampling so that the RB emulator does not assert
when those changes are put in by Larry. I ran regress_e and the
 tests seem to work.

Change 81877 on 2003/02/04 by mkelly@fl_mkelly_r400_win_laptop

 Fix VFD to remove invalid texture fetches which became a problem after
 check-in #81131.

 Fix VFD for vtx kill, now fetches x channel instead of z during vfetch.

Change 81853 on 2003/02/04 by ygiang@ygiang_r400_win_marlboro_p4

 added: rand addressing for mova test

Change 81843 on 2003/02/04 by ygiang@ygiang_r400_pv_marlboro

 added: mova tests file

Change 81798 on 2003/02/04 by ashishs@fl_ashishs_r400_win

 The goal of the test is to check rectangular points. This test has 64 points with varying
width and height of the point so as to get rectangular points BY setting point size in vtx data and
clipping enabled,so that the CL registers for point size are used.
 The test shows that rectangular points is not possible when the point size is
 set in the vertex data. Even putting unequal ratios in the X RADIUS and Y RADIUS of
 CL point size registers, the CL just uses X RADIUS to construct points when the point
 size is set thru the vertex data.

Change 81791 on 2003/02/04 by mkelly@fl_mkelly_r400_win_laptop

 RTS intertwined with Viz Query and kill_pix_post_detail_mask.

Change 81785 on 2003/02/04 by mkelly@fl_mkelly_r400_win_laptop

 RTS intertwined with VIZ_QUERY and SC Kill pix post hi z...

Change 81769 on 2003/02/04 by smoss@smoss_crayola_win

 increased timeout

Change 81731 on 2003/02/04 by mkelly@fl_mkelly_r400_win_laptop

 Viz Query intertwined with RT streams, complete...

Change 81672 on 2003/02/03 by ygiang@ygiang_r400_win_marlboro_p4

 Page 270 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 fixed: pixel kill tests

Change 81632 on 2003/02/03 by ygiang@ygiang_r400_win_marlboro_p4

 fixed: test for sp

Change 81598 on 2003/02/03 by ygiang@ygiang_r400_win_marlboro_p4

 added: more pixel kill tests

Change 81590 on 2003/02/03 by llefebvr@llefebvr_r400_emu_montreal

 Interpolation tests.

Change 81553 on 2003/02/03 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint on expanding test...

Change 81541 on 2003/02/03 by ygiang@ygiang_r400_win_marlboro_p4

 added: pixel kill test

Change 81484 on 2003/02/03 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint, 2 viz querys / 1 RTS

Change 81453 on 2003/02/03 by llefebvr@llefebvr_r400_emu_montreal

 fixing the segmentation fault on Linux.

Change 81420 on 2003/02/03 by ctaylor@ctaylor_crayola_linux_orl

 Added PA_SU_POINT_MINMAX description at request of driver.
 Changed usage of cmdKeyObj in r400sc_rand.cpp to compile

Change 81412 on 2003/02/03 by ashishs@fl_ashishs_r400_win

 updated

Change 81390 on 2003/02/03 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint..

Change 81373 on 2003/02/03 by mkelly@fl_mkelly_r400_win_laptop

 Create vertex buffer to view for debugging

Change 81180 on 2003/01/31 by jhoule@jhoule_r400_win_marlboro

 Page 271 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Updated flavor script.
 Updated format files.

Change 81178 on 2003/01/31 by jhoule@jhoule_r400_win_marlboro

 New simple formats 4x4 tests

Change 81164 on 2003/01/31 by georgev@devel_georgevh2_r400_win_marlboro

 Fixed bad shader. Missing a line.

Change 81145 on 2003/01/31 by ashishs@fl_ashishs_r400_win

 rectangular points using point size in SU registers

Change 81140 on 2003/01/31 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint Viz Query with RTS

Change 81134 on 2003/01/31 by omesh@omesh_r400_linux_marlboro_only_devel

 Found the problem with Primlib and in this test, I have worked around that problem by
not using 2 render states, and also
 not using the equal to (=) assignment operator, as it destroys some data within the source
operand render state. Will
 file a seperate bug under Primlib for this symptom.

Change 81122 on 2003/01/31 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint on Viz Query with RTS...

Change 81116 on 2003/01/31 by jhoule@jhoule_r400_win_marlboro

 Update to the Fake_SP_TP_Formatter (or FSTF, for short).

 - Added structs to the FSTF: allows runtime values to be managed.
 - Split parsing code from conversion code.
 - Moved swizzles and NaNs from TexturePipe to TPBlender.
 - Removed mIsDegamma in TPBlender as this is no longer needed (formats are split with
_AS_4x16 flavors)

 Left to do:
 - Do rfExpand outside of convert_hw (removes need for mSkipRFExpand variable)
 - Fix mantissa clamping issue for 16.16 or 32.0 float conversion (emulator currently
rounds)
 - Verify that the %2 parity works for channels masks

Change 80962 on 2003/01/30 by ygiang@ygiang_r400_pv_marlboro

 Page 272 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 fixed: sp mova tests

Change 80918 on 2003/01/30 by llefebvr@llefebvre_laptop_r400_emu

 Adding memory export tests to nightly RBRC regression.
 Adding 2 more mova tests to stress test the SQ.

Change 80853 on 2003/01/30 by mkelly@fl_mkelly_r400_win_laptop

 Better clamping for greater HW range testing inside of HW boundary

Change 80839 on 2003/01/30 by mkelly@fl_mkelly_r400_win_laptop

 Enable guard band clipping to avoid exceeding hw boundary with lines
 Fix bug with indice generation

Change 80817 on 2003/01/30 by ashishs@fl_ashishs_r400_win

 corrected ucp_ps_modes

Change 80809 on 2003/01/30 by omesh@omesh_r400_linux_marlboro_only_devel

 Another modification of the test in which I use the same render state object instead of 2,
but I add the 2D Shadow Register
 programming after I "add" the 3D register programming. Although this seems to work
better than when I used 2 seperate
 render state objects (I do get some primitives drawn on the screen), the framebuffer is
still missing most of the
 primitives. I will file this comment in addition to the already existing bug.

Change 80799 on 2003/01/30 by ashishs@fl_ashishs_r400_win

 to test SU point size set in state registers with different ps_ucp_modes. The test has a
generalised test structure where the point size could be toggled between the vertex xport and the
SU state registers keeping the output same.

Change 80760 on 2003/01/30 by omesh@omesh_r400_linux_marlboro_only_devel

 Checked in trial of code that uses an isolated, seperate render_state object for setting 2D
shadow registers,
 after inheriting an entire render state (including vertex buffer parameters) from another
render state object.
 So far, it still doesn't seem to work, so I will redirect Bugzilla ID 1189 to Kevin Ryan for
possible Primlib
 bugs.

Change 80739 on 2003/01/30 by ashishs@fl_ashishs_r400_win

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1670 of 1898

 Page 273 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 to test vertex xport point size thru shaders with different ps_ucp_modes. The test has a
generalised test structure where the point size could be toggled between the vertex xport and the
SU state registers keeping the output same.

Change 80707 on 2003/01/30 by mkelly@fl_mkelly_r400_win_laptop

 Update comments, RTS with SC quad order enable toggling...

Change 80705 on 2003/01/30 by jhoule@jhoule_r400_win_marlboro

 Adding templates to comment a bit what input format the fake_sp_tp_formatter takes.

Change 80686 on 2003/01/30 by mkelly@fl_mkelly_r400_win_laptop

 RTS and SC FIFO sizing combinations...

Change 80679 on 2003/01/30 by mkelly@fl_mkelly_r400_win_laptop

 RTS combinations with Vtx and Pix pipes 0/2 disabled with
 SC one quad per clock toggled, shader back pressure,
 interpolator shading toggling

Change 80514 on 2003/01/29 by jhoule@jhoule_r400_win_marlboro

 Better SP_TP_Formatter testbench support.
 - Renamed TP_SP_Formatter to SP_TP_Formatter everywhere
 - Added rfExpand skipping control in the TPBlender
 - Added readTTs/writeTTs methods to help parsing of the formatter

 Bug fixes:

 Fixed 16b signed fixed point conversion (was using a bias of 2^14 instead of 2^15).

 Fixed gradient precision loss.
 Uses grad.putField(grad.getField()) instead of grad.floor() assignment which only works
in _hw mode.

 Changed 16b float GradientType from 15 to 17 as third parameter.

Change 80487 on 2003/01/29 by csampayo@fl_csampayo_r400

 Add missing write to debug reg cntl select field

Change 80479 on 2003/01/29 by mkelly@fl_mkelly_r400_win_laptop

 Vtx and pix pipes 2 and 3 disabled with RTS triangles and rectangles and non-RTS
stipple lines, complete

 Page 274 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 80476 on 2003/01/29 by markf@markf_r400_linux_marlboro

 Adding basic test for ARRAY_3D_SLICE

Change 80442 on 2003/01/29 by omesh@omesh_r400_linux_marlboro_only_devel

 Who let the dogs out? (Someone clobbered an old change in the test which made it run
for too long on the all and random testcases). I
 restored my old change.

Change 80398 on 2003/01/29 by csampayo@fl_csampayo_r400

 Adding new VGT test for missing reg coverage

Change 80305 on 2003/01/29 by mkelly@fl_mkelly_r400_win_laptop

 Check stippled line integrity with real time streams, complete.

Change 80299 on 2003/01/29 by vromaker@vromaker_r400_linux_marlboro

 one pixel vector version

Change 80296 on 2003/01/29 by markf@markf_r400_linux_marlboro

 Fixed background color for sub_rect tests

Change 80271 on 2003/01/29 by mkelly@fl_mkelly_r400_win_laptop

 Update 11, checkpoint on 12

Change 80061 on 2003/01/28 by ashishs@fl_ashishs_r400_win

 The test has 110 cases. The value of the field "VTX_KILL" in the CLIP_CNTL register
 is contsantly toggled randomly as well as in a sequence to generate "OR" or "AND"
modes. Also the vtx kill flags in the vtx data are toggled randomly and in sequence to generate
110 cases such that all different combinations of vertex kill flag with a single triangle list are
covered.

Change 80054 on 2003/01/28 by omesh@omesh_r400_linux_marlboro_only_devel

 Restored fragment color parameters. Later will add more corner cases.

Change 80051 on 2003/01/28 by omesh@omesh_r400_linux_marlboro_only_devel

 Added 2 register fields programming for future expansion for R450.
 Also added some missing programming in some tests.
 These source files are a bit messy with comments and dead code. Will
 clean it up later....

 Page 275 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 80027 on 2003/01/28 by jayw@jayw_r400_linux_marlboro

 new regression scripts.

Change 79999 on 2003/01/28 by markf@markf_r400_linux_marlboro

 Added resolve test cases

Change 79984 on 2003/01/28 by mkelly@fl_mkelly_r400_win_laptop

 Polymode RTS test

Change 79923 on 2003/01/28 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 79914 on 2003/01/28 by grayc@chip_regress_orl

 changes for new arch

Change 79911 on 2003/01/28 by ygiang@ygiang_r400_pv_marlboro

 more mova test for debug

Change 79886 on 2003/01/28 by grayc@chip_regress_orl

 added variables

Change 79829 on 2003/01/27 by llefebvr@llefebvre_laptop_r400_emu

 Fixing the access violation exeption.
 Also making RealDOT the default setting for the emulator. Emulator should now be
100% HW accurate in the SP.

Change 79826 on 2003/01/27 by ygiang@ygiang_r400_pv_marlboro

 added: more mova tests for debug

Change 79818 on 2003/01/27 by csampayo@fl_csampayo_r400

 Adding new VGT fifo tests

Change 79784 on 2003/01/27 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint..

Change 79715 on 2003/01/27 by georgev@devel_georgev_r400_lin2_marlboro

 Extra tests for Vic.

 Page 276 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 79619 on 2003/01/27 by ashishs@fl_ashishs_r400_win

 updated

Change 79613 on 2003/01/27 by ashishs@fl_ashishs_r400_win

 added test description and updated tracker

Change 79610 on 2003/01/27 by kmahler@kmahler_r400_win_devel_views

 Added "random_pixel_shader" test case code to existing tests to generate a
 Random Pixel Shader.

 This was done to test the generator and to give people example code of how to
 create a random pixel shader.

 "random_centers_and_centroids_state_switching_01" test was taken from

 "chip/gfx/sc/r400sc_centers_and_centroids_state_switching_01".

Change 79593 on 2003/01/27 by mkelly@fl_mkelly_r400_win_laptop

 Test bug fix, all verts now have 12 parameters.

Change 79489 on 2003/01/25 by markf@markf_r400_linux_marlboro

 Fixed numer of samples

Change 79487 on 2003/01/25 by markf@markf_r400_linux_marlboro

 random multi-sample test

Change 79419 on 2003/01/24 by jayw@jayw_r400_linux_marlboro

 added tb to regress5

Change 79415 on 2003/01/24 by jhoule@jhoule_r400_win_marlboro

 Dedicated sp_tp_formatter testbench

 Added fake TP_SP_Formatter.

 TexturePipe and other classes now get exported under Windows in order to instanciate it
outside of full chip setups. Some weird issues were encountered (symbols wouldn't get
exported); hopefully, this will work for everyone.

 UNFINISHED

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1671 of 1898

 Page 277 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 79393 on 2003/01/24 by ashishs@fl_ashishs_r400_win

 to test the vertex reordering of the CL

Change 79308 on 2003/01/24 by markf@markf_r400_linux_marlboro

 Fixed sub_* tests

Change 79288 on 2003/01/24 by jhoule@jhoule_r400_win_marlboro

 Some regression tests

Change 79252 on 2003/01/24 by ashishs@fl_ashishs_r400_win

 varying gbands with valid data as well as nan and inf's to get 100% register coverage

Change 79235 on 2003/01/24 by mkelly@fl_mkelly_r400_win_laptop

 RT provoking vertex looking good through interpolator on one parameter.

Change 79207 on 2003/01/24 by mkelly@fl_mkelly_r400_win_laptop

 Only compare <test_name>.rd_r during full emu regression on reg read tests

Change 79193 on 2003/01/24 by smoss@smoss_crayola_linux_orl_regress

 reverting changes

Change 79174 on 2003/01/24 by mkelly@fl_mkelly_r400_win_laptop

 Add modified and shortened version of r400sc_rts_09 (back face check on nonRT vs RT
prims) to regress_e

Change 79162 on 2003/01/24 by mkelly@fl_mkelly_r400_win_laptop

 Update comments in shader

Change 79161 on 2003/01/24 by mkelly@fl_mkelly_r400_win_laptop

 Final, validating Pixel Shader face bit detection from sc_sp with nonRT and RT primtives

Change 79148 on 2003/01/24 by omesh@omesh_r400_linux_marlboro_only_devel

 Created a seperate version of the ROP3 tests (renamed) using the 2D
 Shadow Registers. Jay mentioned that we need both versions, so I
 seperated them.

Change 79147 on 2003/01/24 by mkelly@fl_mkelly_r400_win_laptop

 Page 278 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Checkpoint...

Change 79137 on 2003/01/24 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint, RTS face bit, detect in Pixel Shader...

Change 79105 on 2003/01/23 by jayw@jayw_r400_linux_marlboro

 2D shadow register support almost complete.

Change 79064 on 2003/01/23 by ygiang@ygiang_r400_pv2_marlboro

 indirect buffer for constants in test

Change 79022 on 2003/01/23 by ygiang@ygiang_r400_pv2_marlboro

 added: indirect buffer to test

Change 79020 on 2003/01/23 by jayw@jayw_r400_linux_marlboro

 jay's regression scripts

Change 79018 on 2003/01/23 by omesh@omesh_r400_linux_marlboro_only_devel

 Eliminated even more 2 testcases per test of 16 bit "16_number_float"
 which are no longer valid.

Change 78986 on 2003/01/23 by omesh@omesh_r400_linux_marlboro_only_devel

 Removed all occurences of the color_16_number_float testcases which are
 no longer valid. Instead color_16_float_number_float is now the valid
 testcase of using 16 bit floating point in RB.

Change 78960 on 2003/01/23 by omesh@omesh_r400_linux_marlboro_only_devel

 Fixed tests so they produce more visually predictive results.
 Later, will split the larger testcases so they don't get rejected by
 LSF.

Change 78876 on 2003/01/23 by mkelly@fl_mkelly_r400_win_laptop

 Validate face bit in pixel shader for multi-tile coverage prims

Change 78870 on 2003/01/23 by omesh@omesh_r400_linux_marlboro_only_devel

 Added a "dest_alpha_problem" testcase to recreate the problem that Dan Willhite from
s/w filed a bug for
 (Blue Source triangle blended with Red Destination triangle using the ADD function),
and it seems to

 Page 279 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 produce the right result on the verification environment (Magenta triangle).

Change 78867 on 2003/01/23 by ashishs@fl_ashishs_r400_win

 toggling the xy_nan_retain, z_nan_retain and w_nan_retain randomly from
PA_CL_CLIP_CNTL register

Change 78855 on 2003/01/23 by csampayo@fl_csampayo2_r400

 Removed EID# 21 since, causing RB to write garbage to screen

Change 78851 on 2003/01/23 by omesh@omesh_r400_linux_marlboro_only_devel

 Added explicit Color Compare Mask to enable all compares. Restored size
 of triangles and placement on screen. The EQ and NEQ seems to work for
 most cases but not all. I will further investigate.

Change 78823 on 2003/01/23 by omesh@omesh_r400_linux_marlboro_only_devel

 Made triangles larger and fewer triangles per row, for easier debug, for
 now.

Change 78797 on 2003/01/23 by smoss@smoss_crayola_linux_orl_regress

 hopefully it is right now

Change 78741 on 2003/01/22 by smoss@smoss_crayola_linux_orl_emu_regress

 update

Change 78729 on 2003/01/22 by smoss@smoss_crayola_win

 change default directory for linux:

Change 78608 on 2003/01/22 by georgev@devel_georgev_r400_lin2_marlboro

 Lowered long loop counts to smaller values.

Change 78559 on 2003/01/22 by mkelly@fl_mkelly_r400_win_laptop

 Final fixes to test...

Change 78538 on 2003/01/22 by mkelly@fl_mkelly_r400_win_laptop

 Move wait_rt_idle to immediately after rt stream reg writes.

Change 78466 on 2003/01/22 by llefebvr@llefebvr_r400_emu_montreal

 Page 280 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 More memory export tests and bug fixes in the SX (wrapping problem in the export
buffer for large quantity of exports).

Change 78447 on 2003/01/22 by mkelly@fl_mkelly_r400_win_laptop

 Changed wait_rt_idle to occur before wait_gfx_idle.

Change 78430 on 2003/01/22 by mkelly@fl_mkelly_r400_win_laptop

 Temporarily isolate problem in test

Change 78418 on 2003/01/22 by mkelly@fl_mkelly_r400_win_laptop

 Change shader names to test name and add missing simple shader...

Change 78415 on 2003/01/22 by mkelly@fl_mkelly_r400_win_laptop

 Add triangle prim type real time stream...

Change 78345 on 2003/01/21 by ashishs@fl_ashishs_r400_win

 updated

Change 78261 on 2003/01/21 by omesh@omesh_r400_linux_marlboro_only_devel

 Changed test to use 2D registers (in a new render state, added later)
 instead of the 3D registers related to ROP3. Verified that the test
 compiles and runs, but haven't verified that it produces the same result
 as earlier on the emulator or h/w.

Change 78240 on 2003/01/21 by ygiang@ygiang_r400_pv2_marlboro

 added: sq mova test for debug

Change 78143 on 2003/01/21 by llefebvr@llefebvr_r400_emu_montreal

 New memory export tests that do 2 blocks of export. I striped down Vineet's test so that
they would run faster on the simulator.

Change 78091 on 2003/01/20 by ashishs@fl_ashishs_r400_win

 initial checkin

Change 78076 on 2003/01/20 by georgev@devel_georgev_r400_lin2_marlboro

 Made eq test triangle smaller.

Change 78061 on 2003/01/20 by kryan@kryan_r400_linux_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1672 of 1898

 Page 281 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Fix error in Makefile that causes link error on Linux. Commented out new code to
 explicitly link in addr* libraries on Unix until error is resolved.

Change 78054 on 2003/01/20 by kryan@kryan_r400_win_marlboro

 Modified Makefile since r400rb_tb.cpp needs to use address and addrenum libraries

 on Windows.

 Previously this test was not linking correctly on Windows since it

 calls a function from the addrenum library which was not being linked in on

 Windows.

Change 78050 on 2003/01/20 by markf@markf_r400_win_marlboro

 Reset fast_clear_enables only if doing a subsequent clear or expand.

Change 77933 on 2003/01/20 by markf@markf_r400_win_marlboro

 Updated so it doesn't send extra state at the end of the test

Change 77921 on 2003/01/20 by omesh@omesh_r400_linux_marlboro_only_devel

 Added tests for chroma keying. These are fairly extensive for source
 kill, although I still need to add some more select functions. I also
 need to add random testcases.
 These display some emulator bugs, which I am going to enter on Bugzilla.

Change 77918 on 2003/01/20 by smoss@smoss_crayola_linux_orl_emu_regress

 added rts files

Change 77917 on 2003/01/20 by ashishs@fl_ashishs_r400_win

 permuting edgeflags with different primitve types with LINE FILL , and guard band
clipping

Change 77889 on 2003/01/20 by georgev@devel_georgev_r400_lin2_marlboro

 Changed JMP to CALL because that's what's being tested. Now the test works.

Change 77857 on 2003/01/20 by ashishs@fl_ashishs_r400_win

 permuting edgeflags for different primitve types with PointFill

Change 77742 on 2003/01/18 by markf@markf_r400_linux_marlboro

 Page 282 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Defaulted the Z component of the texture coordinate to 0.0

Change 77709 on 2003/01/18 by markf@markf_r400_linux_marlboro

 Disabled blending on the rb_color_formats tests when testsing 16bit integer formats.

Change 77595 on 2003/01/17 by ygiang@ygiang_r400_pv_marlboro

 fixed: alu constants needed for tests.

Change 77582 on 2003/01/17 by omesh@omesh_r400_linux_marlboro_only_devel

 Changed device address passed to the ZPASS_ADDR field, as it seems to be missing 2
bits, I right
 shift the LSBs to lose the 2 bits, but the emulator still doesn't seem to write the correct
result
 to memory.

Change 77554 on 2003/01/17 by mkelly@fl_mkelly_r400_win_laptop

 Rectangle and triangle real time stream initial functional

Change 77514 on 2003/01/17 by llefebvr@llefebvr_r400_emu_montreal

 Z export is now in the RED channel (was previously ALPHA).

Change 77506 on 2003/01/17 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 77498 on 2003/01/17 by rramsey@RRAMSEY_P4_r400_win

 Incorporate RTS dump routines into emulator, don't need to run create_rts_dumps.pl
anymore
 Fix readback of pa_sc_fifo_size to only return lower 16 bits

 Remove call to create_rts_dumps.pl from run_vsim scripts

 Fix prints in qdpr_proc/out_compare to have identify correct tracker

 Fix a problem with stipple rpt cnt loads in r400sc_rand
 Add runtime comment to rand_r400sc.sh

Change 77479 on 2003/01/17 by ashishs@fl_ashishs_r400_win

 tests guard band clipping

Change 77432 on 2003/01/17 by kevino@kevino_r400_win_marlboro

 Page 283 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Manually set pitch in texture_constant to tb_width. Otherwise, it was left at 0.

Change 77402 on 2003/01/17 by ashishs@fl_ashishs_r400_win

 test to determine if the clip guard band works properly and that trivial reject works

Change 77380 on 2003/01/17 by ashishs@fl_ashishs_r400_win

 uncommented r400cl_gband_tcl_01

Change 77373 on 2003/01/17 by ashishs@fl_ashishs_r400_win

 removed class definitions of Vector3, Vector4 and Matrix and changed XDIM YDIM to
256

Change 77367 on 2003/01/17 by llefebvr@llefebvr_r400_emu_montreal

 Dot product random tests

Change 77274 on 2003/01/16 by ashishs@fl_ashishs_r400_win

 updated

Change 77240 on 2003/01/16 by ashishs@fl_ashishs_r400_win

 Primitive types tri list,strip, fan, Wflags, quad list, quad strip and polygon respectively
permuting edgeflag combinations in each of the test as well as polymode POINT fill enabled
with the ucp combinations enabling and disabling

Change 77220 on 2003/01/16 by ygiang@ygiang_r400_pv_marlboro

 fixed: some mova test cases for SQ

Change 77190 on 2003/01/16 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 77187 on 2003/01/16 by mkelly@fl_mkelly_r400_win_laptop

 Still need to add proper edge gradients for triangle

Change 77151 on 2003/01/16 by mdoggett@mdoggett_r400_linux_local

 Updated to new framebuffer setup.

Change 77131 on 2003/01/16 by omesh@omesh_r400_linux_marlboro_only_devel

 Added a basic ZPASS_COUNT test functionality. Currently, the ZPASS_COUNT

 Page 284 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 does not get written to memory at the address being pointed to, although
 the counter was found to be working correctly by Larry S.

Change 77102 on 2003/01/16 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 77100 on 2003/01/16 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 77086 on 2003/01/16 by mkelly@fl_mkelly_r400_win_laptop

 12 non real time packets of one triangle, each with 16 real time rectangle streams...

Change 77015 on 2003/01/15 by georgev@devel_georgev_r400_lin2_marlboro

 Fixed equal and not equal tests.

Change 77003 on 2003/01/15 by ashishs@fl_ashishs_r400_win

 changed 8 textures..

Change 76961 on 2003/01/15 by ashishs@fl_ashishs_r400_win

 simple triangle gband clipping test

Change 76926 on 2003/01/15 by ashishs@fl_ashishs_r400_win

 gband point culling test converted from R300

Change 76890 on 2003/01/15 by mkelly@fl_mkelly_r400_win_laptop

 Fixed viewport settings, changed to PrimLib Color_Surface and other Surface classes

Change 76888 on 2003/01/15 by ashishs@fl_ashishs_r400_win

 initial checkin (same as inf_nan_01 except triangle_list insted of point_list)

Change 76878 on 2003/01/15 by vgoel@fl_vgoel2

 updated viewport offset to align with pixel position

Change 76844 on 2003/01/15 by mkelly@fl_mkelly_r400_win_laptop

 RB bug

Change 76795 on 2003/01/15 by georgev@devel_georgev_r400_lin2_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1673 of 1898

 Page 285 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Added some new alpha kill tests (not done yet).

Change 76786 on 2003/01/15 by ashishs@fl_ashishs_r400_win

 single packet containing around 175 verts and w0 set to true

Change 76716 on 2003/01/14 by ashishs@fl_ashishs_r400_win

 To test DX/OGL clip space

Change 76636 on 2003/01/14 by omesh@omesh_r400_linux_marlboro_only_devel

 Added tests for using the Export Z path. I ran the "standard" testcase and it didn't seem to
produce
 the right result, so I will file a bug on the emulator.

Change 76626 on 2003/01/14 by viviana@viviana_crayola_linux_orl

 Changed the test to do a GFX_COPY_STATE write between context switching.

Change 76611 on 2003/01/14 by ashishs@fl_ashishs_r400_win

 tests barycentric proportions generated by the clipper

Change 76570 on 2003/01/14 by ashishs@fl_ashishs_r400_win

 to test barycentrics generated by the clipper

Change 76566 on 2003/01/14 by ashishs@fl_ashishs_r400_win

 to test the braycentrics generated by the clipper

Change 76557 on 2003/01/14 by mkelly@fl_mkelly_r400_win_laptop

 OGL Rasterization validation...

Change 76536 on 2003/01/14 by mkelly@fl_mkelly_r400_win_laptop

 Validate OGL rasterization rules...

Change 76488 on 2003/01/14 by ygiang@ygiang_r400_pv_marlboro

 addedL test for debug

Change 76480 on 2003/01/14 by ashishs@fl_ashishs_r400_win

 updated comment

Change 76479 on 2003/01/14 by ashishs@fl_ashishs_r400_win

 Page 286 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 enabling/disabling the vte controls for scale/offset as well as changing offsets/scale with
randomised sizes for triangle list packets.

Change 76463 on 2003/01/14 by mkelly@fl_mkelly_r400_win_laptop

 OGL rasterization rule check, simple test...

Change 76452 on 2003/01/14 by mkelly@fl_mkelly_r400_win_laptop

 Permutations of r400sc_pinwheel_01 where the size,
 rotation, and location of the triangles are varied.

Change 76428 on 2003/01/14 by viviana@viviana_crayola_linux_orl

 Added the r400su_simple_register_indirect.cpp to test all reads/writes for the context
 as well as non-context registers.

Change 76427 on 2003/01/14 by viviana@viviana_crayola_linux_orl

 Tests all the context registers for the pa, as well as non-context registers.

Change 76424 on 2003/01/14 by mkelly@fl_mkelly_r400_win_laptop

 DX9 rasterization rules check, simple but necessary to confirm...

Change 76422 on 2003/01/14 by mkelly@fl_mkelly_r400_win_laptop

 Simple DX rasterization check...

Change 76417 on 2003/01/14 by mkelly@fl_mkelly_r400_win_laptop

 Simple test, validate DX rasterization rules...

Change 76412 on 2003/01/14 by mkelly@fl_mkelly_r400_win_laptop

 New...

Change 76286 on 2003/01/13 by vgoel@fl_vgoel2

 added test with quadstrip with tessellation on.

Change 76268 on 2003/01/13 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 76262 on 2003/01/13 by mkelly@fl_mkelly_r400_win_laptop

 Update comments...

 Page 287 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 76256 on 2003/01/13 by mkelly@fl_mkelly_r400_win_laptop

 Final

Change 76246 on 2003/01/13 by ashishs@fl_ashishs_r400_win

 Set MSB of multipliers: set all three of XSCALE, x and w to 0.9999998
 (don't enable W0_FMT). Repeat for YSCALE, y, and w and ZSCALE, z, and w

Change 76225 on 2003/01/13 by vgoel@fl_vgoel2

 added test for 15.0f tessellation

Change 76185 on 2003/01/13 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 76144 on 2003/01/13 by viviana@viviana_crayola_linux_orl

 Added rbbm read back test for every context of the context registers.

Change 76133 on 2003/01/13 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 76120 on 2003/01/13 by ashishs@fl_ashishs_r400_win

 updated

Change 76118 on 2003/01/13 by ashishs@fl_ashishs_r400_win

 updated

Change 76012 on 2003/01/11 by markf@markf_r400_linux_marlboro

 Fixed fast depth clear

Change 75949 on 2003/01/10 by csampayo@fl_csampayo_r400

 Adding new VGT test, updated test_list

Change 75942 on 2003/01/10 by ashishs@fl_ashishs_r400_win

 another vte test

Change 75937 on 2003/01/10 by ashishs@fl_ashishs_r400_win

 vte test

 Page 288 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 75929 on 2003/01/10 by ashishs@fl_ashishs_r400_win

 MSB of veu multiplier output set (use X=1.9999, Xscale = 1.9999, and 1/W = 1.9999)

Change 75918 on 2003/01/10 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 75891 on 2003/01/10 by kryan@kryan_r400_win_marlboro

 This changelist in PrimLib which allows the FrameBuffer start

 to be set to a non-zero value. There are a few caveats with

 this which are explained below. Currently I have left

 the FrameBuffer start to be zero.

 The following code excerpt and comments is from the file

 test_lib/src/testchip/chip/init_mcmh.cpp which explains some of the

 limitations encountered so far in my testing:

 const static uint32 FB_START_ADDRESS = 0x00000000;

 const static uint32 FB_SIZE = 0x07FF0000; // 128M

 //--

 // The combination below works for non-zero starting FB,

 // but a values causing the top of the FB to be above 64MB

 // does not currently seem to work because of problems possibly

 // related to the CP not being able to access memory above 64MB

 // according to an email from Harry Wise at one time.

 //

 // It also seems that if the FB_START_ADDRESS is non-zero,

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1674 of 1898

 Page 289 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 // then the size should be aligned to 16MB though this is

 // not proven yet, but FB_SIZE of 0x01ff0000 did not work

 // with FB_START_ADDRESS 0x02000000 even though it did

 // satisfy the condition of not creating the top of the FB

 // above 64MB. This still needs to be investigate, but

 // for now will allow a non-zero FB if it is kept small

 // with the following known working values:

 // FB_START_ADDRESS = 0x02000000 // 32MB

 // FB_SIZE = 0x02000000 // 32MB

 //--

 // const static uint32 FB_START_ADDRESS = 0x02000000; // 32M

 // const static uint32 FB_SIZE = 0x02000000; // 32M

 MH.FB_START.write(FB_START_ADDRESS);

 MH.HDP_FB_START.write(FB_START_ADDRESS);

 MH.ROM_START.write(0xF0000000); //Put ROM_START way up above everything
else for now

 // MH.FB_SIZE.write(memTop <<16); // FB Size determined by arch.

 MH.FB_SIZE.write(FB_SIZE); //Hardcoded for now....don't know what this should
be

 In order for all of the Emulator regression tests to pass, I had to modify

 a few of the tests that fall into the following categories which will

 also hold true for other tests outside of the Emulator suite that start

 failing:

 Page 290 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 1) Tests using Depth Surfaces

 Need to be modified to add the start of the FrameBuffer to the

 Z_BASE offset to calculate the correct device address for the

 Depth Surface set in the RB_DEPTH_INFO register.

 See the tests below for code examples in the changelist above.

 gfx/sc/r400sc_poly_offset_05.cpp

 gfx/sc/r400sc_poly_offset_fc_02.cpp

 gfx/sc/r400sc_zbuffer_list_rectangle_fc_02.cpp

 2) Tests using multiple color buffers (but really all tests)

 All tests should use the following function

 RENDER_STATE::Set_Destination_Base(uint32 base, uint32 index)

 to properly set the base of the Color Surface (taking into account

 the start of the memory such as FrameBuffer.)

 See the tests below for code examples in the changelist above.

 gfx/rb/r400rb_mask_color_bits.cpp

 gfx/rb/r400rb_mask_color_channels.cpp

 gfx/rb/r400_multiwrites.cpp

 3) Any test that does not use the Set_Destination_Base() function described above

 Any test that directly sets the RB_COLORx_BASE registers needs to

 Page 291 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 add the start of the FrameBuffer memory area to the offset in the

 test so that it is calculating the correct device address for

 this register field.

 The code would be as follows:

 uint32 device_address = frame_buffer.Get_Start() + DISP_BASE;

 render_state.Set_RB_COLOR0_BASE_color0_base(device_address);

 4) Note that this does not take care of the PM4LIB allocating its buffers in the

 same memory space (ie. same offset in the FrameBuffer as the PrimLib automatic
memory

 management for things like Vertex Buffers, Textures, Shader Programs, etc.)

 This code still needs to be added later.

 The only case that should see this problem is a PrimLib test that is using almost all

 of the FrameBuffer for its surfaces (or which is manually allocating memory from the

 top of the FrameBuffer) which may cause the PM4LIB buffers (which start just below

 the top of the FrameBuffer) to be overwritten. Both of these cases should be

 rare if non-existent for now. After the code mentioned in 4) is added, then there

 should not be a problem when the PM4LIB memory management is merged with the
PrimLib

 automatic memory management.

 5) gfx/sys/cp tests that use plgx::fill*(), plgx::dump() routines

 Since almost all of these tests use the plgx::fill*() routines which

 expect an absolute device address, they will all break when the

 Page 292 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 FB start address is changed to something non-zero. For example

 if the FB start is moved to 0x02000000, then all the accesses

 to fill_solid(0, ...) will fall outside of all the known apertures

 currently.

 One way to fix this is to rewrite the plgx::fill*() routines to

 specify the aperture and an offset or to rewrite the tests to

 retrieve the start of the FrameBuffer and add it to the values

 used in the test so they still fall inside the FrameBuffer

 when it is relocated to a non-zero start value.

 Another method would be to rewrite these routines to direct all

 accesses that fall outside any of the apertures to be treated as

 an offset into the FrameBuffer. This would probably fix these

 tests, but may cause other problems.

 But at least this should allow Toronto to start some testing with a non-zero FrameBuffer

 start as long as the guidelines above are followed for the short-term.

 PM4LIB

 - Began preliminary ground work for modify PM4LIB code to use the PrimLib

 automatic memory management routines. Still not implemented, but began

 adding code which will be added to later.

 MEMORY_FRAMEBUFFER

 - Created global object to represent FrameBuffer memory space to store all

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1675 of 1898

 Page 293 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 memory managed in the FrameBuffer by all PrimLib clients.

 FRAMEBUFFER_MEMORY

 - Modified to just return a pointer to the global FB object so that current

 code will always be referencing same FB object.

 AGP_MEMORY

 - Modified Set_Size() function to take a uint32 size and then validate

 it rather than creating an enum for every possible size.

 fill_dump.cpp

 - Replaced direct register access code in fill_data(), fill_solid(), dump_image()

 with appropriate function calls for accessing start, size of AGP memory.

 init_mcmh.cpp

 - Use variables for FB start and size values.

 - Add comments explaining caveats mentioned at top of message

 in code excerpt.

 COLOR_SURFACE

 PIXEL_SURFACE

 - Modify Dump() routines to use relative addresses from MEMORY_AREA

 rather than absolute device addresses for surfaces.

 MANAGED_MEM_AREA

 MANAGED_MEM_BLOCK

 - Add Reset_Free_Space_Pointer() function to initialize free space

 Page 294 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 if start/size of MEMORY_AREA is changed.

 MEMORY_AREA

 - Added function Is_Memory_Aperture_Inside_Device_Address_Space() to

 check if MEMORY_AREA is relocated using Set_Size() functions that it

 is still inside the device address space.

 primlib_template_simple_triangle.cpp

 - Begin groundwork for accesing AGP memory. Currently still uses FrameBuffer.

 Thanks,

 Kevin

Change 75875 on 2003/01/10 by viviana@viviana_crayola_linux_orl

 Added test r400vgt_simple_register_indirect.cpp.

Change 75861 on 2003/01/10 by georgev@devel_georgev_r400_lin2_marlboro

 Added stacked call returns.

Change 75839 on 2003/01/10 by viviana@viviana_crayola_linux_orl

 Added a test to write and read all context registers and changed the vgttbtrk_rbbmrd to
handle
 all contexts.

Change 75820 on 2003/01/10 by ashishs@fl_ashishs_r400_win

 1 Point , cycling Infinity/NANS XYZ scale and Infinity/NANS XYZ offset through all
bits including sign changes

Change 75784 on 2003/01/10 by kevino@kevino_r400_win_marlboro

 All of the _on_2x2 cases were actually using 3x3 prims, so fixed.

Change 75772 on 2003/01/10 by mdoggett@mdoggett_r400_linux_local

 Updated test structure to use latest version of primlib_tex_tri.

 Page 295 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 75764 on 2003/01/10 by ashishs@fl_ashishs_r400_win

 initial checkin

Change 75726 on 2003/01/10 by mkelly@fl_mkelly_r400_win_laptop

 Change test search bug string from "bug" to "_bug"

Change 75665 on 2003/01/09 by csampayo@fl_csampayo_r400

 Adding another RTS test

Change 75662 on 2003/01/09 by georgev@devel_georgev_r400_lin2_marlboro

 Added new tests.

Change 75658 on 2003/01/09 by markf@markf_r400_linux_marlboro

 Added some more cases

Change 75642 on 2003/01/09 by csampayo@fl_csampayo_r400

 Added 1 VGT performance and 1 VGT debug case, updated test_list and tracker
accordingly

Change 75618 on 2003/01/09 by mdoggett@mdoggett_r400_linux_local

 Changed temporary setting of format to 16_16_16_16 to correct DXT1.

Change 75606 on 2003/01/09 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 75533 on 2003/01/09 by ashishs@fl_ashishs_r400_win

 added a generalised Matrix class to the test used to calculate the rotations.

Change 75528 on 2003/01/09 by mkelly@fl_mkelly_r400_win_laptop

 Finalize comments...

Change 75492 on 2003/01/09 by mkelly@fl_mkelly_r400_win_laptop

 Update RB setup using r400rb_tb.cpp as an example...

Change 75450 on 2003/01/09 by mkelly@fl_mkelly_r400_win_laptop

 Update comments in test...

 Page 296 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 75439 on 2003/01/09 by smoss@smoss_crayola_linux_orl_regress

 <Orlando Hardware Regression Results >

Change 75384 on 2003/01/08 by ashishs@fl_ashishs_r400_win

 initial checkin

Change 75383 on 2003/01/08 by ashishs@fl_ashishs_r400_win

 initial checkin

Change 75340 on 2003/01/08 by vromaker@vromaker_r400_linux_marlboro

 fix for NOP in CFS; reduced triangle size in sq_tests

Change 75334 on 2003/01/08 by omesh@omesh_r400_linux_marlboro_only_devel

 Fixed compile time bugs introduced in merge by diagnostics.

Change 75321 on 2003/01/08 by markf@markf_r400_linux_marlboro

 Simple texture fill rate test

Change 75305 on 2003/01/08 by llefebvr@llefebvre_laptop_r400_emu

 Now using the new mulAdd function.

Change 75303 on 2003/01/08 by mkelly@fl_mkelly_r400_win_laptop

 Stress vtx and pix pipe disable combinations with stippled LINE_LIST

Change 75291 on 2003/01/08 by vgoel@fl_vgoel2

 changed maximum allowable tessellation to 15.0f.

Change 75282 on 2003/01/08 by pauld@pauld_r400_win_marlboro

 updates for diagnostic environment

Change 75233 on 2003/01/08 by smoss@smoss_crayola_linux_orl_regress

 moved to crayola2

Change 75190 on 2003/01/08 by ashishs@fl_ashishs_r400_win

 point with 8 textures. added just for own reference

Change 75173 on 2003/01/08 by csampayo@fl_csampayo_r400

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1676 of 1898

 Page 297 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Added new VGT pass-thru block test, updated test_list and test tracker accordingly.

Change 75168 on 2003/01/08 by ashishs@fl_ashishs_r400_win

 vertex and pixel shaders for r400cl_point_size_ucp_combo_01 test(to switch between
point size in vertex export and SU state registers)

Change 75162 on 2003/01/08 by mkelly@fl_mkelly_r400_win_laptop

 This test has changed to r400sc_vtx_pipe_disable_combos_03

Change 75149 on 2003/01/08 by lseiler@lseiler_r400_win_marlboro

 Blender now uses hardware precision in most places -- resulted in one pixel difference in
r400rb_color_source

Change 75086 on 2003/01/07 by vgoel@fl_vgoel2

 change for modified vertex export

Change 75049 on 2003/01/07 by ygiang@ygiang_r400_win_marlboro_p4

 modifyied for debugging

Change 75040 on 2003/01/07 by ashishs@fl_ashishs_r400_win

 increased the xdim and ydim for better visibility

Change 75036 on 2003/01/07 by ashishs@fl_ashishs_r400_win

 verify the 64 combinations of ucp control bits with quadstrip primitive

Change 75024 on 2003/01/07 by mkelly@fl_mkelly_r400_win_laptop

 Update..

Change 75017 on 2003/01/07 by ashishs@fl_ashishs_r400_win

 verify the 64 combinations of ucp control bits with polygon primitive

Change 75003 on 2003/01/07 by mkelly@fl_mkelly_r400_win_laptop

 Temporarily remove msaa

Change 74990 on 2003/01/07 by mkelly@fl_mkelly_r400_win_laptop

 Temporarily remove msaa

 Page 298 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 74925 on 2003/01/07 by csampayo@fl_csampayo2_r400

 Updated for latest RB surface definitions

Change 74913 on 2003/01/07 by hartogs@fl_hartogs2

 Added VgtGrpOut.dmp

Change 74910 on 2003/01/07 by mkelly@fl_mkelly_r400_win_laptop

 Temporarily removed MSAA

Change 74897 on 2003/01/07 by hartogs@fl_hartogs2

 Added new tracker file "VgtGrpOut.dmp"

Change 74895 on 2003/01/07 by kevino@kevino_r400_win_marlboro

 Added mipmap test that uses small textures and prims. Added to tp4_tc nightly
regressions as well.

Change 74894 on 2003/01/07 by ashishs@fl_ashishs_r400_win

 creating 11/12/13/14/15 vertices from 8/9/10/11/12 clip planes respectively

Change 74890 on 2003/01/07 by llefebvr@llefebvre_laptop_r400_emu

 Nes template for the memory exports. This is to include the fact that ARRAY_2D is
invalif for memory exports AND changes the size of endian to 3 bits.

Change 74883 on 2003/01/07 by kevino@kevino_r400_win_marlboro

 MaxMipLevel was=0, so never mipmapped. Fixed this and added equivilant test cases
with the mip filter set to BaseMap.

Change 74873 on 2003/01/07 by mkelly@fl_mkelly_r400_win_laptop

 Two cases isolated for hw debug assistance...

Change 74869 on 2003/01/07 by kevino@kevino_r400_win_marlboro

 modified to use buildlevel for 3D textures

Change 74848 on 2003/01/07 by hartogs@fl_hartogs

 Added vgt_grouper output dump for RTL comparison.
 Removed stride==0 as a legitimate value for grouper programming. Use fully
overlapping vectors instead.

 Page 299 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 74799 on 2003/01/06 by ygiang@ygiang_r400_linux_marlboro

 fixed: time out problem for random test case

Change 74788 on 2003/01/06 by pauld@pauld_r400_win_marlboro

 files updated for diagnostic environment

Change 74785 on 2003/01/06 by pauld@pauld_r400_win_marlboro

 files updated for diagnostic environment

Change 74773 on 2003/01/06 by ashishs@fl_ashishs_r400_win

 different settings for the cube position than cube_01.cpp and enabling all the 6 user clip
planes. Also the culling direction is reversed.

Change 74760 on 2003/01/06 by pauld@pauld_r400_win_marlboro

 fix merge errors adding diag environment

Change 74739 on 2003/01/06 by ashishs@fl_ashishs_r400_win

 updated to have exact same settings as on R200 legacy test

Change 74708 on 2003/01/06 by pauld@pauld_r400_win_marlboro

 r400rb files updated dor diagnostic environment

Change 74697 on 2003/01/06 by ashishs@fl_ashishs_r400_win

 updated

Change 74667 on 2003/01/06 by vgoel@fl_vgoel2

 simplified further for bug tracing

Change 74665 on 2003/01/06 by vgoel@fl_vgoel2

 changed for bug tracing

Change 74644 on 2003/01/06 by ashishs@fl_ashishs_r400_win

 To test user clip plane in clip space
 A cube is rotated over x and y axis to get a perspective view of the cube and then the
cube is clipped with a UCP plane which is parallel to the XY plane and goes through point
(0,0,0) The UCP then clips the cube as required. The test also tests the SU_SC_MODE_CNTL
register
 with turning ON the front face culling and turning OFF the back face culling.

 Page 300 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 74602 on 2003/01/06 by mkelly@fl_mkelly_r400_win_laptop

 Stress vtx and pix pipe disable in SC...

Change 74446 on 2003/01/03 by mkelly@fl_mkelly_r400_win_laptop

 Random pix and vtx pipe disable combos...

Change 74426 on 2003/01/03 by mkelly@fl_mkelly_r400_win_laptop

 VTX and PIX pipe disable combinations

Change 74420 on 2003/01/03 by mkelly@fl_mkelly_r400_win_laptop

 Pixel pipe disable combinations...

Change 74415 on 2003/01/03 by omesh@omesh_r400_linux_marlboro_only_devel

 Fixed the problem with the test which fixed Bugzilla #951. Even though
 the pixel center was set to the center of the grid, I was sending down
 vertex coordinates as if I were rendering with the pixel center at the
 top-left of the grid.

Change 74414 on 2003/01/03 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 74411 on 2003/01/03 by mkelly@fl_mkelly_r400_win_laptop

 Make Set_VGT_OUT_DEALLOC_CNTL_dealloc_dist =
Set_VGT_VERTEX_REUSE_BLOCK_CNTL_vtx_reuse_depth

Change 74401 on 2003/01/03 by mkelly@fl_mkelly_r400_win_laptop

 Initialize MC disable field to zero.

Change 74383 on 2003/01/03 by ashishs@fl_ashishs_r400_win

 Point sprite frustum culling. This test is intended to validate the shader processing of
point sprite primitives with frustum culling.

Change 74369 on 2003/01/03 by omesh@omesh_r400_linux_marlboro_only_devel

 Fixed a typo. The OnePixel8Fragment case still doesn't hit the right
 samples.

Change 74366 on 2003/01/03 by mkelly@fl_mkelly_r400_win_laptop

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1677 of 1898

 Page 301 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Add initialization of the MC disable field.

Change 74357 on 2003/01/03 by mkelly@fl_mkelly_r400_win_laptop

 256 points per packet, all 15 legal combinations of vtx pipe disable

Change 74342 on 2003/01/03 by kevino@kevino_r400_win_marlboro

 check_tfc_overrides added. If it is a float format, it overrides any linear filters with point.

Change 74330 on 2003/01/03 by mkelly@fl_mkelly_r400_win_laptop

 Fix a bug for the case of sequential tests in test_list which use agp_r for compare.

Change 74323 on 2003/01/03 by ashishs@fl_ashishs_r400_win

 This test is intended to validate the vertex reuse functionality with actual clipping. The
test processes 56 packets each with either one 100 primitive triangle list or one 150 primitive line
list containing 16 vertices with input vertex data: XYZW0, 1 color , no textures. For each packet
the test has 300 indices, making up either 100 or 150 primitives, depending on randomly selected
primitive type, unique indices are randomly selected between 0-12 and 0-15. For each packet six
UCP planes are set up so that most of the original verices get clipped.

Change 74303 on 2003/01/03 by ashishs@fl_ashishs_r400_win

 Test processes 64 packets each a set of tri-lists, each with 15 triangles using 10 vertices

Change 74232 on 2003/01/02 by georgev@devel_georgev_r400_lin2_marlboro

 Added shader program for existing test.

Change 74223 on 2003/01/02 by kryan@kryan_r400_win_marlboro

 Modify test to align pitch and height of texture dump to 32 pixels to avoid error for

 non-power of 2 textures.

Change 74184 on 2003/01/02 by csampayo@fl_csampayo_lt_r400

 Updated test and test_list for test r400vgt_real_time_events_06 and updated
description/status on the test tracker for tests:
 r400vgt_real_time_events_04
 r400vgt_real_time_events_05
 r400vgt_real_time_events_06

Change 74176 on 2003/01/02 by csampayo@fl_csampayo2_r400

 Initial check-in

 Page 302 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 74146 on 2003/01/02 by viviana@viviana_crayola_linux_orl

 Test to write and read the rbbm/pa registers.

Change 74131 on 2003/01/02 by omesh@omesh_r400_linux_marlboro_only_devel

 Added some PA programming that might have caused changes in vertex X,Y
 data entering the SC. It turns out that this programming didn't change
 bug symptom Bugzilla#951

Change 74126 on 2003/01/02 by mkelly@fl_mkelly_r400_win_laptop

 Duplicate coverage, remove tests...

Change 74122 on 2003/01/02 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 74112 on 2003/01/02 by mkelly@fl_mkelly_r400_win_laptop

 Vary levels of tesselation, rasterize such that each case can be seen
 in the framebuffer.

Change 74101 on 2003/01/02 by viviana@viviana_crayola_linux_orl

 Added r400su_rbbm_reg_read to the list

Change 74100 on 2003/01/02 by viviana@viviana_crayola_linux_orl

 Added r400sc_rbbm_reg_read to the test_list.

Change 74096 on 2003/01/02 by hartogs@fl_hartogs

 Added Vivian's test "r400vgt_rbbm_reg_read"

Change 74092 on 2003/01/02 by mkelly@fl_mkelly_r400_win_laptop

 Increased framebuffer size from 64x64 to 256x256.
 Rasterize each case, XY offset by the VTE to display all cases.

Change 74089 on 2003/01/02 by llefebvr@llefebvr_r400_emu

 Changed the test to test MUL_PREV2, was checking MUL_PREV

Change 73945 on 2002/12/31 by jhoule@jhoule_r400_ma-jhoule-linux

 LoadDefaultTexture no longer sends tiled 1D textures

Change 73939 on 2002/12/31 by jhoule@jhoule_r400_ma-jhoule-linux

 Page 303 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Forces linear for 1D textures in LoadDefaultTexture.

Change 73933 on 2002/12/31 by pmitchel@regress_test_r400_linux_marlboro

 makefile support for regressing and releasing parameterized tests/testcases
 see 'make help' from underneath test_lib for details
 'fixes' bug 741

Change 73918 on 2002/12/31 by mkelly@fl_mkelly_r400_win_laptop

 HOS continue flag indices with vtx pipe disable combinations...

Change 73915 on 2002/12/31 by mkelly@fl_mkelly_r400_win_laptop

 All vtx pipe disable combos...

Change 73906 on 2002/12/31 by mkelly@fl_mkelly_r400_win_laptop

 Vertex shader outputs two vectors to PA with vtx pipes 2 and 3 disabled.

Change 73896 on 2002/12/31 by mkelly@fl_mkelly_r400_win_laptop

 Update for new XY handling...

Change 73891 on 2002/12/31 by smoss@smoss_crayola_linux_orl_regress

 increased timeout

Change 73852 on 2002/12/31 by mkelly@fl_mkelly_r400_win_laptop

 Centers and Centroids state switching

Change 73841 on 2002/12/31 by mkelly@fl_mkelly_r400_win_laptop

 Change...

Change 73840 on 2002/12/31 by mkelly@fl_mkelly_r400_win_laptop

 Invalid test, delete...

Change 73765 on 2002/12/30 by ashishs@fl_ashishs_r400_win

 error in description. changed the description to as follows. test setup same as earlier tests.
 THE POINT IS RETAINED WHNEVER THE CENTER OF POINT IS INSIDE THE
CLIP PLANE. THE POINT IS THROWN AWAY WHENEVER THE CENTER OF POINT
LIES OUTSIDE THE CLIP PLANE.

Change 73764 on 2002/12/30 by ashishs@fl_ashishs_r400_win

 Page 304 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 SETUP WITH PS UCP MODE = 1 (CULL USING RADIUS BASED DISTANCE) and
CULL ONLY DISABLED.
 RESULT:WHENEVER THE CLIP PLANE IS ON OR WITHIN THE CULL RADIUS
OF THE POINT, THE POINT IS CULLED. THE POINT IS THROWN AWAY WHENEVER
THE CENTER OF THE POINT LIES OUTSIDE THE CLIP PLANE AND THE DISTANCE
BETWEEN THE CENTER OF THE POINT AND CLIP PLANE IS GREATER THAN THE
CULL RADIUS OF THE POINT.

Change 73762 on 2002/12/30 by ashishs@fl_ashishs_r400_win

 TEST WITH PS MODE AS 0 AND CULL DISABLED:
 RESULT:WHENEVER THE CLIP PLANE IS ON OR WITHIN THE HALF WIDTH
OF THE POINT, THE POINT IS CULLED.THE POINT IS THROWN AWAY WHENEVER
THE CENTER OF THE POINT LIES OUTSIDE THE CLIP PLANE AND THE DISTANCE
BETWEEN THE CENTER OF THE POINT AND CLIP PLANE IS GREATER THAN THE
HALF WIDTH OF THE POINT.

Change 73754 on 2002/12/30 by ashishs@fl_ashishs_r400_win

 setup same as previous tests with UCP point sprite mode to be 3 (ALWAYS CLIP AND
EXPAND AS TRIFAN) and cull only disabled.

Change 73753 on 2002/12/30 by mkelly@fl_mkelly_r400_win_laptop

 Add write to MC_DISABLE field = 0x0

Change 73750 on 2002/12/30 by ashishs@fl_ashishs_r400_win

 the test has same setup as the previous tests in the category. The difference being that the
point sprite ucp mode is set to 3 (with cull only enabled). Hence the only difference between the
the r400cl_point_ucp_clip_mode2_cull_enable and this test is that the points are always
expanded in this test. No matter if the clip plane is within the cull radius of the point the point is
always expanded into trifan. Hence the difference in both tests outputs can be seen on Case 11 in
both the cases.

 Case 11 of the test: The center of point lies INSIDE the clip plane and distance between
the center of point and the clip plane = radius of the point + delta

 i.e the point is totally inside or doesnt have any thing to do with the clip plane. Hence
when the point spirte mode is 2 the point isnt expanded wheras when the point sprite mode is 3
the point is expanded and can be seen with the texture being inverted.

Change 73747 on 2002/12/30 by ashishs@fl_ashishs_r400_win

 added more number of cases. generalised this test to be similar to the
r400cl_point_ucp_clip_mode2_cull_disable_01.cpp test with cull only enabled.

Change 73745 on 2002/12/30 by mkelly@fl_mkelly_r400_win_laptop

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1678 of 1898

 Page 305 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 HOS test which generates continue flags and coefficient data in the indice stream from
vgt to sq
 for pipe disable testing...

Change 73744 on 2002/12/30 by kryan@kryan_r400_win_marlboro

 - Missed this file in the check for changelist 73741

 - Changed to set height to 0 when dumping 1D textures.

Change 73741 on 2002/12/30 by kryan@kryan_r400_win_marlboro

 MEMORY_AREA

 - Modify Dump(...) functions to use height parameter to determine

 if surface is 1D, or 2D. This dimension is then passed to the

 surface constructor, and will not check height constraints for

 a 1D surface such as a 1D texture being dumped.

 tp_unsigned_01.cpp

 tp_unsigned_01_stmap.cpp

 - Modify tests to pass height of 0 when dumping 1D textures. This

 eliminates the error from PrimLib previously because it was

 considering all surfaces being dumped to be 2D and therefore

 was checking the height constraint which was 1 for 1D textures.

Change 73721 on 2002/12/30 by ashishs@fl_ashishs_r400_win

 The purpose of this test is to test ucp clip for point list with
 UCP Point Sprite Mode = 2(CULL USING RADIUS BASED DISTANCE FROM
CENTER OF THE POINT)
 with ucp cull only disabled.

 THE RESULT CAN BE SUMMARIZED AS FOLLOWS:
 WHENEVER THE CLIP PLANE IS ON OR WITHIN THE CULL RADIUS OF THE
POINT, THE POINT IS EXPANDED. THE POINT IS CLIPPED ON INTERSECTION WITH
THE CLIP PLANE(MEANING THE POINT IS THROWN OUT IF THE POINT EDGES

 Page 306 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

i.e.HALF WIDTH ARE OUTSIDE THE CLIP PLANE EVEN IF THE CLIP PLANE IS
WITHIN THE CULL RADIUS OF THE POINT AND CLIPPED TO PROPER DIMENSIONS
ON INTERSECTION OF THE POINT BOUNDARIES WITH THE CLIP PLANE.)

 MORE IN TEST DESCRIPTION

Change 73688 on 2002/12/30 by markf@markf_r400_win_marlboro

 Added test for scalar add

Change 73683 on 2002/12/30 by mkelly@fl_mkelly_r400_win_laptop

 Two 96bit transfers per vert...

Change 73527 on 2002/12/27 by mkelly@fl_mkelly_r400_win_laptop

 Basic MSAA 8 test, need to get it to work on GC

Change 73515 on 2002/12/27 by markf@markf_r400_win_marlboro

 Added random testing of mul add precison

Change 73502 on 2002/12/27 by llefebvr@llefebvre_laptop_r400_emu

 Changing the XY import to the SP as per Tom Frinsinger's proposal.

Change 73498 on 2002/12/27 by omesh@omesh_r400_linux_marlboro_only_devel

 Added the Degamma test with 22 testcases. Ran them, but haven't verified
 emulator image output yet, as DumpView wasn't working.

Change 73496 on 2002/12/27 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 73424 on 2002/12/26 by mkelly@fl_mkelly_r400_win_laptop

 Update tracker...

Change 73417 on 2002/12/26 by mkelly@fl_mkelly_r400_win_laptop

 Enable RTS in test...

Change 73254 on 2002/12/23 by abeaudin@abeaudin_r400_win_marlboro

 fixed hardware precison problem

Change 73241 on 2002/12/23 by smoss@smoss_crayola_linux_orl_regress

 Page 307 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 increased timeout

Change 73220 on 2002/12/23 by mkelly@fl_mkelly_r400_win_laptop

 Fix some test bugs, first cut at rts with SC packer optimize...

Change 73127 on 2002/12/23 by mkelly@fl_mkelly_r400_win_laptop

 SC packer optimize with pipe disable variations...

Change 73123 on 2002/12/23 by mkelly@fl_mkelly_r400_win_laptop

 Test alternate bits compare to r400sc_viz_query_01

Change 72996 on 2002/12/21 by jhoule@jhoule_r400_win_marlboro

 Support for LOD_BIAS while keeping the old ones (_H/_V)

Change 72946 on 2002/12/20 by kryan@kryan_r400_win_marlboro

 COLOR_SURFACE

 - Remove register reads from .rd_r file for all PrimLib Dump()

 function calls.

 MEMORY_AREA

 - Modify Dump(..., plgx::pixelType, ...) function to go through one

 common function for all pixel types. This way the header

 will be the same for all dumps.

 chip/gfx/rb/

 - Update golden images for .rd_r files for two tests since

 register reads are no longer sent to this file.

 DEPTH_SURFACE

 - Modify field names in header file for clarity.

Change 72873 on 2002/12/20 by omesh@ma_omesh

 Page 308 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Made fix to revision 11 to fix compile error on Windows.

Change 72868 on 2002/12/20 by mkelly@fl_mkelly_r400_win_laptop

 Complete, stress SC quad packer for coverage, including back pressure
 and specific pattern insertion of 1qd, 4qd, 2qd, 4qd, 3qd, 4qd

Change 72858 on 2002/12/20 by omesh@omesh_r400_linux_marlboro_only_devel

 Added the PA_SC_AA_CONFIG.MAX_SAMPLE_DIST programming but bug
symptoms
 still remain.

Change 72828 on 2002/12/20 by georgev@devel_georgev_r400_lin2_marlboro

 Added back test and removed errant instructions.

Change 72775 on 2002/12/20 by georgev@devel_georgev_r400_lin2_marlboro

 Added simple jumps (really this time).

Change 72710 on 2002/12/20 by smoss@smoss_crayola_win

 SU tests

Change 72707 on 2002/12/20 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 72654 on 2002/12/19 by csampayo@fl_csampayo2_r400

 Adding 2 new realtime streams tests, updated test_list accordingly

Change 72649 on 2002/12/19 by markf@markf_r400_win_marlboro

 Added some cases that only do clears w/ no drawing

Change 72609 on 2002/12/19 by jhoule@jhoule_r400_win_marlboro

 Added support for volume maps and perspective correction.

Change 72564 on 2002/12/19 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 72545 on 2002/12/19 by ashishs@fl_ashishs_r400_win

 updated to have correct mode

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1679 of 1898

 Page 309 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 72537 on 2002/12/19 by omesh@omesh_r400_linux_marlboro_only_devel

 Changed test to use rectangle primitives instead of quad primitives, to
 offer a cleaner test stimulus to the RBC interface for Bill.

Change 72535 on 2002/12/19 by vgoel@fl_vgoel2

 simplified the test

Change 72527 on 2002/12/19 by smoss@smoss_crayola_win

 SU tests

Change 72474 on 2002/12/19 by omesh@omesh_r400_linux_marlboro_only_devel

 Changed (fixed) factor for numerical range for the SINTEGER and UINTEGER cases to
use the entire range.

Change 72451 on 2002/12/19 by csampayo@fl_csampayo_lt_r400

 Correct shader file names

Change 72426 on 2002/12/19 by smoss@smoss_crayola_linux_orl_regress

 test was programming the fifo to a value larger than designed

Change 72417 on 2002/12/19 by georgev@devel_georgev_r400_lin2_marlboro

 Fixed tests.

Change 72387 on 2002/12/19 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 72386 on 2002/12/19 by mkelly@fl_mkelly_r400_win_laptop

 basic pipe disable configurations matching vtx and pix

Change 72367 on 2002/12/19 by mkelly@fl_mkelly_r400_win_laptop

 Pipe disable vtx 0 pix 0

Change 72365 on 2002/12/19 by mkelly@fl_mkelly_r400_win_laptop

 simple triangle as a baseline for some other tests...

Change 72317 on 2002/12/18 by csampayo@fl_csampayo2_r400

 Update to level at csampayo2

 Page 310 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 72295 on 2002/12/18 by csampayo@fl_csampayo_lt_r400

 Update frame buffer sizes

Change 72250 on 2002/12/18 by omesh@omesh_r400_linux_marlboro_only_devel

 Fixed test.... Reduced the "all" and "fog_random" testcases exactly by a factor of 16 in
terms of
 number of pixels rendered.

Change 72212 on 2002/12/18 by pauld@pauld_r400_win_marlboro

 test modified for Diag Environment, Watcom Compiler

Change 72182 on 2002/12/18 by ashishs@fl_ashishs_r400_win

 checkpoint for left ucp plane

Change 72161 on 2002/12/18 by grayc@chip_regress_orl

 temp compile script

Change 72149 on 2002/12/18 by smoss@smoss_crayola_win

 SU tests

Change 72146 on 2002/12/18 by pauld@pauld_r400_win_marlboro

 tests modified for Diag Environment, Watcom Compiler

Change 72144 on 2002/12/18 by mkelly@fl_mkelly_r400_win_laptop

 Test SC FIFO sizing...

Change 72133 on 2002/12/18 by csampayo@fl_csampayo3_r400

 Uncomment tests that now run ok

Change 72132 on 2002/12/18 by markf@markf_r400_win_marlboro

 Pass through shaders for a few tests

Change 72130 on 2002/12/18 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 72128 on 2002/12/18 by mkelly@fl_mkelly_r400_win_laptop

 Page 311 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Initial test, disable pix and vtx pipe 0

Change 72094 on 2002/12/18 by csampayo@fl_csampayo3_r400

 Delete currently unavailable test r400vgt_real_time_events_04

Change 72082 on 2002/12/18 by csampayo@fl_csampayo_r400

 Updated test status and test_list for the following tests:
 r400cl_clip_edgeflags_frustum_corners_01
 r400cl_clip_edgeflags_frustum_corners_02

Change 72075 on 2002/12/18 by mkelly@fl_mkelly_r400_win_laptop

 Changed to one read at end of viz query tests...

Change 72068 on 2002/12/18 by mkelly@fl_mkelly_r400_win_laptop

 Test PA_CL_ENHANCE, vertex reorder and clip seq random combinations...

Change 71995 on 2002/12/17 by ashishs@fl_ashishs_r400_win

 initial checkin for the point sprite mode = 2 (CULL USING RADIUS BASED
DISTANCE FROM CENTER POINT EXPAND CLIP ON INTERSECTION) with cull only
enable = true

Change 71988 on 2002/12/17 by ashishs@fl_ashishs_r400_win

 The purpose of this test is to test ucp clip for point list with UCP Point Sprite Mode =
0(CULL USING DISTANCE FROM CENTER OF THE POINT)

 The test generates 12 textured points in an orderly fashion around the 4 enabled ucp
planes i.e (top,left,right,bottom gband edge) it generates 3 points on each ucp plane. Out of the 3
points, 1 point lies eactly on the ucp plane, the other 2 points slightly outside and slightly
inside(+ or - 0.000001f with respect to the ucp plane)
 When Clipping is enabled for ucp planes, the test retains all the points lying ON or
INDISE the ucp planes wheras discards all the points lying OUTSIDE the ucp planes.

Change 71966 on 2002/12/17 by csampayo@fl_csampayo_r400

 Adding new clipper tests checking polymode corner cases

Change 71914 on 2002/12/17 by lseiler@lseiler_r400_win_marlboro2

 Added new endian modes to dumpview and rb color format tests

Change 71895 on 2002/12/17 by ashishs@fl_ashishs_r400_win

 Page 312 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 The purpose of this test is to test ucp clip for point list with UCP Point Sprite Mode =
1(CULL USING RADIUS BASED DISTANCE FROM CENTER OF THE POINT)

 The test generates 28 textured points in an orderly fashion around the ucp's which areset
to clip like gbands (using 4 ucp's) . i.e (top,left,right,bottom ucp edge)
 The test generates 7 points on each ucp plane. Out of the 7 points, 1 point lies eactly on
the ucp plane, the other 6 vary based on the cases specified in the test.

 The cases are given below (delta = 0.000001f):
 Case 1: The center of point lies exactly on the ucp plane.
 Case 2: The center of point lies INSIDE the clip plane and distance between the center of
point and the clip plane = radius of the point - delta
 Case 3: The center of point lies INSIDE the clip plane and distance between the center of
point and the clip plane = radius of the point
 Case 4: The center of point lies INSIDE the clip plane and distance between the center of
point and the clip plane = radius of the point + delta
 Case 5: The center of point lies OUTSIDE the clip plane and distance between the center
of point and the clip plane = radius of the point - delta
 Case 6: The center of point lies OUTSIDE the clip plane and distance between the center
of point and the clip plane = radius of the point
 Case 7: The center of point lies OUTSIDE the clip plane and distance between the center
of point and the clip plane = radius of the point + delta

 When Clipping is enabled for ucp's, the test retains all the cases except the case 7

 RETAINS THE POINTS WHEN THE DISTANCE BETWEEN THE CENTER OF THE
POINT AND THE CLIP PLANE
 IS LESS THAN OR EQUAL TO THE RADIUS
 DISCARDS THE POINTS WHEN THE DISTANCE BETWEEN THE CENTER OF
THE POINT AND CLIP PLANE IS GREATER THAN THE RADIUS AND THE CENTER OF
THE POINT IS OUTSIDE THE CLIP PLANE

Change 71857 on 2002/12/17 by omesh@omesh_r400_linux_marlboro_only_devel

 Using consolidated register write instead of setting each register field
 seperately.

Change 71831 on 2002/12/17 by lseiler@lseiler_r400_win_marlboro2

 Updated golden files

Change 71825 on 2002/12/17 by lseiler@lseiler_r400_win_marlboro2

 Support two new endian modes 8IN64 and 8IN128, required new golden images for two
tests that wrote out register values

Change 71819 on 2002/12/17 by smoss@smoss_crayola_win

 SU tests

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1680 of 1898

 Page 313 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 71767 on 2002/12/17 by omesh@omesh_r400_linux_marlboro_only_devel

 Changed test to use quad lists instead of triangle lists to eliminate all rasterization
 concerns associated with per pixel multisample rendering. This seems to produce all quad
sample masks
 correctly, as verified by Bill, although the tile probes now don't seem to work as
expected.

Change 71755 on 2002/12/17 by ashishs@fl_ashishs_r400_win

 updated to less number of cases using 3 cases for each plane (exactly on the plane, just
outside the plane and just inside the plane)

Change 71740 on 2002/12/17 by markf@markf_r400_linux_marlboro

 Added standard and standard_z test cases

Change 71734 on 2002/12/17 by omesh@omesh_r400_linux_marlboro_only_devel

 Changed test to use quads lists instead of triangle lists to eliminate all rasterization
 concerns associated with per pixel multisample rendering. This seems to produce all quad
sample masks
 correctly, as verified by Bill, although the tile probes now don't seem to work as
expected.

Change 71723 on 2002/12/17 by mkelly@fl_mkelly_r400_win_laptop

 Robustly check sc_one_quad_per_clock and quad_order_enable...

Change 71716 on 2002/12/17 by ashishs@fl_ashishs_r400_win

 updated to less number of cases and decreased the delta for cases that lie inside and
outside the gbands

Change 71676 on 2002/12/17 by mkelly@fl_mkelly_r400_win_laptop

 Robustly check pkr row disable...

Change 71656 on 2002/12/17 by smoss@smoss_crayola_linux_orl_regress

 renamed shader files for unix case

Change 71623 on 2002/12/16 by omesh@omesh_r400_linux_marlboro_only_devel

 Added more golden results to list for regress_e. Also added standard testcases to tests that
were missing them.

Change 71593 on 2002/12/16 by ygiang@ygiang_r400_linux_marlboro

 Page 314 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 added: random testing for sp

Change 71588 on 2002/12/16 by markf@markf_r400_lt_marlboro

 New simple test for tile buffer debug

Change 71584 on 2002/12/16 by ygiang@ygiang_r400_linux_marlboro

 fixed: emu time out

Change 71579 on 2002/12/16 by georgev@devel_georgev_r400_lin2_marlboro

 Added new tests and fixed old ones.

Change 71573 on 2002/12/16 by vgoel@fl_vgoel2

 added stress test for hos which will use all primtitive and tessellation type. It is not
complete yet.

Change 71503 on 2002/12/16 by ashishs@fl_ashishs_r400_win

 The purpose of this test is to test frustum clip planes for point list.
 The test generates 28 textured points in an orderly fashion around the frustum planes. i.e
(top,left,right,bottom frustum edge) it generates 7 points on each plane. Out of the 7 points, 1
point lies eactly on the frustum plane whereas the remainign 6 point positions vary, with 3 points
on the inside and 3 points on the outside of the frustum.

 This test generates additionally 6 points for the near and the far planes and the clip space
is defined to be OGL clip space. Out of the 6 points, 3 points are close to the near plane wheras 3
points are close to the far plane. Similarly out of the 3 points 1 point lies outside,1 point lies on
the frustum plane and the 3rd point lies inside the frustum plane.

 When Clipping is enabled for frustum, the test retains all the points lying ON or INDISE
the frustum wheras discards all the points lying OUTSIDE the frustum viz performs culling

Change 71502 on 2002/12/16 by omesh@omesh_r400_linux_marlboro_only_devel

 Added 2 valid testcases using a different way of hitting specific samples in screen space
(Not using the PA sample mask).
 Even if I render subpixel triangles, the SX->RB quad mask waveforms don't show the
right detail masks of the right samples being rendered to.
 The only 2 valid testcases in this file are "OnePixel8Fragments" and
"OnePixel4thFragment".

Change 71501 on 2002/12/16 by omesh@omesh_r400_linux_marlboro_only_devel

 Added missing texture constant programming needed for resolve a few days
 ago, but forgot to check this file in. The resolve seems to work, but

 Page 315 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 the multisampling does not seem to hit the right samples with the right
 colors. Will add a Bugzilla by the end of the day after further
 investigation.

Change 71468 on 2002/12/16 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 71461 on 2002/12/16 by abeaudin@abeaudin_r400_win_marlboro

 fixed blender GL_ONE precision problem

Change 71454 on 2002/12/16 by ashishs@fl_ashishs_r400_win

 The purpose of this test is to test gband clip for point list. The test generates 28 textured
points in an orderly fashion around the gbands. i.e (top,left,right,bottom gband edge) it generates
7 points on each gband. Out of the 7 points, 1 point lies eactly on the gband whereas the
remainign 6 point positions vary with 3 points on the inside and 3 points on the outside of the
gband.
 When Clipping is enabled for gbands, the test retains all the points
 lying ON or INDISE the gbands wheras discards all the points lying OUTSIDE the
gbands viz performs culling

Change 71348 on 2002/12/16 by mkelly@fl_mkelly_r400_win_laptop

 RealDOT = 1 by default

Change 71174 on 2002/12/13 by csampayo@fl_csampayo2_r400

 Added 3 new tests

Change 71173 on 2002/12/13 by csampayo@fl_csampayo2_r400

 Adding new SU polymode culling tests

Change 71144 on 2002/12/13 by markf@markf_r400_win_marlboro

 yadda, yadda

Change 71126 on 2002/12/13 by georgev@devel_georgev_r400_lin2_marlboro

 Added new tests.

Change 71071 on 2002/12/13 by ctaylor@fl_ctaylor_r400_dtwin_marlboro

 Add function to RC to allow test-level interface to enable random hi-z kills for random
testing.
 Added fuction call to r400sc_rand.cpp

 Page 316 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Added SERIALIZE to VFD utility to allow auto-gen tests to run both faster and more
realistically.

Change 71056 on 2002/12/13 by ctaylor@fl_ctaylor_r400_dtwin_marlboro

 re-enable perf counters

Change 70967 on 2002/12/13 by ashishs@fl_ashishs_r400_win

 the problem with the earlier checkin solved using
render_engine.Wait_Gfx_Idle_No_Flush(); . Clipping also enabled.

 The test currently has a problem in which the some clipped points dont get the correct
texture. Need to check if its an aliaising effect.

Change 70958 on 2002/12/13 by ashishs@fl_ashishs_r400_win

 The test renders 128 points. 64 points with point size from vertex export and 64 points
with point size from state registers of SU alternating each time. Also it varies the point size for
the 64 points with point size from vertex export alternating between 2 different point sizes. The
points are clipped using 6 UCP clip planes viz 64 combinations thereby generating 64 cases for
each of the point size type viz vertex export 64 cases and SU state registers 64 combinations.
 The test also verifies the point sprite texturing mechanism built into the SU/SQ thru the
parameter generation feature.

 The test currently has a problem in which the last row of the points dont vary the point
size from the vertex export which is under review.Clipping is disabled until review.

Change 70883 on 2002/12/12 by csampayo@fl_csampayo2_r400

 Adding new SU point test for size in vertex

Change 70838 on 2002/12/12 by georgev@devel_georgev_r400_lin2_marlboro

 Added new tests.

Change 70753 on 2002/12/12 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 70742 on 2002/12/12 by mkelly@fl_mkelly_r400_win_laptop

 ROM disable pixel pipes 2 and 3

Change 70739 on 2002/12/12 by mkelly@fl_mkelly_r400_win_laptop

 ROM bad pipe disable 2 & 3 vertex pass

Change 70730 on 2002/12/12 by mkelly@fl_mkelly_r400_win_laptop

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1681 of 1898

 Page 317 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 PA_SC_ENHANCE.PKR_ROW_WRAP_DISABLE test

Change 70726 on 2002/12/12 by ashishs@fl_ashishs_r400_win

 updated comments and description. corrected cull radius in the test. generalised the test
so that the point size can be entered using state registers in SU as well as vertex expot data using
a single variable. (there doesn't seem to be problem with the texture as mentioned before
because at low resolution its due to aliasing effect)

Change 70720 on 2002/12/12 by mkelly@fl_mkelly_r400_win_laptop

 ROM disabled pipes 2 and 3

Change 70665 on 2002/12/12 by ashishs@fl_ashishs_r400_win

 Sample test showing texture failure with vertex export point size. The texture breaks with
point sizes of 8, 16 but passes with point size of 32. Also the texture breaks only on vertex export
point size and not on the SU point size present. (the test has controls to enable/disable the vertex
export point size)

Change 70567 on 2002/12/11 by viviana@viviana_crayola_linux_orl

 Test to read the rbbm bus reads.

Change 70546 on 2002/12/11 by georgev@devel_georgev_r400_lin2_marlboro

 Changed for different picture on output.

Change 70539 on 2002/12/11 by georgev@devel_georgev_r400_lin2_marlboro

 Added new tests for predicated mova and sets.

Change 70463 on 2002/12/11 by ashishs@ashishs_crayola_linux_orl

 Changed this file to run on linux. The test had problems with the Index buffer been
written to memory multiple times unnecessarily.

Change 70450 on 2002/12/11 by vgoel@fl_vgoel2

 added r400vgt_hos_tri_adaptive_complex test

Change 70448 on 2002/12/11 by vgoel@fl_vgoel2

 modifed for higher tessellation level and also added texture mapping

Change 70416 on 2002/12/11 by vgoel@fl_vgoel2

 changed the input texture file name from *.bmp to *.BMP

 Page 318 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 70344 on 2002/12/11 by rramsey@RRAMSEY_P4_r400_win

 fix problem with loading stipple repeat count value

Change 70329 on 2002/12/11 by omesh@omesh_r400_linux_marlboro_only_devel

 Checked in a corner case for OnePixel8Fragments with all Red samples for
 the one pixel.

Change 70306 on 2002/12/11 by rramsey@rramsey_crayola_linux_orl

 Add randomization for perf countters

Change 70305 on 2002/12/11 by kevino@kevino_r400_win_marlboro

 Added format comp cases to small prim, as well as 4x4, 8x8, and 16x16
(ARGB8888 only for now)

Change 70246 on 2002/12/10 by grayc@chip_regress_orl

 fixed test name

Change 70236 on 2002/12/10 by markf@markf_tip_r400_linux_marlboro

 Fixed Inifinity and NaN cases

Change 70208 on 2002/12/10 by markf@markf_tip_r400_linux_marlboro

 Fixed to give infinity and NaN equal weight

Change 70169 on 2002/12/10 by georgev@devel_georgev_r400_lin2_marlboro

 New tests added.

Change 70160 on 2002/12/10 by csampayo@fl_csampayo2_r400

 Renable tests:
 r400vgt_event_handling_03
 r400vgt_event_handling_04

 Add tests:
 r400vgt_real_time_events_03
 r400vgt_real_time_events_04

Change 70151 on 2002/12/10 by mkelly@fl_mkelly_r400_win_laptop

 change to wait_gfx_idle_no_flush before read back of status regs

 Page 319 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 70080 on 2002/12/10 by omesh@ma_omesh

 Reverted back for the One Pixel cases to use seperate contexts for each fragment. I
cannot change a register state within the same context, as there is no h/w synchronization
featured for this.

Change 70053 on 2002/12/10 by omesh@omesh_r400_linux_marlboro_only_devel

 Made the One Pixel cases use only a single context to simplify debugging
 for Bill. The test always seemed to produce the 8 tiles it was supposed
 to, at the RBT -> RBC interface. RC -> RB only sends a single
 consolidated packed tile which is probably expanded into 8 tiles.

Change 69948 on 2002/12/10 by rramsey@rramsey_crayola_linux_orl

 add usage comments

Change 69946 on 2002/12/10 by ctaylor@fl_ctaylor_r400_dtwin_marlboro

 Update SC rand shell for new RTS trackers.

Change 69901 on 2002/12/10 by georgev@devel_georgev_r400_lin2_marlboro

 Added simple move test.

Change 69878 on 2002/12/10 by ctaylor@fl_ctaylor_r400_dtwin_marlboro

 Small update to SC rands
 Fix Perf Counter PA bug with uninitialized select values.

Change 69834 on 2002/12/09 by georgev@devel_georgev_r400_lin2_marlboro

 Added predicated kill tests.

Change 69833 on 2002/12/09 by csampayo@fl_csampayo_r400

 Update for tiling

Change 69715 on 2002/12/09 by ctaylor@fl_ctaylor_r400_dtwin_marlboro

 Add performance test

Change 69714 on 2002/12/09 by mkelly@fl_mkelly_r400_win_laptop

 Fix print title...

Change 69709 on 2002/12/09 by omesh@omesh_r400_linux_marlboro_only_devel

 Added 1 pixel testcases.

 Page 320 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 69692 on 2002/12/09 by mkelly@fl_mkelly_r400_win_laptop

 Enable clipper vertex reordering by default and update two test golds for regress_e to
match...

Change 69668 on 2002/12/09 by ashishs@fl_ashishs_r400_win

 initial checkin of perspective divide clipping tests with different primitive positions with
respect to frustum

Change 69666 on 2002/12/09 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint on new test...

Change 69640 on 2002/12/09 by omesh@omesh_r400_linux_marlboro_only_devel

 Made some changes to make sure the sample mask is set correctly in the
 PA, to make sure I render only a single sample within a single pixel for
 all 8 fragments. The waveforms don't show the right number of tile
 probes coming down, neither does the course sample mask seem correct.

Change 69628 on 2002/12/09 by csampayo@fl_csampayo2_r400

 Adjust image size for tiling

Change 69617 on 2002/12/09 by omesh@omesh_r400_linux_marlboro_only_devel

 Added some simplified 1 Pixel testcases for Bill Lawless.

Change 69604 on 2002/12/09 by llefebvr@llefebvre_laptop_r400_emu

 Backing out the change to the muladd that broke many regression tests.

Change 69570 on 2002/12/09 by mkelly@fl_mkelly_r400_win_laptop

 Update test to dump vertex array for debugging...

Change 69566 on 2002/12/09 by mkelly@fl_mkelly_r400_win_laptop

 Read viz query status registers using r400vgt_viz_query_01 as baseline.

Change 69422 on 2002/12/06 by markf@markf_tip_r400_linux_marlboro

 Fixed

Change 69362 on 2002/12/06 by omesh@omesh_r400_linux_marlboro_only_devel

 Added code to turn off multisampling for the resolve pass. This still

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1682 of 1898

 Page 321 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 didn't make the resolve produce any colors on the final image.

Change 69311 on 2002/12/06 by omesh@omesh_r400_linux_marlboro_only_devel

 Increased coverage of the test, so that the output image contains an
 easily distinguishable visual result.

Change 69294 on 2002/12/06 by omesh@omesh_r400_linux_marlboro_only_devel

 Made some test fixes: Moved center of sampling area to top left of pixel (where I
intended it to
 be). Added some RB registers that were not programmed.

Change 69266 on 2002/12/06 by bbuchner@fl_bbuchner_r400_win

 corrected instances where I/O signals were being used.

Change 69250 on 2002/12/06 by omesh@omesh_r400_linux_marlboro_only_devel

 Added a second seperate surface to test that is meant for the resolved
 result. I now dump both the multisampled as well as the resolved image.
 The resolved image looks wrong. (All black)

Change 69158 on 2002/12/06 by llefebvr@llefebvre_laptop_r400_emu

 More HW precision fixes for the interpolators. Now matches perfectly HW for regular
cases. Still a problem with very large numbers (but they are not used in the regression yet).

Change 69153 on 2002/12/06 by lseiler@lseiler_r400_win_marlboro2

 Fixes minor bugs in resolve code and test

Change 69080 on 2002/12/06 by markf@markf_tip_r400_linux_marlboro

 Added more test cases

Change 69008 on 2002/12/05 by markf@markf_tip_r400_linux_marlboro

 Made the verts of the rectangle more random

Change 68976 on 2002/12/05 by vgoel@fl_vgoel2

 modified test for tracing bug

Change 68960 on 2002/12/05 by ashishs@fl_ashishs_r400_win

 updated

Change 68926 on 2002/12/05 by markf@markf_tip_r400_linux_marlboro

 Page 322 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Increased range of vertex positions from 32 to 64

Change 68906 on 2002/12/05 by vgoel@fl_vgoel2

 modified this test to output one object for debugging purpose.

Change 68878 on 2002/12/05 by ashishs@fl_ashishs_r400_win

 added tests:
 r400cl_frustum_LR_TB_01
 r400cl_edgeflags_05
 r400cl_edgeflags_06
 r400cl_edgeflags_07
 r400cl_cull_only_ena_02
 r400cl_cull_only_ena_03
 r400vte_z_fmt_02
 r400vte_z_fmt_03
 r400vte_z_fmt_04

Change 68870 on 2002/12/05 by ashishs@fl_ashishs_r400_win

 Features Tested:frustum clipping; LRTB clip cases
 Test Purpose:simple LRTB clip cases; 9 primitives; each primitive has a different
 combination of clipping control bits set for vertex 2
 Expected Results: The primitives generated are as follows:
 1. No clipping
 2. Clipped on left edge of viewing frustum
 3. Clipped on right of viewing frustum
 4. Clipped on top edge of viewing frustum
 5. Clipped on top/left corner of viewing frustum
 6. Clipped on top/right corner of viewing frustum
 7. Clipped on bottom edge of viewing frustum
 8. Clipped on bottom/left corner of viewing frustum
 9. Clipped on bottom/right corner of viewing frustum

Change 68862 on 2002/12/05 by ashishs@fl_ashishs_r400_win

 tests having primitve types as QUAD_LIST,QUAD_STRIP and POLYGON. Each test
premuting various edgeflag combinations for the primitive edges. UCP Clipping enabled with 4
planes and primitve mapped with 8 texture maps.

 Currently all these 3 tests have a problem in which the edgeflag setting overrides the
polymode linefill algorithm and hence causing extra edges to show show up inside the primitive.
(the extra edges are the edges common to triangles inside the primitives)

Change 68861 on 2002/12/05 by ashishs@fl_ashishs_r400_win

 Page 323 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 The test has a bug currently in which the edgeflag setting overrides the polymode linefill
algorithm thereby showing up and extra edge for the POLYGON(common edges between the 2
triangles of a POLYGON)

Change 68860 on 2002/12/05 by georgev@devel_georgev_r400_lin2_marlboro

 Added predicated exports.

Change 68844 on 2002/12/05 by csampayo@fl_csampayo2_r400

 Updated linear surfaces defs

Change 68839 on 2002/12/05 by omesh@omesh_r400_linux_marlboro_only_devel

 Added 2 testcases per file to test SWAP with 128 bit per pixel color, as
 Mark told me that this combination showed a bug.

Change 68823 on 2002/12/05 by ashishs@fl_ashishs_r400_win

 The test has a bug currently in which the edgeflag setting overrides the polymode linefill
algorithm thereby showing up and extra edge for the QUAD_STRIP(common edge between the
2 triangles of a QUAD)

Change 68803 on 2002/12/05 by omesh@omesh_r400_linux_marlboro_only_devel

 Fixed the opcode I was using in the pixel shader (It was wrong earlier,
 used for regular texture fetch, not multisampled texture fetch).
 However, now the Texture Pipe asserts, so I have informed Jocelyn about
 this.

Change 68800 on 2002/12/05 by markf@markf_tip_r400_linux_marlboro

 Added some more random test cases

Change 68787 on 2002/12/05 by ashishs@fl_ashishs_r400_win

 The test has a bug currently in which the edgeflag setting overrides the polymode linefill
algorithm thereby showing up and extra edge for the QUAD_LIST(common edge between the 2
triangles of a QUAD)

Change 68786 on 2002/12/05 by omesh@omesh_r400_linux_marlboro_only_devel

 Fixed the FETCH_COLOR_FRAGMENTS field.

Change 68785 on 2002/12/05 by sallen@sallen_r400_lin_marlboro

 ferret: look for context_done in reg stream to indicate context busy.

Change 68784 on 2002/12/05 by omesh@omesh_r400_linux_marlboro_only_devel

 Page 324 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 A first cut at the multisample texture fetch and resolve tests. DumpView
 doesn't display the output image correctly. Its probably not ready for
 the resolve yet. Will conform with Jocelyn.

Change 68768 on 2002/12/05 by mkelly@fl_mkelly_r400_win_laptop

 Fix read back

Change 68742 on 2002/12/05 by markf@markf_tip_r400_linux_marlboro

 Limited interpolant range to 0.0 to 1.0

Change 68688 on 2002/12/05 by markf@markf_r400_win_marlboro

 Added simple pass thru shader for interpolation tests

Change 68615 on 2002/12/04 by omesh@omesh_r400_linux_marlboro_only_devel

 Added 7 testcases to test RB fog blending in COLOR_8 mode.

Change 68612 on 2002/12/04 by markf@markf_r400_win_marlboro

 Simple test for interpolators

Change 68577 on 2002/12/04 by abeaudin@abeaudin_r400_win_marlboro

 fixed blender precision problem

Change 68542 on 2002/12/04 by omesh@omesh_r400_linux_marlboro_only_devel

 Fixed Buzilla bug#886. Color Mask plane bits now replicate within 32 bit
 word, based on number of bytes per pixel.

Change 68507 on 2002/12/04 by llefebvr@llefebvre_laptop_r400_emu

 The emulator was off by 1 bit in the adder. Need to update golds... They should not
missmatch by more than 1 LSB.

Change 68486 on 2002/12/04 by omesh@omesh_r400_linux_marlboro_only_devel

 Fixed bugzilla bug#887, explicitly sending down alpha channel for all
 vertices, so emulator and h/w don't mismatch. Haven't tested this fix
 though.

Change 68425 on 2002/12/04 by mkelly@fl_mkelly_r400_win_laptop

 Add RealDOT dword = 0 to both scripts, must manually set to 1 for test

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1683 of 1898

 Page 325 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 68424 on 2002/12/04 by ashishs@fl_ashishs_r400_win

 updated to run on Unix

Change 68421 on 2002/12/04 by ashishs@fl_ashishs_r400_win

 cleaned up unused code

Change 68420 on 2002/12/04 by llefebvr@llefebvre_laptop_r400_emu

 This is a test error. Since the test is using C0 to increase the range of the addresses, when
you modify PS_BASE you also modify which constant gets picked for range increase. You
should have used K0 instead to regardless of PS_BASE the same constant is always picked. The
test has been corrected to reflect this.

Change 68413 on 2002/12/04 by rramsey@RRAMSEY_P4_r400_win

 Constrain stipple_repeat load so that the value is greater than the current count

 Remove reset of stipple_state register after a packet with auto_reset = NEVER, since it is
not needed any more due to the constraint on stipple_repeat loads

 Add randomization for sc_one_quad and quad_order

Change 68380 on 2002/12/04 by markf@markf_r400_linux_marlboro

 Fixed build error

Change 68368 on 2002/12/04 by ashishs@fl_ashishs_r400_win

 updated to work on linux

Change 68367 on 2002/12/04 by jhoule@jhoule_r400_win_marlboro

 Various updates:
 - Supports loading of cube maps
 - Support automatic ordering of mip levels (when no level is specified)
 - Support for constants in pixel and vertex shaders (starting at 0 for each)
 - Exception trapping
 - Static allocation workaround (for old primlib issue related to RTTI)

Change 68365 on 2002/12/04 by viviana@viviana_crayola_linux_orl

 Took out the writes and reads of the viz query status registers.

Change 68342 on 2002/12/04 by georgev@devel_georgev_r400_lin2_marlboro

 Init loop counters in default.

 Page 326 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 68273 on 2002/12/03 by ygiang@ygiang_r400_linux_marlboro

 fixed: alu constant index

Change 68269 on 2002/12/03 by markf@markf_r400_win_marlboro

 Simple test for fast color clear and fast color expand.

Change 68191 on 2002/12/03 by llefebvr@llefebvre_laptop_r400_emu

 new implementation of the DOT product. Currently turned off by default. Need to set
RealDOT to 1 in registry file to turn it on. Changed regular mulladd to reflect implementation
changes as well.

Change 68173 on 2002/12/03 by ashishs@fl_ashishs_r400_win

 To Test Culling when UCPs are enabled

Change 68154 on 2002/12/03 by omesh@omesh_r400_linux_marlboro_only_devel

 Fixed bugzilla#881 to program the number format in RB correctly, based
 on the color surface format used.

Change 68126 on 2002/12/03 by ashishs@fl_ashishs_r400_win

 To check Z multiply 1/W using VTX_Z_FMT = 0 Texture included to assure integrity of
parameter cache indices is maintained.

Change 68088 on 2002/12/03 by mkelly@fl_mkelly_r400_win_laptop

 Remove SC hos test for the time being...

Change 68077 on 2002/12/03 by ashishs@fl_ashishs_r400_win

 fixed texture related problem

Change 68073 on 2002/12/03 by rramsey@RRAMSEY_P4_r400_win

 Enhance sc script
 Can disable pa sims with 'nopa' cmd line arg
 Can run with coverage on linux with 'cov' cmd line arg
 Can pause regression by touching pause_regression in test directory

Change 67985 on 2002/12/02 by markf@markf_r400_win_marlboro

 Added the test cases

Change 67969 on 2002/12/02 by ygiang@ygiang_r400_linux_marlboro

 Page 327 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 fixed: wasn't doing the right lit function before

Change 67962 on 2002/12/02 by vgoel@fl_vgoel2

 added adaptive tri-patch test

Change 67960 on 2002/12/02 by vgoel@fl_vgoel2

 added adaptive line patch and rect patch tests to test_list and modified these tests
 to export to one DWORD for one index ptr.

Change 67932 on 2002/12/02 by ashishs@fl_ashishs_r400_win

 updated since failing in tiled mode

Change 67910 on 2002/12/02 by mkelly@fl_mkelly_r400_win_laptop

 Set nan_retain in CL to false...

Change 67896 on 2002/12/02 by vgoel@fl_vgoel2

 added adaptive line patch tessellation test

Change 67881 on 2002/12/02 by georgev@devel_georgev_r400_lin2_marlboro

 Initialized unused loops for loop_2 test.

Change 67857 on 2002/12/02 by ygiang@ygiang_r400_linux_marlboro

 fixed: bugs in test cases

Change 67849 on 2002/12/02 by smoss@smoss_crayola_linux_orl_regress

 modified for Linux

Change 67847 on 2002/12/02 by vgoel@fl_vgoel2

 stored index pointers to rect patches in one dword

Change 67801 on 2002/12/02 by mkelly@fl_mkelly_r400_win_laptop

 Set R400HardwareAccurate to default on in both scripts.
 Set Tiling to default on in both scripts.

Change 67782 on 2002/12/02 by rramsey@RRAMSEY_P4_r400_win

 temp fix to get rands passing vs tb_sc

Change 67779 on 2002/12/02 by ashishs@fl_ashishs_r400_win

 Page 328 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 updated

Change 67778 on 2002/12/02 by markf@markf_r400_lt_marlboro

 Add source file

Change 67759 on 2002/12/02 by ashishs@fl_ashishs_r400_win

 XY multiply 1/W using VTX_XY_FMT = 0 Texture included to assure integrity of
parameter cache indices is maintained.

Change 67756 on 2002/12/01 by ashishs@fl_ashishs_r400_win

 To check the W0 bit in the VTE_CNTL register. primitive mapped with 8 textures.

Change 67748 on 2002/12/01 by ashishs@fl_ashishs_r400_win

 vte test : To check the W0 bit in the VTE_CNTL register

Change 67548 on 2002/11/29 by smoss@smoss_crayola_linux_orl_regress

 increased timeout

Change 67318 on 2002/11/27 by ygiang@ygiang_r400_linux_marlboro

 added:more mova tests

Change 67302 on 2002/11/27 by ygiang@ygiang_r400_linux_marlboro

 more sp tests

Change 67285 on 2002/11/27 by ygiang@ygiang_r400_linux_marlboro

 fixed: test cases

Change 67277 on 2002/11/27 by georgev@devel_georgev_r400_lin2_marlboro

 Added and fixed tests.

Change 67273 on 2002/11/27 by mkelly@fl_mkelly_r400_win_laptop

 Verify SU_SC_MODE persp corr disable

Change 67256 on 2002/11/27 by smoss@smoss_crayola_linux_orl

 edit for Linux

Change 67255 on 2002/11/27 by mkelly@fl_mkelly_r400_win_laptop

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1684 of 1898

 Page 329 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Update test to pass at GC level, including alloc TILE memory and setting CMASK

Change 67254 on 2002/11/27 by jhoule@jhoule_r400_win_marlboro

 Updated SET_TEX_LOD code generator for new syntax.

Change 67244 on 2002/11/27 by mkelly@fl_mkelly_r400_win_laptop

 Update..

Change 67170 on 2002/11/27 by hwise@fl_hwise_r400_win

 Test clean up

Change 67133 on 2002/11/26 by smoss@smoss_crayola_win

 SU TESTS

Change 67131 on 2002/11/26 by ygiang@ygiang_r400_linux_marlboro

 added: sp mova tests

Change 67101 on 2002/11/26 by ashishs@fl_ashishs_r400_win

 This is a sample test to verify the barycentric coordinates. The test generates a color band
texture of 8 colors with each color varying from the lowest intensity to the highest intensity(0-
255). The test uses display size of 256X256 so that each row in the frameBufferDump has a
different intensity of color for each color band. The primitve is then clipped with guard bands
and 6 clipping planes and the result is verified with unclipped image(same test with clip disable)
 (If the HW accurate mode isnt on then the image will have the center rows 128 and 129
with the same color intensities but the problem disappears when HW accurate mode is turned on)

Change 67081 on 2002/11/26 by vgoel@fl_vgoel2

 modified to include prim_order and pixel shader is modified

Change 67061 on 2002/11/26 by ashishs@fl_ashishs_r400_win

 updated

Change 67056 on 2002/11/26 by georgev@devel_georgev_r400_lin2_marlboro

 Ooops. Made negative.

Change 67055 on 2002/11/26 by georgev@devel_georgev_r400_lin2_marlboro

 Added new tests.

 Page 330 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 66906 on 2002/11/26 by omesh@omesh_r400_linux_marlboro_only_devel

 Increased emulator timeout some more, as 2 of the testcases (all and
 fog_random failed last night's regression due to the timeout)

Change 66905 on 2002/11/26 by omesh@omesh_r400_linux_marlboro_only_devel

 Changed the other tests that used the memory fill function to do a seperate allocate and
load for all sets of
 vertex data.

Change 66878 on 2002/11/25 by ashishs@fl_ashishs_r400_win

 This is a sample test to verify the perspective divide feature of the VTE along
with clipping. Primitve Type : TRIANGLE LIST with 2 triangles forming a rectangle texture
mapped with 8 textures. Clipping enabled with horizonatl and vertical guard bands and 6 ucp clip
planes.
 (found differences in clipped and unclipped images. under review)

Change 66869 on 2002/11/25 by csampayo@fl_csampayo2_r400

 Adjust non-RTS rect and RTS rect sizes

Change 66868 on 2002/11/25 by csampayo@fl_csampayo2_r400

 Added new RTS test

Change 66841 on 2002/11/25 by georgev@devel_georgev_r400_lin2_marlboro

 New tests added.

Change 66797 on 2002/11/25 by georgev@devel_georgev_r400_lin2_marlboro

 Added new tests.

Change 66771 on 2002/11/25 by vgoel@fl_vgoel2

 added prim_order and correct few cpp files.

Change 66770 on 2002/11/25 by omesh@omesh_r400_linux_marlboro_only_devel

 Added load vertex code within the render loop to allocate different sections of memory
instead of
 reusing the same section. (This does not require the wait_gfx_idle() call to synchronize
between various
 passes of memory writes). If this works, I will change all the other files for John Chen.

Change 66727 on 2002/11/25 by viviana@viviana_crayola_linux_orl

 Page 331 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 New test to test the reads from the rbbm - sc block.

Change 66683 on 2002/11/25 by mkelly@fl_mkelly_r400_win_laptop

 More SC HW coords testing...
 Fix regress_r400 to unzip framebuf with option z

Change 66678 on 2002/11/25 by vgoel@fl_vgoel2

 added test r400vgt_hos_PNT_adaptive_complex to test_list
 changed r400vgt_hos_PNQ_adaptive_complex.cpp to include prim_order

Change 66606 on 2002/11/25 by ashishs@fl_ashishs_r400_win

 updated comments

Change 66584 on 2002/11/25 by mkelly@fl_mkelly_r400_win_laptop

 SC HW coords extremity testing...

Change 66576 on 2002/11/25 by mkelly@fl_mkelly_r400_win_laptop

 Barycentric test on SC HW coords extremes

Change 66543 on 2002/11/24 by ygiang@ygiang_r400_linux_marlboro

 added: fog and other sp tests

Change 66537 on 2002/11/24 by mmantor@mmantor_r400_win

 increased timeout_max in test for Pipe disable testing

Change 66505 on 2002/11/23 by smoss@smoss_crayola_linux_orl_regress

 <Orlando Hardware Regression Results >

Change 66401 on 2002/11/22 by ygiang@ygiang_r400_win_marlboro_p4

 changes for hardware accurate mode

Change 66374 on 2002/11/22 by ygiang@ygiang_r400_linux_marlboro

 added: tests with new names

Change 66373 on 2002/11/22 by ygiang@ygiang_r400_linux_marlboro

 deleted: old test name

Change 66372 on 2002/11/22 by georgev@devel_georgev_r400_lin2_marlboro

 Page 332 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Added new tests.

Change 66367 on 2002/11/22 by csampayo@fl_csampayo_r400

 Updated test list and test tracker for the following tests:
 r400vgt_real_time_events_01
 r400vgt_real_time_events_02

Change 66361 on 2002/11/22 by csampayo@fl_csampayo2_r400

 Add new RTS test

Change 66360 on 2002/11/22 by csampayo@fl_csampayo2_r400

 Fix initialization of context 0 and general cleanup

Change 66343 on 2002/11/22 by ygiang@ygiang_r400_linux_marlboro

 added: shader mova test

Change 66300 on 2002/11/22 by omesh@omesh_r400_linux_marlboro_only_devel

 Removed the wait_gfx_idle() call within loops. There's now just one at
 the end of the test. I must have overlooked these tests when I did the
 others. Also compiled them to check that they all compile.

Change 66265 on 2002/11/22 by mkelly@fl_mkelly_r400_win_laptop

 Test baryc interpolation of a single line -4k to (12k-1) range in X major

Change 66169 on 2002/11/22 by mkelly@fl_mkelly_r400_win_laptop

 Only unzip a framebuf file if that file is to be compared...

Change 66111 on 2002/11/21 by ashishs@fl_ashishs_r400_win

 updated

Change 66093 on 2002/11/21 by ygiang@ygiang_r400_linux_marlboro

 fixed: alu constant reg in test

Change 66025 on 2002/11/21 by georgev@devel_georgev_r400_lin2_marlboro

 Added new tests.

Change 66008 on 2002/11/21 by omesh@omesh_r400_linux_marlboro_only_devel

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1685 of 1898

 Page 333 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Added tile buffer initialized versions of the Depth tests that use
 Larry's tile buffer data word initialization routines from addrenum(.h
 and .c)

Change 65995 on 2002/11/21 by smoss@smoss_crayola_linux_orl_emu_regress

 increased timeout

Change 65994 on 2002/11/21 by rramsey@RRAMSEY_P4_r400_win

 tb_sc.v - Put in new method for context management to fix failing vizq test
 Add DISABLE_RBBM_FILTER parameter so we can test with all rbbm data
flowing

 rand_r400sc.sh - Add some commenting to rtl sim report files

Change 65987 on 2002/11/21 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 65973 on 2002/11/21 by llefebvr@llefebvr_r400_linux_marlboro

 fixing constant setup bug in the test

Change 65880 on 2002/11/21 by georgev@devel_georgev_r400_lin2_marlboro

 Added ten_loops.

Change 65854 on 2002/11/21 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 65847 on 2002/11/21 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 65842 on 2002/11/21 by ashishs@fl_ashishs_r400_win

 removed the dump file compares

Change 65832 on 2002/11/21 by mkelly@fl_mkelly_r400_win_laptop

 Fix agp_r handling cause I broke it with previous check-in :)

Change 65830 on 2002/11/21 by georgev@devel_georgev_r400_lin2_marlboro

 Added more loop tests.

Change 65828 on 2002/11/21 by mkelly@fl_mkelly_r400_win_laptop

 Page 334 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 * Added option -w, where the user can define the $src_path, this will
 allow regress_r400 script to run when Perforce is down. The user
 needs to hardcode his $src_path in regress_r400. Search on variable
 $use_default_root and edit $src_path in the else clause.

 * Fixed bug when reading in multiple compare arguments in test_list

Change 65827 on 2002/11/21 by georgev@devel_georgev_r400_lin2_marlboro

 Buttoned up test because we're not using it anymore.

Change 65768 on 2002/11/20 by ygiang@ygiang_r400_linux_marlboro

 added: mova w/ max alu constant regs use

Change 65751 on 2002/11/20 by vgoel@fl_vgoel2

 changed it back to displaying 28 objects

Change 65745 on 2002/11/20 by jhoule@jhoule_r400_win_marlboro

 XPLAT format of variable declaration.
 Cleanup of variables and flags; still some left, but should be easier now.

 Flag -v only happens under UNIX.

Change 65630 on 2002/11/20 by mkelly@fl_mkelly_r400_win_laptop

 Fix uninitialized W...

Change 65610 on 2002/11/20 by ygiang@ygiang_r400_linux_marlboro

 fixed: triangle sizes for debug

Change 65554 on 2002/11/20 by abeaudin@abeaudin_r400_win_marlboro

 regression files

Change 65538 on 2002/11/20 by abeaudin@abeaudin_r400_win_marlboro

 adding rb tests

Change 65533 on 2002/11/20 by vgoel@fl_vgoel2

 changed test temporarily to output one line curve

Change 65527 on 2002/11/20 by ashishs@fl_ashishs_r400_win

 Page 335 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 updated to compare frameBufferDump, VapV300, ClipGa_alg and SuScan

Change 65511 on 2002/11/20 by mkelly@fl_mkelly_r400_win_laptop

 add another tricky poly offset quick test to regress_e...

Change 65509 on 2002/11/20 by ashishs@fl_ashishs_r400_win

 changed frameBufferDump in multiples of 32

Change 65503 on 2002/11/20 by ashishs@fl_ashishs_r400_win

 updated the frameBufferDump in multiples of 32

Change 65487 on 2002/11/20 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 65481 on 2002/11/20 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 65477 on 2002/11/20 by smoss@smoss_crayola_linux_orl_regress

 added rom_sc.dmp

Change 65420 on 2002/11/19 by ashishs@fl_ashishs_r400_win

 updated for texture related problem.

 for each texture added

 point_texture_constant.setMIP_FILTER(TFetchConst::Mip_BaseMap);

Change 65410 on 2002/11/19 by ashishs@fl_ashishs_r400_win

 ucp clipping of triangle strip mapped with 8 textures with edgeflag combinations

Change 65395 on 2002/11/19 by ashishs@fl_ashishs_r400_win

 edgeflag clipping with 8 textures. (primitive types: Triangle with WFLAGS &
TRIANGLE FAN)

Change 65369 on 2002/11/19 by georgev@devel_georgev_r400_lin2_marlboro

 Consolidated SQ tests.

Change 65367 on 2002/11/19 by llefebvr@llefebvre_laptop_r400_emu

 Page 336 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 This wasn't hung. Just took a lot of time. I reduced the loop count to something more
reasonable. Also changed the R400_NAN to FFC00000.

Change 65318 on 2002/11/19 by omesh@ma_omesh

 Added an explicit static cast for a conversion from int->enum. These tests should also
now compile on Windows, as I verified.

Change 65282 on 2002/11/19 by vgoel@fl_vgoel2

 added r400vgt_hos_pnl_adaptive_complex to gold

Change 65279 on 2002/11/19 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 65249 on 2002/11/19 by mkelly@fl_mkelly_r400_win_laptop

 Test which shows an interpolator bug...

Change 65239 on 2002/11/19 by csampayo@fl_csampayo2_r400

 Updated for proper timing between packets

Change 65234 on 2002/11/19 by csampayo@fl_csampayo_r400

 Added 3 new VGT tests and updated test_list and test tracker accordingly

Change 65219 on 2002/11/19 by mkelly@fl_mkelly_r400_win_laptop

 regress_e face bit check...

Change 65199 on 2002/11/19 by llefebvr@llefebvre_laptop_r400_emu

 There were two problems with this test:
 1) The first pass pixel shader wasn't exporting anything thus the SX wasn't sending
anything to the RBs hence the hang. You should never have a dummy pixel shader if there are
pixel generated.
 2) The time allowed to the test was too short. I incremented it to 10000 (was 1000).

 I took the opportunity to do some code cleanup as well. Rerun other memory export tests
to make sure I did not break anything.

Change 65189 on 2002/11/19 by mkelly@fl_mkelly_r400_win_laptop

 Regress_e test to check XY position with combinations of CENTERs, CENTROIDs

Change 65181 on 2002/11/19 by mkelly@fl_mkelly_r400_win_laptop

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1686 of 1898

 Page 337 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Short test for regress_e...

Change 65180 on 2002/11/19 by mkelly@fl_mkelly_r400_win_laptop

 Fix cull direction now that face bit detection is shader is working properly...

Change 65168 on 2002/11/19 by mkelly@fl_mkelly_r400_win_laptop

 Fix cull direction to CW, now passes with interpolators face bit fix, change 64957.

Change 65161 on 2002/11/19 by ashishs@fl_ashishs_r400_win

 cleaned up code

Change 65056 on 2002/11/18 by ashishs@fl_ashishs_r400_win

 redisgned this test since failing in tiled mode. Now the test passes the old linear dump as
well as the Tiled dump compare.

Change 65043 on 2002/11/18 by ygiang@ygiang_r400_linux_marlboro

 fixed: plgx time out for large triangle

Change 65006 on 2002/11/18 by omesh@omesh_r400_linux_marlboro_only_devel

 Increased default emulator timeout of tests (800), to ensure they don't
 timeout during nightly regressions. Don't know why the same tests take
 factors of more emulator cycles.

Change 65002 on 2002/11/18 by georgev@devel_georgev_r400_lin2_marlboro

 Changes to make

Change 64926 on 2002/11/18 by vgoel@fl_vgoel2

 added vgt_grp_prim_order type

Change 64906 on 2002/11/18 by ygiang@ygiang_r400_linux_marlboro

 modified: output channels

Change 64870 on 2002/11/18 by mkelly@fl_mkelly_r400_win_laptop

 Fix for 2^23 bias...

Change 64863 on 2002/11/18 by csampayo@fl_csampayo_lt_r400

 Temporarily comment out tests:
 r400vgt_event_handling_03

 Page 338 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 r400vgt_event_handling_04

Change 64858 on 2002/11/18 by mkelly@fl_mkelly_r400_win_laptop

 Update same changelist 61027, 2^23 bias

Change 64848 on 2002/11/18 by ashishs@fl_ashishs_r400_win

 updated to change the framebufferDump size

Change 64837 on 2002/11/18 by mkelly@fl_mkelly_r400_win_laptop

 Add negative window offset to regress_e...

Change 64829 on 2002/11/18 by ashishs@fl_ashishs_r400_win

 added triangles with edgeflags and texture test to the tracker

Change 64795 on 2002/11/18 by mkelly@fl_mkelly_r400_win_laptop

 * sq_block_model.cpp was not adding the buffer offset for centriods when centers and
centriods are sent.
 * fixed gold for r400sc_msaa_8_primtypes_01
 * add r400sc_sp_sample_cntl_01 to SC regress_e to lock in this test and help minimize
future debugging efforts.

Change 64760 on 2002/11/18 by mkelly@fl_mkelly_r400_win_laptop

 Correct golds....

Change 64652 on 2002/11/16 by csampayo@fl_csampayo2_r400

 Added wait without flush between packets

Change 64564 on 2002/11/15 by ashishs@fl_ashishs_r400_win

 tests updated (vertex buffer not set properly causing tests to FAIL, also added
render_engine.Wait_Gfx_Idle_No_Flush();)

Change 64563 on 2002/11/15 by ygiang@ygiang_r400_linux_marlboro

 added: absolute alu constant registers test

Change 64562 on 2002/11/15 by ashishs@fl_ashishs_r400_win

 tests updated (vertex buffer not set properly causing tests to FAIL, also added
render_engine.Wait_Gfx_Idle_No_Flush();)

Change 64555 on 2002/11/15 by omesh@omesh_r400_linux_marlboro_only_devel

 Page 339 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Added the 7 test names for which I have generated golden images, to be
 used with the "make regress_e" target. Will add more later.

Change 64542 on 2002/11/15 by omesh@omesh_r400_linux_marlboro_only_devel

 Checking in golden result images for 7 testcases which I can predict the image of
(offhand). The other
 testcases, I would have to spend more time to visually verify. Also checking in the magic
golden.lst
 file that supposedly keeps track of tests marked as having golden results.

Change 64525 on 2002/11/15 by mkelly@fl_mkelly_r400_win_laptop

 Golds for Frank Hsien's regression...

Change 64504 on 2002/11/15 by jhoule@jhoule_r400_win_marlboro

 Updated shader programs to new SET_* syntax.

Change 64501 on 2002/11/15 by omesh@omesh_r400_linux_marlboro_only_devel

 Added "standard" testcases for tests that we want to include in the RB mini regression.
These happen to
 correspond to some bugs testcases which Alicia is probably working on. For all future
golden images, we will
 wait on trying to freeze the emulator to be hardware accurate to 12 bits of blending and
also wait on Paul's
 make target that would support testcase based golden file creation / regression.

Change 64455 on 2002/11/15 by kevino@kevino_r400_win_marlboro

 test case files for 32as8 and 32as88

Change 64425 on 2002/11/15 by abeaudin@abeaudin_r400_win_marlboro

 added fog test

Change 64399 on 2002/11/15 by ashishs@fl_ashishs_r400_win

 updated for texture related problem.

 for each texture added

 point_texture_constant.setMIP_FILTER(TFetchConst::Mip_BaseMap);

Change 64383 on 2002/11/15 by omesh@omesh_r400_linux_marlboro_only_devel

 Page 340 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Increased emulator timeout for these tests. For some reason they worked earlier, but some
change in the emulator might have caused
 these tests to take more "emulator cycles" than before. Verified that these tests don't
timeout assert anymore, so they should pass
 correctly with the next nightly regression.

Change 64360 on 2002/11/15 by jhoule@jhoule_r400_win_marlboro

 Modified test program to prevent sending TILED 1D textures.

Change 64354 on 2002/11/15 by ygiang@ygiang_r400_linux_marlboro

 fixed: for debug

Change 64310 on 2002/11/15 by rramsey@rramsey_crayola_linux_orl

 shell script for running emulator sc rands (works on linux and win)
 runs pa and sc testbenches

Change 64284 on 2002/11/15 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 64207 on 2002/11/14 by vgoel@fl_vgoel2

 added r400vgt_hos_PNQ_adaptive_complex

Change 64205 on 2002/11/14 by vgoel@fl_vgoel2

 modified reuse number and level of tessellation

Change 64200 on 2002/11/14 by ygiang@ygiang_r400_linux_marlboro

 added: pixel cube test

Change 64162 on 2002/11/14 by vgoel@fl_vgoel2

 added wait cycles after first pass

Change 64148 on 2002/11/14 by rramsey@RRAMSEY_P4_r400_win

 move flush back to end of test, add perfcounter setup/reads

Change 64125 on 2002/11/14 by ashishs@fl_ashishs_r400_win

 This test is intended to validate the clippper processing of the edge flags for the triangle
list primitive type.
 Clipping with 4 UCPs is enabled and actual clipping takes place
 The edge flags for each primitive are permuted accross all packets

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1687 of 1898

 Page 341 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Each primitive has position, 2 colors and 8 textures.

Change 64118 on 2002/11/14 by vgoel@fl_vgoel2

 updated for not writing unknown value to export memory. Also updated is gold.

Change 64086 on 2002/11/14 by vgoel@fl_vgoel2

 deleted these files

Change 64082 on 2002/11/14 by vgoel@fl_vgoel2

 changed r400_local_tonemapping to r400vgt_local_tonemapping

Change 64068 on 2002/11/14 by mkelly@fl_mkelly_r400_win_laptop

 Add if statement to avoid annoying message about cannot unzip an agp_r file...

Change 64060 on 2002/11/14 by georgev@devel_georgev_r400_lin2_marlboro

 Fix bad regressions and put in tests for yung to use.

Change 64024 on 2002/11/14 by ygiang@ygiang_r400_linux_marlboro

 fixed: else statement for random test case

Change 64023 on 2002/11/14 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 64022 on 2002/11/14 by mkelly@fl_mkelly_r400_win_laptop

 Add textured line to regress_e

Change 64017 on 2002/11/14 by mkelly@fl_mkelly_r400_win_laptop

 Update test to behave identically to syncs prior to 60942

Change 63973 on 2002/11/14 by kevino@kevino_r400_win_marlboro

 Removes non-existant fmt_32_as_8_float and fmt_32_as_8_8_float cases.

Change 63954 on 2002/11/14 by kevino@kevino_r400_win_marlboro

 Was missing a semi-colon at the end of some of the muladd commands in the created .sp
files.

Change 63950 on 2002/11/14 by kevino@kevino_r400_win_marlboro

 Page 342 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 fixed pitch select for texture dump to be min of 32.

Change 63928 on 2002/11/14 by mkelly@fl_mkelly_r400_win_laptop

 Change gold path back to gold and not gold_tile_enabled!

Change 63927 on 2002/11/14 by mkelly@fl_mkelly_r400_win_laptop

 Support for *.agp_r management and compare....

Change 63862 on 2002/11/13 by rmanapat@rmanapat_r400_sun_marlboro

 Updated test so that ATI_MEMPAK error does not occur

Change 63859 on 2002/11/13 by csampayo@fl_csampayo2_r400

 Added wait between passes to allow memory export to complete

Change 63852 on 2002/11/13 by ygiang@ygiang_r400_linux_marlboro

 fixed:unknown value for vector

Change 63846 on 2002/11/13 by csampayo@fl_csampayo2_r400

 Updates for SQ counter update

Change 63783 on 2002/11/13 by ashishs@fl_ashishs_r400_win

 sample texture tests for customization

Change 63768 on 2002/11/13 by kevino@kevino_r400_win_marlboro

 Added static render state because primlib can't seem to deal with dynamic ones all of
a sudden.

Change 63750 on 2002/11/13 by kevino@kevino_r400_win_marlboro

 Fix pitch to min 32

Change 63739 on 2002/11/13 by grayc@chip_regress_orl

 golds for chip sims

Change 63733 on 2002/11/13 by mkelly@fl_mkelly_r400_win_laptop

 Support <test_name>.agp_r in regress_r400

Change 63729 on 2002/11/13 by grayc@chip_regress_orl

 Page 343 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 gold

Change 63728 on 2002/11/13 by grayc@chip_regress_orl

 golds for chip sims

Change 63698 on 2002/11/13 by grayc@chip_regress_orl

 gold checkins

Change 63660 on 2002/11/13 by llefebvr@llefebvre_laptop_r400_emu

 New non constant fog test.

Change 63616 on 2002/11/13 by omesh@omesh_r400_linux_marlboro_only_devel

 Checked in a temporary test I am working on. Will rename later.

Change 63602 on 2002/11/13 by rramsey@RRAMSEY_P4_r400_win

 change rands so we only wait_gfx_idle once per case

Change 63599 on 2002/11/13 by mkelly@fl_mkelly_r400_win_laptop

 To debug color change issue...

Change 63595 on 2002/11/13 by mkelly@fl_mkelly_r400_win_laptop

 Uncomment test...

Change 63588 on 2002/11/13 by mkelly@fl_mkelly_r400_win_laptop

 Comment out aborting test for the time being...

Change 63552 on 2002/11/12 by csampayo@fl_csampayo_lt_r400

 Updated test_list and test tracker for the following tests:
 r400vgt_multi_pass_pix_shader_07
 r400vgt_multi_pass_pix_shader_08

Change 63547 on 2002/11/12 by csampayo@fl_csampayo_r400

 Adding 2 new VGT multi-pass pixel shader tests with quad_order_enable bit on.

Change 63466 on 2002/11/12 by georgev@devel_georgev_r400_lin2_marlboro

 Changed comments, verify infinity works.

Change 63464 on 2002/11/12 by ashishs@fl_ashishs_r400_win

 Page 344 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 sorted test_list

Change 63458 on 2002/11/12 by ashishs@fl_ashishs_r400_win

 update

Change 63441 on 2002/11/12 by llefebvr@llefebvre_laptop_r400_emu

 Adding mova stress tests for the SQ.

Change 63435 on 2002/11/12 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 63359 on 2002/11/12 by mkelly@fl_mkelly_r400_win_laptop

 Switch to tiling...

Change 63349 on 2002/11/12 by kevino@kevino_r400_linux_marlboro

 Needed for smallprim tests

Change 63333 on 2002/11/12 by smoss@smoss_crayola_win

 update golds

Change 63325 on 2002/11/12 by mkelly@fl_mkelly_r400_win_laptop

 Modify for tiling...

Change 63313 on 2002/11/12 by omesh@omesh_r400_linux_marlboro_only_devel

 Added the color_2_10_10_10_number_gamma as upto 12 bit gamma is now supported.

Change 63271 on 2002/11/11 by csampayo@fl_csampayo_r400

 Added explicit initialization of the quad_order_enable bit in PA_SU_SC_MODE_CNTL
register

Change 63233 on 2002/11/11 by ashishs@fl_ashishs_r400_win

 edited comment

Change 63232 on 2002/11/11 by ashishs@fl_ashishs_r400_win

 Tests guard band clipping(TRIANGLE_WITH_WFLAGS)
 6 primitives in each of 4 quadrants.
 Top Left Quadrant, gouraud shading

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1688 of 1898

 Page 345 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Top Right Quadrant, FLAT SHADING with START vertex as provoking vtx
 Lower Right Quadrant, FLAT SHADING with END vertex as provoking vtx
 Lower Left Quadrant, SIX TEXTURES, with COLOR0 as transparent
 Expected Results: 6 primitives in each of four quadrants, guard band clipped

Change 63229 on 2002/11/11 by georgev@devel_georgev_r400_lin2_marlboro

 Added more random cases.

Change 63217 on 2002/11/11 by llefebvr@llefebvre_laptop_r400_emu

 Fixing an error with loops in the SQ that caused it to loop indefinitely. Also adding some
more predication tests.

Change 63182 on 2002/11/11 by mkelly@fl_mkelly_r400_win_laptop

 MSAA Primtypes SC for regress_e

Change 63180 on 2002/11/11 by mkelly@fl_mkelly_r400_win_laptop

 Multi-textures, big vertex for regress_e

Change 63173 on 2002/11/11 by mkelly@fl_mkelly_r400_win_laptop

 Add test to regress_e, SC sample control XY positions

Change 63168 on 2002/11/11 by smoss@smoss_crayola_win

 update golds

Change 63143 on 2002/11/11 by ctaylor@fl_ctaylor_r400_dtwin_marlboro

 Changed rands to insert wait_gfx_idle between each packet to get around (temporarily)
RBBM issues.

Change 63113 on 2002/11/11 by llefebvr@llefebvre_laptop_r400_emu

 Submiting an example of how to use the SQ generated counters.

Change 63109 on 2002/11/11 by georgev@devel_georgev_r400_lin2_marlboro

 Fix seg fault.

Change 63101 on 2002/11/11 by hwise@fl_hwise_r400_win

 Removed blank sapce at end of line which broke the:
 export REGRESS_DIFF_OPTIONS = IGNORE_DUMP_HEADERS

Change 63100 on 2002/11/11 by ashishs@fl_ashishs_r400_win

 Page 346 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Tests guard band clipping(POLYGON)
 4 primitives in 4 quadrants.
 Top Left Quadrant, gouraud shading
 Top Right Quadrant, FLAT SHADING with START vertex as provoking vtx
 Lower Right Quadrant, FLAT SHADING with END vertex as provoking vtx
 Lower Left Quadrant, SIX TEXTURES, with COLOR0 as transparent

 Expected Results: 1 polygon in each of four quadrants, guard band clipped

Change 63071 on 2002/11/11 by smoss@smoss_crayola_win

 allowed vte to do 1/w rather than su

Change 62910 on 2002/11/08 by csampayo@fl_csampayo_lt_r400

 Updated status in test tracker and added to test_list: r400vgt_real_time_events_01

Change 62841 on 2002/11/08 by omesh@omesh_r400_linux_marlboro_only_devel

 Added another series of 4 multibuffer golden images to test if the golden release process
works for multibuffer dump testcases.

Change 62832 on 2002/11/08 by omesh@omesh_r400_linux_marlboro_only_devel

 Added a first golden image to get familiar with the process and also verify that the golden
image release process is working.

Change 62817 on 2002/11/08 by omesh@omesh_r400_linux_marlboro_only_devel

 Added empty list of images marked as "golden" to start using Paul's gold.pl script to start
checking in golden images.

Change 62791 on 2002/11/08 by georgev@devel_georgev_r400_lin2_marlboro

 Test mova including rounding.

Change 62783 on 2002/11/08 by csampayo@fl_csampayo_r400

 Update to properly init RTS context

Change 62780 on 2002/11/08 by subad@subad_r400_win_marlboro

 Updated

Change 62776 on 2002/11/08 by mkelly@fl_mkelly_r400_win_laptop

 Add two new registery settings for bad pipe and SC packer optimize

 Page 347 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 62748 on 2002/11/08 by ashishs@fl_ashishs_r400_win

 update

Change 62746 on 2002/11/08 by ashishs@fl_ashishs_r400_win

 adding more frustum clipping tests

Change 62733 on 2002/11/08 by vgoel@fl_vgoel2

 corrected this test

Change 62731 on 2002/11/08 by csampayo@fl_csampayo2_r400

 Update to RTS data

Change 62711 on 2002/11/08 by ashishs@fl_ashishs_r400_win

 updated for last 3 vte tests viz r400vte_pos_neg_combos_01/02/03

Change 62687 on 2002/11/08 by kevino@kevino_r400_win_marlboro

 Added texture dumps (ppm and framebuf)

Change 62588 on 2002/11/07 by csampayo@fl_csampayo2_r400

 Initial check in of first RTS test

Change 62542 on 2002/11/07 by omesh@omesh_r400_linux_marlboro_only_devel

 Added 11 more extensive fog with color blending tests. These tests are
 the same as the plain fog tests, except that they render half the color
 saturation value as before and write them to the destination. In the
 second pass, they re-render the same triangles and combine the earlier
 half saturation from destination using color blending.

Change 62534 on 2002/11/07 by vgoel@fl_vgoel2

 added rect adaptive tessellation test : still problem with tessellation factors

Change 62508 on 2002/11/07 by georgev@devel_georgev_r400_lin2_marlboro

 Added mul_prev2 tests.

Change 62486 on 2002/11/07 by llefebvr@llefebvre_laptop_r400_emu

 New SQ predication tests.

Change 62456 on 2002/11/07 by mkelly@fl_mkelly_r400_win_laptop

 Page 348 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Switch from linear to tiling...

Change 62455 on 2002/11/07 by omesh@omesh_r400_linux_marlboro_only_devel

 Added 11 more extensive fog tests. The emulator results of the random testcase
 (fog_random) look strange and are possibly incorrect. I'll wait for the
 first regression run before I file any bug. May add more testcases to
 this file later this evening or tommorow.

Change 62419 on 2002/11/07 by mkelly@fl_mkelly_r400_win_laptop

 Update for tiling...

Change 62411 on 2002/11/07 by grayc@chip_regress_orl

 new test lists

Change 62398 on 2002/11/07 by mkelly@fl_mkelly_r400_win_laptop

 Update for tiling...

Change 62315 on 2002/11/07 by mkelly@fl_mkelly_r400_win_laptop

 Update to work with COLOR::SURFACE class and tiling mode

Change 62290 on 2002/11/07 by rramsey@RRAMSEY_P4_r400_win

 add to depot

Change 62276 on 2002/11/07 by georgev@devel_georgev_r400_lin2_marlboro

 Added mova_floor tests to list.

Change 62258 on 2002/11/07 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 62238 on 2002/11/06 by ashishs@fl_ashishs_r400_win

 to show nan kill for points

Change 62168 on 2002/11/06 by georgev@devel_georgev_r400_lin2_marlboro

 New tests for mova_floor.

Change 62144 on 2002/11/06 by vgoel@fl_vgoel2

 added compex adaptive tessellation test for PNQ and added some more cool images

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1689 of 1898

 Page 349 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 62143 on 2002/11/06 by vgoel@fl_vgoel2

 modified test for exporting to off-screen fram buffer

Change 62116 on 2002/11/06 by omesh@omesh_r400_linux_marlboro_only_devel

 Fixed a bug related to the 2nd pass of blending over the same triangles,
 related to bringing out the effects of the Alpha channel using Color.
 Also switched off the "MAKE_VISUAL" option used to bring out Alpha using
 Color. This will reduce the number of render states sent to the CP ring
 buffer and hopefully be within the limit of 7 render state sets.
 Please note that the h/w interface dump files will change and so will
 the Color channel of the Framebuffer. The Alpha channel of the
 framebuffer should remain unchanged.

Change 62103 on 2002/11/06 by ashishs@fl_ashishs_r400_win

 VTE test: prim type- Point, cycling Z scale and Z offset through all bits including sign
changes

Change 62079 on 2002/11/06 by ashishs@fl_ashishs_r400_win

 VTE test: prim type- Point, cycling Y scale and Y offset through all bits including sign
changes

Change 62056 on 2002/11/06 by mkelly@fl_mkelly_r400_win_laptop

 Make frame buffer dump multiple of 32 in DISP_X_DIM and DISP_Y_DIM for tiling

Change 62050 on 2002/11/06 by ashishs@fl_ashishs_r400_win

 VTE test: prim type- Point, cycling X scale and X offset through all bits including sign
changes

Change 62012 on 2002/11/06 by kevino@kevino_r400_linux_marlboro

 Added test cases for simple2D_2x2 with a bunch of formats

Change 61904 on 2002/11/06 by mkelly@fl_mkelly_r400_win_laptop

 Change dump boudaries to multiple of 32 so we can switch to tiling.

Change 61749 on 2002/11/05 by georgev@devel_georgev_r400_lin2_marlboro

 Added a NULL check to see if the seg fault is fixed.

Change 61716 on 2002/11/05 by mkelly@fl_mkelly_r400_win_laptop

 Page 350 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Comment out texture fills to the tiled framebuffer...

Change 61715 on 2002/11/05 by mkelly@fl_mkelly_r400_win_laptop

 Comment out filling framebuffer with texture data to look correct in tiled mode..

Change 61656 on 2002/11/05 by mkelly@fl_mkelly_r400_win_laptop

 Possible SQ interpolation bug...

Change 61492 on 2002/11/04 by georgev@devel_georgev_r400_lin2_marlboro

 Test using the new register sets.

Change 61483 on 2002/11/04 by ygiang@ygiang_r400_linux_marlboro

 added: co-issue and direct scalar export test

Change 61403 on 2002/11/04 by ashishs@fl_ashishs_r400_win

 updated

Change 61401 on 2002/11/04 by ashishs@fl_ashishs_r400_win

 added another vte performance test

Change 61372 on 2002/11/04 by omesh@omesh_r400_linux_marlboro_only_devel

 Removed all multiple occurences of Wait_Gfx_Idle(), except the last one, as h/w
automatically synchronizes between multiple render states.
 Keeping the Wait_Gfx_Idle() between each change of render state would keep the h/w
pipeline from being completely full, thus not stressing it
 completely.

Change 61356 on 2002/11/04 by ashishs@fl_ashishs_r400_win

 another VTE performance test

Change 61335 on 2002/11/04 by omesh@omesh_r400_linux_marlboro_only_devel

 Removed some commented code and some dead/junk code. Tested the tiled
 test for color_8_8_8_8_number_urepeat and it seemed to work, so I'm
 marking the bug as resolved.

Change 61313 on 2002/11/04 by mkelly@fl_mkelly_r400_win_laptop

 Commented out texture data write to framebuffer for tiled mode

Change 61234 on 2002/11/02 by smoss@smoss_crayola_linux_orl_emu_regress

 Page 351 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 new path for output

Change 61198 on 2002/11/01 by omesh@omesh_r400_linux_marlboro_only_devel

 Completed the Various Format testcases in which each color buffer is
 programmed to have a different (or random) color format. Also introduced
 6 more random testcases. Visually verified the results, except atleast
 COLOR_8_A which doesn't render correctly in any buffer. There's already
 a bug filed for this symptom (Bugzilla Bug I.D. 407)

Change 61166 on 2002/11/01 by ashishs@fl_ashishs_r400_win

 updated

Change 61161 on 2002/11/01 by ashishs@fl_ashishs_r400_win

 updated

Change 61156 on 2002/11/01 by ashishs@fl_ashishs_r400_win

 to test vte control register and also varying display dimesions for texture mapped
primitive.

Change 61142 on 2002/11/01 by ashishs@fl_ashishs_r400_win

 VTE performance test

Change 61132 on 2002/11/01 by csampayo@fl_csampayo2_r400

 Removed events from within partial packets

Change 61106 on 2002/11/01 by omesh@omesh_r400_linux_marlboro_only_devel

 Added overflow/underflow versions of the RB format tests to test RB
 clamping. As of now, the emulator seems to have a clamping bug. It does
 not seem to be doing any clamping, so I will file a Bugzilla on it.
 Here's another 89 testcases.

Change 61099 on 2002/11/01 by mkelly@fl_mkelly_r400_win_laptop

 Clamp bottom right XY scissor to DISP_X_DIM and DISP_Y_DIM

Change 61079 on 2002/11/01 by vgoel@fl_vgoel2

 added r400vgt_hos_PNT_adaptive

Change 61076 on 2002/11/01 by vgoel@fl_vgoel2

 Page 352 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 added tone ampping and RTL tests

Change 61069 on 2002/11/01 by vgoel@fl_vgoel2

 RTL extended to render 228 objects

Change 61067 on 2002/11/01 by vgoel@fl_vgoel2

 reduced the image size to 128 x 128

Change 61043 on 2002/11/01 by georgev@devel_georgev_r400_lin2_marlboro

 Update tests so they match changes to z buffer.

Change 61027 on 2002/11/01 by llefebvr@llefebvre_laptop_r400_emu

 Flipped GPR_MANAGEMENT fields to match CP.
 Removed float to fix on the XY load.
 Modified tests that used the feature accordingly.

Change 61018 on 2002/11/01 by ashishs@fl_ashishs_r400_win

 adding more frustum triangle clipping tests.

Change 60993 on 2002/11/01 by jhoule@jhoule_r400_win_marlboro

 Changed ACrYCbBlack to ACbYCrBlack and ACrCbYBlack to ACbCrYBlack.
 In other words, swapped Cr and Cb.
 This was changed in version 1.57 of the Instr/Const.

Change 60949 on 2002/11/01 by mkelly@fl_mkelly_r400_win_laptop

 Kill param test...

Change 60937 on 2002/11/01 by mkelly@fl_mkelly_r400_win_laptop

 Broken out line list cases from parameterized test
 Update tracker

Change 60841 on 2002/10/31 by bbuchner@fl_bbuchner_r400_win

 updated memory allocations

Change 60826 on 2002/10/31 by vgoel@fl_vgoel2

 added new PNT complex adaptive test

Change 60810 on 2002/10/31 by csampayo@fl_csampayo_r400

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1690 of 1898

 Page 353 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Added new SU test, updated test_list and test tracker accordingly

Change 60764 on 2002/10/31 by smoss@smoss_crayola_linux_orl_regress

 another new path for linux

Change 60758 on 2002/10/31 by mkelly@fl_mkelly_r400_win_laptop

 Changing test r400sc_parameterized_line_list_01
 from parameterized to single case per test

Change 60740 on 2002/10/31 by bbuchner@fl_bbuchner_r400_win

 subdivision facet test and vtx shader

Change 60731 on 2002/10/31 by smoss@smoss_crayola_linux_orl_regress

 update unix vector path

Change 60671 on 2002/10/31 by ashishs@fl_ashishs_r400_win

 added render_engine.Wait_Gfx_Idle_No_Flush();

Change 60663 on 2002/10/31 by kevino@kevino_r400_linux_marlboro

 Updated to accept multiple input values, and a scale value

Change 60654 on 2002/10/31 by mkelly@fl_mkelly_r400_win_laptop

 Update test to ensure msaa_num_samples is not set to 4 or 6.
 Fix runp dumpdiff paths

Change 60644 on 2002/10/31 by kevino@kevino_r400_linux_marlboro

 Converts unsigned in version of float to float and shows value * 255 in hex and
decimal

Change 60628 on 2002/10/31 by smoss@smoss_crayola_win

 su tests

Change 60622 on 2002/10/31 by kevino@kevino_r400_win_marlboro

 Updated to 10/31 results

Change 60600 on 2002/10/31 by mkelly@fl_mkelly_r400_win_laptop

 Comment out test r400cl_gband_tcl_01 until we resolve the hang issue

 Page 354 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 60528 on 2002/10/30 by vgoel@fl_vgoel2

 corrected shader to compute correct tessellation factor and added support to export to
 two different base addresses.

Change 60516 on 2002/10/30 by georgev@devel_georgev_r400_lin2_marlboro

 Fix Range to RangeF conversion.

Change 60469 on 2002/10/30 by ashishs@fl_ashishs_r400_win

 To test the VTE control register
 Cycles unique permutations of the VTE control register
 Condensed test which runs (vap_vte_00 - vap_vte_09 of R200) in one test.

Change 60439 on 2002/10/30 by mkelly@fl_mkelly_r400_win_laptop

 Remove ALL binary and dump files from previous run before next run.

Change 60438 on 2002/10/30 by mkelly@fl_mkelly_r400_win_laptop

 New test for SC window scissor...

Change 60347 on 2002/10/30 by georgev@devel_georgev_r400_lin2_marlboro

 Fix unrepeatable random bug.

Change 60270 on 2002/10/30 by frivas@FL_FRivas

 Update to test to correctly determine DMA size.

Change 60260 on 2002/10/30 by kevino@kevino_r400_win_marlboro

 Added tex size setting tp tp_all testcase files. Added tp_unsigned32_01_stmap that uses
tex coords in map.

Change 60253 on 2002/10/30 by mkelly@fl_mkelly_r400_win_laptop

 Update compare_list with new dumps
 Modify clean_previous_test_run() to work with parameterized tests

Change 60234 on 2002/10/30 by smoss@smoss_crayola_linux_orl_emu_regress

 gold path for unix

Change 60124 on 2002/10/29 by vgoel@fl_vgoel2

 changed rendering of image to floating point pixel rendering and modified scene data
 to float type.

 Page 355 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 60110 on 2002/10/29 by vgoel@fl_vgoel2

 updated to to rect patches tessellation of 11.5

Change 60086 on 2002/10/29 by ashishs@fl_ashishs_r400_win

 updated

Change 60076 on 2002/10/29 by mkelly@fl_mkelly_r400_win_laptop

 * runp: clean intermediate files, add -v (dumpdiff) option
 * finish multi-prim scissor para test
 * update test_list_parameterized for new test cases

Change 60074 on 2002/10/29 by ashishs@fl_ashishs_r400_win

 To test the VTE control register
 Cycles all permutations of the VTE control register
 Currently this test has slight(very minor) matching problem with the
 corresponding R200 test when 1 texture is enabled.(under review)

Change 60062 on 2002/10/29 by kevino@kevino_r400_win_marlboro

 added tfc print

Change 60058 on 2002/10/29 by kevino@kevino_r400_win_marlboro

 Got rid of randomize base seed- Paul Mitchel said it shouldn't be in tests.

Change 60020 on 2002/10/29 by omesh@omesh_r400_linux_marlboro_only_devel

 Fixed a typo.

Change 60014 on 2002/10/29 by frivas@FL_FRivas

 Fixed a few bugs with test. It now alternates fully between RPatch, TPatch, and LPatch
rendering.

Change 60008 on 2002/10/29 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 59928 on 2002/10/29 by omesh@omesh_r400_linux_marlboro_only_devel

 Removed all occurences of randomizing the Base Seed within a test, as
 this can be done at the Makefile level or runtime, when the test is run.
 This allows for the Base Seed to be logged and the results can be
 reproduced.

 Page 356 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 59927 on 2002/10/29 by vgoel@fl_vgoel2

 modified for multiple objects and multiple spot lights

Change 59920 on 2002/10/29 by omesh@omesh_r400_linux_marlboro_only_devel

 Added PA_SC_AA_CONFIG_max_sample_dist programming of 0x8 needed for
 debug of the sample mask bug for the basic multisample testcase.

Change 59912 on 2002/10/29 by kevino@kevino_r400_win_marlboro

 Dump texture to ppm and at end

Change 59855 on 2002/10/28 by vgoel@fl_vgoel2

 updated to display 28 objects

Change 59810 on 2002/10/28 by frivas@FL_FRivas

 Initial check-in of HOS RTL test. Test switches between Rect, Tri, and Line patches. It
implements texture mapping, lighting, and varies tessellation and reuse 1-14.5 and 4-6,
respectively. This test is not yet ready to be used in any regression.

Change 59787 on 2002/10/28 by omesh@omesh_r400_linux_marlboro_only_devel

 Added the basic multisample test that Bill Lawless is working with. This is so that the
 people handling the Quad Mask bug can try this test against which the Bugzilla report is
 probably filed, by Bill.

Change 59746 on 2002/10/28 by hwise@fl_hwise_r400_win

 Add include paths to primlib files so the test would compile

Change 59724 on 2002/10/28 by mkelly@fl_mkelly_r400_win_laptop

 Added -v option for using dumpdiff instead of byte compare for framebuf

Change 59686 on 2002/10/28 by smoss@regress_crayola_linux_orl_emu_regress

 test

Change 59685 on 2002/10/28 by omesh@omesh_r400_linux_marlboro_only_devel

 Added ROP3 tests (29) to rbrc and gc testbenches.
 Re-enabled Z tests in the rbrc testbench.
 Ran some ROP3 tests, although not all and the results looked good on the emulator.
 Changed format of tests to 8888 to get greater coverage.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1691 of 1898

 Page 357 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 59667 on 2002/10/28 by smoss@regress_crayola_linux_orl_emu_regress

 test

Change 59663 on 2002/10/28 by kevino@kevino_r400_win_marlboro

 Same test as tp_simple_02, but uses buildLevel to generate map that has coords in map

Change 59660 on 2002/10/28 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 59592 on 2002/10/27 by csampayo@fl_csampayo_lt_r400

 Updated test_list and test tracker status for the following tests:
 r400vgt_multi_pass_pix_shader_01
 r400vgt_multi_pass_pix_shader_02
 r400vgt_multi_pass_pix_shader_03
 r400vgt_multi_pass_pix_shader_04
 r400vgt_multi_pass_pix_shader_05
 r400vgt_multi_pass_pix_shader_06

Change 59564 on 2002/10/27 by smoss@smoss_crayola_linux_orl_regress

 temp file

Change 59478 on 2002/10/25 by csampayo@fl_csampayo2_r400

 Add new multi-pass pixel shader test

Change 59476 on 2002/10/25 by csampayo@fl_csampayo2_r400

 Increased framebuffer size and general cleanup

Change 59437 on 2002/10/25 by ashishs@fl_ashishs_r400_win

 update

Change 59428 on 2002/10/25 by vromaker@vromaker_r400_linux_marlboro

 updates

Change 59426 on 2002/10/25 by ashishs@fl_ashishs_r400_win

 Adding more guard band tests. primitives wih triangle strip, quad list, and quad strip.
Each test has 4 quadrants with each quadrant having its primitive clipped or discarded according
to guardband settings. 1st quadrant the primitive is gourarad shaded, 2nd and 3rd quadrant the
primitive is flat shaded with start and end vertex as provoking vertex respectively and the 4th
quadrant has the primitive mapped with 6 texture maps.

 Page 358 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 59381 on 2002/10/25 by kevino@kevino_r400_win_marlboro

 updated 1D test reason and tp_unsigned32_01

Change 59355 on 2002/10/25 by kevino@kevino_r400_win_marlboro

 Updated 1D failure reason and tp_unsigned32_01 hang info

Change 59344 on 2002/10/25 by tien@ma_spinach

 Updated for clamp cases tp_simple_01.

Change 59318 on 2002/10/25 by frivas@FL_FRivas

 Update to Matrix_Class definition to allow test to compile under Linux.

Change 59313 on 2002/10/25 by csampayo@fl_csampayo2_r400

 * Updated the framebuffer size to accomodate allocated buffers
 * Changed texture base address
 * Revised multi-pass control event placement
 * Revised PV calculation

Change 59310 on 2002/10/25 by kevino@kevino_r400_win_marlboro

 update 1D tp_simple_01 to emu_fail

Change 59303 on 2002/10/25 by csampayo@fl_csampayo2_r400

 Adjusted framebuffer size to accomodate allocated buffers. Moved texture base address

Change 59300 on 2002/10/25 by ashishs@fl_ashishs_r400_win

 more gband tests...

Change 59228 on 2002/10/24 by tien@ma_spinach

 Updated tp_simple_01_stmap status

Change 59211 on 2002/10/24 by ashishs@fl_ashishs_r400_win

 update

Change 59207 on 2002/10/24 by ashishs@fl_ashishs_r400_win

 Gband tests. 4 primitives, each in one of the 4 quadrants. primitive 1 with gourard
shading, primitive 2 with flat shading with start vertex as provoking vtx and primitve 3 with flat

 Page 359 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

shading and LAST vtx as the provoking vtx and 4th primitive with 6 textures. Each test has a
different setting of the Guard bands and also differ in type viz Triangle STRIP or Triangle FAN

Change 59157 on 2002/10/24 by mkelly@fl_mkelly_r400_win_laptop

 Update with new SC para tests...

Change 59100 on 2002/10/24 by ashishs@fl_ashishs_r400_win

 update

Change 59095 on 2002/10/24 by ashishs@fl_ashishs_r400_win

 Test Purpose:Tests guard band clipping (LINE STRIP)

Change 59094 on 2002/10/24 by ashishs@fl_ashishs_r400_win

 Test Purpose:Tests guard band clipping (LINE LIST)

Change 59093 on 2002/10/24 by ashishs@fl_ashishs_r400_win

 Test Purpose: Tests guard band clipping (POINT LIST)

Change 59090 on 2002/10/24 by ashishs@fl_ashishs_r400_win

 Description:Tests guard band clipping (TRIANGLE_LIST)

 Method:places vertices at various combinations of positions
 relative to the discard guard band and the clip guard band. The positions are assigned
variable names as follows:
 Position 0: outside the window, but w/in the discard guard band
 Position 1: outside the discard band, but w/in the clipping guard band
 Position 2: outside the clipping guard band

 Expected Results:The test should have polygons with the vertices in the following
 positions:
 Vertex 0 1 2 Result

 Position 0 0 0 No clipping
 0 0 1 No clipping
 0 0 2 Vertex 2 clipped to guard band
 0 1 0 No clipping
 0 1 1 No clipping
 0 1 2 Vertex 2 clipped to guard band
 0 2 0 Vertex 1 clipped to guard band
 0 2 1 Vertex 1 clipped to guard band
 0 2 2 Vertex 1 & 2 clipped to guard band
 0 0 0 No clipping
 1 0 1 No clipping

 Page 360 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 1 0 2 Vertex 2 clipped to guard band
 1 1 0 No clipping
 1 1 1 Discard polygon
 1 1 2 Discard polygon
 1 2 0 Vertex 1 clipped to guard band
 1 2 1 Discard polygon
 1 2 2 Discard polygon
 2 0 0 Vertex 0 clipped to guard band
 2 0 1 Vertex 0 clipped to guard band
 2 0 2 Vertex 0 & 2 clipped to guard band
 2 1 0 Vertex 0 clipped to guard band
 2 1 1 Discard polygon
 2 1 2 Discard polygon
 2 2 0 Vertex 0 & 1 clipped to guard band
 2 2 1 Discard polygon
 2 2 2 Discard polygon

Change 59077 on 2002/10/24 by llefebvr@llefebvre_laptop_r400_emu

 Fixing a problem in the SQ RS management where the call return address wasn't save
correctly in some cases. Fixes the advanced_test.

Change 59053 on 2002/10/24 by mkelly@fl_mkelly_r400_win_laptop

 SC Clip Rect tests, LINE_LOOP, STIPPLE, FSAA permutations...

Change 58992 on 2002/10/23 by csampayo@fl_csampayo_r400

 Adding multi-pass pixel shader with SC processing enabled

Change 58990 on 2002/10/23 by tien@ma_spinach

 Just added something I was looking at

Change 58987 on 2002/10/23 by csampayo@fl_csampayo_r400

 Adding another multi-pass pixelshader test

Change 58981 on 2002/10/23 by vgoel@fl_vgoel2

 changed the vertex format register for vec_1 in pass 2

Change 58970 on 2002/10/23 by ashishs@fl_ashishs_r400_win

 Tests guard band clipping
 4 primitives in 4 quadrants.
 Each primitive has 6 vertices and first vert on vertical guard band.

 Top Left Quadrant, gouraud shading

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1692 of 1898

 Page 361 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Top Right Quadrant, FLAT SHADING with START vertex as provoking vtx
 Lower Right Quadrant, FLAT SHADING with END vertex as provoking vtx
 Lower Left Quadrant, SIX TEXTURES, with COLOR0 as transparent

 Method: 6 Vert Strip, first vert on vertical guard band
 Expected Results: 4 primitives, four quadrants, no clipping, no discarding

Change 58927 on 2002/10/23 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 58893 on 2002/10/23 by abeaudin@abeaudin_r400_win_marlboro

 fixed program so that it does not abort

Change 58815 on 2002/10/23 by mkelly@fl_mkelly_r400_win_laptop

 All 16 permutations of CLIP RECTS tested...

Change 58813 on 2002/10/23 by vgoel@fl_vgoel2

 made changes to incorprate aperture for memory export and adding offsets

Change 58735 on 2002/10/22 by vgoel@fl_vgoel2

 added texture map with spot light

Change 58719 on 2002/10/22 by vgoel@fl_vgoel2

 GI changes , includes texture mapping

Change 58705 on 2002/10/22 by subad@subad_r400_win_marlboro

 looking at standard testcase

Change 58697 on 2002/10/22 by smoss@smoss_crayola_win

 su tests

Change 58693 on 2002/10/22 by vgoel@fl_vgoel2

 modified scene data

Change 58678 on 2002/10/22 by csampayo@fl_csampayo_r400

 Some clean up and minor updates

Change 58636 on 2002/10/22 by vgoel@fl_vgoel2

 Page 362 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 changed vtx data type to float from double

Change 58634 on 2002/10/22 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint on clip rect permutations...

Change 58614 on 2002/10/22 by ygiang@ygiang_r400_win_marlboro_p4

 added: new opcode sp tests and testcases for existing tests

Change 58609 on 2002/10/22 by kevino@kevino_r400_win_marlboro

 Added fmt2101010 to tp_multitexture_01

Change 58571 on 2002/10/22 by vgoel@fl_vgoel2

 added test scene for GI

Change 58557 on 2002/10/22 by llefebvr@llefebvre_laptop_r400_emu

 resetting the wrong count.

Change 58548 on 2002/10/22 by csampayo@fl_csampayo2_r400

 Adding another multi-pass pixel shader test

Change 58541 on 2002/10/22 by subad@subad_r400_win_marlboro

 updated

Change 58516 on 2002/10/22 by mkelly@fl_mkelly_r400_win_laptop

 Update scripts for LSF

Change 58431 on 2002/10/21 by csampayo@fl_csampayo2_r400

 Update per last memory export scheme

Change 58423 on 2002/10/21 by csampayo@fl_csampayo2_r400

 Update per latest memory export scheme

Change 58396 on 2002/10/21 by kevino@kevino_r400_win_marlboro

 Added tm.prepare(tfc) to test

Change 58381 on 2002/10/21 by llefebvr@llefebvre_laptop_r400_emu

 Page 363 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Memory export architectural change to get rid of the normalize in the SX (and do it in the
SP).

Change 58355 on 2002/10/21 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint on load sharing test emulation scripts...

Change 58333 on 2002/10/21 by llefebvr@llefebvre_laptop_r400_emu

 Fixing multi-pass shader test.

Change 58315 on 2002/10/21 by ygiang@ygiang_r400_win_marlboro_p4

 fixed: random test case for GPRS

Change 58314 on 2002/10/21 by georgev@devel_georgevhw_r400_lin_marlboro

 Fixed out of range loop increment (126 instead of 127

Change 58310 on 2002/10/21 by kryan@kryan_r400_win_marlboro

 test_lib/src/chip/gfx/.../Makefile

 test_lib/src/chip/sys/cp/Makefile

 test_lib/src/chip/perf/Makefile

 test_lib/scripts/results_diff.pl

 - Added REGRESS_DIFF_OPTIONS variable in results_diff.pl that controls whether

 or not the dumpfile headers are compared. It is set in the Makefile on a

 per directory basis for the Marlborough and Orlando test directories.

 export REGRESS_DIFF_OPTIONS = IGNORE_DUMP_HEADERS

 This will not affect Toronto tests since they do not use PrimLib for

 creating dumpfiles, and this variable was not set in the Toronto

 test suite directories.

 Page 364 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 fill_dump.cpp

 - Fixed get_FB_start(),get_FB_size(), get_AGP_start(), get_AGP_size()

 functions to correctly read registers and return the values. Previously

 they were using the register spec from previous chips which required

 additional operations to determine the correct value.

 DEPTH_SURFACE

 - Begin work on DEPTH_SURFACE class to handle fill/dump of Depth Surfaces.

 Work in progress.

 /cmn_lib/tools/autoreg/gen_testdll/gen_ar_test_render_registers.cpp

 RENDER_REGISTERS

 - Added copy constructor and assignment constructor (operator=) for this class.

 This will copy all member data (ie. register values from source object to the

 current object.

 RENDER_REGISTER_STATE

 - Added copy constructor and assignment constructor (operator=) for this class.

 This will copy all member data, allocating new copies for dynamically allocated

 memory when necessary. This will update the register_map to include any

 registers that have been modified for this object.

 The incremental register stream is not copied since this is built when

 the Get_Incremental_Register_Stream() function is called.

 - Added Set_Destination_Base(uint32 memory_area_offset, uint32 color_surface_index,

 MEMORY_AREA& memory_area) function that will default

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1693 of 1898

 Page 365 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 to ColorSurface0, and the FrameBuffer as the memory area. It will add the offset

 to the base address of the memory aperture to determine the final full device

 address for the RB_COLORn_BASE register. It will also make sure that the

 base address is aligned properly.

 RENDER_STATE

 - Work on copy constructor and assignment constructor (operator=). Since

 it is not complete, throw error if someone uses it.

Change 58307 on 2002/10/21 by csampayo@fl_csampayo_lt_r400

 Cleaned up tests, added 1 new VGT test to test_list and updated the test tracker
accordingly

Change 58295 on 2002/10/21 by csampayo@fl_csampayo_lt_r400

 Updated test description

Change 58294 on 2002/10/21 by kevino@kevino_r400_win_marlboro

 Added texture dump function

Change 58292 on 2002/10/21 by csampayo@fl_csampayo_r400

 Updated comments

Change 58278 on 2002/10/21 by csampayo@fl_csampayo2_r400

 Adding new multi pass pixel shader test

Change 58275 on 2002/10/21 by csampayo@fl_csampayo2_r400

 Update test description and clean up shaders

Change 58245 on 2002/10/21 by kevino@kevino_r400_win_marlboro

 updated based on 10/21 regressions

Change 58105 on 2002/10/18 by kevino@kevino_r400_win_marlboro

 Updated test case MipMinMag_BaseMapLinearLinear_4x4_LL

Change 58103 on 2002/10/18 by tien@ma_spinach

 Page 366 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Added a description for one of the tests.

Change 58100 on 2002/10/18 by csampayo@fl_csampayo2_r400

 Update for export memory aperture. Expand on shader comments

Change 58099 on 2002/10/18 by omesh@omesh_r400_linux_marlboro_only_devel

 Added the modified ROP3 tests (29 testcases) to Perforce. However, the emulator now
seems to
 assert for the FMT_4_4_4_4 format (Which I think it shouldn't). I am also filing a
Bugzilla
 report on this. Also added a modified Makefile. Some of the tests included in the
Makefile only exist in
 my own workspace, but this should not hurt any builds/runs of either the emulator or the
other
 tests.

Change 58092 on 2002/10/18 by csampayo@fl_csampayo2_r400

 Update some comments

Change 58089 on 2002/10/18 by csampayo@fl_csampayo2_r400

 Updated second export buffer index offset

Change 58084 on 2002/10/18 by csampayo@fl_csampayo2_r400

 Fixed typo

Change 58071 on 2002/10/18 by csampayo@fl_csampayo_r400

 Updated for export memory aperture

Change 58063 on 2002/10/18 by kevino@kevino_r400_win_marlboro

 Initial checkin

Change 58049 on 2002/10/18 by jhoule@jhoule_r400_win_marlboro

 Added full mip packing support.

 mip_packing:
 Added C library to be shared by driver people.

 enum_conv:
 Added support for MIP_PACKING field.

 Page 367 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 tconst:
 Added MIP_PACKING field.

 tutils:
 Changed getMipPitch behavior to honor original 0.
 This solves 1D mipmap offset calculation problem in the TC.

 texel_position:
 Changed texelPosition when border is set to stricty stay within texture dimension.
 Border size support still works since it is solely based on the wrap count.

 tp:
 Added support for mip offset, when appropriate.

 texture_manager:
 Added mip packing calls.
 Added prepare(tfc) function which must be called once and only once prior writing to
memory.
 Added address printing calls, #ifdef'd with PRINT_ADDRESS.

 tp_uber_test:
 Supports MIP_PACKING, TRI_JUICE.
 Can specify frame buffer size.

 Also updated tp regression tests to call prepare(tfc) prior to writing in memory.

Change 58046 on 2002/10/18 by mkelly@fl_mkelly_r400_win_laptop

 Perl script which runs one r400 test and behaves like the script "regress_r400"
 This will be used for full regressions with LSF
 A master script will call this script for each test in "test_list" and tally statistics

Change 58034 on 2002/10/18 by llefebvr@llefebvre_laptop_r400_emu

 Added aperture checks.

Change 58005 on 2002/10/18 by llefebvr@llefebvre_laptop_r400_emu

 Fixing r400vgt_vtx_export_very_very_simple_04 memory export test.

Change 57980 on 2002/10/18 by vgoel@fl_vgoel2

 modifed files for recent vertex export changes

Change 57971 on 2002/10/18 by vgoel@fl_vgoel2

 New vertex export test exporting to 2 different buffers

Change 57962 on 2002/10/18 by csampayo@fl_csampayo_r400

 Page 368 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 New vtx export case

Change 57939 on 2002/10/18 by ashishs@fl_ashishs_r400_win

 updated test_list and Tracker for the corresponding change in file name viz
r400cl_gabnd_04 to r400cl_gband_06

Change 57935 on 2002/10/18 by ashishs@fl_ashishs_r400_win

 Deleted test r400cl_gband_04 and renamed it to r400cl_gband_06. Also updated the
Validation_Approach_plan.doc since it had some errors with tests name and numberings.

Change 57896 on 2002/10/18 by mkelly@fl_mkelly_r400_win_laptop

 Update version #

Change 57816 on 2002/10/17 by csampayo@fl_csampayo_r400

 Update proves that SQ generated indices work but, pixel exports may not be working
correctly

Change 57803 on 2002/10/17 by vgoel@fl_vgoel2

 added shader for spot light for GI

Change 57801 on 2002/10/17 by ygiang@ygiang_r400_win_marlboro_p4

 added: ; to sp command

Change 57800 on 2002/10/17 by ygiang@ygiang_r400_win_marlboro_p4

 resubmit

Change 57797 on 2002/10/17 by ygiang@ygiang_r400_win_marlboro_p4

 more sp boundary and fixed for frame buffer image

Change 57790 on 2002/10/17 by ygiang@ygiang_r400_win_marlboro_p4

 added: more sp boundary tests

Change 57780 on 2002/10/17 by csampayo@fl_csampayo_r400

 Simplified to just 1 case

Change 57760 on 2002/10/17 by kevino@kevino_r400_win_marlboro

 Added 3D map clamp tests

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1694 of 1898

 Page 369 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 57754 on 2002/10/17 by mkelly@fl_mkelly_r400_win_laptop

 Add ability to define files to compare against gold on a per-test
 basis. See test_list file in test_lib/src/chip/sys/cp for an example.

Change 57752 on 2002/10/17 by ygiang@ygiang_r400_win_marlboro_p4

 fixed:alu const var

Change 57731 on 2002/10/17 by vgoel@fl_vgoel2

 added GI test files

Change 57705 on 2002/10/17 by ygiang@ygiang_r400_win_marlboro_p4

 fixed:comments

Change 57703 on 2002/10/17 by ygiang@ygiang_r400_win_marlboro_p4

 added: boundary abs opcode test

Change 57692 on 2002/10/17 by omesh@omesh_r400_linux_marlboro_only_devel

 Added an additional triangle to testcase to demonstrate fog not working
 to Alicia, for fog factor = 1.0. I still get a fully fogged triangle.

Change 57678 on 2002/10/17 by kevino@kevino_r400_win_marlboro

 Same as tp_simple_01, but uses ST coords in map w/ tm's buildLevel_STmap_8888
function

Change 57652 on 2002/10/17 by csampayo@fl_csampayo_r400

 Fix texture base address and add missing vertex shader

Change 57602 on 2002/10/16 by csampayo@fl_csampayo_r400

 Initial check in for multi-pass pixel shader test

Change 57522 on 2002/10/16 by smoss@smoss_crayola_linux_orl_regress

 all tests so far

Change 57510 on 2002/10/16 by csampayo@fl_csampayo_r400

 Added 1 new HOS with index reset test, updated test_list and test tracker

Change 57478 on 2002/10/16 by mkelly@fl_mkelly_r400_win_laptop

 Page 370 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Add finding and statistics handling for CP tests which begin with "e2"

Change 57477 on 2002/10/16 by smoss@smoss_crayola_win

 su tests

Change 57468 on 2002/10/16 by ashishs@fl_ashishs_r400_win

 updated

Change 57446 on 2002/10/16 by mkelly@fl_mkelly_r400_win_laptop

 Parameterized LINE_LIST, random combinations of PA settings...

Change 57445 on 2002/10/16 by ashishs@fl_ashishs_r400_win

 adding more CL UCP combos tests

Change 57425 on 2002/10/16 by ashishs@fl_ashishs_r400_win

 updated

Change 57415 on 2002/10/16 by ashishs@fl_ashishs_r400_win

 test edited to include more combinations

Change 57318 on 2002/10/16 by mkelly@fl_mkelly_r400_win_laptop

 Update shader filenames...

Change 57313 on 2002/10/16 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 57310 on 2002/10/16 by mkelly@fl_mkelly_r400_win_laptop

 Reduce number of indices in tests from 1024 to 256.

Change 57257 on 2002/10/15 by omesh@omesh_r400_linux_marlboro_release

 Changed test to match latest RB register specs eliminating the higher 32 bit mask for an
originally 64 bit mask.
 Also removed all references to any format > 32 bits per pixel. Removed a total of 12
testcases. Regression nightly run
 list has already been updated with these 12 test cases removed.

Change 57247 on 2002/10/15 by csampayo@fl_csampayo_r400

 Page 371 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Added 5 new VGT index reset tests and updated test_list and test tracker

Change 57222 on 2002/10/15 by ashishs@fl_ashishs_r400_win

 updated

Change 57202 on 2002/10/15 by csampayo@fl_csampayo_r400

 Updated test_list and test tracker for the following VGT tests:
 r400vgt_vtx_export_very_very_simple_01
 r400vgt_vtx_export_very_very_simple_02
 r400vgt_vtx_export_very_very_simple_03

Change 57200 on 2002/10/15 by ashishs@fl_ashishs_r400_win

 updated

Change 57193 on 2002/10/15 by csampayo@fl_csampayo2_r400

 Update description and framebuffer size

Change 57179 on 2002/10/15 by mkelly@fl_mkelly_r400_win_laptop

 Locate many of each primtype randomly through all of hardware space in 12
TEST_CASEs
 Clipping enabled and Scissor clipping to window.

Change 57149 on 2002/10/15 by llefebvr@llefebvre_laptop_r400_emu

 only writing to EM0 now.

Change 57143 on 2002/10/15 by csampayo@fl_csampayo2_r400

 Updated vtx export tests and added a new case

Change 57121 on 2002/10/15 by kevino@kevino_r400_win_marlboro

 Added simple 3D test case. 3x3x3 volume map is read from texture files
volumemap_3x3_n.ppm.
 Mapped onto 9x3 rectangle. T goes 0 to 1. S goes 0 to 3 and R goes 0 to 1, so
should see each layer of map.

Change 57107 on 2002/10/15 by kevino@kevino_r400_win_marlboro

 Updated golden files. Old ones had info in rd_r for some reason.

Change 57093 on 2002/10/15 by ashishs@fl_ashishs_r400_win

 update

 Page 372 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 57076 on 2002/10/15 by llefebvr@llefebvre_laptop_r400_emu

 Was rotating the mask in SX and shouldn't (memory exports).

Change 56985 on 2002/10/14 by kevino@kevino_r400_win_marlboro

 get rid of tex map dump

Change 56984 on 2002/10/14 by smoss@smoss_crayola_win

 multi-context phase III

Change 56977 on 2002/10/14 by ashishs@fl_ashishs_r400_win

 update

Change 56974 on 2002/10/14 by ashishs@fl_ashishs_r400_win

 Features Tested:frustum clipping; LFT rotated to each of 8 corners
 Test Purpose:LFT rotated to each of 8 corners of clipping frustum
 - 51*8 polygons
 Expected Results:clipped, overlapping triangles forming polygons in each ordinal
 direction (E, W, S, N, NW, NE, etc.); several overlapping triangles (forming polygons) in
center of image

Change 56957 on 2002/10/14 by kevino@kevino_r400_win_marlboro

 Update golden files.

Change 56943 on 2002/10/14 by kevino@kevino_r400_win_marlboro

 Added more golden images

Change 56936 on 2002/10/14 by csampayo@fl_csampayo_r400

 Added 3 new VGT tests, updated test_list and test tracker

Change 56932 on 2002/10/14 by llefebvr@llefebvre_laptop_r400_emu

 Fixing addressing errors in tests and SX block for memory exports.

Change 56930 on 2002/10/14 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 56927 on 2002/10/14 by mkelly@fl_mkelly_r400_win_laptop

 Update...

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1695 of 1898

 Page 373 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 56915 on 2002/10/14 by mkelly@fl_mkelly_r400_win_laptop

 Expand SC parameterized general random

Change 56892 on 2002/10/14 by mkelly@fl_mkelly_r400_win_laptop

 SC parameterized random tests

Change 56889 on 2002/10/14 by csampayo@fl_csampayo_lt_r400

 Updated for proper event write mode

Change 56879 on 2002/10/14 by kevino@kevino_r400_win_marlboro

 Changes for buildLevel (instead of reaLevel) to generate texture map

Change 56878 on 2002/10/14 by kevino@kevino_r400_win_marlboro

 Generated by make tp_simple_01.golden

Change 56876 on 2002/10/14 by kevino@kevino_r400_win_marlboro

 Golden images from emu for tp_simple_01 standard case

Change 56855 on 2002/10/14 by smoss@smoss_crayola_win

 su tests

Change 56834 on 2002/10/14 by mkelly@fl_mkelly_r400_win_laptop

 Comment out a print

Change 56723 on 2002/10/11 by csampayo@fl_csampayo2_r400

 Update test for new event writing mode and remove from uncommented list

Change 56707 on 2002/10/11 by csampayo@fl_csampayo_r400

 Update for new event writing mode

Change 56670 on 2002/10/11 by ashishs@fl_ashishs_r400_win

 CL test:
 LFT corner clip focus
 Test Purpose:to test LFT corner clips - 51 polygons
 Expected Results: 4 sets of clipped gourand-shaded polygons in each corner of the
 viewport

 Page 374 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 56658 on 2002/10/11 by georgev@devel_georgevhw_r400_lin_marlboro

 Addition of new tests that don't work.

Change 56635 on 2002/10/11 by mkelly@fl_mkelly_r400_win_laptop

 Full PA(CL/VTE/SU/SC) control via parameterized template

Change 56619 on 2002/10/11 by kevino@kevino_r400_win_marlboro

 uber_map- in pack function, if nH=0, set nH to 1 sso go through loop once.
(tm.buildLevel causes this)
 tp_simple_01 - set up 1D test cases as well as ones where S or T constant and the other
ranges from 0-1 or 0-0.5

Change 56602 on 2002/10/11 by csampayo@fl_csampayo2_r400

 Updated to export meaningful floats

Change 56561 on 2002/10/11 by hwise@fl_hwise_r400_win

 CP Emulator Updates (for Real-Time Streams)
 1) Added register read/write support for these registers:
 a) CP_RT_BASE
 b) CP_RT_BUFSZ
 c) CP_RT_ST_BASE
 d) CP_RT_ST_BUFSZ
 2) Added logic to Pre-Fetch Parser to do real-time fetches
 and send fetched data to appropriate Re-Ordering Queue
 3) Updated CP Microengine for better debugability of the
 real-time instance (tile)
 4) Fixed bug in CP Microengine for setting the
 "incremental_update" boolean
 5) Added logic to correctly set the "rt_enabled" boolean
 (was always set to zero)
 6) Fixed bug in the Real-Time Event Engine for dis-arming
 and event at the correct cycle
 7) Fixed bug in the Real-Time Event Engine "Compare Function"
 to return the "poll_valid" input signal when compare is
 successful (was always returning "true")

 PrimLib / Promo4Lib Updates
 1) Changed <BLK>.<REG>.read() to <BLK>.<REG>.read_nochk()
 in memory_area.cpp so these register reads are not considered
 for comparison
 2) Added Real-Time wait functions to plgx namespace
 a) void plgx::wait_gfx_rt_idle(void)
 b) bool plgx::wait_gfx_rt_idle_timeout(void)
 c) void plgx::wait_cp_rt_idle(void)

 Page 375 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 d) bool plgx::wait_cp_rt_idle_timeout(void)
 3) Increased PCI clocking from 0 to 50 clocks at end of the
 function void plgx::wait_dma_idle(void)
 4) Increased MAX_RB_BUF_SIZE to 1048576 dwords (4 MB) which
 is used to define maximum size for the ring and indirect
 buffers used by the CP. The default sizes are still 4KB.
 5) By default Promo4Lib::init() wil initialize the CP with
 Real-Time Streams enabled and send ME_INIT packets to
 both the Non-Real-Time and Real-Time Microengines
 5) Added registry key switch to allow user to disable the
 Real-Time Stream in the Non-Real_time ME_INIT packet (debug
 use only) "HKEY_LOCAL_MACHINE\\SOFTWARE\\ATI Technologies\
 \Debug\\pm4RealTimeInitDisable"
 6) Both trace_pm4_packets=="yes" or pm4Verbose!=0 will enable
 the PM4 stream debug trace to be sent to console (used to
 only be able to activate this with trace_pm4_packets=="yes")

 regress_e Golden Files Updated
 * Updated golds since the *.rd_r files no longer contain the
 register reads introduced by functions in the memory_area.cpp
 file and the *.mem_framebuf_r header defines changed once
 real-time streams were enabled by default

Change 56555 on 2002/10/11 by llefebvr@llefebvre_laptop_r400_emu

 Fixing the export format in export test.

Change 56547 on 2002/10/11 by mkelly@fl_mkelly_r400_win_laptop

 non-parameterized checkpoint...

Change 56487 on 2002/10/10 by csampayo@fl_csampayo2_r400

 Adding 32bit float vertex export test

Change 56485 on 2002/10/10 by csampayo@fl_csampayo2_r400

 Make this test case into a useful test

Change 56483 on 2002/10/10 by omesh@ma_omesh

 Changed back to the older shader to export vertex colors in different orders for all buffers
(2 in this case). This is preferable, as apart from only testing the write to different buffers, I also
want to check if the exports to each buffer are unique for each channel. The swizzle achieves
this.

Change 56455 on 2002/10/10 by jhoule@jhoule_r400_win_marlboro

 Same as tp_simple_01.cpp, but using PerfectGradient_4x4.ppm as texture.

 Page 376 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 56438 on 2002/10/10 by jhoule@jhoule_r400_win_marlboro

 More sizes...
 R=x position
 G=y position

Change 56423 on 2002/10/10 by georgev@devel_georgevhw_r400_lin_marlboro

 Added new sq tests for simple conditional debug.

Change 56420 on 2002/10/10 by jhoule@jhoule_r400_win_marlboro

 Texture where data correspond to texels, meaning that pixel (10, 13) has 10 in R and 13
in B.
 Useful for cache testing.

Change 56415 on 2002/10/10 by mkelly@fl_mkelly_r400_win_laptop

 checkpoint...

Change 56409 on 2002/10/10 by vromaker@vromaker_r400_linux_marlboro

 update to cond exec

Change 56367 on 2002/10/10 by llefebvr@llefebvre_laptop_r400_emu

 Simple memory exports are now working.

Change 56299 on 2002/10/10 by csampayo@fl_csampayo_r400

 Added bug test case

Change 56233 on 2002/10/09 by csampayo@fl_csampayo_r400

 Updated for multi-context

Change 56171 on 2002/10/09 by csampayo@fl_csampayo_r400

 1. Updated tests r400vgt_index_min_max_01 and _02 for multi-context
 2. Added new VGT tests r400vgt_index_min_max_03 and _04
 3. Updated test_list and the test tracker

Change 56168 on 2002/10/09 by ygiang@ygiang_r400_win_marlboro_p4

 added: shader src and dst modifiers tests

Change 56142 on 2002/10/09 by vromaker@vromaker_r400_linux_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1696 of 1898

 Page 377 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 - fix for tp_done/ais_pop collision
 - added conditional execution to CFS

Change 56114 on 2002/10/09 by mkelly@fl_mkelly_r400_win_laptop

 No outstanding bugs in this directory...

Change 56108 on 2002/10/09 by mkelly@fl_mkelly_r400_win_laptop

 Cleaning up old bugs, keeping some as valid tests in related block...

Change 56104 on 2002/10/09 by mkelly@fl_mkelly_r400_win_laptop

 Move a test from bug status to good block test for the SC...

Change 56099 on 2002/10/09 by mkelly@fl_mkelly_r400_win_laptop

 Move from bugs to permanent test in CL block

Change 56097 on 2002/10/09 by mkelly@fl_mkelly_r400_win_laptop

 Move nan kill test to CL block

Change 56078 on 2002/10/09 by mkelly@fl_mkelly_r400_win_laptop

 Rasterize 224 triangles, 1 packet. Each triangle should hit 4 horizontal quads.
 The test moves the triangle 4 quads at a time in X and
 2 quads in increasing Y. For each primitive, 4 quads are hit in one tile and the
 fourth quad hits the next consecutive tile.

Change 56071 on 2002/10/09 by mkelly@fl_mkelly_r400_win_laptop

 Change Wait_Gfx_Idle() to Wait_Gfx_Idle_No_Flush() inside of iterative loops.
 Add Wait_Gfx_Idle() before frame buffer dump.

 All new tests should contain the Wait_Gfx_Idle() call outside of the test case
 generation loop, preferably just before the framebuffer dump. If for some reason,
 you are reusing the index and/or vertex buffers in DMA indexing mode, then,
 you need to use Wait_Gfx_Idle_No_Flush() within and, Wait_Gfx_Idle() outside the
loop.
 Also, as you are updating or generating derivative tests, please, update the root
 tests as well.

Change 56042 on 2002/10/09 by ygiang@ygiang_r400_win_marlboro_p4

 fixed: missing test case definition

Change 56035 on 2002/10/09 by mkelly@fl_mkelly_r400_win_laptop

 Page 378 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Uncommented auto shader generation

Change 56033 on 2002/10/09 by mkelly@fl_mkelly_r400_win_laptop

 Packed color example usage for VFD

Change 56024 on 2002/10/09 by smoss@smoss_crayola_linux_orl_regress

 modifications for Linux, getting extra path stuff

Change 56018 on 2002/10/09 by mkelly@fl_mkelly_r400_win_laptop

 Missed update for idle..

Change 56017 on 2002/10/09 by mkelly@fl_mkelly_r400_win_laptop

 Change Wait_Gfx_Idle() to Wait_Gfx_Idle_No_Flush() inside of iterative loops.
 Add Wait_Gfx_Idle() before frame buffer dump.

 All new tests should contain the Wait_Gfx_Idle() call outside of the test case
 generation loop, preferably just before the framebuffer dump. If for some reason,
 you are reusing the index and/or vertex buffers in DMA indexing mode, then,
 you need to use Wait_Gfx_Idle_No_Flush() within and, Wait_Gfx_Idle() outside the
loop.
 Also, as you are updating or generating derivative tests, please, update the root
 tests as well.

Change 56008 on 2002/10/09 by mkelly@fl_mkelly_r400_win_laptop

 * Rasterize 256 triangles, 1 packet. Each triangle should hit 4 quads.
 The test moves the triangle 2 quads at a time in X and
 2 quads in increasing Y.
 * Update test_list
 * Update test documentation in test tracker

Change 56004 on 2002/10/09 by mkelly@fl_mkelly_r400_win_laptop

 When -z (zip) option is selected, zip all files except *.mem_framebuf_r

Change 55961 on 2002/10/08 by kevino@kevino_r400_win_marlboro

 small prims/textures

Change 55953 on 2002/10/08 by ygiang@ygiang_r400_win_marlboro_p4

 added: boundray values test for sp
 fixed: image for standard test

Change 55945 on 2002/10/08 by ashishs@fl_ashishs_r400_win

 Page 379 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 update

Change 55941 on 2002/10/08 by ashishs@fl_ashishs_r400_win

 Adding Frustum Line and triangle tests

Change 55938 on 2002/10/08 by kevino@kevino_r400_win_marlboro

 Ooops-- the original was actually a 64x32. This is a 96x32

Change 55914 on 2002/10/08 by georgev@devel_georgevhw_r400_lin_marlboro

 Some fixes and some new.

Change 55897 on 2002/10/08 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint...

Change 55892 on 2002/10/08 by mkelly@fl_mkelly_r400_win_laptop

 Change Wait_Gfx_Idle() to Wait_Gfx_Idle_No_Flush() inside of iterative loops.
 Add Wait_Gfx_Idle() before frame buffer dump.

 All new tests should contain the Wait_Gfx_Idle() call outside of the test case
 generation loop, preferably just before the framebuffer dump. If for some reason,
 you are reusing the index and/or vertex buffers in DMA indexing mode, then,
 you need to use Wait_Gfx_Idle_No_Flush() within and, Wait_Gfx_Idle() outside the
loop.
 Also, as you are updating or generating derivative tests, please, update the root
 tests as well.

Change 55872 on 2002/10/08 by smoss@smoss_crayola_win

 incorrect test names

Change 55869 on 2002/10/08 by smoss@smoss_crayola_win

 su tests

Change 55863 on 2002/10/08 by mkelly@fl_mkelly_r400_win_laptop

 Change Wait_Gfx_Idle() to Wait_Gfx_Idle_No_Flush() inside of iterative loops.
 Add Wait_Gfx_Idle() before frame buffer dump.

 All new tests should contain the Wait_Gfx_Idle() call outside of the test case
 generation loop, preferably just before the framebuffer dump. If for some reason,
 you are reusing the index and/or vertex buffers in DMA indexing mode, then,

 Page 380 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 you need to use Wait_Gfx_Idle_No_Flush() within and, Wait_Gfx_Idle() outside the
loop.
 Also, as you are updating or generating derivative tests, please, update the root
 tests as well.

Change 55847 on 2002/10/08 by omesh@omesh_r400_linux_marlboro_only_devel

 Although Alicia checked in a "no_clamp" version of the pixel shader, it may have been
accidentally
 the same old versions of the files checked in. I actually removed the clamp from the pixel
shader
 and also modified the tests. However, although "uinteger" seems fixed, "sinteger" still
displays the
 bug. Also "srepeat" looks incorrect.

Change 55844 on 2002/10/08 by mkelly@fl_mkelly_r400_win_laptop

 Change Wait_Gfx_Idle() to Wait_Gfx_Idle_No_Flush() inside of iterative loops.
 Add Wait_Gfx_Idle() before frame buffer dump.

 All new tests should contain the Wait_Gfx_Idle() call outside of the test case
 generation loop, preferably just before the framebuffer dump. If for some reason,
 you are reusing the index and/or vertex buffers in DMA indexing mode, then,
 you need to use Wait_Gfx_Idle_No_Flush() within and, Wait_Gfx_Idle() outside the
loop.
 Also, as you are updating or generating derivative tests, please, update the root
 tests as well.

Change 55797 on 2002/10/08 by mkelly@fl_mkelly_r400_win_laptop

 Change Wait_Gfx_Idle() to Wait_Gfx_Idle_No_Flush() inside of iterative loops.
 Add Wait_Gfx_Idle() before frame buffer dump.

 All new tests should contain the Wait_Gfx_Idle() call outside of the test case
 generation loop, preferably just before the framebuffer dump. If for some reason,
 you are reusing the index and/or vertex buffers in DMA indexing mode, then,
 you need to use Wait_Gfx_Idle_No_Flush() within and, Wait_Gfx_Idle() outside the
loop.
 Also, as you are updating or generating derivative tests, please, update the root
 tests as well. The goal is to have as many tests modified as we can, as soon as possible.

Change 55795 on 2002/10/08 by smoss@smoss_crayola_win

 su tests

Change 55794 on 2002/10/08 by llefebvr@llefebvre_laptop_r400_emu

 Added range check.
 Also the test was clamping the values to infinities where clamped prior to the interface.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1697 of 1898

 Page 381 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 55790 on 2002/10/08 by kevino@kevino_r400_win_marlboro

 Texture created by buildlevel

Change 55775 on 2002/10/08 by mkelly@fl_mkelly_r400_win_laptop

 Change Wait_Gfx_Idle() to Wait_Gfx_Idle_No_Flush() inside of iterative loops.
 Add Wait_Gfx_Idle() before frame buffer dump.

 All new tests should contain the Wait_Gfx_Idle() call outside of the test case
 generation loop, preferably just before the framebuffer dump. If for some reason,
 you are reusing the index and/or vertex buffers in DMA indexing mode, then,
 you need to use Wait_Gfx_Idle_No_Flush() within and, Wait_Gfx_Idle() outside the
loop.
 Also, as you are updating or generating derivative tests, please, update the root
 tests as well. The goal is to have as many tests modified as we can, as soon as possible.

Change 55730 on 2002/10/07 by csampayo@fl_csampayo_r400

 Added high memory addressing bug

Change 55727 on 2002/10/07 by csampayo@fl_csampayo_r400

 Added VGT index size test and updated test_list and test tracker

Change 55676 on 2002/10/07 by smoss@smoss_crayola_win

 update for multi-context phase 2

Change 55654 on 2002/10/07 by smoss@smoss_crayola_win

 regress_e passes on windows

Change 55613 on 2002/10/07 by smoss@smoss_crayola_linux_orl_regress

 or not

Change 55612 on 2002/10/07 by smoss@smoss_crayola_linux_orl_regress

 taking su offline while I try to get Linux to pass

Change 55604 on 2002/10/07 by mkelly@fl_mkelly_r400_win_laptop

 Move para tests to test_list_parameterized

Change 55592 on 2002/10/07 by ygiang@ygiang_r400_win_marlboro_p4

 fixed: const alpha value in test

 Page 382 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 55576 on 2002/10/07 by mkelly@fl_mkelly_r400_win_laptop

 Automatically find path where test is located, properly calc. statistics

Change 55575 on 2002/10/07 by abeaudin@abeaudin_r400_win_marlboro

 new shader

Change 55567 on 2002/10/07 by smoss@smoss_crayola_win

 try this again

Change 55556 on 2002/10/07 by smoss@smoss_crayola_win

 try again

Change 55549 on 2002/10/07 by smoss@smoss_crayola_linux_orl_regress

 update golds for regress_e

Change 55548 on 2002/10/07 by smoss@smoss_crayola_win

 update for multi-context

Change 55535 on 2002/10/07 by mdoggett@mdoggett_r400_linux_local

 Added update for corrected RG swap in RB.

Change 55529 on 2002/10/07 by llefebvr@llefebvre_laptop_r400_emu

 The mask sent to the RB for memory exports was always 0. This sends the correct mask
down.

Change 55528 on 2002/10/07 by jhoule@jhoule_r400_win_marlboro

 1D gradient

Change 55527 on 2002/10/07 by smoss@smoss_crayola_win

 SU tests

Change 55514 on 2002/10/06 by ashishs@fl_ashishs_r400_win

 reverting back these files for an accidental change made to them

Change 55513 on 2002/10/06 by ashishs@fl_ashishs_r400_win

 update

 Page 383 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 55512 on 2002/10/06 by ashishs@fl_ashishs_r400_win

 update

Change 55511 on 2002/10/06 by ashishs@fl_ashishs_r400_win

 Adding new frustum line tests

Change 55510 on 2002/10/06 by ashishs@fl_ashishs_r400_win

 updated for multicontext

Change 55414 on 2002/10/04 by csampayo@fl_csampayo2_r400

 Comment out tests that do not run correctly due to bugs

Change 55404 on 2002/10/04 by ygiang@ygiang_r400_win_marlboro_p4

 added: vector write mask tests

Change 55376 on 2002/10/04 by ashishs@fl_ashishs_r400_win

 updated for multi context

Change 55371 on 2002/10/04 by kevino@kevino_r400_win_marlboro

 3D filter tests (need a lot of work)

Change 55365 on 2002/10/04 by kevino@kevino_r400_win_marlboro

 Added 3d level testcases, but commented out read3DLevel function call since it is not
checked into primlib's TM yet

Change 55355 on 2002/10/04 by mkelly@fl_mkelly_r400_win_laptop

 Update multi-chip tests to run test07 as standard, enable SC in para regression script

Change 55350 on 2002/10/04 by kevino@kevino_r400_win_marlboro

 Added 1D filter _UUUU testcase so can seperate 1D problems from signed mode
problems.

Change 55346 on 2002/10/04 by kevino@kevino_r400_win_marlboro

 multiply S and T by 1/Q

Change 55345 on 2002/10/04 by jhoule@jhoule_r400_win_marlboro

 Page 384 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Sizes were wrong (8x8 instead of 4x4, 2x2, 1x1).
 Created them all for each color.

Change 55338 on 2002/10/04 by kevino@kevino_r400_win_marlboro

 test functions

Change 55333 on 2002/10/04 by mkelly@fl_mkelly_r400_win_laptop

 Notes

Change 55323 on 2002/10/04 by kevino@kevino_r400_win_marlboro

 Changed default mip filter to BaseMap

Change 55312 on 2002/10/04 by ashishs@fl_ashishs_r400_win

 test_list updated

Change 55304 on 2002/10/04 by mkelly@fl_mkelly_r400_win_laptop

 Add new dump file to regression VgtCcg.dmp for test bench support

Change 55282 on 2002/10/04 by mkelly@fl_mkelly_r400_win_laptop

 SC performance test #1

Change 55281 on 2002/10/04 by ygiang@ygiang_r400_win_marlboro_p4

 added: boundray and write/read mask tests
 removed : unsupported shader opcode

Change 55269 on 2002/10/04 by kevino@kevino_r400_win_marlboro

 Added (uneeded) tex projection test case as well as get/set gradients test.
 Updateds scene_data.h to have XYZW_ARGB_STQR4 in case every want Q and R.

Change 55200 on 2002/10/03 by csampayo@fl_csampayo_r400

 Updated for multi-context

Change 55199 on 2002/10/03 by csampayo@fl_csampayo_r400

 Added 4 new DMA swap tests and updated test_list and the test tracker

Change 55196 on 2002/10/03 by omesh@omesh_r400_linux_marlboro_only_devel

 Fixed emulator testcases to scale color and alpha channels according to
 the range allowed, as decided by the COLOR*_NUMBER register setting.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1698 of 1898

 Page 385 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 However, the emulator still doesn't seem to produce the right result
 (Produces a non-interpolated black and gray triangle for the
 NUMBER_UINTEGER and NUMBER_SINTEGER modes, respectively.

Change 55126 on 2002/10/03 by llefebvr@llefebvre_laptop_r400_emu

 multiple fixes for memory exports.

Change 55093 on 2002/10/03 by abeaudin@abeaudin_r400_win_marlboro

 fixed background pointer

Change 55079 on 2002/10/03 by vgoel@fl_vgoel2

 added calculation for global ambient

Change 55069 on 2002/10/03 by mkelly@fl_mkelly_r400_win_laptop

 Update runp to summarize PASS/FAIL
 Begin to support block level envoking of runp

Change 55053 on 2002/10/03 by kevino@kevino_r400_win_marlboro

 Moved EC exports to different ALU statements in shader program. Removed ecta
waitforidle in cpp file.

Change 55048 on 2002/10/03 by kevino@kevino_r400_win_marlboro

 Updated to use texture scale and offset in shader pipe, and use the TM.muladd function to
 create appropriate data for the various fcomp values.

Change 55006 on 2002/10/03 by kevino@kevino_r400_win_marlboro

 Get's computed LOD value and returns as reg value

Change 55005 on 2002/10/03 by kevino@kevino_r400_win_marlboro

 Basic tmult (before scale/offset change)

Change 54970 on 2002/10/03 by mkelly@fl_mkelly_r400_win_laptop

 Move p4_root determination out of get_sync() so it is always done

Change 54892 on 2002/10/02 by llefebvr@llefebvre_laptop_r400_emu

 Fixed some memory export bugs.

Change 54879 on 2002/10/02 by csampayo@fl_csampayo_r400

 Page 386 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Updated flush location

Change 54861 on 2002/10/02 by mkelly@fl_mkelly_r400_win_laptop

 Perl script to run parameterized tests, first pass.
 Checkpoint on sc template test to be used for stress testing.

Change 54839 on 2002/10/02 by kevino@kevino_r400_win_marlboro

 Updated test case script to specify all 4 channel's format_comp's. Moved vertex buffer
into a class in order to allow
 multiple contextx later on if necessary,

Change 54830 on 2002/10/02 by ygiang@ygiang_r400_win_marlboro_p4

 added:test for debug

Change 54825 on 2002/10/02 by omesh@omesh_r400_linux_marlboro_release

 Added RB_SURFACE_SLICE programming that was missing for multisample
 tests, as pointed out by Bill Lawless. Compiled test to make sure it
 compiles and runs.

Change 54803 on 2002/10/02 by vgoel@fl_vgoel2

 changed the test to non-tiled mode

Change 54802 on 2002/10/02 by csampayo@fl_csampayo_r400

 Added 3 new VGT tests with negative index offsets and updated test_list and the test
tracker

Change 54797 on 2002/10/02 by vgoel@fl_vgoel2

 modified vertex shader and .cpp for perspective projection, and z-buffering

Change 54751 on 2002/10/02 by mkelly@fl_mkelly_r400_win_laptop

 Changed indentation to more easily read a few lines

Change 54681 on 2002/10/01 by csampayo@fl_csampayo_r400

 Updated for better test case coverage

Change 54672 on 2002/10/01 by vgoel@fl_vgoel2

 changed the frame buffer size to 800 x 608

Change 54653 on 2002/10/01 by vgoel@fl_vgoel2

 Page 387 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 first cut in GI shaders

Change 54635 on 2002/10/01 by smoss@smoss_crayola_win

 forgot one.

Change 54634 on 2002/10/01 by smoss@smoss_crayola_win

 SU tests

Change 54625 on 2002/10/01 by mkelly@fl_mkelly_r400_win_laptop

 Check point on SC template for stress testing...

Change 54600 on 2002/10/01 by omesh@omesh_r400_linux_marlboro_release

 Added an explicit specification of "NUMBER_FLOAT" for floating point
 color formats, as h/w is also going to change accordingly.
 Changed the testnames 6 per test series to include the explicit
 "number_float" in the testname. Also changed nightly regression lists to
 the new testnames.

Change 54582 on 2002/10/01 by ygiang@ygiang_r400_win_marlboro_p4

 added: shader dotx tests

Change 54579 on 2002/10/01 by mkelly@fl_mkelly_r400_win_laptop

 Stipple permutations...

Change 54543 on 2002/10/01 by csampayo@fl_csampayo_r400

 Renamed vertex shader export test

Change 54541 on 2002/10/01 by csampayo@fl_csampayo_r400

 Renaming these tests

Change 54538 on 2002/10/01 by mkelly@fl_mkelly_r400_win_laptop

 Complete coverage on stipple repeat count values 0 to 7.
 Repeat Count Value Test Name
 0 r400sc_line_stipple_02
 1 r400sc_line_stipple_01
 2 r400sc_line_stipple_15
 3 r400sc_poly_offset_09
 4 r400sc_line_stipple_16

 Page 388 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 5 r400sc_line_strip_stipple_01
 6 r400sc_line_stipple_17
 7 r400sc_line_stipple_18

Change 54512 on 2002/10/01 by mkelly@fl_mkelly_r400_win_laptop

 Varying combinations of Positive and Negative vtx window offsets

Change 54506 on 2002/10/01 by mkelly@fl_mkelly_r400_win_laptop

 Negative vtx window offset in X and Y

Change 54488 on 2002/10/01 by mkelly@fl_mkelly_r400_win_laptop

 Comment out SC_CHECK for double pixel hits until
 primlib utility parser is updated to
 latest sc_quad_pair_proc_out.dmp file

Change 54443 on 2002/09/30 by csampayo@fl_csampayo_r400

 Added vertex export simple test

Change 54435 on 2002/09/30 by ygiang@ygiang_r400_win_marlboro_p4

 added: new opcode tests

Change 54432 on 2002/09/30 by georgev@devel_georgevhw_r400_lin_marlboro

 Changes to support enumerated types in random tests.

Change 54422 on 2002/09/30 by omesh@omesh_r400_linux_marlboro_release

 Removed testcases that used gamma correction for components larger than
 8 bits. If needed, will remove more gamma correction testcases later,
 depending on whats supported. Removed a total of 6 testcases from each
 test series = 12 tests removed.

Change 54395 on 2002/09/30 by omesh@omesh_r400_linux_marlboro_release

 Removed invalid Color Formats (Any color components not 16 or 32 bits) using the
NUMBER_FLOAT represention.
 Removed a total of 13 testcases from each of 2 test series = 26
 testcases removed.

Change 54357 on 2002/09/30 by ygiang@ygiang_r400_win_marlboro_p4

 add: ieee boundary test
 removed: unsupported sp tests

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1699 of 1898

 Page 389 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 54308 on 2002/09/30 by frivas@FL_FRivas

 Update to "Matrix_Class" definition to allow code to compile under Linux.

Change 54302 on 2002/09/30 by mkelly@fl_mkelly_r400_win_laptop

 Add two super tile tests which will only run standard case at this point

Change 54288 on 2002/09/30 by mkelly@fl_mkelly_r400_win_laptop

 Overload VFD to handle specification of vertex buffer address constant in parameter
 Usage example can be found in r400sanity_vfd_texture_sample_01.cpp

Change 54285 on 2002/09/30 by mkelly@fl_mkelly_r400_win_laptop

 Change .sp filename to test name

Change 54275 on 2002/09/30 by vgoel@fl_vgoel2

 changed the input file name to "r400_local_tonemapping.hdr"

Change 54274 on 2002/09/30 by vgoel@fl_vgoel2

 changed the frame.dump() and size of frame

Change 54253 on 2002/09/29 by csampayo@fl_csampayo_r400

 New VGT index offset tests

Change 54171 on 2002/09/27 by vgoel@fl_vgoel2

 fixed several bugs in tone mapping shader and .cpp file.

Change 54139 on 2002/09/27 by ygiang@ygiang_r400_win_marlboro_p4

 added: 3 constant alu register muladd operation

Change 54111 on 2002/09/27 by ygiang@ygiang_r400_win_marlboro_p4

 fixed: # of args in the set opcode to matched new instruction in the assembler

Change 53973 on 2002/09/26 by ygiang@ygiang_r400_win_marlboro_p4

 fixed: number of args in shader tests cause changes from the parser

Change 53964 on 2002/09/26 by omesh@omesh_r400_linux_marlboro_only_devel

 Changed atleast 2 tests to match Kevin Ryan's new memory dump routine
 interface. (Added an extra parameter). The tests now continue to run,

 Page 390 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 but I haven't (re)verified the output.

Change 53954 on 2002/09/26 by smoss@smoss_crayola_win

 SU test

Change 53953 on 2002/09/26 by smoss@smoss_crayola_win

 SU tests

Change 53941 on 2002/09/26 by hwise@fl_hwise_r400_win

 Adding test for debugging Primlib memory alloc overlap
 problem. (The Index Buffer is overlapping the Ring Buffer)

Change 53940 on 2002/09/26 by ygiang@ygiang_r400_test_marlboro

 added: more test

Change 53938 on 2002/09/26 by csampayo@fl_csampayo2_r400

 Updated flush location

Change 53931 on 2002/09/26 by kevino@kevino_r400_win_marlboro

 Explicetly set texture dimension

Change 53807 on 2002/09/26 by kevino@kevino_r400_win_marlboro

 Test case files

Change 53801 on 2002/09/26 by vgoel@fl_vgoel2

 updated adaptive tessellation test

Change 53780 on 2002/09/26 by csampayo@fl_csampayo2_r400

 Uncommented tests that should run now:
 r400vgt_hos_simple_linear_PNT_discrete_01
 r400vgt_hos_TPatch_01
 r400vgt_hos_TPatch_02

Change 53770 on 2002/09/26 by kevino@kevino_r400_win_marlboro

 Get rid of savemipchain ppm's

Change 53738 on 2002/09/25 by csampayo@fl_csampayo2_r400

 Commented out test not running: r400vgt_event_handling_01

 Page 391 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 53713 on 2002/09/25 by omesh@omesh_r400_linux_marlboro_only_devel

 Added 20 testcases which cover most cases of testing fragment based
 multisampling. These tests are geared towards probing the fragment
 buffer and color cache with most combinations of CMASK values and Max
 Fragment coverage per pixel regressed. Another 4 testcases test the
 fragment buffer overflow condition and 2 random tests randomize color.
 I have yet to add a series of testcases to test uninitialized samples.
 Also, I have run these 20 tests on Linux but could not see the output as
 DumpView is not ready to display multisampled images yet.

Change 53659 on 2002/09/25 by kevino@kevino_r400_win_marlboro

 Just wanna look at them with xv then delete them

Change 53637 on 2002/09/25 by kevino@kevino_r400_win_marlboro

 1st step of triangle_vertex_buffer replacement.

Change 53607 on 2002/09/25 by mkelly@fl_mkelly_r400_win_laptop

 Poly offset / scale tests

Change 53579 on 2002/09/25 by hartogs@fl_hartogs

 Modifications for to fix quads and line-loops for multi-prim reset functionality.

Change 53571 on 2002/09/25 by omesh@omesh_r400_linux_marlboro_only_devel

 Fixed some syntax errors, and some warnings and verified that the test
 runs. Could not verify the output image, as DumpView isn't ready to
 display fragment based multisampled images yet.

Change 53560 on 2002/09/25 by kevino@kevino_r400_win_marlboro

 Added getcomplod test

Change 53535 on 2002/09/25 by kevino@kevino_r400_win_marlboro

 Added line that outputs texture base offset

Change 53532 on 2002/09/25 by csampayo@fl_csampayo_r400

 Commented out test hanging the emulator: r400vgt_suppress_eop_05

Change 53502 on 2002/09/25 by mkelly@fl_mkelly_r400_win_laptop

 Log potential bug

 Page 392 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 53499 on 2002/09/25 by mkelly@fl_mkelly_r400_win_laptop

 Poly Offset combinations...

Change 53470 on 2002/09/24 by georgev@devel_georgevhw_r400_lin_marlboro

 Done Fixed some bad tests.

Change 53451 on 2002/09/24 by csampayo@fl_csampayo_r400

 Added new VGT test. Updated test_list and test tracker

Change 53442 on 2002/09/24 by ygiang@ygiang_r400_win_marlboro_p4

 fixed: random test case, using large random number now

Change 53414 on 2002/09/24 by omesh@omesh_r400_linux_marlboro_release

 Added the major case of the multisample tests. Need to split this up
 into several testcases to simplify possible debugging. It uses Kevin
 Ryan's new COLOR_SURFACE class that supports multisampled Color Buffer
 0, including the Dump.
 I have not yet run this test or tested the result (DumpView may not be
 ready to display multisampled Color Buffers yet).
 Need to add: 1) Random testcases to this. 2) Corner cases: Fragment
 buffer overflow and unassigned samples test cases.

Change 53409 on 2002/09/24 by ygiang@ygiang_r400_test_marlboro

 added:interpolator test

Change 53385 on 2002/09/24 by mkelly@fl_mkelly_r400_win_laptop

 Polymode poly offset, front/back face, MSAA, sample control permutations

Change 53342 on 2002/09/24 by frivas@FL_FRivas

 Finished Line Patch test. Renders 4 line patches, each with 4 control points. Tessellation
varies 1-14.5 and reuse varies 4-16.

Change 53281 on 2002/09/24 by mkelly@fl_mkelly_r400_win_laptop

 Temporarily remove test which changes out-of-context state

Change 53200 on 2002/09/23 by csampayo@fl_csampayo_r400

 Added new VGT index reset test. Updated test_list and test tracker

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1700 of 1898

 Page 393 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 53185 on 2002/09/23 by ygiang@ygiang_r400_test_marlboro

 changed: runtest to bruntest

Change 53183 on 2002/09/23 by ygiang@ygiang_r400_test_marlboro

 added: sp regression test

Change 53182 on 2002/09/23 by csampayo@fl_csampayo2_r400

 Changed buffers used to 1 and Inserted flushes between packets

Change 53154 on 2002/09/23 by ygiang@ygiang_r400_test_marlboro

 update

Change 53116 on 2002/09/23 by ygiang@ygiang_r400_test_marlboro

 sp mini regress script

Change 53107 on 2002/09/23 by mkelly@fl_mkelly_r400_win_laptop

 Include history file with PASS/FAIL for auto depot submit

Change 53025 on 2002/09/23 by ctaylor@fl_ctaylor_r400_dtwin_marlboro

 Modified Viz Query test to make begin event occur after the renderstate definition since
the event uses renderstate.

Change 53019 on 2002/09/23 by mkelly@fl_mkelly_r400_win_laptop

 Poly Offset, 8 MSAA, HOS

Change 53015 on 2002/09/23 by vgoel@fl_vgoel2

 changed tessellation level to 14.9 to match with previous version of test

Change 52934 on 2002/09/21 by ygiang@ygiang_r400_win_marlboro_p4

 moded: testcases

Change 52875 on 2002/09/20 by csampayo@fl_csampayo_r400

 Updated number of buffers used

Change 52866 on 2002/09/20 by csampayo@fl_csampayo_r400

 Added 2 new VGT tests and updated test_list and the test tracker accordingly

 Page 394 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 52808 on 2002/09/20 by omesh@omesh_r400_linux_marlboro_release

 Modified linear tests to also use the old FRAMEBUFFER_MEMORY class with
 the FMT_* enumerations for SurfaceFormat. Also added explicit flags to
 Fill and Dump routines in Primlib to tell it if the framebuffer is tiled
 or not, so when the image is brought up on DumpView, it reads the right
 information encoded in the header and brings up the image in the right
 mode.

Change 52799 on 2002/09/20 by ygiang@ygiang_r400_win_marlboro_p4

 added: test name in make file

Change 52798 on 2002/09/20 by kryan@kryan_r400_win_marlboro

 MEMORY_AREA

 - Begin work on new Dump() function that takes an enumerated type

 for the type of Surface being dumped.

 - Add enumerated types for surface types: CB0,CB1,CB2,CB3,ZB,TB

 memory_utility.cpp

 - Changed Write_To_Memory(TEXTURE_BUFFER) to use format specified

 in TEXTURE_BUFFER when calling other functions.

 TEXTURE_BUFFER

 - Modified code to use SurfaceFormat information to calculate

 bits per sample rather than bps value passed in through functions.

 This also allowed the elimination of bps parameter to all the

 functions.

 - Added code for all functions including constructor to have the

 ability to use uint8* in addition to uint32* for storing/

 manipulating texture data.

 Page 395 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 - Implemented code to store textures as bytes rather than uint32s.

 texture_utility.h/.cpp

 - Added comments/formatting.

 - Added uint8* version of Load_Texture_And_Write_To_Memory(uint8*)

 SURFACE

 - Add depth member and access functions

 - Add number of samples member and access functions

 - For dump file generation:

 - Add Add_Define(), Add_Comment(), Add_Property_Defines() functions

 - Add Get_Surface_Type() function to return string for Surface Type.

 Default to "GENERIC".

 PIXEL_SURFACE

 - Add depth member and access functions

 - Added Fill_Solid(color) function that will use default pitch,height

 values of surface.

 COLOR_SURFACE

 - Work on class with specific Add_Property_Defines() function

 results_diff.pl

 - Modify .diff_e target through diff function to ignore

 all header information in dumpfiles for Marlboro and

 Orlando sites.

 Page 396 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 REGISTER_WRITE_MANAGER

 - Add code to initialize pl3d::LibType with value based upon mode of

 (PM4 or PIO) of constructor call.

 test_lib/src/chip/perf/chip/ various tests

 - Updated various tests using the PIXEL_SURFACE class to add the

 now required depth parameter.

 - Also removed the pitch,height parameters from the

 PIXEL_SURFACE::Fill_Solid(color) function since they default to

 use the dimensions of the surface itself.

 test_lib/src/chip/perf/primlib_tex_tri

 - Update primlib_tex_tri.cpp test to reflect new Dumpfile format and

 content for multisample ColorSurface0.

Change 52797 on 2002/09/20 by ygiang@ygiang_r400_win_marlboro

 added: default alpha fetch value

Change 52786 on 2002/09/20 by mkelly@fl_mkelly_r400_win_laptop

 Moved former bug into regular testing regression.

Change 52783 on 2002/09/20 by mkelly@fl_mkelly_r400_win_laptop

 Move test to SC for baryc validation

Change 52725 on 2002/09/20 by kevino@kevino_r400_win_marlboro

 Some more textures (1D)

Change 52724 on 2002/09/20 by kevino@kevino_r400_win_marlboro

 Assortment of files I forgot to check in
 gen_rg- generates .rg files (w/o header!) by looking for test case defines in the
 .cpp and it's includes
 aniso, clamp test cases.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1701 of 1898

 Page 397 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 52723 on 2002/09/20 by kevino@kevino_r400_win_marlboro

 Updated alu_const_array stuff
 Added basics for functions to put tscale and toffstes into alu const regs 4-7, 8-11.
 Shader pipe needs to multiply these. Used to shift all the various number formats
back into 0-1 range
 for color export.

Change 52706 on 2002/09/20 by mkelly@fl_mkelly_r400_win_laptop

 Update to clip lines inside HW boundary of +-8k

Change 52701 on 2002/09/20 by mkelly@fl_mkelly_r400_win_laptop

 Add test to regression since bug is fixed, re: change 49961, last item

Change 52672 on 2002/09/19 by omesh@omesh_r400_linux_marlboro_release

 Switched back to using the old FRAMEBUFFER_MEMORY class for Primlib fill
 and dump routines and they seem to work for the most part except for
 about 8 modes that don't dump and another 3 that dump incorrect images.
 I have filed Bugzilla bugs for Kevin Ryan to look at.
 Also, fixed a bug with the tests to program it for tiled mode of
 operation. Still haven't validated the output images of these tests due
 to DumpView's automatic nature of scaling all color channels to full
 precision even for modes in which other channels do not exit (example
 COLOR_8 or FMT_8 which looks a little wierd on DumpView).

Change 52648 on 2002/09/19 by csampayo@fl_csampayo_r400

 Added 1 new VGT event handling test and updated the test_list and test tracker
accordingly

Change 52630 on 2002/09/19 by abeaudin@abeaudin_r400_win_marlboro

 changed program and vertex shaderto get a solid red and a solid green triangle

Change 52594 on 2002/09/19 by georgev@devel_georgevhw_r400_lin_marlboro

 Ooops. Fixed dma_32 test.

Change 52592 on 2002/09/19 by jhoule@jhoule_r400_win_marlboro

 tp_uber_test:
 - updated programs to have cleaner names
 - removed RGB from vertex arrays
 - now sets DIM field for loads, since the TEXTURE_MANAGER requires that
 - honors DIM field for the same reason (defaults to 2D, though)

 Page 398 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 52583 on 2002/09/19 by vgoel@fl_vgoel2

 changed z-buffer
 changed frame.dump()

Change 52579 on 2002/09/19 by vgoel@fl_vgoel2

 changed z-buffer
 changed frame.dump()

Change 52574 on 2002/09/19 by mkelly@fl_mkelly_r400_win_laptop

 Update to properly order draws/flushes/reads/ and writes...

Change 52569 on 2002/09/19 by vgoel@fl_vgoel2

 changed z-buffer
 changed frame.dump()
 added compute_dma_size()

Change 52560 on 2002/09/19 by vgoel@fl_vgoel2

 changed z-buffer
 changed frame.dump()
 added compute_dma_size()

Change 52556 on 2002/09/19 by vgoel@fl_vgoel2

 changed to display only one T-patch object
 changed z-buffer
 changed frame.dump() function
 added compute_dma_size

Change 52541 on 2002/09/19 by mkelly@fl_mkelly_r400_win_laptop

 Enable GB clipping, adjust W to prevent lines falling exactly on HW
 boundary and width making them extend beyond HW boundary.

Change 52535 on 2002/09/19 by vgoel@fl_vgoel2

 changed z-buffer and frame.dump()

Change 52533 on 2002/09/19 by georgev@devel_georgevhw_r400_lin_marlboro

 No changes.

Change 52506 on 2002/09/19 by mkelly@fl_mkelly_r400_win_laptop

 Page 399 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Cycle SC_SAMPLE_CNTL permutations with all primtypes
 Cycle MSAA, 192 packets

Change 52498 on 2002/09/19 by mkelly@fl_mkelly_r400_win_laptop

 Another example for bugzilla 401

Change 52486 on 2002/09/19 by kevino@kevino_r400_win_marlboro

 1D texture that alternates color and black/grey

Change 52482 on 2002/09/19 by mkelly@fl_mkelly_r400_win_laptop

 Primitive should be gouraud shaded, it is flat shaded.
 Related to PARAM_GEN = true, CENTERS_ONLY, and SAMPLE_CENTER
 If PARAM_GEN = false, gouraud shading works as expected.

Change 52464 on 2002/09/19 by mkelly@fl_mkelly_r400_win_laptop

 Changed PA to TOTAL

Change 52463 on 2002/09/19 by mkelly@fl_mkelly_r400_win_laptop

 Rename MISC to PERF

Change 52442 on 2002/09/18 by ygiang@ygiang_r400_win_marlboro_p4

 fixed: test case random, now using large random number system and not TG

Change 52439 on 2002/09/18 by georgev@devel_georgevhw_r400_lin_marlboro

 Fixed 2 tests.

Change 52429 on 2002/09/18 by csampayo@fl_csampayo_r400

 Added 5 new VGT prim tests and updated test_list and test tracker accordingly

Change 52417 on 2002/09/18 by ygiang@ygiang_r400_test_marlboro

 changed: abs code, it's $ instead of &

Change 52355 on 2002/09/18 by csampayo@fl_csampayo_r400

 Updated so that it runs with latest Primlib

Change 52354 on 2002/09/18 by kevino@kevino_r400_win_marlboro

 Added 1D texture clamp cases based on 2D cases.

 Page 400 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 52340 on 2002/09/18 by mkelly@fl_mkelly_r400_win_laptop

 Re-enable r400sc_point_list_06 to regression now it mysteriously works.

Change 52336 on 2002/09/18 by mkelly@fl_mkelly_r400_win_laptop

 Enable regression of fixed bugs

Change 52300 on 2002/09/18 by mkelly@fl_mkelly_r400_win_laptop

 Cycle primitive types through all MSAA and JSS modes.

Change 52286 on 2002/09/18 by kevino@kevino_r400_win_marlboro

 Added GetBorderColoFraction test
 updated lod test to hit instr bias, const bias, comp, and reg_lod.

Change 52259 on 2002/09/18 by frivas@FL_FRivas

 Update

Change 52256 on 2002/09/18 by frivas@FL_FRivas

 Update to matrix code to allow it to work under Linux.

Change 52216 on 2002/09/18 by mkelly@fl_mkelly_r400_win_laptop

 Add flush between packets but assert still occurs...

Change 52204 on 2002/09/18 by mkelly@fl_mkelly_r400_win_laptop

 RB asserts when polygon with MSAA = 0,1,2,3 followed
 by point list MSAA = 5. If polygon MSAA = 5 or 7 the
 test completes as expected.

 $/r400/devel/test_list/src/chip/gfx/pa/bugs

 make r400sc_sp_sample_cntl_08_bug.emu

 Assertion failed: (coverage&errmask) == 0, file ../../../../emu_lib/model/gfx/rb
 /rb_color_model.cpp, line 334
 make[2]: [run_emu] Error 3 (ignored)

Change 52180 on 2002/09/17 by csampayo@fl_csampayo_r400

 Added 4 new VGT prim tests and updated test_list and the test tracker accordingly.

Change 52168 on 2002/09/17 by omesh@omesh_r400_linux_marlboro_release

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1702 of 1898

 Page 401 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Changed size of display framebuffer and triangles so that DumpView can
 display the images faster, on Alicia's request.

Change 52133 on 2002/09/17 by georgev@devel_georgevhw_r400_lin_marlboro

 Regression fixes.

Change 52131 on 2002/09/17 by ygiang@ygiang_r400_win_marlboro_p4

 added: rb swap color channels register

Change 52045 on 2002/09/17 by kevino@kevino_r400_win_marlboro

 tcfux for texture offsets (sample shift)

Change 52041 on 2002/09/17 by omesh@omesh_r400_linux_marlboro_release

 Removed Color Format modes (non blendable) that don't support Color
 Masking, from the random test case. Split 64 bit LOG_PARAMETER call into
 2 x 32 bit LOG_PARAMETER calls so that the linker on Windows doesn't
 complain (On Linux this seems to work with no problem)

Change 52022 on 2002/09/17 by kryan@kryan_r400_win_marlboro

 Modified top-level catch block of test to replace throw statement

 with a return 1; so that the test will exit gracefully without a

 dialog box if an error occurs.

Change 52004 on 2002/09/17 by mkelly@fl_mkelly_r400_win_laptop

 Fix percent calculations for cp and rbbm

Change 51992 on 2002/09/17 by frivas@FL_FRivas

 Added a multi-prim HOS test to the list.

Change 51986 on 2002/09/17 by mkelly@fl_mkelly_r400_win_laptop

 Update comment...

Change 51984 on 2002/09/17 by mkelly@fl_mkelly_r400_win_laptop

 Publish Orlando full regression results to //depot/r400/web when "-p" option is true.

Change 51963 on 2002/09/17 by mkelly@fl_mkelly_r400_win_laptop

 regress_r400

 Page 402 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 51911 on 2002/09/16 by ygiang@ygiang_r400_win_marlboro_p4

 fixed: image for tests

Change 51897 on 2002/09/16 by csampayo@fl_csampayo_r400

 Added 3 new VGT prim tests and updated test_list and the test tracker accordingly.

Change 51874 on 2002/09/16 by georgev@devel_georgevhw_r400_lin_marlboro

 Fixed bad screen size bug.

Change 51873 on 2002/09/16 by omesh@omesh_r400_linux_marlboro_release

 Added another 216 test cases. Most of them don't display correctly on DumpView and
many don't dump correctly with
 Primlib yet. The output image is yet to be verified for these tests.

Change 51868 on 2002/09/16 by ygiang@ygiang_r400_win_marlboro_p4

 removed: position clamping from vertex shader tests

Change 51851 on 2002/09/16 by ygiang@ygiang_r400_win_marlboro_p4

 added: temp golden images cause golden does not support test cases yet.

Change 51838 on 2002/09/16 by ygiang@ygiang_r400_test_marlboro

 added: simple passthrough test for debug.

Change 51812 on 2002/09/16 by ygiang@ygiang_r400_win_marlboro_p4

 fixed: tri size

Change 51763 on 2002/09/16 by mkelly@fl_mkelly_r400_win_laptop

 More extensive back face bit checks

Change 51753 on 2002/09/16 by frivas@FL_FRivas

 Addition to multi prim test to allow it to work with quads.

Change 51752 on 2002/09/16 by frivas@FL_FRivas

 Update. This test now alternates between drawing lines, triangles and quads (PNL, PNT,
PNQ). Cubic position and quadratic normals are used.

Change 51748 on 2002/09/16 by mkelly@fl_mkelly_r400_win_laptop

 Page 403 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Update

Change 51747 on 2002/09/16 by mkelly@fl_mkelly_r400_win_laptop

 Check back face bit carries from sc_sp to shader export to RB, looking good...

Change 51723 on 2002/09/16 by kevino@kevino_r400_win_marlboro

 Don't try to delete ptr if null

Change 51539 on 2002/09/13 by georgev@devel_georgevhw_r400_lin_marlboro

 Changes for CP.

Change 51527 on 2002/09/13 by pmitchel@pmitchel_entire_depot_win

 only delete ptr if ptr != NULL

Change 51516 on 2002/09/13 by ygiang@ygiang_r400_win_marlboro_p4

 added: override Shader Instruction Loading

Change 51504 on 2002/09/13 by kevino@kevino_r400_win_marlboro

 Added cubic testcase and support.
 Fixed deallocate to check if the ptr is null before it tries to delete it and only deletes it
if it is not.

Change 51490 on 2002/09/13 by csampayo@fl_csampayo_lt_r400

 Added to test_list and updated status for test:
 r400vgt_multi_prim_reset_index_all_01

Change 51483 on 2002/09/13 by csampayo@fl_csampayo_r400

 Adding new VGT mul-prim index reset test

Change 51468 on 2002/09/13 by ygiang@ygiang_r400_win_marlboro

 Changed: buffers and triangles size for hardware testing

Change 51451 on 2002/09/13 by kevino@kevino_r400_win_marlboro

 needed for tp_simple_02/complex_shader testcase

Change 51446 on 2002/09/13 by mkelly@fl_mkelly_r400_win_laptop

 Update for Randy to try

 Page 404 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 51428 on 2002/09/13 by omesh@omesh_r400_linux_marlboro_release

 Added code for random selection of Color and Surface format. Currently hardcoded
 the Color/Surface format, to trap a specific dump that doesn't work in
 Primlib (Also filed a Bugzilla bug (Bug ID 371) on this.

Change 51386 on 2002/09/13 by csampayo@fl_csampayo_r400

 Update for new DMA SIZE calculation

Change 51354 on 2002/09/13 by ygiang@ygiang_r400_win_marlboro_p4

 changed: tri-size for hardware testing

Change 51317 on 2002/09/13 by mkelly@fl_mkelly_r400_win_laptop

 Enable GB clipping to ensure verts don't extend beyond HW boundary

Change 51311 on 2002/09/13 by mkelly@fl_mkelly_r400_win_laptop

 Add CP and RBBM blocks to parse, search, make, and reporting routines

Change 51272 on 2002/09/12 by csampayo@fl_csampayo2_r400

 Commented out tests not working

Change 51261 on 2002/09/12 by csampayo@fl_csampayo_r400

 Updated for new dma size calculation

Change 51215 on 2002/09/12 by omesh@omesh_r400_linux_marlboro_release

 Checking in the 14 multiwrite (multiple render target) tests.
 The 3 and 4 exports->buffers tests seem to timeout on the emulator and the 2 exports-
>buffers tests seem to produce the
 wrong result. I will file a Bugzilla bug.

Change 51201 on 2002/09/12 by csampayo@fl_csampayo_r400

 1. Added 5 new VGT provoking vtx tests
 2. Updated test_list and test tracker

Change 51137 on 2002/09/12 by vgoel@fl_vgoel2

 changed the input primitive type to 3D point for adaptive tessellation and added
 draw_command.Calculate_Dma_Size (render_state1);

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1703 of 1898

 Page 405 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 51128 on 2002/09/12 by frivas@FL_FRivas

 Minor update to all HOS tests that adds the line
"draw_command.Calculate_Dma_Size(render_state1);"

Change 51080 on 2002/09/12 by mkelly@fl_mkelly_r400_win_laptop

 SC screen XY output tests

Change 50987 on 2002/09/12 by ygiang@ygiang_r400_win_marlboro_p4

 changed: triangles size for hardware testing

Change 50984 on 2002/09/12 by mkelly@fl_mkelly_r400_win_laptop

 Finalized SC screen XY / centers / centroids initial test, correct
 results are obtained through the RB when in hardware accurate mode
 otherwise, resort to sp_sx.dmp to confirm

Change 50933 on 2002/09/11 by kmahler@kmahler_r400_win_devel_views

 Fixed setting of DMA_SIZE field in the DRAW_INDX packet for major mode 1.

 Below is how to program Primlib to automatically have the RENDER_ENGINE set the
correct VGT_DMA_SIZE in the DRAW_INDX packet.

 When the test initializes the DRAW_COMMAND....

 //---
 // Set up for Major mode 1 (NORMAL_NO_VERTEX_REUSE)
 //
 // Calculate_Dma_Size() should only be invoked when major mode 1 is enabled and
 // after setting the number of indices in the draw_command.
 //---
 draw_command.Set_Major_Mode(
DRAW_COMMAND::NORMAL_NO_VERTEX_REUSE);
 .
 .
 .

 draw_command.Set_Number_Indices (Num_Indx);
 draw_command.Calculate_Dma_Size(render_state);

 .
 .
 .

 ******* NOTE
**

 Page 406 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 There are several SQ and VGT tests that set major mode 1. These tests may have to be
modified in order to work.

 sq\r400sq_bell.cpp(530):
 sq\r400sq_plane.cpp(513):
 sq\r400sq_plane_env_map.cpp(563):
 sq\r400sq_shell.cpp(530):
 sq\r400sq_simple_obj.cpp(515):
 sq\r400sq_simple_obj_env_map.cpp(556):
 sq\r400sq_sphere.cpp(531):
 sq\r400sq_sphere_env_map.cpp(564):
 sq\r400sq_sphere_less.cpp(530):
 vgt\r400_local_tonemapping.cpp(1110):
 vgt\r400_stereo_vision.cpp(861):
 vgt\r400vgt_hos_LINE_cp.cpp(445):
 vgt\r400vgt_hos_LPatch_01.cpp(445):
 vgt\r400vgt_hos_PNL_cp_ln_cont_no_projection_01.cpp(798):
 vgt\r400vgt_hos_PNL_lp_ln_cont_no_projection_01.cpp(795):
 vgt\r400vgt_hos_PNQ_cp_qn_cont_light_texture_01.cpp(808):
 vgt\r400vgt_hos_PNQ_cp_qn_cont_light_texture_02.cpp(808):
 vgt\r400vgt_hos_PNQ_cp_qn_cont_no_projection_01.cpp(807):
 vgt\r400vgt_hos_PNQ_lp_cont_no_projection_01.cpp(791):
 vgt\r400vgt_hos_PNTQL_cp_qn_cont_stress_01.cpp(670):
 vgt\r400vgt_hos_PNT_adaptive.cpp(893):
 vgt\r400vgt_hos_PNT_cont_cp_qn_complex_01.cpp(856):
 vgt\r400vgt_hos_PNT_cont_cp_qn_precision_01.cpp(768):
 vgt\r400vgt_hos_PNT_cont_cp_qn_precision_02.cpp(764):
 vgt\r400vgt_hos_PNT_cp_qn_cont_light_texture_01.cpp(799):
 vgt\r400vgt_hos_PNT_cp_qn_cont_light_texture_02.cpp(801):
 vgt\r400vgt_hos_PNT_cp_qn_cont_light_texture_03.cpp(801):
 vgt\r400vgt_hos_PNT_cp_qn_cont_moving_normals_01.cpp(758):
 vgt\r400vgt_hos_PNT_cp_qn_cont_no_projection_01.cpp(782):
 vgt\r400vgt_hos_PNT_cp_qn_disc_14_04_lit_tex_proj_01.cpp(677):
 vgt\r400vgt_hos_PNT_disc_cp_qn_complex_01.cpp(855):
 vgt\r400vgt_hos_PNT_disc_cp_qn_light_texture_01.cpp(799):
 vgt\r400vgt_hos_PNT_disc_cp_qn_no_projection_01.cpp(782):
 vgt\r400vgt_hos_PNT_disc_cp_qn_precision_01.cpp(768):
 vgt\r400vgt_hos_PNT_disc_cp_qn_precision_02.cpp(763):
 vgt\r400vgt_hos_PNT_edge_detection_01.cpp(992):
 vgt\r400vgt_hos_PNT_lp_cont_no_projection_01.cpp(784):
 vgt\r400vgt_hos_RPatch_02.cpp(639):
 vgt\r400vgt_hos_RPatch_cp_02.cpp(638):
 vgt\r400vgt_hos_RPatch_lp_02.cpp(637):
 vgt\r400vgt_hos_TPatch_01.cpp(696):
 vgt\r400vgt_hos_TPatch_02.cpp(696):
 vgt\r400vgt_hos_TRI_cp.cpp(563):
 vgt\r400vgt_hos_auto_index_line_list_01.cpp(427):
 vgt\r400vgt_hos_auto_index_quad_list_01.cpp(452):
 vgt\r400vgt_hos_auto_index_triangle_list_01.cpp(468):

 Page 407 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 vgt\r400vgt_hos_cubic_pos_pnt_discrete_01.cpp(494):
 vgt\r400vgt_hos_simple_linear_PNT_discrete_01.cpp(490):
 vgt\r400vgt_pass_thru_all_prims_01.cpp(385):

Change 50932 on 2002/09/11 by fhsien@fhsien_r400_linux_marlboro

 Update for smaller images

Change 50820 on 2002/09/11 by mkelly@fl_mkelly_r400_win_laptop

 Check point, test is almost complete...

Change 50815 on 2002/09/11 by ctaylor@fl_ctaylor_r400_dtwin_marlboro

 Moved 6-Sample MSAA Sample #2 location from ULC-rel 2,5 to 1,5 to alleviate degen
tri in texture lod computations. (HW and EMU and fixed 1 test).

Change 50794 on 2002/09/11 by fhsien@fhsien_r400_linux_marlboro

 Update for smaller images

Change 50707 on 2002/09/11 by mkelly@fl_mkelly_r400_win_laptop

 Simple triangle, polymode back face tri fill

Change 50701 on 2002/09/11 by mkelly@fl_mkelly_r400_win_laptop

 Add sq dumps to regression house keeping

Change 50676 on 2002/09/11 by omesh@omesh_r400_linux_marlboro_release

 Added code to program SurfaceFormat registers as well as detemine the
 number of bytes per pixel, based on the ColorFormat, instead of having
 each test case specify them. Most color formats still don't display
 correctly with DumpView (bug filed) and the SurfaceFormat class doesn't
 seem to dump any color format correctly, as yet.
 Also added code for random test cases.

Change 50645 on 2002/09/10 by kevino@kevino_r400_win_marlboro

 Worked on reglod test (but use_reg_lod is a bool in tfetch_instruction.cpp and an enum in
tinstr.h)
 Got offset tests working and added pos and neg cases to cover the whole range.

Change 50623 on 2002/09/10 by smoss@smoss_crayola_win

 su tests

Change 50588 on 2002/09/10 by kevino@kevino_r400_win_marlboro

 Page 408 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Fixed border size test- TM now sets texture size correctly (-1 per side for border)
 Added TFetchInst override of mip, minmag, and aniso in const

Change 50581 on 2002/09/10 by csampayo@fl_csampayo2_r400

 Commented out tests that hang regression.

Change 50569 on 2002/09/10 by mkelly@fl_mkelly_r400_win_laptop

 Fix name spelling

Change 50497 on 2002/09/10 by mkelly@fl_mkelly_r400_win_laptop

 Narrowed down the bug to polymode tri fill in the SC

Change 50491 on 2002/09/10 by hwise@fl_hwise_r400_win

 Updating registry files in pa_regress to choose the CP Microengine
 configuration rather than the 'C' implementation

Change 50486 on 2002/09/10 by mkelly@fl_mkelly_r400_win_laptop

 log a potential bug

Change 50454 on 2002/09/10 by jhoule@jhoule_r400_win_marlboro

 Added support for BORDER_SIZE specification.
 Added some textures and test files.
 Updated formats.tst, and the shader programs.

Change 50428 on 2002/09/10 by mkelly@fl_mkelly_r400_win_laptop

 For SC sample control #2

Change 50427 on 2002/09/10 by mkelly@fl_mkelly_r400_win_laptop

 SC sample control centers, centroids and Screen XY

Change 50408 on 2002/09/10 by mkelly@fl_mkelly_r400_win_laptop

 Check parameter 0 for SC center/centroid sampling control

Change 50375 on 2002/09/09 by fhsien@fhsien_r400_linux_marlboro

 Update with smaller images

Change 50347 on 2002/09/09 by csampayo@fl_csampayo_r400

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1704 of 1898

 Page 409 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 1. Added SU multi-context test
 2. Updated test_list and test tracker accordingly

Change 50335 on 2002/09/09 by omesh@omesh_r400_linux_marlboro_release

 Added 28 more tests. Either the .dump() routines don't dump correctly,
 or DumpView does not display 16_16_16_16 and 8_8_8_8 formats correctly.
 Seems more likely that the dump routines don't work correctly.

Change 50325 on 2002/09/09 by ygiang@ygiang_r400_test_marlboro

 changed: temp vertex buffer to uint32 for hex format

Change 50272 on 2002/09/09 by smoss@smoss_crayola_linux_orl_regress

 New VGT file

Change 50250 on 2002/09/09 by mkelly@fl_mkelly_r400_win_laptop

 Add Scott's new dump to regression
 Rename test

Change 50212 on 2002/09/09 by mkelly@fl_mkelly_r400_win_laptop

 Added two new sc dumps to regress compare list

Change 50206 on 2002/09/09 by smoss@smoss_crayola_win

 su tests

Change 50196 on 2002/09/09 by kevino@kevino_r400_win_marlboro

 Added 1st cut at RegLod test.

Change 50187 on 2002/09/09 by ygiang@ygiang_r400_win_marlboro_p4

 changed: test case

Change 50176 on 2002/09/09 by kevino@kevino_r400_win_marlboro

 Added tcdenorm non-power2 case.

Change 50172 on 2002/09/09 by kevino@kevino_r400_win_marlboro

 Added TFetchInst dst and src sel operations as well as tx_coord_denorm testcase

Change 50168 on 2002/09/09 by omesh@omesh_r400_linux_marlboro_release

 Changed the "Range" type of random number generator to "RangeF" so it

 Page 410 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 returns the right kind (float) of data structure. Default behavior was
 changed by George a while ago, which was resulting in 0 valued returns.

Change 50143 on 2002/09/09 by omesh@omesh_r400_linux_marlboro_release

 Changed the "Range" type of random number generator to "RangeF" so it
 returns the right kind (float) of data structure. Default behavior was
 recently changed by George, which was resulting in 0 valued returns.
 I'll change this soon for all earlier random tests as well.

Change 50121 on 2002/09/09 by mkelly@fl_mkelly_r400_win_laptop

 Fix tests to update all GB RAM registers between state change

Change 50050 on 2002/09/06 by llefebvr@llefebvre_laptop_r400_emu

 Fixed SWAP error that caused missmatches with gold images.
 Added count reset capability in the SQ for multipass.
 Added better comments for the PARAM_SHADE register field.
 Fixed some HW accurate bugs.
 Added new MOVA write back to GPRs feature.

Change 50033 on 2002/09/06 by kevino@kevino_r400_win_marlboro

 tcfunc file for endian swap tests

Change 50031 on 2002/09/06 by kevino@kevino_r400_win_marlboro

 Added trijuice

Change 50014 on 2002/09/06 by mkelly@fl_mkelly_r400_win_laptop

 Initial check of sc sample control for centers and centroids in the sc_sp

Change 50001 on 2002/09/06 by mkelly@fl_mkelly_r400_win_laptop

 Change ScDmp level to 3

Change 49995 on 2002/09/06 by mkelly@fl_mkelly_r400_win_laptop

 Stipple tests where lines are small, and repeat count and
 pattern are changed between state

Change 49977 on 2002/09/06 by abeaudin@abeaudin_r400_win_marlboro

 more golden images

Change 49975 on 2002/09/06 by mkelly@fl_mkelly_r400_win_laptop

 Page 411 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 BRESENHAM CONTROL verified to match R200 in following tests.
 For W9X, use 0x55, for W2K use 0x53

Change 49968 on 2002/09/06 by abeaudin@abeaudin_r400_win_marlboro

 more new goldens

Change 49938 on 2002/09/06 by csampayo@fl_csampayo_r400

 Updated Viz Query controls. Updated test status

Change 49937 on 2002/09/06 by frivas@FL_FRivas

 this test has a lot of bugs. It will be replaced soon.

Change 49930 on 2002/09/06 by kevino@kevino_r400_win_marlboro

 Added dstsel, miprange, and bordercolor tests and fmt565 files.
 RF (repeating fraction) tests are there, but not yet working.

Change 49901 on 2002/09/06 by mkelly@fl_mkelly_r400_win_laptop

 Missed checking in this one yesterday...

Change 49899 on 2002/09/06 by mkelly@fl_mkelly_r400_win_laptop

 First pass of complex pinwheel

Change 49880 on 2002/09/05 by omesh@omesh_r400_linux_marlboro_release

 Added some more testcases, fixed MAKE_VISUAL testcases (testcases involving *only*
the alpha channel, which are
 color blended with Red in the end, to bring out their visual result).
 I have visually verified some more testcases on the emulator, including the 3 newly
added ones.

Change 49844 on 2002/09/05 by omesh@omesh_r400_linux_marlboro_release

 Explicitly set the COLOR*_SWAP field for each of the Color Buffers in the
RB_COLOR_INFO register.
 The emulator's default setting for all 4 Color Buffers was not the same, which was
resulting in swapping of
 the Red and Blue channels.
 Also added more testcases, including random testcases and added post render Destination
Alpha blend, to bring
 out the effects of the final Destination Alpha (using Red color) if needed.
 I haven't yet checked all the visual results of all the testcases, but I think they should be
fine.

 Page 412 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 49837 on 2002/09/05 by smoss@smoss_crayola_win

 housekeeping

Change 49822 on 2002/09/05 by csampayo@fl_csampayo_r400

 1. Added 1 new VGT test for event handling
 2. Updated test_list and test tracker accordingly

Change 49804 on 2002/09/05 by frivas@FL_FRivas

 Added one HOS Tri-Patch test to the list.

Change 49796 on 2002/09/05 by frivas@FL_FRivas

 Initial checkin of HOS Tri-Patch test. Isolates just two patches (each with 10 control
points) to see if there are any seams or inconsistancies on the boundry between patches.
Implements lighting and texturing.

Change 49790 on 2002/09/05 by mkelly@fl_mkelly_r400_win_laptop

 1,2,4,6,8 MSAA rectangle list with zbuffering, all vertex ordering and verts falling on
 pixel center and non-pixel centers

Change 49781 on 2002/09/05 by mkelly@fl_mkelly_r400_win_laptop

 1,2,3,4 MSAA rectangle list, all vertex orders

Change 49752 on 2002/09/05 by mkelly@fl_mkelly_r400_win_laptop

 Update comments, add 6 MSAA rectangle list tests

Change 49749 on 2002/09/05 by omesh@omesh_r400_linux_marlboro_release

 Added NUM_MULTIWRITES programming (=3) to enable rendering to all 4 Color
Buffers from 1 SX Color Export,
 using the Color Channel Masks. Verified that the color masking does occur in the
emulator in all 4 buffers,
 visually, but this also uncovered a bug (Bugzilla Bug #334) with vertex color sequence
being out of order in
 reference to vertex positions, for Color Buffer 0.

Change 49730 on 2002/09/05 by mkelly@fl_mkelly_r400_win_laptop

 8 MSAA rectangle list, all vertex orders

Change 49723 on 2002/09/05 by frivas@FL_FRivas

 Added two new HOS tests to the list.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1705 of 1898

 Page 413 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 49715 on 2002/09/05 by frivas@FL_FRivas

 Initial check in of HOS Line-Patch. This test will be updated soon.

Change 49706 on 2002/09/05 by mkelly@fl_mkelly_r400_win_laptop

 SC test, check pixel mask is either 0x00 or 0xFF when MSAA and JSS
 are disabled and MSAA_NUM_SAMPLES = 7 at the sc_quad_pair_proc_out.dmp level

Change 49705 on 2002/09/05 by abeaudin@abeaudin_r400_win_marlboro

 made gcc hardware accurate - swapped red and blue - made new golden images

Change 49704 on 2002/09/05 by mkelly@fl_mkelly_r400_win_laptop

 Log a local sc bug

Change 49685 on 2002/09/05 by frivas@FL_FRivas

 Initial checkin of HOS Tri-Patch test. There are 8 patches with 10 control points each.
Implements lighting and texturing.

Change 49659 on 2002/09/05 by ygiang@ygiang_r400_win_marlboro_p4

 fixed: triangles size for hardware

Change 49618 on 2002/09/05 by kmahler@kmahler_r400_win_devel_views

 Fixed processing of VS_PROGRAM_CTRL's VS_EXPORT_MODE in render state.

 Also, fixed pixel file name in test.

Change 49595 on 2002/09/04 by csampayo@fl_csampayo_r400

 1. Added bug test case
 2. Updated bug# 43 on Bug Tracker

Change 49580 on 2002/09/04 by omesh@ma_omesh

 Added code to fill and dump all 4 color buffers instead of just the default (color buffer0).
I still use the framebuffer class in Primlib as it supports the features I need. Besides the color
surface class isn't ready to be used for multiple color buffers yet.
 The emulator visual outcome is as yet untested for these multiwrite testcases.

Change 49574 on 2002/09/04 by smoss@smoss_crayola_win

 SU test

 Page 414 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 49532 on 2002/09/04 by kevino@kevino_r400_win_marlboro

 Added border size case, but it isn't right yet.
 Added exp_adjust_all cases ranging from -32 to 32.

Change 49525 on 2002/09/04 by mkelly@fl_mkelly_r400_win_laptop

 Change test name, update tracker...

Change 49517 on 2002/09/04 by mkelly@fl_mkelly_r400_win_laptop

 Textured line, 8 MSAA, various orientations

Change 49474 on 2002/09/04 by kevino@kevino_r400_win_marlboro

 Added force_bc_w_to_max testcases, and shader program that puts A in R channel so
can see results easily.

Change 49452 on 2002/09/04 by mkelly@fl_mkelly_r400_win_laptop

 Update second setting of repeat count

Change 49375 on 2002/09/03 by kevino@kevino_r400_win_marlboro

 Added testcases that turn off tiling for rectangular and non-rectangular textures

Change 49364 on 2002/09/03 by kevino@kevino_r400_win_marlboro

 Added testcases:
 more filter cases
 2D Aniso
 Nearest_Clamp_Policy OGL mode test

Change 49354 on 2002/09/03 by mkelly@fl_mkelly_r400_win_laptop

 Initial check of MSAA centermost determination.

Change 49353 on 2002/09/03 by llefebvr@llefebvre_laptop_r400_emu

 Added Idle0 and Idle1_7 functions for SQ idle status report.

Change 49352 on 2002/09/03 by omesh@omesh_r400_linux_marlboro_release

 Changed background color to black so visual result of color masking is evident. Alicia
pointed out that masking is supposed
 to occur in the operation of: Destination Color = (Destination Color & ~COLOR_MASK)
+ (Source Color & COLOR_MASK), not as Destination
 Color = Source Color & COLOR_MASK. So, the results of the emulator were correct,
hence this bug is invalid.

 Page 415 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 49272 on 2002/09/03 by frivas@FL_FRivas

 Update. There was a typo in the spelling of the data file that the test reads.

Change 49259 on 2002/09/03 by kevino@kevino_r400_sun_marlboro

 Fix texture name, add 1024x1024 size

Change 49255 on 2002/09/03 by jhoule@jhoule_r400_win_marlboro

 Changed all .compare(..) to .substr(..) == string() to help Linux execution.
 Added support for specified miplevel when loading image.
 Corrected erroneous error message.

Change 49250 on 2002/09/03 by kevino@kevino_r400_sun_marlboro

 1024x1024 texture

Change 49171 on 2002/08/31 by ashishs@fl_ashishs_r400_win

 update

Change 49170 on 2002/08/31 by ashishs@fl_ashishs_r400_win

 CL test:
 The functionality is identical to r400cl_frustum_00 with the exception that it intentionally
cycles a postion through all 27 possible clip zones, validating clip operation at each zone.
 The clip zone possibilities are:
 No Clipping, Right [R], Left[L], Far[F], Near[N], Top[T], Bottom[B],
 RT, RB, RF, RFT, RFB, RN, RNT, RNB, LT, LB, LF, LFT, LFB, LN, LNT,
 LNB, NT, NB, FT, FB

Change 49164 on 2002/08/31 by ashishs@fl_ashishs_r400_win

 CL test:
 The functionality is identical to r400cl_frustum_00 with the exception that it intentionally
cycles a postion through all 27 possible clip zones, validating clip operation at each zone.
 The clip zone possibilities are:
 No Clipping, Right [R], Left[L], Far[F], Near[N], Top[T], Bottom[B],
 RT, RB, RF, RFT, RFB, RN, RNT, RNB, LT, LB, LF, LFT, LFB, LN, LNT,
 LNB, NT, NB, FT, FB

Change 49069 on 2002/08/30 by mkelly@fl_mkelly_r400_win_laptop

 Enabling/Disabling control of tp_sq.dmp file for validation

Change 49068 on 2002/08/30 by mkelly@fl_mkelly_r400_win_laptop

 Page 416 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Update test to pass HW, but waiting on PrimLib implementation for other tests.

Change 49041 on 2002/08/30 by ygiang@ygiang_r400_test_marlboro

 package type changed

Change 49034 on 2002/08/30 by csampayo@fl_csampayo_r400

 1. Added 4 new VGT tests for suppress eop function
 2. Updated test_list accordingly

Change 49027 on 2002/08/30 by kevino@kevino_r400_win_marlboro

 64x64 map

Change 49021 on 2002/08/30 by kevino@kevino_r400_win_marlboro

 Added smaller dilbert textures (created with dumpPPM function in uber_map.cpp)

Change 48991 on 2002/08/30 by kevino@kevino_r400_win_marlboro

 Made colors different than checker_32x32

Change 48986 on 2002/08/30 by kevino@kevino_r400_win_marlboro

 Changed tex size field to 16x16

Change 48985 on 2002/08/30 by kevino@kevino_r400_win_marlboro

 16x16 color checker pattern

Change 48981 on 2002/08/30 by kevino@kevino_r400_win_marlboro

 Tried to fix checkerboard

Change 48979 on 2002/08/30 by kevino@kevino_r400_win_marlboro

 Checkerboard texture

Change 48960 on 2002/08/30 by mkelly@fl_mkelly_r400_win_laptop

 Textured line list

Change 48959 on 2002/08/30 by mkelly@fl_mkelly_r400_win_laptop

 Match SC spec (repeat count -1)

Change 48958 on 2002/08/30 by mkelly@fl_mkelly_r400_win_laptop

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1706 of 1898

 Page 417 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Change stipple repeat count to (count - 1) to match SC spec.

Change 48922 on 2002/08/29 by kevino@kevino_r400_win_marlboro

 cleaned up sp filenames, go to only sending 1 tex coord in sp file when needed.

Change 48919 on 2002/08/29 by kevino@kevino_r400_win_marlboro

 Added set dest height command.

Change 48905 on 2002/08/29 by kevino@kevino_r400_win_marlboro

 Tests for multibuffer assert and seg-fault problem

Change 48889 on 2002/08/29 by omesh@ma_omesh

 Tweaked the TRIANGLE_COVERAGE (now = 1.0) parameter in these tests to recreate
the old large triangle parallel testcases (to be used to test swamping RB, I suppose).

Change 48876 on 2002/08/29 by kevino@kevino_r400_win_marlboro

 Fixed tex clause number for last 2 tex fetches

Change 48865 on 2002/08/29 by mkelly@fl_mkelly_r400_win_laptop

 * Basic multi-texture tests
 * 16 parameter, 64 dword texture test
 * Expand VFD to handle up to 16 textures,
 see r400sc_tri_16_par_64_dwords_01.cpp for example useage

Change 48847 on 2002/08/29 by mkelly@fl_mkelly_r400_win_laptop

 Update to match SC range of 0 - 255, previously 1 - 256

Change 48818 on 2002/08/29 by kevino@kevino_r400_win_marlboro

 fixe num of fb's to be -1 in multiwrite

Change 48813 on 2002/08/29 by kevino@kevino_r400_win_marlboro

 added rb_assert test case.

Change 48804 on 2002/08/29 by kevino@kevino_r400_win_marlboro

 Updated tri_juice to use enum, not float.

Change 48803 on 2002/08/29 by frivas@FL_FRivas

 Added two RECT patch tests to the test list.

 Page 418 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 48802 on 2002/08/29 by frivas@FL_FRivas

 Deleting these two tests because there was a change in their names and descriptions
inside the source code. Basically, they've just been renamed.

Change 48798 on 2002/08/29 by frivas@FL_FRivas

 Initial check-in of two HOS RECT Patch tests. These tests render the Utah Teapot. One
using Bezier interpolation for the patches, and the other using bi-linear interpolation. Both use
infinite lighting, texturing, and a tessellation level of 14.9.

Change 48790 on 2002/08/29 by vgoel@fl_vgoel2

 added PNT adaptive tessellation test using vertex export

Change 48785 on 2002/08/29 by kevino@kevino_r400_win_marlboro

 Added file which is needed by tp_multitexture_01.cpp

Change 48781 on 2002/08/29 by kevino@kevino_r400_win_marlboro

 Added 2D clamp mode tests and support textures
 parameterize the number of framebuffers
 branch 4 color buffer shader pipe program from the original
 reset the standard test results to 1 texture, 1 color buffer

Change 48769 on 2002/08/29 by kevino@kevino_r400_sun_marlboro

 2x2 went to 104x104 when I saved it after expanding the image, so fixed back to 2x2

Change 48765 on 2002/08/29 by smoss@smoss_crayola_win

 Golds with tile enabled

Change 48755 on 2002/08/29 by kevino@kevino_r400_sun_marlboro

 Cleaned up smalltex textures

Change 48750 on 2002/08/29 by kevino@kevino_r400_win_marlboro

 Small textures for use with clamp mode tests

Change 48735 on 2002/08/29 by ygiang@ygiang_r400_test_marlboro

 changed:buffer size

Change 48730 on 2002/08/29 by kevino@kevino_r400_win_marlboro

 Page 419 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 num_multiwrites should be base 0, so for 4 multiwrites, this should be set to 3.

Change 48693 on 2002/08/28 by omesh@ma_omesh

 Added another 30 testcases for Color Channel based masking tests. The tests compile on
the emulator, but don't produce the right results on the emulator (nothing renders). Will debug
test/emulator later.

Change 48673 on 2002/08/28 by csampayo@fl_csampayo_r400

 Updated number of cases

Change 48658 on 2002/08/28 by smoss@smoss_crayola_win

 Golds

Change 48645 on 2002/08/28 by kevino@kevino_r400_win_marlboro

 Added basic foundations for perl-generation of testcase lists
 Added basics for 4 color buffers, but if try to export in the shader program, it asserts.

Change 48639 on 2002/08/28 by vgoel@fl_vgoel2

 deleted r400vgt_hos_rpatch_02_pix and _vtx shaders

Change 48638 on 2002/08/28 by vgoel@fl_vgoel2

 added few more tests (hos and tone mapping, stereo vision)

Change 48606 on 2002/08/28 by georgev@devel_georgevhw_r400_lin_marlboro

 Added more support for random stuff.

Change 48572 on 2002/08/28 by mkelly@fl_mkelly_r400_win_laptop

 Update comments

Change 48541 on 2002/08/28 by omesh@ma_omesh

 Split another 10 testcases. Compiled and ran them on the emulator, though haven't yet
verified visual result (4_4_4_4 format).

Change 48537 on 2002/08/28 by mkelly@fl_mkelly_r400_win_laptop

 JSS 4x4 simple triangle

Change 48535 on 2002/08/28 by smoss@smoss_crayola_win

 golds

 Page 420 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 48501 on 2002/08/28 by frivas@FL_FRivas

 Initial check-in of a Rect Patch test. It generates a teapot.

Change 48487 on 2002/08/28 by ashishs@fl_ashishs_r400_win

 CL tests: adding more UCP combo tests and updating tracker.

Change 48480 on 2002/08/28 by kevino@kevino_r400_win_marlboro

 Moved functions to header file

Change 48479 on 2002/08/28 by kevino@kevino_r400_win_marlboro

 Added functions to create pix shader programs on the fly so can parameterize TFetchInstr
override values
 Added 2 simple tesecases for this as well.

Change 48474 on 2002/08/28 by kevino@kevino_r400_win_marlboro

 New names for shader pipe programs for tp_multitexture_01

Change 48448 on 2002/08/27 by smoss@smoss_crayola_win

 Add test for regress_e

Change 48435 on 2002/08/27 by mkelly@fl_mkelly_r400_win_laptop

 Comment out r400sc_point_list_06 until bug fixed

Change 48434 on 2002/08/27 by mkelly@fl_mkelly_r400_win_laptop

 Update for new MSAA samples

Change 48430 on 2002/08/27 by mkelly@fl_mkelly_r400_win_laptop

 Update to new MSAA sample selects

Change 48402 on 2002/08/27 by csampayo@fl_csampayo_r400

 1. Updated test VFD for sourcing tex coord from vertex
 2. Updated Bug Tracker accordingly

Change 48393 on 2002/08/27 by mkelly@fl_mkelly_r400_win_laptop

 Update for JSS sample 3 - 4 swap

Change 48355 on 2002/08/27 by llefebvr@llefebvre_laptop_r400_emu

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1707 of 1898

 Page 421 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 For some reason, the test was using the zw coordinates to fetch the texture. They should
have used the xy coordinates as the vertex shader only exports those coordinates.

Change 48352 on 2002/08/27 by mkelly@fl_mkelly_r400_win_laptop

 JSS Update for sample 3 and 4 swap

Change 48344 on 2002/08/27 by mkelly@fl_mkelly_r400_win_laptop

 Update to add test to regress_e r400sc_jss_4x4_fc_02

Change 48339 on 2002/08/27 by mkelly@fl_mkelly_r400_win_laptop

 Another quick test needed for SC regress_e

Change 48329 on 2002/08/27 by ygiang@ygiang_r400_win_marlboro_p4

 changed:buffer size

Change 48328 on 2002/08/27 by ygiang@ygiang_r400_win_marlboro_p4

 changed:buffer size

Change 48327 on 2002/08/27 by ygiang@ygiang_r400_win_marlboro_p4

 added: more sp tests

Change 48322 on 2002/08/27 by ashishs@fl_ashishs_r400_win

 update

Change 48320 on 2002/08/27 by ashishs@fl_ashishs_r400_win

 CL test: adding more UCP combo tests

Change 48304 on 2002/08/27 by fhsien@fhsien_r400_linux_marlboro

 Update tests with testcases for smaller framebuffer/images

Change 48291 on 2002/08/27 by csampayo@fl_csampayo_r400

 Moving bug case to proper place

Change 48264 on 2002/08/27 by csampayo@fl_csampayo_r400

 Bug test case

Change 48259 on 2002/08/27 by csampayo@fl_csampayo_r400

 Page 422 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 1. Added 1 new SU point sprite test
 2. Updated test_list and test tracker accordingly

Change 48245 on 2002/08/27 by mkelly@fl_mkelly_r400_win_laptop

 Update .sp name to 02

Change 48229 on 2002/08/27 by fhsien@fhsien_r400_linux_marlboro

 Update with small image test cases

Change 48186 on 2002/08/26 by ctaylor@fl_ctaylor_r400_win_marlboro

 Change Barycentric logic to correct 3-input adder carry-in problem.
 Added rounding to BarycBack multiplier for more accuracy on directed tests.
 Updated golds for 2 SC, 2 VGT and 2 SU tests which were affected by above changes.
 Added dumps for quad covered and cleaned up some dump file headers.
 Fixed zmin/zmax poly offset code for sign extend bug.
 Changed 6 and 8 Sample AA sample locations for new 6-sample grid.
 Added 2 and 3 sample AA sample locations.
 Fixed .cpp of two regression SC tests affected by AA sample location changes.

Change 48173 on 2002/08/26 by vgoel@fl_vgoel2

 added data file for tri-patches

Change 48171 on 2002/08/26 by vgoel@fl_vgoel2

 added tri-patch displaying an object

Change 48107 on 2002/08/26 by mkelly@fl_mkelly_r400_win_laptop

 tile control registry files

Change 48104 on 2002/08/26 by mkelly@fl_mkelly_r400_win_laptop

 Re-included SC stipple test

Change 48098 on 2002/08/26 by omesh@omesh_r400_linux_marlboro_release

 Changed COVERAGE settings to render smaller triangles in scalable tests, to reduce
simulation time
 and storage space requirements for results. Made most of the triangles about 1/16th their
size.

Change 48091 on 2002/08/26 by jhoule@jhoule_r400_win_marlboro

 New TRI_JUICE specification.

 Page 423 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 48080 on 2002/08/26 by llefebvr@llefebvre_laptop_r400_emu

 There was an indexing problem with the writting of the STs in the GPRs.

Change 48071 on 2002/08/26 by kevino@kevino_r400_win_marlboro

 Cleaned up, added format_2101010.

Change 48054 on 2002/08/26 by jhoule@jhoule_r400_win_marlboro

 Setting both MIN/MAG filters

Change 48046 on 2002/08/26 by ashishs@fl_ashishs_r400_win

 update to testlist

Change 48039 on 2002/08/26 by mkelly@fl_mkelly_r400_win_laptop

 Memory crash when shader file doesn't exist..

Change 48026 on 2002/08/26 by kevino@kevino_r400_win_marlboro

 added format_5_6_5 case

Change 48022 on 2002/08/26 by mkelly@fl_mkelly_r400_win_laptop

 Archiving potential bug in SQ ST determination.

Change 48021 on 2002/08/26 by mkelly@fl_mkelly_r400_win_laptop

 Textured line where ST are exported directly to RGBA to visulize texture coordinates
 in color. Current there is a bug in the LLC quad pixel ST value when the primitive is
 not quad-aligned.

Change 47986 on 2002/08/26 by kevino@kevino_r400_win_marlboro

 Added load_vertex function to make it easier.

Change 47980 on 2002/08/26 by kevino@kevino_r400_win_marlboro

 cleaned up baee and mip offset code

Change 47967 on 2002/08/25 by csampayo@fl_csampayo_r400

 1. Added 1 new SU point sprite tests
 2. Updated test_list and the test tracker accordingly

Change 47946 on 2002/08/24 by tho@tho_r400_win

 Page 424 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Changed MEM_BASE and BIOS_BASE setting in bif_init.cpp in chip library.
 Take out one failing test (not sure how to fix the test) from regression.
 Updated golden images - all the mem_framebuf_r are modified by a script, all the rd_r
files are done manully.
 Hope this submit won't break in the middle.

Change 47918 on 2002/08/23 by ashishs@fl_ashishs_r400_win

 pointlist test, with 8 textures and 1 color. texture currently disabled through VFD, will be
incorporated soon.

Change 47900 on 2002/08/23 by mkelly@fl_mkelly_r400_win_laptop

 Update test so it will compile, bug still exists...

Change 47899 on 2002/08/23 by smoss@smoss_crayola_linux_orl_regress

 update

Change 47895 on 2002/08/23 by mkelly@fl_mkelly_r400_win_laptop

 * Line list, start vertex at -8190 in HW space, clipped at -4096 Screen Space
 * Line list, textured

Change 47891 on 2002/08/23 by kevino@kevino_r400_win_marlboro

 generalize tp_multitexture_01 to parameterize all of the TFetchConst fields

Change 47789 on 2002/08/23 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 47788 on 2002/08/23 by mkelly@fl_mkelly_r400_win_laptop

 Bug caused by primlib/render_state/render_register_state.cpp#42

Change 47756 on 2002/08/23 by mkelly@fl_mkelly_r400_win_laptop

 PrimLib bug

Change 47731 on 2002/08/23 by mdoggett@mdoggett_r400_linux_local

 Updated dxtc test to work with changed texture constant. Also changed image from
window to boards as boards shows the compression artifacts of dxtc1.

Change 47729 on 2002/08/23 by vgoel@fl_vgoel2

 added simple line patch test

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1708 of 1898

 Page 425 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 47728 on 2002/08/23 by vgoel@fl_vgoel2

 added complex teapot test for rect patches

Change 47717 on 2002/08/23 by mkelly@fl_mkelly_r400_win_laptop

 Simple single line list

Change 47623 on 2002/08/22 by llefebvr@llefebvre_laptop_r400_emu

 using resize instead of push_back

Change 47622 on 2002/08/22 by kevino@kevino_r400_win_marlboro

 Added a couple more testcases to tp_aniso
 Added default aniso field to tp_unsigned32_01 and tp_multitexture_0

Change 47607 on 2002/08/22 by kevino@kevino_r400_win_marlboro

 1st cut at aniso test. Not sure if it is working in emu yet.

Change 47575 on 2002/08/22 by georgev@devel_georgevhw_r400_lin_marlboro

 Fixed frame buffer size.

Change 47534 on 2002/08/22 by georgev@devel_georgevhw_r400_lin_marlboro

 More changes.

Change 47531 on 2002/08/22 by kevino@kevino_r400_sun_marlboro

 Texture that shows text (nice for aniso)

Change 47522 on 2002/08/22 by csampayo@fl_csampayo_r400

 1. Added 10 new VGT multi-context tests
 2. Updated test_list and the test tracker accordingly

Change 47507 on 2002/08/22 by frivas@FL_FRivas

 Change to anonymous struct definition in "Matrix_Class" to allow compiling under
Linux.

Change 47506 on 2002/08/22 by kevino@kevino_r400_win_marlboro

 added f to float values so don't get double to float warnings

Change 47493 on 2002/08/22 by mkelly@fl_mkelly_r400_win_laptop

 Page 426 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Finalized second poly offset test

Change 47491 on 2002/08/22 by mkelly@fl_mkelly_r400_win_laptop

 Add two test descriptions, update comments in test

Change 47454 on 2002/08/21 by ashishs@fl_ashishs_r400_win

 CL test:r400cl_ucp_pointlist_01
 64 point sprites with 6 textures and 6 ucp's enabled with point size set in PA_SU state
register and also in PA_CL_POINT registers for clipping. Point Sprite UCP mode set to '3' viz.
always expand and clip.

Change 47443 on 2002/08/21 by mkelly@fl_mkelly_r400_win_laptop

 One more time..

Change 47438 on 2002/08/21 by mkelly@fl_mkelly_r400_win_laptop

 Try again...

Change 47437 on 2002/08/21 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 47431 on 2002/08/21 by mkelly@fl_mkelly_r400_win_laptop

 del

Change 47429 on 2002/08/21 by mkelly@fl_mkelly_r400_win_laptop

 golds...

Change 47423 on 2002/08/21 by mkelly@fl_mkelly_r400_win_laptop

 Add to SC regress_e

Change 47414 on 2002/08/21 by mkelly@fl_mkelly_r400_win_laptop

 Fix a typo, changed bool to uint32 on MAX_DISTANCE for aa

Change 47406 on 2002/08/21 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 47404 on 2002/08/21 by mkelly@fl_mkelly_r400_win_laptop

 Increasing SC regress_e with some very quick tests to give more coverage,

 Page 427 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 47380 on 2002/08/21 by kevino@kevino_r400_linux_marlboro

 Added a random texture case where the vertices are left alone

Change 47378 on 2002/08/21 by mkelly@fl_mkelly_r400_win_laptop

 DEPTH_16 and DISP_Y_DIM = 64

Change 47377 on 2002/08/21 by mkelly@fl_mkelly_r400_win_laptop

 Update to include R400HardwareAccurate = 0

Change 47376 on 2002/08/21 by mkelly@fl_mkelly_r400_win_laptop

 Update tests DISP_Y_DIM to 64 to work around Primlib issue. Does not
 affect functional part of test but permits HW simulation to continue

Change 47369 on 2002/08/21 by kevino@kevino_r400_win_marlboro

 Added several basic 1-4 text testcases and a shader program which doesn't blend in the
color

Change 47362 on 2002/08/21 by llefebvr@llefebvre_laptop_r400_emu

 Dumplib now supports : FMT_8, FMT_8_8_8_8, FMT_5_6_5, FMT_4_4_4_4,
FMT_2_10_10_10, FMT_1_5_5_5, FMT_16_16, FMT_32_32_32_32_FLOAT,
FMT_16_16_16_16, DEPTH_16, DEPTH_24_8, DEPTH_24_8_FLOAT.

Change 47340 on 2002/08/21 by kevino@kevino_r400_win_marlboro

 1st simple testcase files for tp_multitexture_01

Change 47338 on 2002/08/21 by kevino@kevino_r400_win_marlboro

 Created XYZW_RGBA_STQ4 data structure w/ 4 STQ coords
 Set up multitexture test to draw 1-4 textures. (Need more pix.sp files for more than
that)

Change 47333 on 2002/08/21 by frivas@FL_FRivas

 update

Change 47330 on 2002/08/21 by frivas@FL_FRivas

 Change to annonymous struct definition in "Matrix_Class" to allow compiling in Linux.

Change 47328 on 2002/08/21 by abeaudin@abeaudin_r400_win_marlboro

 Page 428 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 fixed ptich problem.

Change 47325 on 2002/08/21 by frivas@FL_FRivas

 Change to annonymous struct definition in "Matrix_Class" to allow compiling on Linux.

Change 47318 on 2002/08/21 by frivas@FL_FRivas

 Change to annonymous struct definition in "Matrix_Class" to allow compling under
Linux.

Change 47308 on 2002/08/21 by frivas@FL_FRivas

 Change to annonymous struct in "Matrix_Class" to allow compiling under Linux.

Change 47302 on 2002/08/21 by frivas@FL_FRivas

 Change to annonymous struct defined in "Matrix_Class" to allow compiling under Linux.

Change 47301 on 2002/08/21 by vgoel@fl_vgoel2

 added first tri-patch test

Change 47281 on 2002/08/21 by frivas@FL_FRivas

 Changed annonymous struct definition in "Matrix_Class" to allow compling under Linux.

Change 47269 on 2002/08/21 by frivas@FL_FRivas

 Change to annonymous struct definition in "Matrix_Class" to allow compilation under
Linux.

Change 47177 on 2002/08/20 by csampayo@fl_csampayo2_r400

 Updates for surface height constraint

Change 47167 on 2002/08/20 by mkelly@fl_mkelly_r400_win_laptop

 Update test to run several 12 seg concentric circles...

Change 47163 on 2002/08/20 by mkelly@fl_mkelly_r400_win_laptop

 Count double hit pixels if more than one occurs in a quad.

Change 47146 on 2002/08/20 by kevino@kevino_r400_win_marlboro

 cast (*(tfc[texnum]) to TFETCH_CONSTANT_REGISTER before sending it to
gRenderState->Set()

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1709 of 1898

 Page 429 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 47130 on 2002/08/20 by llefebvr@llefebvre_laptop_r400_emu

 Now returning vectors of strings

Change 47128 on 2002/08/20 by mkelly@fl_mkelly_r400_win_laptop

 Update comments in test...

Change 47127 on 2002/08/20 by mkelly@fl_mkelly_r400_win_laptop

 Line list concentric circle, line width increased to see double hit pixels

Change 47117 on 2002/08/20 by kevino@kevino_r400_win_marlboro

 Cleaned up, added more debug info. Works on Linux, but not windows.

Change 47106 on 2002/08/20 by kevino@kevino_r400_win_marlboro

 Multitexture test. Rev1 compiles, but has a pointer error with gRenderState->Set(
*tfc[texnum]);

Change 47098 on 2002/08/20 by mkelly@fl_mkelly_r400_win_laptop

 Added object for keeping track of multi-processed pixels in the SC,
 modified test to display multi-hit pixels

Change 47024 on 2002/08/20 by kevino@kevino_r400_win_marlboro

 Add basemap to randomize_FILTER function. Also set parameters for miptint functions.

Change 47022 on 2002/08/20 by kevino@kevino_r400_win_marlboro

 Added Mip_BaseMap to several testcases

Change 46991 on 2002/08/20 by kevino@kevino_r400_win_marlboro

 Added point and linear mipmap modes

Change 46914 on 2002/08/19 by csampayo@fl_csampayo_r400

 1. Added 2 new VGT test for multi context coverage
 2. Updated test_list and the test tracker appropriately

Change 46895 on 2002/08/19 by mkelly@fl_mkelly_r400_win_laptop

 Primlib utility to check for double hit pixels in sc_quad_pair_proc_out.dmp

 Concentric circle test to do a preliminary check on the new utility

 Page 430 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 46866 on 2002/08/19 by kevino@kevino_r400_win_marlboro

 New testcases for tp_unsigned32_01.cpp

Change 46857 on 2002/08/19 by kevino@kevino_r400_win_marlboro

 Added non-rectangular testcases
 Cleaned up some oduble->float warnings by specifying floats with 1.0f instead of 1.0
 Added tint funtion to testcases
 expanded texture_manager tintarray to be 15x4 to cover up to 16K 1D textures

Change 46823 on 2002/08/19 by smoss@smoss_crayola_win

 removed duplicate case

Change 46777 on 2002/08/19 by csampayo@fl_csampayo_r400

 1. Added 4 new SU polymode degenerate tests
 2. Updated test_list and test tracker accordingly

Change 46753 on 2002/08/19 by kevino@kevino_r400_linux_marlboro

 Added EstesPark images (mostly non-square)

Change 46729 on 2002/08/19 by kevino@kevino_r400_win_marlboro

 define prim size to make changing it easier

Change 46695 on 2002/08/18 by csampayo@fl_csampayo_r400

 1. Added 8 new SU polymode tests
 2. Updated test_list and the test tracker accordingly

Change 46633 on 2002/08/16 by kevino@kevino_r400_win_marlboro

 Fixed some maxmip values, put in commented out tintMipChain call.

Change 46598 on 2002/08/16 by kevino@kevino_r400_win_marlboro

 Added some non-power2 texture cases with various filtering

Change 46586 on 2002/08/16 by kevino@kevino_r400_linux_marlboro

 Non-power2 sized textures

Change 46572 on 2002/08/16 by omesh@omesh_r400_linux_marlboro_only_devel

 Changed format of render and destination to 4444 instead of 8888, so
 that visual effects of the dither tests can be seen. Also switched to

 Page 431 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 using the new Surface format class of primlib that supports fill and
 dump of the 4444 format. Still haven't seen the visual effects of dither
 (Dumpview comes up too slowly on a fully loaded lmcs* or lmct* machine
 today!!)

Change 46518 on 2002/08/16 by georgev@devel_georgevhw_r400_lin_marlboro

 Change to new format.

Change 46515 on 2002/08/16 by georgev@devel_georgevhw_r400_lin_marlboro

 Put in missing semi-colon.

Change 46505 on 2002/08/16 by jhoule@jhoule_r400_win_marlboro

 Added support for {MIN|MAX}_MIP_LEVEL and LOD_BIAS_{H|V}.
 Added generateMipmapChain() function.

Change 46391 on 2002/08/15 by mkelly@fl_mkelly_r400_win_laptop

 Possible interpolator bug...

Change 46353 on 2002/08/15 by kevino@kevino_r400_linux_marlboro_release

 Changed maxmiplevel to 9 since the texture is 512x512

Change 46349 on 2002/08/15 by vgoel@fl_vgoel2

 changed the tessellation level to one

Change 46347 on 2002/08/15 by kevino@kevino_r400_win_marlboro

 Set the maxmiplevel to 10

Change 46257 on 2002/08/15 by mkelly@fl_mkelly_r400_win_laptop

 Modified SC regress_e tests to reduce emulate time by 66% (from 1:41 to 0:47 total for
five tests). In general, less cases are tested but specific
 functional / operational check still occurs.

Change 46255 on 2002/08/15 by csampayo@fl_csampayo_r400

 1. Added 3 new SU tests
 2. Updated test_list and the test tracker accordingly

Change 46245 on 2002/08/15 by abeaudin@abeaudin_r400_win_marlboro

 fixed dither bug - rounding was not being done

 Page 432 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 46186 on 2002/08/14 by georgev@devel_georgevhw_r400_lin_marlboro

 Changed predicate tests. Began serialize test.

Change 46124 on 2002/08/14 by omesh@omesh_r400_linux_marlboro_release

 Fixed some bugs related to placement of geometry on screen and also add
 some more random testcases. I tried running the testcases on linux and
 they seem to execute, although the emulator doesn't produce the right
 result.

Change 46120 on 2002/08/14 by kevino@kevino_r400_linux_marlboro

 dilbert texture in ppm ascii format to make sure windows raw fix doesn't break ascii
mode

Change 46109 on 2002/08/14 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 46106 on 2002/08/14 by mkelly@fl_mkelly_r400_win_laptop

 More bres control tests...

Change 46015 on 2002/08/14 by omesh@ma_omesh

 Added special testcases for LUT based color dither, for more extensive testing. Compiled
and run on Windows. Not yet checked on Linux.

Change 45945 on 2002/08/14 by jhoule@jhoule_r400_win_marlboro

 Converted dilbert_128x128.ppm into ascii PPM format.

Change 45899 on 2002/08/14 by mkelly@fl_mkelly_r400_win_laptop

 Line Strip stipple packet switching in progress...

Change 45816 on 2002/08/13 by csampayo@fl_csampayo_r400

 Update to properly set X and Y radius for per vertex point size

Change 45815 on 2002/08/13 by mkelly@fl_mkelly_r400_win_laptop

 50% done...

Change 45788 on 2002/08/13 by omesh@ma_omesh

 Added Alpha Dither testcases (5). They compile and run on Windows. Haven't checked
them on Linux yet.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1710 of 1898

 Page 433 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 45761 on 2002/08/13 by omesh@omesh_r400_linux_marlboro_release

 Fixed a bug with calculating colors to be rendered to bring out dither
 effects. Ran the test on Linux and verified that the test is doing what
 it should be, even though the emulator doesn't produce the right result.

Change 45748 on 2002/08/13 by omesh@ma_omesh

 Added extensive testcases for TRUNC and ROUND cases of color dither. There are 5
testcases (including 3 random). I have run them on Windows and have yet to run them on Linux.

Change 45736 on 2002/08/13 by csampayo@fl_csampayo2_r400

 Updates for latest primlib surface change

Change 45684 on 2002/08/13 by csampayo@fl_csampayo_r400

 Add bug case

Change 45673 on 2002/08/13 by mkelly@fl_mkelly_r400_win_laptop

 Expand line width basic functionality...

Change 45643 on 2002/08/13 by frivas@FL_FRivas

 Update to output image size (32-bit alligned) and Z-Buffer set up (new R400
DepthFormat enums).

Change 45633 on 2002/08/13 by ashishs@fl_ashishs_r400_win

 commented out a test for further investigation

Change 45631 on 2002/08/13 by ashishs@fl_ashishs_r400_win

 changed to latest register spec

Change 45591 on 2002/08/12 by ygiang@ygiang_r400_win_marlboro_p4

 modified for ken mahler to debug

Change 45580 on 2002/08/12 by omesh@omesh_r400_linux_marlboro_release

 Fixed a compiler error on linux. The test, however, still doesn't show
 dither to be working.

Change 45577 on 2002/08/12 by omesh@ma_omesh

 Page 434 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Made a basic dither test that tests all 3 modes for Color/Alpha dither. The test compiles
on Windows, but I haven't yet checked if it is running on Linux.

Change 45496 on 2002/08/12 by smoss@smoss_crayola_win

 Added vgt dma dump files

Change 45495 on 2002/08/12 by omesh@ma_omesh

 Fixed a typo that was keeping the test from compiling.

Change 45486 on 2002/08/12 by ygiang@ygiang_r400_win_marlboro_p4

 added: more SP opcode tests

Change 45485 on 2002/08/12 by jhoule@jhoule_r400_win_marlboro

 Resubmitted golden image, changing type to binary (Windows regression was broken
otherwise).

Change 45456 on 2002/08/12 by kryan@kryan_r400_win_marlboro

 Updating all golden images in the R400 Emulator regression suite

 except those under the test_lib/src/chip/quickemu/ directory.

 Modifying chip/perf/ tests:

 - Update golden images to include new R400 header information,

 and since ColorSurface0 is now tiled by default.

 primlib_template_simple_triangle.cpp

 - Modified to force it to always use tiled Fill_Solid(), tiled ColorSurface,

 and tell the Dump() function that the ColorSurface is tiled.

 primlib_tex_tri.cpp

 - Modified to use new SurfaceFormat FMT_8_8_8_8 for ColorSurface instead

 of old plgx::pixelType.

 Page 435 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 - Added new PIXEL_SURFACE object that represents the color surface.

 - Initialize this object with the Fill_Solid() command.

 - Call member function Dump() to dump the memory occupied by

 by this object. This simplifies the Fill/Dump calls.

 - Modified call to Load_Texture_Buffer_And_Write_To_Memory() function

 to disable downsampled mipmap generation, and force fills to be

 tiled when the texture is written to memory.

 - Modified the test to set the appropriate field in the Texture Fetch

 Constant register telling whether the texture is tiled in memory

 or not.

 gfx/pa/CL tests

 - Update golden images to include new R400 header information,

 and since ColorSurface0 is now tiled by default.

 r400cl_clip_space_dx_ogl_01.cpp

 - modified code to calculate visible portion of framebuffer to use

 DISP_PITCH instead of DISP_X_DIM since DISP_PITCH > DISP_X_DIM.

 This will correctly calculate the actual dimensions of the color

 surface that will be rendered to.

 - Updated Dump() call to use DISP_PITCH as width of memory to be

 Page 436 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 dumped so that the whole color surface will be dumped into the

 dumpfile. This is necessary so that the viewer can properly

 detile the surface.

 gfx/pa/SU tests

 - Update golden images to include new R400 header information,

 and since ColorSurface0 is now tiled by default.

 gfx/pa/VTE tests

 - Update golden images to include new R400 header information,

 and since ColorSurface0 is now tiled by default.

 gfx/SC tests

 - Update golden images to include new R400 header information,

 and since ColorSurface0 is now tiled by default.

 chip/gfx/VGT tests

 - Update golden images to include new R400 header information,

 and since ColorSurface0 is now tiled by default.

 r400vgt_hos_PNT_cp_qn_disc_14_04_lit_tex_proj_01.cpp

 - Modified to force fills to be tiled.

 - Set field in texture constant register to indicate

 the texture is tiled in memory.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1711 of 1898

 Page 437 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 chip/sys/CP tests

 - Update golden images to include new R400 header information.

 cp_simple_triangle.cpp

 - Modified test to tell Dump() that ColorSurface0 is not tiled.

Change 45432 on 2002/08/12 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 45408 on 2002/08/12 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 45399 on 2002/08/12 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 45365 on 2002/08/11 by ygiang@ygiang_r400_win_marlboro_p4

 added: new shader tests with some of new opcode

Change 45364 on 2002/08/11 by ygiang@ygiang_r400_win_marlboro_p4

 added: dot3 and dot4 shader tests

Change 45362 on 2002/08/11 by omesh@ma_omesh

 Split some more testcases.

Change 45360 on 2002/08/11 by omesh@omesh_r400_linux_marlboro_release

 Fixed some bugs related to constant color/alpha blending programming.
 Also re-verified all results visually.

Change 45326 on 2002/08/09 by kryan@kryan_r400_win_marlboro

 Orlando texture tests not in regression suite

 r400vte_xy_fmt_01.cpp

 Page 438 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 - Changed dimensions of dump file so that it will detile properly

 when color buffer is tiled.

Change 45316 on 2002/08/09 by csampayo@fl_csampayo_r400

 1. Updated image size for tests: r400su_point_sprite_01 and _02
 2. Added 4 more SU point sprite tests
 3. Updated test_list and test tracker accordingly

Change 45246 on 2002/08/09 by georgev@devel_georgevhw_r400_lin_marlboro

 More tests.

Change 45245 on 2002/08/09 by mkelly@fl_mkelly_r400_win_laptop

 Enhance comments in test, initialize all clip rects to zero

Change 45242 on 2002/08/09 by ygiang@ygiang_r400_win_marlboro_p4

 more for debug

Change 45239 on 2002/08/09 by ygiang@ygiang_r400_win_marlboro_p4

 new for debug

Change 45236 on 2002/08/09 by ygiang@ygiang_r400_win_marlboro_p4

 added: test for debug

Change 45233 on 2002/08/09 by smoss@smoss_crayola_win

 Updated for new code

Change 45230 on 2002/08/09 by mkelly@fl_mkelly_r400_win_laptop

 Poly offset 100 packets, varying offset from +0.5 to -0.5

Change 45220 on 2002/08/09 by mkelly@fl_mkelly_r400_win_laptop

 Nan retain/kill on 2 vector exports from shader bug...

Change 45169 on 2002/08/09 by frivas@FL_FRivas

 Initial check in of input data image for "r400vgt_hos_PNT_edge_detection_01" test.

Change 45168 on 2002/08/09 by frivas@FL_FRivas

 Deleted file from Perforce because there is a new input file with a different name.

 Page 439 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 45167 on 2002/08/09 by frivas@FL_FRivas

 Update. Changed name of input data file to
"r400vgt_hos_PNT_edge_detection_001.bmp"

Change 45164 on 2002/08/09 by llefebvr@llefebvre_laptop_r400_emu

 Corrected one SP test.

Change 45161 on 2002/08/09 by ygiang@ygiang_r400_win_marlboro_p4

 added: vertex pass through with alpha fetch..

Change 45160 on 2002/08/09 by ygiang@ygiang_r400_win_marlboro_p4

 added: tests w/ bugs to fix

Change 45142 on 2002/08/09 by jhoule@jhoule_r400_win_marlboro

 New test program where things are specified through a test file.

 Supports:
 - vertex array
 - index array (tri and quad lists)
 - vertex and pixel shader file specification
 - texture (ppm filename, most constants)

 Added default files, plus format manipulation test file.

Change 45045 on 2002/08/08 by ashishs@fl_ashishs_r400_win

 CL test:
 A test to determine if the clip guard band works properly and that trivial reject works.
update to test tracker and test list.

Change 45040 on 2002/08/08 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 45038 on 2002/08/08 by frivas@FL_FRivas

 Update. Added edge detector test to test list.

Change 45010 on 2002/08/08 by frivas@FL_FRivas

 Initial check in of Canny Edge detector using the pixel shader to implement the
algorithm. Also fed through the HOS engine at level 0 discrete tessellation.

 Page 440 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 44986 on 2002/08/08 by frivas@FL_FRivas

 Update. Took out 1 HOS test and added 4 others.

Change 44982 on 2002/08/08 by frivas@FL_FRivas

 Initial check in of HOS precision tests.

Change 44980 on 2002/08/08 by frivas@FL_FRivas

 Deleted because there is another test that does the same thing with a slightly different
name.

Change 44954 on 2002/08/08 by omesh@omesh_r400_linux_marlboro_release

 Added a comment about the expected outcome of a working test (Green Triangle) or a
possible not working test (Yellow triangle)

Change 44952 on 2002/08/08 by omesh@omesh_r400_linux_marlboro_release

 Made a basic fog test that uses a constant fog factor (1.0: Max) in the SP (Pixel Shader)
and exports it for use to the RB.
 The test doesn't work right now because the emulator doesn't support the bit backing
associated with storing/exporting fog factor. Laurent will inform me when he implements the bit
packing in the emulator, so that Alicia can test the RB Emulator functioning of fog blending.

Change 44939 on 2002/08/08 by kevino@kevino_r400_linux_marlboro_release

 Just another texture map...

Change 44907 on 2002/08/08 by csampayo@fl_csampayo_r400

 1. Initial check in of Bug Tracker
 2. Added bug test case

Change 44906 on 2002/08/08 by kevino@kevino_r400_linux_marlboro_release

 Construct: put dependency on ferret)ctrl.v
 SQ_TP_interface.v: emu send single request over 4 cycles (with different pix mask
 and fetch_addr, etc) , not 1 cycle/command
 tp_simple_02: changed to 7x7 primitive instead of 100x100

Change 44896 on 2002/08/08 by frivas@FL_FRivas

 Update to tessellation level.

Change 44801 on 2002/08/07 by georgev@devel_georgevhw_r400_lin_marlboro

 Calls aren't working, so I signed it in for debug.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1712 of 1898

 Page 441 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 44797 on 2002/08/07 by frivas@FL_FRivas

 Update to tessellation level (changed to 1.0).

Change 44773 on 2002/08/07 by abeaudin@abeaudin_r400_win_marlboro

 fog implementation complete

Change 44761 on 2002/08/07 by omesh@omesh_r400_windowsXp_marlboro_1_

 Split some testcases and created new tests. For some reason they don't work on Windows
(crash), but they seem to work on Linux, so I'll test these on Linux exclusively.
 Fixed some typos in r400rb_alpha_source as well as some bugs.

Change 44734 on 2002/08/07 by kevino@kevino_r400_linux_marlboro_release

 Combined tp_simple, tp_2d_clamp, tp_2d_lod_bias, tp_1d_ etc to 1 test with
testcases
 The trick is to break up the testcases (DEFINE_TEST_CASE) into include files
 with corresponding testcasename files (DEFINE_TEST_CASE_NAME) so they are
manageable.

Change 44731 on 2002/08/07 by kevino@kevino_r400_linux_marlboro_release

 changed texture_filename to char* so it would work properly

Change 44726 on 2002/08/07 by mkelly@fl_mkelly_r400_win_laptop

 Update, this test currently hangs...

Change 44699 on 2002/08/07 by mdoggett@mdoggett_r400_linux_local

 Updated for new texture fetch constant pitch which is now indicates the number of 32
elements.
 Also added a makefile for TC tests.

Change 44675 on 2002/08/07 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 44636 on 2002/08/07 by mkelly@fl_mkelly_r400_win_laptop

 More JSS coverage...

Change 44616 on 2002/08/07 by kevino@kevino_r400_linux_marlboro_release

 1st cut at random

 Page 442 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 44586 on 2002/08/06 by csampayo@fl_csampayo2_r400

 Updated for SQ param gen new feature and associated VFD support

Change 44553 on 2002/08/06 by frivas@FL_FRivas

 Initial check-in of HOS PNT tests that use a complex model (human-like head) and
tessellates 190 triangles to a level of 14.0 (in discrete case) and 14.99 (in continuous case).
Implements perspective projeciton, lighting, and texturing.

Change 44514 on 2002/08/06 by kevino@kevino_r400_linux_marlboro_release

 Includes some more include directories (taken from the sq directory)
 also includes the -v options, which I believe dump some more info .
 This will not work on Windows.

Change 44512 on 2002/08/06 by mkelly@fl_mkelly_r400_win_laptop

 Textured pixel shader anti-aliased line example with VFD support.

Change 44501 on 2002/08/06 by ashishs@fl_ashishs_r400_win

 changed to latest includes

Change 44495 on 2002/08/06 by ashishs@fl_ashishs_r400_win

 corrected error (reverted back to the previous version, accidently changed while testing)

Change 44479 on 2002/08/06 by ashishs@fl_ashishs_r400_win

 changed for latest "includes"

Change 44475 on 2002/08/06 by ashishs@fl_ashishs_r400_win

 changed to latest "includes"

Change 44458 on 2002/08/06 by ashishs@fl_ashishs_r400_win

 update

Change 44450 on 2002/08/06 by ashishs@fl_ashishs_r400_win

 CL test: to test clip disable feature

Change 44421 on 2002/08/06 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 44377 on 2002/08/06 by kevino@kevino_r400_linux_marlboro_release

 Page 443 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 1st LOD test

Change 44350 on 2002/08/06 by llefebvr@llefebvre_laptop_r400_emu

 There was a bug in the SQ that made the last iteration of a loop read invalid loop indexes.
This is now fixed.

Change 44318 on 2002/08/05 by mkelly@fl_mkelly_r400_win_laptop

 Update to work correctly with MOD3 operation...

Change 44303 on 2002/08/05 by omesh@omesh_r400_linux_marlboro_release

 Removed comments from lines of code that maintain the destination alpha.
 I will file a Bugzilla bug for the emulator for this. Already spoken to
 Alicia about the bug.

Change 44292 on 2002/08/05 by fhsien@fhsien_r400_linux_marlboro

 ADD Stencil_ZFAIL test

Change 44273 on 2002/08/05 by georgev@ma_georgev

 Changed loop variables for windoze compatability.

Change 44265 on 2002/08/05 by kevino@kevino_r400_linux_marlboro_release

 modified dilbert.ppm that uses forced colors in image to identify mip level (ie.e.
image size level)

Change 44246 on 2002/08/05 by mkelly@fl_mkelly_r400_win_laptop

 Update to work in PrimLib...

Change 44167 on 2002/08/05 by mkelly@fl_mkelly_r400_win_laptop

 JSS 3x4 unique sample sel testing...

Change 44165 on 2002/08/05 by fhsien@fhsien_r400_linux_marlboro

 ADD Stencil_ZPASS test.

Change 44096 on 2002/08/02 by mkelly@fl_mkelly_r400_win_laptop

 * Implement vertex kill in the VFD for vertex buffer and constant
 * Create a new class called PRIMITIVE_AA for AA dump file analysis
 * Update tracker / test list

 Page 444 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 44063 on 2002/08/02 by mkelly@fl_mkelly_r400_win_laptop

 Simple Poly offset check, needs SC fix to work...

Change 44044 on 2002/08/02 by georgev@georgev_r400_linux_marlboro

 Added loop tests and modifications to roll and deal to go faster and eliminate a bug.

Change 43966 on 2002/08/02 by mkelly@fl_mkelly_r400_win_laptop

 Run line and point prims through JSS and MSAA...

Change 43934 on 2002/08/02 by kevino@kevino_r400_linux_marlboro

 Garbage file- never meant to be checked in

Change 43932 on 2002/08/02 by kevino@kevino_r400_linux_marlboro

 New textures (linear step in color in X,Y, but with DC offset so can see them)
 New 1D test (first cut)

Change 43912 on 2002/08/02 by ashishs@fl_ashishs_r400_win

 updated the pointer to shader files

Change 43845 on 2002/08/01 by frivas@FL_FRivas

 Update to HOS precision tests to clamp the mipmap level of detail at 1.

Change 43776 on 2002/08/01 by mkelly@fl_mkelly_r400_win_laptop

 Bres Cntl test....

Change 43775 on 2002/08/01 by mkelly@fl_mkelly_r400_win_laptop

 Bresenham Control, converted R200 test...

Change 43766 on 2002/08/01 by kevino@kevino_r400_linux_marlboro

 1st (untedted) cut at a 1D texture test

Change 43754 on 2002/08/01 by frivas@FL_FRivas

 Update. Added two HOS tests for a complex model.

Change 43716 on 2002/08/01 by frivas@FL_FRivas

 Added HOS auto index quad list test.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1713 of 1898

 Page 445 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 43712 on 2002/08/01 by frivas@FL_FRivas

 Initial check-in of HOS auto indexed quad list. Uses continuous tessellation at level
14.99 on 16 different objects. Each object is composed of approximately 5 primitives.

Change 43679 on 2002/08/01 by ygiang@ygiang_r400_win_marlboro_p4

 added: Simple vertex shader tests

Change 43650 on 2002/08/01 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 43646 on 2002/08/01 by mkelly@fl_mkelly_r400_win_laptop

 New...

Change 43645 on 2002/08/01 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 43638 on 2002/08/01 by mkelly@fl_mkelly_r400_win_laptop

 JSS 3x4 simple triangle

Change 43613 on 2002/07/31 by abeaudin@abeaudin_r400_win_marlboro

 added chroma keying feature

Change 43560 on 2002/07/31 by abeaudin@abeaudin_r400_win_marlboro

 new chroma_test

Change 43550 on 2002/07/31 by fhsien@fhsien_r400_linux_marlboro

 Update for more tests

Change 43546 on 2002/07/31 by csampayo@fl_csampayo2_r400

 1. Added VGT test for provoking vertex and edgeflgas validation
 2. Updated test_list

Change 43540 on 2002/07/31 by kevino@kevino_r400_sun_marlboro

 Added texture maps of various sizes. Each point has a unique value
 The X coord of the texture is in G[3:0], B[7:0].
 The Y coord is in R[7:0], G[7:4]

Change 43498 on 2002/07/31 by kevino@kevino_r400_win_marlboro

 Page 446 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Branched off clamping cases in tp_simple_02 to tp_2D_clamp_01.
 Every combination of S and T clamping is done in a test case. (Add random XY for
each of these later)

Change 43493 on 2002/07/31 by mkelly@fl_mkelly_r400_win_laptop

 Testing lots of SC features with stipple enabled...

Change 43486 on 2002/07/31 by mkelly@fl_mkelly_r400_win_laptop

 For record keeping...

Change 43475 on 2002/07/31 by ygiang@ygiang_r400_win_marlboro_p4

 added: last opcode for pixel shader tests

Change 43444 on 2002/07/31 by kevino@kevino_r400_linux_marlboro

 Go back to the older test_reg include for now. (New one is commented out)

Change 43438 on 2002/07/31 by kevino@kevino_r400_win_marlboro

 Added several additional clamp cases, and some cases with S and T clamps are
different.
 Loading of different texture sizes still is not fixed.

Change 43433 on 2002/07/31 by ashishs@fl_ashishs_r400_win

 update for latest register specs

Change 43422 on 2002/07/31 by kevino@kevino_r400_win_marlboro

 Temporary fix- force tex to be dilbert_128x128 since it is having trouble converting the
string to char* in linux.
 Cleaned up the exta filter and clamping emumerated typed, and use the ones directly
from tconst.h

Change 43418 on 2002/07/31 by efong@efong_crayola_linux_cvd

 changed from chip/test_regs.h to ar_test/test_regs.h

Change 43415 on 2002/07/31 by efong@efong_crayola_linux_cvd

 changed from chip/test_regs.h to ar_test/test_regs.h

Change 43414 on 2002/07/31 by efong@efong_crayola_linux_cvd

 changed from chip/test_regs.h to ar_test/test_regs.h

 Page 447 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 43413 on 2002/07/31 by efong@efong_crayola_linux_cvd

 switched from chip/test_regs.h to ar_test/test_regs.h

Change 43412 on 2002/07/31 by efong@efong_crayola_linux_cvd

 changed from chip/test_regs.h to ar_test/test_regs.h

Change 43411 on 2002/07/31 by efong@efong_crayola_linux_cvd

 switched from chip/test_regs.h to ar_test/test_regs.h

Change 43410 on 2002/07/31 by efong@efong_crayola_linux_cvd

 changed from chip/test_regs.h to ar_test/test_regs.h

Change 43408 on 2002/07/31 by efong@efong_crayola_linux_cvd

 switched from chip/test_regs.h to ar_test/test_regs.h

Change 43407 on 2002/07/31 by efong@efong_crayola_linux_cvd

 switched from chip/test_regs.h to ar_test/test_regs.h

Change 43406 on 2002/07/31 by efong@efong_crayola_linux_cvd

 changed from chip/test_regs.h to ar_test/test_regs.h

Change 43405 on 2002/07/31 by efong@efong_crayola_linux_cvd

 changed from chip/test_regs.h to ar_test/test_regs.h

Change 43403 on 2002/07/31 by efong@efong_crayola_linux_cvd

 changed from chip/test_regs.h to ar_test/test_regs.h

Change 43401 on 2002/07/31 by kevino@kevino_r400_win_marlboro

 Added different texture sizes (128, 256, and 512)
 Added clamping mode, but doesn't appear to work yet

Change 43398 on 2002/07/31 by efong@efong_crayola_linux_cvd

 changed from chip/test_regs.h to ar_test/test_regs.h

Change 43348 on 2002/07/31 by kevino@kevino_r400_sun_marlboro

 Page 448 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Resized images of the dilbert.ppm (128x128) to have larger texture maps to work
with

Change 43283 on 2002/07/30 by abeaudin@abeaudin_r400_win_marlboro

 multisample and jitter stuff

Change 43263 on 2002/07/30 by abeaudin@abeaudin_r400_win_marlboro

 new test for jitter

Change 43239 on 2002/07/30 by georgev@georgev_r400_linux_marlboro

 Fixed depth pixel problem.

Change 43230 on 2002/07/30 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 43229 on 2002/07/30 by mkelly@fl_mkelly_r400_win_laptop

 Line stipple variations...

Change 43200 on 2002/07/30 by ygiang@ygiang_r400_win_marlboro_p4

 fixed: SP pixel shader tests name and test cases.

Change 43183 on 2002/07/30 by llefebvr@llefebvre_laptop_r400_emu

 Tests for ifs, loops and relative addressing

Change 43095 on 2002/07/30 by smoss@smoss_crayola_win

 SU tests

Change 42949 on 2002/07/29 by mkelly@fl_mkelly_r400_win_laptop

 128 packets, one triangle per packet, each hitting a subsample
 in one JSS pixel. For each JSS_SAMPLE_SEL, each of 16 JSS pixels
 are tested. JSS_SAMPLE_SEL is cycled from from 0 to 8. This test
 ensures the tested JSS_SAMPLE_SEL is a unique value when compared
 to all non-tested JSS_SAMPLE_SELs.

Change 42888 on 2002/07/29 by fhsien@fhsien_r400_linux_marlboro

 Set Alpha to 1.0

Change 42887 on 2002/07/29 by frivas@FL_FRivas

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1714 of 1898

 Page 449 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Update to screen offset position and spacing between polygons.

Change 42882 on 2002/07/29 by mkelly@fl_mkelly_r400_win_laptop

 Update tests now that zbuffer functionality is working in the RB...

Change 42825 on 2002/07/28 by abeaudin@abeaudin_r400_win_marlboro

 start of changes for doing multisampling

Change 42788 on 2002/07/26 by csampayo@fl_csampayo_r400

 1. Added 2 new SU tests
 2. Updated test_list and tracker, accordingly

Change 42770 on 2002/07/26 by fhsien@fhsien2_r400_win_marlboro

 Update Stencil fail tests

Change 42657 on 2002/07/26 by georgev@georgev_r400_linux_marlboro

 Added loop tests and support.

Change 42631 on 2002/07/26 by ctaylor@fl_ctaylor_r400_dtwin_marlboro

 Changed MSAA_NUM_SAMPLES to be a 3-bit field (instead of 4).
 Fix bug in sc_sample_mask_in dump for jss_sample_sel field
 Fix bug in sc_samplemask test bench for jss_sample_sel field
 Update sc tests which set num_samples to 8.

Change 42562 on 2002/07/25 by omesh@ma_omesh

 Seperated some test conditions for testing.

Change 42530 on 2002/07/25 by ashishs@fl_ashishs_r400_win

 CL TESTS: testing guard band clipping of edgeflags.

Change 42512 on 2002/07/25 by frivas@FL_FRivas

 Added two HOS tests for precision.

Change 42510 on 2002/07/25 by frivas@FL_FRivas

 Initial check in of HOS precision tests. Tessellation and reuse vary from 1-14 and 4-16,
respectively.

Change 42505 on 2002/07/25 by mkelly@fl_mkelly_r400_win_laptop

 Page 450 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 tests..

Change 42499 on 2002/07/25 by mkelly@fl_mkelly_r400_win_laptop

 Basic MSAA functionality tests...

Change 42340 on 2002/07/25 by frivas@FL_FRivas

 Added two HOS auto index tests (line list and triangle list).

Change 42322 on 2002/07/25 by smoss@smoss_crayola_win

 Modified for Unix - watch out for test output path!

Change 42253 on 2002/07/24 by ygiang@ygiang_r400_win_marlboro_p4

 removed: Changing tests name...

Change 42251 on 2002/07/24 by mkelly@fl_mkelly_r400_win_laptop

 Reversed the time stamp on the output directory name
 to help reading multiple directories by eye easier

Change 42248 on 2002/07/24 by frivas@FL_FRivas

 Initial check-in of HOS auto index tests.

Change 42247 on 2002/07/24 by ygiang@ygiang_r400_win_marlboro_p4

 fixed: const VAR

Change 42234 on 2002/07/24 by mkelly@fl_mkelly_r400_win_laptop

 * Update to JSS tests
 * New MSAA test verifying all 8 subsamples in basic hit tests
 * Update tracker
 * Update SC test_list

Change 42207 on 2002/07/24 by fhsien@fhsien2_r400_win_marlboro

 ADD stencil fail tests

Change 42202 on 2002/07/24 by fhsien@fhsien2_r400_win_marlboro

 Add color tiling

Change 42137 on 2002/07/24 by mkelly@fl_mkelly_r400_win_laptop

 Update...

 Page 451 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 42134 on 2002/07/24 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 42121 on 2002/07/24 by mkelly@fl_mkelly_r400_win_laptop

 delete

Change 42081 on 2002/07/23 by ashishs@fl_ashishs_r400_win

 update

Change 42052 on 2002/07/23 by frivas@FL_FRivas

 Update. Removed call to "Set_VGT_INDEX_OFFSET_index_offset" from code
because of an update to the register set.

Change 42030 on 2002/07/23 by csampayo@fl_csampayo2_r400

 Removed function Set_VGT_INDEX_OFFSET_index_offset,as per, latest Primlib
change

Change 42021 on 2002/07/23 by csampayo@fl_csampayo2_r400

 Reverted change made for setting INDX_OFFSET

Change 42017 on 2002/07/23 by mkelly@fl_mkelly_r400_win_laptop

 AA_MASK and MAX_SAMPLE_DISTANCE basic functionality

Change 42015 on 2002/07/23 by ashishs@fl_ashishs_r400_win

 original test r400cl_frustum_edgeflags_01 having all combination of frustum plane
clipping for edgeflags removed.
 Made individual tests for each frustum plane (total 6 tests) clipping edgeflag
combinations.

Change 42010 on 2002/07/23 by smoss@smoss_crayola_win

 update

Change 42005 on 2002/07/23 by abeaudin@abeaudin_r400_win_marlboro

 new rb test for multisampling

Change 41986 on 2002/07/23 by georgev@georgev_r400_linux_marlboro

 No Change.

 Page 452 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 41984 on 2002/07/23 by georgev@ma_georgev

 No change for build test.

Change 41983 on 2002/07/23 by smoss@smoss_crayola_win

 SU tests

Change 41939 on 2002/07/23 by ashishs@fl_ashishs_r400_win

 To test guard band clipping for edgeflags
 The test divides the display area in four equal planes(top,bottom,right,left)
 Each plane has a specified number packets and each packet has a different setting in
accordance to edgeflag and indexing. The number of test cases in a plane can be modified and
also the display area for each case is equally divided.
 Test parameters that can be easily controlled are :
 1. DISP_X_DIM and DISP_Y_DIM
 2. NUMBER OF PLANES IN X AND Y DIRECTION
 3. NUMBER OF TEST CASES IN EACH PLANE

Change 41905 on 2002/07/23 by ashishs@fl_ashishs_r400_win

 update

Change 41898 on 2002/07/23 by smoss@smoss_crayola_win

 shortened tests

Change 41849 on 2002/07/22 by ashishs@fl_ashishs_r400_win

 To test frustum clipping for edgeflags
 The test divides the display area in six equal planes(near,far,top,bottom,right,left)
 Each plane has a specified number packets and each packet has a different setting in
accordance to edgeflag and indexing. The number of test cases in a plane can be modified and
also the display area for each case is equally divided.
 Test parameters that can be easily controlled are :
 1. DISP_X_DIM and DISP_Y_DIM
 2. NUMBER OF PLANES IN X AND Y DIRECTION
 3. NUMBER OF TEST CASES IN EACH PLANE

Change 41822 on 2002/07/22 by mkelly@fl_mkelly_r400_win_laptop

 * Basic JSS functional coverage
 * Update test list
 * Update tracker
 * Added Plan vs. Actual graph to tracker sheet "schedule"

Change 41820 on 2002/07/22 by georgev@georgev_r400_linux_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1715 of 1898

 Page 453 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Partial changes.

Change 41730 on 2002/07/22 by mkelly@fl_mkelly_r400_win_laptop

 Improve test description and conveyance of test purpose in the image

Change 41701 on 2002/07/21 by smoss@smoss_crayola_win

 update golds

Change 41624 on 2002/07/19 by csampayo@fl_csampayo2_r400

 Golds for updated image size

Change 41622 on 2002/07/19 by mkelly@fl_mkelly_r400_win_laptop

 Update..

Change 41620 on 2002/07/19 by mkelly@fl_mkelly_r400_win_laptop

 1. Re-wrote JSS test to match latest SC spec.
 2. Update test_list
 3. Update tracker

Change 41606 on 2002/07/19 by frivas@FL_FRivas

 update to framebuffer size

Change 41596 on 2002/07/19 by llefebvr@llefebvre_laptop_r400_emu

 Corrected the VGT->SQ event interface. Corrected the GFX_COPY_STATE problem.

Change 41591 on 2002/07/19 by fhsien@fhsien2_r400_win_marlboro

 working Stencil tests

Change 41590 on 2002/07/19 by csampayo@fl_csampayo_r400

 Updated the following 2 tests for: switch case selector and image size respectively

Change 41570 on 2002/07/19 by frivas@FL_FRivas

 Update to size of output image.

Change 41563 on 2002/07/19 by frivas@FL_FRivas

 Adjusted size of output image and spacing of objects inside the image.

 Page 454 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 41550 on 2002/07/19 by smoss@smoss_crayola_win

 new x,y dim

Change 41547 on 2002/07/19 by fhsien@fhsien2_r400_win_marlboro

 Update Stencil test

Change 41545 on 2002/07/19 by frivas@FL_FRivas

 Decreased the size of the output image from 256x256 to 128x128 and adjusted the
spacing of the objects being drawn.

Change 41488 on 2002/07/19 by mkelly@fl_mkelly_r400_win

 Enable Window Offset Enable functionality in VTE

Change 41449 on 2002/07/19 by vgoel@fl_vgoel2

 test file names are changes and hence old files are deleted

Change 41446 on 2002/07/19 by fhsien@fhsien2_r400_win_marlboro

 minor typo

Change 41405 on 2002/07/18 by fhsien@fhsien2_r400_win_marlboro

 Update to support the new format for dump Z buffer

Change 41401 on 2002/07/18 by csampayo@fl_csampayo_r400

 1. Added 4 new SU edgeflag tests
 2. Updated framebuffer size for 2 tests
 3. Updated test_list and test tracker accordingly

Change 41369 on 2002/07/18 by fhsien@fhsien2_r400_win_marlboro

 still trying to debug

Change 41367 on 2002/07/18 by kevino@kevino_r400_linux_marlboro

 Changed to only draw 64 pixels from (0,0) to (7,7) since SSQ can't do more than that
yet.

Change 41278 on 2002/07/18 by mkelly@fl_mkelly_r400_win_laptop

 Update to SU SC spec.

Change 41265 on 2002/07/18 by fhsien@fhsien2_r400_win_marlboro

 Page 455 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Change Z buffer size to 32

Change 41250 on 2002/07/18 by georgev@georgev_r400_linux_marlboro

 Turned z buffer down.

Change 41205 on 2002/07/18 by mkelly@fl_mkelly_r400_win

 PA dumps on/off control for full regression scripting...

Change 41201 on 2002/07/18 by mkelly@fl_mkelly_r400_win_laptop

 When .mem_framebuf_r image is enabled for compare,
 a bit for bit compare takes place. The headers are ignored.

 Tolerance adjustment is an option. Defaults to zero tolerance.

 Useage: regress_r400 -d <0-255>

 If the difference is greater than the tolerance, then compare fails.

 If tolerance is exceeded, difference is reported to "compare.log"
 at the output destination root directory, "$/r400_regress/<user_timestamp>".

Change 41183 on 2002/07/17 by csampayo@fl_csampayo_r400

 1. Added 2 new tests to SU
 2. Updated SU test_list
 3. Updated test tracker accordingly

Change 41146 on 2002/07/17 by mkelly@fl_mkelly_r400_win_laptop

 Test in progress...

Change 41139 on 2002/07/17 by georgev@georgev_r400_linux_marlboro

 Added new features.

Change 41112 on 2002/07/17 by smoss@smoss_crayola_win

 SU Tests

Change 41092 on 2002/07/17 by ygiang@ygiang_r400_win_marlboro_p4

 added: sp test for hardware testing(add opcode)

Change 41083 on 2002/07/17 by ashishs@fl_ashishs_r400_win

 Page 456 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 update

Change 41067 on 2002/07/17 by ashishs@fl_ashishs_r400_win

 This test is intended to validate the clippper processing of the edge flags for the triangle
list primitive type.
 Clipping with 4 UCPs is enabled and actual clipping takes place
 The edge flags for each primitive are permuted accross all packets

Change 41051 on 2002/07/17 by ashishs@fl_ashishs_r400_win

 CL tests updated for latest spec changes

Change 41036 on 2002/07/17 by fhsien@fhsien_r400_linux_marlboro

 For RBD tests

Change 41035 on 2002/07/17 by fhsien@fhsien_r400_linux_marlboro

 ADD 1st try of Stencil test

Change 41034 on 2002/07/17 by ashishs@fl_ashishs_r400_win

 VTE test updated according to latest reg spec

Change 41003 on 2002/07/17 by csampayo@fl_csampayo_r400

 Restore list

Change 40950 on 2002/07/16 by csampayo@fl_csampayo_r400

 1. Added 2 new tests to SU
 2. Updated test_list and test tracker

Change 40946 on 2002/07/16 by ashishs@fl_ashishs_r400_win

 VTE tests updated according to latest register specs

Change 40939 on 2002/07/16 by ashishs@fl_ashishs_r400_win

 CL tests changed according to latest register specs

Change 40916 on 2002/07/16 by frivas@FL_FRivas

 Update to auto index hos tests. Still aren't done yet.

Change 40911 on 2002/07/16 by smoss@smoss_crayola_win

 more converted tests

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1716 of 1898

 Page 457 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 40907 on 2002/07/16 by ygiang@ygiang_r400_win_marlboro_p4

 added: pixel mask tests and removed unrelated test cases from existing tests

Change 40884 on 2002/07/16 by mkelly@fl_mkelly_r400_win_laptop

 Added control to reset stipple pattern at beginning of each primitive in LINE_LIST.

Change 40882 on 2002/07/16 by smoss@smoss_crayola_win

 Changes to polymode register and removal of serial_proc_enable

Change 40870 on 2002/07/16 by mkelly@fl_mkelly_r400_win_laptop

 Force useage of DK_ROOT/bin/sh.exe to guarantee sh.exe from depot is used for
"make".

 Report "REGRESS: ERROR, failed to execute make command" if "make" is not
succesful, but continue to next test.

Change 40869 on 2002/07/16 by csampayo@fl_csampayo_r400

 1. Updated, as per, latest register spec
 2. Adjusted image size

Change 40852 on 2002/07/16 by fhsien@fhsien_r400_linux_marlboro

 Update tests

Change 40848 on 2002/07/16 by ygiang@ygiang_r400_win_marlboro_p4

 added: needs to be debug. sp test "maskne"

Change 40845 on 2002/07/16 by lseiler@lseiler_r400_win_marlboro2

 Changed Z from 5.0 to 0.5

Change 40844 on 2002/07/16 by mkelly@fl_mkelly_r400_win_laptop

 bugs to debugify

Change 40843 on 2002/07/16 by csampayo@fl_csampayo_r400

 Updated packet geometries

Change 40841 on 2002/07/16 by mkelly@fl_mkelly_r400_win_laptop

 Update

 Page 458 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 40792 on 2002/07/15 by fhsien@fhsien_r400_linux_marlboro

 z24 bit version of the z function test.

Change 40771 on 2002/07/15 by csampayo@fl_csampayo_r400

 1. Added SU test to validate provoking vertex
 2. Updated SU's test_list accordingly
 3. Updated the VGT test r400vgt_provoking_vtx_all_01
 4. Updated test tracker with status for the test: r400su_provoking_vtx_rectangle_01

Change 40743 on 2002/07/15 by frivas@FL_FRivas

 Initial check in of tests that do tessellation on auto-index primitives.

Change 40707 on 2002/07/15 by fhsien@fhsien_r400_linux_marlboro

 Change r400rb_z_functions to r400rb_z16_functions

Change 40705 on 2002/07/15 by fhsien@fhsien_r400_linux_marlboro

 TkP4 - RENAME

Change 40704 on 2002/07/15 by fhsien@fhsien_r400_linux_marlboro

 1st release version of the basic 16 bit Z function test

Change 40703 on 2002/07/15 by mkelly@fl_mkelly_r400_win_laptop

 Update for new spec.

Change 40701 on 2002/07/15 by mkelly@fl_mkelly_r400_win_laptop

 Update for new spec.

Change 40699 on 2002/07/15 by mkelly@fl_mkelly_r400_win_laptop

 Update to new spec.

Change 40677 on 2002/07/15 by abeaudin@abeaudin_r400_win_marlboro

 added rop3 and color format support to the RB

Change 40663 on 2002/07/15 by mkelly@fl_mkelly_r400_win_laptop

 Spec. Update...

Change 40649 on 2002/07/15 by mkelly@fl_mkelly_r400_win_laptop

 Page 459 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Spec. Update...

Change 40625 on 2002/07/15 by frivas@FL_FRivas

 updated shaders to version 2.0

Change 40579 on 2002/07/15 by mkelly@fl_mkelly_r400_win_laptop

 Update with new pa dump control

Change 40551 on 2002/07/15 by mkelly@fl_mkelly_r400_win_laptop

 Update to latest spec.

Change 40477 on 2002/07/14 by fhsien@fhsien_r400_linux_marlboro

 Update for save keeping

Change 40222 on 2002/07/12 by ctaylor@fl_ctaylor_r400_win_marlboro

 Fix bug in SC with RECTANGLE_LIST reference vertex assignment
 Change line_stipple auto_reset_enable field to 2-bit auto_reset_cntl field.
 Regoldenize r400vgt_index_size_01 results as RECTANGLE_LIST fix affected this
test's results.

Change 40140 on 2002/07/12 by csampayo@fl_csampayo2_r400

 Updated per latest register spec

Change 40123 on 2002/07/12 by frivas@FL_FRivas

 Changed display size of image to 256x256.

Change 40107 on 2002/07/12 by csampayo@fl_csampayo2_r400

 Updated per latest register spec

Change 40102 on 2002/07/12 by csampayo@fl_csampayo2_r400

 Updated for swap correction.

Change 40095 on 2002/07/12 by mkelly@fl_mkelly_r400_win_laptop

 Update due to spec. change...

Change 40076 on 2002/07/12 by llefebvr@llefebvre_laptop_r400_emu

 again some Z related fixes in SQ tests

 Page 460 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 40073 on 2002/07/12 by frivas@FL_FRivas

 Updates to code to reflect changes made to the PA/SU/SC register sets.

Change 40051 on 2002/07/12 by mkelly@fl_mkelly_r400_win_laptop

 Update due to spec. change...

Change 40031 on 2002/07/12 by csampayo@fl_csampayo2_r400

 Updated to correct swap modes

Change 40030 on 2002/07/12 by kevino@kevino_r400_win_marlboro

 Only have w !=1.0 at one corner

Change 40027 on 2002/07/12 by kevino@kevino_r400_win_marlboro

 Just another try at PC

Change 40012 on 2002/07/12 by llefebvr@llefebvre_laptop_r400_emu

 corrected sq tests to enable z writes...

Change 40008 on 2002/07/12 by mkelly@fl_mkelly_r400_win_laptop

 Update for new spec. change

Change 40005 on 2002/07/12 by kevino@kevino_r400_win_marlboro

 make shader filenames strings throughout.
 update shader program to (hopefully) mult ST by 1/W

Change 39999 on 2002/07/12 by kevino@kevino_r400_win_marlboro

 Updated the test to include a couple of basic mip tests and a 1st attempt at a persp
correction test.
 Added shader progs for these

Change 39986 on 2002/07/12 by llefebvr@llefebvre_laptop_r400_emu

 enable z write enable...

Change 39957 on 2002/07/12 by llefebvr@llefebvre_laptop_r400_emu

 new simple objects for SQ testing.

Change 39944 on 2002/07/12 by llefebvr@llefebvre_laptop_r400_emu

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1717 of 1898

 Page 461 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 corrected tests to include Orlando's changes to the PA/SC registers.

Change 39867 on 2002/07/11 by kryan@kryan_r400_win_marlboro

 - Fixed typo in CHANNEL_B_SHIFT for little endian platforms

 causing compilation error on these platforms.

 - Also moved all platform specific constants to top of file

 in one place.

 - Updated PrimLib header include files to use new

 primlib_test_include.h file.

Change 39864 on 2002/07/11 by kryan@kryan_r400_sun_marlboro

 Made edits to test to try to resolve the differences between the golden
 images and the new dump files created.

 Made changes to platform dependent values based on endianess of
 platform architecture. Namely this was the texture color uint32 definitions,
 the channel mask definitions, and the channel shift values which depend
 on the platform architecture.

 *** Note this resolved most of the differences between the new Emulator
 images and the golden images. But there are still some small differences
 of +/- 2 in some of the channels for a few pixels. I will leave this to the
 original test author to further debug these small differences which might
 be easier if some of the features of the test can be disabled.

Change 39835 on 2002/07/11 by omesh@ma_omesh

 Added 11 testcases for the Color Combination testing. Visually verified the result of 5
testcases (non random cases).
 Also corrected a typo in a comment in the earlier Color Destination tests.

Change 39796 on 2002/07/11 by csampayo@fl_csampayo_lt_r400

 Updated per latest register definitions

Change 39792 on 2002/07/11 by omesh@ma_omesh

 Page 462 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Added the Color Destination path tests which are almost a mirror of the Color Source
path tests. These are another 31 testcases, 16 of which are randomized versions. I have visually
verified the results of the non-randomized testcases (15 testcases).
 Also made a minor bug fix to the earlier Color Source path tests to include Alpha
blending programming of the destination path (Destination Alpha is also used in some Color
Source blending modes)
 Also cleaned up code and added comments.

Change 39781 on 2002/07/11 by mkelly@fl_mkelly_r400_win_laptop

 Update for new SC/SU blk changes

Change 39777 on 2002/07/11 by jhoule@jhoule_r400_win_marlboro

 Moved functions into a TUtil class (tutils.{h|cpp}).
 Updated Crayel to have utility functions for setting conversion functions (easier than
specifying all the field stuff).
 Updated Makefile (new files added, old files removed).
 Added TPBlender class to isolate blending operations.
 Modified TexturePipe class to use it (workaround for weird dynamic alloc of TPBlender,
ended up using compiler-allocated instance instead of using new).

 r400tp_test.cpp: easier texture load modif, activated bilin mag by default.

Change 39764 on 2002/07/11 by georgev@ma_georgev

 Fixed registers.

Change 39741 on 2002/07/11 by abeaudin@abeaudin_r400_win_marlboro

 new tests for color blending

Change 39738 on 2002/07/11 by abeaudin@abeaudin_r400_win_marlboro

 blender format tests

Change 39730 on 2002/07/11 by llefebvr@llefebvre_laptop_r400_emu

 Fixed the cnde test to acheive the correct behaviour.

Change 39724 on 2002/07/11 by georgev@georgev_r400_linux_marlboro

 Added negated predicates.

Change 39723 on 2002/07/11 by abeaudin@abeaudin_r400_win_marlboro

 blender format test for uint8

Change 39719 on 2002/07/11 by ygiang@ygiang_r400_win_marlboro_p4

 Page 463 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 added: shadder test needs to be debug

Change 39699 on 2002/07/11 by llefebvr@llefebvre_laptop_r400_emu

 simple obj is not rendering anything.

Change 39688 on 2002/07/11 by abeaudin@abeaudin_r400_win_marlboro

 new pixel shader for unsigned 8 bit int

Change 39681 on 2002/07/11 by llefebvr@llefebvre_laptop_r400_emu

 corrected some of the SQ tests to use Zbuffering

Change 39669 on 2002/07/11 by georgev@ma_georgev

 Fixed changed registers.

Change 39666 on 2002/07/11 by georgev@georgev_r400_linux_marlboro

 Fixed bad changed RB registers.

Change 39638 on 2002/07/11 by smoss@smoss_crayola_win

 New tests

Change 39577 on 2002/07/10 by smoss@smoss_crayola_win

 changed xy

Change 39559 on 2002/07/10 by ctaylor@fl_ctaylor_r400_win_marlboro

 Changed PA/SU/SC register sets as follows:
 A substantial number of changes has been made to the R400 PA/SU/SC register set in
response to
 1) Requested additions of functionality (2nd scissor rect, cliprect enable,
window_offset_enable, etc)
 2) Rearrangement of register fields for better driver usage
 3) Architecture changes to the Antialiasing POR for R400

 The register changes are as follows:
 The cases where there are new or deleted registers are highlighted in bold.
 REMOVED PA_SC_MSAA_2X2_OFFSET as this functionality no longer supported
under new R400 AA plan.
 REMOVED PA_SC_AA_OFFSET_TBL_0-3 as this functionality has changed under
new R400 AA plan.
 ADDED PA_SC_AA_JSS_SAMPLE_SEL_0 & 1 as this functionality has changed
under new R400 AA plan.

 Page 464 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Removed PATTERN_START field from PA_SC_LINE_STIPPLE as this is redundant
with CURRENT_PTR in PA_SC_LINE_STIPPLE_STATE
 Moved PA_SC_LINE_STIPPLE_STATE outside of GFXDEC space as this is now a
non-context register (requires flush to read/write).
 Removed DRAW_ZERO_LENGTH_LINE field from PA_SC_LINE_CNTL as this was
added to support what has since been determined to be a bug in R100-R300.
 REMOVED PA_SC_CNTL register.
 Moved PA_SC_CNTL.OUTPUT_SCREEN_XY to SQ_CONTEXT_MISC register.
 Moved 2-bit PROVOKING_VTX field from SQ_PROVOKING_VTX to 1-bit (FIRST
vs. LAST) field in PA_SU_SC_MODE_CNTL
 REMOVED SQ_PROVOKING_VTX as the sole field in the register was moved.
 REMOVED PA_SU_POLY_OFFSET_ENABLE, PA_SU_POLY_MODE,
PA_SU_CULL_MODE, all fields moved to PA_SU_SC_MODE_CNTL
 ADDED PA_SU_SC_MODE_CNTL as above.
 Moved PERSP_CORR_DIS field from PA_SU_VTX_CNTL to
PA_SU_SC_MODE_CNTL
 Moved MSAA_ENABLE from PA_SC_AA_CONFIG to PA_SU_SC_MODE_CNTL as
it may be more frequently changing.
 Removed Line_AA_Enable and Point_AA_Enable fields from PA_SC_AA_CONFIG as
this can be controlled via MSAA_ENABLE field.
 BOUNDARY_EDGE_FLAG_ENA marked as unused, but preserved pending further
investigation.
 Removed SERIAL_PROC_ENA bit from PA_CL_VTE_CNTL as this bit no longer
functional.
 Added VTX_KILL_OR field to PA_CL_CLIP_CNTL register for Vertex Shader Export
Kill Flag Control.
 Moved LINE_STIPPLE_ENABLE from PA_SC_CNTL to PA_SU_SC_MODE_CNTL
 Removed SCISSOR_ENABLE as the scissors can be disabled by setting xmin,ymin to 0
and xmax,ymax to 8K.
 Added VTX_WINDOW_OFFSET_ENABLE, and CLIPRECT_ENABLE to
PA_SU_SC_MODE_CNTL
 ADDED PA_SC_SCREEN_SCISSOR_TL / BR registers. Moved
PA_SC_CLIPRECT_* down in address space to accomodate in SubBlock B
 Renamed PA_SC_SCISSOR_* to PA_SC_WINDOW_SCISSOR as this scissor will
have window offset conditionally added.
 Added WINDOW_OFFSET_DISABLE to PA_SC_WINDOW_SCISSOR register to
allow non-offset scissor.
 Moved EXPAND_LINE_WIDTH field from PA_SC_AA_CONFIG to
PA_SC_LINE_CNTL.

Change 39555 on 2002/07/10 by omesh@ma_omesh

 Added the random test cases for each standard test case and also added an overall random
case for the entire series in this file.

Change 39512 on 2002/07/10 by ygiang@ygiang_r400_win_marlboro_p4

 fixed: sp test name

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1718 of 1898

 Page 465 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 39508 on 2002/07/10 by ygiang@ygiang_r400_win_marlboro_p4

 added: pixel shader tests

Change 39504 on 2002/07/10 by omesh@ma_omesh

 Added the limit testing version of the Color Source blending tests. Visually verified
results of all 15 tests. One of the modes, GL_ONE_MINUS_DST_COLOR seems to render a
suspiciously colored triangle, but I will later confirm if the result is wrong.

 In these tests, need to:
 1) Clean up and comment code.
 2) Add randomized test case versions of these tests, to yield another 15 test cases.

Change 39467 on 2002/07/10 by mkelly@fl_mkelly_r400_win

 Update with dumps for clock sim

Change 39440 on 2002/07/10 by georgev@georgev_r400_linux_marlboro

 Followed new syntax of predicate "P =" to register.

Change 39435 on 2002/07/10 by mkelly@fl_mkelly_r400_win_laptop

 Re-wrote test to include texture...

Change 39379 on 2002/07/10 by georgev@ma_georgev

 First revision in new directory.

Change 39376 on 2002/07/10 by georgev@ma_georgev

 No change.

Change 39375 on 2002/07/10 by georgev@ma_georgev

 Before changes.

Change 39373 on 2002/07/10 by georgev@ma_georgev

 Moved to a new directory.

Change 39347 on 2002/07/10 by smoss@smoss_crayola_win

 SU tests

Change 39331 on 2002/07/10 by smoss@smoss_crayola_win

 SU Tests

 Page 466 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 39299 on 2002/07/10 by mkelly@fl_mkelly_r400_win_laptop

 Log for investigation...

Change 39220 on 2002/07/09 by csampayo@fl_csampayo_r400

 1. Added 1 test to SU suite
 2. Updated test_list accordingly
 3. Updated relevant status on the test tracker

Change 39160 on 2002/07/09 by fhsien@fhsien_r400_linux_marlboro

 Add the r400rb_z_functions

Change 39158 on 2002/07/09 by fhsien@fhsien_r400_linux_marlboro

 Second version of the test

Change 39124 on 2002/07/09 by ygiang@ygiang_r400_win_marlboro_p4

 added: shader test for debug

Change 39084 on 2002/07/09 by csampayo@fl_csampayo_r400

 1. Added 7 new VGT edge flags tests
 2. Updated test_list accordingly

Change 39079 on 2002/07/09 by frivas@FL_FRivas

 Update to starting tessellation level (changed from 0 to 1).

Change 39062 on 2002/07/09 by mkelly@fl_mkelly_r400_win_laptop

 VFD Edge flag support for Constant to EX1 operation with example test.

Change 39007 on 2002/07/09 by mkelly@fl_mkelly_r400_win

 Update

Change 39006 on 2002/07/09 by mkelly@fl_mkelly_r400_win

 Update with latest tests

Change 38991 on 2002/07/09 by smoss@smoss_crayola_win

 SU Golds

Change 38987 on 2002/07/09 by smoss@smoss_crayola_win

 Page 467 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 updated gold

Change 38786 on 2002/07/08 by csampayo@fl_csampayo_r400

 1. Adding 3 SU provoking vertex tests.
 2. Update test_list accordingly

Change 38762 on 2002/07/08 by frivas@FL_FRivas

 Update to starting tessellation level (changed from 0.99 to 1.99)

Change 38753 on 2002/07/08 by abeaudin@abeaudin_r400_win_marlboro

 added 28 rop3 functions to blender

Change 38653 on 2002/07/08 by mkelly@fl_mkelly_r400_win_laptop

 Update to sanity tests for including in full regression...

Change 38646 on 2002/07/08 by mkelly@fl_mkelly_r400_win_laptop

 VFD Edge Flag implementation example...

Change 38415 on 2002/07/05 by omesh@ma_omesh

 Added the same original vertex and pixel shader (that doesn't process alpha) that
originally existed, so Frank can use this in his Z tests and ignore all alpha related programming
in his tests.

Change 38347 on 2002/07/05 by mkelly@fl_mkelly_r400_win_laptop

 VFD edge flag support and example, note: waiting on bug fix in ccgen.cpp to be checked
in.

Change 38260 on 2002/07/05 by dclifton@dclifton_r400

 Added clippabc.dmp

Change 38247 on 2002/07/05 by mkelly@fl_mkelly_r400_win

 SU test list

Change 37893 on 2002/07/03 by mkelly@fl_mkelly_r400_win_laptop

 Enable a third triangle...

Change 37892 on 2002/07/03 by mkelly@fl_mkelly_r400_win_laptop

 Page 468 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Add -z option for zipping output when compare is complete, this is
 really only useful for full regressions.

Change 37886 on 2002/07/03 by kevino@kevino_r400_win_marlboro

 Basic texture test to hit different filtering cases.

Change 37877 on 2002/07/03 by kevino@kevino_r400_linux_marlboro

 Just another ppm to play around with as a texture

Change 37866 on 2002/07/03 by omesh@ma_omesh

 Since destination (color/alpha) programming tests are a mirror of the source (color/alpha)
programming tests, forgot to also mirror the input numbers to the muxes corresponding to the
mirrored blending modes. Fixed this in these tests and verified result visually with the emulator.

Change 37852 on 2002/07/03 by mkelly@fl_mkelly_r400_win_laptop

 Good test for basic checks of sequence/scan conversion/shader operation...

Change 37824 on 2002/07/03 by smoss@smoss_crayola_win

 SU Golds

Change 37814 on 2002/07/03 by mdoggett@mdoggett_r400_linux_marlboro

 Texture Cache simple texture and dxtc1 tests

Change 37783 on 2002/07/03 by mkelly@fl_mkelly_r400_win_laptop

 Update comments

Change 37782 on 2002/07/03 by mkelly@fl_mkelly_r400_win_laptop

 SC Baryc tests...

Change 37753 on 2002/07/02 by csampayo@fl_csampayo2_r400

 1. Changed vertex data so, that, each vertex has a different color
 2. Changed display settings

Change 37742 on 2002/07/02 by csampayo@fl_csampayo_r400

 Updates:
 1. Updated description/status for the following tests in the tracker:
r400vgt_provoking_vtx_all_01 r400vgt_hos_cubic_pos_pnt_discrete_01
 2. Sorted test_list

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1719 of 1898

 Page 469 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 37703 on 2002/07/02 by csampayo@fl_csampayo2_r400

 Updated test as follows:
 1. Changed tessellation range to 1 thru 14
 2. Changed number of cases to 14
 3. Change packet scale and rotation

Change 37615 on 2002/07/02 by ashishs@fl_ashishs_r400_win

 updated for pitch%32

Change 37611 on 2002/07/02 by frivas@FL_FRivas

 Added two new HOS PNL tests

Change 37604 on 2002/07/02 by frivas@FL_FRivas

 Update to number of registers vertex shader uses.

Change 37575 on 2002/07/02 by mkelly@fl_mkelly_r400_win_laptop

 Added option -s which will find your current sync and stamp it on the output directory.
By default, it will not determine your latest client sync.

 In the default mode, the output directory will be stamped by user name in the format
<user>_<time_stamp>.

 If -s is used, the output directory will be in the format <sync#>_<time_stamp>.

 Script will die in full regression mode if test_list does not exist.

 Format output files slightly different to work with Internal web scripts.

Change 37553 on 2002/07/02 by fhsien@fhsien_r400_linux_marlboro

 First rev. of the Z tests.

Change 37502 on 2002/07/01 by jhoule@jhoule_r400_win_marlboro

 Simple interface to texture loading problem.
 Created TEXTURE_MANAGER class for Primlib.
 Update r400tp_test.cpp to call the new routines.
 Added deallocate to UberChain.
 Changed default format from INT to RF in TFetchConst.
 NOTE: delayed change of tiling for now (broke regression).

Change 37479 on 2002/07/01 by csampayo@fl_csampayo_r400

 Deleted test since, no longer valid

 Page 470 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 37477 on 2002/07/01 by csampayo@fl_csampayo_r400

 1. Updated the display size, test description and other minor test format changes for the
following tests:
 r400vgt_dma_swap_indx16_01.cpp
 r400vgt_dma_swap_indx32_01.cpp

 2. Updated the tests descriptions on the test tracker for above tests

 3. Deleted the following test from the test tracker and adjusted
 Schedule accordingly:
 r400vgt_hos_PNQ_lp_ln_cont_13_16_texture_lighting_projection.cpp

Change 37466 on 2002/07/01 by csampayo@fl_csampayo_r400

 Regoldenize test since, tessellation level had to be changed to be between 1 and 15
inclusive. Also, adjusted packet scaling (SCALE_X,SCALE_Y)

Change 37447 on 2002/07/01 by hartogs@fl_hartogs2

 Added required renderstate VGT_GRP_VECT_1_CNTL to these tests.

Change 37444 on 2002/07/01 by hartogs@fl_hartogs2

 Changed test to use discrete range from 1 to 14 instead of 0 to 14.

Change 37437 on 2002/07/01 by mkelly@fl_mkelly_r400_win_laptop

 Temporarily commment out zbuffer tests

Change 37435 on 2002/07/01 by mkelly@fl_mkelly_r400_win_laptop

 Comment out ucp combos temporarily...

Change 37434 on 2002/07/01 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 37429 on 2002/07/01 by ashishs@fl_ashishs_r400_win

 update

Change 37425 on 2002/07/01 by ashishs@fl_ashishs_r400_win

 VTE test to validate the VTX_W0_FMT control register .

Change 37397 on 2002/07/01 by mkelly@fl_mkelly_r400_win_laptop

 Page 471 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Update

Change 37396 on 2002/07/01 by mkelly@fl_mkelly_r400_win_laptop

 del

Change 37387 on 2002/07/01 by hartogs@fl_hartogs

 Modification to cause the VGT to check for required renderstate before using it.
 If the required renderstate has never been written, then the VGT prints a message to
stderr and asserts.
 Added required renderstate to two tests:
r400vgt_hos_PNT_cp_qn_disc_14_04_lit_tex_proj_01.cpp
 and r400vgt_hos_cubic_pos_pnt_discrete_01.cpp.
 Added required renderstate
VGT.VGT_VERTEX_REUSE_BLOCK_CNTL.VTX_REUSE_DEPTH to the init routine of
plgx.cpp.

Change 37377 on 2002/07/01 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 37373 on 2002/07/01 by csampayo@fl_csampayo2_r400

 update

Change 37372 on 2002/07/01 by mkelly@fl_mkelly_r400_win_laptop

 Update comments in test.

Change 37352 on 2002/07/01 by smoss@smoss_crayola_win

 Changed to 32x32

Change 37336 on 2002/07/01 by ashishs@fl_ashishs_r400_win

 Update for pitch%32

Change 37333 on 2002/06/30 by ashishs@fl_ashishs_r400_win

 Update for pitch%32

Change 37197 on 2002/06/28 by csampayo@fl_csampayo_r400

 Updates. Some had bad index counts, others bad pix/vtx shader names, others both.

Change 37181 on 2002/06/28 by csampayo@fl_csampayo_r400

 Various updates

 Page 472 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 37174 on 2002/06/28 by csampayo@fl_csampayo_r400

 Added the following new VGT tests and updated test tracker and test_list.

Change 37136 on 2002/06/28 by omesh@ma_omesh

 Included a higher level primlib headerfile instead of the lower level ones, to clean up
code.

Change 37100 on 2002/06/28 by omesh@ma_omesh

 These shaders are no longer used by RB tests, as the vertex shader does not pass through
alpha.... So, all RB tests are assumed to use a shader that passes through alpha, and hence these
shaders are no longer needed, so I'm deleting them (after verifying that none of the *.cpp test
files in this rb directory use them). The correct vertex/pixel shader pair to use is
"rb_blender_emu_*.sp"

Change 37089 on 2002/06/28 by omesh@ma_omesh

 Changed shader (vertex) to also pass through alpha for these tests. Also fixed some bugs.
At this point I have tested almost all of the 70 testcases with the RB emulator and the results look
visually correct.

Change 36955 on 2002/06/27 by omesh@ma_omesh

 Added alpha programming to vertex buffer. This is obviously needed for color/alpha
blending tests, but I had overlooked it earlier. I also need to modify the vertex/pixel shaders to
export (and pass through) alpha from triangle vertices. The current vertex/pixel shaders only pass
through R,G,B.

Change 36943 on 2002/06/27 by abeaudin@abeaudin_r400_win_marlboro

 I changed the blender and there were accountable one bit differences in golden images.

Change 36941 on 2002/06/27 by abeaudin@abeaudin_r400_win_marlboro

 added color and alpha blending functions to the rb

Change 36860 on 2002/06/27 by kryan@kryan_r400_win_marlboro

 SURFACE

 - Created new class SURFACE that is a generic surface to contain

 all the properties associated with a surface such as pitch, height,

 SurfaceFormat, etc.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1720 of 1898

 Page 473 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 PIXEL_SURFACE

 - Created new class PIXEL_SURFACE to represent surfaces that store

 data on per-pixel basis. This has the necessary knowledge of how to

 calculate the element size and datasize for this surface needed to

 call Larry's address routines. Still in progress.

 MEMORY_AREA

 - Modified old Fill_Data() function to call new tiled Fill functions

 by default in LINEAR mode (only for ARGB8888 pixelTypes). This

 is the first step in converting tests to use the new tiled functions

 and have the emulator and hardware both operate in tiled mode by

 default. For now the Emulator will default to LINEAR mode, and the

 Fill_Data() routines will call the new tiled fill routines in

 LINEAR mode.

 - Added legacy_mode argument to old Fill_Data(..., bool legacy_mode = false)

 to support cp_simple_triangle.cpp test that uses the Fill_Data() function

 to write the VertexBuffers to memory.

 chip/gfx/cp/cp_simple_test.cpp

 - Modified to use legacy mode of old Fill_Data() routines since it was

 decided that in having the old Fill_Data() functions call the new

 tiling fill routines, this would only be supported for ARGB8888.

Change 36838 on 2002/06/27 by csampayo@fl_csampayo_r400

 Update

Change 36837 on 2002/06/27 by csampayo@fl_csampayo_r400

 Page 474 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Added new VGT tests

Change 36836 on 2002/06/27 by mkelly@fl_mkelly_r400_win_laptop

 Perspective-Correct barycentric coordinate interpolation simple tests verifying combos of
ref v0 locations.

Change 36611 on 2002/06/26 by csampayo@fl_csampayo2_r400

 Update

Change 36609 on 2002/06/26 by csampayo@fl_csampayo_r400

 New VGT test

Change 36580 on 2002/06/26 by csampayo@fl_csampayo_r400

 Update for pitch%32

Change 36577 on 2002/06/26 by smoss@smoss_crayola_win

 SU tests and golds

Change 36576 on 2002/06/26 by hartogs@fl_hartogs2

 Added two VGT DMA dump files.

Change 36563 on 2002/06/26 by frivas@FL_FRivas

 deleted test because it is redundant now. there are other tests that are more complete.

Change 36541 on 2002/06/26 by csampayo@fl_csampayo_r400

 Updated for pitch%32

Change 36540 on 2002/06/26 by csampayo@fl_csampayo2_r400

 Updated and sorted.

Change 36528 on 2002/06/26 by frivas@FL_FRivas

 no change

Change 36491 on 2002/06/26 by ygiang@ygiang_r400_win_marlboro_p4

 updated: Makefile for sp tests

Change 36489 on 2002/06/26 by abeaudin@abeaudin_r400_win_marlboro

 Page 475 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 new shaders for blenders

Change 36369 on 2002/06/26 by smoss@smoss_crayola_win

 SU Tests and gold updates

Change 36305 on 2002/06/25 by csampayo@fl_csampayo_r400

 Update

Change 36303 on 2002/06/25 by csampayo@fl_csampayo_r400

 Added new VGT tests

Change 36274 on 2002/06/25 by ashishs@fl_ashishs_r400_win

 update

Change 36267 on 2002/06/25 by ashishs@fl_ashishs_r400_win

 CL tests: Converted from R200
 Vertex position combinations tested against frustum clipping for lines.

Change 36165 on 2002/06/25 by jhoule@jhoule_r400_win_marlboro

 SurfaceFormat changed to ColorFormat.

Change 36116 on 2002/06/25 by frivas@FL_FRivas

 Added more HOS tests to test list

Change 36081 on 2002/06/25 by mkelly@fl_mkelly_r400_win

 Update

Change 36080 on 2002/06/25 by mkelly@fl_mkelly_r400_win

 Bugzilla #242

Change 35950 on 2002/06/24 by csampayo@fl_csampayo_r400

 Update

Change 35945 on 2002/06/24 by csampayo@fl_csampayo_r400

 Adding new VGT tests

Change 35828 on 2002/06/24 by frivas@FL_FRivas

 Page 476 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Initial check in of HOS PNQ test with a single PNQ using continuous tessellation varying
between 1.0-14.0 with reuse 4-16. Lighting is implemented.

Change 35827 on 2002/06/24 by frivas@FL_FRivas

 Updated descriptions in the comments and model's offset from the origin.

Change 35819 on 2002/06/24 by frivas@FL_FRivas

 Initial check in of HOS PNQ test. Has 4 PNQ's that are computed with lighting and
texturing using orthographic projection. Tessellation level varies between 1.99-14.99 and reuse
varies between 4-16.

Change 35808 on 2002/06/24 by frivas@FL_FRivas

 Initial check in of HOS PNQ test. Has 4 PNQ's that have lighting and texturing with
orthographic projection. Tessellation varies from 1.0-14.0 and reuse varies from 4-16.

Change 35741 on 2002/06/24 by mkelly@fl_mkelly_r400_win_laptop

 Added more dumps

Change 35645 on 2002/06/21 by ashishs@fl_ashishs_r400_win

 update to test_list for CL

Change 35640 on 2002/06/21 by csampayo@fl_csampayo_r400

 Update

Change 35638 on 2002/06/21 by ashishs@fl_ashishs_r400_win

 CL tests: Vertex position combinations tested against frustum clipping.

Change 35618 on 2002/06/21 by frivas@FL_FRivas

 Initial check in of HOS PNQ that uses continuous tessellation that varies between 1.0-
14.0 and reuse 4-16 with orthographic projection. Displays as wireframe model.

Change 35617 on 2002/06/21 by frivas@FL_FRivas

 update to HOS PNT tests

Change 35540 on 2002/06/21 by mkelly@fl_mkelly_r400_win_laptop

 UCP combos on polymode line and line stipple

Change 35523 on 2002/06/21 by abeaudin@abeaudin_r400_win_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1721 of 1898

 Page 477 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 rename test

Change 35521 on 2002/06/21 by abeaudin@abeaudin_r400_win_marlboro

 blender test for emu

Change 35518 on 2002/06/21 by csampayo@fl_csampayo2_r400

 Updates

Change 35508 on 2002/06/21 by mkelly@fl_mkelly_r400_win_laptop

 Simple CL test

Change 35503 on 2002/06/21 by csampayo@fl_csampayo_r400

 Update

Change 35490 on 2002/06/21 by mkelly@fl_mkelly_r400_win_laptop

 Submit for investigation...

Change 35484 on 2002/06/21 by llefebvr@llefebvre_laptop_r400_emu

 Predication optimization problem fixed in Sq.

Change 35483 on 2002/06/21 by omesh@ma_omesh

 Removed all the #include "mem_class.h" lines. Looks like that header file doesn't exist
anymore and was absorbed into some other headerfile, as the test code compiles and runs even
without this.

Change 35474 on 2002/06/21 by mkelly@fl_mkelly_r400_win_laptop

 Fix includes so it will build

Change 35358 on 2002/06/20 by mkelly@fl_mkelly_r400_win

 Update, removed "debug" text from emulate time displayed at each test interval. Enabled
extra options for web publishing.

Change 35337 on 2002/06/20 by ashishs@fl_ashishs_r400_win

 update to test_list file for CL and VTE

Change 35317 on 2002/06/20 by mkelly@fl_mkelly_r400_win_laptop

 Basic stipple triangle and polygon tests

 Page 478 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 35313 on 2002/06/20 by llefebvr@llefebvre_laptop_r400_emu

 Environement map tests...

Change 35288 on 2002/06/20 by ashishs@fl_ashishs_r400_win

 corrected comment

Change 35245 on 2002/06/20 by ashishs@fl_ashishs_r400_win

 CL tests Converted from R200.
 :Vertex position combinations tested against frustum clipping.

Change 35242 on 2002/06/20 by mkelly@fl_mkelly_r400_win_laptop

 adding potential bug for record

Change 35203 on 2002/06/20 by mkelly@fl_mkelly_r400_win_laptop

 Update gold for clamped color export

Change 35193 on 2002/06/20 by csampayo@fl_csampayo2_r400

 Update per last VFD change

Change 35177 on 2002/06/20 by omesh@ma_omesh

 Added some more color/alpha combination tests that were lying around on my client.
 Will later clean up all the extraneous and generic comments and add my own, more
focussed functional comments.
 Still have to verify that all these basic tests:
 1) Program only the parameters being tested which change the output.
 2) Don't leave any registers which affect the output (not being tested) to be
uninitialized.... This would produce a mismatch between the simulator and emulator even for
outputs we don't care about and would waste time in debugging.
 Also included these 2 test files in the Makefile.

Change 35162 on 2002/06/20 by ashishs@fl_ashishs_r400_win

 updated comment

Change 35154 on 2002/06/20 by ashishs@fl_ashishs_r400_win

 Features Tested: clip planes
 Test Purpose:creates 10 vertices from 7 clip planes

Change 35150 on 2002/06/20 by jhoule@jhoule_r400_win_marlboro

 Page 479 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Removed old texture loading functions.

Change 35149 on 2002/06/20 by jhoule@jhoule_r400_win_marlboro

 Skeleton for texture tests.
 Currently does a textured quad.
 Inspired from primlib_template_*, but split in functions.

Change 35105 on 2002/06/20 by llefebvr@llefebvre_laptop_r400_emu

 corrected the sq tests to use the new primlib include.

Change 35078 on 2002/06/19 by csampayo@fl_csampayo2_r400

 Corrected number of indices to always be at least 2.

Change 35076 on 2002/06/19 by csampayo@fl_csampayo_r400

 Added new DMA specific VGT tests. Updated test_list correspondinly.

Change 35065 on 2002/06/19 by omesh@ma_omesh

 Adding my locally existing (for many days!) alpha source/destination blending basic tests
to the server.
 These tests are 15 tests each which are mirror tests, just like the color blending tests....
With source and destination alpha programming interchanged in the 2 sets. When Alicia finishes
the alpha blending in the emulator, I have asked her to inform me, so I can run these tests.

Change 34998 on 2002/06/19 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 34953 on 2002/06/19 by mkelly@fl_mkelly_r400_win_laptop

 Update to include control of Z_WRITE_ENABLE and ZFUNC... awaiting support
updates to RB emu_lib...

Change 34779 on 2002/06/18 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 34719 on 2002/06/18 by mkelly@fl_mkelly_r400_win_laptop

 More zbuffer tests, although still need to be revisted when there is higer confidence in
zbuffer functionality

Change 34713 on 2002/06/18 by frivas@FL_FRivas

 Page 480 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Initial check in of HOS PNL tests for 4 PNL's using both cubic and linear position with
orthographic projection.

Change 34712 on 2002/06/18 by frivas@FL_FRivas

 delete

Change 34711 on 2002/06/18 by frivas@FL_FRivas

 deleted

Change 34710 on 2002/06/18 by frivas@FL_FRivas

 updates

Change 34663 on 2002/06/18 by smoss@smoss_crayola_win

 fixed build error

Change 34658 on 2002/06/18 by mkelly@fl_mkelly_r400_win_laptop

 SC zbuffer (RCC) interface tests

Change 34589 on 2002/06/17 by omesh@ma_omesh

 Added a mirror (symmetrical test case) of r400rb_basic_color_source.cpp
 Simply interchanged source and destination color/alpha programming and expecting
mirrored results.

Change 34574 on 2002/06/17 by frivas@FL_FRivas

 Minor update to scaling.

Change 34544 on 2002/06/17 by omesh@ma_omesh

 Added a typical structure of a basic color blending test I have been playing around with
for several days (and its corresponding inclusion in the Makefile). This uses 2 triangles rendered
one on top of the other. The first triangle programs the destination buffer color and the second
one is the real test, which programs the source triangle color (and is supposed to blend with the
previous one in a specified way). I reuse most of the pointers and render state settings for the 2nd
triangle from the 1st.

Change 34537 on 2002/06/17 by frivas@FL_FRivas

 Initial check in of HOS PNL test. Uses 4 PNL's and does continuous tessellation at levels
varying between 1.0-14.0 with reuse 4-16.

Change 34529 on 2002/06/17 by frivas@FL_FRivas

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1722 of 1898

 Page 481 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Initial check in of HOS PNL test. Uses continuous tessellation of 4 PNL's. Uses cubic
position and linear normal.

Change 34520 on 2002/06/17 by ashishs@fl_ashishs_r400_win

 updated the pixel centers in the test

Change 34516 on 2002/06/17 by frivas@FL_FRivas

 Initial check in of HOS PNT that uses discrete tessellation and cubic postion and
quadratic normal interpolation. Renders multi PNT's with lighting and texturing using
orthographic projection.

Change 34510 on 2002/06/17 by frivas@FL_FRivas

 Initial check in of HOS PNT test with single PNT using discrete tessellation varying from
1-14 and reuse 4-16. Uses orthographic projection.

Change 34501 on 2002/06/17 by frivas@FL_FRivas

 Initial check in of HOS PNT test with single PNT using cubic position and quadratic
normal interpolation with tessellation level varying between 1.0-16.0 and reuse varying between
4-16. Uses orthographic projection and lighting.

Change 34498 on 2002/06/17 by mkelly@fl_mkelly_r400_win_laptop

 Test SC rectangle list vertex order interpretation...

Change 34492 on 2002/06/17 by frivas@FL_FRivas

 Initial check in of HOS PNT test that uses only a single PNT in wireframe mode.
Impelements lighting. Tessellation 1.0-14.0 and reuse 4-16. Uses orthographic projection.

Change 34486 on 2002/06/17 by frivas@FL_FRivas

 Initial check in of a HOS multi PNT test with lighting, texturing and the ability to toggle
between orthographic and perspective projection. Tessellation level varies between 1.1-14.1 and
reuse varies between 4-16.

Change 34480 on 2002/06/17 by frivas@FL_FRivas

 Initial check in for continuous tesselltaion PNT HOS test using lighting, and texturing
with orthographic projection. Uses cubic position and quadratic normal interplation. You can
toggle between orthographic and perspective projection. Tessllation ranges from 1.99-14.99 and
reuse from 4-16.

Change 34455 on 2002/06/17 by frivas@FL_FRivas

 Initial check in of HOS PNT test that changes the orientation of normals.

 Page 482 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 34449 on 2002/06/17 by frivas@FL_FRivas

 HOS test with multi PNT's that does lighting and texturing while varying both
tessellation level (1.0-14.0) and reuse level (4-16). Uses continuous tessellation, cubic position
and quadratic normal with orthographic projection. Perspective projection may be toggled on.

Change 34368 on 2002/06/16 by ashishs@fl_ashishs_r400_win

 VTE Test:
 Update (XYZ)SCALE without updating (XYZ)OFFSET between packets and vice-versa.

Change 34342 on 2002/06/15 by ashishs@fl_ashishs_r400_win

 Enable (XYZ)SCALE without enabling (XYZ)OFFSET and vice-versa.
 The test sends 2 packets, each packet with 2 vertex data for checking
VPORT_{X|Y|Z}_SCALE_ENA registers and VPORT_{X|Y|Z}_OFFSET_ENA registers.

Change 34267 on 2002/06/14 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 34266 on 2002/06/14 by mkelly@fl_mkelly_r400_win_laptop

 First line stipple tests...

Change 34201 on 2002/06/14 by mkelly@fl_mkelly_r400_win

 Update

Change 34175 on 2002/06/14 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 34164 on 2002/06/14 by csampayo@fl_csampayo_r400

 Golds for updated test

Change 34162 on 2002/06/14 by csampayo@fl_csampayo_r400

 Update

Change 34070 on 2002/06/14 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 34064 on 2002/06/14 by mkelly@fl_mkelly_r400_win_laptop

 Update...

 Page 483 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 33912 on 2002/06/13 by kmahler@kmahler_r400_win_devel_views

 New Mid-Level Shader Assembler Syntax - Phase I

 TEST DEVELOPERS, PLEASE READ!

 With the help of Steve Allen, this GNU g++ compiler error (inconsistency?) was verified
using a simple "foo" program. After further investigation using "google" searches, it was
determined that this error has also been seen by others. Unfortunately, the work-around is to
rename (YUK) the directories to names other than "utility" and "memory".

 Changing the "primlib/memory" directory to "primlib/memory_access" is a relatively
easy task (PIA), but all test program Makefiles will need to be changed and/or test program
source files (see methods below).

 I changed all of the primlib header/source files to use relative file names in all primlib
include statements. Thus, Primlib's Makefile will only specify "-I $(TESTCHIP)/primlib" to
access primlib header files.

 I changed all of the Makefiles that make up the regression tests: perf sys/cp gfx/sc gfx/vgt
gfx/pa/su gfx/pa/cl gfx/pa/vte.

 If you have tests in directories other than the ones specified above, then the simplest way
to fix the tests is to change the Makefile line "-I$(PRIMLIB_DIR)/memory" to "-
I$(PRIMLIB_DIR)/memory_access".

 For the Tests/Makefile in the "perf" directory, I did the longer more preferred method
which consists of deleting all of the "-I" options that use Primlib relative paths (keeping just "-I
($PRIMLIB_DIR)"), deleting all of the existing primlib include statements in the test program,
and then including the new "primlib_test_includes.h" file (see
"perf/primlib_template_simple_triangle.cpp" for details).

 All NEW Makefiles and test programs should use this preferred method. You can cut-
and-paste this include file from "primlib_template_simple_triangle.cpp".

 As for the "test_lib/src/testchip/utility" directory. This directory contains
"drand48.[h|cpp]" and a Makefile. I did a search in the TOT and could not find any reference to
it. I changed the directory to "utility_lib". If any one is using this code, I apologize for any
inconvenience this may cause you (send complaints to "gcc.gnu.org").

 All tests pass the regression on both Winblows and Linux with the exception of
"r400vgt_hos_PNT_cp_qn_disc_14_04_lit_tex_proj_01" on Linux which is a known failure.

 Good Luck :)

Change 33873 on 2002/06/13 by mkelly@fl_mkelly_r400_win_laptop

 back out change

 Page 484 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 33870 on 2002/06/13 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 33869 on 2002/06/13 by mkelly@fl_mkelly_r400_win_laptop

 Update, remove extra line from cl/test_list (even though it is ok, but just to be consistent)

Change 33842 on 2002/06/13 by csampayo@fl_csampayo2_r400

 Update

Change 33782 on 2002/06/13 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 33779 on 2002/06/13 by mkelly@fl_mkelly_r400_win_laptop

 VFD, clamp final color in pixel shader, support user programmability to texture fetch
constant or default to using 1-8.

Change 33729 on 2002/06/13 by ashishs@fl_ashishs_r400_win

 test list for cl

Change 33725 on 2002/06/13 by ashishs@fl_ashishs_r400_win

 test list for vte

Change 33720 on 2002/06/13 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 33718 on 2002/06/13 by mkelly@fl_mkelly_r400_win

 Update

Change 33575 on 2002/06/12 by mkelly@fl_mkelly_r400_win_laptop

 checkpoint...

Change 33529 on 2002/06/12 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 33526 on 2002/06/12 by kryan@kryan_r400_win_marlboro

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1723 of 1898

 Page 485 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Updated Makefile in chip/ferret and chip/gfx/sp so that memory_area.h can find
crayola_enum.h.

Change 33485 on 2002/06/12 by llefebvr@llefebvre_laptop_r400_emu

 Implemented most of the remaining vector opcodes. Including pixel kills. The pred_set
are still not implemented since they are still changing.

Change 33474 on 2002/06/12 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 33471 on 2002/06/12 by mkelly@fl_mkelly_r400_win_laptop

 bug

Change 33466 on 2002/06/12 by mkelly@fl_mkelly_r400_win

 Update

Change 33458 on 2002/06/12 by mkelly@fl_mkelly_r400_win_laptop

 update comment

Change 33436 on 2002/06/12 by kryan@kryan_r400_win_marlboro

 Update Makefiles to include r400/devel directory in -I include path

 so that full paths can be used in include files. Memory_area.h uses

 the cmn_lib/lib/address/address.h file and needs to specify the

 full path.

Change 33418 on 2002/06/12 by mkelly@fl_mkelly_r400_win_laptop

 Fix endian bug on unix clip regress_e

Change 33350 on 2002/06/11 by ashishs@fl_ashishs_r400_win

 update

Change 33345 on 2002/06/11 by ashishs@fl_ashishs_r400_win

 VTE test:
 To check the VTX_W0_FMT control register .
 If ON, the VTE will perform the reciprocal to get 1/W0
 else indicates that the incoming W0 is not 1/W0.

 Page 486 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Also fills gap in the VHDL coverage of the VTE by its unique combination of settings
and vertex data.

Change 33329 on 2002/06/11 by mkelly@fl_mkelly_r400_win_laptop

 update, sc point tests....

Change 33217 on 2002/06/11 by llefebvr@llefebvre_laptop_r400_emu

 Some more stress tests for the SQ...

Change 33181 on 2002/06/11 by csampayo@fl_csampayo_r400

 Udated test description

Change 33164 on 2002/06/11 by csampayo@fl_csampayo_r400

 Removed .cpp from tests names

Change 33159 on 2002/06/11 by ashishs@fl_ashishs_r400_win

 update

Change 33123 on 2002/06/10 by ashishs@fl_ashishs_r400_win

 VTE Test:
 To check Z multiply 1/W using VTX_Z_FMT = 0 To calculate
the screen co-ordinates from the clip coordinates and verify:
 -> see the R400 CLIP/VTE SPEC

Change 33101 on 2002/06/10 by csampayo@fl_csampayo2_r400

 Update

Change 33085 on 2002/06/10 by csampayo@fl_csampayo2_r400

 Update to add the following VGT test for regress_e
 r400vgt_hos_PNT_cp_qn_disc_14_04_lit_tex_proj_01

Change 33081 on 2002/06/10 by csampayo@fl_csampayo2_r400

 Update

Change 33080 on 2002/06/10 by csampayo@fl_csampayo2_r400

 Adding VGT Tesselator tests

Change 33054 on 2002/06/10 by mkelly@fl_mkelly_r400_win_laptop

 Page 487 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Update, sc tests...

Change 33016 on 2002/06/10 by ashishs@fl_ashishs_r400_win

 VTE test:
 To check XY multiply 1/W using VTX_XY_FMT = 0
 To calculate the screen co-ordinates from the clip coordinates and verify:
 -> see the R400 CLIP/VTE SPEC

Change 32971 on 2002/06/10 by csampayo@fl_csampayo_r400

 Update

Change 32884 on 2002/06/10 by mkelly@fl_mkelly_r400_win

 Update

Change 32825 on 2002/06/07 by csampayo@fl_csampayo_r400

 Adding new VGT tests

Change 32808 on 2002/06/07 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 32766 on 2002/06/07 by ashishs@fl_ashishs_r400_win

 To validate the vte control register by sending different number of vertices(packets) and
for a set of cases change the vte control register settings and check the results.

Change 32736 on 2002/06/07 by llefebvr@llefebvre_laptop_r400_emu

 Various SX->RB interface fixes. Also removed the MSB of the PS_EXPORT_MODE
field since it is not needed anymore.

Change 32434 on 2002/06/06 by llefebvr@llefebvre_laptop_r400_emu

 corrected dolphin test.

Change 32429 on 2002/06/06 by llefebvr@llefebvre_laptop_r400_emu

 fixed the wedege test

Change 32382 on 2002/06/06 by llefebvr@llefebvre_laptop_r400_emu

 the wedge model test for the SQ.

Change 32287 on 2002/06/06 by frivas@FL_FRivas

 Page 488 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Initial check-in. HOS tests of 4 PNL's. Tessellation level = 13 and reuse level = 4.

Change 32285 on 2002/06/06 by frivas@FL_FRivas

 Deleted these two tests because they have been replaced by better ones.

Change 32267 on 2002/06/06 by frivas@FL_FRivas

 Initial check-in. Test for HOS using 2 PNT's with lighting, texturing, and projection.
Tessellation level = 14 and reuse level = 4.

Change 32261 on 2002/06/06 by frivas@FL_FRivas

 Test has been deleted because a newer and better test has been created.

Change 32251 on 2002/06/06 by frivas@FL_FRivas

 Updated VTE settings to use new constant definitions instead of raw numbers.

Change 32250 on 2002/06/06 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 32235 on 2002/06/06 by smoss@smoss_crayola_win

 update golds

Change 32230 on 2002/06/06 by mkelly@fl_mkelly_r400_win

 Add back in frustum clipping to regress_e now that it passes :)

Change 32228 on 2002/06/06 by mkelly@fl_mkelly_r400_win

 Update

Change 32165 on 2002/06/05 by csampayo@fl_csampayo_r400

 Updates

Change 32157 on 2002/06/05 by mkelly@fl_mkelly_r400_win_laptop

 regress_r400

Change 32126 on 2002/06/05 by csampayo@fl_csampayo_r400

 Updates

Change 32107 on 2002/06/05 by csampayo@fl_csampayo_r400

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1724 of 1898

 Page 489 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Updates

Change 32070 on 2002/06/05 by llefebvr@llefebvre_laptop_r400_emu

 Dolphin test

Change 32024 on 2002/06/05 by csampayo@fl_csampayo_r400

 Updated tess levl from 10 to 14

Change 32022 on 2002/06/05 by csampayo@fl_csampayo_r400

 Adding VGT tests

Change 31974 on 2002/06/05 by ygiang@ygiang_r400_win_marlboro_p4

 added: pixel shader programs (scalar mul,min,max)

Change 31899 on 2002/06/04 by csampayo@fl_csampayo_r400

 Updated per change# 31760

Change 31885 on 2002/06/04 by csampayo@fl_csampayo_r400

 Updated per change# 31760

Change 31831 on 2002/06/04 by bhankins@fl_bhankins_r400_win

 added files

Change 31681 on 2002/06/04 by mkelly@fl_mkelly_r400_win

 Update

Change 31677 on 2002/06/04 by smoss@smoss_crayola_win

 SU tests

Change 31604 on 2002/06/03 by frivas@FL_FRivas

 Update to test description in source code.

Change 31603 on 2002/06/03 by frivas@FL_FRivas

 Update to test description in the source code. Nothing changed in the shader.

Change 31548 on 2002/06/03 by omesh@ma_omesh

 Page 490 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Latest version of the 7 constant color tests. They compile and run, but I can't "test the
tests" as the emulator doesn't implement color blending yet.
 I am still cleaning up the code for the other tests and will check them into Perforce as
soon as I do that.
 I have updated the Makefile to include this test too.

Change 31538 on 2002/06/03 by mkelly@fl_mkelly_r400_win_laptop

 Basic x-major, y-major line verification for the SC

Change 31462 on 2002/06/03 by mkelly@fl_mkelly_r400_win_laptop

 Back out test until bug is fixed.

Change 31390 on 2002/06/03 by mkelly@fl_mkelly_r400_win

 Add clip frustum to regress_e

Change 31299 on 2002/05/31 by csampayo@fl_csampayo_r400

 Adding tesssellator test

Change 31282 on 2002/05/31 by csampayo@fl_csampayo_r400

 Update

Change 31276 on 2002/05/31 by csampayo@fl_csampayo_r400

 Adding golds for regress_e

Change 31274 on 2002/05/31 by csampayo@fl_csampayo_r400

 Added the following tessellator test:
 r400vgt_hos_cubic_pos_pnt_discrete_01

Change 31273 on 2002/05/31 by mkelly@fl_mkelly_r400_win_laptop

 Basic diamond exit tests....

Change 31270 on 2002/05/31 by csampayo@fl_csampayo_r400

 Adding the following Tessellator test:

Change 31247 on 2002/05/31 by mkelly@fl_mkelly_r400_win_laptop

 Test two lines in one packet, confirming hit and no hit pixels are valid.

Change 31148 on 2002/05/31 by frivas@FL_FRivas

 Page 491 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 HOS test of PNL with tessellation leve 13 using continuous tessellation. There are
problems with tessellation beyond level 13 (time out issues and shader artifacts).

Change 31136 on 2002/05/31 by llefebvr@llefebvre_laptop_r400_emu

 enabled Z buffering

Change 31129 on 2002/05/31 by frivas@FL_FRivas

 HOS test of PNL continuous tessellation at level 13 using cubic position and linear
normal interpolation. There seem to be problems at tessellation levels > 13 in that there are scan
converter and time out issues.

Change 31116 on 2002/05/31 by llefebvr@llefebvre_laptop_r400_emu

 Added safety checks in the sq vertex processing

Change 31069 on 2002/05/31 by frivas@FL_FRivas

 HOS test of two PNT's at a discrete tessellation level of 8.0. Implements texturing,
lighting, and projection.

Change 31058 on 2002/05/31 by frivas@FL_FRivas

 VGT HOS tests added, modified test_list

Change 31054 on 2002/05/31 by mkelly@fl_mkelly_r400_win_laptop

 Bugzilla Bug 238, RB color clamping problem

Change 30966 on 2002/05/30 by omesh@ma_omesh

 Cleaned up some junk code and used new scheme for number generation based on the
seperation of the TG class from the std:vector data structure.

Change 30942 on 2002/05/30 by llefebvr@llefebvre_laptop_r400_emu

 updated the VGT->SQ interface (and corresponding blocks) to match HW in name and
size and add the Event field.

Change 30904 on 2002/05/30 by omesh@ma_omesh

 Just a basic "my own template" which is not yet a complete test. Decided on using this
specific geometry for the basic tests. Will have to rethink the geometry for stress tests for
maximum screen coverage of colors.
 Was simply playing around with these tests and am only submiting it to Perforce to keep
track of what I was playing around with.

Change 30880 on 2002/05/30 by ashishs@fl_ashishs_r400_win

 Page 492 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 corrected errors

Change 30852 on 2002/05/30 by llefebvr@llefebvre_laptop_r400_emu

 parser for the obj format

Change 30849 on 2002/05/30 by ashishs@fl_ashishs_r400_win

 This test is intended to validate the vertex reuse functionality with actual clipping.The
test processes 56 packets each with one 84 primitive triangle list containing 16 vertices with
input vertex data: XYZW0, 1 color , no textures.For each packet the test has the 252 indices
making up 84 primitives, unique indices are randomly selected between 0-12 and 0-15. For each
packet six UCP planes are set up so that most of the original verices get clipped.

Change 30726 on 2002/05/29 by mkelly@fl_mkelly_r400_win_laptop

 Move all files in compare list to output directory irregardless of #, print warning if P4 is
down.

Change 30707 on 2002/05/29 by csampayo@fl_csampayo_r400

 Adding r400_regress script dependency files:

Change 30685 on 2002/05/29 by mkelly@fl_mkelly_r400_win_laptop

 Widen coverage of regress_e

Change 30665 on 2002/05/29 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 30663 on 2002/05/29 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 30661 on 2002/05/29 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 30576 on 2002/05/29 by mkelly@fl_mkelly_r400_win

 Update to fix Random library link error....

Change 30547 on 2002/05/29 by mkelly@fl_mkelly_r400_win

 Update to regress_e, ADD 4 more SC tests

Change 30538 on 2002/05/29 by mkelly@fl_mkelly_r400_win

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1725 of 1898

 Page 493 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 SC golds for regress_e

Change 30535 on 2002/05/29 by mkelly@fl_mkelly_r400_win

 Update to fix random library build error.

Change 30533 on 2002/05/29 by mkelly@fl_mkelly_r400_win_laptop

 Added support for HOS Cubic Position PNT with example useage in file
r400vfd_vs_hos_cubic_pos_pnt_01

Change 30531 on 2002/05/29 by mkelly@fl_mkelly_r400_win_laptop

 Update to remove const of INDEX_BUFFER class...

Change 30460 on 2002/05/28 by smoss@smoss_crayola_win

 SU tests for regress_e

Change 30264 on 2002/05/28 by ashishs@fl_ashishs_r400_win

 Tests Culling Only when UCPs are enabled, The UCPS do not clip, only cull.

Change 30248 on 2002/05/28 by ashishs@fl_ashishs_r400_win

 Features Tested : user clip planes
 Test Purpose:verify the 64 combinations of ucp control bits
 Method: test has 64 polygons arranged in a grid of 8x8. Each polygon has a
different combination of ucp enable bits set
 from 0 to 63, with the upper left being 0, counting down the
 columns first, then across
 Expected Results: 8 rows of 8 primitives (64 total primitives), each clipped using
 different combinations of the user-defined clip planes

Change 30054 on 2002/05/24 by mkelly@fl_mkelly_r400_win_laptop

 Update to find tests on the client much faster...

Change 29980 on 2002/05/24 by ygiang@ygiang_r400_win_marlboro_p4

 added: sp alu scalar opcode "add, min, max, mul"

Change 29976 on 2002/05/24 by mkelly@fl_mkelly_r400_win_laptop

 SC tests to validate triangle coarse walk, quad evaluation, and detail pixel
determination...

Change 29927 on 2002/05/24 by smoss@smoss_crayola_win

 Page 494 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Added random libs

Change 29855 on 2002/05/24 by ygiang@ygiang_r400_win_marlboro_p4

 fixed: random lib link

Change 29846 on 2002/05/24 by smoss@smoss_crayola_win

 incorrect test name

Change 29765 on 2002/05/23 by ygiang@ygiang_r400_win_marlboro

 cut and paste changes

Change 29764 on 2002/05/23 by smoss@smoss_crayola_win

 extraneous characters in makefile

Change 29757 on 2002/05/23 by ygiang@ygiang_r400_win_marlboro

 added: more tests and fail list

Change 29729 on 2002/05/23 by ygiang@ygiang_r400_win_marlboro

 add: color clamp test...Clamping doesn't work yet

Change 29700 on 2002/05/23 by ygiang@ygiang_r400_win_marlboro_p4

 sp test files

Change 29686 on 2002/05/23 by georgev@ma_georgev

 Back integrate from devel_primlib.

Change 29613 on 2002/05/23 by smoss@smoss_crayola_win

 su test

Change 29592 on 2002/05/22 by mkelly@fl_mkelly_r400_win

 Update

Change 29538 on 2002/05/22 by mkelly@fl_mkelly_r400_win_laptop

 Test complete.

Change 29396 on 2002/05/21 by mkelly@fl_mkelly_r400_win_laptop

 Page 495 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Update checkpoint...

Change 29390 on 2002/05/21 by mkelly@fl_mkelly_r400_win_laptop

 Example of perspective projection using the shader.

Change 29359 on 2002/05/21 by omesh@ma_omesh

 Added the Makefile and shader pipe programming files needed to compile and run RB
tests. The shader pipe programming files (*.SP) are taken from the simple triangle examples.

Change 29290 on 2002/05/21 by smoss@smoss_crayola_win

 update to gold due to 1 bit color difference

Change 29273 on 2002/05/21 by ashishs@fl_ashishs_r400_win

 corrected vertex buffer data

Change 29134 on 2002/05/20 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint

Change 29082 on 2002/05/20 by mkelly@fl_mkelly_r400_win

 Update script to report build errors.

Change 29069 on 2002/05/20 by csampayo@fl_csampayo_r400

 Addint VGT Tessellator test

Change 29053 on 2002/05/20 by mkelly@fl_mkelly_r400_win

 Updates...

Change 28908 on 2002/05/17 by mkelly@fl_mkelly_r400_win

 Update

Change 28905 on 2002/05/17 by mkelly@fl_mkelly_r400_win_laptop

 * Modified to only work with files in uncommented in compare_list.
 * Any file name and extension can be added to compare_list and will be used in
regression for comparison to gold.
 * Sync stamp on output directory is now exclusive of test_lib/src/chip/gfx

Change 28885 on 2002/05/17 by mkelly@fl_mkelly_r400_win_laptop

 Update

 Page 496 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 28801 on 2002/05/17 by smoss@smoss_crayola_win

 SU tests with golds

Change 28782 on 2002/05/17 by mkelly@fl_mkelly_r400_win_laptop

 VFD, support for linear postion interpolation.

Change 28756 on 2002/05/17 by mkelly@fl_mkelly_r400_win_laptop

 update

Change 28755 on 2002/05/17 by mkelly@fl_mkelly_r400_win_laptop

 update

Change 28569 on 2002/05/16 by csampayo@fl_csampayo_r400

 Adding the following VGT tests

Change 28556 on 2002/05/16 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 28551 on 2002/05/16 by mkelly@fl_mkelly_r400_win_laptop

 Update gold

Change 28537 on 2002/05/16 by omesh@ma_omesh

 Oops! Added the file with the wrong extension, So simply deleted the old file and added
a new one with the right extension.

 Here is the older comment (incase it didn't catch it from the revision history of the old
file):
 Added in a placeholder so that Frank and me know where to put RB tests. This is just the
simple triangle test copied and pasted here.

Change 28530 on 2002/05/16 by omesh@ma_omesh

 Added in a placeholder so that Frank and me know where to put RB tests. This is just the
simple triangle test copied and pasted here.

Change 28397 on 2002/05/16 by ashishs@fl_ashishs_r400_win

 Converted from R200, 225 gouraud shaded, clipped triangles.
 Vertex position combinations tested against frustum clipping.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1726 of 1898

 Page 497 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 28241 on 2002/05/15 by hwise@fl_hwise_r400_win

 CP Updates:
 1) Updated CP block files
 2) Updated Emulator to match block file changes
 3) Commented out guts of DEVICE::Init_CP() function
 because it was reading the CP_STATE_IM_CNTL
 register which is now uninitialized at power up
 and the data being read was not being used anyway
 4) Updated bmInit() function in file
 devel/test_lib/src/testchip/busmaster/busmaster.cpp
 because the CP interrupt is no longer on a shared
 register (there should not be any shared register in
 R400 now)
 5) Updated gold files because the CP_STATE_IM_CNTL register
 read is no longer in the *.rd_r and *.log files for the
 tests that use the primlib DEVICE class

Change 28018 on 2002/05/14 by csampayo@fl_csampayo_r400

 Adding VGT test

Change 27976 on 2002/05/14 by llefebvr@llefebvre_laptop_r400_emu

 New SQ register map.
 Added EXEC_END,CEXEC_END, CPEXEC_END. Removed the END instruction.

Change 27962 on 2002/05/14 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 27857 on 2002/05/14 by smoss@smoss_crayola_win

 added dump files

Change 27853 on 2002/05/14 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint for adding HOS support to VFD. This version supports:

 a. VFD_VS_HOS_CUB_POS_QUAD_NORM_PNT
 b. VFD_VS_XFORM_0
 c. VFD_VS_HOS_LINEAR_PNL

 In this specific VFD described order. See r400vfd_hos_example_01.cpp for useage.

Change 27680 on 2002/05/13 by abeaudin@abeaudin_r400_win_marlboro

 added include path for tiling address calculations

 Page 498 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 27500 on 2002/05/10 by csampayo@fl_csampayo2_r400

 Adding VGT test

Change 27333 on 2002/05/10 by mkelly@fl_mkelly_r400_win_laptop

 * Renamed vfd_sanity.cpp to r400vfd_sanity_01.cpp
 * Checkpoint on vfd for hos in r400vfd_hos_01.cpp

Change 27215 on 2002/05/09 by ashishs@fl_ashishs_r400_win

 2 tests done, still texture and shading functions to be added.

 test # 1: r400cl_gband_04.cpp
 Guard Band Clipping test.(right now just all triangles gouraud shaded and not texture
mapped)
 VERTEX_DATA - TRIANGLE_STRIP, Top Left Quadrant, gouraud shading
 INDEXES - TRIANGLE_STRIP, Top Right Quadrant, flat shading 0
 VERTEX_LIST - TRIANGLE_STRIP, Lower Right Quadrant, flat shading 1
 VERTEX_DATA - TRIANGLE_STRIP, Lower Left Quadrant, six textures, flat shading
0
 Method: 6 Vert Strip
 Expected Results: 4 triangles, four quadrants

 test # 2: r400cl_clip_space_dx_ogl_01.cpp
 This test is to check the OGL v/s DX clip space definition.
 The D3D space is checked with the Z positions. As soon as the
 primitive enters the -ve z positions in the D3D space the
 primitive gets clipped but doesnt get clipped in the OpenGL space.
 This is shown using 4 triangles. Left top and bottom correspond to D3D space whereas
the right top and bottom traingles which are not clipped correspond to OpenGL space.

Change 27161 on 2002/05/09 by csampayo@fl_csampayo_r400

 Updates

Change 27017 on 2002/05/08 by mkelly@fl_mkelly_r400_win_laptop

 Update test description, will need to update again for subpixel mask and new state control
for sampling.

Change 26999 on 2002/05/08 by mkelly@fl_mkelly_r400_win_laptop

 Enhance VFD to support vertex point size in the shader import and export. See test
r400vte_simple_point_01.cpp

Change 26932 on 2002/05/08 by csampayo@fl_csampayo2_r400

 Updates

 Page 499 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 26845 on 2002/05/07 by csampayo@fl_csampayo2_r400

 Updates

Change 26838 on 2002/05/07 by mkelly@fl_mkelly_r400_win_laptop

 Checkpoint on MSAA test which validates URC, LLC, and LRC offsets from LLC
subsample points. 90% complete.

Change 26727 on 2002/05/07 by smoss@smoss_crayola_win

 SU tests

Change 26707 on 2002/05/07 by ashishs@fl_ashishs_r400_win

 144 sets of gourand-shaded clipped lines are drawn. all combinations of frustum clip
codes w/ vertices 27^3 have been tested.

Change 26700 on 2002/05/07 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 26568 on 2002/05/06 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 26567 on 2002/05/06 by smoss@smoss_crayola_win

 Update of Golds

Change 26550 on 2002/05/06 by smoss@smoss_crayola_win

 Missing some files for these tests

Change 26461 on 2002/05/06 by ashishs@fl_ashishs_r400_win

 changed : unpacking of colors added

Change 26391 on 2002/05/03 by mkelly@fl_mkelly_r400_win_laptop

 Multi Sample Anti-Aliasing, 8 subsample, single subsample test on ULC.

Change 26369 on 2002/05/03 by smoss@smoss_crayola_win

 su makefile

Change 26368 on 2002/05/03 by smoss@smoss_crayola_win

 Page 500 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Golds

Change 26365 on 2002/05/03 by llefebvr@llefebvre_laptop_r400_emu

 This is the new control flow sequencer. Expect things to be a bit unstable while this
major change settles in. I know I broke 1 regression test (r400vgt_index_size_01) but the
integration took so long that I decided to check the change in anyways and fix the problem from
the TOTT. Sorry for the inconvenience.

Change 26223 on 2002/05/03 by ashishs@fl_ashishs_r400_win

 Description:Legacy UCP clip test converted to R400 PrimLib,Former test name:
tcl_ucp_combos_00 (R100,R200,R300)
 Total of 720 triangles. Each triangle is stepped on the Y axis from -359.5 to +359.5
 X values remain constant for all 720 triangles.
 W = 360
 All UCPS are vertically defined.
 UCP definitions intersect each triangle at varying X locations.
 UCP locations are cycled through 720 combinations of order on the X axis which is 6!
(6*5*4*3*2*1).
 Each of the 64 ucp_combos tests has an incrementally different triangle X location from -
217 to +224, in 7 integer unit steps with UCPs adjusted accordingly.
 Clipping enabled, all UCPs enabled
 VTE performs 1/W reciprocal, X * 1/W, Y * 1/W, Z * 1/W
 VTE performs offset and scale of 360
 Guard Band Clipping is at 1.0f for vertical and horizontal adjust/discard.

 Expected Results:720 small, clipped triangles from y = -360 to y = +360 (they appear
towards middle of viewport along an imaginary edge and jut out to right); colors range from
green-blue on the left hand side of the triangle "bar" to bright orange

Change 26138 on 2002/05/02 by smoss@smoss_crayola_win

 SU tests and golds

Change 26103 on 2002/05/02 by smoss@smoss_crayola_win

 SU tests, golds

Change 26044 on 2002/05/02 by ashishs@fl_ashishs_r400_win

 nothing has been changed

Change 25986 on 2002/05/02 by mkelly@fl_mkelly_r400_win_laptop

 Update test...

Change 25979 on 2002/05/02 by mkelly@fl_mkelly_r400_win_laptop

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1727 of 1898

 Page 501 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Update

Change 25916 on 2002/05/01 by csampayo@fl_csampayo_r400

 Updated Makefiles for added VGT test

Change 25910 on 2002/05/01 by csampayo@fl_csampayo_r400

 Adding golds for vgt test

Change 25894 on 2002/05/01 by mkelly@fl_mkelly_r400_win_laptop

 Jittered Super Sampling 2x1 2 pixel

Change 25818 on 2002/05/01 by ashishs@fl_ashishs_r400_win

 nothing has been changed

Change 25775 on 2002/05/01 by mkelly@fl_mkelly_r400_win_laptop

 Update...

Change 25576 on 2002/04/30 by ashishs@fl_ashishs_r400_win

 180 gouraud shaded, clipped triangles.Vertex position combinations tested against
frustum clipping.

Change 25569 on 2002/04/30 by ashishs@fl_ashishs_r400_win

 180 gouraud shaded, clipped triangles.Vertex position combinations tested against
frustum clipping.

Change 25557 on 2002/04/30 by ashishs@fl_ashishs_r400_win

 144 gouraud shaded, clipped triangles.Vertex position combinations tested against
frustum clipping.

Change 25539 on 2002/04/30 by ashishs@fl_ashishs_r400_win

 255 gouraud shaded, clipped triangles.Vertex position combinations tested against
frustum clipping.

Change 25514 on 2002/04/30 by ashishs@fl_ashishs_r400_win

 change made due to upgrade in emulator

Change 25454 on 2002/04/29 by csampayo@fl_csampayo_r400

 Adding VGT index size test

 Page 502 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 25417 on 2002/04/29 by mkelly@fl_mkelly_r400_win_laptop

 2 pixel jss, short test which works and 1 test which produces the below output:

 ERROR: base class tcl_fifo write when full condition
 Assertion failed, ../../../../emu_lib/model/gfx/pa/pasu/tcl_fifo.cpp@53: 0

Change 25196 on 2002/04/26 by csampayo@fl_csampayo_r400

 Adding VGT index offset tests

Change 25186 on 2002/04/26 by mkelly@fl_mkelly_r400_win_laptop

 Jitter Super Sample Test, currently times out and waiting on debug from Clay.

Change 25140 on 2002/04/26 by ashishs@fl_ashishs_r400_win

 r400cl_frustrum_03 test, Converted from R200. 180 gouraud shaded, clipped triangles.

Change 25029 on 2002/04/25 by ashishs@fl_ashishs_r400_win

 test file to see the working of perforce

Change 25027 on 2002/04/25 by ashishs@fl_ashishs_r400_win

 test file to see the working of perforce

Change 25026 on 2002/04/25 by csampayo@fl_csampayo_r400

 Updated for proper TRIANGLE_WITH_WFLAGS handling

Change 25000 on 2002/04/25 by ashishs@fl_ashishs_r400_win

 Test r400 frustrum clip test, converted from r200

Change 24934 on 2002/04/25 by csampayo@fl_csampayo_r400

 Adding VGT index min/max clamping tests

Change 24896 on 2002/04/25 by mkelly@fl_mkelly_r400_win_laptop

 Update gold image, color changed by 1 bit in the blue channel for some reason...

Change 24894 on 2002/04/25 by mkelly@fl_mkelly_r400_win_laptop

 Remove const from INDEX_BUFFER instance...

Change 24806 on 2002/04/24 by mkelly@fl_mkelly_r400_win_laptop

 Page 503 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Jitter testing in progress....

Change 24712 on 2002/04/24 by smoss@smoss_crayola_win

 updated su tests

Change 24645 on 2002/04/23 by csampayo@fl_csampayo_r400

 Adding VGT reuse depth tests

Change 24556 on 2002/04/23 by mkelly@fl_mkelly_r400_win_laptop

 Check point, test authoring in progress....

Change 24092 on 2002/04/19 by csampayo@fl_csampayo_r400

 Various VGT tests. Note: most of these test have problems running due to emulator
problems

Change 23955 on 2002/04/19 by smoss@smoss_crayola_win

 su test for culling

Change 23919 on 2002/04/19 by mkelly@fl_mkelly_r400_win_laptop

 Special triangle clip test where W=0

 Vtx 0 = -0.50, -0.25, 0.00, 1.00
 Vtx 1 = 0.25, -0.50, 0.00, 1.00
 Vtx 2 = 0.50, 0.50, 0.00, 0.00

 VTE out = ((1/W)*X)+X_OFFSET, ((1/W)*Y)+Y_OFFSET, ((1/W)*Z)+Z_OFFSET

Change 23831 on 2002/04/18 by mkelly@fl_mkelly_r400_win_laptop

 update

Change 23828 on 2002/04/18 by mkelly@fl_mkelly_r400_win_laptop

 Legacy Clipping UCP combos test converted to R400.

Change 23711 on 2002/04/17 by johnchen@johnchen_r400_win_marlboro

 fix precision probelm for color and depth

Change 23521 on 2002/04/16 by smoss@smoss_crayola_win

 setup unit tests

 Page 504 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 23474 on 2002/04/16 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 23333 on 2002/04/15 by mkelly@fl_mkelly_r400_win_laptop

 Converted legacy frustum clip test to demonstrate conversion methodology of an R200
clip test to R400.

Change 23165 on 2002/04/12 by csampayo@fl_csampayo_r400

 Added VGT tests...

Change 23122 on 2002/04/12 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 23091 on 2002/04/12 by csampayo@fl_csampayo_r400

 VGT test stressing primitive type vs index source

Change 23069 on 2002/04/12 by mkelly@fl_mkelly_r400_win_laptop

 Update to handle when compare list is empty, so only output is generated.

Change 23036 on 2002/04/12 by mkelly@fl_mkelly_r400_win_laptop

 Update

Change 23033 on 2002/04/12 by mkelly@fl_mkelly_r400_win_laptop

 Simple VTE check for scale and offset

Change 22997 on 2002/04/12 by mkelly@fl_mkelly_r400_win_laptop

 Update total PA validation test list...

Change 22996 on 2002/04/12 by mkelly@fl_mkelly_r400_win_laptop

 Update W2K registry settings for dump enables...

Change 22995 on 2002/04/12 by mkelly@fl_mkelly_r400_win_laptop

 Simple window offset test....

Change 22916 on 2002/04/11 by csampayo@fl_csampayo_r400

 Added Makefile and SU parallelogram orientation tests

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1728 of 1898

 Page 505 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 22892 on 2002/04/11 by mkelly@fl_mkelly_r400_win_laptop

 Simple clip test...

Change 22872 on 2002/04/11 by mkelly@fl_mkelly_r400_win_laptop

 Basic clip rectangle checks...

Change 22861 on 2002/04/11 by mkelly@fl_mkelly_r400_win_laptop

 Clip rectangle 0 control, 64 permutations...

Change 22813 on 2002/04/11 by mkelly@fl_mkelly_r400_win_laptop

 72 triangle mesh, 1 packet, scissor test...

Change 22609 on 2002/04/10 by mkelly@fl_mkelly_r400_win_laptop

 Update test to use the PrimLib DRAW_COMMAND_LOAD class, but still waiting on
RBIU back pressure valve for this test to complete.

Change 22510 on 2002/04/09 by mkelly@fl_mkelly_r400_win_laptop

 Scissor rect tests...

Change 22317 on 2002/04/08 by mkelly@fl_mkelly_r400_win_laptop

 Simple scissor rectangle test...

Change 22293 on 2002/04/08 by mkelly@fl_mkelly_r400_win_laptop

 SC scissor rectangle test

Change 22156 on 2002/04/05 by mkelly@fl_mkelly_r400_win_laptop

 Clip enabled, no clipping, test currently fails...

Change 22155 on 2002/04/05 by mkelly@fl_mkelly_r400_win_laptop

 Renaming to assure unique test names in test_lib...

Change 22145 on 2002/04/05 by mkelly@fl_mkelly_r400_win_laptop

 TOP edge fill rule testing...

Change 22045 on 2002/04/05 by csampayo@fl_csampayo_r400

 New VGT tests

 Page 506 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 22024 on 2002/04/05 by mkelly@fl_mkelly_r400_win_laptop

 Update tests to allocate additional memory during run...

Change 21761 on 2002/04/03 by mkelly@fl_mkelly_r400_win_laptop

 Multi-packets testing raster filling...

Change 21758 on 2002/04/03 by mkelly@fl_mkelly_r400_win_laptop

 Test case to demonstrate potential bug...

Change 21658 on 2002/04/03 by mkelly@fl_mkelly_r400_win_laptop

 Stamp the output log file with the sync that the test was run against.

Change 21655 on 2002/04/03 by mkelly@fl_mkelly_r400_win_laptop

 SC tests...

Change 21632 on 2002/04/03 by mkelly@fl_mkelly_r400_win_laptop

 Generate 625 packets, 1250 triangles - checking basic SC functionality...

Change 21608 on 2002/04/03 by mkelly@fl_mkelly_r400_win_laptop

 "regress_r400"

 - include sync # on output regression directory
 - automatically find the root directory on the client and send output to a directory called
"$root/regress_r400"

 This script "regress_r400" is intended for use by the validation team only.

 All emu and PrimLib code writers are to continue using "make regress_e" at the
test_lib/src/chip level for SANITY before checking in code.

Change 21535 on 2002/04/03 by mkelly@fl_mkelly_r400_win_laptop

 W2K registry settings for debug dump control...

Change 21417 on 2002/04/02 by mkelly@fl_mkelly_r400_win_laptop

 Update description...

Change 21379 on 2002/04/02 by mkelly@fl_mkelly_r400_win_laptop

 Reference Bugzilla Bug 225...

 Page 507 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 21376 on 2002/04/02 by mkelly@fl_mkelly_r400_win_laptop

 Update support in regress_r400 for several more dumps including VGT, and reciprocal...

Change 21357 on 2002/04/02 by mkelly@fl_mkelly_r400_win_laptop

 Update PA regress_r400 script to include comparison support for pm4RBDump.txt file
whis is generated when W2K registery keyword pm4RBDump is true. This dump is helpful to
check if PrimLib data is valid before CP processing.

Change 21250 on 2002/04/01 by mkelly@fl_mkelly_r400_win_laptop

 Reference Bugzilla, bug 223...

Change 21065 on 2002/03/29 by mkelly@fl_mkelly_r400_win_laptop

 Sync to this and UNIX will work....

Change 20960 on 2002/03/28 by mkelly@fl_mkelly_r400_win_laptop

 Enabling 2 PrimLib tests in regress_e, removed user_chip_interface includes which are
no longer required.

Change 20858 on 2002/03/28 by mkelly@fl_mkelly_r400_win_laptop

 Add SC fill test for regress_e...

Change 20820 on 2002/03/28 by mkelly@fl_mkelly_r400_win_laptop

 Change pitch in test...

Change 20816 on 2002/03/28 by mkelly@fl_mkelly_r400_win_laptop

 Update tests due to change in Primlib setting...

Change 20507 on 2002/03/26 by mkelly@fl_mkelly_r400_win_laptop

 Fixed the PA regression script to work with the newly relocated validation tree structure.
Renamed the script.

Change 20506 on 2002/03/26 by mkelly@fl_mkelly_r400_win_laptop

 Fixed all of the validation make files. The Depth value must be modified to match the
directory depth from test_lib.

Change 20479 on 2002/03/26 by abeaudin@abeaudin_r400_win_marlboro

 more moving of test files

 Page 508 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 20475 on 2002/03/26 by abeaudin@abeaudin_r400_win_marlboro

 move test_lib/src/sys to test_lib/src/chip/sys
 move test_lib/src/gfx to test_lib/src/chip/gfx

Change 20473 on 2002/03/26 by abeaudin@abeaudin_r400_win_marlboro

 moving test directories round

Change 12489 on 2002/01/07 by rbeaudin@rbeaudin_r400_win_marlboro

 removed unused tests in sanity

Change 11682 on 2001/12/13 by rbeaudin@rbeaudin_r400_win_marlboro

 removed ray test

Change 9709 on 2001/11/12 by sallen@sallen_r400_unix_marlboro

 new ferret_emu.h
 pipeline points to new place (not final place, though)

Change 9315 on 2001/11/06 by kmahler@kmahler

 Changes to support Shader program testcase, "onetri_vshader.cpp".

Change 9080 on 2001/11/02 by sallen@devel_sallen

 make sure "NO_FERRET" switch removes all ferret
 (so I can track down namespace problems....)

Change 9039 on 2001/11/01 by rbeaudin@ma_rayb1

 fixed unix segment error

Change 8839 on 2001/10/30 by sallen@devel_sallen

 ferret updates
 - add test_lib/ferret/ex1 example unit test
 - update building for unit and block testing
 - add memory pipe data structure to ferret (& comparitor) - though not hooked up yet

Change 8547 on 2001/10/26 by hwise@fl_hwise

 Adding Ray's modified onetri_index_plgx test (under new name)

Change 8541 on 2001/10/26 by hwise@fl_hwise

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1729 of 1898

 Page 509 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

 Updated R400 with latest R300 emulator baseline.

 Affected block files: BIF, CP, VIP

 Misc:
 1) Updated BIF, CP, MC, and VIP functionality with R300 mods
 2) Added pm4capture library (used for dumping pm4 streams for debug)
 3) Renamed the sanity test onetri_indexes_plgx.cpp to
 onetri_indexes_plgx_ray.cpp since it contains block level testing
 stuff.
 4) Removed block level testing stuff from onetri_indexes_plgx.cpp
 5) Updated plgx pm4 functions to match updated CP register spec
 and added some bug fixes done for R300

Change 8280 on 2001/10/23 by rbeaudin@MA_RAYB

 added new block interfaces

Change 7744 on 2001/10/15 by rbeaudin@MA_RAYB

 new test

Change 7700 on 2001/10/12 by sallen@devel_sallen

 make compile on NT & Unix

Change 7686 on 2001/10/12 by sallen@ma_sallen

 add ferret targets for windows

Change 7561 on 2001/10/10 by sallen@devel_sallen

 merge all the ferret code in

Change 7528 on 2001/10/10 by sallen@devel_sallen

 merge in first round of ferret changes

Change 6719 on 2001/09/20 by rbeaudin@MA_RAYB

 changing location of interfaces

Change 6714 on 2001/09/19 by rbeaudin@MA_RAYB

 emu compiles but test program does not

Change 6638 on 2001/09/18 by rbeaudin@MA_RAYB

 more crayola name changes

 Page 510 of 510

Ex. 2052 --- R400 Testing FH ---foler_history

Change 6308 on 2001/09/11 by rbeaudin@MA_RAYB

 change to khan

Change 5829 on 2001/08/28 by tyroneh@devel_tyroneh

 <corrected a makefile syntax error that would result in an error on the UNIX side, but
pass on the windows side.
 -lmodel, instead of "- lmodel">

Change 5827 on 2001/08/28 by tyroneh@devel_tyroneh

 <added a search path for the model directory>

Change 5560 on 2001/08/21 by rbeaudin@MA_RAYB

 old working program

Change 5331 on 2001/08/14 by rbeaudin@MA_RAYB

 test no gfx

Change 5164 on 2001/08/09 by rbeaudin@MA_RAYB

 block A works

Change 5067 on 2001/08/07 by rbeaudin@MA_RAYB

 interface stuff

Change 4670 on 2001/07/24 by hwise@fl_hwise2

 Write to new register

Change 4664 on 2001/07/24 by hwise@fl_hwise2

 Add basic test

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1730 of 1898

CONFIDENTIAL

December 13th, 2001

R400 Program
ATI TECHNOLOGIES INC.

ATI 2053
LG v. ATI

IPR2015-00326
0001

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1731 of 1898

CONFIDENTIAL

December 13th, 2001

R400 Program Review
December 13th, 2001

Peter Pellerite

0002

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1732 of 1898

CONFIDENTIAL

December 13th, 2001

Agenda
Welcome Peter Pellerite 10:00 am

Marketing (Features) Ray Thompson 10:10 am

Architecture Andy Gruber 10:25 am

Logic Design

Toronto Design Team Lili Sinclair 10:50 am

Orlando Design Team Joe Cox 11:10 am

Marlboro Design Team Mark Fowler 11:40 am

Lunch Break ~12:30 pm

0003

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1733 of 1898

CONFIDENTIAL

December 13th, 2001

Agenda
Performance Estimation Steve Morein 1:10 pm

Software Kerry Wilkinson 1:40 pm

Emulation / Simulation Env. Paul Mitchell 2:00 pm

Libraries / Technology Raj Verma 2:30 pm

Front-End to Back-End Flow Mark Sprague 3:00 pm

Break ~3:30 pm

DFT D. Hsiung/R.Treuer 3:40 pm

IC Packaging Vincent Chan 3:55 pm

Program Issues Discussion All 4:10 pm

Wrap-up Peter Pellerite 4:45 pm

0004

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1734 of 1898

CONFIDENTIAL

December 13th, 2001

R400 Organization
R400 Team

Peter Pellerite

R400 Program Manager

Andy Gruber

Architectural Manager

Christeen Gray

Orlando System
Validation and Test

Environment Manager

Kerry Wilkinson

Software Manager

Mark Fowler

Marlboro Hardware
Manager

Paul Mitchell

Test Environment
Manager

Phil Rogers

Software Architect

Ray Thompson

Marketing Manager

Steve Morein

 R400
Architectural Lead

Mike Mantor

Orlando Hardware
Manager

Clay Taylor

 Orlando
Architectural Manager

David Glen

 Toronto
Architectural Lead

Lili Sinclair

Toronto Hardware
Manager

0005

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1735 of 1898

CONFIDENTIAL

December 13th, 2001

Block Responsibility
R400 Block Design

Overview

R400 Block
Design Marlboro

CG / ROM / DBG
Clock Generator/
Debug Controller

MC
Memory

Controller

MH
Memory Hub

RB / RC / SX
Render Backend
/ Render Control /

Shader Export

SP/SQ
Shader Pipe /

Sequencer

TC / TP
Texture Cache /

Texture Pipe

R400 Block
Design Orlando

CP
Control

Processor

PA / SC
Primitive Assembly
/ Scan Converter

RBBM
Register

Backbone
Manager

R400 Block
Design Toronto

BIF
Bus Interface Unit

DC
Display Controller

/ VGA

IDCT
MPEG decoder

VIP
Video Input Port

0006

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1736 of 1898

CONFIDENTIAL

December 13th, 2001

R400 Program
ATI TECHNOLOGIES INC.

ATI 2054
LG v. ATI

IPR2015-00326
0001

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1737 of 1898

CONFIDENTIAL

December 13th, 2001

Architecture

Prepared by: Andrew Gruber

0002

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1738 of 1898

CONFIDENTIAL

December 13th, 2001

Topics
• Plans / Deliverables

• Current Status

• Open Issues / Concerns

• Schedule

0003

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1739 of 1898

CONFIDENTIAL

December 13th, 2001

Architecture Deliverables
• Top Level Documentation

• Block Diagram
• Suggested Floor Plan
• Feature List (in conjunction with Marketing)
• Area Estimate (in conjunction with Block Leads)
• Programming Guide
• Shader Guide
• Detailed Register Specification
• State Management Documentation
• Synchronization and Coherency Documentation
• 2D Guide
• Real Time and Multi-Media Guide
• HOS Guide
• Performance Verification Plan

0004

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1740 of 1898

CONFIDENTIAL

December 13th, 2001

Architectural Deliverables
(cont’d)

• Block Level Specs and Diagrams - with
enough detail for hardware implementation

• Emulator Code - bit accurate
• Functional Verification Plans for each Block
• Functional Verification Tests for each Block -

architecture group will help out here, but will
probably not take on the entire task.

0005

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1741 of 1898

CONFIDENTIAL

December 13th, 2001

Current Status
• Feature Set nearly frozen - MPEG Motion Estimation still

outstanding

• Top Level Architecture Resolved

• First Pass Register Spec Done

• First Pass Instruction Set Done

• Most Block-Level Specs Written and First Pass Reviews done

• Some Blocks have initial emulator code released

• Basic 2D implementation Resolved

0006

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1742 of 1898

CONFIDENTIAL

December 13th, 2001

Open Issues / Concerns
• Area Estimation is far from Solid. This could lead to re-architecting

areas of the chip to reduce area.
• Power consumption is a concern especially for Mobile Parts. Our

approach to overlays is inherently more power consuming than in current
chips (though more functional and cheaper). We may need to consider
dedicated overlay hardware for mobile parts.

• MPEG Motion Estimation plan is still Open.
• Worst Case Shader is still unresolved. Do we need to add more hardware

in order to claim a suitable number of resources? It is hoped that flow
control and subroutines will minimize this issue.

• Synchronization/Coherency plan is still Open.
• Compatibility ‘story’ is still fuzzy.
• Should we attempt Shader <-> Pentium FPU compatibility?
• Inclusion of on-chip AGP GART is planned, but subject to resource

constraints.

0007

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1743 of 1898

CONFIDENTIAL

December 13th, 2001

Target Schedule
Milestone Plan Actual Forecast
Top Level

MPEG Plan 12/17
Block Diagram Done
Suggested Floor Plan Done
2D Programming guide 12/19
Shader Guide 12/19
Programming Guide 12/24
Area Estimate 2/1
Synchronization and Coherency Document 1/15
HOS Document 1/15
Multi Media Guide 2/1
Performance Verification Plan 2/1

0008

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1744 of 1898

CONFIDENTIAL

December 13th, 2001

Target Schedule
Milestone Plan Actual Forecast
Block Level Specs complete 2/15

Block Level Emulators Phase 1 1/15

Block Level Emulators Phase 2 3/1

Block Level Emulators Phase 3 4/15

Block Verification Plans Complete 4/1

0009

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1745 of 1898

CONFIDENTIAL December 13th, 2001

R400 Program Review
December 13, 2001

ATI TECHNOLOGIES INC.

ATI 2055
LG v. ATI

IPR2015-00326
0001

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1746 of 1898

CONFIDENTIAL December 13th, 2001

SKILL ALLOCATION BY BLOCK

HW Architecture Lead – Clay Taylor

Hardware Design Lead – Mike Mantor

System Validation & Test Environment – Christeen
Gray

0002

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1747 of 1898

CONFIDENTIAL December 13th, 2001

PRIMITIVE ASSEMBLY

CLIP / VIEWPORT XFORM

SETUP ENGINE

SCAN CONVERSION

VERTEX GROUPER TESSELLATOR

0003

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1748 of 1898

CONFIDENTIAL December 13th, 2001

SETUP ENGINE
Features

Supports Point/Line/Fill rendering
modes.

Supports Polygon Offset

Back-Face Culling & Null-Prim
Culling

Converts all Prims to 3-verts
(Points->Rect, Lines-
>Parallelograms)

Perspective Correction Ena/Dis
(On/Off for All attributes, no partial
allowed).

Computes Min/Max Primitive Z for
Hi-Z testing.

1 Prim/Clk up to Back-Face, Null-
Prim culling,
2 Clks/Prim for I/W,J/W,1/W,Z
Gradient calc’s

Issues
Determining design split for 2
Clks/Prim

Precision Analysis /
Requirements for Z !!, I/W, J/W,
1/W

0004

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1749 of 1898

CONFIDENTIAL December 13th, 2001

CLIP / VIEWPORT XFORM
Features

Clipper similar to R100/200/300

except no Attribute Interpolation

(Significant design changes since

R200/R300 vector engines were

used for UCP)

6 User Clip Planes

Clip and Discard Guard Band

Support

Point Clipping to UCP's

Edge Flag support for Line/Point

Fill Mode rendering.

1 Vtx/Clk (VTE similar to

R200/R300)

Issues
Work through RB
Interfaces for post-vertex
shader data.

0005

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1750 of 1898

CONFIDENTIAL December 13th, 2001

SCAN CONVERTER
Features

Rasterize Triangles, Rects (Points/Rects),

Parallelograms (Lines)

Supports 8k x 8k guard band with 4k x 4k rendering

window

Line Stipple Support (Not using textures)

Multi-Directional Rect Walk for Overlapping Blit

Support

Export of Screen X,Y for use by Pixel Shader

1 Scissor Rect and 4 Clip Rectangles

1 thru 8 sample AA rasterization and centroid

computat’n

Supports Real-Time Stream Interrupt Rasterization

Supports Visibility Query

Supports Multi-Pass Pixel Shader Pixel Culling

1 8x8 Tile/Clock Coarse Rasterization

2 2x2 Quads/Clock (8 pixels/clk) Detail Rasterization

w/ up to 8 subsamples/pix @ same rate

Features NOT Included
NO support for
perpendicular end caps
(R200 did not support it)

NO Poly Stipple Support
(Will use Pixel Shader)

0006

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1751 of 1898

CONFIDENTIAL December 13th, 2001

SCAN CONVERTER OPEN ISSUES

2D Lines – Legacy compliant

Z Tile Corner Precision Analysis/Requirements

BaryC Coeff Precision Analysis/Requirements

AA subsample location determination (centroid calculations)

Texture LOD fudge knowledge still needs to be transferred

Real-Time Stream Interface Definition and Validation

Multi-Pass Pix Shader still needs definition.

Line Stipple Implementation needs definition and validation.

0007

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1752 of 1898

CONFIDENTIAL December 13th, 2001

HOS FEATURES

Continuous & Discrete Point-Normal Triangle

Continuous & Discrete Point-Normal Quad

Continuous & Discrete RT-Patches

Includes Rational Patches

Bezier, Bspline, Catmull-Rom surfaces

Adaptive Tessellation of all of above surface primitives

Flexible overall system allowing any type of tessellation

Subdivision surfaces – Catmull-Clark, Loop

Programmable Pre-HOS computations and vertex evaluation

0008

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1753 of 1898

CONFIDENTIAL December 13th, 2001

VERTEX GROUPER TESSELLATOR

FEATURES
NO support for traditional "vertex
data in command stream"
(Approved by SW)

NO support for state-based vertices
(part of the OGL-Friendly I/F)
(Accepted by SW)

Full DX/GL Prim type support

Vertex Reuse across ~16 vertices
(this likely will decrease with
derivative chips)

2-D Draw Interface for 2D packets
down 3D pipeline.

Discrete / Continuous Tesselation
parametric coordinate generation.

Combining of Vertex Indices for Vtx
Shader Primitive Operations

Auto Index Generation for 2-pass
optimized N-Patch Support (as well
as Adaptive Tess of N-Patches).

Supports 1 Vtx/Clk, 1 Prim/Clk
whichever is slower (i.e. Tri List with
no reuse would be 3 Clks/Prim since
3 unique vertices)

Most HOS modes are 2 Clks/Vtx, but
should match up ok with shader
performance.

VGT "Issues"
Packet grouping for 2D efficiency not
fully understood across the 3D pipe.

Competitive Risk with NO "Vtx
Shader-Like Programmable"
Tesselation Engine

Microsoft…

0009

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1754 of 1898

CONFIDENTIAL December 13th, 2001

Command Processor / RBBM
Open Issues

0010

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1755 of 1898

CONFIDENTIAL December 13th, 2001

R-400 CP / RBBM / PA Schedule

Yellow Milestones 70-80% Complete

Green Milestones represent >90% Complete

?/15 1/1512/15 2/15 3/15 4/15 5/15 6/15 7/15 8/30 01/30

Block Level Integration & Validation

RTL Design

Full Chip Validation

FP, Synthesis, Timing Closure

C-Sim

Tape
Out

Back-end

1stTri

5 months

1st NL

5 months

Arch
11/30

Timing ECO Closure R-300 Chip Bring-Up

R300

0011

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1756 of 1898

CONFIDENTIAL December 13th, 2001

Validation Plan / Validation Suite Devel
Initial estimate of effort required for the functional
validation of the R400 PA, SP and SQ blocks:

PA 1163 tests

SP 504 tests

SQ 760 tests
Based on Block Specifications and Lessons Learned” from R-200 & R-300

Staffing Estimate:
PA 5 test writers

SP 2 test writers

SQ 3 test writers

Based on past history from R-200 & R-300…
Average test writer’s performance approximately 6 tests per
project week

10 Month Development cycle (Jan – October)

Current Staff Available:
Carlos: Full Time Test Requirements & Test Devel

Michael Kelly: Part Time PrimLib; Part Time Test Devel

0012

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1757 of 1898

CONFIDENTIAL December 13th, 2001

ORLANDO RISKS & ISSUES

R-300 Physical Design & Chip Bring-up

IRIS Physical Design & Chip Bring-Up

RV-350 / R-350 required support

Major Chip-Wide Architectural Changes

Legacy Issues

Integration

Chip Validation

Area Estimate – 1st cut January

Validation / Diag Suite legacy

Staffing

“New” Test Environment

Name: Crayola…

0013

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1758 of 1898

CONFIDENTIAL December 13th, 2001

BACKUP SLIDES

0014

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1759 of 1898

CONFIDENTIAL December 13th, 2001

ATI - Orlando Staffing
September 2001

Joe Cox
Site Director

Tim Kelley
SW Architect /
PTL, DirectX

Chris Gray
HW / Sys
Validation

Clay Taylor
Arch / Emul. Lead
Tech. Evangelist

Dave Gotwalt

Sunshine Chen

Chris Frascati

Chris Bubelos

Will Wong

TBH Senior Dx

Carlos Sampayo

Michael Kelly

Michael Silver

Steve Moss

Dennis Frazier
QE / IT

(Marlborough)

Phat Hunyh

Function Filled
Req's
Crit 1

Req's
Crit 2

Arch, Sys Val'n 5

Hardware 11

HW Validation 5

Software 11 1

QE 1

Other 4

Part Time 0
SiV, MB emp 3

Total 40 1 0

John Carey

Bob Hankinson

Dan Clifton

Tushar Shah

Donald Lee

Brian Buchner

Stevie Camlin

Frank Lijeros

Randy Ramsey

Alex Ashkar

Mike Mantor
Lead HW /

Sys Architect

Jeff Weyman
SW Manager
PTL, OpenGL

Mike Quinlan

Glenn Ortner

Chuck Smith

Mark Young

Mike Mang

Scott Hartog

Vineet Goel

Harry Wise

Marissette Figueroa Office Mgr

Tom Pringle Perf Evaluation

Sean Payne IT

Other
Employee

Reporting
Office

Dave Selig SiV

Alex Gutkin Marlboro

Tony Delaurier SiV

W
or

ki
ng

 L
ea

ds

0015

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1760 of 1898

CONFIDENTIAL December 13th, 2001

Top level Block
Diagram – Orlando

(to VGT centric)
PRIMATIVE ASSEMBLY

VGT

CLIP / VTE

SETUP

SCAN CONVERTER

COMMAND PROCESSOR

RBBM

COMMAND
PROCESSOR

RBBM

VS0 INPUT VS1 INPUT VS63 INPUT

VERTEX INDEX
(ONE PER SHADER)

VERTEX
SHADER

0

CCGEN / CLIP / VTEVERTEX POSITION CACHE

VERTEX PARAMETER CACHE

SETUP

SCAN CONV

INTERPOLATOR

PIXEL SHADER

FRAME BUFFER (IN LM)

VERTEX
DATA

ARRAYS
(IN LM)

VERTEX
SHADER

1

VERTEX
SHADER

63

SHADER
SEQUENCER

VERTEX GROUPER
TESSELLATOR

STATE STORAGE FOR
VGT, CLIP, SETUP, AND

SCAN CONVERTER

COMMAND BUS
DECODE

Primitive
Assembly

CP / RBBM

0016

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1761 of 1898

CONFIDENTIAL

December 13th, 2001

R400 Program
ATI TECHNOLOGIES INC.

ATI 2056
LG v. ATI

IPR2015-00326
0001

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1762 of 1898

CONFIDENTIAL

December 13th, 2001

Marlboro Design
Prepared by: Mark Fowler

0002

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1763 of 1898

CONFIDENTIAL

December 13th, 2001

Block Deliverables
• SQ/SP – Shader Engine

• SX/RC/RB – Render Backend

• TP/TC – Texture Unit

• MH/MC – Memory Sub-System

• CG/ROM/DBG – Clock block, ROM
controller, debug controller

• TST – Test Controller

0003

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1764 of 1898

CONFIDENTIAL

December 13th, 2001

Chip Deleiverables

• Graphics Controller (GC) Verification

• Chip Level Verification

• Chip Integration

0004

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1765 of 1898

CONFIDENTIAL

December 13th, 2001

SQ/SP Team

• SQ Arch / Emulation - Laurent
Lefebvre

• SP Arch / Emulation - Andi Skende
• SQ HW Design - Vic Romaker

• <another person here>
• SP HW Design - Andi Skende
• SQ/SP Testbench / Regression

• Frank Hsien

0005

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1766 of 1898

CONFIDENTIAL

December 13th, 2001

SP/SQ Status

• SP spec – Ready for review < 1 week

• SP RTL
• Top Level Module

• Vector Unit – 70%

• Scalar Unit – 40%

• SQ spec – 1/2/01

• SQ RTL – 5% (GPR allocation)

0006

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1767 of 1898

CONFIDENTIAL

December 13th, 2001

RB/RC/SX Team

• Architeture / Emulation – Larry Seiler
• HW Design Team

• Jay Wilikinson
• Bill Lawless
• John Chen

• Testbench / Regressions
• Yung Jiang

0007

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1768 of 1898

CONFIDENTIAL

December 13th, 2001

RB/RC/SX Status

• Spec – 2/15/02
• RTL

• Top Level Modules
• 35% of tile logic (HiZ) done

• Need to add 2x2 HiZ cache

0008

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1769 of 1898

CONFIDENTIAL

December 13th, 2001

MH Team

• MH Architecture
• Michael Doggett
• Ken Correll

• MH Hardware Design
• Ken Correll
• Paul Vella

• MH/MC Testbench / Regressions
• Ying Valcour

0009

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1770 of 1898

CONFIDENTIAL

December 13th, 2001

MC Team

• MC Architecture
• Larry Seiler

• Ken Correll

• Bob Bloemer

• MC Hardware Design
• Bob Bloemer
• Bei Wang

0010

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1771 of 1898

CONFIDENTIAL

December 13th, 2001

MH/MC Status

• MH spec – 12/20/01
• Some work on depth/stencil locks TBD

• MH RTL ~20% complete
• MC arch spec – 12/20/01

• Closure on initialization / power
• Number of DRAM types
• Pad Interface
• 500MHz DRAM

• Read/write optimizations

0011

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1772 of 1898

CONFIDENTIAL

December 13th, 2001

TP / TC Team

• TP Arch / Emulation - Jocelyn Houle

• TC Arch / Emulation - Michael Doggett

• TP/TC Deign Team
• Tein Wei

• Suba Durairajan

• Ray Manapat

• TP/TC Testbench / Regressions
• Steve Croce

0012

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1773 of 1898

CONFIDENTIAL

December 13th, 2001

TP / TC Status

• TC arch spec – 1/2/02

• TP arch spec – 1/2/02

• Minimal to no RTL entered and HW
specification (Team on RV250)

0013

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1774 of 1898

CONFIDENTIAL

December 13th, 2001

GC Verification

• Testbench include graphics engine,
MH/MC, CP/RBBM

• Primary method of engine validation
• 2D, HOS, AA, RTS, Shadows, MPEG, etc…

• Performance Validation (local memory
only)

• Tests from block level tests and new ones
w/ emphasis on distributed function

• Need resource (Verification Manager) to
drive the plan, handle regressions, etc..

0014

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1775 of 1898

CONFIDENTIAL

December 13th, 2001

Chip Verification

• Target for system level verification
• DC <- MH/MC Validation
• MPEG encode/decode w/ IDCT
• Performance w/ AGP
• MH/MC client arbitration
• In general make sure blocks play nice

• Need resource (Verification Manager) to
drive the plan, handle regressions, etc..

• Need to split effort among sites

0015

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1776 of 1898

CONFIDENTIAL

December 13th, 2001

Chip Integration

• DFT – Plexus (Rick Fissette)
• CG, Power Management – Greg Sadowski
• Backend/Synthesis Flow – Mark Sprague,

Rob Rouleau
• Diagnostics – Brian Leblanc
• I/O ring, timing constraints, pre and post

layout timing, netlist delivery,
feedthroughs, etc… - Rick Fuller, Jose
Marsano, (plus 2 more)

0016

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1777 of 1898

CONFIDENTIAL

December 13th, 2001

Milestones

• 2/15/02
• Programming specs (registers, shader guide,

programming guide, etc..) complete and
reviewed.

• Block HW/Arch specs completed and reviewed

• Feature Guides (2D, MPEG, Real Time, etc…)
completed and reviewed

• “Reasonable” area estimate using 0.13lv library
for sample blocks (0.10 memory compiler)

0017

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1778 of 1898

CONFIDENTIAL

December 13th, 2001

Milestones (cont)

• 4/15/02
• Block RTL submitted to GC, enough

functionality for gouraud shaded triangle

• 6/1/02
• All blocks submitted to GC w/ 50% functionality

(enough for basic perf testing)

• Emulator complete

• “Very reasonable” area estimate

0018

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1779 of 1898

CONFIDENTIAL

December 13th, 2001

Milestones (cont)

• 8/1/02
• All blocks submitted to GC w/ 80% functionality

(enough for most perf testing)

• 9/15/02
• All blocks submitted to GC, RTL feature

complete

• 11/15/02
• RTL freeze (debug complete)

0019

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1780 of 1898

CONFIDENTIAL

December 13th, 2001

Milestones (cont)
• 1/15/03 - tapeout

0020

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1781 of 1898

CONFIDENTIAL

December 13th, 2001

Issues / Risks / Concerns

• Other chips
• RV250 tapeout, bringup
• A5 engine
• others?

• 400MHz (clock uncertainty still
300ps?)

• 500MHz Memory, Pad Interface
• # Features / Verification

0021

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1782 of 1898

CONFIDENTIAL January 17th, 2002

ATI TECHNOLOGIES INC.

R400 Program

ATI 2057
LG v. ATI

IPR2015-00326
0001

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1783 of 1898

CONFIDENTIAL January 17th, 2002

R400 Executive Review

Agenda – January 17th, 2002

 Opening Statement Robert Feldstein
 Introduction Peter Pellerite
 Marketing Overview Andy Thompson
 Architecture

 3D Top Level / Performance Steve Morein
 Display Architecture David Glen
 SW Architecture Phil Rogers

 Area Estimate / Scalability Peter Pellerite
 Lunch
 Program Schedule Peter Pellerite

 Software Schedule Kerry Wilkinson
 RV450 Peter Pellerite
 Wrap-up Peter Pellerite

0002

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1784 of 1898

CONFIDENTIAL January 17th, 2002

Area Estimate

Routing efficiency 75%
Pad size 50μ x 450μ
R400 in 0.13μ
 Core Size 11.4mm
 Total area 12.5mm

RV450 in 0.10
 Core Size 7.9mm
 Total Area 9.0mm

Assumptions

0003

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1785 of 1898

CONFIDENTIAL January 17th, 2002

Block estimates

R400 Area Estimate (0.13)

Block
Pre Route
Logic Area Utilization

Post Route
Logic Unit
Area M acro Area

Total Unit
Area R400 Qty R400 Total RV400 Qty RV400 Total

BIF (Bus Interface) 1,488,869 0.75 1,985,159 0 1,985,159 1 1,985,159 1.00 1,985,159
DC (Display Controller) 2,677,800 0.75 3,570,400 1,779,948 5,350,348 1 5,350,348 1.00 5,350,348
VIP (Video In Port) 518,369 0.75 691,159 47,892 739,051 1 739,051 1.00 739,051
CG (Clock Gen) 232,000 0.75 309,333 0 309,333 1 309,333 1.00 309,333
ROM (ROM and debug controller) 64,000 0.75 85,333 0 85,333 1 85,333 1.00 85,333
TSTC (Test Controller) 9,600 0.75 12,800 0 12,800 1 12,800 1.00 12,800
CP (Control Processor) 784,000 0.75 1,045,333 309,600 1,354,933 1 1,354,933 1.00 1,354,933
RBBM (Register Backbone M anager) 142,400 0.75 189,867 107,200 297,067 1 297,067 1.00 297,067
M H (M emory Hub) 3,000,000 0.75 4,000,000 1,256,981 5,256,981 1 5,256,981 1.00 5,256,981
IDCT 847,452 0.75 1,129,936 84,403 1,214,339 1 1,214,339 1.00 1,214,339
VGT (Vertex Group and Tesselate) 100,000 0.75 133,333 250,000 383,333 1 383,333 1.00 383,333
VTE (Viewport Xform and Clip) 1,200,000 0.75 1,600,000 100,000 1,700,000 1 1,700,000 1.00 1,700,000
SU (Setup Unit) 2,500,000 0.75 3,333,333 100,000 3,433,333 1 3,433,333 0.60 2,060,000
SC (Scan Converter) 6,000,000 0.75 8,000,000 100,000 8,100,000 1 8,100,000 0.60 4,860,000
SP (Shader Pipe) 4,237,328 0.75 5,649,771 3,226,565 8,876,335 4 35,505,342 2.00 17,752,671
SQ (Sequencer) 4,040,949 0.75 5,387,931 2,580,864 7,968,795 1 7,968,795 2.00 15,937,591
TP (Texture Pipe) 1,792,000 0.75 2,389,333 192,000 2,581,333 4 10,325,333 2.00 5,162,667
TC (Texture Cache) 5,290,697 0.75 7,054,263 2,901,606 9,955,870 1 9,955,870 0.80 7,964,696
RB (Render Backend) 3,376,000 0.75 4,501,333 1,557,090 6,058,423 4 24,233,692 2.00 12,116,846
RC (Render Central) 88,000 0.75 117,333 774,627 891,961 1 891,961 1.00 891,961
SX (Shader Export) 8,000 0.75 10,667 200,000 210,667 2 421,333 1.00 210,667
M C (M emory Controller) 460,000 0.75 613,333 483,593 1,096,926 4 4,387,705 2.00 2,193,852
Analog 6,447,486 1 6,447,486 1.00 7,777,486

Total Core (um2) 130,359,526 95,617,112

Current Pad separation (um) 50
Current Pad height (um) 450

routing channel btw core and IO ring 20
Core mm/side 11.42 9.78
Total mm/side 12.36 10.72

Scribe 0.18
Total+scribe mm/side 12.54 10.90

0004

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1786 of 1898

CONFIDENTIAL January 17th, 2002

R400 Program Schedule

Task Plan Actual Forecast
Significant Architecture Issue Identification Complete 10-15-01 10-10-01
Significant Architectural Issues Resolved 12-17-01 12-20-01
Emulator Test template Complete 01-18-02 01-18-02
PrimLib has calls for basic tests 02-01-02 02-01-02
Updated Area Estimate Complete / Specs Complete 02-15-02 02-15-02
GC Emulator integration – 1 triangle 02-22-02 02-22-02
Core Emulator pixel / shader tests 03-15-02 03-15-02
Block Testing Begins 04-16-02 04-16-02
GC/Chip Integration Start 05-17-02 05-17-02
Simulate 1 Triangle / Emulator ready for SW 06-03-02 06-03-02
First Syntheses 07-12-02 07-12-02
Verilog Feature Complete 09-16-02 09-16-02
IKOS Emulation start 10-11-02 10-11-02
Synthesis meets Timing 10-25-02 10-25-02
Verilog Frozen 11-08-02 11-08-02
IKOS Emulation (w/ Software) begins 11-11-02 11-11-02
Final Netlist (Gate level ECO only) 11-15-02 11-15-02
A11 Base Layers Tapeout 01-10-03 01-10-03
A11 Metal Layers Tapeout 01-24-03 01-24-03
First Samples for engineering evaluation 03-12-03 03-12-03
A12, A13 Netlist
A12, A13 Samples
Volume Ramp
Product Delivery July ‘03 July ‘03

0005

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1787 of 1898

CONFIDENTIAL January 17th, 2002

R-400 Top Level Schedule

 Yellow Milestones 50-70% Complete
 Green Milestones represent >90% Complete

Arch
?/15 1/1512/15 2/15 3/15 4/15 5/15 6/15 7/15 8/15 01/1012/1510/15

Tape
Out

Block Level Integration & Validation

RTL Design

Full Chip Validation

FP, Synthesis

C-Sim

1stTri6 months

Emulator

6 months

Feature
Complete

Phys Design
1st NL

1st Tri

Netlist
Frozen

11/15

0006

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1788 of 1898

CONFIDENTIAL January 17th, 2002

R200 / R400 Comparison

 Technology
 R200 with 0.15μ technology, presents similar risk as R400 in 0.10μ technology
 R400 in 0.13μ (Artisan Libraries and Virage macros will be proven in RV350)
 R400 move to 0.13HS+ from 0.13LV similar to R200 switch from 0.15G to 0.15LV
 R400 in 0.13μ reduces risk from overall R200 schedule

 Analog IP
 R200 re-used the same DAC / PLL as R100

• R200 re-use incorporated level shifters, not required for R400
 R400 plan is to re-use the R300/RV350 analog designs to reduce risk

• In parallel, R400 will explore alternate PLL design (possible area savings)
• Test chip required

 Pads
 R200 re-used R100 pads (incorporated level shifters)
 R400 re-using RV350 pads

• Plan of record is to re-layout pads - small risk relative to R200
 Overall

 Technology / IP / Pad risk is lower than the R200 experience

0007

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1789 of 1898

CONFIDENTIAL January 17th, 2002

R200 / R400 Comparison

Teams
oR200
3D was staffed with 36 resources
21 logic design, 5 emulation, 10 verification
The R200 team was significantly distracted by R100 bring-up (Spring ’00)
The R200 team was a relatively junior team

•R200 experienced significant turnover in Summer ’00 (Marlborough)
oR400
3D is staffed with 51 resources
26 logic design, 10 emulation, 11 verification, 4 system integration
Plan to add 1 logic designer, 2 verification, 1 system integration

•Engineers needed on RL250 design; this will require backfill on the R400
R400 is a substantially more experienced team

0008

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1790 of 1898

CONFIDENTIAL January 17th, 2002

R200 / R400 Comparison

Test Environment
oR200
Slow, unstable environment for regression testing

•Required 7 days to complete the full regression suite
Limited block level testing, depended on full chip simulation testing

oR400
Creating faster environment for more rapid spins through regression
testing

•Shift to Linux
•Shift to VCS Verilog

More bugs can be found and corrected in the same amount of time
R400 will emphasize much greater block level testing to rapidly fix bugs
in the block before full chip simulation testing

•Moving towards R300 model of block testing

0009

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1791 of 1898

CONFIDENTIAL January 17th, 2002

R200 / R400 Comparison

Physical Design
oR200
R200 Physical design was time intensive (Dec. ’00 to Mar, ’01)
Front-end deliverables to physical design were not optimal

•Top level signals were not constrained well
•Too much focus on block level timing without chip level analysis
•Chip level timing performed late - difficult to react without schedule impact

oR400
Physical design cycle expected to be shorter
Logic Design will deliver higher quality netlist

•Better top level constraints on all signals will be used
•Full chip timing analysis to be done pre-route

Allows faster convergence on issues
Will review RV250 and R300 experiences and leverage any additional experience
for the R400

0010

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1792 of 1898

CONFIDENTIAL January 17th, 2002

Physical Design Schedule

Task Plan Actual Forecast
RV250/R300 PD post mortem 03/01/02 03/01/02

New Standard cells defined 03/15/02 03/15/02

R400 PD methodology proposal 04/01/02 04/01/02

Physical Architect in Marlboro 05/01/02 05/01/02

R400 PD methodology in place 06/01/02 06/01/02

New standard cells available 06/15/02 06/15/02

R400 PD methodology initial test complete 07/01/02 07/01/02

2 P&R engineers in Marlboro 07/12/02 07/12/02

Initial Synthesis complete 07/12/02 07/12/02

Initial Floorplan ready 07/12/02 07/12/02

Initial feedback from PD to logic designers 08/01/02 08/12/02

Additional P&R resources available 09/15/02 09/15/02

Final netlist release 11/15/02 11/15/02

A11 Base Tapeout 01/10/03 01/10/03

0011

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1793 of 1898

CONFIDENTIAL January 17th, 2002

R200 / R400 Comparison

Schedule Risk
oR200 / R400: Start to Simulate 1st Triangle
Technology / IP / Pad risk balances out (R400 is similar to lower risk as R200)
R400’s larger, more experienced team will enable more rapid code development
and debug
Block level regression environment better (more rapid debug of blocks)

oR200 / R400: 1st Triangle to Tape out
R200 spent nine months from 1st triangle to tape out

•An architecture switch caused a 1.5 month delay
•The corrected duration is 7.5 months for R200 1st triangle to tape out

R400 plans a similar amount of time, 7.5 months, but ….
Better, faster simulation environment allows faster turns
Back-end process will proceed more smoothly

•Chip physical design/layout and fully staffed team
•A system integration team driving constraints for front end to back end timing

0012

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1794 of 1898

CONFIDENTIAL January 17th, 2002

Program Comparison

+0m +4m+2m +6m +8m +10m +12m +14m +16m +18m +20m

RTL Start

10/00

Tape-Out
R300
Actual
R300
Actual

11/15/01

Netlist
Freeze

2/200210/2001

Block Test
Cmplt1st FC Tri

6/2001

RTL Start

2/00

Tape-Out
R200
Actual
R200
Actual

1/31/01 3/26/01

Block
Test
Cmplt1st FC Tri

6/2000

1st FC Tri
Netlist
Freeze

10/2000

RTL Start

1/00

Tape-Out
Netlist
Freeze

1/10/2003

Block
Test
Cmplt1st FC Tri

6/3/2001 11/15/02

R400
Plan

R400
Plan

DX9 Flt Pt PS & Flow Control

R200 Bring-up
(ORL Only)

7/2001

R300 Bring-up
(ORL Only) n-1 Chip Bring-up

Change from 2x3 -> 4x2 (6 wks)

8/2000

R100 Bring-up
(MARL Only)

10/04/02

Tape-Out

0013

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1795 of 1898

CONFIDENTIAL January 17th, 2002

R200 / R400 Comparison

Current Status
oIDCT, BIF, VIP completed verilog translation and passed formal verification.
Regression in progress

oDC has closed most interface specs. Block specs in progress

oEmulation environment available to debug shader code

oSP/SQ, RB/RC/SX, MC/MH, PA/CP/RBBM on-track towards a 1st triangle in GC
emulation

o 1ST Triangle through emulator milestone 2/22: Forces Emulator integration

o Vertex & Pixel Shaders 3/22

0014

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1796 of 1898

CONFIDENTIAL January 17th, 2002

Risks / Issues / Mitigation

 Physical Design Methodology
 Work with R300/RV250 team to understand lessons learned
 Work with Raj Verma & Greg Buchner to develop quick iteration back-

end flow
 Validation Resources (Test Generation / Test Environment)

 Develop Plan (R-400 Mgt Team)
 Software MM team must thourougly integrate into R400

software architecture team
 Action for R-400 Mgmt Team

 R400 API Exposure
 Develop Plan for exposure in DX9.1 (Arch & ARG teams)
 Develop tools for ISV’s (ARG)

0015

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1797 of 1898

CONFIDENTIAL January 17th, 2002

RV450 Plan

Resource plan for implementing the R450/RV450
oRL250 team will roll onto the RV450 team

oR400 team will split:
One portion will focus on debug and metal spins for the R400

The other portion will focus on performance bottlenecks
•This team will tie in with the S/W performance team

oThe performance hardware team will implement the R450

The RV450 will be done first, the R450 second
oRV450 team will drive 0.1um technology

oR450 will leverage 0.1um technology developed for the RV450

0016

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1798 of 1898

CONFIDENTIAL January 17th, 2002

RV450 Schedule

•R400 A11 Tapeout 01/10/03

•R400 A11 Samples 03/07/03

•R400 Performance Analysis and Debug 05/16/03

•RV450 Logic Design Complete 07/11/03

•RV450 A11 Tapeout 09/05/03

•RV450 A11 Samples 10/31/03

•RV450 Shipped 02/27/04

0017

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1799 of 1898

CONFIDENTIAL

1st Triangle Definition
(6/3 Eng Goal; 6/15 Company Goal)

 3D Triangle
 Indices via Command

Stream
No Clip
No Texture
No Z
 Fetching Vertices via

Texture Path
Vertex / Pixel Shader

 Blocks Included
 CP / RBBM, MC, MH, VGT,

PA, SC, SQ, SX, SP, RB, RC,
TC, TP

 Not Included
 BIF, DC (VGA, VIP), IDCT
 Set State Packets not

Required
 Context Switching not

Required

0001

ATI 2058
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1800 of 1898

CONFIDENTIAL

Logic Design Status

Verilog started on all blocks
Block RTL (*) BLT (**)
SQ 30-Apr 22-May
SP 22-Mar 22-May
SX 30-Apr 22-May

RC 22-Apr 22-May
RB 22-Apr 22-May

TP 22-Apr 22-May
TC 30-Apr 22-May

MH 31-Mar 22-May
MC 30-Apr 22-May

* Enough RTL for simple triangle functionality
** Simple triangle passing block level test

0002

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1801 of 1898

CONFIDENTIAL

Emulator Status

Simple triangle test ran on emulator using
Primlib calls on (2/22).

Simple textured triangle ran on emulator
using Primlib calls (3/19).

Simple Z buffered triangle to run on (3/22).
Next GC goal, on 4/15 –Multiple contexts,

trilinear/anisotropic filtering, alpha blending

0003

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1802 of 1898

CONFIDENTIAL

Design Verification

Ferret based SP testbench running on simple
triangle test.

GC.v wrapper being worked on (target
compilation by 3/31)

Target for remaining test benches (SQ/SP/SX,
RC/RB, TP/TC, MH/MC all running by 5/22)

0004

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1803 of 1898

CONFIDENTIAL

Risks / After 6/15

SQ exposure due to change in DX10 Pixel
Shader Control Flow Model
 MS not likely to be receptive to continuation of

clause/phase exposure in API
 Team to complete minimal SQ to allow for

extensive GC testing before going on to new
version

0005

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1804 of 1898

CONFIDENTIAL

Risks / After 6/15

Verification resources
 Thin
 New hire learning curve

Post 6/15 Milestones
 Z buffering, HiZ, Multi-sample (RC/RB)
 Texture functionality (TP/TC)

0006

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1805 of 1898

CONFIDENTIAL

R400 Program Review

March 22, 2002

ATI 2059
LG v. ATI

IPR2015-00326
0001

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1806 of 1898

CONFIDENTIAL

R-400 WorkShare

Graphics Core Big Back End – MARLBORO
 SQ, SP, SX, RC, RB, TP, TC, MH, MC, ROM

Graphics Core Front End – ORLANDO
 VGT, PA, SC, CP, RBBM

DISP, BIF, IDCT - Toronto

0002

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1807 of 1898

CONFIDENTIAL

Logic Design Status

 On Track for 1st Triangle 6/15
 Command Processor is ORL critical path
 Adding staff to mitigate

0003

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1808 of 1898

CONFIDENTIAL

Test Plan / Generation

 Test Plan calls for 1183 tests
 Vertex Grouper / Tessellator: 276 tests
 Primitive Assemble: 680 tests
 Scan Conversion: 356 tests
 CP / RBBM ??? tests

 Estimated staff for VGT, PA, SC is 5 persons
 Two full time engineers assigned
 Using a Summer intern and architects to fill remaining staff

 CP test plan by mid May
 Team (4) + 1 to implement

 Randoms GC Owner Needed to establish conceptual
approach
 Working to identify resource

0004

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1809 of 1898

CONFIDENTIAL

R-400 Tape-Out Risk

 On Track for 6/15 1st Triangle
 Jan 10th remains possible but % confidence not high
 Mar 15th is a reasonable 80% confidence target
 Actively Managing Team to Jan 10th

3/15

P
ro

ba
bi

li
ty

1/10

Design Phase Time <50% Date

Block Design 6 months 12/15/2001
1st Triangle milestone 6/15/2002
Chip Verification 22 weeks 11/15/2002
Physical Design 8 weeks 1/15/2003

Design Phase Time 80% Date

Block Design 6 months 12/15/2001
1st Triangle milestone 6/15/2002
Chip Verification 28 weeks 12/31/2002
Physical Design 10 weeks 3/15/2003

0005

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1810 of 1898

CONFIDENTIAL

Orlando Risk Summary

 R300 Bring-up
 Planned bring-up staff

• 11 Software (5 OGL, 6 DX)
• 1 Diag / HW Engineer (Silver)
• .5 Physical Design (Camlin)

 If additional help required, then R400 schedule risk.

 Validation Test Suite Generation currently under-staffed
 Post 6/15 Milestones

 Synchronization scheme
 Real-Time Streams
 Remaining 2D Packets (HostData BLT & BitBLT required for 1st Triangle)
 System Performance
 Area Optimization

0006

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1811 of 1898

CONFIDENTIAL

Backup Slides

0007

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1812 of 1898

CONFIDENTIAL

Post 1st Triangle Design & Validation
Priorities

 Synchronization scheme
 Real-Time Streams
 Line Stipple
 Z Accuracy Uncertainity
 Vis-Query
 Multi-Pass Operations

 Vertex Shaders
 Pixel Shaders
 Indirect Buffers

 Flexible Flow Control w/
dependent fetching

 Remaining 2D Packets (HostData
BLT & BitBLT required for 1st

Triangle)
 System Performance
 Area Optimization
 Timing
 Bad Pipe Disable
 Distributed Dynamic Clocking
 Shadow Mapping (Mark)

0008

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1813 of 1898

CONFIDENTIAL March 22, 2002

ATI TECHNOLOGIES INC.

R400 Program – March Review

ATI 2060
LG v. ATI

IPR2015-00326
0001

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1814 of 1898

CONFIDENTIAL March 22, 2002

Area Estimate

• Routing efficiency 75%
• Pad size 50μ x 350μ
• R400 in 0.13μ

• Core Size 11.7mm
• Total area 12.6mm

• RV450 in 0.10μ (estimated)
• Core Size 8.0mm
• Total Area 8.9mm

Assumptions

0002

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1815 of 1898

CONFIDENTIAL March 22, 2002

Block estimates

R400 Area Estimate (0.13)

Block
Pre Route
Logic Area Utilization

Post Route
Logic Unit
Area Macro Area

Total Unit
Area R400 Qty R400 Total RV400 Qty RV400 Total

BIF (Bus Interface) 1,488,869 0.75 1,985,159 0 1,985,159 1 1,985,159 1.00 1,985,159
DC (Display Controller) 2,677,800 0.75 3,570,400 1,779,948 5,350,348 1 5,350,348 1.00 5,350,348
VIP (Video In Port) 518,369 0.75 691,159 47,892 739,051 1 739,051 1.00 739,051
CG (Clock Gen) 348,000 0.75 464,000 0 464,000 1 464,000 1.00 464,000
ROM (ROM and debug controller) 80,000 0.75 106,667 40,000 146,667 1 146,667 1.00 146,667
TSTC (Test Controller) 9,600 0.75 12,800 0 12,800 1 12,800 1.00 12,800
CP (Control Processor) 900,000 0.75 1,200,000 1,312,058 2,512,058 1 2,512,058 1.00 2,512,058
RBBM (Register Backbone Manager) 280,000 0.75 373,333 134,000 507,333 1 507,333 1.00 507,333
MH (Memory Hub) 3,507,116 0.75 4,676,155 247,316 4,923,472 1 4,923,472 0.75 3,692,604
IDCT 847,452 0.75 1,129,936 84,403 1,214,339 1 1,214,339 1.00 1,214,339
VGT (Vertex Group and Tesselate) 100,000 0.75 133,333 333,738 467,071 1 467,071 1.00 467,071
PA(Viewport Xform,Clip and Setup) 3,700,000 0.75 4,933,333 444,108 5,377,441 1 5,377,441 1.00 5,377,441
SC (Scan Converter) 6,000,000 0.75 8,000,000 568,656 8,568,656 1 8,568,656 0.60 5,141,194
SP (Shader Pipe) 3,992,400 0.75 5,323,200 2,613,709 7,936,909 4 31,747,638 2.00 15,873,819
SQ (Sequencer) 3,945,359 0.75 5,260,478 2,262,231 7,522,710 1 7,522,710 2.00 15,045,420
TP (Texture Pipe) 2,672,000 0.75 3,562,667 192,000 3,754,667 4 15,018,667 2.00 7,509,333
TC (Texture Cache) 5,290,697 0.75 7,054,263 2,901,606 9,955,870 1 9,955,870 0.80 7,964,696
RB (Render Backend) 3,584,000 0.75 4,778,667 1,233,000 6,011,667 4 24,046,667 2.00 12,023,333
RC (Render Central) 40,000 0.75 53,333 200,000 253,333 1 253,333 1.00 253,333
SX (Shader Export) 524,928 0.75 699,904 1,516,000 2,215,904 2 4,431,808 1.00 2,215,904
MC (Memory Controller) 543,312 0.75 724,416 426,757 1,151,173 4 4,604,692 2.00 2,302,346
Analog 6,545,540 8,154,400

Total Core (um2) 136,395,318 98,952,649

14,413,169
Current Pad separation (um) 50

Current Pad height (um) 350
Scribe 0.18

Core mm/side 11.68 9.95
Total mm/side 12.56 10.83

0003

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1816 of 1898

CONFIDENTIAL March 22, 2002

R400 Program Schedule

Task Plan Actual Forecast
Significant Architecture Issue Identification Complete 10-15-01 10-10-01
Significant Architectural Issues Resolved 12-17-01 12-20-01
Emulator Test template Complete 01-18-02 01-18-02
PrimLib has calls for basic tests 02-01-02 02-08-02
Updated Area Estimate Complete / Specs Complete 02-15-02 02-18-02
GC Emulator integration – 1 triangle 02-22-02 02-21-02
Core Emulator pixel / shader tests run 03-15-02 03-19-02
Block Testing Begins 04-16-02 04-16-02
GC/Chip Integration Start 05-17-02 05-17-02
Simulate 1 Triangle / Emulator ready for SW 06-03-02 06-03-02
First Syntheses 07-12-02 07-12-02
Verilog Feature Complete 09-16-02 09-16-02
IKOS Emulation start 10-11-02 10-11-02
Synthesis meets Timing 10-25-02 10-25-02
Verilog Frozen 11-08-02 11-08-02
IKOS Emulation (w/ Software) begins 11-11-02 11-11-02
Final Netlist (Gate level ECO only) 11-15-02 11-15-02
A11 Base Layers Tapeout 01-10-03 01-10-03
A11 Metal Layers Tapeout 01-24-03 01-24-03
First Samples for engineering evaluation 03-12-03 03-12-03
A12, A13 Netlist
A12, A13 Samples
Volume Ramp
Product Delivery July ‘03 July ‘03

0004

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1817 of 1898

CONFIDENTIAL March 22, 2002

R400 Risks / Mitigation

DX10 Shader Control Flow Model
Microsoft rejecting proposed model –
Asking for more general purpose – longer-living model
Team will complete minimum SQ to support early validation, before starting new SQ
Working to minimize impact to overall schedule (only SQ team affected)

Design Verification Uncertainty / Resources
Resources being examined
Proactively looking 3 months ahead.

Physical Design
Issues under examination

Software resources, Multi-Media
Overall impact not additive

Continue driving the program to January 10th.

0005

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1818 of 1898

CONFIDENTIAL

ATI TECHNOLOGIES INC.
R400 Program – GC Design Status

May 30th, 2002

ATI 2061
LG v. ATI

IPR2015-00326
0001

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1819 of 1898

CONFIDENTIAL

Steps to 1st Triangle

1. Primlib does back door memory fill of command buffer
and vertex buffer

2. (RBBM -> CP) Primlib writes regs to start CP
3. (CP -> MH/MC) CP issues read req for command buffer
4. (MH/MC -> CP) MH/MC returns data to CP
5. (CP -> RBBM) CP sends regs, instructions, constants

to RBBM followed by draw initiator
6. (RBBM -> blocks, RBBM -> VGT) RBBM forwards to

above values to blocks, initiator to VGT
7. (VGT -> SQ) VGT sends vector of indices to GPR’s

DONE

DONE

DONE

In Proc

In Proc

In Proc

DONE

0002

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1820 of 1898

CONFIDENTIAL

Steps to 1st Triangle (continued)

8. (SQ -> SP) SQ sends vector of indices to SP
9. (SQ -> SP) SQ tells SP to write indices to GPR’s
10. (SQ/SP -> TP/TC) SQ executes vertex shader sends fetch

req to TP/TC, SP sends indices to TP
11. (TP/TC -> MH/MC) TP/TC sends read request to for vertex

data to MC/MH
12. (MC/MH -> TP/TC) MC/MH returns vertex data to TP/TC
13. (TP/TC -> SP/SQ) TP/TC returns vertex data to SQ/SP

DONE

DONE

In Proc

0003

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1821 of 1898

CONFIDENTIAL

Steps to 1st Triangle (continued)

14. (SQ/SP -> SX) Vertex shader exports position and color
15. (SX -> PA) Position to PA
16. (PA -> SC) PA does setup and sends result to SC
17. (SC -> RB) SC sends tile info to RB
18. (RB -> SC) returns tile results to SC
19. (SC -> SQ/SP/SX) SC sends quad data to SQ/SP, quad

address to SX
20. (SX -> SP) SP interpolates color data from SX

0004

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1822 of 1898

CONFIDENTIAL

Steps to 1st Triangle (continued)

21. (SQ -> SP) SQ tells SP to put quad data into GPR’s

22. (SQ/SP -> SX) SQ starts pixel shader and exports color
to SX

23. (SX -> RB) SX sends color data to RB

24. (RB -> MC) RB writes color data to MC

0005

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1823 of 1898

CONFIDENTIAL

Status of first triangle

Estimate 6/30 based on where we are
 Changing SQ to new CF

• Didn’t allow for prior testing of integrated SQ/SP/SX
• Overall benefit to program (switch now rather then

later)
• SW team wanted new SQ in emu, so we didn’t want to

mismatch emu and hw
 SC team impacted by R300 – See Orlando Status

0006

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1824 of 1898

CONFIDENTIAL

RTL Block Status

Block Percent Coded
SP 85%
SQ 80%
SX 80%
TC 55%
TP 40%
RB 25%
MH 70%
MC 60%

0007

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1825 of 1898

CONFIDENTIAL

RTL Milestones

7/15 - Full chip netlist to PD with:
Accurate top level interconnect
All macros
At least one block (SP) in “good shape”

0008

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1826 of 1898

CONFIDENTIAL

Orlando – First Triangle Status

Block 1st Tri
Ready

Block %
Coded

Comments

CP/RBBM 6/3 65% MicroCode written
Debugging problem with loading uC

VGT 5/17 88% Supporting 1st Tri Integration.
 VGT tasks remaining: Index DMA & Reuse

PA 6/3 89% All Sub-blocks Complete, wit exception of
some clipping functions (AG)

 Integrating PA this week
Some impact due to R300

SC 6/10 65% Entire SC Team consumed for 2 weeks for
R300 Hangs (not yet resolved)

Sub-Blocks not complete:
o Quad Packer
o Z Calc (including Precision changes)

0009

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1827 of 1898

CONFIDENTIAL

Next Major Integration Milestones
Goals

 Schedule represents goals for the 6 weeks following 1st Triangle
 Meeting these goals clears way for full Validation Suite Testing

ID Task Name

1 Milestones Enabler's for Large Verification Categories

2 1st Triangle

3 Simple Triangle > 64 pixels (multiple pixel vectors)

4 Multi-Triangles < 64 vertices (still single vertex vector)

5 Multi-Triangles > 64 vertices (multiple vertex vectors)

6 Multiple States (i.e. enable state, draw, state, draw types of tests)

7 2D Packets (HostBLT in particular)

8 Milestones critical for basic performance validation

9 Alpha blending (tiled, 32bpp 8888)

10 Uncompressed Z (24bpp fixed)

11 Compressed Z (24bpp fixed)

12 HiZ

13 Fast Clears (Z and Color)

14 Nearest Texure Mapping (tiled, 32bpp 8888)

15 Bilinear Texture Mapping (tiled, 32bpp 8888)

16 Trilinear Texture Mapping (tiled, 32bpp 8888)

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Jun '02 Jul '02 Aug '02 Sep '02

0010

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1828 of 1898

CONFIDENTIAL

Backup

0011

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1829 of 1898

CONFIDENTIAL

ID Task Name % Com

1 Primative Assembly 89%

2 RBIU State Block 83%

8 Clip Code Generator 99%

14 Clipper 94%

19 Address Generator 81%

25 Viewport Xform Engine 90%

33 CC Vector Engine 71%

40 Vertex Store 74%

46 Shader Xport Controller 98%

52 Setup Engine 88%

68 Integration 70%

73

74 Scan Converter 67%

75 RBIU State Block 21%

81 Walker / Pre-Walk 88%

87 Quad Mask 80%

97 Zcalc 0%

103 Sample Mask 91%

109 Interpolators 94%

115 Quad Select Controller 54%

120 Detail Accumulation Controlle 41%

126 Quad Packer 24%

132 Integration 37%

138

139 Vertex Grouper Tesselator 88%

153

154 Command Processor / RBBM 70%

155 Architecture 95%

160 Validation Plan 42%

164 CP Design 63%

172 CP/RBBM Integration 88%

177 State Packets 17%

Mang

Clifton

Hankinson

Hankinson

Mang

Clifton

Clifton

Hankinson

Hankison

Clifton

Hankinson,CliftonI

Taylor,Mantor,Ramsey

LeeRBIU

Ramsey

Ramsey

Lee

Taylor

Taylor

Mantor,Ramsey

Mantor,Buchner

MantorQP

Lee,MantorI

Hartog,Buchner,Goel

Carey,Li

Carey

Carey

52 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Jan '02 Feb '02 Mar '02 Apr '02 May '02 Jun '02 Jul '02 Aug '02

Orlando Design Schedule

Milestone expected

Milestone completed

0012

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1830 of 1898

CONFIDENTIAL May 30, 2002

ATI TECHNOLOGIES INC.

R400 Program – May Review

ATI 2062
LG v. ATI

IPR2015-00326
0001

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1831 of 1898

CONFIDENTIAL May 30, 2002

Area Estimate

• Routing efficiency 75%
• Pad size 50μ x 350μ
• R400 in 0.13μ

• Core Size 11.7mm
• Total area 12.6mm

• RV450 in 0.10μ (estimated)
• Core Size 8.0mm
• Total Area 8.9mm

Assumptions

0002

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1832 of 1898

CONFIDENTIAL May 30, 2002

Block estimates

Block
Pre Route
Logic Area Utilization

Post Route
Logic Unit
Area Macro Area

Total Unit
Area R400 Qty R400 Total RV400 Qty RV400 Total

BIF (Bus Interface) 1,488,869 0.75 1,985,159 0 1,985,159 1 1,985,159 1.00 1,985,159
DC (Display Controller) 2,677,800 0.75 3,570,400 1,779,948 5,350,348 1 5,350,348 1.00 5,350,348
VIP (Video In Port) 518,369 0.75 691,159 47,892 739,051 1 739,051 1.00 739,051
CG (Clock Gen) 348,000 0.75 464,000 0 464,000 1 464,000 1.00 464,000
ROM (ROM and debug controller) 80,000 0.75 106,667 0 106,667 1 106,667 1.00 106,667
TSTC (Test Controller) 9,600 0.75 12,800 0 12,800 1 12,800 1.00 12,800
CP (Control Processor) 900,000 0.75 1,200,000 1,312,058 2,512,058 1 2,512,058 1.00 2,512,058
RBBM (Register Backbone Manager) 280,000 0.75 373,333 134,000 507,333 1 507,333 1.00 507,333
MH (Memory Hub) 3,507,116 0.75 4,676,155 247,316 4,923,472 1 4,923,472 0.75 3,692,604
IDCT 847,452 0.75 1,129,936 84,403 1,214,339 1 1,214,339 1.00 1,214,339
VGT (Vertex Group and Tesselate) 100,000 0.75 133,333 333,738 467,071 1 467,071 1.00 467,071
PA(Viewport Xform,Clip and Setup) 3,700,000 0.75 4,933,333 444,108 5,377,441 1 5,377,441 1.00 5,377,441
SC (Scan Converter) 6,000,000 0.75 8,000,000 568,656 8,568,656 1 8,568,656 0.60 5,141,194
SP (Shader Pipe) 3,992,400 0.75 5,323,200 2,613,709 7,936,909 4 31,747,638 2.00 15,873,819
SQ (Sequencer) 3,905,074 0.75 5,206,765 2,127,947 7,334,712 1 7,334,712 2.00 14,669,424
TP (Texture Pipe) 2,260,203 0.75 3,013,605 647,248 3,660,853 4 14,643,410 2.00 7,321,705
TC (Texture Cache) 5,290,697 0.75 7,054,263 2,901,606 9,955,870 1 9,955,870 0.80 7,964,696
RB (Render Backend) 3,584,000 0.75 4,778,667 1,233,000 6,011,667 4 24,046,667 2.00 12,023,333
RC (Render Central) 40,000 0.75 53,333 200,000 253,333 1 253,333 1.00 253,333
SX (Shader Export) 524,928 0.75 699,904 1,516,000 2,215,904 2 4,431,808 1.00 2,215,904
MC (Memory Controller) 543,312 0.75 724,416 426,757 1,151,173 4 4,604,692 2.00 2,302,346
Analog 6,545,540 8,154,400

Total Core (um2) 135,792,064 98,349,024

14,413,169
Current Pad separation (um) 50

Current Pad height (um) 350
Scribe 0.18

Core mm/side 11.65 9.92
Total mm/side 12.53 10.80

0003

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1833 of 1898

CONFIDENTIAL May 30, 2002

R400 Program Schedule

Task Plan Actual Forecast
Significant Architecture Issue Identification Complete 10-15-01 10-10-01
Significant Architectural Issues Resolved 12-17-01 12-20-01
Emulator Test template Complete 01-18-02 01-18-02
PrimLib has calls for basic tests 02-01-02 02-08-02
Updated Area Estimate Complete / Specs Complete 02-15-02 02-18-02
GC Emulator integration – 1 triangle 02-22-02 02-21-02
Core Emulator pixel / shader tests run 03-15-02 03-19-02
Block Testing Begins 04-16-02 05-01-02
GC/Chip Integration Start 05-17-02 05-15-02
Simulate 1 Triangle / Emulator ready for SW 06-15-02 06-30-02
First Syntheses 07-12-02 07-12-02
Verilog Feature Complete 09-16-02 09-16-02
IKOS Emulation start 10-11-02 10-11-02
Synthesis meets Timing 10-25-02 10-25-02
Verilog Frozen 11-08-02 11-08-02
IKOS Emulation (w/ Software) begins 11-11-02 11-11-02
Final Netlist (Gate level ECO only) 11-15-02 11-15-02
A11 Base Layers Tapeout 01-10-03 01-10-03
A11 Metal Layers Tapeout 01-24-03 01-24-03
First Samples for engineering evaluation 03-12-03 03-12-03
A12, A13 Netlist
A12, A13 Samples
Volume Ramp
Product Delivery July ‘03 July ‘03

0004

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1834 of 1898

CONFIDENTIAL May 30, 2002

R400 Summary

DX10 Shader Control Flow Model Impact
Worked to minimize impact to overall schedule
Benefit to overall program to switch to new SQ control flow

Design Verification
Continue to develop Verification strategy

Physical Design
Flow proposal made, currently under review
Plan required for machines, licenses, etc.

DFT / Chip Integration
R400 pads
Memory repair method

Overall
Continuing to drive towards January 10th.

0005

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1835 of 1898

R400 Program Review
Orlando - August 30, 2002

ATI 2063
LG v. ATI

IPR2015-003260001

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1836 of 1898

Design Status

Emulator Status

Test Suite Development Status

Validation Status

Synthesis Status

Next Milestones

Full Chip Validation

0002

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1837 of 1898

CONFIDENTIAL
9/4/2015

Joe Cox
Slides 1 to 9

Christeen

Gray
Slides 10 to 13

Slide 3

Orlando Hardware Design

Design Complete Goal 8/31 - Commitment 9/15
PA Design Complete

VGT Design Complete

RBBM Design 95% Complete (Debug logic is remaining)

CP Design & MicroCode expected completion 9/15
RTL: 90% Complete -- 2D Brush Support Logic Open

Microcode: 95% Complete: Open is one legacy packet
(Polyline) and three new 2D packets

SC expected completion 9/15. Open Design Items:
Pipe Disable (Mantor)

VisQuery (in Emulator; HW not large in scope)

XYCentroid (Mantor: in Emulator)

MultiPass (Clay: Emulator; Mantor HW)

0003

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1838 of 1898

CONFIDENTIAL
9/4/2015

Joe Cox
Slides 1 to 9

Christeen

Gray
Slides 10 to 13

Slide 4

Emulator
PA Emulator Feature Complete

VGT Emulator Feature Complete

CP Emulator Status
2D Support is the main focus of the CP emulator at
present

Real-Time Event Engine still to be developed (About 2
Weeks of effort)

DMA Engine needs to be updated (A few days of effort)

SC Emulator Complete Except for:
Pipe Disable

MultiPass Pixel Shader

0004

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1839 of 1898

CONFIDENTIAL
9/4/2015

Joe Cox
Slides 1 to 9

Christeen

Gray
Slides 10 to 13

Slide 5

Test Suite Development
Orlando Test Development Plan

Updated on 08-29-2002 at 13:24:30

0

200

400

600

800

1000

1200

1400

7-
A

p
r

14
-A

p
r

21
-A

p
r

28
-A

p
r

5-
M

ay
12

-M
ay

19
-M

ay
26

-M
ay

2-
Ju

n
9-

Ju
n

16
-J

u
n

23
-J

u
n

30
-J

u
n

7-
Ju

l
14

-J
u

l
21

-J
u

l
28

-J
u

l
4-

A
u

g
11

-A
u

g
18

-A
u

g
25

-A
u

g
1-

S
ep

8-
S

ep
15

-S
ep

22
-S

ep
29

-S
ep

6-
O

ct
13

-O
ct

20
-O

ct
27

-O
ct

3-
N

o
v

10
-N

o
v

17
-N

o
v

24
-N

o
v

1-
D

ec
8-

D
ec

15
-D

ec

Week Ending

N
u

m
b

e
r

o
f

T
es

ts
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

%
 a

g
a

in
st

 P
la

n

Planned Tests Written

Actual Tests Written

% against Plan

R400 PA Functional Validation
Project Status

303

395

258
334

12

1302

143 120
81

146

0

490

47% 30% 31% 44% 0% 38%
0

200

400

600

800

1000

1200

1400

Vertex Grouper
Tessellator (VGT)

Clipper / Viewport
Transform (CL)

SetUp (SU) Scan Converter
(SC)

PA Special Cases Overall R400 PA
Tests Completion

Status

N
u

m
b

e
r

o
f

T
e

s
ts "Tests Required"

"Test Written"

"%Completion"

0005

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1840 of 1898

CONFIDENTIAL
9/4/2015

Joe Cox
Slides 1 to 9

Christeen

Gray
Slides 10 to 13

Slide 6

Block Level Test Regressions

Block Level Random Testing
PA Block Randoms coded & running against RTL
(failing ~ 10%)

VGT Block Randoms Code starting week of 9/2

SC Block Randoms Code starting week of 9/2

Validation

Test
Bench

Tests
Run

Tests
Pass

%
Pass

Report
Date

VGT 504 503 99% 08-29-02
CP-RBBM 719 702 97% 08-29-02
SC 476 155 32% 08-28-02
PA 504 438 86% 08-29-02

0006

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1841 of 1898

CONFIDENTIAL
9/4/2015

Joe Cox
Slides 1 to 9

Christeen

Gray
Slides 10 to 13

Slide 7

HOS Test Development Status

Primitive
Type

Tessellatio
n Type

Reuse
Depth

Tessellation
Level

Position
Shader
Type

Normal
Shader Type

Parameter
Shader
Type

Multi-
pass

Tests

Plan
Date

Comments

Discrete
Linear,
Cubic

Linear,
Quadratic

Linear No 9 7/26 done

Continuous
Linear,
Cubic

Linear,
Quadratic

Linear no 9 7/26 done

Adaptive
Linear,
Cubic

Linear,
Quadratic

Linear yes 4 9/30
test written but vertex
export problem exists

Continuous
Linear,
Cubic

Linear,
Quadratic

Linear no 5 7/26 done

Adaptive
Linear,
Cubic

Linear,
Quadratic

Linear yes 4 9/30
vertex export support
needed

Continuous
Linear,
Cubic

Linear,
Quadratic

Linear no 3 7/26 done

Adaptive
Linear,
Cubic

Linear,
Quadratic

Linear yes 3 9/30 vertex export needed

Continuous Cubic Cubic Cubic no 3 8/31
shader problem being
fixed, tests written

Adaptive Cubic Cubic Cubic yes 3 9/30 vertex export needed

Continuous Cubic Cubic Cubic no 3 8/23 done

Adaptive Cubic Cubic Cubic yes 3 9/30 vertex export needed

Continuous Cubic Cubic Cubic no 2 8/9 done

Adaptive Cubic Cubic Cubic yes 2.00 9/30 vertex export needed
1.0 to 15.0 (cont)

1.0 to 15.0 (cont)

1.0 to 15.0 (cont)

1.0 to 15.0 (cont)

1.0 to 15.0 (cont)

PNT

PNQ

PNL

4 to 16

R-Patch

T-Patch

L-Patch

R400 HOS Validation

4 to 16
1 to14 (disc),

1.0 to 15.0 (cont)

4 to 16

4 to 16

4 to 16

4 to 16

0007

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1842 of 1898

CONFIDENTIAL
9/4/2015

Joe Cox
Slides 1 to 9

Christeen

Gray
Slides 10 to 13

Slide 8

Synthesis & Timing

Latest Synthesis Summary

Block PA SC VGT CP

Approx. Violations ~4000 ~4000 ~600 ~2000

Worst Violations 1.05 nS 0.62 nSec 0.57 nSec 0.37 nSec

Synth Logic Area 2.655 sqmm 5.68 sqmm 0.807 sqmm 2.686 sqmm

Macro Area 0.58 sqmm 0.57 sqmm 0.332 sqmm 1.497 sqmm

Est. Post Route 4.37 sqmm 8.69 sqmm 1.485 sqmm 5.334 sqmm

0008

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1843 of 1898

CONFIDENTIAL
9/4/2015

Joe Cox
Slides 1 to 9

Christeen

Gray
Slides 10 to 13

Slide 9

Orlando Program Schedule

Design Complete
Goal 8/31

Commitment 9/16

2nd NetList
Goal 9/23

Code Freeze
Goal 11/18

0009

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1844 of 1898

Full Chip Validation

Christeen Gray

0010

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1845 of 1898

CONFIDENTIAL
9/4/2015

Joe Cox
Slides 1 to 9

Christeen

Gray
Slides 10 to 13

Slide 11

Chip Validation Areas

TORONTO ORLANDO MARLBORO

BIF
CRTC
DCP

DISPOUT
IDCT
LB

SCL
TVOUT

VGA
VIP

CP
RBBM
VGT
PA
SC

SQ
SP
SX

MH/MC
RB
RC

TC/TP
CG
IO

TST/DBG
ROM

System Tests Real Time Streams
Motion Comp.
Performance
System Tests

Performance
System Tests

0011

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1846 of 1898

CONFIDENTIAL
9/4/2015

Joe Cox
Slides 1 to 9

Christeen

Gray
Slides 10 to 13

Slide 12

Chip Validation Status

Toronto
Passing simple functional tests … attempting functional
chip test in each category

Stubs created for GFX blocks … now can select between
fullchip / partial chip configuration

Orlando
Passing simple register read / write test.

Debugging first chip level graphic test … test passes all
initialization

Marlboro:
Passing simple register read / write test

0012

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1847 of 1898

CONFIDENTIAL
9/4/2015

Joe Cox
Slides 1 to 9

Christeen

Gray
Slides 10 to 13

Slide 13

Chip Validation Status (cont’d)

Weekly meetings started on 8/16

Locations of Block Regression Status (soon to contain
Chip Regression data)

MARLBORO:http://www.ma.atitech.com/r400/regression_reports

ORLANDO:http://www.fl.atitech.com/R-400/BlockRegressORL.shtm

TORONTO:http://uhw.atitech.ca/regression/crayola

0013

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1848 of 1898

BACKUP CHARTS

0014

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1849 of 1898

CONFIDENTIAL
9/4/2015

Joe Cox
Slides 1 to 9

Christeen

Gray
Slides 10 to 13

Slide 15

CP Area Growth

Area of CP is larger than expected.

Plan to review the synthesis reports and
make adjustments to reduce the area after
we are further along with the validation.

Main Reasons for Area Growth are:

Real-Time event engine added -- 16 slices

Pre-Fetch Parser Addition

Hiding 2X AGP latency as past chips (Before
and After Pre-Fetch Parser)

Many more registers are in the CP to
control its function.

Micro Engine Instuction RAM is larger than
past chips -- Mostly because of 2D
translation in microcode.

Note the microengine is not a significant
i f h C0015

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1850 of 1898

CONFIDENTIAL
9/4/2015

Joe Cox
Slides 1 to 9

Christeen

Gray
Slides 10 to 13

Slide 16

CP Validation – More Info

Unit Level Validation : About 620 unit tests are
developed and passing.

This includes DMA, Real-Time, 2D, Ring, and Indirect
Buffers, Context Switching etc.

Estimate is that Unit-Testing will complete by the End of
September.

Full Chip Validation : Currently debugging tests with just
the emulator

2D test conversion/debug is in-progress
one of each type of 2D test completed and have
corrected many bugs.

20 DMA tests have been developed, some are working.

4 Real-Time Tests have been written and are waiting
Emulator Mods to support.

3D test development has also begun.

0016

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1851 of 1898

CONFIDENTIAL Ken Correll - August 30th, 20021

Hardware Design – Block Status

Block Percent verilog
code complete

Estimated
competion date

Exceptions & Notes

MC 85% 9/16 pad interface

MH 90% 9/16
RB 80% 9/30 late items: compressed

depth, multi-sample support

RC 95% 9/16
SX 90% 9/16
SP 99% 9/7 change 3, add 2 opcodes

SQ 90% 9/30
TP 95% 9/16
TC 85% 9/16
CG/CGM
DBG/ROM

90% 9/16 – logic
9/23 – pad ring

dft logic

ATI 2064
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1852 of 1898

CONFIDENTIAL Ken Correll - August 30th, 20022

Hardware Design – RB and SQ plan

RB – determined in June that the RB was in
danger of being late. Reallocated resources
to bring in schedule. Currently in good
shape.

SQ – adding resource to help debug tests and
to review implementation for robustness.

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1853 of 1898

CONFIDENTIAL Ken Correll - August 30th, 20023

Hardware Design – Impacts to schedule

Parallel development of environment,
emulator and rtl design

Late architectural changes
 SQ changes in June (rippled across many areas)
 TC design changes to control area

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1854 of 1898

CONFIDENTIAL Ken Correll - August 30th, 20024

Hardware Design – Open Issues / Concerns

Star Compiler availability
Determine which memory compiler to use

600MHz Memory Interface & Pad design
Continue work with Joe Macri

Performance counters needed
Steve is to specify counters needed by 9/6

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1855 of 1898

CONFIDENTIAL Ken Correll - August 30th, 20025

Hardware Design – Open Issues /
Concerns (cont)

Added hardware needed for testability
 Get definition from Frank Hering

Tuning needed for performance
 Work towards getting the support in hardware

needed for performance analysis
Aggressive Verification Schedule
 Refer to verification review

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1856 of 1898

CONFIDENTIAL Mark Fowler - August 30th, 20021

Emulator Status

 SQ/SX - 99% Feature Complete
 SP – 97% Feature Complete

 HW Accuracy in Scalar Unit

 RB/RC – 95% Feature Complete

 MSAA Resolve

 Floating Point Depth

 TP/TC – 92% Feature Complete

 MSAA Resolve

 Couple of Formats

 HW Accurate Filter

 MSAA LOD Correction

ATI 2065
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1857 of 1898

CONFIDENTIAL Mark Fowler - August 30th, 20022

R400 Directed Tests

 RB/RC Test Plan
 ~720 tests
 ~390 completed
 10 / 7 Estimated date of completion (mostly MSAA, TB tests left)

 SQ/SP/SX Test Plan
 ~1600 Tests
 ~1400 Completed
 9 / 20 Estimated date of completion

 TP / TC Test Plan
 ~2200 Tests
 ~400 Completed
 10 / 15 Estimated date of completion

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1858 of 1898

CONFIDENTIAL Mark Fowler - August 30th, 20023

R400 Directed Tests (cont)

MC / MH
 ~60 Tests Written

 Test bench coming to completion (GART being added)

 Heavy Emphasis on Random

(To do) Chip / GC Specific Testing Plan
 Surface Synchronization / Events

 Low Power Modes

 Interrupts

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1859 of 1898

CONFIDENTIAL Mark Fowler - August 30th, 20024

R400 Random Testing

 Similar to R300 Methodology
 Bottoms up approach
 Module Class w/ Initialize, Randomize, Update Methods

 Staffing
 GC, TP and Infrastructure (George V.)
 VS, PS (Ken M.)
 VGT, PA, SC, Primitive (Scott H. / Clay T.)
 RB (Mark F.)
 Primlib (Kevin R.)

 Schedule
 9/6 – Primlib render state methods implemented
 9/13 – Infrastructure in place (base Class, etc…)
 10/15 – GC Running

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1860 of 1898

CONFIDENTIAL Mark Fowler - August 30th, 20025

R400 GC Debug

 Status
Multiple pixel vectors working through SQ/SP/SX, but not

arbitrarily large triangles.
Multiple primitives working through SQ/SP/SX, but not

arbitrary #.
 Large triangles working through RB/RC, tile cache bug w/

very large triangles.
Debugging cache flush event (needed for pass/fail

indication of depth buffer tests).
Debugging context done event (needed for multiple

contexts).

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1861 of 1898

CONFIDENTIAL Peter Pellerite - August 30, 20021

ATI TECHNOLOGIES INC.

R400 August Program Review Summary

ATI 2066
LG v. ATI

IPR2015-00326
0001

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1862 of 1898

CONFIDENTIAL Peter Pellerite - August 30, 20022

R400 First HW Triangle(s)

0002

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1863 of 1898

CONFIDENTIAL Peter Pellerite - August 30, 20023

Area Estimate

• Routing efficiency 70%
• Pad size (RV350) 80μ x 350μ
• R400 in 0.13μ

• Core Size 12.6mm
• Total area (pad limited) ~14mm

• RV450 in 0.09μ (estimated)
• Core Size 8.2mm
• Total Area 9.1mm

Assumptions

0003

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1864 of 1898

CONFIDENTIAL Peter Pellerite - August 30, 20024

Block estimates

R400 Area Estimate (0.13)

Block
Pre Route
Logic Area Utilization

Post Route
Logic Unit
Area M acro Area

Total Unit
Area R400 Qty R400 Total RV400 Qty RV400 Total

BIF (Bus Interface) 1,488,869 0.70 2,126,956 0 2,126,956 1 2,126,956 1.00 2,126,956
DC (Display Controller) 2,677,800 0.70 3,825,429 1,779,948 5,605,377 1 5,605,377 1.00 5,605,377
VIP (Video In Port) 518,369 0.70 740,527 47,892 788,419 1 788,419 1.00 788,419
CG (Clock Gen) 348,000 0.70 497,143 0 497,143 1 497,143 1.00 497,143
ROM (ROM and debug controller) 80,000 0.70 114,286 0 114,286 1 114,286 1.00 114,286
TSTC (Test Controller) 9,600 0.70 13,714 0 13,714 1 13,714 1.00 13,714
CP (Control Processor) 3,366,639 0.70 4,809,484 1,497,341 6,306,825 1 6,306,825 1.00 6,306,825
RBBM (Register Backbone M anager) 221,702 0.70 316,717 0 316,717 1 316,717 1.00 316,717
M H (M emory Hub) 3,193,174 0.70 4,561,677 675,232 5,236,909 1 5,236,909 0.75 3,927,682
IDCT 847,452 0.70 1,210,646 84,403 1,295,049 1 1,295,049 1.00 1,295,049
VGT (Vertex Group and Tesselate) 816,990 0.70 1,167,129 331,693 1,498,822 1 1,498,822 1.00 1,498,822
PA(Viewport Xform,Clip and Setup) 2,979,377 0.70 4,256,253 580,018 4,836,271 1 4,836,271 1.00 4,836,271
SC (Scan Converter) 6,558,352 0.70 9,369,074 568,187 9,937,261 1 9,937,261 0.60 5,962,357
SP (Shader Pipe) 3,992,400 0.70 5,703,429 2,613,709 8,317,138 4 33,268,552 2.00 16,634,276
SQ (Sequencer) 1,178,584 0.70 1,683,692 2,380,646 4,064,338 1 4,064,338 1.00 4,064,338
TP (Texture Pipe) 2,210,279 0.70 3,157,541 681,432 3,838,973 4 15,355,891 2.00 7,677,945
TC (Texture Cache) 14,536,249 0.70 20,766,070 5,322,011 26,088,081 1 26,088,081 0.60 15,652,849
RB (Render Backend) 3,584,000 0.70 5,120,000 1,233,000 6,353,000 4 25,412,000 2.00 12,706,000
RC (Render Central) 40,000 0.70 57,143 200,000 257,143 1 257,143 1.00 257,143
SX (Shader Export) 524,928 0.70 749,897 1,516,000 2,265,897 2 4,531,794 1.00 2,265,897
M C (M emory Controller) 543,312 0.70 776,160 426,757 1,202,917 4 4,811,668 2.00 2,405,834
Analog 6,545,540 8,154,400

Total Core (um2) 158,908,756 103,108,299

16,272,354
Current Pad separation (um) 50

Current Pad height (um) 350
Scribe 0.18

Core mm/side 12.61 10.15
Total mm/side 13.49 11.03

0004

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1865 of 1898

CONFIDENTIAL Peter Pellerite - August 30, 20025

R400 Summary

R400 Technology
Original plan called for 0.13HS+ TSMC process
Now using TSMC 0.13 micron LV/LVOD process to lower risk (low K ?)

R400 IP
Leveraging RV350 analog IP (designed in Toronto) as much as possible

Chip Integration
R400 pads to be done by RV350 team – need support for 600MHz DDR
Repairable memories via Virage STAR compiler (complete functional compiler delivery late)

Physical Design
ICDG resources worked with initial netlist. SiV resources to continue (going forward)
Work out PD deliverables / schedule with Bob Patel

Overall
HW Feature complete / Debug progressing (but slower in some areas than planned)
Addressing SQ block debug
February tapeout.
Continue to work with Bob Patel and team on physical design

0005

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1866 of 1898

CONFIDENTIAL Peter Pellerite - August 30, 20026

R400 Program Schedule

Task Plan Actual Forecast
Significant Architecture Issue Identification Complete 10-15-01 10-10-01
Emulator Test template Complete 01-18-02 01-18-02
GC Emulator integration – 1 triangle 02-22-02 02-21-02
Core Emulator pixel / shader tests run 03-15-02 03-19-02
Block Testing Begins 04-16-02 05-01-02
GC/Chip Integration Start 05-17-02 05-15-02
Simulate 1 Triangle / Emulator ready for SW 06-15-02 07-01-02
First Syntheses 07-12-02 08-03-03
Verilog Feature Complete 09-16-02 09-30-02
IKOS Emulation start 10-11-02 10-11-02
Begin early block delivery 11-08-02 11-15-02
IKOS Emulation (w/ Software) begins 11-11-02 11-11-02
RTL Freeze / Final Netlist (Gate level ECO only) 11-15-02 12-15-02
A11 Base Layers Tapeout 01-10-03 02-14-03
A11 Metal Layers Tapeout 01-24-03 02-28-03
First Samples for Engineering 05-09-03
A12 Tapeout 06-14-03
A12 Samples for Engineering 07-12-03
R400 Customer Samples 07-19-03
Volume Ramp 08-19-03
Product Delivery 09-01-03

0006

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1867 of 1898

CONFIDENTIAL
9/4/2015

1

Marlboro Hardware Design
Block Status

Block % Feature Complete Estimated

completion date

MC 100%

MH 99% 10/18

RB 95% 10/31

RC 99% 10/18

SX 98% 10/18

SP 100%

SQ 95% 10/31

TP 99% 10/18

TC 99% 10/18

CG/CGM

DBG/ROM

100%

ATI 2067
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1868 of 1898

CONFIDENTIAL
9/4/2015

2

Marlboro Hardware Design
Block Status

• All blocks need to add
– performance counters
– power
– debug registers
– Star memories

• MC
– Pad Interface
– At speed sw generated commands
– Synthesis target of 600MHz

• MH
– Register updates in progress
– Tiled surfaces in system memory support not started

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1869 of 1898

CONFIDENTIAL
9/4/2015

3

Marlboro Hardware Design
Block Status

• RB
– Depth and multi-sample logic still in design

– Resolve and memory export logic not yet started

• SQ
– Control flow in progress

• (conditionals, loops, jumps, …)

• SP/ SX
– Memory export

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1870 of 1898

CONFIDENTIAL
9/4/2015

4

Marlboro Hardware Design
Block Status

• TP / TC
– 512 bit AGP requests

– degamma with DXTC texels

• CG / CGM / DBG / ROM / IO
– DFT logic in progress

– Temperature sensor logic

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1871 of 1898

CONFIDENTIAL
9/4/2015

5

Block Synthesis

• Update …

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1872 of 1898

CONFIDENTIAL Mark Fowler - October 10th, 20021

Emulator Status

 SQ/SX/SP - 100% Feature Complete
 Floating point details TBD

 RB/RC – 95% Feature Complete

 MSAA Resolve

 Degamma

 Exporting depth from shader

 Alpha source to sample mask conversion

 TP/TC – 95% Feature Complete

 MSAA Resolve

 MSAA LOD Correction

 Degamma

ATI 2068
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1873 of 1898

CONFIDENTIAL Mark Fowler - October 10th, 20022

R400 Directed Tests

 RB/RC Test Plan
 ~820 tests in plan
 ~735 written
 10 / 21 Estimated date of completion (mostly MSAA, TB tests left)

 SQ/SP/SX Test Plan
 ~1600 tests in plan
 ~1550 written
 10 / 15 Estimated date of completion

 TP / TC Test Plan
 ~5500 tests in plan
 ~3800 written
 10 / 25 Estimated date of completion

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1874 of 1898

CONFIDENTIAL Mark Fowler - October 10th, 20023

R400 Directed Tests (cont)

MC / MH
 ~2200 tests in plan

 ~600 written

 Chip / GC Specific Testing Plan
 Surface Synchronization / Events

 Power Management

 Interrupts

 AGP / ATI GART Apertures

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1875 of 1898

CONFIDENTIAL Mark Fowler - October 10th, 20024

R400 Random Testing

 Similar to R300 Methodology
 Bottoms up approach
 Module Class w/ Initialize, Randomize, Update Methods

 Staffing
 GC, TP and Infrastructure (George V.)
 VS, PS (Ken M.)
 VGT, PA, SC, Primitive (Scott H. / Clay T.)
 RB (Mark F.)
 Primlib (Kevin R.)

 Schedule
 9/6 – Primlib render state methods implemented
 9/13 – Infrastructure in place (base Class, etc…)
 10/15 – GC Running

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1876 of 1898

R400 Program Review

October 10, 2002

ATI 2069
LG v. ATI

IPR2015-003260001

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1877 of 1898

CONFIDENTIAL
9/4/2015

2

R400 Program Website

• http://fl_orlweb/r400/Program.html

0002

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1878 of 1898

CONFIDENTIAL
9/4/2015

3

Action Item Status (last review)

 64b render targets (Closed, Peter Pellerite / Jay Wilkinson)

– Savings in area vs. schedule impact
– Feature was already coded, more impact to remove
– RB team is concentrating on debug; area savings next

 MS to document Direct X decisions (OPEN, Bob Feldstein)

– (For example, export to memory as an extension)
– Bob Feldstein is having ongoing discussions

 TV/CRT DAC usage in R400 issue (Closed, Ray Thompson)

– Will use one TV DAC one CRT DAC in R400

 Requirement for support fof 2 CRTs and TV at the same
time (Closed, Ray Thompson)

– Yes, feature required
– Analog MUX will be external
– Additional pin added to R400 for control

0003

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1879 of 1898

CONFIDENTIAL
9/4/2015

4

Action Items (continued)

 Chip ID definition
– Chip IDs reserved (Closed, Peter Pellerite)

– "Personality" bit definition 10/10/02 (Open, Frank Hering)

 Virage SMS (Star) memory delay (Open, Frank Hering)

– Meeting with Virages to discuss
– HD memories for R400 to use 2.8micron bit cell
– STAR system meeting 10/11/02

 Coordination of multi-site IKOS and full chip tests (Closed)

– Frank Hering is coordinating IKOS work with Colin Stewart
& Ron White

– Each site is running sets of full chip tests, Christeen Gray
is coordinating system validation

 Clock Skew (Open, Hering / Sprague)

– Coordinate with SVC, PD experiments needed
– Using 300pS until a better number is available

0004

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1880 of 1898

CONFIDENTIAL
9/4/2015

5

Action Items (continued)

 Performance Work (Ongoing, M. Fowler / A. Galotta)

– Corinna Lee spec’d packet reconstruction tool.
– Brian LeBlanc (Diags) has this as part of his

work
 SPC installed in Marlboro, Read in initial netlist and list

PD contacts

– SPC tool loaded - uncontrained floorplan
produced from first netlist (CLOSED, Mark Sprague)

– Meetings occuring with SVC PD team (CLOSED,
Frank Hering/Mark Sprague/Joe Grass)

– Contact Lists (Closed, Peter Pellerite/Joe Grass)

 Multimedia MRD and schedule review separately

– MRD review held (CLOSED, Ray Thompson)

– Schedule review after MRD review (OPEN, Peter
Pellerite) 0005

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1881 of 1898

CONFIDENTIAL
9/4/2015

6

Block Logic Design and Timing

SCLK (2.5nS)

MCLK (2nS) PIXCLK
(2.5nS) BCLK

(14.1nS)
MC/MH* 100% / 99% Done, 10/18 N/A 27% MC:2.5; MH: 3.30 MC - MCLK: 2.00 0 / 14491
RB*/RC 95% / 99% 10/31 95% 90% RB: 6.3; RC 2.5 6211 / 0
SX*/SQ 98% / 95% 10/18, 10/31 100% SX: 2.5; SQ: 2.51 0 / 0
SP 100% Done 100% SP: 2.5 0
TP/TC* 99% / 99% 10/18 95% 69% TP: 2.5; TC: 7.5 0 / 0
CG/CGM/ROM 100% Done N/A 4% CG: 2.5; CGM:2.5; DBG:2.5 0
PA 100% Done 100% 36% PA: 2.79 109
VGT 100% Done 100% 70% VGT: 2.50 0
SC* >95% 10/15 >97% 68% SC:3.4 35
RBBM 95% 10/31* N/A RBBM: 2.5 0
CP 95% 10/31* 95% CP: 3.1 408
Display - DCP 100% Done 95% 86% Display: 3.93 PIXCLK: 2.66 3608
Display - LB 100% Done 100% 75% 2.07
Display - SCL 100% Done 90% 75% 4.58
Display - CRTC 100% Done 100% 71% 2.19
Display - DISPOUT 100% Done 90% 74% 2.16
Display - TVOUT 100% Done 40% 0% 21.81(TVCLK:15ns)
VGA 100% Done 99% 65% 4.27
VIP 100% Done 100% 100% 2.94
BIF 95% 10/11 90% 17% BIF 2.96 BCLK: 14nS; AGP:3.5nS 242
IDCT 100% Done 97% 97% IDCT: 2.33

Synthesis W/C

TNS (nS)

97%

90%

Block

Percent
Feature
Complete

Forecast
Feature
Complete

Emulator
Complete

Directed
Tests
Written

0006

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1882 of 1898

CONFIDENTIAL
9/4/2015

7

Block Testing

Marlboro Trend

0

500

1000

1500

2000

2500

3000

3500

9/
20

/0
2

9/
24

/0
2

9/
26

/0
2

9/
28

/0
2

9/
30

/0
2

10
/0

3/
02

10
/0

5/
02

10
/0

7/
02

10
/0

9/
02

10
/1

1/
02

Date

N
u

m
b

er
 o

f
T

es
ts

No Status

Emulator Failed

Tests Failing

Tests Passing

0007

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1883 of 1898

CONFIDENTIAL
9/4/2015

8

Block Testing

Block Level Test Status

1

10

100

1000

10000

M
C/M

H
RB/R

C
SX/S

Q/S
P

TP/T
C

CG/C
GM

/R
OM PA
VGT

SC
CP/R

BBM
Dsp

 -
DCP

Dsp
 -

LB

Dsp
 -

SCL

Dsp
 -

CRTC

Dsp
 -

DIS
POUT

Dsp
 -

TVOUT
VGA

VIP BIF
ID

CT

Functional Block

T
es

t
C

o
u

n
t

Planned

Written

Passing

0008

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1884 of 1898

CONFIDENTIAL
9/4/2015

9

Area Summary

• Routing efficiency 70%

• Pad size (RV350) 80μ x 350μ

• R400 in 0.13μ
– Core Size 12.45mm

– Total area (pad limited ?) ~14mm

• RV450 in 0.09μ (estimated)
– Core Size 8.1mm

– Total Area 9.1mm

0009

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1885 of 1898

CONFIDENTIAL
9/4/2015

10

R400 Area Summary

R400 Area Estimate (0.13)

Block
Pre Route
Logic Area

Utilizati
on

Post Route
Logic Unit Area

M acro
Area

Total Unit
Area R400 Qty R400 Total

RV400
Qty

RV400
Total

BIF (Bus Interface) 1,488,869 0.70 2,126,956 0 2,126,956 1 2,126,956 1.00 2,126,956 1%
DC (Display Controller) 2,677,800 0.70 3,825,429 1,779,948 5,605,377 1 5,605,377 1.00 5,605,377 4%
VIP (Video In Port) 518,369 0.70 740,527 47,892 788,419 1 788,419 1.00 788,419 1%
CG (Clock Gen) 340,700 0.70 486,714 224,000 710,714 1 710,714 1.00 710,714 0%
ROM (ROM and debug controller) 193,104 0.70 275,863 0 275,863 1 275,863 1.00 275,863 0%
TSTC (Test Controller) 9,600 0.70 13,714 0 13,714 1 13,714 1.00 13,714 1%
CP (Control Processor) 3,366,639 0.70 4,809,484 1,497,341 6,306,825 1 6,306,825 1.00 6,306,825 4%
RBBM (Register Backbone M anager) 221,702 0.70 316,717 0 316,717 1 316,717 1.00 316,717 0%
M H (M emory Hub) 3,834,949 0.70 5,478,499 675,232 6,153,731 1 6,153,731 0.75 4,615,298 4%
IDCT 847,452 0.70 1,210,646 84,403 1,295,049 1 1,295,049 1.00 1,295,049 1%
VGT (Vertex Group and Tesselate) 816,990 0.70 1,167,129 331,693 1,498,822 1 1,498,822 1.00 1,498,822 1%
PA(Viewport Xform,Clip and Setup) 2,979,377 0.70 4,256,253 580,018 4,836,271 1 4,836,271 1.00 4,836,271 3%
SC (Scan Converter) 6,558,352 0.70 9,369,074 568,187 9,937,261 1 9,937,261 0.60 5,962,357 6%
SP (Shader Pipe) 3,992,400 0.70 5,703,429 2,613,709 8,317,138 4 33,268,552 2.00 16,634,276 21%
SQ (Sequencer) 1,648,958 0.70 2,355,654 2,333,798 4,689,452 1 4,689,452 1.00 4,689,452 3%
TP (Texture Pipe) 2,305,274 0.70 3,293,249 596,989 3,890,238 4 15,560,950 2.00 7,780,475 10%
TC (Texture Cache) 11,382,899 0.70 16,261,285 3,755,397 20,016,682 1 20,016,682 0.60 12,010,009 13%
RB (Render Backend) 3,584,000 0.70 5,120,000 1,233,000 6,353,000 4 25,412,000 2.00 12,706,000 16%
RC (Render Central) 40,000 0.70 57,143 200,000 257,143 1 257,143 1.00 257,143 0%
SX (Shader Export) 524,928 0.70 749,897 1,516,000 2,265,897 2 4,531,794 1.00 2,265,897 3%
M C (M emory Controller) 543,312 0.70 776,160 426,757 1,202,917 4 4,811,668 2.00 2,405,834 3%
Analog 6,545,540 8,154,400 4%

Total Core (um2) 154,959,500 101,255,868

16,272,354
Current Pad separation (um) 80

Current Pad height (um) 350
Scribe 0.18

Core mm/side 12.45 10.06
Total mm/side 13.33 10.94

0010

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1886 of 1898

CONFIDENTIAL
9/4/2015

11

R400 Risks / Issues Summary

• R400 Technology
– Proceeding with TSMC 0.13 Low-K; need to continue to monitor status

• Blocks Design & Chip Integration
– Validation / debug effort
– Virage STAR compiler - functional compiler delivery late

• Impacted completeness netlist one; release second netlist with STAR
– Chip level simulation environment stabilizing - debug of non-GC blocks

• Physical Design
– Logic Design netlist deliveries, constraint file
– Early block delivery

• Software
– BIOS is new (re-architected)
– Compiler progress / bug fixes

• Overall
– Tapeout target impact

0011

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1887 of 1898

CONFIDENTIAL
9/4/2015

1

Marlboro Hardware Design
Block Status
Block Feature

Complete

Code

Freeze

Date

Synthesis

Area (mm2)

pre-routed

Cycle Time

MC 100% 12/16/02 0.95 2.5 / 1.71

MH 100% 1/2/03 5.71 2.78

RB Blend 100% 11/18/02 RB: 11.13

RC: 0.22

2.8

RB/RC 100% 1/15/03 6.2

SX 100% 12/2/02 3.05 2.5

SP 100% 11/18/02 11.06 2.5

SQ 100% 1/15/03 4.69 2.5

TP 100% 1/31/03 3.89 2.5

TC 100% 1/31/03 20.02 7.5

CG/CGM

DBG/ROM

100% 1/31/03 0.30 2.5

ATI 2070
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1888 of 1898

CONFIDENTIAL
9/4/2015

2

Marlboro Hardware Design
Block Status – Outstanding Issues

• All blocks need to add
– performance counters

– power management

– CRC checkers and other test specific logic

• MC
– Pad Interface

• MH
– Rotate and surface synchronization limited testing

• RB
– Depth & multi-sample logic in debug

– Resolve and memory export logic limited testing

– Area optimization

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1889 of 1898

CONFIDENTIAL
9/4/2015

3

Marlboro Hardware Design
Block Status – Outstanding Issues

• SQ
– working on optimizations for performance

• SP/ SX
– No outstanding issues

• TP / TC
– optimize for 512 bit AGP requests

– area optimizations / cycle times

• CG / CGM / DBG / ROM / IO
– IO pad – MC interface

– Temperature sensor logic contracted to Toronto

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1890 of 1898

R400 Program Review

November 12, 2002

ATI 2071
LG v. ATI

IPR2015-003260001

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1891 of 1898

CONFIDENTIAL
9/4/2015

2

Block Summary

SCLK (2.5nS)

MCLK (1.67nS),
PIXCLK (2.5nS), BCLK

(14nS), AGP(3.5nS),
TVCLK(10nS)

MC/MH 100% Done N/A 91% MC:2.5; MH: 2.78 MC - MCLK: 1.71 0 / 1295
RB/RC 100% Done 99% 91% RB: 6.2; RC 2.5 12155 / 0
SX/SQ 100% Done 100% SX: 2.5; SQ: 2.51 0 / 0
SP 100% Done 100% SP: 2.5 0
TP/TC 100% Done 99% 85% TP: 2.5; TC: 7.5 0 / ?
CG/CGM/ROM 100% Done N/A 5% CG: 2.5; CGM:2.5; DBG:2.5 0
PA 100% Done 100% 72% PA: 2.79 142
VGT 100% Done 100% 79% VGT: 2.5 0
SC 100% Done 100% 97% SC: 2.88 1150
RBBM 100% Done 95% RBBM: 2.25 0
CP 100% Done 95% CP: 2.83 408
Display - DCP 100% Done 95% 99% Display: 4.57 PIXCLK: 2.66 3669
Display - LB 100% Done 100% 100%
Display - SCL 100% Done 90% 88%
Display - CRTC 100% Done 100% 99%
Display - DISPOUT 100% Done 90% 100%
Display - TVOUT 100% Done 40% 6% TVCLK:10.4
VGA 100% Done 99% 100%
VIP 100% Done 100% 100%
BIF 95% ? 90% 17% BIF 2.5 BCLK: 14.53nS; AGP:3.49nS 242
IDCT 100% Done 97% 100% IDCT: 2.5

Synthesis W/C

TNS (nS)

94%

100%

Block

Percent
Feature
Complete

Forecast
Feature
Complete

Emulator
Complete

Directed
Tests
Written

0002

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1892 of 1898

CONFIDENTIAL
9/4/2015

3

Block Testing

Block Level Test Status

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

M
C/M

H
RB/R

C

SX/S
Q/S

P
TP/T

C

CG/C
GM

/R
OM PA
VGT

SC
CP/R

BBM

Dsp
 -

DCP
Dsp

 -
LB

Dsp
 -

SCL

Dsp
 -

CRTC

Dsp
 -

DIS
POUT

Dsp
 -

TVO
UT

VGA
VIP BIF
ID

CT
Tota

l

Functional Block

C
o

m
p

le
te

n
e

s
s

% Written

% Passing

0003

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1893 of 1898

CONFIDENTIAL
9/4/2015

4

Area Summary

• Routing efficiency 70%

• Pad size (RV350) 50μ x 350μ

• R400 in 0.13μ
– Core Size 13.69mm

– Total area (pad limited ?) 14.57mm

0004

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1894 of 1898

CONFIDENTIAL
9/4/2015

5

R400 Area Summary
R400 Area Estimate (0.13)

Block
Pre Route
Logic Area Utilization

Post Route
Logic Unit
Area Macro Area Total Unit Area R400 Qty R400 Total RV400 Qty RV400 Total

BIF (Bus Interface) 1,481,627 0.70 2,116,609 0 2,116,609 1 2,116,609 1.00 2,116,609
DC (Display Controller) 5,349,478 0.70 7,642,111 1,754,490 9,396,601 1 9,396,601 1.00 9,396,601
VIP (Video In Port) 0.70 1 0 1.00 0
CG (Clock Gen) 123,883 0.70 176,976 0 176,976 1 176,976 1.00 176,976
ROM (ROM and debug controller) 73,107 0.70 104,439 0 104,439 1 104,439 1.00 104,439
TSTC (Test Controller) 9,600 0.70 13,714 0 13,714 1 13,714 1.00 13,714
CP (Control Processor) 2,795,951 0.70 3,994,215 1,553,082 5,547,297 1 5,547,297 1.00 5,547,297
RBBM (Register Backbone Manager) 103,059 0.70 147,228 91,452 238,680 1 238,680 1.00 238,680
MH (Memory Hub) 3,934,344 0.70 5,620,492 908,915 6,529,407 1 6,529,407 0.75 4,897,055
IDCT 1,200,396 0.70 1,714,852 0 1,714,852 1 1,714,852 1.00 1,714,852
VGT (Vertex Group and Tesselate) 756,847 0.70 1,081,210 348,919 1,430,128 1 1,430,128 1.00 1,430,128
PA(Viewport Xform,Clip and Setup) 2,783,577 0.70 3,976,538 755,252 4,731,790 1 4,731,790 1.00 4,731,790
SC (Scan Converter) 7,203,312 0.70 10,290,446 634,693 10,925,139 1 10,925,139 0.60 6,555,083
SP (Shader Pipe) 6,054,940 0.70 8,649,915 2,413,711 11,063,625 4 44,254,501 2.00 22,127,251
SQ (Sequencer) 1,648,958 0.70 2,355,654 2,333,798 4,689,452 1 4,689,452 1.00 4,689,452
TP (Texture Pipe) 2,305,274 0.70 3,293,249 596,989 3,890,238 4 15,560,950 2.00 7,780,475
TC (Texture Cache) 11,382,899 0.70 16,261,285 3,755,397 20,016,682 1 20,016,682 0.60 12,010,009
RB (Render Backend) 6,971,479 0.70 9,959,256 1,167,019 11,126,275 4 44,505,101 2.00 22,252,551
RC (Render Central) 151,388 0.70 216,268 0 216,268 1 216,268 1.00 216,268
SX (Shader Export) 702,959 0.70 1,004,228 2,048,405 3,052,633 2 6,105,266 1.00 3,052,633
MC (Memory Controller) 351,689 0.70 502,413 445,311 947,725 4 3,790,898 2.00 1,895,449
Analog 5,456,740 7,518,580

Total Core (um2) 187,521,491 118,465,893

17,087,057
Current Pad separation (um) 50

Current Pad height (um) 350
Scribe 0.18

Core mm/side 13.69 10.88
Total mm/side 14.57 11.76

0005

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1895 of 1898

CONFIDENTIAL
9/4/2015

6

R400 Risks / Issues Summary

• R400 Technology
– Proceeding with TSMC 0.13 Low-K; need to continue to monitor status

• Hardware Design & Chip Integration
– Validation / debug effort is the long pole
– Virage STAR compiler

• Continue to work through implementation issues
– Test strategy in definition
– Chip level validation
– IKOS for Display

• Physical Design
– Working through initial floorplanning over next couple weeks
– Mature blocks from each site to work through flow
– Feedback and incorporation of learnings into process

• Software
– Work through staggered netlist delivery and IKOS funtionality
– Delay for new packet verification
– Compiler

• Performance

0006

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1896 of 1898

CONFIDENTIAL
9/4/2015

7

High Level Schedule
Task Plan Last Current
Emulator Test template Complete 01-18-02 01-18-02 Complete
GC Emulator integration – 1 triangle 02-22-02 02-21-02 Complete
Core Emulator pixel / shader tests run 03-15-02 03-19-02 Complete
Block Testing Begins 04-16-02 05-01-02 Complete
GC/Chip Integration Start 05-17-02 05-15-02 Complete
Simulate 1 Triangle / Emulator ready for SW 06-15-02 07-01-02 Complete
First Syntheses (n-1) 07-12-02 08-03-03 Complete
Verilog Feature Complete 09-16-02 10-31-02 Complete
Second Synthesis (n) 09-23-02 10-04-02 Complete
IKOS Emulation start 10-11-02 11-15-02 11-22-02
Third Synthesis 11-01-02 11-15-02 11-15-02
Early block delivery 11-08-02 11-18-02 11-18-02
IKOS Emulation (w/ Software) begins 11-11-02 12-16-02 12-16-02
RTL Freeze / Final Netlist (Gate level ECO only) 11-15-02 01-31-03 01-31-03
A11 Base Layers Tapeout 01-10-03 03-28-03 03-28-03
A11 Metal Layers Tapeout 01-24-03 04-11-03 04-11-03
First Samples for Engineering 06-25-03 06-25-03
A12 Tapeout 07-31-03 07-31-03
A12 Samples for Engineering 09-04-03 09-04-03
R400 Customer Samples 09-11-03 09-11-03
Product Delivery 10-04-03 10-04-03

0007

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1897 of 1898

filelog-depot-r400-devel-parts_lib-src-sp.txt
Change 11107 on 2001/12/03 by pmitchel@pmitchel_r400_win_marlboro

 mv block dirs to gfx

Change 10478 on 2001/11/21 by askende@andi_r400

 further update of the I/O definition

Change 9918 on 2001/11/14 by askende@andi_r400

 first time check-in

Change 8480 on 2001/10/25 by askende@andi_r400

 inserted into source control by Andi S.

Change 6887 on 2001/09/25 by askende@andi_r400_devel

 more changes

Change 6810 on 2001/09/21 by askende@andi_r400_devel

 newly added files

Change 5440 on 2001/08/16 by askende@andi_r400_devel

 adding source code into source control

Change 5002 on 2001/08/02 by pmitchel@pmitchel_test_client

 directory creation

Page 1

ATI 2072
LG v. ATI

IPR2015-00326

PROTECTIVE ORDER MATERIAL

ATI Ex. 2119
IPR2023-00922

Page 1898 of 1898

	Exhibit 2007 - Exhibit 2029
	Exhibit 2007 - R400_Sequencer Version 0.1
	Exhibit 2009 - R400_Sequencer Version 0.3
	Exhibit 2010 - R400_Sequencer Version 0.4
	Exhibit 2011 - R400_Sequencer Version 0.5
	Exhibit 2012 - R400_Sequencer Version 0.6
	Exhibit 2013 - R400_Sequencer Version 0.7
	Exhibit 2014 - R400_Sequencer Version 0.8
	Exhibit 2015 - R400_Sequencer Version 0.9
	Exhibit 2016 - R400_Sequencer Version 1.0
	Exhibit 2017 - R400_Sequencer Version 1.1
	Exhibit 2018 - R400_Sequencer Version 1.2
	Exhibit 2020 - R400_Sequencer Version 1.4
	Exhibit 2021 - R400_Sequencer Version 1.5
	Exhibit 2022 - R400_Sequencer Version 1.6
	Exhibit 2023 - R400_Sequencer Version 1.7
	Exhibit 2024 - R400_Sequencer Version 1.8
	Exhibit 2025 - R400_Sequencer Version 1.9
	Exhibit 2026 - R400_Sequencer Version 1.10
	Exhibit 2027 - R400_Sequencer Version 1.11
	Exhibit 2028 - R400_Sequencer Version 2.0
	Exhibit 2029 - R400_Sequencer Version 2.01

	Exhibit 2030 - Exhibit 2055
	Exhibit 2030 - R400_Sequencer Version 2.02
	Exhibit 2031 - R400_Sequencer Version 2.03
	Exhibit 2032 - R400_Sequencer Version 2.04
	Exhibit 2033 - R400_Sequencer Version 2.05
	Exhibit 2034 - R400_Sequencer Version 2.06
	Exhibit 2035 - R400_Sequencer Version 2.07
	Exhibit 2036 - R400_Sequencer Version 2.08
	Exhibit 2037 - R400_Sequencer Version 2.09
	Exhibit 2038 - R400_Sequencer Version 2.10
	Exhibit 2039 - R400_Sequencer Version 2.11
	Exhibit 2040 - R400 Architecture Proposal Version 0.1
	Exhibit 2041 - R400 Top Level Spec 0.2
	Exhibit 2042 - R400 Shader Processor 1.2
	Exhibit 2043 - R400_Sequencer (version 0.1 to 1.2).doc
	Exhibit 2044 - R400_Sequencer (Version 1.4 to 2.11).Doc
	Exhibit 2045 - R400 Architecture Proposal Log - r400spec.doc
	Exhibit 2046 - R400 Top Level Spec.DOC
	Exhibit 2047 - R400-DOC_LIB-Design-Blocks-SP__Shaders.DOC__FileHistory
	Exhibit 2048 - R400 Sequencer Emulator FH - Folder_History
	Exhibit 2049 - Sequencer Parts Development FH - folder_history
	Exhibit 2050 - R400 Document Library FH --- folder_history
	Exhibit 2051 - R400 Architecture FH --- Folder_History
	Exhibit 2052 - R400 Testing FH ---Folder_History
	Exhibit 2053 - Peter Pellerite Program Review Slides 12-13-01
	Exhibit 2054 - Andy Gruber Program Review Slides 12-13-01
	Exhibit 2055 - Joe Cox Program Review Slides 12-13-01

	Exhibit 2056 - Exhibit 2072
	Exhibit 2056 - Mark Fowler Program Review Slides 12-13-01
	Exhibit 2057 - Peter Pellerite Program Review Slides 1-17-02
	Exhibit 2058 - MarkF- R400_GraphicsCoreFE
	Exhibit 2059 - JCox R400 Review 03-21-2002
	Exhibit 2060 - PeterP- R400_ReviewSummary
	Exhibit 2061 - Mark F - GC Design Status
	Exhibit 2062 - PeterP- R400_ReviewSummary
	Exhibit 2063 - J Cox - C Gray R400 ORL PrgReview (2)
	Exhibit 2064 - Ken C. - R400 Hardware Design Aug02
	Exhibit 2065 - Mark F. - Aug30
	Exhibit 2066 - Peter P. - R400_AugustReviewSum
	Exhibit 2067 - Ken C. - R400oct
	Exhibit 2068 - Mark F. - Oct10
	Exhibit 2069 - Peter P. - Review
	Exhibit 2070 - Ken C. - R400nov
	Exhibit 2071 - Peter P. - NovReview
	Exhibit 2072 - R400 Shader Pipe Parts Folder History

