
ATI Ex. 2115
IPR2023-00922

Page 1 of 271

UNITED STATES PATENT AND TRADEMARKOFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

LG ELECTRONICS,INC.,
Petitioner,

V.

ATI TECHNOLOGIES ULC,
Patent Owner.

Case IPR2015-00326

Patent 6,897,871 Bl

DECLARATION OF ANDREWWOLFE

REGARDINGU.S. PATENT NO.6,897,871

Mail Stop “Patent Board”
Patent Trial and Appeal Board
U.S. Patent and Trademark Office

P.O. Box 1450

Alexandria, VA 22313-1450

ATT 2003

LGvy. ATI

IPR2015-00326

ATI Ex. 2115

IPR2023-00922

Page 1 of 271

ATI Ex. 2115
IPR2023-00922

Page 2 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

Table of Contents

I. INTRODUCTION ooooicccccccccccccccccccscecseceeseesceeeeseeeseeeseeessecssecssecssecssessestaeenees 1

TE. BACKGROUND ooo ccccccccccsecesecesecesecsecsecssecssesesessscssessssssssestetsseesaeenes 2

TH.=EXHIBITS ooocccccccccccscccseccseccsecssecssecseessecssecssecssessessssscssseeseesseenes 7

IV. OVERVIEW OF THE LAW USED FOR THIS DECLARATION............. 10

A. Burden of Proof... cccccccccessceesseceseeeeseeesessescectseecsessetenieeess 11

B.—Level of skillin the art 0000.00cceeccc ects teettetneteneeens 11

C. Reduction to Practice...cccccccccccceseceeseccneceseceeeecsscssseecsseeeeeenaes 12

1. Actual Reduction to Practice 00.00.0000cec cece cette eeeeeees 13

2. Constructive Reduction to Practice...ccccccceceeetetenees 13

D. NOVENY coonccc cccccne cece cece se sees esceseseeseseeseneesenesectsesecssstteeneeees 14

E. ODVIOUSIESS 00.0... cccecceecceccecseeeseceeseecsseceseeecsseeseceeseeecssscteeetseenateaees 14

F, ObviOUSNESS tO COMDING0... ccc cece cece ceseceeseeessestseeetsseessesetseeesenenies 16

G.-CConstruction ooo. cccece ceeccccececenecenseeenseersetecsesenseeetsteenseeneees 17

VV. INSTITUTED GROUNDS1...cccccc ccscceecenseeneeeeenssecsesssesseststenees 17

VE TECHNOLOGYooooooccoccccccccccccece cece cee ceeeceee see sees etc eeseeteesecettetitetiteneeneens 18

A, Terminologies...cccccccccccccsscccesseeeseseeecesssesecssescesseeccsteeeseeenaes 18

B. General OVerview ooo...ccccece cece cee ceneceene et ee tet ectstecettuntteteeens 19

C. Conventional graphics systems used separate shaders for vertex
calculations and pixel calculations0000000c cece cecctececeeeeeeneteeees 21

D. Drawbacks of graphics systems using separate vertex and pixel
SHAMCTS ooocece ccccecsseeescecsseeeseeecseecsseceeseeesseseeseecesesssessiseensseeitenseees 22

VIL. U.S. PATENT NO.6,897,871 ooo. ccccccccscceteccecnsecnsecssecssscssscssessestieseees 27

Vl. BACKGROUND ON CHIP DESIGN AND ATTS CHIP DESIGN...........28

IX. THE CODE FOR ATI’S R400 CHIPooo. cccccccccccecsecctetetectesseeeaees 31

AL Cham icccece cece cee eects e cee eeeeeeseetesstesesstsetesttstteteeees DD

lL. The Preamble oo... ccc cccccccccsseceeseeeseseseeessesceseecssesstseessanenaes 35

2. The Arbiter Circuit00000000ccccc cece ccc cceecectesceeeseneeseceeeesneeees 35

3, The shader coupled to the arbiter circuit000.0eee45

-i-

ATI Ex. 2115

IPR2023-00922

Page2 of 271

ATI Ex. 2115
IPR2023-00922

Page 3 of 271

Case IPR2015-00326 of

USS. Patent No. 6,897,871

a. The shader is operative to process the selected one
of the plurality of inputs .0..0.00ccc ccceeeeeseeeeeneaes48

b. The shader including means for performing vertex
operations and pixel operations00..cc cee ecceeeeeenees 50

C. The shader also includes means for performing one
of the vertex operations or pixel operations based
on the selected one of the plurality of inputs.......000.0..... 58

d. And the shader provides a appearance attribute. 58

CDA2ccccccceccceesteccseeecssecsseceecsseceeeeeseeestseecsseesseecsssstiteseeeeeeeess73

C13ccc cccccccccsecsteeessceessecsseceecsseceeeeeseeeseseecseesseenssetitereeeeeeeess75

1. The vertex storage block further includes a parameter
COCK. cccccccceccsccssecssecsseccnsecsecssecseescsesssesssessescasssaseseeeseeeaes76

2. The vertex storage block and a position cache...........0.....0.683

CDat Soeccc cccnteceececeeseeeetecseececseeeceseeessssseccsssseecsatestsaeeeeaeeses 88

1. The appearanceattribute is position 200.0...00eeceee erences 88

2, The position attribute is associated with a corresponding
VETEOXccccece cccnsececneeeeseesseceesseeessseecessceessseeeccssterseeeneieeees92

C16ccc cccccccccsecsteecsececssecsseceecsseceseeeeseeestseesssessiseecsssetiteseeseteeeess93

1. The appearanceattribute is Color 0.20.00 cccceccceeeeceeeseeeees93

2, The color attribute is associated with a corresponding
PIX]ccccc ccceccecsnececsecssecceseecenseseeccsstsecsutescsateesseeeesaeeees96

1A8ccc ccccccccecseccsececseeesseceecsseceeeeeseeessseessseessseecissstitesseeseteeeess97

CDA9cccccc cccectteceseceeseeeseceeeseseseeeeseeestsesssseesseessssenitereeeeeeeegs98

1. The selection Circuit 0.0.0 ccccccccccccesesecseecseesteeetseesatesseeeseeees99

2. The control signal.....0...000 cece cece cccec cece ce ceseceeececeuteesseeesiees 102

3. The arbiter is coupled to the multiplexer... 103

Chaim 10 icccece cc cece eens cece teens teteeeetetecietittteceieeteesteteteees 103

lL. The vertex position data... ccccccccccccccccccssecsescetstecsteesseeesees 104

2. The primitive assembly block coupled to the shader.............. 105

3. The primitive assembly block is operative to generate
PTUMELDVESocceect eee ce eee cene cee te tobe teceeetteeneeeeteees 107

-ii-

ATI Ex. 2115

IPR2023-00922

Page 3 of 271

ATI Ex. 2115
IPR2023-00922

Page 4 of 271

Xi.

Xl.

All,

Case IPR2015-00326 of

USS. Patent No. 6,897,871

I, Charm D1 occccc cccececccsececseecseeeecsseesseeeeseeeseseessesseestsesetieeseesseeees 109

1. The Raster Engine oo... coccccccceccceececceecececeenteeteteesteeseertes 110

2. Generating the pixel parameter...ccccccceeceseceeneees 112

J. C)atm 13 iccccce ccecete cece ee ceneteteeeebeeecietiestecttetestiteeeseeed 113

lL. The register DIOCK..0000 coc ccceccccccscccessececesssssecsuececateessseeeesaees 114

2. The computation clement000 ccc ccc ccc cccecceecenteceees 119

3, The Sequencer 0.0... 0.0 cccccccccscccccssccccsseeecesssssccsuececateesaeeeesaees 124

Ke Chat 15 ccccccccceceseceesseecesseecseeeeeecceesssesesseststersesssseeesees 132

1. A general purpose register DBlOCK oo...ccc ccceeeetseceeteees 133

2. The ProcesSOr UNIt oo.c cc ccecccccccccccessececesssesccsuececuteesaeeeesaees 135

3. The S@quencer00. ccc cccecce cece cece ceevceseseveetsecuteetteeessaees 135

a. Coupled to the general purpose register... 135

b. The sequencer maintains instructions.....0000000000000000. 138

L. 1am 17cccccecccseceeseeeseceeeseeesseeeeseeeseseccsecseestsseeatenseeeeseees 139

M., Chat 18 occcece cecnne cee ceeeesesettesecrsetetattesttteetteeeseeees 142

N.C)atm 20ccccccccccccccseceeeecseeeeeseecnseeesseeccseesssssessesttstetsesesseensees 142

THE CLAIMS OF THE °871 PATENT ARE SUPPORTED BY THE

PRIORITY DOCUMENT0... cccccccccccccccsccescccsceeeeecssecssecssecsestsestseeneeeeeens 143

CONCEPTION0000000ccccece secs cece eee bene su secu ee tu sesueseetestiteieteeeseeeets 175

OVERVIEW OF THE APPLIED REFERENCES FOR GROUNDS

Dadeeecece ce eeee attest eeeeeeeeeeteeceeeeesseseeeetecestsettcttcetscitesteteeneees236

AL RICKcccccc ccccssceeccseseseeesseecseeeseecseeestecsescssssssscsescesteeneeieeess236

Bo Raptrancecece cece ccece cece sens tecbesccssesssttstitecteseseenees 240

GROUNDS6 AND 9: OBVIOUSNESS GROUND BASED ON

RICH AND KURIHARA 0oooooooccccccccccccec cece ccc ce ccc ee ce tbbetbeetbceteteteneeeneeees242

A. APOSA would not have modified Rich in the way that LG and
Dr. Bagherzadeh propose.cccccccccccccsccceteecenesetttssesstsesenteeee DAD

B.—Kurihara does not teach or suggest a “processor unit”that
“executes vertex calculations while the pixel calculations are
still in progress,” as in Claim 20. 0000.0...ccce ce cccceectseeeenseeees256

C. Objective indicia Of NON-ODVIOUSNESS.....0...cc ccc cece cccceeeesseeeeaees261

- ili -

ATI Ex. 2115

IPR2023-00922

Page 4 of 271

ATI Ex. 2115
IPR2023-00922

Page 5 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

XIV. CONCLUSION2ccccccceeencecsesnsececeseeeveseveeeverevnresateneeccestestrsteversate265

-1V-

ATI Ex. 2115

IPR2023-00922

Page 5 of 271

ATI Ex. 2115
IPR2023-00922

Page 6 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

I, Andrew Wolfe, declare as follows:

1. INTRODUCTION

1. I have been retained bythe patent owner, ATT Technologies ULC

(“ATT”), to evaluate several technical issues relating to U.S. Patent No. 6,897,871

(“the ’871 patent”).

2. First, | have been asked to evaluate source code related to the

development of the “R400”projectat its state of development on August 5, 2002,

and to provide my opinion regarding whether the functionality of this source code

for the R400 chip and the structure it describes corresponds to each and every

element as set forth in claims 1, 2, 3, 5, 6, 8,9, 10, 11, 13, 15, 17, 18, and 20 ofthe

°871 patent. As set forth below,it is my opinion that this source code includes

everylimitation of these claims.

3. Second, | have been asked to review U.S. Patent Application No.

10/718,318 (‘the °318 application”), filed November 20, 2003, to which the ’871

patent claims priority, and to provide my opinion regarding whetherclaims 1, 2, 3,

5, 6, 8,9, 10, 11, 13, 15, 17, 18, and 20 are supported bythe 318 application. As

set forth below,it is my opinion that the °318 application provides support for

every limitation of these claims.

ATI Ex. 2115

IPR2023-00922

Page 6 of 271

ATI Ex. 2115
IPR2023-00922

Page 7 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

4, Lhird, | have been asked to review ATI’s internal documents relating

to the R400 project to provide my opinion regarding whether the inventors of the

°871 patent conceived claims 1, 2, 3,5, 6, 8,9, 10, 11, 13, 15, 17, 18, and 20. As

set forth below,it is my opinion that these internal documents showthat the °871

patent inventors conceived of every limitation of these claims.

5. Fourth, | have been asked to review Rich and Kurihara and to provide

myopinion regarding whether these references render obvious claims 15 and 20.

Asset forth below,it is my opinion that claims 15 and 20 are patentable over these

references.

1. BACKGROUND

6. I have more than 30 years of experience as a computerarchitect,

computer system designer, personal computer graphics designer, educator, and

executive in the electronics industry. A curriculum vitae is attached as Exhibit

2003 to this report and is summarized below.

7. In 1985, I earned a B.S.E.E. in Electrical Engineering and Computer

Science from The Johns Hopkins University. In 1987, | received an M.S. degree in

Electrical and Computer Engineering from Carnegie Mellon University. In 1992, I

received a Ph.D. in Computer Engineering from Carnegie Mellon University. My

ATI Ex. 2115

IPR2023-00922

Page 7 of 271

ATI Ex. 2115
IPR2023-00922

Page 8 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

doctoral dissertation pertained to a newapproachfor the architecture of a computer

processor.

8. In 1983, I began designing touch sensors, microprocessor-based

computer systems, and I/O (input/output) cards for personal computers as a senior

design engineer for Touch Technology, Inc. During the course of my design

projects with Touch Technology, I designed I/O cards for PC-compatible computer

systems, including the IBM PC-AT,to interface with interactive touch-based

computer terminals that I designed for use in public information systems. I

continued designing and developing related technology as a consultant to the

Carroll Touch division of AMP, Inc., where in 1986, I designed one ofthe first

custom touch screen integrated circuits.

9. While I studied at Carnegie Mellon University for my master’s

degree, from 1986 and through 1987, I designed and built a high-performance

computer system. From 1986 through early 1988, I also developed the curriculum,

and supervised the teaching laboratory, for processor design courses.

10. In the latter part of 1989, I worked as a senior design engineer for

ESL-TRW Advanced Technology Division. While at ESL-TRW,I designed and

built a bus interface and memory controller for a workstation-based computer

system, and also worked on the design of a multiprocessor system.

ATI Ex. 2115

IPR2023-00922

Page 8 of 271

ATI Ex. 2115
IPR2023-00922

Page 9 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

ll. Atthe end of 1989, | (along with mypartners) reacquired the rights to

the technologyI had developed at Touch Technology and at AMP, and founded

The Graphics Technology Company. Over the next seven years, as an officer and a

consultant for The Graphics Technology Company, I managed the company’s

engineering developmentactivities and personally developed dozens of touch

screen sensors, controllers, and interactive touch-based computer systems.

12. Ihave consulted, formally and informally, for a numberof fabless

semiconductor companies. In particular, I have served on the technical advisory

boards for two processor design companies: BOPS, Inc., where I chaired the board,

and Siroyan Ltd., where I served in a similar role for three networking chip

companies—Intellon, Inc., Comsilica, Inc., and Entridia, Inc—and one 3D game

accelerator company, Ageia, Inc.

13. [have also served as a technology advisor to Motorola and to several

venture capital funds in the United States and Europe. Currently, | am a director of

Turtle Beach Corporation, providing guidance in its development of premium

audio peripheral devices for a variety of commercial electronic products.

14. From 1991 through 1997, I served on the Faculty of Princeton

University as an Assistant Professor of Electrical Engineering. At Princeton,I

taught undergraduate and graduate-level courses in Computer Architecture,

ATI Ex. 2115

IPR2023-00922

Page 9 of 271

ATI Ex. 2115
IPR2023-00922
Page 10 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

Advanced Computer Architecture, Display Technology, and Microprocessor

Systems, and conducted sponsored research in the area of computer systems and

related topics. I was also a principal investigator for Department of Defense

(“DOD”) research in video technology and a principal investigator for the New

Jersey Center for Multimedia Research. From 1999 through 2002, I taught the

Computer Architecture course to both undergraduate and graduate students at

Stanford University multiple times as a Consulting Professor. At Princeton, I

received several teaching awards, both from students and from the School of

Engineering. | have also taught advanced microprocessor architecture to industry

professionals in IEEE and ACM sponsored seminars. I am currently a lecturerat

Santa Clara University teaching graduate courses on Computer Organization and

Architecture and undergraduate courses on electronics and embedded computing.

15. From 1997 through 2002,I held a variety of executive positionsat a

publicly-held fabless semiconductor companyoriginally called S3, Inc. and later

called SonicBlue Inc. I held the positions of Chief Technology Officer, Vice

President of Systems Integration Products, Senior Vice President of Business

Development, and Director of Technology, among others. At the time I joined S3,

the companysupplied graphics accelerators for more than 50% of the PCs sold in

the United States.

ATI Ex. 2115

IPR2023-00922

Page 10 of 271

ATI Ex. 2115
IPR2023-00922
Page 11 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

16. While at S3/SonicBlue I developed technology for and participated in

the development of products for digital music and digital video including HDTVs,

DVD players and recorders, DVRs, portable video devices, PDAs, andtablets.I

also supervised the video research and development team.

17. Thave published more than 50 peer-reviewed papers in computer

architecture and computer systemsand IC design.

18. T also have chaired IEEE and ACM conferencesin microarchitecture

and integrated circuit design and served as an associate editor for IEEE and ACM

journals.

19. Jam anamedinventoron at least 43 U.S. patents and 27 foreign

patents.

20. In 2002, I was the invited keynote speaker at the ACM/TEEE

International Symposium on Microarchitecture and at the International Conference

on Multimedia. From 1990 through 2005, I was also an invited speaker on various

aspects of technology and the PC industry at numerous industry events including

the Intel Developer’s Forum, Microsoft Windows Hardware Engineering

Conference, Microprocessor Forum, Embedded Systems Conference, Comdex, and

Consumer Electronics Show, as well as at the Harvard Business School and the

University of Illinois LawSchool. I have been interviewed on subjects related to

-6-

ATI Ex. 2115

IPR2023-00922

Page 11 of 271

ATI Ex. 2115
IPR2023-00922
Page 12 of 271

Case IPR2015-00326 of

US. Patent No. 6,897,871

computer graphics and video technology and the electronics industry by

publications such as the Wall Street Journal, New York Times, Los Angeles

Times, Time, Newsweek, Forbes, and Fortune as well as CNN, NPR, and the BBC.

I have also spoken at dozens of universities including MIT, Stanford, University of

Texas, Carnegie Mellon, UCLA, University of Michigan, Rice, and Duke.

21. Tam being compensated for my time working on this case at my

customaryrate of $450 per hour for work performed on the case. My compensation

is not in any way related to the outcomeofthe case.

Il. EXHIBITS

22. In this Declaration, I cite to the following Exhibits.

United States Patent No. 6,897,871 to Morein ef al.

1002 Prosecution History of U.S. Patent No. 6,897,871

1003 Declaration of Dr. Nader Bagherzadeh

1004 U.S. Patent 7,015,913 to Lindholm ef al.

1005 USS. Patent No. 5,808,690 to Rich

1006 US. Patent No. 7,376,811 B2 to Kizhepat

1007 US. Patent No. 5,500,939 to Kunhara

1008 Mark Segal and Kurt Akeley, The OpenGL® Graphics System:
A Specification (Version 1.4) (Chris Frazier and Jon Leech eds.,
Silicon Graphics, Inc. 2002)

1009|CurriculumVitaeofDr.NaderBagherzadeh

-7-

ATI Ex. 2115

IPR2023-00922

Page 12 of 271

ATI Ex. 2115
IPR2023-00922
Page 13 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

2004 Curriculum Vitae of Dr. Andrew Wolfe

2010 R400 Sequencer Specification (Version 0.4)

2028 R400 Sequencer Specification (Version 2.0)

2041 R400 Top Level Specification (Version 0.2)
2042 R400 Shader Processor (Version1.2)

Deposition Transcript of Nader Bagherzadeh, Ph.D., taken
Sept. 15, 2015

Deposition Transcript of Nader Bagherzadeh, Ph.D. for
IPR2015-00325, taken Aug. 14, 2015

Uniram Technology, Inc. v. Taiwan Semiconductor
Manufacturing Co., Ltd., et al., 3:04-cv-01268-VRW,Findings
of Facts and Conclusions of Law, Dkt. No. 627, April 14, 2008

2076

2077

2078

2079

United States Patent Application No. 10/718,318 to Morein et
al.
Graham Singer, History of the Modern Graphics Processor,
Part 3, TechSpot (Apr. 10, 2013)

David Luebke & Greg Humphreys, How GPUs Work, IEE!
Computer, 96-100 (2007)

Microsoft and ATI Technologies Announce Technology
Development Agreement, Microsoft (Aug. 14, 2003)

 (Tl

2080

2081

2082

2083

2084

Anton Shilov, ATI and NVIDIA Proclaim Different Graphics
Processors Architecture Goals: ATI Says Unified Rendering
Engine — the Way to Go, NVIDIA Disagrees, Xbit (Dec. 23,
2004, 7:55 AM)

Anton Shilov, NVIDIA Chief Architect: Unified Pixel and
Vertex Pipelines — The Way to Go. NVIDIA SaysIt Would
Make a Chip with Unified Pipes ““When it Makes Sense,” Xbit
(July 11, 2005, 11:07 PM)

Yoo et al., Mobile 3D Graphics SoC: From Algorithm to Chip
(2010)

Luna, Introduction to 3D Game Programming with DirectX
9.0, Figures 4.2, 5.7, pp. 94-97, 107-109 (2003)

Ahmedef a/., OpenGL - Lighting, Material, Shading and

Texture Mapping (August 28, 2009)

-8-

ATI Ex. 2115

IPR2023-00922

Page 13 of 271

ATI Ex. 2115
IPR2023-00922
Page 14 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

2085 MICROSOFT COMPUTER DICTIONARY (Sth Ed. 2002)

2086 Foley et al., Fundamentals of Interactive Computer Graphics
(1984)

2087 S3 Graphics, DirectX 10 Architecture for Chrome 400 Series
Discrete Graphics Processors, A $3 Graphics White Paper (July
21, 2007)

2088 COLLIN, DICTIONARY OF COMPUTING(4th ed., 2002)

2089 Woo, J.H. et al., A 195/152-mW mobile multimedia SoC with
fully programmable 3D graphics and MPEG4/H.264/JPEG.
IEEFE J. Solid-St. Cire., 43 (9), 2047-2056 (2008)

2090 Technical Brief, NVIDIA GeForce® GTX 200 GPU
Architectural Overview (May,2008)

2091 Intel® Processor Graphics DirectX Developer’s Guide (2008-
2010)

2092 The Rise of Mobile Gaming on Android: Qualcomm®
Snapdragon™Technology Leadership (2014)

2093 RTL CodeFile: sq.v

2094 RTL Code File: sq_ais_output.v

2095 RTL Code File: sq_alu_instr_queue.v

2096|RTL Code File: sqaluinstrseq.v
2097 RTL CodeFile: sq_thread_arb.v

2098 RTL CodeFile: sq_input_arb.v

2099 RTL Code File: sq_instruction_store.v

2100 RTL Code File: sq_defs.v

2101 RTL Code File: sq_thread_buff.v

2102 RTL Code File: sq_target_fetch.v

2103 RTL Code File: sq export alloc.v
2104 RTL CodeFile: vector.v

2105 RTL Code File: macc_gpr.v

2106 RTL Code File: export_control.v
2107 RTL Code File: macc.v

2108 RTL Code File: macc32.mc

2109 RTL Code File: sx.v

ATI Ex. 2115

IPR2023-00922

Page 14 of 271

ATI Ex. 2115
IPR2023-00922
Page 15 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

2110 RTL Code File: parameter_caches.v

2111 RTLCode File: paramcache_ctl.v

2112 RTL Code File: sp.v

RTL Code File: export_buffers.v

2114|RTL Code File: pa.v
2115 RTL Code File: pa_ag.v

RTL CodeFile: pa_sxifecg.v

2117 RTL Code File: pa ccgsxifsm.v
2118 RTLCode File: se.v

2119 Takahashi, The XBOX 360 Uncloaked (2006)

2120 Microsoft Corporation Annual Report (2006)

23. Exhibits 2077-2092 and 2119 are true and accurate copies of what

they purportto be.

24. This declaration represents only the opinions I have formed to date.I

may consider additional documents as they becomeavailable or other documents

that are necessary to form my opinions.I reserve the right to revise, supplement, or

amend my opinions based on newinformation and on mycontinuing analysis.

IV. OVERVIEW OF THE LAW USED FOR THIS DECLARATION

25. When considering the °871 patent and stating my opinions, I am

relying on legal principles that have been explained to me by counsel.

-10-

ATI Ex. 2115

IPR2023-00922

Page 15 of 271

ATI Ex. 2115
IPR2023-00922
Page 16 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

A. Burden ofProof

26. Iunderstand that for a claim to be found patentable, the claims must

be, among other requirements, novel and nonobvious from what was knownat the

time ofthe invention.

27. Tunderstand that the information that 1s used to evaluate whether a

claim is novel and nonobviousis referred to as priorart.

28. Iunderstand that in this proceeding, LG has the burden of proving that

each element of the challenged claims is rendered obvious by the alleged prior art

references.

B. Level ofskill in the art

29. Thave been asked to considerthe level of ordinary skill in the art that

someone would have had from August 2001 to November 2003. With over 30

years of experience as a computer architect, computer system designer, personal

computer graphics designer, educator, and executive in the electronics industry, I

am well informed of the level of ordinary skill in the art. I understand that

determining the level ordinary skill in the art takes into consideration:

e Levels of education and experience of persons working in the field;

e Types of problems encountered in the field; and

-|l]-

ATI Ex. 2115

IPR2023-00922

Page 16 of 271

ATI Ex. 2115
IPR2023-00922
Page 17 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

e Sophistication of the technology.

30. Based on the technologies disclosed in the ’871 patent and the

considerations listed above, a person having ordinary skill in the art (‘POSA”)

would haveat least a bachelor’s degree in electrical or computer engineering or

computer science plus five years of experience in the computer graphics hardware

industry, or a master’s degree in electrical or computer engineering or computer

science plus two years of experience in that industry, or an equivalent combination

of education and experience.

31. Throughout my declaration, even if I discuss my analysis in the

present tense, | am always making my determinations based on what a POSA

would have knownat the time of the invention. Additionally, throughout my

declaration, even if I discuss something stating “I,” I am referring to a POSA’s

understanding.

C. Reduction to Practice

32. lunderstand there are two types of reduction to practice—actual

reduction to practice and constructive reduction to practice. My understanding of

each, I describe below.

-|12-

ATI Ex. 2115

IPR2023-00922

Page 17 of 271

ATI Ex. 2115
IPR2023-00922
Page 18 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

T, Actual Reduction to Practice

33. lunderstand that actual reduction to practice requires proof of either

(i) an embodiment of a claimed invention or (11) performance of a processthat

includesall limitations ofthe clarmed invention.

34. Here, I have examined the R400 RTL code foran early version of the

R400 written in Verilog. Verilog RTL codeis a structural and functional

embodimentof a design that in the development of 3D graphics chips is generally

used to model, define, and instantiate a hardware design. Below,I identify the

specific files, objects, input/output interfaces, and functions that describe cach

element of claims 1, 2,3, 5, 6, 8,9, 10, 11, 13, 15, 17, 18, and 20 of the ’871

patent.

2. Constructive Reduction to Practice

35. Tunderstand that constructive reduction to practice occurs when the

patent application discussing the subject matter of the claimsis filed. In this case,

the constructive reduction to practice occurred on November20, 2003, with the

filing of the °318 Application. Below, I include a claim chart where I identify

support for each element of claims 1, 2, 3,5, 6, 8, 9, 10, 11, 13, 15, 17, 18, and 20

of the °318 Application.

ATI Ex. 2115

IPR2023-00922

Page 18 of 271

ATI Ex. 2115
IPR2023-00922
Page 19 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

D. Novelty

36. lunderstand that a claim is unpatentable for being anticipated

(sometimes called lack of novelty) if a prior art reference disclosed, at the time of

the invention, each claim element as arranged in the claim. I also understand that if

a prior art reference fails to expressly disclose one or more claim elements, the

claim may be anticipated if the missing element(s) are inherently disclosed. I

understand that to establish inherency, the evidence must make clearthat the

missing claim element is necessarily present in the prior art reference. I understand

that anticipation requires a high threshold because each and every claim element

must be unambiguouslytaught by a single reference, either explicitly or inherently.

EF. Obviousness

37. Tunderstand that a patent claim is invalid if the claims would have

been obvious to a POSAat the time of the invention. I understand that the

obviousness inquiry should not be done in hindsight, but from the perspective of a

POSAasof the time of invention of the patent claim.

38. lunderstandthat to obtain a patent, the claims must have,as of the

time of the invention, been nonobvious in viewof the priorart.

-|4-

ATI Ex. 2115

IPR2023-00922

Page 19 of 271

ATI Ex. 2115
IPR2023-00922
Page 20 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

39. lunderstand that a claimis obvious whenthe differences between the

subject matter sought to be patented and the prior art are such that the subject

matter as a whole would have been obvious to a POSAatthe time the invention.

40. lunderstandthat to prove that prior art reference or a combination of

priorart references renders a patent obvious, it is necessary to: (1) identify the

particular references that, singly or in combination, make the patent obvious;

(2) specifically identify which elements of the patent claim appearin each of the

asserted references; and (3) explain how a POSA could have combined thepriorart

references to create the claimed invention.

41. lunderstand that to support a conclusion that a prior art reference or a

combination of prior art references renders a patent obvious, there must be some

documentary evidence. Mere statements about whatis basic knowledgeor

commonsense, /.e., common knowledgeas a replacement for documentary

evidence, is insufficient to support a conclusion of obviousness.

42. | understand that certain objective indicia can be important evidence

regarding whether a patent is obvious. Such indicia include: industry acceptance,

commercial success of products covered bythe patent claims; long-felt need for

the invention; failed attempts by others to make the invention; copying of the

invention by others in the field; unexpected results achieved by the invention as

-1[5-

ATI Ex. 2115

IPR2023-00922

Page 20 of 271

ATI Ex. 2115
IPR2023-00922
Page 21 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

compared to the closest prior art; praise of the invention by the infringer or others

in the field; taking of licenses under the patent by others; expressions of surprise or

skepticism by experts and those skilled in the art at the making of the invention;

and the patentee proceeded contrary to the accepted wisdom ofthepriorart.

E. Obviousness to combine

43. Junderstand that obviousness can be established by combining

multiple prior art references to meet each and every claim element, but I also

understand that a proposed combination of references can be susceptible to

hindsightbias.

44. | understand that references are more likely to be combinable if the

nature of the problem to be solved is the same.

45. lunderstand that if the combination of references results in the

references being unsatisfactory for their intended purposes or the combination

changes the references’ principle of operation, a POSA would not have a

motivation to combine the references.

46. Junderstand that teaching away, e.g., discouragement,is strong

evidence that the references are not combinable. I also understand that a disclosure

of more than one alternative does not necessarily constitute a teaching away. I

understand that the combination does not needto result in the most desirable

-16-

ATI Ex. 2115

IPR2023-00922

Page 21 of 271

ATI Ex. 2115
IPR2023-00922
Page 22 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

embodiment, but if the proposed combination does not have a reasonable

expectation of successat the time of the invention, a POSA would not have a

teaching, suggestion, or motivation to combine the references.

G. Claim construction

47. lunderstand that in this /nter Partes Reviewproceeding the claims

must be given their broadest reasonable interpretation consistent with the

specification. In this declaration, I have used this broadest-reasonable-

interpretation standard when interpreting the claim terms.

48. lunderstand that the Board construed the term “means for performing

vertex operations and pixel operations and performing one of the vertex operations

or pixel operations based on the selected one of the plurality of inputs” to include a

register, an instruction sequencer capable ofproviding instructionsforperforming

vertex operations and pixel operations, and a processor capable offloating point,

arithmetic, and logical operations on a selected input. For the purposesofthis

proceeding, I apply that construction to my analysis below.

Vv. INSTITUTED GROUNDS

49. J understand that LG proposed nine groundsfor inter partes review

based on two primary references: Lindholmand Rich. I understand that the Board

denied LG’s Grounds5, 7, and 8 in their entirety, and denied Ground 6 with

-|7-

ATI Ex. 2115

IPR2023-00922

Page 22 of 271

ATI Ex. 2115
IPR2023-00922
Page 23 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

respect to claims 6 and 17. 1 further understand that the Board instituted inter

partes reviewof claims 1-3, 5, 6, 8-11, 13, 15, 17, 18, and 20 of the °871 patent in

the manner shownin the table below.

— | — =e - oe : Primary __ | Secondary:
_ Grounds — lee a oe : | Reference | References _

1, 2, 5, 8, oe. ,
Ground 1 10, 11, 13, Anticipation Lindholm N/A

§ 102
and 15

Ground2|3 and6 So Lindholm OpenGL
eee9,17,and|Obviousness |. . ee

Ground 3 18 § 103 Lindholm Kizhepat

Ground 4 20 So Lindholm Kurihara
Ground6|15 Obviousness|Rich N/A

§ 103

Ground 9 20 So Rich Kurihara

VI. TECHNOLOGY

A, Terminologies

50. This section provides exemplary descriptions for the following terms

as they are used with respect to the technology of the ’871 patent. I use these

descriptions when providing a general overview of computer graphics technology.

e Pixel: Short for picture (pix) element. One spot in a rectilinear grid of

thousands of such spots that a device individually “paints” to form an

image produced on a computer screen or on paper. A pixel is the smallest

-18-

ATI Ex. 2115

IPR2023-00922

Page 23 of 271

ATI Ex. 2115
IPR2023-00922
Page 24 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

element that displays or prints. A set of pixels can be manipulated to

create letters, numbers, or graphics. Ex. 2085, p. 406.

e Vertex: A point in space defined by the three coordinates x, y, and z. Ex.

2088, p. 374.

e Render: To produce a graphic image from data on an output device such

as a video display or a printer. Ex. 2085, p. 449.

e Primitive: In computer graphics, a shape, such as a line, circle, curve, or

polygon, that a graphics program can draw, store, and manipulate as a

discrete entity. /d. at 419.

e Polygon: Any two-dimensional closed shape composed of three or more

line segments, such as a hexagon, an octagon,or a triangle. /d. at 411.

B. General overview

51. Incomputer graphics, complex three-dimensional shapes are typically

represented by a wireframe collection of simple polygons, called primitives, as

illustrated in Figure 1 (reproduced below). Transforming these wireframe models

into rich, colorful images primarily involves two types of graphics-processing

calculations: (1) vertex calculations and (41) pixel calculations. Ex. 1001, 1:11-60.

-19-

ATI Ex. 2115

IPR2023-00922

Page 24 of 271

ATI Ex. 2115
IPR2023-00922
Page 25 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

Figure 1— Polygon wireframe of a teapot

52. Vertex calculations are applied to the primitives of a wireframe

model to orient (7.e., rotate, translate, or scale) the primitives in a desired way. Ex.

1001, 1:37-49. Each primitive can be represented by a set of numbers, called

vertices (Vx, Vy, V.). fd. at 1:37-42. To make the wireframe model appear to rotate,

a transformation matrix 1s applied to the vertices of each primitive to provide a

newset of reoriented vertices (Vy, Vy, Vz’). /d. at 1:42-48. In addition to rotations,

transformation matrices may be applied to the vertices to make the wireframe

model appear to move, grow, or shrink. These transformationsare collectively

referred to as vertex calculations. After the desired transformations are applied to

the vertices, the reoriented vertices are then translated into pixels to generate a

rendered object that can be displayed as a two-dimensional image. In some systems

-20-

ATI Ex. 2115

IPR2023-00922

Page 25 of 271

ATI Ex. 2115
IPR2023-00922
Page 26 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

vertex calculations are also used to determine the appearance characteristics of a

polygonat the vertices.

53. Pixel calculations are different. Pixel calculations are performed on

each pixel of the rendered object to determine each pixel’s color and appearance

attributes. /d. at 1:50-54. These pixel calculations may also be applied to texture

data to generate the pixel color or other appearanceattributes of interest. /d. at

3:42-46.

Cc. Conventional graphics systems used separate shaders for vertex
calculations andpixel calculations

54. Aroundthe time the technology described in the ’871 patent was

invented, conventional graphics-system architectures included a vertex shaderto

perform the vertex calculations and a separate pixel shader to perform the pixel

calculations. /d. at 1:60-65. In these conventional architectures, vertex calculations

and pixel calculations were performed sequentially. /d. at 2:1-6. In the first stage

(vertex shading), vertex calculations built a three-dimensional scene out of

polygons(7.e., primitives). In the second stage (pixel shading), the primitives were

translated to pixels and filled in with color. In the third stage, the shaded pixels

were stored in memory called a “frame buffer” for display on a screen.

-2|-

ATI Ex. 2115

IPR2023-00922

Page 26 of 271

ATI Ex. 2115
IPR2023-00922
Page 27 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

D.—Drawbacks of graphics systems using separate vertex and pixel
Shaders

55. Graphics-system architectures using separate vertex and pixel shaders

generally do not utilize shader resourcesefficiently. Using separate types of

shadersis inefficient because graphics-processing tasks are generally not perfectly

balanced between vertex and pixel calculations. As the examples in the following

paragraphs show, a task involving complex-geometry processing (e.g., a complex

3D model but a simple shading scheme) usually requires many more vertex

calculations than pixel calculations. A task of complex-pixel processing (e¢.g., a

simple 3D model but a complex pixel shading scheme) usually requires many more

pixel calculations than vertex calculations.

56. Ifa graphics-processing task requires many more vertex calculations

than pixel calculations, the pixel shaderis (relatively) idle, resulting in wasted

pixel resources. /d. at 1:60-65, 1:67-2:6. The figures below showa scenario where

complex-geometry processing would keep the pixel shader underutilized. In this

scenario, a large numberof polygons form an imageof a car. Ex. 2086, p. 582, Fig.

16.8(a). Each polygon(7.e., a primitive) is represented by vertices, and processing

these vertices keeps the vertex shader fully loaded. When constant shading (also

called “flat shading”) renders the scene (/d.), there are relatively fewpixel

calculations because “[c]onstant shading calculates a single intensity value for

-2).

ATI Ex. 2115

IPR2023-00922

Page 27 of 271

ATI Ex. 2115
IPR2023-00922
Page 28 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

shading an entire polygon.” /d. at 580. Thus, the pixel shader is only partially

utilized. See Ex. 2087, p. 13; Figure 5. Unfortunately, the pixel shader cannot use

its extra resources to help the vertex shader because the pixel shaderis of a

separate type and cannot perform vertex calculations.

(Ex. 2086, p. 582,Fig. 16.8)

ComplexVertex
Shacing

Pixel Shaders
Under-utilized

-23-

ATI Ex. 2115

IPR2023-00922

Page 28 of 271

ATI Ex. 2115
IPR2023-00922
Page 29 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

57. Conversely, if a graphics-processing task requires many pixel

calculations but has simple geometry, the vertex shader is (relatively) idle,

resulting in wasted vertex resources. Ex. 1001, 1:60-65, 1:67-2:6. The figures

belowshowa scenario where complex pixel processing would keep the vertex

shader underutilized. In this scenario, a simple 3D model is rendered with

shadows,reflections, and texture mapping. Ex. 2087, p. 13, Figure 5.

Consequently, the pixel shader becomesthe bottleneck of the system because

rendering a simple 3D model with shadows,reflections, and texture mapping

requires heavy pixel calculations. While the pixel shader is fully loaded, the vertex

shaderis only partially loaded because a simple 3D model does not have as many

vertices to process. See id. Unfortunately, the vertex shader cannot use its extra

resources to help offload the pixel shader’s load because a conventional vertex

shader is of a separate type and cannot perform pixel calculations.

-24-

ATI Ex. 2115

IPR2023-00922

Page 29 of 271

ATI Ex. 2115
IPR2023-00922
Page 30 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

(Ex. 2087, p. 13, Figure 5)

Complex Vertex
Shading

Pixel Shaders

Under-utlized
58. Either way, graphics systems using separate vertex and pixel shaders

are almost always unableto efficiently use all available resources. Ex. 1001, 1:60-

65, 1:67-2:6.

25 -

ATI Ex. 2115

IPR2023-00922

Page 30 of 271

ATI Ex. 2115
IPR2023-00922
Page 31 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

59. As discovered by the inventors of the °871 patent, a single unified

shader can perform both vertex and pixel calculations, such that a graphics

processing system using one or more unified shaders has more flexibility. Such a

system has moreflexibility because the system can allocate shader resources more

efficiently and balance resource utilization between vertex and pixel calculations.

60. A graphics-processing system with a unified shader can manage

shader resources and balance resource utilization by using an arbiter to select

between vertex processing and pixel processing. As the figures below show, when

a graphics task requires more vertex calculations (e.g., complex-geometry

processing), the arbiter can select more vertex command threads for the unified

shader to perform vertex calculations (represented in green). When a graphics task

requires more pixel calculations (e.g., complex pixel processing), the arbiter can

select more pixel command threads for the unified shader to perform pixel

calculations (represented in blue). See Ex. 2087, pp. 14-15; Figure 7. Either way,

the arbiter and the unified shader increase the graphics processing system’s

performance by reducing underutilization of the shader resources. See Ex. 2082,

pp. 113-15.

- 26 -

ATI Ex. 2115

IPR2023-00922

Page 31 of 271

ATI Ex. 2115
IPR2023-00922
Page 32 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

Complex Geometry Processing

 Thread Arbiter

Ba

 Vertex& Piel Shader
Vertex and Pixel Shading

Complex Pixel Processing Dynamically Allocated

Thread Arbiter
Gi

Vertex & Pbet Shader
VIL U.S. PATENT NO.6,897,871

61. The ’871 patent is directed to a graphics-processing system having a

single, unified shader. Ex. 1001, Abstract. The graphics-processing system

includes an arbiter circuit operative to select one of a plurality of inputs in response

to a control signal. /d. The graphics-processing system also includes a shader. /d.

The shaderis coupled to the arbiter and is operative to process the selected one of

the plurality of inputs. /d. The shader includes means for performing vertex and

pixel operations, such that the shader performs one of the vertex operations or

pixel operations based on the selected one of the plurality of inputs. /d.

27 -

ATI Ex. 2115

IPR2023-00922

Page 32 of 271

ATI Ex. 2115
IPR2023-00922
Page 33 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

62. The shader in the graphics-processing system also includes a register

block, a sequencer, and a processor unit. /d. The register block is used to maintain

the plurality of selected inputs. /d. The sequencer maintains instructions that

perform vertex manipulation and pixel manipulation operations. /d. And a

processoris capable of executing both floating point arithmetic and logical

operations on the selected inputs in response to the instructions maintained in the

sequencer. /d.

63. The unified shader graphics processing system is an improvement

over conventional systems - which include a vertex shader and a pixel shaderas

separate components. /d. at 1:55-57. Both of these shaders are required to perform

a position and texture transformation and generate an object. /d. at 1:57-62.

Because both vertex and pixel shaders are required, the graphics processors are

large in size and with most real estate being taken up the vertex and pixel shaders.

Id. at 1:62-65. In addition to the real-estate penalty associated with conventional

graphics processors, there is also a corresponding performance penalty associated

therewith. /d@. at 1:66-2:1.

VIET. BACKGROUND ON CHIP DESIGN AND AT?S CHIP DESIGN

64. In my experience, modern graphics chip production is a two-step

process. First, the integrated-circuit designers design a chip almost entirely on a

28 -

ATI Ex. 2115

IPR2023-00922

Page 33 of 271

ATI Ex. 2115
IPR2023-00922
Page 34 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

computer using computer-aided—design (“CAD”) tools. The integrated-circuit

designers depend on software-based design, simulation, verification, and layout

tools. These tools ensure that production integrated circuits function and work as

intended. This process can take several months or years. These CAD tools are used

to create a chip specification, generally at multiple levels of abstraction that serve

as both a detailed specification of the chip and as a model of its structure and

function. This has been the predominant design methodology for graphics chips

since at least 1990.

65. The CAD tools are used to model and validate the chip design. While

the design representation at this stage may resemble software, its primary purpose

is to be an accurate representation of a hardware chip design. In the case of

hardware description languages like Very High Speed Integrated Circuit Hardware

Description Language (“VHDL”) or Verilog, the design language is generally the

most accurate formal specification of the structure and function of the chip that the

design engineer will prepare. It 1s used to directly create the manufacturing tooling.

Only after the integrated-circuit designers are confident that the design will

function properly, and the chip design passes commercial specifications, the layout

file created by the CAD tools from the design languageis sent to a chip-

manufacturing facility for fabrication. Since layout files were historically provided

on a magnetic tape, this is often called a “tape-out.” At this point the design

-29-

ATI Ex. 2115

IPR2023-00922

Page 34 of 271

ATI Ex. 2115
IPR2023-00922
Page 35 of 271

Case IPR2015-00326 of

US. Patent No. 6,897,871

process has been completed and the manufacturing step is intended to simply

reproduce an exact copy of what is described in the layout file. The layoutfile

represents the manufacturing tooling for the chip-manufacturing facility. The chip-

manufacturing facility uses this tooling to fabricate a physical integrated circuit,

commonly referred to as a “chip.”

66. In my experience, although both circuit design and circuit fabrication

are both necessary components of chip production, in reality they are separate and

distinct activities. Typically, chip design and chip fabrication are performed by

different entities, particularly with respect to graphics chips. Ordinarily, circuit

designers do not fabricate chips, and chip fabricators do not design circuits.

67. Itis my understanding that, the patent owner here, ATI, is a chip-

design company. This means that ATI designs integrated circuits, such as chips.

ATI does not fabricate chips. Instead, ATI uses software-based CAD tools to

design and reduce to practice the chip components claimed in the ’871 patent. Only

after the components claimed in the ’871 patent (along with other chip

components) worked for their intended purpose, would ATI generate the tooling

and send it for fabrication. Because the °871 patent pertains to the chip-circuit

design, the actual reduction to practice of the claims of the °871 patent would have

occurred when the RTL code performedall limitations ofthe claims.

-30-

ATI Ex. 2115

IPR2023-00922

Page 35 of 271

ATI Ex. 2115
IPR2023-00922
Page 36 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

IX. THE CODE FOR ATIS R400 CHIP

68. [have been asked to reviewthe source code for ATT’s R400 chip.

This code includesfiles generated before or on August 5, 2002 by ATI. The source

code includes two corresponding design databases that comprise the source code:

R400 RTL code and Emulator Code.

69. The R400 Emulator Code is written in a well-known C++

programming language. The R400 Emulator Code includes source code that, when

executed, emulates the behavior of the graphics-processing system using software

that executes on a computer. C++ is commonly used to specify the function of a

software system, but chip designers often also use it to specify and emulate

structural aspects of hardware systems, such as, chips, and also to model, validate,

and test the functionality and certain structural features of a hardware design.

70. Inmy experience having both RTL code and C++ code

implementation is common in the chip design industry. The C++ codeis faster to

write and easier to debug by the chip designers. It runs faster, so larger examples of

user input can be tested. The chip designers often first write and test the chip

design in C++ or another software language. The test results from the chip code in

C++ are saved. Next the RTL code (in this case the R400 code) is written in

Verilog or another hardware-description language and is compared againstthetest

-3]-

ATI Ex. 2115

IPR2023-00922

Page 36 of 271

ATI Ex. 2115
IPR2023-00922
Page 37 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

results generated using the C++ code. By comparing twodifferent descriptions of

the hardware implementation,it is more likely that errors can be found and

removed.

71. The R400 RTL code is implemented in a hardware-description

language (HDL), called Verilog. Verilog is a hardware-description language used

to design and specify hardware systems. That is, Verilog describes behavior of a

hardware circuit in terms of inputs, outputs, state machines, logic equations, and

modules. When a module is declared in Verilog, the declaration is definitional.

This serves as a specification of function and structure. Copies of that module can

then be instantiated by specifying the inputs and outputs that carry information to

and from a particular copy of the module. This instructs the CAD tools to create a

copy of the specified circuits in each final product. It is possible to have multiple

copies of a module, with the inputs and outputs of each copyseparately specified

in the design. The logic equations for the module, which describe howthe module

operates based on different inputs, are also specified. This logic can be

combinational, representing a set of basic logic gates, or sequential, which can

include a state machine that controls the operation over time. There are many

different ways to write these logic equations, but each is converted to a set of basic

logic gates by the CAD tools. From the files produced by the R400 RTL code, a

chip manufacturer is able to manufacture a hardware circuit that includes structure

_32-

ATI Ex. 2115

IPR2023-00922

Page 37 of 271

ATI Ex. 2115
IPR2023-00922
Page 38 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

and behavior described in the R400 RTL code. This is a standard practice in any

modern graphics integrated circuit design.

72. Here, in the R400 program, Verilog was usedto validate the

integrated-circuit version of the graphics-processing system recited in claims1, 2,

3,5, 6, 8,9, 10, 11, 13, 15, 17, 18, and 20. At least one version of the R400 RTL

code which discloses all elements of these includesthe files generated before or on

August 5, 2002. These files are attached as Exhibits 2093-2096, 2098-2101, 2104-

2118.

73. Ihave compared each element of claims 1, 2, 3,5, 6, 8,9, 10, 11, 13,

15, 17, 18, and 20 to the R400 RTL code and the correspondingfiles, functions,

and interfaces using the broadest reasonable construction standard for all terms that

the Board did not construe. For the term “means for performing vertex operations

and pixel operations and performing one of the vertex operations or pixel

operations based on the selected one ofthe plurality of inputs,” I applied the

Board’s construction—namely, a register, an instruction sequencer capable of

providing instructionsforperforming vertex operations andpixel operations, and

a processor capable offloatingpoint, arithmetic, and logical operations on a

selected input. 1 point to thefiles, pages and line numbers in the RTL that disclose

ATI Ex. 2115

IPR2023-00922

Page 38 of 271

ATI Ex. 2115
IPR2023-00922
Page 39 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

each element recited in these claims. In my opinion, the R400 RTL code discloses

all elements of claims 1, 2,3, 5, 6, 8,9, 10, 11, 13, 15, 17, 18, and 20.

74. The R400 RTL code includes the sq. v, sp.v, sx. v, pa. v, and

sc.v files and their corresponding sub-files and referenced modules that specify

and generate a hardware circuit which is a graphics-processing system as recited in

claims 1, 2,3, 5,6, 8,9, 10,11, 13, 15,17, 18, and 20. In particular, the sq.v file

specifies and generates a sequencer which includes parts of an arbiter circuit, and

arbiter, and an instruction store. The sp. v specifies and generates a shader, a

register, the selection multiplexer, a computation element and a processorunit. The

sx.v specifies and generates a shader export block which includes a parameter

cache. The pa. v specifies and generates a primitive assembly block which

includes a position cache. The sc. v file specifies and generates a raster engine

(also referred to as a rasterizer or a scan converter).

75. I cite to the R400 RTL source code using the following format:

(sq. v, 1:1-10). This example citation points to exhibit sq. v, at page 1, lines 1-

10.

-34.-

ATI Ex. 2115

IPR2023-00922

Page 39 of 271

ATI Ex. 2115
IPR2023-00922
Page 40 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

A, Claim 1

1. The Preamble

76. The preamble of claim 1 recites “A graphics processor, comprising:

The files, sq. v and sp. v (and their referenced modules) define the hardware

block component of the graphics-processing system.

2. The Arbiter Circuit

77. The first element of claim 1 recites “an arbiter circuitfor selecting

one ofa plurality of inputs in response to a control signal.” | have generated a

visual representation of the components, as I understand them, based on the R400

RTL code, that describe an arbiter circuit in a figure below.

gpr_phase iVertexindices iinterpolated
Multiplexer

jia_vertex_sel
vector lines 207 & 227-

 Sq_input_arb

Sg_ais_outputline 493

a . a 278
(sc_input_arb.v) (sq_als_output.v) (vector.v)

u_sq_input_arb u_sq_ais_output uvector0

Arbiter Circuit

InputDatad

78. The sq.vand sp. v file instantiate blocks of an arbiter circuit. The

arbiter circuit includes an arbiter instantiated as u_sqinputarb.(sq.v,

-35-

?

ATI Ex. 2115

IPR2023-00922

Page 40 of 271

ATI Ex. 2115
IPR2023-00922
Page 41 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

28:11-29:7.) The u_sqinputarbis specified asan sqinputarb module

insqinputarb.v.

79. Thearbiterusqinputarb is coupled to a multiplexer,

implemented in u_sqaisoutput andat least one of the four vectorunits,

uvector0O, uvectorl, uvector2, and uvector3. The

u_sqaisoutput moduleis instantiated in sq. v. (sq. v, 77:20-81:4) and the

four vector units are instantiated in sp. v (sp. v, 15:6-18:16).

80. The arbiter in the sq_ inputarb module receivesfive input signals

vtxreg, gprphase, pixreq, vtxbusy,andpixbusy signals

whichare replicated below.

module sg input _arb
(

vtxreq, /f vequest from VISM
vtx busy, // busy from VISM - tells arb to keep gpr write

mux set to verts

pix_req, // vequest from PISM
pix_busy, // busy from PISM - tells arb to keep gpr write

mux set to pixels

gprphase, //

input [0:0] vtx_req;
input [0:0] wtxbusy;
input [0:0] pixreq;
input [0:0] pix_busy;

input [1:0] gpr_phase;

(sqinput_arb.v, 2:4-11, 3:8-13.)

- 36-

ATI Ex. 2115

IPR2023-00922

Page 41 of 271

ATI Ex. 2115
IPR2023-00922
Page 42 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

81. The véxreqcontrol signal is a request from a vertex input state

machine to process a vertex inputs. The pixreg control signal is a request from

a pixel input state machine to process a pixel input. The arbiter generates a control

signal based on these five input signals, as replicated below:

[/ next state logic
always @/(

vtxreg or pixreq or vtx_pusy or pixbusy or
gpr_phase or

current

) _

state

begin
// default assignments

nextstate = IDLE;
nextvtxgnt = Lo;
next pix gnt =]
nextvtxsel

OF
Or:r

in
= T,i

begin
{// - assert grants based on gpr phase
Af - gnt is reg'd out, so need to look for phase

the one that lines up
// - the phase for pix gnt is

latency

if (vtx_reg &
begin

befory

calculated based on

interp
(gpr phase == ‘SO ID PHASE) })gPrPp a

next vex gnt

nextvtx_sel

AT;

FT 3ae

nextstate V_XFER;
end

else if (pix_req & (gpr_phase == ‘SQPVPHASE))
begin
nextpixgnt AT;

nextstate P_XFER;
end

end

V_XFER:
begin
// - hold vtx_sel high while VISM is busy
if (vtx_busy)

begin

-37-

ATI Ex. 2115

IPR2023-00922

Page 42 of 271

ATI Ex. 2115
IPR2023-00922
Page 43 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

nextvtx_sel = HI;
nextstate = V_XFER;
end

else

begin
nextstate = IDLE;
end

end

PXFER:
begin
// - first check if there's another pix req (and no

vtx req)
Af - if se, grant it and stay here
// - otherwise continue to hold vtx_sel low while PISM

is busy

if (pix_req & ~vtx_regq & (gpr_phase == ‘SQPV_PHASE)}

begin

nextpixgnt = HI;
nextstate = P_XFER;

end

else if (pixbusy)
begin

nextstate = PXFER;
end

else

begin

nextstate = IDLE;
end

end

endcase // case(current_state)

end // always @ (*)

(/d. at 6:16-9:10.)

82. The R400 RTL code above showsthat the sqinputarb arbiter

circuit uses vtxreqto select a vertex input, and pixreq to select a pixel

input, with the vertex input having a priority over the pixel input if both the vertex

input state machine and the pixel input state machine simultaneously request that

their respective inputs are selected.

- 38 -

ATI Ex. 2115

IPR2023-00922

Page 43 of 271

ATI Ex. 2115
IPR2023-00922
Page 44 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

83. Ifthe sqinputarb arbiter circuit selects a vertex input, the R400

RTL code above sets nextvtx_gntandnext_vtx_sel to “HI”. Ifthe

sqinputarb arbiter circuit selects a vertex input, the R400 RTL code above

sets nextvtxgntand nextvtx_selto“HI”Ifthe sqinputarb

arbiter circuit selects a pixel input, the R400 RTL code above sets

nextpixgntto “HI”. Thearbiter then indicates to the selection multiplexer

and shaderthat the vertex input or the pixel input has been selected using the

R400 RTL code below:

output [0:0] vtx_gnt;
output [0:0] pix_gnt;
output [0:0] vtx_sel;

begin

currentstate <= nextstate;
vexgnt <= next_vtx_gnt;
vtx_sel <= next_vtx_sel;
pix gnt <= next pix gnt;

end 7 7 7

(id. at 3:15-17, 6:7-12.)

84. As shown in the R400 RTL code above, the sq_inputarb arbiter

sets the output signals vtxgntand pixgnttoa “HI”or “LO”value from

nextvtxgntand nextpixgnt respectively, andsets vtxsel to

identify whether the vertex input or the pixel input was selected. The

sqinputarb arbiter outputs the vtxsel signal as iavertexsel at

-39.-

ATI Ex. 2115

IPR2023-00922

Page 44 of 271

ATI Ex. 2115
IPR2023-00922
Page 45 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

sq. Vv, 29:1. The signal iavertexsel correspondsto the claimed control

signal.

85. The arbiter passes the vtxsel signal tothe sqaisoutput

module called u_sq_aisoutputas iavertexsel signal. As I discussed

above u_sqaisoutput is instantiated in the sq module (sq. v, 77:20-81:4)

and is defined in the sq_aisoutput modulein sgaisoutput. v. The

u_sqaisoutput receives the iavertexsel at 79:8 in sq. vand 3:17

of sqaisoutput module.

86. The sqaisoutput module usesthe control signal

iavertexsel to generate a control signal SQ.SP _gprinputsel

(shownas line 493 in my figure above), which becomes an

SQSPgorinputmux signalin sq.v. (See sqaisoutput. v, 21:7;

sq. v, 80:6.)

87. The sp module receives the SOSPgprinputmux signal as

SQSPgorinputmuxin sp. vat 2:7 and 9:11. The sp modulealso

instantiates four instances of vector units: uvector0, uvectorl,

uvector2, and uvector3. (See sp. v, 15:6-16:18.) Each of the vector0-3

units is defined in the vector modulein vector.v. Each of the four vector

-40-

ATI Ex. 2115

IPR2023-00922

Page 45 of 271

ATI Ex. 2115
IPR2023-00922
Page 46 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

units receives the SOSPgprinputmux signal referred to as

gsq_gprinputmux, as shownat 16:4 of uvector9d,at 16:18 for

uvectori, at 17:19 for uvector2, and 18:11 for uvector3in sp. v. The

gqsq_gpr_ inputmux is the control signal provided by the arbiter.

88. Each of the vector units uvector0O-3 receivesa plurality of inputs.

These inputs include the interpolated data (for pixel operations) and vertex indices

(for vertex operations). The interpolated data is generated using the

uinterpolator instance of the interoolator module described in

interpolator. v. The R400 RTL code whichinstantiates the

uinterpolator instanceis replicated below.

wire [127:0] Interpolatedo,
Interpolatedi!,Iinterpoiated2,Interpolated3;

(sp.v, 14:1.)
Jf a — —_— ---- ----

--~- --- //

//Interpolation Units --- Sane Sane
---- --- //

[/---~- --- --- ---- ----

— eeeeJf

interpolator uinterpolator(.oInterpolatedd (Interpolated0),
-oInterpolated! (Interpolatedi), .ointerpolated2 (TInterpolated?2),

.ointerpolated3 (interpolated3), .sx_sp_vtx_data0O(q_sx_vtx_data0),

-SX_ spvtxdeltaiO(qsx_vtx_datal),.sx_spvtx_deltaz0(q_sx_vtx_da
taZ),

.sqspinterpijline(qsqinterpijline),.sq_sp_interpvaiid(q_sq
_interpvalid), .sq_sp_interp_buff_swap(q_sqinterpbuff_swap),
.sc_spdata(q_sc_data),.sc_spvaiid(q_sc_valid),.sq_spinterp_mod
e(qsqinterpmode), .scsptype(qsctype),
.sc_spquad_last(qsc_last_quad),
.scik(scikx),.srst(srst));

(id. at 14:5-19.)

-4] -

ATI Ex. 2115

IPR2023-00922

Page 46 of 271

ATI Ex. 2115
IPR2023-00922
Page 47 of 271

Case IPR2015-00326 of

US. Patent No. 6,897,871

89. The input data to uinterpolator comes from the gqscdata

signal which is sent by a raster engine. The sp module receives g_sc_data

using the SC_SP interface as SC_SP_data. Ud at 2:7, 10:40.)

90. The output from vinterpolator, including Interpolatedd,

Interpolatedl, Interpolated2, and Interpolated3 1s passed to

each of the vector units uvectorO-3. For example, uvector0receives

Interpolated0, uvectori receives Interpolatedl, uvector2

receives Interpolated2, and uvectorS3receives Tnterpolateds3.(d. at

16:6, 17:1, 17:20, and 18:12.)

91. Each of the vector units uvector0-3 also receive vertex indices as

one of a plurality of inputs. The vertex indices are passed to the vector units

uvector0O-3. For example, the vertex indices are generated using

uspvsr_ctidefinedinthe spvsr_ctimodulein spvsr_ctl.v.The

R400 RTL code which outputs the vertex indices is replicated below.

Jf eee a ——— ~oee ~oee

---- --- //

//Vertex Indices Staging registers and Control
//a---~ --- ---

---- --- //

sp_vsr_ctli uspvsr_cti(. ovEex_indext (VertexiIndex0),
-ovtx_indexl (VertexIndexl).ovtx_index2 (VertexIndex2),
-OVEXIndex3 (Vertexindex3), .isqvsr_data(qsq_vsr_data),

-4).

ATI Ex. 2115

IPR2023-00922

Page 47 of 271

ATI Ex. 2115
IPR2023-00922
Page 48 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

.isq vsr_valid(qsqvsr_valid),
),- Srst(srst));

Ud. at 14:22-15:4)

.isq_vsr_double(qsq_vsr_double), .i
| rbread(qsqvsr_read), .sclk(sclk}

92. The input datato uspvsr_cticomesfrom gqsgvsr_data.

The sp module receives q_sc_data using the SQSP interface as

SQSPvsrdata. (ld. at 2:9, 11:7, 11:17.)

93. The outputs from uspvsr_ct, including VertexIndex0,

VertexIndexi, VertexIndex2, VertexIndex3 are passed to each of the

respective vector units uvector0O-3. For example, uvector0 receives

VertexIndex0, uvectori receives Vertexindexl, uvector2 receives

Vertex Index2, and uvector3 receives VertexIndex3. (/d. at 16:6, 17:2,

17:21, and 18:13.)

94. ‘The arbiter circuitry in vector units uvector0O-3selects one of a

plurality of inputs from the vertex indicies (which are the vertex data) and the

interpolated pixel inputs (whichare the pixel data). For example, the vector

module uses the sq_spgpr_inputmux parameter provided bythe arbiter to

select the vertex data input (7 VertexIndices) or the pixel data input

(i Interpolated), using the R400 RTL code replicated below:

ATI Ex. 2115

IPR2023-00922

Page 48 of 271

ATI Ex. 2115
IPR2023-00922
Page 49 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871
//Muxing logic to select from data comming from the

Tnterpolators(in reality more than just interpolated
data....there can be

/falso Faceness and XY data), AutoCount data and Vertex

Indices comming from the staging registers.
//Hach MACC unit has its own mux logic since the controls are

phased out by one cycle from one MACC to the other.
ae an ma ae

//muxing logic for the inputs of the first MACC
always @(/*AUTOSENSE* /iAutoCount or itnterpolated or

ivVertexindices

or sq_spgprinput_mux)
begin

case (sq sp gpr input mux)
2°00: InputDatad = iAutoCount ;
Z'bOL: InputDatad? = itnterpolated ;

2'b10: InputDatad = ivVertexIndices ;

default: InputDataO = ifInterpolated;

endcase // case(sqsp_gpr_inputmux)
end

//muxing logic for the inputs of the second MACC
always @(/*AUTOSENSE*/iAutoCount or itnterpolated or

iVertexIndices

or gO_gpr_input_mux)
begin
case (qO gpr input mux)

2'bOO: InputDatai = iAutoCount ;
2'bOL: InputDatal = iInterpolated ;
Z'b10: InputDatal = iVertexIndices ;

default: InputDatal = iInterpolated;

endcase // case(qOQgprinputmux)
end

//muxing logic for the inputs of the third MACC
always @(/*AUTOSENSE* /iAutoCount or itnterpolated or

iVertexIndices

or qi_gpr_input_mux)
begin
case(ql gpr input mux)

2'bOO: InputDataz = iAutoCount ;
4'’bOL: InputDataZ2 = iinterpolated ;
2'b10: InputData2 = iVertexIndices ;

default: InputDataz2 = iInterpolated;

endcase // case(qigorinputmux)
end

/f/muxing logic for the inputs of the fourth MACC
aiways @(/*AUTOSENSE*/iAutoCount or itInterpoiated or

iVertexiIndices

or q2gpr_inputmux)

-44.

ATI Ex. 2115

IPR2023-00922

Page 49 of 271

ATI Ex. 2115
IPR2023-00922
Page 50 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871
begin
case (q2 gpr input mux)

2'bOO: InputData3 = iAutoCount ;
2'ROL: InputDatas = ifnterpolated ;

£'bh10: InputData3 = iVertexIndices ;
default: InputDataS = iInterpolated;

endcase // case(q2gprinputmux)
end

(vector. v, 10:2-12:6 (emphasis added).)

95. This is also shown in myfigure above, where lines 207 & 227-228

maptothe sq_spgpr_inputmux parameter and vector. v, 10:2-12:6.

96. The selected input is stored in TnputData0, InputDatal,

InputData2, and InputData3.

97. As explained above, R400 RTL code specifies an arbiter circuit for

selecting one of a plurality of inputs in response to a control signal.

3. The shader coupled to the arbiter circuit

98. The second element of claim | recites “a shader, coupled to the

arbiter circuit.” | have generated a visual representation of the components, as I

understand them, based on the R400 RTL code, that describe howan arbiter circuit

is coupled to the shader, in a figure below:

-45.-

ATI Ex. 2115

IPR2023-00922

Page 50 of 271

ATI Ex. 2115
IPR2023-00922
Page 51 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

nya 7

o|Sloe Ble o <©) 2) ao) 3) 3 oc 2
Pe) e) 2] zl 3x thx) 5! | a 2s Bi) a) € a ~ eBbs =

bo, 2S a c
rvvy =y

Arbiter Multiplexer
ia_vertex_sel ~

sq_ais_output line 493 vector Ines & 227-
(sq_@is_output.v)

Sq_input_arb

(sq_input_arb.v) (vector.v)

u_sq_input_arb u_sq_a is_output uvector0

Arbiter Circuit
 &

3a

z

vector lines 313-497 vector lines 313-497 vector lines 313-497 vector lines 313-497

(vector.v) (vector.v) (vector.v) (vector.v)

uvector0 uvector1 uvector2 uvector3

Shader (sp.v}

99. The shaderincludes the scalar and vector processing pipes and

registers in the sp module. (sp. v.) For example, sp. v instantiates four vector

units (described in Section [X.A.2). The sq module and the sp module connect

the arbiter circuit to the shader components, such as, the vector units.

100. The arbiter circuit is coupled to the shader via a numberof selected

data lines from the selection multiplexer. These signals include InputDatead,

TnputPDatal, TInputData?, and TnputData3. Thesesignals are then

provided to the macc_gpr modules within the vector units to couple the selection

multiplexer in the arbiter circuit with the input of the shader. This is shown using

- 46-

ATI Ex. 2115

IPR2023-00922

Page 51 of 271

ATI Ex. 2115
IPR2023-00922
Page 52 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

the R400 RTL code below,and also in my figure above as lines 313-497 which

map to vector.v at 13:9-22:8.

ffir --- ---- --- -—-- ---

/f/instantiation of all Four MACC units that create a Vector Unit
Lf ma mao moO mo ~s

ba

macc_gprumacc_gpr0(.oVectorOutput (VectorResult0)

, OScalarinput (ScalariInput0O), .oScalarOpcode (ScalarOpcodet),

-ORegData (RegData0}), .oexport_dst(sq_sp_exp_dst),
-sqsp_instruct(sq_spinstruct), .sq_sp_instruct_start
(sq_sp_ instructstart), .sq_sp_gpr_rd_addr(sq_sp_gpr_rd_addr),
-SqSsp_gpr_wr_addr(sq_spwr_addr),.sq_spwr_ena(sq_spwr_ena),.sqspm
enrdena(sqspmemrd_ena),.sq_sp_mem_wr_ena(sqspmemwr_ena),.sq_sp
gpr cmask(sq_sp_channei_mask), .sq_sp_gpr_phase_mux
(sq_sp_g9prphasemux), .iInterpolated (InputDatad),
.sq_spconstant (sq_sp_constant),.iScaiarData(ScalarData),.tpspdata(t

Ppspdata), .tp_sp_gpr_dst(tp_spgpr_dst), .tp_sp_gpr_cmask
(tp_sp_gpr_cmask), .tp_spdata_valid(tp_spdata_valid),.scik(scik),
.srst(srst));

macc_gpr umacc_gpri(.oVectoroutput (VectorResulti) ,.oScalariInput
(Scalarinputi),.coScalarOpcode (ScalarOpcodel),.oRegbData (RegDatai),.sq_s
p_instruct (qg0Q_instruct),.sq_spinstruct_start(qO_instruct_start),.sq_s
P_gprrd_addr(q0_gpr_rd_addr),.sq_sp_gpr_wr_addr(q0O_gpr_wr_addr),.sq_s
P_wr_ena(q0_gpr_we),.sq_spmemrd_ena(qO_gpr_mre),.sqspmem_wr_ena(q0
_gpr_mwe),.sqspgpr_cmask(q0_gpr_cmask),.sq_sp_gpr_phase_mux(q0O_gpr_p
hasemux),.iInterpolated (InputDatal),.sqsp constant(sq_spconstant),.
iScalarData (q0_ScalarData),.tp spdata(tp_spdata),
-tp_sp_gpr_dst(q0_tpgpr_dst), .tp_sp_gpr_cmask(qO_tp_ gpr_cmask),
.tpspdatavalid(q0tpdatavalid),.sclk(sclk), .srst(srstE});

macc_gpr umaccgpr2(.oVectoroOutput (VectorResult2), .oScaiarinput
(ScalariInput?2),.oScaiarOpcode (ScalarOpcodez),.oRegData (RegDataZ),.s

p_instruct (qi_instruct}),.sq_spinstruct_start(ql_instruct_start),.s
Ppgprrd_addr(qi_gpr_rd_addr),.sq_sp_gpr_wr_addr(qi_gpr_wr_addr),.s
P_wr_ena(qi_gpr_we),.sqspmemrd_ena(qi_gpr_mre),.sqspmemwr_ena(g
_gpr_mwe),.Sq_spgpr_cmask(qi_gpr_cmask),.sq_sp_gpr_phase>mux (qi_gpr|
hasemux),.iinterpolated (InputData2),.sqsp constant (sqspconstant),.
iScalarData (qi_ScalarData),.tp spdata(tp_spdata),.tpsp_gpr_dst(qiit
p_gpr_dst), .tp_sp_gpr_cmask(gi_tp_gpr_cmask), .tp_sp_data_valid
(qi tpdatavalid),.scik(scik), .srst(srst)};

caA th

ha
be

macc_gpr umacc_gpr3(.oVectorOutput (VectorResult3), .oScalarinput
(Scalarinput3),.oScalarOpcode (ScalarOpcode3),.cRegData (RegData3),.s

p_instruct (q2instruct),.sq_spinstruct_start(q2_instruct_start),.sq_s
P_gprrd_addr(q2zgpr_rd_addr),.sq_sp_gpr_wr_addr(q2gpr_wr_addr),

-47-

ATI Ex. 2115

IPR2023-00922

Page 52 of 271

ATI Ex. 2115
IPR2023-00922
Page 53 of 271

Case IPR2015-00326 of

USS. Patent No. 6,897,871

-SqQsp_wr_ena(q2z g9pr_we),.sqsp_memrd_ena(qégpr_mre),.sq_ spmem_wr_e
na(q2gpr_mwe),.sqspgpr_cmask(q2_gpr_cmask),.sq_sp_gpr_phase_mux (q2_
gpr_phase_mux),.iInterpolated (InputData3),.sq_sp_constant(sq_sp_consta
nt), .iScalarData (qZ2ScalarData), .tpspdata(tp_spdata),
-sclk(scik),.tp_sp_gpr_dst(q2_tpgpr_dst), .tp_spgprcmask
(gz_tp_gpr_cmask), .tp_spda ta_valid (q2_ tpdatavalid) , Srst(srst));

(vector. v, 14:1-16:7; (emphasis added).)

a. The shaderis operative to process the selected one of
the plurality of inputs

101. The shader is “operative to process the selected one ofthe plurality of

inputs.” Based on my understanding of R400 RTL code, I have generated a figure

below which represents my understanding of the components and describes the

code with the referenceto the figure.

umacc umacc iy i umacec

mace_gpr mace_gpr i | macc_gpr mace_gpr
imacc gpr.v) mace gpr.vi | (macc gpr.v) i (mécc gpr.v)YJ _SE ty — —

umace_gprd umace_gprt umacc_gpr2 umacc_gpr3
| Vector (veetory): |

102. As shown in Section [X.A.2, each of the four vector untts,

uvectord, uvectorl, uvector2, and uvectors3process an input selected

from the interpolated pixel data or the vertex indices which has been provided on

the signals InputData0, InputDatal, InputData2, and InputData3.

- 48 -

ATI Ex. 2115

IPR2023-00922

Page 53 of 271

ATI Ex. 2115
IPR2023-00922
Page 54 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

The InputData0, InputDatal, InputData2, and InputData3 signals

are each a selected one of the plurality of inputs.

103. To process the TnputDatad0, InputDatal, InputData2, and

inputData3 signals, each vector unit instantiates four MACC modules:

umaccgpr0,umaccgpri,umaccgpr2,and umacc_ gpr3. The MACC

modules (umacc_gpr0, umacc_gpri, umacc_gpr2,and umacc_gpr3)

receive the corresponding selected input data (TnputData0, InputDatal,

InputData2, and InputData3) and corresponding instructions

(sqspoinstruct,q@0instruct, qlinstruct,anda2instruct)

using the R400 RTL code below:

(fr ae ee oe a —_ oe —---

/f/instantiation of all Four MACC units that create a Vector Unit
Lf mo mao ma mo ~s

macc_gprumacc_gpr0(.oVectorOutput (VectorResult0)
, oScalarinput (ScalariInput0), .oScaliarOpcode (ScalarOpcoded),

-oRegData (RegData0), .oexport_dst(sq_sp_exp_dst),
-sq_sp_instruct(sq_spinstruct), .sq_sp_instruct_start
(sq sp instruct start), .sq_spgpr_rd_addr(sq_sp_gpr_rd_addr),
-SQsp_gpr_wr_addr(sq_sp_wr_addr),.sqsp_wr_ena(sq_ spwr_ena),.sq_sp™
em radena(sqsp_memrd_ena),.sq_sp_mem_wr_ena(sqspmemwr_ena),.sq_sp
gor cmask(sq sp channel mask), .sq sp gpr phase mux

‘(sq_sp_gpr_phasemux) , iin terpolated (InputDatad),
-sq_spconstant (sq_spconstant),.iScaiarData(ScalarData),.tpspdata(t

Ppspdata), .tp_sp_gpr_dst(tp_spgpr_dst), .tp_sp_gpr_cmask
(tp_sp_gpr_cmask), .tp_spdata_valid(tp_spdata_valid),.scik(scik),
.srst(srst));

macc_gpr umacc_gpri(.oVectorCutput (VectorResulti) ,.oScalarinput
(Scalarinputi),.oScalarOpcode (ScalarOpcodel),.oRegData (RegDatai),.sq_s
p_instruct (qgO_instruct),.sq_sp_instruct_start (gO instruct start),.sq_s
P_gpr_rd_addr(q0_gpr_rd_addr),.sq_sp_gpr_wr_addr(q0O_gpr_wr_addr),.sq_s

-49.

ATI Ex. 2115

IPR2023-00922

Page 54 of 271

ATI Ex. 2115
IPR2023-00922
Page 55 of 271

Case IPR2015-00326 of

USS. Patent No. 6,897,871

P_wr_ena(q0O_gpr_we),.sq spmemrd_ena(qgo_gpr_mre),.sq_sp_mem_wr_ena (qo
gpr_inwe),.sq_ sp_gpr_cmask (q0Q_gpr_cmask),.sq_sp_gpr_phase_mux(q0_gpr_p
asemux),. iInterpolated (InputDatal) ,-Sq_ spconstant (sq_sp_constant),.
ScalarData (qO_ScalarData),.tp_spdata(tp_spdata),

-Up_sp_gpr_dst(q0_tpgpr_dst), .tpspgpr_cmask(qO_tpgpr_cmask),
.tp_sp_data_vaiid(q0_tpdatavalid}),.scik(scik), .srst(srst));

A
i

macegpr umaccgpr2(.oVectorOutput (VectorResult?2), .oScalarinput
(Scalarinput2),.oScalarOpcode (ScalarOpcodez),.oRegData (Regdataz),.sq_
p_instruct (ql_instruct),.sq_sp_instruct_start(qi instruct start),.sq_
P_gpr_rd_addr(qi_gpr_rd_addr),.sq_sp_gpr_wr_addr(qi_gpr_wr_addr),.sq_
P_wr_ena(qigprwe),.sqsp_memrd_ena(qi_gpr_mre),.sq_spmemwr_ena(ql
_gpr_mwe),.sq sp_gpr_cmask (qi_gpr_cmask),.sqsp_gpr_phase_mux(qi_gpr_p
hase_mux),.iinterpolated (InputData2),.sq_ spconstant (sq_sp_constant),.
iScalarData (qi_ScalarData),.tpspdata(tp_sp_data),.tp_spopr_dst(qi_t

gpr_dst), .tpspgprcmask(ql_tpgpr_cmask), .tp_spdata_valid
i tp_data_valid) , SClk(sclk), .srst(srst))-;

+

fewmth

p

(¢

maccgpr umaccgpr3(.oVectorOutput (VectorResult3), .oScalarinput
(Scalarinput3),.oScalaroOpcode (ScaliarOpcode3),.coReqData (RegData3),.sq s

p_instruct (q2_instruct),.sq_sp_instruct_start(g2 instruct start),. sqs
P_gpr_rd_addr(q?gpr_rd_addr),.sq_sp_gpr_wr_addr(q?2_gpr_wr_addr),
-SqQspwr_ena(qzgpr_we),.sqspmemrd_ena(qégpr_mre),.sq_ spmem_wr_e
na(q2gpr_mwe),.sqspgpr_cmask(q2_gpr_cmask),.sqsp_gprphasemux (q2_
gpr_phase_mux),.iinterpoiated (InputData3),.sq_spconstant (sq_sp_consta
nt), .iScalarData (qZ2ScalarData), .tpspdata(tp_spdata),
-Ssclk(scik),.tp_sp_gpr_dst(q2_tp_gpr_dst), .tp_sp_gprcma
(q2_tp_gpr_cmask), .tp_sp_data_valid(q2tpdata_valid),.sr

(vector. v, 14:1-16:7; (emphasis added))

104. The macc_gpr module inputs the selected data as the

iinterpolatedsignal, as shown in macc_gpr. vat 1:20 and 2:11. The

macc_gpr module is operative to process the selected one of the plurality of inputs

(the iInterpoiated signal). (See macc_gpr.v.)

b. The shader including means for performing vertex
operations and pixel operations

105. The shader also includes “means for performing vertex operations and

pixel operations.”

- 50 -

ATI Ex. 2115

IPR2023-00922

Page 55 of 271

ATI Ex. 2115
IPR2023-00922
Page 56 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

106. Itis my understanding that the Board construed the above term to

include a register, an instruction sequencer capable of providing instructions for

performing vertex operations and pixel operations, and a processor capable of

floating point arithmetic and logical operations on a selected input. Here, I opine

on whether the R400 RTL code includes the functionality and the corresponding

structure as construed by the Board.

107. Based on my understanding of the R400 RTL code, I have generated a

figure below which represents my understanding of the components, and describe

the code with reference to the figure.

Instruction Sequencer

Sq_alu_instr_seq sq_alu_instr_queue

(sqalu_instrseq.v) (sqalu_instrqueue.v)

 u0_sq_alu_instr_seq u0_sq_alu_instr_queue

Register g_RegData

Processor

umacc

macc_gpr

umacc_gpr0

Vector

-5| -

(macc_gpr.v)

ATI Ex. 2115

IPR2023-00922

Page 56 of 271

ATI Ex. 2115
IPR2023-00922
Page 57 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

108. Themaccgpr module includesa register that stores data. For

example, the macc_gpr module includesregister file output signal RegData

that provides data retrieved from a register file memory called ugpr_mem” of

module type “rfsd2_ 128x128cm2swi”. (macc_gpr.v, 8:1-12:20.) The

values from RegDataare then stored in the register called gqRegData.

(macc_gpr.v, 3:15 and 15:13.) As I describe below, q_RegData stores the

selected input. As such, the shader includes a register.

109. The shaderalso includes an instruction sequencer capable of

providing instructions. I discuss the instruction sequencer in greater detail belowin

Section [X.K.3., but briefly; the sq module includes an instruction sequencer. The

instruction sequencer passes instructions to the shader included in the sp module

using the SQSP interface. The interface includes the SQ_SP_ instruct signal

which provides the instruction. (sq. v, 2:17, 12:9, and 80:11.)

110. The sp module receives the instruction using the SQ_ SP interface,

and converts the instruction into q_sqinstruct, as shown using the R400

RTL code below:

module sp (/*AUTOARG*/

SQ SPinstructstart, SQ SPinstruct, SQSP_stail,

-52)-

ATI Ex. 2115

IPR2023-00922

Page 57 of 271

ATI Ex. 2115
IPR2023-00922
Page 58 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

input [20:0] SQ SP instruct;

atidffin #(21) sqinstruct(sclk,SQSPinstruct,qsqinstruct);

(sp. v, 1:18, 2:3, 6:13, 7:2.)

111. The sp module passes the q_sq instruct. instruction to the

vector units uvector0, uvectori, uvector2, and uvectors. (Ud. at 14:18-

18:2.) Each of the vector units uvector0, uvectcri, uvector2, and

uvector3 receives the instruction as q_sqinstruct and converts the

instruction to sq_spinstruct. (Ud. at 15:20, 16:9, 17:10, 18:13; and

vector. v, 1:19, 2:7.)

112. The vector unit passes the qsqinstruct instruction to the

macegpr0,macc_gpri,macc_gpr2, or macc_gpr3 modules, as

sq_sp_instruct, gOinstruct, gi_instruct,and g2instruct.

(vector. v, 8:12-14, 14:10, 14:26, 15:11, 15:27.) The four instances of the

mac_gprmodule (the macc_gpr0,macc_gpri,macc_gpr2, or

maccgpr3) receive the instruction as sg_sp_instruct and passthe

instruction to a MACC module called umacc, whichis replicated using the R400

RTL code below:

Macc umacc(.oResult (VectorResulit), .oScalarOpcode (oScalaroOpcode)

, oScalarInput (oScalarinput),.oExportDst (oexportdst),

-53-

ATI Ex. 2115

IPR2023-00922

Page 58 of 271

ATI Ex. 2115
IPR2023-00922
Page 59 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

.iRegbata (q_RegData),.iConstantData(sq_sp_constant),.iScalarData (
iScalarData), .iInstruction(sq_sp_instruct),
-iinstStart (sq_sp_instruct_start), .sclk(scik}), .srst(srst)};

(macc_gpr.v, 3:17-21.)

113. The MACC module receives instructions from the sequencer using the

sq_sp_instruct signal and converts it to iInstruction. TheMACC

module also receives qRegData, and manipulates qRegData using

ifnstruction. For example, the MACC module includes a mad unit called

macc32 that performs the required calculations, replicated below:

//Floating point Multiply and Accumulate
macc32 mad (OperandAMod, OperandBMod, OperandCMod,

VectorOpcode,MaccResult,scik);

(mace. v, 24:25-25:2.)

114. The macc32 module receives OperandAMod, OperandBMod,

OperandCModas operands which include the data maintained in the register

block (oReqData), and the VectorOpcode whichincludesinstructions. The

mace32 module is then operative to use OperandAMod, OperandBMod,

OperandCMod and VectorOpcode to perform 1) floating point operations

whichare arithmetic operations, and 2) logical comparisons whichare logical

operations. See e.g.macc32.mc.

-54-

ATI Ex. 2115

IPR2023-00922

Page 59 of 271

ATI Ex. 2115
IPR2023-00922
Page 60 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

115. The vector modules, which include the macc_gpr modules, and

the MZACC modules within the so modules are the structures that performthe

vertex operations and the pixel operations.

116. Within the instruction sequencer, SOSPinstruct is generated in

the sq_aisoutput module, as shown using the R400 RTL code below:

module sq ais output

SQ

output [20:0] SOQSPinstr;

reg [20:0] SQSP_instr;

//

// ~~ SP instruction, writemask --
ffoaaa>

// - valid with ins truction start

@ (posedge cik)

(gpr_phase)
OQSRCBPHASE: begin
case (alu_phase)

LO: begin
SQSPinstr <= [3'bOO0, aiqO_instr[06:00],

aigOinstr[{55:48), aigQ_instr[58], aiqO_instr[i01:99]};
u0_SQSPwritemask <= aiqgOvalidbits [3:0];

ulSQSPwritemask <= aigOvalidbits [7:4];
u2SQSPwritemask <= aigOvalidbits [11:8];

u3_ SQSPwritemask <= aiqgOvalidbits [15:12];
end

HI: begin
SQSP_instr <= faiqgi_instrf07:00], aiqi_instr[55:48],

aigiinstr/{58], aigl_instr[i01:99]};
uOSQSPwritemask <= aigivalidbits [3:0];

ulSQSPwritemask <= aigivalidbits [7:4];
u2SQSPwritemask <= aigilvalidbits [11:8];

u3_ SQSPwritemask <= aiqivalidbits [15:12];
end

endcase

~55-

ATI Ex. 2115

IPR2023-00922

Page 60 of 271

ATI Ex. 2115
IPR2023-00922
Page 61 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871
end

‘SQ SRCC_PHASE: begin
case (alu_phase)

LO: begin

SQSP_instr <= faigOinstr[15:08], aiqO_instr[47:40],
aigOinstr[57], aiqO_instr/[98:96]};

uOSQSP_ write_mask <= aigo_valid bits [19:16];
ulSQSPwritemask <= aiqOvalid baits [23:20]

uZSQSPwritemask <= aiqOvali
u3_SQSPwritemask <= aiqOvalidbits [31:28];

end

HI: begin

SQSP_instr <= faiqi_instr/[15:08], aiqi_instr[47:40],
aigiinstr[57], aigl_instr[98:96]};

a

u0O_SQSPwritemask <= aiglvalid_bits [19:16];
ulSQSPwritemask <= aiqivalidbits [23:20];

u2SQSPwritemask <= aiqivalid_bits [27:24];
u3_SQSPwritemask <= aiqlvalidbits [31:28];

end

endcase

end

“SQ_ FA_ PHASE: begin
case (alu_phase)

LO: begin
SQSP_instr <= {aigO_instr[23:16], aiqO_instr[39:32],

aigOinstr[56], aigO_instr[95:93]};
u0_SQSP_writemask <= aigOvalidbits [3

ul_ SQSPwritemask <= aiqOvalidbits [39:36];

u2SQSPwritemask <= aevalidbits [43:40];u3SQSPwritemask <= aiqd_validbit [47:44];
end

HT: begin

SQSPinstr <= faigi_instr[23:16], aiqi_instr[39:32],
aigiinstr/[56], aigl_instr[95:93]};

Cy 32];

uOSQSP_ write_mask < aigqivalidbits [35:32];
ulSQSP_writemask <= aiqi_valid_bits [39:36];

u2_SQSP_ write_mask <= aigivaiid_bits [43:40];
usSQSP_writemask <= aigi_validbits [47:44];

end

endcase

end

‘SQ _SRCA_PHASE: begin
case (alu_phase)

LO: begin

SQSP_instr <= faigOinstr/[23:i6], aiqO_instr/[25:24],
aigOinstr[{3i:26j, aigO_instr[92:88]};

u0_SQSP _write_mask <= aigOvaiid_bits [51:48];
ulSQSPwritemask <= aigOvalidbitS [55:52];

u2SQSPwritemask <= aigOvalid bits [59:56];
u3_SOSPwritemask <= aiqOvalidbits [63:60];

end

HT: begin

- 56 -

ATI Ex. 2115

IPR2023-00922

Page 61 of 271

ATI Ex. 2115
IPR2023-00922
Page 62 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

SQSPinstr <= faigi_instr[23:16], aiql_instr[25:24],
aigiinstr[{3i:26j, aigl_instr[92:88]};

uO_SQSP_write_mask <= aiglvaiid_bits [51:48];
ulSQSPwritemask <= aiqivalidbits [55:52];

u2SQSPwritemask <= aigilvaiidbit
usSQSPwrite_mask <= aiglvalidbits [63:60];

end

endcase

end

endcase

end

[59:56];ts

(sqaisoutput. v, 2:7-8, 15, 7:1, 9:1, 16:9-19:13.)

117. These instructions come from the sq_aluinstrqueue module

which is instantiated in sq. vas u0_sqaluinstrqueue.(sq. Vv, 68:6-

69:24.) The instructions pass through the instruction sequencer whichis

instantiated as uOsqaluinstrseg (sq. v, 70:2-71:21) and is defined in

sq_alu_instr_seq.v.

118. Further, signal aif threadtype_4q, replicated below, showsthat

the instructions can be for vertex or pixel operations.

aifthread_typeq, // vector type (0: pixel, 1: vertex)

(sqaluinstrqueue.v, 2:21.)

119. As such, the shader may perform one of vertex operations or pixel

operations depending, in part,on aif threadtypeg.

-57-

ATI Ex. 2115

IPR2023-00922

Page 62 of 271

ATI Ex. 2115
IPR2023-00922
Page 63 of 271

Case IPR2015-00326 of

USS. Patent No. 6,897,871

c The shader also includes means for performing one of
the vertex operations or pixel operations based on the
selected one of the plurality of inputs.

120. The shader also includes the means for “performing one ofthe vertex

operations orpixel operations based onthe selected one ofthe plurality ofinputs.”

121. As discussed in Section [X.A.2, the sp module receives 1) the

Ssq_sp_gpr_input_mux signal which indicates to the sp module to perform

vertex operations or pixel operations, and 2) the SQSPinstruct signal that

provides the instructions of the selected operations. The macc_gpr module then

performs the selected operation as discussed in Section [X.A.2, and is the means

for performing the vertex operations or the pixel operations.

d. And the shader provides a appearanceattribute.

122. And “the shaderprovides a appearance attribute.” Based on my

understanding of the R400 RTL code, I have generated a figure below which

represents my understanding of the components, and describe the code with

reference to the figure.

- 58 -

ATI Ex. 2115

IPR2023-00922

Page 63 of 271

ATI Ex. 2115
IPR2023-00922
Page 64 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

Parameter Cache

parameter_caches

(parametercaches.v)

uparam_caches
Shader

SP_SX_data0
Position Cache

pa_ag lines 2786-2803

(pa_ag.v)
123. Once the vector units complete processing, the vector units

generate data called spsxdata (see vector. v, 4:5) and provide

spsxdata toa shader export block, called the sx module (specified in sx. v).

124. For example, each MACC module generates a vectorresult, called

VectorResultd, VectorResultil, VectorResult2, and

VectorResult3 respectively. (vector. v, 14:7, 14:25, 15:10, and 15:26.) In

the MACC module the vector result is called oResult. (macc. v, 1:14, 3:6, and

29:1.) Signal oResult is generated based on the i Instruction, iRegData,

and iScalarData that are inputs to theMACC module. Ud. at 1:16, 1:25, 2:50.)

- 59 -

ATI Ex. 2115

IPR2023-00922

Page 64 of 271

ATI Ex. 2115
IPR2023-00922
Page 65 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

The MACC module parses the iT uctionand assignsdifferent bits of

iInstructionto color (red, green, blue) and alpha (transparency) signals, as

shown using R400 RTL code below:

|[an---- --- --- ---- ----

//----- --- --- ----

//Registering the Instruction word (20 bits) in four
consecutive cycles

Jfr----> --- --- ie

always@ (posedge scik)
if(srst)

gqInstructionO <= 21'b0;
else if (decode_SrcA)

gqInstructionO <= iinstruction;

always@ (posedge scik)
if(srst)

gqInstructionl <= 21'b0;
else if (decode_SrcB)

gqInstructioni <= ifnstruction;

always (posedge scik)
if(srst)

qInstruction2Z <= 21'b0;
else if (decode_Srcc)

qInstruction2 <= ifnstruction;

always (posedge scik)
if(srst)

qInstruction3 <= 21'b0;

else if (decode_Cpsede)
qInstruction3 <= ifnstruction;

//qrabing the export destination ID.
& instruction this i//Tf we are dealing with an expor

identifies which

/fattribute is being exported ...please refer to the shader
pipe spec for more details

//on this

la --- --- ----

ssign cExportDst = qInstruction0/17:12/;

//----- --- --- ---- ----

- 60 -

ATI Ex. 2115

IPR2023-00922

Page 65of 271

ATI Ex. 2115
IPR2023-00922
Page 66 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871
//decoding the instruction word into a set of select/modify

nais used

{/f/for argument selection and input modification on the way to
MACC unit

//a---~ --- --- ---- ----

assign SrcASel = qInstructionO/[2:0];
assign SrcANegate = qInstruction0O[3:3];
assign SrcAAlphaSwizzle = qInstructionO/[ii:10];
Q YH aQsms

as sign
assign

assign
assign
assign
assign
ssign

assign

nH MH& 35

yo wegegggoS
3SO&@©&& Hdwd& ba.ba.RAAhau L ©

= qInstruction0[5:4];
= qInstruction0O[7:6];SrcAGreenSwizzle

e = qInstruction0O[9:8];

Z

SrcARedSwizzi
Ze

SrcABlueSwizz

e

i

SrceBSeli = gqInstructioni[2:0];
SreBNegate = qInstruction1/3:3];

SrcBAiphaSwizzle = caeneemSrcBRedSwizzle = qInstruction1 [5:4];SrcBGreenSwizzle = ——structioni/7:6];
SrceBBlueSwizzle = q Instruction1[9:8];

SreCSel = qInstruction2[2:0];
SrcCNegate = qInstruction2/3:3];
SrcCAlphaSwizzle = qInstruction2/ii:10];

SrceCRedSwizzie = LInstruction2/5:4];
SreCGreenSwizzle = qInstruction2/7: 6];
SrceCBlueSwizzle = qInstruction2[9:8];

VectorOpcode = qInstruction3[4:0];
ScalarOpcode = qInstruction3[10:5];
VectorClamp = gqInstruction3/li:il];
ScalarClamp = qInstruction3/[12:12];
VectorWriteMask = qInstruction3[16:13];
ScalarWriteMask gqInstruction3/[20:17];

(Ud. at 10:12-13:6.)

125. The MACC module then uses these color and alphasignals to

manipulate the 7 ReqgData as shown using the RTL code below:

//Argqument Selectin for the three source operands going into
the MACC unit

-6| -

ATI Ex. 2115

IPR2023-00922

Page 66of 271

ATI Ex. 2115
IPR2023-00922
Page 67 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871
//All information required for the selection logic in embedded

into the ALU

//TInstrution Word. Please refer to the Shade Processor Spec
for a delailed

//definition of the select fields for the three sources
[forae

always@(SrcASei or iConstantData or iRegData or VectorData or
iScalarData)

begin
case (SrcASel)

3°bO0C0O : InputDataA = iConstantData;
3'b1i00 : InputDataA = iRegData;
3'bi0Ol : InputDataA = iRegData;
3'bil0 : InputDataA = VectorData;
3'blil : InputDataA = iScalarData;
default: InputDataA = iRegData;

endcase // case (SrcASei)

end // always@ (SrcASel or iConstantData or iRegData or
iVectorData or iScalarData)

always@(SrcBSel or iConstantData or iRegData or VectorData or
iScalarData)

begin
case (SrcBSel)

3°bO00 : InputDataB = iConstantData;
3'bi00 : InputDataB = iRegData;
3'bi0O1l : InputDataB = iRegData;
S3'b1i0 : InputDataB = VectorData;
3'biili : InputDataB = iScalarData;
default: InputDataB = iRegData;

endcase // case (SrcBSel)

end // always@ (SrcBSel or iConstantData or iReqData or
iVectorData or iScalarData)})

always@(SrcCSel or iConstantData or iRegData or VectorData or
iScalarData)

begin
case (SrcCSel)

3'bO0OO : TnputDataC = iConstantData;
3'bi00 : InputDataC = iRegData;
3'bi01 : InputDataC = iRegData;
S3'b1ii0 : InputDataC = VectorData;
3'biliil : InputDataC = iScalarbData;
default: InputDatac = iRegData;

endcase // case (SrcCSel)

end // always@ (SrcCSel or iConstantData or iRegData or
iVectorData or iScalarData)

//----- --- --- ---- ----

-62-

ATI Ex. 2115

IPR2023-00922

Page 67of 271

ATI Ex. 2115
IPR2023-00922
Page 68 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

//----- --- --- ---- ----

//Input Modifiers ie. swizzlie and negate are begin applied
|forre- ae — a a

©

//Source A swizzling

always@(inputDataA or SrcAAlphaSwizzle)
case (SrcAAlphaSwizzle)

2'PO00: SrcAAlphaBus = InputDataA/127:96];

2'bOL: SrcAAlphaBus = InputDataA/[95: 64];
2'b1l0: SrcAAlphaBus = InputDataA!l63:32];
2'’bil: SrcAAiphaBus = InputDataA/lsi:O0];

endcase // case (SrcAAlphaSwizzile)

always@(inputDataA or SrcARedSwizzle})
case (SrcARedSwizzle})

2°P00: SrcARedBus = InputDataA[95: 64];

2'bO1: SrcARedBus = InputDataAl63:32];
2'b10: SrcARedBus = InputDataA/[3i:0/];

2'bili: SrcARedBus = InputDataA/[1i27:96);
endcase // case (SrcARedSwizzie)

always@(inputDataA or SrcAGreenSwizzle)
case (SrcAGreenSwizzle)

2'~p00: SrcAGreenBus = IinputDataA/l63:32];

2'pO0l: SrcAGreenBus = InputDataAlsi:o0/];

2'bi0: SrcAGreenBus = InputDataA/li27:96];
2'’bil: SrcAGreenBus = InputDataA/l95: 64];

endcase // case(SrcAGreenSwizzle)

always@(inputDataA or SrcABlueSwizzle)
case (SrcABlueSwizzle)

2'°PO0O0: SrcABlueBus = InputDataA!l3i:0/;

2'°PO01: SrcABlueBus = InputDataAl127: 96];

2'b10: SrcABlueBus = InputDataA/[95:64);
2'’oil: SrcABiueBus = InputDataAl63:32];

endcease // case(SrcAGreenSwizzle)

//Source B swizzling

aiways@(InputDataB or SrcBAlphaSwizzle)
case (SrcBAlphaSwizzle)

2'bOO: SrcBAiphaBus = InputDataB/127:96];
2'bO1l: SrcBAiphaBus = InputDataB/l95: 64];

2'bi0: SrcBAiphaBus = InputDataBl6é3:32];

2'bili: SrceBAlphaBus = InputDataB/3i:0];

-63-

ATI Ex. 2115

IPR2023-00922

Page 68 of 271

ATI Ex. 2115
IPR2023-00922
Page 69 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871
endcase

always@ (InputDataB or SrcBRedSwizzle)
case (SrcBRedSwizzie)

2'bO0O: SrcBRedBus = InputDataBl95: 64];
2'°pPO01: SrceBRedBus inputDatabl63:32);

2'D10: SrcBRedBus InputDatabB[3i:0];

2°Pll: SrcBRedBus InputDataBl1i27:96]);
endcase // case (SrcBRedSwizzie)

always@(IinputDataB or SrcBGreenSwizzle})
case (SrcBGreenSwizzile)

2° DOO: SrcBGreenBus inputDataB/[63:32];
2'bO1: SrceBGreenBus = InputDataB/31:0/];
2'b10: SreBGreenBus = InputDataBli27:96/;

2'bili: SrceBGreenBus = InputDataB/95: 64];
endcease // case(SrcBGreenSwizzle)

always@ (inputDataB or SrcoBBlueSwizzle})
case (SrcBBlueSwizzle)

2'DOO: SrcBBlueBus = InputDatabl3i:0];
2'pO0l: SrceBBliueBus = InputDataBliz7: 96);

2'b10: SrcBBlueBus = InputDataB/l95:64);
2'bli: SrcBBlueBus = InputDataBl6é3:32];

endcease // case(SrcBGreenSwizzle)

//Source C swizzling
always@(inputDatac or SrceCAlphaSwizzie)
case (SrcCAlphaSwizzle}

Z2'~PO0O0: SreCAiphaBbus = InputDataC/li27:96];

2'°pPO0l: SrceCAlphaBus = InputDatac/95: 64];

2'b10: SrceCAlphaBus = InputDataC/[63:32];
2'’bil: SreCAlphaBus = inputDataC/3si:0];

endcase

always@(inputDataC or SrcoCRedSwizzle)
case (SrcCRedSwizzle)

2'°~O0O0: SrcCRedBus = InputDataC/[95:64/;

2'°PO01: SreCRedBus = InputDataC/[63:32];

2'b10: SrceCRedBus = InputDataC/[31:0];
2'’oii: SreCRedBus = InputDataC/[iz7:96];

endcase // case(SrcCRedSwizzle)

always@ (inputDataC or SrcoCGreenSwizzle})
case (SrcCGreenSwizzle)

2'DOO: SrcCGreenBus = InputDataC/63:32];
2'pO0l: SrecGreenBus = InputDatac/31:0/];

2'b10: SrceCGreenBus = InputDataC/i27: 96];
2'bil: SreCGreenBus = InputDataC/[95: 64];

endcase // case(SrcCGreenSwizzle)

- 64 -

ATI Ex. 2115

IPR2023-00922

Page 69 of 271

ATI Ex. 2115
IPR2023-00922
Page 70 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

always@(InputDatacC or SreCBlueSwizzle)
case (SrcCBlueSwizzie)

2'°DO0: SrcCBlueBus

2'bOL: SreCBiueBus InputDataC/[127: 96];
2'pl0: SreCBiueBus TnputDataC/95:64)];

2'’bil: SrecBiueBus = InputDataCl63:32];
endcase // case(SrcCGreenSwizzle)

InputDataC/3i:o0j;

//Modeling stages for the Argument storing
{f----- --- --- ---- ----

// always@ (SrcAAlphaBus or decode SrcA)
// if (decodeSrcA)
Af SrcAAlphaBushatchi = SrcAAlphaBus;

always@ (posedge scik)

if (decode_SrcB)
begin

SrcAAlphaBuslhatchi <= SrcAAlphaBus;
SrcARedBushatchO <= SrcARedBus;

SrcAGreenBushatch? <= SrcAGreenBus;

SrcABlueBushatchO <= SrcABlueBus;
end

always@ (posedge scik)

if (decode_Srcc)
begin
SrcBAlphaBuslatchi <= SrcBAlphaBus;
SrcBRedBushatchi <= SrcBRedBus;

srcBGreenBuslhatchO <= SrcBGreenBus;

SrcBBlueBushatchO <= SrcBBluebus;
en

t

ty

on

always@ (posedge scik)

if (decode_Opcode)
begin
SrcCAlphaBushatchi <= SrcCAlphaBus;
SreCRedBushatcni <= SrcCRedBus;

SreCGreenBushatchi <= SrcCGreenBus;

SrceCBlueBushatchoO <= SreCBlueBus;
d

Kyit3
el ©

//second level of latches

always@ (posedge scik)

if (decodeSrcA)

- 65 -

ATI Ex. 2115

IPR2023-00922

Page 70 of 271

ATI Ex. 2115
IPR2023-00922
Page 71 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871
begin
SrcARedBushatchi <= SrcARedBushatcho;

SrcAGreenBushatch] <= SrcAGreenBushatch0O;

SrcABlueBusLatchi <= SrcABlueBuslatch0;

rceBGreenBusLatchi <= SrcBGreenBushatcho;
SrcBBlueBusfhatchi <= SrcBBiueBusLatchd0;

SreCBlueBushatchil <= SreCBlueBusihatch0;

c

iMH

register the outputs from the latches into the MACC unit

enc

[{----- a

Jf regi ntp
//---~- ---

always (posedge sclk)
begin
if(decode_SrcA)

OperandA <= SrcAAlphaBusLatchi;

else if (decodeSrcB)
OperandA <= SrcARedBuslatci

else if (decode Srcc)
OperandA <= SrcAGreenBuslhatch1;

elise

OperandA <= SrcABlueBushatchi;
end // always@ (scik)

wy i;

always@ (posedge scik)

/

begin

OperandB <= SrcBAlphaBushatchil;

else if (decode_SrcB)
OperandB <= SrcBRedBushatchI;

else if (decode_Srcc)
OperandB <= SrcBGreenBushatchi1;

elise

OperandB <= SrcBBlueBuslatchi;

end // always@ (scik)

always@ (posedge scik}
begin
if (decode_SrcA)

Operandc <= SrcCAlphaBuslatchi;

else if(decode_&rcB)
Operandc <= SrcCRedBusthatcnl;

else if (decode_Srcc)
OperandC <= SrcCGreenBushatchi;

else

OperandC <= SrceCBlueBushatcnl;
end // always@ (scik)

 / a —~- --- a

- 66 -

ATI Ex. 2115

PR2023-00922

Page 71 of 271

ATI Ex. 2115
IPR2023-00922
Page 72 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871
//Input ModifierNEGATE.
Jf----- — ---- _-

always@ (SrcANegate or OperandA)
if (SrcANegate)

OperandAMod/31:0]J=
fOperandA/31i]°“SrcANegate,OperandA/[30:0!]};

else

OperandAMod = OperandA;

always@(SrcBNegate or OperandB)
if (SrcBNegate)

OperandBMod/31:0/]=

{OperandB/31]“SrcBNegate,OperandB[30:0!]};
else

OperandBMod = OperandB;

always@(SrcCNegate or Operandc)
if (SrcCNegate)

OperandCMod/31:0]=
sO]};ndcCf[3sij]“SrecNegate, OperandcC [30{Opera

else

OperandCMod = OperandC;

(/d. at 13:8-23:22.)

126. Then, theMACC module generates oResult whichincludes, for

example, a color or alpha attribute as a results of instructions in the color and alpha

parameters, using the R400 RTL code below:

//Floating point Multiply and Accumulate
macc32 mad (OperandAMod, OperandBMod, OperandCMod,

VectorOpcode,MaccResult,scik);

|fon--- ---

{/f/some of the opcodes do not have to be implemented via the

MACC unit

//for example
exponents and/or mantissas of

//the two numbers assuming that the numbers are normalized
//this is a separate parallel pipeline from the MACC
[[oooeenennn+

; MAX can be implemented via compares of the

//MIN or MAX

- 67 -

ATI Ex. 2115

PR2023-00922

Page 72 of 271

ATI Ex. 2115
IPR2023-00922
Page 73 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871
//revisit this logic for the case when exp = 0 ...ANDI
always @(/*AUTOSENSE* /OperandAMod or OperandBMod)

begin
if (OperandAMod/[30:0] >= OperandBMod[30:0])}

begin
if (!OQperandAMod[31/j)

begin
ResuitMax = OperandAMcod;
ResultMin = OperandBMod;
end

else

begin
ResultMax = OperandBMcd;
ResultMin = OperandAMod;
end

end // if (OperandAMod/[30:0] >= OperandBMod/30:0/])})
else if (OperandBMod/[30:0] >= OperandAMod[30:0])}

begin
if (!OperandBMod[3i])

begin
ResuitMax = OperandBMcd;

ResultMin = OperandAMod;
end

else

begin
ResuitMax = OperandAMcd;

ResultMin = OperandBMod;
end

end // if (OperandBMod/30:0] >= OperandAMcd/30:0])
end // always @ (...

//choose MIN vs. MAX

assign ResultMaxMin = (opcodemuxctlf[ij) ? ResultMax
ResultMin;

//delay the ResuitMaxMin to match with the other path of the
pipeline that goes through the MACC

always@ (posedge scik)
begin

qoQResultMaxMin <= ResuitMaxMin;
qiResultMaxMin <= qOResuitMaxMin;
q2ResultMaxMin <= qlResultMaxMin;
q3_ResultMaxMin <= q2ResuitMaxMin;
end

i 7a 7a TTT TTT

//Routing the Resul ct into MaccResultMux based on the opcode

- 68 -

ATI Ex. 2115

IPR2023-00922

Page 73 of 271

ATI Ex. 2115
IPR2023-00922
Page 74 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871
[{----- --- ~-- ----

always @(/*AUTOSENSE* /MaccResuit or q3ResuiltMaxMin
or q4opcode_mux_cti)

begin
case(q4opcodemuxctl)

2°DOO: MaccResultMux = MaccResult;

2'bO1l: MaccResuitMux = q3ResultMaxMin;
2'b10: MaccResuitMux = q3_ResultMaxMin;
default : MaccResuitMux = MaccResuit;

endcase // case(opcodemuxctl)
end

ffrrra =o =a =aa

//Clamping the result and other output modifiers
always@ (/*AUTOSENSE* /MaccResultMux or ResultClamp)

begin
if (ResultClamp)

begin
if(MaccResultMux[3i])

MaccResultClamp = ZERO;

else if (MaccResultMux/[30:24] > GTONEEXP)
MaccResultCiamp = ONE;

else

MaccResultClamp = MaccResultMux;
end

elise

MaccResultClamp = MaccResultMux;

end // always@ (MaccResult or ResultClamp)

{/----- --- --- ----

//pipeline delays for the code....creating the 4 stage delay
for the VectorResult

//-----

always@ (posedge scik)
begin

gOMaccResultCiamp <= MaccResultClamp;
qiMaccResultClamp <= gOMaccResuitClamp;
qg2MaccResultClamp <= qiMaccResuitClamp;
end

assign VectorData = {q2MaccResultClamp, qi_MaccResultClamp,
qQMaccResultClamp, MaccResultCiamp};

assign oResuit = {q@2MaccResultClamp, gi_MaccResultClamp,
gOMaccResultClamp, MaccResultClamp} ;

Ud. at 24:25-29:2.)

- 69 -

ATI Ex. 2115

IPR2023-00922

Page 74 of 271

ATI Ex. 2115
IPR2023-00922
Page 75 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

127. Each one of MACC modules passes the oResult output to the

respective VectcrResult0, VectorResulti, VectorResult2, and

VectorResult3 signals, which include an appearance attribute. The shader thus

generates an appearanceattribute.

128. The vector result signals (VectorResult0, VectorResultl,

VectorResult2, and VectorResult3) are assigned to sp_sx_data using

the R400 RTL code below:

Jf ~~ ~—— ~_—— ~~ ~~

//Muxing the gpr vector resuits into one final vector result
conrolled by the phasemux signal or a registered version of itf

//----- --= --- ---- ----

aiways @(/*AUTOSENSE*/VectorResult0 or VectorResulti
or VectorResult2 or VectorResult3 or

Sqspgprphasemux)
begin

case(sqsp_gpr_phase_mux)
2'°bOO: ospsxdata = VectorResult0;
2'BOL: ospsxdata = VectorResuitl;
2'bB10: ospsxdata = VeclorResult2;
Z2'°B1li: osp_sxdata = VectorResult3;

endcase // case(sqsp_gprphasemux)
end

assign sp sx data = osp_sxdata;

(vector. v, 16:8-16:26.)

129. Additionally, the vector unit also sets the spsxexporting

and spsxexppvalid signals which indicate that the shader in the sp

-70-

ATI Ex. 2115

IPR2023-00922

Page 75 of 271

ATI Ex. 2115
IPR2023-00922
Page 76 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

module will export spsxdata andthat the data is valid. (vector. v, 19:23-

20:22, 22:4, 22:7.)

130. The vector unit then passes the sp_sxdata,

spsxexporting, and spsxexppvalid signals to the sp module. (/d.

at 1:16-17.) The sp module assigns spsxdata from uvector0 to

ospsxdata0, spsxdatafrom uvectorl to osp_sx_datali,

spsxdatafrom uvector2to ospsxdata2,andspsxdata from

uvector3to ospsxdata3.(sp.v, 15:11, 16:16, 17:7, 17:26.) The sp

module interface also provides spsxexportingto spexporting, and

spsxexppvalidto spexppvalid. Ud. at 15:12, 15:15.)

131. The sp module then assigns the osp_sxdata0, osp_sxdatal,

ospsxdata2,and ospsxdata3 signals andthe spexporting, and

Spsxexppvalid signals to the SP_SX interface, using the R400 RTL code

below:

Sf ~_—_— ~~ a a —---

//SHADER (SP) - SX (SHADER EXPORT)

//This interface represents pixel/parameter data being
exported out of the shader pipe

//into the SX biock

|fan--- --

output [127:0] SP_SX_datad,
SP_SX_datai,SP_SX_dataZz,SP_SX_data3;

-7l-

ATI Ex. 2115

IPR2023-00922

Page 76 of 271

ATI Ex. 2115
IPR2023-00922
Page 77 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

vire [127:0] gqspsx_data0O, gqspsxdatai , gqsp_sxdataz ,
gqspsx_data3;

wire [127:0] ospsxdata0, ospsxdatai , ospsxdataZ ,
osp_sxdata3;

atidffout #(128) usp_sx_dataQO(sclk,
osp_sxdata0,qspsxdata0Q);

atidffout #(128) uspsxdatai(scik,
osp_sxdatal,qspsx_datai);

atidffout #(128) usp_sxdata2(scik,
ospSxdataz,qspsx_data2);

atidffout #(128) usp_sxdata3(scik,
ospsxdata3,qspsx_data3};

//export data going out to SX (shader export)
assign SPSXdata0O = gqspsx_data0;
assign SP SXdatal = gqspsx_datal;
assign SP_SXdataz = qspsxdataZ;
assign SPSXdata3 = gqspsxdata3;

(/d. at 3:18-4:10.)

output [3:0] SPSXexppvaiid;
output [0:0] SPSXexporting ;

wire [3:0] Sp_exppvalid;
wire [0:0] Spexporting ;

wire [3:0] gqsp_exppvalid;
wire [0:0] qsp_exporting ;

atidffout #(4)
usp_exppvalid(scik,spexppvalid,qsp_exppvalid);

atidffout #(1)
usp_exporting(sclk,spexporting,gspexporting);

gn SP SXexppvalid = qsp_exp_pvalid;
n SP_SXexporting = gspexporting ;

(id. at 7:14-15, 19-20, 24-25, 8:4-5, 9-10.)

132. Whenthe SPSXexporting and SPSXexppvalid

parameters indicate that the SP_SXdataO-SP_SXdata3 datasvalid, the

sp module exports the data to the shader export block (the sx module). Because

-7>-

ATI Ex. 2115

IPR2023-00922

Page 77 of 271

ATI Ex. 2115
IPR2023-00922
Page 78 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

the sp module exports the SP_SXdata0O-SPSXdata3 generated by the

shader, the shader provides an appearanceattribute.

B. Claim 2

133. Claim 2 recites the graphics processor of claim 1, “further including a

vertex storage blockfor maintaining vertex information.” Based on my

understanding of the R400 RTL code, I have generated a figure below which

represents my understanding of the components, and describe the code with

reference to the figure.

ATI Ex. 2115

IPR2023-00922

Page 78 of 271

ATI Ex. 2115
IPR2023-00922
Page 79 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

Vertex Storage Block

Vertex Buffer

sq_thread_buif

(sqthreadbuff.v)
u_sq_vtx_thread_buff

8g

isq.v)

Parameter Cache

 parameter_caches

(parametercaches.v)

 uparam_caches

 Shader

SP_SX_datad

Position Cache

pa_ag lines 2786-2803

(pa_ag.v)

134. The vertex storage block includes a vertex thread buffercalled

u_sqvtxthreadbuff (sq. v, 34:19-38:18), a parameter cache called

uparamcaches (sx. v, 20:13-21:3), and a position cache

-74 -

ATI Ex. 2115

IPR2023-00922

Page 79 of 271

ATI Ex. 2115
IPR2023-00922
Page 80 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

uposdummemp2(pa_ag.v, 112:21-2113:5; also shownaslines 2786-

2803 in my figure above).

C. Claim 3

135. Claim 3 recites a vertex storage block that further includes a

parameter cache and a position cache.I have already identified where the vertex

storage block includes the parameter cache and the position cache in my analysis

of claim ? in Section LX.B.

~75 -

ATI Ex. 2115

IPR2023-00922

Page 80 of 271

ATI Ex. 2115
IPR2023-00922
Page 81 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

Vertex Storage Block

Vertex Buffer

sq_thread_buff

(sqthreadbuff.v)

u_sq_vtx_thread_buff

sq

(Sq.v)

Parameter Cache

 parameter_caches

(parametercaches.v)

uparam_caches

Shader

SP_SX_datad

Position Cache

pa_ag lines 2786-2803

(pa_ag.v)

f, The vertex storage blockfurther includes a parameter cache

136. Claim 3 recites a graphics processor of claim 2, “vertex storage block

further includes a parameter cache operative to maintain appearanceattribute data

for a corresponding vertex.” As discussed in Section [X.C, the vertex storage block

- 76-

ATI Ex. 2115

IPR2023-00922

Page 81 of 271

ATI Ex. 2115
IPR2023-00922
Page 82 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

includes a parameter cache called uparam_caches. (sx. v, 20:13-21:3.) Module

uparamcaches isaninstance ofa parametercaches module and is

defined in parametercaches.v.

137. As I also described in Section [X.A.3, the shader provides appearance

datain SP_SXdata0Q-SPSXdata3 to the shader export block included in

the sx module. The sx module receives the SP_SxXdata0O- SPSXdata3

using the R400 RTL codereplicated below:

module sx (/*AUTOARG*/

SQSXpcchannelmask, SPO_SX_data0, SPO_SX_datal, SPO_SxXdataZzZ,
SPO SXdata3, SP1_ SXdataO, SP1_SXdatal, SP1_ Skdata2,
SPiSKdata3, SPO_SX_exp_pvalid, SP1i_SX_exp_pvalid,

input [127:0] PO SXdata0,SPO_SXdatal,SPO_SXdataZz,SPO_ SX data3;
t data3input [127:0] PiSXdata0,SPiSXdatai,SPiSXda

(sx. v, 1:12, 2:8-10, 5:10-11.)

138. The the R400 RTL code above demonstrates that the shader export

module receives SP_ SXdata0-SP_SXdata3 from two shaders,as

SPOSXdataO0- SPOSXdataSand SPl1SXdata0-SP1SXdata3.

For simplicity, [analyze the components here with respect to SP_SXdata0-

SPSXdata3 asthatis sufficient to meet the claim limitations.

139. The signals SP_SXdataO-SP_SX_data3 include appearance

attribute data for a corresponding vertex that was processed by the shader.

-77-

ATI Ex. 2115

IPR2023-00922

Page 82 of 271

ATI Ex. 2115
IPR2023-00922
Page 83 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

140. The shader export circuit passes SPOSXdatad -

SPOSXdata3to uparamcaches. (sx. v, 20:24-26.) Module

uparamcaches includes eight uparam_ cachectli -

uparamcachecti7 instances of the uparamcachectl module. The

uparamcachectl module is defnedin parametercachectl.v.

141. The first four instances maintain SP_SXdataQ-SP_SXdata3.

(parametercaches. v, 5:4-8:12.)

142. The uparam_ cachectl module maintains SP_ SXdata0-

SP_SXdata3 which the uparam cachectl module receivesas

SPSXdata.(paramcachectl.v, 1:19-20.) The uparamcachectl

module then reads and writes (maintains) SPSXdata in the memory module type

“rftsd2128x128cm2sw0” called “u_pc” as shown in using the R400 RTL

code below:

always @(posedge scik})
begin
if(srst)

begin

pe_ptrO <= 11'bod;
peptri <= 1i'bo;
pe_ptr2 <= 11'bo;
pc_wr_en <= 1'boO;
pe_wraddr <= 7'b0;
pc_cmask <= 4'b0;
vertexdata_in <= 127'b0;
qO_vertexdata_out <= 12

end

else

- 78 -

ATI Ex. 2115

IPR2023-00922

Page 83 of 271

ATI Ex. 2115
IPR2023-00922
Page 84 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871
begin

pe_ptro <= SQSxX_ptro;
pe_ptri <= SQSXptri;
pe_ptr2 <= SQSX_ptr2;
pec_wr_en <= SOSXpc_wr_en;
bpe_wr_addr <= SQSX_pc_wr_addr;
pc_cmask <= S@SX_pc_cmask;
vertex data in <= SP SX data;

go_vertex_data_out <= vertexdata_out;
end

end // always @ (posedge scik)

rfsdz 128xiz8cm2sw0 u_pe
f/ tp_coord_fiforam utpcoordfife_ram_0
Af (/*VRGIO tp. COOrd_fiforam cfifo_in cfifo_out

qcfifowptr qcfifo_rptr cfiforamwen cfiforamrenTo*/
ff d?

(/*VRGIO rfsd2_128x128cm2swO vertex_data_in vertex_data_out
pe_wraddr peindex pcwren perd_en null*/

// READ INTERFACE

.CLKB(iSCLK), // Read Clock

-OFB(pco_rd_en), // Output enable
-MEB(vdd), // Read enable

-ADRBO (pce_index/[0]}), .ADRB1(pc_index/1j),
-ADRB2 (pc_index[2]), .ADRB3(pc_index[3]}, // Read Address

-ADRB4 (pc_index/4]), .ADRB5(pc_index/[5]),
-ADRB6 (peindex[6]), // Read Address

-OBC (vertexdata_out/O/), .QBl (vertex_data_out/i!),
-OB2 (vertexdata_out/[2]), .QB3 (vertex_data_out/[3]), // Read Data

.OB4 (vertex.data out/4/), .OB5 vertex data out/5]),
-OB6 (vertexdata_out/6/), .OB7 (vertexdataout/7]), f/f Read Data

-OB& (vertexdata_out[8/), .QB9(vertex_data_out/9]),
-OB10 (vertexdataout/[10]), .QBil(vertexdataout[11]}, // Read
Data

-OB12 (vertexdata_oul[i2]), .QBi3(vertex_data_out/i3]),
.OB14 (vertexdata_out/[14]}), .QBi5(vertexdataout/[15]}, // Read
Data

-OB16(vertexdataoutfié]), .QBI/ (vertexdataout/i7]),
OBIS (vertex_data_out/ié/}, .OBi9(vertex_data_out/i3!), // Read
Data

-OB20 (vertex data out[Z20]), .QBZ1 (vertex data out[Zi]),
.OB22 (vertexdata_out [22]), .OB23 (vertexdata_outfZ3l), // Read
Data

-QOB24 (vertexdataout[24]), .QB25 (vertexdataout/[25]),
B2Z6(vertexdata_out/{26]), .QB27 (vertex_data_out [27}}, // Read

Data

-OB26 (vertexdata_out/[28]), .QB29 (vertexdata_out/[29]),
rte-OB30 (vertexdataout/[30]), .OB3i(ve xdataout/(3i]) // Read

Data

-OBS2Z (vertexdata_out[32]), .QB33 (vertex_data_out/33]),
.OB34 (vertex_data_out[34]), .QB35 (vertex_data_out/[35]) // Read
Data

-79-

ATI Ex. 2115

IPR2023-00922

Page 84 of 271

ATI Ex. 2115
IPR2023-00922
Page 85 of 271

-QOB36 (vertexdata_out[3e6j),
-OB38 (vertexdata_out[38]),
Data

-QB40 (vertexdata_out[40j),
.OB42 (vertexdata_out[4Z]),
Data

-QOB44 (vertexdata_out[44]),
-OB46 (vertexdataout/[46]),
Data

-OB48 (vertexdata_out/48j]),
-OB50 (vertexdata_out[50]),
Data 7

-OB52 (vertexdata_out[52j)),
-OBS4 (vertexdata_out[54]),
Data

-OBS6 (vertexdata_out[56éj),
-OBSE (vertex_data_out/[5é&/]),
Data

-OB60 (vertex dataout[60]},
-OB62Z (vertexdata_out[6Zz]),
Data

-QB64 (vertexdataout[64]),
IB66 (vertexdata_out/66/),

Data

-OB68 (vertexdataout/68/),
.OB70 (vertexdata_out/70/]),
Data

-OB7/2 (vertexdata_out!72/]),
.OB74 (vertexdata_out/[74]),
Data

-OB76 (vertexdata_out[76]),
.OB78 (vertexdata_out/{78]),
Data

-OB80 (vertex data out/[80/]),

.OB82 (vertexdata_out[82]),
Data

-QOB64 (vertexdata_out/&4j),
-OB86 (vertexdataout/&6]),
Data

-OB88 (vertexdata_out/&8]),
-OB90 (vertexdataout[90]),
Data

-OB92 (vertexdata_out[92j]),
-OB94 (vertexdata_out/[94]),
Data 7

-OB26 (vertexdata_out[96j),
.OB98 (vertexdata_out[98]),
Data

-OB100 (vertex_data_out/idoj),
-OB103 (vertex_data_out/flo3]),

tn
-OBL02 (vertexdata_out/i0z]),
Read Data

- 80 -

. OB39 (ver

-OB43 (vertexdata_out/43]),

.QOB47 (vertexdataout/f47]),

-OBS51 (vertexdataout/[5i]},

-QOBS55 (vertex_data_out/[55!]},

-OBS9 (vertexdata_out/o3/]),

-OB63 (vertexdata_out/é3]),

-OB67 (vertexdata_out/é7]),

-OB7i (vertexdata_out/7il),

-OB75 (vertexdata_out[75])},

-OB79 (vertexdata_out[79]},

-OB&3 (vertexdata_out/83]),

-QOB&87 (vertexdata_out/[87]),

-QOB91 (vertexdataout/[Sl1]),

-OB95 (vertexdataout/[95]},

-QOB99 (vertexdata_out/[99!]},

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

(vertexdata_out/[37j),-OB37

rtexdata_out/[39]}), // Read

B4l (vertexdata_out/4ij),
// Read

-OB45 (vertexdata_out/45]),
// Read

B49 (vertexdata_out/49]),
// Read

-OB53 (vertexdata_out/53]),
// Read

BS7 (vertexdata_out/[57]),
// Read

-OB61 (vertex data out/éi]),
// Read

B65 (vertexdata_out[65]),
// Read

-OB69 (vertexdata_out/69]),
// Read

B73 (vertexdata_out/73/),
// Read

B77 (vertexdata_out/[77])),
// Read

-QOB&81 (vertexdata_out/8i]),
// Read

BES (vertexdata_out/&5j),
// Read

-OB89 (vertexdata_out/[&9]),
// Read

BIS (vertexdata_out/[93]),
// Read

-OB97 (vertexdata_out/97]),
// Read

-QB101 (vertexdata_out/idij)
if

o

ATI Ex. 2115

PR2023-00922

Page 85 of 271

ATI Ex. 2115
IPR2023-00922
Page 86 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

-QB104 (vertexdata_out/i04j), .QB105 (vertexdata_out/io5]),
-OB106 (vertexdata_out/106]), .OB107(vertexdataout/i07]), //
Read Data

-OB108 (vertexdata_out/i0&j), .QB109(vertexdata_out/iog9/),
-OB110 (vertexdata_out/110]), .QB111 (vertexdata_out{1i1]), //
Read Data

-QOB112(vertex_data_out/iizj]), .QB1i3 (vertexdata_out/ii3j),
-OB1i4 (vertexdataout/114]}), .QOB115(vertexdataout/115j), //
Read Data

-OB116(vertexdata_out/iil6é]), .QB117(vertexdata_out/ii7]),
-OB118 (vertexdataout/[118}), .QB119(vertexdataout/119jJ), //
Read Data

-OB1Z0 (vertex_data_out/iz0j]), .QBIZi (vertex_data_out/i2Zij),
.OB122 (vertexdata_out/122]}, .QB123(vertexdataout/i23]), //
Read Data

-OB124 (vertex_data_out/iZz4]), .QBIZ5 (vertex_data_out/i25]),
~OB126 (vertexdata_out/izé]), .0B127 (vertexdata_out/127]), f/f
Read Data

// WRITE INTERFACE

~CLKA(iSCLK), // Write Clock

-WEA(pc_wren), // Write enable
-MEA(vdd), // Memory enable

- ADRAO(PC_wraddr[O]}), .ADRAI (pc_wr_addr/[i/]),
- ADRAZ (pc_wr-addr[2]), -ADRAS (pc_wr_addr[3ij), // Write Address

- ADRA4 (pc_wr_addr/[4]), .ADRAS (pc_wr_addr/[5]),
-ADRAG (pc_wr_addr/6]), // Write Address

- DAO (vertex,data_infO]), .DAl(vertexdata_in[1]),
.DA2 (vertexdata_in{2]), .DA3 (vertexdata_inl3]), // Write Data

. DA4 (vertexdata_inf4]), . DAS (vertex(data_in[5]),
.DA6(vertex data in[6]), .DA7 (vertexdata in/7]), // Write Data

.DA8 (vertexdata_in/8]), .DA9 (vertexdata_in[9]),
DAI@ (vertexdatain[10]), .DAii(vertexdata_in/[1i]), // Write

Data

i3(vertexdata_in[i3j),-DAI2(vertex_data_inf[i2]), .DA i

15(vertexdata_inf15]), // Write-DAI4 (vertexdata_inf14]), .DA
Data

.DA16 (vertex_data_inf[ié]), .DAI7 (vertex_data_infi7j),

.DA18 (vertexdatain/[18]), .DAI9 (vertexdata_infi9]), // Write
Data

-DA26 (vertexdata_in[20]), .DA2i(vertex_data_in[2i]),
DA22 (vertexdatain[22]), .DA23(vertexdata_in[23]}), // Write

Data

.DA24 (vertex_data_in[24]), .DA25 (vertex_data_in[25j),
.DA26 (vertexdatain[26]), .DA27(vertexdata_in[27]), // Write
Data

-DA28 (vertexdata_in[28]), .DAZ9 (vertex_data_in[29j),
ASO (vertexdata_in[20]}, .DA3i(vertex_data_in[31]), // Write

Data

-DA32 (vertexdata_in[32]), .DA
.DAS4 (vertex_data_in[34]), .DA35 (ver
Data

53 (vertexdata
rtex_ | 3

- 8] -

ATI Ex. 2115

IPR2023-00922

Page 86of 271

ATI Ex. 2115
IPR2023-00922
Page 87 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

-DA36 (vertex_data_in[36]), .DA3S7 (vertex_data_in[37j),
.DA38 (vertexdata_in[36]), .DA39(vertexdata_in[39]), // Write
Data

.DA40 (vertexdata_in[40]), .DA41i (vertexdata_in[4ij),

.DA42 (vertexdata_in[42]), .DA43 (vertexdata_in/4 3)}, // Write
Data

.DA44 (vertexdata_in[44]), .DA45(vertex_dat
-DA46 (vertexdatain[46]}), .DA47(vertexdata_in/4
Data

asys7] // Write

.DA48 (vertexdata_in[48]), .DA49(vertexdata_in[49j),
.DA50 (vertexdatain[50]), .DA5i(vertexdata_in[51]), // Write
Data

-DA52 (vertex_data_in[52]), .DA53 (vertex_data_in[53j),
.DA54 (vertexdata_inf54]), .DA55(vertexdata_in/[55]), S/
Data

oO

-DA56 (vertexdata_in[56]), .DA57 (vertex_data_in[57j),
.DA58 (vertexdata_in[56]), .DA59 (vertexdata_in[59]), // Write
Data

.DA60 (vertex datain[60]), .DAGi(vertex datain[61j),
.DA62 (vertexdata_in[62Z]), .DA63 (vertexdata_in/63T), // Write
Data

-DAG4 (vertex_data_in[64]), .DA65 (vertex_data_in[6é5]),.DA66 (vertex_data_in/[66/}), .DA67(vertex_data_infer), // Write
Data

.DA68 (vertex_data_in[68}]), .DA69(vertex_data_in[69/),
.DA70 (vertex_data_in[70/]}), .DA7i(vertex_data_inf71]), // Write
Data

.DA72 (vertex_data_in[72}), .DA/73(vertex_data_in[73/),
.DA74 (vertexdata_in/[74]), .DA75 (vertex_data_in[75]}), // Writ
Data

o

.DA76 (vertexdata_in[76]), .DA77 (vertex_data_in[77j),
.DA78 (vertexdata_in/[78]), .DA79(vertexdata_in[79]), // Write
Data

.DA86 (vertex_data_in[80]), .DA8i(vertex_data_in[8ij),
.DA82 (vertexdata_in[82]), .DA83 (vertexdata_in[&3Ty), // Write
Data

-DA84 (vertexdata_in[84]), .DA85 (vertexdata_in[85j),

.DA86 (vertexdatain/86]), .DA87 (vertexdata_in[87]), // Write
Data

.DA88 (vertexdata_in[88]), .DA&9(vertex_data_in[89]),
-DA90 (vertexdatain[90]), .DA9I (vertexdatain/[91]), // Write
Data

-DA92 (vertex_data_in[92]), .DA93(vertex_data_in[93j),
.DA94 (vertexdatain[94]), .DA95(vertexdata_in[95]), // Write
Data

-DA26 (vertexdatain[96]), .DA97 (vertex_data_in[97j),
.DA9S (vertex_data_in[98]}), .DA99(vertex_data_in[99]), // Write
Data

.DALGO (vertexdata_inf[i00]), .DA1O01(vertex_data_in/[iOi]),
.DALOZ2 (vertexdata_in[i02]), .DA103 (vertexdata_in[103]), //
Write Data

- 8) .-

ATI Ex. 2115

IPR2023-00922

Page 87of 271

ATI Ex. 2115
IPR2023-00922
Page 88 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

.DA104 (vertexdata_in[l04]), .DAi05(vertex_data_in[i05]),
.DALO6 (vertexdata_in/[106]), .DA107 (vertexdata_in[107]), //
Write Data

-DA108 (vertexdata_infi08]), .DA109(vertex_data_in/[i0o9]),
.DAI10(vertexdata_in/[110]), .DA111 (vertex_data_in[iii]), //
Write Data

-DAL1i2(vertexdata_infii2]), .DA1i3(vertex_data_in/[ii3]),
-DA1i4 (vertexdatain/114]}, .DAi15 (vertexdatain/115]), //
Write Data

-DA1i6(vertexdata_in/ii6é]), .DAI17 (vertex_data_in/fii7]),
-DALI8 (vertexdatainf118]), .DA119(vertexdata_in[119]}, //
Write Data

-DAI20(vertexdata_in[i20]), .DAI21(vertex_data_in[i2i]),
-DAI22 (vertexdata_inf122]), .DAI23(vertexdata_in[123]}), //
Write Data

-DAI24(vertexdata_infi24]), .DAI25(vertex_data_in/[i25]),
.DA126 (vertex_data_in[iz6é/}, .DAi27 (vertex_data_in[i2z7]}, f/f
Write Data

(paramcachectl.v, 3:4-4-3, 6:17-11:12.)

143. Forexample paramcachectprovides input data to

vertexdatainand then stores the SPSX datainthe u_pc memory,or

uses the vertexdataout signaltoreads SP_ SX data fromthe u_pc

memory. Because the parameter cache is operative to store and read the SP_SX

data (the vertex data) from memory, the parameter cache 1s operative to maintain

the appearanceattribute data.

144. In this way, the vertex storage block includes a parameter cache

operative to maintain appearanceattribute data for a corresponding vertex.

2. The vertex storage block and aposition cache

145. Claim 3 also recites a vertex storage block that includes “a position

cache operative to maintain position datafor a corresponding vertex.” A position

-83-

ATI Ex. 2115

IPR2023-00922

Page 88of 271

ATI Ex. 2115
IPR2023-00922
Page 89 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

cache, whichts called the position memory in the R400 RTL code,is instantiated

in pa_ag.v,asreplicated below:

// Instantiate the position memory
// 1 64d x 128w

dum_memp2 #(
u_posADDRWIDTH ,
u_posDATAWIDTH ,
u_pos WORDS ,
u_posDEBUG
}

u_pos_dummemp2 (
~IRCLK(scik),

-IWCLK(scik),

-iMER (posre),
.iMEW (pos_mem_we),
.1WEN (pos_memwe),
-1RADR (posraddr),
. 1WADR(pos_memwaddr},
-iD(pos_pntsz_agmemdata),
-oO(posrdata));

(pa_ag.v, 112 :13-113:5.)

146. The input data to the position cache is provided on signal

pospntszagmemdata at, for example, 113:4o0fpa_ag.vofthe paag

module. The paagmodule receives pospntszagmemdata at 3:13 and

8:3 ofpa_ag.v.

147. Thepospntszagmemdata signal is provided by the pa

module as signal ccg_agpospntsz_memwrdata.(pa.v, 41:4.) The pa

module receives the ccg_agpospntszmemwrdata signal from the

shader export block interface and clip code generator called the upa_sxifccg

- 84 -

ATI Ex. 2115

IPR2023-00922

Page 89 of 271

ATI Ex. 2115
IPR2023-00922
Page 90 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

module at 49:11-53:11 in pa. v. In particular, the

ccgagpospntszmemwrdata is assigned from the

opositionwrdata signal. (pa. v, 52:23.)

148. The upa_sxifccg modulets specified in pa_sxifccg. v. In the

upa_sxifccg module, the opositionwrdata is defined as an output.

(pa_sxifecg.v, 8:22.)

149. The opositionwrdatasignal is assigned from signal

positionwrdataat17:24in pasxifccg.v. Thepositionwrdata

signal is defined as the output of the position memory at 26:2 ofpa_sxifccg.v.

The positionwrdata signal comes from upa_ccg_sxifsm(whichis

defined in pa_ccgsxifsm module) on an outputcalled

omempositionwrdata.(pa_sxiccg.v, 15:23-26:25.)

150. Inthe pa_ccg_sxifsmmodule omempositionwrdatalis

defined at 4:7 and 7:12 (pa_ccgsxifsm.v), and is assigned a value from

tclscratchmempositiondata.(pa_ccgsxifsm.v, 18:13.)

151. The tclscratchmempositiondata signal receives data

from sxtopavector Ud. at 40:21, 41:21). The value in

sxtopa_vectoris provided by isxtopavectorJor

- 85 -

ATI Ex. 2115

IPR2023-00922

Page 90 of 271

ATI Ex. 2115
IPR2023-00922
Page 91 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

isxtopavector1.(d.at17:5 or 17:9.) The isx topavectorOor

isx_to_pa_vector_1 signals are inputs to thepa_ccg_sxifsmmodule.

(Ud. at 6:14, 6:18.) The isxtopavector JOorisxtopavector1

signals are connected to the signals sx0Q_receivefiforddata and

sxi_receivefiforddata respectively. (pa_sxifccg. v, 25:3, 25:7).

The sx0_receivefiforddataandsxl_receivefiforddata

signals come from the read_data signals at the “receive fifos”(the first-in, first-

out, buffers). (/d. at 20:3, 21:2). The “receive fifos” have reacd_data from the

sx0O_receivefifowrdataandsxl_receivefifowrdata

signals, Ud. at 19:25, 20:24.) The sx0_receivefifowrdata and

sxl_ receivefifowrdata signals are provided by

isx0receivefifowrdataandisxlreceivefifowrdata (idat

15:19, 15:22) which are defined as inputs at 6:21 and 6:24 of pa_sxifccg.v.

152. Theisx0receivefifowrdata and

isxlreceivefifowrdata signals are provided by

SXO_ PAinputdatawrdataand SX1_ PAinputdatawrdata.

(pa. v, 50:13, 50:17.) The SXO PAinputdatawrdata and

SX1PAinputdatawrdatasignals are assigned the values of

SXO_ PAinput_data_gand SX1_PAinput_data_a. (Ud. at 36:12-13,

- 86 -

ATI Ex. 2115

IPR2023-00922

Page 91 of 271

ATI Ex. 2115
IPR2023-00922
Page 92 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

36:18-19.) The SXOQ PAinputdataqandSxX1PAinputdatagq

signals are assigned values from SXO PAinputdata and

SX1PAinputdata. (/d. at 33:7, 33:13.) The SxO_PAinput_dataand

SX1i_PA_inputdata signals come from uOSXPAdata and

ulSXPAdata, (id. at 36:9-10, 36:18-19), that are defined as coming from the

shader export block. (/d. at 4:18, 5:2, 8:7, and 8:15.)

153. The pa module receives u0SX PAdata andulSXPAdata

from the shader export block. The shader export block includes SX_ PAdata.

(sx.v, 19:19.) The SXPAdata signal comes from gqsxpadata (Sx.V,

20:3) and g_sx_pa_data comes from sx_pa_data (id. at 19:25,) which comes

from the signal of the same name in the exportcontrol module. (sx. v,

22:1) The sxpadata signal is defined at 7:11 in export_control.v and

provided from the exportbuffers module asthe oclippdata signal.

(exportcontrol.v, 75:10.) The oclippdata signalis defined at 2:25 of

exportbuffers.v and is assigned from q_ clippdata. (Ud. at 83:16). The

qclippdata signalis assigned from clipodata. (ld. at 83:8.) The

clippdata signalisassignedin exportbuffers.v at 78:6-14 and

76:23-77:22, which comesthrough a queue at 8:13-22 or 8:25-16:4. The data in the

queue comesfrom the shader processor and becomes ipixeldata0. In

- 87 -

ATI Ex. 2115

IPR2023-00922

Page 92 of 271

ATI Ex. 2115
IPR2023-00922
Page 93 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

particular, SP_ SXdata0 is output from the sp module. (sp. v, 1:21, 3:23.).

The SP_SX_data0 signal provided bythe sp module becomes SPOSXdata0

input in the sx module. (sx. v, 2:8, 5:10.) The SPO_SX_data0 signal becomes

qsp0_sx_data0 (id. at 5:16), and is provided to the exportcontrol

module as so0_sx_data0. (Ud. at 22:18.)

154. The export_control module is specified in exportcontrol.v.

The sp0_sx_data0 signalis defined as an input in exportcontrol.vand

is then propagated to the export_buffers module as ipixeldata0.

(exportcontrol.v, 75:15.)

155. In this way, a position cache is operative to maintain position data for

a corresponding vertex.

D. Claim 5

d, The appearanceattribute is position

156. Claim 3 recites “wherein the appearance attribute is position.” In my

analysis of claim 1 in Section [X.A.3, I explained howa shader provides an

appearance attribute. As I described in myanalysis of claim 3, the appearance

attribute is position when the selected input is vertex data.

- 88 -

ATI Ex. 2115

IPR2023-00922

Page 93 of 271

ATI Ex. 2115
IPR2023-00922
Page 94 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

157. Also, when the MACC module parses iInstruction, as 1 discussed

in Section [X.A.3, the MACC module parses out an export destination called

oExportDst, as shown using R400 RTL code, replicated below:

//Grabing the export destination ID.
//Tf we are dealing with an export instruction...this value

identifies which

/fattribute is being exported ...please refer to the shader
pipe spec for more details

/fon this

ffprra777 --- --- soa

assign ofxportDst = qInstruction0O[i7/:i2j;

(mace. v, 11:15-20.)

158. The cExportDst parameter determines whether the data exported

from the sp modulets pixel data or vertex data, and is outputted from the MACC

module to the mac_gpr module as cexport.dst. Ud. at 3:19.) The mac_gpr

module then outputs cexportdst tothe vectorunitas sqspexpdst.

(macc_gpr.v, 14:8.) The vector unit outputs sg_spexpdst, tothe sp

module as shown using the R400 RTL code below:

gosqexpdst <= sqspexpdst;
qi_sqexpdst <= q0_sq_exp_ds
q2sqexpdst <= glsqexpd
qg3sqexpdst <= q2sqexpd
a4 sq exp dst <= q3_sqexpd

g5sqexpdst <= g4sqexpd
q6sqexp_dst <= q5sqexp_ds
a7sqexpdst <= gq6_sqexpds
a8sqexpdst <= g7sqexp_d
gq?sqexp_dst <= g8_sq_exp_d
g10_sq_exp_dst <= q9_sqexpds
gilsqexpdst <= g10sqexp_

ta&

NetmottftftythIctootactotorotct
toChNe choNe Ne

assign sp_sx_expdst = gl0_sqexpdst;

- 89 -

ATI Ex. 2115

IPR2023-00922

Page 94 of 271

ATI Ex. 2115
IPR2023-00922
Page 95 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

(vector.v, 21:12-23, 22:7.)

159. The sp module outputs spsxexpdst to the shader export block

(the sx module) as SP_SXexpdest. (See sp. v, 1:24, 7:22, 8:12.)

160. The sx module receives SP_SXexpdest from one of two

shaders asthe SPO_SXexportingand SP1_SXexporting parameter and

propagates the SPOSXexportingand SP1_SXexporting parametersto

uexportcontrol defined inthe exportcontrol module, which is shown

using the R400 RTL code below:

module sx (/*AUTOARG*/

SP1_SXexporting, SPO_SX_expdest, SP1_SX_expdest,

input [5:0] SPO_5Xexpdest, SP1SX expdest; //these are
coming straight from the destination pointer of the ALU
instruction

{//SP does

nothing else other than pipelining them through.

ati_dffin #(6)
uspO_ sx_expdst (scik,SP0O_ SXexp_dest,qsp0_sx_expdest);
ati_dffin #(6)
uspi_ sx_expdst (sclk,SPi_SxX_exp_dest,qspi_sx_exp_dest);

exportcontrol uexportcontrol (

.sp0_sxexpdest (qsp0_sx_expdest),
-spisxexpdest(qspi_sx_exp_dest),

de

(sx. v, 1:12, 2:12, 6:7-9, 6:24-25, 21:5, 22:16-17, 23:29.)

- 90 -

ATI Ex. 2115

IPR2023-00922

Page 95 of 271

ATI Ex. 2115
IPR2023-00922
Page 96 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

161. The exportcontrol module identifies the types of appearance

attributes included in the shader export block (sx module) that are received from

the shader based on the sp0_sxexpdest parameter. This is shown using

R400 RTL code below:

//O00ino export
/f/Ol:vertex export
{//10:pixel export
assign exporttype = (sp0O_sx_exp_alu_id) ?
{sp0O_sx_exporting/0O] & qexppix_alul,sp0Qsx_exporting[0] &
~qexppixalul}:

{sp0O_sx_exporting/[O] &
gqexp_pix_alu0,sp0_sx_exporting/O] & ~q_exp_pix_alu0};

always @(/*AUTOSENSE*/*COLORO or ‘COLORI or ‘COECR2 or *‘COLOR3
or ~COLORFOGO or “COLORFOGI or ~COLORFOG2 or “COLORFOG3 or

“PIXELEXPORT or ° POSITION or ‘SPRITEEDGE
or “VERTEXEXPORT or °£DATA or export_type or sp0_ sxexpdest)

begin

case (exporttype)
“PIXELEXPORT:

begin

positicnaux = i'bd;
case (sp0_sx_expdest)
‘COLORO: attributeoffset
‘COLORI: attributeoffset
‘COLOR2: attributeoffset
‘COLORS: attributeoffset
‘COLORFOGO: attribute_offset =

= 3'h0;

= 3'hi;

= 3°h2;

= 3'h3;

BRO;

‘COLORFOGI1: attributeoffset = 3'hi;
‘COLORFOG2: attributeoffset =
‘COLORFOG3 :attributeoffset
‘4 DATA: attributeoffset

3'R2;
= S'S;

= 3'h4;

endcase // case(sp0sxexpdest)
end // case: VERTEX

“VERTEXEXPORT:
begin

case (spO0sxexpdest)
“POSTTION:

begin

attributeoffset = 3'h0; // + count of the

position vectors that have been exported so far
positionaux = i'b0;

end

“SPRITEEDGE:

-9]| -

ATI Ex. 2115

IPR2023-00922

Page 96of 271

ATI Ex. 2115
IPR2023-00922
Page 97 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871
begin

attributeoffset = 3'h4; //starting offset is
always relative position 4

position_aux = i'bli;
end

endcase // case(sp0sxexpdest
end // case: VERTEX

default : attribute offset = 3'°hHO;
endcase // case(sp0_sxexporting)
end // always @ (...

(export control. v, 34:5-38:12.)

162. At35:12, the sp0_sxexpdest parameter can be “POSITION,”

forand export type “VERTEXEXPORT”whichindicates that the vertex

data has an appearanceattribute that is position. As such, the appearance attribute

included in SX_SP_data is position.

2. The position attribute is associated with a corresponding
vertex

163. Claim 5 also recites “the position attribute 1s associated with a

corresponding vertex when the selected one of the plurality of inputs is vertex

data.” As I discussed in Section [X.A.1, the selected input includes vertex data.

Whenthe selected input is vertex data, the shader generates a position attribute

using the corresponding SQ_SP_ vsr_dataandSQSPinstruct inputs of

the selected one ofthe plurality of inputs, which 1s included in SP_SXData.

-9).

ATI Ex. 2115

IPR2023-00922

Page 97 of 271

ATI Ex. 2115
IPR2023-00922
Page 98 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

E. Claim 6

d, The appearance attribute is color

164. Claim 6 depends from claim 5 and recites the graphics processing

system of claim 5 “wherein the appearance attribute is color.” As | discussed in

Section VIA, the appearance attribute is color. In particular, the attribute is color,

when the selected inputis pixel data.

165. The exportcontrol module identifies the types of appearance

attributes included in the shader export block (sx module) received from the

shader based on the spO_sxexpdest parameter as shown using R400 RTLe

code below:

//00:no export
//Ol:ivertex export
/fLO:ipixel export
assign exporttype = (sp0Osxexpaluid) ?
{spO_sx_exporting/0O] & q_exppixalul,sp0O_sx_exporting/[0] &
~qexppixalul}:

{spO_sx_exporting[0] &
gqexppixalu0O,sp0_sx_exporting/O] & ~q_exppixalu0};

iways @(/*AUTOSENSE*/*COLORO or “COLORI or *‘COLOR2 or *‘COLOR3
or “COLORFOGO or ‘COLORFOGI or *“COLORFOG2 or *COLORFOG3 or

“PIXELEXPORT or ‘POSITION or ‘SPRITEEDGE
or ‘VERTEXEXPORT or “4DATA or export_type or sp0_sx_expdest)

begin

case (exporttype)
“PIXELEXPORT:

begin
positionaux = 1'b0;

case (sp0_sx_expdest)
“COLORO: attribute_offset = 3°HO;

“COLORI: attribute_ae S'hi;“COLORZ: attriibuteoffse 3'A2Z;“COLORS: nttsibuterctrect = 3°H3;
‘COLORFOGO: attributeoffset = 3'h0;

-93-

ATI Ex. 2115

IPR2023-00922

Page 98 of 271

ATI Ex. 2115
IPR2023-00922
Page 99 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

“COLORFOGI: attributeoffset = 3'hi;
‘COLORFOG2:attribute_offset = 3'h2;
‘COLORFOG3:attributeoffset = 3'h3;
‘ZDATA: attributeoffset = 3'h4;
endcase // case(sp0Osxexpdest)

end // case: VERTEX

. VERTEXEXPORT:
begin

case (spO0sx_expdest)
‘“POSTTION:

begin

attributeoffset = 3'h0; /f/ + count of the
position vectors that have been exported so far

positionaux = i'b0;
end

“SPRITEEDGE:
begin

attributeoffset = 3'h4; //starting offset is
always relative position 4

position_aux = i'bi;
end

endcase // case(spOsxexpdest
end // case: VERTEX

default : attributeoffset = 3'hHO;
endcase // case(sp0_sx_exporting)
end // always @ (...

(exportcontrol. v, 34:5-38:12.)

166. At 34:24-35:5, the soO_ sxexpdest parametercan be

“COLORO,” “COLORI,” “COLOR2,” “COLORS,” “COLORFOGO,” “COLORFOGI,”

“COLORFOG2,” and “COLORFOG3”for and export type “PIXELEXPORT”

whichindicates that the pixel data has an appearanceattribute that is color. As

such, the appearanceattribute included in the SXSP_data0-3iscolor.

167. Further, as I described in Section IX.C.1, the sx module receives the

SXSPdata0Qdataas SPOSXdata0. (sx. v, 2:8, 5:10.) The

-94-

ATI Ex. 2115

IPR2023-00922

Page 99 of 271

ATI Ex. 2115
IPR2023-00922

Page 100 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

SPOSXdata0 becomes asp0sxdata0 (/d. at 5:16.), and is provided to

the exportcontrol module. (/d. at 22:18.)

168. The exportcontrol module receives gsp0sxdata0O as

sp0O_ sxdata0(exportcontrol. v, 2:3, 3:13), and assigns

sp0_sxdata0tog0_sp0data0. (Ud. at 9:4.) The gO_sp0_ datad signal

is provided to uexportbuffers (defined in exportbuffers.vas

export.buffers module) as ipixeldata0. Ud. at 75:15.) The

ipixeldata0 signalindicates that the data is pixel data.

169. Inthe exportbuffers module, ipixeldata0 is passed

through a queue, and outputted as buff0_out.(exportbuffers. v, 8:13-22

or 8:25-16:4.) The buff0_out parameters is assigned to bankO_data0 (id. at

72:20) and then to rb0Odata. (Vd. at 78:21.) The rbOdata is assigned to

orb0_data (id at 83:12), whichis defined as an output of exportbuffers

module. (/d. at 2:24.)

170. The exportcontrol module receives the exportbuffers

parameter from uexportbuffersas sxrb0colordata.

(exportcontrol.v,75:4.) The sxrbOcolordatasignalis provided

as an output of the exportcontrol module and to the sx module. Ud. at 1:19,

95 -

ATI Ex. 2115

IPR2023-00922

Page 100 of 271

ATI Ex. 2115
IPR2023-00922

Page 101 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

5:9) The sx module receives the sxrbOcolordata signal as

sxrbOcolordata. (sx.v, 21:20.)

171. The sxrbOcolordatais assignedto

gqsxrbOcolordata (id. at 15:26) andasxrbOcolordatais

assigned to SX_RBOcolordata,(id. at 16:9), which is an output of the sx

module. (/d. at 1:22, 15:13.)

172. The same analysis also applies to SPOSXdatal,

SPO_SXdata2, and SPOSXdata3 using corresponding signal names.

173. Because SPOSXdata0, which includes an appearanceattribute, is

converted togsxrb0Qcolordata whichincludes color, the appearance

attribute is color.

2. The color attribute is associated with a corresponding pixel.

174. Claim 6 also recites “the color attribute is associated with a

corresponding pixel when the selected one ofthe plurality of inputs is pixel data.”

Whenthe selected input is pixel data, the shader (sp module) generates a color

attribute using the corresponding SXSPdata0-3and SQSPinstruct

inputs of the selected one of the plurality of inputs, which is included in

SPSXData0-3.

- 96-

ATI Ex. 2115

IPR2023-00922

Page 101 of 271

ATI Ex. 2115
IPR2023-00922

Page 102 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

175. Further as I discussed in Section LX.E.1, the coloris associated with

the pixel data.

F; Claim8

176. Claim 8 recites the graphics processing system of claim 1 “wherein

the appearance value is depth.” As | discussed in Section [X.A.3, the graphics

processor of claim | provides an appearanceattribute, and as I discussed in Section

[X.E.1 and [X.E.2, the appearance attribute is associated with a corresponding

pixel,

177. Also, as I discussed in Section EX.E.1, the exportcontrol

module identifies the types of appearance attributes included in the shader export

block (sx module), and received from the shader based on the

sp0_sxexpdest parameter as shown using R400 RTL code below:

//O0:no export
//Ol:vertex export
{//10:pixel export
assign export type = (spO_sx_expalu_id) ?
fspO_sx_exporting/0O] & q_exppixalul,sp0Q_sx_exporting[0] &
~qexppixalul}:

{sp0O_ sxexporting/0O] &
gqexp_pixalu0,sp0_sx_exporting/O] & ~q_exp_pixalu0};

always @(/*AUTOSENSE* /*COLORO or “COLORI or “*“COLOR2 or *‘COLOR3
or “COLORFOGO or ~COLORFOGI or ~COLORFOG2Z or *COLORFOGS or

“PIXELEXPORT or ° POSITION or ‘SPRITEEDGE
or “VERTEXEXPORT or °2£DATA or export_type or sp0_sx_expdest)

begin

case (exporttype)
“PIXELEXPORT:

begin

positionaux = 1'b0;

-~97 -

ATI Ex. 2115

IPR2023-00922

Page 102 of 271

ATI Ex. 2115
IPR2023-00922

Page 103 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

case (spO_Sx_expdest)
‘COLORO: attributeoffset = 3'h0;
‘COLORI: attributeoffset = 3'hi;
‘COLOR2Z: attributeoffset = 3'h2;
‘“COLOR3: attributeoffset = 3'h3;
‘COLORFOGO: attributeoffset = 3'h
‘COLORFOGi:attributeoffset = 3'hi;
‘COLORFOG2:attributeoffset = 3'h2;
‘COLORFOG3: attributeoffset = 3'h3;
‘{DATA: attributeoffset = 3'h4;
endcase // case(sp0Osxexpdest)

end // case: VERTEX

“VER TEXEXPORT:
begin

case (spO0sxX_expdest)
‘“POSITTION:

begin

attributeoffset = 3'h0; // + count of the
position vectors that have been exported so far

position_aux = i'b0;
end

“SPRITEEDGE:
begin

attributeoffset = 3'h4; //starting offset is
always relative position 4

position_aux = i'bli;
end

endcase // case(sp0sxexpdest
end // case: VERTEX

default : attribute offset = 3'°hHO;
endcase // case(sp0_sxexporting)
end // always @ (...

(export control. v, 34:5-38:12.)

178. At35:6, the sp0_sxexpdest parameter can be “ZDATA,”

which indicates that the pixel data has a depth parameter. As such, the pixel data

has appearance value that is depth.

G. Claim 9

179. Claim 9 recites the selection circuit and a control signal provided by

an arbiter. Based on my understanding of the R400 RTL code, I have generated a

- 98 -

ATI Ex. 2115

IPR2023-00922

Page 103 of 271

ATI Ex. 2115
IPR2023-00922

Page 104 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

figure below whichrepresents my understanding of the components, and describe

the code with the reference to the figure.

q y

pix_reqvtx_re gpr_phase vtx_bus pix_busy ilnterpolatediVertexindeces

Arbiter Multiplexer
ia_vertex_sel

vector lines 207 & 227-
 sq_input_arb

sq_ais_outputline 493

. " ; 278
(sc_input_arb.v) (sq_ais_output.v) (vector.v)

u_sq_input_arb u_sq_ais_output uvector0

Arbiter Circuit & g
“ &

°o y 2
x &Gi

eee

f. The selection circuit

180. Claim 9 recites a graphics processor of claim 1, “further including a

selection circuit, wherein the selection circuit is a multiplexer.’ As discussed in

Section [X.A.3, the input arbiter called u_sqinputarb selects between a

vertex request (vtxreq) and arequest (pixreq) and passes the vtx_sel

signalas iavertexseltothe u_sgqaisoutput.

181. The u_sqaisoutput module receives the iavertexsel

control signal from the arbiter and generatesa SQSPgorinputsesignal

- 99 -

ATI Ex. 2115

IPR2023-00922

Page 104 of 271

ATI Ex. 2115
IPR2023-00922

Page 105 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

using a multiplexer decoder stage on 21:7 (indicated as line 493 inthe figure in

Section [X.G), as shown using the R400 RTL code below:

// 8QSPgprphase
// SQSP_gprinputsel
ff

always @(posedge cik)
begin

SQSPgprphase <= gprphase;
SQ SPgprinput_sel <= {iavertexsel, ~ia_vertex_sel}; //

CO: ent, O1: pix, 10: vtx (fix needed for count)
end

(sqaisoutput. v, 21:1-9.)

182. The SOSP_gpr_input_sel is provided to the sq module as

sq_sp_gprinputmux. The signal sqspgprinputmuxisthe control

signal to the multiplexer. The multiplexer is included inside each of the vector

units uvector0-3 of the sp module.

183. The sp module receives the sq_spgprinputmux as

SQspgorinputmux (sp. v, 2:7, 9:11). The sp module converts

sgsp_gprinputmuxtogsqgprphasemux (id. at 17:16) and

propagates gq_sqgprphasemux to each vector unit uvector0-3. Ud. at

16:1, 16:25, 17:16, 18:8.)

184. The vectorunits uvector0-3 receive gsqgorphasemux

as Sqspgprphasemux.(vector.v , 1:21, 3:2.) The selection circuitry

in vectorunits uvector0-3 uses sq_spgprphasemux asacontrol

- 100 -

ATI Ex. 2115

IPR2023-00922

Page 105 of 271

ATI Ex. 2115
IPR2023-00922

Page 106 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

signal to a selection circuit that selects one of a plurality of inputs from the vertex

indicies (which are the vertex data) and the interpolated pixel inputs (which are the

pixel data). For example, the vector module uses the sqg_ spgprinputmux

to select the vertex data input (i VertexIndices) or the pixel data input

(i Interpolated) , using the R400 RTL codereplicated below:

Jf ~~ ~—— ~_—— ~~

//Muxing logic to select from data comming from the
FInterpolators(in reality more than just interpolated
data....there can be

/faiso Faceness and XY data), AutcCount data and Vertex
Indices comming from the staging registers.

f/f/Each MACC unit has its own mux logic since the controls are
phased out by one cycle from one MACC to the other.

//----- --- --- ----

//muxing logic for the inputs of the first MACC
always @(/*AUTOSENSE*/iAutoCount or itInterpoiated or

iVertexiIndices

or sqspgprinputmux)
begin

case(sqspgprinput_mux)
2'bOO: InputDataO = iAutoCount ;
2'bOl: InputDataO = itInterpolated ;
2'b10: InputDatad = iVertexIndices ;
default: InputData0O = iInterpolated;

endcase // case(sqsp_gpr_input_mux)
end

//muxing logic for the inputs of the second MACC
always @(/*AUTOSENSE* /iAutoCount or ifnterpolated or

iVertexindices

or gOgprinpul_mux)
begin

case (qO_gpr_input_mux)
2°00: InputDatal = iAutoCount ;
2'bOl: InputDatal = iftnterpolated ;
2'b10: InputDatal = iVertexIndices ;
default: InputDatal = itnterpolated;

endcase // case(q0gprinputmux)
end

- 101 -

ATI Ex. 2115

IPR2023-00922

Page 106 of 271

ATI Ex. 2115
IPR2023-00922

Page 107 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871
//muxing logic for the inputs of the third MACC
always @(/*AUTOSENSE* /iAutoCount or ifnterpolated or

iVertexIndices

or qi_gpr_input_mux)
begin
case(qi_gpr_input_mux)

2'bOO: InputData2 = iAutoCount ;
2'bO1: InputData2 = itnterpolated ;
2'b10: InputDataz = iVertexIndices ;
default: InputData2 = itnterpolated;

endcase // case(qigprinputmux)
end

//muxing logic for the inputs of the fourth MACC
always @(/*AUTOSENSE*/iAutoCount or itnterpolated or

iVertexIndices

or g2gpr_input_mux)
begin
case(qG2gprinputmux)

2'bOO: InputData3 = iAutoCount ;
2'bOLl: InputData3 = itnterpolated ;
2'b10: InputData3 = iVertexIndices ;
default: InputData3 = ifnterpolated;

endcase // case(q2gprinputmux)
end

(vector. v, 10:2-12:6.)

185. The selected input is provided as TnputDatad, TnputDatal,

InputData2, and InputData3.

186. In this way, the R400 RTL code includesa selection circuit that is a

multiplexer.

2. The control signal

187. Claim 9 also recites “the control signal is provided by an arbiter,

wherein the arbiter is coupled to the multiplexer.” As discussed above, the

u_sqinputarb inputarbiter includesthe arbiter that provides an

- 102 -

ATI Ex. 2115

IPR2023-00922

Page 107 of 271

ATI Ex. 2115
IPR2023-00922

Page 108 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

iavertexsel signal which is the control signal. As discussed in Section

IX.A.2, the u_sqaisoutput receivesthe iavertexsel signal

(sq. v, 79:8) and converts iavertexseltoSQSP_gprinputsel. (Ud.

at 80:6.) The u_sq_aisoutput signal providesthe signal to the shader

included in the sp module as Sq_sp_gprinputmux. Ud. at 2:16, 9:4, 80:6.)

In this way, the control signal is provided by the arbiter.

3. The arbiter is coupled to the multiplexer.

188. Claim 9 also recites “wherein the arbiter is coupled to the

multiplexer.”

189. The multiplexeris included in the vector unit as shown in Section

IX.A.2. The u_sqaisoutput signal is generated by the arbiter is converted

tosq_spgorinputmux inthe sp module andto

Sq_sp_gprinputmux in the vector unit. This is a control signal to the

multiplexer in the vector unit and showsthat the arbiter is coupled to the

multiplexer.

HA. Claim 10

190. Claim 10 recites the graphics processor of claim |. Based on my

understanding of the R400 RTL code, I have generated a figure below which

- 103 -

ATI Ex. 2115

IPR2023-00922

Page 108 of 271

ATI Ex. 2115
IPR2023-00922

Page 109 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

represents my understanding of the components, and describe the code with

reference to the figure.

Parameter Cache

 parameter_caches

(parametercaches.v)

uparam_caches

SP_SX_data0d
Position Cache

pa_ag lines 2786-2803
(pa ag.v)

1, The vertex position data

191. Claim 10 recites the graphics processor of claim 1, “wherein the

Shaderprovides vertex position data.” As discussed in Section [X.C.2, the sp

module provides SP_SXdata0, SP_SXdatal, SPSXdata2, and

SPSXdata3 which includes vertex position data. The SPSXdata0,

SP_SXdatal, SP_SXdata2,and SPSXdata3 signals are provided to the

shader export block.

- 104 -

ATI Ex. 2115

IPR2023-00922

Page 109 of 271

ATI Ex. 2115
IPR2023-00922

Page 110 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

192. For simplicity, | limit my discussion to the shader providing

SP_SXdata0 whichissufficient to practice the claim.

2. Theprimitive assembly block coupled to the shader

193. The primitive assembly block in the graphics processing systemis

included in the pa module. The pa moduleis defined in pa. v. The primitive

assembly block converts the vertex position data into a list of primitives. The pa

module is coupled to the shader (included in the sp module) through one of the

shader export blocks (the sx modules).The coupling between the shader and the

shader export block (the sx module) is discussed in Section [X.A.3 and IX.C.1.

194. The primitive assembly block (the pa module) includes a

PASX/SX_ PA interface to the two shader export blocks. Here, for simplicity, I

limit my discussion to a single shader export block whichis sufficient to practice

the claim. The R400 RTL code for the PA_SX/SX_ PA interface is replicated

below.

// ~~~ --- --- ----

// interface to the shader export 0 black
[fo 2222222222222 22 222222 22 2522-2 == == === ---

uO_SX PAsend,
u0QSXPA data,
uO PA_SX_req,
uQ_PA_SK_sp_id,
uQ_PA_SxXoffset,
uO _PA_SX_aux,
u@ PASXlast,

- 105 -

ATI Ex. 2115

IPR2023-00922

Page 110 of 271

ATI Ex. 2115
IPR2023-00922

Page 111 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

(pa. v, 4:14-23.)

195. The primitive assembly block requests data from the sx module (the

shader export block) using uO PASXreq, u0PASXspid,

uQPASXoffset, uOPASXaux,and u0PASXlast.

196. In response, the primitive assembly block receives the data from the

sx module using the uO_SXPAsendand u0_SXPAdata interface.

197. The uQSXPAdata data is providedto the export buffers

uexportbuffers of the sx module. The sx module receives the request from

the pa module using the PASXreg, PASXspid PASXoffset,

PASXaux, PASXlast (sx. v, 2:23-24) and propagates the request to

uexportcontrol, using the R400 RTL code below:

export control uvexport control (

-pa_sxreq(q_pa_sx_req), .pa_sx_sp id(q_pa_sx_sp_id),
-pa_sx_offset(qpa_sx_offset),.pa_Sk_aux(q_pa_SX_aux),

-ba_sxlast (qpa_sxlast}
dF

(Id. at 21:5, 23:26-29.)

198. The exportcontrol module passes the request to

uexportbuffers, andreceives 1) the sxpadata whichincludes the

vertex position data and 2) the sxpa_sendsignals.(exportcontrol.v,

- 106 -

ATI Ex. 2115

IPR2023-00922

Page 111 of 271

ATI Ex. 2115
IPR2023-00922

Page 112 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

75:10.) The exportcontroi module then propagates those signals to the sx

module using the R400 RTL code below:

moduie exportcontrol (/*AUTOARG*/
// Outputs

SX pa send, sx pa data,

(id. at 1-13-14, 1:23.)

199. The sx module transmits the sxpa_send sxpadataas

SXPAdataand SXPAsend to the primitive assembly block (the pa

module). (sx. v, 1:25-2:1.)

200. The primitive assembly block receives SXPAdataas

uQ_SXPAdataandulSXPAdata.

201. As explained above, the primitive assembly block (the pa module) ts

coupled to the shader (included in the sp module) through the shader export

shader block (the sx module).

3. The primitive assembly block is operative to generate
primitives.

202. Claim 10 also recites the primitive assembly block is “operative to

generate primitives in response to the vertex position data.” The primitive

assembly block (the pa module) receives SX PAdata that includes the vertex

position data. The pa module then generates primitives as coded in the pa

- 107 -

ATI Ex. 2115

IPR2023-00922

Page 112 of 271

ATI Ex. 2115
IPR2023-00922

Page 113 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

module. The primitive assembly block is an old component of the graphics

processing system that has been adapted to receive data from the shader export

block, and is necessary to generate primitives from the vertex position data.

203. Once the primitive assembly block generates primitives, the primitive

assembly block provides the primitives to the raster engine (also referred to as the

scan converter and defined in the sc module), using the PASC interface below:

Module pa (

//
// interface to the scan converter

{f/f --- --- --- ----

PASC_po,
PA SCpl,
PA_SC_pZ,
PA SC_p3,
PASCp4,
PA_SC_xy0,
PA_SC_xyl,
PA_SC_xy2,
PA_SC_zminmax,
PA _SC_centi,
PA_SC_phase,
PA_SCvalid,
PASCvO_indx,
SC_PAearlyfrz
de

// interface to scan converter

output [17:0] PA_SC_xy0;
output [17:0) PA_SC_xyli;
output [17:0] PA_SC_XY2;
output [31:0] PA_SC_po0;
output [39:0] PA_SC_pl;
output [31:0] PASC_p2;
output [31:0] PASCp3;
output [31:0] PA_SC_p4;
output [13:0] PA_SC_zminmax;
output [29:0] PA_SC_entl;
output [i:0] PASC_phase;
output PASC_valid;

- 108 -

ATI Ex. 2115

IPR2023-00922

Page 113 of 271

ATI Ex. 2115
IPR2023-00922

Page 114 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

output [1:0] PA_SC_vO_indx;

(pa. v, 2:2, 5:8-25, 8:21-9:9.)

204. In particular, the primitive assembly block transmits the generated

primitives in at least the PASC_p0,PASCpil, PASC_p2, PASC_p3,

PASC_p4, PA_SC_xy0, PA_SC_xyl, or PA_SC_xy2 signalsto the raster

engine (the sc module).

205. As explained above, the primitive assembly block (the pa module) is

operative to generate primitives from the vertex position data.

[Claim Il

206. Claim 11 recites the graphics processor of claim 10. Based on my

understanding of the R400 RTL code, I have generated a figure below which

represents my understanding of the components, and describes the code with

referenceto the figure.

- 109 -

ATI Ex. 2115

IPR2023-00922

Page 114 of 271

ATI Ex. 2115
IPR2023-00922

Page 115 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

Parameter Cache

parameter_caches

(parametercaches.v)

uparam_caches

©
&oO

2x
aoO
an

Position Cache

pa_ag lines 2786-2803

(pa_ag.v)

oh
&gS

y?
i

=

ee
Scan Converter

&
ss?

x
&

L, The Raster Engine

207. Claim 11 recites the graphics processor of claim 10, “further

including a raster engine.” The raster engine in the graphics processing system is

included in the sc module (also referred to as a scan converter). The sc module

receives the primitives from the primitive assembly block (the pa module), as I

- 110-

ATI Ex. 2115

IPR2023-00922

Page 115 of 271

ATI Ex. 2115
IPR2023-00922

Page 116 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

have described in Section [X.C.2. Replicated below, is the R400 RTL code

showing the raster engine receiving the primitive data:

//

// == ---

// Interface to the PA Setup Unit
// ~~~ ---

PA SCpo,
PA SC_pl,
PA SC_p2,
PASC _p3,

PA _SC_xy0,
PA_SC_xyli,
PASC_xy2,
PASC _zminmax,
PA_SC_cntl,
PA_SC_phase,
PASCvO_indx,
PA SC_valid,
SC_PAearlyfrz,

// Interface to the PA Setup Unit
(forma ---

input [17:0] PA_SC_xy0;
input [17:0] PA_SC_xyl;
input [17:0] PA_SC_xy2;
input [31:0] PASC_po;
input [39:0] PASCpl;
input [31:0] PA_SC_p2;
input [31:0] PA_SC_p3;
input [31:0] PA_SC_p4;
input [13:0] PA_SC_zminmax;
input [29:0] PA_SC_cntl;
input fi:0] PA_SC_phase;
input fi:0] PA_SC_vO_indx;
input PASCvalid;
output SC_PA_earlyfrz;

(sc. v, 2:4, 3:24-4:15, 9:20-10:11.)

208. Through the PSSC interface, the raster engine (the sc module)is

coupled to the primitive assembly bock (the pa module).

-lil-

ATI Ex. 2115

IPR2023-00922

Page 116 of 271

ATI Ex. 2115
IPR2023-00922

Page 117 of 271

2.

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

Generating thepixelparameter

209. The sc module is operative to generate pixel parameter data using the

primitive data received from the primitive assembly block. Example pixel

parameter data that the raster engine generates is shown using the R400 RTL code

below:

// Concatenate outpu
tile fifo.

assign
assign tileff

qm Zzmaskneeded;
assign
assign
assign
assign

tileffwr_
rr

a VE

tilefF
tileff
tile_ff

assign tilefF
assign tileff

gmbbfractbits;
assign tileff_
assign tile£f_
assign tileff
assign tileff_
assign
assign
assign

assign

assign
assign
assign
assign
assign
assign
assign
ssign

assign

wr

Wr

re

wr

ir

Wr

ir

wr

rr

tilefF_
tileff_

tile|ff
tilefF
tileff
tiieff_
tileff_
tileff_
tileff_
tilefF_

tileff
tileFr

aan

W:bo

WE
AE

wr
[a

wr

wr

as7
& Wr«

vr

-datal>

s of sc quadmask to create

data f-

data!

omSC TD

SC_ TD 4MASK_
LASTTILE]

NEEDED]

data[‘SC TDEVENT]

SC_TD_XMIN]

SC_TD_XMAX]
SC_TD_YMIN]
SC_TD_YMAX]

‘SC_TDBBFRACTBITS]

dataf-

data [-

data f-

data f

data[*SC_TDXDIR]

data[‘*sc_ TD VOIR]data[*SC_ TD TIDEX |
dataf*Sc_ TD PILEY]

scTD”“TILEYM3]
SC _TD_XMAJOR]

SC _TD_ EQ_ SAMPLE]
SC_ TDEL_ SAMPLE]
SC TDE2 SAMPLE]

SC_TD_ DX]

SC TDEQDY]

SC_TD_Ei_DX]
SC_TD_ELDY!
SC_TD_E2_Dx]
SC TD E2DY]

MASK]SC_TDSTIPPLE_

data[-

data f°

data {f-

data [-

data{[-

dataf-

data f-

data[-

dataf-

data[-s

dataf-

EO_

write data for

qmlasttile;

qmevent;
qmxmin;

qmXMaXx;

qmymin;
gmymax;

gmxdir;
gm_ydir;
gmtilex;
qm_tiley;
qmtilexm3;
gm_tileym3;
gm_xmajor,;
qm_e0;
gmel;

qine2;
gindxed;
gndyed;
gqn_dxel;
gmdyel;
gmaxe2;

(Id. at 83:19-84:19.)

210. As such, the primitive assembly block (the pa module) is operative to

generate primitives from the vertex position data.

- 112-

ATI Ex. 2115

IPR2023-00922

Page 117 of 271

ATI Ex. 2115
IPR2023-00922

Page 118 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

J. Claim 13

211. Claim 13 recites three components, a register block, a computational

element, and a sequencer. Below, I have generated a figure based on my

understanding of the R400 RTL code that showsthe relationship betweenthese

components.

8q_alu_instr_seq

(sc_alu_instr_seq.v)

8q_alu_instr_queue

(sq_alu_instr_queue.v)

 u0_sq_alu_instr_seq u0_sq_alu_instr_queue

Lines 130-295

macc32

(macc.v)

 Register
Block

Computation
Element

mad

mace

(macc.v)

umacc

macc_gpr

(macc gpr.v)

umacc_gpr0

(vector.v)

Shader Core

Shader

- 113 -

ATI Ex. 2115

IPR2023-00922

Page 118 of 271

ATI Ex. 2115
IPR2023-00922

Page 119 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

1, The register block

212. Claim 13 recites a graphics processor of claim 1, “wherein the shader

includes a register blockfor maintaining the selected one of the plurality of

inputs.” As discussed in Section [X.A.3, each vector unit instantiates four register

blocks, umacc_gpr0, umacc_gpril, umacc_gpr2,and umacc_gpr3,that

are defined in the macc_ gpr module. The macc_gpr moduleis specified in

macc_gpr.v. One or more of umaccgpr0, umacc_gpri, umacc_gpr2, and

umaccgpr3 form a register block.

213. Each macc_gpr module receives one instance of input data

(InputDatad, InputDatal, InputData2, and InputData3) as the

iinterpolated parameter, whichis the selected one of a plurality of inputs, as

shownusing the R400 RTL code below.

module macc_gpr{
/ *AUTOARG*/

// Outputs
oScalarinput, oScaliarOpcode, oVectoroutput, oRegqData,

oexportdst,
// Tnputs
sqspinstruct, sq_sp_instruct_start, sqspgpr_rd_addr,
Sqsp_gpr_wr_addr, sqsp_gpr_phase_mux, sqsp_mem_wr_ena,
SqspNemrd_ena, sqspwr_ena, sq_sp_gpr_cmask,

itinterpolated,
sqspconstant, iScalarData, tpspdata, tpspgpr_dst,
tp_spgpr_cmask, tpspdata_valid, scik, srst
df

(macc_gpr.v, 1:13-23.)

-114-

ATI Ex. 2115

IPR2023-00922

Page 119 of 271

ATI Ex. 2115
IPR2023-00922

Page 120 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

214. Themaccgpxr modulealso includes a memorycalled

““ugormem” of module type “rfsd2 128x128cm2swi.” (ad. at 8:1; also

as shown in my figure in Section.[X.J.as lines 130-295.) The macc_gpr module

stores the data in the 7 Interpolated in this memory.Tostore the data in the

iInterpolated into the memory, the macc_gpr module includes a

multiplexer that controls the input to the memory, as shown below, and selects an

input (such as 7 7nterpolated)that is stored in the “ugprmem” memory as

InputGPR:

/ ~~~ ~_—— ~_—_— ~—_——

--- --- ---- /

//The phase mux controlling the write input port into GPRs
(register file write port)

J/ ~_—_ —_—_ ~_—— ~_—_

a a _ a ---/

aiways@ (/*AUTOSENSE* /VectorResult or itnterpolated or
iScaiarData

or Sqspgprphasemux or tpspdata)
begin

case(sqspgprphasemux)
2°00: InputGPR = itnterpolated;

2'bOl: InpulGPR = tpspdata;
2'bi0: InputGPR = VectorResult;
2'bii: InputGPR = iScalarData;
default: InputGPR = ifnterpolated;

endcase // case(sqsp_gprphasemux)
end // always@ (..

(id. at 5:18-6:7.)

215. The maccgpxr module writes the selected input into the memory

“ugprmem’at a specified address, as shownusing the R400 RTL code below:

- 115-

ATI Ex. 2115

IPR2023-00922

Page 120 of 271

ATI Ex. 2115
IPR2023-00922

Page 121 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871
// WRITE INTERFACE

.CLKA(iSCLK), // Write Clock

-WEA(gprwrena), // Write enable
-MEA(vdd), // Memory enable

-ADRAO (gpr_wr_addrfO0]), .ADRAI(gpr_wr_addr/[1j),
-ADRAZ (gprwr_addr[2]), .ADRA3(gpr_wr_addr[3j), // Write Address

-ADRA4 (gprwr_addr/4]}), .ADRAS5 (gorwr_addr[5]),
-ADRAG (gpr_ wr_addr[6]), // Write Address

-DAC (InputGPR[O]), .DAILf(IinputGPR/f[1i]), .DAZ(InputGPR[2]),
DAS (TnputGPR{[3]), // Write Data

-DA4 (InputGPR[4]), .DA5(TInputGPR[5]), .DA6(TnputGPR/6/]),
-DA7(TnputGPR[7]), // Write Data

-DA8 (InputGPR[8]), .DA9(InputGPR/[9]), .DAIO(InputGPR/[i0]},
DALI (TnputGPR[ii]), // Write Data

»-DAL2 (InputGPR/[12]), .DAiS(InputGPR/i3]),

.DA14(TnputGPR[14j]), .DAIS5(InputGPR/[15]), // Write Data
DATE (InputGPR/16]), .DAI7(InputGPR{[i7/)),

.DAL8 (TnputGPR[18]), .DAI9(TnputGPR/[19]), // Write Data
~-DA20 (TnputGPR[20]), .DA21(TnputGPR[21j)),

~DA22 (InputGPR[22]), .«DA23(InputGPR[23]), // Write Data
-DA24 (InputGPR[24]), .DA25 (InputGPR[25]),

.DA2Z6 (TnputGPR[26)), .DA27(InputGPR[27]), // Write Data
-DA2Z8 (TnputGPR/[28]), .DA29(TnputGPR{[29)),

.DA30 (InputGPR[30]), .DA31(InputGPR[31]), // Write Data
-DA32 (TInputGPR[32]), .DA33(TnputGPR{[33/)),

.DA3B4 (TnputGPR[34]), .DA35(InputGPR/[35]), // Write Data
DASE (InputGPR[36]), .DA37(InputGPR[37)),

.DA38 (InputGPR/[38]), .DA39(InputGPR[39]), // Write Data
-DA40 (InputGPR[40]), .DA4i(InputGPR{[4ij),

.DA42 (InputGPR[42j), .DA43(TnputGPR/[43}]), // Write Data
A44(InputGPR[44]), .DA45(InputGPR[45]),

.DA46 (InputGPR[46j), .DA47(InputGPR/[47]}, // Write Data
-DA48 (InputGPR/[48]), .DA49(InputGPR[49]),

.DASO (InputGPR[50]), .DA5I(TnputGPR/[51]), // Write Data
-DA52 (InputGPR[52]), .DA53(InputGPR[53j]),

-DAS4 (InputGPR/54]), .DASS(InputGPR/55/), / Write Data
~-DA56(InputGPR[56]), .DA57(InputGPR[57j]),

.DA58 (InputGPR/{[58)), .DAS59(InputGPR/[53]), // Write Data
-DA60 (InputGPR/[60/), .DA6i(inputGPR/61/]),

.DA62 (InputGPR/[62]), .DA63(InputGPR/[63]), // Write Data
-DAG4 (TInputGPR/[64]), .DAG5(InputGPR[65)),

.DAG66 (InputGPR/[66]), .DA67(InputGPR/[67]), // Write Data
.DA68 (InputGPR[68]), .DA69(TnputGPR[69])),

.DA7O (TrputGPR[70j), .DA71(TnputGPR[71]), // Write Data
-DA72 (InputGPR[72]), .DA73(InputGPR[73)),

.DA74 (TInputGPR[74)), .DA75(InputGPR[75]}, // Write Data
-DA76(InputGPR[76]), .DA77(InputGPR{[77)),

.DA78 (TnputGPR[78]), .DA79(TnputGPR/[79]), // Write Data
-DA&OC (InputGPR[80]), .DA8Bi(IinputGPR{[&i)),

.DA82 (InputGPR[82]), .DAB3(InputGPR/[83]), // Write Data
.DA84 (InputGPR[84]), .DA85(InputGPR/[e5]),

.DA86 (TnputGPR{[86)), .DA87(InputGPR/[87]}), // Write Data

- 116-

ATI Ex. 2115

IPR2023-00922

Page 121 of 271

ATI Ex. 2115
IPR2023-00922

Page 122 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

-DA88 (InputGPR[88]), .DA89(inputGPR/[89]),
. DAI (TnputGPR/[90]), .DAS1(TnputGPR/[91]), // Write Data

-DAGS2 (InputGPR{[92]), .DA93 (TInputGPR[93)),
.DAG4 (InputGPR[94]), .DA9S(InputGPR/[95]), // Write Data

-DAG6 (InputGPR[96]), .DA97(InputGPR[97)),
.DA9S (InputGPR/[98]), .DA99(InputGPR/[99]), // Write Data

-DALTO0 (inputGPR/[100]}, .DAIOL (InputGPR/[i0i]),

.DALO2 (InputGPR/[102)]), .DA1O3(InputGPR/103]), // Write Data
»DALI04 (inputGPR/[104]), .DAIO0S5 (inputGPR/[105]),

.DALO6 (InputGPR/106)]), .DAIO7(InputGPR/107]), // Write Data
-DAIO8 (TnputGPR{[i08]), .DAIO9 (InputGPR/109]),

~DALIO(InputGPR/110)), .DALIl(inputGPR/[111]), // Write Data
-DATI2(InputGPR/1i12]), .DAI1I3 (InputGPR/iis]),

.DALI4 (InputGPR[il4j), .DA115(InputGPR/115/), // Write Data
-DAI16(inputGPR/il6/}), .DALi7 (iInputGPR/117/),

.DA1i8 (InputGPR/118]}), .DAI19(InputGPR[1i19]}), // Write Data
-DAIZ0(inputGPR/[i2z0]), .DAIZ1i (inputGPR/izi]),

DAL22 (TnputGPR/122)), .DAI23 (InputGPR/123]), (// Write Data
-DAIZ4 (inputGPR/[124]), .DAI25 (InputGPR/[i25]),

.DALZ6 (InputGPR/126)), .DAI27 (InputGPR/I127]), (// Write Data

Ud. at 10:13-12:20.)

216. The macc gpr module also retrieves the selected input from the

“ugprmem” memory. For example, upon request, the macc_gpr module may

read the selected input from memoryan store the selected input in the RegData

register, as shown using R400 RTL code below:

-CLKB(iSCLK), // Read Clock

.OEB(sq_sp_gpr_rd_ena), // Output enable
-MEB(vdd), // Read enable

-ADRBO (sq_sp_gprrd_addr[0j), .ADRBi(sq_spgpr_rd_addr/fi/),
-ADRB2 (sqspgerrd_addr[2]), .ADRB3(sq_sp_gpr_rd_addr[3]), //
Read Address

-ADRB4 (sq_sp_gprrd_addr/[4/), .ADRBS5 (sqspgpr_rd_addr/5/),
-ADRB6(sqspgerrdaddr[6]), // Read Address

-OBO (RegData/l[0O]), .OB1(RegData/i/), .QOB2(RegData[2]),
-OB3 (RegData[3}]}, // Read Data

-OB4 (RegData/4]), .OB5(RegPata/[5]), .OBe6é(RegData/[6é]),

.OB7(Regnatal7]), (// Read Data
-OB8 (RegData/[8]), .OB9(ReqData/[9]), .OB10(RegData/io]),

.OB1i(RegData/1ij), // Read Data

- 117-

ATI Ex. 2115

IPR2023-00922

Page 122 of 271

ATI Ex. 2115
IPR2023-00922

Page 123 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

-OB12 (RegDataliz]), .OBi3 (ReqDatali3j),
.OB15 (Regdata[i5]), // Read Data

-OB16(RegData[16]), .QB17(RegDatali7j),
.OB19 (Regdatali9]), // Read Data

-OB20 (RegData[20]), .OB21(RegDatal2ij),
.OB23 (RegData[23]), // Read Data

.O0B24 (RegData[24]), .Q0B25(RegDatal25]),

.OB27 (RegData[27]}, // Read Data
-OB2Z8 (RegData[28]), .QOBZ9(RegDatalZz9j),

.OB31 (RegData[31]), // Read Data
-OB32 (RegData[32]}), .QB33 (RegDatal33j),

.OB35 (RegData[35]), // Read Data
-OB36 (RegData/[36]), .OB37(RegData[37j),

.OB39 (RegData[39]), // Read Data
-OB40 (ReqData/[40]), .QB41(RegData/l4ij),

.OB43(RegDatal[43j), (// Read Data
.0OB44 (RegData/[44/), .OB45(ReqgDatal45j),

.OB47 (RegDatal47]), // Read Data
-OB48 (RegNata[48]), .OB49(Reghatal49j),

.OBSi (RegData[5i]), // Read Data
-OB52 (RegData[52]), .OB53 (ReqDatal53]),

.OB55 (RegPatal55]), // Read Data
-OB56 (RegData/[56]), .OB57(ReqDatal57j),

.OB59 (RegData/[59j), (// Read Data
.OB60 (RegData[60/), .OB6i(RegData/léij),

.OB63 (RegDataf63]), // Read Data
. OB64 (RegData[64]), .OB65 (RegDatalé5j),

.OB67 (RegData[67]), (// Read Data
-OB68 (RegData[68]), .OB69(RegDatal69]),

.OB7i (RegData[71i]), // Read Data
.0B72 (RegData[72]), .OB73 (RegDatal73]),

.OB75 (RegData[75]), // Read Data
-OB76 (Reghata[76]), .OB77(RegData[77i),

.OB79 (Regdata[79]), (// Read Data
.OB80 (RegData[80]), .OB81(RegData/[sij),

.OB83 (Regdata[83]), // Read Data
-OB84 (RegData/[84]), .OB85(RegqDatale5sj),

.OB87 (RegData!87]), (// Read Data
.OB8&8 (RegDatal[ées)]), .OB89(RegDatals9j),

.OBG9i (RegDataf[91]), // Read Data
-OB92 (RegData[92]), .OB93 (RegNatal93j),

.OB95 (RegData[95j), // Read Data
-OB°6 (RegData[96]), .OB97(RegDatal97j]),

.OB99 (Regdata[99]), // Read Data
-OBL00 (RegData/fi00/]), .OBi0Oi(RegqPata/fiois),

.OB102 (Reghata[102]), .QOB103(RegData[103]), // Read
.OB1C4 (RegData/i04]), .QOBI05(RegData/id5s/]),

.OB106(RegData/[106]), .Q@B107(RegData[107]), // Read
-OB1C8 (RegDatafi0&/]), .OBI09(RegData/[io9]),

.OB1i0 (RegData/f1i0]), .QB111(RegData[11i]}, // Read
.O0B112 (RegData/iiz/) -OB113 (RegqData[ii3]),

.OB114 (Regdata/ii4j]), .QB115(RegData/f[iis5]), // Read

e

BITS

- 118-

.OB14 (RegData/[i4j),

-OB18 (Reghata[1é]),

-OB22 (RegData[22]),

.0B26 (RegData[Z26]),

.OB30 (RegData[30j),

-OB34 (Reghata[34]),

-OB38 (RegData[3é]),

.OB42 (RegData/l42]),

.OB46 (RegData/l46]),

-OB50 (Reghata[50]),

.OB54 (RegData[54]),

.OB58 (RegData[58]),

.OBE62 (RegData/l[62]),

.OB66 (RegData[éé]),

.OB70 (RegData[70]),

.0B74 (RegData[74]),

-OB78 (Reghata[7&]),

.OB82 (RegData[82]),

.OB86 (RegData[sé]),

-0OB90 (RegData/[90/),

-OB94 (Reghata[94]),

.OB98 (RegData[98]),

Data

Data

Data

Data

ATI Ex. 2115

IPR2023-00922

Page 123 of 271

ATI Ex. 2115
IPR2023-00922

Page 124 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

-OB116(Regdata/[1ié/]), .OBii7(RegqData/fii7]),
.OB118 (RegData![118]), .QB119(RegData/119]), // Read Data

.OBI20(RegData/[1i20]), .QBi21(RegData/i2i]),
.OB122 (Regbdata[122]), .OBI23(RegData[i23]}, // Read Data

.OB124(RegData/[iz4]), .QBi25(RegData/i25]),
.OB126 (RegData!izé/), .OQB1I27(RegData/[iz7/}), // Read Data

(/d. at 8:5-10:12.)

217. The storage and retrieval of the selected input to the “ugpr_mem”

memory allows the macc_gpr module to maintain the selected one of the

plurality of inputs as recited in claim 13.

218. Each vector unit wwector0O-3 includes four instances of a

macegpr module. The vector units are included in the sp module, within the

shader. As such, the shader includes a register block.

2. The computation element

219. Claim 13 also recites “a computation element operative to perform

arithmetic and logical operations on the data maintained in the register block.”

Each instance of the macc_gpr module includes a MACC module called umacc,

whichis replicated using the R400 RTL code below:

macc umacc(.oResult (VectorResult), .oScalaroOpcode (oScalaroOpcode)

, oscalarinput (oScalarinput),.okxportDst foexportdst),
. iRegData (qRegData),.iConstantData (sqsp_constant),.iScalarData (
iScalarData), .iinstruction(sq_sp_instruct),
.iinstStart (sq_sp_instruct_start), ~sCcik(scik), .srst(srst))-;

(/d. at 3:17-21.)

- 119-

ATI Ex. 2115

IPR2023-00922

Page 124 of 271

ATI Ex. 2115
IPR2023-00922

Page 125 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

220. The MACC module receives gqRegData (whichit converts to

iRegData) whichis the data maintained in the register block in macc_gpr

module as oRegData. The iRegData signal is converted to OperandAMod,

OperandBMod, and/or OperandCMod as shown in the MACC moduleat 13:8-

23:22.

221. The MACC module also receives the instruction from the sequencer

using the sq_spinstruct parameter and converts sqsoinstruct to

ifnstruction. TheMACC module then parses i Tn struction and retrieves

VectorOpcode, as shown using the R400 RTL code below:

reg [20:0] gInstruction0, qInstructionl, qInstruction2Z,
gqInstruction Gy 7

wire [4:0] VectorOpcode;

//----- --- a “=== ooo

{/----- --- --- ae es

//Registering the Instruction word (20 bits) in four
consecutive cycles

Jf ae ee eH a a a

always@ (posedge scik)
if(srst)

gqInstructionO <= 21'b0;
else if (decodeSrcA)

gqInstructionO <= iinstruction;

always (posedge scik)
if(srst)

QgQ Instructionl <= 21'bO;
i,

else if (decode_SrcB)
g Instructionl <= itnstruction;

ci.

always@ (posedge sclk)

- 120-

ATI Ex. 2115

IPR2023-00922

Page 125 of 271

ATI Ex. 2115
IPR2023-00922

Page 126 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871
if(srst)

gqInstruction2 <= 21'b0;
else if (decode_Srcc)

cq Instruction2 <= iftnstruction;

always@ (posedge scik)
if(srst)

qInstruction3 <= 21'b0;
else if (decode_Opcode)

nstruction3 <= ifnstruction;iSI

//decoding the instruction word into a set of select/modify
signais used

//for argument selection and input modification on the way to
MACC unit

j/ann-- --- --- ---- ----

assign SrcASel = qInstruction0O/2:0];
assign SrcANegate = qiTnstruction0(3: 3);
assign SrcAAlphaSwizzle aInstructionO/[ii:10];assign SrcARedSwizzle
assign SrcAGreenSwizzle
assign SrcABlueSwizzle

= qInstruction0[5:4];
= g Instruction0O/[7:6];

= gqInstruictiono/s9:8];

assign SrcBSel = gInstructionl[2:¢];
assign SrcBNegate = qInstructioni/[3:3];
assign SrcBAlphaSwizzle = qInstructioni/ii:10];
assign SrcBRedSwizzle = qInstructionl1 [5:4];
assign SrcBGreenSwizzle = qInstructioni[7:6];
assign SrcBBlueSwizzie = qInstructitoni[9:8];

assign SrceCSel = gqInstruction2[2:06];
assign SrcCNegate = qInstruction2/[3:3];

assign SrcCAlphaSwizzle = qInstruction2/[ii:10];

assign SrcCRedSwizgzle = LInstruction2/[5:4];
assign SrceCGreenSwizzle qInstruction2/[7:6];
assign SrcCBlueSwizzle =“gInstruction2/9:8];

ssign VectorOpcode = qInstruction3[4:0];
assign ScalarOpcode = qInstruction3/[10:5];
assign VectorClamp = qInstructionS/i1:11];
ssign ScalarClamp = gfnstruction3/[12:12];

assign VectorWriteMask = qInstruction3/i6:13];
assign ScalarWriteMask gqInstruction3[20:17];

- 121-

ATI Ex. 2115

IPR2023-00922

Page 126 of 271

ATI Ex. 2115
IPR2023-00922

Page 127 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

(macc. v, 4:8, 4:10, 10:12-11:13, 11:22-13:6.)

222. In particular, theMACC module retrieves VectorOpcode, which

includes instructions used to performarithmetic and logical operations on the data

maintained in the register block (the oReqData).

223. The computation element is included in the MACC module, and is

called a mad unit. The mad unit is instantiated in the macc32 module. The R400

RTL codethat instantiates the mad unit in the MACC moduleis replicated below:

//Fioating point Multiply and Accumulate
macce32 mad (OperandAMod, OperandBMcd, OperandCMod,

VectorOpcode,MaccResult,sclk);

(Id. at 24:25-25:2.)

224. The macc32 module receives OQ(perandAMod, OperandBMod,

and OperandCMod as operands whichinclude data maintained in the register

block (the oRegData), and VectorOpcode which includesinstructionsthat

manipulate the data. The macc32 moduleis then operative to use

OperandAMod, OperandBMod, OperandCMod(data) and VectorOpcode

(instructions) to perform 1) floating point operations which are arithmetic

operations, and 2) minimum, maximum, and compare operations, which are logical

operations as specified in macc32.mc. The MACC module, receives the results from

macc32 module as MaccResult.

- 122-

ATI Ex. 2115

IPR2023-00922

Page 127 of 271

ATI Ex. 2115
IPR2023-00922

Page 128 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

225. Also, the“MACC module includesa listing of additional operations that

macc32 moduleis operative to perform, that may be includedin the floating point

operations. These operations as listed using R400 RTL codeare replicated below:

{//ALU opcodes deciared as parameters
//this definition is subject to change as more
//opcodes are added. for the latest definition
//please refer to Shader Pipe Spec: ALU instruction definition
parameter [4:0] ADD = 5'h0ooO,

MUL = 5'hO1,

MAX = S'hO2,

MIN = 5'hO3,

SETE = 5'hO4,
SETGT = 5'h05,

SETGE = 5°RO6,

SETNE = 5°ROT,

FRACT = 5'HO8,

TRUNC = 5°hO9,

FLOOR = 5'h0a,

MULADD = 5'hOb,

CNDE = 5'hoc,

CNDGE = 5S'h0d,
CNDGT = 5'h0e;

(d. at 3:11-4:4.)

226. This listing of arithmetical opcodes further indicates that the macc32

module is operative to perform arithmetic and logical operations on the data in the

register block.

227. In this way, the R400 RTL code demonstrates how a computation

element is operative to perform arithmetic and logical operation on the data

maintained in the register block.

- 123 -

ATI Ex. 2115

IPR2023-00922

Page 128 of 271

ATI Ex. 2115
IPR2023-00922

Page 129 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

3. The Sequencer

228. Claim 13 also recites a “sequencerfor maintaining the instructions

that are executed by the computation element.” Thefile, sq. v, instantiates a sq

module which is a hardware block of the graphics processor component which

includes a sequencer. The sequencer (the sq module) maintains instructions and

provides the instructions to the shader (included in the sp module) using an

SQSPinstruct parameter, as describedin detail below. (sq. v, 2:17, 9:11,

80:11.)

229. The sequencer maintains instructions in the instruction store. The

instruction store is instantiated as sq_ instructionstore using the

sqinstructionstore module (Ud. at 86:23-88:2). The

sqinstructionstore module ts defined in the

sqinstructionstore. v. It consists of 4096 instruction words which are

each 96-bits wide.

230. The u0sqaluinstrfetchand

ulsqaluinstrfetchunitsdefinedin sg targetinstrfetch

module retrieve the instruction from the sq_instructionstore module. For

simplicity, I focus on the uOsqaluinstrfetch unit. For example, the

- 124-

ATI Ex. 2115

IPR2023-00922

Page 129 of 271

ATI Ex. 2115
IPR2023-00922

Page 130 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

sqtargetinstrfetch module includes an interface with the

sqinstructionstore module, as replicated below:

// instruction store interface

isreadaddr, // instruction store read address
isreaddata, // instruction store read data
isphase, /f instruction store phase
aiu_phase, // alu phase (alu0 and alul share the alu

isphase)

(sq target instr fetch. v,3:7-11.)

231. The sq targetinstrfetch module usesthe

isreadaddr interface to send the instruction pointer that communicates the

address of the instruction to the sq_ instructionstore module, using the

R400 RTL code below:

output [ii:0] isreadaddr;

(/d. at 5:13.)
assign isreadaddr = tipq;

(id. at 8:8.)

always @(posedge cik})
begin

if (id_tip) tip_q <= cfsinstrptr;
else if (inc_tip)

if (vtx_wrap) tipgq <= inst_base_vtx;
else if (pix_wrap) tipq <= instbasepix;
else tipgq <= tip_.q? i;

else tipgq <= tip_q;

(id. at 9:3-11.)

232. Theginstructionstore receivesanisreadaddr

request, from u0_ sgalu instrfetch, using the interface below:

- 125 -

ATI Ex. 2115

IPR2023-00922

Page 130 of 271

ATI Ex. 2115
IPR2023-00922

Page 131 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

input [11:0] i_alu0addr;

(sq_instruction_store.v, 2:20.)

233. Inresponse tothe isreadaddr request, the

gqinstructionstore module retrieves the instruction and outputs the

instruction as the oisdata signal, using the R400 RTL code below:

output [95:0] o_isdata;

(id. at 3:2.)

wire [95:0] o_isdata = readdata;

Cd. at 3:19.)

assign memreaddata = d_addr/fiij ? memird_data
memOrddata;

(Id. at 7:25.)

// vegister instantiation

always @(posedge iclk)
begin

if (i_reset)
begin
we <= 1'bO;

Af addr <= 12'd0;

readdata <= S6'dO;
ortr <= 1° bO;
wrt_data <= G6'd0;
qrbi_addr_in <= 12'd0;
end

elise

begin

we <= dwe;
Af addr <= d_addr;

readdata <= memreaddata;
ortr <= d_rtr;
wrtdata <= d_wrt_data;
qroi_addriin <= d_rbi_addr_in;
end

end

(/d. at 15:26-16:19.)

- 126-

ATI Ex. 2115

IPR2023-00922

Page 131 of 271

ATI Ex. 2115
IPR2023-00922

Page 132 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

234. The sqtargetinstrfetch module receives the instruction

from the ginstructionstore module using the R400 RTL code below:

input [95:0] isreaddata;

(sq targetinstrfetch.v,5:14,)

235. The instruction is loaded into the sq_target instrfetch

module’s tifinstr_qregister, as shown using the R400 RTL code below:

[foam ~-- ---

// -~ Target Instruction Register (TIR) --
[foam --- ---

// - loaded with data read from instruction store

// - the TIR is output to the target instruction queue (which
does some decode in front of the queue)

always @(posedge cik)
begin

if (ild_tir) tif_instr_q <= is_read_data;
else tifinstrq <= tifinstrgq;
end

(/d. at 12:17-13:2.)

236. The sq targetinstrfetch module transmitsthe instruction

toan sqaluinstrqueue module using the interface below:

truction decoder (in the TIO module)
th

// outputs to the target in

tifthreadtypeq, // vert:1, pix:0d
tif thread idq, // the target thread id
tifinstrgq, // the target instruction register (TIR)

(/d. at 3:19-21.)

237. With respect to the shader, the sq_ targetinstrfetch module

passes the instruction to the sqaluinstrqueue module. The

- 127 -

ATI Ex. 2115

IPR2023-00922

Page 132 of 271

ATI Ex. 2115
IPR2023-00922

Page 133 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

sqaluinstrqueue module calculates the gpr address (the address where

the data is located that requires execution). The R400 RTL codefor the

sq_alu_instrqueue module is includedin sqaluinstrqueue.v.

The sq. v file instantiates two instances of sg_alu_ instrqueue module

called u0_sgalu_instrqueueand ulsqaluinstrqueue,

associated with each instance of a shader. (sq. v, 68:6-69:24.) For simplicity, I

address only uOsqaluinstrqueueasthat is sufficient to meet the claim

limitations.

238. The sqaluinstrqueue module receives the instruction from

the sq_targetinstrfetch module,using the interface below:

// inputs from ATF (ALU Instruction Fetch)

aifthreadtypegq, // vector type (0: pixel, 1: vertex)
idaifthreadidq, // thread id

aifinstrq, // instruction register (registered read
from IS - 96 bits)

(sqaluinstrqueue. v, 2:15, 2:21-22, 2:24.)

239. The sqaluinstrqueue modulespass the instruction to the

u_ sqaisoutput module. The R400 RTL code for the

u_sqaisoutput module isincludedinsqaisoutput.v. The sq.v

instantiates an instance of the u_sqaisoutput modulecalled

u_sqaisoutput.(sa. v, 77:20-81:4.)

- 128 -

ATI Ex. 2115

IPR2023-00922

Page 133 of 271

ATI Ex. 2115
IPR2023-00922

Page 134 of 271

Case IPR2015-00326 of

US. Patent No. 6,897,871

240. Theusqaisoutput modulereceives the instruction from the

u0Q_sqaluinstrqueue using the interface below:

// inputs from the ATOQs

aig?instr, // instruction

(sqaisoutput. v, 2:9, 2:14.)

241. The u_sgqaisoutput module converts the aigOinstr

instruction into a SQSP interface format, and then provides the instruction to the

shader, as shown using the R400 RTL codebelow:

Ae

// -~ SP instruction, writemask --
nee --- --7

// - valid with instruction start

always @(posedge cik)
begin

case (gpr_phase)
‘SQ SRCBPHASE: begin

case (alu_phase)
LO: begin

SQSP_instr <= {3'bO0O, aig0_instr[06:00!],
aigOinstr[{55:48j, aigO_instr[58], aiqO_instr[i01:99]};

uO SQSP writemask <= aigOvalidbits [3:0];
ulSQSPwritemask <= aigOvalidbits [7:4];

u2SQSPwritemask <= aiqOvaiid_bits [11:8];
u3_ SQSPwritemask <= aiqOvalidbits [15:12];

end

endcase
ean

‘SQ SRCCPHASE: begin
case (alu_phase)

LO: begin

SQSPinstr <= {aigOinstr/15:08], aiqOQinstr[47:40],
aigOinstr[57], aiqOinstr[98:96]};

u0_SQSP_write_mask <= aigOvaiid_bits [19:16];
ulSQSPwritemask <= aiqOvalidbits [23:20];

o Q,

- 129-

ATI Ex. 2115

IPR2023-00922

Page 134 of 271

ATI Ex. 2115
IPR2023-00922

Page 135 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

u2ZSQSPwritemaskK <= argovalid_bit [27:24];u3_SQSPwrite_mask <= aiqOvalidbits 31:28];
end

endcase

end

“SQ FAPHASE: begin
case (aluphase)

LO: begin

SQSP_instr <= faigO_instr/[23:i6], aiqO_instr[39:32],
aigOinstr[56], aiqgQ instr[95:93]};

u0_SQSP. write_mask <= aiiGO_valid_bits [35:32];
ulSQSPwritemask <= aigOvalidbbits (39: 36];

uéSQSPwritemask <= aiqOvaiid_bits [43:40];
u3_SQSPwritemask <= aiqOvalidbits [47:44];

end

endcase
3

OQ.e kK L
2

SQ SRCA_PHASE: begin
case (alu_phase)

LO: begin

SQSP_instr <= faiqoOinstr/[23:i6], aiqO_instr/[25:24],
aigOinstr[3i::26), aigOinstr[92:88]};

u0_SQSP _write_mask <= aig0Ovaiidbits [51:48];
ulSQSP_writemask <= aigo_valid|bits [55:52];

u2SQSPwritemask <= aigo_validbits [59:56];
usSQSPwrite_mask <= aigOvalidbits [63:60];

end

endcase

end

endcase

end

(Id. at 16:9-17:20, 17:29-18:11, 18:20-19:15 .)

242. The SQSPinterface which includes instruction that the sequencer

passed tothe shaderis replicated below:

// outputs to SP

SQSPgpr_wraddr,
SQSPgpr_wr_en,
SQSPgpr_rd_addr,
SQSPgprrd_en,
SQSPgpr_phase,
SQSP_gpr_input_sel,
SQSPgpr_ channelmask,

- 130-

ATI Ex. 2115

IPR2023-00922

Page 135 of 271

ATI Ex. 2115
IPR2023-00922

Page 136 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

//

SQSPexporting,
SQSPexpid,
uOSQSPwritemask,
ui_SQ SPwrite_mask,
u2_SQ SPwrite_mask,
u3SQ SPwritemask,

(id. at 4:4-11, 4:15-16, 4:18-24.)

243. In particular, the interface includes the SOSPinstruct

parameter which provides the instruction.

244. The shader (included in the sp module) receives the instruction using

the SQ_SPinterface, and converts the instruction into g_sqinstruct, as

shown using the R400 RTL code below:

input [20:0] SQSP_instruct;

(sp. v, 6:13.)

ati_dffin #(21) sqinstruct (scik,SQSP_instruct,qsqinstruct);

(id. at 7:4.)

245. The sp module passes the instruction to the vector units uvector0,

uvectoril, uvector2, and uvector3, which passthe instruction to the

macegpr module, theMACC module and to the madunit (whichis the

computation unit) as described in Sections [X.A.3 and [X.J.3.

- 131-

ATI Ex. 2115

IPR2023-00922

Page 136 of 271

ATI Ex. 2115
IPR2023-00922

Page 137 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

246. In this way, the instruction maintained by the sequenceris executed

by the computation element.

K. Claim 15

247. Claim 15 recites “[a] unified shader” comprising three components: a

general purpose register, a processor unit and a sequencer. Below, | have generated

a figure based on my understanding of the R400 RTL code that shows the

relationship between these components.

- 132-

ATI Ex. 2115

IPR2023-00922

Page 137 of 271

ATI Ex. 2115
IPR2023-00922

Page 138 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

$q_alu_instr_seq

(sq alu instr seq.v)

$q_alu_instr_queue

(sq alu instr queue.v)

 u0_sq_alu_instr_seq u0_sq_alu_instr_queue

General Purpose
Register Block

L

macc32

(macc.v)

mad

ines 130-295

Processor

Unit

macc

(macc.v)

umacc

macc_gpr

(macc_gpr.v)

umacc_gpr0

(vector.v}

Shader Core

Unified Shader

1, A generalpurpose register block

248. Claim 15 recites a unified shader comprising “a general purpose

register blockfor maintaining data.” As | discussed in Section [X.A.3, the shader

instantiates umaccgpr0, umacc_gpri,umaccgpr2,and umacc_gpr3

units using the macc_gpr module. The macc_gpr module is specified in

- 133 -

ATI Ex. 2115

IPR2023-00922

Page 138 of 271

ATI Ex. 2115
IPR2023-00922

Page 139 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

maccgpr.v.Oneor more of the umacc_gpr0, umaccgprl,

umaccgpr2,and umacc_gpr3 forma register block.

249. The register block is a general purpose register block becauseit stores

different types of data. For example, the data can be vector data

(VectorResult), scalar data (iScalarData), texture data(tpospdata) or

interpolated data (i Interpolated). As shown, macc_gpr moduleselects the

type of data for storage in the general purpose register, using the R400 RTL code

below:

//The phase mux controlling the write input port into GPRs
(register file write port)

/fon--- --- --- ----

a a _ a ----/

aiways@ (/*AUTOSENSE* /VectorResult or itnterpolated or
iScalarData

or sqspgprphase_mux or tpspdata)
begin

case(sqsp_gprpnase_mux)
2°00: InputGPR = itnterpolated;

Z2'°DOL: InputGPR = tp_spdata;
2'b10:; InputGPR = VectorResult;

2'blil: InputGPR = iScalarData;
default: InputGPR = iinterpolated;

endcase // case(sqsp_gprphasemux)
end // always@ (...

(macc_ gpr.v, 5:18-6:7.)

250. The macc_gpr module then writes the selected data using the

InputGPRsignal into a memorycalled ugpor_mem, as shown in Section [X.A.3.

- 134-

ATI Ex. 2115

IPR2023-00922

Page 139 of 271

ATI Ex. 2115
IPR2023-00922

Page 140 of 271

Case IPR2015-00326 of

USS. Patent No. 6,897,871

251. Additionally, the macc_gpr module reads the data from ugpr_mem

using the RegData signal as shown in Section IX. A. The reading and writing toa

ugprmem memory maintains the data in the general purpose register block as

recited in claim 13.

2. Theprocessor unit

Claim 13 also recites “a processor unit.” TheMACC module and the252.

macc32 module, which I described in Section IX.A.3, together form a processor

unit.

3. The Sequencer

253. Claim 13 also recites “a sequencer, coupled to the general purpose

register block and the processorunit.” | described in Section [X.J.3 that a

sequenceris the sq module.

a. Coupled to the general purposeregister

254. The sequencer is coupled to the general purpose register block and the

processor unit. In particular, the sequencer is coupled to the processor unit by the

SQ_SPinterface, and the general purpose register block by the SQ_SP_ GPR

interface. The sequencerside of the interface, included in the sg module, is

replicated using the R400 RTL code below:

- 135 -

ATI Ex. 2115

IPR2023-00922

Page 140 of 271

ATI Ex. 2115
IPR2023-00922

Page 141 of 271

Case IPR2015-00326 of

USS. Pat

// SQO-SP GPR control Interface

[[----- --- --- ----

output [6:0] SQSPgprwraddr;
output [0:0] uO SQSPgprwr_en;
output [0:0] ulSQSP_gprwr_en;
output [0:0] u2SQSPgprwren;
output [0:0] u3 SQSPgprwr_en;
output [6:0] SQSPgprrdaddr;
output [0:0] SOQSPgprrd_en;
output [1:0] SQSP_gprphase_mux;
output [3:0] SQSPchannelmask;

output [3:0] uO SQ Ss

output [3:0] ui_SQ SP_

it

So. pix mask;
output [3:0] u2_SQSP pix mask;
output [3:0] u3_SQ_ SP pix mask;

output [1:0] SQspgpr_input_mux;
output [11:0] SQ SPautocount;

ent No. 6,897,871

(sq. v, 8:11-9:5.)

255. The sp module also includes the SQSP interface, which receives the

above parameters using the R400 RTL code, replicated below:

jf ~—-- a + —---

//SEQUENCER (SO) -SHADER (SP)
//GPR control and auto-counter interface

Jf a a --- a

input [6:0] SQSPgpr_wraddr;
input [6:0] SQSPgprrdaddr;
input [0:0] SQ SP gpr rd en,SC SP gpr wr en;

//these to read/write enable signals

/fare used to enable the TP - GPR write path also
input [1:0] SQSPgprphasemux;

//control into GPR write port
input [3:0] SQSPchannelmask;
input [3:0] SQSPpixmask;
input [1:0] Sq sp gpr input mux;
input [11:0] SQSPautocount; 7

wire [6:0] gq sq ger wr addr;
wire [6:0] gqsqgpr_rd_addr;
wire [0:0] Gg sq ger rd en,g sq gpr wr en;

//these to read/write enable signals

- 136-

ATI Ex. 2115

IPR2023-00922

Page 141 of 271

ATI Ex. 2115
IPR2023-00922

Page 142 of 271

units:

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

j/fare used to enable the TP - GPR write path also

wire [1:0] qsq_gprphasemux;
/f/eontrol into GPR write port

wire [3:0] gqsqchannelmask;
wire [3:0] gqsqpixmask;
wire [1:0] qsqgpr_input_mux;
wire [11:0] qsqautocount;

atidffin #(7)
Sqgpr_wr_addr(sclk,SQSP_gpr_wr_addr,qsq_gprwr_addr);

atidffin #(7)
sq_gpr_rd_addr(scik,SQ SP_gpr_rd_addr,qsq_gpr_rd_addr);

atidffin #{i)
sqgprrd_en(scik,SQ SP_gpr rd_en,q sq opr rd_en);

atidffin #(1i)
Sq gpr wr en(scik,SO SP gpr wr en,gd sq gpr wr en);

atidffin #(2)
Sq_gpr_phase_mux(scik,SQ SP_gpr phase _mux,q sq gpr phase_mux);

ati dff in #(4)

sq_ channelmask (scik,SQSPchannelmask,qsqchannelmask);
atidffin #(4)

sqpixmask (scik,SQSPpixmask,qsqpixmask);
atidffin #(2)

sggor_input_mux(sclik,Sq Sp gpr input mux,qsqgpr_input_mux
df

atidffin #(12)
sqauto_count(scik,SQSP_auto_count,gqsq_auto_count);

(sp. v, 8:24-10:8)

256. The sp module provides the above SOSP_GPR interface to vector

uvectord, uvectorl, uvector2, and uvector3. (See sp. v, 15:6-

18:16.) Each of the vector units includes the general purpose registers called

umacegpr0,umacc_gpri, umacc_gpr2,and umacc_gpr3, as I described

in Section [X.A.3.

block.

257. As such, the sequencer is coupled to the general purpose register

- 137-

ATI Ex. 2115

IPR2023-00922

Page 142 of 271

ATI Ex. 2115
IPR2023-00922

Page 143 of 271

Case IPR2015-00326 of

USS. Patent No. 6,897,871

258. Because the general purpose register block is included in the

processor unit, the sequencer is also coupled to the processor unit. Additionally, as

I discussed in Section [X.A.3, the sequenceris also coupled to the processor unit

through the SQ_SP instruction interface.

b. The sequencer maintains instructions

259. Claim 13 also recites “the sequencer maintaining instructions

operative to cause the processor unit to execute vertex calculation and pixel

calculation operations on selected data maintained in the general purpose register

block.”

260. As I discussed in Section [X.J.3, the sequencer maintains instructions.

As [also discussed in Section [X.A.3, these instructions include pixel manipulation

instructions and vertex manipulation instruction. When the vector unit passes the

instruction to the MACC module, theMACC module executes the vertex calculation

or the pixel calculation (as shown in macc.v and macc32 me), depending on

whether the instruction includes vertex manipulations or pixel manipulations.

261. ‘The instruction also performs the operations on the selected data

maintained in the general purpose register. As discussed in Section [X.K.1, the

general purpose register maintains data, and the selected data is read from the

ugprmem memory using the RegData signal.

- 138 -

ATI Ex. 2115

IPR2023-00922

Page 143 of 271

ATI Ex. 2115
IPR2023-00922

Page 144 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

262. The data selected in the RegData is storedas qRegData and

oRegData.(macc_gpr.v, 15:13, 15:17.) The gRegData and instruction

(q_spinstruct) are passed to the MACC module called umacc that

performs operations as described in macc.v, and generates a VectorResult that

includes the result of the operations. (macc_gpr.v, 3:17-21.)

263. As such the instructions cause the processor unit to execute vertex and

pixel calculations operations on the selected data maintained in the general purpose

register block.

L. Claim 17

264. Claim 17 recites “a selection circuit operative to provide information

to the general purpose block in response to a control signal.”

265. lalready discussed a selection circuit in Section [X.A. I have also

discussed howthe selection circuit provides an SOSPgprinputsel signal

to the sp module as the sq_spgpr_inputmuxsignal in responseto a control

signal. And I have described in Section [X.K.1 that the sp module includesthe

general purpose register block implemented as umacc_gpr0, umacc_gpri,

umaccgpr2,and umacc_gpr3 and that these blocks process data based on

whether the sq_spgprinputmux signalis set to process the vertex

- 139-

ATI Ex. 2115

IPR2023-00922

Page 144 of 271

ATI Ex. 2115
IPR2023-00922

Page 145 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

operations or the pixel operations. In this way, the selection circuit is operative to

provide information to the general purpose block in responseto a control signal.

- 140-

ATI Ex. 2115

IPR2023-00922

Page 145 of 271

ATI Ex. 2115
IPR2023-00922

Page 146 of 271

ofCase IPR2015-00326

U.S. Patent No. 6,897,871

a sy

Arbiter Multiplexer
ia_vertex_sel

vecior lines 207 & 227-

 Sq_input_arb sq_ais_outputline 493

278

(sq_input_arb.v) (sq_ais_output.v) (vector.v)
u_sq_input_arb u_sq_ais_output uvector0

 Arbiter Circuit .
Ny

ee Oo
g§

XS Sgoo tot

& 2

Sequencer

Sq_alu_instr_seq sq_alu_instr_queue
(sq_alu_instr_seq.v) (sq_alu_inskr_ queue)

u0_sq_alu_instr_seq u0_sq_alu_instr_que

General Purpose{=430-295
Register Block

Processor

Unit

mace32

(mace.v)

mad
amacc

macc_gpr

(macc_gpr.v)

umacc_gpr0

 Vector (vector.v}

Shader Core
Unified Shader

- 141 -

ATI Ex. 2115

IPR2023-00922

Page 146 of 271

ATI Ex. 2115
IPR2023-00922

Page 147 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

M. Claim 18

266. Claim 18 recites a shader of claim 17, “wherein the selection circuit is

a multiplexer and the control signal is provided byan arbiter.”| already discussed

a selection circuit that is a multiplexer in Section [X.A.2. And I have discussed a

control signal that is provided by the arbiter in Section [X.A.2.

N. Claim 20

267. Claim 20 recites a shader of claim 15, “wherein the processor unit

executes vertex calculations while the pixel calculations are still in progress.” I

already discussed that the processor unit executes vertex calculations and pixel

calculations. As I describe in Section [X.K.1, the general purpose register block

described in macc_gpr.vcan store the InputGPR data which can beeither

pixel data or vertex data. The general purpose register block in macc_gpr does

not differentiate between the different data, and can store the pixel and vertex data

at the same time.

268. A POSA would understand that in this architecture, the pixel

calculations can stall while still in progress when the pixel threads wait for texture

data. In this case, vertex calculations begin to execute, while the pixel calculations

are stalled, but are still in progress —1.e., the pixel calculations still have pixel data

that requires processing.

- 142-

ATI Ex. 2115

IPR2023-00922

Page 147of 271

ATI Ex. 2115
IPR2023-00922

Page 148 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

269. In this way, the R400 RTL code discloses the processorunit that

executes vertex calculations while the pixel calculationsare still in progress.

x. THE CLAIMS OF THE ’871 PATENT ARE SUPPORTED BY THE

PRIORITY DOCUMENT

270. Iunderstand that a specification must contain written description of

the invention. I also understand that the purpose of this requirementis to satisfy the

inventor’s obligation to disclose to the public the technologic knowledge upon

which the patent is based and also to demonstrate that the inventor was in

possession of the claimed invention.

271. The °871 patent was filed on November20, 2003 as the °318

application. I have examined the specification and figures of the ’318 application.

Based on my examination of the °318 application, I have generated a claim chart

which demonstrates that the °318 application has written description supportfor all

the instituted claims.

Pupport for the 871 Patent ClaimsjinVU.S. PatentooNo. 10/718,318
87 Patent Claim 1, Aaraphics processor, The present invention generally relates to graphics
comprising: processors and, more particularly, to a graphics

processor architecture employing a single shader.” (Ex.
2076, { 1.)
“FIG. 4A is a schematic block diagram of a graphics
processor architecture according to the present

- 143 -

ATI Ex. 2115

IPR2023-00922

Page 148 of 271

ATI Ex. 2115
IPR2023-00922

Page 149 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

invention.” Ud. at 3.)

INDICES

Legro MEMORY -
UNIFIED cee MEMORYSHADER TEXTURE

VERTEX|gh 7 BATABa CACHE

FARAMETER |”
CACHE 7

aPOSITION F
CACHE

 PRIMTIVE LyASSEMBLY

#9 MEMORYCONTROLLER

eS

RASTERIZATIONL,ENGINE

 cs] DISPLAY

CONTROLLER,

 76

 83. Bd

FIG. 4A (id. at FIG. 4A.)

“Briefly stated, the present invention is directed to a
graphics processor that employs a unified shader.” (/d.
at 4.)

“A graphics processing architecture employing a single
shaderis disclosed.” (/d. at 18.)

la. an arbiter circuit for|“The architecture includes a circuit operative to select
selecting one of a one of a plurality of inputs in response to a control
plurality of inputs in signal.” (/d.)

ARBITER

responseto a control
signal; and INDICES

(See id. at FIG. 4A.)

“TVertex information ...is coupled to the first input of
multiplexer 66.” Vd. at 11.)

“The resulting pixel data from the rasterization engine

- 144-

ATI Ex. 2115

IPR2023-00922

Page 149 of 271

ATI Ex. 2115
IPR2023-00922

Page 150 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

block 74 is the interpolated pixel parameter data that is
transmitted to the second input of the multiplexer 66 on
line 75.” Ud. at 10.)

“In an exemplary embodiment, a graphics processor
according to the present invention includes an arbiter
circuit for selecting one of a plurality of inputs for
processing in response to a control signal.” U/d. at 4.)

“Referrmg now to FIG. 4A, in an exemplary
embodiment, the graphics processor 60 of the present
invention includes a multiplexer 66 having vertex (e.g.
indices) data provided at a first input thereto and
interpolated pixel parameter (e.g. position) data and
attribute data from a rasterization engine 74 provided at
a second input. A control signal generated by an arbiter
64 is transmitted to the multiplexer 66 on line 63. The
arbiter 64 determines which of the two inputs to the
multiplexer 66 is transmitted to a unified shader 62 for
further processing. The arbitration scheme employed by
the arbiter 64 is as follows: the vertex data on the first

input of the multiplexer 66 is transmitted to the unified
shader 62 on line 65 if there is enough resources
available in the unified shader to operate on the vertex
data; otherwise, the interpolated pixel parameter data
present on the second input will be passed to the unified
shader 62 for further processing.” (/d. at 7.)
 1b. a shader, coupled to
the arbiter circuit,
operative to process the
selected one of the

plurality of inputs, the
shader including means
for performing vertex
operations and pixel
operations, and
performing one of the
vertex operations or
pixel operations based

 “The architecture includes .. . a shader, coupled to the
arbiter, operative to process the selected one of the
plurality of inputs, the shader including means for
performing vertex operations and pixel operations, and
wherein the shader performs one ofthe vertex
operations or pixel operations based on the selected one
of the plurality of inputs. The shader includes a register
block which is used to store the plurality of selected
inputs, a sequencer which maintains vertex manipulation
and pixel manipulations instructions and a processor
capable of executing both floating point arithmetic and
logical operations on the selected inputs in response to

- 145 -

ATI Ex. 2115

IPR2023-00922

Page 150 of 271

ATI Ex. 2115
IPR2023-00922

Page 151 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

on the selected one of

the plurality of inputs,
wherein the shader

provides a appearance
attribute.

the instructions maintained in the sequencer.” (/d. at 18.)

“Briefly stated, the present invention is directed to a
graphics processor that employs a unified shaderthatis
capable of performing both the vertex operations and the
pixel operations in a space saving and computationally
efficient manner.” (/d. at 4.)

“In an exemplary embodiment, a graphics processor
according to the present invention includes .. . a shader,
coupled to the arbiter, operative to process the selected
one of the plurality of inputs, the shader including
means for performing vertex operations and pixel
operations, and wherein the shader performs oneof the
vertex operations or pixel operations based onthe
selected one ofthe plurality of inputs.” (/d.)

INDICES

 ARBITER

UNIFIED
SHADER 865A

(See id. at FIG. 4A.)

“FIG. 5 is an exploded schematic block diagram of the
unified shader employed in the graphics processor
illustrated in FIG. 4A.” Ud. at 4.)

- 146-

ATI Ex. 2115

IPR2023-00922

Page 151 of 271

ATI Ex. 2115
IPR2023-00922

Page 152 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

FROM MUX MEMORY

65

 casa

 | SOURCE A |S85 SOURCE G i
— OBAv

FIG. 5 Ne (/d. at FIG. 5.)
“The shader includes a general purpose register block
for storing at least the plurality of selected inputs, a
sequencer for storing logical and arithmetic instructions
that are used to perform vertex and pixel manipulation
operations and a processor capable of executing both
floating point arithmetic and logical operations on the
selected inputs according to the instructions maintained
in the sequencer. The shaderof the present inventionis
referred to as a ‘unified’ shader becauseit is configured
to perform both vertex and pixel operations.” (/d. at 4.)

“T]he unified shader is more computationally efficient
becauseit allows the shaderto be flexibly allocated to
pixels or verticies based on workload.” (Ud. at 5.)

“TAs illustrated [in FIG. 5], the unified shader 62
includes a general purpose register block 92, a plurality
of source registers: including source register A 93,
source register B 95, and source register C 97, a
processor(e.g. CPU) 96 and a sequencer 99. The
general purpose register block 92 includes sixty four
registers, or available entries, for storing the information
transmitted from the multiplexer 66 on line 65 or any
other information to be maintained within the unified

shader. The data present in the general purpose register
block 92 is transmitted to the plurality of source

- 147 -

ATI Ex. 2115

IPR2023-00922

Page 152 of 271

ATI Ex. 2115
IPR2023-00922

Page 153 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

registers via line 109.” (/d. at 7.)

“The processor 96 may be comprised of a dedicated
piece of hardware or can be configured as part of a
general purpose computing device (i.e. personal
computer). In an exemplary embodiment, the processor
96 is adapted to perform 32-bit floating point arithmetic
operations as well as a complete series of logical
operations on corresponding operands. As shown,the
processoris logically partitioned into two sections.
Section 96 is configured to execute, for example, the 32-
bit floating point arithmetic operations of the unified
shader. The second section, 96A, is configured to
perform scaler operations (e.g. log, exponent, reciprocal
square root) of the unified shader.” (/d. at 8.)

“The sequencer 99 includes constants block 91 and an
instruction store 98. The constants block 91 contains, for
example, the several transformation matrices used in
connection with vertex manipulation operations. The
instruction store 98 contains the necessary instructions
that are executed by the processor 96 in order to perform
the respective arithmetic and logic operations on the
data maintained in the general purpose register block 92
as provided by the source registers 93-95. The
instruction store 98 further includes memory fetch
instructions that, when executed, causes the unified
shader 62 to fetch texture and other types of data, from
memory82 (FIG. 4A). In operation, the sequencer 99
determines whether the next instruction to be executed

(from the instruction store 98) is an arithmetic or logical
instruction or a memory (e.g. texture fetch) instruction.
If the next instruction is a memory instruction or
request, the sequencer 99 sends the request to a fetch
block (not shown) whichretrieves the required
information from memory 82 (FIG. 4A). The retrieved
information is then transmitted to the sequencer 99,
through the vertex texture cache 68 (FIG. 4A).” Ud.)

“Tf the next instruction to be executed is an arithmetic or

- 148 -

ATI Ex. 2115

IPR2023-00922

Page 153 of 271

ATI Ex. 2115
IPR2023-00922

Page 154 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

logical instruction, the sequencer 99 causes the
appropriate operands to be transferred from the general
purpose register block 92 into the appropriate source
registers (93, 95, 97) for execution, and an appropriate
signal is sent to the processor 96 online 101 indicating
what operation or series of operations are to be executed
on the several operands present in the source registers.
At this point, the processor 96 executes the instructions
on the operands present in the source registers and
provides the result on line 85. The information present
on line 85 may be transmitted back to the general
purpose register block 92 for storage, or transmitted to
succeeding components of the graphics processor 60.”
(Ud. at 9.)

“|T]he instruction store 98 maintains both vertex
manipulation instructions and pixel manipulation
instructions. Therefore, the unified shader 99 of the
present invention is able to perform both vertex and
pixel operations, as well as execute memory fetch
operations. As such, the unified shader 62 of the present
invention is able to perform both the vertex shading and
pixel shading operations on data in the context of a
graphics controller based on information passed from
the multiplexer. By being adapted to perform memory
fetches, the unified shader of the present invention is
able to perform additional processes that conventional
vertex shaders cannot perform; while at the same time,
perform pixel operations.” (/d.)

“The unified shader 62 has ability to simultaneously
perform vertex manipulation operations and pixel
manipulation operations at various degrees of
completion by being able to freely switch between such
programs or instructions, maintained in the instruction
store 98, very quickly. In application, vertex data to be
processed is transmitted into the general purpose register
block 92 from multiplexer 66. The instruction store 98
then passes the corresponding control signals to the
processor 96 on line 101 to perform such vertex

- 149-

ATI Ex. 2115

IPR2023-00922

Page 154 of 271

ATI Ex. 2115
IPR2023-00922

Page 155 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

operations. However, if the general purpose register
block 92 does not have enoughavailable space therein
to store the incoming vertex data, such information will
not be transmitted as the arbitration schemeofthe

arbiter 64 is not satisfied. In this manner, any pixel
calculation operations that are to be, or are currently
being, performed by the processor 96 are continued,
based on the instructions maintained in the instruction

store 98, until enough registers within the general
purpose register block 92 become available. Thus,
through the sharing of resources within the unified
shader 62, processing of image data is enhanced as there
is no down time associated with the processor 96.” (/d.)

“[T|he graphics processor 60 of the present invention
incorporates a unified shader 62 which is capable of
performing both vertex manipulation operations and
pixel manipulation operations based on the instructions
stored in the instruction store 98.” (/d. at 11.)

“[A] as the unified shader 62 is capable of alternating
between performing vertex manipulation operations and
pixel manipulation operations, graphics processing
efficiency is enhanced as one type of data operationsis
not dependent upon another type of data operations.”
(/d. at 11-12.)

“[A] conventional shader 10 can be represented as a
processing block 12 that accepts a plurality ofbits of
input data, such as, for example, object shape data (14)
in object space (x,y,z); material properties of the object,
such as color (16); texture information (18); luminance
information (20); and viewing angle information (22)
and provides output data (28) representing the object
with texture and other appearance properties applied
thereto (’, y’, z’).” Ud. at 1.)

“|Vertex shader... accepts as inputs the data
representing, for example, vertices Vx, Vv and Vz,
among others of cube 30 and providing angularly
oriented vertices Vx,Vv and Vz, including any

- 150-

ATI Ex. 2115

IPR2023-00922

Page 155 of 271

ATI Ex. 2115
IPR2023-00922

Page 156 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

appearanceattributes of corresponding cube 30°.” (a. at
2.)

“(T]he pixel shader 54 generates the color and
additional appearance attributes that are to be applied to
a given pixel, and applies the appearance attributes to
the respective pixels The generated pixel
appearance attribute is then combined with a base color,
as provided by the rasterization engine on line 53, to
thereby provide a pixel color to the pixel corresponding
at the position of interest. The pixel appearanceattribute
present on line 59 is then transmitted to post raster
processing blocks (not shown).”(/d. at 6.)
 2. The graphics
processor of claim 1,
further including a
vertex storage block for
maintaining vertex
information. “TReferring to FIG. 3,] [a]fter performing the

transformation operation, the data representing the
transformed vertices are then provided to a vertex store
48 on line 47. The vertex store 48 then transmits the

modified vertex information contained therein to a

primitive assembly block 50 on line 49. The primitive
assembly block 50 assembles, or converts, the input
vertex information into a plurality of primitives to be
subsequently processed. Suitable methods of assembling
the input vertex information into primitives [are] known
in the art and will not be discussed in greater detail here.
The assembled primitives are then transmitted to a
rasterization engine 52, which converts the previously
assembled primitives into pixel data through a process
referred to as walking. The resulting pixel data is then
transmitted to a pixel shader 54 on line 53.” Ud. at 6.)

- 151 -

ATI Ex. 2115

IPR2023-00922

Page 156 of 271

ATI Ex. 2115
IPR2023-00922

Page 157 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

sevenLE,i i

TEXTURE
Map

 WCACHE

VERTEX
SHADER

VERTEX
STORE

a6

PRIMITIVE
ASSEMBLY

To 7sa7 —

FROM TEXTURE
a CACHE 7S

56

PIXEL
SHADER

FIG. 3
{PRIOR ART}

POST RASTER
PROCESSING

(Id. at FIG. 3.)

“Referring back to FIG. 4A, the graphics processor 60
further includes a cache block 70, including a parameter
cache 70A and a position cache 70B which accepts the
[vertex] based output of the unified shader 62 on line 85
and stores the respective [vertex] parameter and position
information in the corresponding cache. The [vertex]
information present in the cache block 70 is then
transmitted to the primitive assembly block 72 on line
71. The primitive assembly block 72 is responsible for
assembling the information transmitted thereto from the
cache block 70 into a series of triangles, or other
suitable primitives, for further processing. The
assembled primitives are then transmitted on line 73 to
rasterization engine block 74, where the transmitted
primitives are then converted into individual pixel data
information through a walking process, or any other
suitable pixel generation process. The resulting pixel
data from the rasterization engine block 74 is the
interpolated pixel parameter data that is transmitted to
the second input of the multiplexer 66 on line 75.” (/d.
at 10.)

- 152 -

ATI Ex. 2115

IPR2023-00922

Page 157 of 271

ATI Ex. 2115
IPR2023-00922

Page 158 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

3, The graphics
processor of claim 2,
wherein the vertex

storage block further
includes a parameter
cache operative to
maintain appearance
attribute data for a

corresponding vertex
and a position cache
operative to maintain
position data for a
corresponding vertex.

INDICES

 Leto MEMORY —6s
TEXTURE
VERTEX|6pCACHE

 UNIFIED
SHADER MEMORYDATA Goa

85

RENDER

BACK
END

POSITION FCACHE.

 booed 7
78

MEMORY
CONTROLLER

84

 PRIMITIVE [LyASSEMBLY
Te

RASTERIZATIONL,ENGINE

 ea DISPLAY

CONTROLLER

 78

 63. Ba

DISPLAY

Be

MEMORY

FIG. 44,

(Ud. at FIG. 4A,)

further includes a cache block 70, including a parameter
cache 70A and a position cache 70B which accepts the
[vertex] based output of the unified shader 62 on line 85
and stores the respective [vertex] parameter and position
information in the corresponding cache.” (/d. at 10.)

PARAMETER
CACHE

POSITION
CACHE

(See id. at FIG. 4A.)

“Referringbackto FIG.4A,thegraphicsprocessor60.

5. The graphics
processor of claim 1,
wherein the appearance
attribute is position, and
the position attribute is
associated with a

corresponding vertex

“TRefering to FIG. 5,] vertex data to be processed is
transmitted into the general purpose register block 92
from multiplexer 66. The instruction store 98 then
passes the corresponding control signals to the processor
96 on line 101 to perform such vertex operations.” (Ud.
at 9.)

when the selected one of

- 153 -

ATI Ex. 2115

IPR2023-00922

Page 158 of 271

ATI Ex. 2115
IPR2023-00922

Page 159 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

the plurality of inputs is FROM we MEMORY
vertex data.

 casa

 | SOURCE A |S85 SOURCE G i
— OBAv

FIG. 5 Ne (id. at FIG. 5.)
“Referring back to FIG. 4A, the graphics processor 60
further includes a cache block 70, including a parameter
cache 70A and a position cache 70B which accepts the
[vertex] based output of the unified shader 62 on line 85
and stores the respective [vertex] parameter and position
information in the corresponding cache.” Ud. at 10.)

INDICES

eaFO MEMORY
UNIFIED 68 MEMORYSHADER TEXTURE oe

60 ~——p————| VERTEX|gh DATA
™ 55 GOA CACHE

PARAMETER yonCACHE 70
RENDER ’BACK op!

END POSITION 'CACHE
a7

78 a
= prime [}*

79 MEMORY ASSEMBLY

CONTROLLER Lvs
RASTERIZATION|

DISPLAY at ENGINECONTROLLER

%
a4 BA -B2

FIG. 4A
(id. at FIG. 4A.)

ATI Ex. 2115

IPR2023-00922

Page 159 of 271

ATI Ex. 2115
IPR2023-00922

Page 160 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

“FIG. 3 is a schematic block diagram of a conventional
graphics processor architecture.” (/d. at 3.)

enwet,i i

 TEXTURE
MAP

VERTEX aSTORE

aT 4a

PRIMITIVE
ASSEMBLY

waz

VERTEX
SHADER
46

 To 8s87 —

TEXTURE
CACHE [5
56.

FIG, 3

(PRIOR ART)

PIXEL
SHADER

POST RASTER
PROCESSING

(Id. at FIG. 3.)

“TIn reference to FIG. 3,] the vertex data maintained in
the vertex cache 44 is transmitted to a vertex shader 46

on line 45. [A]n example of the information that is
requested by and transmitted to the vertex shader 46
includes the object shape, material properties (e.g.
color), texture information, and viewing angle.
Generally, the vertex shader 46 is a programmable
mechanism which applies a transformation position
matrix to the input position information (obtained from
the vertex cache 44), thereby providing data
representing a perspectively corrected image of the
object to be rendered, along with any texture or color
coordinates thereof.” (/d. at 5.)

“[A] conventional shader 10 can be represented as a
processing block 12 that accepts a plurality of bits of
input data, such as, for example, object shape data (14)
in object space (x,y,z); material properties of the object,
such as color (16): texture information (18); haminance

- 155 -

ATI Ex. 2115

IPR2023-00922

Page 160 of 271

ATI Ex. 2115
IPR2023-00922

Page 161 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

information (20); and viewing angle information (22)
and provides output data (28) representing the object
with texture and other appearance properties applied
thereto (x’, y’, z’).” Ud. at 1.)

“TVjertex shader . . . accepts as inputs the data
representing, for example, vertices Vx, Vv and Vz,
among others of cube 30 and providing angularly
oriented vertices Vx,Vv and Vz, including any
appearance attributes of corresponding cube 30°.” (Ud. at
2.)
 6. The graphics
processorof claim 5,
wherein the appearance
attribute is color, and
the color attribute is

associated with a

corresponding pixel
when the selected one of

the plurality of inputs is
pixel data. “TA|nypixel calculation operations that are to be, or are

currently being, performed by the processor 96 are
continued, based on the instructions maintained in the
instruction store 98.” Ud. at 10.)

“In those situations when [pixel] data is transmitted to
the unified shader 62 through the multiplexer 66, the
resulting [pixel] data generated by the processor 96, is
transmitted to a render back end block 76 which

converts the resulting [pixel] data into at least one of
several formats suitable for later display on display
device 84. For example, if a stained glass appearance
effect is to be applied to an image, the information
corresponding to such appearance effect is associated
with the appropriate position data by the render back
end 76.” Ud. at 11.)

- 156 -

ATI Ex. 2115

IPR2023-00922

Page 161 of 271

ATI Ex. 2115
IPR2023-00922

Page 162 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

INDICES:

67
[elengTO MEMORY

UNIFIED 68 MEMORYSHADER ; :
VertexopONTA60 68S84 CACHEa5

(70
RENDER iaBACK 708 |END position

CACHE.
17

78
PRIMITIVE 2

79 MEMORY ASSEMBLY
CONTROLLER _

Li

£0 24RASTERIZATION|)
DISPLAY a ENCINE

CONTROLLER | 75
a4 84 82

 MEMORY

FIG. 44

 DISPLAY

“FIG. 3 is a schematic block diagram of a conventional
graphics processor architecture.” (/d. at 3.)

(Ud. at FIG. 4A,)

BE cccet.,

TEXTURE

 VERTEX VERTEX 48

SHADER J STORE\a6 aT a9

PRIMITIVE
ASSEMBLY

 To 3887

PIXEL
SHADER

FROM
SF

TEXTURE
CACHE [Ge
Si

FIG, 3

(PRIOR ART)

POST RASTER
PROCESSING

(id. at FIG. 3.)

“In reference to FIG. 3,] [c]olor and texture are then

- 157 -

ATI Ex. 2115

IPR2023-00922

Page 162 of 271

ATI Ex. 2115
IPR2023-00922

Page 163 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

applied to the individual pixels that comprise the shape
based on their location within the primitive and the
primitives orientation with respect to the generated
shape; thereby generating the object that is rendered to a
corresponding display for subsequent viewing.” (Ud. at
1.)

“[A] conventional shader 10 can be represented as a
processing block 12 that accepts a plurality of bits of
input data, such as, for example, ... material properties
of the object, such as color (16)... and provides output
data (28) representing the object with texture and other
appearance properties applied thereto (x’, y’, z’).” Ud.)

“The pixel shader 54 generates the color and additional
appearance attributes that are to be applied to a given
pixel, and applies the appearance attributes to the
respective pixels The generated pixel appearance
attribute is then combined with a base color, as provided
by the rasterization engine online 53, to thereby provide
a pixel color to the pixel corresponding at the position of
interest. The pixel appearance attribute present on line
59 is then transmitted to post raster processing blocks
(not shown).” (/d. at 6.)

“Generally, the pixel shader provides the color value
associated with each pixel of a rendered object.” (/d. at
2.)
 8. The graphics
processor of claim 1,
wherein the appearance
value is depth.

 “[A] conventional shader 10 can be represented as a
processing block 12 that accepts a plurality of bits of
input data, such as, for example, object shape data (14)
in object space (x,y,z)... and provides output data (28)
representing the object with texture and_other
appearance properties applied thereto (x', y', z').” Ud.)

“[T]he shader accepts the vertex coordinate data
representing cube 30 (FIG. 2A) as inputs and provides
data representing, for example, a perspectively corrected
view of the cube 30’ (FIG. 2B) as an output. The
corrected view may be provided, for example, by

- 158 -

ATI Ex. 2115

IPR2023-00922

Page 163 of 271

ATI Ex. 2115
IPR2023-00922

Page 164 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

applying an appropriate transformation matrix to the
data representing the initial cube 30. More specifically,
the representation illustrated in FIG. 2B is provided by a
vertex shader that accepts as inputs the data
representing, for example, vertices Vx, Vv and Vz,
among others of cube 30 and providing angularly
oriented vertices Vx, Vv and Vz, including any
appearance attributes of corresponding cube 30°.” (/d.)

 9. The graphics
processor ofclaim 1,
further including a
selection circuit,
wherein the selection

circuit is a multiplexer,
and the control signal is
provided by an arbiter,
whereinthe arbiter 1s

coupled to the
multiplexer. “The architecture includes a circuit operative to select

one of a plurality of inputs in response to a control
signal.” Ud. at 18.)

“In an exemplary embodiment, a graphics processor
according to the present invention includes an arbiter
circuit for selecting one of a plurality of inputs for
processing in response to a control signal.” Ud. at 4.)

“TVjertex information .. . is coupled to the first input of
multiplexer 66.” Vd. at 11.)

“The resulting pixel data from the rasterization engine
block 74 is the interpolated pixel parameter data that is
transmitted to the second input of the multiplexer 66 on
line 75.” Ud. at 10.)

“Referrmg now to FIG. 4A, in an exemplary
embodiment, the graphics processor 60 of the present
invention includes a multiplexer 66 having vertex (e.g.
indices) data provided at a first input thereto and
interpolated pixel parameter (e.g. position) data and
attribute data from a rasterization engine 74 provided at
a second input. A control signal generated by an arbiter
64 is transmitted to the multiplexer 66 on line 63. The
arbiter 64 determines which of the two inputs to the
multiplexer 66 is transmitted to a unified shader 62 for
further processing. The arbitration scheme employed by
the arbiter 64 is as follows: the vertex data on the first

input of the multiplexer 66 is transmitted to the unified
shader 62 on line 65 if there is enough resources
available in the unified shader to operate on the vertex

- 159 -

ATI Ex. 2115

IPR2023-00922

Page 164 of 271

ATI Ex. 2115
IPR2023-00922

Page 165 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

data; otherwise, the interpolated pixel parameter data
present on the second input will be passed to the unified
shader 62 for further processing.” (/d. at 7.)

INDICES

ARBITER
(See id. at FIG. 4A.)

10. The graphics
processor of claim 1,
wherein the shader

provides vertex position
data and further

including a primitive
assembly block, coupled
to the shader, operative
to generate primitives in
response to the vertex
position data. “[T]he processor 96 executes the instructions on the

operands present in the source registers and provides the
result on line 85. The information present on line 85
may be... transmitted to succeeding components of the
graphics processor 60.” (/d. at 9.)

INDICES

65 ap

Lutsto MEMORY —UNIFIED &8
SHADER MEMORYTEXTURE fi

50 ~~VERTEX|gh [DATA= OA CAGHE5 .

rt
PARAMETER fCACHE 70

POSITION
CACHE

RERDER
BACK
END

78 7
prumtive |)

8 MEMORY ASSEMBLY
CONTROLLER 2

La

a 74RASTERIZATION|)
DISPLAY at ENGINE

CONTROLLER |: 75
a 84 B2

caer||wor |
FRG. 4A

(Id. at FIG. 4A.)

“Referring back to FIG. 4A, the graphics processor 60
further includes a cache block 70, including a parameter
cache 70A and a position cache 70B which accepts the
[vertex] based output of the unified shader 62 on line 85

and stores the respective [vertex] parameter and position

information in the corresponding cache. The [vertex]

- 160-

ATI Ex. 2115

IPR2023-00922

Page 165 of 271

ATI Ex. 2115
IPR2023-00922

Page 166 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

information present in the cache block 70 is then
transmitted to the primitive assembly block 72 on line
71. The primitive assembly block 72 is responsible for
assembling the information transmitted thereto from the
cache block 70 into a series of triangles, or other
suitable primitives, for further processing.” (/d. at 10.)
 11. The graphics
processor of claim 10,
further including a
raster engine, coupled to
the primitive assembly
block, operative to
generate pixel parameter
data in response to the
assembled vertex data. “Referring back to FIG. 4A, the graphics processor 60

further includes a cache block 70, including a parameter
cache 70A and a position cache 70B which accepts the
pixel based output of the unified shader 62 on line 85
and stores the respective pixel parameter and position
information in the corresponding cache. The pixel
information present in the cache block 70 is then
transmitted to the primitive assembly block 72 on line
71. The primitive assembly block 72 is responsible for
assembling the information transmitted thereto from the
cache block 70 into a series of triangles, or other
suitable primitives, for further processing. The
assembled primitives are then transmitted on line 73 to
rasterization engine block 74, where the transmitted
primitives are then converted into individual pixel data
information through a walking process, or any other
suitable pixel generation process. The resulting pixel
data from the rasterization engine block 7 4 is the
interpolated pixel parameter data that is transmitted to
the second input of the multiplexer 66 on line 75.” (/d.)

- 161 -

ATI Ex. 2115

IPR2023-00922

Page 166 of 271

ATI Ex. 2115
IPR2023-00922

Page 167 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871
 INDICES

 Leto MEMORY —6s
TEXTURE UNIFIED

SHADER MEMORYDATA VERTEX|6pGOA CACHE

85

RENDER

BACK
END

POSITION FCACHE.

 booed 7
78

pnt PRIMITIVE 2
79 MEMORY ASSEMBLY

CONTROLLER _
Li

RASTERIZATIONL,ENGINE

DISPLAY
CONTROLLER 84

 78

 By 84 Be

DISPLAY MEMORY

FIG. 4A

(Ud. at FIG. 4A,)

 13. The graphics
processor ofclaim1,
wherein the shader

includes a register block
for maintaining the
selected one of the

plurality of inputs, a
computation element
operative to perform
arithmetic and logical
operations on the data
maintained in the

register block, and
sequencer for
maintaining the
instructions that are

executed by the
computation element.

 “The shader inclides a register block which is used to
store the plurality of selected inputs, a sequencer which
maintains vertex manipulation and pixel manipulations
instructions and a processor capable of executing both
floating point arithmetic and logical operations on the
selected inputs in response to the instructions
maintained in the sequencer.” (/d. at 18.)

“FIG. 5 is an exploded schematic block diagram of the
unified shader employed in the graphics processor
illustrated in FIG. 4A.” Ud. at 4.)

- 162 -

ATI Ex. 2115

IPR2023-00922

Page 167 of 271

ATI Ex. 2115
IPR2023-00922

Page 168 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

FROM MUX MEMORY

65

casa

 | SOURCE A |S85 SOURCE G i
— OBAv

FIG. 5 Ne (/d. at FIG. 5.)

“The shader includes a general purpose register block
for storing at least the plurality of selected inputs, a
sequencer for storing logical and arithmetic instructions
that are used to perform vertex and pixel manipulation
operations and a processor capable of executing both
floating point arithmetic and logical operations on the
selected inputs according to the instructions maintained
in the sequencer. The shader of the present inventionis
referred to as a ‘unified’ shader becauseit is configured
to perform both vertex and pixel operations.” (/d. at 4.)

“{T]he unified shader 62 includes a general purpose
register block 92, a plurality of source registers:
including source register A 93, source register B 95, and
source register C 97, a processor (e.g. CPU) 96 and a
sequencer 99. The general purpose register block 92
includes sixty four registers, or available entries, for
storing the information transmitted from the multiplexer
66 on line 65 or any other information to be maintained
within the unified shader. The data present in the
general purpose register block 92 is transmitted to the
plurality of source registers via line 109.” Ud. at 7.)

“The processor 96 may be comprised of a dedicated
piece of hardware or can be configured as part of a
general purpose computing device (ie. personal

- 163 -

ATI Ex. 2115

IPR2023-00922

Page 168 of 271

ATI Ex. 2115
IPR2023-00922

Page 169 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

computer). In an exemplary embodiment, the processor
96 is adapted to perform 32-bit floating point arithmetic
operations as well as a complete series of logical
operations on corresponding operands. As shown, the
processor is logically partitioned into two. sections.
Section 96 is configured to execute, for example, the 32-
bit floating point arithmetic operations of the unified
shader. The second section, 96A, is configured to
perform scaler operations(e.g. log, exponent, reciprocal
square root) of the unified shader.” /d. at 8.)

“The sequencer 99 includes constants block 91 and an
instruction store 98. The constants block 91 contains, for
example, the several transformation matrices used in
connection with vertex manipulation operations. The
instruction store 98 contains the necessary instructions
that are executed by the processor 96 in order to perform
the respective arithmetic and logic operations on the
data maintained in the general purpose register block 92
as provided by the source registers 93-95. The
instruction store 98 further includes memory fetch
instructions that, when executed, causes the unified
shader 62 to fetch texture and other types of data, from
memory 82 (FIG. 4A). In operation, the sequencer 99
determines whether the next instruction to be executed

(from the instruction store 98) is an arithmetic or logical
instruction or a memory(e.g. texture fetch) instruction.
If the next instruction is a memory instruction or
request, the sequencer 99 sends the request to a fetch
block (mot shown) which retrieves the required
information from memory 82 (FIG. 4A). The retrieved
information is then transmitted to the sequencer 99,
through the vertex texture cache 68 (FIG. 4A) as
described in greater detail below.” (/d. at 8.)

“Tf the next instruction to be executed is an arithmetic or

logical instruction, the sequencer 99 causes the
appropriate operands to be transferred from the general
purpose register block 92 into the appropriate source
registers (93, 95, 97) for execution, and an appropriate

- 164 -

ATI Ex. 2115

IPR2023-00922

Page 169 of 271

ATI Ex. 2115
IPR2023-00922

Page 170 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

signal is sent to the processor 96 on line 101 indicating
what operation or series of operations are to be executed
on the several operands present in the source registers.
At this point, the processor 96 executes the instructions
on the operands present in the source registers and
provides the result on line 85. The information present
on line 85 may be transmitted back to the general
purpose register block 92 for storage, or transmitted to
succeeding components of the graphics processor 60.”
Ud. at 9.)

“{T]he instruction store 98 maintains both vertex
manipulation instructions and pixel manipulation
instructions. Therefore, the unified shader 99 of the
present invention is able to perform both vertex and
pixel operations, as well as execute memory fetch
operations. As such, the unified shader 62 of the present
invention is able to perform both the vertex shading and
pixel shading operations on data in the context of a
graphics controller based on information passed from
the multiplexer. By being adapted to perform memory
fetches, the unified shader of the present invention is
able to perform additional processes that conventional
vertex shaders cannot perform; while at the same time,
perform pixel operations.” (/d.)

“The unified shader 62 has ability to simultaneously
perform vertex manipulation operations and pixel
manipulation operations at various degrees of
completion by being able to freely switch between such
programs or instructions, maintained in the instruction
store 98, very quickly. In application, vertex data to be
processedis transmitted into the general purpose register
block 92 from multiplexer 66. The instruction store 98
then passes the corresponding control signals to the
processor 96 on line 101 to perform such vertex
operations. However, if the general purpose register
block 92 does not have enough available space therein
to store the incoming vertex data, such information will
not be transmitted as the arbitration scheme of the

- 165 -

ATI Ex. 2115

IPR2023-00922

Page 170 of 271

ATI Ex. 2115
IPR2023-00922

Page 171 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

arbiter 64 is not satisfied. In this manner, any pixel
calculation operations that are to be, or are currently
being, performed by the processor 96 are continued,
based on the instructions maintained in the instruction

store 98, until enough registers within the general
purpose register block 92 become available. Thus,
through the sharing of resources within the unified
shader 62, processing of image data is enhanced as there
is no down time associated with the processor 96.” (/d.)

“[T]he graphics processor 60 of the present invention
incorporates a unified shader 62 which is capable of
performing both vertex manipulation operations and
pixel manipulation operations based on the instructions
stored in the instruction store 98. In this fashion, the

graphics processor 60 of the present invention takes up
less real estate than conventional graphics processors as
separate vertex shaders and pixel shaders are no longer
required. In addition, as the unified shader 62 is capable
of alternating between performing vertex manipulation
operations and pixel manipulation operations, graphics
processing efficiency is enhanced as one type of data
operations is not dependent upon another type of data
operations. Therefore, any performance penalties
experienced as a result of dependent operations in
conventional graphics processors are overcome.” (/d. at
11.)
 15. A unified shader,
comprising: “A graphics processing architecture employing a single

shaderis disclosed.” (/d. at 18.)

“The present invention generally relates . . . to a
graphics processor architecture employing a single
shader.” (/d. at 1.)

“The shader of the present invention is referred to as a
"unified" shader becauseit is configured to perform both
vertex and pixel operations.” (/d. at 4.)

“Briefly stated, the present invention is directed to a
graphics processor that employs a unified shader that is

- 166 -

ATI Ex. 2115

IPR2023-00922

Page 171 of 271

ATI Ex. 2115
IPR2023-00922

Page 172 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

capable of performing both the vertex operations and the
pixel operations in a space saving and computationally
efficient manner.” (/d. at 4.)

“FIG. 4A is a schematic block diagram of a graphics
processor architecture according to the present
invention.” (/d. at 12.) “Referring ... to FIG. 4A, ...
[t]he arbiter 64 determines which of the two inputs to
the multiplexer 66 is transmitted to a unified shader 62
for further processing.” (/d. at 3.)

INDICES

Lesro MEMORYUNIFIED a MEMORY
SHADER TEXTURE [jeVERTEX DATA

GA CACHE
 h.e

PARAMETER EO*CACHE 70
RENDER

BACK OB |END POSITION
CACHE

Lavy

te primitive |)"
99 MEMORY ASSEMBLYNTP

CONTROLLER Ls80 74RASTERIZATION|
DISPLAY a ENGINE

CONTROLLER | 75

a i B2

FIG. 4A, 7
(/d. at FIG. 4A.)

“In an exemplary embodiment, a graphics processor
according to the present invention includes... a
shader.” (/d. at 4.)

“FIG. 5 is an exploded schematic block diagram of the
unified shader employed in the graphics processor
illustrated in FIG. 4A.” (/d.)

“[T]he graphics processor 60 of the present invention
incorporates a unified shader 62 which is capable of
performing both vertex manipulation operations and

- 167 -

ATI Ex. 2115

IPR2023-00922

Page 172 of 271

ATI Ex. 2115
IPR2023-00922

Page 173 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

pixel manipulation operations.” (/d. at 11.)

FROM MUX MEMORY29 FETCH

[ss 87

BIA

 CONSTANTS

BF

, a

| SOURCE A | SOURCE B SOURCE C“3
. O6A
ye

FIG. 8 Ne (Ud. at FIG. 5.)
 15a. a general purpose
register block for
maintaining data; “The shader includes a register block which is used to

store the plurality of selected inputs.” (/d. at 18.)

“The shader includes a general purpose register block
for storing at least the plurality of selected inputs.” Ud.
at 4.)

. 99 FETOHa5 87

cGsa

 CONSTANTS

rae ri?

SOURCE A SOURCE B SOURCE © |S85

FIG. 5 Ne (Ud. at FIG. 5.)

“Asillustrated, the unified shader 62 includes a general
purpose register block 92... . The general purpose
register block 92 includessixty four registers, or

- 168 -

ATI Ex. 2115

IPR2023-00922

Page 173 of 271

ATI Ex. 2115
IPR2023-00922

Page 174 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

available entries, for storing the information transmitted
from the multiplexer 66 on line 65 or any other
information to be maintained within the unified shader.”

(Ud. at 7.)

“In application, vertex data to be processedis
transmitted into the general purpose register block 92
from multiplexer 66.” (/d. at 9.)

 15b. a processor unit;
and “The shader includes . . . a processor capable of

executing both floating point arithmetic and logical
operations on the selected inputs in response to the
instructions maintained in the sequencer.” (/d. at 18.)

“The shader includes . . . a processor capable of
executing both floating point arithmetic and logical
operations on the selected inputs according to the
instructions maintained in the sequencer.” (/d. at 4.)

FETCH
5 aad 87

cbor

CONSTANTS

 pe

SOURCE A SOURCE 8 | SOURCE &“OS

sorgyeanagt
FIG. 5 ae (/d. at FIG. 5.)

“Asillustrated, the unified shader 62 includes...a

processor(e.g. CPU) 96.” Ud. at 7.)

“The processor 96 may be comprised of a dedicated
piece of hardware or can be configured as part of a
general purpose computing device (1.e. personal
computer). In an exemplary embodiment, the processor
96 is adapted to perform 32-bit floating point arithmetic

- 169 -

ATI Ex. 2115

IPR2023-00922

Page 174 of 271

ATI Ex. 2115
IPR2023-00922

Page 175 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

operations as well as a complete series of logical
operations on corresponding operands. As shown,the
processoris logically partitioned into two sections.
Section 96 is configured to execute, for example, the 32-
bit floating point arithmetic operations of the unified
shader. The secondsection, 96A, is configured to
perform scaler operations (e.g. log, exponent, reciprocal
square root) of the unified shader.” (/d. at 8.)

“TT]he processor 96 executes the instructions on the
operands present in the source registers and provides the
result on line 85.” Ud. at 9.)
 15c. a sequencer,
coupled to the general
purpose register block
and the processorunit,
the sequencer
maintaining instructions
operative to cause the
processor unit to
execute vertex

calculation and pixel
calculation operations
on selected data

maintained in the

general purpose register
block. “The shader includes .. . a sequencer which maintains

vertex manipulation and pixel manipulations
instructions and a processor capable of executing both
floating point arithmetic and logical operations on the
selected inputs in response to the instructions
maintained in the sequencer.” (/d. at 18.)

“The shader includes .. . a sequencer for storing logical
and arithmetic instructions that are used to perform
vertex and pixel manipulation operations.” (/d. at 4.)

FROM MUX
85

 , a

| SOURCE A | | SOURCE 88S

Ne (d. at FIG. 5.)

“Asillustrated, the unified shader 62 includes...a
sequencer 99.” (/d. at 7.)

- 170-

ATI Ex. 2115

IPR2023-00922

Page 175 of 271

ATI Ex. 2115
IPR2023-00922

Page 176 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

“The sequencer 99 includes constants block 91 and an
instruction store 98. The constants block 91 contains, for
example, the several transformation matrices used in
connection with vertex manipulation operations. The
instruction store 98 contains the necessary instructions
that are executed by the processor 96 in order to perform
the respective arithmetic and logic operations on the
data maintained in the general purpose register block 92
as provided by the source registers 93-95. The
instruction store 98 further includes memory fetch
instructions that, when executed, causes the unified
shader 62 to fetch texture and other types of data, from
memory 82 (FIG. 4A). In operation, the sequencer 99
determines whether the next instruction to be executed

(from the instruction store 98) is an arithmetic or logical
instruction or a memory(e.g. texture fetch) instruction.
If the next instruction is a memoryinstruction or
request, the sequencer 99 sends the request to a fetch
block (not shown) whichretrieves the required
information from memory 82 (FIG. 4A). The retrieved
information is then transmitted to the sequencer 99,
through the vertex texture cache 68 (FIG. 4A).” Ud. at
8.)

“Tf the next instruction to be executed is an arithmetic or

logical instruction, the sequencer 99 causes the
appropriate operands to be transferred from the general
purpose register block 92 into the appropriate source
registers (93, 95, 97) for execution, and an appropriate
signal is sent to the processor 96 on line 101 indicating
what operation or series of operations are to be executed
on the several operands present in the source registers.”
(Ud. at 9.)

“[T]he instruction store 98 maintains both vertex
manipulation instructions and pixel manipulation
instructions. Therefore, the unified shader 99 of the
present invention is able to perform both vertex and
pixel operations, as well as execute memory fetch
operations. As such, the unified shader 62 of the present

- 171 -

ATI Ex. 2115

IPR2023-00922

Page 176 of 271

ATI Ex. 2115
IPR2023-00922

Page 177 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

invention is able to perform both the vertex shading and
pixel shading operations on data in the context of a
graphics controller based on information passed from
the multiplexer. By being adapted to perform memory
fetches, the unified shader of the present invention is
able to perform additional processes that conventional
vertex shaders cannot perform; while at the same time,
perform pixel operations.” (/d.)

“The instruction store 98 then passes the corresponding
control signals to the processor 96 on line 101 to
perform such vertex operations. However,if the general
purpose register block 92 does not have enough
available space therein to store the incoming vertex data,
such information will not be transmitted as the

arbitration schemeof the arbiter 64 is not satisfied. In

this manner, any pixel calculation operations that are to
be, or are currently being, performed by the processor
96 are continued, based on the instructions maintained
in the mstruction store 98, until enough registers within
the general purpose register block 92 become available.”
(id. at 10.)

“[T]he graphics processor 60 of the present invention
incorporates a unified shader 62 which is capable of
performing both vertex manipulation operations and
pixel manipulation operations based on the instructions
stored in the instruction store 98.” Ud. at 11.)
 17. The shader of claim

15, further including a
selection circuit

operative to provide
information to the

general purpose block in
response to a control
signal.

 “The architecture includes a circuit operative to select
one of a plurality of inputs in response to a control
signal.” (/d. at 18.)

“In an exemplary embodiment, a graphics processor
according to the present invention includes an arbiter
circuit for selecting one of a plurality of inputs for
processing in response to a control signal.” (/d. at 4.)

“[Vertex information ...is coupled to the first input of
multiplexer 66.” Ud. at 11.)

- 172 -

ATI Ex. 2115

IPR2023-00922

Page 177 of 271

ATI Ex. 2115
IPR2023-00922

Page 178 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

“The resulting pixel data from the rasterization engine
block 74 is the interpolated pixel parameter data that 1s
transmitted to the second input of the multiplexer 66 on
line 75.” Ud. at 10.)

“Referrnmg now to FIG. 4A, in an_exemplary
embodiment, the graphics processor 60 of the present
invention includes a multiplexer 66 having vertex (e.g.
indices) data provided at a first input thereto and
interpolated pixel parameter (e.g. position) data and
attribute data from a rasterization engine 74 provided at
a second input. A control signal generated by an arbiter
64 is transmitted to the multiplexer 66 on line 63. The
arbiter 64 determines which of the two inputs to the
multiplexer 66 is transmitted to a unified shader 62 for
further processing. The arbitration scheme employed by
the arbiter 64 is as follows: the vertex data on the first

input of the multiplexer 66 is transmitted to the unified
shader 62 on line 65 if there is enough resources
available in the unified shader to operate on the vertex
data; otherwise, the interpolated pixel parameter data
present on the second input will be passed to the unified
shader 62 for further processing.” (/d. at 7.)

INDICES

(See id. at FIG. 4A.)
 18. The shader of claim

17, wherein the
selection circuit is a

multiplexer and the
control signal is
provided by anarbiter.

 “Referrmg now to FIG. 4A, in an_exemplary
embodiment, the graphics processor 60 of the present
invention includes a multiplexer 66 having vertex (e.g.
indices) data provided at a first input thereto and
interpolated pixel parameter (e.g. position) data and
attribute data from a rasterization engine 74 provided at
a second input. A control signal generated by an arbiter
64 is transmitted to the multiplexer 66 on line 63. The
arbiter 64 determines which of the two inputs to the
multiplexer 66 is transmitted to a unified shader 62 for

- 173 -

ATI Ex. 2115

IPR2023-00922

Page 178 of 271

ATI Ex. 2115
IPR2023-00922

Page 179 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

further processing. The arbitration scheme employed by
the arbiter 64 is as follows: the vertex data on the first

input of the multiplexer 66 is transmitted to the unified
shader 62 on line 65 if there is enough resources
available in the unified shader to operate on the vertex
data; otherwise, the interpolated pixel parameter data
present on the second input will be passed to the unified
shader 62 for further processing.” (/d. at 7.)

INDICES

ARBITER
(See id. at FIG. 4A.)
 20. The shader of claim

15, wherein the
processor unit executes
vertex calculations

while the pixel
calculationsare still in

progress. “In an exemplary embodiment, a graphics processor
according to the present invention includes . . . a shader,
.. . the shader including means for performing vertex
operations and pixel operations.” (/d. at 4.)

“The unified shader 62 has ability to simultaneously
perform vertex manipulation operations and pixel
manipulation operations at various degrees of
completion by being able to freely switch between such
programs or instructions, maintained in the instruction
store 98, very quickly. In application, vertex data to be
processedis transmitted into the general purpose register
block 92 from multiplexer 66. The instruction store 98
then passes the corresponding control signals to the
processor 96 on line 101 to perform such vertex
operations. However, if the general purpose register
block 92 does not have enough available space therein
to store the incoming vertex data, such information will
not be transmitted as the arbitration scheme of the

arbiter 64 is not satisfied. In this manner, any pixel
calculation operations that are to be, or are currently
being, performed by the processor 96 are continued,
based on the instructions maintained in the instruction

store 98, until enough registers within the general
purpose register block 92 become available. Thus,

- 174 -

ATI Ex. 2115

IPR2023-00922

Page 179 of 271

ATI Ex. 2115
IPR2023-00922

Page 180 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

through the sharing of resources within the unified
shader 62, processing of image data is enhanced as there
is no down time associated with the processor 96.” (/d.
at 9.)

“[A|s the unified shader 62 is capable of alternating
between performing vertex manipulation operations and
pixel manipulation operations, graphics processing
efficiency is enhanced as one type of data operations is
not dependent upon another type of data operations.
Therefore, any performance penalties experienced as a
result of dependent operations in conventional graphics
processors are overcome.” (/d. at 11-12.)

XL=CONCEPTION

272. Itis my understanding that conception is a mental formulation and

disclosure by the inventor or inventors of a complete idea for a product or process.

I also understand that conception turns on the inventor’s ability to describe his or

her invention with particularity, and conception must be sufficiently complete so as

to enable the POSAto reduce the concept to practice.

273. Ihave reviewed a documenttitled “R400 Top Level Specification”

(Ex. 2041), a documenttitled “Shader Processor” (Ex. 2042), and two versions of a

documenttitled “R400 Sequencer Specification” (Exs. 2010, 2028). These

specification documents showthat the inventors of the °871 patent—Steven

Morein, Laurent Lefebvre, Andy Gruber, and Andi Skende—werecollectively in

possession of a complete embodiment of the claimed subject matter.

- 175 -

ATI Ex. 2115

IPR2023-00922

Page 180 of 271

ATI Ex. 2115
IPR2023-00922

Page 181 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

274. Each and every claim element is shownin the R400 specification

documents. Further, the R400 specification documents provide sufficient detail to

enable the POSA to reduce the concept to practice. Reducing the conceptto

practice could require substantial work, but would not require undue

experimentation.

275. The following claim chart showsthat the inventors conceived ofthe

claimed subject matter no later than the date of these R400 specification

documents.

Supportforthe ’871 Patent Claims in ATISpecifications

“871 Patent Claim|

1. Agraphics The R400 Sequencer Specification, the Shader Processor

processor, specification, and the R400 Top Level Specification are

comprising: architectural specifications for the R400. (Ex. 2028, p. 1

(“This is an architectural specification for the R400

Sequencer block (SEQ)’); Ex. 2042, p. 5 (“ShaderPipe

(SP) [is] for the R400 Graphics Processor”); Ex. 2041.)

The R400 was a graphics-chip product, which was

designed to include a unified processing pipe (1.e., a single

programmable pipeline for 2D video, 3D vertex, and 3D

- 176 -

ATI Ex. 2115

IPR2023-00922

Page 181 of 271

ATI Ex. 2115
IPR2023-00922

Page 182 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

pixel operations). (See Ex. 2041, pp. 6, 7.)

la. an arbiter circuit

for selecting one of a

plurality of inputs in

response to a control

signal; and
There is an arbiter circuit.

The claimed arbiter circuit comprises the input arbiter and

at least one GPR input multiplexer. The control signal is

SQ_SP_gpr_input_mux.

The input arbiter is outlined in red on the figure below.

input Aibiter :

— VTX RS PIX RS —

ALU ———— Texture

(Ex. 2028, p. 10.)

The GPR input multiplexers are circled in red in the

diagram below. “The diagram below shows all the

possible data paths going into the GPR write paths, their

selection and routing.” (Ex. 2042, p. 28.)

- 177 -

ATI Ex. 2115

IPR2023-00922

Page 182 of 271

ATI Ex. 2115
IPR2023-00922

Page 183 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

GPR DATA WRITE PATH eb tme gars|30 meron
tee: SRESer nipe: ae} 3F_$8_intasp_ifne

‘earien ower28

‘SE_SFiverbuttows

Be polar eeretzar sie me aes amelie 29

80_9P_ibep_orim_hpe &niarppen10

80_S2 Boringat_enan
PAGE USS DTZ ORE

Provkus vedo? 30_SP_gpr_oieea_smar

Prditlows Boi

lower len,

(See Ex. 2042, p. 29.)

The figure below also shows the GPR input multiplexers.

- 178 -

ATI Ex. 2115

IPR2023-00922

Page 183 of 271

ATI Ex. 2115
IPR2023-00922

Page 184 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

Indices

fram
CP

From

VixGrpTess
Vertex

Reuse Miss
Determination

LJ Data

Vbetain | fDataln [vestal Al
INTRP INTRP INTRP

we a
¥ ¢ ¢Vv

=
r GPR ae : GPR
t MAC: MAC MAC MAC
5 VO | O0-UL Wet|QOL, V2 |PO0-LL V3 [QO-LR
2
t GPR SPR LI GPR GPR

MAC: Nae Hy MAS NAS
F WHE |S UL WIT pPOtUR WIS POALL VES) OLR&

7 aL Hl& GPR GFR GPR GPA
1 MAD MAC MAL a

. ‘WEE | O8- UL ‘V3 POE-UR Vee [| O8-LL V5 | O8-LA
e [JE. GPR GPR GPR GPR

ttc MAR MAC Mac
| V8 | OMSL Va(BUR 450 | OAZLL ‘WEA | Q12-LF

hy fT¥e
ESF mie rr

PC PC PC PC

OB OB OB oe
ee 64 4 a4

SPO 7 |25Goits -- 4 bslf pixels per clk

(See Ex. 2042, pp. 16, 30.)

The interface between the input arbiter and the GPR input

multiplexers includes the “SQSPxgprinputmux”

signal. Ud. at 19-20.) The signal is circled in red on the

figure below.

- 179 -

ATI Ex. 2115

IPR2023-00922

Page 184 of 271

ATI Ex. 2115
IPR2023-00922

Page 185 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

GPR DATA WRITE PATH ce 30 ners .
tee: SRESer nipe: ae} 3F_$8_intasp_ifne

‘SE_SFiverbuttows
She Pre etsy amnaing sea

80_9P_ibep_orim_hpe &niarppen10

(See Id. at 29.)

The arbiter circuit selects one of a plurality of inputs.

As shown in the diagram below, the GPR input

multiplexers select from a plurality of inputs originating

from: (1) vertex buffers; (2) interpolators; and (3) a count.

- 180 -

ATI Ex. 2115

IPR2023-00922

Page 185 of 271

ATI Ex. 2115
IPR2023-00922

Page 186 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

GPR DATA WRITE PATH eb tme gars|30 meronuraee oMawer wipe OF) 3P_$2_Intacp_ifine

(Id.)

“The control of all the multiplexers present at the input . .

. of the GPRs .. . and output of the parameter caches is

done by the sequencer.” (/d. at 30.)

The sequencer first arbitrates between vectors of vertices

that arrive from a primitive assembly and vectors of pixels

that are generated in the scan converter/rasterizer. (See Ex.

2028, p. 6; Ex. 2041, p. 28; see also Ex. 2042, p. 28

(stating that the scan converter to shader pipe interface is

the IJ bus).)

For selecting vertex vectors, “[w]hich of the four shader

- 181 -

ATI Ex. 2115

IPR2023-00922

Page 186 of 271

ATI Ex. 2115
IPR2023-00922

Page 187 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

pipelines [a vertex vector] is issued to [is] determined

either by some effort of load balancing or a simple round

 robin.” (Ex. 2041, p. 10.)

For pixel vectors generated by the rasterizer, “the

rasterizer (which includes the sequencer and the shader

pipeline) checks to make sure that there are enough free

registers in the shader pipeline for the pixel shader

program. [f not, it stalls until there are enough. The

rasterizer also needs to arbitrate between the three streams

of vectors to be shaded: the vertex stream, the pixel

stream, and the real time stream. I think it will be

sufficient for the real time stream to have priority over the

vertex stream which has priority over the pixel stream.”

(Id. at 11.)

Thearbiter circuit selects in response to a control signal.

The GPR input multiplexers of the arbiter circuit selects an

input in response to a control signal, which is the

SQ_SP_gpr_input_mux.

The GPR input multiplexers are “controlled by

- 182 -

ATI Ex. 2115

IPR2023-00922

Page 187 of 271

ATI Ex. 2115
IPR2023-00922

Page 188 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

SQSP_gprinputmux part of the “SQSP: Interpolation

bus’ interface . . . to route between vertex data/indices and

interpolated pixel parameters.” (Ex. 2042, p. 28.) The

claimed control signal (the SQSPgprinputmux) is

sent along this interface.

 1b. a shader, coupled

to the arbiter circuit,

operative to process

the selected one of the

plurality of inputs, the

shader including

means for performing

vertex operations and

pixel operations, and

performing one of the

vertex operations or

pixel operations based

on the selected one of

the plurality of inputs,

 There is a shader.

“T]he R400 Shader Pipe truly represents an Unified

Shader Architecture. In R400, both vertex and pixel

shading operations are implemented through the shader

units.” Ex. 2042, p. 5.)

“The unified shader is a simd/vector engine that performs

the same instructions on four sets of four (16 total)

 elements.” (Ex. 2041, p. 9.)

“As shown in the figure reproduced below,“four identical

processing units comprise a shader unit.” (Ex. 2042, p.

15.)

- 183 -

ATI Ex. 2115

IPR2023-00922

Page 188 of 271

ATI Ex. 2115
IPR2023-00922

Page 189 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

wherein the shader ear] Omeeseeo
PE

provides a appearance

ory Duads09,40,1" (phase 2}
cEcA Quads 12, 13, 14,15 (phase 3}|

aa

attribute.

(Ex. 2042, p. 15.)

A shader unit is represented by the gray area on the figure

reproduced below. (Ex. 2010, p. 11.)

- 184 -

ATI Ex. 2115

IPR2023-00922

Page 189 of 271

ATI Ex. 2115
IPR2023-00922

Page 190 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

 COMETANT

al
INETRUCTION
STORCIGAGHE

REGISTER FILE

a
— FEXTURE a%

Id. at 11.)

The shader is coupled to the arbiter circuit.

The general purpose registers are part of the shader, as

shown in the figure above. (See id. at 10.) And as shownin

the figure below, the registers are coupled to the GPR

input multiplexers.

- 185 -

ATI Ex. 2115

IPR2023-00922

Page 190 of 271

ATI Ex. 2115
IPR2023-00922

Page 191 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

GPR DATA WRITE PATH eb tme gars|30 meronuraee oMawer wipe OF) 3P_$2_Intacp_ifine

 (Ex. 2042, p. 29.)

The multiplexers are part of the arbiter circuit, which

receive the SQSP_gprinput_mux signal provided by the

input arbiter component of the arbiter circuit and

propagate the selected input to the shader. (See supra

Claim la.) So, the shader is coupled to the arbiter circuit.

The shader includes _a means for performing vertex

operations and pixel operations.

The shader includes ALUs, which perform both vertex

operations and pixel operations because the “Shader Pipe

(SP) serves as the central Arithmetic and Logic Unit

- 186 -

ATI Ex. 2115

IPR2023-00922

Page 191 of 271

ATI Ex. 2115
IPR2023-00922

Page 192 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

(ALU) for the R400 Graphics Processor, and “both vertex

and pixel shading operations are implemented through the

shader units.” (See id. at 5.)

The shader comprises ALUs. (See Ex. 2010, p. 11; see

also Ex. 2042, p. 7.)

“ALUconsist of two distinct units: “Vector? ALU and the

‘Scalar? ALU. The Vector ALU performs operations in

parallel across a 4-component vector, while the Scalar

ALU performs operations on a single component of a

vector which is then replicated across all components.”

(Ex. 2042, p. 7.)

“An ALU can do simple math, conditional moves, and

permutations on the registers, and the ability to do a

limited number of memory reads using the texture cache.”

(Ex. 2041, p. 10.)

The shader can performs one of the vertex operations or

pixel operations based on the selected one of the plurality

of inputs

- 187 -

ATI Ex. 2115

IPR2023-00922

Page 192 of 271

ATI Ex. 2115
IPR2023-00922

Page 193 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

“All the shader units of each and every pipe execute the

same ALU instruction on different sets of vertex

parameters/pixel values.” (Ex. 2042, p. 5.)

“For 3D rendering data is passed twice through the unified

shader- once to transform the vertices and a second time to

determine the color of the pixels.” (Ex. 2041, p. 10.)

(1) “The input to the 3D pipe is expected to be indexed

vertex arrays.” (/d. at 10.) Wheneither a vector is filled

with 16 entries or a state change happens. . . the vector is

issued to one of the ‘shader’ pipelines for transformation.

Which of the four shader pipelines it is issued to [is]

determined either by some effort of load balancing or a

simple round robin.” Vd.) “[When t]he shader pipeline

receives the vector of 16 indices from the primitive

assembly block[,] [t]he shader pipeline operates, when

rendering pixels, by processing a vector of four 2x2 pixel

footprints, a total of 16 pixels.” Ud.) “At the end of the

vertex program, the transformed coordinates must be

- 188 -

ATI Ex. 2115

IPR2023-00922

Page 193 of 271

ATI Ex. 2115
IPR2023-00922

Page 194 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

output.” Ud.)

(2) “Before starting the processing of a vector the

rasterizer (which includes the sequencer for the shader

pipeline) checks to make sure that there are enough free

registers in the shader pipeline for the pixel shader

program.” (/d. at 11.) “The vector is then processed by the

shader pipeline. We will probably support up to eight

sequentially dependent texture fetches... . 16 (8?)

textures are supported, but each texture can be accessed

multiple times by a single pixel shader.” (/d. at 11.)

The shader provides an appearance attribute.

“The location where the data should be put in the event of

an export is specified by in the destination addressfield of

the ALU instruction word.” (Ex. 2042, p. 10.) The Shader

specification lists the possible types of exports and the

range of addresses. (/d. at 10-11.) The list is divided into

vertex shading and pixel shading. (/d.) And the list

comprises of different appearance attributes such as

- 189 -

ATI Ex. 2115

IPR2023-00922

Page 194 of 271

ATI Ex. 2115
IPR2023-00922

Page 195 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

position and color. (See id.)

“One output will be the x, y, z, w position... . The vertex

program may also output a number of parameter values

(colors, texture coordinates, other interpolated inputs into

the pixel shader).” (Ex. 2041, p. 10.)

“The output of the pixel shader is the final color of the

fragment.” Ud. at 11.)

 2. The graphics

processor of claim 1,

further including a

vertex storage block

for maintaining vertex

information. There is a vertex storage block.

The claimed vertex storage block is a vertex cache, a

parameter cache, and a position cache.

The R400 specifications describe a vertex cache. (See id.

at 10-11.) “Vertices are located in the vertex cache after

the vertices were transformed. (See id. at 25.) “The shader

pipeline will fetch the vertex array data through the cache

infrastructure that is also used for texture fetches.” (/d. at

10.)

The R400 specifications also disclose a parameter cache

- 190 -

ATI Ex. 2115

IPR2023-00922

Page 195 of 271

ATI Ex. 2115
IPR2023-00922

Page 196 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

and a position cache. (See infra Claim 3).

The vertex storage block maintains vertex information.

The vertex storage block maintains vertex information

because “[t]he vertex cache stores transformed vertices.”

(Id. at 10.)

The parameter cache and the position cache also maintain

vertex information. (See infra Claim3.)

3. The graphics

processor of claim 2,

wherein the vertex

storage block further

includes a parameter

cache operative to

maintain appearance

attribute data for a

corresponding vertex

and a position cache

operative to maintain

position data for a

 See supraClaim2(showingsupportforthevertex storage

block).

The vertex storage block includes a parameter cache.

The R400 specifications describe a parameter cache. (See

id, at 10-13; Ex. 2028,p. 36.)

The parameter cache is included in the vertex storage

block. (See Ex. 2041, pp. 10-11 (describing the parameter

cache as the “parameter portion of the vertex cache”), 28

(describing the parameter cache as the “vertex parameter

cache”).

- 191 -

ATI Ex. 2115

IPR2023-00922

Page 196 of 271

ATI Ex. 2115
IPR2023-00922

Page 197 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

corresponding vertex.

The R400 Sequencer Specification shows four parameter

caches, circled in red below. PC stands for parameter

cache. (Ex. 2042, pp. 18, 30.)

CF

"| CONSTANTS

OF es

 *| INSTSTORE +

[roeEA ING oon

FETCH STATE ~~") CSTORE

__—

TP

(See Ex. 2028, p. 7.)

The Shader Processor specification also has two figures

showing the parameter cache blocks, reproduced below

with the parameter cache blocks outlined in red.

- 192 -

ATI Ex. 2115

IPR2023-00922

Page 197 of 271

ATI Ex. 2115
IPR2023-00922

Page 198 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

Indices
fram

From cP
VixGrpTess

Vertex
Reuse Miss

Determination

LJ Data

GPR:
MAC

VO POD-ULVosi2
vl GPR

BAC
Whe POUL

ab(SPR
MAD

WES |OB-UL

[tb

aie

bibl
Vas | OT2UL

 ethoeBiiD

;™mss” “MEG

— .

: ca : : oo : i : : ta84 BA 64 34

SPO 77] Soi -- 4 helt pixels per clk

(See Ex. 2042, pp. 16, 30.)

- 193 -

ATI Ex. 2115

IPR2023-00922

Page 198 of 271

ATI Ex. 2115
IPR2023-00922

Page 199 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

SHADER ORE &

*
= PSOa

SER SPR |
7 BBt Bega

WAS WAC 4

piping Bens

SHADER PPE 7

parenetet date SOM SFBLET ee Z—

t tems shzce runt3

SPSDes

wean Ss

SHADERPE 3

(See id. at 32.)

The parameter cache is operative to maintain appearance

attribute data for a corresponding vertex.

“The parameter cache is where the vertex shaders export

their data.” (Ex. 2028, p. 36; see also Ex. 2028, p. 40 (“a

vertex shader exports its data TO THE PARAMETER

CACHE”).)

- 194 -

ATI Ex. 2115

IPR2023-00922

Page 199 of 271

ATI Ex. 2115
IPR2023-00922

Page 200 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

“The vertex program may .. . output a number of

parameter values (color, texture coordinates, other

interpolated inputs.” (Ex. 2041, p. 10.) “The rasterizer will

request the parameter data from the parameter cache for

the primitives The parameter cache is 512 bits wide,”

and the rasterizer can fetch parameters stored in the cache.

(id. at 11.)

“The output of the vertex shader program, transformed

parameter data is written into Parameter cache memories.”

(Ex. 2042, p. 32.) “The read address into parameter cache

is a result of a muxing of three possible 7-bit address

pointers broadcasted by the Sequencerto all shader pipes.

These three pointers are part of ‘Parameter Cache Read

Control Bus’... . There are 512-bit worth of data

transferred from Shader Pipe to SX blocks for every read

of the parameter cache. Once read from the parameter

caches, the parameter data is then routed by the SX units

into the interpolation units at the top of the shader pipe.”

(Id. at 33.)

- 195 -

ATI Ex. 2115

IPR2023-00922

Page 200of 271

ATI Ex. 2115
IPR2023-00922

Page 201 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

“Parameter Cache Read control bus . . . provides three

different pointers specifying the location of the parameter

values in the Parameter Caches. Depending on the way the

vertices get mapped into primitives, it might happen that

the parameter values come from different relative offsets

in the parameter caches from one parameter cache to the

other across a shader pipe.” (/d.at 18.)

The vertex storage block includes a position cache.

The R400 specifications describe a position cache. (See

Ex. 2041, pp. 10, 26; Ex. 2028, p. 37 (‘Position or

parameter caches can be exported in any order in the

shader program.It is always better to export posistion [sic]

as soon as possible.”).)

The position cache is included in the vertex storage block.

(See Ex. 2041, p. 10 (describing the position cache as the

“position cache portion of the vertex cache”).

The position cache is operative to maintain position data

for a correspondingvertex.

- 196 -

ATI Ex. 2115

IPR2023-00922

Page 201 of 271

ATI Ex. 2115
IPR2023-00922

Page 202 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

“At the end of the vertex program, the transformed

coordinates must be output. One output will be the x, y, z,

w position which webe [sic] stored in the position cache.”

(id)

“The primitive assembly block . . . accesses the position

cache portion of the vertex cache.” (/d.) The primitive

assembly “receives the transformed vertex position data

from the shader pipes.” (/d. at 25.)

 5. The graphics

processor of claim I,

wherein the

appearance attribute

is position, and the

position attribute is

associated with a

corresponding vertex

whenthe selected one

of the plurality of

 See supra Claim 1b (showing support for the appearance

attribute).

The appearance attribute can be a position attribute.

“One output will be the x, y, z, w position.” (/d. at 10.)

The R400 specifications list “the possible types of exports

and the range of addresses,” which includes position. (Ex.

2042, pp. 10-11.)

The position attribute is associated with a corresponding

vertex when the selected one of the plurality of inputs is

- 197 -

ATI Ex. 2115

IPR2023-00922

Page 202 of 271

ATI Ex. 2115
IPR2023-00922

Page 203 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

inputs is vertex data. vertex data.

“For 3D rendering data is passed twice through the unified

shader- once to transform the vertices.” (Ex. 2041, p. 10.)

Position is associated with vertex shading. (See Ex. 2042,

pp. 10-11.)

“At the end of the vertex program, the transformed

coordinates must be output. One output will be the x, y, z,

w position.” (Ex. 2041, p. 10.)

 6. The graphics

processor of claim 5,

wherein the

appearance attribute

is color, and the color

attribute is associated

with a corresponding

pixel when the

selected one of the

plurality of inputs is

 See supra Claim 1b (showing support for the appearance

attribute).

The appearance attribute can be a color.

“The output of the pixel shader is the final color of the

fragment.” (Ud. at 11.)

The R400 specifications list “the possible types of exports

and the range of addresses,” which includes color. (Ex.

2042, pp. 10-11.)

“The vertex program may also output a number of

- 198 -

ATI Ex. 2115

IPR2023-00922

Page 203 of 271

ATI Ex. 2115
IPR2023-00922

Page 204 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

pixel data.

parameter values (colors, texture coordinates [etc.]).” (Ex.

2041, p. 10.)

“When exporting Fog, color must be exported at the same

time. Fog will be exported in the Scalar pipe and Color in

the Vector pipe.” (Ex. 2042, p. 10.)

The color attribute is associated with a correspondingpixel

when the selected_one of the plurality of inputs is pixel

data.

ee
 For 3D rendering data is passed twice through the unified

shader- once .. . to determine the color of the pixels.” (Ex.

2041, p. 10.)

Color is associated with pixel shading. (See Ex. 2042, p.

LL.)

“The output of the pixel shader is the final color of the

fragment.” (Ex. 2041, p. 11; see also Ex. 2041, p. 14

(“override the color output from the pixelshader with an

ugly shade of green”).)

- 199 -

ATI Ex. 2115

IPR2023-00922

Page 204 of 271

ATI Ex. 2115
IPR2023-00922

Page 205 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

8. The graphics

processor of claim 1,

whereinthe

appearance value is

depth.

See supra Claim 1b (showing support for the appearance

attribute).

The appearance attribute can be depth.

“At the end of the vertex program, the transformed

coordinates must be output. One output will be the x, y, z,

w position.” Ud. at 10.) A person having ordinary skill in

the art would understand the z position to be depth.

“Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color buffers).”

(Ex. 2028, p. 51.)

 9. The graphics

processor of claim 1,

further including a

selection circuit,

wherein the selection

circuit is a

multiplexer, and the

control signalis

provided by an

 There is a selection circuit.

The at least one GPR input multiplexer is the claimed

selection circuit. The GPR input multiplexers are circled in

red on the diagram below. “The diagram below showsall

the possible data paths going into the GPR write paths,

their selection, and routing.”

- 200 -

ATI Ex. 2115

IPR2023-00922

Page 205of 271

ATI Ex. 2115
IPR2023-00922

Page 206 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

arbiter, wherein the

arbiter is coupled to

the multiplexer.

GPR DATA WRITE PATH eb tme gars|30 meron
tee: SRESer nipe: ae} 3F_$8_intasp_ifne

‘earien ower28

‘SE_SFiverbuttows

Be polar eeretzar sie me aes amelie 29

80_9P_ibep_orim_hpe &niarppen10

80_SAbenrpaar
PAGAN USS DTZ ORE

Popekus vector SD_SP_gpy_oieiae_mmax

Prfutous So:

(See Ex. 2042, p. 29.)

The figure below also shows the GPR input multiplexers.

- 201 -

ATI Ex. 2115

IPR2023-00922

Page 206 of 271

ATI Ex. 2115
IPR2023-00922

Page 207 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

Indices

fram

From cP
VixGrpTess

Vertex
Reuse Miss

Determination

indicesoe eet
dete for

upto.
4vers LJ Data

SeqCris!

[sGstain VWatain] fDataks [vestain]

INTRE ‘O-| NTRP INTRE INTRE

5 govmememamnsmd| Pence Leonel
a e ¥¥

r GPR <a - GPRt MAC: MAC MAC MAC
3 VO POD-UL We QOLUR: V2 ODL W8 | QOLR
2
t GPR GPR LI GPR GPR

RMAC MAD OO MAS BAC
F WHE POLUL WF POLUR WS POLL WIS | OLLR=

: 2 1

a | GPR GFR by GPR GPArr MAC MAC MAC MAC

: WE | OB UL W3B POB-UR 24 | OS-LL V8 |p ORLA
e [IL

r | GPR | SPR LY GPR GPR3 Kia AAS RAC: BA
vas poreuc[Vl]wae jorsur VEO;OHZLL||wet patzLr

hy fT¥e

ae PC PC PC PCa FS

SPO | 2580its -- 4 halfpivets per ck

(See id. at 16, 30.)

The selection circuit is a multiplexer.

The GPR input selection circuits shown in the figures

above are multiplexers. The R400 specifications call a

- 202 -

ATI Ex. 2115

IPR2023-00922

Page 207 of 271

ATI Ex. 2115
IPR2023-00922

Page 208 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

GPR input a “multiplexer” and a “MUX.” (See id. at 28,

30; Ex. 2028, p. 40.)

An arbiter provides the control signal.

See supra Claim la (showing support for the control

signal).

The claimed arbiter 1s the input arbiter outlined in red on

the figure below.

rc VTX RS PIA RS +

| (Ex. 2028,p. 10.)

The arbiter provides the SQSPgprinputmux control

signal. “The control of all the multiplexers present at the

input and output of the GPRs .. . is done by the

- 203 -

ATI Ex. 2115

IPR2023-00922

Page 208of 271

ATI Ex. 2115
IPR2023-00922

Page 209 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

sequencer.” (See Ex. 2042, p. 30.) And the sequencer’s

input arbiter “first arbitrates between vectors of .. .

vertices ... and vectors of .. . pixels.” (See Ex. 2028, pp.

6,10.)

The arbiter is coupled to the multiplexer.

The arbiter is coupled to the multiplexers via_ the

SQSPgprinputmux. (See Ex. 2042, pp. 18-19; Ex.

2028, p. 51; supra Claim 1b (having both the multiplexer

and the arbiter part of the arbiter circuit).)

 10. The graphics

processor of claim 1,

wherein the shader

provides vertex

position data and

further including a

primitive assembly

block, coupled to the

shader, operative to

generate primitives in

 The shader provides vertex position data.

“At the end of the vertex program, the transformed

coordinates must be output. One output will be the x, y, z,

w position... . The vertex program may also output a

number of parameter values (colors, texture coordinates,

other interpolated inputs into the pixel shader).” (Ex. 2041,

p. 10.)

There is a primitive assembly block.

The claimed primitive assembly is outlined in red on the

- 204 -

ATI Ex. 2115

IPR2023-00922

Page 209 of 271

ATI Ex. 2115
IPR2023-00922

Page 210 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

response to the vertex

position data.

top level block diagram shownbelow.

R400 Top Level Block Diagram
Le]

(See id. at 15.)

Theprimitive assembly block is coupled to the shader.

The primitive assembly block is coupled to the shader via

the PA — SPn bus. (See id. at 25.)

 The primitive assembly block is operative to generate

primitives in response to the vertex position data.

“[The primitive assembly] receives the transformed vertex

position data from the shader pipes.” (/d. at 25; see also id.

at 10 (“The primitive assembly block reads the indices

back out of the latency FIFO and accesses the position

- 205 -

ATI Ex. 2115

IPR2023-00922

Page 210 of 271

ATI Ex. 2115
IPR2023-00922

Page 211 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

cache portion of the vertex cache. It assembles the vertices

into primitives (lines, triangles, rectangles, quads’, points,

27.)

As circled in red on the figure of the shader pipe shown

below, output data from the shader unit can go “to

Primitive Assembly Unit.”

- 206 -

ATI Ex. 2115

IPR2023-00922

Page 211 of 271

ATI Ex. 2115
IPR2023-00922

Page 212 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

REE
ee LE&

5 2
g aellel|a} |

Regisber File

3 1 { 7t—1———

[(emmy ae (—
pipsline stage) Pe reyey

instruction Register File
i

B cea
HA

piping stage

SealarUnit

 instruction
||

 ‘I =|
WExara =uest |S
aye ‘é =

pipeine stage re e||=ery

LL:2

5 E
tS E
e| |
2} fdee ae

inal

{teatureaddress

to Strive Assembiy Unk o RendaBackend

(Ex. 2028, p. 13.)

The transformed vertex position data is also shown to be

sent along the vertex coordinate return bus in the top level

block diagram. (See Ex. 2041, p. 15; see also id. at 25

(describing the PA — SPn bus as “8x8 tiles to be

rasterized”).)

- 207 -

ATI Ex. 2115

IPR2023-00922

Page 212 of 271

ATI Ex. 2115
IPR2023-00922

Page 213 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

“The primitive assembly subblock then creates primitives

(lines, points, rectangles, triangles) from the vertices.” (/d.

at 25.)

“The resulting primitive data, including the indices back

into the parameter portion of the vertex cache are

broadcast to the four pipes.” (/d. at 10.)

 11. The graphics

processor ofclaim 10,

further including a

raster engine, coupled

to the primitive

assembly block,

operative to generate

pixel parameter data

in responseto the

assembled vertex

data.

 There is a raster engine.

The claimed raster engine is outlined in red on the top

level block diagram shown below

R400 Top Level Block Diagram
Le]

(See id. at 15.)

The R400 specifications also include a raster engine block

- 208 -

ATI Ex. 2115

IPR2023-00922

Page 213 of 271

ATI Ex. 2115
IPR2023-00922

Page 214 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

diagram, shown below.

$.15.3.1 RE Block diagram

—ea LParameter
Store

arbitrator
Verten Transtar:

 ALU commmandeiag ”

mick Texture commancdat Acroitration?register register rangr

The raster engine is coupled to the primitive assembly

block.

The raster engine is coupled to the primitive assembly via

the primitive assembly — raster engine interface. (See id.

at 15-16, 25, 28.)

The raster engine is operative to generate pixel parameter

- 209 -

ATI Ex. 2115

IPR2023-00922

Page 214 of 271

ATI Ex. 2115
IPR2023-00922

Page 215 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

data in response to the assembled vertex data.

“[V]ectors of 4 quads (16 pixels)... are generated in the

raster engine.” (/d. at 28.)

“The rasterizer will request the parameter data from the

parameter cache for the primitives.” Vd. at 11.) The

rasterizer will generate four pixels per clock if there are no

more than eight interpolated parameters. The rasterizer

generates vectors of four 2x2 footprints (16 pixels).” Ud.

at 11.)

The primitive assembly — raster engine interface is

described as “[rlequests to transform packets of vertices.”

(id. at 28.)

 13. The graphics

processor of claim 1,

wherein the shader

includes a register

block for maintaining

the selected one of the

plurality of inputs, a

 See supra Claim 1b (showing supportfor the shader).

The shader includes a register block.

“The user model for the unified shader is composed of a

variable number of general purpose registers, a subset of

whichare usually initialized with data.” (/d. at10.)

-210-

ATI Ex. 2115

IPR2023-00922

Page 215 of 271

ATI Ex. 2115
IPR2023-00922

Page 216 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

computation element

operative to perform

arithmetic and logical

operations on the data

maintained in the

register block, and

sequencer for

maintaining the

instructions that are

executed by the

computation element.
A shader unit is represented by the gray area on the figure

reproduced below. (Ex. 2010, p. 11.) The shader unit

includes a register file, outlined in red. (/d. at11.)

interpohatedante / vertex iroenne

 REGISTER FILE

CAOMSTANT

STORE INSTRUCT:
STOREICACHE

The claimed general purpose register blocks are outlined

in red on the shader pipeline diagram reproduced below.

-211-

ATI Ex. 2115

IPR2023-00922

Page 216 of 271

ATI Ex. 2115
IPR2023-00922

Page 217 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

Indices

fram
cP

From

VixGrpTess
Vertex

Reuse Miss
Determination

LJ Data

.

“4 | sonnnmanrnantVv

=

r 2Pr, rr, z 2 Q
t AD MA MAC MAC /5 VO O0-UL Vr OMLUR V2 OLE va | QOLR :
o
t GPR GPR HI GPR SPR

KAT MAC ni MAC MAC .
F vite CA UL VAT POUR WS POSLL VAS pO4-LR&

‘ ab a .
s GPR GPA SPR GPR ime MAC MAC MAC Mac

. WES | O8- UL WE | OB-UR Vea (| CB-LL Va5 || CELE |
e [JTr GPR GPR GPR GPR
= bial AbD MAL Mac

48 | OPBUL Veo (OEBUR VEO | OPEL Vet | O1ZLR

fFreS, Pres, " i

Po Po PC Po

oo oF ce Of
ea BS. Sa. a4

SPO 7 |2Soit -- 4 bslf pies per alk

(See Ex. 2042, pp. 16, 30.)

(See also id. at 6 (describing the general purpose registers

(GPRs).)

The register block maintains the selected one of the

-212-

ATI Ex. 2115

IPR2023-00922

Page 217 of 271

ATI Ex. 2115
IPR2023-00922

Page 218 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

plurality of inputs.

“The general-purpose registers are 128 bits wide,

composed of four 32-bit values. (/d.)

General purpose registers are allocated based on the

number of general purpose registers a program needs. (See

id.; Ex, 2028, p. 39.) “The register file allocation for

vertices and pixels can either be static or dynamic.” (Ex.

2028, p. 31; see also id. at 40.)

The figure shown below is an example of the general

purpose registers’ allocation. (/d. at 32.) “Vertices come in

from top to bottom; pixels come in from bottom to top.

Vertices are in orange and pixels in green. The blue line is

the tail of the vertices and the green line is the tail of the

pixels. Thus anything between the two lines is shared.

When pixels meets vertices the line turns white and the

boundaryis static until both vertices and pixels share the

same ‘unallocated bubble’. Then the boundary is allowed

to move again.” (/d.)

- 213 -

ATI Ex. 2115

IPR2023-00922

Page 218 of 271

ATI Ex. 2115
IPR2023-00922

Page 219 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

 (id.)

The register block maintains the selected input because as

shown above, data is written to the register files. (See also

id. at 14.) And the data can be written to a pixel portion or

vertex portion. (See id. at 41.)

The shader includes a computation element.

The shader includes ALUs, which are computation

elements.

The shader comprises ALUs. (See Ex. 2010, p. 11; see

also Ex. 2042, p. 7.)

“ALUconsist of two distinct units: ‘Vector’ ALU and the

-214-

ATI Ex. 2115

IPR2023-00922

Page 219 of 271

ATI Ex. 2115
IPR2023-00922

Page 220 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

‘Scalar’ ALU. The Vector ALU performs operations in

parallel across a 4-component vector, while the Scalar

ALU performs operations on a single component of a

vector which is then replicated across all components.”

(Ex. 2042, p. 7.)

“An ALU can do simple math, conditional moves, and

permutations on the registers, and the ability to do a

limited number of memory reads using the texture cache.”

(Ex. 2041, p. 10.)

The computation element is operative to perform

arithmetic and logical operations on the data maintained in

the register block.

ALU stands for “Arithmetic and Logic Unit.” (Ex. 2042,

p. 5.) The R400 specifications list the ALU operations.

(See id. at 11-13 for a listing of ALU operations). The

R400 specifications also list the scalar unit’s operations.

(See id. at 33-42.)

The ALUs are operative to perform operations on data

maintained in the register block. (See Ex. 2028, pp. 24-25,

- 215 -

ATI Ex. 2115

IPR2023-00922

Page 220 of 271

ATI Ex. 2115
IPR2023-00922

Page 221 of 271

Case IPR2015-00326 of

US. Patent No. 6,897,871

51-52, 54-58)

The shader includes a sequencer.

The figure below shows the R400’s sequencer block. The

sequencer block is outlined in red.

Hooper! CONSTANTS CORTRO

contmce, CENTRE EAIUADS item
i IiJ CROSSBAR

sl W
+ i

NTER ~~) INTER [--—+] INTER [>

+ INST STORE =

> |

TP e t
PCIOB PCIOB

y ¥ ¥
RB RB ps RB

(See id. at 7.)

The figure reproduced below shows a sequencer (SEQ),

instruction store (IS), and constant store (CST).

-216-

ATI Ex. 2115

IPR2023-00922

Page 221 of 271

ATI Ex. 2115
IPR2023-00922

Page 222 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

i
i

Clause # + Ady
i
i
i
i
[
i
i
L
i
i
i

| Wwradd \
i
i
:
:

SEQ

CST

Phase;
RoAddr‘

i

1
emp C8Tcsticstiox 4 B Cc Wivec

ory

i;
j

WreAdar'!
i

! :: ;
i ii :|i j

ii
i
i}

i

 FETCH

WrAare SP
LSP

:
iii
'ii|
i

radar
!}i|
ii1i
5iIi

OF

Id. at 14.)

The sequenceris included in the R400 shaderarchitecture.

The sequencer maintains the instructions that are executed

by the computation element.

The sequencer maintains the instructions in an instruction

store. The instruction store is outlined in red on the figures

reproduced below.

-217-

ATI Ex. 2115

IPR2023-00922

Page 222 of 271

ATI Ex. 2115
IPR2023-00922

Page 223 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

a

CF $c
tect "| CONSTANTS

“INTER + INTER »LINTER| NST STORE,

SP |) sp [+] sp
FETCH STATE <

er :

¥ 1
-«| PCIOB | PC/OB

y y

RB +] RB

i

SEQ CST wire

1 enmmninmeniitnann
Clause #+ Ady

Week raL ! }

i i i
| ob eMD 4oo i
i} : poy : i
eb GST : . i
bog ; bd ; i
i | : i 7 7 7 7 7 i ien | / / / | / : ‘

P| Po LU 1 L 7] 'pb Phase TL |
po | -! emp C8Tcsnegriox 4 8 G Wrvec i ;Po : ! i

P| Rad L | | | | | I" viedPoP ; | ; i
ée é : iLe 4j :

-
ii\

FETCH SP fe-| oF
archt

Id. at 14.)

- 218 -

ATI Ex. 2115

IPR2023-00922

Page 223 of 271

ATI Ex. 2115
IPR2023-00922

Page 224 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

COMETANT

ol
INSTRUCTION:

REGISTER FILE STORCMGACDHE :

i.
}

ie oF = a : FP] APnn
he : 4 : Oo Peat Pesee cd : oe = :x 4 *

a —

a
— FEXTURE a%

SEE es Jes : : 5

Boe
#

(Ex. 2010, p. 11.)

“There is going to be only one instruction store for the

whole chip. It will contain 4096 instructions It is

 likely to be a 1 port memory.” (Ex. 2028, p. 17.)

15. A unified shader, |“The most ambitious feature in this design is the‘truly

comprising: unified pipe’ : a single programmable pipeline is used for

2D Video, 3D vertex, and 3D pixel operations. The unified

-219-

ATI Ex. 2115

IPR2023-00922

Page 224 of 271

ATI Ex. 2115
IPR2023-00922

Page 225 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

pipeline doesall of its calculations in 32 bit floating

point.” (Ex. 2041, p. 7.) The unified pipeline results in a

single math/register structure compared to the separate

structures in a more traditional design.” (/d.)

“TT]he R400 Shader Pipe truly represents an Unified

Shader Architecture. In R400, both vertex and pixel

shading operations are implemented through the shader

units.” (Ex. 2042, p. 5.)

 15a. a general

purpose register block

for maintaining data; The shader includes a general purpose register block.

“The user model for the unified shader is composed of a

variable number of general purpose registers, a subset of

which are usually initialized with data.” (Ex. 2041, p. 10.)

A shader unit is represented by the gray area on the figure

reproduced below. (Ex. 2010, p. 11.) The shader unit

includes a register file, outlined in red. (/d.)

- 220 -

ATI Ex. 2115

IPR2023-00922

Page 225 of 271

ATI Ex. 2115
IPR2023-00922

Page 226 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

 Hempoiaieddata ¢ Vertex inmexee

COMETANT

al

INETRUCTION
STORCIGAGHE

 REGISTER FILE

i
Pe me FEXTURE a

The claimed general purpose register blocks are outlined

in red on the shader pipeline diagram reproduced below.

- 221 -

ATI Ex. 2115

IPR2023-00922

Page 226 of 271

ATI Ex. 2115
IPR2023-00922

Page 227 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

vl

cmeBherihZosmD

Indices
fram

From cP
VixGrpTess

Vertex
Reuse Miss

Determination

LJ Data

tl i D
VO} ORUL | QLUR Ve OL WS | QE-LR

GPR SFR L GPR GPR |
MAZ MAC Hy Ve RAD

wp OS UL WIT | OUR WtS POALL WS | O4iR

GPR SPR GPR GPR
MAC MAC MAC MAC

VBE | OB- UL ‘VES. | OB-UR v4 PP OB-LL VB5 | OB-LE

GPR SPR GPR GPR
MAC MAC MAC MAC

043 | OPBUL YS EUR YEO POPZLL ‘WEt | OAZLA

ec, Prec, Prey

PC PC PC PC

SP 0

7 [25hcib -- +helfpixeb per cl

(See Ex. 2042, pp. 16, 30.)

(See also id. at 6 (describing the general purpose registers

(GPRs).)

The general purpose register block maintains data.

- 222 -

ATI Ex. 2115

IPR2023-00922

Page 227of 271

ATI Ex. 2115
IPR2023-00922

Page 228 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

“The general-purpose registers are 128 bits wide,

composed of four 32-bit values. (/d.)

General purpose registers are allocated based on the

number of general purpose registers a program needs. (See

id.; Ex, 2028, p. 39.) “The register file allocation for

vertices and pixels can either be static or dynamic.” (Ex.

2028, p. 31; see also id. at 40.)

The figure shown below is an example of the general

purpose registers’ allocation. (/d. at 32.) “Vertices come in

from top to bottom; pixels come in from bottom to top.

Vertices are in orange and pixels in green. The blue line is

the tail of the vertices and the green line is the tail of the

pixels. Thus anything between the two lines is shared.

When pixels meets vertices the line turns white and the

boundaryis static until both vertices and pixels share the

same ‘unallocated bubble’. Then the boundary is allowed

to move again.” (/d.)

- 223 -

ATI Ex. 2115

IPR2023-00922

Page 228 of 271

ATI Ex. 2115
IPR2023-00922

Page 229 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

(Id.)

As shown above, data is written to the register files. (See

also id. at 14.) And the data can be written to a pixel

portion or vertex portion. (See id. at 41.)

 15b. a processor unit;|The shader includes aprocessor unit.

and

An ALUofthe shaderis the clatmed processor unit.

The shader comprises ALUs. (See Ex. 2010, p. 11; see

also Ex. 2042, p. 7.)

“ALU consist of two distinct units: ‘Vector’ ALU and the

‘Scalar’ ALU. The Vector ALU performs operations in

parallel across a 4-component vector, while the Scalar

- 224 -

ATI Ex. 2115

IPR2023-00922

Page 229 of 271

ATI Ex. 2115
IPR2023-00922

Page 230 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

ALU performs operations on a single component of a

vector which is then replicated across all components.”

(Ex. 2042, p. 7.)

“An ALU can do simple math, conditional moves, and

permutations on the registers, and the ability to do a

limited number of memory reads using the texture cache.”

(Ex. 2041, p. 10.)

coupled to the general
The figure of the R400 architecture, reproduced below,

purpose register block a
shows a sequencer highlighted in red.

and the processor

unit, the sequencer

| CrCONSTANTS

maintaining

instructions operative
NTER <->] INTER [oo INTER [>

Abb
+ INST STORE =

to cause the processor

unit to execute vertex en
>| FETCH STATE = CSTORE

\—__,_

1P

calculation and pixel

calculation operations

 on selected data

(See Ex, 2028, p. 7.)

- 225 -

ATI Ex. 2115

IPR2023-00922

Page 230 of 271

ATI Ex. 2115
IPR2023-00922

Page 231 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

maintained in the

general purpose

register block.

The figure reproduced below shows a sequencer (SEQ),

instruction store (IS), and constant store (CST).

Fm
Clause # + Ridy

lweagar

 SEQ

 CST

; b OMD ~— :
i i : — i
srbog :: : i BY : :

Oi oo Coo | |poe : / / pp be iy : :i i : 1 i 1 i i
i i i i I I i |
i i Phase | i : i
i i : ewe CST csnestipyg 4 8 c ‘Wrvec. :: L : i i i

Po Reader L | "" WrAder :Pog H : i i iBG : / i :

eg % i +: |
| i

lee ii

i

FETCH SPO Ree OF
 WirAddr:

Id. at 14.)

The sequenceris included in the R400 shader architecture.

The sequencer is coupled to the general purpose register

block.

As shownin the figures above, the sequencer is coupled to

the shader pipe and as shown in the figure below, the

sequencer’s instructions tore and constant store are

coupled to the shader’s register file.

- 226 -

ATI Ex. 2115

IPR2023-00922

Page 231 of 271

ATI Ex. 2115
IPR2023-00922

Page 232 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

wueqparzieddata ? Vietex Imes

INETRUCTION COMETANT
REGISTER FILE STOREVGADHE

a
— FEXTURE Le%

(Ex. 2010, p. 11.)

The sequencer is coupled to the processor unit.

As shownin the figures reproduced above, the sequencer

is coupled to the shader pipe and thereby also coupled to

the shader’s ALU processing units that receive instructions

from the sequencer to process data.

The sequencer maintains imstructions.

- 227 -

ATI Ex. 2115

IPR2023-00922

Page 232 of 271

ATI Ex. 2115
IPR2023-00922

Page 233 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

The sequencer maintains the instructions in an instruction

store. The instruction store is outlined in red on the figures

reproduced below.

CF "| CONSTANTS

__—

 TP

NST STORE

. RB RB f+} Re

(See Ex. 2028, p. 7.)

: i

i,
Clause # + Roy ;

| Wada an SEQ CST WrAddr: os i
' OND “7 i
pot : :
P| est |
i i : i
pb pooe Phase |tod T Catnn1 | c Wire: i §

Pot RaAddr WrScal wraddr ‘
pl i : | i

i
- i

FETCH SP fee OF
 WirAcicir 2]

ATI Ex. 2115

IPR2023-00922

Page 233 of 271

ATI Ex. 2115
IPR2023-00922

Page 234 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

Id. at 14.)

4

Q ISTICTSTORCGAGHEREGISTER FILE CONSTANT fe

UPERAMD MUX,

 TEXTURE Pepe

e
g

(Ex. 2010, p. 11.)

“There is going to be only one instruction store for the

whole chip. It will contain 4096 instructions It is

likely to be a 1 port memory.” (Ex. 2028, p. 17.)

The instructions are operative to cause the processor unit

to execute vertex calculation and pixel calculation

- 229 -

ATI Ex. 2115

IPR2023-00922

Page 234 of 271

ATI Ex. 2115
IPR2023-00922

Page 235 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

operations on selected data maintained in the general

purpose register block.

See supra Claim 15b (showing support for the processor

unit).

The shader includes ALUs, which perform both vertex

calculation and pixel calculation operations because the

“Shader Pipe (SP) serves as the central Arithmetic and

Logic Unit (ALU) for the R400 Graphics Processor, and

“both vertex and pixel shading operations are implemented

through the shader units.” (See Ex. 2042, p. 5.)

The ALUs are operative to perform the operations on

selected data maintained in the general purpose register

block. (See Ex. 2028, pp. 24-25, 51-52, 54-58.) “An ALU

can do simple math, conditional moves, and permutations

on the registers, and the ability to do a limited numberof

memory reads using the texture cache.” (Ex. 2041, p. 10.)

The instructions are operative to cause the ALUs to

execute the operations. “The sequencer chooses two ALU

threads and a fetch hread [sic] to execute, and executesall

- 230-

ATI Ex. 2115

IPR2023-00922

Page 235of 271

ATI Ex. 2115
IPR2023-00922

Page 236 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

of the instructions in a block before looking for a new

clause of the same type. Two ALU threads are executed

 interleaved to hide the ALU latency.” (Ex. 2028,p. 6.)

17. The shader of

claim 15, further

including a selection

circuit operative to

provide information

to the general purpose

block in response to a

control signal.
The shaderincludes a selection circuit.

The at least one GPR input multiplexer is the claimed

selection circuit. The GPR input multiplexers are circled in

red on the diagram below. “The diagram below showsall

the possible data paths going into the GPR write paths,

their selection, and routing.”

(See Ex. 2042, p. 29.)

The figure below also shows the GPR input multiplexers.

- 231 -

ATI Ex. 2115

IPR2023-00922

Page 236 of 271

ATI Ex. 2115
IPR2023-00922

Page 237 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

Indices

from

From cP
VixGrpTess

Vertex
Reuse Miss

Determination

indicesoe wert
dete for

io

eavers [J Data
SegCrt

[sGstain VWatain] fDataln [vestain]

INTRE: “| INTRP TRF INTRE

5 govmememamnsmd| Penft
c e ¥v

: GPR SPA Z| GPRt MAC MAC MAC MAC
5 0 | QUE Vi GOUR ve) LL va |GOLR
2
t GPR GPR HI GPR GPR

BAC: hae ry fA BAAS

F wiepotu||wirpacur|]vigaeu||visyaair
: Ib 1

s | GPR SFR by GPR GPRrr BAC Ma MAC MEE

; WES |B UL WB OB-UR: VE4 |p O8-LL VEE O8-LAE
e [JL

‘ | GPE | GPR LY GPR GPR3 Kia AAS RAC: BA
vas orzuLPV]vasjoraur||veoporzee||verpotur

ld neve iReg Pr7el

aS PC Po PC Poa Pa

SPO wo] 2580-- 4 helt pices per ck

(See id. at 16, 30.)

The selection circuit 1s operative to provide information to

the general purpose block in response to a control signal.

The GPR input multiplexers of the arbiter circuit provide

- 232 -

ATI Ex. 2115

IPR2023-00922

Page 237 of 271

ATI Ex. 2115
IPR2023-00922

Page 238 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

information to the GPRs in response to the

SQSP_gprinputmux control signal.

The GPR input multiplexers are “controlled by

SQSPgprinputmux part of the “SQSP: Interpolation

bus’ interface . . . to route between vertex data/indices and

interpolated pixel parameters.” (/d. at 28.) The claimed

control signal is sent along this interface. This interface is

circled in red on the figure below.

DATA VIRITE PATH ,
Se enaer sie 3P_$P_intaep_fine

arias 236
[# [+

seBeme av borer estes BeBe
ef SET Loo2

Ld rm I

£ | F 4 | {4 ! + 4 4 HE_SF iotery_bethewaete malmar we pokmar ineeras iar weerasiter OEtne ae sy amelie 27

f | _SP_erbosy_pe tn_lyy| {4 +4 +4 eesvameseg | detemarsing | snag [__ sate marae eS
aunt
¥_ 00000

i—_pppt, | mad AS 2 ane

: ve [ze] facePomkus vedor4 t 1 t tye ed 80SFpeoveemares = = ee

As shown in the figures above, the output from the

selection circuit is provided to the general purpose

registers.

- 233 -

ATI Ex. 2115

IPR2023-00922

Page 238 of 271

ATI Ex. 2115
IPR2023-00922

Page 239 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

18. The shader of

claim 17, wherein the

selection circuit is a

multiplexer and the

control signalis

provided by an

arbiter.
See supra Claim 17 (showing support for the selection

circuit).

The selection circuit is a multiplexer.

The GPR input selection circuits shown in the figures

above are multiplexers. The R400 specifications call a

GPR input a “multiplexer” and a “MUX.” (See id. at 28,

30: Ex. 2028, p. 40.)

An arbiter provides the control signal.

See supra Claim 17 (showing support for the control

signal).

The claimed arbiter is the input arbiter outlined in red on

the figure below.

- 234 -

ATI Ex. 2115

IPR2023-00922

Page 239 of 271

ATI Ex. 2115
IPR2023-00922

Page 240 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

|| input Amiter

md VTX RS PIA RS —

 ——* Exec Arbiter >—_

| (Ex. 2028, p. 10.)

The arbiter provides the SQSPgprinputmux control

signal. “The control of all the multiplexers present at the

input and output of the GPRs .. . is done by the

sequencer.” (See Ex. 2042, p. 30.) And the sequencer’s

input arbiter “first arbitrates between vectors of .. .

vertices .. . and vectors of .. . pixels.” (See Ex. 2028, pp.

6, 10.)

 20. The shader of

claim 15, wherein the

processor unit

executes vertex

calculations while the

 See supra Claim 15b (showing support for the processor

unit).

The processor unit executes vertex calculations while the

pixel calculations are still in progress.

- 235 -

ATI Ex. 2115

IPR2023-00922

Page 240 of 271

ATI Ex. 2115
IPR2023-00922

Page 241 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

pixel calculations are|While waiting for texture data, the pixel calculations can

still in progress. stall while the vertex calculations are in progress, and in

such an instance, the vertex calculations can execute while

pixel calculationsare still in progress.

The stall occurs because vertex calculations have priority.

“{T]he vertex stream .. . has priority over the pixel

stream,” so, when pixel data reaches the rasterizer, a pixel

calculation may wait until other vertex calculations are

completed. (See Ex. 2041, p. 11.)

The R400 specifications describe state management,

which tracks the progress of pixel and vertex operations

that execute at the same time. (See id. at 13.)

XH. OVERVIEW OF THE APPLIED REFERENCES FOR GROUNDS1-4

276. In this section, I provide an overviewof Rich and Kurihara. This

overviewis relevant for my comparison of these references with the °871 patent.

A. Rich

277. Rich discloses an image-generation system that has a sequential,

pipelined architecture. This system performs four functions: “geometric

- 236 -

ATI Ex. 2115

IPR2023-00922

Page 241 of 271

ATI Ex. 2115
IPR2023-00922

Page 242 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

processing, rasterization, shading/texturing and composition.” Ex. 1005, Rich,

8:61-62. Rich’s system performsthese functions in discrete, sequential phases.

278. The “first function” that Rich’s system performsis vertex operations.

Id. at 9:1-2; see also id. at 5:3-4. During this vertex-processing phase, primitives

are assigned to specific processing elements 32. /d. at 9:5-7, 14:45-48, 15:43-47,

16:44-47. These assigned processing elements 32 may then perform one of three

different vertex operations: (1) transform primitives from model coordinates to

screen coordinates; (11) determine lighting values for the primitives; or

(iii) generate linear coefficients of the primitives. /d. at 9:18-25; see also id. at

14:10-18-27 (describing the “[cjonversion from model to screen coordinates”).

279. After the vertex operations, Rich’s “processing elements 32 write the

list of transformed primitives to external memory.” /d. at 9:27-29. According to

Rich, “[t]he use of the external memory circuit may be necessitated bythe fact that

the processing elements 32 have only a small amount of memory34 in their own

dedicated circuitry.” /d. at 16:52-55; see also id. at 17:60-64. Rich’s vertex

processing is “complete” whenall the vertex data has been written to external

memory. /d. at 9:36-39.

280. After the vertex data is written to external memory, Rich’s system

performs rasterization and pixel operations. /d. at 9:40-10:5. During the pixel

- 237 -

ATI Ex. 2115

IPR2023-00922

Page 242 of 271

ATI Ex. 2115
IPR2023-00922

Page 243 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

operations, each processing element 32 is assigned to process pixels within a

unique region of a computer screen display. /d. at 8:32-40, 9:43-46. In particular,

the pixel operations begin when each processing element 32 has been assigned

pixel information to process. /d. at 10:2-5; see alsoid. at 9:61-64 (defining the

pixel information as a “contribution”).

281. Each processing element 32 in Rich is assigned a small number of

“homepixels.” The processing element is responsible for calculating the final

value of a home pixel by combining “contribution values.” This is done by

repeatedly blending the colors of each contribution value with the prior values. See

id, at 4:46-49; 8:33-40; 9:40-41; 10:35-37,

282. In other words, Rich’s pixel processing occurs only after the

completion of the vertex processing. And the processing element 32 that operates

on a piece of data during the vertex-processing phase 1s not necessarily the same

processing element 32 that operates on that data during the pixel-processing phase.

So, to make the output of the vertex-processing phase accessible to the processing

elements 32 during the pixel-processing phase, Rich teaches that this output (Le.,

the transformed vertex data) is stored in an external, shared memory—votin the

dedicated memoryof a single processing element 32.

- 238 -

ATI Ex. 2115

IPR2023-00922

Page 243 of 271

ATI Ex. 2115
IPR2023-00922

Page 244 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

283. Additionally, it is important to understand that Rich discloses an

extremely restrictive architecture that is quite different from a general purpose

processor or amodern GPU. In the first place, Rich teaches a SIMD array with

256 or 1024 processing elements (PEs). This meansthat all of the PEs must run

the exact same instruction every cycle. /d. at 7:19-23; 17:28-42; 18:19-28.

Moreover, if a PE is to read or write its corresponding PE memory 34 block, the

location to be accessed is specified in that same shared instruction which means

that in general, every PE must access the same memory address (or corresponding

addresses in quadrants of the memory) at the same time. /d. at 33:14-47. This

provides verylittle programming flexibility and is configured to support

addressing of pixels which naturally can be arranged in quadrants.

284. The PE memoriesare also extraordinarily small. The total memory

size in each PE is only 128 bytes. This would be very ineffective at storing

vertices as the vertex information for a single triangle is generally 48 bytes.

Moreover, the PE itself cannot direct transfers of data between PEsor from the

host memory or video memory to the PE. See e.g. id. 32:2-13. In order to support

transfers into and out of PE memory 34,this already small memoryis partitioned

into a main section and an overflowsection each used for different purposes. See

e.g. id. 34:12-51.

- 239 -

ATI Ex. 2115

IPR2023-00922

Page 244 of 271

ATI Ex. 2115
IPR2023-00922

Page 245 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

285. Each PE also only has very limited calculating ability. This means

that the floating-point calculations used for vertex operationslike transform and

lighting are very slow. Each PE onlyincludes an 8-bit integer ALU (which can

add and subtract) and no specific circuit for multiplication. See e.g. id. 30:56-

31:37. In myclass, I have my students measure howlongit takes to perform

floating-point arithmetic using commercially-available software on a more

powerful 8-bit processor that includes more registers and a multiplier. [have also

performed these measurements myself. On that more powerful 8-bit processing

element, it takes approximately 110 cycles to perform a 32-bit floating-point add

operation and 140 cycles to perform a 32-bit floating-point multiply. One would

expect a multiply on Rich to take even longer. A transform calculation on one

vertex requires 9-16 multiplications and 9-12 additions. This means that

performing just the transform operation (and not lighting) on the Rich PE likely

requires at least 2250-3560 steps. Given the long amount oftime that the vertex

calculation takes, the amountof timeit takes to get the vertex data from memoryis

not significant to performance.

B. Kurihara

286. Kurihara is directed to a graphics-processing systemthat includes a

plurality of graphics processors 6, as shown in Kurihara’s Figure 1(A) (reproduced

below). Each graphics processoris coupled to a corresponding FIFO 5. The FIFO

- 240 -

ATI Ex. 2115

IPR2023-00922

Page 245 of 271

ATI Ex. 2115
IPR2023-00922

Page 246 of 271

Case IPR2015-00326 of

USS. Patent No. 6,897,871

memories store graphics data to be processed in parallel by the graphics processors

6. Kurihara, 4:38-40. The graphics data in the FIFO memories can be either vertex

(coordinate) data or pixel (attribute) data. /d. at 4:56-65. These FIFO memories

then simultaneously transfer the data to the graphics processors 6. /d. at 4:61-62.

The graphics processors 6 then process the graphics data in parallel. /d. at 5:37. In

other words, in Kurihara’s system, each graphics processor 6 performs one type of

graphics-processing operation on the data type that it receives from the

corresponding FIFO memory 5.

GRAPHIC DATA Loy
| CONTROLLER 3

of
rsctansseaeom

GRAPH

| PROCES

GRAPHIC
PROCESSOR

| GRAPHIC
| PROCESSOR

GRAPHIC
| PROCESSOR

ce |
Son

287. It’s also important to note what Kurihara does not disclose. First,

Kurihara has no disclosure of interleaving a pixel operation and a vertex operation.

Second, Kurihara does not disclose that one type of operation can be started before

ATI Ex. 2115

IPR2023-00922

Page 246 of 271

ATI Ex. 2115
IPR2023-00922

Page 247 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

another type of operation has finished. These points are important for my analysis

below.

XT. GROUNDS 6 AND 9: OBVIOUSNESS GROUND BASED ON RICH

AND KURIHARA

288. lunderstand that the Board instituted trial for claim 15 as allegedly

obvious over Rich. I also understand that the Board instituted trial for claim 20 as

allegedly obvious over the combination of Rich and Kurihara.

289. In my opinion, these claims are patentable over these references.

First, for claim 15, a POSA would not have been motivated to modify Rich to store

vertex data in an on-chip memory, as LGproposes. Second, in my opinion,

Kurihara does not teach or suggest a single “processor unit” that “executes vertex

calculations while the pixel calculations are still in progress,” as in claim 20. Third,

I discuss so-called objective indicia that, in my opinion, showthat the “unified

shader” of claims 15 and 20 is not obvious.

A, A POSA would not have modified Rich in the way that LG and Dr.
Bagherzadeh propose.

290. In my opinion, claim 15 is not obvious in viewof Rich’s sequential,

pipelined system. This claim is directed to “[a] unified shader,” comprising:

a general purposeregister block for maintaining data;

a processor unit; and

- 242 -

ATI Ex. 2115

IPR2023-00922

Page 247of 271

ATI Ex. 2115
IPR2023-00922

Page 248 of 271

Case IPR2015-00326 of

USS. Patent No. 6,897,871

a sequencer, coupled to the general purpose register block and

the processor unit, the sequencer maintaining instructions operative to

cause the processor unit to execute vertex calculation and pixel

calculation operations on selected data maintained in the general

purpose registerblock.

I understand that LG acknowledges that Rich does not explicitly disclose the

italicized feature. See Pet. at 47. And, in my opinion, a POSA would not have been

motivated to make the modifications to Rich that LG proposes.

291. Tunderstand

that LG maps Rich’s

system to claim 15 in the

following way:(i) Rich’s

on-processor memory 34 | . |
CENTRAL CONTROL Sen| PROCESSING ELEMENT

. UNIT ___ ARRAYCONTOL
and registers allegedly - ——

a, | sd ar
. | PCE F|woeomewoay | en prirerimae

correspond to the claimed Linverrace ||grenrace | VIDEO FUNCTIONS

“general purpose register HOST FRAME BUFFER’ ANALOG VIDEO
: PROCESSOR VIDEO MEMORY

block”; (11) Rich’s ALU

33 allegedly corresponds

to the claimed “processor unit”; and (11) Rich’s processing element array control

AQ allegedly correspondsto the claimed “sequencer.” /d. at 47. And I understand

that, according to LG and Dr. Bagherzadeh, it would have been obvious to modify

- 243 -

ATI Ex. 2115

IPR2023-00922

Page 248 of 271

ATI Ex. 2115
IPR2023-00922

Page 249 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

Rich to store vertex data and pixel data in on-chip memory 34. See id. at 48. I

disagree.

292. In the first place, Rich explicitly teaches that vertex data is to be

stored in an external memory.It is clear to a POSA that this is not an arbitrary

decision in Rich but rather that is necessitated by the Rich architecture that aimsto

keep each PE very simple and small with limited capabilities. In fact, when

discussing primitive data, Rich explains that the use of external memory requires a

relatively large memorystorage circuit and that the use of external memory may be

necessitated. He also teaches that the memory identified by LGasthe alleged

general purpose register block is quite small.

Each processing element is assigned to one specific primitive

which has associated with it a primitive specific applicability

word.

All of the processing elements 32 are electrically connected to a

common communications bus and to a relatively large memory

storage circuit. This connection may beestablished through the

central control unit 38 and the video memory interface 44 or

PCI Interface 42. The use of the external memorycircuit may

be necessitated by the fact that the processing elements 32

have only a small amount of memory 34 in their own

dedicated circuitry.

- 244 -

ATI Ex. 2115

IPR2023-00922

Page 249 of 271

ATI Ex. 2115
IPR2023-00922

Page 250 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

Rich, 16:45-55 (emphasis added).

[T]he processing elements 32 write the list of transformed

primitives to external memory as seen in block 53.

Td. at 9:28-30.

Because the screen is divided into a numberof regions,a list for

each region is generated whichlists the primitives which touch

that region. This list is written to external memory as seen in

block 54.

Id. at 9:33-36.

The processing elements 32 assign starting memory locations

for their working space within the external memory in

accordance with the precise requirements of processing their

assigned primitives.

Td. at 16:58-65.

The plurality of processing elements 32 examine the nature of

the specific primitive to which they have been assigned, and

determine the amount of memory required for use in external

memory in the process of calculating and storing the

transformed primitive.

Td. at 17:56-60.

- 245 -

ATI Ex. 2115

IPR2023-00922

Page 250of 271

ATI Ex. 2115
IPR2023-00922

Page 251 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

293. A POSA would not consider moving the large data structures of

vertices (described asa list or a database in Rich) into the very small (128 byte)

local memories in each PE.In the first place, this would require redesigning these

data structures since only a tiny portion of the list or database could be stored in a

PE. Also, since Rich is a SIMD architecture with shared instructions, the data

stored in a specific location in each PE memory must be used in exactly the same

way. Rich does not disclose any wayto do this. In the second place, the small

memories in Rich would be understood to be configured specifically to support one

specific type of pixel operation which I explain below. The performance

advantages of this memory are tied to this pixel operation.

294. Additionally, a POSA would not increase the size of the PE memories

in Rich. Rich emphasized having many simple PEs rather than large memories. See

e.g. id. at FIG. 12. The size of the PE memory is hardcoded into the instruction

architecture in Rich to use a 7-bit address. Jd. at 33:15-34. It also uses memory

address specific bits for specific purposes during the combining phase. /d. at

34:39-51. Modifying the memory size would require redesigning the instructions,

expanding the instruction memory, redesigning the control signals for combining,

and distributing extra address bits from the instruction to 1000 or more PEs. This

would not be simple to do in Rich.

- 246 -

ATI Ex. 2115

IPR2023-00922

Page 251 of 271

ATI Ex. 2115
IPR2023-00922

Page 252 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

295. In my opinion, the reason that Rich stores pixel data in PE memories

is to facilitate a “combination” operation for homepixels assigned to each PE. This

operation repeatedly applies a color-blending calculation to the same data and thus

benefits substantially from storing a small amount of data in a local memory.

Additionally, the local memories are used to gather pixel contributions from

neighboring PEs that share a local bus. They have direct access to a shared bus

258 provided for this purpose and have been designed to allow PE to PE pixel data

transfers at the same time as other calculations are taking place in the PE. /d. at

7:30-32, 25:18-20, 32:3-14. No similar motivations are present for storing vertex

calculation data locally. The disclosed vertex calculations (transformation,

lighting) are performed once for each vertex in the scene.

The contribution values are then returned to the processing

element assigned to the home pixel corresponding to the

contribution and combined to provide a final pixel value.

Id. at 4:46-49; see also id. at 8:33-40.

A final pixel value is then created by a combination of

contribution values associated with a given pixel.

Td. at 9:40-41.

- 247 -

ATI Ex. 2115

IPR2023-00922

Page 252 of 271

ATI Ex. 2115
IPR2023-00922

Page 253 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

The composition function begins in block 75 where

contribution values are combined for the home pixels in the

processing elements 32 to give the final RGB pixel value.

Ta. at 10:35-37.

Each PE has its own memory resource and a bus structure

which allows for sharing of data between processing elements

32.

Id. at 12:38.

Objects which are made up of primitives are processed by

transforming each primitive separately.

Td. at 16:9-10.

Each processing element is assigned to one specific primitive

which has associated with it a primitive specific applicability

word.

Td. at 16:45-47.

296. Additionally, since the PE memories are very small, they would not

be veryeffective for storing vertices. While the 128 memories in each PE in Rich

might reasonably hold up to 64 pixels using the predominant format at the time of

the filing, it would only be able to hold 8-10 vertex positions. Storing so few

vertices in a local memory would be unlikely to improve performance in any

- 248 -

ATI Ex. 2115

IPR2023-00922

Page 253 of 271

ATI Ex. 2115
IPR2023-00922

Page 254 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

situation. See id. at 7:27-30, 14:42-15:8. More importantly, Rich does not even hint

at any calculation in his system that would benefit from storing a small number of

vertices in this memory.In fact, if this memoryis used at all during vertex

calculations, it appears to be used in its entirety for the creation of the

transformation matrix and not to store vertex data. See id. at 16:66-18:27.

297. Rich also disclaims any ability for the PE memory to hold both pixel

and primitive data at the same time. Instead, Rich clearly explains that there is not

room in each PE to store the vertex (primitive) data and thus it may be necessary to

provide it to the PE multiple times during the calculations.

Because a primitive may have an interior which requires a

contribution from more than one home pixel for a particular

processing element 32 it may be necessary to repeatedly

provide to the processing elements 32 the primitives for a

region. Thus, in the present case where there are 4 homepixels

assigned to each processing element it may be necessary to

provide a primitive to the processing element array 30 4 timesif

one processing element has a contribution for all 4 of its home

pixels. In such a case the primitive is evaluated a subregion at a

time.

Td. at 11:25-33.

- 249 -

ATI Ex. 2115

IPR2023-00922

Page 254 of 271

ATI Ex. 2115
IPR2023-00922

Page 255 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

298. In my opinion, LG has mischaracterized Richin its petition and

reached errant conclusions about the impact of the proposed modifications. In the

first place, the representation that Rich suggests that databases containing vertex

data may be stored in PE memory 34 is unfounded. See Pet. at 47. Although

petitioners refer to PE memory 34 as “local processor memory 34,” Rich never

uses this term and does not refer to the PE memoryas “local memory.” Moreover,

the section of the Rich specification cited for support (Rich, 9:1-12) discusses only

the operation of block 50 of Figure 3. Block 50 reads “HOST UPDATES THE

DATABASEOF PRIMITIVES.” It is discussing the operation of the host

computer and not the PEs. Therefore, a POSA would read this portion of Rich to

most likely refer to memorythat ts local to the host processor and not to the PE.

Rich alwaysrefers to memory 34 as PE memory,and not as local memory.

299. LG agrees that Rich does not disclose storing vertex data in PE

memory 34, and LG andits expert, Dr. Bagherzadeh, provide only a single reason

to modify Rich to allowstoring of vertex data in PE memory 34. See Pet. at 47;

Ex. 1003, (216. That alleged modification is that Rich could “maintain or

temporarily store both primitive and vertex data from database in the processor

memory 34 for the purpose of local access by the ALU unit to process and

transform primitives and their vertices.” See Pet. at 47. As noted above, PE

memory 34 is very small and has no additional room for storing vertex data.

- 250 -

ATI Ex. 2115

IPR2023-00922

Page 255of 271

ATI Ex. 2115
IPR2023-00922

Page 256 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

300. Moreover, the alleged reason for this modification is “for the purpose

of faster and more efficient access because storing of temporary data just before

processing operations will reduce the stall time required when data is directly

accessed from external memory.” This statement represents a misunderstanding of

Rich. The PEs in Rich do not request vertices from memory. If they did, such a

request might involvestall time as the PE would waitforthe data.

301. But this is not howRich operates. In Rich, vertex data is sent to the

PEs by central control unit 38. See e.g. Rich, 7:45-55; 8:1-13; 9:1-39; 17:65-18:9.

As explained above, these memorytransfers occur simultaneously with PE

calculations and thus there is no stall or delay waiting for the next item ofvertex

data. Therefore, there is no performance improvement from storing such vertex

data in PE memory 34.

302. Also, each vertex calculation would take thousands of clock cycles as

explained above. This provides ample time for transferring the next item of vertex

data without any performance impact. In fact, there is no reason or any clear

benefit to modifying Rich as suffested by petitioner.

303. Moreover, the proposed modification, as stated, would not provide an

operable system. The system in Rich is very rigid and limited in capabilities. Rich

explains that his motivation is to “reuse the amount of hardware required to

- 251 -

ATI Ex. 2115

IPR2023-00922

Page 256 of 271

ATI Ex. 2115
IPR2023-00922

Page 257 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

provide high speed image generation.” /d. 2:64-65. Each PE has verylimited

capabilities and has been tailored to only include what 1s necessary for what Rich

has disclosed. If one were to modify Rich to store vertex and primitive data in PE

memory 34, one would need to redesign substantial portions of Rich. This would

require experimentation and a substantial redesign of Rich’s system.

304. For example, Rich only discloses howto keep a database of vertices

ina centralmemory. If one were to move these vertices to PE memories, one

would need to design an algorithm to determine which location in memory to use

for each item of vertex data. One would need to design a buffering algorithm to

allow one portion of the PE memory to be written with newvertex data while

calculations are being performed using existing data in the same memory. The

vertex calculation algorithms must then be modified to relocate that data or to use

it from a different location in different phases of operation. One would need to

understand whatis stored in PE memory34 in the current Rich system in detail to

determine if those values need be retained. If so, one must find somewhere else to

put those values and design a mechanism to manage them. One would need to

design a new mechanism to return the transformed vertices to the central database.

One would need to rewriteall of the vertex operation instructions to include

memory addressing and determine howsuch addressing could be performed using

Rich’s pixel-oriented addressing modes.

- 252 -

ATI Ex. 2115

IPR2023-00922

Page 257of 271

ATI Ex. 2115
IPR2023-00922

Page 258 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

305. Ina tightly coupled system like Rich, changing the way vertex data is

stored and attempting to use a PE memorydesigned for pixel storage for vertex

data would require substantial redesign of algorithms, data structures, addressing

modes, data transfer hardware, and many other parts of the system. Moreover,

there is no clear benefit to storing vertices in the PE memory.

306. Furthermore, Rich’s system and the systemsof the °871 patent both

must solve a fundamental input-routing issue. This issue arises because these

systems have a single type of computational resource that performs operations on

two different types of inputs—vertex inputs and pixel inputs. See, e.g., °871 patent,

FIG. 5 (CPU 96); Rich, FIG. 2 (processing element 32). As such, somestructure

and/or policy must be present to determine which calculations can access the

shared computational resource at any point in time. The unified-shader architecture

disclosed in the °871 patent uses an arbiter and a multiplexerto route the

appropriate input data to the shared computation resource at the appropriate time

and a shared instruction scheduler to schedule interleaved computational threads.

This solves numerous problems related to efficiency, most importantly the ability

to schedule a vertex thread to run when a pixel thread has stalled due to the need

for high-latency texture data. In order to support such a high-level of efficiency, a

general-purpose register block that can store vertex or pixel data is required. This

provides for the ability to switch rapidly between data types.

- 253 -

ATI Ex. 2115

IPR2023-00922

Page 258of 271

ATI Ex. 2115
IPR2023-00922

Page 259 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

307. Rich’s system solves the input-routing issue by performing vertex and

pixel operations in discrete, sequential phases. Specifically, Rich’s processing

elements 32 first perform vertex operations and then write the transformed vertex

data to an external memory. Rich, 9:18-25, 9:27-29, 9:36-39, 17:60-64. Instead of

using hardware structures such as the general-purpose register file and the

sequencer claimed in °871, Rich uses a software and architecture-based policy to

separate the vertex and pixel calculations into distinct phases with distinct modes

of operation. Since Rich does not interleave pixel and vertex operations and does

not use threads, there is no need to have a general-purpose register file that can

maintain data of two types or to have a sequencer capable of maintaining

instructions operative to cause the processor unit to execute vertex calculation and

pixel calculation operations on selected data maintained in the general purpose

register block.

308. Also, Rich specifically designed his computational phases based on

storing vertex data in a list or database in a large external memory. Asa result, the

results of the vertex processing phase can betreated as a single global data

structure and sorted, assigned, and routed to the appropriate processing elements

32 for use during the pixel-processing phase. See e.g. id. at 8:32-40, 9:43-46.

- 254 -

ATI Ex. 2115

IPR2023-00922

Page 259 of 271

ATI Ex. 2115
IPR2023-00922

Page 260 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

309. Thus, by sequentially performing vertex and pixel operations, Rich’s

processing elements 32 can execute the appropriate instructions on the appropriate

data at the appropriate time without a need for the hardware support structures in

the °871 and can devote more of his hardware to having more PEs on a single chip.

In my opinion, Rich does not disclose a “general purpose register block” and a

“sequencer” as in claim 15, because Rich’s system has no need for these structures.

310. In my opinion, Rich’s system would not workfor its intended if it was

modified to store vertex data in on-chip memory 34, as LG proposes. During the

pixel-processing phase, Rich’s processing elements 32 need accessto the

transformed vertex data. To give the processing elements accessto this data,

Rich’s system stores this data in the external—shared—memory. /d. at 9:18-25,

9:27-29, 9:36-39, 17:60-64. If this vertex data was instead maintained or stored in

on-chip memory34, as LG proposes, then it would not be easily accessible to the

processing elements assigned to operate on that data during the pixel-processing

phase. Moreover, Rich does not disclose any algorithms or mechanisms for moving

elements of his vertex database onto PE memories and then back into the vertex

database. As noted, one would need to invent additional functionality and make

additional unspecified modifications to Rich to permit the proposed modification

to work.

- 255 -

ATI Ex. 2115

IPR2023-00922

Page 260of 271

ATI Ex. 2115
IPR2023-00922

Page 261 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

311. In my opinion, a POSA would have understood that Rich teaches that

the external memory is a shared memory forall the processing elements 32. See id.

at 9:28-36, 16:45-55, 16:58-65, 17:56-6. In contrast, a POSA would have

understood that the on-chip memory 34 is a dedicated memory for just one

processing element. See id. at 7:30-32, 25:18-20, 32:3-14. A POSA would have

understood, therefore, that the transformed vertex data would have to be stored in

the external, shared memory to be efficiently accessible by Rich’s other processing

elements 32.

B. Kurihara does not teach or suggest a “processor unit” that
“executes vertex calculations while the pixel calculations are still in
progress,” asin claim 20.

312. Claim 20 depends from independentclaim 15 andrecites that “the

processor unit executes vertex calculations while the pixel calculationsare still in

progress.” In my opinion, claim 20 is not obvious in viewof Rich and Kurihara for

at least two reasons. First, neither LG nor Dr. Bagherzadeh have explained howa

POSA would modify Rich’s system based on Kurihara’s teachings. Second, even if

these references are combined, neither of them teaches or suggests the limitations

of claim 20.

313. LGconcedesthat Rich does not disclose this limitation. See Pet. at 58

(“Rich does not explicitly disclose that both vertex and pixel processing occur

- 256 -

ATI Ex. 2115

IPR2023-00922

Page 261 of 271

ATI Ex. 2115
IPR2023-00922

Page 262 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

simultaneously”). To fix this deficiency, LG seeks to combine Kurihara’s

teachings with Rich. See id.

314. First, in my opinion, Rich’s and Kurihara’s teachings are

incompatible. Rich discloses a system with a plurality of processing elements that

sequentially perform operations on different data types.

Modeling transformation and the viewing operation (Le.

converting from a 3D model to a two dimensional view ofthat

model) are next sequentially performed, followed by

rasterization.

Rich, 2:7-10.

After geometry processing, the next function carried out by the

image generation system is rasterization.

Td. at 9:40-41.

315. Kurihara discloses a SIMD system that can perform multiple identical

calculations at the same time using multiple graphics processors.It does not,

however, disclose simultaneously operating on two different types of data or

interleaving calculations of different types. In fact, Kurihara teaches almost

nothing about what its graphics processors can do or howthey are structured.

Kurihara merely notes that its multiple graphics processors can simultaneously

- 257 -

ATI Ex. 2115

IPR2023-00922

Page 262 of 271

ATI Ex. 2115
IPR2023-00922

Page 263 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

process multiple sets of coordinate data at one time or multiple sets of attribute

data at one time.

316. Kurihara is a patent about deciding howand whento refill FIFO

memories. The only aspect of Kurihara that relates to pixel and vertex datais that

the refill threshold for the FIFO depends on the data type. In fact, although

Kurihara discloses that a FIFO can hold either coordinate data or attribute data, it

does not disclose that this FIFO can hold both types of data at the same time.

Separate detection mechanismsare provided for each data type, but Kurihara

implies that all of the data in the FIFO must be of one type for the corresponding

detector to operate.

317. The FIFO memories in Kurihara are not general-purpose register files

as claimed in °871 at least for the reason that they do not include addressable

registers. Neither the graphics processor, nor any other instruction or sequencerin

Kurihara, can select which data in the FIFO to process next. Kurihara does not

teach or suggest the register file or sequencer of claim 15 nor the simultaneous

operation of claim 20.

318. Because Rich’s system and Kurihara’s system operate in different

ways, combining their teachings would be problematic for several reasons. Rich

- 258 -

ATI Ex. 2115

IPR2023-00922

Page 263 of 271

ATI Ex. 2115
IPR2023-00922

Page 264 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

specifically relies on addressable memoriesfor its operands, and not FIFOs. See

e.g. Rich, 33:2-34:11.

319. Additionally, in my opinion, Kurihara does not teach or suggest the

“processor unit” of claim 20. Kurihara is directed to a graphics-processing system

that includes a plurality of graphics processors 6, as shown in Kurihara’s Figure

1(A) (reproduced below). Each graphics processor is coupled to a corresponding

FIFO 5. The FIFO memoriesstore graphics data to be processed in parallel by the

 graphics processors 6. Kurihara, 4:38-40. The graphics data in the FIFO memories

can be either vertex (coordinate) data or pixel (attribute) data. /d. at 4:56-65. These

FIFO memories then simultaneously transfer the data to the graphics processors 6.

Id. at 4:61-62. The graphics processors 6 then process the graphics data in parallel.

Id. at 5:37. In other words, in Kurihara’s system, each graphics processor 6

performs one type of graphics-processing operation on the data type thatit receives

from the corresponding FIFO memory 5.

- 259 -

ATI Ex. 2115

IPR2023-00922

Page 264 of 271

ATI Ex. 2115
IPR2023-00922

Page 265 of 271

Case IPR2015-00326 of

USS. Patent No. 6,897,871

frreiett

- Fig.1(A)LQ

GRAPHIC DATA |
CONTROLLER

COORDINATE |

| ow uaatiry| °C. J PTT
| DETECTORS Lit,

GRAPHIC GRAPHIC. GRAPHIC
PROCESSOR|}PROCESSOR || PROCESSOR

320. Kurihara’s individual graphics processors function differently than the

claimed “processor unit” of claim 20. In claim 20, the single claimed “processor

unit” executes a first type of graphics-processing operation (i.e., “vertex

calculations”) while a second type of graphics-processing operation (1.e., “pixel

calculations”) is still in progress. In other words, the claimed “processor unit” can

stall one type of graphics-processing operation—while that operation is still in

progress—in order to perform another type of graphics-processing operation.

Kurihara does not disclose threads or any other mechanism for interleaving

calculations of different types. Moreover, the FIFO descriptions indicate that only

one type of data can be in the FIFOstructuresat a time.

321. Kurihara does not teach or suggest executing a first type a graphics-

processing operation while a second type of graphics-processing operationtsstill

ATI Ex. 2115

IPR2023-00922

Page 265of 271

ATI Ex. 2115
IPR2023-00922

Page 266 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

in progress. Instead, each of Kurihara’s graphics processors 6 simply performs a

graphics-processing operation on the data it receives from the corresponding FIFO

memory. If one of Kurihara’s graphics processors receives vertex data, it will

operate on that vertex data; if it receives pixel data, it will operate on the pixel

data. All of the processors receive the same type of data at the same time. Nowhere

does Kurihara disclose that one of these graphics processors canstall a first type of

operation (e.g., an attribute-based operation) in order to perform a second type of

operation (e.g., a coordinate-based operation). In other words, unlike the claimed

“processor unit,” none of Kurihara’s graphics processors 6 can perform one type of

graphics operation while a second type of graphics operation is still in progress.

C. Objective indicia ofnon-obviousness

322. Ihave been asked to consider a numberof factual questionsrelating to

the inventions claimed in the ’871 patent. | understand that these are called

objective indicia of non-obviousness. I view them more as windowsinto the state

of the art when ATI’s engineers performed the work underlying the °871 patent

and released their innovations to the public.

323. Twoindicia that I consider are initial skepticism and later industry

acceptance. These two indicia straddle the commercial release of ATI’s Xenos

chip, which appeared in the Microsoft” Xbox 360°.

- 261 -

ATI Ex. 2115

IPR2023-00922

Page 266of 271

ATI Ex. 2115
IPR2023-00922

Page 267 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

324. In particular, ATI’s Xenos chip becamethe first commercially

available GPU with a unified shader. This is reported by one of my former

students, Greg Humphreys, in an article he co-authered for Computer. See Ex.

2078, p. 4 Unified shaders were first realized in the ATI Xenos chip for the Xbox

360 game console... .”). Computer is an IEEE publication that is peer reviewed

and is considered the flagship publication of the IEEE computer society. See

http://ieeexplore.ieee.org/xpl/RecentIssue jsp?punumber=2. In my experience,

Computeris a reliable publication. In addition, a textbook, co-authored by a

member of the LG Electronics Institute of Technology, states that “[t]he first

unified shader was implemented in Xenos by ATI for X-Box 360.” Ex. 2082,p.

114.

325. Based on ATI’s design, Microsoft had the Xenos chip fabricated for

inclusion in the Xbox 360. This is reported in Dean Takahashi’s book regarding

the Xbox 360. See Ex. 2119, Dean Takahashi, The Xbox 360 Uncloaked 187

(Spider Works LLC 2006) (“Microsoft would check progress on [ATI’s] work and

then set up the fabrication schedule at its chip contract manufacturer, Taiwan

Semiconductor Manufacturing Co.”). Dean Takahashi is a respected journalist with

expertise in the 3D graphics hardware industry. In my experience, Dean

Takahashi’s book 1s a reliable publication. In fact, I knowthat he interviewed

Microsoft staff extensively to develop the facts reported in his book.

- 262 -

ATI Ex. 2115

IPR2023-00922

Page 267 of 271

ATI Ex. 2115
IPR2023-00922

Page 268 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

326. In 2004, before ATI’s commercial release of the Xenos chip, Nvidia’s

chief architect, David Kirk, questioned whether a unified-shader architecture

would even work. Hesaid:

It’s not clear to me that an architecture for a good, efficient, and

fast vertex shader is the same as the architecture for a good and

fast pixel shader. A pixel shader would need far, far more

texture math performance and read bandwidth than an

optimized vertex shader. So, if you used that pixel shader to do

vertex shading, most of the hardware would be idle, most of the

time.

Ex. 2080, Anton Shilov, “ATI and NVIDIA Proclaim Different Graphics

Processors Architecture Goals,” at p. | (Dec. 23, 2004).

327. Mr. Kirk also said that it would be a “challenge” and that it would be

“difficult” to design a GPU with a unified shader:

It’s far harder to design a unified processor — it has to do, by

design, twice as much. Another word for ‘unified’ is ‘shared,’

and another word for ‘shared’ is ‘competing.’ It’s a challenge to

create a chip that does load balancing and performance

prediction. It’s extremely important, especially in a console

architecture, for the performance to be predictable. With all that

balancing, it’s difficult to make the performance predictable.

- 263 -

ATI Ex. 2115

IPR2023-00922

Page 268of 271

ATI Ex. 2115
IPR2023-00922

Page 269 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

Ex. 2081, Anton Shilov, “NVIDIA Says It Would Make a Chip with Unified Pipes

“When it Makes Sense’” (July 11, 2005).

328. Since the Xenos chip wasreleased in the Xbox 360, the graphics-

processing industry has moved toward a unified-shader architecture. For example,

Microsoft’s DirectX (DX10) has adopted the unified shader model. See Ex. 2087,

p. 14. (Shader Model 4.0 (SM4.0)is the newinstruction set architecture (SA) for

DX10 that looks at the graphics in a unified way.”) One advantage of SM4.0 for

DirectX is “Flexible Load Balancing.” (/d.) “The unified shader is made up of

shader blocks that can handle all vertex, pixel, and geometry instructions, so the

GPUisfully utilized without concern for shader loading imbalances.”/d. For

flexible load balancing, “[t]here is also additional logic to load balance the shader

units to keep all functional units fully utilized. If more pixel processing is needed,

then more of the unified shader blocks can be allocated to pixel processing to

increase throughput.” /d. Dr. Bagherzadeh also agrees that both DX10 and

OpenGL “require a unified shader.” Ex. 2074, 103:16-20. Many companies’

graphics products use the unified shader architecture, including the S3 Graphics

Chrome 400 (see Ex. 2087, p. 14), NVIDIA GeForce 8800 GPU and GeForce

GTX 200 GPU (see Ex. 2090, pp. 9, 21), Intel Processor Graphics (see Ex. 2091, p.

12), and Qualcomm Adreno GPUs(see Ex. 2092, p. 5).

- 264 -

ATI Ex. 2115

IPR2023-00922

Page 269 of 271

ATI Ex. 2115
IPR2023-00922

Page 270 of 271

Case IPR2015-00326 of

U.S. Patent No. 6,897,871

329. The mobile environment has also been moving towards adapting the

unified-shader architecture. “In the mobile environment, a fully programmable 3D

graphics pipeline is required. Owing to the need for low power consumption and

small area, the conventional architecture with separate vertex shader and pixel

shader is hard to implement. Since a unified shader can compute vertex shading

and pixel shading in a single hardware,it is a good solution for programmable 3D

graphics.” Ex. 2082, p. 114. For example, a “mobile unified shader is designed to

perform both programmable vertex operation and programmable pixel operation,

whichare fully compatible with the mobile 3-D graphics API -OPENGL|ES2.0.”

Ex. 2089, p. 2049. Companies implementing the unified shader architecture in their

products are thus able to remain competitive.

XIV. CONCLUSION

330. In signing this declaration, | recognize that the declaration will be

filed as evidence in a contested case before the Patent Trial and Appeal Board of

the United States Patent and Trademark Office. I also recognize that I may be

subject to cross-examination in the case and that cross-examination will take place

within the United States. If cross-examination is required of me, I will appear for

cross-examination within the United States during the time allotted for cross-

examination.

- 265 -

ATI Ex. 2115

IPR2023-00922

Page 270 of 271

ATI Ex. 2115
IPR2023-00922

Page 271 of 271

Case IPR2015-00326 of —

U.S. Patent No. 6,897,871 —

I herebydeclare that all statements made herein ofmy own knowledgeare true and

that all statements made oninformation andbeliefare believed tobetrue. The

~. statements in this declaration were made with the knowledgethat willful false

statements and thelike are made punishable by fine or imprisonment under Section

- 1001 of Title 18 of the United States Code and that willful false statements may

jeopardize the validityof the °871 patent.

Executed this 14th day of October in Los Gatos, CA.

Respectfully submitted,

_ Andrew Wolfe —

- 266 -

ATI Ex. 2115

IPR2023-00922

Page 271 of 271

