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I, Andrew Wolfe, declare as follows:

I INTRODUCTION
1. I have been retained by the patent owner, ATI Technologies ULC
(“ATTI”), to evaluate several technical issues relating to U.S. Patent No. 6,897,871

(“the 871 patent™).

2. First, I have been asked to evaluate source code related to the
development of the “R400” project at its state of development on August 5, 2002,
and to provide my opinion regarding whether the functionality of this source code
for the R400 chip and the structure it describes corresponds to each and every
element as set forth in claims 1, 2, 3,5, 6,8,9, 10, 11, 13, 15,17, 18, and 20 of the
"871 patent. As set forth below, it is my opinion that this source code includes

every limitation of these claims.

3. Second, 1 have been asked to review U.S. Patent Application No.
10/718,318 (“the *318 application™), filed November 20, 2003, to which the *871
patent claims priority, and to provide my opinion regarding whether claims 1, 2, 3,
5,6,8,9,10,11, 13,15, 17, 18, and 20 are supported by the *318 application. As
set forth below, it is my opinion that the *318 application provides support for

every limitation of these claims.
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4, Third, | have been asked to review ATI’s internal documents relating
to the R400 project to provide my opinion regarding whether the inventors of the
"871 patent conceived claims 1,2, 3,5,6,8,9,10, 11, 13, 15,17, 18, and 20. As
set forth below, it is my opinion that these internal documents show that the 871

patent inventors conceived of every limitation of these claims.

5. Fourth, I have been asked to review Rich and Kurihara and to provide
my opinion regarding whether these references render obvious claims 15 and 20.
As set forth below, it is my opinion that claims 15 and 20 are patentable over these

references.

II. BACKGROUND

6. I have more than 30 years of experience as a computer architect,
computer system designer, personal computer graphics designer, educator, and
executive in the electronics industry. A curriculum vitae is attached as Exhibit

2003 to this report and is summarized below.

7. In 1985, 1 earned a B.S.E.E. in Electrical Engineering and Computer
Science from The Johns Hopkins University. In 1987, I received an M.S. degree in
Electrical and Computer Engineering from Carnegie Mellon University. In 1992, 1

received a Ph.D. in Computer Engineering from Carnegie Mellon University. My
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doctoral dissertation pertained to a new approach for the architecture of a computer

Processor.

8. In 1983, I began designing touch sensors, microprocessor-based
computer systems, and [/O (input/output) cards for personal computers as a senior
design engineer for Touch Technology, Inc. During the course of my design
projects with Touch Technology, I designed I/O cards for PC-compatible computer
systems, including the IBM PC-AT, to interface with interactive touch-based
computer terminals that I designed for use in public information systems. I
continued designing and developing related technology as a consultant to the
Carroll Touch division of AMP, Inc., where in 1986, I designed one of the first

custom touch screen integrated circuits.

9. While I studied at Carnegie Mellon University for my master’s
degree, from 1986 and through 1987, I designed and built a high-performance
computer system. From 1986 through early 1988, I also developed the curriculum,

and supervised the teaching laboratory, for processor design courses.

10.  In the latter part of 1989, I worked as a senior design engineer for
ESL-TRW Advanced Technology Division. While at ESL-TRW, I designed and
built a bus interface and memory controller for a workstation-based computer

system, and also worked on the design of a multiprocessor system.
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11.  Atthe end of 1989, I (along with my partners) reacquired the rights to
the technology I had developed at Touch Technology and at AMP, and founded
The Graphics Technology Company. Over the next seven years, as an officer and a
consultant for The Graphics Technology Company, I managed the company’s
engineering development activities and personally developed dozens of touch

screen sensors, controllers, and interactive touch-based computer systems.

12.  Thave consulted, formally and informally, for a number of fabless
semiconductor companies. In particular, I have served on the technical advisory
boards for two processor design companies: BOPS, Inc., where I chaired the board,
and Siroyan Ltd., where I served in a similar role for three networking chip
companies—Intellon, Inc., Comsilica, Inc., and Entridia, Inc.—and one 3D game

accelerator company, Ageia, Inc.

13.  Thave also served as a technology advisor to Motorola and to several
venture capital funds in the United States and Europe. Currently, I am a director of
Turtle Beach Corporation, providing guidance in its development of premium

audio peripheral devices for a variety of commercial electronic products.

14.  From 1991 through 1997, I served on the Faculty of Princeton
University as an Assistant Professor of Electrical Engineering. At Princeton, [

taught undergraduate and graduate-level courses in Computer Architecture,
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Advanced Computer Architecture, Display Technology, and Microprocessor
Systems, and conducted sponsored research in the area of computer systems and
related topics. I was also a principal investigator for Department of Defense
(“DOD?) research in video technology and a principal investigator for the New
Jersey Center for Multimedia Research. From 1999 through 2002, I taught the
Computer Architecture course to both undergraduate and graduate students at
Stanford University multiple times as a Consulting Professor. At Princeton, I
received several teaching awards, both from students and from the School of
Engineering. I have also taught advanced microprocessor architecture to industry
professionals in IEEE and ACM sponsored seminars. I am currently a lecturer at
Santa Clara University teaching graduate courses on Computer Organization and

Architecture and undergraduate courses on electronics and embedded computing.

15.  From 1997 through 2002, I held a variety of executive positions at a
publicly-held fabless semiconductor company originally called S3, Inc. and later
called SonicBlue Inc. I held the positions of Chief Technology Officer, Vice
President of Systems Integration Products, Senior Vice President of Business
Development, and Director of Technology, among others. At the time I joined S3,
the company supplied graphics accelerators for more than 50% of the PCs sold in

the United States.
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16.  While at S3/SonicBlue I developed technology for and participated in
the development of products for digital music and digital video including HDT Vs,
DVD players and recorders, DVRs, portable video devices, PDAs, and tablets. I

also supervised the video research and development team.

17. I have published more than 50 peer-reviewed papers in computer

architecture and computer systems and IC design.

18. T also have chaired IEEE and ACM conferences in microarchitecture
and integrated circuit design and served as an associate editor for IEEE and ACM

journals.

19. Tam anamed inventor on at least 43 U.S. patents and 27 foreign

patents.

20.  In 2002, I was the invited keynote speaker at the ACM/IEEE
International Symposium on Microarchitecture and at the International Conference
on Multimedia. From 1990 through 2005, I was also an invited speaker on various
aspects of technology and the PC industry at numerous industry events including
the Intel Developer’s Forum, Microsoft Windows Hardware Engineering
Conference, Microprocessor Forum, Embedded Systems Conference, Comdex, and
Consumer Electronics Show, as well as at the Harvard Business School and the

University of Illinois Law School. I have been interviewed on subjects related to
-6 -
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computer graphics and video technology and the electronics industry by
publications such as the Wall Street Journal, New York Times, Los Angeles
Times, Time, Newsweek, Forbes, and Fortune as well as CNN, NPR, and the BBC.
I have also spoken at dozens of universities including MIT, Stanford, University of

Texas, Carnegie Mellon, UCLA, University of Michigan, Rice, and Duke.

21. I am being compensated for my time working on this case at my
customary rate of $450 per hour for work performed on the case. My compensation

is not in any way related to the outcome of the case.

I11. EXHIBITS

22.  Inthis Declaration, I cite to the following Exhibits.

1001 United States Patent No. 6,897,871 to Morein et al.

1002 Prosecution History of U.S. Patent No. 6,897 871

1003 Declaration of Dr. Nader Bagherzadeh

1004 U.S. Patent 7,015,913 to Lindholm ef al.

1005 U.S. Patent No. 5,808,690 to Rich

1006 U.S. Patent No. 7,376,811 B2 to Kizhepat

1007 U.S. Patent No. 5,500,939 to Kurihara

1008 Mark Segal and Kurt Akeley, The OpenGL® Graphics System:
A Specification (Version 1.4) (Chris Frazier and Jon Leech eds.,
Silicon Graphics, Inc. 2002)

1009 Curriculum Vitae of Dr. Nader Bagherzadeh
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2004 Curriculum Vitae of Dr. Andrew Wolfe

2010 R400 Sequencer Specification (Version 0.4)

2028 R400 Sequencer Specification (Version 2.0)

2041 R400 Top Level Specification (Version 0.2)

2042 R400 Shader Processor (Version 1.2)

2073 Deposition Transcript of Nader Bagherzadeh, Ph.D., taken
Sept. 15, 2015

2074 Deposition Transcript of Nader Bagherzadeh, Ph.D. for
IPR2015-00325, taken Aug. 14, 2015

2075 Uniram Technology, Inc. v. Taiwan Semiconductor
Manufacturing Co., Ltd., et al., 3:04-cv-01268-VRW, Findings
of Facts and Conclusions of Law, Dkt. No. 627, April 14, 2008

2076 United States Patent Application No. 10/718,318 to Morein et
al.

2077 Graham Singer, History of the Modern Graphics Processor,
Part 3, TechSpot (Apr. 10, 2013)

2078 David Luebke & Greg Humphreys, How GPUs Work, IEEE
Computer, 96-100 (2007)

2079 Microsoft and ATI Technologies Announce Technology
Development Agreement, Microsoft (Aug. 14, 2003)

2080 Anton Shilov, ATI and NVIDIA Proclaim Different Graphics
Processors Architecture Goals: ATI Says Unified Rendering
Engine — the Way to Go, NVIDIA Disagrees, Xbit (Dec. 23,
2004, 7:55 AM)

2081 Anton Shilov, NVIDIA Chief Architect: Unified Pixel and
Vertex Pipelines — The Way to Go. NVIDIA Says It Would
Make a Chip with Unified Pipes “When it Makes Sense,” Xbit
(July 11, 2005, 11:07 PM)

2082 Yoo et al., Mobile 3D Graphics SoC: From Algorithm to Chip
(2010)

2083 Luna, Introduction to 3D Game Programming with DirectX
9.0, Figures 4.2, 5.7, pp. 94-97, 107-109 (2003)

2084 Ahmed et al., OpenGL - Lighting, Material, Shading and

Texture Mapping (August 28, 2009)

-8 -
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2085 MICROSOFT COMPUTER DICTIONARY (5th Ed. 2002)

2086 Foley et al., Fundamentals of Interactive Computer Graphics
(1984)

2087 S3 Graphics, DirectX 10 Architecture for Chrome 400 Series
Discrete Graphics Processors, A S3 Graphics White Paper (July
21,2007)

2088 COLLIN, DICTIONARY OF COMPUTING (4th ed., 2002)

2089 Woo, J.H. et al., A 195/152-mW mobile multimedia SoC with
fully programmable 3D graphics and MPEG4/H.264/JPEG.
IEEE J. Solid-St. Circ., 43 (9), 2047-2056 (2008)

2090 Technical Brief, NVIDIA GeForce® GTX 200 GPU
Architectural Overview (May, 2008)

2091 Intel® Processor Graphics DirectX Developer’s Guide (2008-
2010)

2092 The Rise of Mobile Gaming on Android: Qualcomm®
Snapdragon™ Technology Leadership (2014)

2093 RTL Code File: sq.v

2094 RTL Code File: sq_ais output.v

2095 RTL Code File: sq alu instr queue.v

2096 RTL Code File: sq_alu instr seq.v

2097 RTL Code File: sq thread arb.v

2098 RTL Code File: sq_input_arb.v

2099 RTL Code File: sq instruction store.v

2100 RTL Code File: sq_defs.v

2101 RTL Code File: sq thread buff.v

2102 RTL Code File: sq target fetch.v

2103 RTL Code File: sq export_alloc.v

2104 RTL Code File: vector.v

2105 RTL Code File: macc gpr.v

2106 RTL Code File: export_control.v

2107 RTL Code File: macc.v

2108 RTL Code File: macc32.mc

2109 RTL Code File: sx.v

-9.
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2110 RTL Code File: parameter caches.v
2111 RTL Code File: param_cache ctl.v
2112 RTL Code File: sp.v
2113 RTL Code File: export_buffers.v
2114 RTL Code File: pa.v
2115 RTL Code File: pa ag.v
2116 RTL Code File: pa_sxifccg.v
2117 RTL Code File: pa_ccg sxifsm.v
2118 RTL Code File: sc.v
2119 Takahashi, The XBOX 360 Uncloaked (2006)
2120 Microsoft Corporation Annual Report (2006)
23.  Exhibits 2077-2092 and 2119 are true and accurate copies of what
they purport to be.
24.  This declaration represents only the opinions I have formed to date. I

may consider additional documents as they become available or other documents

that are necessary to form my opinions. I reserve the right to revise, supplement, or

amend my opinions based on new information and on my continuing analysis.

IV.  OVERVIEW OF THE LAW USED FOR THIS DECLARATION

25.

When considering the 871 patent and stating my opinions, I am

relying on legal principles that have been explained to me by counsel.

-10 -
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A.  Burden of Proof

26. T understand that for a claim to be found patentable, the claims must
be, among other requirements, novel and nonobvious from what was known at the

time of the invention.

27. T understand that the information that is used to evaluate whether a

claim is novel and nonobvious is referred to as prior art.

28. I understand that in this proceeding, LG has the burden of proving that
each element of the challenged claims is rendered obvious by the alleged prior art

references.

B.  Level of skill in the art

29. Thave been asked to consider the level of ordinary skill in the art that
someone would have had from August 2001 to November 2003. With over 30
years of experience as a computer architect, computer system designer, personal
computer graphics designer, educator, and executive in the electronics industry, I
am well informed of the level of ordinary skill in the art. I understand that

determining the level ordinary skill in the art takes into consideration:

e Levels of education and experience of persons working in the field;

e Types of problems encountered in the field; and

-11 -
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e Sophistication of the technology.

30. Based on the technologies disclosed in the *871 patent and the
considerations listed above, a person having ordinary skill in the art (“POSA”™)
would have at least a bachelor’s degree in electrical or computer engineering or
computer science plus five years of experience in the computer graphics hardware
industry, or a master’s degree in electrical or computer engineering or computer
science plus two years of experience in that industry, or an equivalent combination

of education and experience.

31. Throughout my declaration, even if I discuss my analysis in the
present tense, I am always making my determinations based on what a POSA
would have known at the time of the invention. Additionally, throughout my
declaration, even if I discuss something stating “I,” I am referring to a POSA’s

understanding.

C Reduction to Practice

32. T understand there are two types of reduction to practice—actual
reduction to practice and constructive reduction to practice. My understanding of

each, I describe below.

-12 -
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1. Actual Reduction to Practice

33. T understand that actual reduction to practice requires proof of either
(1) an embodiment of a claimed invention or (i1) performance of a process that

includes all limitations of the claimed invention.

34. Here, I have examined the R400 RTL code for an early version of the
R400 written in Verilog. Verilog RTL code is a structural and functional
embodiment of a design that in the development of 3D graphics chips is generally
used to model, define, and instantiate a hardware design. Below, I identify the
specific files, objects, input/output interfaces, and functions that describe each
element of claims 1,2, 3,5,6,8,9, 10,11, 13, 15, 17, 18, and 20 of the *871

patent.

2. Constructive Reduction to Practice

35. Tunderstand that constructive reduction to practice occurs when the
patent application discussing the subject matter of the claims is filed. In this case,
the constructive reduction to practice occurred on November 20, 2003, with the
filing of the *318 Application. Below, I include a claim chart where I identify
support for each element of claims 1, 2,3, 5,6, 8,9, 10, 11, 13, 15,17, 18, and 20

of the 318 Application.

-13 -
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D.  Novelty

36. I understand that a claim is unpatentable for being anticipated
(sometimes called lack of novelty) if a prior art reference disclosed, at the time of
the invention, each claim element as arranged in the claim. I also understand that if
a prior art reference fails to expressly disclose one or more claim elements, the
claim may be anticipated if the missing element(s) are inherently disclosed. I
understand that to establish inherency, the evidence must make clear that the
missing claim element is necessarily present in the prior art reference. I understand
that anticipation requires a high threshold because each and every claim element

must be unambiguously taught by a single reference, either explicitly or inherently.

E. Obviousness

37. T understand that a patent claim is invalid if the claims would have
been obvious to a POSA at the time of the invention. I understand that the
obviousness inquiry should not be done in hindsight, but from the perspective of a

POSA as of the time of invention of the patent claim.

38. T understand that to obtain a patent, the claims must have, as of the

time of the invention, been nonobvious in view of the prior art.

-14 -
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39. Tunderstand that a claim 1s obvious when the differences between the
subject matter sought to be patented and the prior art are such that the subject

matter as a whole would have been obvious to a POSA at the time the invention.

40. I understand that to prove that prior art reference or a combination of
prior art references renders a patent obvious, it is necessary to: (1) identify the
particular references that, singly or in combination, make the patent obvious;

(2) specifically identify which elements of the patent claim appear in each of the
asserted references; and (3) explain how a POSA could have combined the prior art

references to create the claimed invention.

41. Tunderstand that to support a conclusion that a prior art reference or a
combination of prior art references renders a patent obvious, there must be some
documentary evidence. Mere statements about what is basic knowledge or
common sense, 7.e., common knowledge as a replacement for documentary

evidence, is insufficient to support a conclusion of obviousness.

42. T understand that certain objective indicia can be important evidence
regarding whether a patent is obvious. Such indicia include: industry acceptance,
commercial success of products covered by the patent claims; long-felt need for
the invention; failed attempts by others to make the invention; copying of the

invention by others in the field; unexpected results achieved by the invention as

-15-
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compared to the closest prior art; praise of the invention by the infringer or others
in the field; taking of licenses under the patent by others; expressions of surprise or
skepticism by experts and those skilled in the art at the making of the invention;

and the patentee proceeded contrary to the accepted wisdom of the prior art.

F. Obviousness to combine

43. T understand that obviousness can be established by combining
multiple prior art references to meet each and every claim element, but I also
understand that a proposed combination of references can be susceptible to

hindsight bias.

44, T understand that references are more likely to be combinable if the

nature of the problem to be solved is the same.

45. T understand that if the combination of references results in the
references being unsatisfactory for their intended purposes or the combination
changes the references’ principle of operation, a POSA would not have a

motivation to combine the references.

46. Iunderstand that teaching away, e.g., discouragement, is strong
evidence that the references are not combinable. I also understand that a disclosure
of more than one alternative does not necessarily constitute a teaching away. I

understand that the combination does not need to result in the most desirable

-16 -
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embodiment, but if the proposed combination does not have a reasonable
expectation of success at the time of the invention, a POSA would not have a

teaching, suggestion, or motivation to combine the references.

G. Claim construction

47.  Tunderstand that in this /nter Partes Review proceeding the claims
must be given their broadest reasonable interpretation consistent with the
specification. In this declaration, I have used this broadest-reasonable-

interpretation standard when interpreting the claim terms.

48. T understand that the Board construed the term “means for performing
vertex operations and pixel operations and performing one of the vertex operations
or pixel operations based on the selected one of the plurality of inputs” to include a
register, an instruction sequencer capable of providing instructions for performing
vertex operations and pixel operations, and a processor capable of floating point,
arithmetic, and logical operations on a selected input. For the purposes of this

proceeding, I apply that construction to my analysis below.

V. INSTITUTED GROUNDS

49. T understand that LG proposed nine grounds for inter partes review
based on two primary references: Lindholm and Rich. I understand that the Board

denied LG’s Grounds 5, 7, and 8 in their entirety, and denied Ground 6 with

-17 -
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respect to claims 6 and 17. I further understand that the Board instituted inter

partes review of claims 1-3, 5, 6, 8-11, 13, 15, 17, 18, and 20 of the *871 patent in

the manner shown in the table below.

.. . | Prmary  Secondary
Grounds Cla‘ms Type | Reference |References
1, 2, 5, 8, L
Ground 1 |10, 11, 13, | Anticipation |0 poim | N/A
§ 102
and 15
Ground2 |3 and6 g%gousness Lindholm OpenGL
9, 17, and | Obviousness : :
Ground3 | ;¢ § 103 Lindholm Kizhepat
Ground4 |20 g%gousness Lindholm | Kurihara
Ground 6 |15 Obviousness | pip N/A
§103
Ground 9 | 20 g%gousness Rich Kurihara

VL. TECHNOLOGY
A. Terminologies

50.  This section provides exemplary descriptions for the following terms
as they are used with respect to the technology of the *871 patent. I use these

descriptions when providing a general overview of computer graphics technology.

e Pixel: Short for picture (pix) element. One spot in a rectilinear grid of
thousands of such spots that a device individually “paints” to form an

image produced on a computer screen or on paper. A pixel is the smallest
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element that displays or prints. A set of pixels can be manipulated to

create letters, numbers, or graphics. Ex. 2085, p. 406.

e Vertex: A point in space defined by the three coordinates x, y, and z. Ex.

2088, p. 374.

e Render: To produce a graphic image from data on an output device such

as a video display or a printer. Ex. 2085, p. 449.

e Primitive: In computer graphics, a shape, such as a line, circle, curve, or
polygon, that a graphics program can draw, store, and manipulate as a

discrete entity. /d. at 419.

e Polygon: Any two-dimensional closed shape composed of three or more
line segments, such as a hexagon, an octagon, or a triangle. /d. at 411.
B. General overview
51.  In computer graphics, complex three-dimensional shapes are typically
represented by a wireframe collection of simple polygons, called primitives, as
illustrated in Figure 1 (reproduced below). Transforming these wireframe models
into rich, colorful images primarily involves two types of graphics-processing

calculations: (1) vertex calculations and (i1) pixel calculations. Ex. 1001, 1:11-60.
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Figure 1 — Polygon wirefr ame of a teap ot

52.  Vertex calculations are applied to the primitives of a wireframe
model to orient (i.e., rotate, translate, or scale) the primitives in a desired way. Ex.
1001, 1:37-49. Each primitive can be represented by a set of numbers, called
vertices (Vy, Vy, V). Id. at 1:37-42. To make the wireframe model appear to rotate,
a transformation matrix is applied to the vertices of each primitive to provide a
new set of reoriented vertices (Vy, Vy, V). Id. at 1:42-48. In addition to rotations,
transformation matrices may be applied to the vertices to make the wireframe
model appear to move, grow, or shrink. These transformations are collectively
referred to as vertex calculations. After the desired transformations are applied to
the vertices, the reoriented vertices are then translated into pixels to generate a

rendered object that can be displayed as a two-dimensional image. In some systems
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vertex calculations are also used to determine the appearance characteristics of a

polygon at the vertices.

53. Pixel calculations are different. Pixel calculations are performed on
each pixel of the rendered object to determine each pixel’s color and appearance
attributes. /d. at 1:50-54. These pixel calculations may also be applied to texture
data to generate the pixel color or other appearance attributes of interest. /d. at

3:42-46.

C. Conventional graphics systems used separate shaders for vertex
calculations and pixel calculations

54.  Around the time the technology described in the 871 patent was
invented, conventional graphics-system architectures included a vertex shader to
perform the vertex calculations and a separate pixel shader to perform the pixel
calculations. /d. at 1:60-65. In these conventional architectures, vertex calculations
and pixel calculations were performed sequentially. /d. at 2:1-6. In the first stage
(vertex shading), vertex calculations built a three-dimensional scene out of
polygons (i.e., primitives). In the second stage (pixel shading), the primitives were
translated to pixels and filled in with color. In the third stage, the shaded pixels

were stored in memory called a “frame buffer” for display on a screen.
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D.  Drawbacks of graphics systems using separate vertex and pixel
shaders

55.  Graphics-system architectures using separate vertex and pixel shaders
generally do not utilize shader resources efficiently. Using separate types of
shaders is inefficient because graphics-processing tasks are generally not perfectly
balanced between vertex and pixel calculations. As the examples in the following
paragraphs show, a task involving complex-geometry processing (e.g., a complex
3D model but a simple shading scheme) usually requires many more vertex
calculations than pixel calculations. A task of complex-pixel processing (e.g., a
simple 3D model but a complex pixel shading scheme) usually requires many more

pixel calculations than vertex calculations.

56. If a graphics-processing task requires many more vertex calculations
than pixel calculations, the pixel shader is (relatively) idle, resulting in wasted
pixel resources. /d. at 1:60-65, 1:67-2:6. The figures below show a scenario where
complex-geometry processing would keep the pixel shader underutilized. In this
scenario, a large number of polygons form an image of a car. Ex. 2086, p. 582, Fig.
16.8(a). Each polygon (i.e., a primitive) is represented by vertices, and processing
these vertices keeps the vertex shader fully loaded. When constant shading (also
called “flat shading™) renders the scene (id.), there are relatively few pixel

calculations because “[c]onstant shading calculates a single intensity value for
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shading an entire polygon.” /d. at 580. Thus, the pixel shader is only partially
utilized. See Ex. 2087, p. 13; Figure 5. Unfortunately, the pixel shader cannot use
its extra resources to help the vertex shader because the pixel shader is of a

separate type and cannot perform vertex calculations.

) e hupliig

(Ex. 2088, p. 582, Fig. 16.8)

Complex Vertex
Shading

Pixel Shaders
Under-utilized
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57.  Conversely, if a graphics-processing task requires many pixel
calculations but has simple geometry, the vertex shader is (relatively) idle,
resulting in wasted vertex resources. Ex. 1001, 1:60-65, 1:67-2:6. The figures
below show a scenario where complex pixel processing would keep the vertex
shader underutilized. In this scenario, a simple 3D model is rendered with
shadows, reflections, and texture mapping. Ex. 2087, p. 13, Figure 5.
Consequently, the pixel shader becomes the bottleneck of the system because
rendering a simple 3D model with shadows, reflections, and texture mapping
requires heavy pixel calculations. While the pixel shader is fully loaded, the vertex
shader is only partially loaded because a simple 3D model does not have as many
vertices to process. See id. Unfortunately, the vertex shader cannot use its extra
resources to help offload the pixel shader’s load because a conventional vertex

shader is of a separate type and cannot perform pixel calculations.
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(Ex. 2087, p. 13, Figure 5)

Vertex Shader Complax Vertex
i Shading

Fully Loaded

Pixel Shaders
Under-utilized

Partially Loaded

58.  Either way, graphics systems using separate vertex and pixel shaders
are almost always unable to efficiently use all available resources. Ex. 1001, 1:60-

65, 1:67-2:6.
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59.  Asdiscovered by the inventors of the 871 patent, a single unified
shader can perform both vertex and pixel calculations, such that a graphics
processing system using one or more unified shaders has more flexibility. Such a
system has more flexibility because the system can allocate shader resources more

efficiently and balance resource utilization between vertex and pixel calculations.

60. A graphics-processing system with a unified shader can manage
shader resources and balance resource utilization by using an arbiter to select
between vertex processing and pixel processing. As the figures below show, when
a graphics task requires more vertex calculations (e.g., complex-geometry
processing), the arbiter can select more vertex command threads for the unified
shader to perform vertex calculations (represented in green). When a graphics task
requires more pixel calculations (e.g., complex pixel processing), the arbiter can
select more pixel command threads for the unified shader to perform pixel
calculations (represented in blue). See Ex. 2087, pp. 14-15; Figure 7. Either way,
the arbiter and the unified shader increase the graphics processing system’s
performance by reducing underutilization of the shader resources. See Ex. 2082,

pp. 113-15.
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Complex Geometry Processing

Thread Arbiter
I

Wertex & Piel Shader

Vertex and Pixel Shading
Complex Pixel Processing Dynamically Allocated

Thread Arbiter

Werbex & Phel Shader

VII. U.S. PATENT NO. 6,897,871

61. The 871 patent 1s directed to a graphics-processing system having a
single, unified shader. Ex. 1001, Abstract. The graphics-processing system
includes an arbiter circuit operative to select one of a plurality of inputs in response
to a control signal. /d. The graphics-processing system also includes a shader. /d.
The shader is coupled to the arbiter and is operative to process the selected one of
the plurality of inputs. /d. The shader includes means for performing vertex and
pixel operations, such that the shader performs one of the vertex operations or

pixel operations based on the selected one of the plurality of inputs. /d.
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62. The shader in the graphics-processing system also includes a register
block, a sequencer, and a processor unit. /d. The register block is used to maintain
the plurality of selected inputs. /d. The sequencer maintains instructions that
perform vertex manipulation and pixel manipulation operations. /d. And a
processor is capable of executing both floating point arithmetic and logical
operations on the selected inputs in response to the instructions maintained in the

sequencer. /d.

63.  The unified shader graphics processing system is an improvement
over conventional systems - which include a vertex shader and a pixel shader as
separate components. /d. at 1:55-57. Both of these shaders are required to perform
a position and texture transformation and generate an object. /d. at 1:57-62.
Because both vertex and pixel shaders are required, the graphics processors are
large in size and with most real estate being taken up the vertex and pixel shaders.
Id. at 1:62-65. In addition to the real-estate penalty associated with conventional

graphics processors, there is also a corresponding performance penalty associated

therewith. Id. at 1:66-2:1.

VIII. BACKGROUND ON CHIP DESIGN AND ATT’S CHIP DESIGN

64. In my experience, modern graphics chip production is a two-step

process. First, the integrated-circuit designers design a chip almost entirely on a
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computer using computer-aided—design (“CAD”) tools. The integrated-circuit
designers depend on software-based design, simulation, verification, and layout
tools. These tools ensure that production integrated circuits function and work as
intended. This process can take several months or years. These CAD tools are used
to create a chip specification, generally at multiple levels of abstraction that serve
as both a detailed specification of the chip and as a model of its structure and
function. This has been the predominant design methodology for graphics chips

since at least 1990.

65. The CAD tools are used to model and validate the chip design. While
the design representation at this stage may resemble software, its primary purpose
is to be an accurate representation of a hardware chip design. In the case of
hardware description languages like Very High Speed Integrated Circuit Hardware
Description Language (“VHDL™) or Verilog, the design language is generally the
most accurate formal specification of the structure and function of the chip that the
design engineer will prepare. It is used to directly create the manufacturing tooling.
Only after the integrated-circuit designers are confident that the design will
function properly, and the chip design passes commercial specifications, the layout
file created by the CAD tools from the design language is sent to a chip-
manufacturing facility for fabrication. Since layout files were historically provided

on a magnetic tape, this is often called a “tape-out.” At this point the design
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process has been completed and the manufacturing step is intended to simply
reproduce an exact copy of what is described in the layout file. The layout file
represents the manufacturing tooling for the chip-manufacturing facility. The chip-
manufacturing facility uses this tooling to fabricate a physical integrated circuit,

commonly referred to as a “chip.”

66. In my experience, although both circuit design and circuit fabrication
are both necessary components of chip production, in reality they are separate and
distinct activities. Typically, chip design and chip fabrication are performed by
different entities, particularly with respect to graphics chips. Ordinarily, circuit

designers do not fabricate chips, and chip fabricators do not design circuits.

67. Itis my understanding that, the patent owner here, ATI, is a chip-
design company. This means that ATI designs integrated circuits, such as chips.
ATI does not fabricate chips. Instead, ATI uses software-based CAD tools to
design and reduce to practice the chip components claimed in the 871 patent. Only
after the components claimed in the 871 patent (along with other chip
components) worked for their intended purpose, would ATI generate the tooling
and send it for fabrication. Because the *871 patent pertains to the chip-circuit
design, the actual reduction to practice of the claims of the 871 patent would have

occurred when the RTL code performed all limitations of the claims.
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IX. THE CODE FOR ATI’S R400 CHIP
68. 1have been asked to review the source code for ATI’s R400 chip.
This code includes files generated before or on August 5, 2002 by ATI. The source

code includes two corresponding design databases that comprise the source code:

R400 RTL code and Emulator Code.

69. The R400 Emulator Code is written in a well-known C++
programming language. The R400 Emulator Code includes source code that, when
executed, emulates the behavior of the graphics-processing system using software
that executes on a computer. C++ is commonly used to specify the function of a
software system, but chip designers often also use it to specify and emulate
structural aspects of hardware systems, such as, chips, and also to model, validate,

and test the functionality and certain structural features of a hardware design.

70.  In my experience having both RTL code and C++ code
implementation is common in the chip design industry. The C++ code is faster to
write and easier to debug by the chip designers. It runs faster, so larger examples of
user input can be tested. The chip designers often first write and test the chip
design in C++ or another software language. The test results from the chip code in
C++ are saved. Next the RTL code (in this case the R400 code) is written in

Verilog or another hardware-description language and is compared against the test
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results generated using the C++ code. By comparing two different descriptions of
the hardware implementation, it is more likely that errors can be found and

removed.

71.  The R400 RTL code is implemented in a hardware-description
language (HDL), called Verilog. Verilog is a hardware-description language used
to design and specify hardware systems. That is, Verilog describes behavior of a
hardware circuit in terms of inputs, outputs, state machines, logic equations, and
modules. When a module is declared in Verilog, the declaration is definitional.
This serves as a specification of function and structure. Copies of that module can
then be instantiated by specifying the inputs and outputs that carry information to
and from a particular copy of the module. This instructs the CAD tools to create a
copy of the specified circuits in each final product. It is possible to have multiple
copies of a module, with the inputs and outputs of each copy separately specified
in the design. The logic equations for the module, which describe how the module
operates based on different inputs, are also specified. This logic can be
combinational, representing a set of basic logic gates, or sequential, which can
include a state machine that controls the operation over time. There are many
different ways to write these logic equations, but each is converted to a set of basic
logic gates by the CAD tools. From the files produced by the R400 RTL code, a

chip manufacturer is able to manufacture a hardware circuit that includes structure
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and behavior described in the R400 RTL code. This 1s a standard practice in any

modern graphics integrated circuit design.

72.  Here, in the R400 program, Verilog was used to validate the
integrated-circuit version of the graphics-processing system recited in claims 1, 2,
3,5,6,8,9,10,11,13,15,17, 18, and 20. At least one version of the R400 RTL
code which discloses all elements of these includes the files generated before or on
August 5, 2002. These files are attached as Exhibits 2093-2096, 2098-2101, 2104-

2118.

73. Thave compared each element of claims 1,2,3,5,6,8,9,10, 11, 13,
15,17, 18, and 20 to the R400 RTL code and the corresponding files, functions,
and interfaces using the broadest reasonable construction standard for all terms that
the Board did not construe. For the term “means for performing vertex operations
and pixel operations and performing one of the vertex operations or pixel
operations based on the selected one of the plurality of inputs,” I applied the
Board’s construction—namely, a register, an instruction sequencer capable of
providing instructions for performing vertex operations and pixel operations, and
a processor capable of floating point, arithmetic, and logical operations on a

selected input. 1 point to thefiles, pages and line numbers in the RTL that disclose
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each element recited in these claims. In my opinion, the R400 RTL code discloses

all elements of claims 1, 2,3, 5,6, 8,9, 10, 11, 13, 15,17, 18, and 20.

74.  The R400 RTL code includes the sg. v, sp. v, sx.v, pa.v, and
sc. v files and their corresponding sub-files and referenced modules that specify
and generate a hardware circuit which is a graphics-processing system as recited in
claims 1,2,3,5,6,8,9,10, 11, 13, 15,17, 18, and 20. In particular, the sqg. v file
specifies and generates a sequencer which includes parts of an arbiter circuit, and
arbiter, and an instruction store. The sp. v specifies and generates a shader, a
register, the selection multiplexer, a computation element and a processor unit. The
sx. v specifies and generates a shader export block which includes a parameter
cache. The pa. v specifies and generates a primitive assembly block which
includes a position cache. The sc. v file specifies and generates a raster engine

(also referred to as a rasterizer or a scan converter).

75. 1 cite to the R400 RTL source code using the following format:
(sg. v, 1:1-10). This example citation points to exhibit sqg. v, at page 1, lines 1-

10.
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76.  The preamble of claim 1 recites “A graphics processor, comprising:”

The files, sg. v and sp. v (and their referenced modules) define the hardware

block component of the graphics-processing system.

2. The Arbiter Circuit

77.  The first element of claim 1 recites “an arbiter circuit for selecting

one of a plurality of inputs in response to a control signal.” 1 have generated a

visual representation of the components, as I understand them, based on the R400

RTL code, that describe an arbiter circuit in a figure below.

q
Y

gpr_phase
pix_req

vtx_bus'
pix_busy

vix_re

iVertexindices
iinterpolated

X A 2

"3
el

Arbiter

sq_input_arb
(sg_input arb.v)

ia_vertex_sel

)
Y
e
aY

u_sq_input_arb

Arbiter Circuit

' o

Multiplexer

sq_ais_output line 493

vector lines 207 & 227-

. 278
(sg_ais_output.v) (vector.v)
u_sq_ais_output uvector0

78. The sqg. vand sp. v file instantiate blocks of an arbiter circuit. The

InputDatal

arbiter circuit includes an arbiter instantiated as u_sqg Iinput arb.(sq.v,
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28:11-29:7.) The u_sq input arbisspecified as an sq input arb module

In sq input arb.v.

79. The arbiter u sqg input arbis coupled to a multiplexer,
mmplemented in u sg ais output and at least one of the four vector units,
uvector(0, uvectorl, uvector?, and uvector3. The
u sq ais output module is instantiated in sqg. v. (sq. v, 77:20-81:4) and the

four vector units are instantiated in sp. v (sp. v, 15:6-18:16).

80. The arbiter in the sg input arbmodule receives five input signals
vtx reqg, gpr phase, pix reqg, vtx busy,and pix busy signals

which are replicated below.

module sg input arb

(

vtx req, // request from VISM

vtx busy, // busy from VISM - tells arb to keep gpr write
mux set to verts

pix req, // request from PISM

pix busy, // busy from PISM - tells arb to keep gpr write

mux set to pixels
gpr phase, //

input [0:0] vtx req;
input [0:0] vtx busy;
input [0:0] pix req;
input [0:0] pix busy;

input [1:0] gpr phase;

(sg_input arb.v,2:4-11,3:8-13.)
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81. The vtx reg control signal is a request from a vertex input state
machine to process a vertex mputs. The pix reg control signal is a request from
a pixel input state machine to process a pixel input. The arbiter generates a control

signal based on these five input signals, as replicated below:

[/ next state logic
always @(
vtx req or pix reqg or vtx busy or pix busy or
gpr phase or
current state

)

begin

// default assignments
next state = IDLE;
next vtx gnt = LO;
next pix gnt = LO;
next vtx sel = LO;

case (current state)

IDLE:
begin
// - assert grants based on ¢pr phase
/s - gnt is reg'd out, so need to look for phase

before the one that lines up
// - the phase for pix gnt is calculated based on

interp latency

if ( vtx reqg & (gpr phase == 'S0 ID PHASE) )
begin
next vtx gnt = HI;
next vtx sel = HI;
next state = V XFER;
end
else if ( pix req & (gpr phase == 'S0 PV PHASE) )
begin

next pix gnt = HI;
next state =
end

P XFER;

end

V_XFER:
begin
// - hold vtx sel high while VISM is busy
if ( vtx busy )
begin
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next vtx sel = HI;
next state = V XFER;
end
else
begin
next state = IDLE;
end
end
P XFER:
begin
// - first check if there's another pix reqg (and no
vtx reqg)
// - if so, grant it and stay here
// - otherwise continue to hold vtx sel low while PISM
is busy
if ( pix req & ~vtx req & (gpr phase == 'SQ PV PHASE)
)
begin
next pix gnt = HI;
next state = P XFER;
end
else if ( pix busy )
begin
next state = P XFER;
end
else
begin
nexﬁ*state = IDLE;
end
end

endcase // case(current state)

end // always @ (*)
(/d. at 6:16-9:10.)

82. The R400 RTL code above shows that the sg input arb arbiter
circuit uses vtx reqto select a vertex input, and pix regto select a pixel
input, with the vertex input having a priority over the pixel input if both the vertex
input state machine and the pixel input state machine simultaneously request that

their respective inputs are selected.
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83. Ifthe sg input arb arbiter circuit selects a vertex input, the R400
RTL code above sets next vtx gntand next vtx selto “HI” If the
sg input arb arbiter circuit selects a vertex input, the R400 RTL code above
sets next vtx gntand next vtx selto“HI” Ifthe sg input arb
arbiter circuit selects a pixel input, the R400 RTL code above sets
next pix gnt to “HI”. The arbiter then indicates to the selection multiplexer

and shader that the vertex input or the pixel input has been selected using the

R400 RTL code below:

output [0:0] vtx gnt;
output [0:0] pix gnt;
output [0:0] Vtx:sel;
begin
current state <= next state;
vtx gnt <= next vtx gnt;
vtx sel <= next vtx sely;
pix gnt <= next pix gnt;
end

(Id. at 3:15-17,6:7-12))

84.  Asshown in the R400 RTL code above, the sg input arb arbiter
sets the output signals vtx gntand pix gnt toa “HI” or “LO” value from
next vtx gntand next pix gnt respectively, and sets vix selto
identify whether the vertex input or the pixel input was selected. The

sg input arb arbiter outputs the vtx selsignal as ia vertex sel at

-39 .

ATI Ex. 2115
IPR2023-00922
Page 44 of 271



Case IPR2015-00326 of
U.S. Patent No. 6,897 871

sq.v,29:1. The signal ia vertex sel corresponds to the claimed control

signal.

85.  The arbiter passes the vtx sel signal tothe sg ais output
module called u sg ais outputas ia vertex sel signal. AsI discussed
above u sg ais output isinstantiated in the sgmodule (sq. v, 77:20-81:4)
and 1s defined in the sg ais outputmodulein sg ais output.v. The
u sqg ais outputreceivesthe ia vertex selat79:81n sg.vand3:17

of sg ais output module.

86. The sg ais output module uses the control signal
ia vertex sel to generate a control signal SO SP gpr input sel
(shown as line 493 in my figure above), which becomes an
SO SP gpr input muxsignalin sqg.v.(See sg ais output.v,21:7;

sq.v, 80:6.)

87.  The sp module receives the SQ SP gpr input mux signal as
SO SP gpr input muxin sp.vat2:7and 9:11. The sp module also
instantiates four instances of vector units: uvector0, uvectorl,
uvector2, and uvector3. (See sp. v, 15:6-16:18.) Each of the vector0-3

units is defined in the vector module in vector. v. Each of the four vector
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units receives the SO SP gpr input mux signal referred to as
g sqg gpr input mux,asshown at 16:4 of uvector0, at 16:18 for
uvectorl,at 17:19 for uvectorZ2, and 18:11 for uvector3in sp. v. The

g sg gpr input mux is the control signal provided by the arbiter.

88.  Each of the vector units uvector(0-3 receives a plurality of inputs.
These inputs include the interpolated data (for pixel operations) and vertex indices
(for vertex operations). The interpolated data is generated using the
uinterpolator instance of the interpolator module described in
interpolator.v. The R400 RTL code which instantiates the

uinterpolator instance is replicated below.

wire [127:0] Interpolated0,
Interpolatedl,Interpolated”?,Interpolated3;

(sp.v, 14:1)

interpolator uinterpolator (.olnterpolatedl (Interpolatedo),
.oInterpolatedl (Interpolatedl), .olInterpolatedZ(Interpolated??),
.oInterpolated3 (Interpolated3), .sx sp vtx datalO(q sx vix datal),

.SX sp vtx deltall(g sx vtx datal),.sxXx sp vtx deltaz0(g sx vtx da
taz),

.sq sp interp ijline(qg sqg interp ijline),.sq sp interp valid(q sg
_interp valid), .sq sp_interp buff swap(q sq interp buff swap),
.sc_sp data(q sc data),.sc_sp valid(qg sc valid),.sq sp interp mod
e (g _sg interp mode), .sc sp type(q sc type),

.sc_sp quad last(g sc last quad),

.sclk(sclk) ,.srst(srst));

(Id. at 14:5-19.)
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89. The input data to uinterpolator comes from the g sc data
signal which is sent by a raster engine. The sp module receives g sc data

using the SC_SP interface as SC SP data. (Id. at 2:7,10:40.)

90. The output from uinterpolator,including Tnterpolatedl,
Interpolatedl, InterpolatedZ2, and Interpolated3ispassedto
each of the vector units uvector0-3. For example, uvector(receives
Interpolated(0, uvectorlreceives Interpolatedl, uvector?

receives Interpolated?, and uvector3receives Interpolateds3. (Id. at

16:6,17:1,17:20, and 18:12.)

91. Each of the vector units uvector(0-3 also receive vertex indices as
one of a plurality of inputs. The vertex indices are passed to the vector units
uvector(-3. For example, the vertex indices are generated using
usp vsr ctl definedinthe sp vsr ctlmodulein sp vsr ctl.v.The

R400 RTL code which outputs the vertex indices 1s replicated below.

sp vsr ctl usp vsr ctl(. ovtx_indexO (VertexIndex0),
.ovtx indexl (VertexIndexl).ovtx indexZ2(VertexIndexZ2),
.ovtx index3(VertexIndex3), .isqg vsr data(gq sq vsr data),

-42 -

ATI Ex. 2115
IPR2023-00922
Page 47 of 271



Case IPR2015-00326 of
U.S. Patent No. 6,897 871

.1sq vsr double(q sq vsr double), .isq vsr valid(q sq vsr valid),
.isq vsr read(q sq vsr read), .sclk(sclk),.srst(srst));

(Id at 14:22-15:4)

92. Theimputdatato usp vsr ctlcomesfrom g sg vsr data.
The sp module receives g sc data using the SQ SPinterface as

SQ SP vsr data.(ld at 2:9,11:7,11:17.)

93.  The outputs from usp vsr ctl,including VertexIndexO,
VertexIndexl, VertexIndex?2, VertexIndex3 are passed to each of the
respective vector units uvector(0-3. For example, uvector( receives
VertexIndex(, uvector]lreceives VertexIndexl, uvector? receives
VertexIndex2, and uvector3receives VertexIndex3. (Id. at 16:6,17:2,

17:21, and 18:13.)

94.  The arbiter circuitry in vector units uvector(0-3 selects one of a
plurality of inputs from the vertex indicies (which are the vertex data) and the
interpolated pixel inputs (which are the pixel data). For example, the vector
module uses the sg sp gpr input muxparameter provided by the arbiter to
select the vertex data input (1 VertexIndices) or the pixel data input

(iInterpolated), using the R400 RTL code replicated below:
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//Muxing logic to select from data comming from the
Interpolators (in reality more than just interpolated
data....there can be

//also faceness and XY data), AutoCount data and Vertex
Indices comming from the staging registers.

//Each MACC unit has its own mux logic since the controls are
phased out by one cycle from one MACC to the other.

//muxing logic for the inputs of the first MACC
always @(/*AUTOSENSE*/iAutoCount or ilnterpolated or
iVertexIndices
or sq sp gpr input mux)
begin
case(sg sp gpr input mux)
2'pb00: InputbData(0 = iAutoCount ;
2'p01: InputDatal = ilnterpolated ;
2'p10: InputDatal = iVertexIndices ;
default: InputDatal = iInterpolated;,
endcase // case(sq sp gpr input mux)
end

//muxing logic for the inputs of the second MACC
always @(/*AUTOSENSE*/iAutoCount or iInterpolated or
iVertexIndices
or g0 gpr input mux)
begin
case (g0 gpr input mux)
2'b00: Inputbatal = iAutoCount ;
2'h01: InputbDatal iInterpolated ;
2'p10: InputDatal = iVertexIndices ;
default: InputbDatal = ilnterpolated;
endcase // case (g0 gpr input mux)
end

//muxing logic for the inputs of the third MACC
always @(/*AUTOSENSE*/iAutoCount or iInterpolated or
iVertexIndices
or gl gpr input mux)
begin
case (gl gpr input mux)
2'b00: Inputbatal = iAutoCount ;
2'phb01: InputbatalZ iInterpolated ;
2'ph10: InputData’Z = iVertexIndices ;
defgult: InputDataz = iInterpolated;
endcase // case (gl gpr input mux)
end

//muxing logic for the inputs of the fourth MACC
always @(/*AUTOSENSE*/iAutoCount or ilnterpolated or
iVertexIndices
or gZ gpr input mux)
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begin

case (g2 gpr input mux)
2'b00: InputDatal
2'p01: InputbDatal iInterpolated ;
2'p10: Inputbatal iVertexIndices ;
defgult: InputData3 = ilnterpolated;

endcase // case (g2 gpr input mux)

end

iAutoCount ;

(vector. v, 10:2-12:6 (emphasis added).)

95.  This is also shown in my figure above, where lines 207 & 227-228

map to the sqg sp gpr input mux parameter and vector. v, 10:2-12:6.

96.  The selected input is stored in TnputDatal, InputDatal,

InputDataZ, and InputDatas.

97.  As explained above, R400 RTL code specifies an arbiter circuit for

selecting one of a plurality of inputs in response to a control signal.

3. The shader coupled to the arbiter circuit

98.  The second element of claim 1 recites “a shader, coupled to the
arbiter circuit.” 1 have generated a visual representation of the components, as I
understand them, based on the R400 RTL code, that describe how an arbiter circuit

is coupled to the shader, in a figure below:
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(sg_input_arb.v) (sq_ais output.v) (vector.v)
u_sq_input_arb u_sq_ais_output uvector0
Arbiter Circuit
o
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3
2

vector lines 313-497

(vector.v)

vector lines 313-497
(vector.v)

vector lines 313-497

(vector.v)

vector lines 313-497

(vector.v)

uvectorQ

Shader

uvectori

uvector2

uvector3

(sp.v)

99.

The shader includes the scalar and vector processing pipes and

registers in the sp module. (sp. v.) For example, sp. v instantiates four vector

units (described in Section IX.A.2). The sg module and the sp module connect

the arbiter circuit to the shader components, such as, the vector units.

100. The arbiter circuit is coupled to the shader via a number of selected

data lines from the selection multiplexer. These signals include TnputData0,

InputDatal, InputData’, and InputData3. These signals are then

provided to the macc gpr modules within the vector units to couple the selection

multiplexer in the arbiter circuit with the input of the shader. This is shown using
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the R400 RTL code below, and also in my figure above as lines 313-497 which

map to vector.v at 13:9-22:8.

macc _gprumacc gpr0(.oVectorOutput (VectorResult0)
,.08calarInput (ScalarInputl0), .oScalarOpcode(ScalarOpcodel),
.ORegData (RegDatal0), .oexport dst(sq sp exp dst),
.8q sp instruct(sq sp instruct), .sqg sp instruct start
(sq _sp instruct start), .sq sp gpr rd addr(sq sp gpr rd addr),
.8q sp gpr wr addr(sq sp wr addr),.sq sp wr ena(sq sp wWr ena),.sq sp m
em rd ena(sq sp mem rd ena),.sq sp mem wr ena(sqg sp mem wr ena),.sq sp
_gpr cmask (sq sp channel mask), .sq sp gpr phase mux
(sq_sp gpr phase mux), .iInterpolated(InputDatal),
.sqg sp constant (sq sp constant),.iScalarData(ScalarData),.tp sp data(t
p _sp data), .tp sp gpr dst(tp sp gpr dst), .tp sp gpr cmask
(tp_sp gpr cmask), .tp sp data valid(tp sp data valid),.sclk(sclk),
.srst(srst));

macc _gpr umacc _gprl(.oVectorOutput (VectorResultl) ,.oScalarInput
(Scalarinputl),.oScalarOpcode (ScalarOpcodel) ,.oRegData (RegDatal),.sq s
p _instruct(q0 instruct),.sq sp instruct start(q0 instruct start),.sq s
p gpr rd addr (g0 gpr rd addr),.sq sp gpr wr addr(q0 gpr wr addr),.sq s
p _wr ena(qg0 gpr we),.sq sp mem rd ena(q0 gpr mre),.sq sp mem wr ena (g0
_gpr mwe),.sq sp gpr cmask (g0 gpr cmask),.sq sp gpr phase mux(q0 gpr p
hase mux),.ilInterpolated(InputDatal),.sq sp constant(sq sp constant),.
iScalarData (g0 ScalarData),.tp sp data(tp sp data),
.tp sp gpr dst(q0 tp gpr dst), .tp sp gpr cmask (g0 tp gpr cmask),
.tp sp data valid(q0 tp data valid),.sclk(sclk), .srst(srst));

macc _gpr umacc _gpr2(.oVectorOutput (VectorResult?), .oScalarInput

(ScalarInput2),.oScalarOpcode (ScalarOpcodez) ,.oRegData (RegDataZ) ,.sq s
p instruct(gl instruct),.sq sp instruct start(qgl instruct start),.sq s
p gpr rd addr (gl gpr rd addr),.sq sp gpr wr addr(gl gpr wr addr),.sq s
p wr _ena(qgl gpr we),.sq sp mem rd ena(qgl gpr mre),.sq sp mem wr ena (gl
_gpr mwe),.sq sp gpr cmask (gl gpr cmask),.sq sp gpr phase mux (gl gpr p
hase mux),.ilnterpolated(InputData2),.sq sp constant(sq sp constant),.
iScalarData (gl ScalarData),.tp sp data(tp sp data),.tp sp gpr dst(gl t
p gpr dst), .tp sp gpr cmask(gl tp gpr cmask), .tp sp data valid
(ql_tp_data_valid),.sclk(sclk}, .srst(srst));

macc _gpr umacc gpr3(.oVectorOutput (VectorResult3), .oScalariInput
(ScalarInput3),.oScalarOpcode (ScalarOpcode3) ,.oRegData (Reghatal3),.s
p _instruct(g2Z instruct),.sq sp instruct start(g2 instruct start),.s
p gpr rd addr (g2 gpr rd addr),.sqg sp gpr wr addr (g2 gpr wr addr),

qg s
g s
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.8q sp wr ena(qz gpr we),.sq sp mem rd ena(qZ gpr mre),.sq sp mem Wr e
na (g2 gpr mwe),.sq sp gpr cmask(gZ gpr cmask),.sq sp gpr phase mux(gz
gpr phase mux),.ilnterpolated(InputData3),.sq sp constant(sq sp consta
nt), .iScalarData (g2 ScalarData), .tp sp data(tp sp data),
.sclk(sclk),.tp sp gpr dst(gZ tp gpr dst), .tp sp gpr cmask

(g2 tp gpr cmask), .tp sp data valid(gZ tp data valid),.srst(srst));

(vector.v, 14:1-16:7; (emphasis added).)

a. The shader is operative to process the selected one of
the plurality of inputs

101. The shader is “operative to process the selected one of the plurality of
inputs.” Based on my understanding of R400 RTL code, I have generated a figure
below which represents my understanding of the components and describes the

code with the reference to the figure.

macc

(macc.v)

macc

(macc.v)

macc

(macc.v)

macc

(macc.v)

umace

macc_gpr

(macc_gpr.v)

umacc

macc_gpr

(macc_gpr.v)

umacc

macc_gpr

(macc_gpr.v)

umacc

macc_gpr

(macc_gpr.v)

umacc_gpr0

Vector

umacc_gpr1

umacc_gpr2

umacc_gpr3

(vecter.v)

102. Asshown in Section IX.A .2, each of the four vector units,
uvector(, uvectorl, uvectorZ2, and uvector3 process an input selected
from the interpolated pixel data or the vertex indices which has been provided on

the signals TnputDatal, TnputDatal, InputDataZ, and TnputData3.
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The Tnputbatal, InputDatal, InputData’, and InputData3 signals

are each a selected one of the plurality of inputs.

103. Toprocessthe ITnputDatal, InputDatal, InputDataZ, and
InputData 3 signals, each vector unit instantiates four MACC modules:
umacc gpr0,umacc gprl,umacc gprZ2,and umacc gpr3. The MACC
modules (umacc gpr0, umacc gprl, umacc gprZ2,and umacc gpr3)
receive the corresponding selected input data (InputData0, InputDatal,
InputDataZ, and InputData3) and corresponding instructions
(sg _sp instruct,q0 instruct,gl instruct,and g2 instruct)

using the R400 RTL code below:

macc _gprumacc gpr0(.oVectorOutput (VectorResult0)
,.08calarIinput(ScalarInputl), .oScalarOpcode(ScalarOpcodel),
.ORegData (Reghatal) , .oexport dst(sq sp exp dst),
.8q sp instruct(sq sp instruct), .sq sp instruct start
(sq sp instruct start), .sq sp gpr rd addr(sq sp gpr rd addr),
.8g _sp gpr wr addr(sq sp wr addr),.sq sp wr ena(sq sp wWr ena),.sq sp m
em rd ena(sq sp mem rd ena),.sq sp mem wWr ena(sq sp mem wr ena),.sq sp
gpr cmask(sqg sp channel mask), .sqg sp gpr phase mux
7sq;§p_gpz_ph§sé:mux), .zInterpolatEd(EnpﬁEDatadj,
.sq sp constant (sq sp constant),.iScalarData(ScalarData),.tp sp data(t
p sp data), .tp sp gpr dst(tp sp gpr dst), .tp sp gpr cmask
(tp_sp gpr cmask), .tp sp data valid(tp sp data valid),.sclk(sclk),
.srst(srst));

macc _gpr umacc _gprl(.oVectorOutput (VectorResultl) ,.oScalarInput
(ScalarIinputl),.oScalarOpcode (ScalarOpcodel) ,.oRegbata (Reghatal),.
p _instruct (g0 instruct),.sq sp instruct start(g0 instruct start),.
p gpr rd addr (g0 gpr rd addr),.sqg sp gpr wr addr(q0 gpr wr addr),.s

0 W
RInin
0 0
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p _wr ena(q0 gpr we),.sq sp mem rd ena(q0 gpr mre),.sq sp mem wr ena(qC
_gpr mwe),.sq sp gpr cmask (g0 gpr cmask),.sq sp gpr phase mux (g0 gpr p
hass_mux),.iInterpolated(InEutDatal),.sq;sp_constant(sq_sp_constant),.
iScalarData (g0 _ScalarData),.tp sp data(tp sp data),

.tp sp gpr dst(qg0 tp gpr dst), .tp sp gpr cmask (g0 tp gpr cmask),

.tp sp data valid(q0 tp data valid),.sclk (sclk), .srst(srst));

macc gpr umacc gprz(.oVectorOutput (VectorResult2), .oScalarInput

(Scalarinput2),.oScalarOpcode (ScalarOpcodez) ,.oRegData (Reghataz),.sq s
p instruct(gl instruct),.sq sp instruct start(qgl instruct start),.sq s
p _gpr rd addr (gl gpr rd addr),.sq sp gpr wr addr (gl gpr wr addr),.sq s
p wr ena(ql gpr we),.sq sp mem rd ena(ql gpr mre),.sq sp mem wr ena (gl
_gpr mwe),.sq sp gpr cmask (gl gpr cmask),.sq sp gpr phase mux (gl gpr p
hase mux),.iInterpolated(InputData2),.sq sp constant(sq sp constant),.
iScalarData (gl ScalarData),.tp sp data(tp sp data),.tp sp gpr dst(gl t
p gpr dst), .tp sp gpr cmask (gl tp gpr cmask), .tp sp data valid

(gl _tp data valid),.sclk(sclk), .srst(srst));

macc gpr umacc gpr3(.oVectorOutput (VectorResult3), .oScalarInput
(ScalarInput3),.oScalarOpcode (ScalarOpcode3) ,.oRegbata (Reghatal),.sq s
p instruct (g2 instruct),.sq sp instruct start(g2 instruct start),.sqis
P gpr rd addr(gZ gpr rd addr),.sq sp gpr wr addr(gZ gpr wr addr),
.8q _sp wr ena(qz gpr we),.sq sp mem rd ena(qZ gpr mre),.sq sp mem Wr e
na (g2 gpr mwe),.sq sp gpr cmask(gZ gpr cmask),.sq sp gpr phase mux(gz
gpr phase mux),.iInterpolated(InputData3),.sq sp constant(sq sp consta
nt), .iScalarData (g2 ScalarData), .tp sp data(tp sp data),
.sclk(sclk),.tp sp gpr dst(gZ tp gpr dst), .tp sp gpr cmask
(g2 _tp gpr cmask), .ﬁp_sp_data_valid(qz_tp_data_valid),.srst(srst));

(vector. v, 14:1-16:7; (emphasis added))

104. The macc gpr module mputs the selected data as the
iInterpolatedsignal, as shownin macc gpr.vatl:20 and 2:11. The
macc_gpr module is operative to process the selected one of the plurality of inputs

(the i Interpolatedsignal). (See macc gpr.v.)

b. The shader including means for performing vertex
operations and pixel operations

105. The shader also includes “means for performing vertex operations and

pixel operations.”
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106. It is my understanding that the Board construed the above term to

include a register, an instruction sequencer capable of providing instructions for

performing vertex operations and pixel operations, and a processor capable of

floating point arithmetic and logical operations on a selected input. Here, I opine

on whether the R400 RTL code includes the functionality and the corresponding

structure as construed by the Board.

107. Based on my understanding of the R400 RTL code, I have generated a

figure below which represents my understanding of the components, and describe

the code with reference to the figure.

Instruction Sequencer (sq.v)
$q_alu_instr_seq . sq_alu_instr_queue
(sq_alu instr seq.v) g sq_alu instr queue.v)
ul_sq_alu_instr_seq ul_sq_alu_instr_queue
Register B q_RegData
macc
Processor (macc.v)
umacc "t
macc_gpr
(macc_gpr.v)
umacc_gpro
Vector {vector.v)
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108. The macc gpr module includes a register that stores data. For
example, the macc gpr module includes register file output signal RegData
that provides data retrieved from a register file memory called ugpr mem” of
module type “rfsd2 128x128cm2swl”. (macc gpr.v,8:1-12:20.) The
values from RegDa ta are then stored in the register called g RegData.
(macc gpr.v,3:15and 15:13.) As I describe below, g RegData stores the

selected input. As such, the shader includes a register.

109. The shader also includes an instruction sequencer capable of
providing instructions. I discuss the instruction sequencer in greater detail below in
Section IX.K.3., but briefly; the sg module includes an instruction sequencer. The
instruction sequencer passes instructions to the shader included in the sp module
using the SQ SPinterface. The interface includes the SO SP instruct signal

which provides the instruction. (sqg. v, 2:17, 12:9, and 80:11.)

110. The sp module receives the instruction using the SO SPinterface,
and converts the instruction into g sg instruct, as shown using the R400

RTL code below:

module sp(/*AUTOARG*/

SQ SP instruct start, SQ SP instruct, S0 SP stall,
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input [20:0] S0 SP instruct;

ati dff in #(21) sq instruct(sclk,SQ SP instruct,q sq instruct);
(sp.v, 1:18,2:3,6:13,7:2))
111. The sp module passes the ¢ sg instruct instruction to the
vector units uvector0, uvectorl, uvector?2, and uvector3. (Id. at 14:18-
18:2.) Each of the vector units uvector0, uvectorl, uvector2, and
uvector3receives the instruction as g sg instruct and converts the

instruction to sqg_sp instruct. (/d. at 15:20,16:9,17:10, 18:13; and

vector.v, 1:19,2:7))

112. The vector unit passes the ¢ sg instruct instruction to the
macc gpr0, macc gprl macc gprZ, ormacc gpr3modules, as
sg sp instruct,q0 instruct,qgl instruct,and g2 instruct.
(vector.v, 8:12-14, 14:10, 14:26, 15:11, 15:27.) The four instances of the
mac _gpr module (the macc gpr0, macc gprl, macc gpr2, or
macc gpr3)receive the instruction as sg sp instruct and pass the
instruction to a MACC module called uma cc, which is replicated using the R400

RTL code below:

macc umacc(.oResult (VectorResult), .oScalarOpcode (oScalarOpcode)
,.0ScalarInput (oScalarInput),.oExportDst (oexport dst),
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.1RegbData (g RegData),.iConstantData(sq sp constant),.iScalarData (
iScalarData), .iInstruction(sq sp instruct),
.i1InstStart (sq sp instruct start), .sclk(sclk), .srst(srst}};

(macc gpr.v,3:17-21.)

113. The MACC module receives instructions from the sequencer using the
sg sp instruct signal and converts it to 1 Instruction. The MACC
module also receives g RegData, and manipulates g RegData using
iInstruction. For example, the MACC module includes a mad unit called

macc32 that performs the required calculations, replicated below:

//Floating point Multiply and Accumulate
macc32 mad (OperandAMod, OperandBMod, OperandCMod,

VectorOpcode ,MaccResult ,sclk) ;
(macc.v,24:25-25:2)

114. The macc32 module receives OperandAMod, OperandBMod,
OperandCMod as operands which include the data maintained in the register
block (oRegData), and the VectorOpcode which includes instructions. The
macc32 module is then operative to use OperandAMod, OperandBMod,
OperandCMod and VectorOpcode to perform 1) floating point operations
which are arithmetic operations, and 2) logical comparisons which are logical

operations. See e.g. macc32.mc.
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115. The vector modules, which include the macc gpr modules, and
the MACC modules within the sp modules are the structures that perform the

vertex operations and the pixel operations.

116. Within the instruction sequencer, SQ SP instruct is generated in

the sg ais output module, as shown using the R400 RTL code below:

module sqg ais output

(
S50 SP instr,
output [20:0] SQ SP instr;

reg [20:0] SQ SP instr;

// —-- SP instruction, write mask --
S/ e e
// - valid with instruction start

always @ (posedge clk)
begin
case (gpr phase)
'SQ SRCB_PHASE: begin
case (alu phase)
LO: begin
SQ SP instr <= {3'b000, aiq0 instr[06:00],
aig0 instr[55:48], aiq0 instr([58], aiqO0 instr[101:99]};
u0 S0 SP write mask <= aiq0 valid bits [3:0];
ul S0 SP write mask <= aiq0 valid bits [7:4];
u2 SQ SP write mask <= aiqO valid bits [11:8];
u3 50 SP write mask <= aiq0 valid bits [15:12];
end
HI: begin
SQ SP instr <= {aiqgl instr[07:00], aigl instr[55:48],
aigl instr[58], aigl instr[101:99]};
u0 SO SP write mask <= aiql valid bits [3:0];
ul S0 SP write mask <= aiql valid bits [7:4];
u2 SQ SP write mask <= aiqgl valid bits [11:8];
u3 S0 SP write mask <= aiqgl valid bits [15:12];
end
endcase
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end
'SQ SRCC PHASE: begin
case (alu phase)
LO: begin
5Q SP instr <= [aiqg0 instr[15:08], aiq0 instr[47:40],
aiq0 instr[57], aiql instr([98:96]};
u0 SQ SP write mask <= aiqO valid bits [19:16];
ul SO SP write mask <= aiq0 valid bits [23:20];
uz S0 SP write mask <= aiqO valid bits [27:24];
u3 S0 SP write mask <= aiq0 valid bits [31:28];
end
HI: begin
S5Q SP instr <= {aiql instr[15:08], aigl instr[47:40],
aigl instr[57], aigl instr[98:96]};
u0 SQ SP write mask <= aiqgl valid bits [19:16];
ul SQ SP write mask <= aiql valid bits [23:20];
uz SO SP write mask <= aiql valid bits [27:24];
u3 50 SP write mask <= aiqgl valid bits [31:28];
end
endcase
end
"SQ FA PHASE: begin
case (alu phase)
LO: begin
SQ SP instr <= {aiq0 instr[23:16], aiq0 instr[39:32],
aiq0 instr[56], aiqg0 instr([95:93]};
u0 SQ SP write mask <= aiqg0 valid bits [35:32];
ul S0 SP write mask <= aiq0 valid bits [39:36];
u2 SQ SP write mask <= aiq0 valid bits [43:40];
u3 SO SP write mask <= aiq0 valid bits [47:44];
end
HI: begin
SQ SP instr <= {aiqgl instr[23:16], aigl instr[39:32],
aigl instr[56], aigl instr[95:93]};
u0 SQ SP write mask <= aigl valid bits [35:32];
ul S0 SP write mask <= aiql valid bits [39:36];
u2 SQ SP write mask <= aigl valid bits [43:40];
u3 S0 SP write mask <= aigl valid bits [47:44];
end
endcase
end
'SQ SRCA PHASE: begin
case (alu phase)
LO: begin
SQ SP instr <= {aiq0 instr[23:16], aiqO0 instr[25:24],
aiq0 instr[31:26], aiq0 instr[92:88]};
u0 SO SP write mask <= aiqg0 valid bits [51:48];
ul SQ SP write mask <= aiq0 valid bits [55:52];
u2 SQ SP write mask <= aig0 valid bits [59:56];
u3 S0 SP write mask <= aiqg0 valid bits [63:60];
end
HI: begin
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SQ SP instr <= {aiqgl instr[23:16], aiqgl instr[25:24],
aigl instr[31:26], aiqgl instr[92:88]};
ul SO SP write mask <= aiqgl valid bits [51:48];
ul S0 SP write mask <= aiqgl valid bits [55:52];
u2 SQ SP write mask <= aigl valid bits [59:56];
u3 50 SP write mask <= aiqgl valid bits [63:60];
end
endcase
end
endcase
end

(sg ais output.v,2:7-8,15,7:1,9:1,16:9-19:13.)

117. These instructions come from the sg alu instr gueue module
which is instantiated in sg. vas u0 sqg alu instr queue.(sqg.v, 68:6-
69:24.) The instructions pass through the instruction sequencer which is
instantiated as u0 sqg alu instr seq (sg.v,70:2-71:21) and is defined in

sg alu instr seqg.v.

118. Further, signal aif thread type g, replicated below, shows that

the instructions can be for vertex or pixel operations.

aif thread type q, // vector type (0: pixel, 1: vertex)

(sg alu instr queue.v,2:2l.)

119.  As such, the shader may perform one of vertex operations or pixel

operations depending, in part,on aif thread type Q.
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c. The shader also includes means for performing one of
the vertex operations or pixel operations based on the
selected one of the plurality of inputs.

120. The shader also includes the means for “performing one of the vertex

operations or pixel operations based on the selected one of the plurality of inputs.”

121. Asdiscussed in Section IX.A.2, the sp module receives 1) the
sg sp gpr input mux signal which indicates to the sp module to perform
vertex operations or pixel operations, and 2) the SO SP instruct signal that
provides the instructions of the selected operations. The macc gpr module then
performs the selected operation as discussed in Section IX A 2, and is the means

for performing the vertex operations or the pixel operations.

d. And the shader provides a appearance attribute.

122, And “the shader provides a appearance attribute.” Based on my
understanding of the R400 RTL code, I have generated a figure below which
represents my understanding of the components, and describe the code with

reference to the figure.
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Parameter Cache

A 4

parameter_caches
(parameter caches.v)

uparam_caches

Shader

SX

(sx.V)

SP_SX data0

N |

Position Cache

pa_ag lines 2786-2803
(pa_ag.v)

upa_ag

pa
(pa.v)

123. Once the vector units complete processing, the vector units
generate data called sp sx data (see vector. v, 4:5) and provide

sp sx_data to a shader export block, called the sx module (specified in sx. v).

124. For example, each MACC module generates a vector result, called
VectorResult(, VectorResultl, VectorResultZ, and
VectorResul t3respectively. (vector. v, 14:7, 14:25,15:10, and 15:26.) In
the MACC module the vector result is called oResult. (macc. v, 1:14, 3:6, and
29:1.) Signal oResult is generated based on the i Tnstruction, iRegData,

and iScalarData that are inputs to the MACC module. (/d. at 1:16, 1:25, 2:50.)
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The MACC module parses the i Tnstruction and assigns different bits of

iInstruction to color (red, green, blue) and alpha (transparency) signals, as

shown using R400 RTL code below:

//Registering the Instruction word (20 bits) in four
consecutive cycles

always@ (posedge sclk)
if(srst)
g InstructionO <= 21'b0;
else 1if(decode SrcA)
g Instruction0 <= ilnstruction;

always@ (posedge sclk)
if(srst)
g Instructionl <= 21'b0;
else 1f(decode SrcB)
g Instructionl <= ilnstruction;
always@ (posedge sclk)
if(srst)
g Instruction2 <= 21'b0;
else 1f(decode SrcC)
g Instruction2 <= iInstruction;

always@ (posedge sclk)
if(srst)
g Instruction3 <= 21'b0;
else 1f(decode Opcode)
g Instruction3 <= iInstruction;

//grabing the export destination ID.

//If we are dealing with an export instruction...this value
identifies which

//attribute is being exported ...please refer to the shader
pipe spec for more details

//on this

e
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//decoding the instruction word into a set of select/modify
signals used
//for argument selection and input modification on the way to

MACC unit

assign
assign
assign
assign
assign
assign

assign
assign
assign
assign
assign
assign

assign
assign
assign
assign
assign
assign

assign
assign
assign
assign
assign
assign

125. The MACC module then uses these color and alpha signals to

SrcASel = q;InstructionO[2:O];

SrcANegate = q;InstructionO[3:3];
SrcAAlphaSwizzle = g Instruction0[11:10];
SrcARedSwizzle = ¢ Instruction0[5:4];
SrcAGreenSwizzle = g Instruction0[7:6];
SrcABlueSwizzle = g Instruction0[9:8];

SrcBSel = g Instructionl(2:0];

SrcBNegate = g Instructionl[3:3];
SrcBAlphaSwizzle = g Instructionl[11:10];
SrcBRedSwizzle = g Instructionl[5:4];
SrcBGreenSwizzle = g Instructionl[7:6];

SrcBBlueSwizzle = g Instructionl(9:8];

SrcCSel = g Instruction2[2:0];

SrcCNegate = q Instruction2[3:3];
SrcCAlphaSwizzle = g InstructionZ[11:10];
SrcCRedSwizzle = g Instruction2[5:4];

SrcCGreenSwizzle = g Instruction2[7:6];
SrcCBlueSwizzle = g Instructionz(9:8];

VectorOpcode = g Instruction3[4:0];
ScalarOpcode = q;IhstructionS[lO:E];
VectorClamp = q_InstructionB[li:ll];
ScalarClamp = g Instruction3[12:12];
VectorWriteMask = g Instruction3[16:13];
ScalarWriteMask = g Instruction3[20:17];

(Id. at 10:12-13:6.)

manipulate the 1 RegData as shown using the RTL code below:

//Argument Selectin for the three source operands going into
the MACC unit
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//All information required for the selection logic in embedded
into the ALU
//Instrution Word. Please refer to the Shade Processor Spec

for a delailed
//definition of the select fields for the three sources

always@(SrcASel or iConstantData or iRegData or VectorData or
iScalarbData)

begin

case (SrcASel)
3'b000 InputDataA = iConstantData;
3'b100 InputDataA = iRegData;
3'bl01 InputDataA = iRegData;
3'h110 InputDataA = VectorData;
3'b111 : InputDataA = iScalarData;
default: InputDataA = iRegData;

endcase // case(SrcASel)
end // always@ (SrcASel or iConstantData or iRegData or
iVectorData or iScalarData)

always@ (SrcBSel or iConstantData or iRegData or VectorData
iScalarData)

begin

case (SrcBSel)
3'b000 InputDataB = iConstantData;
3'b100 InputDataB = iRegData;
3'bl01 InputDataB = iRegData;
3'b110 InputDataB = VectorData;,
3'pb111 : InputbDataB = iScalarData;
default: InputDataB = iRegData;,

endcase //

case (SrcBSel)

end // always@ (SrcBSel or iConstantData or iRegData or
iVectorData or iScalarData)

always@ (SrcCSel or iConstantData or iRegData or VectorData or

iScalarData)
begin

case (SrcCSel)
InputDataC =

3'h000
3'b100
3'h101
3'b110
3'hb111 :
default:

endcase //

InputDatacC
InputDataC
InputDatalC
InputDatacC
InputbDataC

case (SrcCsSel)

iConstantData;
iRegData;
iRegData;
VectorData;
iScalarData;
iRegData;

end // always@ (SrcCSel or iConstantData or iRegData or

iVectorData or iScalarData)
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//Input Modifiers ie. swizzle and negate are begin applied

//Source A swizzling

always@(InputDataA or SrcAAlphaSwizzle)
case (SrcAAlphaSwizzle)
2'p00: SrcAAlphaBus = InputbDataAl[l27:96];
2'b01: SrcAAlphaBus = InputDataA[95:64];
2'b10: SrcAAlphaBus = InputDataA[63:32];
2'pll: SrcAAlphaBus = InputDataA[31:0];
endcase // case(SrcAAlphaSwizzle)

always@(InputDataA or SrcARedSwizzle)
case (SrcARedSwizzle)
2'pb00: SrcARedBus = InputDataA[95:64];
2'b01: SrcARedBus = InputDataA[63:32];
2'p10: SrcARedBus = InputDataA[31:0];
2'b11: SrcARedBus = InputDataA[l27:96];
endcase // case(SrcARedSwizzle)

always@ (InputDataA or SrcAGreenSwizzle)
case (SrcAGreenSwizzle)
2'p00: SrcAGreenBus = InputbDataA[63:32];
2'b01: SrcAGreenBus InputDataAl[31:0];
2'b10: SrcAGreenBus = InputDataA[l27:96];
2'pll: SrcAGreenBus = InputDataA[95:64];
endcase // case(SrcAGreenSwizzle)

always@ (InputDataA or SrcABlueSwizzle)
case (SrcABlueSwizzle)
2'b00: SrcABlueBus InputDataA[31:0];
2'p01: SrcABlueBus = InputDataA[l27:96];
2'b10: SrcABlueBus = InputDataA[95:64];
2'pbll: SrcABlueBus = InputDataA[63:32];
endcase // case(SrcAGreenSwizzle)

//Source B swizzling

always@(InputDataB or SrcBAlphaSwizzle)
case (SrcBAlphaSwizzle)

2'b00: SrcBAlphaBus = InputDataB[127:96];
2'b01: SrcBAlphaBus = InputDataB[95:64];
2'b10: SrcBAlphaBus = InputDataB[63:32];

2'bll: SrcBAlphaBus = InputDataB[31:0];
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endcase

always@ (InputDataB or SrcBRedSwizzle)
case (SrcBRedSwizzle)

2'b00: SrcBRedBus = InputbDataB[95:64];
2'p01: SrcBRedBus = InputDataB[63:32];
2'p10: SrcBRedBus = InputDataB[31:0];
2'b11: SrcBRedBus = InputDataB[127:96];

endcase // case(SrcBRedSwizzle)

always@(InputDataB or SrcBGreenSwizzle)
case (SrcBGreenSwizzle)

2'b00: SrcBGreenBus = InputDataB[63:32];
2'b01: SrcBGreenBus = InputDataB[31:0];
2'pb10: SrcBGreenBus = InputbataB[127:96];
2'b11: SrcBGreenBus = InputDataB[95:64];

endcase // case(SrcBGreenSwizzle)

always@(InputDataB or SrcBBlueSwizzle)
case (SrcBBlueSwizzle)

2'b00: SrcBBlueBus = InputDataB[31:0];
2'p01: SrcBBlueBus = InputDataB[127:96];
2'b10: SrcBBlueBus = InputDataB[95:64];
2'bl1l: SrcBBlueBus = InputDataB[63:32];

endcase // case(SrcBGreenSwizzle)

//Source C swizzling
always@ (InputDataC or SrcCAlphaSwizzle)
case (SrcCAlphaSwizzle)

2'p00: SrcCAlphaBus = InputbDataC[127:96];

2'b01: SrcCAlphaBus = InputDataC[95:64];

2'b10: SrcCAlphaBus = InputDataC[63:32];

2'pll: SrcCAlphaBus = InputbDataC[31:0];
endcase

always@ (InputDataC or SrcCRedSwizzle)
case (SrcCRedSwizzle)

2'p00: SrcCRedBus = InputDataC[95:64];
2'p01: SrcCRedBus = InputDataC[63:32];
2'b10: SrcCRedBus = InputbDataC[31:0];
2'pll: SrcCRedBus = InputDataC[127:96];

endcase // case(SrcCRedSwizzle)

always@ (InputDataC or SrcCGreenSwizzle)
case (SrcCGreenSwizzle)

2'b00: SrcCGreenBus = InputDataC[63:32];
2'p01: SrcCGreenBus = InputbataC([31:0];
2'b10: SrcCGreenBus = InputDataC[l127:96];
2'b11: SrcCGreenBus = InputDataC[95:64];

endcase // case(SrcCGreenSwizzle)
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always@(InputDataC or SrcCBlueSwizzle)
case (SrcCBlueSwizzle)
2'b00: SrcCBlueBus
2'h01: SrcCBlueBus InputbDataC[127:96];
2'h10: SrcCBlueBus InputDataC[95:64];
2'pbll: SrcCBlueBus = InputDataC[63:32];
endcase // case(SrcCGreenSwizzle)

InputbataC[31:0];

//Modeling stages for the Argument storing

// always@(SrcAAlphaBus or decode SrcA)
// if(decode SrcA)
S/ SrcAAlphaBusLatchl = SrcAAlphaBus;

always@ (posedge sclk)

if (decode SrcB)

begin
SrcAAlphaBusLatchl <= SrcAAlphaBus;

SrcARedBusLatchO <= SrcARedBus;

SrcAGreenBusLatchO <= SrcAGreenBus;
SrcABlueBusLatchO <= SrcABlueBus;

end

always@ (posedge sclk)
if (decode SrcC)

begin
SrcBAlphaBusLatchl <= SrcBAIlphaBus;
SrcBRedBusLatchl <= SrcBRedBus;
SrcBGreenBusLatch(O <= SrcBGreenBus;
SrcBBlueBuslLatchO <= SrcBBlueBus;
end

always@ (posedge sclk)
if (decode Opcode)

begin
SrcCAlphaBusLatchl <= SrcCAlphaBus;
SrcCRedBusLatchl <= SrcCRedBus;
SrcCGreenBusLatchl <= SrcCGreenBus;
SrcCBlueBusLatchO <= SrcCBlueBus;
end

//second level of latches
always@ (posedge sclk)
if (decode Srch)
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begin

SrcARedBuslLatchl <= SrcARedBusLatchO;
SrcAGreenBusLatchl <= SrcAGreenBusLatchO;
SrcABlueBusLatchl <= SrcABlueBusLatchO;
SrcBGreenBusLatchl <= SrcBGreenBusLatchO;
SrcBBlueBusLatchl <= SrcBBlueBusLatchO;
SrcCBlueBusLatchl <= SrcCBlueBusLatchO;
end

always@ (posedge sclk)

begin
if (decode SrcA)

OperandA <= SrcAAlphaBusLatchl;
else if(decode SrcB)

OperandA <= SrcARedBusLatchl;
else 1if (decode SrcC)

OperandA <= SrcAGreenBusLatchl;
else

OperandA <= SrcABlueBusLatchl;
end // always@ (sclk)

always@ (posedge sclk)

begin
if(decode SrcA)

OperandB <= SrcBAlphaBuslLatchl;
else 1if (decode SrcB)

OperandB <= SrcBRedBusLatchl;
else 1if (decode SrcC)

OperandB <= SrcBGreenBusLatchl;
else

OperandB <= SrcBBlueBusLatchl;
end // always@ (sclk)

always@ (posedge sclk)

begin
if (decode SrcA)

OperandC <= SrcCAlphaBusLatchl;
else if (decode SrcB)

OperandC <= SrcCRedBusLatchl;
else 1if (decode SrcC)

OperandC <= SrcCGreenBusLatchl;
else

OperandC <= SrcCBlueBusLatchl;
end // always@ (sclk)
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//Input Modifier ....NEGATE.

always@(SrcANegate or OperandA)
i1f(SrcANegate)
OperandAMod[31:0]=
{OperandA[31] "SrcANegate,OperandA[30:0]};
else
OperandAMod = OperandA;

always@ (SrcBNegate or OperandB)
1f (SrcBNegate)
OperandBMod[31:0]=
{OperandB[31] "SrcBNegate,OperandB[30:0] };
else
OperandBMod = OperandB;

always@ (SrcCNegate or OperandC)
1f(SrcCNegate)
OperandCMod[31:0]=
{OperandC[31] "SrcCNegate,OperandC[30:0]};
else
OperandCMod = OperandC;

(/d. at 13:8-23:22))

126. Then, the MACC module generates oResul t which includes, for
example, a color or alpha attribute as a results of instructions in the color and alpha

parameters, using the R400 RTL code below:

//Floating point Multiply and Accumulate
macc3Z2 mad (OperandAMod, OperandBMod, OperandCMod,
VectorOpcode ,MaccResult ,sclk) ;

//some of the opcodes do not have to be implemented via the
MACC unit

//for example : MAX can be implemented via compares of the
exponents and/or mantissas of

//the two numbers assuming that the numbers are normalized

//this is a separate parallel pipeline from the MACC

//MIN or MAX
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//revisit this logic for the case when exp = 0 ...ANDT
always @(/*AUTOSENSE*/OperandAMod or OperandBMod)
begin
1f(OperandAMod[30:0] >= OperandBMod[30:0])
begin
1f(!OperandAMod[31])
begin
ResultMax = OperandAMod;
ResultMin = OperandBMod;
end
else
begin
ResultMax = OperandBMod;
ResultMin = OperandAMod;
end

end // if (OperandAMod[30:0] >= OperandBMod[30:0])
else 1if (OperandBMod[30:0] >= OperandAMod[30:0])

begin
if(!OperandBMod[31])
begin
ResultMax = OperandBMod;
ResultMin = OperandAMod;
end
else
begin
ResultMax = OperandAMod;
ResultMin = OperandBMod;
end
end // if (OperandBMod[30:0] >= OperandAMod[30:0])

end // always @ (...

//choose MIN vs. MAX
assign ResultMaxMin =
ResultMin;

(opcode mux ctl[1]) ? ResultMax

//delay the ResultMaxMin to match with the other path of the
pipeline that goes through the MACC
always@ (posedge sclk)
begin

g0 ResultMaxMin
gl ResultMaxMin
g2 ResultMaxMin
g3 ResultMaxMin

<= ResultMaxMin;

<= g0 ResultMaxMin;
<= gl ResultMaxMin;
<= g2 ResultMaxMin;

end

reg [31:0] MaccResultMux;

//Routing the Result into MaccResultMux based on the
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always @(/*AUTOSENSE*/MaccResult or g3 ResultMaxMin
or g4 opcode mux ctl)

begin

case (g4 opcode mux ctl)
2'b00: MaccResultMux = MaccResult;
2'b01: MaccResultMux = q3_ResultMaxMin;
2'b10: MaccResultMux = g3 ResultMaxMin;
default : MaccResultMux = MaccResult;

endcase // case(opcode mux ctl)

end

//Clamping the result and other output modifiers
always@(/*AUTOSENSE* /MaccResul tMux or ResultClamp)
begin
if(ResultClamp)
begin
if(MaccResultMux[31])
MaccResultClamp = ZERO;
else if(MaccResultMux[30:24] > GI _ONE EXP)
MaccResultClamp = ONE;
else
MaccResultClamp = MaccResultMux;
end
else
MaccResultClamp = MaccResultMux;
end // always@ (MaccResult or ResultClamp)

//pipeline delays for the code....creating the 4 stage delay
for the VectorResult

always@ (posedge sclk)
begin
g0 MaccResultClamp <= MaccResultClamp;
gl MaccResultClamp <= g0 MaccResultClamp;
g2 MaccResultClamp <= gl MaccResultClamp;
end

assign VectorData = {gZ MaccResultClamp, gl MaccResultClamp,
g0 MaccResultClamp, MaccResultClamp};

assign oResult = {qgZ MaccResultClamp, gl MaccResultClamp,
g0 MaccResultClamp, MaccResultClamp} ;

(Id. at24:25-29:2)
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127. Each one of MACC modules passes the oResul t output to the
respective VectorResult(, VectorResultl, VectorResult2, and

VectorResul t 3 signals, which include an appearance attribute. The shader thus

generates an appearance attribute.

128. The vector result signals (VectorResult0, VectorResult],
VectorResult?2, and VectorResult3)are assigned to sp_sx data using

the R400 RTL code below:

//Muxing the gpr vector results into one final vector result
conrolled by the phase mux signal or a registered version of it

always @(/*AUTOSENSE*/VectorResult(0 or VectorResultl
or VectorResultZ or VectorResult3 or
sq_sp gpr phase mux)

begin

case(sq sp gpr phase mux)
2'b00: osp sx data = VectorResultO;
2'b01: osp sx data VectorResultl;
2'b10: osp sx data VectorResultZ;
2'bll: osp sx data = VectorResult3;

endcase // case(sq sp gpr phase mux)

end

assign sp sx data = osp sx datay;

(vector.v, 16:8-16:26.)

129. Additionally, the vectoxr unit also sets the sp sx exporting

and sp sx exp pvalid signals which indicate that the shader in the sp
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module will export sp sx data and that the data is valid. (vector. v, 19:23-

20:22,22:4,22:7.)

130. The vector unit then passes the sp sx data,
sp sx exporting, and sp sx exp pvalidsignalsto the sp module. (/d.
at 1:16-17.) The sp module assigns sp sx data from uvector0 to
osp sx dataOl, sp sx datafrom uvectorltoosp sx datal,
sp sx data from uvector2to osp sx dataZ,and sp sx data from
uvector3to osp sx data3.(sp.v,15:11,16:16,17:7,17:26.) The sp
module interface also provides sp sx exportingto sp exporting, and

sp sx exp pvalidtosp exp pvalid. (Id at15:12,15:15.)

131. The sp module then assigns the osp sx data0, osp sx datal,
osp sx dataZ, and osp sx data3signalsandthe sp exporting, and
sp sx exp pvalidsignalstothe SP_SX interface, using the R400 RTL code

below:

//SHADER (SP) - SX(SHADER EXPORT)

//This interface represents pixel/parameter data being
exported out of the shader pipe

//into the SX block

output [127:0] SP_SX data0l,
SP _SX datal,SP SX dataz,SP SX data3;
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wire [127:0] g sp sx data0, g sp sx datal , q sp sx dataz ,
g sp _sx data3;
wire [127:0] osp_sx data0, osp sx datal , osp sx dataZ ,

osp_sX data3;

ati dff out #(128) usp sx data0O(sclk,
osp sx data0,q sp sx data0);

ati dff out #(128) usp sx datal(sclk,
osp sx datal,q sp sx datal);

ati drf out #(128) usp sx dataZ2(sclk,
osp sx dataz,q sp sx dataZ);

ati dff out #(128) usp sx data3(sclk,
osp sx data3,q sp sx data3);

//export data going out to SX (shader export)

assign SP SX datal = g sp sx data0;
assign SP SX datal = g sp sx dataly;
assign SP SX dataZ = g sp sx dataz;
assign SP SX data3 = g sp sx data3;
(/d. at 3:18-4:10.)
output [3:0] SP SX exp pvalid;

output [0:0] SP SX exporting ;

wire [3:0] sp_exp pvalid;

wire [0:0] sp exporting ;
wire [3:0] g sp_exp pvalid;
wire [0:0] g sp exporting ;

ati dff out #/(4)

usp exp pvalid(sclk,sp exp pvalid,q sp exp pvalid);
ati dff out #(1)

usp_exporting(sclk,sp exporting,q sp exporting);

assign SP SX exp pvalid = g sp exp pvalid;
assign SP SX exporting = g sp exporting ;

(ld. at 7:14-15, 19-20, 24-25, 8:4-5, 9-10.)

132. Whenthe SP SX exporting and SP SX exp pvalid
parameters indicate that the SP SX data0-SP SX data3 datais valid, the

sp module exports the data to the shader export block (the sx module). Because
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the sp module exports the SP SX data0O-SP SX data3 generated by the

shader, the shader provides an appearance attribute.

B. Claim 2

133. Claim 2 recites the graphics processor of claim 1, “further including a
vertex storage block for maintaining vertex information.” Based on my
understanding of the R400 RTL code, I have generated a figure below which
represents my understanding of the components, and describe the code with

reference to the figure.
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Vertex Storage Block

Vertex Buffer

sq_thread_buff

Shader

sp
(sp.Vv)

134. The vertex storage block includes a vertex thread buffer called

u sq vtx thread buff (sqg.v,34:19-38:18), a parameter cache called

(sq_thread buff.v)

u_sq_vix_thread_buff

sq
(sq.v)

Parameter Cache

SP_SX_data0

4

parameter_caches

(parameter_caches.v)

uparam_caches

SX

(8x.Vv)

Position Cache

L4

pa_ag lines 2786-2803
(pa_ag.v)

upa_ag

pa

(pa.v)

uparam caches (sx.v,20:13-21:3), and a position cache
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u pos dum mem pZ(pa ag.v,112:21-2113:5; also shown as lines 2786-

2803 in my figure above).

C. Claim 3

135. Claim 3 recites a vertex storage block that further includes a
parameter cache and a position cache. I have already identified where the vertex
storage block includes the parameter cache and the position cache in my analysis

of claim 2 in Section IX.B.
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Vertex Storage Block

Vertex Buffer

sq_thread_buff
(sq_thread buff.v)

u_sq_vitx_thread_buff

sq
(sq.Vv)

Parameter Cache

parameter_caches

(parameter_caches.v)

uparam_caches

Shader

SX

(sx.V)

SP_SX_data0

sp Position Cache
(sp.v)

pa_ag lines 2786-2803
(pa_ag.v)

upa_ag

pa
(pa.v)

1 The vertex storage block further includes a parameter cache

136. Claim 3 recites a graphics processor of claim 2, “vertex storage block
further includes a parameter cache operative to maintain appearance attribute data

for a corresponding vertex.” As discussed in Section IX.C, the vertex storage block
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includes a parameter cache called uparam_caches. (sx. v, 20:13-21:3.) Module
uparam caches is an instance of a parameter caches module and is

defined in parameter caches.v.

137. AsTalso described in Section IX.A.3, the shader provides appearance
datain SP SX data0-SP SX data3 to the shader export block included in
the sx module. The sx module receives the SP SX datal- SP SX data3
using the R400 RTL code replicated below:

module sx(/*AUTOARG*/

SQ SX pc channel mask, SPO SX data0, SPO _SX datal, SPO SX dataz,
SPO _SX data3, SPI SX data0, SP1 SX datal, SP1 SX dataz,
SP1 SX data3, SPO_SX exp pvalid, SP1 SX exp pvalid,

input [127:0] PO _SX data0,SP0 _SX datal,SP0 SX dataz,SP0 _SX data3;
input [127:0] P1 5X data0,SP1 SX datal,SP1 SX dataZ,SP1 SX data3;

(sx.v,1:12,2:8-10, 5:10-11.)

138. The the R400 RTL code above demonstrates that the shader export
module receives SP SX dataO-SP SX data3 from two shaders, as
SP0O SX dataO- SP0 _SX data3and SP1 SX data0O-SP1 SX data3.
For simplicity, I analyze the components here with respectto SP SX data0-

SP SX data3 as thatis sufficient to meet the claim limitations.
139. The signals SP SX data0-SP SX data3 include appearance
attribute data for a corresponding vertex that was processed by the shader.
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140. The shader export circuit passes SP0 SX datal -
SP0O SX data3to uparam caches.(sx.v,20:24-26.) Module
uparam_caches includes eight uparam cache ctll -
uparam cache ctl7instances of the uparam cache ctl module. The

uparam cache ctl moduleis defined in parameter cache ctl.v.

141. The first four instances maintain SP SX data0-SP SX data3.

(parameter caches.v,5:4-8:12.)

142. The uparam cache ctl module maintains SP SX dataO0-
SP SX data3which the uparam cache ctl module receives as
SP SX data.(param cache ctl.v,1:19-20.) The uparam cache ctl
module then reads and writes (maintains) SP SX data in the memory module type
“rfsd2 128x128cm2sw0” called “u pc” as shown in using the R400 RTL

code below:

always @ (posedge sclk)
begin
if(srst)
begin
pc ptro <= 11'b0;
pc ptrl <= 11'b0;
pc ptrz <= 11'b0;
pc wr en <= 1'b0;
pg_w:_addr <= 7'b0;
pc _cmask <= 4'b0;
vertex data in <= 127'b0;
q0 vertex data out <= 127'b0;
end
else
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begin
pc ptr0 <= SQ SX ptro;
pc ptri <= SQ SX ptri;
pc ptr2 <= S0 SX ptrz;
pc wr en <= SQ SX pc wr en;
pc wr addr <= S0 SX pc wr addr;
pc_cmask <= SQ SX pc cmask;
vertex data in <= SP SX data;
g0 vertex data out <= vertex data out;

end

end // always @ (posedge sclk)

rfsdz 128x128cmZ2swl0 u pc
S/ tp coord fifo ram utp coord fifo ram 0

// (/*VRGIO tp coord fifo ram cfifo in cfifo out
q cfifo wptr g cfifo rptr cfifo ram wen cfifo ram ren I0*/
/7 )

(/*VRGIO rfsd2 128x128cm2sw0 vertex data in vertex data out
pc wr addr pc index pc wr en pc rd en null*/

// READ INTERFACE

.CLKB(1iSCLK), // Read Clock

.CEB(pc_rd en), // Output enable

.MEB(vdd), // Read enable

.ADRBO (pc_index[0]), .ADRBI (pc index[1]),
.ADRBZ (pc_index[2]), .ADRB3(pc index[3]), // Read Address

.ADRB4 (pc_index[4]), .ADRB5 (pc index[5]),
.ADRB6 (pc _index[6]), // Read Address

.OBO (vertex data out(0]), .0OBl(vertex data out[1l]),
.0BZ (vertex data outf2]), .0B3(vertex data out[3]), // Read Data

.OB4 (vertex data out[4]), .QBS(vertex data out[5]),
.0B6(vertex data out[6]), .0B7(vertex data out[7]), // Read Data

.0B8 (vertex data out[8]), .QB9(vertex data out[9]),
.QBI0 (vertex data out[10]), .0QB1I(vertex data out(11]), // Read
Data

.0QOBiz(vertex data out[12]), .0QBI3(vertex data out[13]),
.0Bl14 (vertex data out[14]), .0Bl5(vertex data out([15]), // Read
Data

.0QOBi6(vertex data out[16]), .QBl17(vertex data out[17]),
.QB18 (vertex data out[18]), .QBl9(vertex data out(19]), // Read
Data

.QB20 (vertex data out[20]), .QBZI(vertex data out[21]),
.QB22 (vertex data out[22]), .0B23(vertex data out(23]), // Read
Data

.0B24 (vertex data out[24]), .QB25(vertex data ocut[25]),
.QB26 (vertex data out[26]), .0QB27(vertex data out(27]), // Read
Data

.0B28 (vertex data out[28]), .QB29(vertex data out[29]),
. QB30 (vertex data out[30]), .0B31(vertex data out(31]), // Read
Data

.0OB3Z2 (vertex data out[32]), .0B33(vertex data out[33]),
.0B34 (vertex data out[34]), .QB35(vertex data out[35]), // Read
Data
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.0B36 (vertex data out[36]), .0B37(vertex data out[37]),
.0B38 (vertex data out[38]), .QB39(vertex data out[39]), // Read
Data

.0B40 (vertex data out[40]), .QB4l1(vertex data out[41l]),
.0B42 (vertex data out[42]), .QB43(vertex data out[43]), // Read
Data

.0B44 (vertex data out[44]), .0B45(vertex data out[45]),
.0B46 (vertex data out[46]), .0QB47(vertex data out(47]), // Read
Data

.0B48 (vertex data out[48]), .0B49(vertex data out[49]),
.0B50 (vertex data out[50]), .0B51(vertex data out([51]), // Read
Data

.0B52 (vertex data out[52]), .0B53(vertex data out[53]),
.0B54 (vertex data out[54]), .0BS55(vertex data out[55]), // Read
Data

.0B56 (vertex data out[56]), .0B57(vertex data out[57]),
.0B58 (vertex data out[58]), .0B59(vertex data out([59]), // Read
Data

.QB60 (vertex data out[60]), .QB6I(vertex data out[61]),
.QB62 (vertex data out[62]), .0QB63(vertex data out[é63]), // Read
Data

.0B64 (vertex data out[64]), .QB65(vertex data out[65]),
.QB66 (vertex data out[66]), .QB67(vertex data out[é67]), // Read
Data

.0B68 (vertex data out[68]), .QB69(vertex data out[69]),
.QB70 (vertex data out[70]), .QB71(vertex data out([71]), // Read
Data

.OB72 (vertex data out[72]), .QB73(vertex data out[73]),
.0B74 (vertex data out[74]), .QB75(vertex data out([75]), // Read
Data

.0B76 (vertex data out[76¢]), .0QB77(vertex data out[77]),
.0B78 (vertex data out[78]), .QB79(vertex data out[79]), // Read
Data

.0B80 (vertex data out[80]), .0B8I1(vertex data out[81]),
.0B82 (vertex data out[82]), .QB83(vertex data out[83]), // Read
Data

.0B84 (vertex data out[84]), .0B85(vertex data out[85]),
.0B86 (vertex data out[86]), .QB87(vertex data out[87]), // Read
Data

.0B88 (vertex data out[88]), .0B89(vertex data out[89]),
.0B90 (vertex data out[90]), .0B91(vertex data out(91]), // Read
Data

.0B92 (vertex data out[92]), .0B93(vertex data out[93]),
.0BY94 (vertex data out[94]), .0B95(vertex data out([95]), // Read
Data

.0B96 (vertex data out[96]), .0QB97(vertex data out[97]),

B98 (vertex data out[98]), .0B99(vertex data out[99]), // Read

Data

.QBI100 (vertex data out[100]), .QBI10I(vertex data out[101]),
.OB102 (vertex data out[102]), .QB103(vertex data out[103]), //
Read Data
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.QB104 (vertex data out[104]), .QBI105(vertex data out[105]),
.0B106 (vertex data out[106]), .0QB107(vertex data out[107]), //
Read Data

.QBI108 (vertex data out[108]), .QBI109(vertex data out[109]),
.0B110(vertex data out[110]), .0OBl11l(vertex data out[111]), //
Read Data

.QBI1Z(vertex data out[112]), .QBI113(vertex data out[113]),
.0Bl114(vertex data out[I114]), .0OBl1l15(vertex data out[115]), //
Read Data

.QBIl6(vertex data out[116]), .QBI117(vertex data out[117]),
.0B118 (vertex data out[118]), .0Bl119(vertex data out[119]), //
Read Data

.QBI120 (vertex data out[120]), .QBI1ZI(vertex data out[121]),
.0Bl122 (vertex data out[122]), .0Bl123(vertex data out[123]), //
Read Data

.QBI124 (vertex data out[124]), .QBI125(vertex data out[125]),
.QBl26(vertex data out[126]), .QBl127(vertex data out[127]), //
Read Data

// WRITE INTERFACE

.CLKA(iSCLK), // Write Clock

.WEA(pc_wr en), // Write enable

.MEA(vdd), // Memory enable

.ADRAO (pc_ wr addr([0]), .ADRAI (pc wr addr[1]),
.ADRAZ (pc wr addr(2]), .ADRA3(pc wr addr(3]), // Write Address

.ADRA4 (pc wr _addr([4]), .ADRA5(pc wr addr([5]),
.ADRAG6 (pc wr addr[é6]), // Write Address

.DAO(vertex data in[0]), .DAIl(vertex data in[1]),

.DAZ (vertex data in([2]), .DA3(vertex data in[3]), // Write Data

.DA4d (vertex data in(4]), .DA5(vertex data in[5]),

.DA6 (vertex data in[6]), .DA7(vertex data in[7]), // Write Data

.DA8 (vertex data in(8]), .DA9(vertex data in[9]),

.DA10 (vertex data in[10]), .DAll(vertex data in[11]), // Write
Data

.DAl12 (vertex data in[12]), .DAl3(vertex data in[13]),

.DA14 (vertex data in[14]), .DAl1S5(vertex data in[15]), // Write
Data

.DAl6 (vertex data in[16]), .DAl7(vertex data in[17]),

.DA18 (vertex data in[18]), .DA19(vertex data in[19]), // Write
Data

.DA20 (vertex data in[20]), .DAZI1(vertex data in[21]),

.DA22 (vertex data in[22]), .DA23(vertex data in[23]), // Write
Data

.DA24 (vertex data in[24]), .DAZ5(vertex data in[25]),

.DAZ6 (vertex data in[26]), .DAZ7(vertex data in[27]), // Write
Data

.DA28 (vertex data in[28]), .DA29(vertex data in[29]),

.DA30 (vertex data in[30]), .DA3I1(vertex data in[31]), // Write
Data

.DA32 (vertex data in[32]), .DA33(vertex data in[33]),

.DA34 (vertex data in[34]), .DA35(vertex data in[35]), // Write
Data
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.DA36 (vertex data in[36]), .DA37(vertex data in([37]),
.DA38 (vertex data in[38]), .DA39(vertex data in[39]), // Write
Data

.DA40 (vertex data in[40]), .DA41(vertex data in[41]),
.DA42 (vertex data in[42]), .DA43(vertex data in[43]), // Write
Data

.DA44 (vertex data in[44]), .DA45(vertex data in[45]),
.DA46 (vertex data in[46]), .DA47(vertex data in[47]), // Write
Data

.DA48 (vertex data in[48]), .DA49(vertex data in[49]),
.DA50 (vertex data in[50]), .DA5I(vertex data in[51]), // Write
Data

.DA52 (vertex data in[52]), .DA53(vertex data in[53]),
.DA54 (vertex data in[54]), .DA55(vertex data in[55]), // Write
Data

.DA56 (vertex data in[56]), .DA5S7(vertex data in[57]),
.DA58 (vertex data in[58]), .DA59(vertex data in[59]), // Write
Data

.DAE0 (vertex data in[60]), .DA6I(vertex data in[61]),
.DA62 (vertex data in[62]), .DA63(vertex data in[63]), // Write
Data

.DA64 (vertex data in[64]), .DA65(vertex data in[65]),
.DA66 (vertex data in[66]), .DA67(vertex data in[67]), // Write
Data

.DA68 (vertex data in[68]), .DA69(vertex data in[69]),
.DA70 (vertex data in[70]), .DA71(vertex data in[71]), // Write
Data

.DA72 (vertex data in[72]), .DA73(vertex data in(73]),
.DA74 (vertex data in[74]), .DA75(vertex data in[75]), // Write
Data

.DA76 (vertex data in[76]), .DA77(vertex data in([77]),
.DA78 (vertex data in[78]), .DA79(vertex data in[79]), // Write
Data

.DA80 (vertex data in[80)]), .DA8I(vertex data in([81]),
.DA82 (vertex data in[82]), .DA83(vertex data in[83]), // Write
Data

.DA84 (vertex data in[84]), .DA85(vertex data in[85]),
.DA86 (vertex data in[86]), .DA87(vertex data in[87]), // Write
Data

.DA88 (vertex data in[88]), .DA89(vertex data in[89]),
.DA90 (vertex data in[90]), .DA91 (vertex data in[91]), // Write
Data

.DA92 (vertex data in[92]), .DA93(vertex data in[93]),
.DA94 (vertex data in[94]), .DA95(vertex data in[95]), // Write
Data

.DA96 (vertex data in[96]), .DA97(vertex data in[97]),
.DA98 (vertex data in[98]), .DA99(vertex data in[99]), // Write
Data

.DAI00 (vertex data in[100]), .DA10I(vertex data in[101]),
.DA102 (vertex data in[102]), .DA103(vertex data in[103]), //
Write Data
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.DA104 (vertex data in[104]), .DAIO5(vertex data in([105]),
.DA106 (vertex data in[106]), .DAI07(vertex data in[107]), //
Write Data

.DA108 (vertex data in[108]), .DAI109 (vertex data in[109]),
.DA110(vertex data in[110]), .DA11l(vertex data in[111]), //
Write Data

.DAll2(vertex data in[112]), .DAl113(vertex data in[113]),
.DAl14(vertex data in[114]), .DAl1l5(vertex data in[115]), //
Write Data

.DAllé6(vertex data in[116]), .DAI17(vertex data in[117]),
.DAll18(vertex data in[118]), .DAl1l19(vertex data in[119]), //
Write Data

.DA120(vertex data in[120]), .DAl1Z21(vertex data in[121]),
.DAl22 (vertex data in[122]), .DAl123(vertex data in[123]), //
Write Data

.DAl24 (vertex data in[124]), .DAl1Z25(vertex data in[125]),
.DAl26(vertex data in[126]), .DAl127(vertex data in[127]), //
Write Data

(param_cache ctl.v, 3:4-4-36:17-11:12.)

143. For example param cache ctl provides input data to
vertex data in and then storesthe SP SX data inthe u pc memory, or
uses the vertex data out signal toreads SP SX data fromthe u pc
memory. Because the parameter cache is operative to store and read the SP_SX
data (the vertex data) from memory, the parameter cache is operative to maintain

the appearance attribute data.

144. In this way, the vertex storage block includes a parameter cache

operative to maintain appearance attribute data for a corresponding vertex.

2. The vertex storage block and a position cache

145. Claim 3 also recites a vertex storage block that includes “a position

cache operative to maintain position data for a corresponding vertex.” A position
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cache, which is called the position memory in the R400 RTL code, is instantiated

inpa ag.v, as replicated below:

// Instantiate the position memory
// 1 64d x 128w
dum mem p2 #/(
u pos ADDR WIDTH ,
u pos DATA WIDTH ,
u pos WORDS P
u pos DEBUG
)
u pos dum mem p2 (
.iRCLK(sclk),
.iWCLK(sclk),
. 1MER (pos_re),
. IMEW (pos_mem we) ,
. 1WEN (pos_mem we) ,
.1RADR(pos raddr),
. IWADR (pos_mem waddr) ,
.1D(pos pntsz ag mem data),
.00 (pos rdata));

(pa_ag.v,112:13-113:5))

146. The mput data to the position cache is provided on signal
pos pntsz ag mem data at, for example, 113:4 of pa ag.vofthe pa ag
module. The pa agmodule receives pos pntsz ag mem data at3:13 and

8:3ofpa ag.v.

147. The pos pntsz ag mem data signal is provided by the pa
module as signal ccg ag pos pntsz mem wrdata.(pa.v,41:4.) The pa
modulereceives the ccg ag pos pntsz mem wrdata signal from the

shader export block nterface and clip code generator called the upa sxifccg
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module at 49:11-53:11 in pa. v. In particular, the
ccg ag pos pntsz mem wrdata is assigned from the

oposition wrdata signal. (pa. v, 52:23.)

148. The upa sxifccgmodule is specified in pa sxifccg. v. Inthe
upa sxifccgmodule, the oposition wrdata is defined as an output.

(pa sxifccg.v,8:22)

149. The oposition wrdata signal is assigned from signal
position wrdataatl7:24inpa sxifccg.v.The position wrdata
signal is defined as the output of the position memory at 26:2 of pa sxifccg.v.
The position wrdata signal comes from upa ccg sxifsm(whichis
defined in pa ccg sxifsmmodule) on an output called

omem position wrdata.(pa sxiccg.v,15:23-26:25.)

150. Inthe pa ccg sxifsmmodule omem position wrdatais
defined at 4:7 and 7:12 (pa ccg sxifsm.v),and is assigned a value from

tcl scratch mem position data.(pa ccg sxifsm.v, 18:13.)

151. The tcl scratch mem position data signal receives data
from sx to pa vector (ld. at40:21,41:21). The value in

sx to pa vectorisprovidedby isx to pa vector Oor
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isx _to pa vector 1.(Id. at17:50r17:9.)The isx to pa vector Oor
isx to pa vector 1 signalsaremnputstothe pa ccg sxifsmmodule.
(Id. at6:14,6:18.) The isx to pa vector Oor isx to pa vector 1
signals are connected to the signals sx0 receive fifo rddata and

sx1 receive fifo rddatarespectively. (pa sxifccg.v,25:3,25:7).
The sx0 receive fifo rddataand sxl receive fifo rddata
signals come from the read data signals at the “receive fifos™ (the first-in, first-
out, buffers). (/d. at 20:3, 21:2). The “receive fifos” have read data from the
sx0 receive fifo wrdataand sxl receive fifo wrdata
signals. (ld. at 19:25,20:24.) The sx0 receive fifo wrdata and

sx1l receive fifo wrdata signals are provided by

isx0 receive fifo wrdataand isxl receive fifo wrdata (id. at

15:19, 15:22) which are defined as inputs at 6:21 and 6:24 of pa sxifccg.v.

152. The isx0 receive fifo wrdata and
isxl receive fifo wrdata signals are provided by
SX0 PA input data wrdataand SX1 PA input data wrdata.
(pa.v,50:13,50:17.) The SX0 PA input data wrdata and
SX1 PA input data wrdata signals are assigned the values of

SX0 PA input data gand SXI PA input data q.(ld at36:12-13,
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36:18-19.) The SX0 PA input data gand SXI PA input data g
signals are assigned values from SX0 PA input data and

SX1 PA input data. (ld.at33:7,33:13.) The SX0 PA input dataand
SX1 PA input data signals come from u0 SX PA data and

ul SX PA data, (id. at 36:9-10, 36:18-19), that are defined as coming from the

shader export block. (/d. at 4:18, 5:2, 8:7, and 8:15.)

153. The pa module receives u0 SX PA data and ul SX PA data
from the shader export block. The shader export block includes SX PA data.
(sx.v,19:19.) The SX PA data signal comes from g sx pa data (sx.v,
20:3)and g sx pa data comes from sx_pa data (id. at 19:25,) which comes
from the signal of the same name in the export control module. (sx. v,
22:1) The sx pa data signal is defined at 7:11 in export_control.v and
provided from the export buffers module asthe oclipp data signal.
(export control.v,75:10.) The oclipp data signal is defined at 2:25 of
export_buffers.v and is assigned from g clipp data. (Id at83:16). The
g clipp data signalisassigned from clipp data. (/d. at83:8.) The
clipp data signalisassigned in export buffers.v at78:6-14 and
76:23-77:22, which comes through a queue at 8:13-22 or 8:25-16:4. The data in the

queue comes from the shader processor and becomes ipixel data0.In
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particular, SP SX datal is output from the sp module. (sp. v, 1:21, 3:23.).
The SP SX data0O signal provided by the sp module becomes SP0 SX data0
input in the sx module. (sx. v, 2:8,5:10.) The SPO SX data0 signal becomes
g sp0 sx data0 (id. at 5:16), and is provided to the export control

module as sp0 sx data0. (Id. at22:18.)

154. The export_control module is specified in export control.v.
The sp0 sx data0 signal is defined as an input in export control.vand
1s then propagated to the export_buffers module as ipixel datal.

(export control.v,75:15)

155. In this way, a position cache is operative to maintain position data for

a corresponding vertex.

D. Claim 5
1 The appearance attribute is position

156. Claim 3 recites “wherein the appearance attribute is position.” In my
analysis of claim 1 in Section IX.A .3, I explained how a shader provides an
appearance attribute. As I described in my analysis of claim 3, the appearance

attribute is position when the selected input is vertex data.
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157. Also, when the MACC module parses i Tnstruction, as I discussed

in Section IX.A.3, the MACC module parses out an export destination called

oExportDst, as shown using R400 RTL code, replicated below:

//grabing the export destination ID.

//If we are dealing with an export instruction...this value
identifies which

//attribute is being exported ...please refer to the shader
pipe spec for more details

//on this

e

assign oExportDst = g Instruction0[17:12];

(macc. v, 11:15-20.)

158. The oExportDst parameter determines whether the data exported

from the sp module is pixel data or vertex data, and 1s outputted from the MACC

module to the mac gpr module as cexport dst.(ld. at3:19.) The mac gpr

module then outputs cexport dst tothe vectorunitas sqg sp exp dst.

(macc gpr.v,14:8.) The vector unit outputs sqg sp exp dst, tothe sp

module as shown using the R400 RTL code below:

g0 sq exp dst <= sg sp exp dst;

gl sg exp dst
gz sq exp dst
g3 _sqg exp dst
g4 sqg exp dst
qﬁ:sq:exp_dst
g6 sqg exp dst
g7 _sq exp dst
g8 sqg exp dst
g9 sg exp dst

= g0 sq exp dst;
= gl sq exp dst;

gz sqg exp dst;
g3 sqg exp dst;
q{:sq:exé:dst;
g5 sq exp dst;
g6 _sq exp dst;

= g7 _sqg exp dst;
= g8 sq exp dst;

gl0 sq exp dst <= g9 sqg exp dst;
gll sq exp dst <= gl0 sg exp dst;

assign sp sx _exp dst = gl0 sqg exp dst;
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(vector.v, 21:12-23,22:7.)

159. The sp module outputs sp sx exp dst to the shader export block

(the sx module) as SP SX exp dest.(See sp.v, 1:24,7:22,8:12.)

160. The sx module receives SP SX exp dest from one of two
shaders as the SPO SX exportingand SP1 SX exporting parameter and
propagates the SP0 SX exportingand SP1 SX exporting parameters to
uexport control defined inthe export control module, which is shown

using the R400 RTL code below:

module sx(/*AUTOARG*/
SP1 SX exporting, SPO SX exp dest, SP1 SX exp dest,

input [5:0] SPO _SX exp dest, SP1 SX exp dest; //these are
coming straight from the destination pointer of the ALU
instruction

//SP does
nothing else other than pipelining them through.

ati dff in #(6)
usp0 sx exp dst(sclk,SP0 SX exp dest,q spl sx exp dest);
ati dff in #(6)
uspl sx exp dst(sclk,SP1 SX exp dest,q spl sx exp dest);

export control uexport control(

tqu_sx“exp_dest(q;spQ_sx_exp_dest),
.Spl sx exp dest(qg spl sx exp dest),
y;
(sx.v, 1:12,2:12, 6:7-9, 6:24-25,21:5,22:16-17, 23:29.)
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161. The export control module identifies the types of appearance
attributes included in the shader export block (sx module) that are received from

the shader based on the sp0 sx exp dest parameter. This is shown using

R400 RTL code below:

//00:no export
//01:vertex export
//10:pixel export
assign export type = (sp0 sx exp alu id) ?
{sp0_sx exporting[0] & g exp pix alul,sp0 sx exporting[0] &
~g exp pix alul}:
{sp0 sx exporting[0] &
g exp pix alu0,sp0 sx exporting([0] & ~g exp pix alul};

always @(/*AUTOSENSE*/'COLOR0O or ‘COLORI or ‘COLORZ or ‘COLOR3
or ‘COLORFOGO or "COLORFOGI or "COLORFOGZ or "“COLORFOG3 or
‘PIXEQ_EXPORT or “POSITION or ‘SPRITE_EDGE
or 'VERTEX EXPORT or 'Z DATA or export type or sp0 sx exp dest)
begin
case (export type)
‘PIXEL_EXPORT:
begin
position aux = 1'b0;
case (sp0_sXx exp dest)
"COLORO:attribute offset = 3'h0;
"COLORI:attribute offset = 3'hi;
"COLORZ:attribute offset = 3'h2;
"COLOR3:attribute offset = 3'h3;
"COLORFOGO:attribute offset = 3'h0;
"COLORFOGl:attribute offset = 3'hiy;
'COLORFOGZ2:attribute offset = 3'h2;
"COLORFOG3:attribute offset = 3'h3;
‘Z DATA:attribute offset = 3'h4;
endcase // case(sp0 sx exp dest)
end // case: VERTEX
‘VERTEX_EXPORT:

begin
case (sp0_sx exp dest)
*POSITION:
begin
attribute offset = 3'h0; // + count of the
position vectors that have been exported so far
position aux = 1'b0;
end

"SPRITE EDGE:
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begin
attribute offset = 3'h4; //starting offset is
always relative position 4
position aux = 1'bl;
end
endcase // case(sp0 sx exp dest
end // case: VERTEX
default : attribute offset = 3'h0;
endcase // case(sp0_sx exporting)
end // always @ (...

(export control.v,34:5-38:12.)

162. At35:12,the sp0 sx exp dest parameter can be “POSITION,”
for and export type “VERTEX EXPORT” which indicates that the vertex
data has an appearance attribute that is position. As such, the appearance attribute

included in SX SP data is position.

2. The position attribute is associated with a corresponding
vertex

163. Claim 5 also recites “the position attribute is associated with a
corresponding vertex when the selected one of the plurality of inputs is vertex
data.” As I discussed in Section IX.A.1, the selected input includes vertex data.
When the selected input is vertex data, the shader generates a position attribute
using the corresponding SQ SP vsr dataand SQ SP instruct inputs of

the selected one of the plurality of inputs, which is included in SP SX Data.
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E. Claim 6
1 The appearance attribute is color

164. Claim 6 depends from claim 5 and recites the graphics processing
system of claim 5 “wherein the appearance attribute is color.” As I discussed in
Section VI.A, the appearance attribute is color. In particular, the attribute is color,

when the selected input is pixel data.

165. The export control module identifies the types of appearance
attributes included in the shader export block (sx module) received from the

shader based on the sp0 sx exp dest parameter as shown using R400 RTL

code below:

//00:no export
//01:vertex export
//10:pixel export
assign export type = (sp0 sx exp alu id) ?
{sp0_sx exporting[0] & g exp pix alul,sp0 sx exporting[0] &
~g exp pix alul}:
{sp0 sx exporting(0] &
g exp pix alu0,sp0 sx exporting[0] & ~g exp pix aluO};

always @(/*AUTOSENSE*/'COLOR(O or 'COLOR1 or ‘COLORZ or ‘COLOR3
or ‘COLORFOGO or ‘COLORFOGI or ‘COLORFOGZ or 'COLORFOG3 or
‘PIXEL__EXPORT or “POSITION or ‘SPRITE_EDGE
or "VERTEX EXPORT or °Z DATA or export type or spl sx exp dest)
begin
case (export type)
"PIXEL EXPORT:
begin
position aux = 1'b0;
case (spl_sx_exp dest)
"COLORO:attribute offset 3ThO;
"COLORI:attribute offset 3'hl;
‘COLORZ:attribute offset = 3'h2;
"COLOR3:attribute offset = 3'h3;
"COLORFOGO:attribute offset = 3'h0;
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'COLORFOGI:attribute offset = 3'hiy;
'COLORFOGZ2:attribute offset = 3'h2;
"COLORFOG3:attribute offset = 3'h3;
‘Z DATA:attribute offset = 3'h4;
endcase // case(sp0_sx exp dest)
end // case: VERTEX
* VERTEX EXPORT:

begin
case (sp0_sx _exp dest)
*POSITION:
begin
attribute offset = 3'h0; // + count of the
position vectors that have been exported so far
position aux = 1'b0;
end
"SPRITE EDGE:
begin

attribute offset = 3'h4; //starting offset is
always relative position 4
position aux = 1'bl;
end
endcase // case(sp0 _sx exp dest
end // case: VERTEX
default : attribute offset = 3'h0;
endcase // case(sp0_sx exporting)
end // always @ (...

(export control.v,34:5-38:12.)

166. At 34:24-35:5,the sp0 sx exp dest parameter can be
“COLORO,” “COLOR1,” “COLORZ,” “COLOR3,” “COLORFOGQ,” “COLORFOG1,”
“COLORFOG2,” and “COLORFOG3” for and export type “PIXEL EXPORT”
which indicates that the pixel data has an appearance attribute that is color. As

such, the appearance attribute included in the SX SP data0-31s color.

167. Further, as I described in Section IX.C.1, the sx module receives the

SX SP dataOdataas SPO SX datal.(sx.v,2:8,5:10.) The
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SPO SX dataObecomes g sp0 sx datal (ld. at5:16.), and is provided to

the export control module. (/d. at 22:18.)

168. The export control modulereceives g sp0 sx datal as
sp0 sx dataO(export control.v,?2:3,3:13), and assigns
sp0 sx dataOto g0 sp0 data0.(ld at9:4.) The g0 sp0 data0 signal
1s provided to uexport buffers (defined in export buffers.vas
export buffersmodule)as ipixel data0. (ld. at75:15.) The

ipixel dataO0 signal indicates that the data is pixel data.

169. Inthe export buffersmodule, ipixel data0 is passed
through a queue, and outputted as buf£0 out.(export buffers.v,8:13-22
or 8:25-16:4.) The buff(0 out parameters is assigned to bank(0 data0 (id. at
72:20) and then to rb0 data. (Id. at 78:21.) The rb0 data is assigned to
orb0 data (id at 83:12), which 1s defined as an output of export buffers

module. (/d. at 2:24.)

170. The export control module receives the export buffers
parameter from uexport buffersas sx rb(0 color data.
(export control.v,75:4) The sx rb0 color data signalis provided

as an output of the export control module and to the sx module. (/d. at 1:19,
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5:9) The sx module receives the sx rb0 color data signal as

sx rb0 color data.(sx.v,21:20.)

171. The sx _rb0 color datais assigned to
g sx rb0 color data(id at15:26)and g sx rb0 color datais
assigned to SX RBO color data, (id. at 16:9), which is an output of the sx

module. (/d. at 1:22,15:13.)

172. The same analysis also applies to SPO SX datal,

SP0O SX dataZ2, and SPO SX data3 using corresponding signal names.

173. Because SP0O_SX datal, which includes an appearance attribute, is
converted to g sx rb0 color data which includes color, the appearance

attribute is color.

2. The color attribute is associated with a corresponding pixel.

174. Claim 6 also recites “the color attribute is associated with a
corresponding pixel when the selected one of the plurality of inputs is pixel data.”
When the selected input is pixel data, the shader (sp module) generates a color
attribute using the corresponding SX SP data0O-3and SO SP instruct
inputs of the selected one of the plurality of inputs, which is included in

SP SX Data0-3.
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175. Further as I discussed in Section IX E.1, the color is associated with

the pixel data.

F. Claim 8

176. Claim 8 recites the graphics processing system of claim 1 “wherein
the appearance value is depth.” As 1 discussed in Section IX.A 3, the graphics
processor of claim 1 provides an appearance attribute, and as I discussed in Section
IX.E.1 and IX.E.2, the appearance attribute is associated with a corresponding

pixel.

177. Also, as I discussed in Section IX.E.1, the export control
module identifies the types of appearance attributes included in the shader export
block (sx module), and received from the shader based on the

sp0 sx_ exp dest parameter as shown using R400 RTL code below:

//00:no export
//01:vertex export
//10:pixel export
assign export type = (sp0 sx exp alu id) ?
{sp0_sx exporting[0] & g exp pix alul,sp0 sx exporting[0] &
~g exp pix alul}:
{sp0 sx exporting[0] &
g exp pix alu0,sp0 sx exporting([0] & ~g exp pix aluO};

always @(/*AUTOSENSE*/'COLOR(O or 'COLOR1 or ‘COLORZ or ‘COLOR3

or “COLORFOGO or *COLORFOGI or "COLORFOGZ or “COLORFOG3 or
‘PIXEL EXPORT or 'POSITION or 'SPRITE EDGE
or 'VERTEX EXPORT or 'Z DATA or export type or sp0 sx exp dest)

begin

case (export type)

‘PIXEL EXPORT:
begin
position aux = 1'b0;
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case (sp0_sx_exp dest)
"COLORO:attribute offset = 3'h0;
"COLORI:attribute offset = 3'hl;
"COLORZ:attribute offset = 3'h2;
‘COLOR3:attribute offset = 3'h3;
"COLORFOGO:attribute offset = 3'h0;
'COLORFOGl:attribute offset 3'hi;
"COLORFOGZ:attribute offset = 3'h2;
"COLORFOG3:attribute offset = 3'h3;
‘Z DATA:attribute offset = 3'h4;
endcase // case (sp0 sx exp dest)
end // case: VERTEX
‘VERTEX_EXPORT:

begin
case (sp0_sx _exp dest)
*POSITION:
begin
attribute offset = 3'h0; // + count of the
position vectors that have been exported so far
position aux = 1'b0;
end
"SPRITE EDGE:
begin

attribute offset = 3'h4; //starting offset is
always relative position 4
position aux = 1'bl;
end
endcase // case(sp0 sx exp dest
end // case: VERTEX
default : attribute offset = 3'h0;
endcase // case(sp0_sx exporting)
end // always @ (...

(export control.v,34:5-38:12))

178. At 35:6,the sp0 sx exp dest parameter can be “Z_DATA,”
which indicates that the pixel data has a depth parameter. As such, the pixel data

has appearance value that is depth.

G. Claim 9

179. Claim 9 recites the selection circuit and a control signal provided by

an arbiter. Based on my understanding of the R400 RTL code, I have generated a
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figure below which represents my understanding of the components, and describe

the code with the reference to the figure.

vix_req
gpr_phase
pix_req
vtx_busy
pix_busy
ilnterpolated

iVertexindeces

X A A . 2
Arbiter Multiplexer
ia_vertex_sel N :
sq_input_arb " | sq_ais_output line 493 vector Imezs7§07 & 227-
(sg_input arb.v) (sq_ais_output.v) (vector.v)
u_sq_input_arb u_sq_ais_output uvector0
Arbiter Circuit & ‘ /

InputData0

ol
&

1. The selection circuit

180. Claim 9 recites a graphics processor of claim 1, “further including a
selection circuit, wherein the selection circuit is a multiplexer.” As discussed in
Section IX.A.3, the input arbiter called u sg input arb selects between a
vertex request (vtx req) and arequest (pix req) and passes the vix sel

signal as 1a vertex seltothe u sg ais output.

181. The u sg ais output modulereceives the ia vertex sel

control signal from the arbiter and generates a SO SP gpr input sel signal
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using a multiplexer decoder stage on 21:7 (indicated as line 493 in the figure in

Section IX.G), as shown using the R400 RTL code below:

// SQ SP gpr phase
// S0 SP gpr input sel
//
always (@ (posedge clk)
begin
SQ SP gpr phase <= gpr phase;
S50 SP gpr input sel <= {ia vertex sel, ~ia vertex sel}; //
00: cnt, 01: pix, 10: vtx (fix needed for count)
end

(sg ais output.v,21:1-9.)

182. The SQ SP gpr input sel isprovided to the sg module as
sq sp gpr input mux. Thesignal sqg sp gpr input muxis the control
signal to the multiplexer. The multiplexer is included inside each of the vector

units uvector(0-3 of the sp module.

183. The sp module receives the sg sp gpr input muxas
sg sp gpr input mux(sp.v,2:7,9:11). The sp module converts
sg sp gpr input muxto g sq gpr phase mux (id. at 17:16)and
propagates g sg gpr phase mux to each vector unit uvector0-3. (/d. at

16:1,16:25,17:16, 18:8.)

184. The vector units uvectorO-3receive g sq gpr phase mux
as sq sp gpr phase mux.(vector.v ,1:21,3:2.) The selection circuitry

In vectorunits uvector0-3uses sq sp gpr phase mux asa control
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signal to a selection circuit that selects one of a plurality of inputs from the vertex
indicies (which are the vertex data) and the interpolated pixel inputs (which are the
pixel data). For example, the vector module uses the sqg sp gpr input mux
to select the vertex data input (i VertexIndices) or the pixel data input

(iInterpolated), using the R400 RTL code replicated below:

//Muxing logic to select from data comming from the
Interpolators (in reality more than just interpolated
data....there can be

//also faceness and XY data), AutoCount data and Vertex
Indices comming from the staging registers.

//Each MACC unit has its own mux logic since the controls are
phased out by one cycle from one MACC to the other.

//muxing logic for the inputs of the first MACC
always @(/*AUTOSENSE*/iAutoCount or ilnterpolated or
iVertexIndices
or sg sp gpr input mux)
begin
case(sqg sp gpr input mux)
2'000: InputDatal0 = iAutoCount ;
2'b01: InputDatal0 = iInterpolated ;
2'p10: InputDatal0 = iVertexIndices ;
default: InputbDatal0 = ilInterpolated;
endcase // case(sq sp gpr input mux)
end

//muxing logic for the inputs of the second MACC
always @(/*AUTOSENSE*/iAutoCount or ilInterpolated or
iVertexIndices
or g0 gpr input mux)
begin
case (g0 _gpr input mux)
2'p00: InputDatal = iAutoCount ;
2'h01: Inputbatal = iInterpolated ;
2'b10: InputDatal = iVertexIndices ;
default: InputDatal = ilInterpolated;
endcase // case(q0 gpr input mux)
end
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//muxing logic for the inputs of the third MACC
always @(/*AUTOSENSE*/iAutoCount or iInterpolated or
iVertexIndices
or gl gpr input mux)

begin

case (gl gpr input mux)
2'b00: InputbDatal = iAutoCount ;
2'p01: InputbDataZ = iInterpolated ;
2'p10: InputbDatal = iVertexIndices ;

default: InputDataZ = iInterpolated;
endcase // case(gl gpr input mux)
end

//muxing logic for the inputs of the fourth MACC
always @(/*AUTOSENSE*/iAutoCount or ilInterpolated or
iVertexIndices
or g2 gpr input mux)

begin

case (g2 gpr input mux)
2'000: Inputbatal3 = iAutoCount ;
2'b01: InputDatal3 = ilInterpolated ;
2'p10: InputbData3 = iVertexIndices ;

default: InputbData3 = ilInterpolated;
endcase // case (g2 gpr input mux)
end

(vector.v, 10:2-12:6.)

185. The selected input is provided as TnputDatal, InputDatal,

InputDataZ, and InputDatas.

186. In this way, the R400 RTL code includes a selection circuit that is a

multiplexer.

2. The control signal

187. Claim 9 also recites “the control signal is provided by an arbiter,
wherein the arbiter is coupled to the multiplexer.” As discussed above, the

u sqg input arb mput arbiter includes the arbiter that provides an
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ia vertex sel signal which is the control signal. As discussed in Section
IX.A2,the u sqg ais outputreceivesthe ia vertex sel signal
(sg.v, 79:8) and converts ia vertex seltoSQ SP gpr input sel.(ld.
at 80:6.) The u sg ais output signal provides the signal to the shader
included in the sp module as Sg sp gpr input mux.(ld at2:16,9:4, 80:6.)

In this way, the control signal is provided by the arbiter.

3. The arbiter is coupled to the multiplexer.

188. Claim 9 also recites “wherein the arbiter is coupled to the

multiplexer.”

189. The multiplexer is included in the vector unit as shown 1n Section
IX.A2. The u sg ais output signal is generated by the arbiter is converted
to sg sp gpr input mux inthe sp module and to
sg sp gpr input mux in the vector unit. This is a control signal to the
multiplexer in the vector unit and shows that the arbiter is coupled to the

multiplexer.

H. Claim 10

190. Claim 10 recites the graphics processor of claim 1. Based on my

understanding of the R400 RTL code, I have generated a figure below which
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represents my understanding of the components, and describe the code with

reference to the figure.

Parameter Cache

parameter_caches
(parameter caches.v)
uparam_caches
Shader I
©
N
x SX
w\ (
o SX.V)
— »
sp Position Cache

pa_ag lines 2786-2803
(pa_ag.v)

upa_ag

pa
(pa.v)

1 The vertex position data

191. Claim 10 recites the graphics processor of claim 1, “wherein the
shader provides vertex position data.” As discussed in Section IX.C.2, the sp
module provides SP_SX data0, SP SX datal, SP SX dataZ, and
SP SX data3 which includes vertex position data. The SP SX datal,

SP SX datal, SP_SX dataZ, and SP_SX data3 signals are provided to the

shader export block.
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192. For simplicity, I limit my discussion to the shader providing

SP SX data0 which is sufficient to practice the claim.

2. The primitive assembly block coupled to the shader

193. The primitive assembly block in the graphics processing system is
included in the pa module. The pa module is defined in pa. v. The primitive
assembly block converts the vertex position data into a list of primitives. The pa
module is coupled to the shader (included in the sp module) through one of the
shader export blocks (the sx modules).The coupling between the shader and the

shader export block (the sx module) is discussed in Section [X.A.3 and IX.C.1.

194. The primitive assembly block (the pa module) includes a
PA SX/SX PA interface to the two shader export blocks. Here, for simplicity, I
limit my discussion to a single shader export block which 1s sufficient to practice
the claim. The R400 RTL code for the PA SX/SX PA interface is replicated

below.

/e
// interface to the shader export 0 block

// ___________________________________________
u0 SX PA send,

u0 SX PA data,

u0 PA SX req,

u0 PA SX sp id,

u0 PA SX offset,

u0 PA SX aux,

ul0 PA SX last,
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(pa.v,4:14-23)
195. The primitive assembly block requests data from the sx module (the
shader export block) using u0 PA SX req, u0 PA SX sp id,

u0 PA SX offset,u0 PA SX aux and u0 PA SX last.

196. In response, the primitive assembly block receives the data from the

sx module using the u0 SX PA sendand u0 SX PA data interface.

197. The u0 SX PA data data is provided to the export buffers
uexport buffers of the sx module. The sx module receives the request from
the pa module using the PA SX reqg, PA SX sp id PA SX offset,

PA SX aux, PA SX last(sx.v,2:23-24) and propagates the request to
uexport control,using the R400 RTL code below:

export control uexport control/(

.pa_sx _req(q pa sx req), .pa sxX sp 1id(g pa sx sp id),
.pa_sx offset (g pa sx offset),.pa sX aux(q pa sx_aux),
.pa sx last(q pa sx last)
)7
(Id. at 21:5, 23:26-29.)

198. The export control module passes the request to
uexport buffers, andreceives 1) the sx pa data which includes the

vertex position data and 2) the sx pa sendsignals. (export control.v,
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75:10.) The export control module then propagates those signals to the sx

module using the R400 RTL code below:

module export control(/*AUTOARG*/
// Outputs

sx pa send, sx pa data,

(Id. at 1:13-14, 1:23))

199. The sx module transmits the sx pa send sx pa data as
SX PA dataand SX PA send to the primitive assembly block (the pa

module). (sx. v, 1:25-2:1.)

200. The primitive assembly block receives SX PA data as

u0 SX PA dataand ul SX PA data.

201. As explained above, the primitive assembly block (the pa module) 1s
coupled to the shader (included in the sp module) through the shader export

shader block (the sx module).

3. The primitive assembly block is operative to generate
primitives.

202. Claim 10 also recites the primitive assembly block is “operative to
generate primitives in response to the vertex position data.” The primitive
assembly block (the pa module) receives SX PA data thatincludes the vertex

position data. The pa module then generates primitives as coded in the pa
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module. The primitive assembly block is an old component of the graphics
processing system that has been adapted to receive data from the shader export

block, and is necessary to generate primitives from the vertex position data.

203. Once the primitive assembly block generates primitives, the primitive
assembly block provides the primitives to the raster engine (also referred to as the

scan converter and defined in the sc module), using the PA SC interface below:

module pa (

PA SC pO,

PA SC pl,

PA SC p2,

PA SC p3,

PA SC p4,

PA SC xyO0,

PA SC xyI,

PA SC xyZz,

PA SC zminmax,
PA SC cntl,

PA SC phase,
PA SC valid,
PA SC v0 indx,
SC PA earlyfrz
);

// interface to scan converter
output [17:0] PA SC xy0;
output [17:0] PA SC xyl;
output [17:0] PA SC xyZ2;
output [31:0] PA SC p0O;
output [39:0] PA SC pl;
output [31:0] PA SC pZ2;
output [31:0] PA SC p3;
output [31:0] PA SC p4;
output [13:0] PA SC zZminmax;
output [29:0] PA SC cntly;
output [1:0] PA SC phasey;
output PA SC valid;
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output [1:0] PA SC v0 indx;
(pa.v,2:2,5:8-25,821-9:9))

204. In particular, the primitive assembly block transmits the generated
primitives in at least the PA SC p0, PA SC pl, PA SC p2, PA SC p3,
PA SC p4, PA SC xy0, PA SC xyl,or PA SC xyZ2 signals to the raster

engine (the sc module).

205. As explained above, the primitive assembly block (the pa module) is

operative to generate primitives from the vertex position data.

I Claim 11

206. Claim 11 recites the graphics processor of claim 10. Based on my
understanding of the R400 RTL code, I have generated a figure below which
represents my understanding of the components, and describes the code with

reference to the figure.
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Parameter Cache

h 4

parameter_caches
(parameter caches.v)

uparam_caches

Shader

SX

(sx.v)

SP_SX_data0

sp Position Cache

pa_ag lines 2786-2803
(pa_ag.v)

upa_ag

pa
(pa.v)

A\ 4
Scan Converter

SC
(sc.v)

1 The Raster Engine

207. Claim 11 recites the graphics processor of claim 10, “further
including a raster engine.” The raster engine in the graphics processing system is
included in the sc module (also referred to as a scan converter). The sc module

receives the primitives from the primitive assembly block (the pa module), as |
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have described in Section IX.C.2. Replicated below, 1s the R400 RTL code

showing the raster engine receiving the primitive data:

module sc (

S

// Interface to the PA Setup Unit

/e

PA SC p0,
PA SC pl,

PA SC p2,

PA SC p3,

PA SC p4,

PA SC xy0,

PA SC xyI,

PA SC xyz,

PA SC zminmax,
PA SC cntl,

PA SC phase,
PA SC v0 indx,
PA SC valid,

SC PA earlyfrz,

// Interface to the PA Setup Unit

e

input [17:0]
input [17:0]
input [17:0]
input [31:0]
input [39:0]
input [31:0]
input [31:0]
input [31:0]
input [13:0]
input [29:0]
input [1:0]
input [1:0]
input

output

PA SC xy0;

PA SC xyl1;

PA SC xy2;

PA SC p0;
PA_SC;pl;

PA SC pz;

PA SC p3;

PA SC p4;

PA SC zminmax;
PA SC cntly;

PA SC phase;
PA SC v0 indx;
PA SC valid;

SC PA earlyfrz;

(sc.v,2:4,3:24-4:15, 9:20-10:11.)

208. Through the PS SC interface, the raster engine (the sc module) is

coupled to the primitive assembly bock (the pa module).
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Generating the pixel parameter

209. The sc module is operative to generate pixel parameter data using the

primitive data received from the primitive assembly block. Example pixel

parameter data that the raster engine generates is shown using the R400 RTL code

below:

// Concatenate outputs of sc _quadmask to create

tile fifo.
assign
assign

tile ff wr data[’
tile ff wr data[’

gm_z mask needed;

assign
assign
assign
assign
assign
assign

tile ff wr datal"’
tile ff wr data[’
tile ff wr data[’
tile ff wr datal’
tile ff wr datal’
tile ff wr data/’

gm bb fract bits;

assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign

tile ff wr datal[’
tile ff wr data[’
tile ff wr datal[’
tile ff wr datal’
tile ff wr datal’
tile ff wr datal’
tile ff wr data[’
tile ff wr dataf[’
tile ff wr data[’
tile ff wr data[’
tile ff wr dataf[’
tile ff wr datal’
tile ff wr data[’
tile ff wr datal[’
tile ff wr datal[’
tile ff wr datal’
tile ff wr data[’

SC_TD LAST TILE]
SC_TD ZMASK NEEDED]

SC_TD EVENT]
SC_TD XMIN]

SC_TD XMAX]

SC_TD YMIN]

SC_TD YMAX]

SC_TD BBFRACTBITS]

SC_TD XDIR]
SC_TD YDIR]
SC_TD TILEX]
SC_TD TILEY]
SC_TD TILEX M3]
SC_TD TILEY M3]
5C_TD XMAJOR]
SC_TD _E0_SAMPLE]
SC_TD E1 SAMPLE]
SC_TD E2 SAMPLE]
SC_TD EO0_DX]
SC_TD EO0 _DY]
SC_TD E1_DX]
SC_TD E1 _DY]
SC_TD E2 DX]

SC_TD E2 DY]
SC_TD _STIPPLE MASK]

write data for

= gm last tiley

= qm_event;
= gm xmin;
= gm xmax;
= gm_ymin;
= gm ymax;

= gm xdir;

gm ydir;

gm tilex;

gm tiley;

gm tilex m3;
gm tiley m3;
= gm xmajor;

= gm e0;

= gm el;

= gm ezZ;
gm_dxe0;

gm _dye0;

gm dxel;

gm _dyel;

= gm dxez;

= gm dyeZ

;
= 8'p11111111;

(/d. at 83:19-84:19.)

210. As such, the primitive assembly block (the pa module) is operative to

generate primitives from the vertex position data.
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Claim 13 recites three components, a register block, a computational

element, and a sequencer. Below, I have generated a figure based on my

understanding of the R400 RTL code that shows the relationship between these

components.

Sequencer

{sqwv)

sq_alu_instr_seq

(sg_alu instr seq.v)

sq_alu_instr_queue

(sg_alu instr queue.v)

ul_sq_alu_instr_seq

ul_sq_alu_instr_queue

Shader

Computation

Register
Block

¥ Lines 130-295

macc32

Element

(macc.v)

mad

macc
(macc.v)

umacc

macc_gpr
(macc_gpr.v)

umacc_gpr0

Vector

(vector.v)

Shader Core

(sp.v)
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1 The register block

212. Claim 13 recites a graphics processor of claim 1, “wherein the shader
includes a register block for maintaining the selected one of the plurality of
inputs.” As discussed in Section IX.A.3, each vector unit instantiates four register
blocks, umacc gpr0, umacc gprl,umacc gprZ2,and umacc gpr3,that
are defined in the macc gpr module. The macc gpr module is specified in
macc_gpr.v. One or more of umacc gpr0, umacc gprl, umacc gprZ2,and

umacc_gpr3 form a register block.

213. Each macc gpr module receives one instance of input data
(InputbDatal, InputDatal, InputDataZ, and InputData3) as the
iInterpolatedparameter, which is the selected one of a plurality of inputs, as

shown using the R400 RTL code below.

module macc gpr(
/ *AUTOARG*/

// Outputs

oScalarIinput, oScalarOpcode, oVectorOutput, oRegData,
oexport dst,

// Inputs

sq sp instruct, sqg sp instruct start, sq sp gpr rd addr,

sq _sp gpr wr addr, sq sp gpr phase mux, sg sp mem Wr ena,

sqg sp mem rd ena, 8¢ sp wr ena, s _sSp gpr cmask,
iInterpolated,

sq _sp constant, iScalarData, tp sp data, tp sp gpr dst,

tp sp gpr cmask, tp sp data valid, sclk, srst

)7

(macc gpr.v,1:13-23)
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214. The macc gpr module also includes a memory called
““ugpr mem” of module type “rfsd2z 128x128cmZswl.” (Ild. at8:1;also
as shown in my figure in Section.IX.J.as lines 130-295.) The macc gpr module
stores the data in the 1 Tnterpolated in this memory. To store the data in the
iInterpolatedinto the memory, the macc gpr module includes a
multiplexer that controls the input to the memory, as shown below, and selects an
input (such as i Interpolated) that is stored in the “ugpr mem” memory as

InputGPR:

//The phase mux controlling the write input port into GPRs
(register file write port)

always@(/*AUTOSENSE* /VectorResult or ilnterpolated or
iScalarData
or sq sp gpr phase mux or tp sp data)

begin
case(sq sp gpr phase mux)
2'pb00: InputGPR = iInterpolated;

2'b01: InputGPR

2'b10: InputGPR VectorResult;

2'bll: InputGER iScalarData;

default: InputGPR = ilnterpolated;
endcase // case(sq sp gpr phase mux)
end // always@ (.

tp sp datay

(Id. at 5:18-6:7.)

215. The macc gpr module writes the selected input into the memory

“ugpr mem” at a specified address, as shown using the R400 RTL code below:
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// WRITE INTERFACE
.CLKA(iSCLK), // Write Clock
.WEA(gpr wr ena), // Write enable
.MEA(vdd) , // Memory enable
.ADRAO (gpr wr addr[0]), .ADRAI{(gpr wr addr[1]),

.ADRAZ (gpr wr addr(2]), .ADRA3(gpr wr addr[3}), // Write Address
.ADRA4 (gpr wr addr[4]), .ADRAS(gpr wr addr[5]),

.ADRAG6 (gpr wr addr([é]), // Write Address
.DAO (InputGPR[0]), .DAI(InputGPR(1]), .DAZ2(InputGPR[Z2]),

.DA3 (InputGPR[3]), // Write Data
.DA4 (InputGPR[4]), .DAS5(InputGPR[5]), .DA6(InputGPR[6E]),

.DA7 (InputGPR[7]), // Write Data
.DA8 (InputGPR[8]), .DA9(InputGPR[9]), .DAIO(InputGPR[10]),

.DAI1I(InputGPR[11]), // Write Data
LDAIZ (InputGPR[12]), .DAI3(InputGPR[13]),

.DA14 (InputGPR[14]), .DA15(InputGPR[15]), // Write Data
.DAI6 (InputGPR[16]), .DAL7(InputGPR[17]),

.DA18 (InputGPR[18]), .DAI19(InputGPR[19]), // Write Data
.DA20 (InputGPR[20]), .DA21(InputGPR[21]),

.DA22 (InputGPR[22]), .DA23(InputGPR[23]), // Write Data
.DA24 (InputGPR[24]), .DAZ5(InputGPR[Z25]),

.DAZ26 (InputGPR[26]), .DA27(InputGPR[27]), // Write Data
.DA28 (InputGPR[28]), .DAZ29(InputGPR[29]),

.DA30 (InputGPR[30]), .DA31(InputGPR[31]), // Write Data
.DA32 (InputGPR[32]), .DA33(InputGPR[33]),

.DA34 (ITnputGPR[34]), .DA35(InputGPR[35]), // Write Data
.DA36 (InputGPR[36]), .DA37(InputGPR[37]),

.DA38 (InputGPR[38]), .DA39(InputGPR[39]), // Write Data
.DA40 (InputGPR[40]), .DA41(InputGPR[41]),

.DA42 (InputGPR[42]), .DA43(InputGPR[43]), // Write Data
.DA44 (InputGPR[44]), .DA45(InputGPR[45]),

.DA46 (InputGPR[46]), .DA47(InputGPR[47]), // Write Data
.DA48 (InputGPR[48]), .DA49(InputGPR[49]),

.DA50 (InputGPR[50)]), .DA51(InputGPR[51]), // Write Data
.DA52 (InputGPR[52]), .DA5S3(InputGPR[53]),

.DA54 (InputGPR[54]), .DA5S5(InputGPR[55]), // Write Data
.DA56 (InputGPR[56]), .DA5S7(InputGPR[57]),

.DA58 (InputGPR[58]), .DA59(InputGPR[59]), // Write Data
.DAG0O (InputGPR[60]), .DA6I(InputGPR[61]),

.DA62 (ITnputGPR[62]), .DA63(InputGPR[63]), // Write Data
.DA64 (InputGPR[64]), .DA65(InputGPR[65]),

.DA66 (InputGPR[66]), .DA67(InputGPR[67]), // Write Data
.DAE8 (InputGPR[68]), .DAE9(InputGPR[E9I]),

.DA70 (InputGPR[70]), .DA71(InputGPR[71]), // Write Data
.DA72(InputGPR[72]), .DA73(InputGPR[73]),

.DA74 (InputGPR[74]), .DA75(InputGPR[75]), // Write Data
.DA76 (InputGPR[76]), .DA77(InputGPR[77]),

.DA78 (InputGPR[78]), .DA79(InputGPR[79]), // Write Data
.DA8O (InputGPR[80]), .DA8I1(InputGPR[81]),

.DA82 (InputGPR[82]), .DA83(InputGPR[83]), // Write Data
.DA84 (InputGPR[84]), .DA85(InputGPR[85]),

.DA86 (InputGPR[86]), .DA87(InputGPR[87]), // Write Data
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.DA88 (InputGPR[88]), .DA89(InputGPR[89]),

.DA90 (InputGPR[90]), .DA9I1(InputGPR[91]), // Write Data
.DA9Z (InputGPR[82]), .DAI3(InputGPR[93]),

.DA94 (TnputGPR[94]), .DA95(InputGPR[95]), // Write Data
.DA96 (InputGPR[96]), .DA97(InputGPR[97]),

.DA98 (InputGPR[98]), .DA99(InputGPR[99]), // Write Data
.DAI00 (InputGPR[100]), .DAIOI (InputGPR[101]),

.DA102 (InputGPR[102]), .DAIO3(InputGPR[103]), // Write Data
.DA104 (InputGPR[104]), .DAIO5(InputGPR[105]),

.DAI06 (InputGPR[106]), .DAIO7(InputGPR[107]), // Write Data
.DAI08 (InputGPR[108]), .DAI09(InputGPR[109]),

.DA110(InputGPR[110]), .DA11l1 (InputGPR[111]), // Write Data
.DA112(InputGPR[112]), .DAI13(InputGPR[113]),

.DA114 (InputGPR[114]), .DA115(InputGPR[115]), // Write Data
.DA116(InputGPR[116]), .DAI17(InputGPR[117]),

.DA118(InputGPR[118]), .DA119(InputGPR[11%9]), // Write Data
.DAI20 (InputGPR[120]), .DA121(InputGPR[121]),

.DA122(InputGPR[122]), .DAI123(InputGPR[123]), // Write Data
.DA124 (InputGPR[124]), .DAI25(InputGPR[125]),

.DA126 (InputGPR[126]), .DA127(InputGPR[127]), // Write Data

(/d. at 10:13-12:20.)

216. The macc gpr module also retrieves the selected input from the
“ugpr mem” memory. For example, upon request, the macc gpr module may
read the selected input from memory an store the selected input in the RegData

register, as shown using R400 RTL code below:

.CLKB(iSCLK), // Read Clock

.OEB(sq_sp gpr rd ena), // Output enable

.MEB(vdd), // Read enable

.ADRBO (sq sp gpr rd addr{0]), .ADRBI(sq sp gpr rd addr([1]),
.ADRBZ (sq sp gpr rd addr([2]), .ADRB3(sq sp gpr rd addr[3]), //
Read Address

.ADRB4 (sq sp gpr rd addr[4]), .ADRBS(sq sp gpr rd addr[5]),
.ADRB6 (sq sp gpr rd addr([é&]), // Read Address

.0BO (Regbhata[0]), .OBl(Regbata/[l]), .0QOBZ(Regbatal[Z]),
.OB3(RegData[3]), // Read Data

.OB4 (Reghata[4]), .0OB5(RegData[5]), .0QB6(RegDatal[é6]),
.OB7 (Regbata[7]), // Read Data

.0OB8 (Regbata[8]), .0BY9(Regbatal[9]), .0OB10(Regbatal[l10]),
.QOB11(Regbata[11]), // Read Data
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.0B12 (Regbataf12]), .QBl13(RegbData[l13]), .0OBl14(Regbatafl4]),

.OB15(Regbata[15]), // Read Data

.QOBl16(Regbata[16]), .QB17(Regbata[l17]), .0OB18(RegData[18]),

.0OB19 (RegDhata[19]), // Read Data

.OB20(RegData[20]), .0OB21(Regbata[21]), .QB22(RegbDatal22]),

.Q0B23(Regbata(23]), // Read Data

.0B24 (Reghata[24]), .0B25(Regbata[25]), .0B26(Regbatalz6]),

.QB27(RegDhata[27]), // Read Data

.0B28 (Regbata[28]), .QB29(Regbata[29]), .0OB30(Regbataf[30]),

.0OB31 (Regbata[31]), // Read Data

.OB32 (Regbata[32]), .QB33(RegData[33]), .0B34(RegData[34]),

.0B35 (RegDhata [35]), // Read Data

.OB36 (RegData[36]), .0B37(Regbata[37]), .0OB38(RegData[38]),

.OB39 (Reghata[39]), // Read Data

.0OB40 (Regbhata[40]), .0OB41(Regbata[41]), .0OB42(Regbataf42]),

.0OB43 (RegData[43]), // Read Data

.0OB44 (RegData[44]), .QOB45(Regbata[45]), .0B46(RegDatal46]),

.0B47 (RegData[47]), // Read Data

.0OB48 (RegData[48]), .QB49(Regbata[49]), .0OB50(RegData[b50]),

.0OB51 (Regbata[51]), // Read Data

.OB52 (Reghata[52]), .0OB53(Regbata[53]), .0OB54(Regbatal[54]),

.OB55(RegData[55]), // Read Data

.QB56 (Reghata[56]), .0OB57(Regbata[57]), .0OB58(RegDatal[b8]),

.0B59 (RegDhata[59]), // Read Data

.OB60 (Reghata[60]), .0OB61(RegDhata[61]), .QB62(RegDatal[é62]),

.0B63 (Reghata[63]), // Read Data

.0B64 (Reghata[64]), .QB65(Regbata[65]), .QB66(RegDatalé66]),

.Q0B67 (Reghata[67]), // Read Data

.0OB68 (Reghata[68]), .QB69(Regbhata[69]), .0OB70(Regbatal[70]),

.QOB71 (RegDhata[71]), // Read Data

.QB72 (Regbata[72]), .0B73(RegData[73]), .0OB74(Regbataf74]),

.OB75(Regbata[75]), // Read Data

.0OB76 (Regbata[76]), .0QB77(Regbata[77]), .QB78(Regbata[78]),

.0OB79 (Regbata[79]), // Read Data

.0OB80 (Regbhata[80]), .0B81(Regbhata[81]), .0OB82(RegbData[82]),

.0B83 (Regbata [83]), // Read Data

. 0B84 (RegData[84]), .QOB85(Regbata[85]), .0B86(Regbata[86]),

.0OB87 (Reghata[87]), // Read Data

.0B88 (Regbata [88]), .0B89(Regbhata[89]), .0OB90(Regbataf[90]),

.0OB91 (Regbhata[91]), // Read Data

.0OB92 (RegDhata[92]), .QB93(Regbata[93]), .0B94(RegData[94]),

.0B95 (RegData[95]), // Read Data

.0OB96 (Regbata[96]), .Q0B97(Regbata[97]), .0B98(Regbata[98]}),

.QOB99 (RegData[99]), // Read Data
.QB100(Regbhata[100]), .QB10I(Regbatal[101]),

.QB102 (RegData[102]), .0QB103(Regbhata[103]), // Read Data
.QOB104 (Regbata[104]), .0B105(Regbata[l105]),

.QB106 (Reghata[l106]), .QB107(RegbData[l107]), // Read Data
.QOB108 (Reghata[108]), .QB109(Regbhata[l109]),

.QB110(Reghata[110]), .QB111(RegData[111]), // Read Data
.QB112(Regbatafl112]), .QBI113(Regbatal[l113]),

.QB114 (Reghata[114]), .QB115(Regbataf[115]), // Read Data
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.QOBl116(Regbata[116]), .QBI117(Regbatall17]),

.0OB118 (RegData[118]), .QBl119(Regbhata[119]), // Read Data
.QOB120(Regbata[120]), .0Q0Bl121(Regbhatal[l21]),

.OB122(RegDhata[l122]), .QB123(Regbata[123]), // Read Data
.0OBl124 (Reghatafl124]), .QBI125(Regbatal[l125]),

.QB126 (Reghatal[l126]), .QB127(RegDataf127]), // Read Data

(Id. at 8:5-10:12.)

217. The storage and retrieval of the selected input to the “ugpr mem”
memory allows the macc gpr module to maintain the selected one of the

plurality of inputs as recited in claim 13,

218. Each vector unit uvector(0-3 includes four instances of a
macc gpr module. The vector units are included in the sp module, within the

shader. As such, the shader includes a register block.

2. The computation element

219. Claim 13 also recites “a computation element operative to perform
arithmetic and logical operations on the data maintained in the register block.”
Each instance of the macc gpr module includes a MACC module called umacc,

which is replicated using the R400 RTL code below:

macc umacc(.oResult (VectorResult), .oScalarOpcode (oScalarOpcode)
,-0ScalarInput (oScalarinput),.oExportDst (oexport dst),

.1RegData (q RegData),.iConstantData (sq sp constant),.iScalarData (
iScalarbData), .iInstruction(sq sp instruct),
.iInstStart (sq sp instruct start), .sclk(sclk), .srst(srst})};

(/d at3:17-21.)
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220. The MACC module receives g RegData (which it converts to
iRegData) which is the data maintained in the register block in macc gpr
module as oRegData. The i RegData signal is converted to OperandAMod,
OperandBMod, and/or OperandCMod as shown in the MACC module at 13:8-

23:22.

221. The MACC module also receives the instruction from the sequencer
using the sqg sp instruct parameter and converts sq sp instructto
iInstruction. The MACC module then parses i Instruction and retrieves

VectorOpcode, as shown using the R400 RTL code below:

reg [20:0] g Instruction0, g Instructionl, g InstructionZz,
g Instruction3;

wire [4:0] VectorOpcode;

//Registering the Instruction word (20 bits) in four
consecutive cycles

always@ (posedge sclk)
if(srst)
g InstructionO <= 21'b0;
else if(decode SrcA)
g Instruction0 <= ilnstruction;

always@ (posedge sclk)
if(srst)
g Instructionl <= 21'b0;
else 1if(decode SrcB)
g Instructionl <= iInstruction;

always@ (posedge sclk)
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if(srst)
g Instruction2 <= 21'b0;
else 1if(decode SrcC)
g InstructionZz <= ilnstruction;

always@ (posedge sclk)
if(srst)
g Instruction3 <= 21'b0;
else 1f(decode Opcode)
g Instruction3 <= ilInstruction;

//decoding the instruction word into a set of select/modify
signals used

//for argument selection and input modification on the way to
MACC unit

assign SrcASel = g Instruction0[2:0];

assign SrcANegate = g Instruction0[3:3];

assign SrcAAlphaSwizzle = g Instruction0[11:10];
assign SrcARedSwizzle = g Instruction0[5:4];
assign SrcAGreenSwizzle = g Instruction0[7:6];
assign SrcABlueSwizzle = g Instruction0[9:8];

assign SrcBSel = g Instructionl(2:0];

assign SrcBNegate = q Instructionl[3:3];

assign SrcBAlphaSwizzle = g Instructionl[11:10];
assign SrcBRedSwizzle = g Instructionl(5:4];

assign SrcBGreenSwizzle = g Instructionl[7:6];
assign SrcBBlueSwizzle = g Instructionl[9:8];

assign SrcCSel = g Instructionz(2:0];

assign SrcCNegate = q Instruction2[3:3];

assign SrcCAlphaSwizzle = g Instruction2[11:10];
assign SrcCRedSwizzle = g Instructionz(5:4];

assign SrcCGreenSwizzle = g Instruction2[7:6];
assign SrcCBlueSwizzle = g Instruction2([9:8];

assign VectorOpcode = g Instruction3(4:0];
assign ScalarOpcode = g Instruction3[10:5];
assign VectorClamp = g Instruction3[11:11];
assign ScalarClamp = g Instruction3[12:12];
assign VectorWriteMask = g Instruction3[16:13];
assign ScalarWriteMask = g Instruction3[20:17];
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(macc.v,4:8,4:10,10:12-11:13, 11:22-13:6.)
222. In particular, the MACC module retrieves VectorOpcode, which
includes instructions used to perform arithmetic and logical operations on the data

maintained in the register block (the oRegData).

223. The computation element is included in the MACC module, and is
called a madunit. The mad unit is instantiated in the ma cc32 module. The R400

RTL code that instantiates the mad unit in the MACC module is replicated below:

//Floating point Multiply and Accumulate
macc3Z2 mad (OperandAMod, OperandBMod, OperandCMod,
VectorOpcode ,MaccResult ,sclk) ;

(Id. at 24:25-25:2.)

224. The macc32 module receives OperandAMod, OperandBMod,
and OperandCMod as operands which include data maintained in the register
block (the oRegData), and VectorOpcode which includes instructions that
manipulate the data. The ma cc32 module is then operative to use
OperandAMod, OperandBMod, OperandCMod (data) and VectorOpcode
(instructions) to perform 1) floating point operations which are arithmetic
operations, and 2) minimum, maximum, and compare operations, which are logical
operations as specified in macc32.mc. The MACC module, receives the results from

macc32 module as MaccResult.
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225. Also, the MACC module includes a listing of additional operations that
macc32 module 1s operative to perform, that may be included in the floating point

operations. These operations as listed using R400 RTL code are replicated below:

//ALU opcodes declared as parameters

//this definition is subject to change as more
//opcodes are added. for the latest definition
//please refer to Shader Pipe Spec: ALU instruction definition
parameter [4:0] ADD = 5'h00,

MUL = 5'h01,

MAX = 5'h02,

MIN = 5'h03,

SETE = 5'h04,

SETGT = 5'h05,

SETGE = 5'h06,

SETNE = 5'h07,

FRACT = 5'ho08,

TRUNC = 5'h09,

FLOOR = 5'h0a,

MULADD = 5'hOb,

CNDE = 5'hoOc,

CNDGE = 5'h0d,

CNDGT = 5'"hOe;

(Id. at3:11-4:4.)

226. This listing of arithmetical opcodes further indicates that the macc32
module is operative to perform arithmetic and logical operations on the data in the

register block.

227. In this way, the R400 RTL code demonstrates how a computation
element is operative to perform arithmetic and logical operation on the data

maintained in the register block.
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3. The Sequencer

228. Claim 13 also recites a “sequencer for maintaining the instructions
that are executed by the computation element.” The file, sqg. v, instantiates a sgq
module which is a hardware block of the graphics processor component which
includes a sequencer. The sequencer (the sg module) maintains instructions and
provides the instructions to the shader (included in the sp module) using an

SO SP instruct parameter, as described in detail below. (sg. v, 2:17, 9:11,

80:11.)

229. The sequencer maintains instructions in the instruction store. The
instruction store is instantiated as sg instruction store usingthe
sqg instruction store module (/d. at 86:23-88:2). The
sg instruction store module is defined in the

sg instruction store.v. It consists of 4096 instruction words which are

each 96-bits wide.

230. The u0 sg alu instr fetchand
ul sq alu instr fetchunitsdefinedin sqg target instr fetch
module retrieve the instruction from the sg instruction store module. For

simplicity, I focus onthe u0 sg alu instr fetch unit. For example, the
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sq target instr fetch module includes an interface with the

sqg instruction store module, as replicated below:

// instruction store interface
is read addr,// instruction store read address
is read data, // instruction store read data

is phase, // instruction store phase
alu phase, // alu phase (aluO and alul share the alu
is phase)

(sq target instr fetch.v,3:7-11.)

231. The sg target instr fetchmodule uses the
is read addr mterface to send the instruction pointer that communicates the

address of the instruction to the sqg instruction store module, using the

R400 RTL code below:
output [11:0] is read addr;
(Id. at 5:13.)
assign is read addr = tip g;
(Id. at 8:8.)
always (@(posedge clk)
begin
if ( 1d tip ) tip g <= cfs instr ptr;
else 1f ( inc tip )
if ( vtx wrap ) tip g <= inst base Vtx;
else if ( pix wrap ) tip g <= inst base pix;
else tip g <= tip g + 1;
else tip g <= tip g;
end

(Id. at 9:3-11.)

232. The g instruction store receivesan is read addr

request, from u0 sqg alu instr fetch, using the interface below:
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input [11:0] i _alu0 addry;

(sq_instruction_store.v, 2:20.)

233. Inresponsetothe is read addr request, the
g instruction store module retrieves the instruction and outputs the

instruction asthe o is data signal, using the R400 RTL code below:

output [95:0] o is data;

(Id. at 3:2.)
wire [95:0] o is data = read data;

(Id. at 3:19.)
assign mem read data = d addr[11] ? meml rd data
memQﬁrd4data;

(ld. at 7:25.)

// register instantiation
always @(posedge i clk)

begin
if (i reset)

begin
we <= 1'bh0;

S/ addr <= 12'd0;
read data <= 96'd0;
o rtr <= 1'b0;
wrt data <= 96'd0;
g rbi addr in <= 12'd0;
end

else

begin
we <= d we;

// addr <= d addr;
read*data <= memﬂreadﬁdata;
o rtr <= d rtr;
wrt data <= d wrt data;
g rbi_addr in <= d rbi addr in;
end

end

(Id. at 15:26-16:19.)
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234. The sq target instr fetch module receives the instruction

from the g instruction store module using the R400 RTL code below:

input [95:0] is read data;
(sqg target instr fetch.v,5:14.)

235. The instruction is loaded into the sg target instr fetch

module’s tif instr gregister, as shown using the R400 RTL code below:

S e
// —-- Target Instruction Register (TIR) --
S e
// - loaded with data read from instruction store

// - the TIR is output to the target instruction gueue (which
does some decode in front of the queue)

always @ (posedge clk)

begin

if (1d tir) tif instr g <= is read data;
else tif instr g <= tif instr g;
end

(Id. at12:17-13:2))

236. The sg target instr fetchmodule transmits the instruction
toan sg alu instr queue module using the interface below:

// outputs to the target instruction decoder (in the TIQ module)

tif thread type g, // vert:1, pix:0
tif thread id g, // the target thread id
tif instr q, // the target instruction register (TIR)

(Id. at 3:19-21))

237. With respect to the shader, the sg target instr fetchmodule

passes the instruction to the sqg alu instr queue module. The
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sq alu instr qgueue module calculates the gpr address (the address where
the data is located that requires execution). The R400 RTL code for the

sg alu instr queuemoduleisincludedin sg alu instr queue.v.
The sg. v file instantiates two instances of sg alu instr queue module
called u0 sg alu instr gueueand ul sqg alu instr queue,
associated with each instance of a shader. (sqg. v, 68:6-69:24.) For simplicity, I
address only u0 sg alu instr queue as thatis sufficient to meet the claim

limitations.

238. The sg alu instr qgueue module receives the instruction from
the sqg target instr fetch module, using the interface below:

// inputs from AIF (ALU Instruction Fetch)

aif thread type q, // vector type (0: pixel, 1: vertex)
aif thread id g, // thread id

aif instr q, // instruction register (registered read
from IS - 96 bits)
(sg _alu instr queue.v,2:15,2:21-22,2:24.)

239. The sg alu instr gueue modules pass the instruction to the
u sqg ais output module. The R400 RTL code for the
u sq ais output moduleisincludedin sq ais output.v. The sg.v
instantiates an instance of the u sg ais output module called

u sqg ais output.(sqg.v,77:20-81:4.)
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240. The u _sg ais output module receives the instruction from the
ul sg alu instr gueue using the interface below:
// inputs from the AIQs

aig0 instr, // instruction

(sg ais output.v,2:9,2:14.)

241. The u sg ais output module convertsthe aig0 instr
nstruction into a SO SP interface format, and then provides the instruction to the

shader, as shown using the R400 RTL code below:

S e e
// —-- SP instruction, write mask --
S e
// - valid with instruction start

always @ (posedge clk)
begin
case (gpr phase)
'SQ SRCB_PHASE: begin
case (alu phase)
LO: begin
SQ SP instr <= {3'b000, aiq0 instr[06:00],
aig0 instr[55:48], aiq0 instr([58], aiqO instr[101:99]};
u0 SQ SP write mask <= aiq0 valid bits [3:0];
ul S0 SP write mask <= aiq0O valid bits [7:4];
uz2 SQ SP write mask <= aiqO valid bits [11:8];
u3 SO SP write mask <= aiq0 valid bits [15:12];
end

endcase
end
'SQ SRCC_PHASE: begin
case (alu phase)
LO: begin
SQ SP instr <= {aiq0 instr[15:08], aiq0 instr[47:40],
aiq0 instr[57], aiqg0 instr[98:96]};
u0 SQ SP write mask <= aiqg0 valid bits [19:16];
ul SO0 SP write mask <= aiqg0 valid bits [23:20];
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uz SQ SP write mask <= aiq0 valid bits [27:24];
u3 SQ SP write mask <= aiqg0 valid bits [31:28];

i

ena

endcase
end
‘SQ FA PHASE: begin
case (alu phase)
LO: begin
SQ SP instr <= [aiq0 instr[23:16], aiqg0 instr[39:32],
aig0 instr{56], aig0 instr[95:93]};
u0 SQ SP write mask <= aiq0 valid bits [35:32];
ul SQ SP write mask <= aiq0 valid bits [39:36];
uz SO SP write mask <= aiq0 valid bits [43:40];
u3 50 SP write mask <= aiq0 valid bits [47:44];
end

endcase
end
"SQ SRCA PHASE: begin
case (alu phase)
LO: begin
SQ SP instr <= {aiq0 instr[23:16], aiq0 instr[25:24],
aiq0 instr[31:26], aiq0 instr[92:88]};
u0 SO SP write mask <= aiq0 valid bits [51:48];
ul S0 SP write mask <= aiq0 valid bits [55:52];
u2 SQ SP write mask <= aiq0 valid bits [59:56];
u3 S50 SP write mask <= aiqg0 valid bits [63:60];
end
endcase
end
endcase
end

(/d. at 16:9-17:20, 17:29-18:11, 18:20-19:15 .)
242, The SO SPinterface which includes instruction that the sequencer

passed tothe shader is replicated below:

// outputs to SP

SQ SP gpr wr addr,

SO SP gpr wr en,

SQ SP gpr rd addr,

SQ SP gpr rd en,

SQ SP gpr phase,

S5Q SP gpr input sel,

SQ SP gpr channel mask,
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SQ SP instr,
SQ SP const,

/S

50 SP exporting,

SQ SP exp id,

ul0 SQ SP write mask,
ul SQ SP write mask,
u2 S5Q SP write mask,
u3 S0 SP write mask,

(Id. at4:4-11, 4:15-16, 4:18-24.)

243. In particular, the interface includes the SO SP instruct

parameter which provides the instruction.

244. The shader (included in the sp module) receives the instruction using
the SO SPinterface, and converts the instruction into g sg instruct, as

shown using the R400 RTL code below:

input [20:0] SQ SP instruct;
(sp.v,6:13)
ati dff in #(21) sq instruct(sclk,S8Q SP instruct,q sq instruct);

(Id at7:4.)

245. The sp module passes the instruction to the vector units uvector0,
uvectorl, uvectorZ2, and uvector3, which pass the instruction to the
macc gpr module, the MACC module and to the mad unit (which is the

computation unit) as described in Sections [X.A.3 and IX.J.3.
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246. In this way, the instruction maintained by the sequencer is executed

by the computation element.

K Claim 15

247. Claim 15 recites “[a] unified shader” comprising three components: a
general purpose register, a processor unit and a sequencer. Below, I have generated
a figure based on my understanding of the R400 RTL code that shows the

relationship between these components.
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Sequencer

{squv)

sq_alu_instr_seq

sq_alu_instr_queue

(sq_alu instr seq.v)

(sg_alu instr queue.v)

ul_sq_alu_instr_seq

ul_sq_alu_instr_queue

Genergl Purpose »  Lines 130-295
Register Block
macc32
Processor (mace.v) .
Unit > mad
macc
(macc.v)
umacce
macc_gpr
(maccwgpr .v)
umacc_gpr0
Vector (vector.v)
Shader Core (sp.v)
Unified Shader
1 A general purpose register block

248. Claim 15 recites a unified shader comprising “a general purpose

register block for maintaining data.” As 1 discussed in Section IX.A.3, the shader

instantiates umacc gpr0, umacc gprl, umacc gprZ2,and umacc gpr3

units using the macc gpr module. The macc gpr module is specified in
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macc gpr.v. One or more of the umacc gpr0, umacc gpri,

umacc gpr2,and umacc gpr3 form aregister block.

249. The register block 1s a general purpose register block because it stores
different types of data. For example, the data can be vector data
(VectorResult), scalar data (i ScalarData), texture data (tp sp data)or
interpolated data (i Interpolated). Asshown, macc gpr module selects the
type of data for storage in the general purpose register, using the R400 RTL code

below:

//The phase mux controlling the write input port into GPRs
(register file write port)

always@(/*AUTOSENSE* /VectorResult or iInterpolated or
iScalarData
or sqg sp gpr phase mux or tp sp data)
begin
case(sq sp gpr phase mux)
2'p00: InputGPR = iInterpolated;
2'pb01: InputGPR tp sp datay
2'p10: InputGFR VectorResult;
2'pl1l: InputGPER iScalarData;
default: InputGPR = ilnterpolated;
endcase // case(sq sp gpr phase mux)
end // always@ (...

(macc gpr.v,5:18-6:7.)

250. The macc gpr module then writes the selected data using the

InputGPR signal into a memory called ugpr mem, as shown in Section IX.A.3.
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251. Additionally, the macc gpr module reads the data from ugpr mem
using the RegData signal as shown in Section IX. A. The reading and writing to a
ugpr mem memory maintains the data in the general purpose register block as

recited in claim 13.

2. The processor unit

252.  Claim 13 also recites “a processor unit.”” The MACC module and the
macc32 module, which I described in Section IX A .3, together form a processor

unit.

3. The Sequencer
253. Claim 13 also recites “a sequencer, coupled to the general purpose
register block and the processor unit.” I described in Section 1X.J.3 that a

sequencer 1s the sg module.

a. Coupled to the general purpose register

254. The sequencer is coupled to the general purpose register block and the
processor unit. In particular, the sequencer is coupled to the processor unit by the
SO SPinterface, and the general purpose register block by the SO SP GPR
interface. The sequencer side of the interface, included in the s¢g module, is

replicated using the R400 RTL code below:
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// S0-SP GPR control Interface

output [6:0] SQ SP gpr wr addr;
output [0:0] u0 SO SP gpr wr_en;
output [0:0] ul SQ SP gpr wr _en;
output [0:0] uz SQ SP gpr wr_en;
output [0:0] u3 SQ SP gpr wr_en;
output [6:0] SQ SP gpr rd addr;
output [0:0] SQ SP gpr rd eny
output [1:0] SQ SP gpr phase mux;
output [3:0] SQ SP channel mask;

output [3:0] ul SQ SP pix mask;
output [3:0] ul SO SP pix mask;
output [3:0] u2 SQ SP pix mask;
output [3:0] u3 SQ SP pix mask;

output [1:0] Sg sp gpr input mux;

output [11:0] SQ SP auto count;

(sqg.v, 8:11-9:5)

255. The sp module also includes the SQ SP interface, which receives the

above parameters using the R400 RTL code, replicated below:

//SEQUENCER (50) —~SHADER (SP)
//GPR control and auto-counter interface

e /
input [6:0] S0 SP gpr wr addr;

input [6:0] SQ SP gpr rd addr;

input [0:0] SQ SP gpr rd en,SQ SP gpr wr en;

//these to read/write enable signals

//are used to enable the TP - GPR write path also

input [1:0] SQ SP gpr phase mux;
//control into GPR write port

input [3:0] SQ SP channel mask;

input [3:0] S0 SP pix mask;

input [1:0] Sg sp gpr input mux;

input [11:0] S0 SP auto count;

wire [6:0] q sq gpr wr addr;
wire [6:0] g sq gpr rd addr;
wire [0:0] g sq gpr rd en,q sg gpr wr_en;

//these to read/write enable signals
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//are used to enable the TP - GPR write path also

wire [1:0] q sq gpr phase mux;
//control into GPR write port

wire [3:0] g _sg channel mask;

wire [3:0] g sg pix mask;

wire [1:0] g _sq gpr input mux;

wire [11:0] g sq auto count;

ati dff in #(7)
sq gpr wr_addr(sclk,SQ SP gpr wr addr,q sq gpr wr_addr);
ati drf in #(7)
sq gpr rd addr(sclk,SQ SP gpr rd addr,q sq gpr rd addr);
ati dff in #(1)
sqg gpr rd en(sclk,SQ SP gpr rd en,q sq gpr rd en);
ati dff in #(1)
sq gpr wr _en(sclk,SQ SP gpr wr en,q sq gpr wr _en);
ati dff in #(2)
sq _gpr phase mux(sclk,SQ SP gpr phase mux,q sq gpr phase mux);
ati dff in #(4)
sq _channel mask (sclk,SQ SP channel mask,q sq channel mask);
ati dff in #(4)
sq pix mask(sclk,SQ SP pix mask,q sq pix mask);
ati dff in #(2)
sqg gpr input mux(sclk,SQ Sp gpr input mux,q sq gpr input mux
)7
ati dff in #(12)
sq auto count (sclk,SQ SP auto count,q sqg auto count);

(sp. v, 8:24-10:8)

256. The sp module provides the above SO SP GPR interface to vector

uvector(, uvectorl, uvector?2, and uvector3. (See sp. v, 15:6-

18:16.) Each of the vector units includes the general purpose registers called

umacc _gpr0, umacc gprl,umacc gpr2,and umacc gpr3,asl described

in Section [X A 3.

block.

257. As such, the sequencer is coupled to the general purpose register
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258. Because the general purpose register block is included in the
processor unit, the sequencer is also coupled to the processor unit. Additionally, as
I discussed in Section IX.A 3, the sequencer is also coupled to the processor unit

through the SQ SPinstruction interface.

b. The sequencer maintains instructions

259. Claim 13 also recites “the sequencer maintaining instructions
operative to cause the processor unit to execute vertex calculation and pixel
calculation operations on selected data maintained in the general purpose register

block.”

260. As I discussed in Section IX.J.3, the sequencer maintains instructions.
As I also discussed in Section IX.A.3, these instructions include pixel manipulation
instructions and vertex manipulation instruction. When the vector unit passes the
mstruction to the MACC module, the MACC module executes the vertex calculation
or the pixel calculation (as shown in macc.v and macc32.mc), depending on

whether the instruction includes vertex manipulations or pixel manipulations.

261. The mstruction also performs the operations on the selected data
maintained in the general purpose register. As discussed in Section IX.K.1, the
general purpose register maintains data, and the selected data is read from the

ugpr mem memory using the RegData signal.
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262. The data selected in the RegData isstored as g RegData and
OoRegData.(macc gpr.v,15:13,15:17.) The g RegData and instruction
(g _sp instruct) are passed to the MACC module called umacc that
performs operations as described in macc.v, and generates a VectorResult that

includes the result of the operations. (macc gpr.v,3:17-21.)

263. As such the instructions cause the processor unit to execute vertex and
pixel calculations operations on the selected data maintained in the general purpose

register block.

L. Claim 17

264. Claim 17 recites “a selection circuit operative to provide information

to the general purpose block in response to a control signal.”

265. I already discussed a selection circuit in Section IX.A. I have also
discussed how the selection circuit provides an SO SP gpr input sel signal
to the sp module as the sg sp gpr input muxsignal in response to a control
signal. And I have described in Section IX K.1 that the sp module includes the
general purpose register block implemented as umacc gpr0, umacc gprl,
umacc gprZ2,and umacc gpr3 and that these blocks process data based on

whether the sg sp gpr input mux signalis set to process the vertex
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operations or the pixel operations. In this way, the selection circuit is operative to

provide information to the general purpose block in response to a control signal.

- 140 -

ATI Ex. 2115
IPR2023-00922
Page 145 of 271



Case IPR2015-00326 of
U.S. Patent No. 6,897 871

@ § g
ARIRAEE Bl
:‘ % :' 21 = §
2lgl Bl g &
v v =y v
Arbiter Multiplexer
ia_vertex_sel -
sq_input_arb sq_ais_output line 493 . vector/mezs7207 & 227-
(sqg_input_arb.v) Ib\ (sg_ais_output.v) (vector.v)
u_sq_input_arb » u_sq_ais_output uvector0
Arbiter Circuit ) /
9)
/ g
2
S
a
Sequencer (sq.v)
sq_alu_instr_seq sq_alu_instr_queue
(sg_alu_instr_seq.v) g (sg_alu_instr gueue.v)
u0_sq_alu_instr_seq u0_sq_alu_instr_queue
General Purpose :
urpos .
! urp | Lines 130-295
Register Block
macc32
Processor (mace-v) .
Unit mad
macc
(macc.v)
umacce
macc_gpr
(macc_gpr.v)
umacc_gpr0
Vector (vector.v)
Shader Core (sp.v)

Unified Shader

- 141 -

ATI Ex. 2115
IPR2023-00922
Page 146 of 271



Case IPR2015-00326 of
U.S. Patent No. 6,897 871

M. Claim 18

266. Claim 18 recites a shader of claim 17, “wherein the selection circuit is
a multiplexer and the control signal is provided by an arbiter.” 1 already discussed
a selection circuit that is a multiplexer in Section IX.A.2. And I have discussed a

control signal that is provided by the arbiter in Section IX.A.2.

N.  Claim 20

267. Claim 20 recites a shader of claim 15, “wherein the processor unit
executes vertex calculations while the pixel calculations are still in progress.” 1
already discussed that the processor unit executes vertex calculations and pixel
calculations. As I describe in Section IX.K.1, the general purpose register block
described in macc gpr. v can store the InputGPR data which can be either
pixel data or vertex data. The general purpose register block in macc gpzr does
not differentiate between the different data, and can store the pixel and vertex data

at the same time.

268. A POSA would understand that in this architecture, the pixel
calculations can stall while still in progress when the pixel threads wait for texture
data. In this case, vertex calculations begin to execute, while the pixel calculations
are stalled, but are still in progress —1.e., the pixel calculations still have pixel data

that requires processing.
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269. In this way, the R400 RTL code discloses the processor unit that

executes vertex calculations while the pixel calculations are still in progress.

X. THE CLAIMS OF THE ’871 PATENT ARE SUPPORTED BY THE
PRIORITY DOCUMENT

270. Tunderstand that a specification must contain written description of
the invention. I also understand that the purpose of this requirement is to satisfy the
inventor’s obligation to disclose to the public the technologic knowledge upon
which the patent is based and also to demonstrate that the inventor was in

possession of the claimed invention.

271. The 871 patent was filed on November 20, 2003 as the *318
application. I have examined the specification and figures of the 318 application.
Based on my examination of the *318 application, I have generated a claim chart
which demonstrates that the 318 application has written description support for all

the instituted claims.

Support for the ’87 1 Patent Clalms 1n U S Patent Appllcatlon No 10/7 18 318 ~

5’871 Patent Clalm ‘

1. A graph1cs processor “The preSent invention gene‘rallyk relates to gtaphics

comprising: processors and, more particularly, to a graphics
processor architecture employing a single shader.” (Ex.
2076,9 1)

“FIG. 4A 1is a schematic block diagram of a graphics
processor architecture according to the present
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ivention.” (/d. at 3.)
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FIG. 4A (Id. at FIG. 4A))

“Briefly stated, the present invention is directed to a
graphics processor that employs a unified shader.” (/d.
at4.)

“A graphics processing architecture employing a single
shader is disclosed.” (/d. at 18.)

la. an arbiter circuit for
selecting one of a
plurality of inputs in
response to a control
signal; and

“The architecture includes a circuit operative to select
one of a plurality of inputs in response to a control
signal.” (/d.)

INDICES

——

ARBITER MUX 66

64J 63
85

62 (See id. at FIG. 4A.)

“[V]ertex information . . . is coupled to the first input of
multiplexer 66.” (/d. at 11.)

“The resulting pixel data from the rasterization engine
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block 74 is the interpolated pixel parameter data that is
transmitted to the second input of the multiplexer 66 on
line 75.” (Id. at 10.)

“In an exemplary embodiment, a graphics processor
according to the present invention includes an arbiter
circuit for selecting one of a plurality of inputs for
processing in response to a control signal.” (/d. at 4.)

“Referring now to FIG. 4A, m an exemplary
embodiment, the graphics processor 60 of the present
invention includes a multiplexer 66 having vertex (e.g.
indices) data provided at a first input thereto and
interpolated pixel parameter (e.g. position) data and
attribute data from a rasterization engine 74 provided at
a second input. A control signal generated by an arbiter
64 1s transmitted to the multiplexer 66 on line 63. The
arbiter 64 determines which of the two inputs to the
multiplexer 66 is transmitted to a unified shader 62 for
further processing. The arbitration scheme employed by
the arbiter 64 is as follows: the vertex data on the first
input of the multiplexer 66 is transmitted to the unified
shader 62 on line 65 if there 1s enough resources
available in the unified shader to operate on the vertex
data; otherwise, the interpolated pixel parameter data
present on the second input will be passed to the unified
shader 62 for further processing.” (/d. at 7.)

1b. a shader, coupled to
the arbiter circuit,
operative to process the
selected one of the
plurality of inputs, the
shader including means
for performing vertex
operations and pixel
operations, and
performing one of the
vertex operations or
pixel operations based

“The architecture includes . . . a shader, coupled to the
arbiter, operative to process the selected one of the
plurality of inputs, the shader including means for
performing vertex operations and pixel operations, and
wherein the shader performs one of the vertex
operations or pixel operations based on the selected one
of the plurality of inputs. The shader includes a register
block which 1s used to store the plurality of selected
iputs, a sequencer which maintains vertex manipulation
and pixel manipulations instructions and a processor
capable of executing both floating point arithmetic and
logical operations on the selected inputs in response to
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on the selected one of
the plurality of inputs,
wherein the shader
provides a appearance
attribute.

the instructions maintained in the sequencer.” (/d. at 18.)

“Briefly stated, the present invention is directed to a
graphics processor that employs a unified shader that is
capable of performing both the vertex operations and the
pixel operations in a space saving and computationally
efficient manner.” (/d. at 4.)

“In an exemplary embodiment, a graphics processor
according to the present invention includes . . . a shader,
coupled to the arbiter, operative to process the selected
one of the plurality of inputs, the shader including
means for performing vertex operations and pixel
operations, and wherein the shader performs one of the
vertex operations or pixel operations based on the
selected one of the plurality of inputs.” (/d. )

INDICES
ARBITER Mux L 66
547 63 | o
—%° 62 o
e
UNIFIED
SHADER
60 T

B9A
-85 (See id. at FIG. 4A.)

“FIG. 5 1s an exploded schematic block diagram of the
unified shader employed in the graphics processor
illustrated in FIG. 4A.” (Id. at 4.)
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FROM MUX MEMORY
=23 FETCH

G5 57

0 WSTRUGTION ]/
- o2 STORE

B9A

91

63 CONSTANTS

T ved
109

95 1 97

I
I SOURCE A [ { SOURCE B | [ SOURCE C 1
83

§
6 (SCALER)

“101

Fic.5 \e  (d atFIG.5)

“The shader includes a general purpose register block
for storing at least the plurality of selected inputs, a
sequencer for storing logical and arithmetic instructions
that are used to perform vertex and pixel manipulation
operations and a processor capable of executing both
floating point arithmetic and logical operations on the
selected inputs according to the instructions maintained
in the sequencer. The shader of the present invention 1s
referred to as a ‘unified’ shader because it is configured
to perform both vertex and pixel operations.” (/d. at 4.)

“[TThe unified shader is more computationally efficient
because it allows the shader to be flexibly allocated to
pixels or verticies based on workload.” (/d. at 5.)

“[A]s illustrated [in FIG. 5], the unified shader 62
includes a general purpose register block 92, a plurality
of source registers: including source register A 93,
source register B 95, and source register C 97, a
processor (e.g. CPU) 96 and a sequencer 99. The
general purpose register block 92 includes sixty four
registers, or available entries, for storing the information
transmitted from the multiplexer 66 on line 65 or any
other information to be maintained within the unified
shader. The data present in the general purpose register
block 92 is transmitted to the plurality of source
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registers via line 109.” (Id. at 7.)

“The processor 96 may be comprised of a dedicated
piece of hardware or can be configured as part of a
general purpose computing device (i.e. personal
computer). In an exemplary embodiment, the processor
96 is adapted to perform 32-bit floating point arithmetic
operations as well as a complete series of logical
operations on corresponding operands. As shown, the
processor is logically partitioned into two sections.
Section 96 1s configured to execute, for example, the 32-
bit floating point arithmetic operations of the unified
shader. The second section, 96A, is configured to
perform scaler operations (e.g. log, exponent, reciprocal
square root) of the unified shader.” (/d. at 8.)

“The sequencer 99 includes constants block 91 and an
instruction store 98. The constants block 91 contains, for
example, the several transformation matrices used in
connection with vertex manipulation operations. The
instruction store 98 contains the necessary instructions
that are executed by the processor 96 in order to perform
the respective arithmetic and logic operations on the
data maintained in the general purpose register block 92
as provided by the source registers 93-95. The
instruction store 98 further includes memory fetch
instructions that, when executed, causes the unified
shader 62 to fetch texture and other types of data, from
memory 82 (FIG. 4A). In operation, the sequencer 99
determines whether the next instruction to be executed
(from the instruction store 98) is an arithmetic or logical
instruction or a memory (e.g. texture fetch) instruction.
If the next instruction is a memory instruction or
request, the sequencer 99 sends the request to a fetch
block (not shown) which retrieves the required
information from memory 82 (FIG. 4A). The retrieved
information is then transmitted to the sequencer 99,
through the vertex texture cache 68 (FIG. 4A).” (/d.)

“If the next instruction to be executed is an arithmetic or
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logical instruction, the sequencer 99 causes the
appropriate operands to be transferred from the general
purpose register block 92 into the appropriate source
registers (93, 95, 97) for execution, and an appropriate
signal 1s sent to the processor 96 on line 101 indicating
what operation or series of operations are to be executed
on the several operands present in the source registers.
At this point, the processor 96 executes the instructions
on the operands present in the source registers and
provides the result on line 85. The information present
on line 85 may be transmitted back to the general
purpose register block 92 for storage, or transmitted to
succeeding components of the graphics processor 60.”
(Id. at9.)

“[TThe instruction store 98 maintains both vertex
manipulation instructions and pixel manipulation
instructions. Therefore, the unified shader 99 of the
present invention is able to perform both vertex and
pixel operations, as well as execute memory fetch
operations. As such, the unified shader 62 of the present
invention 1s able to perform both the vertex shading and
pixel shading operations on data in the context of a
graphics controller based on information passed from
the multiplexer. By being adapted to perform memory
fetches, the unified shader of the present invention is
able to perform additional processes that conventional
vertex shaders cannot perform; while at the same time,
perform pixel operations.” (/d.)

“The unified shader 62 has ability to simultaneously
perform vertex manipulation operations and pixel
manipulation operations at various degrees of
completion by being able to freely switch between such
programs or instructions, maintained in the instruction
store 98, very quickly. In application, vertex data to be
processed is transmitted into the general purpose register
block 92 from multiplexer 66. The instruction store 98
then passes the corresponding control signals to the
processor 96 on line 101 to perform such vertex
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operations. However, if the general purpose register
block 92 does not have enough available space therein
to store the incoming vertex data, such information will
not be transmitted as the arbitration scheme of the
arbiter 64 1s not satisfied. In this manner, any pixel
calculation operations that are to be, or are currently
being, performed by the processor 96 are continued,
based on the instructions maintained in the instruction
store 98, until enough registers within the general
purpose register block 92 become available. Thus,
through the sharing of resources within the unified
shader 62, processing of image data is enhanced as there
is no down time associated with the processor 96.” (1d.)

“ITThe graphics processor 60 of the present invention
incorporates a unified shader 62 which is capable of
performing both vertex manipulation operations and
pixel manipulation operations based on the instructions
stored in the instruction store 98.” (/d. at 11.)

“[A] as the unified shader 62 is capable of alternating
between performing vertex manipulation operations and
pixel manipulation operations, graphics processing
efficiency is enhanced as one type of data operations is
not dependent upon another type of data operations.”
(I/d at11-12))

“[A] conventional shader 10 can be represented as a
processing block 12 that accepts a plurality of bits of
input data, such as, for example, object shape data (14)
in object space (x,y,z); material properties of the object,
such as color (16); texture information (18); luminance
information (20); and viewing angle information (22)
and provides output data (28) representing the object
with texture and other appearance properties applied
thereto (x’,y’,z’).” (Id. at 1.)

“[V]ertex shader . . . accepts as inputs the data
representing, for example, vertices Vx, Vv and Vz,
among others of cube 30 and providing angularly
oriented vertices Vx,Vv and Vz, including any
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appearance attributes of corresponding cube 30°.” (/d. at
2)

“[Tthe pixel shader 54 generates the color and
additional appearance attributes that are to be applied to
a given pixel, and applies the appearance attributes to
the respective pixels . . . . The generated pixel
appearance attribute is then combined with a base color,
as provided by the rasterization engine on line 53, to
thereby provide a pixel color to the pixel corresponding
at the position of interest. The pixel appearance attribute
present on line 59 is then transmitted to post raster
processing blocks (not shown).” (/d. at 6.)

2. The graphics
processor of claim 1,
further including a
vertex storage block for
maintaining vertex
information.

“[Referring to FIG. 3,] [a]fter performing the
transformation operation, the data representing the
transformed vertices are then provided to a vertex store
48 on line 47. The vertex store 48 then transmits the
modified vertex information contained therein to a
primitive assembly block 50 on line 49. The primitive
assembly block 50 assembles, or converts, the input
vertex information into a plurality of primitives to be
subsequently processed. Suitable methods of assembling
the input vertex information into primitives [are] known
in the art and will not be discussed in greater detail here.
The assembled primitives are then transmitted to a
rasterization engine 52, which converts the previously
assembled primitives into pixel data through a process
referred to as walking. The resulting pixel data is then
transmitted to a pixel shader 54 on line 53.” (/d. at 6.)
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(PRIOR ART) rocese (14 at FIG. 3.)

“Referring back to FIG. 4A, the graphics processor 60
further includes a cache block 70, including a parameter
cache 70A and a position cache 70B which accepts the
[vertex] based output of the unified shader 62 on line 85
and stores the respective [vertex] parameter and position
information in the corresponding cache. The [vertex]
information present in the cache block 70 is then
transmitted to the primitive assembly block 72 on line
71. The primitive assembly block 72 is responsible for
assembling the information transmitted thereto from the
cache block 70 into a series of triangles, or other
suitable primitives, for further processing. The
assembled primitives are then transmitted on line 73 to
rasterization engine block 74, where the transmitted
primitives are then converted into individual pixel data
information through a walking process, or any other
suitable pixel generation process. The resulting pixel
data from the rasterization engine block 74 is the
interpolated pixel parameter data that is transmitted to
the second input of the multiplexer 66 on line 75.” (/d.
at 10.)
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(Id. at FIG. 4A.)

3. The graphics
processor of claim 2,
wherein the vertex
storage block further
includes a parameter
cache operative to
maintain appearance
attribute data for a
corresponding vertex
and a position cache
operative to maintain
position data for a
corresponding vertex.

“Referring back to FIG. 4A, the graphics processor 60
further includes a cache block 70, including a parameter
cache 70A and a position cache 70B which accepts the
[vertex] based output of the unified shader 62 on line 85
and stores the respective [vertex| parameter and position
information in the corresponding cache.” (/d. at 10.)

PARAMETER } °
CACHE 70
Y
POSITION P 0
CACHE
! (See id. at F1IG. 4A.)

5. The graphics
processor of claim 1,
wherein the appearance
attribute 1is position, and
the position attribute is
associated with a
corresponding vertex
when the selected one of

“[Refering to FIG. 5,] vertex data to be processed is
transmitted into the general purpose register block 92
from multiplexer 66. The instruction store 98 then
passes the corresponding control signals to the processor
96 on line 101 to perform such vertex operations.” (/d.
at9.)
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the plurality of inputs is
vertex data.
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(Id. at FIG. 5.)

“Referring back to FIG. 4A, the graphics processor 60
further includes a cache block 70, including a parameter
cache 70A and a position cache 70B which accepts the
[vertex] based output of the unified shader 62 on line 85
and stores the respective [vertex] parameter and position
information in the corresponding cache.” (/d. at 10.)
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“FIG. 3 is a schematic block diagram of a conventional
graphics processor architecture.” (/d. at 3.)

85 87

TEXTURE

MEMORY MAP

il 43
VERTEX FETCH fL-| V-CACHE

T
42 l_ 45
VERTEX VERTEX 48
SHADER STORE

N6

44

47 49

To 55

87 PIXEL
SHADER

FROM TEXTURE 7]
57 CACHE |75

5

58
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(PRIOR ART) oS (Id. at FIG. 3.)

“I[In reference to FIG. 3,] the vertex data maintained in
the vertex cache 44 is transmitted to a vertex shader 46
on line 45. [A]n example of the information that is
requested by and transmitted to the vertex shader 46
includes the object shape, material properties (e.g.
color), texture information, and viewing angle.
Generally, the vertex shader 46 is a programmable
mechanism which applies a transformation position
matrix to the input position information (obtained from
the vertex cache 44), thereby providing data
representing a perspectively corrected image of the
object to be rendered, along with any texture or color
coordinates thereof.” (/d. at 5.)

“[A] conventional shader 10 can be represented as a
processing block 12 that accepts a plurality of bits of
input data, such as, for example, object shape data (14)
in object space (x,y,z); material properties of the object,
such as color (16); texture information (18); luminance
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information (20); and viewing angle information (22)
and provides output data (28) representing the object
with texture and other appearance properties applied

thereto (x’,y’,z’).” (/d. at 1.)

“[V]ertex shader . . . accepts as inputs the data
representing, for example, vertices Vx, Vv and Vz,
among others of cube 30 and providing angularly
oriented vertices Vx,Vv and Vz including any
appearance attributes of corresponding cube 30°.” (/d. at
2)

6. The graphics
processor of claim 5,
wherein the appearance
attribute 1is color, and
the color attribute is
associated with a
corresponding pixel
when the selected one of
the plurality of inputs is
pixel data.

“[Alny pixel calculation operations that are to be, or are
currently being, performed by the processor 96 are
continued, based on the instructions maintained in the
instruction store 98.” (/d. at 10.)

“In those situations when [pixel] data 1s transmitted to
the unified shader 62 through the multiplexer 66, the
resulting [pixel] data generated by the processor 96, is
transmitted to a render back end block 76 which
converts the resulting [pixel] data into at least one of
several formats suitable for later display on display
device 84. For example, if a stained glass appearance
effect is to be applied to an image, the information
corresponding to such appearance effect is associated
with the appropriate position data by the render back
end 76.” (Id. at 11.)
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“FIG. 3 1s a schematic block diagram of a conventional
graphics processor architecture.” (/d. at 3.)
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“[In reference to FIG. 3,] [c]olor and texture are then
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applied to the individual pixels that comprise the shape
based on their location within the primitive and the
primitives orientation with respect to the generated
shape; thereby generating the object that is rendered to a
corresponding display for subsequent viewing.” (/d. at

1)

“[A] conventional shader 10 can be represented as a
processing block 12 that accepts a plurality of bits of
iput data, such as, for example, . . . material properties
of the object, such as color (16) . . . and provides output
data (28) representing the object with texture and other
appearance properties applied thereto (x°,y’, z”).” (Id.)

“The pixel shader 54 generates the color and additional
appearance attributes that are to be applied to a given
pixel, and applies the appearance attributes to the
respective pixels . . . . The generated pixel appearance
attribute is then combined with a base color, as provided
by the rasterization engine on line 53, to thereby provide
a pixel color to the pixel corresponding at the position of
interest. The pixel appearance attribute present on line

59 is then transmitted to post raster processing blocks
(not shown).” (/d. at 6.)

“Generally, the pixel shader provides the color value
associated with each pixel of a rendered object.” (/d. at
2)

8. The graphics
processor of claim 1,
wherein the appearance
value is depth.

“[A] conventional shader 10 can be represented as a
processing block 12 that accepts a plurality of bits of
mput data, such as, for example, object shape data (14)
n object space (x,y,z) . . . and provides output data (28)
representing the object with texture and other
appearance properties applied thereto (x', y', 2').” (/d.)

“[Tlhe shader accepts the vertex coordinate data
representing cube 30 (FIG. 2A) as inputs and provides
data representing, for example, a perspectively corrected
view of the cube 30° (FIG. 2B) as an output. The
corrected view may be provided, for example, by
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applying an appropriate transformation matrix to the
data representing the initial cube 30. More specifically,
the representation illustrated in FIG. 2B is provided by a
vertex shader that accepts as inputs the data
representing, for example, vertices Vx, Vv and Vz,
among others of cube 30 and providing angularly
oriented vertices Vx, Vv and Vz, including any
appearance attributes of corresponding cube 30°.” (/d.)

9. The graphics
processor of claim 1,
further including a
selection circuit,
wherein the selection
circuit 1s a multiplexer,
and the control signal is
provided by an arbiter,
wherein the arbiter 1s
coupled to the
multiplexer.

“The architecture includes a circuit operative to select
one of a plurality of inputs in response to a control
signal.” (/d. at 18.)

“In an exemplary embodiment, a graphics processor
according to the present invention includes an arbiter
circuit for selecting one of a plurality of inputs for
processing in response to a control signal.” (/d. at 4.)

“[V]ertex information . . . is coupled to the first input of
multiplexer 66.” (Id. at 11.)

“The resulting pixel data from the rasterization engine
block 74 is the interpolated pixel parameter data that is
transmitted to the second input of the multiplexer 66 on
line 75.” (/d. at 10.)

“Referring now to FIG. 4A, in an exemplary
embodiment, the graphics processor 60 of the present
invention includes a multiplexer 66 having vertex (e.g.
indices) data provided at a first input thereto and
interpolated pixel parameter (e.g. position) data and
attribute data from a rasterization engine 74 provided at
a second input. A control signal generated by an arbiter
64 is transmitted to the multiplexer 66 on line 63. The
arbiter 64 determines which of the two inputs to the
multiplexer 66 is transmitted to a unified shader 62 for
further processing. The arbitration scheme employed by
the arbiter 64 is as follows: the vertex data on the first
input of the multiplexer 66 is transmitted to the unified
shader 62 on line 65 if there is enough resources
available in the unified shader to operate on the vertex
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data; otherwise, the interpolated pixel parameter data
present on the second input will be passed to the unified
shader 62 for further processing.” (/d. at 7.)

INDICES

1

ARBITER MUX

647 &

65 62

(See id. at FIG. 4A.)

10. The graphics
processor of claim 1,
wherein the shader
provides vertex position
data and further
including a primitive
assembly block, coupled
to the shader, operative
to generate primitives in
response to the vertex
position data.

“[Tlhe processor 96 executes the instructions on the
operands present in the source registers and provides the
result on line 85. The information present on line 85
may be . . . transmitted to succeeding components of the
graphics processor 60.” (Id. at 9.)

INDICES

G4 &
85
52

2% tomemory )
UNIFIED 68
SHADER

T
B 69A

TEXTURE MEMORY
VERTEX | b [ DATA

cackE | &
76 PARAMETER /™
CACHE
RENDER V
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CAGHE
71

&Y
k=1

78

PRIMITIVE |7
79 MEMORY ASSEMBLY
CONTROLLER -
73
80
Ve RASTERIZATION] S
DISPLAY » ENGINE
CONTROLLER
I ] 75
8
S B2
DISPLAY MEMORY
FIG. 4A

(Id. at FIG. 4A.)

“Referring back to FIG. 4A, the graphics processor 60
further includes a cache block 70, including a parameter
cache 70A and a position cache 70B which accepts the
[vertex] based output of the unified shader 62 on line 85
and stores the respective [vertex] parameter and position
information in the corresponding cache. The [vertex]
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information present in the cache block 70 is then
transmitted to the primitive assembly block 72 on line
71. The primitive assembly block 72 is responsible for
assembling the information transmitted thereto from the
cache block 70 into a series of triangles, or other
suitable primitives, for further processing.” (/d. at 10.)

11. The graphics
processor of claim 10,
further including a
raster engine, coupled to
the primitive assembly
block, operative to
generate pixel parameter
data in response to the
assembled vertex data.

“Referring back to FIG. 4A, the graphics processor 60
further includes a cache block 70, including a parameter
cache 70A and a position cache 70B which accepts the
pixel based output of the unified shader 62 on line 85
and stores the respective pixel parameter and position
information in the corresponding cache. The pixel
information present in the cache block 70 is then
transmitted to the primitive assembly block 72 on line
71. The primitive assembly block 72 is responsible for
assembling the information transmitted thereto from the
cache block 70 into a series of triangles, or other
suitable primitives, for further processing. The
assembled primitives are then transmitted on line 73 to
rasterization engine block 74, where the transmitted
primitives are then converted into individual pixel data
information through a walking process, or any other
suitable pixel generation process. The resulting pixel
data from the rasterization engine block 7 4 is the
interpolated pixel parameter data that is transmitted to
the second input of the multiplexer 66 on line 75.” (/d.)

- 161 -

ATI Ex. 2115

IPR2023-00922
Page 166 of 271



Case IPR2015-00326 of
U.S. Patent No. 6,897 871

INDICES
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(Id. at FIG. 4A.)

13. The graphics
processor of claim 1,
wherein the shader

includes a register block

for maintaining the
selected one of the
plurality of inputs, a
computation element
operative to perform
arithmetic and logical
operations on the data
maintained in the
register block, and
sequencer for
maintaining the
instructions that are
executed by the
computation element.

“The shader includes a register block which is used to
store the plurality of selected inputs, a sequencer which
maintains vertex manipulation and pixel manipulations
instructions and a processor capable of executing both
floating point arithmetic and logical operations on the
selected 1inputs in response to the instructions
maintained in the sequencer.” (/d. at 18.)

“FIG. 5 1s an exploded schematic block diagram of the
unified shader employed in the graphics processor
tllustrated in FIG. 4A.” (Id. at4.)
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FROM MUX MEMORY
59 FETCH
A5 67

0 INSTRUCTION ) g
; 92 STORE

B9A

91

63 CONSTANTS

T ved
109

95 1 97

I
I SOURCE A [ { SOURCE B | [ SOURCE C 1
83

§
6 (SCALER)

“101

Fic.5 \e  (d atFIG.5)

“The shader includes a general purpose register block
for storing at least the plurality of selected inputs, a
sequencer for storing logical and arithmetic instructions
that are used to perform vertex and pixel manipulation
operations and a processor capable of executing both
floating point arithmetic and logical operations on the
selected inputs according to the instructions maintained
in the sequencer. The shader of the present invention is
referred to as a ‘unified’ shader because it is configured
to perform both vertex and pixel operations.” (/d. at 4.)

“[Tlhe unified shader 62 includes a general purpose
register block 92, a plurality of source registers:
including source register A 93, source register B 95, and
source register C 97, a processor (e.g. CPU) 96 and a
sequencer 99. The general purpose register block 92
includes sixty four registers, or available entries, for
storing the information transmitted from the multiplexer
66 on line 65 or any other information to be maintained
within the unified shader. The data present in the
general purpose register block 92 is transmitted to the
plurality of source registers via line 109.” (/d. at 7.)

“The processor 96 may be comprised of a dedicated
piece of hardware or can be configured as part of a
general purpose computing device (i.e. personal
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computer). In an exemplary embodiment, the processor
96 1s adapted to perform 32-bit floating point arithmetic
operations as well as a complete series of logical
operations on corresponding operands. As shown, the
processor 1s logically partitioned into two sections.
Section 96 is configured to execute, for example, the 32-
bit floating point arithmetic operations of the unified
shader. The second section, 96A, is configured to
perform scaler operations (e.g. log, exponent, reciprocal
square root) of the unified shader.” (/d. at 8.)

“The sequencer 99 includes constants block 91 and an
instruction store 98. The constants block 91 contains, for
example, the several transformation matrices used in
connection with vertex manipulation operations. The
istruction store 98 contains the necessary instructions
that are executed by the processor 96 in order to perform
the respective arithmetic and logic operations on the
data maintained in the general purpose register block 92
as provided by the source registers 93-95. The
instruction store 98 further includes memory fetch
instructions that, when executed, causes the unified
shader 62 to fetch texture and other types of data, from
memory 82 (FIG. 4A). In operation, the sequencer 99
determines whether the next instruction to be executed
(from the instruction store 98) is an arithmetic or logical
instruction or a memory (e.g. texture fetch) instruction.
If the next instruction is a memory instruction or
request, the sequencer 99 sends the request to a fetch
block (not shown) which retrieves the required
information from memory 82 (FIG. 4A). The retrieved
information is then transmitted to the sequencer 99,
through the vertex texture cache 68 (FIG. 4A) as
described in greater detail below.” (/d. at §.)

“If the next instruction to be executed is an arithmetic or
logical instruction, the sequencer 99 causes the
appropriate operands to be transferred from the general
purpose register block 92 into the appropriate source
registers (93, 95, 97) for execution, and an appropriate
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signal is sent to the processor 96 on line 101 indicating
what operation or series of operations are to be executed
on the several operands present in the source registers.
At this point, the processor 96 executes the instructions
on the operands present in the source registers and
provides the result on line 85. The information present
on line 85 may be transmitted back to the general
purpose register block 92 for storage, or transmitted to

succeeding components of the graphics processor 60.”
(Id. at9.)

“[Tlhe instruction store 98 maintains both vertex
manipulation instructions and pixel manipulation
instructions. Therefore, the unified shader 99 of the
present invention is able to perform both vertex and
pixel operations, as well as execute memory fetch
operations. As such, the unified shader 62 of the present
invention is able to perform both the vertex shading and
pixel shading operations on data in the context of a
graphics controller based on information passed from
the multiplexer. By being adapted to perform memory
fetches, the unified shader of the present invention is
able to perform additional processes that conventional
vertex shaders cannot perform; while at the same time,
perform pixel operations.” (/d.)

“The unified shader 62 has ability to simultaneously
perform vertex manipulation operations and pixel
manipulation operations at various degrees of
completion by being able to freely switch between such
programs or instructions, maintained in the instruction
store 98, very quickly. In application, vertex data to be
processed is transmitted into the general purpose register
block 92 from multiplexer 66. The instruction store 98
then passes the corresponding control signals to the
processor 96 on line 101 to perform such vertex
operations. However, if the general purpose register
block 92 does not have enough available space therein
to store the incoming vertex data, such information will
not be transmitted as the arbitration scheme of the
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arbiter 64 is not satisfied. In this manner, any pixel
calculation operations that are to be, or are currently
being, performed by the processor 96 are continued,
based on the instructions maintained in the instruction
store 98, until enough registers within the general
purpose register block 92 become available. Thus,
through the sharing of resources within the unified
shader 62, processing of image data is enhanced as there
is no down time associated with the processor 96.” (Id.)

“[Tlhe graphics processor 60 of the present invention
incorporates a unified shader 62 which is capable of
performing both vertex manipulation operations and
pixel manipulation operations based on the instructions
stored in the instruction store 98. In this fashion, the
graphics processor 60 of the present invention takes up
less real estate than conventional graphics processors as
separate vertex shaders and pixel shaders are no longer
required. In addition, as the unified shader 62 is capable
of alternating between performing vertex manipulation
operations and pixel manipulation operations, graphics
processing efficiency 1s enhanced as one type of data
operations is not dependent upon another type of data
operations. Therefore, any performance penalties
experienced as a result of dependent operations in
conventional graphics processors are overcome.” (/d. at
11.)

15. A unified shader,
comprising:

“A graphics processing architecture employing a single
shader 1s disclosed.” (/d. at 18.)

“The present invention generally relates . . . to a
graphics processor architecture employing a single
shader.” (Id. at 1.)

“The shader of the present invention is referred to as a
"unified" shader because it is configured to perform both
vertex and pixel operations.” (/d. at 4.)

“Briefly stated, the present invention is directed to a
graphics processor that employs a unified shader that is
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capable of performing both the vertex operations and the
pixel operations in a space saving and computationally
efficient manner.” (/d. at4.)

“FIG. 4A 1s a schematic block diagram of a graphics
processor architecture according to the present
invention.” (/d. at 12.) “Referring . . . to FIG. 4A, . ..
[t]he arbiter 64 determines which of the two inputs to
the multiplexer 66 is transmitted to a unified shader 62
for further processing.” (/d. at 3.)
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(Id. at FIG. 4A.)

“In an exemplary embodiment, a graphics processor
according to the present invention includes . . . a
shader.” (/d. at 4.)

“FIG. 5 1s an exploded schematic block diagram of the
unified shader employed in the graphics processor
illustrated in FIG. 4A.” (Id.)

“[TThe graphics processor 60 of the present invention
incorporates a unified shader 62 which is capable of
performing both vertex manipulation operations and
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pixel manipulation operations.” (/d. at 11.)

FROM MUX MEMORY
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55 57

0 weTRUGTION 7
- o STORE

91

63 CONSTANTS

T <ed

108

88 g7

I 1
{ SOURCE A l I SOURCE B ‘ [ SOURCE C 1
53
B -7

96
v

............

Fic.5 \e  (d atFIG.5)

15a. a general purpose
register block for
maintaining data;

“The shader includes a register block which is used to
store the plurality of selected inputs.” (/d. at 18.)

“The shader includes a general purpose register block
for storing at least the plurality of selected inputs.” (/d.
at4.)

FROM MUX MEMORY
59 FETCH
5 57
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; o2 BTORE
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63 CONSTANTS

T <ed
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P 1

[
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a3

FIG. 5 ksa ([d at FIG 5)

“As illustrated, the unified shader 62 includes a general
purpose register block 92 . . . . The general purpose
register block 92 includes sixty four registers, or
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available entries, for storing the information transmitted
from the multiplexer 66 on line 65 or any other
information to be maintained within the unified shader.”
(Id at7.)

“In application, vertex data to be processed is
transmitted into the general purpose register block 92
from multiplexer 66.” (/d. at 9.)

15b. a processor unit;
and

“The shader includes . . . a processor capable of
executing both floating point arithmetic and logical
operations on the selected inputs in response to the
instructions maintained in the sequencer.” (/d. at 18.)

“The shader includes . . . a processor capable of
executing both floating point arithmetic and logical
operations on the selected inputs according to the
instructions maintained in the sequencer.” (/d. at 4.)

FROM MUX MEMORY

FETCH
85 st &7

0 INSTRUCTION |/ 8
; oz STORE

B9A

91

63 CONSTANTS

T
108

= 1 97

I
i SOURCE A ‘ l SOURCE B ] [ SOQURCE C {
3
ereeebef

FIG. 5 Ksz (]d at FIG 5)

“As illustrated, the unified shader 62 includes . . . a
processor (e.g. CPU) 96.” (Id. at 7.)

“The processor 96 may be comprised of a dedicated
piece of hardware or can be configured as part of a
general purpose computing device (1.e. personal
computer). In an exemplary embodiment, the processor
96 is adapted to perform 32-bit floating point arithmetic
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operations as well as a complete series of logical
operations on corresponding operands. As shown, the
processor is logically partitioned into two sections.
Section 96 is configured to execute, for example, the 32-
bit floating point arithmetic operations of the unified
shader. The second section, 96A, is configured to
perform scaler operations (e.g. log, exponent, reciprocal
square root) of the unified shader.” (/d. at 8.)

“[T]he processor 96 executes the instructions on the
operands present in the source registers and provides the
result on line 85.” (/d. at 9.)

15c. a sequencer,
coupled to the general
purpose register block
and the processor unit,
the sequencer
maintaining instructions
operative to cause the
processor unit to
execute vertex
calculation and pixel
calculation operations
on selected data
maintained in the
general purpose register
block.

“The shader includes . . . a sequencer which maintains
vertex  manipulation and pixel manipulations
instructions and a processor capable of executing both
floating point arithmetic and logical operations on the
selected 1inputs in response to the instructions
maintained in the sequencer.” (/d. at 18.)

“The shader includes . . . a sequencer for storing logical
and arithmetic instructions that are used to perform
vertex and pixel manipulation operations.” (/d. at 4.)
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e (Id. at FIG. 5.)

“As illustrated, the unified shader 62 includes . . . a
sequencer 99.” (Id. at 7.)
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“The sequencer 99 includes constants block 91 and an
instruction store 98. The constants block 91 contains, for
example, the several transformation matrices used in
connection with vertex manipulation operations. The
mstruction store 98 contains the necessary instructions
that are executed by the processor 96 in order to perform
the respective arithmetic and logic operations on the
data maintained in the general purpose register block 92
as provided by the source registers 93-95. The
instruction store 98 further includes memory fetch
instructions that, when executed, causes the unified
shader 62 to fetch texture and other types of data, from
memory 82 (FIG. 4A). In operation, the sequencer 99
determines whether the next instruction to be executed
(from the instruction store 98) is an arithmetic or logical
instruction or a memory (e.g. texture fetch) instruction.
If the next instruction is a memory instruction or
request, the sequencer 99 sends the request to a fetch
block (not shown) which retrieves the required
information from memory 82 (FIG. 4A). The retrieved
information is then transmitted to the sequencer 99,
through the vertex texture cache 68 (FIG. 4A).” (/d. at
8.)

“If the next instruction to be executed is an arithmetic or
logical instruction, the sequencer 99 causes the
appropriate operands to be transferred from the general
purpose register block 92 into the appropriate source
registers (93, 95, 97) for execution, and an appropriate
signal is sent to the processor 96 on line 101 indicating
what operation or series of operations are to be executed
on the several operands present in the source registers.”
(Id. at9.)

“[Tlhe instruction store 98 maintains both vertex
manipulation instructions and pixel manipulation
instructions. Therefore, the unified shader 99 of the
present invention is able to perform both vertex and
pixel operations, as well as execute memory fetch
operations. As such, the unified shader 62 of the present
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invention is able to perform both the vertex shading and
pixel shading operations on data in the context of a
graphics controller based on information passed from
the multiplexer. By being adapted to perform memory
fetches, the unified shader of the present invention is
able to perform additional processes that conventional
vertex shaders cannot perform; while at the same time,
perform pixel operations.” (/d.)

“The instruction store 98 then passes the corresponding
control signals to the processor 96 on line 101 to
perform such vertex operations. However, if the general
purpose register block 92 does not have enough
available space therein to store the incoming vertex data,
such information will not be transmitted as the
arbitration scheme of the arbiter 64 is not satisfied. In
this manner, any pixel calculation operations that are to
be, or are currently being, performed by the processor
96 are continued, based on the instructions maintained
in the instruction store 98, until enough registers within
the general purpose register block 92 become available.”
(Id. at 10.)

“[TThe graphics processor 60 of the present invention
incorporates a unified shader 62 which is capable of
performing both vertex manipulation operations and
pixel manipulation operations based on the instructions
stored in the instruction store 98.” (/d. at 11.)

17. The shader of claim
15, further including a
selection circuit
operative to provide
information to the
general purpose block in
response to a control
signal.

“The architecture includes a circuit operative to select
one of a plurality of inputs in response to a control
signal.” (/d. at 18.)

“In an exemplary embodiment, a graphics processor
according to the present invention includes an arbiter
circuit for selecting one of a plurality of inputs for
processing in response to a control signal.” (/d. at 4.)

“[V]ertex information . . . 1s coupled to the first input of
multiplexer 66.” (/d. at 11.)
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“The resulting pixel data from the rasterization engine
block 74 is the interpolated pixel parameter data that is
transmitted to the second input of the multiplexer 66 on
line 75.” (Id. at 10.)

“Referring now to FIG. 4A, in an exemplary
embodiment, the graphics processor 60 of the present
invention includes a multiplexer 66 having vertex (e.g.
indices) data provided at a first input thereto and
interpolated pixel parameter (e.g. position) data and
attribute data from a rasterization engine 74 provided at
a second input. A control signal generated by an arbiter
64 is transmitted to the multiplexer 66 on line 63. The
arbiter 64 determines which of the two inputs to the
multiplexer 66 is transmitted to a unified shader 62 for
further processing. The arbitration scheme employed by
the arbiter 64 is as follows: the vertex data on the first
mput of the multiplexer 66 is transmitted to the unified
shader 62 on line 65 if there is enough resources
available in the unified shader to operate on the vertex
data; otherwise, the interpolated pixel parameter data
present on the second input will be passed to the unified
shader 62 for further processing.” (/d. at 7.)

INDICES

—

ARBITER MUX 66

647 &
85

62 (See id. at FIG. 4A.)

18. The shader of claim
17, wherein the
selection circuit is a
multiplexer and the
control signal is
provided by an arbiter.

“Referring now to FIG. 4A, in an exemplary
embodiment, the graphics processor 60 of the present
invention includes a multiplexer 66 having vertex (e.g.
indices) data provided at a first input thereto and
interpolated pixel parameter (e.g. position) data and
attribute data from a rasterization engine 74 provided at
a second input. A control signal generated by an arbiter
64 is transmitted to the multiplexer 66 on line 63. The
arbiter 64 determines which of the two inputs to the
multiplexer 66 is transmitted to a unified shader 62 for
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further processing. The arbitration scheme employed by
the arbiter 64 is as follows: the vertex data on the first
input of the multiplexer 66 is transmitted to the unified
shader 62 on line 65 if there is enough resources
available in the unified shader to operate on the vertex
data; otherwise, the interpolated pixel parameter data
present on the second input will be passed to the unified
shader 62 for further processing.” (/d. at 7.)

INDICES

——

ARBITER MUX 65

64_} 63

% e (See id. at FIG. 4A.)

20. The shader of claim
15, wherein the
processor unit executes
vertex calculations
while the pixel
calculations are still in
progress.

“In an exemplary embodiment, a graphics processor
according to the present invention includes . . . a shader,
. . . the shader including means for performing vertex
operations and pixel operations.” (/d. at4.)

“The unified shader 62 has ability to simultaneously
perform vertex manipulation operations and pixel
manipulation operations at various degrees of
completion by being able to freely switch between such
programs or instructions, maintained in the instruction
store 98, very quickly. In application, vertex data to be
processed is transmitted into the general purpose register
block 92 from multiplexer 66. The instruction store 98
then passes the corresponding control signals to the
processor 96 on line 101 to perform such vertex
operations. However, if the general purpose register
block 92 does not have enough available space therein
to store the incoming vertex data, such information will
not be transmitted as the arbitration scheme of the
arbiter 64 1s not satisfied. In this manner, any pixel
calculation operations that are to be, or are currently
being, performed by the processor 96 are continued,
based on the instructions maintained in the instruction
store 98, until enough registers within the general
purpose register block 92 become available. Thus,
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through the sharing of resources within the unified
shader 62, processing of image data is enhanced as there
i1s no down time associated with the processor 96.” (/d.
at9.)

“[Al]s the unified shader 62 is capable of alternating
between performing vertex manipulation operations and
pixel manipulation operations, graphics processing
efficiency is enhanced as one type of data operations is
not dependent upon another type of data operations.
Therefore, any performance penalties experienced as a
result of dependent operations in conventional graphics
processors are overcome.” (/d. at 11-12.)

XI. CONCEPTION

272. It 1s my understanding that conception is a mental formulation and
disclosure by the inventor or inventors of a complete idea for a product or process.
I also understand that conception turns on the inventor’s ability to describe his or
her invention with particularity, and conception must be sufficiently complete so as

to enable the POSA to reduce the concept to practice.

273. Thave reviewed a document titled “R400 Top Level Specification”
(Ex. 2041), a document titled “Shader Processor” (Ex. 2042), and two versions of a
document titled “R400 Sequencer Specification” (Exs. 2010, 2028). These
specification documents show that the inventors of the *871 patent—Steven
Morein, Laurent Lefebvre, Andy Gruber, and Andi Skende—were collectively in

possession of a complete embodiment of the claimed subject matter.
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274. Each and every claim element is shown in the R400 specification
documents. Further, the R400 specification documents provide sufficient detail to
enable the POSA to reduce the concept to practice. Reducing the concept to
practice could require substantial work, but would not require undue

experimentation.

275. The following claim chart shows that the inventors conceived of the
claimed subject matter no later than the date of these R400 specification

documents.

Support for the ’87 1 Patent Clalms in ATI Spec1ﬁcat10ns

j’87 ‘1 Patent Cla1m

I A graph1cs The R400 Sequencer Speciﬁcation, the Shader Processor

processor, specification, and the R400 Top Level Specification are
comprising: architectural specifications for the R400. (Ex. 2028, p. 1

(“This is an architectural specification for the R400
Sequencer block (SEQ)”); Ex. 2042, p. 5 (“ShaderPipe

(SP) [1s] for the R400 Graphics Processor™); Ex. 2041.)

The R400 was a graphics-chip product, which was
designed to include a unified processing pipe (i.e., a single

programmable pipeline for 2D video, 3D vertex, and 3D
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pixel operations). (See Ex. 2041, pp. 6, 7.)

la. an arbiter circuit

for selecting one of a
plurality of inputs in
response to a control

signal; and

There is an arbiter circuit.

The claimed arbiter circuit comprises the input arbiter and
at least one GPR input multiplexer. The control signal is

SQ SP gpr input mux.

The input arbiter is outlined in red on the figure below.

Input Arbriter

— VIX RS PIXRS [

L Exec Arbiter J

(Ex. 2028, p. 10.)

The GPR input multiplexers are circled in red in the
diagram below. “The diagram below shows all the
possible data paths going into the GPR write paths, their

selection and routing.” (Ex. 2042, p. 28.)
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(See Ex. 2042, p. 29))

The figure below also shows the GPR input multiplexers.
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(See Ex. 2042, pp. 16, 30.)

The interface between the input arbiter and the GPR input
multiplexers includes the “SQ_SPx gpr input mux”

signal. (/d. at 19-20.) The signal is circled in red on the

figure below.
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CPR DATA VIRITE PATH fept gme g3 | 30 perS

3P_3 _intasp_fjins

(See Id. at 29.)

The arbiter circuit selects one of a plurality of inputs.

As shown 1n the diagram below, the GPR input
multiplexers select from a plurality of inputs originating

from: (1) vertex buffers; (2) interpolators; and (3) a count.
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3P_3 _intasp_fjins

(Id)

“The control of all the multiplexers present at the input . .
. of the GPRs . . . and output of the parameter caches is

done by the sequencer.” (/d. at 30.)

The sequencer first arbitrates between vectors of vertices
that arrive from a primitive assembly and vectors of pixels
that are generated in the scan converter/rasterizer. (See Ex.
2028, p. 6; Ex. 2041, p. 28; see also Ex. 2042, p. 28
(stating that the scan converter to shader pipe interface is

the 1J bus).)

For selecting vertex vectors, “[w]hich of the four shader
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pipelines [a vertex vector]| is issued to [is] determined
either by some effort of load balancing or a simple round

robin.” (Ex. 2041, p. 10.)

For pixel vectors generated by the rasterizer, “the
rasterizer (which includes the sequencer and the shader
pipeline) checks to make sure that there are enough free
registers in the shader pipeline for the pixel shader
program. If not, it stalls until there are enough. The
rasterizer also needs to arbitrate between the three streams
of vectors to be shaded: the vertex stream, the pixel
stream, and the real time stream. I think it will be
sufficient for the real time stream to have priority over the
vertex stream which has priority over the pixel stream.”

(Id. at 11.)

The arbiter circuit selects in response to a control signal.

The GPR input multiplexers of the arbiter circuit selects an
imput in response to a control signal, which is the

SQ SP gpr input mux.

The GPR input multiplexers are “controlled by
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SQ SP gpr input mux part of the ‘SQ SP: Interpolation
bus’ interface . . . to route between vertex data/indices and
interpolated pixel parameters.” (Ex. 2042, p. 28.) The
claimed control signal (the SQ SP gpr input mux)is

sent along this interface.

1b. a shader, coupled
to the arbiter circuit,
operative to process
the selected one of the
plurality of inputs, the
shader including
means for performing
vertex operations and
pixel operations, and
performing one of the
vertex operations or
pixel operations based
on the selected one of

the plurality of inputs,

There is a shader.

“[Tlhe R400 Shader Pipe truly represents an Unified
Shader Architecture. In R400, both vertex and pixel
shading operations are implemented through the shader

units.” Ex. 2042, p. 5.)

“The unified shader is a simd/vector engine that performs
the same instructions on four sets of four (16 total)

elements.” (Ex. 2041, p. 9.)

“As shown 1in the figure reproduced below, “four identical
processing units comprise a shader unit.” (Ex. 2042, p.

15.)
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wherein the shader
provides a appearance

attribute.

HE =
Quads89,10.11 (phase 2)
2[5

:

ST ues 2.12,14,15 phase 3)
0
2

I e e e

—’_\_f\_f

——

—

shader unit Uper Left shader uit Upper Right

Elaee| (el

shiacer urit Lower Left

LM

DZLR D4LR

shader unit Loagr Right

(Ex. 2042, p. 15.)

A shader unit is represented by the gray area on the figure

reproduced below. (Ex. 2010, p. 11.)

X 4
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INSTRUCTICH CONITANT

REGITTER FILE STOREIGACHE STORE

TEXTURE

Id at11))

The shader 1s coupled to the arbiter circuit.

The general purpose registers are part of the shader, as
shown in the figure above. (See id. at 10.) And as shown in
the figure below, the registers are coupled to the GPR

input multiplexers.
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CPR DATA VIRITE PATH fept gme g3 | 30 perS
p M e

3P_3 _intasp_fjins

(Ex. 2042, p. 29.)

The multiplexers are part of the arbiter circuit, which
receive the SQ SP gpr input mux signal provided by the
input arbiter component of the arbiter circuit and
propagate the selected input to the shader. (See supra

Claim 1a.) So, the shader is coupled to the arbiter circuit.

The shader includes a means for performing vertex

operations and pixel operations.

The shader includes ALUs, which perform both vertex
operations and pixel operations because the “Shader Pipe

(SP) serves as the central Arithmetic and Logic Unit
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(ALU) for the R400 Graphics Processor, and “both vertex
and pixel shading operations are implemented through the

shader units.” (See id. at 5.)

The shader comprises ALUs. (See Ex. 2010, p. 11; see

also Ex. 2042, p. 7.)

“ALU consist of two distinct units: ‘Vector’ ALU and the
‘Scalar” ALU. The Vector ALU performs operations in
parallel across a 4-component vector, while the Scalar
ALU performs operations on a single component of a

vector which is then replicated across all components.”

(Ex. 2042, p. 7.)

“An ALU can do simple math, conditional moves, and
permutations on the registers, and the ability to do a
limited number of memory reads using the texture cache.”

(Ex. 2041, p. 10.)

The shader can performs one of the vertex operations or

pixel operations based on the selected one of the plurality

of inputs
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“All the shader units of each and every pipe execute the
same ALU instruction on different sets of vertex

parameters/pixel values.” (Ex. 2042, p. 5.)

“For 3D rendering data 1s passed twice through the unified
shader- once to transform the vertices and a second time to

determine the color of the pixels.” (Ex. 2041, p. 10.)

(1) “The input to the 3D pipe is expected to be indexed
vertex arrays.” (Id. at 10.) When either a vector 1s filled
with 16 entries or a state change happens . . . the vector is
issued to one of the ‘shader’ pipelines for transformation.
Which of the four shader pipelines it is issued to [is]
determined either by some effort of load balancing or a
simple round robin.” (/d.) “[When t]he shader pipeline
receives the vector of 16 indices from the primitive
assembly block[,] [t]he shader pipeline operates, when
rendering pixels, by processing a vector of four 2x2 pixel
footprints, a total of 16 pixels.” (Id.) “At the end of the

vertex program, the transformed coordinates must be
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output.” (/d.)

(2) “Before starting the processing of a vector the
rasterizer (which includes the sequencer for the shader
pipeline) checks to make sure that there are enough free
registers in the shader pipeline for the pixel shader
program.” (Id. at 11.) “The vector is then processed by the
shader pipeline. We will probably support up to eight
sequentially dependent texture fetches . . . . 16 (87)
textures are supported, but each texture can be accessed

multiple times by a single pixel shader.” (/d. at 11.)

The shader provides an appearance attribute.

“The location where the data should be put in the event of
an export 1s specified by in the destination address field of
the ALU instruction word.” (Ex. 2042, p. 10.) The Shader
specification lists the possible types of exports and the
range of addresses. (/d. at 10-11.) The list is divided into
vertex shading and pixel shading. (/d) And the list

comprises of different appearance attributes such as

- 189 -

ATI Ex. 2115

IPR2023-00922
Page 194 of 271



Case IPR2015-00326 of
U.S. Patent No. 6,897 871

position and color. (See id.)

“One output will be the x, y, z, w position . . . . The vertex
program may also output a number of parameter values
(colors, texture coordinates, other interpolated inputs into

the pixel shader).” (Ex. 2041, p. 10.)

“The output of the pixel shader is the final color of the

fragment.” (Id. at 11.)

2. The graphics
processor of claim 1,
further including a
vertex storage block
for maintaining vertex

information.

There is a vertex storage block.

The claimed vertex storage block is a vertex cache, a

parameter cache, and a position cache.

The R400 specifications describe a vertex cache. (See id.
at 10-11.) “Vertices are located in the vertex cache after
the vertices were transformed. (See id. at 25.) “The shader
pipeline will fetch the vertex array data through the cache
infrastructure that is also used for texture fetches.” (/d. at

10.)

The R400 specifications also disclose a parameter cache
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and a position cache. (See infra Claim 3).

The vertex storage block maintains vertex information.

The vertex storage block maintains vertex information
because “[t]he vertex cache stores transformed vertices.”

(Id. at 10.)

The parameter cache and the position cache also maintain

vertex information. (See infra Claim 3.)

3. The graphics
processor of claim 2,
wherein the vertex
storage block further
includes a parameter
cache operative to
maintain appearance
attribute data for a
corresponding vertex
and a position cache
operative to maintain

position data for a

See supra Claim 2 (showing support for the vertex storage

block).

The vertex storage block includes a parameter cache.

The R400 specifications describe a parameter cache. (See

id. at 10-13; Ex. 2028, p. 36.)

The parameter cache is included in the vertex storage
block. (See Ex. 2041, pp. 10-11 (describing the parameter
cache as the “parameter portion of the vertex cache™), 28
(describing the parameter cache as the “vertex parameter

cache”).
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corresponding vertex.

The R400 Sequencer Specification shows four parameter
caches, circled in red below. PC stands for parameter

cache. (Ex. 2042, pp. 18, 30.)

e . CF YERTES ]
e CONSTANTS | coweo 1

p:
»| INST STCRE |

FETCH STATE ke |1

p PR S L i Lol

TP

¥ 1 ¥ .
o] PCIOE|»A.Y. PCIOB || PC/OB
- RB ’,} RB ’ RB -

The Shader Processor specification also has two figures

(See Ex. 2028, p. 7.)

showing the parameter cache blocks, reproduced below

with the parameter cache blocks outlined in red.
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(See Ex. 2042, pp. 16, 30.)
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t 1

{1

SHADERPPE X

(See id. at 32.)

The parameter cache is operative to maintain appearance

1 {1

SHADERPPE 3

attribute data for a corresponding vertex.

“The parameter cache is where the vertex shaders export
their data.” (Ex. 2028, p. 36; see also Ex. 2028, p. 40 (“a

vertex shader exports its data TO THE PARAMETER

CACHE”).)
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“The vertex program may . . . output a number of
parameter values (color, texture coordinates, other
interpolated inputs.” (Ex. 2041, p. 10.) “The rasterizer will
request the parameter data from the parameter cache for
the primitives . . . . The parameter cache 1s 512 bits wide,”
and the rasterizer can fetch parameters stored in the cache.

(Id. at 11.).

“The output of the vertex shader program, transformed
parameter data 1s written into Parameter cache memories.”
(Ex. 2042, p. 32.) “The read address into parameter cache
1s a result of a muxing of three possible 7-bit address
pointers broadcasted by the Sequencer to all shader pipes.
These three pointers are part of ‘Parameter Cache Read
Control Bus” . . . . There are 512-bit worth of data
transferred from Shader Pipe to SX blocks for every read
of the parameter cache. Once read from the parameter
caches, the parameter data is then routed by the SX units
into the interpolation units at the top of the shader pipe.”

(Id. at 33.)
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“Parameter Cache Read control bus . . . provides three
different pointers specifying the location of the parameter
values in the Parameter Caches. Depending on the way the
vertices get mapped into primitives, it might happen that
the parameter values come from different relative offsets
in the parameter caches from one parameter cache to the

other across a shader pipe.” (/d. at 18.)

The vertex storage block includes a position cache.

The R400 specifications describe a position cache. (See
Ex. 2041, pp. 10, 26; Ex. 2028, p. 37 (“Position or
parameter caches can be exported in any order in the
shader program. It is always better to export posistion [sic]

as soon as possible.”).)

The position cache is included in the vertex storage block.
(See Ex. 2041, p. 10 (describing the position cache as the

“position cache portion of the vertex cache™).

The position cache is operative to maintain position data

for a corresponding vertex.
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“At the end of the vertex program, the transformed
coordinates must be output. One output will be the x, vy, z,

w position which we be [sic] stored in the position cache.”

(Id.)

“The primitive assembly block . . . accesses the position
cache portion of the vertex cache.” (/d.) The primitive
assembly “receives the transformed vertex position data

from the shader pipes.” (/d. at 25.)

5. The graphics
processor of claim 1,
wherein the
appearance attribute
1s position, and the
position attribute is
associated with a
corresponding vertex
when the selected one

of the plurality of

See supra Claim 1b (showing support for the appearance

attribute).

The appearance attribute can be a position attribute.

“One output will be the x, y, z, w position.” (/d. at 10.)

The R400 specifications list “the possible types of exports
and the range of addresses,” which includes position. (Ex.

2042, pp. 10-11.)

The position attribute 1s associated with a corresponding

vertex when the selected one of the plurality of inputs is
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inputs is vertex data.

vertex data.

“For 3D rendering data is passed twice through the unified

shader- once to transform the vertices.” (Ex. 2041, p. 10.)

Position is associated with vertex shading. (See Ex. 2042,

pp. 10-11.)

“At the end of the vertex program, the transformed
coordinates must be output. One output will be the x, vy, z,

w position.” (Ex. 2041, p. 10.)

6. The graphics
processor of claim 5,
wherein the
appearance attribute
1s color, and the color
attribute is associated
with a corresponding
pixel when the
selected one of the

plurality of inputs is

See supra Claim 1b (showing support for the appearance

attribute).

The appearance attribute can be a color.

“The output of the pixel shader is the final color of the

fragment.” (/d. at 11.)

The R400 specifications list “the possible types of exports
and the range of addresses,” which includes color. (Ex.

2042, pp. 10-11.)

“The vertex program may also output a number of
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pixel data.

parameter values (colors, texture coordinates [etc.]).” (Ex.

2041, p. 10.)

“When exporting Fog, color must be exported at the same
time. Fog will be exported in the Scalar pipe and Color in

the Vector pipe.” (Ex. 2042, p. 10.)

The color attribute is associated with a corresponding pixel

when the selected one of the plurality of inputs is pixel

data.

“For 3D rendering data 1s passed twice through the unified
shader- once . . . to determine the color of the pixels.” (Ex.

2041, p. 10.)

Color 1s associated with pixel shading. (See Ex. 2042, p.

11)

“The output of the pixel shader is the final color of the
fragment.” (Ex. 2041, p. 11; see also Ex. 2041, p. 14
(“override the color output from the pixelshader with an

ugly shade of green”).)
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8. The graphics
processor of claim 1,
wherein the
appearance value is

depth.

See supra Claim 1b (showing support for the appearance

attribute).

The appearance attribute can be depth.

“At the end of the vertex program, the transformed
coordinates must be output. One output will be the x, y, z,
w position.” (/d. at 10.) A person having ordinary skill in

the art would understand the z position to be depth.

“Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color buffers).”

(Ex. 2028, p. 51.)

9. The graphics
processor of claim 1,
further including a
selection circuit,
wherein the selection
circuit is a
multiplexer, and the
control signal 1s

provided by an

There is a selection circuit.

The at least one GPR input multiplexer is the claimed
selection circuit. The GPR input multiplexers are circled in
red on the diagram below. “The diagram below shows all
the possible data paths going into the GPR write paths,

their selection, and routing.”
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arbiter, wherein the
arbiter 1s coupled to

the multiplexer.

CPR DATA VIRITE PATH fept gme g3 | 30 perS

3P_3 _intasp_fjins

(See Ex. 2042, p. 29.)

The figure below also shows the GPR input multiplexers.
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(See id. at 16, 30.)

The selection circuit is a multiplexer.

The GPR input selection circuits shown in the figures

above are multiplexers. The R400 specifications call a
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GPR input a “multiplexer” and a “MUX.” (See id. at 28,

30; Ex. 2028, p. 40.)

An arbiter provides the control signal.

See supra Claim la (showing support for the control

signal).

The claimed arbiter is the input arbiter outlined in red on

the figure below.
—* VYTIXRS PIXRS ]

L Exec Arbiter J

(Ex. 2028, p. 10.)

The arbiter provides the SQ SP gpr input mux control
signal. “The control of all the multiplexers present at the

input and output of the GPRs . . . is done by the

- 203 -

ATI Ex. 2115

IPR2023-00922
Page 208 of 271



Case IPR2015-00326 of
U.S. Patent No. 6,897 871

sequencer.” (See Ex. 2042, p. 30.) And the sequencer’s
input arbiter “first arbitrates between vectors of . . .

vertices . . . and vectors of . . . pixels.” (See Ex. 2028, pp.

6,10.)

The arbiter is coupled to the multiplexer.

The arbiter is coupled to the multiplexers via the
SQ SP_gpr input mux. (See Ex. 2042, pp. 18-19; Ex.
2028, p. 51; supra Claim 1b (having both the multiplexer

and the arbiter part of the arbiter circuit).)

10. The graphics
processor of claim 1,
wherein the shader
provides vertex
position data and
further including a
primitive assembly
block, coupled to the
shader, operative to

generate primitives in

The shader provides vertex position data.

“At the end of the vertex program, the transformed
coordinates must be output. One output will be the x, vy, z,
w position . . . . The vertex program may also output a
number of parameter values (colors, texture coordinates,

other interpolated inputs into the pixel shader).” (Ex. 2041,

p. 10)

There is a primitive assembly block.

The claimed primitive assembly 1s outlined in red on the
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response to the vertex

position data.

top level block diagram shown below.

R406 Top Level Block Diagram

(See id. at 15.)

The primitive assembly block is coupled to the shader.

The primitive assembly block is coupled to the shader via

the PA — SPn bus. (See id. at 25.)

The primitive assembly block is operative to generate

primitives in response to the vertex position data.

“[The primitive assembly] receives the transformed vertex
position data from the shader pipes.” (/d. at 25; see also id.
at 10 (“The primitive assembly block reads the indices

back out of the latency FIFO and accesses the position
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cache portion of the vertex cache. It assembles the vertices
into primitives (lines, triangles, rectangles, quads?, points,

7.7).)

As circled in red on the figure of the shader pipe shown
below, output data from the shader unit can go “to

Primitive Assembly Unit.”
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(Ex. 2028, p. 13.)

The transformed vertex position data is also shown to be
sent along the vertex coordinate return bus in the top level
block diagram. (See Ex. 2041, p. 15; see also id. at 25
(describing the PA — SPn bus as “8x8 tiles to be

rasterized”).)
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“The primitive assembly subblock then creates primitives
(lines, points, rectangles, triangles) from the vertices.” (/d.

at 25.)

“The resulting primitive data, including the indices back
into the parameter portion of the vertex cache are

broadcast to the four pipes.” (/d. at 10.)

11. The graphics
processor of claim 10,
further including a
raster engine, coupled
to the primitive
assembly block,
operative to generate
pixel parameter data
in response to the
assembled vertex

data.

There is a raster engine.

The claimed raster engine is outlined in red on the top

level block diagram shown below

R406 Top Level Block Diagram

(See id. at 15.)

The R400 specifications also include a raster engine block
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diagram, shown below.

%1531 RE Block diagram
I e |
e F"arameier
Bhore:
Region Guft arbitrator
Wertzw Transformn

Dratait Walker

Recipmosl Cache
o e | (SN
m%grpolamrs i =

.
A umj:d'r;rmﬁ«"ﬂ@ (Armmmq
register register mngr
7 ’ )
‘ - ) (d at29))

The raster engine is coupled to the primitive assembly

block.

The raster engine is coupled to the primitive assembly via
the primitive assembly — raster engine interface. (See id.

at 15-16, 25, 28.)

The raster engine is operative to generate pixel parameter
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data in response to the assembled vertex data.

“[V]ectors of 4 quads (16 pixels) . . . are generated in the

raster engine.” (/d. at 28.)

“The rasterizer will request the parameter data from the
parameter cache for the primitives.” (/d. at 11.) The
rasterizer will generate four pixels per clock if there are no
more than eight interpolated parameters. The rasterizer
generates vectors of four 2x2 footprints (16 pixels).” (/d.

at 11.)

The primitive assembly — raster engine interface is
described as “[r]equests to transform packets of vertices.”

(Id. at 28.)

13. The graphics
processor of claim 1,
wherein the shader
includes a register
block for maintaining
the selected one of the

plurality of inputs, a

See supra Claim 1b (showing support for the shader).

The shader includes a register block.

“The user model for the unified shader is composed of a
variable number of general purpose registers, a subset of

which are usually initialized with data.” (/d. at10.)
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computation element
operative to perform
arithmetic and logical
operations on the data
maintained in the
register block, and
sequencer for
maintaining the
instructions that are
executed by the

computation element.

A shader unit is represented by the gray area on the figure
reproduced below. (Ex. 2010, p. 11.) The shader unit

includes a register file, outlined in red. (/d. atl1.)

interpalated
4363 Verter Ingaves

i3 INSTRIZCTION CISMSTANT
FRSISTERFLE ETOREICACHE STORE "

| . ]
0 . i N
|| — e — i

««««««« TEXTURE

(Id.)

The claimed general purpose register blocks are outlined

in red on the shader pipeline diagram reproduced below.
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(GPRs).)

(See Ex. 2042, pp. 16, 30.)

(See also id. at 6 (describing the general purpose registers

The register block maintains the selected one of the
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plurality of inputs.

“The general-purpose registers are 128 bits wide,

composed of four 32-bit values. (/d.)

General purpose registers are allocated based on the
number of general purpose registers a program needs. (See
id.; Ex. 2028, p. 39.) “The register file allocation for
vertices and pixels can either be static or dynamic.” (Ex.

2028, p. 31; see also id. at 40.)

The figure shown below 1s an example of the general
purpose registers’ allocation. (/d. at 32.) “Vertices come in
from top to bottom; pixels come in from bottom to top.
Vertices are in orange and pixels in green. The blue line is
the tail of the vertices and the green line is the tail of the
pixels. Thus anything between the two lines is shared.
When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the
same ‘unallocated bubble’. Then the boundary 1s allowed

to move again.” (/d.)
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(Id.)

The register block maintains the selected input because as
shown above, data is written to the register files. (See also
id. at 14.) And the data can be written to a pixel portion or

vertex portion. (See id. at 41.)

The shader includes a computation element.

The shader includes ALUs, which are computation

elements.

The shader comprises ALUs. (See Ex. 2010, p. 11; see

also Ex. 2042, p.7.)

“ALU consist of two distinct units: “Vector’ ALU and the
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‘Scalar’ ALU. The Vector ALU performs operations in
parallel across a 4-component vector, while the Scalar
ALU performs operations on a single component of a
vector which is then replicated across all components.”

(Ex. 2042, p. 7))

“An ALU can do simple math, conditional moves, and
permutations on the registers, and the ability to do a
limited number of memory reads using the texture cache.”

(Ex. 2041, p. 10.)

The computation element is operative to perform

arithmetic and logical operations on the data maintained in

the register block.

ALU stands for “Arithmetic and Logic Unit.” (Ex. 2042,
p. 5.) The R400 specifications list the ALU operations.
(See id. at 11-13 for a listing of ALU operations). The

R400 specifications also list the scalar unit’s operations.

(See id. at 33-42.)

The ALUs are operative to perform operations on data

maintained in the register block. (See Ex. 2028, pp. 24-25,
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51-52, 54-58.)

The shader includes a sequencer.

The figure below shows the R400’s sequencer block. The

sequencer block is outlined in red.

waooss CONSTANTS | oo |

¢
| INSTSTORE |

FETCH STATE [«n T

p PR S— L] o L]

Lo T

| s w T i

Ve PCIOB' ~( PC/OB }» Pcms}r r»liloﬁs“‘
/

(e Hore e e |

(See id. at 7.)

The figure reproduced below shows a sequencer (SEQ),

instruction store (IS), and constant store (CST).
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1d at 14.)

The sequencer is included in the R400 shader architecture.

The sequencer maintains the instructions that are executed

bv the computation element.

The sequencer maintains the instructions in an instruction

store. The instruction store is outlined in red on the figures

reproduced below.
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g CONITANT
REGISTER FILE STORE

B Ko TEXTURE

(Ex. 2010, p. 11.)

“There is going to be only one instruction store for the
whole chip. It will contain 4096 instructions . . . . It is

likely to be a 1 port memory.” (Ex. 2028, p. 17.)

15. A unified shader,

comprising:

“The most ambitious feature in this design is the ‘truly
unified pipe’ : a single programmable pipeline is used for

2D Video, 3D vertex, and 3D pixel operations. The unified
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pipeline does all of its calculations in 32 bit floating
point.” (Ex. 2041, p. 7.) The unified pipeline results in a
single math/register structure compared to the separate

structures in a more traditional design.” (/d.)

“[TThe R400 Shader Pipe truly represents an Unified
Shader Architecture. In R400, both vertex and pixel

shading operations are implemented through the shader

units.” (Ex. 2042, p. 5.)

15a. a general
purpose register block

for maintaining data;

The shader includes a general purpose register block.

“The user model for the unified shader is composed of a
variable number of general purpose registers, a subset of

which are usually initialized with data.” (Ex. 2041, p. 10.)

A shader unit 1s represented by the gray area on the figure
reproduced below. (Ex. 2010, p. 11.) The shader unit

includes a register file, outlined in red. (/d.)
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imterpaizien
daia  Vertex Ingenss

INETRUCTION CONSTANTE
REGISTER FILE ETOREIGACHE STORE

TEXTURE

1d)

The claimed general purpose register blocks are outlined

in red on the shader pipeline diagram reproduced below.
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(See Ex. 2042, pp. 16, 30.)

(See also id. at 6 (describing the general purpose registers

(GPRs).)

The general purpose register block maintains data.
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“The general-purpose registers are 128 bits wide,

composed of four 32-bit values. (/d.)

General purpose registers are allocated based on the
number of general purpose registers a program needs. (See
id.; Ex. 2028, p. 39.) “The register file allocation for
vertices and pixels can either be static or dynamic.” (Ex.

2028, p. 31; see also id. at 40.)

The figure shown below 1s an example of the general
purpose registers’ allocation. (/d. at 32.) “Vertices come in
from top to bottom; pixels come in from bottom to top.
Vertices are in orange and pixels in green. The blue line is
the tail of the vertices and the green line is the tail of the
pixels. Thus anything between the two lines is shared.
When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the
same ‘unallocated bubble’. Then the boundary 1s allowed

to move again.” (/d.)
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(Id.)

As shown above, data is written to the register files. (See
also id. at 14.) And the data can be written to a pixel

portion or vertex portion. (See id. at41.)

15b. a processor unit; | The shader includes a processor unit.

and
An ALU of the shader is the claimed processor unit.

The shader comprises ALUs. (See Ex. 2010, p. 11; see

also Ex. 2042, p.7.)

“ALU consist of two distinct units: “Vector’ ALU and the
‘Scalar’ ALU. The Vector ALU performs operations in

parallel across a 4-component vector, while the Scalar
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ALU performs operations on a single component of a
vector which is then replicated across all components.”

(Ex. 2042, p. 7.)

“An ALU can do simple math, conditional moves, and
permutations on the registers, and the ability to do a
limited number of memory reads using the texture cache.”

(Ex. 2041, p. 10.)

15c¢. a sequencer,
coupled to the general
purpose register block
and the processor
unit, the sequencer
maintaining
instructions operative
to cause the processor
unit to execute vertex
calculation and pixel
calculation operations

on selected data

The shader includes a sequencer.

The figure of the R400 architecture, reproduced below,

shows a sequencer highlighted in red.

Register, ] CF VERTER
peeess CONSTANTS | coraon |

&
| INSTSTORE |

FETCH STATE i |1

; — 1 1 1

. v . : :
- - PCIOB' { PC/OB }— Pt:foa}r PC/OB
| e [ e |

| re [ ome |

Lo TP

(See Ex. 2028, p. 7.)
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maintained in the
general purpose

register block.

The figure reproduced below shows a sequencer (SEQ),

instruction store (IS), and constant store (CST).

i O
Clause # + Roy

s | seq | csT ok

wradar ‘, —

cMD -

CsT

P Phase 9 {

CMD CSTCSTCST(DX :’i\ Wrvec

c
{ H H
; RoAddr H i i i y{rscaa Weadar
. [

i

st

FETCH SP OF

- WirAddr

Id. at 14.)

The sequencer is included in the R400 shader architecture.

The sequencer i1s coupled to the general purpose register

block.

As shown 1n the figures above, the sequencer is coupled to
the shader pipe and as shown in the figure below, the
sequencer’s instructions tore and constant store are

coupled to the shader’s register file.
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(Ex. 2010, p. 11.)

The sequencer is coupled to the processor unit.

As shown in the figures reproduced above, the sequencer
is coupled to the shader pipe and thereby also coupled to
the shader’s ALU processing units that receive instructions

from the sequencer to process data.

The sequencer maintains instructions.
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The sequencer maintains the instructions in an instruction

store. The instruction store is outlined in red on the figures

reproduced below.
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Id at 14)

PR——

CONITANT
STORE

INSTRUCTION

REGISTER FILE BTOREICATHE

TEXTURE

(Ex. 2010, p. 11.)

“There is going to be only one instruction store for the
whole chip. It will contain 4096 instructions . . . . It is

likely to be a 1 port memory.” (Ex. 2028, p. 17.)

The instructions are operative to cause the processor unit

to execute vertex calculation and pixel calculation
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operations on selected data maintained in the general

purpose register block.

See supra Claim 15b (showing support for the processor

unit).

The shader includes ALUs, which perform both vertex
calculation and pixel calculation operations because the
“Shader Pipe (SP) serves as the central Arithmetic and
Logic Unit (ALU) for the R400 Graphics Processor, and
“both vertex and pixel shading operations are implemented

through the shader units.” (See Ex. 2042, p. 5.)

The ALUs are operative to perform the operations on
selected data maintained 1n the general purpose register
block. (See Ex. 2028, pp. 24-25, 51-52, 54-58.) “An ALU
can do simple math, conditional moves, and permutations
on the registers, and the ability to do a limited number of

memory reads using the texture cache.” (Ex. 2041, p. 10.)

The instructions are operative to cause the ALUs to
execute the operations. “The sequencer chooses two ALU

threads and a fetch hread [sic] to execute, and executes all
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of the instructions in a block before looking for a new
clause of the same type. Two ALU threads are executed

interleaved to hide the ALU latency.” (Ex. 2028, p. 6.)

17. The shader of
claim 15, further
including a selection
circuit operative to
provide information
to the general purpose
block in response to a

control signal.

The shader includes a selection circuit.

The at least one GPR mput multiplexer 1s the claimed
selection circuit. The GPR input multiplexers are circled in
red on the diagram below. “The diagram below shows all
the possible data paths going into the GPR write paths,

their selection, and routing.”

T Tenm 031 512 908
pravies vator ] ”\ﬂ lvu Ll l _:—1 l _:\1 32_5°_gi phsse_maic

(See Ex. 2042, p. 29))

The figure below also shows the GPR input multiplexers.
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(See id. at 16, 30.)

The selection circuit is operative to provide information to

the general purpose block in response to a control signal.

The GPR input multiplexers of the arbiter circuit provide
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information to the GPRs in response to the

SQ SP gpr input mux control signal.

The GPR input multiplexers are “controlled by
SQ SP gpr mput mux part of the ‘SQ SP: Interpolation
bus’ interface . . . to route between vertex data/indices and
interpolated pixel parameters.” (/d. at 28.) The claimed
control signal 1s sent along this interface. This interface is

circled in red on the figure below.

As shown in the figures above, the output from the
selection circuit is provided to the general purpose

registers.
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18. The shader of
claim 17, wherein the
selection circuit is a
multiplexer and the
control signal is
provided by an

arbiter.

See supra Claim 17 (showing support for the selection

circuit).

The selection circuit is a multiplexer.

The GPR input selection circuits shown in the figures
above are multiplexers. The R400 specifications call a
GPR input a “multiplexer” and a “MUX.” (See id. at 28,

30; Ex. 2028, p. 40.)

An arbiter provides the control signal.

See supra Claim 17 (showing support for the control

signal).

The claimed arbiter is the input arbiter outlined in red on

the figure below.
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Input Arbiter

[ YIXRS PIX RS [

\— Exec Arbiter J

(Ex. 2028, p. 10.)

The arbiter provides the SQ SP gpr input mux control
signal. “The control of all the multiplexers present at the
mput and output of the GPRs . . . is done by the
sequencer.” (See Ex. 2042, p. 30.) And the sequencer’s
input arbiter “first arbitrates between vectors of . . .

vertices . . . and vectors of . . . pixels.” (See Ex. 2028, pp.

6,10.)

20. The shader of
claim 15, wherein the
processor unit
executes vertex

calculations while the

See supra Claim 15b (showing support for the processor

unit).

The processor unit executes vertex calculations while the

pixel calculations are still in progress.
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pixel calculations are | While waiting for texture data, the pixel calculations can
still in progress. stall while the vertex calculations are in progress, and in
such an instance, the vertex calculations can execute while

pixel calculations are still in progress.

The stall occurs because vertex calculations have priority.
“[Tlhe vertex stream . . . has priority over the pixel
stream,” so, when pixel data reaches the rasterizer, a pixel
calculation may wait until other vertex calculations are

completed. (See Ex. 2041, p. 11.)

The R400 specifications describe state management,
which tracks the progress of pixel and vertex operations

that execute at the same time. (See id. at 13.)

XII. OVERVIEW OF THE APPLIED REFERENCES FOR GROUNDS 1-4

276. In this section, I provide an overview of Rich and Kurihara. This

overview is relevant for my comparison of these references with the 871 patent.

A. Rich

277. Rich discloses an image-generation system that has a sequential,

pipelined architecture. This system performs four functions: “geometric
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processing, rasterization, shading/texturing and composition.” Ex. 1005, Rich,

8:61-62. Rich’s system performs these functions in discrete, sequential phases.

278. The “first function™ that Rich’s system performs is vertex operations.
Id. at 9:1-2; see also id. at 5:3-4. During this vertex-processing phase, primitives
are assigned to specific processing elements 32. /d. at 9:5-7, 14:45-48, 15:43-47,
16:44-47. These assigned processing elements 32 may then perform one of three
different vertex operations: (1) transform primitives from model coordinates to
screen coordinates; (i1) determine lighting values for the primitives; or
(111) generate linear coefficients of the primitives. /d. at 9:18-25; see also id. at

14:10-18-27 (describing the “[c]onversion from model to screen coordinates™).

279. After the vertex operations, Rich’s “processing elements 32 write the
list of transformed primitives to external memory.” /d. at 9:27-29. According to
Rich, “[t]he use of the external memory circuit may be necessitated by the fact that
the processing elements 32 have only a small amount of memory 34 in their own
dedicated circuitry.” Id. at 16:52-55; see also id. at 17:60-64. Rich’s vertex
processing is “‘complete” when all the vertex data has been written to external

memory. /d. at 9:36-39.

280. After the vertex data is written to external memory, Rich’s system

performs rasterization and pixel operations. /d. at 9:40-10:5. During the pixel
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operations, each processing element 32 is assigned to process pixels within a
unique region of a computer screen display. /d. at 8:32-40, 9:43-46. In particular,
the pixel operations begin when each processing element 32 has been assigned
pixel information to process. /d. at 10:2-5; see also id. at 9:61-64 (defining the

pixel information as a “contribution”™).

281. Each processing element 32 in Rich is assigned a small number of
“home pixels.” The processing element is responsible for calculating the final
value of a home pixel by combining “contribution values.” This is done by
repeatedly blending the colors of each contribution value with the prior values. See

id. at 4:46-49; 8:33-40; 9:40-41; 10:35-37.

282. In other words, Rich’s pixel processing occurs only after the
completion of the vertex processing. And the processing element 32 that operates
on a piece of data during the vertex-processing phase is not necessarily the same
processing element 32 that operates on that data during the pixel-processing phase.
So, to make the output of the vertex-processing phase accessible to the processing
elements 32 during the pixel-processing phase, Rich teaches that this output (i.e.,
the transformed vertex data) is stored in an external, shared memory—rnof in the

dedicated memory of a single processing element 32.
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283. Additionally, it 1s important to understand that Rich discloses an
extremely restrictive architecture that is quite different from a general purpose
processor or a modern GPU. In the first place, Rich teaches a SIMD array with
256 or 1024 processing elements (PEs). This means that all of the PEs must run
the exact same instruction every cycle. /d. at 7:19-23; 17:28-42; 18:19-28.
Moreover, if a PE is to read or write its corresponding PE memory 34 block, the
location to be accessed is specified in that same shared instruction which means
that in general, every PE must access the same memory address (or corresponding
addresses in quadrants of the memory) at the same time. /d. at 33:14-47. This
provides very little programming flexibility and is configured to support

addressing of pixels which naturally can be arranged in quadrants.

284. The PE memories are also extraordinarily small. The total memory
size in each PE is only 128 bytes. This would be very ineffective at storing
vertices as the vertex information for a single triangle is generally 48 bytes.
Moreover, the PE itself cannot direct transfers of data between PEs or from the
host memory or video memory to the PE. See e.g. id. 32:2-13. In order to support
transfers into and out of PE memory 34, this already small memory is partitioned
into a main section and an overflow section each used for different purposes. See

e.g. id 34:12-51.
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285. Each PE also only has very limited calculating ability. This means
that the floating-point calculations used for vertex operations like transform and
lighting are very slow. Each PE only includes an 8-bit integer ALU (which can
add and subtract) and no specific circuit for multiplication. See e.g. id. 30:56-
31:37. In my class, I have my students measure how long it takes to perform
floating-point arithmetic using commercially-available software on a more
powerful 8-bit processor that includes more registers and a multiplier. I have also
performed these measurements myself. On that more powerful 8-bit processing
element, it takes approximately 110 cycles to perform a 32-bit floating-point add
operation and 140 cycles to perform a 32-bit floating-point multiply. One would
expect a multiply on Rich to take even longer. A transform calculation on one
vertex requires 9-16 multiplications and 9-12 additions. This means that
performing just the transform operation (and not lighting) on the Rich PE likely
requires at least 2250-3560 steps. Given the long amount of time that the vertex
calculation takes, the amount of time it takes to get the vertex data from memory is

not significant to performance.

B. Kurihara

286. Kurihara is directed to a graphics-processing system that includes a
plurality of graphics processors 6, as shown in Kurihara’s Figure 1(A) (reproduced

below). Each graphics processor is coupled to a corresponding FIFO 5. The FIFO
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memories store graphics data to be processed in parallel by the graphics processors
6. Kurihara, 4:38-40. The graphics data in the FIFO memories can be either vertex
(coordinate) data or pixel (attribute) data. /d. at 4:56-65. These FIFO memories
then simultaneously transfer the data to the graphics processors 6. /d. at 4:61-62.
The graphics processors 6 then process the graphics data in parallel. /d. at 5:37. In
other words, in Kurthara’s system, each graphics processor 6 performs one type of
graphics-processing operation on the data type that it receives from the

corresponding FIFO memory 5.

Fi ‘ GRAPHIC DATA |_. ory |
Fig.1(A) GRAPHIC DATA |1 ; MENORY |2
| ¢ | 8US
COORDINATE [/ 1 pr c’h} ATTRIBUTE
mmm«{ﬁ TTTTITTT % |——poum ausirne
ETECTORS T - DETECTURS
] ! | l
{ FIFO H FIFO FIF0 ] FIFO
~5 |6 5 18 N5 -6 5 |¢6
CRAPHIC GRAPHIC || crapHic GRAPHIC
PROCESSOR || PROCESSOR || PROCESSOR || PROCESSOR
7 I T ]
DISPLAY

S Ut

287. It’s also important to note what Kurihara does not disclose. First,
Kurihara has no disclosure of interleaving a pixel operation and a vertex operation.

Second, Kurihara does not disclose that one type of operation can be started before
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another type of operation has finished. These points are important for my analysis

below.

XIII. GROUNDS 6 AND 9: OBVIOUSNESS GROUND BASED ON RICH
AND KURIHARA

288. T understand that the Board instituted trial for claim 15 as allegedly
obvious over Rich. I also understand that the Board instituted trial for claim 20 as

allegedly obvious over the combination of Rich and Kurihara.

289. In my opinion, these claims are patentable over these references.
First, for claim 15, a POSA would not have been motivated to modify Rich to store
vertex data in an on-chip memory, as LG proposes. Second, in my opinion,
Kurtihara does not teach or suggest a single “processor unit” that “executes vertex
calculations while the pixel calculations are still in progress,” as in claim 20. Third,
I discuss so-called objective indicia that, in my opinion, show that the “unified

shader” of claims 15 and 20 is not obvious.

A. A POSA would not have modified Rich in the way that LG and Dr.
Bagherzadeh propose.

290. In my opinion, claim 15 is not obvious in view of Rich’s sequential,

pipelined system. This claim is directed to “[a] unified shader,” comprising:

a general purpose register block for maintaining data;

a processor unit; and
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a sequencer, coupled to the general purpose register block and
the processor unit, the sequencer maintaining instructions operative to
cause the processor unit to execute vertex calculation and pixel
calculation operations on selected data maintained in the general

purpose register block.

I understand that LG acknowledges that Rich does not explicitly disclose the
italicized feature. See Pet. at 47. And, in my opinion, a POSA would not have been

motivated to make the modifications to Rich that LG proposes.

291. T understand

Zﬁ»ﬂ,l

that LG maps Rich’s

UNEAR !
% EXPRESSION |
EVALUATOR |

system to claim 15 in the

following way: (i) Rich’s
on-processor memory 34 e | a0 I [
CENTRAL CONTROL * —{ PROCESSING ELEMENT
_ UNIT ARRAY CONTOL
and registers allegedly r :
a2+ TN N
. PCI VIDEQ MEMORY i
correspond to the claimed wterFace | | iTeReace VIDEO FUNCTIONS
“general purpose register HOST  FRAMEBUFFER/ ANALOG VIDEO
PROCESSOR  VIDEO MEMORY
block™; (i1) Rich’s ALU FIG. 2 |

33 allegedly corresponds
to the claimed “processor unit”; and (iii) Rich’s processing element array control
40 allegedly corresponds to the claimed “sequencer.” /d. at 47. And I understand

that, according to LG and Dr. Bagherzadeh, it would have been obvious to modify
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Rich to store vertex data and pixel data in on-chip memory 34. See id. at 48. 1

disagree.

292. In the first place, Rich explicitly teaches that vertex data is to be
stored in an external memory. It is clear to a POSA that this is not an arbitrary
decision in Rich but rather that is necessitated by the Rich architecture that aims to
keep each PE very simple and small with limited capabilities. In fact, when
discussing primitive data, Rich explains that the use of external memory requires a
relatively large memory storage circuit and that the use of external memory may be
necessitated. He also teaches that the memory identified by LG as the alleged

general purpose register block is quite small.

Each processing element 1s assigned to one specific primitive
which has associated with it a primitive specific applicability

word.

All of the processing elements 32 are electrically connected to a
common communications bus and to a relatively large memory
storage circuit. This connection may be established through the
central control unit 38 and the video memory interface 44 or
PCI Interface 42. The use of the external memory circuit may
be necessitated by the fact that the processing elements 32
have only a small amount of memory 34 in their own

dedicated circuitry .
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Rich, 16:45-55 (emphasis added).

[T]he processing elements 32 write the list of transformed

primitives to external memory as seen in block 53.

Id. at 9:28-30.

Because the screen is divided into a number of regions, a list for
each region is generated which lists the primitives which touch
that region. This list is written to external memory as seen in

block 54.

Id. at 9:33-36.

The processing elements 32 assign starting memory locations
for their working space within the external memory in
accordance with the precise requirements of processing their

assigned primitives.

Id. at 16:58-65.

The plurality of processing elements 32 examine the nature of
the specific primitive to which they have been assigned, and
determine the amount of memory required for use in external
memory 1n the process of calculating and storing the

transformed primitive.

Id at 17:56-60.
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293. A POSA would not consider moving the large data structures of
vertices (described as a list or a database in Rich) into the very small (128 byte)
local memories in each PE. In the first place, this would require redesigning these
data structures since only a tiny portion of the list or database could be stored in a
PE. Also, since Rich is a SIMD architecture with shared instructions, the data
stored in a specific location in each PE memory must be used in exactly the same
way. Rich does not disclose any way to do this. In the second place, the small
memories in Rich would be understood to be configured specifically to support one
specific type of pixel operation which I explain below. The performance

advantages of this memory are tied to this pixel operation.

294, Additionally, a POSA would not increase the size of the PE memories
in Rich. Rich emphasized having many simple PEs rather than large memories. See
e.g. id. at FIG. 12. The size of the PE memory is hardcoded into the instruction
architecture in Rich to use a 7-bit address. /d. at 33:15-34. It also uses memory
address specific bits for specific purposes during the combining phase. /d. at
34:39-51. Modifying the memory size would require redesigning the instructions,
expanding the instruction memory, redesigning the control signals for combining,
and distributing extra address bits from the instruction to 1000 or more PEs. This

would not be simple to do in Rich.
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295. In my opinion, the reason that Rich stores pixel data in PE memories
is to facilitate a “combination” operation for home pixels assigned to each PE. This
operation repeatedly applies a color-blending calculation to the same data and thus
benefits substantially from storing a small amount of data in a local memory.
Additionally, the local memories are used to gather pixel contributions from
neighboring PEs that share a local bus. They have direct access to a shared bus
258 provided for this purpose and have been designed to allow PE to PE pixel data
transfers at the same time as other calculations are taking place in the PE. /d. at
7:30-32, 25:18-20, 32:3-14. No similar motivations are present for storing vertex
calculation data locally. The disclosed vertex calculations (transformation,

lighting) are performed once for each vertex in the scene.

The contribution values are then returned to the processing
element assigned to the home pixel corresponding to the

contribution and combined to provide a final pixel value.

Id. at 4:46-49; see also id. at 8:33-40.

A final pixel value is then created by a combination of

contribution values associated with a given pixel.

Id at 9:40-41.
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The composition function begins in block 75 where
contribution values are combined for the home pixels in the

processing elements 32 to give the final RGB pixel value.

I1d at 10:35-37.

Each PE has its own memory resource and a bus structure
which allows for sharing of data between processing elements

32.

Id. at 12:38.

Objects which are made up of primitives are processed by

transforming each primitive separately.

1d at 16:9-10.

Each processing element is assigned to one specific primitive
which has associated with it a primitive specific applicability

word.

Id. at 16:45-47.

296. Additionally, since the PE memories are very small, they would not
be very effective for storing vertices. While the 128 memories in each PE in Rich
might reasonably hold up to 64 pixels using the predominant format at the time of
the filing, it would only be able to hold 8-10 vertex positions. Storing so few

vertices in a local memory would be unlikely to improve performance in any

- 248 -

ATI Ex. 2115
IPR2023-00922
Page 253 of 271



Case IPR2015-00326 of
U.S. Patent No. 6,897 871

situation. See id. at 7:27-30, 14:42-15:8. More importantly, Rich does not even hint
at any calculation in his system that would benefit from storing a small number of
vertices in this memory. In fact, if this memory is used at all during vertex
calculations, it appears to be used in its entirety for the creation of the

transformation matrix and not to store vertex data. See id. at 16:66-18:27.

297. Rich also disclaims any ability for the PE memory to hold both pixel
and primitive data at the same time. Instead, Rich clearly explains that there is not
room in each PE to store the vertex (primitive) data and thus it may be necessary to

provide it to the PE multiple times during the calculations.

Because a primitive may have an interior which requires a
contribution from more than one home pixel for a particular
processing element 32 1t may be necessary to repeatedly
provide to the processing elements 32 the primitives for a
region. Thus, in the present case where there are 4 home pixels
assigned to each processing element it may be necessary to
provide a primitive to the processing element array 30 4 times if
one processing element has a contribution for all 4 of its home
pixels. In such a case the primitive is evaluated a subregion at a

time.

Id at 11:25-33.
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298. In my opinion, LG has mischaracterized Rich in its petition and
reached errant conclusions about the impact of the proposed modifications. In the
first place, the representation that Rich suggests that databases containing vertex
data may be stored in PE memory 34 is unfounded. See Pet. at 47. Although
petitioners refer to PE memory 34 as “local processor memory 34,” Rich never
uses this term and does not refer to the PE memory as “local memory.” Moreover,
the section of the Rich specification cited for support (Rich, 9:1-12) discusses only
the operation of block 50 of Figure 3. Block 50 reads “HOST UPDATES THE
DATABASE OF PRIMITIVES.” It is discussing the operation of the host
computer and not the PEs. Therefore, a POSA would read this portion of Rich to
most likely refer to memory that is local to the host processor and not to the PE.

Rich always refers to memory 34 as PE memory, and not as local memory.

299. LG agrees that Rich does not disclose storing vertex data in PE
memory 34, and LG and its expert, Dr. Bagherzadeh, provide only a single reason
to modify Rich to allow storing of vertex data in PE memory 34. See Pet. at 47,
Ex. 1003, 9216. That alleged modification is that Rich could “maintain or
temporarily store both primitive and vertex data from database in the processor
memory 34 for the purpose of local access by the ALU unit to process and
transform primitives and their vertices.” See Pet. at 47. As noted above, PE

memory 34 1s very small and has no additional room for storing vertex data.
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300. Moreover, the alleged reason for this modification is “for the purpose
of faster and more efficient access because storing of temporary data just before
processing operations will reduce the stall time required when data is directly
accessed from external memory.” This statement represents a misunderstanding of
Rich. The PEs in Rich do not request vertices from memory. If they did, such a

request might involve stall time as the PE would wait for the data.

301. But this is not how Rich operates. In Rich, vertex data is sent to the
PEs by central control unit 38. See e.g. Rich, 7:45-55; 8:1-13; 9:1-39; 17:65-18:9.
As explained above, these memory transfers occur simultaneously with PE
calculations and thus there 1s no stall or delay waiting for the next item of vertex
data. Therefore, there is no performance improvement from storing such vertex

data in PE memory 34.

302. Also, each vertex calculation would take thousands of clock cycles as
explained above. This provides ample time for transferring the next item of vertex
data without any performance impact. In fact, there is no reason or any clear

benefit to modifying Rich as suffested by petitioner.

303. Moreover, the proposed modification, as stated, would not provide an
operable system. The system in Rich is very rigid and limited in capabilities. Rich

explains that his motivation is to “reuse the amount of hardware required to
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provide high speed image generation.” Id. 2:64-65. Each PE has very limited
capabilities and has been tailored to only include what is necessary for what Rich
has disclosed. If one were to modify Rich to store vertex and primitive data in PE
memory 34, one would need to redesign substantial portions of Rich. This would

require experimentation and a substantial redesign of Rich’s system.

304. For example, Rich only discloses how to keep a database of vertices
in a central memory. If one were to move these vertices to PE memories, one
would need to design an algorithm to determine which location in memory to use
for each item of vertex data. One would need to design a buffering algorithm to
allow one portion of the PE memory to be written with new vertex data while
calculations are being performed using existing data in the same memory. The
vertex calculation algorithms must then be modified to relocate that data or to use
it from a different location in different phases of operation. One would need to
understand what is stored in PE memory 34 in the current Rich system in detail to
determine if those values need be retained. If so, one must find somewhere else to
put those values and design a mechanism to manage them. One would need to
design a new mechanism to return the transformed vertices to the central database.
One would need to rewrite all of the vertex operation instructions to include
memory addressing and determine how such addressing could be performed using

Rich’s pixel-oriented addressing modes.
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305. In atightly coupled system like Rich, changing the way vertex data is
stored and attempting to use a PE memory designed for pixel storage for vertex
data would require substantial redesign of algorithms, data structures, addressing
modes, data transfer hardware, and many other parts of the system. Moreover,

there is no clear benefit to storing vertices in the PE memory.

306. Furthermore, Rich’s system and the systems of the *871 patent both
must solve a fundamental input-routing issue. This issue arises because these
systems have a single type of computational resource that performs operations on
two different types of inputs—vertex inputs and pixel inputs. See, e.g., *871 patent,
FIG. 5 (CPU 96); Rich, FIG. 2 (processing element 32). As such, some structure
and/or policy must be present to determine which calculations can access the
shared computational resource at any point in time. The unified-shader architecture
disclosed in the *871 patent uses an arbiter and a multiplexer to route the
appropriate input data to the shared computation resource at the appropriate time
and a shared instruction scheduler to schedule interleaved computational threads.
This solves numerous problems related to efficiency, most importantly the ability
to schedule a vertex thread to run when a pixel thread has stalled due to the need
for high-latency texture data. In order to support such a high-level of efficiency, a
general-purpose register block that can store vertex or pixel data is required. This

provides for the ability to switch rapidly between data types.
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307. Rich’s system solves the input-routing issue by performing vertex and
pixel operations in discrete, sequential phases. Specifically, Rich’s processing
elements 32 first perform vertex operations and then write the transformed vertex
data to an external memory. Rich, 9:18-25, 9:27-29, 9:36-39, 17:60-64. Instead of
using hardware structures such as the general-purpose register file and the
sequencer claimed in *871, Rich uses a software and architecture-based policy to
separate the vertex and pixel calculations into distinct phases with distinct modes
of operation. Since Rich does not interleave pixel and vertex operations and does
not use threads, there is no need to have a general-purpose register file that can
maintain data of two types or to have a sequencer capable of maintaining
instructions operative to cause the processor unit to execute vertex calculation and
pixel calculation operations on selected data maintained in the general purpose

register block.

308. Also, Rich specifically designed his computational phases based on
storing vertex data in a list or database in a large external memory. As a result, the
results of the vertex processing phase can be treated as a single global data
structure and sorted, assigned, and routed to the appropriate processing elements

32 for use during the pixel-processing phase. See e.g. id. at 8:32-40, 9:43-46.
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309. Thus, by sequentially performing vertex and pixel operations, Rich’s
processing elements 32 can execute the appropriate instructions on the appropriate
data at the appropriate time without a need for the hardware support structures in
the 871 and can devote more of his hardware to having more PEs on a single chip.
In my opinion, Rich does not disclose a “general purpose register block™ and a

“sequencer” as in claim 15, because Rich’s system has no need for these structures.

310. In my opinion, Rich’s system would not work for its intended if it was
modified to store vertex data in on-chip memory 34, as LG proposes. During the
pixel-processing phase, Rich’s processing elements 32 need access to the
transformed vertex data. To give the processing elements access to this data,
Rich’s system stores this data in the external—shared—memory. /d. at 9:18-25,
9:27-29, 9:36-39, 17:60-64. If this vertex data was instead maintained or stored in
on-chip memory 34, as LG proposes, then it would not be easily accessible to the
processing elements assigned to operate on that data during the pixel-processing
phase. Moreover, Rich does not disclose any algorithms or mechanisms for moving
elements of his vertex database onto PE memories and then back into the vertex
database. As noted, one would need to invent additional functionality and make
additional unspecified modifications to Rich to permit the proposed modification

to work.
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311. In my opinion, a POSA would have understood that Rich teaches that
the external memory is a shared memory for all the processing elements 32. See id.
at 9:28-36, 16:45-55, 16:58-65, 17:56-6. In contrast, a POSA would have
understood that the on-chip memory 34 is a dedicated memory for just one
processing element. See id. at 7:30-32, 25:18-20, 32:3-14. A POSA would have
understood, therefore, that the transformed vertex data would have to be stored in
the external, shared memory to be efficiently accessible by Rich’s other processing

elements 32.

B.  Kurihara does not teach or suggest a “processor unit” that
“executes vertex calculations while the pixel calculations are still in
progress,” as in claim 20.

312. Claim 20 depends from independent claim 15 and recites that “the
processor unit executes vertex calculations while the pixel calculations are still in
progress.” In my opinion, claim 20 is not obvious in view of Rich and Kurihara for
at least two reasons. First, neither LG nor Dr. Bagherzadeh have explained how a
POSA would modify Rich’s system based on Kurihara’s teachings. Second, even if
these references are combined, neither of them teaches or suggests the limitations

of claim 20.

313. LG concedes that Rich does not disclose this limitation. See Pet. at 58

(“Rich does not explicitly disclose that both vertex and pixel processing occur

- 256 -

ATI Ex. 2115
IPR2023-00922
Page 261 of 271



Case IPR2015-00326 of
U.S. Patent No. 6,897 871

simultaneously . . . .”). To fix this deficiency, LG seeks to combine Kurthara’s

teachings with Rich. See id.

314. First, in my opinion, Rich’s and Kurihara’s teachings are
incompatible. Rich discloses a system with a plurality of processing elements that

sequentially perform operations on different data types.

Modeling transformation and the wviewing operation (i.e.
converting from a 3D model to a two dimensional view of that
model) are next sequentially performed, followed by

rasterization.

Rich, 2:7-10.

After geometry processing, the next function carried out by the

image generation system is rasterization.

Id. at 9:40-41.

315. Kurthara discloses a SIMD system that can perform multiple identical
calculations at the same time using multiple graphics processors. It does not,
however, disclose simultaneously operating on two different types of data or
interleaving calculations of different types. In fact, Kurihara teaches almost
nothing about what its graphics processors can do or how they are structured.

Kurthara merely notes that its multiple graphics processors can simultaneously

- 257 -

ATI Ex. 2115
IPR2023-00922
Page 262 of 271



Case IPR2015-00326 of
U.S. Patent No. 6,897 871

process multiple sets of coordinate data at one time or multiple sets of attribute

data at one time.

316. Kurihara is a patent about deciding how and when to refill FIFO
memories. The only aspect of Kurihara that relates to pixel and vertex data is that
the refill threshold for the FIFO depends on the data type. In fact, although
Kurihara discloses that a FIFO can hold either coordinate data or attribute data, it
does not disclose that this FIFO can hold both types of data at the same time.
Separate detection mechanisms are provided for each data type, but Kurihara
implies that all of the data in the FIFO must be of one type for the corresponding

detector to operate.

317. The FIFO memories in Kurihara are not general-purpose register files
as claimed in 871 at least for the reason that they do not include addressable
registers. Neither the graphics processor, nor any other instruction or sequencer in
Kurihara, can select which data in the FIFO to process next. Kurthara does not
teach or suggest the register file or sequencer of claim 15 nor the simultaneous

operation of claim 20,

318. Because Rich’s system and Kurihara’s system operate in different

ways, combining their teachings would be problematic for several reasons. Rich
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specifically relies on addressable memories for its operands, and not FIFOs. See

e.g. Rich, 33:2-34:11.

319. Additionally, in my opinion, Kurihara does not teach or suggest the
“processor unit” of claim 20. Kurihara is directed to a graphics-processing system
that includes a plurality of graphics processors 6, as shown in Kurihara’s Figure
1(A) (reproduced below). Each graphics processor is coupled to a corresponding
FIFO 5. The FIFO memories store graphics data to be processed in parallel by the
graphics processors 6. Kurihara, 4:38-40. The graphics data in the FIFO memories
can be either vertex (coordinate) data or pixel (attribute) data. /d. at 4:56-65. These
FIFO memories then simultaneously transfer the data to the graphics processors 6.
Id. at 4:61-62. The graphics processors 6 then process the graphics data in parallel.
Id. at 5:37. In other words, in Kurihara’s system, each graphics processor 6
performs one type of graphics-processing operation on the data type that it receives

from the corresponding FIFO memory 5.
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320. Kurihara’s individual graphics processors function differently than the
claimed “processor unit” of claim 20. In claim 20, the single claimed “processor
unit” executes a first type of graphics-processing operation (i.e., “vertex
calculations™) while a second type of graphics-processing operation (i.e., “pixel
calculations”) is still in progress. In other words, the claimed “processor unit” can
stall one type of graphics-processing operation—while that operation is still in
progress—in order to perform another type of graphics-processing operation.
Kurihara does not disclose threads or any other mechanism for interleaving
calculations of different types. Moreover, the FIFO descriptions indicate that only

one type of data can be in the FIFO structures at a time.

321. Kurihara does not teach or suggest executing a first type a graphics-

processing operation while a second type of graphics-processing operation is still

- 260 -

ATI Ex. 2115
IPR2023-00922
Page 265 of 271



Case IPR2015-00326 of
U.S. Patent No. 6,897 871

in progress. Instead, each of Kurihara’s graphics processors 6 simply performs a
graphics-processing operation on the data it receives from the corresponding FIFO
memory. If one of Kurihara’s graphics processors receives vertex data, it will
operate on that vertex data; if it receives pixel data, it will operate on the pixel

data. All of the processors receive the same type of data at the same time. Nowhere
does Kurihara disclose that one of these graphics processors can stall a first type of
operation (e.g., an attribute-based operation) in order to perform a second type of
operation (e.g., a coordinate-based operation). In other words, unlike the claimed
“processor unit,” none of Kurihara’s graphics processors 6 can perform one type of

graphics operation while a second type of graphics operation is still in progress.

C. Objective indicia of non-obviousness

322. Thave been asked to consider a number of factual questions relating to
the inventions claimed in the 871 patent. I understand that these are called
objective indicia of non-obviousness. I view them more as windows into the state
of the art when ATI’s engineers performed the work underlying the 871 patent

and released their innovations to the public.

323. Two indicia that I consider are initial skepticism and later industry
acceptance. These two indicia straddle the commercial release of ATI’s Xenos

chip, which appeared in the Microsoft® Xbox 360®.
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324. In particular, ATI’s Xenos chip became the first commercially
available GPU with a unified shader. This is reported by one of my former
students, Greg Humphreys, in an article he co-authered for Computer. See Ex.
2078, p. 4 (“Unified shaders were first realized in the ATI Xenos chip for the Xbox
360 game console . . . .”). Computer is an IEEE publication that is peer reviewed
and 1s considered the flagship publication of the IEEE computer society. See
http://ieeexplore.ieee.org/xpl/Recentlssue jsp?punumber=2. In my experience,
Computer 1s a reliable publication. In addition, a textbook, co-authored by a
member of the LG Electronics Institute of Technology, states that “[t]he first
unified shader was implemented in Xenos by ATI for X-Box 360.” Ex. 2082, p.

114.

325. Based on ATI’s design, Microsoft had the Xenos chip fabricated for
inclusion in the Xbox 360. This is reported in Dean Takahashi’s book regarding
the Xbox 360. See Ex. 2119, Dean Takahashi, The Xbox 360 Uncloaked 187
(Spider Works LLC 2006) (“Microsoft would check progress on [ATI’s] work and
then set up the fabrication schedule at its chip contract manufacturer, Taiwan
Semiconductor Manufacturing Co.”). Dean Takahashi 1s a respected journalist with
expertise in the 3D graphics hardware industry. In my experience, Dean
Takahashi’s book is a reliable publication. In fact, I know that he interviewed

Microsoft staff extensively to develop the facts reported in his book.
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326. In 2004, before ATI’s commercial release of the Xenos chip, Nvidia’s
chief architect, David Kirk, questioned whether a unified-shader architecture

would even work. He said:

It’s not clear to me that an architecture for a good, efficient, and
fast vertex shader is the same as the architecture for a good and
fast pixel shader. A pixel shader would need far, far more
texture math performance and read bandwidth than an
optimized vertex shader. So, if you used that pixel shader to do
vertex shading, most of the hardware would be 1dle, most of the

time.

Ex. 2080, Anton Shilov, “ATI and NVIDIA Proclaim Different Graphics

Processors Architecture Goals,” at p. 1 (Dec. 23, 2004).

327. Mr. Kirk also said that it would be a “challenge” and that it would be

“difficult” to design a GPU with a unified shader:

It’s far harder to design a unified processor — it has to do, by
design, twice as much. Another word for ‘unified’ is ‘shared,’
and another word for ‘shared’ is ‘competing.” It’s a challenge to
create a chip that does load balancing and performance
prediction. It’s extremely important, especially in a console
architecture, for the performance to be predictable. With all that

balancing, it’s difficult to make the performance predictable.
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Ex. 2081, Anton Shilov, “NVIDIA Says It Would Make a Chip with Unified Pipes

‘When it Makes Sense™ (July 11, 2005).

328. Since the Xenos chip was released in the Xbox 360, the graphics-
processing industry has moved toward a unified-shader architecture. For example,
Microsoft’s DirectX (DX10) has adopted the unified shader model. See Ex. 2087,
p. 14. (“Shader Model 4.0 (SM4.0) is the new instruction set architecture (ISA) for
DX10 that looks at the graphics in a unified way.”) One advantage of SM4.0 for
DirectX is “Flexible Load Balancing.” (/d.) “The unified shader is made up of
shader blocks that can handle all vertex, pixel, and geometry instructions, so the
GPU is fully utilized without concern for shader loading imbalances.” /d. For
flexible load balancing, “[t]here is also additional logic to load balance the shader
units to keep all functional units fully utilized. If more pixel processing is needed,
then more of the unified shader blocks can be allocated to pixel processing to
increase throughput.” /d. Dr. Bagherzadeh also agrees that both DX10 and
OpenGL “require a unified shader.” Ex. 2074, 103:16-20. Many companies’
graphics products use the unified shader architecture, including the S3 Graphics
Chrome 400 (see Ex. 2087, p. 14), NVIDIA GeForce 8800 GPU and GeForce
GTX 200 GPU (see Ex. 2090, pp. 9, 21), Intel Processor Graphics (see Ex. 2091, p.

12), and Qualcomm Adreno GPUs (see Ex. 2092, p. 5).
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329. The mobile environment has also been moving towards adapting the
unified-shader architecture. “In the mobile environment, a fully programmable 3D
graphics pipeline is required. Owing to the need for low power consumption and
small area, the conventional architecture with separate vertex shader and pixel
shader is hard to implement. Since a unified shader can compute vertex shading
and pixel shading in a single hardware, it 1s a good solution for programmable 3D
graphics.” Ex. 2082, p. 114. For example, a “mobile unified shader is designed to
perform both programmable vertex operation and programmable pixel operation,
which are fully compatible with the mobile 3-D graphics API — OPENGL|ES2.0.”
Ex. 2089, p. 2049. Companies implementing the unified shader architecture in their

products are thus able to remain competitive.

XI1V. CONCLUSION

330. In signing this declaration, I recognize that the declaration will be
filed as evidence in a contested case before the Patent Trial and Appeal Board of
the United States Patent and Trademark Office. I also recognize that I may be
subject to cross-examination in the case and that cross-examination will take place
within the United States. If cross-examination is required of me, I will appear for
cross-examination within the United States during the time allotted for cross-

examination.
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1 hereby declare that all statements made herein of my own knowledge are true and -
 that all statements made on information and belief are believed to be true. The
statements in this declaration were made with the knowledge that willful fa}ise“
statements and the like are madc p1i11i$hable by fine or imprisoninmt under Section
1001 of Title 18 of the United States Code and that willful false statements may

jeopardize the validity of the *871 patent.

- Executed this 14th day of October in Los Gétos? CA

f Respectfullys\ubxniﬁed, | : : g /

S Andrew Wolfe
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