
ATI Ex. 2109
IPR2023-00922

Page 1 of 326

ORIGINATE DATE

24 September, 2001 4 September, 207544a.Ledeentee

EDIT DATE DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA 1 of 51

“Author: Laurent Lefebvre

‘IssueTo: _|ser No:

R400 Sequencer Specification

SQ

Version 2.07

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the
required capabilities and expected uses of the block. it also describes the block interfaces, internal sub-
blocks, and provides internal state diagrarns.

AUTOMATICALLY UPDATED FIELDS:

Document Location: Cc\periorce'r400\doc_lib\designiblocks\sq\R400Sequencer.doc
Current intranet Search Title: R400 Sequencer Specification

| ee SEES Bees APPROVALS | : : : =

r : Name/Dept. J a Signature/Date:|

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE

SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES
INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains

transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or =

Exhibit 2038.docRe00_Sequencerdec 73669 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © ***

ATI 20353

LGv. ATI

IPR2015-00325

AMD1044_0257711

ATI Ex. 2109

IPR2023-00922

Page 1 of 326

ATI Ex. 2109
IPR2023-00922

Page 2 of 326

ORIGINATE DATE EDIT DATE

24 September, 2001 4September,2015+tember,201oi4
.Of Contents

L OVERVIEWoeriLEEndeineentere 7

1.1 Top Level Block Diagram ooceceeesceebenteeseetteeeeerccriteesesssieeeeecissisesesteterenenseees 9
1.2 Data Flow graph (SP)ccceect eee e nnn ee eb ebttteeercottteeeescateesetiseeeetetineeess 10
LS COMPO) GADDce eee ieee citetencebbeteetbsbtieeeettvcietesettiieeesttttenennaes 4
2. INTERPOLATED DATA BUS octetseereineinnenecnanecnaneedeeenanieneenaannnnanenenaes We
3. INSTRUCTION STORE. oo.eerieee creer en nnn nec nannennee sec tnneaneeenenenenensnnen 14

4, SEQUENCER INSTRUCTIONS.o.eccccccceecscnneenees aenneeeeenanneneneeeene 14
&. CONSTANT STORESue

$.1 Memory organizationsooo
$.2 Management of the Control Flow Constants......
§.3 Management of the re-mapping tables 000... :

5.3.1 R400 Constant management oo.ccccc cece tees treteetsceeetitetttesvetitetetiesnteees 15 |

§,.3.2 Proposal for R4AQ0LE constant MANAGEMENT oocece cee teteteeevetettteteetteees 15

SB.3 Dirty DISceceee ceeetet te eetbevivititititesitttentrermitinttitscitititetecreetresteteeaes 7

5.3.4 Free List Block oo... wi lT eee

5.3.5 De-allocate BlOCK ooooccccc cece ttee ti tetteett is tit titistitetitititittitstttrerctnttrsttes 18

5.3.6 Operation of Incremental modeletersrier rntatrernrsnasnes 18
$.4. Constant Store Indexing... 218
$3.5 Real Time Commands... 19 |
$3.6 Constant Waterfalling.0... 18
6 LOOPING AND BRANCHES... naa

6.1 The controlling state.rereeer steer re ernst eter rrr eset resrroraay 20 a
6.2 The Control Flow Progra oo. cceeceeeccceeeeentrneeeeevneeecseennreeessentnetevecvutetevennteates 20 88

6.2.1 Control flow instructions tableoooceects eet te nets everetenrienens 21.

BB IMPlEMetation.eecee eee ce eee cette ett ee eE Otte Sette i ttaeetcettateeeecstaaeeettriaaees 23
64 Data dependant predicate instructions...... 24
65 HW Detection of PVPSoo. 25
6G Register Me inCexingceceeee eee eeeeettrssseeernneeestenteeesstttteeeertrtrreennnreannad 25 5%
6.7 Debugging the Shadersooeccee eect sec eeecueeeeescuieeeeeeccuuiesesscrsa 2625

6.7.1 Method 1: Debugging registersooocece c cette tttttstttre tintin: 26

6.7.2 Method 2: Exporting the values in the GPRS oooccctettre tienes 26
7. PIMEL KILL MASK occcetceinienennaened cdc oinneneeenenenneneeenien 26

8 MULTIPASS VERTEX SHADERS (HOS)... cccccc sess cee ceeeenessseenneneesssseeanenecessensnencensnees 26
9. REGISTER FILE ALLOCATION. occ ccsccccceeserecrseensnerestseassnecesinncuneecisen 2
10. FETCH ARBITRATION.cececenceeneenenernennenene
11. ALU ARBITRATION......
12. HANDLING STALLSoccenne center recneneceeeemnenennee
13. CGONTENT OF THE RESERVATION STATION FIFOS..... ease
14. THE OUTPUT FILE oo ceccceccccsnecsnee secanteenennEREReEanacne2
15. ID FORMATcececeeeneEEEEEenee29

15.1 Interpolation of constant attributes... 29
16. STAGING REGISTERS ooo ccccccccccsccenenneccnneeennneeesnneeenna ces snnenes ieee eeceneneeecunesennseeeennesennenes ene 30

Exhibit 2035.docRaod_Sequencerdec 73669 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

R400 SequencerSpecification PAGE oe
2 0f 51 :

AMD1044_0257712

ATI Ex. 2109

IPR2023-00922

Page2 of 326

ATI Ex. 2109
IPR2023-00922

Page 3 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 3of 51

17. THE PARAMETER CACHE...cececsessnussssssnsssnssestusessnsusessuiuesessuseessuacensiceessuneectsnece 31

17.10 Export restriclonsooeeeeter res leet ttssinrttretitenesttnsittereneririee B20
PTL|Piel experts:eectestes estes teeter eneneerssnsuissesnessaeenstissoisateansninsnneenernaeey 32

L712 Vertex OxOrtseocccece eettere testes trtitetttetitietrttertitititinttttmterttcretiteess 320
L713 Pass thru Oxports. oocececeeseetstetertreetttetitietrettrtitititetitinettmteretcrenetess 32

17.2 Arbitration restrictions ven :
18. EXPORT TYPES .oo..cccccccccccccscnsscceneceeeeenaaenseennnnnnn eee eaaaaaaeeesaaaaaaaiaeseaaaaeaanesssaueneeeceessseeeeneceeaaae

1B.1 VOrex SHAGINQ.EEEeee ete e eb bb ee eeetbbeeteeebteeeeeeeetees 32
182 Pixel Shading0cee
19. SPECIAL INTERPOLATION MODES..... - .
19.1 Real TIM] COMIMANGS oooccc cee ccceeee vate eeraeevaeeeeneseeersaebvateerereetetuaeereseeentaeveneernnnaaes 33 628
19.2 Sprites/ XY screen coordinates/ FB information...ceceteeter erteeeeeeeenaes 33
19.3 Auto generated COUNTEIScccccess cece tees eee ees cessee eee ussseeecuusceeeeessstseeeensa 34

TO3.1|Vertex Shadersocccece cece ee ceeee ee teeseetestrteitierertrtetevinevsuttinenensnenees 34 .

19.3.2 Pixel SHADESoccccc ce ceeececevesseseveveeeesveeessvsvessssvivvitesevivetvaveteveveressstiieeses 34
20. STATE MANAGEMENT ooo cccccceccccccsssessecesansnnneesesaaaaaaneeoeaunaaaaueseaesaaauecessuseeseresteeeeenaneceoaae 35
20.1 Parameter cache synchronization...
21. XY ADDRESS IMPORTS.......ccccccceeee a”

21.1 Vertex INC@KXES IMPOSEDee Ente cb tbtt tee bbbtteteeetttetees 35

22. REGISTERS. o.....ccccccccccsccencccccccccccccsseseessereesccnsccanssassessseeusccenccanencasstnsessscetsecenscensssnnecsserencenne 35 8 oe :
23. INTERFACESLousecss ccsssssessnensscssssassesascesseeassseessisaneensessossnsnensentaneatscssssanen3

23.1 External Interfaces.ceceestes tees tesreesesreesitsiiesness osteitis 36
23.2 SC to SP Interhaceeeeetreet ee eee en tspevesaeeetsepevaeaeyrsaeptnaeeennaayess 36

DBZ SCSPH oo cececccccccceesssssesseeessesssvesesssssasvsuessesssmessssesvimesssssvesssesssvesen 36

QB22 SCSQcece ccscccseeessesssuesssssessnstissntnuntentstrttttttisessvitististessvittssseee7
23.2.3 SQ to SX(SP): Interpolater DUScccc eect ttre ret tetetttittetnttetees 39 08
23.2.4 SQ to SP: Staging Register Datacececsc uesesesestseststeseseseseseensesvsneess39

23.2.5 VGT to SQ: Vertex Interface.cccce ttee cette tetttrtititttittetitttreititinetess 39
23.2.6 SQ to SX: Control BUSccccree tittetite ts titteetitie tists tititetnrresees 42 —

23.2.7 SX to SQ: Output file controletternett tettieteeee 4200
23.2.8 SQ to TP: Control buseccee eee ceetettie rtttttetttetnttetene 43 00

23.2.9 TP to SQ: Texture Staleccnet tree ster tittt rttttttttenttteeness ABZ
23.210 SQ to SP: Texture stallccccece cece estes seen teteeseitttstttevettettenevecenass44

23.2.1] SQ to SP: GPR and auto coUNtenleccc tect tte ttttetetttetet tenet 44
23.212 SQ to SPx: Instructions oooccccee etter ete te tite tetetitittttestettettreetees 45 0

23.2.13 SP to SQ: Constant address load/ Predicate Set/Killsete46

23.214 SQ to SPx constant broadcasteeecette cette tieetctttttette inet 46

23.215 SQ to CP: RBBM BUSllcccc cee ceeteetebetestesteseeteeeesestetctititesteteriestes 46

23.216 GCP to SQ: RBBM BUSeceee niteiiseieeseitetersieee46
23.217 SQ to CP: State reportetecrete dete tttttnttttneeAT

23.3 Example of control flow program executionccccette eter etttteteeeeee 47

Exhibit 2038.docka09_Sequencercloc 73669 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257713

ATI Ex. 2109

IPR2023-00922

Page3 of 326

ATI Ex. 2109
IPR2023-00922

Page 4 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification
24 September, 2001 4 September, 201544Pe

P24 QPENISSUES oo ooccccccccccccccecececcecececeseseuccsen cousecscevacecsvaussesscovaseauascevasasascecessueuauascesasesenvece sean a

Exhibit 2036.dockaod_Sequencerdec 73669 Bytes“** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257714

ATI Ex. 2109

IPR2023-00922

Page 4 of 326

ATI Ex. 2109
IPR2023-00922

Page 5 of 326

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154438"

DOCUMENT-REV. NUM. PAGE

GEN-CX0OOCREVA 5 of 51

RevisionRevisionChanges:
Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July $, 2001
Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001
Rev0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001
Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001
Rev 1.4 (Laurent Lefebvre)
Date : December6, 2001

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002
Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

Rey 1.9 (Laurent Lefebvre)
Date : March 18, 2002
Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002
Rev 1.11 (Laurent Lefebvre)
Date : April 19, 2002
Rev 2.0 (Laurent Lefebvre)
Date : April 19, 2002

First draft.

Changed the interfaces to reflect the changesin the
SP. Added somedetails in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.
Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.
Added timing diagrams(Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.
Added constant store management, instruction
store management, control flow management and
data dependant predication.
Changed the control flow method to be more
flexible. Also updated the external interfaces.
Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.
Refined interfaces tc RB. Added state registers.

Added SEQ—-SPO interfaces. Changed delta
precision. Changed VGT-SPO0interface. Debug
Methods added.
Interfaces greatly refined. Cleaned up the spec.

Added the different interpolation modes.

Added the auto incrementing counters. Changed
the VGT—SQ interface. Added content on constant
management. Updated GPRs.
Removed from the spec all interfaces that weren't
directly tied to the SQ. Added explanations on
constant management. Added PA-SQ
synchronization fields and explanation.
Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.
Added Real Time parameter control in the 8X
interface. Updated the control flow section.
Newinterfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.
Rearangement of the CF instruction bits in order to
ensure byte alignement.
Updated the interfaces and added a section on
exporting rules.
Added CP state report interface. Last version of the
spec with the old control flow scheme
Newcontrol flow scheme

Exhibit 2038.docRa0o_Sequencerdec 73669 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257715

ATI Ex. 2109

IPR2023-00922

Page 5 of 326

ATI Ex. 2109
IPR2023-00922

Page 6 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification 24 September, 2001 4 September, 201544CNeabes inne OWI 4
Rev 2.01 (Laurent Lefebvre) Changed slightly the control flow instructions to
Date : May 2, 2002 allow force jumps and cails.
Rev 2.02 (Laurent Lefebvre) Updated the Opcodes. Added type field to the
Date : May 13, 2002 constant/pred interface. Added Last field to the

SQ—SP instruction load interface.
Rev 2.03 (Laurent Lefebvre) SP interface updated to include predication
Date : July 15, 2002 optimizations. Added the predicate no stall

instructions,
Rev 2.04 (Laurent Lefebvre) Documented the new parameter generation scheme
Date :August 2, 2002 for XY coordinates points and lines STs.
Rev 2.05 (Laurent Lefebvre) Some interface changes and an architectural
Date : September 10, 2002 changeto the auto-counter scheme.
Rev 2.06 (Laurent Lefebvre) Widened the event interface to 5 bits. Some other
Date : October 11, 2002 little typos corrected.
Rev 2.07 (Laurent Lefebvre) Looos. jumps and calls are now using a 13 bi
Date : October 14, 2002 address which allows to jump and call and loop

around any control flow addresses (does not
requires fo be even anymore),

Exhibit 2036.dockaod_Sequencerdec 73669 Bytes“** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257716

ATI Ex. 2109

IPR2023-00922

Page 6 of 326

ATI Ex. 2109
IPR2023-00922

Page 7 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA | fFotSi“6 i

1. Overview

The sequencer chooses two ALU threads and a fetch hread to execute, and executes all of the instructions in a block
before looking for a new clause of the same type. Two ALU threads are executed interleaved to hide the ALU latency.
The arbitrator will give priority to older threads. There are two separate reservation stations, one for pixel vectors and
one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbiirates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRsit needs to execute. The sequencerwill not start the next
vector until the needed spaceis available in the GPRs.

Exhibit 2038 dockdGo_Sequencerdec 73669 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257717

ATI Ex. 2109

IPR2023-00922

Page 7 of 326

ATI Ex. 2109
IPR2023-00922

Page 8 of 326

xe@BGCIGAODUOBSNON1yGuAdODsoussajoyY“JENUSPYUODLLY@wxxseV\ccose,—sopussuenbeg“ogryderGeirWINGMOIAISAOJgononbeg[e10ue53[|sanSLy

~Fe,—x|G@Ofod.i_.

SLVLSHOLSS

dsseiheessy/—4xaBOLionmyx»™»FYOLSLSNI~~)SELLNI=~SSLLNIHSLNIow": AOMLNOOTI288iayer7nya foe“ISNeVeSSOwd71|connec|!
|peayJO]

SPLSAYNOS-———,TONLNOO4nn~YORLNDDSINVLSNOD
XSLMSA

’TRLIGlogPEGLOdJequigjaespLoog‘iequisidespzA9vduopeoyioedsJeouenbesOOrYaivaLIGAFLVCSLYNIOO

 TIWIAE.LVNYaddoOFAILOdLOdd

AMD1044_0257718

ATI Ex. 2109

IPR2023-00922

Page8 of 326

ATI Ex. 2109
IPR2023-00922

Page 9 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA | Gof5i“6 i

1.1 Top Level Block Diagram

[Input Arbiter]

—} VTX RS PIX RS }*—

 Texture

Figure 2: Reservationstations and arbiters

Under this new scheme, the sequencer (SQ) will only use one global state management machine per vector type
(pixel, vertex) that we call the reservation station (RS).

Exhibit 2038 dockdGo_Sequencerdec 73669 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257719

ATI Ex. 2109

IPR2023-00922

Page 9 of 326

ATI Ex. 2109
IPR2023-00922
Page 10 of 326

ORIGINATE DATE

| 24 September, 2001

1.2 Data Flow graph (SP)

 PAGE

10 of 51
 EDIT DATE R400 Sequencer Specification

4 September, 201544

|

instruction

Register File

|(= ,| scalar inputfoutput MAC —
BN fel fre requ

“.

' pipeline stage I

<
2 |
o I

= Register File

| MAC raques | ~
| pipeline stage | i ~\I

Pamc
=
en |

< &2 oOS QO
E oO
w Register File \

i i— ay i——- |

7 Ji MA | fenturel& juest_ 12) ao !
_, L scalar input/output g g) |
| pipeline stage * §| ! a iFry :

|uu |
ee a i | i< € > i2 oS | i

SB = Register File i |
= 8 ¢ : i i2|_Ist Wy key |__ 1

sr A fexturerel Est | KN '
I|

La |r
= Sx

 extureaddress

 h

to Primitive Assembly Unit or RenderBackend 5 | a

Figure 3: ‘The shader Pipe

Exhibit 2035 deckacd_Sequencerdes 73669 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257720

ATI Ex. 2109

IPR2023-00922

Page 10 of 326

ATI Ex. 2109
IPR2023-00922
Page 11 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 11 of 512h _.
The gray area represents blocks that are replicated 4 times per shaderpipe (16 times on the overall chip).

1.3 Control Graph

Ciause # + Rdy
IS SEQ

|

WrAddr WrAddr

CMD

Phase BC Wrvec

RaAddr WSC8 rer
pe

FETCH SP wo OF

WrAdar

|

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the outputfile control interface.

2. Interpolated data bus
The interpolators contain an lJ buffer to pack the information as much as possible before writing it to the register file.

Exhibit 2038 dockdGo_Sequencerdec 73669 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257721

ATI Ex. 2109

IPR2023-00922

Page 11 of 326

ATI Ex. 2109
IPR2023-00922
Page 12 of 326

ORIGINATE DATE EDIT DATE PAGE

12 0f 51
R400 SequencerSpecification

 24 September, 2001 4 September, 201544carat

ToRB | | ~oeTe]

Ne CROSSBAR (4x100bite)
pa

|orae! | eeTewenn net ne a — —
re Ii ne

EEE
AO At AQ Bo iJs buffer (ping-pong buffer) |

(25 bits *8 (WW) 74°4* 4 (quadruple-bufferg Ao At 42 BO i
nanaraces| 12800 bits |

2 Bt ce ct 2 /Bt co c c2

3 C3 C4 ch bo Xs buffer (ging-pong duifer} i
24 bits * 16 quads *2 c3 C4 cS Do /

768 bits !
3ox24 |

4 Dl 2 EO e1 /

T T i LC| | | ii
INTERPOLATORS i 1

, |i

812 !I

| |ll il
PP nl

WUL |} QUE |} SUL |) 4ub '" || aur | aur || 4uR the|ae || Sue ||
i i i | | | | | | | i
LL Le | on

Figure 5: Interpolation buffers

Exhibit 2036.dockaod_Sequencerdec 73669 Bytes“** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257722

ATI Ex. 2109

IPR2023-00922

Page 12 of 326

ATI Ex. 2109
IPR2023-00922
Page 13 of 326

axe@BHCJ9AODUOSINIONJYBUAGODsoUdJajoy“[ENUSPIUOD[Ly@wesccose,sopusousnbes“oorusuyshoeTaiWELISeIpSUNUOBLOd.93U]79BANSL]

 0e.L)6LLObl

bl

ChL|LLL

bSJO€Ldovd

VASEXXXXXO-NAD“ASLNSANOOG
WN

SLVdLid3

Loog‘Jequisidespz aivdav
ID1eO

 TIWIAE.LVNYaddoOFAILOdLOdd

AMD1044_0257723

ATI Ex. 2109

IPR2023-00922

Page 13 of 326

ATI Ex. 2109
IPR2023-00922
Page 14 of 326

PAGE

14 0f 51
ORIGINATE DATE EDIT DATE R400 Sequencer Specification

24 September, 2001 4 September, 201544EadesbeenREMA
|Aboveisan example ofa tile thesequencer might receive from the SC. The write sideishowthedata get stacked -

into the XY and lJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencerallows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store

There is going to be only oneinstruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 7 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commandsthe story is quite the same but for some smail differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4, SequencerInstructions
All control flow instructions and move instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shaderis 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flaw constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a changein the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

Exhibit 2035 deckacd_Sequencerdes 73669 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257724

ATI Ex. 2109

IPR2023-00922

Page 14 of 326

ATI Ex. 2109
IPR2023-00922
Page 15 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

15 of 51 24 September, 2001 4 September, 201544 |; eT: |

5.2 Managementof the Control Flow Constants
The conirol flow constants are register mapped, thus the CP writes to the accarding register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one levelof indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied wheneverthere is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn't write to CF the state is going te use the previous CF constants.

5.3 Managementof the re-mapping tables

5.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencerwill broadside copy the contentsofits re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUSTbeat least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROLpacket of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE andif both are idle will erase the content of state to replaceit with
the new state (this is depicted in Figure 8: De-allocation mechanismFigure-8:De-allocation-mechanismFigure 8:De~
allocation-mechanism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a stale change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

Exhibit 2038 dockdGo_Sequencerdec 73669 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257725

ATI Ex. 2109

IPR2023-00922

Page 15 of 326

ATI Ex. 2109
IPR2023-00922
Page 16 of 326

FreeLis

Logical Acdress

Address

to Allocate

Global Register

ORIGINATE DATE

24 September, 2001

[0«— Read

EDIT DATE

4 September, 201544ae DN

R400 SequencerSpecification

r
| Renaming TableContext 0 =>

Current/Last

Context
(8 rows of 16-8 |. .
bit physical => Logical Address128 entries copy =
in eight clocks) | & Context|

Context N | Physical
| Address pirto

Data Bus

Constants

Staging DataBuffer

- Staging Write Addr|

Physical
Memory

Dealloc

physical '
address Counts | nextto physical
scnedile adcress

for ready
dealloc for allocate

snral en Seq
Logical address | Constant

GlbRegBus ° _ a Request
when Isb are zero | This | ifirst word of write . Context||

Renaming Table y | Dirty ! =)for 1 Context : er | a !
Curentlast||coical | Loyieal | | Context &Physical _ i i | Logical |

Address Address | Address “—~ Address —]only | (ifset | |
de- | don't | !

| allocate allocate ———
| ifset) | or de-
I I allocate)| Renaming: table

Contexts

Exhibit 2035 docR400_Sequencerdac

Copy Last held aboveto
Current Context on receipt

of Set Constant for a 1
newcontext (Hide loading

behind Set State load - 16 clocks)
all cther Set States just write one

entry to current state.

Figure 7: Constant management

73869 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257726

ATI Ex. 2109

IPR2023-00922

Page 16 of 326

ATI Ex. 2109
IPR2023-00922
Page 17 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE 24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA | 17 of 51

SQ_STATE#

BEALOC
COUNTERS WRI TE_ENASLEFree List CNT VALUE

I|

| PREVIOUS|

le—nor| ome
| NEW

| | STATE| |

VALUE — |

| [oo |—— |‘
VALID |||

r

aIDLE
——| AND -#——PA_IDLE

he CP_NEW_STATE_CNTL—

REMAPPING ———_!
TABLE ~¢—_—_SET CTX BITS

Figure 8: De-allocation mechanism for R400LE.

5.3.3 Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second onewill be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. (fit is set and the context dirly is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. lf they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the samelogical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block

A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would resel to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical biock is needed, andif the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk frorn the counter.
Storage of a free list big enoughto store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the freelist
like a ring.
The second pointer will be called step_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_pir will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

Exhibit 2038 dockdGo_Sequencerdec 73669 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257727

ATI Ex. 2109

IPR2023-00922

Page 17 of 326

ATI Ex. 2109
IPR2023-00922
Page 18 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | 24 September, 2001 4 September, 207544 18 0f51i E aie

; 535 De-allocate Block
This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any numberof blocks in one clock.

5.3.6 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous contextwill be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location frorn the freelist
counter becauseits not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while In the same context, both dirty
bits would be sei, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states comein for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated ofthe free-list counter or
the free list at read_ptr pointerif read_ptr != to stop_pir.

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clauseit will be sent to this block and compared with
the previous context thatleft. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the numberof blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the reacd_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, ifthe updates are large, less contexts will be stored and potentially performance will be degraded.
Althoughit will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant siore indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer(9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

Exhibit 2035 deckacd_Sequencerdes 73669 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257728

ATI Ex. 2109

IPR2023-00922

Page 18 of 326

ATI Ex. 2109
IPR2023-00922
Page 19 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-CXXXXXK-REVA 19 of 51 teskebeen SEEA

betweenthe time the sequenceris loaded and the time one can index intetheconstantstore.Theassemblywill look|.like this

MOVA RLX.R2X% // Loads the sequencerwith the content of R2.%, also copies the content of R2.% into R1.%
NOP // latency of the float to fixed conversion
ADD R3,R4,CO[R2.X]// Uses the state from the sequencer to add R4 to CO[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVAinstruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencerin order to support this feature is 2*64°9 bits = 1152 bits.

55 Real Time Commands

The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
works is the same way than when dealing with regular constant loads BUTin this case the CPis not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RTcontrol register. Similarly,
for the fetch state, the bouncary between the two zonesis defined by the TSTATE_EO_RTcontrol register.

5.6 Constant Waterfalling
In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits wheneverthe last renderstate is written to memory
and clears the bit whenevera state is freed.

CONST_EO_RT

RT SECTON /

(ReadsWrites are direct) 7|
jh

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table}
||II|
|

Figure 9: The Constant store

Exhibit 2038 dockdGo_Sequencerdec 73669 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257729

ATI Ex. 2109

IPR2023-00922

Page 19 of 326

ATI Ex. 2109
IPR2023-00922
Page 20 of 326

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE 24 September, 2001 4 September, 201544 20 of 51: oye

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencerlevel. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean(256:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
We'd like to be able to code up a program of the form:

4 Loop
2 Exec TexFetch
3 TexFetch
4: ALU
5: ALU
6: TexFetch
a End Loop
& ALU Export

But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3:. Without clausing,
these dependencies need to be expressed in the Control Flow instructions. Additionally, without separate ‘texture
clauses’ and ‘ALU clauses’ we need to know which instructions to dispatch to the Texture Unit and which to the ALU
unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of inforrnation for each (non-control flow) instruction:
a) ALU or Texture
b) Serialize Execution

(b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched. Given the allocation of reserved bits, this would mean that the count of an ‘Exec’ instruction
would be limited to about 8 (non-control-flow) instructions. If more than this were needed, a second Exec (with the
same conditions) would be issued.

Another function that relies upon ‘clauses’ is allocation and order of execution. We need to assure that pixels and
vertices are exported in the correct orcer (even if not all execution is ordered) and that space in the output buffers are
allocated in order. Additionally data can’t be exported until spaceis allocated. A new control flow instruction:

Alloc <buffer select -- position,parameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be dons. To assure allocation is done in order, the actual
allocation for a given thread can not be performed unless the equivalent allocation for all previous threadsis already
completed. The implementation would also assure that execution of instruction(s) following the serialization due to the
Alloc will occur in order -- at least until the next serialization or change from ALU to Texture. In most casesthis will
allow the exports to occur without any further synchronization. Only ‘final’ allocations or position allocations are

Exhibit 2035 deckacd_Sequencerdes 73669 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257730

ATI Ex. 2109

IPR2023-00922

Page 20 of 326

ATI Ex. 2109
IPR2023-00922
Page 21 of 326

ORIGINATE DATE

24 September, 2001 EDIT DATE

4 September, 201544LenksteaeOMIA

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

guaranteed to be ordered.Becausestrict ordering is required for pixels, parameters and positions,this implies only |

21 of

PAGE

51

a single alloc for these structures. Vertex exports to memory do not require orcering during allocation and so multiple
‘allocs' may be done.

6.2.1 Control flow instructions table
Hereis the revised control flow instruction set.

Note that whenevera field is marked as RESERVED,it is assumed that all the bits of the field are cleared (0).

NOP rr
47... 44 | 43 42 ...0 &

This is a regular NOP.

Execute

47... 44 | 43 40... 34 | 3316 45...12 11...0
0001 Addressing RESERVED Instructions type + serialize (9|Count Exec Address

i instructions)

Execute_End
47... 44 | 43 [40... 34 | 3316 15...12 41...0

0010 | Addressing RESERVED | Instructions type + serialize (9|Count Exec Address
| instructions)

Execute up to 9 instructions at the specified address in the instruction memory. The Instruction type field tells the
sequencerthe typeof the instruction (LSB) (1 = Texture, 0 = ALU and whether to serialize or not the execution (MSB)
(1 = Serialize, 0 = Non-Serialized). If Execute_End this is the last execution block of the shader program.

Conditional_Execute

47... 44 | 43 42 41... 34 | 33...16 15..12 | 11.0
oo11 | Addressing|Condition|Boolean Instructions type + serialize (9 Count Exec Address
Poaddress | instructions)PoL

Conditional_Execute_End

47... 44 | 43 42- 41.34 | 33...16 1512 411...0
0100 | Addressing|Condition|Boolean|instructions type + serialize (9 Count Exec Address

| address instructions)

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 9 instructions). If the condition is not met, we go on to the next control flow instruction. lf
Conditional_Execute_End and the condition is met, this is the last execution block of the shader program.

Conditional_Execute_ Predicates

47... 44 | 43 42 41... 36 35... 34 33...16 | 15...12 11...0

0101 Addressing Condition RESERVED|Predicate Instructions | Count Exec Address| vector type + serialize
| (9 instructions) |

Conditional_Execute_Predicates_End |
47... 44 | 43 | 42 41... 36 35... 34 33...16 | 15...12 11...0

0110 § Addressing|Condition RESERVED|Predicate Instructions Count Exec Address
| vector | type + serialize

| (9 instructions) |

Check the AND/OR ofall current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. VVe need to AND/OR this with the kill mask in order not to consider the pixels that aren't valid. If the

Exhibit 2036 cocR400_Sequencer.des 73869 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~

AMD1044_0257731

ATI Ex. 2109

IPR2023-00922

Page 21 of 326

ATI Ex. 2109
IPR2023-00922
Page 22 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201544 22 of 51fee eeeenenena fete perenne ceca eseeenea

condition is not met, we go on to the next control flow instruction. If Conditional_Execute_Predicates_End and the :
condition is met, this is the last execution block of the shader program. :

Conditional_Execute_Predicates_No_Stall

| 47... 44 - 43 | 42 41...36 | 35... 34 . 33...16 15...12 11...0

1101 Addressing Condition RESERVED|Predicate Instructions Count Exec Address

| vector | type + serialize' 'L L| (9 instructions) |

Conditional_Execute_Predicates_No_Stall_End 47... 44 43 | 42 41.36 | 35... 34 | 33...16 15...12 | 11....0

1110 Addressing | Condition|RESERVED | Predicate | Instructions Count Exec Address| vector type + serialize
(9 instructions) |

Same as Conditionnal_Execute_Predicates but the SQ is not going to wait for the predicate vector to be updated.
You can only set this in the compiler if you know that the predicate set is only a refinement of the current one (like a
nesied if) because the optimization would still work.

47... 44 43 42... 24 20... 16 15...128 124....0
- Loop_Start

|
.O111 Addressing | RESERVED _ E loop ID RESERVED | Jump address

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

 | Loop_End

||47... 44 43 | 42...24 | 23... 217 |20..16| 15..4213 420
1000 Addressing | RESERVED Predicate break | loap ID | RESERVED | start address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop. If predicate break != 0, then compares predicate vector n
(specified by predicate break number). If ail bits cleared then break the loop.

The waythis is described does not prevent nested loops, and the inclusion of the loop id makethis easy to do.

a Conditionnal_Call
||47... 44 43 42 | 41... 34 33... 1314 | 4213 L W120

1001 Addressing | Condition | Boolean address|RESERVED | Force Call Jump address

lf the condition is met, jumps to the specified address and pushes the control flow program counter on the slack.If
force call is set the condition is ignored and the call is made always.

Return

|47... 44 43 42...0
1010 Addressing | RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal. Jump
|47...44 43 | 42 [41.34] 33 | 32...43814 4213 44-12...0

1011 Addressing|Condition|Boolean | FWonly|RESERVED|Force Jump | dump address

| address | I
1||||L

if force jump is set the condition is ignored and the jump is made always. If FW only is set then only forward jumps
are allowed.

Exhibit 2036.dockaod_Sequencerdec 73669 Bytes“** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257732

ATI Ex. 2109

IPR2023-00922

Page 22 of 326

ATI Ex. 2109
IPR2023-00922
Page 23 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2004 4 September, 201544 GEN-CoOQOOCREVA | 23 0f51or i

Allocate
47... 44 | 43 42.41 40.3 2...0

1100 | Debug | Buffer Select RESERVED | Size

Buffer Select takes a value of the following:
01 — position export (ordered export)
10 — parameter cache or pixel export (ordered export)
11 -— pass thru (out of order exports).

Size field is only used to reserve space in the export buffer for pass thru exports. Valid values are 1 (1 line) thru 9 (9
lines). It should be determined by the compiler/assembler by taking max index used +1.

If debug is set this is a debug alloc (ignore if debug DB_ON registeris set to off).

6.3 Implementation

The envisioned implementation has a buffer that maintains the state of each thread. A thread lives in a given
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the orderthat they
enter. Actually two buffers are maintained -- one for Vertices and one for Pixels. The intended implementation
would allowfor:

16 entries for vertices
48 entries for pixels.

From eachbuffer, arbitration logic attempts to select 1 thread for the texture unit and 1 (interleaved) thread for the
ALU unit. Once a thread is selected it is read out of the buffer, marked as invalid, and submitted to appropriate
execution unit. It is returned to the buffer (at the same place) with its status updated once all possible sequential
instructions have been executed. A switch from ALU to TEX or visa-versa or a Serialize_Execution modifier forces
the thread to be returned to the buffer.

Each entry in the buffer will be stored across two physical pieces of memory - most bits will be stored in a 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed ‘state’. The bits kept in the multi-read ported device will be termed‘status’.

‘State Bits’ needed include:

1. Control Flow Instruction Pointer (13 bits),
2. Execution Count Marker4 bits),
3. Loop Iterators (4x9 bits),

4.8.Call return pointers (4%42-413 bits),

4, Loop Counters (4x9 bits +=">) Formatted: Bullets and Numbering :

&.§,Predicate Bits (64bits),
6.7Export ID (1 bit),
7%,Parameter Cache base Ptr (7 bits),
&.9,GPR Base Pir (@bits),
8.10. Context Ptr (bits).
40-11. LODcorrections (6x16 bits)
44-12, Valid bits (64 bits)
42.13, RT (1 bit) Signifies that this thread is a Real Time thread. This bit must be sent to the Constant store

state machine when reading it.

Absent from this list are ‘Index' pointers. These are costly enough that I'm presuming that they are instead stored in
the GPRs.The first seven fields above (Control Flow Ptr, Execution Count, Loop Counts, call return ptrs, Predicate
bits, PC base ptr and export ID) are updated every time the thread is returned to the buffer based on how much
progress has been mode on thread execution. GPR Base Ptr, Context Ptr and LOD corrections are unchanged
throughout execution of the thread.

Exhibit 2038 dockdGo_Sequencerdec 73669 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257733

ATI Ex. 2109

IPR2023-00922

Page 23 of 326

ATI Ex. 2109
IPR2023-00922
Page 24 of 326

PAGE

24 of 51
ORIGINATE DATE EDIT DATE R400 Sequencer Specification 24 September, 2001 4 September, 201544vebceeeeeeeeeeeeeeeeenn & “or

‘Status Bits’ needed include:

e Valid Thread

Texture/ALU engine needed
Texture Reads are outstanding
Waiting on Texture Read to Complete
Allocation Wait (2 bits)
00 — No allocation needed

01 — Position export allocation needed (ordered export)
10 — Parameteror pixel export needed (ordered export)
11 — pass thru (out of order export)
Allocation Size (4 bits)
Position Allocated
Mem/Coior Allocated
First thread of a new context

Event thread (NULL thread that needsto trickle down the pipe)
® Last (1 bit)
e Pulse SX (1 bit)

All of the above fields from all of the entries go into the arbitration circuitry. The arbitration circuitry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -- one for
pixels and one for vertices. A final selection is then done between the two. But the rest of this implementation
summary only considers the ‘first’ level selection which is similar for both pixels and vertices.

Texture arbitration requires no allocation or ordering so it is purely based on selecting the ‘oldest’ thread that requires
the Texture Engine.

ALU arbitration is a little more complicated. First, only threads where either of Texture_Reads_outstanding or
Waiting_on_Texture_Read_to_Complete are ‘0’ are considered. Then if Allocation_Wait is active, these threads are
further fitered based on whether spaceis available. If the allocation is position allocation, then the thread is only
considered if all ‘older’ threads have already done their position allocation (position allocated bits set). If the
allocation is parameter or pixel allocation, then the thread is only consideredif it is the oldest thread. Also a thread is
not considered if it is a parameter or pixel or position allocation, has its First_threacd_of_a_new_context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the ‘oldest of the threads that pass through the abovefilters is selected. Ifthe thread neededto allocate, then
at this time the allocation is done, based on Allocation_Size. If a thread has its “last” bit set, then it is also rermoved
from the buffer, never to return.

If | now redefine ‘clauses’ to mean ‘how many times the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine’, then the minimum numberof clauses needed is 2 -- one to perform
the allocation for exports (execution automatically halts after an ‘Alloc' instruction) (out doesn't performs the actual
allocation) and one for the actual ALU/export instructions. As the ‘Alloc' instruction could be part of a texture clause
(presumably the final instruction in such a clause), a thread could still execute in this minimal numberof 2 clauses,
evenif it involved texture fetching.

The Texture_ReadsOutstanding bit must be updated by the sequencer, based on keeping track of how many
Texture Clauses have been executed by a given thread that have not yet had there data returned. Any number
above 0 results in this bit being set. We could consider forcing synchronization such that two texture clauses for a
given thread may not be outstanding at any time (that would be my preference for simplicity reasons and becauseit
would require only very little change in the texture pipe interface). This would allow the sequencer to set the bit on
execution of the texture clause, and allow the texture unit to return a pointer to the thread buffer on completion that
clears thebit.

6.4 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

| Exhibit 2035 deckacd_Sequencerdes 73669 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257734

ATI Ex. 2109

IPR2023-00922

Page 24 of 326

ATI Ex. 2109
IPR2023-00922
Page 25 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

—— eeeErnebereOU

PREDSETE_# - similar to SETE except that the result is ‘exported’ to the sequencer.
PRED_SETNE_# - similar to SETNE exceptthat the result is ‘exported’ to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is ‘exported’ to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is ‘exported’ to the sequencer

For the scalar operations only wewill also support the two following instructions:
PRED_SETEO_#— SETEO
PRED_SETE1_#~SETE1

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVAinstruction. The sequencerwill
maintain 4 sets of 64 bit predicate vectors (in fact 8 sels because we interleave two programs but only 4 will be
exposed) and useit to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. Thefirst bit is a conditional execute “on” bit and the secondbit tells usif
we execute on 1 or 0. For example, the instruction:

PO_ADD_# RO,R1,R2

Is anly going to write the result of the ADD into those GPRs whosepredicatebit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the PO or P1 without precharging the
sequencerwith a PRED instruction is undefined.

{issue: do we have to have a NOP between PRED and thefirst instruction that uses a predicate?}

6.5 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencerwill
insert NOPs wherever there is a dependant read/write.

The sequencerwill also have to Insert NOPs between PRED_SET and MOVAinstructions and their uses.

6.6 Registerfile indexing
Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and useit into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit? Bit 6
0 0 ‘absolute register
Q 1 ‘relative register’
4 0 ‘previous vector
4 41 ‘previous scalar’

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we addto it the loop_index and this becomes our newaddress that we give to the shaderpipe.

The sequenceris going to keep a loop index computed as such:

Index = Loop_iterator*Loop_step + Loop_start.

 We loop until loop_iterator = loop_count. Loop_step is a signed value [-128...127]. The computed index value is a 10
bit counter that Is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

Exhibit 2038 dockdGo_Sequencerdec 73669 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

24 September, 2001 4 September, 201544 GEN-CXXAXX-REVA | 25 of 51

AMD1044_0257735

ATI Ex. 2109

IPR2023-00922

Page 25 of 326

ATI Ex. 2109
IPR2023-00922
Page 26 of 326

PAGE

26 of 51
| ORIGINATE DATE EDIT DATE R400 Sequencer Specification
| 24 September, 2001 4 September, 201544[-. - an i _- — - & “or

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where thefirst error occurred
2. count of the numberof errors

The sequencerwill detect the following groupsoferrors:
~ count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
- jump errors

relative jump address > size of the control flow program
- call stack

call with stackfull
return with stack empty

A jumperror will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only break if
the DB_PROB_BREAKregisteris set.

If indexing outside of the constant or the register range, causing an overflowerror, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs
1) The sequencerwill have a debug active, count register and an addressregister for this mode.

Under the normal mode execution follows the normal course.

Under the debug modeit is assumed that the program is always exporting n debug vectors and that all other exports
to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by the sequencer(even if they occur
before the address stated by the ADDR debug register).

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group of pixeis/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipeto kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETGT
MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

Exhibit 2035 deckacd_Sequencerdes 73669 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257736

ATI Ex. 2109

IPR2023-00922

Page 26 of 326

ATI Ex. 2109
IPR2023-00922
Page 27 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 Seplember, 201544 GEN-CXXKKX-REVA | 27 of 51a 3e" |

9 Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZEforpixels.

Exhibit 2038 dockdGo_Sequencerdec 73669 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257737

ATI Ex. 2109

IPR2023-00922

Page 27 of 326

ATI Ex. 2109
IPR2023-00922
Page 28 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification
24 September, 2001 4 September, 201544sane ‘ me

Above is an example of how the algorithm works. Vertices comein from top to bottom, pixels comein from bottom to
top. Vertices are in orange and pixels in green. The biueline is the tail of the vertices and the greenline is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom ofthe picture at index O and goes up to the top at
index 127.

10. Fetch Arbitration

The fetch arbitration logic chooses one of the n potentially pending fetch clauses to be executed. The chaice is made
by looking at the Vs and Ps reservation stations and picking the first one ready to execute. Once chosen, the clause
state machine will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two fetches of the
same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration

ALU arbitration proceedsin almost the same waythan fetch arbitration. The ALU arbitration logic chooses one of the
n potentially pending ALU clauses to be executed. The choice is made by looking at the Vs and Ps reservation
stations and picking the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for
the odd clocks. For example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and
Odd sets of 4 clocks):

EinstO OinstO Einst1 Oinstt Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0...

Exhibit 2035 deckacd_Sequencerdes 73669 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257738

ATI Ex. 2109

IPR2023-00922

Page 28 of 326

ATI Ex. 2109
IPR2023-00922
Page 29 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE 24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 29 of 51ventneentneetnnnieeneeneenenbenee nee ttinnnteneoentennteeneeentnntenentene ee cenceNEee eeeeeeeen
Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across

clause boundaries.

12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the outputfile. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer alsa prevents a thread from entering an exporting clause. The
sequencerwill set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs

The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, somebits
for LOD correction and coverage mask information in orderto fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BVV 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

1S. (J Format

The IJ information sent by the PA is of this format on a per quad basis:

We have a vectorof IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
modebit). All pixel’s parameters are always interpolated at full 20x24 mantissa precision.

PO =A+1(0)*(B~ A+ JF (0) *(C - A)

Pl=A+I()*(B-A)+UQ)*(C - A)

P2=A+I1(2)*(B- A)+J(2)*(C - A)

P3=A+1(3)*(B- A) + J(3)*(C -— A)

Multiplies (Full Precision): 8
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF P's IJ: Mantissa 20 Exp 4 for | + Sign
Mantissa 20 Exp 4 for J + Sign

Total numberof bits : 20*8 + 4*8 + 4*2 = 200.

All numbers are kept using the un-normalized floating point convention: if exponentis different than 0 the numberis
normalized if not, then the numberis un-normalized. The maximum range for the IJs (Full precision) is +/- 1024.

15.1 Interpolation of constantattributes
Because ofthe floating point imprecision, we need to take special provisionsif all the interpolated terms are the same
or if two of the terms are the same.

Exhibit 2038 dockdGo_Sequencerdec 73669 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257739

ATI Ex. 2109

IPR2023-00922

Page 29 of 326

ATI Ex. 2109
IPR2023-00922
Page 30 of 326

PAGE

30 of 51
ORIGINATE DATE EDIT DATE R400 Sequencer Specification 24 September, 2001 4 September, 201544: oye

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGTforit to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0123456789 1011 12 131415 || 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 44 42 43 44 45 46 47 || 46 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencerwill re-arrange them in this fashion:

012316 17 18 19 32 33 34 35 48 49 50 51 || 456 7 20 21 22 23 36 37 38 39 52 53 5455 || 89 1011 24 25 26 27
40 44 42 4356 57 58 59 |) 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the SQ is responsible to insert padcing to
account for the missing pipe. For example, if SP1 is broken, vertices 4.5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will
not be sent by the VGT to the 5 AND the SQ is responsible to “Jump” over these vertices in order for no valid
vertices to be sent to an invalid SP.

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 11 Figure—tiFigure-t4+. The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure 10Figure OFigure10.

Basis for 8-deep Latch Memory (fromm R300)

8x24-bit 11631 2 60.57813 wvperbit

Area of 96x8-deep Latch Memory 46524 2
Area of 24-bit Fix-to-float Converter 4712.2 per converter

Method 1 Block Quantity Area
F2F 3 1413
8x96 Latch 16 744384

Figure 10:Area Estimate for VGT te Shader Interface

Exhibit 2035 deckacd_Sequencerdes 73669 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257740

ATI Ex. 2109

IPR2023-00922

Page 30 of 326

ATI Ex. 2109
IPR2023-00922
Page 31 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-CAXKKX-REVA | 31 of 312. ey i

VGT BLOCK
CIN PA)

SHADER
SEQUENCER

VECTOR ENGINE

Figure 11:VGT to Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

| WEMORY NUMBER
4 bits ADDRESS |7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT(a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 3
parameters per vertex (VS_EXPORT_COUNT = 8). Thefirst position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17") is going to have the address 00000001000,the 18" 00010001000, the 19" 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is thatif the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*VS_EXPORT_COUNTto
Current_Location and reset the memory count to 0 before the next vector begins).

Exhibit 2038 dockdGo_Sequencerdec 73669 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257741

ATI Ex. 2109

IPR2023-00922

Page 31 of 326

ATI Ex. 2109
IPR2023-00922
Page 32 of 326

 PAGE

32 of 51

ORIGINATE DATE EDIT DATE R400 Sequencer Specification

 24 September, 2001 4 September, 201544

17.1 Export restrictions

17.1.1 Pixel exports:
Pixels can export 1,2,3 or 4 color buffers to the SX(+z). The exports will be done in order. The PRED_OPTIMIZE
function has to be turned ofif the exports are done using interleaved predicated instructions. The exports will always
be ordered to the SX.

17.1.2 Vertex exports:
Position or parameter caches can be exported in any order in the shader program. lt is always better to export
posistion as soon as possible. Position has to be exported in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be done in any order with texture instructions interleaved.
The PRED_OPTIMIZE function has to be turned ofif the exports are done using interleaved predicated instructions to
the Parameter cache (see Arbitration restrictions for details). The exports will always be allocated in order to the SX.

17.1.3 Pass thru exports:
Pass thru exports have to be done in groups of the form:

They cannot have texture instructions interleaved in the export block. These exports are not guaranteed to be
ordered.

Also, when doing a pass thru export, Position MUST be exported AFTER all pass thru exports. This position export is
used to synchronize the chip when doing a transition from pass thru shader to regular shader and vice versa.

17.2 Arbitration restrictions

Here are the Sequencerarbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texture pending bit is set
2) Cannot allocate position if any older thread has not allocated position
3) If last thread is marked as not valid AND marked as last and we are about to execute the second to oldest

thread also marked last then:
a. Both threads must be from the same context (cannot allowafirst thread)
b. Must turn off the predicate optimization for the second thread

4) Cannot execute a texture clause if texture reads are pending
5) Cannot execute lastif texture pending (evenif not serial)

18. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

18.1 Vertex Shading
0:15 -16 parameter cache
16:31 - Empty (Reserved?)
32 - Export Address
33:37 -& vertex exports to the frame buffer and index
38:47 - Empty
48:52 - 5debug export (interpret as normal memory export)
60 - export addressing mode
61 - Empty
62 - position

Exhibit 2035 deckacd_Sequencerdes 73669 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257742

ATI Ex. 2109

IPR2023-00922

Page 32 of 326

ATI Ex. 2109
IPR2023-00922
Page 33 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201844 GEN-CXXAXX-REVA | 33 of 51
_. bene ceeeeneeeeeceeentnntttneeh nee ETentersSescnES||.>

63 - sprite size export thal goes with position export
(X= point size, Y= edge flag is bit O, Z= VExKill is bitwise ORofbits 30:0. Any bit other than

sign means VixkKill.)

18.2 Pixel Shading
0 - Color for buffer 0 (primary)
1 - Color for buffer 1
2 - Color for buffer 2
3 - Color for buffer 3
4:15 -Empty
16 - Buffer 0 Color/Fog (primary)
17 - Buffer 1 Color/Fog
18 - Buffer 2 Color/Fog
19 - Buffer 3 Color/Fog
20:31 - Empty
32 - Export Address
33:37 -5 exports for multipass pixel shaders.
38:47 - Empty
48:52 -5 debug exports (interpret as normal memory export)
60 - export addressing mode
61 -Z for primary buffer (2 exported to ‘alpha’ component)
62:63 - Empty

19. Special interpolation modes

19.1 Real time commands

We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
shauld be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see withthis is, if we
view support for 16 vector-4 interpolants irnportant (true only if we map Microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This modeis triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

19.2 Sprites/ XY screen coordinates/ FB information
XY screen coordinates may be needed in the shader program. This functionality is controlled by the param_gen_I0
register (in SQ) in conjunction with the SND_XY register (in SC) and the param_gen_pos. Alsoit is possible to send
the faceness information (for OGL front/back special operations) to the shader using the same control register. Here
is a list of all the modes and howtheyinteract together:

The Data is going to be written in the register specified by the param_gen_pos register.

Param_Gen_I0 disable, snd_xy disable = No modification
Param_Gen_|0 disable, snd_xy enable = No modification
Param_Gen_l0 enable, snd_xy disable = Sign(faceness)garbage,(Sign Point)garbage,Sign(Line)s,t
Param_Gen_!0 enable, snd_xy enable = Sign(faceness)screenx(Sign Point)screeny,Sign(Line}s, t

in other words,
The generated vector is in RED, Y in GREEN, S in BLUE and T in ALPHA):
XY,8,7

Exhibit 2038 dockdGo_Sequencerdec 73669 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257743

ATI Ex. 2109

IPR2023-00922

Page 33 of 326

ATI Ex. 2109
IPR2023-00922
Page 34 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201544 34 of 51feeeee fheeeneI—. ee eee —t

These values are always supposed to be positive and any shader use of them should use the ABS function
(as their sign bits will now be used for flags).
SignX = BackFacing
SignY = Point Primitive
SignS = Line Primitive
SignT = currently unused as a flag.

If [Point & tLine, then it is a Poly.

| would assume that one implementation which allows for generic texture lookup (using 3D maps) for poly
stipple and AA for the driver would be
if(¥ <0){

R = 0.0 (Point)
}else if (S <0) {

R = 1.0 (Line)
}else {

R = 2.0 (Poly)
}

19.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequenceris going to generate a vector count to be able to
both use this count to write the 1° pass data to memory and then use the count to retrieve the data on the on pass.
The count is always generated in the same waybutit is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX_PIX/VTX register. The sequencer
is going to keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is
written to the GPRs the counteris incremented. Every time a RST_PIX_COUNT or RST_VTX_COUNT events are
received, the corresponding counter is reset. While there is only one count broadcast to the GPRs, the LSB are
hardwired to specific values making the index different for all elernents in the vector. Since the count must be different
for all pixels/vertices and the 4 LSBs (16 positions) are hardwired to the corresponding shaderunit the 5Q has two
choices:

1) Maintain a 19 bit counter that counts the vectors of 64. In this case the phase must be appended to the count
before the count is broadcast to the SPs:

Counter (19 bits) | Phase (2 bits) Hardwired (4 bits)

2) Maintain a 21 bits counter that counts sub-vectors of 16. In this case only the counteris sent to the Sps:

Counter (21 bits) [Hardwired (4 bits) |

19.3.1 Vertex shaders

In the case of vertex shaders, if GEN_INDEX_VT%is set, the data will be put into the x field of the third register (it
means that the compiler must allocate 3 GPRsin all multipass vertex shader modes).

19.3.2 Pixel shaders

In the case of pixel shaders, if GEN_INDEX_PIX is set, the data will be put in the x field of the param_gen_pos+1
register.

Exhibit 2035 deckacd_Sequencerdes 73669 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257744

ATI Ex. 2109

IPR2023-00922

Page 34 of 326

ATI Ex. 2109
IPR2023-00922
Page 35 of 326

DOCUMENT-REV. NUM. PAGEORIGINATE DATE EDIT DATE

24 September, 2001 4 September, 201544 | 35 of 51 :ETeraBeseyeOREM _—___-

sTGo Ite
AUTO | INTERPOLATORSCOUNT

STG1 | |

ar ———————
AUTO COUNT ooo

The Auto Count Value is
broadcastto all GPRs.It is

ce loaded into a register wich has

| its LSBs hardwired to the

GPR number(0 thru 63). Then
| if GEN_INDEXis high, the

mux selects the auto-count
value and it is loaded inte the

GPRsto be either used to
retrieve data using the TP or

GPRO sent to the SX forthe RB touse it to write the data to
memory

Figure 12: GPR input mux Control

20. State management
Every clock, the sequencer will report to the CP the coldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

20.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencerwill keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vectorof pixels with the SC_SQ_new_vectorbit asserted, the sequencerwill first checkif
the count is greater than 0 before accepting the transmission(it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group ofpixels to the interpolators. Every time the state changes, the newstate counter is initialized to 0.

21. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the [Js (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix—-float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 19.2 for details on how to control the interpolation in this mode.

21.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded oneline at a time by the VGT
block (96 bits). They are loadedin floating point format and can be transferred in 4 or 8 clocks to the GPRs.

22. Registers
Please see the auto-generated web pagesfor register definitions.

Exhibit 2038 dockdGo_Sequencerdec 73669 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257745

ATI Ex. 2109

IPR2023-00922

Page 35 of 326

ATI Ex. 2109
IPR2023-00922
Page 36 of 326

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
36 of 51 24 September, 2001 4 September, 201544: oye

23.1 External Interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—SPxit means that SQ is going to broadcast the same information to all SP instances.

23.2 SC to SP Interfaces

23.21 SC_SP#
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpalators). This interface transmits
the I,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data which is transferred per quad is

Ref Pix | => $4.20 Floating Point | value *4
Ref Pix J => $4.20 Floating Point J value *4

This equates to a total of 200 bits which transferred over 2 clocks
and therefor needs an interface 100 bits wide

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these bussesis controlled by a IJ_BUF_INUSE_COUNTin the SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNT count. Prior ta
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2, if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
itis planned for the SP to hold 2 double buffers of |\J data and two buffers of X,Y cata, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,SQ and add a
EndOfvector signal on all interfaces to quit early. We opted for the simple modefirst with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performancehit.)

Name | Bits|Description
SC_SP#_data 100|[J information sent over 2 clocks (or X,¥ in 24 LSBs with faceness in upper bit)

Type 0 or 1, First clock I, second clk J
Field ULC URC LLC LRC

Format SE4M20 SE4M20 SE4M20 SE4M20

Type 2
Fieid Face xX Y

| Bits [24] (23:12) [17:0]Format Bit Unsigned Unsigned

SC_SP#_valid iz Valid
SC_SP#_last_quad_cata 4 This bit will be set on the last transfer of data per quad.
SC_SP#_type 2 0 -> Indicates centroids

1 -> Indicates centers

i 2 -> Indicates X,Y Data and faceness on data bus
i The SC shall look at state data to determine how many types to send for the |

 Bits [63:39] [38:28] [25:13] [12:0] oo

| :

|

Exhibit 2035 deckacd_Sequencerdes 73669 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257746

ATI Ex. 2109

IPR2023-00922

Page 36 of 326

ATI Ex. 2109
IPR2023-00922
Page 37 of 326

 ORIGINATE DATE

24 September, 2001

EDIT DATE DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

37 of 51

4 September, 201544

interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP block will have neither becausethe instantiation will insert the prefix.

23.2.2 SC_SQ
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 108 bits) could be folded in half to approx 54
bits.

Name | Bits|Description le
SC_S80data 46 Contro! Data sent to the SQ

1 clk transfers
Event ~ valid data consist of event_id and

staie_id. Instruct SQ to post an
event vector to send state id and
event_id through requestfifo
and onto the reservation stations
making sure state id and/or event_id
gets back to the CP. Events only
follow end of packets so no pixel
vectors will be in progress.

Empty Quad Mask — Transfer Control data
consisting of pc_dealloc
or new_vector. Receiptof this is to
transfer pc_dealloc or new_vector
without any valid quad data. New
vector will always be posted to
requestfifo and pc_deailoc will be
attached to any pixel vector
outstanding or posted in request fifo
if no valid quad outstanding.

2 clk transfers
Quad Data Valid - Sending quad data with or

without new_vector or pc_dealloc.
New vector will be posted to request
fifo with or without a pixel vector and
pc_dealloc will be posted with a pixel
vector unless noneis in progress. In
this case the pc_dealloc will be
posted in the request queue.
Filler quadswill be transferred with
The Quad mask set but the pixel
corresponding pixel mask set tozero.

SC_S8Q_valid i14 SC sending valid data, 2™ clk could beall zeroes

8C_SQ_data - first clock and second clock transfers are shown in the table below.

Name BiiField Bits | Description

Clock Transfer

SC_SQ_event 1 This transfer is a 1 clock event vector Force quad_mask =
new_vector=pc_dealloc=0

L4 | This field identifies the event 0 => denotes an End Of State Event 4

8C_SQ_event_id |.)

Exhibit 2038 dockdGo_Sequencerdec 73669 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257747

ATI Ex. 2109

IPR2023-00922

Page 37 of 326

ATI Ex. 2109
IPR2023-00922
Page 38 of 326

 ORIGINATE DATE

24 September, 2001

EDIT DATE PAGE

38 of 51
R400 SequencerSpecification
 4 September, 201844este a

=> TBD

State/constant pointer (6*3+3)

 S6_80slateid (8:6)

3

SC_SQ_pc_dealloc [11:9] 3 Deallocation token for the Parameter Cache
SC_SQ_new_vector 12 1 The SQ must wait for Vertex shader done count > 0 and after

dispatching the Pixel Vector the SQ will decrement the count.
SC_SQ_quadmask [16:13] |4|Quad Writemask leff to right SPO => SP3 __
SC_SQ_end_of_prim 17 it End Ofthe primitive
8C_SQ_pix_mask [83:18]|16 Valid bits for ali pixels SPO=>SP3 (UL,UR,LL,LR)
$C_SQ_provok_vix [35:34]|2 Provoking vertex for flat shading
8C_3Q lod_correct_0 [44:36]|9 LOD correction for quad 0 (SPO) (@ bits per quad)
SC_SQ_lod_correct_1 [53:45]|9 | LOD correction for quad 1 (SP1) (9 bits per quad)|

2nd Clock Transfer

8C_SQ_lod_correct_2 _ | LOD correction for quad 2 (SP2) (9 bits per quad)
8C_3Q_led_correct_3 [17:9] 9 | LOD correction for quad 3 (SP3) (9 bits per quad)
SC_SQpe _ptrO [28:18]|11 | Parameter Cache pointer for vertex 0
SC_SQ_pe_ptri (99:29]|11 Parameter Cache pointer for vertex 1
SC_S3Q_pe_ptr2 ot Parameter Cache pointer for vertex 2
SC_SQ_prim_type 3 Stippled line and Real time command need to load tex cords from

alternate buffer
000: Sprite (point)
001: Line
010: Tri_rect
100: Realtime Sprite (point)
101: Realtime Line
110: Realtime Tri_rect

Name Bits|Description

|SQ_SC_free_buff 14 Pipelined bit that instructs SC to decrement count of buffers in use.
SQ_SC_dec_entr_ent 1 Pipelined bit that instructs SC to decrement count of new vector and/or event

seni to prevent SC from overflowing SQ interpolator/Reservation requestfifo.

The scan converter will submit a partial vector whenever:
1.) He gets a primitive marked with an end of packet signal.
2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been

marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector fo be processed, but the one being waited for could never export
until the pc_dealloc signal madeit through and thus the hang.)

Exhibit 2036.dockaod_Sequencerdec 73669 Bytes“** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257748

ATI Ex. 2109

IPR2023-00922

Page 38 of 326

ATI Ex. 2109
IPR2023-00922
Page 39 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4 September, 201544 GEN-CXOQOOCREVA 39 of SttL . —— . a i f antennal ite

23.2.3 SQ to SX(SP): Interpolator bus
Name | Direction Bits | Description
8Q_SPx_interp_flat_vix | SQ-»SPx 2 | Provoking vertex for flat shading
SQ_SPx_interp_flat_gouraud | SQ—SPx 1 | Flat or gouraud shading
SQ_SPx_interp_cyl_wrap SQ—SPx 4 | Wich channel needsto be cylindrical wrapped
SQ_SPx_interp_param_gen | SQ-»SPx 4 | Generate Parameter _
SQ_SPx_interp_prim_type SQ—SPx 2 | Bits [1:0]of primitive type sent by SC
SQ_SPx_interp_buff.swap | SQ.-SPx im _ Swapp J buffers
SQ_SPx_interp_lJ_line SQ—SPx 2 L IJ line number
SQ_SPx_interp_mode | S$Q--SPx 4 | Center/Centroid sampling
$Q_SXx_pe_ptrO SQ—SXx 1i__| Parameter Cache Pointer

SQ_SXx_pc_ptri | SQ-»SXx 11 | Parameter Cache Pointer
SQ_SXx_pe_ptr2 | SQ-»SXx |411 | Parameter Cache Pointer
5Q_SXx_ rt sel SQ>SXx i | Selects between RT and Normaldata (Bit 2 of prim type)
$Q_SX0_pe_wr_en | SQ-»SXO 8 | Write enable for the PC memories
$Q_SXi1_pe_wr_en SQ—Sx1 8 _ Write enable for the PC memories
SQ_SXx_pe_wr_addr |SQ->SXx \7 | Write address for the PCs
SQ_SXx_pe_channel_mask SQ—>5Xx 4 _ Channel mask
SQ_SXx_pe_ptrvalid SQ-SxXx 1 | Readpointersarevalid,
SQ_SPx_interp_ valid | $Q-2SPx i [interpolation control valid

23.2.4 SQ to SP: Staging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.
Name Direction Bits | Description
5Q_SPx_vsr_data |SQ-9SPx | 96 | Pointers of indexes or HOS surface information
5Q_SPx_vsr_double SQ—SPx i _O: Normal96 bits per vert 1: double 192 bits per vert
SQ_SP0_vsrvalidss|SQHSPOsd _

SQSPi_vst_valid|SQ.SP4 iA ata is valid _ . .
_SQ_SP2_vsr_valid Dataisvalid
$Q_SP3_ vsr__vali 7 Datais valid
SQ_SPx_vsr_read _$Q->SPx Increment the read pointers

23.2.5 VGT to SQ: Vertex interface

23.2.5.1 Interface Signal Table

The area difference between the two methodsis not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data te the
VSISRs (via the Shader Sequencerin full, 32-bit floating-point format. Tne VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide. In the case where an eventis sent the 5LSBs of VGT_SQ_vsisr_data contain the eventID.

Name |Bits Description
VGT_3Q vsisr_data 96 Pointers of indexes or HOS surface information
VGT_SQ_event 1 VGTis sending an event
VGT_SQ_vsisr_continued 1 0: Normal96 bits per vert 1: double 192 bits per vert
VGT_SQ_end_of_vix_vect i Indicates the last VSISR data set for the current process vector (for double vector

data, “end_of_vector"is set on the first vector)
VGT_SQ_indx_valid 1 Vsisr data is valid
VGT_SQ_state 3 Render State (6°S+3 for constants). This signal is guaranteed to be correct when

'VGT_SQ_vgt_end_of_vector’is high.
VGT_SQ_send 1 Data on the VGT_SOis valid receive (see write-up for standard R400 SEND/RTR

a interface handshaking) | | ;
SQ_VGT_rir 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

23.2.5.2 Interface Diagrams

Exhibit 2038 dockdGo_Sequencerdec 73669 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257749

ATI Ex. 2109

IPR2023-00922

Page 39 of 326

ATI Ex. 2109
IPR2023-00922
Page 40 of 326

HeONANO’SYECVHS

xe@BHCIBAOQUOBBYONJUGUAdODsoudIBjOY“PENUSPYUOD[LY@wessose2

sopussuenbes“agpysopGoa,

wadingaimsexLOL

osu

ZORS

onyoad

Slomanistsaqon

yessqeys36a6gva

gafupus4S.

LDA

ZYCLOZATDONE

[lfaenarnncnncncenrnnmnnamnmsenreneenseneshZTIENOUUSTEA|ZWLaSISA

LG40OF

q9vduoyeoyiosdsseouenbesOory

VEGLOEJequis}alvdLida

L00g‘Jequsides7ZJLVdFLVNIOINO
83F

 TIWIAE.LVNYaddoOFAILOdLOdd

AMD1044_0257750

ATI Ex. 2109

IPR2023-00922

Page 40 of 326

ATI Ex. 2109
IPR2023-00922
Page 41 of 326

xxx@BHCJ9AODUOSDIIONJYHUAdODsoUsIEJoY‘fENUSPYUOD[LY@xeerscose "SORLSILONOSVaIe]WieweIgOSTpaleiedSing
NOISSINSNYYLsdOLsYaaNas

NOTSSINSNVHLSLYWLS-aa
7

a

GHATSHORS

sopuasuBnbeg“ggrHOOPGlogTaigNOISSINSNVGLSdOLS4HATSORN

ayOLALGWaO2I4INDO81gLAOWEVdOf1abpWidbpONGS€Wid€aNasZWidZONGSSILOAZulyosIulyos0ulyOswLyOs

Toy

 “LPLPPbG10LPdovd

VASEXXXXXO-NADWAN“ASULNSANSOG

PEGlOcJequieiass7SLVdLid3

Loog‘JequisidespzSLVdJLYNIOINO

 TIWIAE.LVNYaddoOFAILOdLOdd

AMD1044_0257751

ATI Ex. 2109

IPR2023-00922

Page 41 of 326

ATI Ex. 2109
IPR2023-00922
Page 42 of 326

ORIGINATE DATE EDIT DATE PAGE

42 of 51
R400 SequencerSpecification 24 September, 2001 4 September, 201544£

23.2.6 SQ to SX: Control bus

Name | Direction iBits | Description ;
SQ_SXx_exp_type SQ—5Xx [2 _ QO: Pixel without z (1 to 4 buffers)

_ 01: Pixel with z (1 to 4 buffers)
| 10: Position (1 or 2 results)

| I _1t: Pass thru (4.8 or 12 results aligned) _
SQ_SXx_exp_number SQ>5Xx 2 |Number of locations needed in the export buffer

| (encoding depends on the type see bellow).
$Q_SXx_exp_alu_id | S$Q-»SXx 4 ALU ID
SQ_SxXx_exp_valic |SQ>8Xx i | Valid bit
SQ_SXx_exp_state SQ—>SXx 3 | State Context

3Q_SxXx_free_done SQ—S8Xx 1 | Pulse that indicates that the previous export is finished
| from the point of view of the SP. This does not
i necessarily mean that the data has been
transferred to RB or PA, or that the space in export

| buffer for that particular vector thread has been
| freed up.

SQ_S8Xx_free_alu_id | SQ>SXx i -ALU ID

Depending on the type the numberof export location changes:
* Type 00: Pixels without Z

o 00= 1 buffer
o 01 = 2 buffers
o 10=3 buffers
o 11=4 buffer

e Type 01: Pixels with Z
o 00= 2 Buffers (color + Z)
o O01 3 buffers (2 color + Z)
o 10=4 buffers (3 color + Z)
o 115 buffers (4 color + Z)

e Type 10: Position export
o Q0= 1 position
o 01 2 positions
o 1X = Undefined

e Type 11: Pass Thru
00 = 4 buffers
01 = 8 buffers
10 = 12 buffers

o 11 Undefined

O

Oo0

Below the thick black line is the end of transfer packet that tells the SX that a given export is finished. The report
packet will always arrive either before or at the same time than the next export to the same ALU id.

23.2.7 SX to SQ: Output file contro!

Name | Direction | Bits | Description ;
8Xx_SQ_exp_count_rdy SXx-5Q | 1 | Raised by SXO to indicate that the following twofields

| reflect the result of the most recent export
SxAx_SQ_exp_pos_avail SXx8Q, 2 | Specifies whether there is room for another position.

| 00: 0 buffers ready
_O1: 1 buffer ready
| 10: 2 or more buffers ready
 L _ j ;

8Xx_SQ_exp_buf_avail SXx-5Q 7 | Specifies the space available in the output buffers.
| ' | O: buffers are full
| | 1. 2K-bits available (32-bits for each of the 64

Exhibit 2035 deckacd_Sequencerdes 73669 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257752

ATI Ex. 2109

IPR2023-00922

Page 42 of 326

ATI Ex. 2109
IPR2023-00922
Page 43 of 326

 DOCUMENT-REV. NUM.

GEN-CXXAXX-REVA

PAGE

43 of 51

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015144

_ pixels in a clause)

 _ 64: 128K-bits available (16 128-bit entries for each of

| 64 pixels)
/| 65-127: RESERVED

23.2.8 SQ to TP: Control bus

Once every clock, the fetch unit sends to the sequencer on which RS line it is now working and if the data in the
GPRsis ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequenceralso provides the instruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

Name Direction Bits Description

TPx_SQ_data_rdy | TPx- SQ [1 | Data ready
TPx_SQ_rs_line_num “TPx— SQ ‘6 | Line number in the Reservationstation

TPx_SQ_type _TPx— SQ 4 _Type of data sent (O:PIXEL, 1:VERTEX)
SQ_TPx_send SQ-TPx 4 _ Sending valid data
SQ_TPx_const | SQ—TPx 14 | Fetch state sent over 4 clocks (192 bits total)

8Q_TPx_instr SQ>TPx [2 |Fetchinstruction sentover4clocks
so_TPx._endof group | SQ-—-TPx 14 |Last instruction of the group
SQ_TPx_Type SQ—-TPX 1 |i Type of data sent (O:PIXEL, 1 VERTEX)
SQ_TPx_gpr_phase | SQ—TPx 2 _ Write phase signal

_SQ_TPO_lod_correct__ __ | SQ>TPO & LOD correct 3 bitsper comp2componentsperquad_
S$Q_TPO_pix_mask TR 4 ixel mask1bit per pixel _
SQ_TP1_lod_correct _SQ-TPI 6 _LOD correct 3 bits per comp 2 components per quad
$Q_TP1_pix_mask SQ—-TP1 4 | Pixel mask 1 bit per pixel
$Q_TP2_lod_correct | 8Q-TP2 6 | LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pix_mask SQ—TP2 4 | Pixel mask 1 bit per pixel
SQ_TP3_lod_correct | $Q-TPS .6 | LOD correct 3 bits per comp 2 components per quad
80Q_TP3_pix_mask 80->TP3 4 | Pixel mask 1 bit per pixel
8Q_TPx_rs_line_num | SQ—TPx 16 _ Line number in the Reservationstation
S$Q_TPx_write_gpr_index SQ->TPX 7 Index into Register file for write of returned Fetch Data
SQ_TPx_ctx_id SQ->TPXx L3 | The state context ID (needed for multisample resolves)

23.2.9 TP to SQ: Texture stall

The TP sends this signal to the SQ and the SPs whenits input buffer is full.

TP_SP_fetch_Steli

ce
ee=],

Exhibit 2038 dockdGo_Sequencerdec 73669 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257753

ATI Ex. 2109

IPR2023-00922

Page 43 of 326

ATI Ex. 2109
IPR2023-00922
Page 44 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 2071544 44 0f 51

 Name | Direction | Bits |Description
TP_SQ_fetch_stail | TP SQ 4 _Do not send more texture requestif asserted

23.210 SQ to SP: Texture stall

Name ; | Direction Bits | Description _ | ne
SQ_SPx_fetch_stall | SQ->SPx i4 | Do not send more texture requestif asserted |

23.2.11 SQ to SP: GPR and auto counter

Name Direction Bits|Description
SQ_SPx_gpr_wr_addr | SQ-»SPx 7 Write address
SQ_SPx_gpr_rd_addr SQ—SPx 7 Read address
80_SPx_gprrd_en | 8Q->SPx 4 Read Enable

SQSPO_gprowren|SQ>SPxLa |WriteEnable forthe GPRsof SPOJ
SQ_SP1_gpr_wr_en $Q-»SPx 4 Write Enable for the GPRs of SP1
$Q_SP2 gpr_wr_en _SQ>SPx 4 _Write Enable for the GPRs of SP2
SQ_SP3_gpr_wr_en SQ—SPx 4 Write Enable for the GPRs of SP3.
SQ_SPx_gpr_phase SQ—SPx 2 The phase mux (arbitrates between inputs, ALU SRC

; _ oe _| reads and writes)
5SQ_SPx_channel_mask _SQ—SPx 4 _ The channel mask
SQ_SPx_gpr_input_se! SQ—SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTXO,
| _VTX1, autogen counter.

SQ_SPx_auto_count SQ >SPx 21 Auto count generated by the SQ, commonfor all shader
I pipes

Exhibit 2035 deckacd_Sequencerdes 73669 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257754

ATI Ex. 2109

IPR2023-00922

Page 44 of 326

ATI Ex. 2109
IPR2023-00922
Page 45 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 45 of 51pateseay nn

23.2.12 SQ to SPoxc Instructions

Name Direction Bits|Description
SQ_SPx_instr_start |$Q-2SPx 1 | Instruction start

$Q_SP_instr SQ—-SPx 24 Transferred over 4 cycles
0: SRC A Negate Argument Modifier 0:0

SRC A Abs Argument Modifier 1:1
SRC A Swizzle 9:2
Vactor Dst 15:10
Per channel Select 23:16

00: GPR
01: PV
10: PS

11: Constant (if 11 has to be 11 for all
channels)

1: SRC B Negate Argument Modifier 0:0
SRC B Abs Argument Modifier=1:1
SRC B Swizzle 9:2
Scalar Dst 15:10
Per channel Select 23:16 Se Sees

00: GPR ae : ee01: PV Ss :
10:PS

11: Constant (if 11 has to be 11 for all
channels)

2: SRC C Negate Argument Modifier 0:0
SRC C Abs Argument Modifier 1:1

 SRC C Swizzle 9:2
Unused 15:10
Per channel Select 23:16

00: GPR
01: PV
10:PS

11: Constant (if 11 has to be 11 for all
channels)

3: Vector Opcode 4:0
Scalar Opcode 10:5
Vector Clamp 44:14
Scalar Clamp 12:12
Vector Write Mask 16:13

| | Sealar Write Mask 20:17|__Unused 23:21
SQ_SP0_pred_override SQ—SP0 4 Q: Use per channel RGBAfield (enables the per channel

I logic, if not set only pay attention to the 11 seting).
| | 1: Use GPR

SQ_SP1_pred_override SQ-SP1 4 0: Use per channel RGBAfield (enables the per channel
logic, if not set only pay attention to the 11 seting).
1: Use GPR

SQ_SP2_pred_override SQ—SP2 4 0: Use per channel RGBAfield (enables the per channel
logic, if not set only pay attention to the 11 seting).

fo | i 1: Use GPR_ ; ;
SQ_SP3_pred_override SQ—SP3 4 0: Use per channel RGBAfield (enabies the per channel

logic, if not set only pay attention to the 11 seting).
1: Use GPR

SQ_SPx_exp_id | $Q-.5Px i _GPR ID

Exhibit 2038 dockdGo_Sequencerdec 73669 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257755

ATI Ex. 2109

IPR2023-00922

Page 45 of 326

ATI Ex. 2109
IPR2023-00922
Page 46 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 2071544 46 of 51

- ire.
SQ_SPx_exporting SQ—SPx 1 QO: Net Exporting

|_ 1: Exporting
SQ_SPx_stall | SQ >SPx [1 | Stall signal

23.2.13 SQ to SX: write mask interface (must be aligned with the SP data)
Name | Direction Bits | Description _ |
$0Q_S8xX0_write_mask SQ—SP0 8 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and ail color
buffers). 4x4 because 16 pixels are computed per
clock. This is for the data coming of SPO and SP2.

SQ_SX1_ write_mask SQSP1 8 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock. This is for the data coming of SP1 and SP3.

23.2.14 SP to SQ: Constant address load/ Predicate Set/Kill set

Name | Direction [Bits | Description
SPO_SQ_const_addr SPO—-SQ 36 Constant address load / predicate vector load (4 bits only)/

_ Kill vector load (4 bits only) to the sequencer

SP0_SQ_valid | SPO—SQ 1 _Data valid
SP1_SQ_const_addr SP1—SQ 36 | Constant address load / predicate vector load (4 bits only)/

_ Kill vector load (4 bits only) to the sequencer J
SP1_SQ_valid | SP1-SQ v4 | Data valid
SP2_SQ_const_addr | §P280 136 | Constant address load / predicate vectorload (4 bits only)/

; | . | _Kill vector load (4 bits only) to the sequencer
8P2_SQ_valid SP2—SQ0 1 _ Data valid
SP3_SQ_const_addr | SP3—SQ | 36 — Constant addressload / predicate vectorload (4 bits anly)/

_ i | ____ Kill vector load (bits only) to the sequencer
SP3_SQ_valid | SP3-SO 4 _ Data valid
SPO_SQ_data_type SP3SQ 2 | Data Type

| 0: Constant Laad
| 4: Predicate Set
| 2: Kill vector load

Becauseof the sharing of the bus none of the MOVA, PREDSETor KILL instructions may be coissued.

23.2.15 SQ to SPx: constant broadcast

pName|Direction|BitsDescriptionSQ_SPx_const _SQ-5SPx 128 | Constant broadcast

23.216 SQ to CP: RBBM bus

Name “Direction Bits | Description
SQ_RBB ors | SQ-9CP (1 | Read Strobe
SQ_RBB_rd sQ—cp | 32 _Read Data
|SQ_RBBM_onrtrtr SQ—>CP [1 Optional=.

8Q_RBBM_rr | 8Q--CP i | Real-Time (Optional 1

23.2.17 CP to SQ: RBBM bus

Name | Direction | Bits | Description
rbbm_we CF—5Q 1 | Write Enable
rbbm_a | CP--5Q [15 | Address -- Upper Extent is TBD (16:2)
rbbm_wd CP—=S8Q 32 | Data
rbbm_be | CP-»5Q [4 | Byte Enables
rbbm_re CP—SQ 1 | Read Enable
rbb_rsO | CP>SG 14 | Read Return Strobe 0

Exhibit 2035 deckacd_Sequencerdes 73669 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257756

ATI Ex. 2109

IPR2023-00922

Page 46 of 326

ATI Ex. 2109
IPR2023-00922
Page 47 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-COOCX-REVA 47 of 51fates, he —

rbb_rsi CP.2SQ 14 | Read Return Strobe 1
robb_rdO CP=SQ 32. | Read DataO
rob_rd4 —[eRSQ[32 | Read Data 0 J
RBBM_SQ_ soft_reset | CP.»SQ id _Soft Reset

23.2.18 SQ to CP: State report

 Name Direction Bits | Description
SQ_CP_vs_event |S$Q—CP [4 | Vertex Shader Event
$Q_CP_vs_eventid SQ—CP 5 i Vertex Shader Event ID
SQ_CP_ps_event_ SQ—CP 1 _PixelShaderEventJ

5Q_CP_ps_eventid 5Q—CP 8 | Pixel Shader Event iD

23.3 Example of control flow program execution
We now provide some examples of execution to better illustrate the new design.

Given the program:

ud
ul

ex 0
ex 1
u3 Serial
u4

ex 2
u5
u6Serial

ex 3
u7
loc Position 1 buffer
u8 Export

PP
4

@4 i
loc Parameter 3 buffers
uS Expori 0oOpd on
u 10 Serial Export 2
u 11 Export 1 End

 PRAbPPAPEPAPSADD
Would be converted into the following CF instructions:

O Alu O Tex 0 Tex 1 Alu O Aiu O Tex O Alu 1 Alu O Tex

And the execution of this program would looklike this:

Put thread in Vertex RS:

Control Flow Instruction Pointer (12 bits), (CFP)
Execution Count Marker (3 or 4 bits), (ECM)
Loap Iterators (4x9 bits), (LD
Call return pointers (4x12 bits), (CRP)
Predicate Bits(4x64 bits), (PB)
Export ID (1 bit), (EXID)
GPR BasePtr(8 bits), (GPR)

Exhibit 2038 dockdGo_Sequencerdec 73669 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257757

ATI Ex. 2109

IPR2023-00922

Page 47 of 326

ATI Ex. 2109
IPR2023-00922
Page 48 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201544 48 of 51je veeneeeeeehnneneene ee 4 REY

Export Base Ptr (7 bits), (EB)
Context Ptr (3 bits). (CPTR)
LOD correction bits (16x6 bits) (LOD)

[StateBits

Valid Thread (VALID)
Texture/ALU engine needed (TYPE)
Texture Reads are outstanding (PENDING)
Waiting on Texture Read to Complete (SERIAL)
Allocation Wait (2 bits) (ALLOC)

00 — No allocation needed
01 — Position export allocation needed (ordered export)
10 — Parameteror pixel export needed (ordered export)
11 — pass thru (out of order export)

Allocation Size (4 bits) (SIZE)
Position Allocated (PFOS_ALLOC)
First thread of a new context (FIRST)
Last (1 bit), (LAST)

[Status Bits |
VALID TYPE PENDING [SERIAL | ALLOC [SIZE [POS ALLOCFIRST[LAST

1 ALU 0 0 [0 Oo. {0 1 0 |

T
|

4

Then the thread is picked up for the execution ofthe first control flow instruction:Execute © Alu O Alu O Tex 0 Tex 1 Alu O Alu O Tex 0 Alu 1 Alu OD Tex

lt executes the first two ALU instructions and goes back to the RS for a resource request change. Here is the
state returned to the RS:

Then when the texture pipe frees up, the arbiter picks up the thread to issue the texture reads. The thread comes

back in this state:

 State Bits

CFP [ECM Li CRP PB | EXID | GPR | EB | CPTR LOD
a [4 10 10 0 oO 10 [9 oO 0

Status Bits

VALID [TYPE PENDING|SERIAL [ALLOC [SIZE [POS ALLOC FIRST LAST
1 | ALU 1 i 4 10 0 o 1 0

Because of the serial bit the arbiter must wait for the texture to return and clear the PENDING bit before it can
pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returnsit in
this state:

Exhibit 2036.dockaod_Sequencerdec 73669 Bytes“** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

State Bits .

CFP TECM im TCRP PB rEXID | GPR EB FCPTR LOD o
Q [2 Lo Lo O Lo Lo 0 Lo 0
Status Bits
Sasaera2 :

VALID TYPE PENDING [SERIAL | ALLOC [SIZE [POS_ALLOC FIRST|LAST le
4 TEX 0 [a [6 0 a i 0

AMD1044_0257758

ATI Ex. 2109

IPR2023-00922

Page 48 of 326

ATI Ex. 2109
IPR2023-00922
Page 49 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2007 4 September, 201544 GEN-CXXXKX-REVA 49 of 57_. e3 es See 4a 4 - a __ a

State Bits &
| CFP | ECM i | CRP PB | EXID | GPR | EB [CPTR [LOD |.

i) 6 0 0 0 0G Lo i) 0 LO |

Status Bits

|VALID | TYPE PENDING | SERIAL | ALLOC SIZE|POS_ALLOC FIRST LAST | :
1 | TEX oO [oO [0 0 O 1 0G pee

Again the TP frees up, the arbiter picks up the thread and executes. It returns in this state:

State Bits |

| CFP |ECM [LI |CRP PB (EXID | GPR EB | CPTR LoD |
6 [7 [0 [0 0 [0 0 0 [0 0

Status Bits

VALID | TYPE PENDING SERIAL | ALLOC SIZE|POS_ALLOC FIRST | LAST
1 VALU i fo 0 a 0 4 {eo

Now, even if the texture has not returned we can still pick up the thread for ALU execution because the serial bit
is not set. The thread will however come back to the RS for the second ALU instruction because it has the serialbit

set.

StateAS ec eei

CFP [ECM ul CRP PB EXID _GPR EB | CPTR LOD
6 [8 rd 0 0 ro i) a 0

Status Bits

VALID TYPE PENDING|SERIAL|ALLOC|SIZE |POS_ALLOC FIRST LAST
1 ALU 1 i 4 10 0 [0 1 0

As soon as the TP clears the pending bit the thread is picked up and returns:

State Bits

CFP [ECM Ll CRP | PB [EXID |GPR [EB [CPTR LOD
Q 19 iO LO ie) iO 0 0 iO 0

Status Bits

VALID TYPE PENDING (SERIAL |ALLOC|SIZE|POS_ALLOC FIRST LAST
1 TEX 0 Lo i) o 0 1 6

Picked up by the TP and returns:S=xcecute O Alu

State Bits _ _ 7 __ _ _ _

CFP [ECM [Lu | CRP PB EXID _GPR EB | CPTR LOD
1 ro Oo 10 6G 10 6 6 io G

Exhibit 2038.docka09_Sequencercloc 73669 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257759

ATI Ex. 2109

IPR2023-00922

Page 49 of 326

ATI Ex. 2109
IPR2023-00922
Page 50 of 326

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE 24 September, 2001 4 September, 201544 50 of 51

|VALID TYPE PENDING | SERIAL | ALLOC|SIZE|POS_ALLOCFIRST|LAST

ALU 1 Lo lo eee L

 State Bits

|CFP TECM Pu TCRP PB TEXID | GPR EB | CPTR LOD
2 0 0 0 0 6 10 0 0 0

Status Bits

[VALID| TYPE PENDING | SERIAL | ALLOC|SIZE|POS_ALLOC FIRST [LAST
1 ALU i [o | 01 i 0 i Q ifthe SX has the place for the export, the 5Q is going to allocate and pick up the thread for execution. It returns to
the RS in this state:

Execute © Alu 0 Tex

State Bits

CFP. [ecm [Lis[CRP[PBLEXID [EB [CPTR |LOD_
3 | 4 iO 0 LO io ie 'o 0

Status Bits

VALID. TYPE ss PENDING| | SERIAL | ALLOC SIZE|POS_ALLOC FIRST LAST :
1 TEX 1 LO i) 0 1 i 0 |

Now, since the TP has not returned yet, we must wait for it to return because we cannot issue multiple texture
requests. The TP returns, clears the PENDING bit and we proceed:

A_loc Param 3

Status Bits

 VALID [TYPE PENDING|SERIAL [ALLOC [SIZE|POS_ALLOC FIRST LAST .
1 | ALU 1 10 110 [3 4 1 0 pas

Once again the SQ makes sure the SX has enough room in the Pararneter cache before it can pick up this
thread.

QO Alu GO Tex 1 Alu O Alu

State Bits

CFP [ECM LI [CRP PB EXID _GPR EB | CPTR LOD
5 4 10 Lo 0 11 10 100 [Oo 0

Exhibit 2036.dockaod_Sequencerdec 73669 Bytes“** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

|| Status Bits [

AMD1044_0257760

ATI Ex. 2109

IPR2023-00922

Page 50 of 326

ATI Ex. 2109
IPR2023-00922
Page 51 of 326

Status Bits

ORIGINATE DATE

24 September, 2001

 EDIT DATE

4 September, 201544

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA
PAGE

S1 of 51

VALID TYPE [PENDING | SERIAL | ALLOC [SIZE|POS_ALLOC | FIRST LAST
1 TEX [1 0 Lo LO 1 1 0

This executes on the TP and then returns:

State Bits

CFP ECM iL | CRP | PB | EXID | GPR [EB CPTR | LOD
5 2 [0 Lo i) [4 [0 | 100 0 [0

Status Bits

VALID TYPE | PENDING (SERIAL |ALLOC [SIZE|POS_ALLOC | FIRST LAST
1 ALU 1 14 0 0 1 _ it i

Waits for the TP to return because ofthe textures reads are pending (and SERIALin this case). Then executes
and does not return to the RS because the LASTbit is set. This is the end of this thread and before dropping it on the
floor, the SQ notifies the SX of export completion.

24. Open issues
Need to do some testing on the size of the registerfile as well as on the registerfile allocation method (dynamic VS
static).

Saving power?

Exhibit 2036 cocR400_Sequencer.des 73869 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~

AMD1044_0257761

ATI Ex. 2109

IPR2023-00922

Page 51 of 326

ATI Ex. 2109
IPR2023-00922
Page 52 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201546 GEN-CXXXXX-REVA 1 of 51a.Ledeentee =

“Author: Laurent Lefebvre

‘IssueTo: _|ser No:

R400 Sequencer Specification

SQ

Version 2.084

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the
required capabilities and expected uses of the block. it also describes the block interfaces, internal sub-
blocks, and provides internal state diagrarns.

AUTOMATICALLY UPDATED FIELDS:

Document Location: Cc\periorce'r400\doc_lib\designiblocks\sq\R400Sequencer.doc
Current intranet Search Title: R400 Sequencer Specification

| ee SEES Bees APPROVALS | : : : =

r : Name/Dept. J a Signature/Date:|

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE

SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES
INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this

confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”

unpublished work. The copyright notice is not an admission that publication has occurred. This work contains | —

Exhibit 2036.docRa00_Sequencerdec 73119 Byes** © ATI Confidential. Reference Copyright Notice on Cover Page © **

ATI 2036

LGv. ATI

IPR2015-00325

AMD1044_0257762

ATI Ex. 2109

IPR2023-00922

Page 52 of 326

ATI Ex. 2109
IPR2023-00922
Page 53 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4September,207546tember,201836 2 of 51.Of Contents
B. OVERVIEW ooo ceeceecc ccc cece ce nneceneanensensaensaancaensaasnane cee susaeeaaeeaaseaasa ses saesnsaaseaeseaasnanescinnenensocenenane 7

1.1 Top Level Block Diagram.........
1.2 Data Flow graph (SP)..
13 Control Graphee
2. INTERPOLATED DATA BUS.....

3. INSTRUCTION STORE ooo. cece ccccccceeceeceascneeeeaeeseeensansneensaaeaescassnansaaescaseeaneaneesaaenanerenenaas 14
4. SEQUENCER INSTRUCTIONS.cece cecceceseecceeeeeeeeneensaneneenseesaaenanescasseaensanecaneaaseeeesaane 14
& CONSTANT STORES...

5.1 Memory organizationsoo.eeecccee eet eeeeeeeeeeseveneeeeeecvuteseeeentcueseetnrstsaseetnnetrseresa 44
$.2 Management of the Control Flow Constants ooocececcc s cee cette sceeeettseeceeeensa 15
5.3 Management of the re-mapping tabies............... 15

5.3.1 R400 Constant management... 18

5.3.2 Proposal for RAQOLE constant management...ccccece rete eeteteeenteees 15

S.B.3 Dirty DHScececece tet etree ree iititititestiiterntr titties cititetetrcresecrerteneeaes 17
S.3.4 Free List Blokeseteens reesitensseensisssisiesesrsseesectirseesa

5.3.5 De-allocate Blockocccece cee ees teres teieeesentities 18 -
5.3.6 Operation of Incremental Model oooccccece reese teeeereteeevieevtstetsriseen18

$4 Constant Store Indexing.rrerrr erste err eersteerrr18
S.5 Real Time Commands...ccccee cetteeeeeeen tsetse sereeeeeccctteeeeettaseeeeittsseeettttsseneesea 19
$5.4 Constant Waterfalling 000000. .419
6 LOOPING AND BRANCHES... “

6.1 The controlling state... 20
6.2 The Control Flow Program... 20

6.2.1—Control flow instructions table.occceee treet treetetetitittrestttre tutte 21

BB UMIPleMentationeceeeeer tree ern reer ttt Sette tt tteetottttieeeetortieeentrraetea 23
64 Data dependant precicate instructions...... goed
65 HW Detection of PVPScococcc ce cc ccc ccec cece vv ccecuveveceucreeceveevreveeaeavevceavereceerrees 2628
6.6 Register fle INGexingocee eer tr rte n ttn iinet bitten ttttiteeenrtttteeeercrra 2625
6.7 Debugging the Shaders... cecececeeeeettseteeettieseteeetteeeenenea 2626 2

6.7.1 Method 1: Debugging registers ooo cect tttteteeetreenes ice

6.7.2 Method 2: Exporting the values in the GPRS.cece ceeeeesttststeseeeesnns 2728
7. PIXEL KILL MASKoccccceee ese nccenneaeecnessaeenaneceesusaenaaeesaaseaaeaessanenaayceaeseaasneneseasneananies 2126
8. MULTIPASS VERTEX SHADERS (HOS)... ceccecceececcecsncenneeteccneneneseaeneanenueessaanannanecs 2726
9. REGISTER FILE ALLOCATION o.ooccccceececeeneeeensceeceeneeenareceeeenerceeeeeceeecereeneennetes 2726 —
10. FETCH ARBITRATION ooo. ccccccc ccc ccscsnteneceaeeneeseennaeenecnsaasneceteeseeaneaaeseasneaneaneesaaeneantenenea 2B
11. ALU ARBITRATION oooccccccce cece cneeeecneceaeenaneeeeceaneneenceesnaneaascaeaenesuaeescanesaenseeseeaneantecenens 28

12. HANDLING STALLS ooecceencceeceneeeenerneensaeeerneeeenentes aoe
13. CONTENT OF THE RESERVATION STATION FIFOS ..o....cccccccccececcecceeccneeneeeceeeeneaeceeeneee 20.
14. THE OUTPUT FILELecce eeceene cee ceeeeeenneecanennenesescaneaaeeceesaauananeseesaaaasaanessaneauaniencnnaneanecesana 29
15. LW FORMAT oo.ceceeceneeeceeeeeenee we 29

15.1 Interpolation of constant attributes..... we 2g
16. STAGING REGISTERSoe dO

Exhibit 2038.docRaod_Sequencerdsc 73119Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

coun 29

AMD1044_0257763

ATI Ex. 2109

IPR2023-00922

Page 53 of 326

ATI Ex. 2109
IPR2023-00922
Page 54 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 20014September,201548 GEN-CXXXXX-REVA 3of 51

17. THE PARAMETER CACHE..........0.000.0... vccesssassssssusssuessvssicsuassussssstasesavssestassuesisassanessacseee34
T7.1 Export Pestricthons.oo.cccete eee e teeta stata evae co sveveveessstaenetaevisvasvevaavavtaevevaavesnaaeys 320

L7L 1 Pinel exportsecence r tee ette series ie ttete sitet stesisetiensineteisereisitiineisenee 32

L712 Vertex Oxporte. oooccc ce cete ceri netitetitietretrestistittittititititetitttresttcrtesetenes 32
L713 Pass thru exports. ooocece ccceecenscetetetieettrettvestitititttrtttenteetnttretrcrtenetenes 32

17.2 Arbitration restrictions............ we de |
18. EXPORT TYPES .ooccccccccccccseccscssnnnneeceseeeeneeeeeaeannnnisseennaaaaaneessaaaaaaidaseauaaaanseessaaaauerecseseeseereceese 32

1B.10Vertex SRAGINGeeecece teeeeeeeeee teense eeecctessseaeeeeeeeeeeeeeeeeeeeettsttisstseeeeaesetanens 32
18.2 Pixel Shadingoeeee eit e tbc tbbeettbrrctettettttrsieetines
19 SPECIALINTERPOLATION MODES ooiicccccccccccccccsssscsssesecessssaaarecsseeeeeereceeeeees S
19.1 R@al TIME COMMAS.oooccc cues eevev evs vveeeevevssevevveevssseu vey eeysusesevsvessousevereressasesess 33 e Q
19.2 Sprites/ XY screen coordinates/ FB information...ceceeee ctttceeeetteeeeteeennes 33
19.3 Auto generated COUNTLESSoccecee cc ce ee eeee cc ueeeetnaeesaeeevreetteeerbesseveeeneeseevnnnees 34

TO3.1 Vertex Shaders oiioooocc ccc ccc cc cc cece ve cceceveceesevecsevevsesevevitrevseseveveerevevsveveveniveeses 34

19.3.2 Pimel shadersoccoc cc cece ccc cccceceevcesevaveveeseveesevevsesevevsevevsessvevetievieeveveveevieseess BA
20. STATE MANAGEMENT uw. ...ccccccccscccnssaanssssanesnnessusanaaanansssnaannnaesestauseanssaanannaanadstsasanasanassenna 35 |
20.1 Parameter cache synchronization......
21. XY ADDRESS IMPORTS... ccccccccsen

21.1 Vertex indexes imports..........
32. REGISTERSocc vane

23. INTERFACESccccssseseeesessmsnnsesssreiersistemeesststnuvictesmeneeeceseneeeersetsanen

23.1 External Interfacesceceee ees es iestestesisstesiesessiesitsuesisenesssesees 36
23.2 SC tO SP Interfaceseeeeee eee ee steerer tseerrepeeetsaperaeaeyrsseprsaearnnaayess 36

23.2.1 SOSPHccceee nen e een r ett teee co titeeetr ti biteeeetrtsaeeetieeeeseesteeeesnneiees 36

ZB 22 BOSlestertester rronisserrisrsereissirisersiimieseriinss 37

23.2.3 SQ to SX(SP): Interpolator DUSoccece ceer cet teettteetititstetrttitttsttitieetees 39
23.2.4 SQ to SP: Staging Register Dataoccccc teeta tettttttevetiteteteretsees 3900
23.2.5 VGT to SQ: Vertex interfaceetteines iititieriret39

23.2.6 SQ to SX: Control bus... AP

23.2.7 SX to SQ: Output file COMPOceiiene sesiiteeriiree 420000
23.2.8 SQ to TP Control Busoreersiseriinsier imines 43000

23.2.9 TP to SQ: Texture stallcccce etree ert neee eters tisusrentenissnenrtenreaen 43 0
23.2.10 SQ to SP: Texture Staloccect ee te tttttte stitteititietttttittitetettetrrcress 44 0

23.2.1] SQ to SP: GPR and auto COUNTERoccccc te teet tree tetitttite etitrertitnentees44
23,212 SQ to SPx Instructionsooeessriserine45 0

23.2.13 SP to SQ: Constant address load/ Predicate Set/Kill set.cee46

23.2.14 SQ to SPx: constant broadcast o.ooccccece tee te te testes tereteteenensteeees 4605

23.215 SQ to CP: REBM DUSccccere tree titttittte stitteititit rittttsttitetettetesrcress4
23.2.16 CP to SQ: RBBM BUSoccccc eeereeeeseesesvseetcrsvetvrvssevivetveversitventetrtiiesses46
23.217 SQ to CP State report occccece cree titeetitie stitteitteitetittttttutittsttrrcsee47

23.3 € AT

Exhibit 2036.dock400_Sequencereloc 73119 Byes** © ATI Confidential. Reference Copyright Notice on Cover Page © »* |

AMD1044_0257764

ATI Ex. 2109

IPR2023-00922

Page 54 of 326

ATI Ex. 2109
IPR2023-00922
Page 55 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification 24 September, 2001 4 September, 201546Pe

24. OPEN ISSUES oooccccccccceccscccesccseseoscsssecsesacecsunevsnsevscssneravsnrasscanssavssrivannavassesevavavnavansnnennenesacens a

Exhibit 2036.docRaod_Sequencerdoc 731i9Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257765

ATI Ex. 2109

IPR2023-00922

Page 55 of 326

ATI Ex. 2109
IPR2023-00922
Page 56 of 326

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 20154638"

DOCUMENT-REV. NUM. PAGE

GEN-CX0OOCREVA 5 of 51

RevisionRevisionChanges:
Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July $, 2001
Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001
Rev0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001
Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001
Rev 1.4 (Laurent Lefebvre)
Date : December6, 2001

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002
Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

Rey 1.9 (Laurent Lefebvre)
Date : March 18, 2002
Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002
Rev 1.11 (Laurent Lefebvre)
Date : April 19, 2002
Rev 2.0 (Laurent Lefebvre)
Date : April 19, 2002

First draft.

Changed the interfaces to reflect the changesin the
SP. Added somedetails in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.
Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.
Added timing diagrams(Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.
Added constant store management, instruction
store management, control flow management and
data dependant predication.
Changed the control flow method to be more
flexible. Also updated the external interfaces.
Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.
Refined interfaces tc RB. Added state registers.

Added SEQ—-SPO interfaces. Changed delta
precision. Changed VGT-SPO0interface. Debug
Methods added.
Interfaces greatly refined. Cleaned up the spec.

Added the different interpolation modes.

Added the auto incrementing counters. Changed
the VGT—SQ interface. Added content on constant
management. Updated GPRs.
Removed from the spec all interfaces that weren't
directly tied to the SQ. Added explanations on
constant management. Added PA-SQ
synchronization fields and explanation.
Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.
Added Real Time parameter control in the 8X
interface. Updated the control flow section.
Newinterfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.
Rearangement of the CF instruction bits in order to
ensure byte alignement.
Updated the interfaces and added a section on
exporting rules.
Added CP state report interface. Last version of the
spec with the old control flow scheme
Newcontrol flow scheme

Exhibit 2036.docRa00_Sequencendec 73119 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page © ***

AMD1044_0257766

ATI Ex. 2109

IPR2023-00922

Page 56 of 326

ATI Ex. 2109
IPR2023-00922
Page 57 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification
24 September, 2001 4 September, 201546-jENrbeOOA

Rev 2.01 (Laurent Lefebvre) Changed slightly the control flow instructions to
Date : May 2, 2002 allow force jumps and calls.
Rev 2.02 (Laurent Lefebvre) Updated the Opcodes. Added type field to the
Date : May 13, 2002 constant/pred interface. Added Last field to the

SQ—SP instruction load interface.
Rev 2.03 (Laurent Lefebvre) SP interface updated to include predication
Date : July 15, 2002 optimizations. Added the predicate no stall

instructions,
Rev 2.04 (Laurent Lefebvre) Documented the new parameter generation scheme
Date :August 2, 2002 for XY coordinates points and lines STs.
Rev 2.05 (Laurent Lefebvre) Some interface changes and an architectural
Date : Septernber 10, 2002 change to the auto-counter scheme.
Rev 2.06 (Laurent Lefebvre) Widened the event interface to 5 bits. Some other
Date : October 11, 2002 little typos corrected.
Rev 2.07 (Laurent Lefebvre) Loops, jumps and calls are now using a 13 bit
Date : October 14, 2002 address which allows to jump and call and loop

around any control flow addresses (does not
requires to be even anymore).

Rev 2.08 (Laurent Lefebvre) Clarification updates after discussion with Clay,
Date ; October 16, 2002

Exhibit 2036.docRaod_Sequencerdoc 731i9Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257767

ATI Ex. 2109

IPR2023-00922

Page 57 of 326

ATI Ex. 2109
IPR2023-00922
Page 58 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM.

24 September, 2007 4 September, 201548 GEN-CXXAXX-REVA“oF A

1. Overview

The sequencer chooses two ALU threads and a fetch hread to execute, and executes all of the instructions in a block
before looking for a new clause of the same type. Two ALU threads are executed interleaved to hide the ALU latency.
The arbitrator will give priority to older threads. There are two separate reservation stations, one for pixel vectors and
one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbiirates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRsit needs to execute. The sequencerwill not start the next
vector until the needed spaceis available in the GPRs.

Exhibit 2038 dockdGo_Sequencerdec 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257768

ATI Ex. 2109

IPR2023-00922

Page 58 of 326

ATI Ex. 2109
IPR2023-00922
Page 59 of 326

xen@OBEIBAODUOBONONJUHUAdODsoUsIOJOY"JENUSPIUODLLY@wexsoV\ashit,sopresuesbag“pppusopOENzWINGMOIAISAOJgononbeg[e10ue53[|sanSLy

~Fe,—x|G@Ofod.i_.

SLVLSHOLSS

dsseiheesa/—4xaEOLionsawx|>>)AYOLSLSNI~~)SELLNI=~SSLLNIHSLNIow|"x JOMLNOONT“SNvo".mnA beneLSNIeVeSSOwd71|cere|L
peey4O-]

BPESCYMOSoTOMLNOO4HnaTORINOOSINVLSNOD
XSLMSA

¥TRLIGlogSSOJequigaesPL00g‘Jequsides7ZAOvduoqeoyioadgJeousnbegOOhY31¥dLdaSLYFLYNIOINO

 TIWIAE.LVNYaddoOFAILOdLOdd

AMD1044_0257769

ATI Ex. 2109

IPR2023-00922

Page 59 of 326

ATI Ex. 2109
IPR2023-00922
Page 60 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM.

24 September, 2007 4 September, 201548 GEN-CXXAXX-REVA“oF A

1.1 Top Level Block Diagram

[Input Arbiter]

—} VTX RS PIX RS }*—

 Texture

Figure 2: Reservationstations and arbiters

Under this new scheme, the sequencer (SQ) will only use one global state management machine per vector type
(pixel, vertex) that we call the reservation station (RS).

Exhibit 2038 dockdGo_Sequencerdec 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257770

ATI Ex. 2109

IPR2023-00922

Page 60 of 326

ATI Ex. 2109
IPR2023-00922
Page 61 of 326

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

| 24 September, 2001 4 September, 201546 10 of 51

|

instruction

Register File

|(= ,| scalar inputfoutput MAC —
BN fel fre requ

“.

' pipeline stage I

<
2 |
o I

= Register File

| MAC raques | ~
| pipeline stage | i ~\I

Pamc
=
en |

< &2 oOS QO
E oO
w Register File \

i i— ay i——- |

7 Ji MA | fenturel& juest_ 12) ao !
_, L scalar input/output g g) |
| pipeline stage * §| ! a iFry :

|uu |
ee a i | i< € > i2 oS | i

SB = Register File i |
= 8 ¢ : i i2|_Ist Wy key |__ 1

sr A fexturerel Est | KN '
I|

La |r
= Sx

 extureaddress

 h

to Primitive Assembly Unit or RenderBackend 5 | a

Figure 3: ‘The shader Pipe

Exhibit 2036 deckacd_Sequencerdes 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257771

ATI Ex. 2109

IPR2023-00922

Page 61 of 326

ATI Ex. 2109
IPR2023-00922
Page 62 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201546 GEN-CXXXXX-REVA 11 of 51nn Eseenbs 2h

The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).

1.3 Control Graph

Ciause # + Rdy
IS SEQ

|

WrAddr WrAddr

CMD

Phase BC Wrvec

RaAddr WSC8 rer
pe

FETCH SP wo OF

WrAdar

|

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the outputfile control interface.

2. Interpolated data bus
The interpolators contain an lJ buffer to pack the information as much as possible before writing it to the register file.

Exhibit 2038 dockdGo_Sequencerdec 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257772

ATI Ex. 2109

IPR2023-00922

Page 62 of 326

ATI Ex. 2109
IPR2023-00922
Page 63 of 326

ORIGINATE DATE EDIT DATE PAGE

12 0f 51
R400 SequencerSpecification

 24 September, 2001 4 September, 201546: ae DEY"aya

ToRB | | ~oeTe]

Ne CROSSBAR (4x100bite)
pa

|orae! | eeTewenn net ne a — —
re Ii ne

EEE
AO At AQ Bo iJs buffer (ping-pong buffer) |

(25 bits *8 (WW) 74°4* 4 (quadruple-bufferg Ao At 42 BO i
nanaraces| 12800 bits |

2 Bt ce ct 2 /Bt co c c2

3 C3 C4 ch bo Xs buffer (ging-pong duifer} i
24 bits * 16 quads *2 c3 C4 cS Do /

768 bits !
3ox24 |

4 Dl 2 EO e1 /

T T i LC| | | ii
INTERPOLATORS i 1

, |i

812 !I

| |ll il
PP nl

WUL |} QUE |} SUL |) 4ub '" || aur | aur || 4uR the|ae || Sue ||
i i i | | | | | | | i
LL Le | on

Figure 5: Interpolation buffers

Exhibit 2036.docRaod_Sequencerdoc 731i9Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257773

ATI Ex. 2109

IPR2023-00922

Page 63 of 326

ATI Ex. 2109
IPR2023-00922
Page 64 of 326

xxx@BHCJ9AODUOSOONJYHUAdODsousIEJoY‘feNUSPYUOD[LY@xeor'sstiWELISeIpSUNUOBLOd.93U]79BANSL]
sopuessenbeg"poryusopBOETAG

 0e.L)6LLObl

 ebL|bb

bSJO€Ldovd

VASEXXXXXO-NAD
WN

“ASLNSANOOG

SLVdLid3

Loog‘Jequisidespz aivdav
ID1eO

 TIWIAE.LVNYaddoOFAILOdLOdd

AMD1044_0257774

ATI Ex. 2109

IPR2023-00922

Page 64 of 326

ATI Ex. 2109
IPR2023-00922
Page 65 of 326

PAGE

14 0f 51
ORIGINATE DATE EDIT DATE R400 Sequencer Specification

24 September, 2001 4 September, 2071546EadesbeenEMA —
|Aboveisan example ofa tile thesequencer might receive fromthe SC. The write sideishowthedata get stacked -

into the XY and lJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencerallows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store

There is going to be only oneinstruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 7 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped regisiers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commandsthe story is quite the same but for some smail differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4, SequencerInstructions
All control flow instructions ancd-meve-instructions are handled by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV,PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shaderis 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flaw constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a changein the control flow constants. Its size is 320°32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants rnust be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

Exhibit 2036 deckacd_Sequencerdes 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257775

ATI Ex. 2109

IPR2023-00922

Page 65 of 326

ATI Ex. 2109
IPR2023-00922
Page 66 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201546 GEN-CXXXXX-REVA | 15 0f 51

5.2 Managementof theControl Flow Constants
The conirol flow constants are register mapped, thus the CP writes to the accarding register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one levelof indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied wheneverthere is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn't write to CF the state is going te use the previous CF constants.

5.3 Managementof the re-mapping tables

5.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencerwill broadside copy the contentsofits re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUSTbeat least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROLpacket of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE andif both are idle will erase the content of state to replaceit with
the new state (this is depicted in Figure 8: De-allocation mechanismFigure-8:De-allocation-mechanismFigure 8:De~
allocation-mechanism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a stale change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

Exhibit 2038 dockdGo_Sequencerdec 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257776

ATI Ex. 2109

IPR2023-00922

Page 66of 326

ATI Ex. 2109
IPR2023-00922
Page 67 of 326

FreeLis

Logical Acdress

Address

to Allocate

Global Register

ORIGINATE DATE

24 September, 2001

[0«— Read

EDIT DATE

4 September, 201546ae DN

R400 SequencerSpecification

r
| Renaming TableContext 0 =>

Current/Last

Context
(8 rows of 16-8 |. .
bit physical => Logical Address128 entries copy =
in eight clocks) | & Context|

Context N | Physical
| Address pirto

Data Bus

Constants

Staging DataBuffer

- Staging Write Addr|

Physical
Memory

Dealloc

physical '
address Counts | nextto physical
scnedile adcress

for ready
dealloc for allocate

snral en Seq
Logical address | Constant

GlbRegBus ° _ a Request
when Isb are zero | This | ifirst word of write . Context||

Renaming Table y | Dirty ! =)for 1 Context : er | a !
Curentlast||coical | Loyieal | | Context &Physical _ i i | Logical |

Address Address | Address “—~ Address —]only | (ifset | |
de- | don't | !

| allocate allocate ———
| ifset) | or de-
I I allocate)| Renaming: table

Contexts

Exhibit 2036 docR400_Sequencerdec

Copy Last held aboveto
Current Context on receipt

of Set Constant for a 1
newcontext (Hide loading

behind Set State load - 16 clocks)
all cther Set States just write one

entry to current state.

Figure 7: Constant management

7311s Byes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257777

ATI Ex. 2109

IPR2023-00922

Page 67 of 326

ATI Ex. 2109
IPR2023-00922
Page 68 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA | 17 of 51
SQ_STATE#

BEALOC
COUNTERS WRI TE_ENASLEFree List CNT VALUE

I|

| PREVIOUS|

le—nor| ome
| NEW

| | STATE| |

VALUE — |

| [oo |—— |‘
VALID |||

r

aIDLE
——| AND -#——PA_IDLE

he CP_NEW_STATE_CNTL—

REMAPPING ———_!
TABLE ~¢—_—_SET CTX BITS

Figure 8: De-allocation mechanism for R400LE.

5.3.3 Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second onewill be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. (fit is set and the context dirly is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the samelogical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block

A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would resel to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical biock is needed, andif the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk frorn the counter.
Storage of a free list big enoughto store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the freelist
like a ring.
The second pointer will be called step_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_pir will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

Exhibit 2038 dockdGo_Sequencerdec 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257778

ATI Ex. 2109

IPR2023-00922

Page 68 of 326

ATI Ex. 2109
IPR2023-00922
Page 69 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE | 24 September, 2001 4 September, 207546 18 0f51i E aie

; 535 De-allocate Block
This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any numberof blocks in one clock.

5.3.6 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the freelist
counter becauseits not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be sei, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states comein for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated ofthe free-list counter or
the free list at read_ptr pointerif read_ptr |= to stop_ptr.

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context thatleft. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the numberof blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, ifthe updates are large, less contexts will be stored and potentially performancewill be degraded.
Althoughit will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the

| GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/ciock).

| Exhibit 2036 deckacd_Sequencerdes 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257779

ATI Ex. 2109

IPR2023-00922

Page 69 of 326

ATI Ex. 2109
IPR2023-00922
Page 70 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 GEN-CXXXXX-REVA 19 of 51 4 Seciember, 201546 _ | _- . _ — — ae 4 . - _ ee — a _
Since the data must pass thru the Shader pipe for ihe float to fixed conversion, there is a latency of 4 clocke (4
instruction)between_the timethesequenceris ioaded—andthe_time-_onecan_index_inio_theconstantstere.The
assemblywilleoktike-this

MOVA R1.X,R2.% // Loads the sequencerwith the content of R2.X, also copies the content of R2.X into R1.%
NOP . ~~» —.—”//iJdatency ofthe floattofixed-conversion
ADD R3,R4,CO[R2.X]// Uses the state from the sequencer to add R4 to CO[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVAinstruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencerin orcer to support this feature is 2*64°9 bits = 1152 bits.

The address register is a signed integer, which ranges from —256 to 255.

55 Real Time Commands

The real time commands constants are written by the CP using the register mapped registers allocated for RT. it
worksis the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RTcontrol register. Similarly,
for the fetch state, the boundary betweenthe two zonesis defined by the TSTATE_EO_RTcontrol register.

5.6 Constant Waterfalling
In order to have a reasonable performancein the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels ar vertices of the state to go thru the ALUs. To do so, the
sequencer keeps & bits (one per render state) and sets the bits wheneverthe last render state is written to memory
and clears the bit whenevera state is freed.

Exhibit 2038 dockdGo_Sequencerdec 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257780

ATI Ex. 2109

IPR2023-00922

Page 70 of 326

ATI Ex. 2109
IPR2023-00922
Page 71 of 326

ORIGINATE DATE EDIT DATE

4 Seplember, 201546Eoertenbnie

RT SECTON
(ReadsMrrites are direct)

Lge

REGULAR SECTION
(Reads/VWrites are passing

thru a remaping table)
R400 SequencerSpecification PAGE

20 of 51

CONST_EO_RT

/

Figure 9: The Constant store

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a contro! program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[2556:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines an

This state is available on a per shader program basis.

6.2 The Control Flow Program
We'd like to be able to code up a program of the form:

1: Loop
2: Exec TexFetch

Exhibit 2036 decR400_Sequencerdes 73119 Bytes*** © ATI Confidential. Re

d 4 loop counters to allow for nested loops.

ference Copyright Notice on Cover Page © »

AMD1044_0257781

ATI Ex. 2109

IPR2023-00922

Page 71 of 326

ATI Ex. 2109
IPR2023-00922
Page 72 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

GEN-CXXXAXX-REVA | 21 0f 51

| 24 September, 2001 4 Seplember, 2015467 | seerececeeneeeeneeneeneneeetenes oe _ A
3 TexFetch
4: ALU
5: ALU
6: TexFetch
7 End Loop
8 ALU Export

But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3:. Without clausing,
these dependencies need to be expressed in the Control Flow instructions. Additionally, without separate ‘texture
clauses’ and ’ALU clauses’ we need to know which instructions to dispatch to the Texture Unit and which to the ALU
unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of inforrnation for each (non-control flow) instruction:
a) ALU or Texture
b) Serialize Execution

(b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched. Given the allocation of reserved bits, this would mean that the count of an ‘Exec’ instruction
would be limited to about 8 (non-controlflow) instructions. If more than this were needed, a second Exec (with the
same conditions) would be issued.

Another function that relies upon ‘clauses’ is allocation and order of execution. We need to assure that pixels and
vertices are exported in the correct order (evenif not all execution is ordered) and that space in the output buffers are
allocated in order. Additionally data can't be exported until space is allocated. A new controlflow instruction:

Alloc <buffer select -- position,parameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual
allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already
completed. The implementation would also assure that execution of instruction(s) following the serialization due to the
Alloc will occur in order -- at least until the next serialization or change from ALU to Texture. In most casesthis will
allow the exports to occur without any further synchronization. Only ‘final allocations or position allocations are
guaranteed to be ordered. Becausestrict ordering is required for pixels, parameters and positions, this implies only
a single alloc for these structures. Vertex exports to memory do not require orcering during allocation and so multiple
‘allocs' may be done.

6.2.1 Control flow instructions table
Hereis the revised control flow instruction set.

Note that whenevera field is marked as RESERVED,it is assumed that all the bits of the field are cleared (0).

. ; NOP
47... 44 | 43 | 42.0

0000 | Addressing| RESERVED

This is a regular NOP.

- Execute
47... 44 | 43 ; 40... 34 3316 16...12 11...0

0001 Addressing RESERVED | Instructions type + serialize @|Count Exec Address
| | instructions)

Execute_End
 47... 44 | 43 ; 40... 34 33....16 15...12 | 11...6

0010 Addressing RESERVED Instructions type + serialize (9|Count Exec Address
instructions)

Exhibit 2038 dockdGo_Sequencerdec 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257782

ATI Ex. 2109

IPR2023-00922

Page 72 of 326

ATI Ex. 2109
IPR2023-00922
Page 73 of 326

ORIGINATE DATE

24 September, 2001

ee‘upfo9instructions atthespecified address in the instructionmemory.The Instructiontype field tellsthe
EDIT DATE

4 September, 201546ETewbestesSOCA

R400 SequencerSpecification

PAGE

22 of 51

sequencer the type of the instruction (LSB) (1 = Texture, 0 = ALU and whether to serialize or not the execution (MSB)
(1 = Serialize, 0 = Non-Serialized). If Execute_End this is the last execution block of the shader program.

Conditional_Execute

| 47... 44 43 | 42 | 41... 34 | 33...16 15...12 i 1...0

0011 Addressing|Condition|Boolean|Instructions type + serialize (9 Count Exec Address
address instructions)

ConditionalExecute_End

| 47... 44 43 | 42 41... 34 | 33...16 45 ...12 14...0
0100 Addressing | Condition|Boolean|Instructions type + serialize (9 Count Exec Address

| address | instructions) |

if the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 9 instructions). If the condition is not met, we go on to the next control flow instruction. If
Conditional_Execute_End and the condition is met, this is the last execution block of the shader program.

Conditional Execute_Predicates

(9 instructions)

47... 44 43 42 41.36 | 35... 34 33...16 15...12 | 11....0

0101 Addressing|Condition RESERVED|Predicate Instructions Caunt Exec Address
| vector | type + serialize

| |_@ instructions} |

i; - ConditionalExecute_Predicates_End
[47.4443|aa868584|88652

0110 Addressing|Condition RESERVED|Predicate Instructions Count I Exec Address
vector type + serialize |

Check the AND/ORofall current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren't valid. If the
condition is not met, we go on to the next coritrol flow instruction. If Conditional_Execute_Predicates_End and the
condition is met, this is the last execution block of the shader program.

Conditional_Execute_PredicatesNoStall

| A7da 43 L 42 41...36 | 35...34 | 33.16 | 15...12 | i190
1101 Addressing|Condition RESERVED|Predicate Instructions Count Exec Address

vector type + serialize
(9 instructions)

Conditional_Execute_Predicates_No_Stall_End
| 47.44 4300 42 41...360 | 36... 34 | 33...16 15...12 L 11...9

1110 Addressing|Condition RESERVED|Predicate | Instructions Count Exec Address
vector | type + serialize

i (9 instructions)

Same as Conditionnal_Execute_Predicates but the SQ is not going tc wail for the predicate vector to be updated.
You can only set this in the compileri

nested if) because the optimization would still work.

you knowthat the predicate set is only a refinement of the current one (like a

Loop_Start

47. 44
'O111Addressing

43
RESERVED loop ID

15...13 12....0

RESERVED Jump address

Exhibit 2036 docR400_Sequencerdec 7311s Byes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257783

ATI Ex. 2109

IPR2023-00922

Page 73 of 326

ATI Ex. 2109
IPR2023-00922
Page 74 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201548 GEN-CXXXXX-REVA 23 of 51 ekenSette EMEA eectnentstenetninneetentntnetnninenene

Loop Start. “Compares. theloop ‘iteratorwith the end value. If loop condition not met jump to the address.Forward|
Jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

. Loop_End

47... 43 42 | 44... 36 35,34|33,2223...] 21 | 20... 16 15...13 12...0
44 24 | 21 | |

1000 Addressing|RES|RESERVED Predicate|RESERVED|Pred|loop ID|RESERVED start
IPOS Vector Pragicate break address

EDC break | |
| |_ ond |

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop. If predicate break != 0, then compares predicate vector n
(specified by predicate break-numberVector) to condition. If all bits csleared-then-break-theoopmeet condition then
break the loop.

The waythis is described does not prevent nested loops, and the inclusion of the loop id makethis easy to do.

Conditionnal_Call

47... 44 | 43 | 42 [44... 34 | 33.14 | 13 12...0
 7001 _ Addressing Condition Boolean address | RESERVED | ForceCall | Jump address

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack.If
force call is set the condition is ignored and the cail is made always.

Return
47... 44 | 43 42...0
 1010 | Addressing | RESERVED

Pops the topmost address from the stack and jumps to that address. !f nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_.sump

 47... 44 {4 | 44...34 |33 132 { _ 2..0 0004071 Addvessing | eonaition ’Boolean FW only | RESERVED ForceSump | Jump‘address
/ | address | |

If force jump is set the condition is ignored and the jump is made always. if FW only is set then only forward jumps
are allowed.

Allocate —

47..44,. 43.~—~«| 42.41 40... 3 2.0
 4100 _ Debug | BufferSelect =|CORESERVED size

Buffer Select takes a value of the following:
01 — position export (ordered export)
10 — parameter cache or pixel export (ordered export)
11 — pass thru (out of order exports).

Size field is only used to reserve space in the export buffer for pass thru exports. Valid values are 1 (1 line) thru 9 (9
lines). It should be determined by the compiler/assembler by taking max index used +1.

If debug is set this is a debug alloc (ignore if debug DB_ON registeris setto off).

6.3 Implementation

Exhibit 2038 dockdGo_Sequencerdec 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257784

ATI Ex. 2109

IPR2023-00922

Page 74 of 326

ATI Ex. 2109
IPR2023-00922
Page 75 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201546 24 of 51Petenbsem ee OMIA A

|The envisioned implementation hasa buffer that maintains the state of each thread.Athread lives ina given’
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the order that they
enter. Actually two buffers are maintained — one for Vertices and one for Pixels. The intended implementation
would allowfor:

16 entries for vertices
48 entries for pixels.

From each buffer, arbitration logic attempts to select 1 thread for the texture unit and 47-2(interleaved) thread for the
ALU unit. Once a thread is selected it is read out of the buffer, marked as invalid, and submitted to appropriate
execution unit. it is returned to the buffer (at the same place) with its status updated once all possible sequential
instructions have been executed. A switch from ALU to TEX or visa-versa or a Serialize_Execution modifier forces
the thread to be returned to the buffer.

Each entry in the buffer will be stored across two physical pieces of memory - mostbits will be stored in a 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed ‘state’. The bits kept in the multi-read ported device will be termed‘status’.

‘State Bits’ needed include:

Control FlowInstruction Pointer (13 bits),
Execution Count Marker4 bits),
Loop Iterators (4x9 bits),
Loop Counters (4x9bits),
Call return pointers (4x13 bits),
Predicate Bits (64 bits),
Export ID (1 bit),
Parameter Cache base Ptr(7 bits),
GPR BasePtr(8bits),

10. Context Ptr (3 bits).
11. LOD corrections (6x 16 bits)
12. Valid bits (64 bits)
13. RT (1 bit) Signifies that this thread is a Real Time thread. This bit must be sent to the Constant store state

machine when reading it.

OCONAGTEWN>
Absent from this list are ‘Index' pointers. These are costly enough that I'm presuming that they are instead stored in
the GPRs. Thefirst seven fields above (Control Flow Ptr, Execution Count, Loop Counts, cali return ptrs, Predicate
bits, PC base ptr and export ID) are updated every time the thread is returned to the buffer based on how much
progress has been mode on thread execution. GPR Base Ptr, Context Ptr and LOD corrections are unchanged
throughout execution of the thread.

‘Status Bits’ needed include:

e Valid Thread

e Texture/ALU engine needed
e Texture Reads are outstanding

Waiting on Texture Read to Complete
Allocation Wait (2 bits)
00 — No allocation needed

01 — Position export allocation needed (ordered export)
10 — Parameteror pixel export needed (ordered export)
11 —pass thru (out of order export)
Allocation Size (4 bits)
Position Allocated
Mem/ColorAllocated
First thread of a new context

e Event thread (NULL thread that needs to trickle down the pipe)

Exhibit 2036.docRaod_Sequencerdoc 731i9Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257785

ATI Ex. 2109

IPR2023-00922

Page 75 of 326

ATI Ex. 2109
IPR2023-00922
Page 76 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201546 GEN-CXXXXX-REVA | 25 of 51eyae £
>»Last(ibh t—~S
e Pulse SX (1 bit)

All of the above fields from all of the entries go into the arbitration circuitry. The arbitration circuitry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -- one for
pixels and one for vertices. A final selection is then done between the two. But the rest of this implementation
summary only considers the ‘first’ level selection which is similar for both pixels and vertices.

Texture arbitration requires no allocation or ordering so it is purely based on selecting the ‘oldest’ thread that requires
the Texture Engine.

ALU arbitration is a little more complicated. First, only threads where either of Texture_Reads_outstanding or
Waiting_on_Texture_Read_to_Complete are ‘0’ are considered. Thenif AllocationWait is active, these threads are
further fitered based on whether space is available. If the allocation is position allocation, then the thread is only
considered if all ‘older threads have already done their position allocation (position allocated bits set). If the
allocation is parameter or pixel allocation, then the thread is only consideredif it is the oldest thread. Also a thread is
not considered if it is a parameter or pixel or position allocation, has its First_threacd_of_a_new_context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the ‘oldest’ of the threads that pass through the abovefilters is selected. ifthe thread neededto allocate, then
at this time the allocation is done, based on Allocation_Size. If a thread has its “last” bit set, then it is also rermoved
from the buffer, never to return.

If | now redefine ‘clauses’ to mean ‘how many times the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine’, then the minimum numberof clauses needed is 2 -- one to perform
the allocation for exports (execution automatically halts after an ‘Alloc' instruction) (out doesn't performs the actual
allocation) and one for the actual ALU/export instructions. As the ‘Alloc' instruction could be part of a texture clause
(presumably the final instruction in such a clause), a thread could still execute in this minimal numberof 2 clauses,
evenif it involved texture fetching.

The Texture_ReadsOutstanding bit must be updated by the sequencer, based on keeping track of how many
Texture Clauses have been executed by a given thread that have not yet had there data returned. Any number
above 0 results in this bit being set. We could consider forcing synchronization such that two texture clauses for a
given thread may not be outstanding at any time (that would be my preference for simplicity reasons and becauseit
would require only very little change in the texture pipe interface). This would allow the sequencer to set the bit on
execution of the texture clause, and allow the texture unit to return a pointer to the thread buffer on completion that
clears thebit.

6.4 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE.4— PUSH - similar to SETE except that the result is ‘exported’ to the sequencer.
PRED_SETNE_PUSH# - similar to SETNE except that the result is ‘exported’ to the sequencer.
PRED_SETGT_PUSH #- similar to SETGT except that the result is ‘exported’ to the sequencer
PREDSETGTE_PUSH# - similar to SETGTE except that the result is ‘exported’ to the sequencer

For the scalar operations only we will also support the two following instructions:
PRED_SETEG.#-SETEQ

PRED_SETE4..#NE —SETE
PRED SETGT 4
PRED SET INV

RED SET POP
RED SET CLR

PRED SET RESTORE

Details aboul actual implementation of hese opcodes are in the shader pipe architectural spec.

Exhibit 2038 dockdGo_Sequencerdec 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257786

ATI Ex. 2109

IPR2023-00922

Page 76 of 326

ATI Ex. 2109
IPR2023-00922
Page 77 of 326

 PAGE

26 of 51
ORIGINATE DATE EDIT DATE R400 SequencerSpecification

24 September, 2001 4 September, 2071546eee _—t.. boven nent as Aaheee SEEA a face een tneeeee neeneennninennnneneeinn fave neeence tee saneenen ene a
The export is a single bit - 1 or QO that is sent using the same data path as the MOVAinstruction. The sequencerwill
maintain 4-1_sets of 64 bits predicate vectors (in fact 23 sets because weinterleave two programs but only 4-1will be
exposed) and useit to control the write masking. This predicate is netmaintained across clause boundaries. The-#
signis-usedtoepecifwhichpredicatesetyouwantiouseOlhru gd.

Then we have two conditional execute bits. Thefirst bit is a conditional execute “on” bit and the secondbit tells usif
we execute on 1 or 0. For example, the instruction:

PO.-PO. ADD_# RO,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Allernatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the PO or P1 without precharging the
sequencerwith a PRED instruction is undefined.

fiesue:do-wehave-to-haveaNOFbelweenPRED-and-the-firstinsiruction-that-uses-a-predicate-?}

6.5 HW Detection of PV.PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencerwill
insert NOPs.wherever-there-is-adependant-readAvrite.detect wich channels to read from the GPRs and which ones
to read from the PV/PS.

The sequencer wil also have to Insert NOPs between PREDSET and MOVA instructions and their uses.

6.6 Registerfile indexing
Because we can have loops in fetch clause, we need to be able to index into the registerfile in order to retrieve the
data created in a fetch clause loop and useit into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit? Bit 6
0 0 ‘absolute register
Q 1 ‘relative register’
4 0 ‘previous vector
4 1 ‘previous scalar’

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we addto it the loop_index and this becomes our newaddress that we give to the shaderpipe.

The sequenceris going to keep a loop index computed as such:

Index = Loop_iterator*Loop_step + Loop_start.

 We loop until loop_iterator = loop_count. Loop_step is a signed value [-128...127]. The computed index value is a 10
bit counter that Is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register wherethefirst error occurred
2. count of the numberof errors

Exhibit 2036 deckacd_Sequencerdes 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257787

ATI Ex. 2109

IPR2023-00922

Page 77of 326

ATI Ex. 2109
IPR2023-00922
Page 78 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201548 GEN-CXXAXX-REVA | 27 0f54‘ A |
The sequencerwill detect the following groups of errors:
- count overflow
- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
- jump errors

relative jump address > size of the control flow prograrn
- call stack

call with stackfull
return with stack empty

Ajurp-error-will_always-cause-the-progranto-break.Inthis-case,a-break-meansthat-a-clausewill-_halt-execution,but
allowing-furiher-clauses-to-be-executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The-program-will-only-break-if
theDBPROBBREAK -registeriseet

If indexing outside of the constant or the register range, causing an overflowerror, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Methed 2: Exporting the values in the GPRs
1) The sequencer will have a debug active, count register and an address register for this mode.

Under the normal mode execution follows the normal course.

Under the debug modeit is assumed that the program is always exporting n debug vectors and that all other exports
to the SX block (but for position,-celer-z,-ect) will been turned off (changed into NOPs) by the sequencer (evenif they |
occur before the address stated by the ADDR debug register).

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipeto kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETGT
MASK_SETGTE

8. Multipass vertex shaders (HOS)
Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

9 Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXELREGSIZEforpixels.

Exhibit 2038 dockdGo_Sequencerdec 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257788

ATI Ex. 2109

IPR2023-00922

Page 78 of 326

ATI Ex. 2109
IPR2023-00922
Page 79 of 326

ORIGINATE DATE EDIT DATE
 R400 SequencerSpecification

24 September, 2001 4 September, 201546

Above is an example of how the algorithm works. Vertices comein from top to bottom, pixels come in from bottom to
top. Vertices are in orange and pixels in green. The biueline is the tail of the vertices and the greenline is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRsstarts from the bottom ofthe picture at index O and goes up to the top at
index 127.

10. Fetch Arbitration

The fetch arbitration logic chooses one of the n potentially pending fetch clauses to be executed. The chaice is made
by looking at the Vs and Ps reservation stations and picking the first one ready to execute. Once chosen, the clause
state machine will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two fetches of the
same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
n potentially pending ALU clauses to be executed. The choice is made by looking at the Vs and Ps reservation
stations and picking the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for
the odd clocks. For example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and
Odd sets of 4 clocks):

EinstO OinstO Einst1 Oinstt Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0...

Exhibit 2036 deckacd_Sequencerdes 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257789

ATI Ex. 2109

IPR2023-00922

Page 79 of 326

ATI Ex. 2109
IPR2023-00922
Page 80 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE 24 September, 2001 4 September, 201546 GEN-CXXXXX-REVA 29 of 51ventnenntneetnnnie ve neeneennenbenee nee ttinnnteneeentennteeneniente enntnetnnntnennentee cenceNisEeReeoeEEAA eeeeeeeen
Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across

clause boundaries.

12. Handling Stalls
When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the outputfile. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer alsa prevents a thread from entering an exporting clause. The
sequencerwill set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs

The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, somebits
for LOD correction and coverage mask information in orderto fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BVV 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

1S. (J Format

The IJ information sent by the PA is of this format on a per quad basis:

We have a vectorof IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
modebit). All pixel’s parameters are always interpolated at full 20x24 mantissa precision.

PO =A+1(0)*(B~ A+ JF (0) *(C - A)

Pl=A+I()*(B-A)+UQ)*(C - A)

P2=A+I1(2)*(B- A)+J(2)*(C - A)

P3=A+1(3)*(B- A) + J(3)*(C -— A)

Multiplies (Full Precision): 8
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF P's IJ: Mantissa 20 Exp 4 for | + Sign
Mantissa 20 Exp 4 for J + Sign

Total numberof bits : 20*8 + 4*8 + 4*2 = 200.

All numbers are kept using the un-normalized floating point convention: if exponentis different than 0 the numberis
normalized if not, then the numberis un-normalized. The maximum range for the IJs (Full precision) is +/- 1024.

15.1 Interpolation of constantattributes
Because ofthe floating point imprecision, we need to take special provisionsif all the interpolated terms are the same
or if two of the terms are the same.

Exhibit 2038 dockdGo_Sequencerdec 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257790

ATI Ex. 2109

IPR2023-00922

Page 80 of 326

ATI Ex. 2109
IPR2023-00922
Page 81 of 326

PAGE

30 of 51
ORIGINATE DATE EDIT DATE R400 Sequencer Specification 24 September, 2001 4 September, 201546: oye

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGTforit to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0123456789 1011 12131415 || 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 | 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencerwill re-arrange them in this fashion:

012316 17 18 19 32 33 34 35 48 49 50 57 || 456 7 20 21 22 23 36 37 38 39 52 53 5455 || 891011 24 25 26 27
40 44 42 4356 57 58 59 |) 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. in the event a shader pipe is broken, the SQ is responsible to insert padeing to
account for the missing pipe. For example, if SP1 is broken, vertices 45 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will
not be sent by the VGT ito the 5 AND the SQ is responsible to “Jump” over these vertices in order for no valid
vertices to be sent to an invalid SP.

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 11 Figure—tiFigure-t4+. The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure 10Figure OFigure10.

Basis for 8-deep Latch Memory (fromm R300)

8x24-bit 11631 2 60.57813 wvperbit

Area of 96x8-deep Latch Memory 46524 2
Area of 24-bit Fix-to-float Converter 4712.2 per converter

Method 1 Block Quantity Area
F2F 3 1413
8x96 Latch 16 744384

Figure 10:Area Estimate for VGT te Shader Interface

Exhibit 2036 deckacd_Sequencerdes 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257791

ATI Ex. 2109

IPR2023-00922

Page 81 of 326

ATI Ex. 2109
IPR2023-00922
Page 82 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 GEN-CXXXXX-REVA | 31 of 51
VGT BLOCK

CIN PA)

SHADER
SEQUENCER

VECTOR ENGINE

Figure 11:VGT to Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

| WEMORY NUMBER
4 bits ADDRESS |7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT(a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 3
parameters per vertex (VS_EXPORT_COUNT = 8). Thefirst position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17") is going to have the address 00000001000,the 18" 00010001000, the 19" 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is thatif the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*VS_EXPORT_COUNTto
Current_Location and reset the memory count to 0 before the next vector begins).

Exhibit 2038 dockdGo_Sequencerdec 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257792

ATI Ex. 2109

IPR2023-00922

Page 82 of 326

ATI Ex. 2109
IPR2023-00922
Page 83 of 326

PAGE

32 of 51
ORIGINATE DATE EDIT DATE R400 Sequencer Specification

 * 24 September, 2001 4 September, 20154671 Export restrictions

17.1.1 Pixel exports:

Pixels can export 1,2,3 or 4 color buffers to the2 SM #2). The exports wil be done in order. The-PRED-OPTIMIZE~The exports will always
be ordered to the SX.

17.1.2 Vertex exports:
Position or parameter caches can be exported in any order in the shader program. It is always better to export
posistion as soon as possible. Position has to be exported in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be conein any order with texture instructions interleaved.
The-PRED-OFTIMIZE function-hastobe-turned-ofif the-exports-are-done-using interleaved-predicated-insiructians-to
the-Parameter-cache-(see-Arbitration-restrictionsfor-details). The exports will always be allocated in order to the SX.

17.1.3 Pass thru exports:
Pass thru exports have to be done in groups of the form:

ALU (DATA) ALU (DATA)...
They cannot have texture instructions interleaved in the export block. These exports are not guaranteed to be
ordered.

export is used to synchronize the chip when doing a transition from pass thru shader to regular shader and viceversa.

17.2 Arbitration restrictions

Here are the Sequencerarbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texture pending bit is set
2) Cannot allocate position if any older thread has not allocated position

| 3) Cannot have more than 2 opened allocs of type : Memo osition and Color, etS4)lf last thread is marked as not valid AND marked as last and we are about to execute the second to oldest
thread also marked last then:

a. Both threads must be from the same context (cannot allowafirst thread)
b. Must turn off the predicate optimization for the second thread

5)6)Cannot execute last if texture pending (evenif not serial)

Also, when doing a pass thru export, Position MUST be exported AFTER ali pass thru exports. This position _ . 4 { Formatted

: Numbering

4)5)Cannot execute a texture clause if texture reads are pending «5-5 Formatted: Bullets and Numbering

7). Cannot allocate if not last or second to last for color exports,

18. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

18.1 Vertex Shading
0:15 -16 parameter cache
16:31 - Empty (Reserved?)
32 - Export Address
33:37 -5 vertex exports to the frame buffer and index
38:47 - Empty
48:52 -5 debug export (interpret as normal memory export)

Exhibit 2036 deckacd_Sequencerdes 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257793

ATI Ex. 2109

IPR2023-00922

Page 83 of 326

ATI Ex. 2109
IPR2023-00922
Page 84 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE 24 September, 2001 4 September, 201546 GEN-CXXXXK-REVA | 33 0f 51ec —_ conchened ae ewe z i
60 - export addressing mode
61 - Empty
62 - position
63 - sprite size export that goes with position export

(X= point size, Y= edge flag is bit 0, Z= VixKill is bitwise OR of bits 30:0. Any bit other than
sign means VtxKill.)

18.2 Pixel Shading
QO - Color for buffer 0 (primary)
1 - Color for buffer 1
2 - Color for buffer 2
3 - Color for buffer 3
4:15 -Empty
16 - Buffer 0 Color/Fog (primary)
17 - Buffer 1 Color/Fog
18 - Buffer 2 Color/Fog
19 - Buffer 3 Color/Fog
20:31 - Empty
32 - Export Address
33:37 -5 exports for multipass pixel shaders.
38:47 - Empty
48:52 - 5 debug exports (interpret as normal memory export)
60 - export addressing mode
61 -Z for primary buffer (Z exported to ‘alpha’ component)
62:63 - Empty

19. Special Interpolation modes

19.1 Real time commands

We are unable fo use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
otheris rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a reallime-specific mode where we need to address 32 vectors of
parameters instead of 16. This modeis triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

19.2 Sprites/ XY screen coordinates/ FB information
XY screen coordinates may be needed in the shader program. This functionality is controlled by the param_gen_!0
register (in SQ) in conjunction with the SND_XY register (in SC) and the param_gen_pos. Alsoit is possible to send
the faceness information (for OGL front/back special operations) to the shader using the same control register. Here
is a list of all the modes and how theyinteract together:

The Data is going to be written in the register specified by the param_gen_posregister.

Param_Gen_!0 disable, snd_xy disable = No modification
Param_Gen_l0 disable, snd_xy enable = No modification
Param_Gen_|0 enable, snd_xy disable = Sign(faceness)garbage, (Sign Point)garbage, Sign(Line)s, t
Param_Gen_lO enable, snd_xy enable = Sign(facenessjscreenX(Sign Point)screeny ,Sign(Line}s, t

Exhibit 2038 dockdGo_Sequencerdec 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257794

ATI Ex. 2109

IPR2023-00922

Page 84 of 326

ATI Ex. 2109
IPR2023-00922
Page 85 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 September, 2071546 34 of 51fn eceentnentel ieeeeeecenceeneeeeeect centLantaeneOWIAd eeenen
In other words,

The generated vector is (in RED, Y in GREEN, S in BLUE and T in ALPHA):
X7,5,7
These values are always supposed to be positive and any shader use of them should use the ABS function
(as their sign bits will now be used forflags).
SignX = BackFacing
Sign = Point Primitive
SignS = Line Primitive
SignT = currently unused as a flag.

lf [Point & !Line, then it is a Poly.

| would assumethat one implementation which allows for generic texture lookup (using 3D maps) for poly
stipple and AA for the driver would be
if(¥<O){

R = 0.0 (Point)
lelseif S <0) {

R= 1.0 (Line)
yelse {

R = 2.0 (Poly)
}

19.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1° pass data to memory and then use the countto retrieve the data on the 2" pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX_PIX/VTX register. The sequencer
is going to keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is
written to the GPRs the counter is incremented. Every time a RST_PIX_COUNT or RST_VTX_COUNT events are
received, the corresponding counter is reset. While there is only one court broadcast to the GPRs, the LSB are
hardwired to specific values making the index different for all elements in the vector. Since the count must be different
for all pixels/vertices and the 4 LSBs (16 positions) are hardwired to the corresponding shader unit the SQ has iwo
choices:

1) Maintain a 19 bit counter that counts the vectors of 64. In this case the phase must be appended to the count
before the count is broadcast to the SPs:

Counter (19 bits) | Phase (2 bits) Hardwired (4 bits)

2) Maintain a 21 bits counter that counts sub-vectors of 16. In this case only the counteris sent to the Sps:

Counter (21 bits) | Hardwired (4 bits) |

19.3.1 Vertex shaders

In the case of vertex shaders, if GEN_INDEX_VTXis set, the data will be put into the x field of the third register (it
means that the compiler must allocate 3 GPRsin all multipass vertex shader modes).

19.3.2 Pixel shaders

In the case of pixel shaders, if GEN_INDEX_PIX is set, the data will be put in the x field of the param_gen_post+1
register.

Exhibit 2036 deckacd_Sequencerdes 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257795

ATI Ex. 2109

IPR2023-00922

Page 85 of 326

ATI Ex. 2109
IPR2023-00922
Page 86 of 326

DOCUMENT-REV. NUM. PAGEORIGINATE DATE EDIT DATE

24 September, 2001 4 September, 201546 | 35 of 51 :ETeranBeseye CREMEA _—___-

sTGo Ite
AUTO | INTERPOLATORSCOUNT

STG1 | |

ar ———————
AUTO COUNT ooo

The Auto Count Value is
broadcastto all GPRs.It is

ce loaded into a register wich has

| its LSBs hardwired to the

GPR number(0 thru 63). Then
| if GEN_INDEXis high, the

mux selects the auto-count
value and it is loaded inte the

GPRsto be either used to
retrieve data using the TP or

GPRO sent to the SX forthe RB touse it to write the data to
memory

Figure 12: GPR input mux Control

20. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

20.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencerwill keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vectorof pixels with the SC_SQ_new_vectorbit asserted, the sequencerwill first checkif
the count is greater than 0 before accepting the transmission(it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group ofpixels to the interpolators. Every time the state changes, the newstate counter is initialized to 0.

21. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the [Js (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix—-float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 19.2 for details on how to control the interpolation in this mode.

21.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded oneline at a time by the VGT
block (96 bits). They are loadedin floating point format and can be transferred in 4 or 8 clocks to the GPRs.

22. Registers
Please see the auto-generated web pagesfor register definitions.

Exhibit 2038 dockdGo_Sequencerdec 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257796

ATI Ex. 2109

IPR2023-00922

Page 86of 326

ATI Ex. 2109
IPR2023-00922
Page 87 of 326

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE
36 of 51 24 September, 2001 4 September, 201546: oye

23.1 External Interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—SPxit means that SQ is going to broadcast the same information to all SP instances.

23.2 SC to SP Interfaces

23.21 SC_SP#
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the I,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data which is transferred per quad is

Ref Pix | => $4.20 Floating Point | value *4
Ref Pix J => $4.20 Floating Point J value *4

This equates to a total of 200 bits which transferred over 2 clocks
and therefor needs an interface 100 bits wide

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a lJ_BUF_INUSE_COUNTin the SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNT count. Prior ta
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2,if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a bufferfree.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
itis planned for the SP to hold 2 double buffers of |,J data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,SQ and add a
EndOfvector signal on all interfaces to quit early. We opted for the simple modefirst with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performancehit.)

Name | Bits|Description
SC_SP#_data 100|IJ information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bit)

Type 0 or 1, First clock I, second clk J
Field ULC URC LLC LRC
Bits [63:39] [38:26] PS13] [12:0]
Format SE4M20 SE4M20 SE4M20 SE4M20

 Type 2
Fieid Face xX Y

| Bits [24] (23:12) [17:0]Format Bit Unsigned Unsigned

SC_SP#_valid iz Valid
SC_SP#_last_quad_cata 4 This bit will be set on the last transfer of data per quad.
SC_SP#_type 2 0 -> Indicates centroids

1 -> Indicates centers

i 2 -> Indicates X,Y Data and faceness on data bus

Exhibit 2036 deckacd_Sequencerdes 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

The SC shall look at state data to determine how many types to send for the |

AMD1044_0257797

ATI Ex. 2109

IPR2023-00922

Page 87 of 326

ATI Ex. 2109
IPR2023-00922
Page 88 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201546 GEN-CXXXXX-REVA | 37 of 51
interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP block will have neither becausethe instantiation will insert the prefix.

23.2.2 SC_SQ
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 108 bits) could be folded in half to approx 54
bits.

Name | Bits|Description le
SC_S80data 46 Contro! Data sent to the SQ

1 clk transfers
Event ~ valid data consist of event_id and

staie_id. Instruct SQ to post an
event vector to send state id and
event_id through requestfifo
and onto the reservation stations
making sure state id and/or event_id
gets back to the CP. Events only
follow end of packets so no pixel
vectors will be in progress.

Empty Quad Mask — Transfer Control data
consisting of pc_dealloc
or new_vector. Receiptof this is to
transfer pc_dealloc or new_vector
without any valid quad data. New
vector will always be posted to
requestfifo and pc_deailoc will be
attached to any pixel vector
outstanding or posted in request fifo
if no valid quad outstanding.

2 clk transfers
Quad Data Valid - Sending quad data with or

without new_vector or pc_dealloc.
New vector will be posted to request
fifo with or without a pixel vector and
pc_dealloc will be posted with a pixel
vector unless noneis in progress. In
this case the pc_dealloc will be
posted in the request queue.
Filler quadswill be transferred with
The Quad mask set but the pixel
corresponding pixel mask set tozero.

SC_S8Q_valid i14 SC sending valid data, 2™ clk could beall zeroes

8C_SQ_data - first clock and second clock transfers are shown in the table below.

Name BiiField Bits | Description

Clock Transfer

SC_SQ_event 1 This transfer is a 1 clock event vector Force quad_mask =
new_vector=pc_dealloc=0

L4 | This field identifies the event 0 => denotes an End Of State Event 4

8C_SQ_event_id |.)

Exhibit 2038 dockdGo_Sequencerdec 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257798

ATI Ex. 2109

IPR2023-00922

Page 88 of 326

ATI Ex. 2109
IPR2023-00922
Page 89 of 326

 ORIGINATE DATE

24 September, 2001

EDIT DATE PAGE

38 of 51
R400 SequencerSpecification

 4 September, 201546

=> TBD

8C_SQstateid (8:6] 3 State/constant pointer (6*3+3)
SC_SQ_pc_dealloc [11:9] 3 Deallocation token for the Parameter Cache
SC_SQ_new_vector 12 1 The SQ must wait for Vertex shader done count > 0 and after

dispatching the Pixel Vector the SQ will decrement the count.
SC_SQ_quad_mask [16:43] (4 | Quad Writemask left toright SPO => SP3
SC_SQ_end_of_prim 17 it End Ofthe primitive
5C_SQ_pix_mask [83:18]|16 Valid bits for ali pixels SPO=>SP3 (UL,UR,LL,LR)

SC _SQprovok_vix [35:34]|2 Provoking vertex for flat shading ee
8C_3Q lod_correct_0 [44:36]|9 LOD correction for quad 0 (SPO) @ bits per quad) Be
SC_SQ_lod_correct_1 [53:45]|9 | LOD correction for quad 1 (SP1) (9 bits per quad) oe|
2nd Clock Transfer

8C_SQ_lod_correct_2 _ | [8:0] 9 J LOD correction for quad 2 (SP2) (9 bits per quad) :
8C_3Q_lod_correct_3 | [17:9] 9 | LOD correction for quad 3 (SP3) (9 bits per quad) os
SC_SQ_pce_ptrO [28:18]|11 | Parameter Cache pointer for vertex 0
SC_SQ_pe_ptri (99:29]|11 Parameter Cache pointer for vertex 1
SC_S3Q_pe_ptr2 ot Parameter Cache pointer for vertex 2
SC_SQ_prim_type 3 Stippled line and Real time command need to load tex cords from

alternate buffer
000: Sprite (point)
001: Line
010: Tri_rect
100: Realtime Sprite (point)
101: Realtime Line

110: Realtime Tri_rect __4

Name Bits|Description

|SQ_SC_free_buff 14 Pipelined bit that instructs SC to decrement count of buffers in use. |
SQ_SC_dec_entr_ent 1 Pipelined bit that instructs SC to decrement count of new vector and/or event

seni to prevent SC from overflowing SQ interpolator/Reservation requestfifo.

The scan converter will submit a partial vector whenever:
1.) He gets a primitive marked with an end of packet signal.
2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been

marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal madeit through and thus the hang.)

Exhibit 2036.docRaod_Sequencerdoc 731i9Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257799

ATI Ex. 2109

IPR2023-00922

Page 89 of 326

ATI Ex. 2109
IPR2023-00922
Page 90 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4 September, 201543 GEN-CXXAXKX-REVA 39 of StLl ... — 7 _ rk, Je. a po oecnnenennnnennneeenennmenannnnnnnnnnh nineteen

23.2.3 SQ to SX(SP): Interpolator bus
Name | Direction Bits | Description
8Q_SPx_interp_flat_vix | SQ-»SPx 2 | Provoking vertex for flat shading
SQ_SPx_interp_flat_gouraud | SQ—SPx 1 | Flat or gouraud shading
SQ_SPx_interp_cyl_wrap SQ—SPx 4 | Wich channel needs to be cylindrical wrapped
SQ_SPx_interp_param_gen | SQ-»SPx I4 | Generate Parameter
SQ_SPx_interp_prim_type SQ—SPx 2 | Bits [1:0] of primitive type sent by SC
SQ_SPx_interp_buff_swap | SQ»SPx i | Swapp [J buffers
SQ_SPx_interp_lJ_line SQ—SPx 2 | |J line number
SQ_SPx_interp_mode | $Q->SPx i4 | Center/Centroid sampling
$Q_SXx_pe_ptrO SQ—SXx (11 | Parameter Cache Pointer

SQ_SXx_pc_ptri | SQ-»SXx 1 Parameter Cache Pointer
SQ_SXx_pe_ptr2 | SQ-»SXx , 11 | Parameter Cache Pointer
5Q_SXx_ rt sel S$Q58XX i _ Selects between RT and Normal data (Bit 2 of prim type)
$Q_SX0_pe_wr_en | SQ-»SX0 18 | Write enable for the PC memories
$Q_SXi1_pe_wr_en SQ—SxX!1 8 _Write enable for the PC memories
SQ_SXx_pe_wr_addr |SQ->SXx 17 | Write address for the PCs
SQ_SXx_pe_channel_mask SQ—>SXx 4 | Channel mask
SQ_SXx_pe_ptrvalid SQ>8xXx [4 | Readpointers are valid.
SQ_SPx_interp_ valid | $Q-2SPx it Interpolation control valid

23.2.4 SQ to SP: Staging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of the shaderpipes.
Name Direction Bits | Description
5Q_SPx_vsr_data |S$Q-9SPx [96 | Pointers of indexes or HOS surface information
5Q_SPx_vsr_double SOQ—SPx 1 __O: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SP0O_vsrvalid —'-§ s|SQSPO)———f At Dataisvalid

SQUSPi_vst_valid|SQ>SP1 [1|Datais valid
SQSP2_ vst,valid SQ—>SP2 [41 Dataisvalid
$Q_SP3_ vsr__vali $Q—SP2_ [1|Bata is valid
SQ_SPx_vsr_read _$Q->SPx ua Increment the read pointers

23.2.5 VGT to SQ: Vertex interface

23.2.5.1 Interface Signal Table

The area difference between the two methodsis not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencerin full, 32-bit floating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide. In the case where an eventis sent the 5LSBs of VGT_SQ_vsisr_data contain the eventID.

Name |Bits Description
VGT_3Q vsisr_data 96 Pointers of indexes or HOS surface information
VGT_SQ_event 1 VGTis sending an event
VGT_SQ_vsisr_continued 1 Q: Normal 96 bits per vert 1: double 192 bits per vert
VGT_SQ_end_of_vix_vect i Indicates the last VSISR data set for the current process vector (for double vector

data, “end_of_vector"is set on the first vector)
VGT_SQ_indx_valid 1 Vsisr data is valid
VGT_SQ_state 3 Render State (6°S+3 for constants). This signal is guaranteed to be correct when

'VGT_SQ_vgt_end_of_vector’is high.
VGT_SQ_send 1 Data on the VGT_SQis valid receive (see write-up for standard R400 SEND/RTR

a interface handshaking) | | ;
SQ_VGT_rir 1 Ready to receive (see write-up for standard R400 SEND/RTR interface

handshaking)

23.2.5.2 Interface Diagrams

Exhibit 2038 dockdGo_Sequencerdec 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257800

ATI Ex. 2109

IPR2023-00922

Page 90 of 326

ATI Ex. 2109
IPR2023-00922
Page 91 of 326

xxx@BBqIBAODUOBIONJUGHUAdODsoUudsajoy‘JENUSPYUOD[LY@vexshice—sopyesussbegpgysp

 4a4bavaOS

ALCHa

HeONANO’S

WECVHSLOA

DY,{etifeoeeesannamenemenmenennnenrentDadTessqeyeOa6svaosu¢THsgayi
walangais%XLOL

osu

bYOLOEAaCCHaiqojseayopus35s6swaZYCLOZATDONE

SVSYleaanneeamnanmeornannernnenenecrmnarooenyaTctopAsteayhaOgwaZTIENOIUSTSA
Ppaenodversa|O84

|oauZWLaSISA

ATI Ex. 2109

IPR2023-00922

Page 91 of 326

AMD1044_0257801

 Lg$0OFSPELOSSGURIGSSF|LogJequieidespz49VvduoqeoyloadsJeouenbasCOPYavdLidaFLVSLVYNIORNO

 TIWIAE.LVNYaddoOFAILOdLOdd

ATI Ex. 2109
IPR2023-00922
Page 92 of 326

xxx@BHCJ9AODUOSOONJYHUAdODsousIEJoY‘feNUSPYUOD[LY@xeor'ssti "SORLSILONOSVaIe]WieweIgOSTpaleiedSing
NOISSINSNYYLsdOLsYaaNas

NOTSSINSNVHLSLYWLS-aa
_

a

 “UU

1iii

GHATSHORS

sopuessenbeg"poryusopBOETAGNOISSINSNVGLSdOLS4HATSORN

ayOLALGWaO2I4INDO81gLAOWEVdOf1abpWidbpONGS€Wid€aNasZWidZONGSSILOAZulyosIulyos0ulyOswLyOs

 ony
bG10LPdovd

VASEXXXXXO-NADWAN“ASSLNSA

Mood

SGlOcJequieiass7SLVdLid3

Loog‘JequisidespzSLVdJLYNIOINO

 TIWIAE.LVNYaddoOFAILOdLOdd

AMD1044_0257802

ATI Ex. 2109

IPR2023-00922

Page 92 of 326

ATI Ex. 2109
IPR2023-00922
Page 93 of 326

ORIGINATE DATE EDIT DATE PAGE

42 of 51
R400 SequencerSpecification 24 September, 2001 4 September, 201546£

23.2.6 SQ to SX: Control bus

Name | Direction iBits | Description ;
SQ_SXx_exp_type SQ—5Xx [2 _ QO: Pixel without z (1 to 4 buffers)

_ 01: Pixel with z (1 to 4 buffers)
| 10: Position (1 or 2 results)

| I _1t: Pass thru (4.8 or 12 results aligned) _
SQ_SXx_exp_number SQ>5Xx 2 |Number of locations needed in the export buffer

| (encoding depends on the type see bellow).
$Q_SXx_exp_alu_id | S$Q-»SXx 4 ALU ID
SQ_SxXx_exp_valic |SQ>8Xx i | Valid bit
SQ_SXx_exp_state SQ—>SXx 3 | State Context

3Q_SxXx_free_done SQ—S8Xx 1 | Pulse that indicates that the previous export is finished
| from the point of view of the SP. This does not
i necessarily mean that the data has been
transferred to RB or PA, or that the space in export

| buffer for that particular vector thread has been
| freed up.

SQ_S8Xx_free_alu_id | SQ>SXx i -ALU ID

Depending on the type the numberof export location changes:
* Type 00: Pixels without Z

o 00= 1 buffer
o 01 = 2 buffers
o 10=3 buffers
o 11=4 buffer

e Type 01: Pixels with Z
o 00= 2 Buffers (color + Z)
o O01 3 buffers (2 color + Z)
o 10=4 buffers (3 color + Z)
o 115 buffers (4 color + Z)

e Type 10: Position export
o Q0= 1 position
o 01 2 positions
o 1X = Undefined

e Type 11: Pass Thru
00 = 4 buffers
01 = 8 buffers
10 = 12 buffers

o 11 Undefined

O

Oo0

Below the thick black line is the end of transfer packet that tells the SX that a given export is finished. The report
packet will always arrive either before or at the same time than the next export to the same ALU id.

23.2.7 SX to SQ: Output file contro!

Name | Direction | Bits | Description ;
8Xx_SQ_exp_count_rdy SXx-5Q | 1 | Raised by SXO to indicate that the following twofields

| reflect the result of the most recent export
SxAx_SQ_exp_pos_avail SXx8Q, 2 | Specifies whether there is room for another position.

| 00: 0 buffers ready
_O1: 1 buffer ready
| 10: 2 or more buffers ready
 L _ j ;

8Xx_SQ_exp_buf_avail SXx-5Q 7 | Specifies the space available in the output buffers.
| ' | O: buffers are full
| | 1. 2K-bits available (32-bits for each of the 64

Exhibit 2036 deckacd_Sequencerdes 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257803

ATI Ex. 2109

IPR2023-00922

Page 93 of 326

ATI Ex. 2109
IPR2023-00922
Page 94 of 326

 DOCUMENT-REV. NUM.

GEN-CXXAXX-REVA

PAGE

43 of 51

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201516

_ pixels in a clause)

 _ 64: 128K-bits available (16 128-bit entries for each of

| 64 pixels)
/| 65-127: RESERVED

23.2.8 SQ to TP: Control bus

Once every clock, the fetch unit sends to the sequencer on which RS line it is now working and if the data in the
GPRsis ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequenceralso provides the instruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

Name Direction Bits Description

TPx_SQ_data_rdy | TPx- SQ [1 | Data ready
TPx_SQ_rs_line_num “TPx— SQ ‘6 | Line number in the Reservationstation

TPx_SQ_type _TPx— SQ 4 _Type of data sent (O:PIXEL, 1:VERTEX)
SQ_TPx_send SQ-TPx 4 _ Sending valid data
SQ_TPx_const | SQ—TPx 14 | Fetch state sent over 4 clocks (192 bits total)

8Q_TPx_instr SQ>TPx [2 |Fetchinstruction sentover4clocks
so_TPx._endof group | SQ-—-TPx 14 |Last instruction of the group
SQ_TPx_Type SQ—-TPX 1 |i Type of data sent (O:PIXEL, 1 VERTEX)
SQ_TPx_gpr_phase | SQ—TPx 2 _ Write phase signal

_SQ_TPO_lod_correct__ __ | SQ>TPO & LOD correct 3 bitsper comp2componentsperquad_
S$Q_TPO_pix_mask TR 4 ixel mask1bit per pixel _
SQ_TP1_lod_correct _SQ-TPI 6 _LOD correct 3 bits per comp 2 components per quad
$Q_TP1_pix_mask SQ—-TP1 4 | Pixel mask 1 bit per pixel
$Q_TP2_lod_correct | 8Q-TP2 6 | LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pix_mask SQ—TP2 4 | Pixel mask 1 bit per pixel
SQ_TP3_lod_correct | $Q-TPS .6 | LOD correct 3 bits per comp 2 components per quad
80Q_TP3_pix_mask 80->TP3 4 | Pixel mask 1 bit per pixel
8Q_TPx_rs_line_num | SQ—TPx 16 _ Line number in the Reservationstation
S$Q_TPx_write_gpr_index SQ->TPX 7 Index into Register file for write of returned Fetch Data
SQ_TPx_ctx_id SQ->TPXx L3 | The state context ID (needed for multisample resolves)

23.2.9 TP to SQ: Texture stall

The TP sends this signal to the SQ and the SPs whenits input buffer is full.

TP_SP_fetch_Steli

ce
ee=],

Exhibit 2038 dockdGo_Sequencerdec 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257804

ATI Ex. 2109

IPR2023-00922

Page 94 of 326

ATI Ex. 2109
IPR2023-00922
Page 95 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201546 44 0f 51

Name | Direction | Bits |Description
TP_SQ_fetch_stail | TP SQ 4 _Do not send more texture requestif asserted

23.210 SQ to SP: Texture stall

 Name | [Direction Bits

SQ_SPx_fetch_stall | SQ-»SPx i

| Do not send more texture requestif asserted

|Description _ | :

23.2.11 SQ to SP: GPR and aute counter

Name Direction Bits|Description
SQ_SPx_gpr_wr_addr | SQ-»SPx 7 Write address
SQ_SPx_gpr_rd_addr SQ—SPx 7 Read address
80_SPx_gprrd_en | 8Q->SPx 4 Read Enable

SQSPO_gprowren|SQ>SPxLa |WriteEnable forthe GPRsof SPOJ
SQ_SP1_gpr_wr_en $Q-»SPx 4 Write Enable for the GPRs of SP1
$Q_SP2 gpr_wr_en _SQ>SPx 4 _Write Enable for the GPRs of SP2
SQ_SP3_gpr_wr_en SQ—SPx 4 Write Enable for the GPRs of SP3.
SQ_SPx_gpr_phase SQ—SPx 2 The phase mux (arbitrates between inputs, ALU SRC

; _ oe _| reads and writes)
5SQ_SPx_channel_mask _SQ—SPx 4 _ The channel mask
SQ_SPx_gpr_input_se! SQ—SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VTXO,
| _VTX1, autogen counter.

SQ_SPx_auto_count SQ >SPx 21 Auto count generated by the SQ, commonfor all shader
I pipes

Exhibit 2036 deckacd_Sequencerdes 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257805

ATI Ex. 2109

IPR2023-00922

Page 95 of 326

ATI Ex. 2109
IPR2023-00922
Page 96 of 326

ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 201546

DOCUMENT-REV. NUM. PAGE

GEN-CXXXXX-REVA 45 of 51

~ i — pateseay nn

23.212 SQ to SPx: Instructions

Name Direction Bits|Description
SQ_SPx_instr_start |$Q-2SPx 1 | Instruction start
$Q_SP_instr SQ—-SPx 24 Transferred over 4 cycles

0: SRC A Negate Argument Modifier 0:0
SRC A Abs Argument Modifier 1:1
SRC A Swizzle 9:2
Vactor Dst 15:10
Per channel Select 23:16

00: GPR
01: PV
10: PS

11: Constant (if 11 has to be 11 for all
channels)

1: SRC B Negate Argument Modifier 0:0
SRC B Abs Argument Modifier=1:1
SRC B Swizzle 9:2
Scalar Dst 15:10
Per channel Select 23:16

00: GPR
01: PV
10:PS

11: Constant (if 11 has to be 11 for all
channels)

2: SRC C Negate Argument Modifier 0:0
SRC C Abs Argument Modifier 1:1
SRC C Swizzle 9:2
Unused 15:10
Per channel Select 23:16

00: GPR
01: PV
10:PS

11: Constant (if 11 has to be 11 for all
channels)

3: Vector Opcode 4:0
Scalar Opcode 10:5
Vector Clamp 44:14
Scalar Clamp 12:12
Vector Write Mask 16:13

| | Sealar Write Mask 20:17|__Unused 23:21
SQ_SP0_pred_override SQ—SP0 4 Q: Use per channel RGBAfield (enables the per channel

I logic, if not set only pay attention to the 11 seting).
| | 1: Use GPR

SQ_SP1_pred_override SQ-SP1 4 0: Use per channel RGBAfield (enables the per channel
logic, if not set only pay attention to the 11 seting).
1: Use GPR

SQ_SP2_pred_override SQ—SP2 4 0: Use per channel RGBAfield (enables the per channel
logic, if not set only pay attention to the 11 seting).

fo | i 1: Use GPR_ ; ;
SQ_SP3_pred_override SQ—SP3 4 0: Use per channel RGBAfield (enabies the per channel

logic, if not set only pay attention to the 11 seting).
1: Use GPR

SQ_SPx_exp_id | $Q-.5Px i _GPR ID

Exhibit 2038 cocR400_Sequencer.des 73119 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~

AMD1044_0257806

ATI Ex. 2109

IPR2023-00922

Page 96of 326

ATI Ex. 2109
IPR2023-00922
Page 97 of 326

ORIGINATE DATE

24 September, 2001 EDIT DATE

4 September, 207576

PAGE

46 of 51
R400 SequencerSpecification

 SQ_SPx_exporting SQ—SPx 1 QO: Net Exporting
|_ 1: Exporting

SQ_SPx_stall | SQ >SPx [1 | Stall signal

23.2.13 SQ to SX: write mask interface (must be aligned with the SP data)
Name

Foe
| Direction Bits | Description

$0Q_S8xX0_write_mask SQ—SP0 8 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and ail color
buffers). 4x4 because 16 pixels are computed per
clock. This is for the data coming of SPO and SP2.

SQ_SX1_ write_mask SQ—SP1 8 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock. This is for the data coming of SP1 and SP3.

23.2.14 SP to SQ: Constant address load/ Predicate Set/Kill set

Name | Direction | Bits | Description
SPO_SQ_const_addr SPO—-SQ 36 | Constant address load / predicate vector load bits only)/

_Kill vector load (4 bits only) to the sequencer |
SP0_SQ_valid | SPO—SQ i 4 _Data valid
SP1_SQ_const_addr SP1—SQ 36 | Constant address load / predicate vector load (4 bits only)/

_ Kill vector load (4 bits only) to the sequencer J
SP1_SQ_valid | SP1-SQ v4 | Data valid
SP2_SQ_const_addr | §P280 136 | Constant address load / predicate vectorload (4 bits only)/

; | . | _Kill vector load (4 bits only) to the sequencer
SP2_SQ_valid SP2—S0 1 _ Data valid
SP3_SQ_const_addr | SP3—SQ | 36 — Constant addressload / predicate vectorload (4 bits anly)/

_ i | ____ Kill vector load (bits only) to the sequencer
SP3_SQ_valid | SP3-SO 1 _ Data valid
SPO_SQ_data_type SP3SQ 2 | Data Type| 0: Constant Laad

 | 4: Predicate Set

| 2: Kill vector load

Becauseof the sharing of the bus none of the MOVA, PREDSETor KILL instructions may be coissued.

23.2.15 SQ to SPx: constant broadcast
Name
SQ_SPx_const | SQ-3SPx

Direction
_| Bits|Description128 | Constant broadcast

23.216 SQ to CP: RBBM bus

 Name “Direction Bits | Description
SQ_RBB ors | SQ-9CP (1 | Read Strobe
SQ_RBB_rd SQ—cp 32. | Read Data

|SQ_RBBM_onrtrir SQ—CP (1 Optional|:
8Q_RBBM_rr | 8Q--CP i | Real-Time (Optional 1

23.2.17 CP te SQ: RBBM bus

 Name | Direction | Bits | Description

rbbm_we CF—5Q 1 | Write Enable
rbbm_a | CP--5Q [15 | Address -- Upper Extent is TBD (16:2)
rbbm_wd CP—=S8Q 32 | Data
rbbm_be | CP-»5Q [4 | Byte Enables
rbbm_re CP—SQ 1 | Read Enable
rbb_rsO | CP>SG 14 | Read Return Strobe 0

Exhibit 2036 dcck400_Sequercecdes 73119 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~

AMD1044_0257807

ATI Ex. 2109

IPR2023-00922

Page 97 of 326

ATI Ex. 2109
IPR2023-00922
Page 98 of 326

ORIGINATE DATE PAGE

24 September, 2001

EDN

4 September, 201546

T DATE DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

47 of 51

rbb_rsi CP.2SQ 14 | Read Return Strobe 1
robb_rdO CP=SQ 32. | Read DataO
rob_rd4 —[eRSQ[32 | Read Data 0 J
RBBM_SQ_ soft_reset | CP.»SQ id _Soft Reset

23.2.18 SQ to CP: State report

 Name Direction Bits | Description
SQ_CP_vs_event |S$Q—CP [4 | Vertex Shader Event
$Q_CP_vs_eventid SQ—CP 5 i Vertex Shader Event ID
SQ_CP_ps_event SQ-CPdtPixelShaderEventJ

5Q_CP_ps_eventid 5Q—CP 8 | Pixel Shader Event iD

23.3 Example of control flow program execution
We now provide some examples of execution to better illustrate the new design.

Given the program:

ud
ul

ex 0
ex 1
u3 Serial
u4

ex 2
u5
u6Serial

ex 3
u7
loc Position 1 buffer
u8 Export

PP
4

@4 i
loc Parameter 3 buffers
uS Expori 0oOpd on
u 10 Serial Export 2
u 11 Export 1 End

 PRAbPPAPEPAPSADD
Would be converted into the following CF instructions:

O Alu O Tex 0 Tex 1 Alu O Aiu O Tex O Alu 1 Alu O Tex

And the execution of this program would looklike this:

Put thread in Vertex RS:

Control Flow Instruction Pointer (12 bits), (CFP)
Execution Count Marker (3 or 4 bits), (ECM)
Loap Iterators (4x9 bits), (LD
Call return pointers (4x12 bits), (CRP)
Predicate Bits(4x64 bits), (PB)
Export ID (1 bit), (EXID)
GPR BasePtr(8 bits), (GPR)

Exhibit 2038 dockdGo_Sequencerdec 73119 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257808

ATI Ex. 2109

IPR2023-00922

Page 98 of 326

ATI Ex. 2109
IPR2023-00922
Page 99 of 326

ORIGINATE DATE EDIT DATE PAGE

48 of 51
R400 SequencerSpecification 24 September, 2001 A September, 2071546je veeneeeeeehnneneene ee EN

Export Base Ptr (7 bits), (EB)
Context Ptr (3 bits). (CPTR)
LOD correction bits (16x6 bits) (LOD)

[StateBits

Valid Thread (VALID)
Texture/ALU engine needed (TYPE)
Texture Reads are outstanding (PENDING)
Waiting on Texture Read to Complete (SERIAL)
Allocation Wait (2 bits) (ALLOC)

00 — No allocation needed
01 — Position export allocation needed (ordered export)
10 — Parameteror pixel export needed (ordered export)
11 — pass thru (out of order export)

Allocation Size (4 bits) (SIZE)
Position Allocated (PFOS_ALLOC)
First thread of a new context (FIRST)
Last (1 bit), (LAST)

[Status Bits |
VALID TYPE PENDING [SERIAL | ALLOC [SIZE [POS ALLOCFIRST[LAST

1 ALU 0 0 [0 Oo. {0 1 0 |

T
|

4

Then the thread is picked up for the execution ofthe first control flow instruction:Execute © Alu O Alu O Tex 0 Tex 1 Alu O Alu O Tex 0 Alu 1 Alu OD Tex

lt executes the first two ALU instructions and goes back to the RS for a resource request change. Here is the
state returned to the RS:

Then when the texture pipe frees up, the arbiter picks up the thread to issue the texture reads. The thread comes

back in this state:

 State Bits

CFP [ECM Li CRP PB | EXID | GPR | EB | CPTR LOD
a [4 10 10 0 oO 10 [9 oO 0

Status Bits

VALID [TYPE PENDING|SERIAL [ALLOC [SIZE [POS ALLOC FIRST LAST
1 | ALU 1 i 4 10 0 o 1 0

Because of the serial bit the arbiter must wait for the texture to return and clear the PENDING bit before it can
pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returnsit in
this state:

Exhibit 2036.docRaod_Sequencerdoc 731i9Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

State Bits .

CFP TECM im TCRP PB rEXID | GPR EB FCPTR LOD o
Q [2 Lo Lo O Lo Lo 0 Lo 0
Status Bits
Sasaera2 :

VALID TYPE PENDING [SERIAL | ALLOC [SIZE [POS_ALLOC FIRST|LAST le
4 TEX 0 [a [6 0 a i 0

AMD1044_0257809

ATI Ex. 2109

IPR2023-00922

Page 99 of 326

ATI Ex. 2109
IPR2023-00922

Page 100 of 326

ORIGINATE DATE

24 September, 2007

EDIT DATE

4 September, 201516 a 2 UW A

DOCUMENT-REV. NUM.

GEN-CXXXKX-REVA

PAGE

49 of 51

State Bits &
| CFP | ECM i | CRP PB | EXID | GPR | EB [CPTR [LOD |.

i) 6 0 0 0 0G Lo i) 0 LO |

Status Bits

|VALID | TYPE PENDING | SERIAL | ALLOC SIZE|POS_ALLOC FIRST LAST | :
1 | TEX oO [oO [0 0 O 1 0G pee

Again the TP frees up, the arbiter picks up the thread and executes. It returns in this state:

State Bits |

| CFP |ECM [LI |CRP PB (EXID | GPR EB | CPTR LoD |
6 [7 [0 [0 0 [0 0 0 [0 0

Status Bits

VALID | TYPE PENDING SERIAL | ALLOC SIZE|POS_ALLOC FIRST | LAST
1 VALU i fo 0 a 0 4 {eo

Now, even if the texture has not returned we can still pick up the thread for ALU execution because the serial bit
is not set. The thread will however come back to the RS for the second ALU instruction because it has the serialbit

set.

StateAS ec eei

CFP [ECM ul CRP PB EXID _GPR EB | CPTR LOD
6 [8 rd 0 0 ro i) a 0

Status Bits

VALID TYPE PENDING|SERIAL|ALLOC|SIZE |POS_ALLOC FIRST LAST
1 ALU 1 i 4 10 0 [0 1 0

As soon as the TP clears the pending bit the thread is picked up and returns:

State Bits

CFP [ECM Ll CRP | PB [EXID |GPR [EB [CPTR LOD
Q 19 iO LO ie) iO 0 0 iO 0

Status Bits

VALID TYPE PENDING (SERIAL |ALLOC|SIZE|POS_ALLOC FIRST LAST
1 TEX 0 Lo i) o 0 1 6

Picked up by the TP and returns:S=xcecute O Alu

State Bits _ _ 7 __ _ _ _

CFP [ECM [Lu | CRP PB EXID _GPR EB | CPTR LOD
1 ro Oo 10 6G 10 6 6 io G

Exhibit 2036.dock400_Sequencereloc 73119 Byes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257810

ATI Ex. 2109

IPR2023-00922

Page 100 of 326

ATI Ex. 2109
IPR2023-00922

Page 101 of 326

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE 24 September, 2001 4 September, 201546 50 of 51

|VALID TYPE PENDING | SERIAL | ALLOC|SIZE|POS_ALLOCFIRST|LAST

ALU 1 Lo lo eee L

 State Bits

|CFP TECM Pu TCRP PB TEXID | GPR EB | CPTR LOD
2 0 0 0 0 6 10 0 0 0

Status Bits

[VALID| TYPE PENDING | SERIAL | ALLOC|SIZE|POS_ALLOC FIRST [LAST
1 ALU i [o | 01 i 0 i Q ifthe SX has the place for the export, the 5Q is going to allocate and pick up the thread for execution. It returns to
the RS in this state:

Execute © Alu 0 Tex

State Bits

CFP. [ecm [Lis[CRP[PBLEXID [EB [CPTR |LOD_
3 | 4 iO 0 LO io ie 'o 0

Status Bits

VALID. TYPE ss PENDING| | SERIAL | ALLOC SIZE|POS_ALLOC FIRST LAST :
1 TEX 1 LO i) 0 1 i 0 |

Now, since the TP has not returned yet, we must wait for it to return because we cannot issue multiple texture
requests. The TP returns, clears the PENDING bit and we proceed:

A_loc Param 3

Status Bits

 VALID [TYPE PENDING|SERIAL [ALLOC [SIZE|POS_ALLOC FIRST LAST .
1 | ALU 1 10 110 [3 4 1 0 pas

Once again the SQ makes sure the SX has enough room in the Pararneter cache before it can pick up this
thread.

QO Alu GO Tex 1 Alu O Alu

State Bits

CFP [ECM LI [CRP PB EXID _GPR EB | CPTR LOD
5 4 10 Lo 0 11 10 100 [Oo 0

Exhibit 2036.docRaod_Sequencerdoc 731i9Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

|| Status Bits [

AMD1044_0257811

ATI Ex. 2109

IPR2023-00922

Page 101 of 326

ATI Ex. 2109
IPR2023-00922

Page 102 of 326

Status Bits

ORIGINATE DATE

24 September, 2001

 EDIT DATE

4 September, 201546

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA
PAGE

S1 of 51

VALID TYPE [PENDING | SERIAL | ALLOC [SIZE|POS_ALLOC | FIRST LAST
1 TEX [1 0 Lo LO 1 1 0

This executes on the TP and then returns:

State Bits

CFP ECM iL | CRP | PB | EXID | GPR [EB CPTR | LOD
5 2 [0 Lo i) [4 [0 | 100 0 [0

Status Bits

VALID TYPE | PENDING (SERIAL |ALLOC [SIZE|POS_ALLOC | FIRST LAST
1 ALU 1 14 0 0 1 _ it i

Waits for the TP to return because ofthe textures reads are pending (and SERIALin this case). Then executes
and does not return to the RS because the LASTbit is set. This is the end of this thread and before dropping it on the
floor, the SQ notifies the SX of export completion.

24. Open issues
Need to do some testing on the size of the registerfile as well as on the registerfile allocation method (dynamic VS
static).

Saving power?

Exhibit 2038 cocR400_Sequencer.des 73119 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~

AMD1044_0257812

ATI Ex. 2109

IPR2023-00922

Page 102 of 326

ATI Ex. 2109
IPR2023-00922

Page 103 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 1 of 54eeBesengsomeSUE GO

“Author: Laurent Lefebvre

‘IssueTo: _|ser No:

R400 Sequencer Specification

SQ

Version 2.098

Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the
required capabilities and expected uses of the block. it also describes the block interfaces, internal sub-
blocks, and provides internal state diagrarns.

AUTOMATICALLY UPDATED FIELDS:

Document Location: Cc\periorce'r400\doc_lib\designiblocks\sq\R400Sequencer.doc
Current intranet Search Title: R400 Sequencer Specification

| ee SEES Bees APPROVALS | : : : =

r : Name/Dept. J a Signature/Date:|

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE

SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES
INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains

transmitted in any form or by any means without the prior written permission of ATI Technologies Inc.”
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or =

Exhibit 2037.docRa00_Sequencerdec 74373 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **

ATI 2037

LGy. ATI

IPR2015-00325

AMD1044_0257813

ATI Ex. 2109

IPR2023-00922

Page 103 of 326

ATI Ex. 2109
IPR2023-00922

Page 104 of 326

RIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 20152 2 of 54|-- cote

Table Of Contents

LL OVERVIEW oe eneecceccnseneceresessecusssnnasssesenanenssssunanennssenannanentesassaansenusssanssannnsssssannnensssennannenesinsns BF
1 Top Level Block Diagramooneee eee e eset eens eee t ttt nue atennieeittttssteeetitueenuneeneaes 108
1.
U3 Comtrol Gra occ ecce cece cee cases sass eee pese stat yuiasasassstatiauuiestauiistisuiusisuissuuntessese2
2. INTERPOLATED DATA BUS... i244.
3. INSTRUCTION STORE. 00 oncccccccsnsnncesssnnnnnensusnannnensesesaneennnsnasssemnnensecennmnenauscsuuneuanesesunnanunesss 1814

4 SEQUENCER INSTRUCTIONS.............
& CONSTANT STORES...

1 Memory organizationstateeneeet tnt: 1844
2 Management of the Control Flow Constants ooeeeee eee eee eee ste etttttt tees 1646
5 : o

Real Time Commands...
Constant Waterfallin

6.2.1 Control flow instructions tableonceove cece cesseves 2224 |
63 Implementation.eeeee eee cette eee tens pittttstttutestettnenetaneasesseties 2423

7. PIAEL KILL MASK oo ceceeeseeeeeee ee seeneeeeesetteneeanecesuseemeseeesenuusaeetseneueeececeseuecaneseuseeauenats 2/26
8 _MULTIPASS VERTEX SHADERS (HOS
9. REGISTER FILE ALLOCATION... 2826

10. FETCH ARBITRATION.........
 ALU ARBITRATION...

12. HANDLING STALLS.....

13. CONTENT OF THE RESERVATION STATION FIFCS.. 1. 3029
14. THE QUTPUT FILE.icc cccccescnencceceenennnesssnennrnessunnnnnnnensusnnnenensyuuunrnnnnstiuannnnnnesstenesseneess 3029
US. LD FORMAT occcece cecncecccenssennnnnecennaneneee ss ten nn nnd dd snnnnnnnuennnnnnnanasssunnennnndenstonaaaanessinerensesss 3029

interpolation of constant attributesess3029

16. STAGING REGISTERS oun cccccecseecccsceseenennssennnsenennsnsnnunen csesenuunenssseemnnunensessnnusenenssnensunecass 3130

Exhibit 2037 dockaad_Sequencerdsc 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257814

ATI Ex. 2109

IPR2023-00922

Page 104 of 326

ATI Ex. 2109
IPR2023-00922

Page 105 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

GEN-CXXXXX-REVA 3 0f 5424 September, 2001 4 September, 207157

17. THE PARAMETER CACHE... -.ccc-ccccccccsczczescsovecesecsencscnossssussssauacinscessenecssusauaunensssnenenanasens 3234
Wi EXDOPLIOSTICT ONS ooeeeee eeeeese esse ass a ana aeecteensinssausagusuauugutsinaianiigssuaininusiagisninn sins 33382

18. EXPORT TYPES oo.c.csccccecccscensceeneseeeennnncssensnanan ensssunnnnnesssuaaauenssesiunnnnnauesssueneeneststenrerrecers 3432

Vertex Shadin
Pixel Shadin

193 Auto generated counterseeeteen etaaetnnsnsts 3634

L931 Vertex Shaders oececcecce cea ceseesessuasatatusustussasusstususvisuisiistuttisstsitsisasitsstassttastits 3634

19.3.2 Pikel Shadersoncecece eseesaeesestcastssusssssutstussssiatusiiuisustinsstistisagstnasininstsassssiss 3634
20. STATE MANAGEMENT ooo ccceeccceeseeereeersereneenenesnnnnneeneesianeennanenanpnnnnnssssnunesernessunnnennneass 3735
20.1 Parameter Cache SYNCHIONIZAllONoeeee eee ee eee te eee eee teste ttt tetnnnnnntenasesesestiee 3735
21. XY ADDRESS IMPORTG.................. “
21.1 Vertex INCexes IMCSeensibnebetnnistiusnttatee sss 3738
22. REGISTERS 00.0 ceccccccccccccecccccccennnnesssennnnnnunssussuunnsnsnsnnnnnnndsasensusuauisssuuanensssssensnsencetsenenunenes 3735

23. INTERFACES.ccccccsssscsscsresssssssssnencessrsessensssesseneencocenevannessensenssnassssassnsnenauacssuesnnssess 3836

External Interfaces.
SC to SP

23.1

fe SC SOaaatetaataautneseutisesestusetatettgusutiaeaissstaesasess 393%

5G to SX(SP) interpolatorbus

23.2.4 SQ to SP: Staging Register Dataccssecceee evens ec sestaeneesscapatssettusuatneutanisis 4139

23.2.5 VGT to SQ. Vertex interfaces.cc ceee ee eee ceee escape tetuecstvatntstcasstsatuacasinetiitatinss 4139

232.6 SQ to SX: Control DUS oo conc ceca cece essences caneses ai sesduntetsiputitauinteteanssienises 4542

23.2.7 SX to SQ: Output file COmUOLaccesses ces ce cesses cessesseisagetasnises 4542.

23.2.8 SQ to TP COnmtrol busceecece cece cesses cs tattitiesipisttitstistntesetsnesss 4643

23.2.9 TPto SQ: Texture Stealcececesses scectes i cesetttiseitnsesatsnises 4643

23.210 80 to SP: Texture Stallocccae ee ecs cree ess sensstesaevensecststastecsteapatitestituatsentasiss 4744

23.2.1] SQ to SP: GPR and auto COUMLCE occeee ccc eece cece see tuescessaestetustsusnsinsntiess A744

23 212 SQ to SPx Instructscececece cesses sees sscatateesipeseesipettpessesseecsss 4845

232.13 SQ to SX: write mask interface (must be aligned with the SP data)...

232.14 SP to SQ: Constant address load/ Predicate Set/Kill seteee, 4946

232.15 SQto SPxconstant broadcastcececece cece cocci tesstathecisisetssnsssss 4946

232.16 SQtoCP: RBBM Dus.cece sees e sees caste testesiesteetses 4946

23.217 CP to SQ: RBBM bus.cece cece ceases cece nese cats tas cnestestesecis 5046 oe
23.2.18 SQ to CP: State reporteeeee eee ee ceceeectete tateetete is 5042 |

Exhibit 2037.docka00_Sequencereloc 74373 Byes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257815

ATI Ex. 2109

IPR2023-00922

Page 105 of 326

ATI Ex. 2109
IPR2023-00922

Page 106 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 20152 40f 54- — ~ — ~ --—4 2} = —

3.3 Example of control flow programexecutionS044 |

 10--—-FETCH-ARBITRATIONsc

15.-AJ-FORMATsesscee
By ean

Exhibit 2037.dockaod_Sequencerdec 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257816

ATI Ex. 2109

IPR2023-00922

Page 106 of 326

ATI Ex. 2109
IPR2023-00922

Page 107 of 326

EDIT DATE DOCUMENT-REV. NUM. PAGE

4 September, 207157

ORIGINATE DATE

24 September, 2001

192-~-Spritest x¥Sscreen-coordinates!-B-information.-.

23-2-3-—--VGT-te-SQ—Vertex-interlace-

23-204

3.3-—~ _Exampl2a-OF-controlFlow. programeexeculion-.24,---GPENASSUES vecceeeesspeverreninnererrireys wreers

Exhibit 2037.docka00_Sequencereloc 74373 Byes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

GEN-CXXXXX-REVA 5 of 54

AMD1044_0257817

ATI Ex. 2109

IPR2023-00922

Page 107 of 326

ATI Ex. 2109
IPR2023-00922

Page 108 of 326

 on

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 20157 6 of 54= = i “or

Revision Changes:

Rev 0.1 (Laurent Lefebvre) First draft.
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July $, 2001
Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001
Rev0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001
Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001
Rev 1.4 (Laurent Lefebvre)
Date : December6, 2001

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002
Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

Rey 1.9 (Laurent Lefebvre)
Date : March 18, 2002
Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002
Rev 1.11 (Laurent Lefebvre)
Date : April 19, 2002
Rev 2.0 (Laurent Lefebvre)
Date : April 19, 2002

Exhibit 2037dockh400_Sequencen.dec

Changed the interfaces to reflect the changesin the
SP. Added somedetails in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.
Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.
Added timing diagrams(Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.
Added constant store management, instruction
store management, control flow management and
data dependant predication.
Changed the control flow method to be more
flexible. Also updated the external interfaces.
Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.
Refined interfaces tc RB. Added state registers.

Added SEQ—-SPO interfaces. Changed delta
precision. Changed VGT-SPO0interface. Debug
Methods added.
Interfaces greatly refined. Cleaned up the spec.

Added the different interpolation modes.

Added the auto incrementing counters. Changed
the VGT—SQ interface. Added content on constant
management. Updated GPRs.
Removed from the spec all interfaces that weren't
directly tied to the SQ. Added explanations on
constant management. Added PA-SQ
synchronization fields and explanation.
Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.
Added Real Time parameter control in the 8X
interface. Updated the control flow section.
Newinterfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.
Rearangement of the CF instruction bits in order to
ensure byte alignement.
Updated the interfaces and added a section on
exporting rules.
Added CP state report interface. Last version of the
spec with the old control flow scheme
Newcontrol flow scheme

74373 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +

AMD1044_0257818

ATI Ex. 2109

IPR2023-00922

Page 108 of 326

ATI Ex. 2109
IPR2023-00922

Page 109 of 326

ORIGINATE DATE

24 September, 2001

EDIT DATE DOCUMENT-REV. NUM.

4 September, 20154 GEN-CXXXXKX-REVAJhaaTNenna neeee
Rev 2.01 (Laurent Lefebvre)
Date : May 2, 2002
Rev 2.02 (Laurent Lefebvre)
Date : May 13, 2002

Rev 2.03 (Laurent Lefebvre)
Date : July 15, 2002

Rev 2.04 (Laurent Lefebvre)
Date :August 2, 2002
Rev 2.05 (Laurent Lefebvre)
Date : Septernber 10, 2002
Rev 2.06 (Laurent Lefebvre)
Date : October 11, 2002
Rev 2.07 (Laurent Lefebvre)
Date : October 14, 2002

Rev 2.08 (Laurent Lefebvre)
Date : October 16, 2002
Rev 2.09 (Laurent Lefebvre)
Date :s January 7 2000

Exhibit 2037 dock400Sequencecdsc

Changed slightly the control flow instructions to
allow force jumps and calls.
Updated the Opcodes. Added type field to the
constant/pred interface. Added Last field to the
SQ-—SP instruction load interface.
SP interface updated to include predication
optimizations. Added the predicate no stall
instructions,
Documenied the new parameter generation scheme
for XY coordinates points and lines STs.
Some interface changes and an architectural
change to the auto-counter scheme.
Widened the event interface to 5 bits. Some other
little typos corrected.
Loops, jumps and calls are now using a 13 bit
address which allows to jump and call and loop
around any control flow addresses (does not
requires to be even anymore).
Clarification updates after discussion with Clay.

Corrected the 8O--SP siaging register interface.

74373 Byes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257819

ATI Ex. 2109

IPR2023-00922

Page 109 of 326

ATI Ex. 2109
IPR2023-00922

Page 110 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification
24 September, 2001 4 September, 20152i a re

1. Overview

The sequencer chooses two ALU threads and a fetch hread to execute, and executes all of the instructions in a block
before looking for a new clause of the same type. Two ALU threads are executed interleaved to hide the ALU latency.
The arbitrator will give priority to older threads. There are two separate reservation stations, one for pixel vectors and
one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To support the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one
sequencer for the whole chip.

The sequencer first arbiirates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRsit needs to execute. The sequencerwill not start the next
vector until the needed spaceis available in the GPRs.

Exhibit 2037 dockacd_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257820

ATI Ex. 2109

IPR2023-00922

Page 110 of 326

ATI Ex. 2109
IPR2023-00922

Page 111 of 326

xxx©OBJ9A0DUOBOIIONJUBUAdODsoUsIOJOY‘fENUSPYUGD[Ly@vsczcreMITAIOAOJd0uNHbag[LIIUeD[1NBL

ae

 |ayay_Lego/od:|aoiod:aweva|dS=|dsdsdS—aa a_ —Le")MELLNE|MESLLNT "|MELLNfiAflMVESSONOC1a

PESOLDJove,TORLLNOGOos

AYOLSO

OGYLAA sepussusrbag“gorysop2607Tang

seauppySIUMOd,SHSLNIOdCWSYOd|
HSH+

¥

AYOLSLSNI
 wounoo|SLNWLSNOO

XGLLUBA

momenRATS

do “vrSLVLSHOLS“1SNISL

WO

yShO6dovd

VASEXXXXXO-NADWAN“ASULNSANSOG

¥

ZGL0EJequiaGes7SLVdLid3

Loog‘JequisidespzSLVdJLYNIOINO

 TIWIAE.LVNYaddoOFAILOdLOdd

AMD1044_0257821

ATI Ex. 2109

IPR2023-00922

Page 111 of 326

ATI Ex. 2109
IPR2023-00922

Page 112 of 326

PAGE

10 of 54
ORIGINATE DATE EDIT DATE R400 Sequencer Specification

24 September, 2001 4 September, 20152i a re
1.1 Top Level Block Diagram

[Input Arbiter]

—} VTX RS PIX RS }*—

 Texture

Figure 2: Reservationstations and arbiters

Under this new scheme, the sequencer (SQ) will only use one global state management machine per vector type
(pixel, vertex) that we call the reservation station (RS).

Exhibit 2037 dockacd_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257822

ATI Ex. 2109

IPR2023-00922

Page 112 of 326

ATI Ex. 2109
IPR2023-00922

Page 113 of 326

ORIGINATE DATE EDIT DATE

| 24 September, 2001 4 September, 20157| ne

1.2 Data Flow graph (SP)

DOCUMENT-REV. NUM.

GEN-CXXAXX-REVA

PAGE

11 of 54

|

 instruction

s

| scalar inputfoutput MAC i
BN fel fre requ

“.

' pipeline stage '

cA

ie—4 Register File — ~~_ | Ny
ag scalar inpuloutout MAC

| pipeline stage

instruction

 [Fequeg

* |&
> |
en | |

P 5 |2 © |
s QO | |
5 oe ' |
& Register File ro bes |
= 3) iaee,i = !| a i

7 Ji MA i jest | _ |a L scalar input/output si[| 3 i| pipeline stage ' 3 i
I ! co :Fry |

|
wi '

a “| tonnnnn 1 i= & > i2 S i i
S = Register File i i
e| if ¢ |2|_Ial Woe SS_ a |
ae AY texture re} Est be i

|
| vn

fy Mux

jon &1 eo

2 S
Sswe@
5Sex

j | , <
\ to Primitive Assembly Unit or RenderBackend). V

Figure 3: ‘The shader Pipe

Exhibit 2037 dockdGo_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257823

ATI Ex. 2109

IPR2023-00922

Page 113 of 326

ATI Ex. 2109
IPR2023-00922

Page 114 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 September, 20152 12 of 54enpr i enn OOPS

The gray area represents blocks that are replicated 4 times per shaderpipe (16 times on the overall chip).

1.3 Control Graph

Ciause # + Rdy
IS SEQ

|

WrAddr WrAddr

CMD

Phase BC Wrvec

RaAddr WSC8 rer
pe

FETCH SP wo OF

WrAdar

|

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the outputfile control interface.

2. Interpolated data bus
The interpolators contain an lJ buffer to pack the information as much as possible before writing it to the register file.

Exhibit 2037 dockacd_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257824

ATI Ex. 2109

IPR2023-00922

Page 114 of 326

ATI Ex. 2109
IPR2023-00922

Page 115 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

4 September, 20154 GEN-CXXXAX-REVA 13 of 54nade24 September, 2001
ToRB | | ~oeTe]

Ne CROSSBAR (4x100bite)
pa

|orae! | eeTewenn net ne a — —
re Ii ne

EEE
AO At AQ Bo iJs buffer (ping-pong buffer) |

(25 bits *8 (WW) 74°4* 4 (quadruple-bufferg Ao At 42 BO i
nanaraces| 12800 bits |

2 Bt ce ct 2 /Bt co c c2

3 C3 C4 ch bo Xs buffer (ging-pong duifer} i
24 bits * 16 quads *2 c3 C4 cS Do /

768 bits !
3ox24 |

4 Dl 2 EO e1 /

T T i LC| | | ii
INTERPOLATORS i 1

, |i

812 !I

| |ll il
PP nl

WUL |} QUE |} SUL |) 4ub '" || aur | aur || 4uR the|ae || Sue ||
i i i | | | | | | | i
LL Le | on

Figure 5: Interpolation buffers

Exhibit 2037.docka00_Sequencereloc 74373 Byes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257825

ATI Ex. 2109

IPR2023-00922

Page 115 of 326

ATI Ex. 2109
IPR2023-00922

Page 116 of 326

axe@BHCIGAOQUOBBYONJUBUAdODsoudIBjOy“PENUSPYUD[LY@weeseerWik.iserpSuNUYUOnLod.AI3Uy79ANS]
sopuasuanbogogryOPSOEWNT

CLL|ELL

vSsor

q9vduoyeoyiosdsseouenbesOory

VICK?rereLGL0gJequiejces¢alvdLida

L00g‘Jequsides7ZJLVdFLVNIOINO

 TIWIAE.LVNYaddoOFAILOdLOdd

AMD1044_0257826

ATI Ex. 2109

IPR2023-00922

Page 116 of 326

ATI Ex. 2109
IPR2023-00922

Page 117 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20754 GEN-CXXXXX-REVA 15 of 54aKena, neene EE A es
Aboveisan exampleofa tile thesequencer might receive fromthe SC. The write sideis howthedata get stacked |
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencerallows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store

There is going to be only oneinstruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 7 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped regisiers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commandsthe story is quite the same but for some smail differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4. SequencerInstructions
All control flow instructions instructions are handied by the sequencer only. The ALUs will perform NOPs during this
time (MOV PV,PV, PS,PS)if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shaderis 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flaw constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a changein the control flow constants. Its size is 320*32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

Exhibit 2037 dockdGo_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257827

ATI Ex. 2109

IPR2023-00922

Page 117 of 326

ATI Ex. 2109
IPR2023-00922

Page 118 of 326

PAGE

16 of 54
ORIGINATE DATE EDIT DATE R400 Sequencer Specification

| 24 September, 2001 4 September, 20157. natst

- 5.2 Managementof theControl Flow Constants
The conirol flow constants are register mapped, thus the CP writes to the accarding register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one levelof indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied wheneverthere is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn't write to CF the state is going te use the previous CF constants.

5.3 Managementof the re-mapping tables

5.3.1 R400 Constant management
The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencerwill broadside copy the contentsofits re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUSTbeat least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Proposal for R400LE constant management
To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROLpacket of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE andif both are idle will erase the content of state to replaceit with
the new state (this is depicted in Figure 8: De-allocation mechanismFigure-8:De-allocation-mechanismFigure 8:De~
allocation-mechanism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the SQ is going to report a stale change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

Exhibit 2037 dockacd_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257828

ATI Ex. 2109

IPR2023-00922

Page 118 of 326

ATI Ex. 2109
IPR2023-00922

Page 119 of 326

ORIGINATE DATE

24 September, 2001

FreeLis

Logical Acdress

[aRead

—_| pirto

Address

to Allocate

Global Register

EDIT DATE

4 September, 207157

Context 0 =>

Current/Last

Context
(8 rows of 16-8 |_
bit physical => [-

128 entries copy
in eight clocks}

Context N

Data Bus

Constants i

Dealloc
Countsphysicaladdress

to
schedule

for
de-alloc

Logical addressOnthe

GlbRegBus
when Isb are zero [~
first word of write

Renaming Table

for 1 Context Y
Current/Last LogicalPhysical a

Address Address(onlyde-

| allocate
| ifset) |

td

Staging DataBuffer

- Staging Write Addr|

Physical
Memory

next
physicaladdress

readyfor allocate

_-
” This

per
Logical| Address

| (if set| don't
allocate
or de-

allocate) Renamingtable
Contexts

Copy Last held above to
Current Context on receipt

of Set Constant for a 1
newcontext (Hide loading

behind Set State load - 16 clocks)
all cther Set States just write one

entry to current state.

Figure 7: Constant management

DOCUMENT-REV.

GEN-CXXXXX-REVA

r
| Renaming Table

||
: |
ae) .Context |
| Dirty||| I || 1

NUM.

 &

| Context &| Logica~~ Address ~]

PAGE

17 of 54

_Logical AddressContext

Physical

‘| Address

SeqConstant
Request

Exhibit 2037.docka00_Sequencereloc 74373 Byes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257829

ATI Ex. 2109

IPR2023-00922

Page 119 of 326

ATI Ex. 2109
IPR2023-00922

Page 120 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 Septernber, 2001 4 September, 20152 18 of 54AeYY

SQ_STATE#

 ADDR

|
BEALOC

cree List ONT VALUE COUNTERS WR TE_ENASLE

PREVIOUS
STATE

NEW

| | STATE| |

VALUE — |

| [oo |—— |@|I||

r

aIDLE
——| AND -#——PA_IDLE

he CP_NEW_STATE_CNTL—

REMAPPING ———_!
TABLE ~¢—_—_SET CTX BITS

Figure 8: De-allocation mechanism for R400LE.

5.3.3 Dirty bits
Two sets of dirty bits will be maintained per logical address. Thefirst one will be set to zero on reset and set when
the logical address is addressed. The second onewill be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. (fit is set and the context dirly is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the samelogical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block

A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would resel to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical biock is needed, andif the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk frorn the counter.
Storage of a free list big enoughto store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the freelist
like a ring.
The second pointer will be called step_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_pir will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

Exhibit 2037 dockacd_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257830

ATI Ex. 2109

IPR2023-00922

Page 120 of 326

ATI Ex. 2109
IPR2023-00922

Page 121 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE 24 September, 2001 4 September, 20157 GEN-CXXXXX-REVA | 19 of 54“UY 4 i

 535 De-allocate Block
This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any numberof blocks in one clock.

5.3.6 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location frorn the freelist
counter becauseits not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. If a logical address is hil that hasits dirty bits set while In the same context, both dirty
bits would be sei, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming tabie would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states comein for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated ofthe free-list counter or
the free list at read_ptr pointerif read_ptr |= to stop_pir.

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incrernented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context thatleft. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the numberof blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the reac_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, ifthe updates are large, less contexts will be stored and potentially performance will be degraded.
Althoughit will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loadedfirst with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/ciock).

Exhibit 2037 dockdGo_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257831

ATI Ex. 2109

IPR2023-00922

Page 121 of 326

ATI Ex. 2109
IPR2023-00922

Page 122 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 20157 20 of 54fonenee Lb cee ee cence ones hemsan UNaee a a es

MOVA R1ILX,.R2X // Loads the sequencerwith the content of R2.X, also copies the content of R2.X into R1.X
ADD R3,R4,CO[R2.X]// Uses the state from the sequencer to add R4 to CO[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVAinstruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencerin order to support this feature is 2*64*9 bits = 1152bits.

The address register is a signed integer, which ranges from —256 to 255.

5.5 Real Time Commands

The real time commands constants are written by the CP using the register mapped registers allocated for RT. it
works is the same way than when dealing with regular constant loads BUTin this case the CPis not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
frorn the memory. The boundary between the two zonesis defined by the CONST_EO_RTcontrol register. Similarly,
for the fetch state, the boundary between the two zonesis defined by the TSTATE_EO_RTcontrol register.

5.6 Constant Waterfalling
In order to have a reasonable performancein the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits wheneverthe last renderstate is written to memory
and clears the bit whenevera state is freed.

CONST_EO_RT

RT SECTON }

(ReadsMrites are direct) 7
ps

REGULAR SECTION
(Reads/Wrrites are passing

thru a remaping table}
|||||||

Po

Figure 9: The Constant store

Exhibit 2037 dockacd_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257832

ATI Ex. 2109

IPR2023-00922

Page 122 of 326

ATI Ex. 2109
IPR2023-00922

Page 123 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20157 GEN-CXXAXX-REVA | 21 0f54

6. Looping and Branches ”
Loops and branches are planned to be supported and will have to be dealt with at the sequencerlevel. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean(255:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
We'd like to be able to code up a program of the form:

4 Loop
2 Exec TexFetch
3 TexFetch
4: ALU
5: ALU
6: TexFetch
a End Loop
& ALU Export

But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3:. Without clausing,
these dependencies need to be expressed in the Control Flow instructions. Additionally, without separate ‘texture
clauses’ and ‘ALU clauses’ we need to know which instructions to dispatch to the Texture Unit and which to the ALU
unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of information for each (non-control flow) instruction:
a) ALU or Texture
b) Serialize Execution

(b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched. Given the allocation of reserved bits, this would mean that the count of an ‘Exec’ instruction
would be limited to about 8 (non-control-flow) instructions. If more than this were needed, a second Exec (with the
same conditions) would be issued.

Another function that relies upon ‘clauses’ is allocation and order of execution. We need to assure that pixels and
vertices are exported in the correct order (even if not all execution is ordered) and that space in the output buffers are
allocated in order. Additionally data can't be exported until space is allocated. A new control flow instruction:

Alloc <buffer select -- position,parameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual
allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already
completed. The implementation would also assure that execution of instruction(s) following the serialization due to the
Alloc will occur in order -- at least until the next serialization or change from ALU to Texture. In most casesthis will
allow the exports to occur without any further synchronization. Only ‘final’ allocations or position allocations are

Exhibit 2037 dockdGo_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257833

ATI Ex. 2109

IPR2023-00922

Page 123 of 326

ATI Ex. 2109
IPR2023-00922

Page 124 of 326

ORIGINATE DATE

24 September, 2001
|guaranteed to be ordered.Becausestrictordering is required for pixels, parameters and positions,this impliesonly

EDIT DATE

4 September, 20157asesomee ON Age a

R400 SequencerSpecification PAGE

22 of 54

a single alloc for these structures. Vertex exports to memory do not require orcering during allocation and so multiple
‘allocs' may be done.

6.2.1 Control flow instructions table
Hereis the revised control flow instruction set.

Note that whenevera field is marked as RESERVED,it is assumed that all the bits of the field are cleared (0).

NOP :
47... 44 | 43 42 ...0 =
|9000|Addressing|RESERVE

This is a regular NOP.

Execute

47... 44 | 43 40... 34 | 33 ...16 45...412 11...0
0001 Addressing RESERVED Instructions type + serialize (9|Count Exec Address

| instructions) |

Execute_End

47... 44 | 43 [40... 34 _ 33....16 416...12 11....0
0010 | Addressing RESERVED | Instructions type + serialize (Q|Count Exec Address

| instructions)

Execute up to 9 instructions at the specified address in the instruction memory. The Instruction type field tells the
sequencer the typeofthe instruction (LSB) (1 = Texture, 0 = ALU and whether to serialize or not the execution (MSB)
(1 = Serialize, O = Non-Serialized). If Execute_End this is the last execution block of the shader program.

Conditional_Execute

47... 44 | 43 42 41... 34 | 33...16 15..12 | W..0 0
oo11 | Addressing|Condition|Boolean Instructions type + serialize (9 Count Exec Address
Poaddress | instructions)PoPo|

Conditional_Execute_End

47... 44 | 43 42- 41.34 | 33...16 1512 11...0
0100 | Addressing|Condition|Boolean|instructions type + serialize (9 Count Exec Address

| address instructions)

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 9 instructions). If the condition is not met, we go on to the next control flow instruction. lf
Conditional_Execute_End and the condition is met, this is the last execution block of the shader program.

Conditional_Execute_Predicates

47... 44 | 43 42 41... 36 35... 34 | 33...16 | 15...12 11...0

0101 Addressing Condition RESERVED|Predicate Instructions | Count Exec Address| vector type + serialize |
| (9 instructions) |

Conditional_Execute_Predicates_End .
47... 44 | 43 | 42 41... 36 35... 34 | 33... 16 [15...12 11...0

0110 § Addressing|Condition RESERVED|Predicate | Instructions Count Exec Address| vector | type + serialize |
| (Q instructions) |

Check the AND/OR ofall current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. Wve need to AND/OR this with the kill mask in order not to consider the pixels that aren't valid. If the

Exhibit 2037 dcock400_Sequercecdes 74373 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~

AMD1044_0257834

ATI Ex. 2109

IPR2023-00922

Page 124 of 326

ATI Ex. 2109
IPR2023-00922

Page 125 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September. 201of GEN-CXXXXKX-REVA 23 of 54 fewemesenmeeTREY|

conditionisnot met, “we:“go ‘on tothenext contro! flow instruction. if Conditional_|‘Execute_|Predicates_|‘Endandthe|
condition is met, this is the last execution block of the shader program.

Conditional_Execute_|Predicates_No_Stall

|47...44 43 ; 42 41... 36_ | 35... 34 . 33...16 15...12 || 11...0

1101 Addressing Condition RESERVED “Predicate Instructions Count Exec Address
| vector | type + serialize

|_@ instructions)

Conditional_Execute_Predieaten-No_Stalene47... 44 43 42 41...36 | 3 33...16 _o1110 Addressing|Condition RESERVED Prodiaate Instructions ‘Count BeeAddress
| vector | type + serialize

| | | @ instructions) |

Same as Conditionnal_Execute_Predicates but the SQ is not going to wait for the predicate vector to be updated.
You can only set this in the compiler if you know that the predicate set is only a refinement of the current one (like a
nested if) because the optimization would still work.

Loop_ Start

| 47... 44 43 42... 21 20... 16 15...13 12...0 0111 Addressing RESERVED E loop ID RESERVED | Jumpaddress |
Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Loop_End

| 47 ...44 | 43 [42 | 41.36 | 35.34 33...22 | 21 7 20..716) 15.13 | 12...0
1000 Addressing|Cond|RESERVED ‘Predicate|RESERVED|Pred loop ID RESERVED start

eeeeVector[oobreak|ooJedaddress_|
Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop. If predicate break != 0, then compares predicate vector n
(specified by predicate Vector) to condition. If all bits meet condition then break the loop.

The waythis is described does not prevent nested loops, and the inclusion of the loop id makethis easy to do.

Conditionnal_Call

47... 44 43 42 a..34— | 3814d 13 | 12...0

|

~4001 “Addressing Condition Boolean address RESERVED| Force Call | Jump address If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack.If
force call is set the condition is ignored and the call is made always.

Return

| 47... 44 43 ' 42.0

1010 Addressing| RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal, Jump

|47... 4d 43 | 42 | 41... 34 | 33 | 32... 14 T 13 12....0
1011 Addressing || Condition|Boolean|FW only | RESERVED | Force Jump | Jump address

| address !

Exhibit 2037.docka00_Sequencereloc 74373 Byes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257835

ATI Ex. 2109

IPR2023-00922

Page 125 of 326

ATI Ex. 2109
IPR2023-00922

Page 126 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 20157 24 of 54fleeeence nnntnteeneceenennitall eccofetONSmegSEENA eee nentennenoneeeenntnneee neeteens boveneecten “

If force jump is set the condition is ignored and the jump is made always. If FW only is set then only forward jumps -
are allowed.

Allocate

47... 44 | 43 42...41 40....3 2...0
4100 | Debug ' Buffer Select RESERVED 1 Size

Buffer Select takes a value of the following:
01 — position export (ordered expart)
10 — parameter cache or pixel export (ordered export)
11 - pass thru (out of order exports).

Size field is only used to reserve space in the export buffer for pass thru exports. Valid values are 1 (1 line) thru 9
lines). It should be determined by the compiler/assembler by taking max index used +1.

If debug is set this is a debug alloc (ignore if debug DB_ON registeris setto off).

6.3 Implementation

The envisioned implementation has a buffer that maintains the state of each thread. A thread lives in a given
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the order that they
enter. Actually two buffers are maintained -- one for Vertices and one for Pixels. The intended implementation
would allowfor:

16 entries for vertices
48 entries for pixels.

From each buffer, arbitration logic attempts to select 1 thread for the texture unit and 2 (interleaved) thread for the
ALU unit. Once a thread is selected it is reac out of the buffer, marked as invalid, and submitted to appropriate
execution unit. It is returned to the buffer (at the same place) with its status updated once all possible sequential
instructions have been executed. A switch from ALU to TEX or visa-versa or a Serialize_Execution modifier forces
the thread to be returned to the buffer.

Eachentry in the buffer will be stored across two physical pieces of memory - most bits will be stored in a 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed ‘state’. The bits kept in the multi-read ported device will be termed‘status’.

‘State Bits' needed include:

Control Flow Instruction Pointer (13 bits),
Execution Count Marker4 bits),
Loop Iterators (4x9 bits),
Loop Counters (4x9 bits),
Call return pointers (4x13 bits),
Predicate Bits (64 bits),
Export ID (1 bit),
Parameter Cache base Ptr(7bits),
GPR BasePir (8 bits),

10. Context Ptr (3 bits).
11. LOD corrections (6x16 bits)
12. Valid bits (64 bits)
13. RT (1 bit} Signifies that this thread is a Real Time thread. This bit must be sent to the Constant store state

machine when reading it.

CONOAGAERUN=
Absent from this list are 'Index' pointers. These are costly enough that I'm presuming that they are instead stored in
the GPRs. Thefirst seven fields above (Control Flow Ptr, Execution Count, Loop Counts, call return pirs, Predicate
bits, PC base ptr and export ID) are updated every time the thread is returned to the buffer based on how much

Exhibit 2037 dockacd_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257836

ATI Ex. 2109

IPR2023-00922

Page 126 of 326

ATI Ex. 2109
IPR2023-00922

Page 127 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20152 GEN-CXXKKX-REVA 25 of 54a fee ee enenents enna tnnetnneneeeeenneee cence HM36BOOE EMS Aee saveeonnennee nent bene a
progress has been mode on thread execution. GPR Base Ptr, Context Ptr and LOD corrections are unchanged
throughout execution of the thread. :

‘Status Bits’ needed inciude:

e Valid Thread
e Texture/ALU engine needed

Texture Reads are outstanding
Waiting on Texture Read to Complete
Allocation Wait (2 bits)
00 — No allocation needed

01 — Position export allocation needed (ordered export)
10 — Parameteror pixel export needed (ordered export)

* 11 -pass thru (out of order export)
e Allocation Size (4 bits)
® Position Allocated
e Mem/Color Allocated
e First thread of a new coniext
e Event thread (NULL thread that needsto trickle down the pipe)
* Last (1 bit)
e Pulse SX (1 bit)

All of the above fields from all of the entries go into the arbitration circuitry. The arbitration circuitry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -- one for
pixels and one for vertices. A final selection is then done between the two. But the rest of this implementation
summary only considersthe ‘first’ level selection whichis similar for both pixels and vertices.

Texture arbitration requires no allocation or ordering so it is purely based on selecting the ‘oldest’ thread that requires
the Texture Engine.

ALU arbitration is a little more complicated. First, only threads where cither of Texture_Reads_outstanding or
Waiting_on_Texture_Read_to_Complete are '0' are considered. Then if Allocation_Waitl is active, these threads are
further filtered based on whether space is available. If the allocation is position allocation, then the thread is only
considered if all ‘older’ threads have already done their position allocation (position allocated bits set). If the
allocation is parameteror pixel allocation, then the thread is only consideredif it is the oldest thread. Aliso a thread is
not consideredif it is a parameter or pixel or position allocation, has its First_thread_of_a_new_context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the ‘cldest' of the threads that pass through the abovefilters is selected. If the thread needed to allocate, then
ai this time the allocation is done, based on Allocation_Size. |f a thread has its “last” bit set, then it is also removed
from the buffer, never to return.

If | now redefine ‘clauses’ to mean ‘how manytimes the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine’, then the minimum numberof clauses needed is 2 -- one to perform
the allocation for exports (execution automatically halts after an ‘Alloc' instruction) (but doesn't performs the actual
allocation) and one for the actual ALU/export instructions. As the ‘Alloc’ instruction could be part of a texture clause
(presumably the final instruction in such a clause), a thread could still execute in this minimal number of 2 clauses,
evenif it involved texture fetching.

The Texture_Reads_Ouitstanding bit must be updated by the sequencer, based on keeping track of how many
Texture Clauses have been executed by a given thread that have not yet had there data returned. Any number
above 0 results in this bit being set. We could consider forcing synchronization such that two texture clauses for a
given thread may not be outstanding at any time (that would be my preference for simplicity reasons and becauseit
would require only verylittle change in the texture pipe interface). This would allow the sequencerto set the bit on
execution of the texture clause, and allow the texture unit to return a pointer to the thread buffer on completion that
clears the bit.

Exhibit 2037.docka00_Sequencereloc 74373 Byes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257837

ATI Ex. 2109

IPR2023-00922

Page 127 of 326

ATI Ex. 2109
IPR2023-00922

Page 128 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 Septernber, 2001 4 September, 20152 26 of 54i PHVA

64 Data dependantpredicateinstructions
Data dependant conditionals will be supported in the R400. The only way weplan to support those is by supporting
three vector/scalar predicate operations of the form:

PREDSETE_PUSH- similar to SETE except that the result is ‘exported’ to the sequencer.
PREDSETNE_PUSH-similar to SETNE except that the result is ‘exported’ to the sequencer.
PRED_SETGT_PUSH- similar to SETGT except that the result is ‘exported’ to the sequencer
PRED_SETGTE_PUSH- similar to SETGTE except that the result is ‘exported’ to the sequencer

For the scalar operations only we will also support the two following instructions:
PRED_SETE
PRED_SETNE
PRED_SETGT
PRED_SET_INV
PRED_SET_POP
PRED_SET_CLR
PRED_SET_RESTORE

Details about actual implementation of these opcodes are in the shader pipe architectural spec.

The export is a single bit - 1 or O that is sent using the same data path as the MOVAinstruction. The sequencerwill
maintain 1 set of 64 bits predicate vectors (in fact 2 sets because we interleave two programs but only 1 will be
exposed) and useit to control the write masking. This predicate is maintained across clause boundaries.

Then we have two conditional execute bits. Thefirst bit is a conditional execute “on” bit and the secondbit tells usif
we execute on 1 or 0. For example, the instruction:

PO_ ADD_# RO,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whosepredicate bit is set. The use of the PO or P1 without precharging the
sequencer with a PRED instruction is undefined.

6.5 HW Detection of PV.PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address anc the write address of consecutive instructions. For masked writes, the sequencerwill
insert detect wich channels to read from the GPRs and which onesto read from the PV/PS.

6.6 Register file indexing
Because we can have loops in fetch clause, we need ta be able to index into the register file in order to retrieve the
data created in a fetch clause loop and useit into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6
0 0 ‘absolute register
0 1 ‘relative register’
4 0 ‘previous vector’
4 4 ‘previous scalar

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add toit the loop_index and this becomes our new address that we give to the shaderpipe.

The sequenceris going to keep a loop index computed as such:

Index = Loop_iterator*Loop_step + Loop_start.

Exhibit 2037 dockacd_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257838

ATI Ex. 2109

IPR2023-00922

Page 128 of 326

ATI Ex. 2109
IPR2023-00922

Page 129 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 27 of 54 imei:OVE

Weloopuntil loop_iterator =loop_count.Loop_step is a signed Value[-128...127]. Thecomputedindex value isa 10|
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Methed 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register where thefirst error occurred
2. count of the numberof errors

The sequencerwill detect the following groups oferrors:
- count overflow
- constant indexing overfiow
- register indexing overflow

Compiler recognizable errors:
- jump errors

relative jump address > size of the control flow program
- call stack

call with stackfull
return with stack empty

With all the other errors, program can continue to run, potentially to worst-case limits.

If indexing outside of the constant or the register range, causing an overflowerror, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving andinitializing the Oth
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}

6.7.2 Methed 2: Exporting the values in the GPRs
1) The sequencer will have a debug active, count register and an addressregister for this mode.

Under the normal mode execution follows the normal course.

Under the debug mode it is assumed that the program is always exporting n debug vectors and that all other exports
to the SX block (but for position) will be turned off (changed into NOPs) by the sequencer (evenif they occur before
the address stated by the ADDR debug register).

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipeto kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETGT
MASK_SETGTE

Multi ark adere-4OS)

Exhibit 2037 dockdGo_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257839

ATI Ex. 2109

IPR2023-00922

Page 129 of 326

ATI Ex. 2109
IPR2023-00922

Page 130 of 326

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

| 24 September, 2001 4 September, 20152 28 of 54-- — i es cote

 9-8. Registerfile allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZEforpixels.

Exhibit 2037 dockacd_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

a + Formatted: Bullets and Numbering

AMD1044_0257840

ATI Ex. 2109

IPR2023-00922

Page 130 of 326

ATI Ex. 2109
IPR2023-00922

Page 131 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM.

24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA— e “ew a ~

Above is an example of how the algorithm works. Vertices comein from top to bottom, pixels comein from bottom to
top. Vertices are in orange and pixels in green. The biueline is the tail of the vertices and the greenline is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRsstarts from the bottom ofthe picture at index O and goes up to the top at
index 127.

10-9. Fetch Arbitration .
The fetch arbitration logic chooses one of the n potentially pending fetch clauses to be executed. The chaice is made
by looking at the Vs and Ps reservation stations and picking the first one ready to execute. Once chosen, the clause
state machine will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two fetches of the
same clause.

«| Formatted: Bullets and Numbering

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

+10. ALU Arbitration .

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
n potentially pending ALU clauses to be executed. The choice is made by looking at the Vs and Ps reservation
stations and picking the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for
the odd clocks. For example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and
Odd sets of 4 clocks):

oc) Formatted: Bullets and Numbering

EinstO OinstO Einst1 Oinstt Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0...

Exhibit 2037 dockdGo_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257841

ATI Ex. 2109

IPR2023-00922

Page 131 of 326

ATI Ex. 2109
IPR2023-00922

Page 132 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 20157 30 of 54| cence nce te eenseensne eee etnneineeetne ieee neeELee eee Neennnn
Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across

clause boundaries.

(Formatted:Buletsand Numbering
412-11, Handling Stalls = Tess
When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the outputfile. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer alsa prevents a thread from entering an exporting clause. The
sequencerwill set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

|__{Formattod: ulesondNumbering
43-12.ContentofthereservationstationFIFOs‘ tds ad anbeng
The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, somebits
for LOD correction and coverage mask information in orderto fetch fetch for only valid pixels, the quad address.

44.13, The Output File
The output file is where pixels are pul before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BVV 512 bits/clock and read BYV 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

43-14, |J Format

The IJ information sent by the PA is of this format on a per quad basis:

* = 2:| Fermatted: Bullets and Numbering :

. co] Formatted: Bullets and Numberinga : - ne st

We have a vectorof IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
modebit). All pixel’s parameters are always interpolated at full 20x24 mantissa precision.

PO =A+1(0)*(B~ A+ JF (0) *(C - A)

Pl=A+I()*(B-A)+UQ)*(C - A)

P2=A+I1(2)*(B- A)+J(2)*(C - A)

P3=A+1(3)*(B- A) + J(3)*(C -— A)

Multiplies (Full Precision): 8
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF P's IJ: Mantissa 20 Exp 4 for | + Sign
Mantissa 20 Exp 4 for J + Sign

Total numberof bits : 20*8 + 4*8 + 4*2 = 200.

All numbers are kept using the un-normalized floating point convention: if exponentis different than 0 the numberis
normalized if not, then the numberis un-normalized. The maximum range for the IJs (Full precision) is +/- 1024.

* 2 ETE orma 0: DUNG an Jum erin+5-414.1 Interpolation of constantattributes (Formatted:Sleondbern_}— ee == :
Because ofthe floating point imprecision, we need to take special provisionsif all the interpolated terms are the same
or if two of the terms are the same.

| Exhibit 2037 dockacd_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257842

ATI Ex. 2109

IPR2023-00922

Page 132 of 326

ATI Ex. 2109
IPR2023-00922

Page 133 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2007 4 September, 20157 GEN-CXXAXX-REVA | 31 0f 54er
4 Formatted: Bullets and Numbering

16.15. Staging Registers rr
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGTforit to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0123456789 1011 12 131415 || 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 44 42 43 44 45 46 47 || 46 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencerwill re-arrange them in this fashion:

012316 17 18 19 32 33 34 35 48 49 50 51 || 456 7 20 21 22 23 36 37 38 39 52 53 5455 || 89 1011 24 25 26 27
40 44 42 4356 57 58 59 |) 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the SQ is responsible to insert padcing to
account for the missing pipe. For example, if SP1 is broken, vertices 4.5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 will
not be sent by the VGT to the 5 AND the SQ is responsible to “Jump” over these vertices in order for no valid
vertices to be sent to an invalid SP.

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 11 Figure—tiFigure-t4+. The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sqmm using the R300 process. The gate count estimate is shown in Figure 10Figure OFigure10.

Basis for 8-deep Latch Memory (fromm R300)

8x24-bit 11631 2 60.57813 wvperbit

Area of 96x8-deep Latch Memory 46524 2
Area of 24-bit Fix-to-float Converter 4712.2 per converter

Method 1 Block Quantity Area
F2F 3 1413
8x96 Latch 16 744384

Figure 10:Area Estimate for VGT te Shader Interface

Exhibit 2037 dockdGo_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257843

ATI Ex. 2109

IPR2023-00922

Page 133 of 326

ATI Ex. 2109
IPR2023-00922

Page 134 of 326

PAGE

32 of 54
ORIGINATE DATE EDIT DATE R400 Sequencer Specification

VGT BLOCK

CIN PA)

SHADER
SEQUENCER

VECTOR ENGINE

Figure 11:VGT to Shader Interface

1416. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

| WEMORY NUMBER
4 bits ADDRESS |7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT(a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 3
parameters per vertex (VS_EXPORT_COUNT = 8). Thefirst position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17") is going to have the address 00000001000,the 18" 00010001000, the 19" 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is thatif the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*VS_EXPORT_COUNTto
Current_Location and reset the memory count to 0 before the next vector begins).

Exhibit 2037 dockacd_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

aee Formatted: Bullets and Numbering

AMD1044_0257844

ATI Ex. 2109

IPR2023-00922

Page 134 of 326

ATI Ex. 2109
IPR2023-00922

Page 135 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

 | 24 Septernber, 2001 4 September, 20154 GEN-CoOQOOCREVA | 33 af 54

4+#+16.1 Export restrictions ~

1/4116.1.1 Pixel exports:
Pixels can export 1,2,3 or 4 color buffers to the SX(+z). The exports will be done in order. The exports will always be
ordered to the SX.

444+-216.1.2 Vertex exports: -
Position or parameter caches can be exported in any order in the shader program. It is always better to export
posistion as soon as possible. Position has to be exported in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be done in any order with texture instructions interleaved.
The exports will always be allocated in order to the SX.

Whenexporting to more than EMO, one MUSTwrite to EM4 also (the write may be predicated if you don't need the
export),This is used to initialize thebuffersin the SX.

There cannot be any serialize bits set OR texture Reads between the EA andthe lastEM. 2

Memory exports will be surfaced using a macro extension: here is what needs to happen inside the macro:

The macro needs to create a special constant of the form:

StreamIDconstant:
8 (29:0), Bits 27:30 should be Ob01.

z = Integer that holds register field data. Note that this data must be organized so that italways represerits a ‘valid’ floating point number, with the relevant bits in (23 - 0); One way of doing this would be to
take the 23 bits and add 2°23.

av = max index value + 2°°23

OutputtoEXaddress:

x = Base of array Un low 30 bits/4
Mv = Index value (in low 23 bits)
Zz = Register Field data (in low 23 bits)
iW = Max Index value (in low 23 bits)

Also Assume that Co:

x = 0.0
XN = 10

The Macro expansion would be as follows:

MULADD EA = Rindex.ou, CO xyxx Csiream|D;
MOV EMx 6c = O thru 4) = Rdata:

The 8X will check for Invalid writes and maskout the dataso ii won't be written tomemory. Invalid writes are:

1) Index value >= Max Index value a
2)_blt Sl 0 Megative index)

Exhibit 2037 dockdGo_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

soc] Formatted: Bullets and Numbering

 +| Formatted: Bullets and Numbering

474316.1.3 Pass thru exports: “ a Format ee ——
Pass thru exports have to be done in groups of the form:

Jc) Formatted

~=| Formatted: Bullets and Numbering

AMD1044_0257845

ATI Ex. 2109

IPR2023-00922

Page 135 of 326

ATI Ex. 2109
IPR2023-00922

Page 136 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September 20152Lonwe son 34 of 54

23 bits)

They cannot have texture instructions interleaved in the export block. These exports are not guaranteed to be
ordered.

oigtoberepre

Also, when doing a pass thru export,-Posith

exporis-usedto synch roniige-the. chip when-doing-2tranition tot pase. Haru. shader 46.regular sshaderandyica-versa

ogcuranywhereinany shaderprogram andthuscan beused to ‘debe_There canbe any/ number ofpass thruexport
blocks throughout the pixel or vertex shader or both.

Here are the Sequencerarbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texture pending bit is set
2) Cannot allocate position if any older thread has not allocated position
3) Cannot have more than 2 opened allocs of type : Memory, position and Color.
4) If last thread is marked as not valid AND marked as last and we are about to execute the second to oldest

thread also marked last then:
a. Both threads must be from the same context (cannotallow a first thread)
b. Must turn off the predicate optimization for the second thread

5) Cannot execute a texture clauseif texture reads are pending
6) Cannot execute lastif texture pending (even if not serial)
7) Cannot allocate if not last or second to last for color exporis.

48-17, Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

| 48-117.1 Vertex Shading “
0:15 -16 parameter cache
16:31 - Empty (Reserved?)
32 - Export Address
33:37 -5 vertex exports to the frame buffer and index
38:476 - Empty
AT ~ Debug Address
48:52 - 5 debug export (interpret as normal memory export)
53:59 - Empty
60 - export addressing mode
61 - Empty
62 - position
63 - sprite size export that goes with position export

(X= point size, Y= edgeflag is bit 0, Z= VixKill is bitwise OR of bits 30:0. Any bit other than
sign means VtxKill.)

18.217.2Pixel Shading ~
QO - Color for buffer O (primary) :
1 - Color for buffer 1
2 - Color for buffer 2
3 - Color for buffer 3
4:15 -Empty
16 - Buffer 0 Color/Fog (primary)
17 - Buffer 1 Color/Fog

Exhibit 2037 dockacd_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

“| Formatted: Bullets and Numbering

17.216.2 Arbitration restrictions -

sol<| Formatted: Bullets and Numbering :

7] Formatted: Bullets and Numbering

S Formatted: Bullets and Numbering

AMD1044_0257846

ATI Ex. 2109

IPR2023-00922

Page 136 of 326

ATI Ex. 2109
IPR2023-00922

Page 137 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE 24 September, 2001 4 September, 20154 GEN-CXXAKXX-REVA | 35 0f 54
18 - Buffer 2 Color/Fog
19 - Buffer 3 Color/Fog
20:31 - Empty
32 --Export Address
33:37 -& exports for multipass pixel shaders.
38:476 - Empty
47 ~ Debug Address
48:52 -5 debug exports (interpret as normal memory export)
60 - export addressing mode
61 -Z for primary buffer (Z exported to ‘alpha’ component)
62:63 - Empty

419.18 Special Interpolation modes

19.118.1 Real time commands

We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 46x428-4x128 memories (one for each of three vertices x 16-4interpolants). These will be mapped
onto the register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA
need to be able to address the reatime parameter memory as well as the regular parameter store.For-higher
performance we should be able able to view them as two banks of 16 and do double buffering allowing one to be
leaded, while-the-otheris-racterized-vwithMoet-overiayshadersneed2-or4_sealarceerdinaies,ons-optien-might
be-to-restrict the -memonr-te16x64-or-d2x64allewing-onlyiweiniersolated-scalars_per-cyele,the-onlyprobiem-see
with-this-is,-lF-we-wew-support-for-16-veeter-4_intersolants_imporant(irue-only-_ifwe-map-Microsoft's-high-priority
siream-to-the-realtime-siream),-then-thePA/eequencer-need-to-suppor-a-realiime-speaific- mode-where -we-nead-ta
address 32-vectors-of parameters-insiead-ef 16. This modeis triggered by the primitive type: REAL TIME. The actual
memories are in the in the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by
the CP using register mapped memory.

49.218.2 Sprites/ XY screen coordinates/ FB information -
XY screen coordinates may be needed in the shader program. This functionality is controlled by the param_genn.io
register (in SQ) in conjunction with the SND_XY register (in SC) and the param_gen_pos. Alsoit is possible to send
the faceness information (for OGL front/back special operations) to the shader using the same control register. Here
is a list of all the modes and how they interact together:

The Data is going to be written in the register specified by the param_gen_posregister.

Param_Gen_i0 disable, snd_xy disable = No modification
Param_Gen_i0 disable, snd_xy enable = No modification
Param_Gen_i0 enable, snd_xy disable = Sign(faceness)garbage, (Sign Point)garbage Sign(Line)s, ¢
Param_Gen-.iG enable, snd_xy enable = Sign(faceness)screenX (Sign Point)screenY ,Sign(Line)s,t

In other words,
The generated vector is in RED, Y in GREEN, S in BLUE and T in ALPHA):
%Y,5,7
These values are always supposed to be positive and any shader use of them should use the ABS function
(as their sign bits will now be used forflags).
SignX = BackFacing
SignY = Point Primitive
SignS = Line Primitive
SignT = currently unused as a flag.

lf [Point & Line, then it is a Poly.

| would assume that one implementation which allows for generic texture lookup (using 3D maps)for poly
stipple and AA for the driver would be
ifCY<O) {

R = 0.0 (Point)

Exhibit 2037 dockdGo_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

 = =| Formatted: Bullets and Numbering

 LS -{Formatted: Bullets and Numbering ~

AMD1044_0257847

ATI Ex. 2109

IPR2023-00922

Page 137 of 326

ATI Ex. 2109
IPR2023-00922

Page 138 of 326

ORIGINATE DATE

24 September, 2001

|si‘édiseFS<OVE
R= 1.0 (Line)

 PAGE

36 of 54
EDIT DATE R400 SequencerSpecification

4 September, 20152i a re
yelse {

R = 2.0 (Poly)
}

| 4+9318.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequenceris going to generate a vector count to be able to
both use this count to write the 1° pass data to memory and then use the countto retrieve the data on the 2m pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX_PIX/VTX register. The sequencer
is going to keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is
written to the GPRs the counter is incremented. Every time a RST_PIX_COUNT or RST_VTX_COUNTevents are
received, the corresponding counter is reset. While there is only one count broadcast to the GPRs, the LSB are
hardwired to specific values making the index different for all elements in the vector. Since the count must be different
for all pixels/vertices and the 4 LSBs (16 positions) are hardwired to the corresponding shader unit the 5Q has two
choices:

1) Maintain a 19 bit counter that counts the vectors of 64. In this case the phase must be appended to the count
before the count is broadcast to the SPs:

Counter (19 bits) | Phase (2 bits) Hardwired (4 bits)

2) Maintain a 21 bits counter that counts sub-vectors of 16. In this case only the counteris sent to the Sps:

 Counter (21 bits) | Hardwired (4 bits) |

| 19.31183.1 Vertex shaclers a
In the case of vertex shaders, if GEN_INDEX_VTXis set, the data will be put into the x field of the third register (it
means that the compiler must allocate 3 GPRsin all multipass vertex shader modes).

P — -| Formatted: Bullets and Numbering

(Formatted:Bullets and Numbering_

| 19:3.218.3.2 Pixel shaders
In the case of pixel shaders, if GEN_INDEX_PIX is set, the data will be put in the x field of the param_gen_pos+1
register.

Exhibit 2037 dockacd_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257848

ATI Ex. 2109

IPR2023-00922

Page 138 of 326

ATI Ex. 2109
IPR2023-00922

Page 139 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

GEN-CXXXXX-REVA | 37 of 5424 September, 2001 4 September, 207152a LemeewensEMRAGe

AUTO INTERPOLATORSCOUNT
STG1 | |

ar ———————
AUTO COUNT ooo

The Auto Count Value is
broadcastto all GPRs.It is

ce loaded into a register wich has

| its LSBs hardwired to the

GPR number(0 thru 63). Then
| if GEN_INDEXis high, the

mux selects the auto-count
value and it is loaded inte the

GPRsto be either used to
retrieve data using the TP or

GPRO sent to the SX forthe RB touse it to write the data to
memory

Figure 12: GPR input mux Control - s ge . : < : :
(Formed:ulesanamie)

20-19, State management ee
Every clock, the sequencer will report to the CP the coldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

26+19.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencerwill keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vectorof pixels with the SC_SQ_new_vectorbit asserted, the sequencerwill first checkif
the count is greater than 0 before accepting the transmission(it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group ofpixels to the interpolators. Every time the state changes, the newstate counter is initialized to 0.

24-20. XY Address imports
The SC will be able to send the XY addresses to the GPRs. li does so by interleaving the writes of the [Js (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix—-float converter and expander and write the converted values to
the GPRs. The Xys are current SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 128.218.219.2 for details on how to control the interpolation in this mode.

241420.1 Vertex indexes imports Ss 4
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded oneline at a time by the VGT
block (96 bits). They are loadedin floating point format and can be transferred in 4 or 8 clocks to the GPRs.

22.21. Registers
Please see the auto-generated web pagesfor register definitions.

“« | 2-<| Formatted: Bullets and Numbering

a4 S a Formatted: Bullets and Numbering

. cc] Formatted: Bullets and Numbering

Exhibit 2037 dockdGo_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257849

ATI Ex. 2109

IPR2023-00922

Page 139 of 326

ATI Ex. 2109
IPR2023-00922

Page 140 of 326

ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

 | 24September, 2001|4 September, 20152 380f54 |, oo

23-22. Interfaces

23.1221 External interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—SPx it means that SQ is going to broadcast the same information to all SP instances.

23.222.2 SC to SP Interfaces “
ius) Formatted: Bullets and Numbering

4 _a ao] Formatted: Bullets and Numbering23.2:422.2.1 SC_SP# «=< {formatteds puesardnanterng _]
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpalators). This interface transmits
the I,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data which is transferred per quad is

Ref Pix | => $4.20 Floating Point | value *4
Ref Pix J => $4.20 Floating Point J value *4

This equates to a total of 200 bits which transferred over 2 clocks
and therefor needs an interface 100 bits wide

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ [J Control Bus transfers.

The data transfer across each of these bussesis controlled by a IJ_BUF_INUSE_COUNTin the SC. Each time the
SC has sent a pixel vector’s worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNT count. Prior ta
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2,if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
itis planned for the SP to hold 2 double buffers of |\J data and two buffers of X,Y cata, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,SQ and add a
EndOfvector signal on all interfaces to quit early. We opted for the simple modefirst with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performancehit.)

Name | Bits|Description
SC_SP#_data 100|[J information sent over 2 clocks (or X,¥ in 24 LSBswith faceness in upper bit)

Type 0 or 1, First clock I, second clk J
Field ULC URC LLC LRC
Bits [63:39] [38:26] 25-13)«=[12:0]
Format SE4M20 SE4M20 SE4M20 SE4M20

 Type 2
Fieid Face xX Y

| Bits [24] (23:12) [11:0]Format Bit Unsigned Unsigned

SC_SP#_valid iz Valid
SC_SP#_last_quad_cata 4 This bit will be set on the last transfer of data per quad.
SC_SP#_type 2 0 -> Indicates centroids

1 -> Indicates centers

i 2 -> Indicates X,Y Data and faceness on data bus
The SC shall look at state data to determine how many types to send for the |

Exhibit 2037 dockacd_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257850

ATI Ex. 2109

IPR2023-00922

Page 140 of 326

ATI Ex. 2109
IPR2023-00922

Page 141 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA 39 of 54

interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP block will have neither becausethe instantiation will insert the prefix.

, 2s) Formatted: Bullets and Numbering

23.2.292.2.2 SC_SQ a E ——_
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 108 bits) could be folded in half to approx 54
bits.

Name | Bits|Description le
SC_S80data 46 Contro! Data sent to the SQ

1 clk transfers
Event ~ valid data consist of event_id and

staie_id. Instruct SQ to post an
event vector to send state id and
event_id through requestfifo
and onto the reservation stations
making sure state id and/or event_id
gets back to the CP. Events only
follow end of packets so no pixel
vectors will be in progress.

Empty Quad Mask — Transfer Control data
consisting of pc_dealloc
or new_vector. Receiptof this is to
transfer pc_dealloc or new_vector
without any valid quad data. New
vector will always be posted to
requestfifo and pc_deailoc will be
attached to any pixel vector
outstanding or posted in request fifo
if no valid quad outstanding.

2 clk transfers
Quad Data Valid - Sending quad data with or

without new_vector or pc_dealloc.
New vector will be posted to request
fifo with or without a pixel vector and
pc_dealloc will be posted with a pixel
vector unless noneis in progress. In
this case the pc_dealloc will be
posted in the request queue.
Filler quadswill be transferred with
The Quad mask set but the pixel
corresponding pixel mask set tozero.

SC_S8Q_valid i14 SC sending valid data, 2™ clk could beall zeroes

8C_SQ_data - first clock and second clock transfers are shown in the table below.

Name BiiField Bits | Description

Clock Transfer

SC_SQ_event 1 This transfer is a 1 clock event vector Force quad_mask =
new_vector=pc_dealloc=0

L4 | This field identifies the event 0 => denotes an End Of State Event 4

8C_SQ_event_id |.)

Exhibit 2037 dockdGo_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257851

ATI Ex. 2109

IPR2023-00922

Page 141 of 326

ATI Ex. 2109
IPR2023-00922

Page 142 of 326

ORIGINATE DATE

24 September, 2001

EDIT DATE PAGE

40 of 54
R400 SequencerSpecification

 4 September, 20154

2 a
=> TBD

8C_SQstateid (8:6] 3 State/constant pointer (6*3+3)
SC_SQ_pc_dealloc [11:9] 3 Deallocation token for the Parameter Cache
SC_SQ_new_vector 12 1 The SQ must wait for Vertex shader done count > 0 and after

dispatching the Pixel Vector the SQ will decrement the count.
SC_SQ_quadmask [16:13] |4|Quad Writemask leff to right SPO => SP3 __
SC_SQ_end_of_prim 17 it End Ofthe primitive
8C_SQ_pix_mask [83:18]|16 Valid bits for ali pixels SPO=>SP3 (UL,UR,LL,LR)
$C_SQ_provok_vix [35:34]|2 Provoking vertex for flat shading
8C_3Q lod_correct_0 [44:36]|9 LOD correction for quad 0 (SPO) (@ bits per quad)
SC_SQ_lod_correct_1 [53:45]|9 | LOD correction for quad 1 (SP1) (9 bits per quad)|

2nd Clock Transfer

$C_SQ_lod_correct_2 _ LOD correction for quad 2 (SP2) (9 bits per quad)

8C_SQ_lod_correct_3 _ [[17:9] 9 | LOD correction for quad 3 (SP3)(9 bits per quad)

 SC_SQpe _ptrO [28:18]|11 | Parameter Cache pointer for vertex 0

SC_SQ_pe_ptri (99:29]|11 Parameter Cache pointer for vertex 1

 SC_S3Q_pe_ptr2 ot Parameter Cache pointer for vertex 2

SC_SQ_prim_type 3 Stippled line and Real time command need to load tex cords from
alternate buffer
000: Sprite (point)
001: Line
010: Tri_rect
100: Realtime Sprite (point)
101: Realtime Line
110: Realtime Tri_rect

 Name Bits|Description
|SQ_SC_free_buff 14 Pipelined bit that instructs SC to decrement count of buffers in use.
SQ_SC_dec_entr_ent 1 Pipelined bit that instructs SC to decrement count of new vector and/or event

seni to prevent SC from overflowing SQ interpolator/Reservation requestfifo.

The scan converter will submit a partial vector whenever:
1.) He gets a primitive marked with an end of packet signal.
2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been

marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector fo be processed, but the one being waited for could never export
until the pc_dealloc signal madeit through and thus the hang.)

Exhibit 2037.dockaod_Sequencerdec 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257852

ATI Ex. 2109

IPR2023-00922

Page 142 of 326

ATI Ex. 2109
IPR2023-00922

Page 143 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

| 24 September, 2001 4 September, 20154 GEN-CXAXKXKX-REVA 41 of 54 ae Tage Roos Hoes
23D Siiorbaa ~ =} (omanining)23-2-322.2.3SQ to SX(SP): interpolator bus ST SEE

Name Direction Bits | Description o ou ee
8Q_SPx_interp_flat_vix | SQ->SPx 2 Provoking vertex for flat shading
SQ_SPx_interp_flat_gouraud | S$Q—SPx im Flat or gouraud shading
SQ_SPx_interp_cyl_wrap SQ—SPx 4 | Wich channel needsto be cylindrical wrapped
SOQ_SPx_interp_param_gen | SQ—SPx 4 _ Generate Parameter
SQ_SPx_interp_prim_type SQ—SPx 2 | Bits [1:0]of primitive type sent by SC
SQ_SPx_interp_buff_swap $Q-SPx 4 | Swapp |J buffers
SQ_SPx_interp_lJ_line SQ—SPx 2 _ IJ line number
SQ_SPx_interp_mode | SQ--SPx 4 | Center/Centroid sampling
$Q_SXx_pc_ptrO SO—SXx (41 | Parameter CachePointer
SQ_SXx_pe_ptrt | SQ-53Xx (41 | Parameter Cache Pointer
SQ_SXx_pe_ptr2 | SQ>SXx | 44. | Parameter Cache Pointer
5Q_SXx_ rt sel SQ—SxXx i | Selects between RT and Normal data (Bit 2 of prim type)
$Q_SX0_pe_wr_en | $Q--SXO 18 | Write enable for the PC memories
SQ _SX1_pe_wr_en $Q—SxX1 8 | Write enable for the PC memories
$Q_SAx_pe_wr_addr | SQ--»SXx 17 _ Write address for the PCs
SQ_SXx_pe_ channel_mask | SQ>8Xx 4 | Channel mask
SQ_SXx_pe_ptr_valid| SQ—S8Xx |1 _Readpointersarevalid,foe COURSES SS SS es
SQ_SPx_interp_valid | SQ-»SPx | interpolation control valid {oe oe : es

=oc)Formatted: Bullets and Numberin
23-2-422.24 SQ to SP: Slaging Register Data -|-- Com == oe
This is a broadcast bus that sends the VSISR information to the staging registers of the shaderpipes. : :
Name Direction Bits|Description

5Q_SPx_vsr_cata SQ—SPx 96 Pointers of indexes or HOS surface information 7 .80SPxverwitaddr _ 80-25Px 3_|Stagingregisterwriteaddress __

SQ SPx ver_rd addrSQ-SPxverdouble |SQ—SPx 34| Staging register read _address0:-Nernal-96-bite | .
SQ_SP0O_ vsr_valid SQ—SPO0 1 Datais valid
5Q_SP1_vsr_ valid SQ—SP1 1 Data is valid
SQ_5P2_ ver valid SQ--SP2 1 Data is valid
$Q_SP3_vsr_ valid SQ >SP3 1 Data is valid
SQ_SPx_vsr_read SQ—SPx 1 Increment the read pointers oe

A
23.25922.5 VGT to SQ: Vertex interface Forma —- =
23.2:5422.2.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencerin full, 32-bit floating-point format, The VGT can transrnit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide. In the case where an event is sent the 5 LSBs of VGT_SQ_vsisr_data contain the eventiD.

Exhibit 2037 dockdGo_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257853

ATI Ex. 2109

IPR2023-00922

Page 143 of 326

ATI Ex. 2109
IPR2023-00922

Page 144 of 326

 ORIGINATE DATE

24 September, 2001

EDIT DATE PAGE

42 of 54

R400 SequencerSpecification

 4 September, 20154

Bits Description
96 Pointers of indexes or HOS surface information
1 VGTis sending an event

0: Normal 96 bits per vert 1: double 192 bits per vert
1 Indicates the last VSISR data set for the current process vector (for double vector

data,“end_ofvector" isset.on the first vector)Vsisr data is valid

VGT_SQ_vsisr_data
VGT_SQ_event
VGT_SQ_vsisr_continued
VGT_SQ_end_of_vtx_vect

VGT_SQ_indx_valid

3 Render State (6°3+3 for constants). This signal is guaranteed to be correct when
‘VGT_SQ_vgt_end_of_vector’is high.

VGT_SQ@_send 1 Data on the VGT_SQis valid receive (see write-up for standard R400 SEND/RTR
interface handshaking)

| SQ_VGT_rtr 1 Ready to receive (see write-up for standard R400 SEND/RTR interfacehandshaking)

| 232:5.222.2,5.2 Interface Diagrams <--> (Formatted: Bullets and Numbering

Exhibit 2037.dockaod_Sequencerdec 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257854

ATI Ex. 2109

IPR2023-00922

Page 144 of 326

ATI Ex. 2109
IPR2023-00922

Page 145 of 326

HEONSNOSHaqvHS

xe@BHCJGAODUOSOONJUBLAdODsoUdIBJOY"JENUSPYUD[LW@weescsr

sopussuenbes“gqegdp7S6.

uad4naaisvxLOL

bSOLOEA20ana%TIGAOdWSICAyYLYISISA

[fmtZWLWaSISA

LDA

 S10cPVASEXXXXXO-NADdovdWAN“ASULNSANSOG

¥

ZGL0EJequiaGes7SLVdLid3

Loog‘JequisidespzSLVdJLYNIOINO

 TIWIAE.LVNYaddoOFAILOdLOdd

AMD1044_0257855

ATI Ex. 2109

IPR2023-00922

Page 145 of 326

ATI Ex. 2109
IPR2023-00922

Page 146 of 326

axe@BHCIGAOQUOBBYONJUBUAdODsoudIBjOy“PENUSPYUD[LY@weeseer "SOELSIL]OAHSVd10)WemEIGjeomo7pales"Tsing
NOTSSIWNSNYVGLsdOLsYaaNas[SLaWLS-aad

r

WHATSHON

AMD1044_0257856

NOISSINSNVHLsdOLsSYHATHORS

HYOddALGWHOdaINOO81aLOWEVdO€Ia

pbWLwdpONES€WLwd€NaSZzWawaZONESSLYTDAZulyosIulyOs0ulyOswLeOs

 COTULLA
|

Lu

nn

vereerPS10ppFElOeHGUSSF|Loouequieidespz49VvduoqeoyloadsJeouenbasCOPYavdLidaFLVSLVYNIORNO

 TIWIAE.LVNYaddoOFAILOdLOdd

ATI Ex. 2109

IPR2023-00922

Page 146 of 326

ATI Ex. 2109
IPR2023-00922

Page 147 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20157 GEN-CXXAXX-REVA | 45 0f 54er

23-2.622.2.6 SQ to SX: Control bus Pe ee

Name | Direction iBits | Description ;
SQ_SXx_exp_type SQ—5Xx [2 _ QO: Pixel without z (1 to 4 buffers)

_ 01: Pixel with z (1 to 4 buffers)
| 10: Position (1 or 2 results)

| I _1t: Pass thru (4.8 or 12 results aligned) _
SQ_SXx_exp_number SQ>5Xx 2 |Number of locations needed in the export buffer

| (encoding depends on the type see bellow).
$Q_SXx_exp_alu_id | S$Q-»SXx 4 ALU ID
SQ_SxXx_exp_valic |SQ>8Xx i | Valid bit
SQ_SXx_exp_state SQ—>SXx 3 | State Context

3Q_SxXx_free_done SQ—S8Xx 1 | Pulse that indicates that the previous export is finished
| from the point of view of the SP. This does not
i necessarily mean that the data has been
transferred to RB or PA, or that the space in export

| buffer for that particular vector thread has been
| freed up.

SQ_S8Xx_free_alu_id | SQ>SXx i -ALU ID

Depending on the type the numberof export location changes:
* Type 00: Pixels without Z

o 00= 1 buffer
o 01 = 2 buffers
o 10=3 buffers
o 11=4 buffer

e Type 01: Pixels with Z
o 00= 2 Buffers (color + Z)
o O01 3 buffers (2 color + Z)
o 10=4 buffers (3 color + Z)
o 115 buffers (4 color + Z)

e Type 10: Position export
o Q0= 1 position
o 01 2 positions
o 1X = Undefined

e Type 11: Pass Thru
00 = 4 buffers
01 = 8 buffers
10 = 12 buffers

o 11 Undefined

O

Oo0

Below the thick black line is the end of transfer packet that tells the SX that a given export is finished. The report
packet will always arrive either before or at the same time than the next export to the same ALU id.

 >| Formatted: Bullets and Numbering
 23-2722,2.7 SX to SQ: Outputfile control -

Name | Direction | Bits | Description
 I

8X%Xx_SQ_exp_count_rdy SXx-5Q | 1 | Raised by SX0to indicate that the following twofields
_ reflect the result of the most recent export

SxAx_SQ_exp_pos_avail SXx8Q, 2 Specifies whether there is room for another position.
00 : 0 buffers ready

| | | O1: 1 buffer ready
10: 2 or more buffers ready

8Xx_SQ_exp_buf_avail SXx5Q 7 | Specifies the space available in the output buffers.
| | 0: buffers are full
| i 41. 2K-bits available (32-bits for each of the 64

Exhibit 2037 dockdGo_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257857

ATI Ex. 2109

IPR2023-00922

Page 147 of 326

ATI Ex. 2109
IPR2023-00922

Page 148 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 September, 20154 46 of 54= i 2s >.

| pixels ina clause)

_ 64: 128K-bits available (16 128-bit entries for each of
| 64 pixels)
/| 65-127: RESERVED

 «ne = -[Formatted: Bulletsand ‘Numbering :
Once every clock, the fetch unit sends to the sequencer on which RS line it is now working and if the data in the
GPRsis ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequencer also provides the instruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

Name Direction Bits | Description

TPx_SQ_data_rdy | TPx— SQ [4 | Data ready
TPx_SQ_rs_line_num “TPx— SQ “6 | Line number in the Reservation station

| TPx_SQ_iype | TPx—> SQ 1 | Type ofdata sent (0: PIXEL, 1 VERTEX)_
SQ_TPx_send SQ—TPx 1 | Sending valid data
$Q_TPx_const | $Q--TPx | 48 | Fetch state sent over 4 clocks (192 bits total)

|SQ_TPx_instr SQ>TPx _ 24 | Fetchinstructionsentover4clocks
SQ_TPx end_of_ group | SQ--TPx i4 |Last instruction ofthe group ;
SQ_TPx_Type SQ-TPx 1 | Type of data sent (O:PIXEL, 1:VERTEX)
SQ_TPx_gpr_phase | SQ--TPx i2 _ Write phase signal
|SQ_TPOlodcorrect_ SQTPO _ 6 | LODcorrect 3 bitsper comp2componentsperquad_
Ee TPO_pix_mask > 4 | Pixel mask 1 bit per pixel _
sQ_TP1_lod_correct _SQ-—TP1 6 | LOD correct 3 bits per comp 2 components per quad
$Q_TP1_pix_mask SQ—-TP1 4 | Pixel mask 1 bit per pixel
3Q_TP2_lod_correct | 8Q-TP2 18 | LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pix_mask SQ—TP2 4 | Pixel mask 1 bit per pixel
SQ_TP3_lod_correct | SQ-TPS .6 | LOD correct 3 bits per comp 2 components per quad
8Q_TP3_pix_mask 8Q-TP3 4 | Pixel mask 1 bit per pixel
3Q_TPx_rs_line_num | 8Q-—TPx 16 _ Line number in the Reservationstation
$Q_TPx_write_gpr_index SQ->TPx 7 Index into Register file for write of returned Fetch Data
SQ_TPx_ctx_id SQ->TPXx L3 | The state context ID (needed for multisample resolves)

| 23-2-922.2.9TP to SQ: Texture stall “Ser ee
The TP sends this signal to the SQ and the SPs whenits input buffer is full. : -. 2 =

TP_SP_fetch_Steli

ce
ee=],

Exhibit 2037 dockacd_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257858

ATI Ex. 2109

IPR2023-00922

Page 148 of 326

ATI Ex. 2109
IPR2023-00922

Page 149 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE S

24 September, 2001 4 September, 20757 47 of 54 |peeLe deenPVR -.

Name | Direction | Bits |Description
TP_SQ_fetch_stail | TP SQ 4 _Do not send more texture requestif asserted

“y ae

2a24422,.210 SQ to SP: GPR and auto counter *

Name ‘Direction Bits Description
|SQ_SPx_gpr_wr_addr _[S$Q-9SPx| @ | Writeaddress

$Q_SPx_opr_rd_addr _SQ—SPx 7 Read address
SQ_SPx_gpr_rd_en SQ—SPx 1 Read Enable

SQ_SPO_gpr_esev_wr_en | SQ—-SPx 4 Write Enable for the GPRs of SPO for PSI and PV

SQ_SP1_gpr_psov_wr_en “SQ—5SPx 4 Write Enable for the GPRs of SP1 for PSand PV
SQ_SP2_gpr_pspy_wr_en SQ—SPx 4 Write Enable for the GPRs of SP2for PS.

angPV
SQ SP3 ger pspv wren [SQ-35Px 4 Write Enable for the GPRs of SP3 for PSand PV

SQ SPO goer int wren | 80.9SPx 1 Write Enable for the GPRs of SPO for
inputs (interp/ybd

S@_SP1 gor int wren | $0--5Px 1 Write Enable for the GPRs of $P1 for
| Inputs(interp/vbo.

$Q_SP2 gor int wren Sa 2BPK 1 White Enable for the GPRs of SP2 for
|. inputs Gntero/yvb:

SQ_SP3_gpr_int wr en8Q--sP3-gprwen | SO-0SPXSBQ--SPx|14 Write Enable for the GPRs of SP3 for
| Inputs (interp/vo)Wrlte—Enable—for—the
| GPRe-ofSRB

SQ_SPx_gpr_phase | SQ—-SPx 2 The phase mux (arbitrates between
i inputs, ALU SRC reads and writes)

S@Q_SPx_channel_mask | SQ—SPx 4 The channel mask
8Q_SPx_gpr_input_sel SQ—SPx 2 When the phase mux selects the inputs

this tells from which source to read from:
Interpolated data, VTXO, VTX1, autoegen

I counter.

SQ_SPx_auto_count | SQ—-SPx 21 Auto count generated by the SQ, commonI for all shader pipes

Exhibit 2037 cocR400_Sequencer.des 74373 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~

Jolt] Fermatted: Bullets and Numbering

+ Formatted: Bullets and Numbering

AMD1044_0257859

ATI Ex. 2109

IPR2023-00922

Page 149 of 326

ATI Ex. 2109
IPR2023-00922

Page 150 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 20152 48 of 54- i. i — i re 38 = enemies

232-12222.11SQ to SPxc Instructions
Name Direction Bits|Description
SQ_SPx_instr_start |$Q-»SPx 4 Instruction start
$Q_SP_instr SQ—SPx 24 Transferred over 4 cycles

0: SRC A Negate Argument Modifier 0:0
SRC A Abs Argument Modifier 1:4
SRC A Swizzle o:2
Vector Dat 15:10
Per channel Select 23:16

00: GPR
O01: PV
10: PS

11: Constant (if 11 has to be 11 for all
channels)

1: SRC B Negate Argument Modifier 0:0
SRC B Abs Argument Modifier 1:4
SRC B Swizzle 9:2
Scalar Dst 15:10
Per channel Select 23:16

00: GPR
01: PV
10: PS

11: Constant (if 11 has to be 11 forall
channels)

2: SRC C Negate Argument Modifier 0:0
SRC C Abs Argument Modifier=1:1
SRC C Swizzle g:2
Unused 15:10
Per channel Select 23:16

00: GPR
01: PV
10: PS

11: Constant (if 11 has to be 11 for all
channels)

3: Vector Opcode 4:0
Scalar Opcode 10:5
Vector Clamp 44:14
Scalar Clamp 12:12
Vector Write Mask 16:13

| | Scalar Write Mask 20:17| __Unused 23:21
SQ_SP0_pred_override $Q—SP0 4 Q: Use per channel RGBA field (enables the per

channel logic, if not set only pay attention te the 11
: seting).| _1: Use GPR

SQ_SP1_pred_override SQ—SP1 4 QO: Use per channel RGBA field (enables the per

| channel! logic, if not set only pay attention to the 11
! | seting).
| | 1: Use GPR

SQ_SP2_pred_override $QSP2 4 0: Use per channel RGBA field (enables the per
channel logic, if not set only pay attention to the 11

| seting)._1: Use GPR
SQ_SP3_pred_override SQ >SP3 4 0: Use per channel RGBA field (enables the per

I | channel logic, if not set only pay attention to the 11

Exhibit 2037 dcock400_Sequercecdes 74373 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »~

ore Vo | Formatted: Bullets and Numbering

AMD1044_0257860

ATI Ex. 2109

IPR2023-00922

Page 150 of 326

ATI Ex. 2109
IPR2023-00922

Page 151 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20154 GEN-CXXXXX-REVA | 49 of 54
seting).
1: Use GPR

SQ_SPx_exp_id [SQ >SPx 1 LGPRID _
SQ_SPx_exporting $Q—SPx 1 0: Not Exporting

41: Exporting
SQ_SPx_stall |SQ>S5Px 1 |Stall signal

5G_SPx_ Waterfall SQ-SPx Ing Use the incoming constant instead of the registered one
for the next group of 16.
OQ Normal mode
1 Waterfall on SRCA

| 2: Waterfall on SRCB
3. Waterfall on SRCC

23-21322,212 SQ to SX: write mask interface (must be aligned with the SP data) *
Name |Direction Bits |Description _
$Q_S8X0_write_mask SQ—-SP0 8 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
| buffers). 4x4 because 16 pixels are cormnputed per

| _ clock. This is for the data coming of SPO and SP2.
SQ_SX1_ write_mask SQ-SP1 & Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per

| clock. This is for the data coming of SP1 and SP3.

 oo Fermatted: Bullets and Numbering

. . . J >:7| Formatted: Bullets and Numbering
23-2-1422.2.13 SP to SQ: Constant address load/ Predicate Set/Kill set * es

Name _ | Direction | Bits | Description / : :
SPO_SQ_const_addr | SPO-SQ | 36 | Constant address load / predicate vector load (4 bits only)/

| / _ Kill vector load (4 bits only) to the sequencer
SPO_SQ_valid SP0—SQ 1 _ Data valid
SP1_SQ_const_addr SP1—S80 36 | Constant address load / predicate vectorload (4 bits only)/

| fe |_ Kill vector load (bits only) to the sequencer
$P1_SQ_valid _SP1—SQ 4 | Data valid
SP2_SQ_const_addr SP2—80 36 | Constant address load / predicate vectorload (4 bits anly)/

_ Kill vector load (4 bits only) to the sequencer
SP2_S0Q_valid |SP2SO 4 | Data valid
SP3_SQ_const_addr SP3—8Q 36 | Constant address load / predicate vectorload (4 bits anly)/

_Kill vector load (4 bits only) to the sequencer
SP3_SQ_valid |SP3.SQ 4 | Data valid
SPO_SQ_data_iype SP3SQ ;2 | Data Type| OConstant Load

| 4: Predicate Set
| | | 2: Kill vector load

Becauseofthe sharing of the bus none of the MOVA, PREDSETorKILL instructions may be coissued.

ee 4 Formatted: Bullets and Numbering

23-24522.2.14SQ to SPx: constant broadcast -

Name Direction Bits | Description : oe Eee OES : SESS es ss
SQ_SPx_const | SQ—>SPx | 128 | Constant broadcast : SESS oe aan

— . oS a4 Formatted: Bullets and Numbering23-246772.2 15 SQ to CP: RBBM bus “ = oo
Name | Direction | Bits | Description ees : rr
8Q_RBB_is SQ—>CP 1 | Read Strobe
SQ_RBB_rd | SQ >CP | 32 | Read Data
8Q_RBBM_onrtrir SQ—CP 1 | Optional
SQ_RBBM_rir _8Q-9CP i | Real-Time (Optional)

Exhibit 2037 dockdGo_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257861

ATI Ex. 2109

IPR2023-00922

Page 151 of 326

ATI Ex. 2109
IPR2023-00922

Page 152 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

| 24 September, 2001 4 Septernber, 20157 50 of 54 oe a ee : :
"2122 16CPio SQ. RBBI bas I=(FormatsBeeadnonbeing
23.24922.2.16CP to SQ: RBBM bus EEE

Name|Direction Bits | Description
rbbm_we CP-»SQ 1 | Write Enable
rbbm_a | CP>SQ 115 i Address -- Upper Extent is TBD (16:2)
robbm_wad CP—SQ 32. | Data
rbbm_be | CP.»SQ 14 | Byte Enables
robri_re CcP=5Q 1 | Read Enable
rbb_rsO | CP-»SQ i | Read Return Strobe 0
robrst CP—SQ 1 | Read Return Strobe 1
rbb_rdO | CP--5Q 132 | Read DataOdO
rbb_rd1 CP—SQ 32. ‘Read Data O ce BOS RU USS SESS aes Se
RBBM_SQ_soft_reset CP—SG 1 | Soft Reset ee : ae oe

23.2.1822.2.17 SQ to CP:State report “
Name | Direction | Bits | Description ao ne : . :

SQ_CP_vs_event| SQ>CP_ [4 Vertex ShaderEvent
SQ_CP_vs_eventid | SQ—CP 15 | Vertex Shader Event ID
SQ_CP_ps_event SQ-CP 1 | Pixel Shader Event
SQ_CP_ps_eventid | 8Q-—CP i) | Pixel Shader Event ID

23-322.3 Example of control flow program execution
We now provide some examples of execution to better illustrate the new design.

ee | Formatted: Bullets and Numbering :
Given the program:

ud
ul

ex 0
PP
“1-1 OoPad a

u3 Serial
u4

ex 2
ud
u6 Serial

a* @
u7
loc Position 1 buffer
u8 Export

ex 4
loc Parameter 3 buffers
u 9 Export 0oO* On
u 10 Serial Export 2
u 11 Export 1 End

 PRAbPbPAPPPAPRPIDD
Would be converted into the following CF instructions:

u UO Alu O ‘lex O Vex 1 Alu 0D Alu O Tex 0 Alu 1 Aiu OD lex
Lu

Stu O Tex
Ww
Oo ALi O Tex 1 Alu DO Alu

And the execution of this program would looklike this:

Exhibit 2037 dockacd_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257862

ATI Ex. 2109

IPR2023-00922

Page 152 of 326

ATI Ex. 2109
IPR2023-00922

Page 153 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 20157 GEN-CXXXXX-REVA D1 of 54
Put threadinVertexRS:

Control Flow Instruction Pointer (12 bits), (CFP)
Execution Count Marker(3 or 4 bits), (ECM)
Loop Iterators (4x9 bits), (LD
Call return pointers (4x12 bits), (CRP)
Predicate Bits(4x64 bits), (PB)
Export ID (1 bit), (EXID)
GPR BasePtr (8 bits), (GPR)
Export Base Ptr (7 bits), (EB)
Context Ptr (3 bits) (CPTR)
LOD correction bits (16x6 bits) (LOD)

State Bits

LCFP | ECM oo[cRP[PBC EXID)=GPR[EB[cPTR[LoD
9 [é lo [0 0 0 i) Oo FO lo

Valid Thread (VALID)
Texture/ALU engine needed (TYPE)
Texture Reads are outstanding (PENDING)
Waiting on Texture Read to Complete (SERIAL)
Allocation Wait (2 bits) (ALLOC)

00 — No allocation needed
01 — Position export allocation needed (ordered export)
10 — Parameter or pixel export needed (ordered export)
11 — pass thru (out of order export)

Allocation Size (4 bits) (SIZE)
Position Allocated (POS_ALLOC)
First thread of a new context (FIRST)
Last (1 bit), (LAST)

| Status Bits

 VALID (TYPE PENDING | SERIAL | ALLOC|SIZE [POS ALLOCFIRST| LAST

1 [ALU 0 lo fo a [0 1
4

Then the thread is picked up for the execution of the first control flow instruction:Execute © Alu O Alu 0 Tex 0 Tex 1 Alu O Alu O Tex 0 Alu 1 Alu OD Tex

lt executes the first two ALU instructions and goes back to the RS for a resource request change. Here is the
state returned to the RS:

Then when the texture pipe frees up, the arbiter picks up the thread to issue the texture reads. The thread comes
backin this state:

State Bits

CFP [ECM
Qa [4 |

 | | CRP PB | EXID _GPR EB | CPTR LOD

10 10 0 Lo 0 ore

Exhibit 2037.docka00_Sequencereloc 74373 Byes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

State Bits

|CFP [ECM iL [CRP PB | EXID _GPR [EB (CcPTR | LOD
Q [2 [0 [oO 0 [0 10 Lo [9 LO

=

VALID TYPE PENDING | SERIAL [ALLOC | SIZE |POS_ALLOC FIRST LAST
eeTEXOOjo=JOjo(Ot1oC |

AMD1044_0257863

ATI Ex. 2109

IPR2023-00922

Page 153 of 326

ATI Ex. 2109
IPR2023-00922

Page 154 of 326

ORIGINATE DATE

24 September, 2001 EDIT DATE

4 September, 20157Levene PUVVE4

R400 Sequencer Specification PAGE

52 of 54

ALID ___ PENDING | SERIAL | ALLOC SIZE | POS_ALLOC

 4 ALU 1 [1 Lo
|
Lo LO

Because of the serial bit the arbiter must wait for the texture to return and clear the PENDING bit before it can
pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returnsit in

this state:

State Bits

| CFP | ECM PL | CRP PB | EXID | GPR EB | CPTR LOD
0 ‘6 fo [0 0 [0 0 0 [0 0

Status Bits

|VALID TYPE PENDING [SERIAL [ALLOC [SIZE[POS _ALLOC FIRST LAST
1 TEX 0 Lo [0 Lo 0 1 0

Again the TP frees up, the arbiter picks up the thread and executes. It returns in this state:

State Bits

|CFP |ECM iL LCRP PB | EXID [GPR EB [CPTR |LOD
a [7 [9 [0 0 [0 fo 6 [6 lo

_StattisBits ccccssssniisininsisti

VALID [TYP PENDING | SERIAL | ALLOC | SIZE|POSALLO FIRS | LAST
1 | ALU 1 oO 10 Ke i) 1 10

Now, even if the texture has not returned we can still pick up the thread for ALU execution because the serial bit
is not set. The thread will however come back to the RS for the second ALU instruction because it has the serialbit

set.

StateBits ee _.

[EXID |GPR
6G 0 0 oO 0

Status Bits

 VALID TYPE PENDING [SERIAL |ALLOC [SIZE |POSALLOC FIRST | LAST |:
1 | ALU 1 [1 LO 10 10 1 Lo |

As soon as the TP clears the pending bit the thread is picked up and returns:

State Bits

| CFP | ECM [Li | CRP PB | EXID | GPR EB | CPTR LOD
Q 9 0 0 0 lo 10 0 Lo 0

Status Bits

LVALID TYPE PENDING| SERIAL| ALLOC| SIZE| POS_ALLOCFIRST__| LAST1 TEX 0 10 10 0 0 1 0G

Exhibit 2037 docR400_Sequencerdec 74373 Byes™* © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257864

ATI Ex. 2109

IPR2023-00922

Page 154 of 326

ATI Ex. 2109
IPR2023-00922

Page 155 of 326

24 September, 2001 4 September, 20157 GEN-CXXRKX-REVA 53 of 54on cee

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

bythe TP andretums:

O Alu

State Bits

CFP ECM Ll | CRP PB | EXID _GPR EB |CPTR _| LOD
1 10 :O 10 0 LO :0 0 io 10

‘StatusBis eee

VALID | TYPE PENDING | SERIAL|ALLOC [SIZE [POS ALLOC FIRST LAST
1 | ALU 1 lO 10 i 0 1 0

Picked up by the ALU and returns (lets say the TP has not returned yet):Roloc Position 1

StentRSi

CFP ECM Ll CRP [PB EXID _GPR [EB [CPTR | LOD
2 0 rd iO [0 ie) 10 [0 io oO

Status Bits

[VALID[TYPEPENDING| SERIAL| ALLOC | SIZE_| POS _ALLOC FIRST LAST
1 ALU 1 0 O04 14 Lo 1 0G

Ifthe SX has the place for the export, the 5Q is going to allocate and pick up the thread for execution. It returns to
the RS in this state:

Execute © Alu O Tex

State Bits

|CFP | ECM cu _CRP PB | EXID _GPR EB | CPTR LOD
3 1 0 0 0 [o Oo 0 Lo 0 |

| Status Bits

_VALID. -| TYPE|1

TEX 1 [0 LO 1 1 [0

PENDING [SERIAL | ALLOC [SIZE [POSALLOCFIRST | LAST ir

Fo

Now, since the TP has not returned yet, we must wail for it to return because we cannot issue multiple texture
requests. The TP returns, clears the PENDING bit and we proceed:

| State Bits

CFP _ ECM Ll _GRP PB | EXID | | EB [Lop
re[0 cm [oO 18 [o. 0 [O J

Status Bits

VALID TYPE PENDING [SERIAL | ALLOC [SIZE |POS_ALLOC FIRST [LAST oe
1 ALU 1 0 | 10 13 11 1 0 | ees

Once again the SQ makes sure the 8X has enough room in the Parameter cache before it can pick up this
thread.

Exhibit 2037.docka00_Sequencereloc 74373 Byes** © ATI Confidential. Reference Copyright Notice on Cover Page © »*

AMD1044_0257865

ATI Ex. 2109

IPR2023-00922

Page 155 of 326

ATI Ex. 2109
IPR2023-00922

Page 156 of 326

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 20152 54 of 54cetteNT

end 0 Alu O Tex 1 Alu Oo Alu

State Bits |.

CFP ECM [Ll CRP PB | EXID [GPR | EB [CPTR [LOD
5 1 io 0 10 4 10 400 10 oO

‘StatusBits eee seminal

VALID | TYPE | PENDING | SERIAL [ALLOC [SIZE | POS ALLOC [FIRST [LAST
1 | TEX 4 10 10 [oO 4 i4 [0

This executes on the TP and then returns:

| State Bits

CFP ECM Ll PCRP [PBEXID (GPR [EB CPTR|.LOD
5 2 10 G 19 if LO | 100 0 0

ee .

[VALID TYPE [PENDING |SERIAL |ALLOC [SIZE|POS_ALLOC|FIRST LAST
1 | ALU [1 [4 0 QO 1 1 1

Waits for the TP to return because of the textures reads are pending (and SERIALin this case). Then executes
and does not return to the RS because the LASTbit is set. This is the end of this thread and before dropping it on the
floor, the SQ notifies the SX of export completion.

24.23, Open issues ee
Need to do some testing on the size of the registerfile as well as on the registerfile allocation method (dynamic VS
static).

Saving power?

Exhibit 2037 dockacd_Sequencerdes 74373 Bytes** © ATI Confidential. Reference Copyright Notice on Cover Page © »~*

AMD1044_0257866

ATI Ex. 2109

IPR2023-00922

Page 156 of 326

ATI Ex. 2109
IPR2023-00922

Page 157 of 326

 ORIGINATE DATE

24 September, 2001

Laurent Lefebvre

EDIT DATE DOCUMENT-REV. NUM. PAGE

4 September, 2015 GEN-CX0O0OX-REVA 1 of 56

Author:

issue To: Copy No:

R400 Sequencer Specification

SQ

Version 2.10

 Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the
required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

 AUTOMATICALLY UPDATED FIELDS:

Document Location: C\perforce\r400\doc_lib\designiblocksisq\R400_Sequencer.doc
Current intranet Search Title: R400 Sequencer Specification

APPROVALS

 7 Name/Dept oo. Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE

SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATi Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of AT| Technologies Inc.”

Exhibit 2038.d0c 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © + ATI 2038
LGvy. ATI

IPR2015-00325

AMD1044_0257867

ATI Ex. 2109

IPR2023-00922

Page 157 of 326

ATI Ex. 2109
IPR2023-00922

Page 158 of 326

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 2015 2 of 56

Table Of Contents

B. OVERVIEWno.ceccccceseenenseseencnnannereseaeaers ceaneecasonsssneneenentaeanversieaaeesateneceensnensaetenteseqnarsssestent 7

L1 Top Level BlOCK DIGQA oo.cccece cee e eee e ene e eter e eer SEE EEE EE EEE CCEE CREE CCE CCEE DC CegeEECGeEeEEECeEReS 9
1.2 Data Flow graph (SP) oocccccccc ccc ccnte eee ce nee cece cece reece ce eeeseccaeeeeccneeeeeecaceneecseccnereesteneness 10
1.30 Control Grapnecocenee cence een teeeneeeeeneeeccneeeccneeescceeeeccreecteresentirecaneeeseneeserscas 11
2. INTERPOLATED DATA BUS... sccscccseeseresessenensnecssssuessesssunseenenuesseusacsseauesecssnusueatsaeneesenns 11

3. INSTRUCTION STORE.cccccscscesssuesesssseesesensnoneeuesesseaueseessnuasesssaeeeeseseneeesasessoaesneasssuauersenes 14

4, SEQUENCER INSTRUCTIONS|...eccccssconseceensnneeresneenseersseusnensaucueauenenscanaevarseuaseneeee 14
5, GONSTANT STORES.cccccecccssnoceccseeessecnenoneetenerseaenereesunoneeceeeeseceneueneetenerseneneressneanertenee 14

5.1 M@MOory O©Q@NIZallOns ooo.eecece cece eben rene nnn EE REE Ee nee EE EEE ODED ERED REED OCG EEG C ott ee neces 14
5.2 Management of the Control Flow Constants oo...ccccccee cece ccceeeeccceteescecnnencseescnerees 15
§.3 Management of the re-mapping tablesooocececece cece cette bette aeeeeeeeeees 15

§.3.]1 R400 Constant management...ccccece es ceee cee csestetstetetesvetitestestnteventtenieens 15
5.3.2 Proposal for R4AQOLE constant managemernt................. Error! Bookmark not defined.
$13.30 Dirty DiScccsce tecevene secret nesesceenevitenestscntewinssiaanrentennsvstiterienennevenerersavens 15
S.3.4 Free List BlOCK oc ccccccccesesesssssseesersesessseeserssessinsseissesseitetsssitatsisaanarsansisevansesaavees 15

5.3.5 De-allocate Block ooo... cococccccccccccccccecececeseeeccesevseceveveevecsevevevsevevetvivetesveteevetssvevetvevevereseeee 16

5.3.6 Operation of Incremental MO! oo.occ ccceeceeeceeveee ces veeetetsteventevetevesstesenteventvensieees 16
§.4 Constant Store INGOxINgicecece eee beta e octet teste otc iteeectcrneeeseniees 17
5.5 Real THM@ COMMAS...cece cece cece ences eee deen ec ec cn cee eeece ce eeeeecceeeecccnsenereeccneeestencaes 17

5.6 Canstant Waterfallinig oo.ccccece cece cence eee cn nese e cece ne er eec cnc eeeeec ce eeeescaneneecseccnerieeteneteees 17
6 LOOPING AND BRANCHESDo...ccnceesenneeneesssnseerensennseeneseosnenseraneauesenssenserstzaeaseneens 18

61 The controlling State.occcee te ence tree cen ones te cote ceeceteqeeceneuteeeeseeneteenessncaeeeecnnees 18
2 The Control Flow Fragrant o.ooccccc cece ccc nece cee cn cece cece cs eeeecc cee eeecccnneseeseecenereecencreesteccaes 18
6.2.1 Control flow instructions table...ceecece csenereetetecenenenstenetevstanenavenetenetenes 19

6.3 WPISIMOabionyoocece cece cece eee c cece ene ccee aces ceeeeee can cececcasaeeceseeesecuenenecreseeeeeeeeeeeconenenercnts 22
64 Data dependant predicate instructions ccccc cccccecccseceeceeeeeececeeneneceeeeeeeceeeneesenaaseness 24
6.5 HW Detection of PVPS.ccccee cent ne never bet enbeees beer eevbentteeeveeteeveteetnwetnnennnnenes 24
6.6 Register fle InGexiing ooo... ccccccccec ccc ceeeeceeces eee ceeeeee can cececcaeaeeceeesesecceneneceeeeeeeeeeeseeccneneneents 24
6.7 Debugging the SAAS...ccccece c ce cence eee cn cence teen croc eaten cote e ee cone eeeecenceetereeccncreestencnees 25

6.7.1 Method 1: Debugging registers oo...cccce cee ee er rstntessentenevtttstserentnenmtenans 25
6.7.2 Method 2: Exporting the values in the GPRS...ceecceeereettnrrettevnetnereens 25

7. PUREL KILL MASEcccccceescccnesescsenaecesenmusenssessennsnesesenenessesumussecutaneessesucseaussesssueaueasounauorvans 25

8 MULTIPASS VERTEX SHADERS (HOS)..........0... ERROR! BOOKMARK NOT DEFINED.
9, REGISTER FILE ALLOCATION. ...00u....cccccccseccssossceseeseanereensnessereanoosenseccsnauesenseauaevaroaeasenenee 25

10. FETCH ARBITRATION.ccccccccessssseserseernenessanaaereessnatecsznsueatesenseusnenseecaaecseseeanscereseeneenes 27

11. ALU ARBITRATIONuo... cscs ssscsceensessennesessesesuesesnuauessaaeueesesussentusesssoueauesesseauersensuestesesneneates 28

12. HANDLING STALLS .cccccccccesssnseseaeecuneeeserceaesnessseauensvaseacescsussentusesssouseuesesseaneresouusesseoneanenes 26

13. CONTENT OF THE RESERVATION STATION FIFOS ...o........eeeesccscecesenneeseseeanseseonensenes 28

14. THE OUTPUT FILE... cccsccececsscescesensnseserscernenessanaaevesuaserernaueneesenscasnenssescaaecseneansceteseeatenes 28

15. LD FORMAT 0... cccccsscecrecssserestesessssuesessssueuerseneasesssnssenessenssousauesesenauersenuuesesesaenensesuessnunsueatsans 28

15.1 Interpolation of constant attributes oo.cccee cece ce cceee ee eeeeeeesccnenenrseeeeeceeneneneneas 29
16. STAGING REGISTERS ooo...cececececseneeeneneaunaueseseuaseseanoscanesenseuensueseasaaustenuauseeneoneanenes 29

Exhibit 2038.dec 81670 aytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257868

ATI Ex. 2109

IPR2023-00922

Page 158 of 326

ATI Ex. 2109
IPR2023-00922

Page 159 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

 7 24 September, 2001 4 September, 2015 GEN-C2XX000CREVA 3 of 56

17. THE PARAMETER CACHE... ccccscccssssvcccnsnvecsauneecenuncussununscesuunusennauaceusauacesuanevsedenssenaeuesunaaseee 30

L711 EXPOrt PESTICTIONSccccece seen eee eee erase EE EEE REECE OE EDGE EEK CCGG SGteCcgetnAESSateNeteHReerennaas 31

L711 Pixel exports:ccccece ceeeeee seseeessetneesvenssenrseeninevnvavevitetavssttettscrentertntenreneees 31
T7.1.2 Vertex @xports: ooo ccccccccccccceccessseeeeessvetessessottenseesenvsvenetesvsvesinstitanevinitnavennesitenens 31
17.1.3 Pass thru @xports: oo.ccce cesses cseses seer eres ventestresetersstitatevntinrvontitinnenirententnen 31

17.2 Arbitration restrictions...cecececvaecee eevee essen veuneseeuuesuuusaversanueserevarssvaevsernees 32

18. EXPORT TYPES ooo... cccccccccncsececnnnocecennsusecneesacannesanunsesennunessunnusecsennaaesuanearaneneseuuuseaneussaseansunana o2

18.1 Vertex SNACIngeicce eet ne cece tse e eee ccs neeeeeeecsaaeeeeesaaeeseeeenteeeseectsieeeeettnteseeses 32
18.2—PIX@] SNACING occce cceee acc c cee eeecneneesee ae seeeeeeeeceeeeesceaaaaeasnaneeeseseserseaaaesuaaeaaseeeeserscaees 33
19. SPECIAL INTERPOLATION MODES.cccsosssrosssssvesssanssvenonssssnonatseaeuaausanuavenuensusenonnsnnoosnan 33

19.1 Real TIME COMMONS... cece cccec ce ccceecccueccue cece neceueneeesereeesecerersneceuverrereeanescretteveertensenes: 33

192 Sprites/ XY screen coordinates/ FB information...ccccece cece te etter ecnneeeevteeeeceaees 33
19.3 Auto GEN@raled COUNTOLSooo... ccc cee cee eee teen ee eee enc OEE E EE EOL CREE OGL EG DECC tc ee te cette neCeteeeEGeEaS 34

19.3.1—Vertex SHADELS ooo cccccccccccceccsesccsscecesescescssssesusrsseuscatsssvanssestascattascatesavessasteevseens 34

19.3.2—Pixel shaders. ccccccccccccccccccceccceeveceveceveverteessvessesevssevssevseveuvieeevivteevssvtserieess 34
20. STATE MANAGEMENTccccccsccccccccceseccceccaecccecennuccesennessstancaseccnusseseueceseseuvectsaucececauaesonnens 35

20.1 Parameter cache SYNCHONiZatONocccc ccccecesceeeeeeeeeeeeeteeeeesesaneeaeseaeeaaeeaaeeaeseaes 35
21. KY ADDRESS IMPORTS.........ccccccccssveccsssnsescnssscensnssuuswnnssusneussssenusnussnsuatunsnunsnsunnsnnnunsunnwersen 35

21.1 Vertex indexes IMPOFtSeeetent tnt b etre hte e tnt nD nnn Ebon etter bot teer cents 35
22. REGISTERS. .0.......cccscccccccneccccesaceceeseeccccceancccesenncassenavassrenveseseaucuseeausesesauacceenaasscunauasesnennesenetes 35

23. INTERFACESianccc ccceccccceesecsseesesessocsscessesessuserescasevsesecsnsecsusevssnsersuceusntacsusersssnes 36

23.1 External Interfaces. ccecccececccecseseseeses verses versvseetesteventtinivtenerntenne, 36
23.2 SC tO SP INGSTTACES ooo cccceccccceecccccuuceteuuecesnaueeecteuueeseranueneraauersuaneessecetseavaneeereenens 36

23.2.1 SCSPRocccccccccccceccscceseesceeseevsceetesesersessensvenssentnevetsrtavsruesnevsseteeversvinsittereesete, 36
23.2.2 SCSQ ioiciceccceecccsee cnet eresertesscreitensertrnsvinivevvititavicrsivevsititstetteninwenirentsvenen, 37
23.2.3 SQ to SX(SP): Interpolator DUS oooceceeee cte teeter e ettetttntetetntenten 39
23.2.4 SQto SP: Staging Register Data...ccccc ccc treeeersestesestetevsenenneseenttenenens 39
23.2.5 VGT to SQ : Vertex Interface coco ccccccccccceccccececcrssevececerseecsesceesssecureveseetecrstteeeness 39

23.2.6 SQ to SX: Control DUS ooo cccccccccccccccscecesscceccseseeesesssesecseeceecsscsnesecsiststesevanevievastenesenes 43

23.2.7 SX to SQ : Outputfile Controloeeee eect te eee ee tet t tenet 43
23.2.8 SQ to TP: Control USoccce cceeeee cee ee eevee cee e vette eteeevtitvtetvtetteteteee 44

23.2.9 TP to SQ: Texture stall oocicccccccccceceeccesecesesecsecseveveeerenevsncreevvevsvevsrsvevneetiesneenes 44

23.2.10 SQ to SP: Texture stall ooo ooccccccccccccccssccecseneesseteeveres Error! Bookmark not defined.

23.2.11 SQ to SP: GPR and auto COUN... o.ooccccccccccccccsccssececeecseccsccsetsecssssecsevstteeectenesees 45

23.2.12 SQ to SPx: INSHUCHIONS ooo cccccccccccccceccecsevecevetetecersecsevsteseteseuterttvttecteetevetes 47

23.2.13 SQ to SX: write mask interface (must be aligned with the SP data)... 50
23.2.14 SP to SQ: Constant address load/ Predicate Set/Kill S@t...0.oocccccccccccceccccceeesevsees 54

23.2.15 SQ to SPx: constant DrOAdCASE ooo cecccccccccccscesecssesecssecsecsevseeecssetseesevatevesvactenesenes 54

23.2.16 SQ to CP: RBBM BUS .oocccccccccccccccccsccecesescecsscsscvecesevsesseesseanessvasesaesastarcssvatestenetsecaees 52

23.2.17 CP to SQ: RBBM DUS oooooccccccccccccecccccecescccceucssveseeverersvevereesssvesersvsveserteitvetvitersrevete. 52

23.2.18 SQ to CP: State report o.ooccc ccc ce eesvenseeesseseetesssetenvinetetssertevevsenetreseanenennees 52

Exhibit 2038.dec 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ««+

AMD1044_0257869

ATI Ex. 2109

IPR2023-00922

Page 159 of 326

ATI Ex. 2109
IPR2023-00922

Page 160 of 326

Vat) ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 2015 4 of 56

23.3 Example of control flow program @xe@CuUtiOn.occcece cece eeccceeeeeeceeeeeeseteneesneeeneeenss 52
24, OPEN [SSUES0.ecccccetesecssseneerssenesesesseoessssnnssouesueressuauesseneuussesuonenssaterscusauasesenaueusenoussosaes 56

Exhibit 2038.dec 8 1670 aytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «+

AMD1044_0257870

ATI Ex. 2109

IPR2023-00922

Page 160 of 326

ATI Ex. 2109
IPR2023-00922

Page 161 of 326

DOCUMENT-REV. NUM. PAGE

GEN-CX0O0OCREVA 5 of 56 . os ORIGINATE DATE EDIT DATE
oneow ¢ 24 September, 2001 4 September, 2015

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001
Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001
Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001
Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001
Rev 1.4 (Laurent Lefebvre)
Date : December6, 2001

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002
Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002
Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002
Rev 1.11 (Laurent Lefebvre)
Date : April 19, 2002
Rev 2.0 (Laurent Lefebvre)
Date : April 19, 2002

First draft.

Changed the interfaces to reflect the changesin the
SP. Added somedetails in the arbitration section.

Reviewed the Sequencer spec after the meeting on
August 3, 2001.
Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.
Added timing diagrams (Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.

Added constant store management, instruction
store management, control flow management and
data dependantpredication.
Changed the control flow method to be more
flexible. Also updated the external interfaces.
Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_orjump. Added debug
registers.
Refined interfaces to RB. Added state registers.

Added SEQ--SP0 interfaces. Changed delta
precision. Changed VGT-+SP0 interface. Debug
Methods added.

Interfaces greatly refined. Cleaned up the spec.

Added the different interpolation modes.

Added the auto incrementing counters. Changed
the VGT--SQ interface. Added content on constant

management. Updated GPRs.
Removed from the spec ail interfaces that weren't
directly tied to the SQ. Added explanations on
constant management. Added PA—SQ
synchronization fields and explanation.
Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.
Added Real Time parameter control in the SX
interface. Updated the control flow section.
New interfaces to the SX block. Added the end of

clause modifier, removed the end of clause
instructions.

Rearangement of the CF instruction bits in order to
ensure byte alignement.
Updated the interfaces and added a section on
exporting rules.
Added CP state report interface. Last version of the
spec with the old control flow scheme
New control flow scheme

Exhibit 203¢.dec 8 1670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257871

ATI Ex. 2109

IPR2023-00922

Page 161 of 326

ATI Ex. 2109
IPR2023-00922

Page 162 of 326

 ORIGINATE DATE

24 September, 2001

EDIT DATE
R400 Sequencer Specification PAGE

4 September, 2015 6 of 56

Rev 2.01 (Laurent Lefebvre)
Date : May 2, 2002
Rev 2.02 (Laurent Lefebvre)
Date : May 13, 2002

Rev 2.03 (Laurent Lefebvre)
Date : July 15, 2002

Rev 2.04 (Laurent Lefebvre)
Date :August 2, 2002
Rev 2.05 (Laurent Lefebvre)
Date : September 10, 2002
Rev 2.06 (Laurent Lefebvre)
Date : October 11, 2002
Rev 2.07 (Laurent Lefebvre)
Date : October 14, 2002

Rev 2.08 (Laurent Lefebvre)
Date : October 16, 2002
Rev 2.09 (Laurent Lefebvre)
Date : January 7, 2003
Rev 2.10 (Laurent Lefebvre)
Date : April 8, 2003

Changed slightly the control flow instructions to
allow force jumps and calls.
Updated the Opcodes. Added type field to the
constant/pred interface. Added Last field to the
SQ—SPinstruction load interface.

SP interface updated to include predication
optimizations. Added the predicate no stall
instructions,
Documented the new parameter generation scheme
for XY coordinates points and lines STs.
Some interface changes and an_ architectural
change to the auto-counter scheme.
Widened the event interface to 5 bits. Some other

little typos corrected.
Loops, jumps and calls are now using a 13 bit
address which allows to jump and call and loop
around any control flow addresses (does not
requires to be even anymore).
Clarification updates after discussion with Clay.

Corrected the SQ—SP staging register interface.

Adding R500 modifications

Exhibit 2038.dec 1670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »«

AMD1044_0257872

ATI Ex. 2109

IPR2023-00922

Page 162 of 326

ATI Ex. 2109
IPR2023-00922

Page 163 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 2015 GEN-C20000C-REVA 7 of 56
1. Overview

The sequencer chooses four ALU threads (two from each bank), a vertex cache and a fetch thread to execute, and
executes all of the instructions in a block before looking for a new clause of the same type. Two ALU threads are
executed interleaved to hide the ALU latency. The arbitrator will give priority to older threads. There are two separate
reservation stations, one for pixel vectors and one for vertices vectors. This way a pixel can pass a vertex and a
vertex can pass a pixel.

There are also 2 separate ALU banks from which the SQ picks the ALU threads to be executedin parallel.

To support the shader pipe the sequencer also contains the shaderinstruction store, constant store, control flow
constants and texture state. The height shader pipes also execute the same twoinstructions thus there is only one
sequencerfor the whole chip but it issues 2 instructions every four clocks.

The sequencerfirst arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

Exhibit 2038.dec 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257873

ATI Ex. 2109

IPR2023-00922

Page 163 of 326

ATI Ex. 2109
IPR2023-00922

Page 164 of 326

see@OBEYIBAODUOBOONJYUHLAdoDsoudajey‘JEQUSPIUOCD[LY@xx-9e4ao918MALAIOA0Jasuanbeg[eisuey:]ons,

 0pREO?HANS

-7pow
ayo»6auCot}ge|.au|Aa4_ 4_ ||OAJgo/odao/odBOIDd|BOONLyaaaINWISNOOalo-aeLVSUELLNICddl

CWASDelAinn_UL. _-+avisHOLasweeLINVaNIVOoMNYaNIV~saOLSO|,|CTyLLanAA

SpicodxELaiddas

“corinnesomeFILS

mRpromsLENEKELL

 |SYOLSLSNI
CavLSNI

avot18h

peeyJoISN

AQ

9GJO8AQVd

 GLOz‘lequaydasL00%‘lequiaydespz
uoleoyiosdsusousnbesoryavaLidag

 TIWIAE.LVNYaddoOFAILOdLOdd
divdSlVvNISidoO

AMD1044_0257874

ATI Ex. 2109

IPR2023-00922

Page 164 of 326

ATI Ex. 2109
IPR2023-00922

Page 165 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 2015 GEN-C20000C-REVA 9 of 56

1.1 Top Level Block Diagram

—— Input Arbiter || |

¥ —

— VTX RS PIX RS —_

— ALU Texture —

Figure 2: Reservation stations and arbiters

Under this new scheme, the sequencer (SQ) will only use one global state management machine per vector type
(pixel, vertex) that we call the reservation station (RS).

Exhibit 2038.dec 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257875

ATI Ex. 2109

IPR2023-00922

Page 165 of 326

ATI Ex. 2109
IPR2023-00922

Page 166 of 326

we©Bey19005uosonoOKJYUBUAdODaousisjay"JEYUSPIYUOD[LY@vexseGcug1e—sopeeozHaKAadigaopeysou],:¢oansig

tIsudZesyqZepodepaieusyodapereys

 (1e30}gz}ediduoee{yeq03pg)odidyowo

2d

€OHY€OH1COHYZOH1

—P

SHq79NLOA$14ZOYDA

LadigadieOCISsais
_(i}0}Z|)adidyowo

(jeq0ygz4}oddyowo

sud79NLMOLSid96DNOL
MNOeesLasOS

sudZhSiiggz!YLNOcenadieyy|LSVOQVONSOCINISOS

 9dS$d8vdEdsedsbdSOds
Jaasuenpes

LOHMbOHTOOHYCDHT
|

eioyg|odayu]i:jaojejodiayu]

6Ids

 NOLLYENDISNODoosy

9G$9OLdvd

GLOZ‘equiaydas»L00zZlequaydaspzaivdLidaALVdSLYNISIdO
TIWIAE.LVNYaddoOFAILOdLOdd

uoleoyloadssouenbesoory

AMD1044_0257876

ATI Ex. 2109

IPR2023-00922

Page 166 of 326

ATI Ex. 2109
IPR2023-00922

Page 167 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 2015 GEN-C20000C-REVA 11 of 56

1.3 Control Graph

use # +-Rdy
WrAddr

IS SEQ WrAddr
CMD Clause# + Rdy |

CST WrAddr |
CMD |

CST |

*

cmp CSTesTiestIDX A B C WiVee |
RaAddr | WitSeal yradar

Phase |* ~ * i = __¥ ¥ ey

FETCH VC SP BANK 0/1 co sx|

| WrAddr| | |

| | || 1

WrAddr

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the output file control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

Exhibit 2038.dec 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257877

ATI Ex. 2109

IPR2023-00922

Page 167 of 326

ATI Ex. 2109
IPR2023-00922

Page 168 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 2015 12 of 56

ToRB
0 At ||

4 AG Al A2 BO ls buffer (ping-pong buffer)
5 bits* 8 (J) *4*4* 4 (quadruple-butfered AQ Al AZ Bo

12800 bits
2

i Bi co Ct C2
!

3 XYs buffer (ping-pong buffer} i
24 bits * 16 quads * 2 : C3 C4 cs Do

768 bits | |B24 :
4 i

Bi B2 Eo Et

| 1 ~I | |
INTERPOLATORS I L : : : 1! FDCFLOAT + EXPANSION

S12

|

qUL |||

Figure 5: Interpolation buffers

Exhibit 2038.dec 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «+

AMD1044_0257878

ATI Ex. 2109

IPR2023-00922

Page 168 of 326

ATI Ex. 2109
IPR2023-00922

Page 169 of 326

+x@268419004UOBDN0NJyYBUAdODsousiajey"peENUSPLLUOD[Ly@x.8XGov918—cepseoztopwIRIsEIpSupuoTerodisjuy92ansyy

 CéLlicclbolOCLIOLL|SbLLEZbLOLLIGLWELICbLchibblObl)6L|Sl)21)91GlvljelcL)bl

AMD1044_0257879

ATI Ex. 2109

IPR2023-00922

Page 169 of 326

 9540CLWARE-XXXXKXI-NAODGLO?‘JequiaydagyLo0g‘lequiaidegpzdod‘AINN“AsaLNSAINO0OGdivdLidaALVdALYNIDINO

 TIWIAE.LVNYaddoOFAILOdLOdd

ATI Ex. 2109
IPR2023-00922

Page 170 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 2015 14 of 56

Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The lJ information is packed in the lJ
buffer 4 quads at a time or two clocks. The sequencerallows at any given time as many as four quadsto interpolate a
parameter. They all have to come from the sameprimitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store

There is going to be two instruction stores for the whole chip. They will each contain 4096 instructions of 96 bits each.

They will be 1 port memories; Ports are allocated in this fashion (but not necessarily in this order):

ALU 0 SIMDO CF ALU 0 SIMD1 CF
ALU 0 SIMDO ALU 0 SIMD1
ALU 1 SIMDO CF ALU 1 SIMD1 CF
ALU 1 SIMDO ALU 1 SIMD1
Fetch CF Fetch CF
Fetch Fetch
VC CF vc CF
VG vc

Fetch and VC can steal one another's ports with stated resource having priority over its port (this is not really
necessary for the R500 but will be for any derivative part becausethere will only be one instruction store).

Writes are opportunistic.

The instruction store is loaded by the CP thru the register mapped registers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4. SequencerInstructions
All control flow instructions instructions are handied by the sequencer only. The ALUswill perform NOPs during this
time (MOV PV,PV, PS,PS)if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constantstore is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memoryports).

The maximum logical size of the constant store for a given shaderis 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

There will be two of those memories and two of each remapping read memories.

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real

Exhibit 2038.dec 1670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © »«

AMD1044_0257880

ATI Ex. 2109

IPR2023-00922

Page 170 of 326

ATI Ex. 2109
IPR2023-00922

Page 171 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 2015 GEN-CXXXXX-REVA 15 of 56

memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. Its size is 320°32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

5.2 Managementof the Control Flow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_\WR_BASE). Onthe read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied wheneverthere is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% numberof states. This way, if the
CP doesn’t write to CF the state is going to use the previous CF constants.

5.3 Managementof the re-mapping tables

5.3.1 R400 Constant management
The sequenceris responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencerwill broadside copy the contents of its re-mapping tables to a
new one. We have8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to workin its simplest form, the requirement is that the physical memory MUSTbeat least twice as
large as the logical address space + the spaceallocated for Real Time. in our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32°2+32 = 96 entries and above.

5.3.2 Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. Ifitis set and the contextdirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. if they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: Itis important to detect and preventthis, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.3 Free List Block

A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, andif the original ones have not been used up, us a new one,else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.

Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more

Exhibit 2038.dec 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257881

ATI Ex. 2109

IPR2023-00922

Page 171 of 326

ATI Ex. 2109
IPR2023-00922

Page 172 of 326

 ORIGINATE DATE EDIT DATE R400 SequencerSpecification PAGE

24 September, 2001 4 September, 2015 16 of 56

physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.
The second pointer will be called stop_ptr. The stop_pir pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_pitr does not equal the stop_ptr and the IFCis at its maximum count.

5.3.4 De-allocate Block

This block will maintain a free physical address biock count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any numberof blocks in one clock.

5.3.5 Operation of Incremental mode!
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous contextwill be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the freelist
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. Ifa logical addressis hit that hasits dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
Whenthefirst draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states comein for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_pir .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and itis incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packetarrives, the content of the re-mapping tabie is written to the correct re-mapping table for the
context number.Alsoif the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clauseit will be sent to this block and compared with
the previous context that left. (init to zero) If they differ than the older context will no ionger be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the numberof blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are smail it can store multiple

Exhibit 2038.dec 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257882

ATI Ex. 2109

IPR2023-00922

Page 172 of 326

ATI Ex. 2109
IPR2023-00922

Page 173 of 326

Pat, ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE” heb : @ 24 September, 2001 4 September, 2015 GEN-CXXXXX-REVA 17 of 56
context. However, ifthe updates are large, less contexts will be stored and potentially performance will be degraded.
Althoughit will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loadedfirst with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer(9 bits pointers x 16 vertexes/clock).

MOVA R1.X%,R2.X% // Loads the sequencerwith the content of R2.X, also copies the content of R2.X into R1.X
ADD R3,R4,CO[R2.X]// Uses the state from the sequencer to add R4 to CO[R2Z.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVAinstruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencerin order to support this feature is 2°64°9 bits = 1152 bits.

The address register is a signed integer, which ranges from —256 to 255.

5.5 Real Time Commands

The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
works is the same way than when dealing with regular constant loads BUTin this case the CPis not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zonesis defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zonesis defined by the TSTATE_EO_RTcontrol register.

5.6 Constant Waterfalling
In order to have a reasonable performancein the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits wheneverthe last render state is written to memory
and clears the bit whenevera state is freed.

Exhibit 2038.dec 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +*«

AMD1044_0257883

ATI Ex. 2109

IPR2023-00922

Page 173 of 326

ATI Ex. 2109
IPR2023-00922

Page 174 of 326

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 September, 2015 18 of 56

CONST_EO_RT
|

RT SECTON /

(Reads/Writes are direct) SY
Ge

REGULAR SECTION
(Reads/Writes are passing

thru a remaping table)
Figure 7: The Constant store

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We pian on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of:

Boolean[255:0]
Loop_count[7:0][31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

Wehave a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
We'd like to be able to code up a program of the form:

1: Loop
2: Exec TexFetch

Exhibit 203¢.doc 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257884

ATI Ex. 2109

IPR2023-00922

Page 174 of 326

ATI Ex. 2109
IPR2023-00922

Page 175 of 326

ORIGINATE DATE

24 September, 2001

TexFetch
ALU
ALU
TexFetch

End Loop
ALU Export

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

19 of 56

9IDOB
But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3:. Without clausing,
these dependencies need to be expressed in the Control Flow instructions. Additionally, without separate ‘texture
clauses’ and ‘ALU clauses' we need to know whichinstructions to dispatch to the Texture Unit and which to the ALU
unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of information for each (non-control flow) instruction:
a) ALU or Texture
b) Serialize Execution

(b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched. Given the allocation of reserved bits, this would mean that the count of an ‘Exec’ instruction
would be limited te about 8 (non-control-flow) instructions. If more than this were needed, a second Exec (with the
same conditions) would be issued.

Another function that relies upon ‘clauses’ is allocation and order of execution. We need to assure that pixels and
vertices are exported in the correct order (even if not all execution is ordered) and that space in the output buffers are
allocated in order. Additionally data can't be exported until spaceis allocated. A new control flow instruction:

Alloc <buffer select -- positionparameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assureallocation is done in order, the actual
allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already
completed. The implementation would also assure that execution of instruction(s) following the serialization due to the
Alloc will occur in order -- at least until the next serialization or change from ALU to Texture. In most casesthis will
allow the exports to occur without any further synchronization. Only ‘final’ allocations or position allocations are
guaranteed to be ordered. Because strict ordering is required for pixels, parameters and positions, this implies only
a single alloc for these structures. Vertex exports to memory do not require ordering during allocation and so multiple
‘allocs' may be done.

6.2.1 Control flow instructions table

Here is the revised control flow instruction set.

 Note that whenevera field is marked as RESERVED,it is assumed that all the bits of the field are cleared (0).

NOP

A
0000 Addressing RESERVED

This is a regular NOP.

Execute

47..44[43740.034733.28[76 SBTO
0001 Addressing|RESERV Vertex instructions type + serialize (6 | Count Exec Address

ED Cache instructions)

ee ExecuteEnd oe
47... 44 | 43 | 40...34|33... 28 27 ...16 | 15...12 | 11...0

0010 Addressing|RESERV | Vertex instructions type + serialize (6 | Count Exec Address
ED | Gache instructions)

Exhibit 2038 .doc
81670 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «+«

AMD1044_0257885

ATI Ex. 2109

IPR2023-00922

Page 175 of 326

ATI Ex. 2109
IPR2023-00922

Page 176 of 326

 EDIT DATE

4 September, 2015

ORIGINATE DATE

24 September, 2001

R400 Sequencer Specification PAGE

20 of 56

Execute up to 6 instructions at the specified address in the instruction memory. The Instruction type field tells the
sequencerthe type of the instruction (LSB) (1 = Texture, Q = ALU and whetherto serialize or not the execution (MSB)
(1 = Serialize, 0 = Non-Serialized). If the corresponding VC bit is set then VC is used instead of TP/ALU. If
Execute_End this is the last execution block of the shader program.

Vertex Cache Serialize Instruction Type (Resource)
0 0 : ALU instruction, not yielding
0 0 1 : ALU instruction, yielding
0 1 0 : Texture instruction, not yielding
0 1 1 : Texture instruction, yielding
1 0 0 : Vertex cache instruction, not yielding
1 0 1 : Vertex cache instruction, yielding
1 1 0 : Vertex cache instruction, not yielding
1 1 1 : Vertex cache instruction, yielding

| Conditional_Execute
_ 47... 44 43 | 420 41... 34 33...28 | 2?...16 1512 11...0
| 0011 Addressing|Condition|Boolean|Vertex Cache|Instructions Count Exec Address
| address type +

serialize (6
Po | instructions)|Po _

| Conditional_Execute_End
| 47... 44 43 | 42 41... 34 33...28 27...16 15...12 11...0

| 0100|Addressing|Condition|Boolean|Vertex Cache|Instructions Count Exec Address
address type +

| serialize (6 |
| instructions) |

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then
instructions (up to 9 instructions). If the condition is not met, we go on to the next cont

execute the specified

rol flow instruction. If

ConditionalExecute_End and the condition is met, this is the last execution block of the shader program.

~ Conditional Execute Predicates

47... 44 43 42 41... 36 35... 34|33...28 2/7...16 | 15...12 11....0

| 0101 Addressing|Condition|RESERVED|Predicate|Vertex Instructions Count|Exec Address
| vector Cache type +

serialize (6
instructions) |

— _— ee _ __Conditional_ExecutePredicatesEnd
| 47... 44 43 42 41... 36_ 35... 34|33...28 27...16 | 15...12 11....0
| O10 Addressing|Condition|RESERVED|Predicate|Vertex Instructions Count|Exec Address

vector Cache type +
serialize (6
instructions) |

Check the AND/OR ofall current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/ORthis with the kill mask in order not to consider the pixels that aren’t valid. If the
condition is not met, we go on to the next control flow instruction. If Conditional_Execute_Predicates_End and the
condition is met, this is the last execution block of the shader program.

Exhibit 2038.doc
81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +*«

AMD1044_0257886

ATI Ex. 2109

IPR2023-00922

Page 176 of 326

ATI Ex. 2109
IPR2023-00922

Page 177 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 2015 GEN-CXXXAX-REVA 21 of 56

ae ae _ConditionalExecutePredicatesNoStal
47 ... 44 | 43 42 41... 36 35... 34|33...28 27...16 /15...12 11.0

1101 Addressing|Condition|RESERVED|Predicate|Vertex Instructions Count|Exec Address
vector Cache type +

serialize (6
instructions)

ConditionalExecutePredicatesNoStallEnd |
47 ... 44 43 42 41... 36 35 ...34|33...28 27...16 | 15...12 11....0

1110 Addressing|Condition|RESERVED|Predicate|Vertex instructions Count|Exec Address
vector Cache type +

serialize (6 |
|_ instructions) [|

Same as Conditionnal_Execute_Predicates but the SQ is not going to wait for the predicate vector to be updated.
You can only set this in the compiler if you knowthat the predicate set is only a refinementof the current one (like a
nested if) because the optimization would still work.

Loop Start

47... 44 43 | 42... 21 | 20... 16 15...13 12... 0 0111 Addressing | RESERVED | loop ID
RESERVED Jump address

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
Jump only. Also computes the index value. The loop id must match betweenthestart to end, and also indicates which
control flow constants should be used with the loop.

47...44 | 43 33... 22 [21 (20...16 | 15...13
1000

 RESERVED| Pred|loop ID|RESERV

break

 D

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop. If predicate break != 0, then compares predicate vector n
(specified by predicate Vector) to condition. If all bits meet condition then break the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id makethis easy to do.

Conditionnal.Call

47... 44 43 42 41... 34 33... 14 13 12...0

{001 Addressing Condition I Boolean address RESERVED Force Call Jump address

lf the condition is met, jumps to the specified address and pushes the control flow program counter on the stack.If
force call is set the condition is ignored and the call is made always.

47 ... 44 43
 1010 | Addressing

42 ...0

RESERVED

Pops the tepmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

_. Conditionnal_Jump

 1011 | Addressing

43°

 42 | 44... 34
Condition

address |
Boolean FW only

32.14
RESERVED p13

Force Jump
12...0

Jump address

If force jump is set the condition is ignored and the jump is made always. If FW only is set then only forward jumps
are allowed.

Exhibit 2038.dec
5167Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «+

AMD1044_0257887

ATI Ex. 2109

IPR2023-00922

Page 177 of 326

ATI Ex. 2109
IPR2023-00922

Page 178 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 2015 22 of 56

FOAllocate _ - ne

47... 44| 43 42...41 | 40 39... 3 2...0
1100 | Debug Buffer Select | No Serial | RESERVED Size

Buffer Select takes a value of the following:
01 — position export (ordered export)
10 — parameter cacheor pixel export (ordered export)
11 —pass thru (out of order exports).

Size field is only used to reserve spacein the export buffer for pass thru exports. Valid values are 1 (1 line) thru 9 (9
lines). It should be determined by the compiler/assembler by taking max index used +1.

If debug is set this is a debug alioc (ignore if debug DB_ON registeris set to off}.

By default the serial bit is set on an alloc. If the No Serial bit is asserted then the serial bit won't be set in the SQ.

6.3 Implementation

The envisioned implementation has a buffer that maintains the state of each thread. A thread lives in a given
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the order that they
enter. Actually two buffers are maintained — one for Vertices and one for Pixels. The intended implementation
would allow for:

16 entries for vertices

48 entries for pixels.

From each buffer, arbitration logic attempts to select 1 thread for the texture unit and 2 (interleaved) thread for the
ALU unit. Once a thread is selected it is read out of the buffer, marked as invalid, and submitted to appropriate
execution unit. it is returned to the buffer (at the same place) with its status updated once all possible sequential
instructions have been executed. A switch from ALU to TEX or visa-versa or a Serialize_Execution modifier forces
the thread to be returnedto the buffer.

Each entry in the buffer will be stored across two physical pieces of memory - mostbits will be stored in a 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 7
read port device will be termed ‘state’. The bits keptin the multi-read ported device will be termed ‘status’.

‘State Bits’ needed include:

Control Flow Instruction Pointer (13 bits),
Execution Count Marker4 bits),
Loop Iterators (4x9 bits),
Loop Counters (4x9 bits),
Call return pointers (4x13 bits),
Predicate Bits (64 bits),
Export ID (4 bits),
Parameter Cache basePtr (7bits),
GPR BasePtr(8 bits),

10. Context Ptr (3 bits).
11. LOD corrections (6x16 bits)
12. Valid bits (64 bits)
13. RT (1 bit) Signifies that this thread is a Real Time thread. This bit must be sent to the Constant store state

machine when readingit.

 2CON©OBOORm
Absentfrom this list are ‘Index’ pointers. These are costly enough that I'm presuming that they are instead stored in
the GPRs. The first seven fields above (Control Flow Ptr, Execution Count, Loop Counts, call return ptrs, Predicate
bits, PC base ptr and export ID) are updated every time the thread is returned to the buffer based on how much

Exhibit 203¢.doc 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257888

ATI Ex. 2109

IPR2023-00922

Page 178 of 326

ATI Ex. 2109
IPR2023-00922

Page 179 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 2015 GEN-CXXXXX-REVA 23 of 56

progress has been mode on thread execution. GPR Base Ptr, Context Ptr and LOD corrections are unchanged
throughout execution of the thread.

‘Status Bits' needed include:

Valid Thread

ALU engine needed
Texture engine needed
VC engine needed
Texture Reads are outstanding
VC Reads are outstanding
Alu bank (0/1)
Waiting on Texture Read to Complete
Allocation Wait (2 bits)
00 — No allocation needed

01 — Position export allocation needed (ordered export)
10 — Parameteror pixel export needed (ordered export)
11 — pass thru (out of order export)
Allocation Size (4 bits)
Position Allocated
Mem/Color Allocated
First thread of a new context

Event thread (NULLthread that needsto trickle down the pipe)
Last (1 bit)
Pulse SX (1 bit)

All of the abovefields from all of the entries go into the arbitration circuitry. The arbitration circuitry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -- one for
pixels and one for vertices. A final selection is then done between the two. But the rest of this implementation
summary only considers the ‘first’ level selection whichis similar for both pixels and vertices.

Texture arbitration requires no allocation or ordering so it is purely based on selecting the ‘oldest’ thread that requires
the Texture Engine.

ALU arbitration is a little more complicated. First, only threads where either of TextureReadsoutstanding or
Waitingon_Texture_Read_to_Complete are '0' are considered. Then if Allocation_Wait is active, these threads are
further filtered based on whether spaceis available. If the allocation is position allocation, then the thread is only
considered if all ‘older’ threads have already done their position allocation (position allocated bits set). If the
allocation is parameteror pixel allocation, then the thread is only considered if itis the oldest thread. Also a thread is
not considered if it is a parameter or pixel or position allocation, has its First_thread_of_a_new_context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the ‘oldest’ of the threads that pass through the abovefilters is selected. Ifthe thread neededto allocate, then
at this time the allocation is done, based on Allocation_Size. If a thread hasits “last” bit set, then it is also removed
from the buffer, never to return.

If | now redefine ‘clauses' to mean ‘how many times the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine’, then the minimum numberof clauses needed is 2 -- one to perform
the allocation for exports (execution automatically halts after an ‘Alloc' instruction) (but doesn't performs the actual
allocation) and one for the actual ALU/export instructions. As the ‘Alloc' instruction could be part of a texture clause
(presumably the final instruction in such a clause), a thread could still execute in this minimal number of 2 clauses,
evenif it involved texture fetching.

The Texture_Reads_Outstanding and VC_reads_Outstanding bits tell the SQ that a texture or VC read is
outstanding. In this case, if we encounter a serial bit we need to wait until both resources are free (pending = 0) in
order to proceed.

Exhibit 2038.dec 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257889

ATI Ex. 2109

IPR2023-00922

Page 179 of 326

ATI Ex. 2109
IPR2023-00922

Page 180 of 326

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 2015 24 of 56

6.4 Data dependantpredicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_PUSH- similar to SETE except that the result is ‘exported’ to the sequencer.
PRED_SETNE_PUSH - similar to SETNE exceptthat the result is ‘exported’ to the sequencer.
PRED_SETGT_PUSH- similar to SETGT exceptthat the result is ‘exported’ to the sequencer
PRED_SETGTE_PUSH- similar to SETGTE exceptthat the result is ‘exported’ to the sequencer

For the scalar operations only wewill also support the two following instructions:
PRED_SETE
PRED_SETNE
PRED_SETGT
PRED_SET_INV
PRED_SET_POP
PRED_SET_CLR
PRED_SET_RESTORE

Details about actual implementation of these opcodesare in the shader pipe architectural spec.

The export is a single bit - 1 or 0 that is sent using the same data path as the MOVAinstruction. The sequencerwill
maintain 1 set of 64 bits predicate vectors (in fact 2 sets because weinterleave two programs but only 1 will be
exposed) and useit to control the write masking. This predicate is maintained across clause boundaries.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the secondbittells us if

we execute on 1 or 0. For example, the instruction:

PO_ ADD_#R0,R1,R2

Is only going to write the result of the ADD into those GPRs whosepredicatebit is 0. Alternatively, Pi_ADD_# would
only write the results to the GPRs whosepredicate bit is set. The use of the PO or P1 without precharging the
sequencer with a PREDinstruction is undefined.

6.5 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencerwill
insert detect wich channels to read from the GPRs and which ones to read from the PV/PS.

6.6 Registerfile indexing
Because we can have loopsin fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and useit into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit? Bit 6

0 0 ‘absolute register’
0 1 ‘relative register’
1 0 ‘previous vector’
1 1 ‘previous scalar’

In the case of an absolute register we just take the address asis. In the caseof a relative register read we take the
base address and we add toit the loop_index and this becomes our new address that we give to the shaderpipe.

The sequencer is going to keep a loop index computed as such:

Index = Loop_iterator*Loop_step + Loop_start.

Exhibit 203¢.doc «81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257890

ATI Ex. 2109

IPR2023-00922

Page 180 of 326

ATI Ex. 2109
IPR2023-00922

Page 181 of 326

ORIGINATE DATE DIT BATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 2015 GEN-CXXXXX-REVA 25 of 56

Weloop until loop_iterator = loop_count. Loop_step is a signed value [-128...127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register wherethe first error occurred
2. count of the numberof errors

The sequencerwiil detect the following groups of errors:
- count overflow

- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
- jump errors

relative jump address > size of the controi flow program
- call stack

cail with stackfull

return with stack empty

With all the other errors, program can continue to run, potentially to worst-caselimits.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth
register (or constant) for errors.

{ISSUE: Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs
1) The sequencerwill have a debug active, count register and an address register for this mode.

Under the normal mode execution follows the normal course.

Under the debug modeit is assumedthat the program is always exporting n debug vectors and that all other exports
to the SX block (but for position) will be turned off (changed into NOPs) by the sequencer (even if they occur before
the address stated by the ADDR debug register).

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Hs purpose is to optimize the texture fetch
requests and allow the shaderpipeto kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETGT
MASK_SETGTE

8. Registerfile allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between

Exhibit 2038.dec 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257891

ATI Ex. 2109

IPR2023-00922

Page 181 of 326

ATI Ex. 2109
IPR2023-00922

Page 182 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2007 4 September, 2015 26 of 56
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZEforpixels.

Exhibit 2038.dec 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *+«

AMD1044_0257892

ATI Ex. 2109

IPR2023-00922

Page 182 of 326

ATI Ex. 2109
IPR2023-00922

Page 183 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 2015 GEN-CXQOCOCREVA 27 of 56

Above is an example of howthe algorithm works. Vertices come in from top to bottom: pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. VWWhen pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble’. Then the boundaryis allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

9. Fetch Arbitration

The fetch arbitration logic chooses one of the n potentially pending fetch clauses to be executed. The choice is made
by looking at the Vs and Ps reservation stations and picking the first one ready to execute. Once chosen, the clause
state machine will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two fetches of the
sameclause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair numberof active clauses waiting for their
fetch return data.

10. VC Arbitration

The VC arbitration logic chooses one of the n potentially pending VC clauses to be executed. The choice is made by
looking at the Vs and Ps reservation stations and picking the first one ready to execute. Once chosen, the clause
state machine will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two fetches of the
same clause.

Exhibit 2038.dec 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257893

ATI Ex. 2109

IPR2023-00922

Page 183 of 326

ATI Ex. 2109
IPR2023-00922

Page 184 of 326

ORIGINATE DATE EDIT DATE R400 SequencerSpecification | PAGE
24 September, 2001 4 September, 2015 | 28 of 56

 Ca
The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The VC pipe will be
able to handle up to X(?) in flight VC fetches and thus there can be a fair numberof active clauses waiting for their
fetch return data.

11. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
n potentially pending ALU clauses to be executed. The choice is made by looking at the Vs and Ps reservation
stations and picking the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for
the odd clocks. For example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and
Odd sets of 4 clocks):

Einst0 Oinst0 Einsti Oinsti Einst2 Oinst2 EinstO Oinst3 Einsti Oinst4 Einst2 Oinst0...

Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

12. Handling Stalls
Whenthe output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shaderpipe until there is place in the outputfile. [f the packet is a vertex packet and the position
buffer is full (POSFULL) then the sequencer also prevents a thread from entering an exporting clause. The
sequencerwill set the OUT_FILE_FULLsignal n clocks before the outputfile is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

12.1 SP stall conditions

12.1.1 PS Stalls

None.

12.1.2 PV Stalls

None.

13. Content of the reservation station FIFOs

The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, somebits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BV 512 bits/clock and read BW) 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. lJ Format

The lJ information sent by the PAis of this format on a per quad basis:

We have a vectorof IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit}. All pixel’s parameters are always interpolated at full 20x24 mantissa precision.

Exhibit 203¢.doc 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257894

ATI Ex. 2109

IPR2023-00922

Page 184 of 326

ATI Ex. 2109
IPR2023-00922

Page 185 of 326

DOCUMENT-REV. NUM. PAGE

GEN-C,0000C-REVA 29 of 56

24 September, 2001 4 September, 2015

PO = A+1(0)*(B-— A) + J(0)*(C — A)

Pl=A+1()*(B- A)+J(1)*(C — A)

P2= A+1(2)*(B- A)+ J(2)*(C - A)

P3 = A+1(3)*(B- A) + J()*(C - A)

 | r L ORIGINATE DATE EDIT DATEba OF

1papaBNO aaw

Multiplies (Full Precision): 8
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMATOF P’s iJ: Mantissa 20 Exp 4 for | + Sign
Mantissa 20 Exp 4 for J + Sign

Total numberof bits :20*°8 + 4*8 + 4*2 = 200.

All numbers are kept using the un-normalized floating point convention: if exponentis different than 0 the numberis
normalized if not, then the numberis un-normalized. The maximum rangeforthe IJs (Full precision) is +/- 1024.

15.1 Interpolation of constant attributes
Becauseof the floating point imprecision, we need to take special provisionsif all the interpolated terms are the same
or if two of the terms are the same.

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGTfor it to be aligned with the parameter cache memory arrangement. Given the following group ofvertices sent by
the VGT:

012345678910111213 1415 || 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencerwill re-arrange themin this fashion:

01231617 18 19 32 33 34 35 48 49 50 51 [| 456 7 20 21 22 23 36 37 38 39 52 53 54 55 || 89 10 11 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shaderpipe is broken, the SQ is responsibie to insert padding to
account for the missing pipe. For example, if SP1 is broken, vertices 4 56 7 20 21 22 23 36 37 38 39 52 53 54 55 will
not be sent by the VGT to the SQ AND the SQ is responsible to “jump” over these vertices in order for no valid
vertices to be seni to an invalid SP.

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 9. The area ofthe fixed-to-float converters and the VSISRsfor this method is roughly estimated as 0.759sqmm
using the R300 process. The gate count estimate is shown in Figure 8.

Exhibit 2038.dec 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257895

ATI Ex. 2109

IPR2023-00922

Page 185 of 326

ATI Ex. 2109
IPR2023-00922

Page 186 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 2015 30 of 56

 Basis for 8-deep Latch Memory (from R300)

8x24-bit 116317 60.57813," perbit

rea of 96x8-deep Latch Memory 46524?
rea of 24-bit Fix-to-float Converter 4712," per converter

Method 14 Block Quantity Area
F2F 3 14136

8x96 Latch 16 744384

VGT BLOCK
(IN PA)

SHADER |
SEQUENCER|

VECTOR ENGINE

VECTOR ENGINE

Figure 9:VGT to Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation

Exhibit 203¢.dec 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257896

ATI Ex. 2109

IPR2023-00922

Page 186 of 326

ATI Ex. 2109
IPR2023-00922

Page 187 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 2015 GEN-CXXXXX-REVA 31 of 56

method for these memories is a simple round robin. The parameter cache pointers are mappedin the following way:
4MSBsare the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER ADDRESS |
4 bits 7 bits

The PA generates the parameter cache addresses as the posifions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
numberfield wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT(a4 snoopedregister
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the a7"} is going to have the address 00000001000, the igh 00010001000, the 19" 90100001000
and so on. The Current_location is NEVER reset BUT on chip reseis. The only thing to be careful aboutis thatif the
5X doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2°VS_EXPORT_COUNTto
Current_Location and reset the memory count to 0 before the next vector begins).

17.1 Export restrictions

17.1.1 Pixel exports:
Pixels can export 1,2,3 or 4 color buffers to the SX(+z). The exports will be done in order. The exports will always be
ordered to the SX.

17.1.2 Vertex exports:
Position or parameter caches can be exported in any order in the shader program. it is always better to export
posistion as soon as possible. Position has to be exported in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be done in any order with texture instructions interleaved.
The exports will always be allocated in order to the SX.

17.1.3 Pass thru exports:
Pass thru exports have to be done in groupsofthe form:

Alloc 1 thru 5 (max export offset + 1, for example if using EM4 alloc size 5}
Execute ALU(ADDR) ALU(DATA) ALU(DATA) ALU (DATA)...

When exporting to more than EMO, one MUST write to EM4 also (the write may be predicated if you don’t need the
export). This is used to initialize the buffers in the SX.

There cannot be any serialize bits set OR texture Reads between the EA and the last EM.

Memory exports will be surfaced using a macro extension; here is what needs to happeninside the macro:

The macro needs to create a special constant of the form:

Stream ID constant:

Xx = Integer that holds BaseAddressinBytes/4 in bits (29:0). Bits 31:30 should be 0b01.
¥ = 2**23
Zz = Integer that holds register field data. Note that this data must be organized so that it

always representsa‘valid’ floating point number,with the relevantbits in (23 - 0); One wayof doing this would be to
take the 23 bits and add 2**23.

Ww = max index value + 2°*23

Output to EXaddress:

Xx = Baseofarray (in low 30 bits}/4

Exhibit 2038.dec 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257897

ATI Ex. 2109

IPR2023-00922

Page 187 of 326

ATI Ex. 2109
IPR2023-00922

Page 188 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE 24 September, 2001 4 September, 2015 32 of 56

y = Index value (in low 23 bits)
2 = Register Field data (in low 23bits)
Ww = Max Index value (in low 23 bits)

Also Assumethat C0:

X =0.0

¥y =1.0

The Macro expansion would be as follows:

MULADD EA = Rindex.xxxx,CO.xyxx,CstreamiD;
MOV EMx (x = 0 thru 4) = Rdata;

The SX will check for invalid writes and mask out the data so it won't be written to memory. Invalid writes are:

1) Index value >= Max Index value
2) bit 31 != 0 (negative index)
3) bits [30:23] != 23 + IEEE_EXP_BIAS (127) (meaning the index was too big io be represented using 23 bits)

They cannot have texture instructions interleaved in the export block. These exports are not guaranteed to be
ordered.

Also, when doing a pass thru export, the shader must still do either a position and PC export (if Vertex) or a color
export (if Pixel). The pass thru export can occur anywhere in any shader program and thus can be used to debug.
There can be any numberof pass thru export blocks throughoutthe pixel or vertex shaderor both.

17.2 Arbitration restrictions

Here are the Sequencerarbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texture pending bit and VC pendingis set
2) Cannot allocate position if any older thread has not allocated position
3) Cannot execute a texture clause if texture reads are pending
4) Cannot execute a VC clause if VC reads are pending
5) Cannot execute lastif texture pending (evenif not serial)
6) Cannotallocate if not last for color exports.
7) Cannot allocate if not last for PC exports.

18. Export Types
The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

18.1 Vertex Shading
0:15 -16 parameter cache
16:31 - Empty (Reserved?)
32 - Export Address
33:37 -5 vertex exports to the frame buffer and index
38:46 - Empty
47 - Debug Address
48:52 -5 debug export (interpret as normal memory export)
53:59 - Empty
60 - export addressing mode
61 - Empty
62 ~ position
63 - sprite size export that goes with position export

Exhibit 203¢.doc 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257898

ATI Ex. 2109

IPR2023-00922

Page 188 of 326

ATI Ex. 2109
IPR2023-00922

Page 189 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 2015 GEN-CXXXXX-REVA 33 of 56

(X= point size, Y= edgeflag is bit 0, Z= VixkKillis bitwise OR of bits 30:0. Any bit other than

sign means VixKill.)

18.2. Pixel Shading

0 ~ Color for buffer 0 (primary)
1 - Color for buffer 1
2 - Color for buffer 2
3 - Color for buffer 3

4:15 -Empty
16 - Buffer 0 Color/Fog (primary)
17 - Buffer 1 Color/Fog
18 - Buffer 2 Color/Fog
19 - Buffer 3 Color/Fog
20:31 - Empty
32 ~ Export Address
33:37 -5 exports for multipass pixel shaders.
38:46 - Empty
47 - Debug Address
48:52 -5 debug exports (interpret as normal memory export)
60 - export addressing mode
61 - Z for primary buffer (Z exported to ‘alpha’ component)
62:63 - Empty

19. Special Interpolation modes

19.1 Real time commands

We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 4x128 memories (one for each of three vertices x 4 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. This modeis triggered by
the primitive type: REAL TIME. The actual memories are in the in the SX blocks. The parameter data memories are
hooked on the RBBM bus and are loaded by the CP using register mapped memory.

19.2 Sprites/ XY screen coordinates/ FB information
XY screen coordinates may be needed in the shader program. This functionality is controlled by the param_gen
register (in SQ) in conjunction with the SND_XY register (in SC) and the param_gen_pos. Alsoit is possible to send
the faceness information (for OGL front/back special operations) to the shader using the same control register. Here
is a list of all the modes and how they interact together:

The Data is going to be written in the register specified by the param_gen_pos register.

Param_Gendisable, snd_xy disable = No modification
Param_Gen disable, snd_xy enable = No modification
Param_Gen enable, snd_xy disable = Sign(faceness)garbage (Sign Point)garbage,Sign(Line)s, t
Param_Gen enable, snd_xy enable = Sign(faceness)screenX,(Sign Point)screeny,Sign(Line)s,t

In other words,
The generated vector is (Xin RED, Y in GREEN, S in BLUE and T in ALPHA):
XY,S,T
These values are always supposed to be positive and any shader use of them should use the ABS function
(as their sign bits will now be usedforflags).
SignX = BackFacing
SignY = Point Primitive
SignS = Line Primitive
SignT = currently unused as a flag.

Exhibit 2038.dec 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257899

ATI Ex. 2109

IPR2023-00922

Page 189 of 326

ATI Ex. 2109
IPR2023-00922

Page 190 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 2015 34 of 56
If (Point & {Line, then itis a Poly.

| would assumethat one implementation which allows for generic texture lookup (using 3D maps) for poly
stipple and AA for the driver would be
if(¥<0) {

R = 0.0 (Point)
else if (S < 0) {

R= 1.0 (Line)
} else {

R = 2.0 (Poly)
}

19.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1pass data to memory and then usethe countto retrieve the data on the 2 pass.
The countis always generated in the same waybutit is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX_PIX//TX register. The sequencer
is going to keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is
written to the GPRs the counter is incremented. Every time a RST_PIX_COUNT or RST_VTX_COUNTevents are
received, the corresponding counter is reset. While there is only one count broadcast to the GPRs, the LSB are
hardwired to specific values making the index different for all elements in the vector. Since the count must be different
for all pixeis/vertices and the 4 LSBs (16 positions) are hardwired to the corresponding shader unit the SQ has two
choices:

1) Maintain a 19 bit counter that counts the vectors of 64. In this case the phase must be appended to the count
before the count is broadcast to the SPs:

 Counter (19 bits) Phase(2 bits) Hardwired (4 bits)

2) Maintain a 21 bits counter that counts sub-vectors of 16. In this case only the counter is sent to the Sps:

 Counter(21 bits) | Hardwired (4 bits) |

19.3.1 Vertex shaders

In the case of vertex shaders, if GEN_INDEX_VTX is set, the data will be put into the x field of the third register (it
means that the compiler must allocate 3 GPRsin all multipass vertex shader modes).

19.3.2 Pixel shaders

In the case of pixel shaders, if GEN_INDEX_PIX is set, the data will be put in the x field of the param_gen_post+1
register.

Exhibit 203¢.doc 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257900

ATI Ex. 2109

IPR2023-00922

Page 190 of 326

ATI Ex. 2109
IPR2023-00922

Page 191 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 2015 GEN-CXXXXX-REVA 35 of 56
ee|

STGO |

AUTO ; INTERPOLATORSCOUNT

STG1 |
| ; | |

||

 AUTO COUNT | 000000 |

The Auto Count Value is

MUX broadcast to all GPRs.It is
loaded into a register wich has

its LSBs hardwired to the
GPR number(0 thru 63). Then

| if GEN_INDEXis high, the
mux selects the auto-count

value andit is loaded into the
GPRsto be either used to

retrieve data using the TP or
| sent to the 8X for the RB to
| use it to write the data to|I|

memory

Figure 10: GPR input mux Contre!

20. State management
Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

20.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
Whenthe SC sends a new vector of pixels with the SC_SQ_new_vectorbit asserted, the sequencerwill first checkif
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lowerits
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group ofpixels to the interpolators. Every time the state changes, the new state counteris initialized to 0.

21. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the [Js (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the |J data or pass the XY data thru a Fix—float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 19.2 for details on how to control the interpolation in this mode.

21.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
biock (96 bits). They are loadedin floating point format and can be transferred in 4 or 8 clocks to the GPRs.

22. Registers
Please see the auto-generated web pagesfor register definitions.

Exhibit 2038.dec 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257901

ATI Ex. 2109

IPR2023-00922

Page 191 of 326

ATI Ex. 2109
IPR2023-00922

Page 192 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 2015 36 of 56

23.1 External Interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—SPxit means that SQ is going to broadcast the same information to all SP instances.

23.2 SC to SP Interfaces

23.2.1 SC_SP#
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the |,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.

The actual data whichis transferred per quadis
Ref Pix | => $4.20 Floating Point | value *4
Ref Pix J => $4.20 Floating Point J value *4

This equates to a total of 200 bits which transferred over 2 clocks
and therefor needs an interface 100 bits wide

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a |IJ_BUF_INUSE_COUNTin the SC. Each time the
SC has sent a pixel vectors worth of data to the SPs, he will increment the |J_BUF_INUSE_COUNTcount. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2, if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
itis planned for the SP to hold 2 double buffers of 1,J data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads perpixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,SQ and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple modefirst with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performancehit.)

Name Bits | Description “|
SC_SP#_data 100|lJ information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bit)

Type 0 or 1, First clock |, second clk J
Field ULC URC LLCO LRC

Bits [63:39] [38:26] [25:13] [12:0]
Format SE4M20 SE4M20 SE4M20 SE4M20

Type 2
Field Face x Y

Bits [24] [23:12] [17:0]
Format Bit Unsigned Unsigned

SC_SP#_valid 1 | Valid
SC_SP#last_quad_data 1 | This bit will be set on the last transfer of data per quad.
SC_SP#_type 2 0 -> Indicates centroids

1 -> Indicates centers

2 -> indicates X,Y Data and faceness on data bus

_ The SC shall look at state data to determine how many types to send for the

Exhibit 2038.dec 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257902

ATI Ex. 2109

IPR2023-00922

Page 192 of 326

ATI Ex. 2109
IPR2023-00922

Page 193 of 326

 ORIGINATE DATE

24 September, 2001

EDIT DATE

4 September, 2015

interpolation process.

DOCUMENT-REV. NUM.

GEN-CXXAXX-REVA

PAGE

37 of 56

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statementfor
the SC and the SP biock will have neither because the instantiation will insert the prefix.

23.2.2 SC_SQ
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 108 bits) could be folded in half to approx 54
bits.

Name | | Bits|Description
| SC_SQ_data | 46|Control Data sent to the SQ

1 clk transfers

Event ~— valid data consist of event_id and
state_id. Instruct SQ to post an
event vector to send state id and

event_id through requestfifo
and onto the reservation stations

making sure state id and/or event_id
| | gets back to the CP. Events only

follow end of packets so no pixel
vectors will be in progress.

Empty Quad Mask — Transfer Control data
consisting of pc_dealloc
or new_vector. Receipt of this is to

| | transfer pc_dealloc or new_vector
without any valid quad data. New

| | vector will always be posted to
requestfifo and pc_dealloc will be
attached to any pixel vector
outstanding or posted in requestfifo
if no valid quad outstanding.

2 clk transfers

| | Quad Data Valid — Sending quad data with or
| | without new_vector or pc_dealloc.

New vectorwill be posted to request
fifo with or without a pixel vector and
pc_dealloc will be postedwith a pixel
vector unless noneis in progress. In
this case the pc_dealloc will be
posted in the request queue.
Filler quads will be transferred with
The Quad mask set but the pixel
corresponding pixel masksetto
zero.

"SC_SQvalid 4 SC sending valid data, 2clk could be all zeroes

SC_SQ_data — first clock and second clock transfers are shownin the table below.

| Name BitField|Bits|Description

4° Clock Transfer
 SC_SQ_event 0 1 This transfer is a 1 clock event vector Force quad_mask =

new_vector=pc_dealloc=0
SC_SQ_event_id [5:1] 4 This field identifies the event 0 => denotes an End Of State Event 1

Exhibit 2038.dec 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +**

AMD1044_0257903

ATI Ex. 2109

IPR2023-00922

Page 193 of 326

ATI Ex. 2109
IPR2023-00922

Page 194 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 2015 38 of 56

=> TBD

SC_SQ_state_id [8:6] 3 | State/constant pointer (6*3+3)
SC_SQ_pc_dealloc [11:9] 3 Deaillocation token for the Parameter Cache
SC_SQ_new_vector 12 1 The SQ must wait for Vertex shader done count > 0 and after

dispatching the Pixel Vector the SQ will decrementthe count.

|SC_SQ_quad_mask [16:13]|4 | Quad Write mask left to right SPO => SP3
SC_SQ_end_of_prim 17 i End Ofthe primitive

SC_SQ_pix_mask [33:18] I 16 Valid bits for all pixels SPO=>SP3 (UL,UR,LL,LR)
SC_SQ_provok_vix [35:34]|2 Provoking vertex for flat shading

|SC_SQ_lod_correct_0 [44:36]|9 LOD correction for quad 0 (SPO)(9 bits per quad)
SC_S$Q_lod_correct_1 [53:45]|9 LOD correction for quad 1 (SP1) (9 bits per quad)

2nd Clock Transfer

SC_SQ_lod_correct_2 [8:0] 9 LOD correction for quad 2 (SP2) (9 bits per quad)
SC_SQ_lod_correct_3 [17:9] 9 LOD correction for quad 3 (SP3) (9 bits per quad)

|SC_SQ_pe_ptrd [28:18]|11 Parameter Cache pointer for vertex 0
C_SQ_pc_ptr1 [39:29]|11 Parameter Cache pointerfor vertex 1

SC_SQ_pe_ptr2 [50:40] | 11 Parameter Cache pointer for vertex 2
5C_SQ_prim_type [53:51]|3 Stippled line and Real time command need to load tex cords from

alternate buffer

000: Sprite (point)
001: Line

010: Tri_rect
100: Realtime Sprite (point)
101: Realtime Line
110: Realtime Tri_rect

Name Bits | Description
SQ_SC_free_buff { | Pipelined bit that instructs SC to decrement count of buffers in use.
SQ_SC_dec_cntr_cnt | Pipelined bit that instructs SC to decrement count of new vector and/or event

sent to prevent SC from overflowing SQ interpolator/Reservation requestfifo.

The scan converter will submit a partial vector whenever:
1.) He gets a primitive marked with an end of packetsignal.
2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been

marked for deallocate when a primitive marked new_vector arrives. The Scan Converterwill submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when ail primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal made it through and thus the hang.)

Exhibit 2038.dec 6670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257904

ATI Ex. 2109

IPR2023-00922

Page 194 of 326

ATI Ex. 2109
IPR2023-00922

Page 195 of 326

 ORIGINATE DATE

24 September, 2001

 EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CX0000CREVA

PAGE

39 of 56

|Name_ Direction |_|: Bits |Description—_sessy ee |
csSQ_SPx_interp_flat_vtx ‘|SQ>SPx «|.2_~—s|:Provokingvertex for flatshading_ |
SQ_|_SPx_interp_flat:_gouraud SQ—SPx 1 Flat or gouraud shading |
SQ_SPx_interp_cyl_wrap SQ—SPx 4 Wich channel needs to be cylindrical wrapped
SQ_SPx interp_param_gen SQ—SPx 1 Generate Parameter |
SQ_SPx_interp_prim_type SQ—SPx 2 Bits [1:0] of primitive type sent by SC |
SQ_SPx_interp_buff_swap SQ—SPx 1 Swapp |J buffers
SQ _SPx interp IJ line SQ—SPx 2 IJ line number
SQ_SPx_interp_mode SQ—SPx 1 Center/Centroid sampling |
SQ_SXx_pe_ptrO SQ—SXx 11 Parameter Cache Pointer

SQ_SXx_pc_ptri SQ—SXx 11 Parameter Cache Pointer |SQ_SXx_pept2 SQ—SXx 1 Parameter Cache Pointer |
$Q_5x%x_rt_sel SQ—SXx 1 Selects between RT and Normal data (Bit 2 of prim type)
$Q_SX0_pc_wr_en SQ—SxX0 8 Write enable for the PC memories |
$Q_SX1_pc_wr_en SQ—Sx1 8 Write enable for the PC memories
SQ_SXx_pe_ wr_addr SQ—SXx 7 Write address for the PCs
SQ_SXx_pe_channel_mask | SQ—SXx 4 _| Channel mask
SQ_SxXx_pe_pir_valid | SQ-SXx 1 Read pointers are valid.
SQ_SPx_interp valid | SQ-SPx 1 interpolation control valid
$Q_5Px_SIMD_engine i SQ—SPx 1 Tells which SIMD engine this data belongs to

23.2.4 SQ to SP: Staging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.

Name Direction Bits|Description oe
SQ_SPx_vsr_data SQ—SPx 96 Pointers of indexes or HOS surface information |

SQ_SPx_vsr_wrt_addr SQ—SPx 3 Staging register write address
SQ_SPx_vsr_rd_addr SQ—SPx 3 Staging register read address
SQ _SPO_vsr_valid SQ—SP0 4 Data is valid

“SQ’SP1_vsr_valid«|SQUSPT1 |DataisvaidSCS
SQ_5P2_ vsr_ valid SQ—SP2 1 Datais valid
$SQ_SP3_ vsr_ valid $Q >SP3 1 Datais valid |
SQ_SPx_vsr_read SQ-»SPx 1 Increment the read pointers

23.2.5 VGT to SQ : Vertex interface

23.2.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit Hoating-point format. The VGT can transmit up to six 32-bit
floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide. In the case where an eventis sent the 5 LSBs of VGT_SQ_vsisr_data contain the eventID.

Exhibit 2038 .doc

81670 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257905

ATI Ex. 2109

IPR2023-00922

Page 195 of 326

ATI Ex. 2109
IPR2023-00922

Page 196 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 2015 40 of 56

|Name Bits Description
VGT_SQ_vsisr_data 96 Pointers of indexes or HOS surface information

VGT_SQ_ event Hi|VGT is sending an event __|VGT_SQ_vsisr_continued 4 0: Normal 96 bits per vert 1: double 192 bits per vert
VGT_SQ_end_of_vix_vect 4 Indicates the last VSISR data set for the current process vector (for double vector

data, “end_of vector" is set on thefirst vector)

VGT_SQ_indx_valid = Vsisr data is valid |VGT_SQ_state 3 Render Siate (6"3+3 for constants). This signal is guaranteed to be correct when
“VGT_SQ_vgt_end_of_ vector”is high.

VGT_SQ_send 4 Data on the VGT_SQis valid receive (see write-up for standard R400 SEND/RTR

L interface handshaking)_
SQ_VGT_rtr 4 Ready to receive (see write-up for standard R400 SEND/RTR interface| handshaking)

23.2.5.2 Interface Diagrams

Exhibit 2038.dec 8 1670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «+

AMD1044_0257906

ATI Ex. 2109

IPR2023-00922

Page 196 of 326

ATI Ex. 2109
IPR2023-00922

Page 197 of 326

YSONSNDASYSOVHS

+x@BegJ9A0DUOBINONJyUBuAdODsouajey“JENUEPYUED[LY@+08Go91¢

ALY

SOPVEO?WANS

cues45aGSvd

AMD1044_0257907

 |LOA

wana/aps|~~7XbOL!IOJSSAJOPUSYAGSVA—Taiineddsisa|a4|:TEOe)OREnypelvdUsien|Oa2yepdspsaabaOgwa|Oe¢YeaYSLSA
|9549LPWAAE-XXXXKO-NSADGLogWequiaydesyLoo‘lequiaydaspzADvdWON“Asae-LNSWNOOGdaLlvdLidaalLWdaLlyNISINO

 TWIMALVWYACUOAAILOALOUd

 ATI Ex. 2109

IPR2023-00922

Page 197 of 326

ATI Ex. 2109
IPR2023-00922

Page 198 of 326

see©OBEY1BAODUOBOONJUBLIAdoDsousiajey‘JEQUSPIJUOD[LY@xxx9°4acz919
opge0zWax

ATI Ex. 2109

IPR2023-00922

Page 198 of 326

AMD1044_0257908

 ‘SOENSIU]OAOSVdIO;WeIDEICESICpsjieieq~~TSinbig
NOTSSIWSNVaLSdOLSYHCNAS

NOCISSIWSNVaLSLYViS-dadASATSHOd
[SdOLSYHATHOdd

ayOdtaRLdWaOATINDO4TAEnoVWivdOAT>WLYd>NaS€WLvd€aNasZWLWdZGNasSIdLOA

ZuLyOsTulyos0ULYOsULdOs

TUTUFLALUAUGLOg‘iequaydes

9S$0Zp

qovduoleoyloadsssousnbesooryAlvalidsTIWIAE.LVNYaddoOFAILOdLOdd

L00%‘equiaydagpzdivdSlVNIS|YO

ATI Ex. 2109
IPR2023-00922

Page 199 of 326

 mORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAG

24 September, 2001 4 September, 2015 GEN-C20000C-REVA 43 of 56

23.2.6 SQ to SX: Control bus

Name | Direction Bits | Description |
SQ_SXx_exp_type | SQS8xx 2 00: Pixel without z (1 to 4 buffers)

01: Pixel with z (1 to 4 buffers)
10: Position (1 or 2 results)

it: Pass thru (1 to 5 results aligned)
SQ_SXx_exp_number | SQ—SXx 2 Number of locations needed in the export buffer

| (encoding depends on the type see bellow).

SQ_SXx_exp_alu_id | SQ—-SXx 4 ALU ID. Revolving ID 0 thru 15. Memory exports have |
| to increment this count by 4 or 8 depending on the size |

requested. Other type of exports increment the ID by 1. |
SQ_SXx_exp_valid | SQ—SXx 1 Valid bit

SQ_SXx_exp_state | SQ-SXx 3 State Context |
SQ_SXx_free_done | SQ>S8Xx 1 Pulse that indicates that the previous export is finished |

from the point of view of the SP. This does not |
necessarily mean that the data has been |
transferred to RB or PA, or that the space in export |
buffer for that particular vector thread has been |

| freed up.
SQ_SXx_free_alu_id _SQ->SXx 4 | ALU ID that was usedatallocatetime.

Depending on the type the numberof export location changes:
e Type 00: Pixels without Z

o 00 =1 buffer
o O01 =2 buffers
o 10=3 buffers
o 11=4 buffer

e Type 01: Pixels with Z
o 00 = 2 Buffers (color + Z)
o O01 =3 buffers (2 color + Z)
o 10=4 buffers (color + Z)
o 115 buffers (4 color + Z)

e Type 10: Position export
o 00 =1position
o O12 positions
o 1X Undefined

e Type ii: Pass Thru
o 00=4 buffers
o O01 =8 buffers
o 10= Undefined
o 11 = Undefined

Below the thick black line is the end of transfer packet that tells the SX that a given export is finished. The report
packet will always arrive either before or at the same time than the next export to the same ALU id.

23.2.7 SX to SQ : Outputfile control

Name | Direction Bits|Description
SXx_SQ_pix_free_countd | SXx—-SQ 6 | How manyslots where just freed in the SX for bankO
SXx_SQ_pix_count0_valid | SXx-SQ 1 Free_countd is valid
SXx_SQ_pix_free_countt | SXx-SQ 6 How manyslots where just freed in the SX for bank'
SXx_SQ_pix_countt_valid | SXx-SQ 1 Free_countt is valid
SXx_SQ_pos_free_count0 | SXx-SQ 4 How manyslots where just freed in the SX for bank0
SXx_SQ_pos_count0_valid | SXx-SQ 1 Free_count0 is valid
SXx_SQ_pos_free_counitt | SXx-SQ 4 How many slots where just freed in the SX for bank1

Exhibit 2038.dec 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257909

ATI Ex. 2109

IPR2023-00922

Page 199 of 326

ATI Ex. 2109
IPR2023-00922

Page 200 of 326

PAG

44 of 56

 mMORIGINATE DATE EDIT DATE R400 Sequencer Specification

24 September, 2001 4 September, 2015

SXx SQ pos count! valid | SXx—-SQ |
|| SXxSQmemexportfree | SXx-SQ |

| Free_countt is valid
| Freed a memory export slot

 1
1

23.2.8 SQ to TP: Control bus

Once every clock, the fetch unit sends to the sequencer on which RSline it is now working and if the data in the
GPRsis ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequencer also provides the instruction and constants for the fetch to execute and the address in the register file
whereto write the fetch return data.

Name Direction Bits Description
TPx_SQ_data_rdy TPx— SQ 1 Data ready

TPx_SQ_rsline_num | TPx— SQ 6 Line numberin the Reservation station
TPx_SQ_type | TPx— SQ 1 Type of data sent (O:PIXEL, 1:VERTEX)
SQ_TPx_send | SQ>TPx 1 Sending valid data
SQ_TPx_const | SQ—>TPx 48 Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instr | SQ-TPx 24 Fetch instruction sent over 4 clocks
35Q_TPx_end_of_group | SQ—TPx 1 Last instruction of the group

3Q_TPx_Type | SQ-—TPx 1 Type of data sent (O:PIXEL, 1:VERTEX)
SQ_TPx_gpr_phase | SQ>TPx 2 Write phasesignal
SQ_TPO_lod_correct | SQ->TPO 6 LOD correct 3 bits per comp 2 components per quad
SQ_TPO_pix_mask _SQ—TPO 4 | Pixel mask 1 bit per pixel
SQ_TP1_lod_correct | SQ—TP1 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP1_pix_mask | SQ5TPI 4 Pixel mask 1 bit per pixel
SQ_TP2_lod_correct | SQ—>TP2 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pix_mask | SQ>TP2 4 Pixel mask 1 bit perpixel
SQ@_TP3_lod_correct | SQ>TP3 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pix_mask | SQ—>TP3 4 Pixel mask 1 bit per pixel
SQ_TPx_rs_linenum | SQ>TPx 6 Line numberin the Reservation station
SQ_TPx_write_gpr_index | SQ->TPx 7 index into Registerfile for write of returned Fetch Data
S5Q_TPx_ctx_id | SQ->TPx 3 The state context ID (neededfor multisample resolves) |
SQ_TPx_SIMD | SQ->TPx [4|Tells the TP from which SIMD the data is coming from. |

23.2.9 SQ fo VC: Contro/ bus

Once every clock, the VC unit sends to the sequencer on which RSlineit is now working and if the data in the GPRs
is ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequencer also provides the instruction and constants for the fetch to execute and the address in the register file
where to write the fetch return data.

7 1

Name | Direction Bits Description |
VCx_SQ_data_rdy | VCx—SQ 1 Data ready
VCx_SQ_rs_line_num | VCx— SQ 6 Line numberin the Reservation station |
VCx_SQ_type | VCx— SQ 1 Type of data sent (O:PIXEL, 1:VERTEX)

“SQ_VCx_send |SQ4VCx1Sending validdata
SQ_VCx_const | SQ—>VCx 48 | Fetch state sent over 4 clocks (192 bitstotal)
SQ_VCx_instr | SQ>VCx 24_|Fetchinstruction sent over 4 clocks |
SQ_VCx_end_of_group | SQ—VCx 1 Last instruction of the group
SQ_VCx_Type | SQ—>VCx 1 Type of data sent (O:PIXEL, 1:VERTEX)
SQ_VCx_gpr_phase / SQ-VCx 2 Write phasesignal
SQ_VCO_pix_mask | SQ—VC0 4 Pixel mask 1 bit per pixel
SQ_VC1_pix_mask | SQ—VC1 4 Pixel mask 1 bit per pixel

SQ_VC2_pix_mask | SQVC2 4 Pixel mask 1 bit perpixel
SQ_VC3_pix_mask _SQ—VC3 4 Pixel mask 1 bit per pixel
SQ_VCx_rs_line_num | SQ—-VCx 6 Line numberin the Reservation station

Exhibit 203¢.dec 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257910

ATI Ex. 2109

IPR2023-00922

Page 200 of 326

ATI Ex. 2109
IPR2023-00922

Page 201 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

 oe 24 September, 2001 4 September, 2015 GEN-CXXXXX-REVA 45 of 56

SQ_VCx_write_gprindex =SQ->VCx_ |
$Q_VCx SIMD SQ-5VCx

23.2.10 TP to SQ: Texture stall

The TP sends this signal to the SQ and the SPs when its input buffer is full. Stall needs to be aligned with the
Instruction start.

 IndexintoRegisterfile for write of returned FetchData
Tells the VC from which SIMDthe data is coming from. |

(NameSSS—=éDirection—_—|Bits_|Description)
TP_SQ_fetch_stall | TP-» SQ 1 | Do not send more texture requestif asserted |

23.2.11 VC to SQ: Vertex Cachestall

The VCsends this signal to the SQ and the SPs whenits input buffer is full. Stall needs to be aligned with the
instruction start.

Name | Direction Bits|Description
VC_SQ_fetch_stall | VC» SQ 1 De not send more vertex cache requestif asserted |

23.2.12 SQ to SP: GPR and auto counter

Name Direction Bits|Description
SQ_SPx_simdO_gpr_wr_addr SQ—SPx 7 Write address
SQ_SPx_simdO_gpr_rd_addr SQ—SPx 7 Read address

-SQ_SPx_simd0_gprrd_en |SQ5SPx_—1 [ReadEnable
SQ_S5P0_simd0_gor_pspv_wr_en|SQ—SP0 (SP4) | 4 Write Enable for the GPRs of SPO for PS and PV
SQ_SP1_simd0_gor_pspv_wr_en|SQ >SP1 (SP5) 4 | Write Enable for the GPRs of SP1 for PS and PV
SQ_SP2_simdO_gpr_pspv_wr_en|SQ—SP2 (SP6) 4 Write Enable for the GPRs of SP2 for PS and PV
SQ_SP3_simdO gpr pspv_wr_en|SQ—SP3(SP7) 4 Write Enable for the GPRs of SP3 for PS and PV
SQ_SPO_simd0_gor_int_wr_en SQ—SP0 1 Write Enable for the GPRs of SPO for Inputs |

; (interp/vtx)
SQ_SP1_simdO_gpr_int_wr_en SQ >SP1 1 Write Enable for the GPRs of SP1 for Inputs |

(interp/vtx)
SQ_SP2_simdO_gpr_int_wr_en SQ—SP2 1 Write Enable for the GPRs of

| (interp/vtx)
SQ_SP3_simdO_gpr_int_wr_en SQ >SP3 1 Write Enable for the GPRs of

(interp/vtx)
SQ_SPx_gpr_phase SQ—SPx 2 The phase mux(arbitrates between inputs, ALU SRC |

boo reads and writes) _
$Q_SPx_simd0_channel_mask SQ—>SPx 4 The channel mask for SIMDO

SQ_SPx_gpr_input_sel SQ—-SPx 2 When the phase mux selects the inputs this tells from
which source to read from: Interpolated data, VTX0
VTA1, autogen counter.

 SQ_SPx_auto_count SQ >SPx 21 Auto count generated by the SQ, common for al
shader pipes

SQ_SPx_simdO_fetch_swizzle SQ-SPx 6 Swizzle code for the TP request (2 bits per channe
ignore W asit is not used).
Bits [1..0] X modeselect:
0=GPR_X 1=GPR_Y 2=GPR_Z 3=GPR_W
Bits [3..2] Y mode select:
0=GPR_X 1=GPR_Y 2=GPR_Z 3=GPR_W
Bits [5..4] Z mode select:
O=GPR_X i=GPR_Y 2=GPR_Z 3=GPR_W

SQ_SPx_simd0O_fetch_resource SQ-SPx 4 Resource in use currently

0: TP
4.VC |

SQ_SPx_simd1_gprwraddr SQ—SPx ¢ Write address
SQ_SPx_simd1_gpr_rd_adar SQ—SPx 7 Read address
SQ_SPx_simd1_gpr_rd_en SQ—SPx 1 Read Enable
SQ_SPO_simd1_gpr_pspv_wren|SQ-»SP0 (SP4) 4 Write Enable for the GPRs of SPO for PS and PV

Exhibit 2038.dec 81670 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257911

ATI Ex. 2109

IPR2023-00922

Page 201 of 326

ATI Ex. 2109
IPR2023-00922

Page 202 of 326

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 2015 46 of 56

SQ_SP1_simd1_gpr_pspv_wr_en|SQ—SP1(SP5) | 4 Write Enable for the GPRs of SP1 for PS and PV |
SQ_SP2_simd1_gpr_pspv_wr_en|SQ—>SP2 (SP6) 4 Write Enable for the GPRs of SP2 for PS and PV
SQ_SP3_simd1_gpr_ pspv_wren|SQ—SP3 (SP7 4 Write Enable for the GPRs of SP3 for PS and PV

4
1

$Q_SPx__simdi_ channel mask|SQ@—SPx _| The channel mask for SIMD1
$SQ_SPx_simd1_fetch_resource SQ—-SPx Resource in use currently

0: TP
VC

SQ_SPx_simd1_fetch_swizzle SQ->SPx 6 Swizzle code for the TP request (2 bits per channe
ignore W asit is not used).
Bits [1..0] X mode select:
0=GPR_X 1=GPR_LY 2=GPR_Z 3=GPR_W
Bits [3..2] Y mode select:
0=GPR_X 1=GPR_Y 2=GPR_Z 3=GPR_W
Bits [5..4] Z mode select:
0=GPR_X 1=GPR_Y 2=GPR_Z 3=GPR_W

 SQ_SP0_simd1_gpr_int_wr_en SQ—SP0 1 Write Enable for the GPRs of SPO for Inputs |
fpint)
SQ_SP1_simd1_gpr_int_wr_en SQ—-SP1 1 Write Enable for the GPRs of

(interp/vix)
$Q_SP2_simd1_gpr_int_wr_en SQ—-SP2 1 Write Enable for the GPRs of

(interp/vix)
$Q_SP3_simd1_gpr_int_wr_en SQ—-SP3 i Write Enable for the GPRs of SP3 for Inputs |

(interp/vix) |

Exhibit 2038.dec 81670 Sytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +

AMD1044_0257912

ATI Ex. 2109

IPR2023-00922

Page 202 of 326

ATI Ex. 2109
IPR2023-00922

Page 203 of 326

PAGE

47 of 56

EDIT DATE

4 September, 2015

 DOCUMENT-REV. NUM.

GEN-CXXXXX-REVAOr ORIGINATE DATEAn"0 24 September, 2001
23.2.13 SQ to SPx:

‘NameDirection| Bits |Description,
SQ_SPx_instr_start | SQ>SPx 1 Instruction start
SQ_SPx_simdO_instruct | SQ—SPx 24 Transferred over 4 cycles

0: SRC A Negate Argument Modifier 0:0
SRC AAbs Argument Modifier 1:1
SRC A Swizzie 9:2
Vector Dst 15:10
Per channel Select 23:16

00: GPR
01: PV
10: PS

| 11: Constant (if 11 has to be 11 for all
channels)

1: SRC B Negate Argument Modifier 0:0
| SRC B Abs Argument Modifier 1:1

SRC B Swizzle 9:2
Scalar Dst 15:10
Per channel Select 23:16

| 00: GPR
| 01: PV
| 10: PS

11: Constant (if 11 has to be 11 for all
channels)

2: SRC C Negate Argument Modifier 0:0
SRC C Abs Argument Modifier=1:4

SRC C Swizzle @:2

| Unused 15:10
| Per channel Select 23:16
| 00: GPR
| 01: PV

10: PS

11: Constant (if 11 has to be 11 for all
channels)

| 3: Vector Opcode 4:0
Scalar Opcode 10:5
Vector Clamp 11:11

| Scalar Clamp 12:12
Vector Write Mask 16:13

| Scalar Write Mask 20:17
| Unused 23:21

SQ_SPO_simd0_pred_override | SQ—SPO(SP4) 4 0: Use per channel RGBAfield (enables the per channel
logic).
i: Use GPR for PV or PS settings. LET the 11

| _ | (constant) go thru unchanged
| SQ@+SP1(SP5)|4 0: Use per channel RGBAfield (enables the per channel

logic).
1: Use GPR for

| (constant) go thru unchanged

SQ_SP1_simd0_pred_override

PV or PS settings. LET the 11

 SQ_SP2_simd0Q_pred_override | SQ—-SP2 (SP6) 4 0: Use per channel RGBAfield (enables the per channel

logic).
41: Use GPR for PV or PS settings. LET the 11

/ (constant) go thru unchanged :
SQ_SP3_simd0_prec_override | SQ—SP3(SP7) 4 0: Use per channel RGBAfield (enables the per channel

| logic).

Exhibit 2038.dec 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «**

AMD1044_0257913

ATI Ex. 2109

IPR2023-00922

Page 203 of 326

ATI Ex. 2109
IPR2023-00922

Page 204 of 326

ORIGINATE DATE EDIT DATE

24 September, 2001 4 September, 2015

PAGE

48 of 56
 R400 Sequencer Specification

 4: Use GPR for PV or PS settings.

(constant) go thru unchanged
$Q_SPx_simd0_ stall SQ 5Px 1 | Stall signal

 LET the 11)

Exhibit 2038.dec 81670 Sytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «*«

AMD1044_0257914

ATI Ex. 2109

IPR2023-00922

Page 204 of 326

ATI Ex. 2109
IPR2023-00922

Page 205 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 2015 GEN-CXXAXX-REVA 49 of 56

SQ_SPx_simd0_Waterfall SQ—SPx 2 Use the incoming constant instead of the registered one
for the next group of 16.
0: Normal mode
1: Waterfall on SRCA
2: Waterfall on SRCB

; 3: Waterfall on SRCC
SQ_SPx_simd1_instruct SQ—-SPx 24 Transferred over 4 cycles

0: SRC A Negate Argument Modifier 0:0
SRC AAbs Argument Modifier 1:1

SRC A Swizzle 9:2
Vector Dst 16:10
Per channel Select 23:16

00: GPR
01: PV
10: PS

11: Constant (if 11 has to be 17 for all
channels)

1: SRC B Negate Argument Modifier 0:0
SRC B Abs Argument Modifier 1:1
SRC B Swizzle 9:2
Scalar Dst 15:10
Per channel Select 23:16

00: GPR
01: PV
10: PS

17: Constant (if 11 has to be 11 for all
channels)

2: SRC C Negate Argument Modifier 0:0
SRC C Abs Argument Modifier=1:1

SRC C Swizzle 9:2
Unused 15:10
Per channel Select 23:16

00: GPR
01: PV
10. PS

17: Constant (if 11 has to be 11 for all
channels)

3: Vector Opcode 4:0
Scalar Opcode 10:5
Vector Clamp 44:11
Scalar Clamp 12:12
Vector Write Mask 16:13

| Scalar Write Mask 20:17Unused 23:21

SQ_SP0_simd1_pred_override SQ—SP0 (SP4) 4 0: Use per channel RGBAfield (enables the per channel
logic).
i: Use GPR for PV or PS settings. LET the 11
(constant) go thru unchanged

SQ_SP1_simd1_pred_override SQ—SP1 (SP5) 4 0: Use per channel RGBAfield (enables the per channel
logic).
1: Use GPR for PV or PS settings. LET the 11
(constant) go thru unchanged

SQ_SP2_simd1_pred_override SQ—SP? (SP6) 4 0: Use per channel RGBAfield (enables the per channel
logic).
i: Use GPR for PV or PS settings. LET the 11

“osstutsippniiniiinisiiiiniiitfiniigriniiiienieif ownACONStaNt) go thruunchanged
SQ_SP3_simd1_pred_override | SQ@--SP3 (SP7) 4 0: Use per channel RGBAfield (enables the per channel

Exhibit 2036.doc 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «+

AMD1044_0257915

ATI Ex. 2109

IPR2023-00922

Page 205 of 326

ATI Ex. 2109
IPR2023-00922

Page 206 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 200 4 September, 2015 50 of 56

logic).
1: Use GPR for PV or PS settings. LET the 11 |
(constant) go thru unchanged

$Q_SPx_simd1_stall SQ—S8Px 1 Stall signal |
SQ_SPx_simd1_Waterfall SQ—SPx 2 Use the incoming constant instead of the registered one

for the next group of 16.
0: Normal mode
4: Waterfall on SRCA
2: Waterfall on SRCB

[3. Waterfall on SRCC
SQ_SPx_export_simd_sel SQ->SPx i Which SIMD engine is exporting. |

23.2.14 SQ to SX: write mask interface (must be aligned with the SP data)
Name Direction Bits|Description
$Q_SX0_write_mask SQ—SP0 8 Result of pixel kill in the shader pipe, which must be

output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock. This is for the data coming of SPO and SP2.

SQ_SX1_ write_mask SQ—SP1 8 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock. This is for the data coming of SP1 and SP3.

Exhibit 203¢.doc 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257916

ATI Ex. 2109

IPR2023-00922

Page 206 of 326

ATI Ex. 2109
IPR2023-00922

Page 207 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 2015 GEN-CXAXXXX-REVA 51 of 56

23.2.15 SP to SQ: Constant address load/ Predicate Set/Kill set

Name Direction|Bits|Description
SP0_SQ_simd0O_const_addr (SP4) SP0O—S8Q | 36 Constant address load 18 bits from SPO and 18 from |

SP4.
SP0_SQ_simd0_valid SP0—S8Q 4 Data valid

SP1_SQ_simd0_const_addr (SP5) SP1--SQ | 36 Constant address load
SPI_SQusimd0valid ESPISSQ|Datavalig_
SP2 SQ_simdO_const_addr | (SP6) SP2--5Q 36 Constant address load
SP2_SQ_simd0_valid SP2—S5Q 1 Data valid
SP3_SQ_simd0_const_addr (SP7) SP3—SQ 36 Constant address load
SP3_SQ_simd0_valid SP3—SQ 14 Data valid |
SPO_SQ_simdO_pred_kill_vector|(SP4) SPO9SQ 4 Data (predicates or kill/mask) 2 bits from SPO and 2

bits from SP4

SPO0_SQ_simd0_pred_kill_valid SP0->SQ 1 Data valic
SPOQ_SQ_simd0O_prec_kill_type SP0->SQ 4 0: predicate vector

L 1: kill/mask vector
SP1_SQ_simd0_pred_kill vector|(SP5)SP13SQ;4 | Data (predicates or kilVmasky)
SP1_SQ_simd0_prec_kill_valid SP1->SQ 14 Data valid
SP1_SQ_simd0_prec_kill_type SP1->SQ 14 0: predicate vector

| 1: kill/mask vector
SP2_SQ_simd0_prec_killvector|(SP6)SP295SQ=| 4 | Data (predicates or kil/mask)

SP2_SQ_simd0_prec_kill_valid SP2->SQ , 4 Data valic |
SP2_SQ_simd0_prec_kill_type SP2->8Q 14 0: predicate vector

1: kill/mask vector

SP3_SQ_simd0_pred_kill vector|(SP7) SP33SQ 4 Data (predicates or kill/mask)
SP3_SQ_simd0O_prec_kill_valid SP3->8Q 4 Data valic
SP3_SQ_simd0_prec_kill_type SP3->SQ 14 0: predicate vector

1: kill/mask vector |

SP0_SQ_simd1_const_addr (SP4) SPO—SQ 36 Constant address load 18 bits from SPO and 18 from
SP4.

SP0_SQ_simd1_valid —_SPO-SQ.(4 | Datavalid|
SP1_SQ_simd1_const_addr (SP5) SP1 >SQ 36 Constant address load
SP1_SQ_simd1, valid SPi-S@Q 4 Data valid

SP2_SQ_simd1_const_addr (SP6) SP2—-8Q | 36 Constantaddressloadee|
$P2_SQ_simd1_valid SP2—8Q 14 Data valid

“SP3_SQ_simd1_const_addr | (SP7)SP3>SQ_ [36|Constantaddressload
SP3_SQ_simd1_valid SP3--SQ 1 Data valid

SP0_SQ_simd1_pred_kill_vector|(SP4) SP09SQ 4 Data (predicates or kill/mask) 2 bits from SPO and 2
bits from SP4

SPO SQ_simd1_prec_kill_valid SP0->SQ 1 Data valic
SPO_SQ_simd1_pred_kill_type SPO0->SQ 4 0: predicate vector

| 1: kill/mask vector

$P1_SQ_simd1_pred_killvector|(SP5) SP13SQ 4 Data (predicates or kill/mask)
$P1_$Q_simd’_prec_kill_valid SP1->SQ 14 Data valid
SP1_SQ_simd1_pred_kill_type SP1->SQ 4 0: predicate vector

1: kill/mask vector

$P2_SQ_simd1_pred_killvector|(SP6) SP23SQ 4 Data (predicates or kill/mask)
SP2_SQ_simdi_pred_kill_ valid|SP2->SQ Data valid
SP2_SQ_simd1_prec_kill_type SP2->8Q 4 0: predicate vector

1: kill/mask vector

SP3_SQ_simd1_pred_kill vector|(SP7) SP39SQ | 4 | Data (predicates or kill/mask)
SP3_SQ_simd1_prec_kill_valic SP3->SQ 4 Data valid
SP3_SQ_simd1_pred_kill_type SP3->SQ | 4 0: predicate vector |

4: kill/mask vector

—_

 Because of the sharing of the bus none of the MOVA, PREDSETor KILL instructions may be coissued.

23.2.16 SQ to SPx: constant broadcast

Name | Direction | Bits | Description

Exhibit 2038.dec 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «**

AMD1044_0257917

ATI Ex. 2109

IPR2023-00922

Page 207 of 326

ATI Ex. 2109
IPR2023-00922

Page 208 of 326

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 2015 52 of 56

SQ_SPx_simd0_const SQ—-SPx 128|Constant broadcast

~SQ_SPx_simd1_const $Q->SPx | 128|Constant broadcast

23.2.17 SQ to CP: RBBM bus

Name Direction (Bits |Description©.|
SQ_RBB_rs SQ—>CP 1 Read Strobe
SQ_RBB_rd SQ>CP 32 | Read Data
SQ_RBBM_nrtrtr SQ—CP 1 Optional
SQ_RBBM_rtr SQ—>CP | 4 Real-Time (Optional)

23.2.18 CP to SQ: RBBM bus

Name Direction | Bits|Description
rbbm_we CP=SQ 4 Write Enable
rbbm_a CP-SQ 115 Address -- Upper Extent is TBD (16:2)
rbbm_wd CP—SQ 32 Data
rbbm_be CP—SQ | 4 Byte Enables
rbbm_re CP-SQ 4 Read Enable
rbb_rs0 CPSQ i 4 Read Return Strobe 0
rbb_rs1 LCP—SQ 1 Read Return Strobe 1
rbb_rd0 CP >SQ | 32 Read Data 0
rbb_rdi CP-SQ 32 Read Data 0
RBBM_SQsoft_reset CP »SQ 4 Soft Reset

23.2.19 SQ to CP:State report
_Name ; Direction Bits|Description
SQ_CP_vs_event SQ—-CP|i | Vertex ShaderEvent =i
SQ_CP_vs_eventid SQ—CP 5 Vertex Shader Event ID

SQ_CP_ps event SQ—CP 1 Pixel Shader Event
SQ_CP_ps_eventid SQ-—CP 5 Pixel Shader Event 1D

23.3 Example of control flow program execution
We now provide some examples of execution to better illustrate the new design.

Given the program:

Alu 0
Alu 1
Tex 0
Tex 7
Alu 3 Serial
Alu 4
Tex 2
Alu 5
Alu 6 Serial
Tex 3
Alu 7
Alloc Position 1 buffer

Alu 8 Export
Tex 4
Alloc Parameter 3 buffers

Alu 9 Export 0
Tex 5

Alu 10 Serial Export 2
Alu 11 Export 1 End

Exhibit 2038.dec 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257918

ATI Ex. 2109

IPR2023-00922

Page 208 of 326

ATI Ex. 2109
IPR2023-00922

Page 209 of 326

Vay ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM.A“. é 24 September, 2001 4 September, 2015 GEN-CXXXXX-REVA
PAGE

53 of 56

Would be convertedinto the following CF instructions:

Execute OQ Alu 0 Alu 0 Tex 0 Tex 1 Alu O Alu O Tex O Alu 1 Alu O Tex
Execute 0 Alu
Alloc Position 1
Execute 0 Alu GO Tex
Alloc Param 3

Executeend 0 Alu 0 Tex 1 Alu 0 Alu

And the execution of this program would look like this:

Put thread in Vertex RS:

Control Flow Instruction Pointer (12 bits), (CFP)
Execution Count Marker (3 or 4 bits), (ECM)
Loop Iterators (4x9 bits), (LI)
Call return pointers (4x12 bits), (CRP)
Predicate Bits(4x64 bits), (PB)
Export ID (1 bit), (EXID)
GPRBasePtr (8 bits), (GPR)
Export BasePtr (7 bits), (EB)
Context Pir (3 bits). (CPTR)
LOD correction bits (16x6 bits) (LOD)

State Bits

OD

 CFP ECM LI CRP PB EXID | GPR | EB _CPTR

| 00 [oO [0 [0 0 0 0 | 0

Valid Thread (VALID)
Texture/ALU engine needed (TYPE)
Texture Reads are outstanding (PENDING)
Waiting on Texture Read to Complete (SERIA
Allocation Wait (2 bits) (ALLOC)

00 — No allocation needed

01 — Position export allocation needed (ordered export)
10 — Parameteror pixel export needed (ordered export)
11 — pass thru (out of order export)

Allocation Size (4 bits) (SIZE)
Position Allocated (POS_ALLOC)
First thread of a new context (FIRST)
Last (1 bit), (LAST)

woe

Status Bits

VALID TYPE | PENDING | SERIAL | ALLOC | SIZE | POS_ALLOC | FIRST | LAST 1 [ALU | 0 [0 [0 fo. [0 4 [0

Then the thread is picked up for the execution of the first control flow instruction:
Execute 0 Alu @ Alu 0 Tex 0 Tex 1 Alu O Alu 0 Tex 0 Alu 1 Alu 0 Tex

It executes the first two ALU instructions and goes back to the RS for a resource request change. Here is the
state returned to the RS:

State Bits

CFP ECM Li CRP PB EXID GPR EB | CPTR LOD

0 2 0 0 0 10 0 | 0 0

Status Bits

Exhibit 2038.dec «81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257919

ATI Ex. 2109

IPR2023-00922

Page 209 of 326

ATI Ex. 2109
IPR2023-00922

Page 210 of 326

 ORIGINATE DATE

24 September, 2007

EDIT DATE

4 September, 2015

R400 Sequencer Specification PAGE

54 of 56

VALID TYPE SERIAL [SIZE | POS ALLOC

 1
PENDING
0TEX

| ALLOC
0 [0 LG 10

FIRST LAST
1 0

Then when the texture pipe frees up, the arbiter picks up the thread to issue the texture reads. The thread comes
backin this state:

State Bits |

CFP | LI CRP PB EXID | GPR EB [CPTR | LOD
0 0 [0 [0 [0 | 0 Ooee|

Status Bits
[ALLOC| FIRST (Oo

|SIZE |POS_ALLOG
Oo |0

Because of the serial bit the arbiter must wait for the texture to return and clear the PENDINGbit before it can

pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returnsit in

this state:

State Bits

CEP | ECM Ll | CRP | PB EXID GPR EB |CPTR | LOD
0 16 0 0 : 0 0 0 10 19 Lo

Status Bits

VALID TYPE PENDING|SERIAL|ALLOC|SIZE|POS _ALLOC|FIRST | LAST
1 TEX 0 0 0 10 Q iz 0

Again the TP frees up, the arbiter picks up the thread and executes. It returns in this state:

State Bits

CFP | ECM LI CRP PB | EXID | GPR _EB CPTR. | LOD
0 7 LO 0 0 [0 [0 [0 0 0

Status Bits

|VALID | TYPE PENDING [SERIAL |ALLOC|SIZE | POSALLOC [FIRST|LAST
1 | ALU 1 [0 0 0 [0 ii [0

Now,even if the texture has not returned we can still pick up
is not set. The thread will however come back to the RS for the second ALU instruction becauseit has the serial bit

he thread for ALU execution becausethe serial bit

set.

State Bits

CFP ECM LL CRP PB EXID GPR _EB |CPTR | LOD
0 8 [0 0 0 0 0 [0 [0 0

Status Bits

VALID | TYPE | PENDING|SERIAL|ALLOC | SIZE | POS_ALLOC|FIRST [LAST
1 | ALU | 1 | 1 0 0 | 0 1 0

As soon as the TP clears the pending bit the thread is picked up and returns:

Exhibit 2038.doc
81670 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257920

ATI Ex. 2109

IPR2023-00922

Page 210 of 326

ATI Ex. 2109
IPR2023-00922

Page 211 of 326

yar ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGEC<< é 24 September, 2001 4 September, 2015 GEN-CXXXXX-REVA 55 of 56
State Bits

|CFP | ECM Ll | CRP | PB EXID | GPR EB CPTR LOD
0 9 0 [0 [0 a |G 0 0 Lo

Status Bits _ ee ll __ _

VALID [TYPE PENDING [SERIAL | ALLOC|SIZE |POS_ALLOC | FIRST | LAST
1 | TEX 0 [0 0 Q [0 [4 [o

Picked up by the TP and returns:
Execute © Alu

State Bits

CFP | ECM [Li | CRP PB EXID | GPR EB CPTR LOD
1 0 [0 [0 0 0 [0 0 0 0

Status Bits

VALID TYPE PENDING | SERIAL |ALLOC|SIZE|POSALLOC [FIRST | LAST
1 ALU 1 Lo 0 10 0 4 [0 |

Picked up by the ALU and returns (lets say the TP has not returned yet):
Alloc Position 1

State Bits

GFP ECM Li CRP PB EXID GPR | EB CPTR | LOD
2 10 0 | 0 0 0 0 [0 0 [0

Status Bits

VALID | TYPE PENDING [SERIAL |ALLOC [SIZE|POS ALLOC|FIRST LAST
1 | ALU a Oo | 04 i fO.iz oO

if the SX has the place for the export, the SQ is going to allocate and pick up the thread for execution. It returns to
the RSin this state:

Execute 0 Alu 0 Tex

State Bits

jEBCPTR|LOD
0 0 0

‘Status Bis eee

VALID || TYPE [SERIAL [ALLOC |

 1 | TEX
AL
0

Now,since the TP has not returned yet, we must wait for it to return because we cannot issue multiple texture

requests. The TP returns, clears the PENDINGbit and we proceed:

Alloc Param 3

Exhibit 2038.doc
81670 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «+«

AMD1044_0257921

ATI Ex. 2109

IPR2023-00922

Page 211 of 326

ATI Ex. 2109
IPR2023-00922

Page 212 of 326

Vi ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

oe 24 September, 2001 4 September, 2015 56 of 56

State Bits

CFP ECM LL | CRP PB | EXID GPR EB _CPTR LOD
4 0 0 0 0 4 0 0 10 0

Status Bits

| PENDING

1 ALU 4

[SERIAL ALLOC|SIZE|POS ALLOC|FIRST LAST
0 40 3 1 1 0

Once again the SQ makes sure the SX has enough room in the Parameter cache before it can pick up this
thread.

Executeend Q Alu 0 Tex 1 Alu O Alu

State Bits

CFP | ECM | Li _CRP PB EXID GPR | EB | CPTR LOD
5 4 [0 [0 0 id [0 | 100 10 0

Status Bits

VALID TYPE PENDING | SERIAL |ALLOC [SIZE|POSALLOC | FIRST _| LAST
1 TEX 1 0 [o 0 1 4 10

This executes on the TP and then returns:

State Bits

CFP ECM | LI | CRP PB EXID GPR EB | CPTR LOD

5 2 10 10 0 1 0 , 100 10 0

Status Bits

VALID TYPE PENDING | SERIAL | ALLOC | SIZE | POSALLOC FIRST | LAST
1 ALU 1 [4 0 fo. 1 i |

Waits for the TP to return because of the textures reads are pending (and SERIALin this case). Then executes
and does not return to the RS because the LASTbit is set. This is the end of this thread and before droppingit on the
floor, the SQ notifies the SX of export completion.

24. Open issues
Need to do sometesting on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

Exhibit 203¢.doc 81670 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257922

ATI Ex. 2109

IPR2023-00922

Page 212 of 326

ATI Ex. 2109
IPR2023-00922

Page 213 of 326

 ORIGINATE DATE

9 July, 2003

Laurent Lefebvre

EDIT DATE DOCUMENT-REV. NUM. PAGE

4 September, 2015 GEN-CX0O0OX-REVA 1 of 54

Author:

issue To: Copy No:

R400 Sequencer Specification

SQ

Version 2.14

 Overview: This is an architectural specification for the R400 Sequencer block (SEQ). It provides an overview of the
required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-
blocks, and provides internal state diagrams.

 AUTOMATICALLY UPDATED FIELDS:

Document Location: C\perforce\r400\doc_lib\designiblocksisq\R400_Sequencer.doc
Current intranet Search Title: R400 Sequencer Specification

APPROVALS

 7 Name/Dept oo. Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE

SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATi Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of AT| Technologies Inc.”

Exhibit 2089.doc 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page @*« ATI 2039
LGv. ATI

IPR2015-00325

AMD1044_0257923

ATI Ex. 2109

IPR2023-00922

Page 213 of 326

ATI Ex. 2109
IPR2023-00922

Page 214 of 326

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

9 July, 2003 4 September, 2015 2 of 54

Table Of Contents

B. OVEERVIEWoececcccceseenenseceencenannereseaeaersconersasonsssneneenentearversneaaeesatentecsensnensaetenteseqnarsssestent 6

L1 Top Level BlOCK DIGGPA oo...ccccece cee e eee e eee e eterno er nnn EEE EERE EOCEE CE EE CCE GCEEDCcegeEECcEReEEECeEReS 8
1.2 Data Flow Graph (SP).ccccence eee nee ee eect eee ee ences ees cceeeeeceneneeeceecncerrteececrenesccceeres 9
1.30 Control rappinceee eect cece neeenneeesceeeccneeeceneeeecteeseccreectereseneieecaueeescteeeereeas 10
2. INTERPOLATED DATA BUS... cccstecseoseresessennmnecssssuersssssunseenesuesseusecseauesecssnusueatsaeaeeseens 10

3. INSTRUCTION STORE.cccccscscesssuesesssseesesessnoneeuesenseauesessssuasesssaeesesesanseeesasessoaesueassnuaaersenes 13

4, SEQUENCER INSTRUCTIONS|...ccc cccesconseceessnseeresseanseereseusnensaucneauenenscanaevarseuaseneeee 13
5, GONSTANT STORES.0.0... cccccccessnsceccseeessecnenoneetenerseaeneressunoneecseceseceneneneetenerseneneressnanertenee 13

5.1 MeMOry OFQ@NiZa@llOns 00.ecc ec ccccee cece cee eeebeeeeeeecgeeteescaeeeeesneeeneseneeeeeuaae gas seaeeeaseaaeeneseae 13
5.2 Management of the Control Flow Constants o.oocece ccc cccee cece ccceeeececereesceennencseesencrees 14
§3 Management of the re-mapping tablesocccece cee ceeeeeeceeeeaeeteeeeesevaaeeaeeaweeae sana 14

§.3.1 R400 Constant Management 00. cece ce ccccceccceeenteeeeeeeceeeeesccttnteeseeeeeseceeseeecianasieees 14
S.B.2 CUYDcececece eee cen ee ee en OEE Ee CUO EE CULE EEE ECE Ed Heed cbe eC ee cc cd EEO Ceca teCrEECederr tes 14
S.3.3 Fr@@ LISt BIOCKcece cecccecce ccc eeeceenececseeeeeeeeeeecceeeneyceeaeaeeceeeeeccusecevcceseeeeereseeeeceteneceees 14

8.3.4 De-allacate Block ooo. cccccccc cece cece cece eee settee et eet deat dette te tet tetitteetcteeteececeneeseteeseeseeess 15

5.3.5 Operation of Incremental MOE)occccc ccee cece ence rece n cee cceescnscnesteencieeeesenectnerences 15
5.4 Constant Store INGexIAGcececcc cece ence te eee cen e eee cecccseeeesccereeececenecrescencarireesencrseereccnees 16
§.5§ Real Time Commands...cccecceecce ce eeeceeetescenentesseeeeeeseteteedeaeaeesseeeeeestnetetittneneesess 16

§.6 Constant Waterfalling oo...cece cccneneseeeeeeeeeneeetsteneeeeseeeeeeescctesauaueeseeeeeessctntnssaeeeseeeens 16
6 LOOPING AND BRANCHES... .sccsececseosesresessenensescssssuersssssunseensneesseusecascauesecssnusueatsaaeesesns 17

6.1 THE COMTOMING StALG.cece ccc cee ce ee en neces eee cee eeee ccc cecceaeaeeceeeeesecceneneceeeeeeeeeeeeeccteneneents ‘7
6.2 The Control Flow Program occccc cece cece ce cece eenesecdneeccteeeecceeenceeecdisseeteeecsureeeuteeeeceees 17

6.2.1 Control flow instructions table...occcece ccc nccne ec en cee cceec ences tesccteeeesenecteecsncntercrees 16

6.3 WPIGIMONTALION cece cece ceec cere ee cece ene c cee ee ee cee eeee cance ce ccsaeaeeceeesesecuenenecueeeeeeeeeeeesccnenenercnts 21
64 Data dependant predicate instructions oo... ccccccccccccccceceececeeeececeeneneceeeeeeceeeeesecsnnaseness 23
6.5 HW Detection of PVPS. ccccccccceccccccucecevevesteseaueravevuetenrceeseuseveeeuuserseauvteesueceesanrecers 24
6.6 Register fle INGEXING «oo... cccccccc cece ccen ene c ces ee ee cee eeee can cececceaeaeeeeeeeesecceneneceeeeeeeceeeeeccneneneents 24
6.7 Debugging the SAaders. o.oocccccc ccc ce cen e ee eee cece n eee ener cre ee te ce aeeee co ceeecenceereresceteeestencees 24

6.7.1 Method 1: Debugging registers 0000cececece ee cee cette tee a ees eeeeeeteeneneneteas 24
6.7.2 Method 2: Exporting the values in the GPRS... ccc cece cecceneceesccceceeeeeccceeeeesenenteeceees 25

7. PIXEL KILL MASI .eecccccesescuecssssenaeeeseeoensnssesseusauesesenauesseseuussecusauuensesueasonwasesssueauessounauossans 25

8 REGISTER FILE ALLOCATION...cece cccecesscscseeseeseeeersenenescereanenseneseaeeauenenssnsensspaeasenenee 25

9, FETCH ARBITRATION.:cccccccconscessssecserensnsnsenenersncenerssunasescoaeuserenenannecesennanenerseeunaaereenes 26

10. VO ARBITRATION. ..ccccccsseesssesscesssscoenesseessoemstesceusaueseseaeesesnosentssesssouuteesessnuuerssauuusesseoneanenes 26

11. ALU ARBITRATIONQcssscscessscsennesesssseenesesenauessaaeueesesuosentusesssouseuesessnauersensuestesesneneates 27

12. HANDLING STALLS ooeeeeeeccnenenessseenetesenauessnnentenesuseounsenseoaeeneseasnanensneneeaeeneeseanenes 27

12.1 SP stall COMCITHONSoooceceec ee ce be beet et ereeeeecseeuntrataeateteeeeescenitintievereesens 27

L211 PS SHAScececece cence rere ect eee C en Co neE ee cco dee cdde ae Ee Ee dca det eedeeccceeteesenereeececens af

P22 PMV SHAScececence cence ee cnn eee e eC eee ee coed eee sne ae ee ted ca det eedeeccceeeeesenereeecenens af

13. CONTENT OF THE RESERVATION STATION FIFOSeeseesencscecessenceneeeonnanenenseaen 27

14, THE OUTPUT FILE...ccccecccceeseneeenseeersanneneseanaaereesenaeecenneueneesenssannenesessaaecseneeateceneaseanenes 27

15. LD FORMAT 0... ccccecssccesecesseressesessnseesessssuenerseneasessonssenessenssoasatesesenauersanouuesesesaenensesuessnunsueatoaus 27

[5.1 Interpolation of constant AttiDUteS ooo...cecceecceeeeeeseeeee esses neeesae anaes cadeaeeceaee er ccee 28
16. STAGING REGISTERS. qo... seceeseeeeesenneneceeseceeenensoneaen spneuaeazenusenunenensoasausteneneneesnneneanenes 28

17. THE PARAMETER CACHE... .cccccccccsccsscccenseecnecescannaeeeessnaerecenennecesnaneusesesanaenenserssnacereseees 29

Exhibit 203¢.dec 84302 aytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257924

ATI Ex. 2109

IPR2023-00922

Page 214 of 326

ATI Ex. 2109
IPR2023-00922

Page 215 of 326

 V0 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGEs . 0 9 July, 2003 4 September, 2015 GEN-CXXXXX-REVA 3 of 54
L711 EXPOPt PESTICHONSccccece cee ee ee ee ee ree nn EEE EERE CEEE CRED CEEEK CCGG EGteC Ogee neESceteNenennenreuaaas 30

71a PIXE] OXPOPES! occ cece ccececccec cece ceeeeeeccceceneceeeeeecreeeeececuenevensaeeecsesetercotenevenieesereeeeeeecnten 30
17.1.2 Vertex experts:occeeeceee eee ee ee cece cee aes eeaeeeeceteteeccttenisseeeeeeeeeeeeseens 30
L713 PASS UNPuU EXPOS. oo... cee cccececccceeceneceeeeecceceeecucneneveneeeeeceeseeeeconeniecceseeeeeeesesecntes 30

17.2 Arbitration restrictions... cece cece cece cece ee eeeeeee aces ceeeeee tenes segndeeeeeeeeeeeseteeeverasaseeeees 31

18. EXPORT TYPES... .0..cccccccceecee cece eee eee ne ene e eee eeenee ern eeeee cone enemeee te nenen ee nn nen ened naeneeneeeeneneeeeneae 31

18.1 Vertex SNAGINGcecccccence cece ee eceeneesete eae seeeeeeeeceeeeesceaaaaeaueeeeeeseseerseaeaseaesaseeneneecegass 31
TS.2 Pix@l SPACIIIGcececece eee cece n eee nec c ened ee een rte ee ee cece eeecee cae eeeeeeeccreeeeseceaeeesecntererties 32
19. SPECIAL INTERPOLATION MODES. ooo...ccccsneceeseneeeecessenaesseneeneaeenessennenescueaunenesaea 32

19.1 Real tm@ COMMANISoo...eeee cece eee eee ee bc tt eebbeteeeeceeeeeecegeeeneseetanesaaneatauaaas 32

192 Soprites/ XY screen coordinates/ FB INPOPMALON 000... cece cee cece eee cece eneeseeeeeeccenetnnaaes 32
19.3 Auto generated COUNTESS oo...cece eee e enter eee Ene EEE EE EE DEREE COLE COE EEC CGCee CeCe GttteCeEeeeE Gees 33

19.3.1 Vertex SNAMErSceeeeeeeenetted t ec ntneeeeeeteetenencnes 33

19.3.2 PIKE) SPACELScece cece ccc cs cece cece eee sede eedesssaeea se :esaesseeeseceseeseeseeeesesseeeseeeneens 34

20. STATE MANAGEMENT........ ccc cessesssessenosenenseesseuesussesenasessanosentusenssoueatecesseauensenesentesenaeounens 34

20.1 Parameter cache SYNCHPONiZaAtiOn ooocece ccccceecceeeeeeeeeeeeseeeeeseuaneeaeseaeeaaseaaeeeeseees 34
21. AY ADDRESS IMPORTS...eeseeeeeeeeessenennesesenanes saneuaouseunssoaeanenenseasenseneeeenesenanonnane 34

2h. Vertex indexes IMportsoo.cece cece enc ee tee cutee eccenceeceesceccreeeeeccscrieecseanecresteeceteeees 34
22, REGISTERS o...cccccccsssescssesnesvesssussveneseessensscussunacessauesusessuessesesusuenuuasesssunarsneuussesuanauentusersseuses 35

23. INTERFACES. o.oo. cece cccceeeeeeseeee ee sone eneenenseaenee eens guueeeesyoueuseeesaeaeaeeee eg geueaeensgueeueensnegeasnenesenees 35

23.1 External Interfaces oocece cece cece cceeeeeceeteee sect eeeseeeaeesseeeeaeveeeeaetsaaa dated eetcieteeecceees 35

23.2 SC tO SP INMETHACESocccece ccc cence eee e eee e eee ncn ee coc ence ee Ee cece ee ee coder neeceeceteeeeteececienes 35

PBZ OSPR nceccc cence cece cnr e eee e cnn e EE edn COE EC encode eee c ceded Eocene EG EEC onde oeeecercateeteciaees 35
QB.2.2 SCSO iccceccccccccccccccescessscesessseesesssvas sas sessassssassassseeevassissesessascasseeeesssietessesettesseeeees 36
23.2.3 SQ to SX(SP): Interpolator DUSocccece cee ee ccte eee ceeeseneteeeteeecatueecnteeeecciees 38
23.2.4 SQ to SP: Staging Register Data oo...ccccccccececcn tec eeeccceeeeeeeecnenrereesenceeestccnees 38
23.2.5 VGT to SQ: Vertex interfaceocccece ceeee one eeecceeeeccceeeseteteenteeccieeecsteeeccees 38

23.2.6 SQ to SX: Control Buseeeeee cence ibe d tbr tee eee crneeeecees 42

23.2.7 SX tO SOQ: Outfile COMOccccece ccc cece cee c ete s eee cece eeeeseenenrreeccncrseerecciees 42
23.2.8 SQ tO TR: Control Ouocccece ccc c ence nee cee cn ce ee eee c ccs sees cece neeececencnrreesecceeesteciees 43

23.2.9 SQ) tO VCOr COMtral DUScececcc ee cece ee cece cee nese eco eee Ecce eee e Cec ender teeeeeecreeenteciees 43
23.210 TP to SQ: Texture Stallccccece cee cenc set eeceeeeeeeeescnnnatesteteeesteseettentiteteeseeescns es 44

23.211 VC to SQ: Vertex Cache Stall o.oocece cece nec ee cece ce seeecccceeeeesensenrereeccncreeereccnees 44

23.2.12 SQ to SP: GPR and Auto COUNTERon.cece ccc ccecce cece tec eeeccceeeeeceeenenreesencseettccnees 44

23.213 SQ OSPRcececcc eee e bette bt di te bite ee eeteeeeeesentneeseaueeseteseteeseneneetinenersenes 46

23.214 SQ to SX: write mask interface (must be aligned with the SP data)oe48
23.2.15 SP to SQ: Constant address load/ Predicate Set/Kill Set. ccccrcreccetcreeeeerenees 49

23.2.16 SQ to SPx: constant Broadcast ooocece ccc ceccece cee cce eee ce ceneeeeecenceeceeeecuneeeessecusaes 49

23.217 SQ to CP: RBBM Duseeecece cnc cece tn eeee eects aeeeecntnnteeteeettseeseetiteeeeessnaes 50

23.2.18 CP 10 SQ) RBBM DUS occccc cece ence e cece cee reece econ cess ccs neeeeceeeeecencencreeeccncreestecsaees 50

23.219 SQ to CP: State reportcccce cccc cece ccc es ee cece eeece cer eeeccceneescecencerereesencreestccnees 50
23.3 Example of control flow program execution.eectcece tee ce teeta 50
24, OREN ISSUES... 22... ccccccccsesecncconessennnerseennasenecemeanacenensansnevscesnaneresenntaresenseannenssensaaecesteseentenens 54

Exhibit 203¢.dec 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ««+

AMD1044_0257925

ATI Ex. 2109

IPR2023-00922

Page 215 of 326

ATI Ex. 2109
IPR2023-00922

Page 216 of 326

 ORIGINATE DATE

6ae 9 July, 2003

EDIT DATE R400 Sequencer Specification PAGE

4 September, 2015 4 of 54

Revision Changes:
Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001
Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001
Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2007

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 19, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001
Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001
Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002
Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002

Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002
Rev 1.11 (Laurent Lefebvre)
Date : April 19, 2002
Rev 2.0 (Laurent Lefebvre)
Date : April 19, 2002

First draft.

Changed the interfaces to reflect the changesin the
SP. Added somedetails in the arbitration section.

Reviewed the Sequencer specafter the meeting on
August 3, 2001.
Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.
Added timing diagrams (Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.

Added constant store management, instruction
store management, control flow management and
data dependant predication.
Changed the control flow method to be more
flexible. Aiso updated the external interfaces.
Incorporated changes madein the 10/18/01 control
flaw meeting. Added a NOP instruction, removed
the conditional_execute_orjump. Added debug
registers.
Refined interfaces to RB. Added state registers.

Added SEQ-—SP0 interfaces. Changed delta
precision. Changed VGT-—SP0 interface. Debug
Methods added.

Interfaces greatly refined. Cleaned up the spec.

Added the different interpolation modes.

Added the auto incrementing counters. Changed
the VGT-—S0Qinterface. Added content on constant

management. Updated GPRs.
Removed from the spec all interfaces that weren't
directly tied to the SQ. Added explanations on
constant management. Added PA-—-SQ
synchronization fields and explanation.
Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.
Added Real Time parameter control in the Sx
interface. Updated the control flow section.
New interfaces to the SX block. Added the end of

clause modifier, removed the end of clause
instructions.

Rearangement of the CF instruction bits in order to
ensure byte alignement.
Updated the interfaces and added a section on
exporting rules.
Added CP state report interface. Last version of the
spec with the old contral flow scheme
New control flow scheme

Exhibit 203¢.dec 84302 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «*«

AMD1044_0257926

ATI Ex. 2109

IPR2023-00922

Page 216 of 326

ATI Ex. 2109
IPR2023-00922

Page 217 of 326

Rev 2.01 (Laurent Lefebvre)
Date : May 2, 2002
Rev 2.02 (Laurent Lefebvre)
Date : May 13, 2002

Rev 2.03 (Laurent Lefebvre)
Date : July 15, 2002

Rev 2.04 (Laurent Lefebvre)
Date :August 2, 2002
Rev 2.05 (Laurent Lefebvre)
Date : September 10, 2002
Rev 2.06 (Laurent Lefebvre)
Date : October 11, 2002
Rev 2.07 (Laurent Lefebvre)
Date : October 14, 2002

Rev 2.08 (Laurent Lefebvre)
Date : October 16, 2002
Rev 2.09 (Laurent Lefebvre)
Date : January 7, 2003
Rev 2.10 (Laurent Lefebvre)
Date : April 8, 2003
Rev 2.11 (Laurent Lefebvre)
Date : May 1, 2003

ORIGINATE DAT

9 July, 2003

 TE EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM. PAGE

GEN-CAXXXX-REVA 5 of 54

Changed slightly the control flow instructions to
allow force jumps and calls.
Updated the Opcodes. Added type field to the
constant/pred interface. Added Last field to the
SQ-SPinstruction load interface.

SP interface updated to include predication
optimizations. Added the predicate no stall
instructions,
Documented the new parameter generation scheme
for XY coordinates points and lines STs.
Some interface changes and an_ architectural
changeto the auto-counter scheme.
Widened the event interface to 5 bits. Some other

little typos corrected.
Loops, jumps and calls are now using a 13 bit
address which allows to jump and call and loop
around any control flow addresses (does not
requires to be even anymore).
Clarification updates after discussion with Clay.

Corrected the SQ—SPstaging register interface.

Adding R500 modifications

Adding SQ->SP updated interfaces

Exhibit 2038.dec 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +**

AMD1044_0257927

ATI Ex. 2109

IPR2023-00922

Page 217 of 326

ATI Ex. 2109
IPR2023-00922

Page 218 of 326

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification | PAGE
9 July, 2003 4 September, 2015 | 6 of 54

1. Overview

The sequencer chooses four ALU threads (two from each bank), a vertex cache and a fetch thread to execute, and
executes ail of the instructions in a block before looking for a new clause of the same type. Two ALU threads are
executed interleaved to hide the ALU latency. The arbitrator will give priority to older threads. There are two separate
reservation stations, one for pixel vectors and one for vertices vectors. This way a pixel can pass a vertex and a
vertex can pass a pixel.
There are also 2 separate ALU banks from which the SQ picks the ALU threads to be executedin parallel.

To support the shader pipe the sequencer also contains the shader instruction store, constant store, control flow
constants and texture state. The height shader pipes also execute the same twoinstructions thus there is only one
sequencerfor the whole chip but it issues 2 instructions every four clocks.

The sequencerfirst arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed spaceis available in the GPRs.

Exhibit 203¢.doc 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257928

ATI Ex. 2109

IPR2023-00922

Page 218 of 326

ATI Ex. 2109
IPR2023-00922

Page 219 of 326

«xx©BBE49A04UCBOONLYSUAdODsoussajay"JENUSPYUOD[Ly©x824azoere«oorsecewaMITAIIAOLsdUOHbeg[BLsUEy2]VINSL]

ASNIOABO]JUBISUOS

LSHENIOd*direGVaNOgL

|

|.SLVLSHOlas|

Aa)bYNVEmv0MNYEMVSHOLSO

~LENLKEL

 Sane-:Lasninroc|Be]i
»SYOLSLSNI

YaLLNI“YaLNI<——Lewblay
acdy: |; TOULNOOFhLSNIootrieptmPf :OS-tehNVaSSOUS1—*L_______||

peayJO-

|srl :CMLLNCXaESNivmmms‘; ,saynoza1i~do||rounco|SUNVLSNOODposteXELNSAoes:LPNOSaoi|49‘|:4|nnnWLSpoio/WADY-XXXXXO-NADG10z‘sequiajdescog‘Ainr6d9vdWON“Asd&e-LNSINNDOdalvdLidadalvdALYNIDIdO

 TIWIAE.LVNYaddoOFAILOdLOdd

AMD1044_0257929

ATI Ex. 2109

IPR2023-00922

Page 219 of 326

ATI Ex. 2109
IPR2023-00922

Page 220 of 326

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

9 July, 2003 4 September, 2015 8 of 54
1.1 Top Level Block Diagram

|
(——— Input Arbiter rt

Y ’

> VTX RS PIX RS ‘—

-—

_ Exec Arbiter='«—_
| |
| | |

| ALU Texture —_||

| |

Figure 2: Reservation stations and arbiters

Under this new scheme, the sequencer (SQ) will only use one global state management machine per vector type
(pixel, vertex) that we call the reservation station (RS).

Exhibit 203¢.doc 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257930

ATI Ex. 2109

IPR2023-00922

Page 220 of 326

ATI Ex. 2109
IPR2023-00922

Page 221 of 326

sxx@BGeqJ9AODUOBIONJUBUAdODeausisjay"JEUSPYUOD[Ly©+acovesdigsopeyssy],t¢oaNSTy
 [_tiereenecidyoreSHCyONLEOAL_____iej03gz)ecidyowsSHO79NLMOL

cOHYCOHTQuoPBodeq|

SH@ZLdisquy

fo
SugZepodxgporeys

SHAZepodxspareys SHOeZ)diay]

FOHYbOHT Loyejodiequy

SOPEEO?HANNS()230)79)adidyoweSHGZENOA{yeyouZgL)odidyowsSG95DYOL>Lo
ISVOAVONELAMISOS

YLNOAsSvoadvord0
\

daousnbes

ODHYOOHodiequl

 NOILVENDSIANOS00H

(dS)ydes6mojyelegTI
¥GI06Ad

WAAY-XXXXXO-NAD‘WAN“Aadd-LNSAIN90d
GLOz‘Jaquia}des4alwdLids

coo‘Ainr631LVdSLYNIDINO

 TIWIAE.LVNYaddoOFAILOdLOdd

AMD1044_0257931

ATI Ex. 2109

IPR2023-00922

Page 221 of 326

ATI Ex. 2109
IPR2023-00922

Page 222 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

9 July, 2003 4 September, 2015 10 of 54
3 Control Graph

wse # +Rdy
WrAddr

WrAddr

CMD Clause # + Rdy | /
cst WrAddr ||

CMD |
CST

«

CMD CSTcsticst IDX A B c Wrvec
RdAddr | | | | _wiscal WrAddr

Phase 7 fo |
7 voy * iv ¥

FETCH SP BANK 0/1 co) §K

| WrAddr || |

| | |

WrAddr

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector
control interface and in purple is the outputfile control interface.

2. Interpolated data bus
The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the registerfile.

Exhibit 203¢.dec 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257932

ATI Ex. 2109

IPR2023-00922

Page 222 of 326

ATI Ex. 2109
IPR2023-00922

Page 223 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

9 July, 2003 4 September, 2015 GEN-CXQQO0CREVA 11 of 54

To RB |—_— AQ Al

— epeea
oo oe iee——

ESSE ————eeeeTannen, eaeee

probe aoEEE

IJUs buffer (ping-pong buffer)
(25 bits*& (dd) *4*4* 4 (quadruple-buffere12800 bits

2

3 XYs buffer (ping-pong buffer)
24 bits * 16 quads * 2768bits

32x24
4

INTERPOLATORS

Figure 5: Interpolation buffers

Exhibit 203¢.dec 84302 Bytes*** € ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257933

ATI Ex. 2109

IPR2023-00922

Page 223 of 326

ATI Ex. 2109
IPR2023-00922

Page 224 of 326

coL

sex©O68_q19A05UOBoI}ONWBUAdODsousIajeyY“JEYUSPIUOD|]@exx8eMGcoeve2pseozyaWeISeIpSUIWUOTje[odiaja]:9ainsig
COL

 olGL

GS$9ZLdvd

uolBoyiosdsusousnbsesgory
GLOZ‘lequieydegpdivedLida

 TIWIAE.LVNYaddoOFAILOdLOdd

e00z‘Aine6FLVSLVNIDINO

AMD1044_0257934

ATI Ex. 2109

IPR2023-00922

Page 224 of 326

ATI Ex. 2109
IPR2023-00922

Page 225 of 326

 mVat ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGonan“ | 9 July, 2003 4 September, 2015 GEN-CXXXXX-REVA 13 of 54
Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buffers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencerallows at any given time as many as four quadsto interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store

There is going to be twoinstruction stores for the whole chip. They will each contain 4096 instructions of 96 bits each.

They will be 1 port memories; Ports are allocated in this fashion (but not necessarily in this order):

ALU 0 SIMDO CF ALU 0 SIMD1 CF
ALU 0 SIMDO ALU 0 SIMD1
ALU 1 SIMDO CF ALU 1 SIMD1 CF
ALU 1 SIMDO ALU 1 SIMD1
Fetch CF Fetch CF
Fetch Fetch
Vc CF Vc CF
vc ve

Fetch and VC can steal one another's ports with stated resource having priority over its port (this is not really
necessary for the R500 but will be for any derivative part becausethere wiil only be one instruction store).

Writes are opportunistic.

The instruction store is loaded by the CP thru the register mapped registers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the samepath as real time.

4. SequencerInstructions
All control flow instructions instructions are handied by the sequencer only. The ALUs will perform NOPs during this
time (MOV PV,PV, PS,PS)if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations
A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 123 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shaderis 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

There will be two of those memories and two of each remapping read memories.

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
reguiar mode, 32 states for RT). The mernory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared betweenthe pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real

Exhibit 2038.dec 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © **«

AMD1044_0257935

ATI Ex. 2109

IPR2023-00922

Page 225 of 326

ATI Ex. 2109
IPR2023-00922

Page 226 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

9 July, 2003 4 September, 2015 14 of 54
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn’t sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. lis size is 320°32 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

5.2 Managementof the Control Flow Constants
The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_\WR_BASE). On the read
side, one levelofindirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied wheneverthere is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% numberof states. This way, if the
CP doesn't write to CF the state is going to use the previous CF constants.

5.3 Managementof the re-mapping tables

5.3.1 R400 Constant management
The sequenceris responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUSTbeat least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

5.3.2 Dirty bits
Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: Itis important to detect and preventthis, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.3 Free List Block

A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset to zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one,else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.

Storage of a free list big enough to store all physical block addresses.
Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more

Exhibit 203¢.doc 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +*«

AMD1044_0257936

ATI Ex. 2109

IPR2023-00922

Page 226 of 326

ATI Ex. 2109
IPR2023-00922

Page 227 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

9 July, 2003 4 September, 2015 GEN-CXXXXX-REVA 15 of 54

physical memory locations than we have. Once recording address the pointer will be incremented to walk the freelist
like a ring.
The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_pir and write_ptr cannot be reused because
they are stillin use. But as soon as the context using then is dismissed the stop_ptr will be advanced.
The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFCis at its maximum count.

5.3.4 De-allocate Block

This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many biocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any numberof blocks in one clock.

5.3.5 Operation of Incremental model
The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the freelist
counter becauseits not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table wiil be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. Ifa logical addressis hit that hasits dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
Whenthefirst draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states comein for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and itis incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clauseit will be sent to this block and compared with
the previous context that left. (Init to zero) if they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the numberof blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_pir
allocate pointer for future allocation.

This device allows representation of multiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple

Exhibit 203¢.dec 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +*«

AMD1044_0257937

ATI Ex. 2109

IPR2023-00922

Page 227 of 326

ATI Ex. 2109
IPR2023-00922

Page 228 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

9 July, 2003 4 September, 2015 16 of 54
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Althoughit will still perform as well as a ring could in this case.

5.4 Constant Store Indexing
In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer(9 bits pointers x 16 vertexes/clock).

MOVA R1.X,R2.X% // Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
ADD R3,R4,CO[R2.X%]// Uses the state from the sequencerto add R4 to CO[R2.X] into R3

Note that we don’t really care about what is in the brackets because we use the state from the MOVAinstruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencerin order to support this feature is 2*64*9 bits = 1152 bits.

The address register is a signed integer, which ranges from —256 to 255.

The addressregister is not kept across clause boundaries. As such, it must be refreshed after any Serialize (or yield),
allocate instruction or resource change. Failure to refresh the address register will result in unpredictable behavior.

5.5 Real Time Commands

The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
works is the same way than when dealing with regular constant loads BUTin this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zonesis defined by the TSTATE_EO_RTcontrolregister.

5.6 Constant Waterfalling
In order to have a reasonable performancein the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenevera state is freed.

Exhibit 2038.dec 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257938

ATI Ex. 2109

IPR2023-00922

Page 228 of 326

ATI Ex. 2109
IPR2023-00922

Page 229 of 326

ORIGINATE DATE DIT DATE DOCUMENT-REV. NUM. PAGE

 9 July, 2003 4 September, 2015 GEN-CXXXXX-REVA 17 of 54

CONST_EO_RT

RT SECTON /
(Reads/Writes are direct)

REGULAR SECTION
{Reads/Writes are passing

thru a remaping table)
Figure 7; The Constant store

6. Looping and Branches
Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.
The R400 controling state consists of.

Boolean[255:0]
Loop_count{7:01[31:0]
Loop_Start[7:0][31:0]
Loop_Step[7:0]/31:0]

That is 256 Booleans and 32 loops.

Wehave a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program
We'd like to be able to code up a program ofthe form:

1: Loop
2: Exec TexFetch

Exhibit 203¢.dec 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257939

ATI Ex. 2109

IPR2023-00922

Page 229 of 326

ATI Ex. 2109
IPR2023-00922

Page 230 of 326

 :OAt ORIGINATE DATE EDIT DATE F400 SequencerSpecification PAGE
, net 9 July, 2003 4 September, 2015 18 of 54

3 TexFetch
4 ALU
5: ALU
6: TexFetch

7 End Loop
8 ALU Export

But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3:.
these dependencies need to be expressed in the Control Flow instructions. Additionally,

Without clausing,
without separate ‘texture

clauses’ and ‘ALU clauses' we need to know which instructions to dispatch to the Texture Unit and which to the ALU
unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of information for each (non-control flow) instruction:
a) ALU or Texture
b) Serialize Execution

(b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched. Given the allocation of reserved bits, this would mean that the count of an ‘Exec’ instruction
would be limited to about 8 (non-control-flow) instructions. If more than this were needed, a second Exec (with the
same conditions) would be issued.

Another function that relies upon ‘clauses’ is allocation and order of execution. We need to assure that pixels and
vertices are exported in the correct order (even if not all execution is ordered) and that space in the output buffers are
allocated in order. Additionally data can't be exported until space is allocated. A new control flow instruction:

Alloc <buffer select -- position,parameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual
allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already
completed. The implementation would also assure that execution of instruction(s) following the serialization due to the
Alloc will occur in order -- at least until the next serialization or change from ALU to Texture. In most casesthis will

allow the exports to occur without any further synchronization. Only ‘final’ allocations or position allocations are
guaranteed to be ordered. Because strict ordering is required for pixels, parameters and positions, this implies only
a single alloc for these structures. Vertex exports to memory do not require ordering during allocation and so multiple
‘allocs' may be done.

6.2.1

Hereis the revised contro! flow instruction set.

Control flaw instructions table

Note that whenevera field is marked as RESERVED,it is assumed that all the bits of the field are cleared (0).

aNOPco
47... 44 43 42...0

0000 Addressing | RESERVED |

This is a regular NOP.

Execute ee
47... 44 | 43 | 40...34 33... 28 27.16 [| 15...12 11... 0

0001 Addressing|RESERV Vertex instructions type + serialize (6|Count Exec Address
ee ED Cache instructions) ee

ExecuteEndoo
47... 44 | 43 | 40...34 33... 28 27 ...16 | 15...12 11....0

0010 Addressing|RESERV Vertex instructions type + serialize (6|Count Exec Address
ED Cache instructions)

Exhibit 2039. doc
84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «*«

AMD1044_0257940

ATI Ex. 2109

IPR2023-00922

Page 230 of 326

ATI Ex. 2109
IPR2023-00922

Page 231 of 326

ORIGINATE DATE

9 July, 2003
EDIT DATE

4 September, 2015

GEN-CXOXOOO-REVA

DOCUMENT-REV. NUM. PAGE

19 of 54

Execute up to 6 instructions at the specified address in the instruction memory. The Instruction type field tells the
sequencerthe typeofthe instruction (LSB) (1 = Texture, 0 = ALU and whetherto serialize or not the execution (MSB)
(1 = Serialize, 0 = Non-Serialized). If the corresponding VC bit is set then VC is used instead of TP/ALU. If
Execute_Endthis is the last execution block of the shader program.

Vertex Cache Serialize Instruction Type (Resource)
0 0 0 : ALUinstruction, not yielding
0 0 1 : Texture instruction, not yielding
0 1 0 : ALUinstruction, yielding
0 1 1 : Texture instruction, yielding
1 0 0 : Vertex cache instruction, not yielding
1 0 1 : Vertex cache instruction, not yielding
1 1 0 : Vertex cache instruction, yielding
1 1 1 : Vertex cache instruction, yielding

Conditional.Execute

47... 44 | 43 42 41... 34 33...28 | 27...16 15 ...12 11...0
0011 | Addressing|Condition|Boolean|Vertex Cache|Instructions Count Exec Address

address type +

| serialize (6
i |_ instructions)

Conditional_Execute_End

47... 44 | 43 42 41... 34 | 33...28 27...16 15 ...12 11... 0
0100 Addressing|Condition|Boolean|Vertex Cache|Instructions Count Exec Address

address type +
serialize (6

| instructions)

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 9 instructions). If the condition is not met, we go on to the next control flow instruction. If
Conditional_Execute_End and the condition is met, this is the last execution block of the shader program.

____Conditional_Execute_Predicates _

47... 44 | 43 42 41... 36 35... 34|33...28 27...16 | 15...12 | 11... 0
0101 | Addressing|Condition|RESERVED|Predicate|Vertex Instructions | Count|Exec Address

vector Cache type +
serialize (6

| instructions)

Conditional_ExecutePredicatesEnd
“47.447 4342486|8834 33.28|2716 er

0110 | Addressing|Condition|RESERVED|Predicate|Vertex|Instructions Exec Address
vector Cache type +

serialize (6
| L instructions)

Check the AND/ORofall current predicate bits. lf AND/OR matches the condition execute the specified number of
is with the kill mask in order not to consider the pixels that aren’t valid. if the

condition is not met, we go on to the next control flow instruction. If Conditional.ExecutePredicatesEnd and the
condition is met, this is the last execution block of the shader program.

instructions. We need to AND/ORt

Exhibit 2039. doc
54502 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257941

ATI Ex. 2109

IPR2023-00922

Page 231 of 326

ATI Ex. 2109
IPR2023-00922

Page 232 of 326

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

9 July, 2003 4 September, 2015 20 of 54
Conditional Execute PredicatesNoStall

47... 44 | 43 42 41... 36 35... 34|33...28 2/...16 15...12 | 11....0

1101 | Addressing|Condition|RESERVED|Predicate|Vertex|Instructions|Count | Exec Address
vector Cache type +

serialize (6
__ instructions) |

Conditional Execute Predicates No Stall End
47 ... 44 | 43 42 41... 36 35 ... 34|33...28 27...16 15...12 | 11... 0

1110 | Addressing|Condition|RESERVED|Predicate|Vertex Instructions Count | Exec Address
vector Cache type + |

serialize (6
I instructions)

Same as Conditionnal_Execute_Predicates but the SQ is not going to wait for the predicate vector to be updated.
You can only set this in the compiler if you know that the predicate set is only a refinement of the current one (like a
nested if) because the optimization would still work.

42... 21 | 20... 16 15...13 | 12...0AT 44 480 | | ;
RESERVED | loop [ID | RESERVED | Jump address“0111 _ Addressing

LoopStart

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match betweenthe start to end, and also indicates which

control flow constants should be used with the loop.

Loop_End
47 ...44 43 42 | 41...36 35...34 33... 22 21 [20..16/ 15.13 | 12...0

1000 Addressing|Cond|RESERVED|Predicate|RESERVED|Pred|loop ID|RESERVED start
Vector break | address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop. If predicate break != 0, then compares predicate vector n
(specified by predicate Vector) to condition. If all bits meet condition then break the loop.

The waythis is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

ConditionnalCall
47... 44 | 43 | 42 | 41... 34 33... 14 13 12...0

1001 | Addressing | Condition | Boolean address|RESERVED|Force Call Jump address

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack. If
force call is set the condition is ignored and the call is made always.

Return

 47... 44 | 43 420

1010 | Addressing RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

: _ _ConditionnalJump eee|
47. 44 43 42 41... 34 33 32...14 | 13 12....0

1011 = Addressing|Condition|Boolean|FWonly|RESERVED|Force Jump Jump address
address

If force jump is set the condition is ignored and the jump is made always. If FW only is set then only forward jumps
are allowed.

Exhibit 203¢.dec 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +

AMD1044_0257942

ATI Ex. 2109

IPR2023-00922

Page 232 of 326

ATI Ex. 2109
IPR2023-00922

Page 233 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

9 July, 2003 4 September, 2015 GEN-CXXXXX-REVA 21 of 54

Allocate]
47.44)438|AT A8[OD
|1100||Debug| _—BuffferSelect__ No Serial RESERVED | Size

Buffer Select takes a value of the following:
01 — position export (ordered export)
10 — parameter cacheor pixel export (ordered export)
11 — pass thru (out of order exports).

Size field is only used to reserve spacein the export buffer for pass thru exports. Valid values are 1 (1 line) thru 5 (5
lines). It should be determined by the compiler/assembier by taking max index used +1.

If debug is set this is a debug alloc (ignore if debug DB_ON registeris set to off).

By default the serial bit is set on an alloc. If the No Serial bit is asserted then the serial bit won't be set in the SQ.

6.2.2 Alloe Statements

Alloc statements are control flow instructions that allocate resources that are required for executable export
instructions. An alloc statement can be either a normal yield point, or a partial yield. At a partial yield - hardware
releases the gpu so all state (mova, grad etc) is lost but the thread can resume before all pending fetches have
completed.

There are three typesof allocs:

alloc-position - proceeds the export of position from a vertex shader. A vertex shader must include one alloc of
position. A position alloc cannot be used in a pixel shader. all exports for position must execute between the alloc-
position and the next yield point or resource change. There is a small performance advantage to placing the alloc-
position near the top of the vertex shader. However we don't think this is worth adding an
extra instruction or register to the shader.

alloc-interp/color - proceeds interpolator exports in a vertex shader or the color exports in a pixel shader. There can
be only onealloc interp/color per shader. The color alloc in a pixel shader must be after any alloc-mem-exports. The
actual exports can occur anywhere between the alloc-interp/color and the end of the program. There is a small
performance advantage to placing the alloc-interp/color near the bottom of the shader. However we don't think this is
worth adding an extra instruction or register to the shader. There is a big performance advantage of having no
fetches of any kind after the alloc-interp/color.

alloc-mem-export - proceeds any memory-address, memory-data exports. There can be multiple alloc-mem-export
statements in either kind of shader. All exports for mem-exports must execute between the corresponding alloc-
mem-export and the next yield point or resource change.

6.3 Implementation

The envisioned implementation has a buffer that maintains the state of each thread. _A threadlives in a given
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the order that they
enter. Actually two buffers are maintained - one for Vertices and one for Pixels. The intended implementation
would allow for:

16 entries for vertices

48 entries for pixels.

From each buffer, arbitration logic attempts to select 1 thread for the texture unit and 2 (interleaved) thread for the
ALU unit. Once a thread is selected it is read out of the buffer, marked as invalid, and submitted to appropriate
execution unit. It is returned to the buffer (at the same place) with its status updated once all possible sequential

Exhibit 203¢.dec 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257943

ATI Ex. 2109

IPR2023-00922

Page 233 of 326

ATI Ex. 2109
IPR2023-00922

Page 234 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

9 July, 2003 4 September, 2015 22 of 54
instructions have been executed. A switch from ALU to TEX orvisa-versa or a SerializeExecution modifier forces
the thread to be returned to the buffer.

Each eniry in the buffer will be stored across two physical pieces of memory - most bits will be stored in a 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed ‘state’. The bits kept in the multi-read ported device will be termed ‘status’.

‘State Bits' needed include:

Control Flow Instruction Pointer (13 bits),
Execution Count Marker4 bits),
Loop Iterators (4x9 bits),
Loop Counters (4x9 bits),
Call return pointers (4x13 bits),
Predicate Bits (64 bits),
Export ID (4 bits),
Parameter Cache basePtr (7bits),
GPR BasePtr (8bits),

10. Context Ptr (3 bits).
11. LOD corrections (6x16 bits)
12. Valid bits (64 bits)
13. RT (1 bit) Signifies that this thread is a Real Time thread. This bit must be sent to the Constant store state

machine when readingit.

©NOomWR
Absentfrom this list are ‘Index’ pointers. These are costly enough that |'m presuming that they are instead stored in
the GPRs. The first seven fields above (Control Flow Ptr, Execution Count, Loop Counts, cali retum ptrs, Predicate
bits, PC base ptr and export ID) are updated every time the thread is returned to the buffer based on how much
progress has been mode on thread execution. GPR Base Ptr, Context Ptr and LOD corrections are unchanged
throughout execution of the thread.

‘Status Bits’ needed include:

Valid Thread

ALU engine needed
Texture engine needed
VC engine needed
Texture Reads are outstanding
VC Reads are outstanding
Alu bank (0/7)
Waiting on Texture Read to Complete
Allocation Wait (2 bits)
00 — No allocation needed

01 — Position export allocation needed (ordered export)
10 — Parameteror pixel export needed (ordered export)
11 —pass thru (out of order export)
Allocation Size (4 bits)
Position Allocated
Mem/Color Allocated
First thread of a new context

Event thread (NULLthread that needsto trickle down the pipe)
Last (1 bit)
Pulse SX (1 bit)

All of the abovefields from ail of the entries go into the arbitration circuitry. The arbitration circuitry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -- one for
pixels and one for vertices. A final selection is then done between the two. But the rest of this implementation
summary only considers the ‘first’ level selection which is similar for both pixels and vertices.

Exhibit 203¢.dec 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *+«

AMD1044_0257944

ATI Ex. 2109

IPR2023-00922

Page 234 of 326

ATI Ex. 2109
IPR2023-00922

Page 235 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

9 July, 2003 4 September, 2015 GEN-CXXXXX-REVA 23 of 54

Texture arbitration requires no allocation or ordering so it is purely based on selecting the ‘oldest’ thread that requires
the Texture Engine.

ALU arbitration is a little more complicated. First, only threads where either of TextureReadsoutstanding or
Waitingon_Texture_Read_to_Complete are '0' are considered. Then if Allocation_Vait is active, these threads are
further filtered based on whether space is available. If the allocation is position allocation, then the thread is only
considered if all ‘older’ threads have already done their position allocation (position allocated bits set). If the
allocation is parameteror pixel allocation, then the thread is only considered if itis the oldest thread. Also a thread is
not considered if it is a parameter or pixel or position allocation, has its First_thread_of_a_new_context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the ‘oldest’ of the threads that pass through the abovefilters is selected. If the thread neededto allocate, then
at this time the allocation is done, based on Allocation_Size. If a thread has its “last” bit set, then it is also removed
from the buffer, neverto return.

If | now redefine ‘clauses’ to mean ‘how many times the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine’, then the minimum numberof clauses needed is 2 -- one to perform
the allocation for exports (execution automatically halts after an ‘Alloc' instruction) (but doesn't performs the actual
allocation) and one for the actual ALU/export instructions. As the ‘Alloc' instruction could be part of a texture clause
(presumably the final instruction in such a clause), a thread could still execute in this minimal numberof 2 clauses,
evenif it involved texture fetching.

 The TextureReadsOutstanding and VC_readsOutstanding bits tell the SQ that a texture or VC read is
outstanding. In this case, if we encounter a serial bit we need to wait until both resources are free (pending = 0)in
order to proceed.

6.4 Data dependant predicate instructions
Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

PRED_SETE_PUSH- similar to SETE exceptthat the result is ‘exported’ to the sequencer.
PRED_SETNE_PUSH-similar to SETNE exceptthat the result is ‘exported’ to the sequencer.
PRED_SETGT_PUSH- similar to SETGT exceptthat the result is ‘exported’ to the sequencer
PRED_SETGTE_PUSH- similar to SETGTE exceptthat the result is ‘exported’ to the sequencer

For the scalar operations only we will also support the two following instructions:
PRED_SETE
PRED_SETNE
PRED_SETGT
PRED_SET_INV
PRED_SET_POP
PRED_SET_CLR
PRED_SET_RESTORE

Details about actual implementation of these opcodesare in the shaderpipe architectural spec.

The export is a single bit - 1 or 0 thatis sent using the same data path as the MOVA instruction. The sequencerwill
maintain 1 set of 64 bits predicate vectors (in fact 2 sets because we interleave two programs but only 7 will be
exposed) and useit to control the write masking. This predicate is maintained across clause boundaries.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if

we execute on 1 or 0. For example, the instruction:

PO_ADD_#RO,R1,R2

Is only going to write the result of the ADD into those GPRs whoseprecicate bit is 0. Alternatively, P1_ADD_# would
only write the results fo the GPRs whosepredicate bit is set. The use of the PO or P1 without precharging the
sequencer with a PRED instruction is undefined.

Exhibit 203¢.dec 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257945

ATI Ex. 2109

IPR2023-00922

Page 235 of 326

ATI Ex. 2109
IPR2023-00922

Page 236 of 326

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

9 July, 2003 4 September, 2015 24 of 54

6.5 HW Detection of PV,PS
Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencerwill
insert detect wich channels to read from the GPRs and which onesto read from the PV/PS.

6.6 Registerfile indexing
Because we can have loopsin fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6

0 0 ‘absolute register’
0 1 ‘relative register’
1 0 ‘previous vector'
1 1 ‘previous scalar’

In the case of an absolute register we just take the address asis. In the case ofa relative register read we take the
base address and we add to it the loop_index and this becomes our new addressthat we give to the shaderpipe.

The sequenceris going to keep a loop index computed as such:

Index = Loop_iterator*Loop_step + Loop_start.

We loop until loop_tterator = loopcount. Loopstep is a signed value [-128...127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of
range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

6.7 Debugging the Shaders
In order to be able to debug the pixel/vertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers
Current plans are to expose 2 debugging, or error notification, registers:
1. address register wherethefirst error occurred
2. count of the numberof errors

The sequencerwill detect the following groups of errors:
- count overflow

- constant indexing overflow
- register indexing overflow

Compiler recognizable errors:
~- jump errors

relative jump address > size of the control flow program
- call stack

call with stackfull

return with stack empty

With ail the other errors, program can continue to run, potentially to worst-caselimits.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth
register (or constant) for errors.

Exhibit 203¢.doc 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257946

ATI Ex. 2109

IPR2023-00922

Page 236 of 326

ATI Ex. 2109
IPR2023-00922

Page 237 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

9 July, 2003 4 September, 2015 GEN-CXXXXX-REVA 25 of 54

{ISSUE: Interrupt to the driver or not?}

6.7.2 Method 2: Exporting the values in the GPRs
1) The sequencerwill have a debug active, count register and an address register for this mode.

Under the normal mode execution follows the normal course.

Under the debug mode it is assumedthat the program is always exporting n debug vectors and that all other exports
to the SX block (but for position) will be turned off (changed into NOPs) by the sequencer (even if they occur before
the address stated by the ADDR debug register).

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group of pixels/vertices. lts purpose is to optimize the texture fetch
requests and allow the shaderpipeto kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETGT
MASK_SETGTE

8. Register file allocation
The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between
pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZEfor pixels.

Exhibit 203¢.dec 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257947

ATI Ex. 2109

IPR2023-00922

Page 237 of 326

ATI Ex. 2109
IPR2023-00922

Page 238 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

9 July, 2003 4 September, 2015 26 of 54

Above is an example of how the algorithm works. Vertices comein from top to bottom; pixels comein from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green lineis the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRsstarts from the bottom ofthe picture at index 0 and goes up to the top at
index 127.

9. Fetch Arbitration

The fetch arbitration logic chooses one of the n potentially pending fetch clauses to be executed. The choice is made
by looking at the Vs and Ps reservation stations and picking the first one ready to execute. Once chosen, the clause
state machine will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two fetches of the
sameclause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handie up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

10. VC Arbitration

The VC arbitration logic chooses one of the n potentially pending VC clauses to be executed. The choice is made by
looking at the Vs and Ps reservation stations and picking the first one ready to execute. Once chosen, the clause
state machine will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two fetches of the
same clause.

Exhibit 203¢.doc 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257948

ATI Ex. 2109

IPR2023-00922

Page 238 of 326

ATI Ex. 2109
IPR2023-00922

Page 239 of 326

ORIGINATE DATE DIT DATE DOCUMENT-REV. NUM. PAGE

9 July, 2003 4 September, 2015 GEN-CXXXXX-REVA 27 of 54

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The VC pipe will be
able to handle up to X(?) in flight VC fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

li. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
n potentially pending ALU clauses to be executed. The choice is made by looking ai the Vs and Ps reservation
stations and picking the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for
the odd clocks. For example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and
Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Qinst2 EinstO0 Oinst3 Einst1 Oinst4 Einst2 Oinst0...

Proceeding this way hides the latency of & clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

12. Handling Stalls
Whenthe output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POSFULL) then the sequencer also prevents a thread from entering an exporting clause. The
sequencerwill set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

12.1 SP stall conditions

12.1.1 PS Stalis

None.

12.1.2 PV Stalis

None.

13. Content of the reservation station FIFOs

The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Output File
The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 572 bits/clock and read BW 256bits/ciock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. lJ Format

The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). All pixel’s parameters are always interpolated at full 20x24 mantissa precision.

Exhibit 203¢.dec 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257949

ATI Ex. 2109

IPR2023-00922

Page 239 of 326

ATI Ex. 2109
IPR2023-00922

Page 240 of 326

 Pty ORIGINATE DATE EDIT DATE R400 Sequencer Specification | PAGE
 nh 9 July, 2003 4 September, 2015 | 28 of 54

PO = A+1(0)*(B— A)+.J(0)*(C — A)

Pl =A+I1()*(B-A)+J()*(C - A) Pt
P2=A+1(2)*(B- A)+J(2)*(C - A)

P3 = A+1(3)*(B— A)+J(3)*(C — A)
Multiplies (Full Precision): &
Subiracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF P’sIJ: Mantissa 20 Exp 4 for 1+ Sign
Mantissa 20 Exp 4 for J + Sign

Total number of bits :20*8 + 4*8 + 4*2 = 200.

All numbers are kept using the un-normalized floating point convention: if exponentis different than 0 the numberis
normalized if not, then the numberis un-normalized. The maximum rangefor the |Js (Full precision) is +/- 1024.

15.1 Interpolation of constant attributes
Becauseofthe floating point imprecision, we need to take special provisionsif all the interpolated terms are the same
or if two of the terms are the same.

16. Staging Registers
In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGTforit to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

01234567891011 121314 15 || 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 G1 62 63

The sequencerwill re-arrange them in this fashion:

012316 17 18 19 32 33 34 35 48 49 50 51 || 456 7 20 21 22 23 36 37 38 39 52 53 54 55 || 8 9 10 11 24 25 26 27
40 41 42 43 56 57 58 59 || 12 13.14 15 28 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shaderpipe is broken, the SQ is responsible to insert padding to
account for the missing pipe. For example, if SP1 is broken, vertices 456 7 20 21 22 23 36 37 38 39 52 53 54 55 will
not be sent by the VGT to the SQ AND the SQ is responsible to “jump” over these vertices in order for no valid
vertices to be sent to an invalid SP.

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 9. The area of the fixed-to-float converters and the VSISRsfor this methodis roughly estimated as 0.759sqmm
using the R300 process. The gate count estimate is shown in Figure 8.

Exhibit 203¢.doc 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257950

ATI Ex. 2109

IPR2023-00922

Page 240 of 326

ATI Ex. 2109
IPR2023-00922

Page 241 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

9 July, 2003 4 September, 2015 GEN-CXXXXX-REVA 29 of 54

 Latch Memory (from R300)

116312 60.57813 uperbit

rea of 96x8-deep Latch Memory 46524
rea of 24-bit Fix-to-float Converter 4712," per converter

Method 1 Block Quantity Area
F2F 3 14136

8x96 Latch 16 744384

Figure 8:Area Estimate for VGT to Shader Interface

et

VGT BLOCK
CIN PA)

: 24-BIT
| PIXGFLOAT

| SHADER| SEQUENCER

VECTOR ENGINE

VECTOR ENGINE

Figure 9:VGT to Shader Interface

17. The parameter cache
The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories ({R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation

Exhibit 203¢.dec 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257951

ATI Ex. 2109

IPR2023-00922

Page 241 of 326

ATI Ex. 2109
IPR2023-00922

Page 242 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification | PAGE
9 July, 2003 4 September, 2015 | 30 of 5417t

method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

ADDRESS
7 bits

MEMORY NUMBER
4 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT(a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the a7") is going to have the address 00000001000, the 18" 00010001000, the 19" 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful aboutis thatif the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for exampleif you receive only 33 positions then you need to add 2*VS_EXPORT_COUNTto
Current_Location and reset the memory count to 0 before the next vector begins).

17.1 Export restrictions

17.1.1 Pixel exports:
Pixels can export 1,2,3 or 4 color buffers to the SX(+z). The exports will be done in order. The exports will always be
ordered to the SX.

17.1.2 Vertex exports:
Position or parameter caches can be exported in any order in the shader program. It is always better to export
posistion as soon as possible. Position has to be exported in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be donein any orderwith texture instructions interleaved.
The exports will always be allocated in order to the SX.

17.1.3 Pass thru exports:
Pass thru exports have to be done in groups of the form:

Alloc 1 thru 5 (max export offset + 1, for example if using EM4 alloc size 5)
Execute ALU(ADDR) ALU(DATA) ALU(DATA}) ALU (DATA)...

When exporting to more than EMO, one MUST write to EM4 also (the write may be predicated if you don’t need the
export). This is used to initialize the buffers in the SX.

 There cannot be any serialize bits set OR texture Reads between the EA and the last EM.

Memory exports will be surfaced using a macro extension; here is what needs to happen inside the macro:

The macro needs to create a special constant of the form:

Stream ID constant:

x = Integer that holds BaseAddressinBytes/4 in bits (29:0). Bits 31:30 should be 0b01.
¥ = 2°23
Zz = Integer that holds register field data. Note that this data must be organized so thatit

always represents a ‘valid’ floating point number,with the relevantbits in (23 - 0); One way of doing this would be to
take the 23 bits and add 27°23.

Ww = max index value + 2**23

Output to EXaddress:

x = Baseof array (in low 30 bits)/4

Exhibit 203¢.doc 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257952

ATI Ex. 2109

IPR2023-00922

Page 242 of 326

ATI Ex. 2109
IPR2023-00922

Page 243 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE 9 July, 2003 4 September, 2015 GEN-CXXXXX-REVA 31 of 54

¥y = Index value (in low 23 bits)
Zz = Register Field data (in low 23 bits)
Ww = Max Index value (in low 23 bits)

Also Assumethat CO:

Xx =0.0

¥y =1.0

The Macro expansion would be as follows:

MULADD EA = Rindex.xxxx,CO.xyxx,CstreamlD;
MOV EMx (x = 0 thru 4) = Rdata;

The SX will check for invalid writes and mask out the data so it won't be written to memory.Invalid writes are:

1) Index value >= Max Index value
2) bit 31 '= 0 (negative index)
3) bits [30:23] != 23 + IEEE_EXP_BIAS (127) (meaningthe index was too big to be represented using 23 bits)

They cannot have texture instructions interleaved in the export block. These exports are not guaranteed to be
ordered.

Aliso, when doing a pass thru export, the shader muststill do either a position and PC export (if Vertex) or a color
export (if Pixel). The pass thru export can occur anywhere in any shader program and thus can be used to debug.
There can be any numberof pass thru export blocks throughout the pixel or vertex shader or both.

17.2 Arbitration restrictions

Here are the Sequencerarbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texture pending bit and VC pending is set
2) Cannot allocate position if any older thread has not allocated position
3) Cannot execute a texture clause if texture reads are pending
4) Cannot execute a VC clause if VC reads are pending
5) Cannot execute lastif texture pending (even if not serial)
6) Cannot allocate if not last for color exports.
7) Cannotallocate if not last for PC exports.

18. Export Types
The export type (or the location where the data should be put) is specified using the destination addressfield in the
ALU instruction. Here is a list of all possible export modes:

18.1 Vertex Shading

0:15 -16 parameter cache
16:31 - Empty (Reserved?)
32 ~ Export Address
33:37 -5 vertex exports to the frame buffer and index
38:46 - Empty
47 - Debug Address
48:52 -5 debug export (interpret as normal memory export)
53:59 - Empty
60 - export addressing mode
61 - Empty
62 ~ position
63 ~ sprite size export that goes with position export

Exhibit 203¢.dec 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257953

ATI Ex. 2109

IPR2023-00922

Page 243 of 326

ATI Ex. 2109
IPR2023-00922

Page 244 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

9 July, 2003 4 September, 2015 32 of 54
(X= point size, Y= edge flag is bit 0, Z= VixKillis bitwise OR of bits 30:0. Any bit other than

sign means Vixkill.)

18.2 Pixel Shading
0 - Color for buffer 0 (primary)
1 - Color for buffer 1
2 - Color for buffer 2
3 - Color for buffer 3

4:15 - Empty
16 - Buffer 0 Color/Fog (primary)
17 - Buffer 1 Color/Fog
18 - Buffer 2 Color/Fog
19 - Buffer 3 Color/Fog
20:31 - Empty
32 - Export Address
33:37 -5 exports for multipass pixel shaders.
38:46 - Empty
47 - Debug Address
48:52 -5 debug exports (interpret as normal memory export)
60 - export addressing mode
61 - Z for primary buffer (Z exported to ‘alpha’ component)
62:63 - Empty

19. Special Interpolation modes

19.1 Real time commands

We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 4x128 memories (one for each of three vertices x 4 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. This modeis triggered by
the primitive type: REAL TIME. The actual memories are in the in the SX blocks. The parameter data memories are
hooked on the RBBM busand are loaded by the CP using register mapped memory.

19.2 Sprites/ XY screen coordinates/ FB information
XY screen coordinates may be needed in the shader program. This functionality is controlled by the param_gen
register (in SQ) in conjunction with the SND_XY register (in SC) and the param_gen_pos. Alsoit is possible to send
the faceness information (for OGL front/back special operations) to the shader using the same control register. Here
is a list of all the modes and how theyinteract together:

The Data is going to be written in the register specified by the param_gen_posregister.

Param_Gendisable, snd_xy disabie = No modification
Param_Gen disable, snd_xy enable = No modification
Param_Gen enable, snd_xy disable = Sign(faceness)garbage (Sign Point)garbage ,Sign(Line)s, t
Param_Gen enable, snd_xy enable = Sign(faceness)screenX,(Sign Point)screenY,Sign(Line)s,t

In other words,
The generated vector is Xin RED, Y in GREEN, S in BLUE and T in ALPHA):
XY,S,T

PGenReg.X = screen X biased 2423 (assumespixel center at 0.0), sign bit encodes faceness (O=frontface,
1=backface)
PGenReg.Y = screen Y biased 2423 (assumes pixel center at 0.0), sign encodesis point primitive (O=not
point, 1=is point)
PGenReg.Z = parametric S coordinate [0..1], sign encodesis line primitive (Q=not line, 1=is line)

Exhibit 203¢.dec 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257954

ATI Ex. 2109

IPR2023-00922

Page 244 of 326

ATI Ex. 2109
IPR2023-00922

Page 245 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAG

Jel 9 July, 2003 4 September, 2015 GEN-CXXXXX-REVA 33 of 54

PGenReg.W = parametric T coordinate [0..1]

 m

Constant

CO0.X = 2423 (debias for D3D)
CO.Y= 2°23 - 0.5 (debias for OGL which haspixel centers at 0.5)

To generate useable XY:
For D3D:

ADD ScreenXYReg.xy__ = abs(PGenReg), -CO.xxxx
For OGL

ADD ScreenXYReg.xy__ = abs(PGenReg), -CO.yyyy
Note abs has to be done on PGenReg

To access faceness.

Must ALWAYSuse (or pos/neg test against) PGenReg.X.
< 0.0 is backface
>= 0.0 is frontface

To access parametric ST.
Same as before simply take abs before access.
realS = abs(PGenReg.Z)
realT = abs(PGenReg.W)

To accessprimitive type
+/-ZERO cannot be differentiated in shader pipe so a RECIP_CLAMPEDinstruction must be donefirst
before testing isLine.
isPoint = PGenReg.Y(if <0.0 then point primitive)
isLine = RECIP_CLAMPED PGenReg.Z (if <0.0 thenline primitive)
if ((isPoint>=0.0) && (isLine>=0.0)) then triangle primitive

19.3 Auto generated counters
In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1" pass data to memory and then use the count to retrieve the data on the 2" pass.
The count is always generated in the same way butit is passed to the shaderin a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX_PIX/VTXregister. The sequencer
is going to keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is
written to the GPRs the counter is incremented. Every time a RST_PIX_COUNT or RST_VTX_COUNTevents are
received, the corresponding counter is reset. While there is only one count broadcast to the GPRs, the LSB are
hardwired to specific values making the index different for all elements in the vector. Since the count must be different
for all pixeis/vertices and the 4 LSBs (16 positions) are hardwired to the corresponding shader unit the SQ has two
choices:

1) Maintain a 17 bit counter that counts the vectors of 64. In this case the phase must be appendedto the count
before the count is broadcast to the SPs:

Counter (17 bits) | Phase (2 bits) | Hardwired (4 bits)

2) Maintain a 21 bits counter that counts sub-vectors of 16. In this case only the counteris sent to the Sps:

Counter (19 bits) | Hardwired (4 bits) |

19.3.1 Vertex shaders

In the case of vertex shaders, if GEN_INDEX_VTXis set, the data will be put into the x field of the third register (it
meansthat the compiler must allocate 3 GPRsin all multipass vertex shader modes).

Exhibit 203¢.dec 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257955

ATI Ex. 2109

IPR2023-00922

Page 245 of 326

ATI Ex. 2109
IPR2023-00922

Page 246 of 326

 rt ORIGINATE DATE EDIT DATE R400 SequencerSpecification ||PAGE

: 9 July, 2003 4 September, 2015 34 of 54

19.3.2 Pixel shaders

In the case of pixel shaders, if GEN_INDEX_PIX is set, the data will be put in the x field of the param_gen_pos+1
register.

AUTO | INTERPOLATORS
COUNT

STGi || |

| |

AUTO COUNT 000000 |
The Auto Count Valueis

MUX / broadcast to all GPRs. It is
loaded into a register wich has

its LSBs hardwired to the
GPR number(0 thru 53). Then

if GEN_INDEXis high, the
mux selects the auto-count

value andit is loaded into the
GPRsto beeither used to

retrieve data using the TP or
GPRO sent to the SX for the RB to

useit to write the data to
memory

Figure 10: GPR input mux Control

20. State management
Every clock, the sequencerwill report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

20.1 Parameter cache synchronization
In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vectorof pixels with the SC_SQ_new_vectorbit asserted, the sequencerwill first checkif
the count is greater than 0 before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the groupofpixels to the interpolators. Every time the state changes, the new state counteris initialized to 0.

21. XY Address imports
The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the [Js (to the IJ
buffer) with XY writes (to the XY buffer}. Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix--float converter and expanderand write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 19.2 for details on how to control the interpolation in this mode.

21.1 Vertex indexes imports
In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
block (96 bits}. They are loadedin floating point format and can be transferred in 4 or 8 clocks to the GPRs.

Exhibit 203¢.doc 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257956

ATI Ex. 2109

IPR2023-00922

Page 246 of 326

ATI Ex. 2109
IPR2023-00922

Page 247 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

9 July, 2003 4 September, 2015 GEN-CX0O00-REVA 35 of 54

22. Registers
Piease see the auto-generated web pagesfor register definitions.

23. Interfaces

23.1 External Interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—SPxit means that SQ is going to broadcast the same informationto all SP instances.

23.2 SC to SP Interfaces

23.2.1 SC_SP#
There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the |,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.

The actual data which is transferred per quad is
Ref Pix | => $4.20 Floating Point | value “4
Ref Pix J => $4.20 Floating Point J value “4

This equates to a total of 200 bits which transferred over 2 clocks
and therefor needs an interface 100 bits wide

Additionally, X,Y data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The X,Y data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across theseinterfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a IJ_BUF_INUSE_COUNTin the SC. Each time the
SC has sent a pixel vector’s worth of data fo the SPs, he will increment the |J_BUF_INUSECOUNTcount. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2, if not
the SC will stall until the SQ returns a pipelined pulse to decrement the count when he has scheduled a bufferfree.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of |,J data and two buffers of X,Y data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,SQ and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple modefirst with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performancehit.)

Name Bits|Description |
SC_SP#_data 100|IJ information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bit)

Type 0 or 1, First clock |, second clk J
Field ULC URC LLC LRC

Bits [63:39] [38:26] [25:13] [12:0]
Format SE4M20 SE4M20 SE4M20 SE4M20

Type 2
Field Face x Y¥

Bits [24] [23:12] [11:0]
Format Bit Unsigned Unsigned

SC_SP#_valid 1 Valid
SC_SP# last_quad_data i This bit will be set on the last transfer of data per quad.

Exhibit 203¢.dec 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +*«

AMD1044_0257957

ATI Ex. 2109

IPR2023-00922

Page 247 of 326

ATI Ex. 2109
IPR2023-00922

Page 248 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

9 July, 2003 4 September, 2015 36 af 54

2 0 -> Indicates centroids
1 -> Indicates centers

2 -> Indicates X,Y Data and faceness on data bus
The SC shall look at state data to determine how many types to send for the
interpolation process.

SC_SP#_type

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP biockwill have neither becausethe instantiation will insert the prefix.

23.2.2 SC_SQ
This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 108 bits) could be folded in half to approx 54
bits.

NameBits|Description
Ssc_SQ_data | 46 Control Data sent to the SQ

1 clk transfers

Event ~ valid data consist of event_id and
| state_id. Instruct SQ to post an

event vector to send state id and

| event_id through requestfifo
| and onto the reservation stations

making sure state id and/or event_id
gets back to the CP. Events only
follow end of packets so no pixel
vectors will be in progress.

 | Empty Quad Mask — Transfer Control data
| consisting of pc_dealloc

or new_vector. Receiptof this is to
transfer pc_dealloc or new_vector
without any valid quad data. New
vector will always be posted to
requestfifo and pc_dealloc will be
attached to any pixel vector
outstanding or posted in requestfifo
if no valid quad outstanding.

2 clk transfers

Quad Data Valid —- Sending quad data with or
without new_vector or pc_dealioc.
New vector will be posted to request
fifo with or without a pixel vector and
pc_dealloc will be posted with a pixel
vector unless noneis in progress. In
this case the pc_dealloc will be
posted in the request queue.
Filler quads will be transferred with
The Quad maskset but the pixel
corresponding pixel mask set to
zero.

SC_SQ_valid 4 SC sending valid data, 2™ clk could be all zeroes

SC_SQ_data — first clock and second clock transfers are shown in the table below.

Name BitField|Bits|Description

Exhibit 2039.dec 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257958

ATI Ex. 2109

IPR2023-00922

Page 248 of 326

ATI Ex. 2109
IPR2023-00922

Page 249 of 326

ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

37 of 54

1° Clock Transfer

SC_SQ_event

0 This transfer is a 1 clock event vector Force quad_mask =
new_vector=pc_dealloc=0
This field identifies the event 0 => denotes an End Of State Event1
=> TBD

SC_SQ_state_id [8:6] 3 State/constant pointer (6*3+3)
SC_SQ_pc_dealloc [11:9] 3 Deaillocation token for the Parameter Cache

SC_SQ_event_id|[5:1]

SC_SQ_new_vector 12 1 The SQ must wait for Vertex shader done count > 0 and after| dispatching the Pixel Vector the SQ will decrement the count.| SC_S5Q_guad_mask [16:13]|4 Quad Write mask left to right SPO => SP3
SC_SQ_end_of_prim 17 1 End Ofthe primitive
SC_SQ_pix_mask [33:18]|16 Valid bits for all pixels SPO=>SP3 (UL,UR,LL,LR)

SC_SQ_provok_vix [35:34]|2 Provoking vertex for flat shading
SC_SQ_lod_correct_0|[44:36] 9 LOD correction for quad 0 (SPQ) (9 bits per quad)
SC_SQ_lod_correct_1 [53:45]|9 LOD correction for quad 1 (SP1) (9 bits per quad)

and Clock Transfer

SC_SQ_lod_correct_2 [8:0] LS LOD correction for quad 2 (SP2) (9 bits per quad)
| SC_SQlodcorrect_3 [17:9] 9 LOD correction for quad 3 (SP3) @ bits per quad)

sC_$Q_pc ptr [28:18]|11 Parameter Cache pointerfor vertex 0
SC_SQ_pc_ptri [89:29]|11 Parameter Cache pointer for vertex 1

SC_SQ_pe_ptr2 [50:40]|11 Parameter Cache pointer for vertex 2
SC_SQ_prim_type[[53:51] 3 Stippled line and Real time command need to load tex cords from

alternate buffer

000: Sprite (point)
001: Line

010: Tri_rect
100: Realtime Sprite (point)
101: Realtime Line

L 110: Realtime Tri_rect

Nameiss—‘—sSSCsd Bits |Description=©]
SQ_SC_free_buff 1 Pipelined bit that instructs SC to decrement count of buffers in use.
SQ_SC_dec_entr_ent 1 Pipelined bit that instructs SC to decrement count of new vector and/or event

sent to prevent SC from overflowing SQ interpolator/Reservation requestfifo.

The scan converter will submit a partial vector whenever:
1.) He gets a primitive marked with an end of packet signal.
2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been

marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated whenail primitives in a packet three vectors are culled
except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two
new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal madeit through and thus the hang.)

Exhibit 2030.dec 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257959

ATI Ex. 2109

IPR2023-00922

Page 249 of 326

ATI Ex. 2109
IPR2023-00922

Page 250 of 326

 ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

R400 Sequencer Specification ‘PAGE

38 of 54

23.2.3 SQ to SX(SP): Interpolator bus

Name Direction Bits|Description |
35Q_SXx_interp_cyl_wrap SQ—SXx 4 Which channel needs to be cylindrical wrapped
35Q_SXx_wrap_count SQ->SXx 2 Cylindrical wrap count
SQ_SPx_auto_count SQ->SPx 19 Auto generated count for VTx and Pixels
SQ_S$Px_interp_param_gen SQ—SPx 1 Generate Parameter
$Q_SPx_interp_prim_type SQ—SPx {2 Bits [1:0] of primitive type sent by SC
$Q_SPx_interp_buff_swap SQ—SPx 1 Swap|J buffers
SQ_SPx_interp_|J_line SQ—SPx 2 iJ line number
SQ_SPx_interp_mode SQ—SPx 1 Center/Centroid sampling
SQ_SxXx_pc_ptro SQ—>SXx 11 Parameter Cache Pointer
SQ_SXx_pe_pirt SQ—SXx 14 Parameter Cache Pointer
SQ_SXx_pe_ptr2 SQ—SXx 11 Parameter Cache Pointer
SQ_SXx_rt_sel “| SQ>5SXK 1 Selects between RT and Normal data (Bit 2 of prim type)
SQ_SX0_pe_wr_en SQ—SX0 8 _| Write enable for the PC memories |
SQ_SX1_pe_wr_en SQ-SxXi1 8 Write enable for the PC memories
$Q_SXx_pc_wr_addr SQ—>SXx 7 Write address for the PCs
SQ_SXx_pce_channel_mask SQ—SXx 4 Channel mask
SQ_SXx_pe_ptr_valid SQ—SXx 1 Read pointers are valid.
SQ_SPx_interp_valid SQ—SPx 1 interpolation control valid

23.2.4 SQ to SP: Staging Register Data
This is a broadcast bus that sends the VSISR information to the staging registers of ihe shader pipes.

Name Direction Bits|Description
SQ_SPx_vsr_data SQ—SPx 96 Pointers of indexes or HOS surface information

$SQ_SPx_vsr_wrt_addr SQ—SPx 3 Staging register write address
$Q_SPx_vsr_rd_addr SQ—>SPx 3 Staging register read address
$Q_SPO0_vsr_valid SQ—SP0 i Datais valid
|SQ_SP1_vsr_valid SQ-SP1 1 Dataisvalideee

SQ_SP2_vsr_ valid SQ—SP2 1 Data is valid

SQ_SP3_ vsr_ valid SQ—SP3 1 Datais valid
SQ_SPx_vsr_read SQ->SPx 1 Increment the read pointers

23.2.5 VGT to SQ: Vertex interface

23.2.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit

floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide. In the case where an event is sent the 5LS

 3s of VGT_SQ_vsisr_data contain the event D.

 Name Bits Description

 VGT_SQ_vsisr_data 96 |Pointers of indexes or HOS surface information
VGT_SQ_ event

 VGT_SQ_vsisr_continued
VGT is sending an event

0: Normal 96 bits per vert 1: double 192 bits per vert

 VGT_SQ_end_of_vix_vect Indicates the last VSISR data set for the current process vect
data, “end_of_vector"is set on the first vector)

or (for double vector

 VGT_SQ indx_valid Vsisr data is valid

VGT_SQ_state Render State (6*3+3 for constants). This signal is guaranteed to be correct when
“VGT_SQ_vgt_end_ofvector’ is high.

VGT_SQ_send
 SQ_VGT_fr

 Data on the VGT_SG@is valid receive (see write-up for standa
interface handshaking)

d R400 SEND/RTR |

 END/RTR interface

Ready to receive (see write-up for standard R400 S$
handshaking)

Exhibit 2039¢.doc
84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257960

ATI Ex. 2109

IPR2023-00922

Page 250 of 326

ATI Ex. 2109
IPR2023-00922

Page 251 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

9 July, 2003 4 September, 2015 GEN-CXQQO0CREVA 39 of 54

23.2.5.2 Interface Diagrams

Exhibit 203¢.dec 84302 Bytes*** € ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257961

ATI Ex. 2109

IPR2023-00922

Page 251 of 326

ATI Ex. 2109
IPR2023-00922

Page 252 of 326

 «ex@SBUYJGAODUOSOHONWUBUAdODsousiajoy‘JEYUSPIUCD|W@vxx8Mazoeve—-20p'ee0z

 0YL‘eyOs[ayacbayaost

YSONANOSS

WIQVHSlfm1Ayadsngams
[lmensyyXLOL

7YOLOEA30CMETojoeaJopuebaGSye@HCLOZAaCCNE

[anne|lamnnrenenncecmmrnememnmement£)]D4
rmwermanerensgsitmeaenebATAIGCTYsIsaAeTqnopTSTSAYHAGSye| ON@davaenodassa

STMpleeeeemeeenmnnnenemneemenenmZWIVYSi5A

eYepISTSAYHAOSWe

7G10OPGLOz‘lequaydespe00z‘Aine6aovduoneolioadgJaouenbagCOPYaivaLidaFLVALVNIOINOTIWIAE.LVNYaddoOFAILOdLOdd

ATI Ex. 2109

IPR2023-00922

Page 252 of 326

AMD1044_0257962

ATI Ex. 2109
IPR2023-00922

Page 253 of 326

sxx@BEdJ9A0DUOBINON1YGUAdODsouelajay"[BILUSPYUODLLY©++coeve
NOTSSIWSNVSLSdOLSCHAINES

Re

NOTSSIWSNVaLSLavViS-addAHATHOdd

CoSdOLSYHATHOdd 90BEC?HAXS

AMD1044_0257963

qqOATSALAdWaOATSINDO4TAINOWIWdO41d pyWivdbpaNas©WLvd©aNgsZwLvdZGNaSSLYLOAZUdyOsTulaos0ULyOSULyOS

 UCU
VGIOLYA9Vd

WON‘Aaa-LNaWNS0dalvdLidaTIVISSLIVIASACeOAATLONLOdd WARY-XXXXXO-NADGLOZ‘equiaydas+

e00d‘Ainr6eofSLVdALVNIDINOoPa
ATI Ex. 2109

IPR2023-00922

Page 253 of 326

ATI Ex. 2109
IPR2023-00922

Page 254 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

9 July, 2003 4 September, 2015 42 of 54
23.2.6 SQ to SX: Control bus

Name | Direction | Bits|Description

SQ_SXx_exp_type | SQ—>SXx 2 00: Pixel without z (1 to 4 buffers)
01: Pixel with z (1 to 4 buffers)
10: Position (1 or 2 results)

___| 17: Pass thru(1 to 5results aligned) |
| Number of locations needed intheexport buffer|

(encoding depends on the type see beilow).

}SQ_SXx_exp_number

SQ_SXx_exp_alu_id | SQ >SXx 4 ALU ID. Revolving ID 0 thru 75. Memory exports have
| to increment this count by 4 or 8 depending on the size

requested. Other type of exports increment the ID by 1.

SQ_SXx_exp_valid SQ5Xx +|Valid bit
SQ_SXx_exp_state | SQ—SXx 3 State Context

SQ_SXx_free_done | SQ-SXx 1 Pulse that indicates that the previous export is finished
| from the point of view of the SP. This does not

necessarily mean that the data has been
transferred to RB or PA, or that the space in export
buffer for that particular vector thread has been
freed up.

Depending on the type the numberof export location changes:
e Type 00: Pixels without Z

o 00 =1buffer
o O01=2 buffers
o 10=3 buffers
o 114 buffer

e Type 01: Pixels with Z
o 00= 2 Buffers (color + Z)
o 01 = 3 buffers (2 color + Z)
o 104 buffers (3 color + Z)
o 11=5 buffers (4 color + Z)

e Type 10: Position export
o 00 = 1 position
o O12 positions
o 1X = Undefined

e Type 11: Pass Thru
o 00 = 4 buffers

01 = 8 buffers
10 = Undefined
11 = UndefinedoO6

Below the thick black line is the end of transfer packet that tells the SX that a given export is finished. The report
packet will always arrive either before or at the same time than the next export to the same ALU id.

23.2.7 SX to SQ: Outputfile control

Name | Direction Bits |Descriptionessa(eess—‘i‘sCs
SXx_SQ_pix_free_count0 | SXx3SQ 6 How manyslots where just freed in the SX for bank0
SAx_SQ_pix_countO_valid | SXx-SQ 1 Free_count0 is valid
SXx_SQ_pix_free_countt | SXx—-SQ 6 How many slots where just freed in the SX for bank1 |
SXx_SQ_pix_countt_valid | SXx-S8Q 1 Free_countt is valid
SXx_SQ_pos_free_count0 | SXx-SQ 4 How many slots where just freed in the SX for bank0
SXx_SQ_pos_count0_valid | SXx-SQ 1 Free_count0 is valid
SXAx_SQ_posfree_countt | SXx+SQ 4 How many slots where just freed in the SX for bank1

Exhibit 203¢.doc 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257964

ATI Ex. 2109

IPR2023-00922

Page 254 of 326

ATI Ex. 2109
IPR2023-00922

Page 255 of 326

ORIGINATE DATE

9 July, 2003

SXx_SQ_pos_countt_valid __
SXx_SQ_mem_export_free

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA PAGE

43 of 54
 SxS

23.2.8 SQ to TP: Contro! bus

Once every clock, the fetch unit sends to the sequencer on which RS line it is now working and if the data in the
GPRsis ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequencer also provides the instruction and constants for t
whereto write the fetch return data.

SXx2SQ| r _Free_counttis valid
Freed a memory export slot

he fetch to execute and the address in the register file

| Direction

Name | Bits Description |

TPx_SQ_data_rdy | TPx— SQ 1 Data ready |

TPx_SQ_rs_line_num | TPx— SQ 6 Line numberin the Reservation station
_TPx_SQ_type TPx-SQ 1 Type of data sent (0:PIXEL, 1:VERTEX) |
SQ_TPxsend Q>TPx {1sSendingvaliddata
SQ_TPx_const _SQ—TPx 48 Fetch state sent over 4 clocks (192 bitstotal)ss
SQ_TPx_instr | SQ—TPx 24 Fetch instruction sent over 4 clocks
SQ_TPx_end_of_group _SQ—TPx 1 Last instruction of the group
SQ_TPx_Type | SQ-TPx 1 Type of data sent (O:PIXEL, 1:VERTEX) |
SQ_TPx_gpr_phase | SQ—TPx 2 Write phase signal
SQ_TPO lod_ correct | SQ—TPO 6 LOD correct 3 bits per comp 2 components per quad |
SQ_TPO_pix_mask | SQ—TPO 4 Pixel mask 1 bit per pixel
SQ_TP1_lod_correct _SQ>TP1 6 LOD correct 3 bits per comp 2 components per quad |
SQ_TP1_pix_mask | SQ>TP1 4 Pixel mask 1 bit per pixel
SQ_TP2_lod_correct | SQ—TP2 6 LOD correct 3 bits per comp 2 components per quad
SQ_TP2_pix_mask | SQ—TP2 4 Pixel mask 1 bit per pixel
SQ_TP3_lod_correct | SQ—TP3 {6 LOD correct 3 bits per comp 2 components per quad
SQ_TP3_pix_mask | SQ->TP3 4 Pixel mask 1 bit per pixel
SQ_TPx_rs_linenum | SQ>TPx 6 Line numberin the Reservation station
SQ_TPx_write_gpr_index | SQ->TPx 7 [index into Registerfile for write of returned Fetch Data |
SQ_TPx_ctx_id | SO—TPx 3 The state context ID (needed for multisample resolves) |
SQ_TPx_SIMD | SQ->TPx 1 Tells the TP from which SIMD the data is coming from. |

23.2.9 SQ to VC: Control bus

Once every clock, the VC unit sends to the sequencer on which RSline it is now working and if the data in the GPRs
is ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequencer also provides the instruction and constants for the fetch to execute and the addressin the register file
where to write the fetch return data.

Name | Direction Bits Description

VCx_SQ_data_rdy | VEx— SQ 1 Data ready
VCx_SQ_rs_line_num | VCx-— SQ 6 Line numberin the Reservation station

VCx_SQ_type | VCx— SQ 1 Type of data sent (O:PIXEL, 1:VERTEX)
SQ_VCx_send | SQ>VCx 1 Sending valid data
SQ_VCx_const _SQ>VCx|48__|Fetchstate sent over4clocks (192 bits total) _
SQ_VCx_inste _ 24_Fetch instructionsent over 4clocks |
SQ_VCx_end_of_group 1 Last instruction of the group _
SQ_VCx_Type 1 Type of data sent (O:PIXEL, 1:VERTEX)
SQ_VCx_gpr_phase | SQ>VCx 2 Write phase signal
SQ_VCO0_pix_mask | SQ-VC0 4 Pixel mask 1 bit per pixel |
SQ_VC1_pix_mask _SQ-VC1 4 Pixel mask 1 bit per pixel
SQ_VC2_pix_mask | SQ-VC2 4 Pixel mask 1 bit per pixel
SQ _VC3_pix_mask | SQ—VC3 4 Pixel mask 1 bit per pixel
SQ_VCx_rs_line_num | SQ—VCx 6 Line numberin the Reservation station

Exhibit 203g .doc
34302 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © +*«

AMD1044_0257965

ATI Ex. 2109

IPR2023-00922

Page 255 of 326

ATI Ex. 2109
IPR2023-00922

Page 256 of 326

 Fat) ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
eo 9 July, 2003 4 September, 2015 44 of 54

 SQ VCx write_gpr_index | SQ->VCx 7|Index into Registerfile for write of returned Fetch Data
sQ_VCxSIMD | SQ->VCx [4 | Tells the VC from which SIMDthe data is coming from. |

23.2.10 TP to SQ: Texture stall

The TP sendsthis signal to the SQ and the SPs when frees up a buffer.

Name _ Direction Bits|Description
TP_SQ_fetch_dec | TP» SQ 1 Just freed a slot in the TP.

23.2.11 VC to SQ: Vertex Cachesfall

The VC sends this signal to the SQ and the SPs whenfrees up a buffer. There are 2 types of buffers, Mega and Mini
and a signal for both.

 ‘Name LDirectionsd]Bits |Description——s—s—SSCSs

VC_SQ_fetch_dec_mega | VC—SQ 1 Freed a Megasiot in the VC. |
VC_SQfetchdec_mini | VC— SQ 1 Freed a Mini slot in the VC.

23.2.12 SQ to SP: GPR and auto counter

Name Direction its|Description
$Q_SPx_simdO_gor_wr_addr SQ—SPx Write address
SQ_SPx_simd0_gpr_rd_addr SQ—SPx Read address
SQ_SPx_simd0O_gpr_rd_en SQ—SPx Read Enable

SQ_SP0O_simdO_gpr_pspv_wr_en|SQ—SP0 (SP 1)

SQ_SP2_simdO0_gpr_pspv_wr_en | SQ—>SP2 (SP3)
)

Write Enable for the GPRs of SP2-3 for PS and PV

| SQ_SP4simdO_gpr_pspv_wr_en |SQ—>SP4 (SP5
SQ_SP6_simdO_gpr_pspv_wr_en|SQ >SP6(SP7)
SQ_SPO_simdO_gpr_int_wr_en SQ->SP0

Write Enablefor theGPRsofSP4-5forPS andPV__
Write Enable for the GPRs of SP6-7 for PS and PV

Write Enable for the GPRs of SPO for Inputs

B
7
7
4
4 Write Enable for the GPRs of SPO-1 for PS and PV
4
4
4
4

(interp/vbix)
SQ_SP2_simd0O_gpr_int_wr_en SQ—-SP2 1 Write Enable for the GPRs of SP1 for Inputs

(interp/vtx)
SQ_SP4_simdO_gpr_int_wr_en SQ-SP4 1 Write Enable for the GPRs of SP2 for Inputs

(interp/vtx)
SQ_SP6_simdOQ_gpr_int_wr_en SQ->SP6 1 Write Enable for the GPRs of SP3 for Inputs

/ (interp/vbx) ;
SQ_SPx_gpr_phase SQ-SPx 2 The phase mux (arbitrates between inputs, ALU SRC

ee reads and writes) ee
SQ_SPx_simdO_channel_mask SQ-+SPx 4 The channel mask for SIMDO |
SQ_SPx_gpr_input_sel SQ—SPx 2 When the phase mux selects the inputs this tells from

which source to read from: Interpolated data, VSR,
autogen counter.

 $Q_SPx_auto_count SQ—SPx 21 Auto count generated by the SQ, common forall
shader pipes

SQ_SPx_simd0_fetch_swizzle SQ.SPx 6 Swizzle code for the TP request (2 bits per channel
ignore W asit is not used).
Bits [1..0] X modeselect:
0=GPR_X 1=GPR_Y 2=GPR_Z 3=GPR_W
Bits [3..2] Y modeselect:
0=GPR_X 1=GPR_LY 2=GPR_Z 3=GPR_W
Bits [5..4] Z modeselect:
0=GPR_X 1=GPR_LY 2=GPR_Z 3=GPR_W

SQ_SPx_tp_fetch_simd_sel SQ-SPx 1 TP Resource coming from:
0: SIMDO
41: SIMD1

SQ_SPx_ve_fetch_simd_sel SQ-oSPx 1 VC Resource coming from:
0: SIMDO
41: SIMD1

$Q_SPx_simd1_gpr_wr_addr $Q-»SPx 7 Write address

Exhibit 203¢.doc 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257966

ATI Ex. 2109

IPR2023-00922

Page 256 of 326

ATI Ex. 2109
IPR2023-00922

Page 257 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

9 July, 2003 4 September, 2015 GEN-CXXAXX-REVA 45 of 54

SQ_SPx_simd1_gpr_rd_adadr SQ—SPx a Read address
SQ_SPx_simd1_gpr_rd_en SQ >SPx 1 Read Enable
SQ_SPOsimdi_gpr_pspv_wr_en|SQ—-SP0 (SP1)} 4 Write Enable for the GPRs of SP0-1 for PS and PV
SQ_SP2_ simdi_gpr_pspv_wr_en|SQ—SP2 (SP3) 4 Write Enable for the GPRs of SP2-3 for PS and PV
SQ_SP4_ simcd1_gpr_pspy_wr_en|SQ—SP4 (SP5)} 4 Write Enable for the GPRs of SP4-5 for PS and PV
SQ_SP6_simd1_gpr_pspv_wr_en|SQ>SP6 (SP7) 4 Write Enable for the GPRs of SP6-7 for PS and PV
SQ_SPx__simd1 channel mask|SQ—SPx 4 The channel mask for SIMD1

SQ_SPx_simd1_fetch_swizzle SQ->SPx 6 Swizzle code for the TP request (2 bits per channel
ignore W as it is not used).
Bits [1..0] X mode select:
0=GPR_X 1*#GPR_LY 2=#GPR_Z 3=GPR_W
Bits [3..2] Y mode select:
O=GPR_X 1=GPR_Y 2=GPR_Z 3=GPR_W
Bits [5..4] Z mode select:
0=GPR_X 1=GPR_Y 2=GPR_Z 3=GPR_W

 SQ_SPO0_simd1_gpr_int_wr_en SQ—SPO0 1 Write Enable for the GPRs of SP0O-1 for Inputs
; _ (interp/vix) _

SQ_SP2_simd1_gpr_int_wr_en SQ—>SP2 1 Write Enable for the GPRs of SP2-3 for Inputs
(interp/Avix)

SQ_SP4_simd1_gpr_int_wr_en SQ—-SP4 1 Write Enable for the GPRs of SP4-5 for Inputs
_ (interpAtx) _ / -

$Q_SP6_simd1_gpr_int_wr_en SQ—-SP6 1 Write Enable for the GPRs of SP6-7 for Inputs
(interpAvix)

Exhibit 203¢.doc 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «+

AMD1044_0257967

ATI Ex. 2109

IPR2023-00922

Page 257 of 326

ATI Ex. 2109
IPR2023-00922

Page 258 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
Y AeVt 9 July, 2003 4 September, 2015 46 of 54
23.2.13 SQ to SPx:

Name Direction Bits|Description
SQ_SPx_instr_start SQ—-SPx Instruction start
SQ_SPx_simd0_instruct SQ—SPx 24 Transferred over 4 cycles

0: SRC A Negate Argument Modifier 0:0
SRC A Abs Argument Modifier 1:1

—

SRC A Swizzie 9:2
Vector Dst 15:10
Per channel Select 23:16

00: GPR
01: PV
10: PS

17: Constant (if 11 has to be 17 forall
channels)

1: SRC B Negate Argument Modifier 0:0
SRC B Abs Argument Modifier 1:1
SRC B Swizzle 9:2
Scalar Dst 15:10
Per channel Select 23:16

00: GPR
01: PV
10: PS

41: Constant (if 11 has to be 17 forall
channels)

2: SRC C Negate Argument Modifier 0:0
SRC C Abs Argument Modifier=1:4

SRC C Swizzle 9:2
Unused 15:10
Per channel Select 23:16

00: GPR
01: PV
10:PS

17: Constant (if 11 has to be 11 forall
channels)

3: Vector Opcode 4:0
Scalar Cpcode 10:5
Vector Clamp 11:11
Scalar Clamp 12:12
Vector Write Mask 16:13
Scalar Write Mask 20:17
Unused 23:21

SQ_SPO_simd0_pred_override SQ—SP0 (SP1)} 4 SPO receives 2 bits and SP‘ twobits as well.

0: Use per channel RGBAfield (enables the per channel
logic).
i: Use GPR for PV or PS settings. LET the 11
(constant) go thru unchanged

SQ_SP2_simd0_pred_override SQ—SP2 (SP3) 4 0: Use per channel RGBAfield (enables the per channel
logic).
i: Use GPR for PV or PS settings. LET the 11
(constant) go thru unchanged

SQ_SP4_simd0_pred_override SQ—SP4 (SP5) 4 0: Use per channel RGBAfield (enables the per channel
logic).
i: Use GPR for PV or PS settings. LET the 11
(constant) go thru unchanged

Exhibit 203¢.dec 84302 aytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «+

AMD1044_0257968

ATI Ex. 2109

IPR2023-00922

Page 258 of 326

ATI Ex. 2109
IPR2023-00922

Page 259 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

 ‘ 9 July, 2003 4 September, 2015 GEN-CXAXXX-REVA 47 of 54

SQ_SP6_simd0_pred_override SQ—SP6 (SP7) 4 0: Use per channel RGBAfield (enables the per channel
logic).
1: Use GPR for PV or PS settings. LET the 11
(constant) go thru unchanged

$Q_SPx_simd0_stall | SQ—SPx 4 Stall signal
SQ_SPx_simdt_instruct SQ—>SPx 24 Transferred over 4 cycles

0: SRC A Negate Argument Modifier 0:0
SRC AAbs Argument Modifier 1:1

SRC A Swizzle 9:2
Vector Dst 15:10
Per channel Select 23:16

00: GPR
01: PV
10: PS

11: Constant (if 11 has to be 11 for all
channels)

1: SRC B Negate Argument Modifier 0:0
SRC B Abs Argument Modifier 1:1
SRC B Swizzle 9:2
Scalar Dst 15:10
Per channel Select 23:16

00: GPR
01: PV
10: PS

11: Constant (if 11 has to be 11 for all
channels)

2: SRC C Negate Argument Modifier 0:0
SRC C Abs Argument Modifier=1:1

SRC C Swizzle 9:2
Unused 15:10
Per channel Select 23:16

00: GPR
01: PV
10: PS

14: Constant (if 11 has to be 11 for all
channels}

3: Vector Opcode 4:0
Scalar Opcode 10:5
Vector Clamp 44:11
Scalar Clamp 12:12
Vector Write Mask 16:13
Scalar Write Mask 20:17

; ; ; Unused ; 23:21
SQ_SP0_simd0_pred_override SQ—SP0 (SP1) 4 SPO receives 2 bits and SP1 two bits as well.

0: Use per channel RGBAfield (enables the per channel
logic).
1: Use GPR for PV or PS settings. LET the 11

/ / (constant) go thru unchanged
SQ_SP2_simd0_pred_override SQ—SP2 (SP3) 4 0: Use per channel RGBAfield (enables the per channel

logic).
i: Use GPR for PV or PS settings. LET the 11

aeef _{constant) go thruunchanged |
SQ_SP4_simd0_pred_override SQ—-SP4 (SP5) 4 0: Use per channel RGBAfield (enables the per channel

logic).
1: Use GPR for PV or PS settings. LET the 11
(constant) go thru unchanged

Exhibit 203¢.doc 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257969

ATI Ex. 2109

IPR2023-00922

Page 259 of 326

ATI Ex. 2109
IPR2023-00922

Page 260 of 326

 ORIGINATE DATE

9 July, 2003

EDIT DATE

4 September, 2015

SQ_SP6_simd0Q_pred_override SQ—SP6 (SP7}

PAGE

48 of 54

 R400 Sequencer Specification
0: Use per channel RGBAfield (enables the per channel
logic).

4: Use GPR for PV or PS settings. LET the 11

(constant) go thru unchanged

$Q_SPx_simd1_stall SQ—SPx Stall signal |
SQ_SPx_export_simd_sel SQ->SPx Which SIMD engine is exporting.

SQ_SX0_write_mask SQ—SX0 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock. This is for the data coming of SPO and SP2.

$Q_SX1_ write_mask SQ—-SxX1 Result of pixel kill in the shader pipe, which must be
output for all pixel exports (depth and all color
buffers). 4x4 because 16 pixels are computed per
clock. This is for the data coming of SP1 and SP3.

SQ_SXx_channel_mask SQ->SXx This is the per channel export mask.It is computed
by doing vectormask | scalar_mask | bit 14 of the
alu instruction.

SQ_SX0_kill_mask

|SQ_SX1_kill_mask

 SQ->SX0

/SQ->SX1

These are the valid bits coming straight from the |
reservation stations.

“These are the validbitscomingstraight fromthe
reservation stations.

Exhibit 203¢.doc 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257970

ATI Ex. 2109

IPR2023-00922

Page 260 of 326

ATI Ex. 2109
IPR2023-00922

Page 261 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM.

9 July, 2003 4 September, 2015 GEN-CXXXAXX-REVA

PAGE

49 of 54

23.2.15 SP to SQ: Constant address load/ Predicate Set/Kill set

Name _—_—s—_—si—sititwéts#tC(Cé#L: (Direction_ __| Bits|Description—

SPO0_SQ_simdO_const_addr (SP1) SPO=sQ || 36 Constant addressload 18bitsfrom SPO and 18fromSP4. |
SP0_$Q_simd0_valid SP0—SQ 4 Data valid

SP2 SQ _simdO_ const_addr (SP3) SP2--3Q | 36 Constant address load
-SP2SQsimdOvalid_SP258Q [1|Datavalid ee|
SP4_SQ_simd0_const_addr (SP5) ee (36 Constantaddress load |
SP4_S$Q_simdQ_valid SP4—5Q 4 Data valid
SP6_SQ_simd0_const_addr (SP7) SP6-»SQ 36 Constant address load
$P6_SQ_simd0_valid SP6—SQ “| 4 | Data valid |
SP0_SQ_simd0O_prec_kill_vector|(SP1} SP09SQ 4 Data (predicates or kill/mask) 2 bits from SPO and 2

bits from SP4

SPO0_SQ_simdQ_pred_kill_valid SP0->SQ 1 Data valic
SPO0_SQ_simd0_prec_kill_type SP0->SQ 4 0: predicate vector

. ; 1: kill/mask vector _
SP2_SQ_simdO_pred_kill vector|(SP3)SP23SQ1:4 _| Data (predicates or kill/mask)
$SP2_SQ_simd0_prec_kill_valid SP2->SQ i 4 Data valic
SP2_SQ_simd0_prec_kill_type SP2->SQ 4 0: predicate vector

1: kill/mask vector

 SP4_SQ_simd0_pred_killvector|(SP5)SP43SQ_ss 4 __| Data(predicates or kil/mask)ss

SP4_ SQ_simd0_pred_kill_valid SP4->SQ 14 Data valid
SP4_SQ_simd0_prec_kill_type SP4->SQ 4 0: predicate vector

1: kill/mask vector

SP6_SQ_simd0_pred_kill vector|(SP7) SP6E>SQ 4 Data (predicates or kill/mask)
SP6_SQ_simd0_prec_kill_valid SP6->SQ 1 Data valic
SP8_SQ_simdO_pred_kiil_type SP6->SQ | 1 0: predicate vector

1: kill/mask vector |

SP0_SQ_simd1_const_addr (SP1) SPO—-SQ 36 Constant address load 18 bits from SPO and 18 from

 SPO0_SQ_simd1_valid _ SP0--SQ 1 Data valid
SP2_$Q_simd1_const_addr (SP3) SP2 >SQ 36 Constant address load
$P2_SQ_simd1, valid SP2—8Q 4 Data valid

SP4SQ simd1_const_addr ss|(SP5) SP4—-SQ 136 Constantaddressload
SP4_SQ_simd‘_valid SP4—38Q 1 Data valid

SP6_SQ_simd1_const_addr||(SP7)SP6—-SQ | 36_—|Constantaddressload ;
SP6_SQ_simd1_valid SP6--SQ i 14 |Datavalid .
SP0_SQ_simd1_pred_kill_vector|(SP1) SPO3SQ 4 Data (predicates or kill/mask) 2 bits from SPO and 2

bits from SP4

SP0_SQ_simdi_pred_kill_valid SP0->SQ i 4 | Data valid
SPO_SQ_simd1_pred_kill_type SPO0->SQ 4 0: predicate vector

| 1: kill/mask vector

$P2_SQ_simd1_pred_killvector|(SP3) SP23SQ 4 Data (predicates or kill/mask)
$P2_SQ_simd‘_pred_kill_valic SP2->8Q 14 Data valid
SP2_SQ_simd1_prec_kill_type SP2->SQ 4 0: predicate vector

1: kill/mask vector

SP4_SQ_simd1_pred_killvector|(SP5) SP49SQ 4 Data (predicates or kill/mask)
SP4_SQ_simdi_pred_kill_ valid SP4->SQ it Data valid
SP4_SQ_simd1_prec_kill_type SP4->SQ 4 0: predicate vector

1: kill/mask vector

SP6_SQ_simdi_pred_kill vector|(SP7) SP69SQ | 4 | Data (predicates or kill/mask) |
SP6_SQ_simd1_prec_kill_valic SP6->SQ 4 Data valid
SP6_SQ_simd1_pred_kill_type SP6->SQ i |

0: predicate vector |
4: kill/mask vector

 Because of the sharing of the bus none of the MOVA, PREDSETor KILL instructions may be coissued.

23.2.16 SQ to SPx: constant broadcast

Name | Direction | Bits | Description

Exhibit 203¢.dec 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «**

AMD1044_0257971

ATI Ex. 2109

IPR2023-00922

Page 261 of 326

ATI Ex. 2109
IPR2023-00922

Page 262 of 326

 ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

of 9 July, 2003 4 September, 2015 50 of 54

SQ_SPx_simd0_const |SQ—SPx | 128|Constant broadcast |
SQ_SPx_simd’_const SQ>SPx| 128 | Constant broadcast |
SQ_SPx_simd0_const_se| SQ—-SPx | 2 Use the incoming constant instead of the registered one

for the next group of 16.
0: Normal mode
1: Waterfall on SRCA
2: Waterfall on SRCB

/ | 3: Waterfall on SRCC
“SQ_SPx_simd1_const_sel|SQ>SPx=—«2_~—s«s|_Usethe incoming constantinstead oftheregistered one

for the next group of 16.
0: Normal mode
1: Waterfall on SRCA

/ | 2: Waterfall on SRCB
| _3: Waterfall on SRCC

23.2.17 SQ to CP: RBBM bus

Name Direction | Bits | Description
SQ_RBB rs SQ—CP 14 Read Strobe

$Q_RBB_rd SQ—CP | 32 | Read Data
SQ_RBBN_onrtrtr SQ—CP 4 Optional
SQ_RBBM_rtr SQ-2CP 14 | Real-Time (Optional)

23.2.18 CP to SQ: RBBM bus

Name Direction | Bits | Description
rbbm_we CP+SQ | 1 Write Enable
rbbm_a CP—S8Q | 15 | Address -- Upper Extent is TBD (16:2)
rbbm_wd CP—SQ /32 | Data
rbbm_be CP >SQ |4 | Byte Enables
rbbm_re CP—SGQ 1 Read Enable
rbb_rs0 CP—SQ [1 Read Return Strobe 0
‘wobbrst—C«TCPSQ ssReadRetunStobet
rbb_rd0 CP—SQ | 32 Read Data 0
rbb_rd1 CP—SQ | 32|Read Data 0
RBBM_SO_soft_reset CP-»SQ 14 | Soft Reset

23.2.19 SQ to CP: State report
Name Direction | Bits | Description
SQ_CPvs_event SQ—CP 1 Vertex Shader Event
SQ_CP_vs_eventid SQ—CP 15 | Vertex Shader Event ID
SQ_CP_ps_event SQ—CP 4 Pixel Shader Event
SQ_CP_ps_eventid SQ—CP 5 | Pixel Shader Event ID

23.3 Example of control flow program execution
We now provide some examples of execution to better illustrate the new design.

Given the program:

Alu 0
Alu 7
Tex 0
Tex 1
Alu 3 Serial
Alu 4
Tex 2
Alu 5
Alu 6 Serial

Exhibit 203¢.dec 84302 aytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «*«

AMD1044_0257972

ATI Ex. 2109

IPR2023-00922

Page 262 of 326

ATI Ex. 2109
IPR2023-00922

Page 263 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

9 July, 2003 4 September, 2015 GEN-CXQQO0CREVA 51 of 54
Tex 3
Alu 7
Alloc Position 1 buffer

Alu 8 Export
Tex 4
Alloc Parameter3 buffers

Alu 9 Export 0
Tex 5

Alu 10 Serial Export 2
Alu 11 Export 1 End

Would be converted into the following CF instructions:

Execute 0 Alu O Alu O Tex 0 Tex 1 Alu ©O Alu O Tex 0 Alu 1 Alu O Tex
Execute 0 Alu
Alloc Position 1
Execute 0 Alu O Tex
Alloc Param 3

Executeend 0 Alu O Tex 1 Aiu O Alu

And the execution of this program would looklike this:

Put thread in Vertex RS:

Control Flow Instruction Pointer (12 bits), (CFP)
Execution Count Marker (3 or 4 bits), (ECM)
LoopIterators (4x9 bits), (LI)
Cail return pointers (4x12 bits), (CRP)
Predicate Bits(4x64 bits), (PB)
Export ID (1 bit), (EXID)
GPR BasePtr (8 bits), (GPR)
Export Base Ptr (7 bits), (EB)
Context Ptr (3 bits). (CPTR)
LOD correction bits (16x6 bits) (LOD)

State Bits

 CFP | ECM [Li CRP PB | EXID | GPR | EB | CPTR LOD
0 LO [Lo 0 QO | 0

Valid Thread (VALID)
Texture/ALU engine needed (TYPE)
Texture Reads are outstanding (PENDING)
Waiting on Texture Read to Complete (SERIAL)
Allocation Wait (2 bits) (ALLOC)

00 — No allocation needed

01 — Position export allocation needed (ordered export)
10 —- Parameteror pixel export needed (ordered export)
11 — pass thru (out of order export)

Allocation Size (4 bits) (SIZE}
Position Allocated (POS_ALLOC)
First thread of a new context (FIRST
Last (1 bit}, (LAST)

 See

Status Bits

VALID TYPE [PENDING SERIAL |ALLOC SIZE|POS ALLOC| FIRST|LAST
 1 ALUfo.[Oo 0 0 Lo i 0

Then the thread is picked up for the execution of the first control flow instruction:

Exhibit 203¢.dec 84302 Bytes*** € ATI Confidential. Reference Copyright Notice on Cover Page © «++

AMD1044_0257973

ATI Ex. 2109

IPR2023-00922

Page 263 of 326

ATI Ex. 2109
IPR2023-00922

Page 264 of 326

ORIGINATE DATE

9 July, 2003 EDIT DATE

4 September, 2015

R400 Sequencer Specification

Execute @ Alu 0 Alu 0 Tex 0 Tex i Alu 0 Alu 0 Tex 0 Alu 1 Alu O Tex

PAGE

52 of 54

It executes the first two ALU instructions and goes back to the RS for a resource request change. Here is the
state returned to the RS:

 State Bits

CFP | ECM PL | CRP PB EXID GPR EB CPTR LOD
0 2 Q [0 0 0 0 0 0 oO

Status Bits

TYPE PENDING | SERIAL|ALLOC [SIZE [POS A
1 TEX 0 0 0 oO 0

Then when the texture pipe frees up, the arbiter picks up the thread to issue the texture reads. The thread comes
backin this state:

State Bits

CFP | ECM LI CRP PB EXID GPR | EB [CPTR | LOD
0 4 0 0 0 0 0 [0 0 | 0

Status Bits

PVALID|TYPE_|PENDING_| SERIAL|ALLOC|SIZE|POSALLOC|FIRST[LAST|
1 | ALU 1 1 10 0 Lo iz Lo

Because of the serial bit the arbiter must wait for the texture to return and clear the PENDINGbit before it can

pick the thread up. Lets say that the texture reads are complete, then the arbiter picks up the thread and returnsit in

this state:

State Bits

CFP | ECM LI CRP PB EXID GPR | EB [CPTR LOD
0 6 (0 (0 0 0 0 0 0 0

Status Bits

|VALID TYPE | PENDING | SERIAL |ALLOC | SIZE | POSALLOC [FIRST [LAST
1 TEX [0 [0 0 (of 0 i 0

Again the TP frees up, the arbiter picks up the thread and executes. It returns in this state:

[State Bits

CFP | ECM LI | CRP PB EXID GPR | EB CPTR _— LOD
0 7 | 0 | 0 0 0 0 0 0 0

Status Bits

VALID TYPE PENDING [SERIAL [ALLOC [SIZE [POSALLOC | FIRST [LAST
1 | ALU [4 0 0 (0 | 0 | 4 | 0

Now,even if the texture has not returned we canstill pick up the thread for ALU execution because the serial bit
is not set. The thread will however come back to the RS for the second ALUinstruction becauseit has the serial bit
set.

Exhibit 203¢.doc
84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257974

ATI Ex. 2109

IPR2023-00922

Page 264 of 326

ATI Ex. 2109
IPR2023-00922

Page 265 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

co 9 July, 2003 4 September, 2015 GEN-CXXXXX-REVA 53 of 54
State Bits

CFP [ECM a [CRP PBFEXIDD=|GPRDCEBUUOPTR,|LOD
0 8 0 0 a 0 [0 0 0 0

‘StatusBits

VALID | TYPE. | PENDING [SERIAL|ALLOC [SIZE |POS_ALLOC|FIRST HAST.0

i | ALU [4 1 0 Q [0 1

As soon as the TP clears the pendingbit the thread is picked up and returns:

State Bits

CFP | ECM LI | CRP PBs EXID | GPR | EB CPTR|LOD
0 9 0 [0 [0 (0 0 [0 0 [a

Status Bits
 VALID TYPE_ PENDING[SERIAL [ALLOC|SIZE|POS_ALLOC|FIRST LAST

i TEX 0 10 10 0 0 1 0

Picked up by the TP and returns:
Execute G Alu

 State Bits

|CFP | ECM [Ll EXID | GPR E
1 10 0 0 0 0 0 [0

 0 [0

Status Bits |

VALID TYPE PENDING [SERIAL |ALLOC [SIZE [POSALLOC|FIRST LAST
1 ALU 1 / 0 10 0 0 1 0

Picked up by the ALU and returns (lets say the TP has notreturned yet):
Blloc Position 1

State Bits _CFP LECM J [CRP|PBEXID|GPR|EB||CPTR|LOD
2 0 0 | 0 0 Oo.OTQO.oO10

‘StatusBits

ifALU 1 [0 1

1 LO 1 VALID | TYPE PENDING [SERIAL | ALLOC| SIZE|POS_ALLOC|FIRST ao0

if the SX has the place for the export, the SQ is going to allocate and pick up the thread for execution. It returns to
the RSin this state:

Execute 0 Alu 0 Tex

State Bits

EXID GPR
0 oO
 3 14

Exhibit 2030.dec 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © «+«

AMD1044_0257975

ATI Ex. 2109

IPR2023-00922

Page 265of 326

ATI Ex. 2109
IPR2023-00922

Page 266 of 326

 PAGE

54 of 54

EDIT DATE

4 September, 2015

ORIGINATE DATE

9 July, 2003

 R400 Sequencer Specification

Status Bits

VALID TYPE PENDING [SERIAL | ALLOC [SIZE [POSALLOC | FIRST | LAST
1 TEX 1 0 10 oO 4 iz 0

Now, since the TP has not returned yet, we must wait for it to return because we cannot issue multiple texture
requests. The TP returns, clears the PENDINGbit and we proceed:

Alloc Param 3

State Bits

CFP | ECM Ll _CRP PB EXID GPR EB _CPTR LOD
4 0 0 0 [0 i 4 [0 0 0 0

Status Bits |

VALID | TYPE | PENDING | SERIAL | ALLOC|SIZE|POS ALLOC|FIRST LAST
1 | ALU [1 0 | 40 13 1 1 0 |

Once again the SQ makes sure the SX has enough room in the Parameter cache before it can pick up this
thread.

Executeend 0 Alu 0 Tex 1 Alu O Alu

State Bits

CFP | ECM | LI | CRP PB | EXID | GPR _EB | CPTR LOD
5 i 4 | 9 ie 0 [4 Lo | 100 0 [o

Status Bits

VALID TYPE PENDING [SERIAL ALLOC|SIZE | POSALLOC [FIRST LAST
1 TEX 1 [0 0 0 1 1 [0

This executes on the TP and then returns:

State Bits

CFP ECM ul _CRP | PB | EXID | GPR _EB _CPTR | LOD
5 | 2 0 0 Lo [4 | O | 100 0 [0

Status Bits

|VALID [TYPE PENDING (SERIAL ALLOC |SIZE|POS_ALLOC|FIRST | LAST
1 | ALU 1 1 0 0 i 1 i |

 Waits for the TP to return because of the textures reads are pending (and SERIALin this case). Then executes
and does not return to the RS because the LASTbit is set. This is the end of this thread and before droppingit on the
floor, the SQ notifies the SX of export completion.

24. Open issues
Need to do sometesting on the size of the register file as well as on the register file allocation method (dynamic VS
static).

Saving power?

Exhibit 203¢.doc 84302 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ++

AMD1044_0257976

ATI Ex. 2109

IPR2023-00922

Page 266of 326

ATI Ex. 2109
IPR2023-00922

Page 267 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

13 November, 2000 4 September, 2015 GEN-C2XX00X-REVA 1 of 16

Author: Steve Morein

issue To: Copy No:

R400 Architecture Proposal

ver 0.1

Overview: The is a proposal for the overall architecture of the R400. It is also just a proposal, and nothing is decided
yet.

AUTOMATICALLY UPDATED FIELDS:

Document Location: VST FireWire HD:r400 spec
Current intranet Search Title : R400 Top Level Spec

7 Name/Dept Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE

SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2000, ATi Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2000. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of AT| Technologies Inc.”

Exhibit 2040.dec 26886 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** y54/15 o4-43 PM Ty 5040
LG v. ATI

IPR2015-00325

AMD1044_0257977

ATI Ex. 2109

IPR2023-00922

Page 267 of 326

ATI Ex. 2109
IPR2023-00922

Page 268 of 326

 CAL
Table Of Contents

 ORIGINATE DATE EDIT DATE

13 November, 2000 4 September, 2015 DOCUMENT-REV. NUM. | PAGEGo to "File -> Properties -> 2 of 16Sas tee eh tithe ees

1. FEATURES... ccc cccceesseseeaceseseensenssessoaesuerssenasesesneoesesaseecoussucasenuauesesanoeususserssoeutussesenueeseeeuese 6

Ll AGP8x and possibly serial AGP oo... ccc ccc ccececcccccccceeececenee sees Ceeceeeceecseccereecsctereesenesseeseneees 6
12 128 Bit memory interfaceoccccc ce cee cece cece tetas nee eececeteeesescnettsteeeeeeeeetens 6
13 Nearly transparent Qual CRIP oo...cece cence eee ecee eee r ecco bee ceeeeeeccteeebecebneebanenneweceeneneueewaes 6
La UNifi@d PrOCESSING PIPEcece ccc ccecee ec cee cece een ene enact eeeeeeee cence cy cocgceeeceneneesenenenecdeneseceneees 6
LS FrOrt GG SCAGcece cee e tence eee e rere ee ete nen E EDEL EE EEO CEE CECE CEEE EGCG CetecetCee ne Senet HRSeeNeeHenenea es 6
1.6 Control ProCeSsSor o.ooccccece cece cece cece cece eceeeeeccseceeeecreeeencceeensceeeceecseessecesieeescteeencreeees 7
1.7 Real-Time drawing COMMANG QDIIY oecece cere ee eee eee eee rece bebe bccebeebecebetnbcetnneneennes 7
1.8 SD FO@RUPES ooocece cece ceencee cece ceeeeee cuca ee ceeeeeeeceeeeseccenenecereeeecceesececcenenersceeeeeceeeenecnereess 7

Ls NOISE TOXEULES ooo.ccccece cece eee e ee ee ee ese eese see ets sec eeseseneeseeeceeesesseeeseeeseeeeeeseeeseaseeneas 7

1.3.2 SMACOW DUTPOLS o.ooecece cece ee cece dee te ee cnc eee Fes C dese ees Crd de Oded cnn Cedteer cis eeescudeeeeeeenenes 7

1.8.3 PMER-ANSINGccc ee cece cece cece eects teen nce cee cece eeeeeeecececeanenseeeeeeeeeseseceatenecrareeeeseesenectenens 7
L&.4 T@XtUre COMPDTESSIONcccccccc cnc ceeececeeeeeeecceneneccecccereeeeneeeeeenenccnasaceeeeeeeeceeneercneeees 7
1.8.5 Z COMPPESSION22...eeee cece ee tee cea edeceeeeeetee teen cc:iseseeeeeeeeeteteecenenes 7
1.8.6 PULGQHIG ooo ccc cece ce cccee cece cee ce ce ceecene ce aeeeeceeeeeeccne ce necaeeeeeeeseecesccceneneneeeeescreeeeecosestanenasereresesss 3
1.8.7 Curved Surface SUPDOTEccc ccccccee cee cene eee seecccnee ces cneceecsecenes crecectctereeserecteesencanes &

1.9 HIQh COOP CODEN oo.ecneEEE econ Sone EL ecb cette ecb etteuaeeeuevaeeuueeeeeeeeee 8
1.10 POPTOPMANCC ccc cce ccc ccc ccececec eee ce ee cence ce cccee ee eceeeeecececnenecrasaeeceeeeesecceneneceeeeeeeeeeeesentenenersesees &

2. UREA. cccsecsccsesensesnessseneresssuesronsonessesesacacntuasesseueuuesesuuasectaneueneusecascaeesesssuusseatoaeesesesueseuereausnsenone 8

3. SCHEDULE ooo... cece cecee eee neeeene eee neuen seen ee ceneneneguene en sae gue eyea sa eanenengguaeeeysyneoueseensaaeueeneneesneas 8

4 PROCESS... cseceennenentonesnnnenssnnenesspseuaseeenuanounenenssneaueavenenseaeeuuneousanessoanaueaessnnneaeuuonenessaneae 8

SB. DUAL. CHIP Loc eccccssseeesssneresersseenseesasescauesesssnueuessosuesecneasueeuesecssaeeseasssunsesenseesestesesneaunauaensenone 9

6 GENERAL RENDERING OPERATION .0......ccsccccsssuesecessescnssesessnseesesesauercssonessoseseescntwasesseueasy 9

6.1 UII SMAGST.cececece nce ce teen cree eee cnee eee cnc EE CE ed CL CEE FeSO EEO Eee Coded Eee ced crt ceeteerorensees 9

6.2 SD REMCOMNGocceect ee cece ae ee cece teed cs ea ea ee eeeeeeeeeeeescgettteeeeeeeteceeseneeees 9
6.3 ZLD RENCOTING oo...ceceeee eee ne een cence EEC eE EERE CEE RE SEE SENN SH GES N ESE GGeH HET EEO HAG EE OLDE RE EC CRE CREE Gai “4
64 REAL-TIME RENCELIAG ooo. ccccce nec e teen ee eee nee een EEE HEHE EE DE REECE LCE EE ECOG CEteeCtgee te tegetaRSenRENHenNeS 12
7. DISPLAY OPERATION........cececesecrcceenssensenestssnsnessesonsseseussenszsestsaasensteneneeseoneeneanenes 12

8 BLOCK DIAGRAM,eecccccceceesensenensnsnsneeeeenancesensennseceseausenensenaenecesuataesressnsetesdrecaeneretsees 13

9, SHORT BLOCK DESCRIPTIONS q......ccscesscseecesesesaeessseosususenssentesesssusuvsseseauesecnssuesusenarosense 14

9] SYS occ ccc eeee ene nee e een n ECE e ECE EEE EE Ee CUO EEE CE EEE CEE SCHEER SEE SU CO EE EE Cd GHEE EERO COU EEE Eee CCee ceed Eneae CCE EEES 14

9.1.1 PABcece cece cee eee cne eee eee c en eee E er Coe ed Ecc G OEE Cede nE UE Ee ec cteC ed Fe Ce Ee ee ecu dete ceded cuneeereccteaes 14

9.1.2 FDPccce cece ee cece ee ee cence aeeecesaaeeeeesaaeeeeeserssaeeeeesssiraeeersiiiseeserssteeeeessnaes 15

9.1.3 MS cececece ee ener e ence nn EEE en CEO E EE EU CE EC SECC CEE EE EEC CCIE EE CCC ESOC EC ed CrUEEe ees CeteetEecanes 15

9.1.4 PROIM ccc c ccc ccc ccec cece eee ee cen ene cee eee eee ee ee ceed coeds eeeeeeeeceeeeecccasaeecenenesecnenenecnesaseereseeteenens 15

9.1.5 VPeeeeee cece eee ne cece teat neces teen eeeecaaeeeecetaseeeeeenteeeeeesicieeeecetiisseeeenteeess 15

9.1.6 LL ccc cece ccc cece cee ne eee conde e Eck CE ECD EE EC En Coed Ee CU CO UEC CL CE UEE ec cdc EEE Ee CCH EG EEE cr dEe Crecente teeteceneees 15

O17 Dooce cece nt eee eee nee EEE ELE EE EEE CECE OEE CULE EEE CECE ECCLES CEE OCEE OEE dC LOC EOE CCC E COE EE edd te ded Ee coe eeeedeneeeeeees 15

9.1.8 COCKGEN. o.oo cece cece cece cece ecto ee cnn ede CEE ek CnC E EE Heo Cree des CECH ECE Ed Cnn Cree Heer cs ee eed Coeeeeeee es 15

9.1.9 OP occcece te cee cence ee ceecsaeeeeetnaaeaeececeteeeececsceeeeeecanaeeecentaseeeeeetsieeeeeeesstireetenenteieees 15

9.1.10 PREM ooo cc ccc ccc cece nee e cc cne ee eee cece eee een Oo eee e ecco eed cn dene UE eed cc eC ed Ecce ee ee ecu n ae Cetedcuteeeereccteaes 15

94.11 Mec c cece cece cece ne eee cone ere cence ECE EEC Ed CGE GEE cc CG TEE EEC GH ULES FCC E EOE Ee CE eG EEE Cen EECESE Cer EEeE Ee Creat 15

9.2 DIS IAY occcc cece cece cece seen eee eeee ee dene nad nd eda HH CGH en Occ eeeesceeeeeseceseeaeeesanaseeeaaeeeseeaaaiaasaaneeeeees 15
9.3 STIR occ cece cnc ee cents eee c nn ne Eee CEE EEE Eee CU EE EEE CLC EE CLEC CEDCEEE Eee CCG EEE EC Ce EEOC ed ca ded eeEC ec Cee EE er Edeeecet tees 15

9.3.1 PrimitiveASSEMDIy/VETIEK CACIC oo... cece cceececcceeceeeeeeeeeeeceeeececedneaeenereseceeneneneneas 15
9.3.2 RASTEL ENQING. 2.0... cece cece eee e ec ee cece cent es catenins seen eeeccce eae eueeeeeeenedenccceesessoreetesieerersrene 15

Exhibit2040.doc 26868 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***po54)45 94-43 pm

AMD1044_0257978

ATI Ex. 2109

IPR2023-00922

Page 268 of 326

ATI Ex. 2109
IPR2023-00922

Page 269 of 326

Vt) ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM.. .<< ¢ 13 November, 2000 4 September, 2015 GEN-CXXXXX-REVA PAGE

3 of 16

9.3.3 peel cr0 [818(02)eeeee 15
9.3.4 DATADAIccccece cence cece cece ceeeececececneneaeaeaeeeeeesesecuenenecsaeeeeceeetescotenenienasereresesecetees 15
9.3.5 TextureENgineoccccc cece cee tee cee e eee ceceeeece cates ctsseeeeeeeeseesecttnttsiees 15
9.3.6 PREMCEPBACKGING... oo... ccecc cc cecce cece cecccceneneceeeeeeceeececccceceeceeeeeeeceeseesccccenecereeeeecteseserectes 15

10. TOP LEVEL INTERCONNECTIONSqo...cececececeeeecneeseceeee ee seenenenesnuueneeesnuouseeesnoaenenenen nee 15

10.1 First Level Sub Headingooeeeeecc tee eet ete bbe ce eter coteeeeccbtnttteencesees 15
10.1.1 Second Level Sub Heading’occcce ce ceneneeseeeeeeeeesee te sansa aeseeeeeeeceeeeetseaeasiaees 15

Exhibit2040.doc 26868 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***j0,54)45 94-43 pm

AMD1044_0257979

ATI Ex. 2109

IPR2023-00922

Page 269 of 326

ATI Ex. 2109
IPR2023-00922

Page 270 of 326

ORIGINATE DATE

13 November, 2000

Revision Changes:

Rev 0.0 (Steve Morein)
Date: November 6, 2000
Initial revision.

Rev 0.01 Steve Morein

Date: November 10,2000

EDIT DATE DOCUMENT-REV. NUM.

4 September, 2015 Go to "File -> Properties ->=

Document started

Document continued

Exhibit2040.doc 26868 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** 59,54;45 04-43 pm

AMD1044_0257980

ATI Ex. 2109

IPR2023-00922

Page 270 of 326

ATI Ex. 2109
IPR2023-00922

Page 271 of 326

Vat ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGEA |os t 13 November, 2000 4 September, 2015 GEN-CXXXXX-REVA 5 of 16

Introduction

This documentoutlines a proposal for the r400 architecture.

A minor note: in the middle of writing this | decided that it makes the most senseto call the “pixel” pipelines shader
pipeline since they handle vertices and pixels. | have not gone through this to make sure that my usage is consistent.

Exhibit 2040.doc 26858 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** jo4:45 04-43 om

AMD1044_0257981

ATI Ex. 2109

IPR2023-00922

Page 271 of 326

ATI Ex. 2109
IPR2023-00922

Page 272 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

13 November, 2000 4 September, 2015 Go to "File -> Properties -> 6 of 16

|. Features :

1.1 AGP8x and possibly serial AGP
The R400 will at a minimum support AGP4x and AGPSx interfaces. We may also support 3.3i/o including AGP2x
and 3.3V PCI. We need to consider how we interface to LDT (AMD) and possibly the Motorola rapid 1/O that may be
used in future Apple Designs (G5).

1.2 128 Bit memory interface
Weare thinking of only supporting a 128 bit interface to memory. The memory will be configured as four channels of
32 bits each. The atomic fetch until will be 256 bits in expectation that some high speed memories will use a prefetch-
8 architecture. Logic in the memory controller will optimize down to 128 bit writes when possible on DDRorprefetch 4
memories. Memories up to 500 MHz will be supported (1 gigabit data rate).

Memory is the most open issue on the R400. We need to develop a roadmap ASAP for how memorywill develop,
and this may significantly affect our plans.

1.3 Nearly transparent dual chip
To be able to address the very high end desktop/enthusiast market we will support a glueless two chip design instead
of a 256 bit bus. Unlike previous dual chip designs we have done, this is targeted to be a mainstream product. This
implies that it can easily be VWWHQL’d, and can accelerate all applications and benchmarks, not just a subset of full
screen apps. A separate document outlines the two proposals we are looking at for the dual chip design.

There will be costs added to the base chip to support this. Design time, pins, and area will be impacted by adaingthis
support.

1.4 Unified processing pipe
The most ambitious feature in this design is the “truly unified pipe” : a single programmable pipeline is used for 2D,
Video, 3D vertex, and 3D pixel operations. The unified pipeline does all of its calculations in 32 bit floating point, the
same as the existing vertex transform in previous chip, and the next step in the precision of the color/pixel
calculations which have increased from 8 bits (R100), through 16 bits (R200), to the 20 bits in the R300.

There is an area cost to the unified pipeline since we are forced to go to 32 bit precision for color, when application
requirements may need less (22 to 24 bits). However the unified pipeline results in a single math/register structure
compared to the separate structures in a more traditional design. It is hoped that by only needing to design the one
structure we can make the investment in design time and effort to really optimize the area.

Some of the benefits to merging the pipelines include allowing the vertex operations to do texture fetches, which we
could not afford add logic to the transform pipe to do, a single programming modelfor both operations, more precision
on color than we would normally provide, and the ability to support significantly more registers and instructions in
pixel shaders.

One important benefit is load balancing. In the current pipeline when the app it transform bound the pixel pipeline is
idle some significant portion of the time, and when the app is raster bound the transform hardwareidle. The unified
pipeline presented here dynamically allocates iis processing power betweentransform and raster.

1.5 Front end scaling
We will remove the back end scaling capability from the display, and replace it with a non-scaling overlay. This will
require us to be able to implement scaling using the unified pipeline. Key features that will need to be supported are
large filter kernels, de-interlacing, frame rate conversion, and good support for YUV and color conversion.

Exhibit2040.doc 26868 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***jo.4)45 94-45 pm

AMD1044_0257982

ATI Ex. 2109

IPR2023-00922

Page 272 of 326

ATI Ex. 2109
IPR2023-00922

Page 273 of 326

 ORIGINATE DATE | EDIT DATE DOCUMENT-REV. NUM. PAGE
13 November, 2000 | 4 September, 2015 GEN-CXX000-REVA 7 of 16

1.6 Control processor
To allow us to emulate a backend scaler and to enable new applications the control processor will be enhanced with
event based streams. These are secondary, real time, command streams that start execution when an event
happens.

1.7 Real-Time drawing command ability
To allow for the emulation of backend scaling as well as support new features we need to be able to interrupt the 3D
pipe and be able to execute high priority commands with low latency. At the moment it appears far to difficult to be
able to insert a new commandatthe top of the 3D pipeline and meet latency requirements (which | believe we wish to
define as around a 1/16 of a frame refresh). This would require us to be able to interrupt triangles in the midst of
rasterizing, inset vertices in the midst of a large vertex array, and other nasty things. | think instead we can get by with
a second rasterizer which drives the pixel pipelines. Setup would be done with software, but since the majority of the
real time rasterization is expected to be simple

1.8 3D Features

There are a number of new 3D features we are considering for inclusion. Additional features may be added, and
someof these may be dropped.

1.8.1 Noise Textures

Perlin style noise is useful for a numberof applications. It is generated on chip and consumes no external memory
bandwidth. It also larger than any physical texture can be: 256x256x256 lattice points, and still has detail when the
resolution is 4Kx4Kx4K. There is an opportunity to get this adopted as part of dx9.

1.8.2 Shedow buffers

John Carmackis using shadow volumes to generate shadow effects in doom3. Shadow volumes are very poor way
to usé modern 3D pipelines. (will add more detail here later). Shadow buffers have two key limitations: very high
resolutions are required to avoid aliasing, and traditional shadow buffers can not be mip-mappedsofiltering is real
problem. Through a combination of the z techniques we have developed and, hopefully, deep shadow buffers, we
can solve both of these problems and widely enable shadow buffers.

1.8.3 Anti-Aliasing
We want to further improve the anti-aliasing used in the R300 by reducing the needed memory, and possibly
increasing the number of samples per pixel. The goal is more than fifty percent of the performance and less than
three times the memoryofanti-aliased rendering. We should also look into improved methods.

1.8.4 Texture compression
To further reduce bandwidth we need to improve texture compression. We need to achieve both better compression
that S3TC, and have a high enough quality that textures that would lose too much detail with S3TC can be
compressed. Both of these goals do not need to be achieved simultaneously on all textures. We also need to look at
compression of non-traditional surfaces such as normal maps.

1.8.5 Z compression
We will build on the R300 slope based compression but we are looking at supporting maxmin for cachelines that do
not compress with slopes (either too many slopes per cacheline,or the pixel shader modifies the z value)

Exhibit 2040.doc 26858 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***994/45 04-43 py

AMD1044_0257983

ATI Ex. 2109

IPR2023-00922

Page 273 of 326

ATI Ex. 2109
IPR2023-00922

Page 274 of 326

1.8.6 Filtering
As part of the move to front end scaling we need better than bi-linear filters. Goals are : arbitrary sized separable
filters and 4x4 bi-cubic. Being able to support programmable weightsis nice.

1.8.7 Curved Surface Support
We needto figure out how we are going to support curved surfacesin this architecture. | think that we can find a way
to use the wide ability of a vertex shader to implement acceleration for subdivision surfaces, but the vertex only level
of processing in the shader pipeline means that something ahead of it needs to set up the surface. At one point |
imagined that we could use the sibyte processor as a CP, which would have the power to do the curved surface
setup. That is obviously no longer possible.

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM.

13 November, 2000 4 September, 2015 Go to "File -> Properties ->

1.9 High color depth
Wewill support a 64 bit color buffer (16:16:16:16), the exact format(fixed, floating, etc.?) has yet to be decided

1.10 Performance

| think we can increase the clock speed from 300 MHz to S500MHz.
Historically the goal has been to double speed in each generation, assuming a constant clock speed. However since
we are considering the dual chip solution for the very high end we may not need to be 2x the speed of the R300. Our
use of a 128 bit memory bus instead of 256bits will impose a potentially lower bandwidth.

That said | would still like to aim for 2x the internal processing capability of the R300:

R300 R400 |
Clock speed 300 MHz 500 MHz
Pixels per clock 8 16
Bi tex fetches per pixel|2 2

"ALU ops/cik(mac's)|64(dedicated) |192(shared)
PeakTi/Sec [1600 280
Peak xform fp ops/clk 16? (dedicated)|192 (shared)

We may need to reduce this performance goal to meet our area goal.

2. Area

The area goal for the R400 is 10mm on a side in .13 micron CMOS
There will probably be a lower cost version with a target area of 8.5 on a side.

3. Schedule

Tapeout April 2, 2002
Samples May, 2002
Production Nov, 2002

4 Process

At the momentthis looks like an easy choice: .13 will be in production for over a year, and .10 does not show up until
the very end of 2002 according to the TSMC and UMC roadmaps.

Wewill probably want to be in a flip chip packaging approach to meet power distribution goals. It will also reduce the
cost of the dual chip option by making the extra pins needed for the interface cheaper. Is there a way to have an

Exhibit2040.doc 26856 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***jo.4)45 o4-43 pm

AMD1044_0257984

ATI Ex. 2109

IPR2023-00922

Page 274 of 326

ATI Ex. 2109
IPR2023-00922

Page 275 of 326

OX ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE(.< Ls 13 November, 2000 4 September, 2015 GEN-CXXXAX-REVA 9 of 16
option to wire bond it also? Possibly without the dual chip interface, and with less pwr/gnd forcing a lower clock
speed. This may make sense for a lower cost sku.

5. Dual Chip

<need to copy the dual chip notes over and add to them>

6. General rendering operation

6.1 Unified Shader

The unified shader is a simd/vector engine that performs the same instructions on four sets of four (16 total)
elements. For pixel shader operations the elements are pixels with the sets of four required to be 2x2 footprints. For
vertex shader operations the sixteen elements are sixteen vertices. The basic elementis a 4 value vector — frequently
interpreted as x,y,zZ,w or I,g,b,a.

The user model for the unified shader is composed of a variable number of general purpose registers, a subset of
which are usually initialized with data. An ALU can do simple math, conditional moves, and permutations on the
registers, and the ability to do a limited number of memory reads using the texture cache. The numberof registeris
variable, and the number of registers required for an operation are specified when the task is submitted to the unified
shader. The unified shaderwill not start the task until there is enough free room for the tasks registers.

The unified shader is based on the R300 partially unified shader.

6.2 3D Rendering

For 3D rendering data is passed twice through the unified shader- once to transform the vertices and a second time
to determine the colorof the pixels.

The input to the 3D pipe is expected to be indexed vertex arrays. Linear vertex arrays can easily be supported by the
CP generating sequential indices. Inline vertex data is an open issue, | would prefer to write it to memory and then
fetch it as a vertex array rather than add a direct path.

The stream of indices is sent to the Primitive Assembly block by the CP. The front of the primitive assembly block
maintains the tag for the vertex cache; The vertex cache stores transformed vertices. As misses are detected in the
tag, the indices that miss are placed into 16 entry vectors. Each vector contains a state pointer, a pointer to the vertex
shader to be used, and the 16 indices to vertices that need to be transformed. When either a vectoris filled with 16
entries or a state change happens (so that the next vertex does not share the state and vertex shader with the
previous vertex) the vector is issued to one of the “shader” pipelines for transformation. Which of the four shader
pipelines it is issued to determined either by some effort of load balancing or a simple round robin. All that is
submitted to the pixel pipeline is the state, the vertex program, and the indices. The shader pipeline will fetch the
vertex array data through the cache infrastructure that is also used for texture fetches. After the tag the indices
(actually now the indices into the vertex cache) are placed into a latency FIFO to hide the latency of transforming the
vertices.

The shader pipeline receives the vector of 16 indices from the primitive assembly block. The shader pipeline
operates, when rendering pixels, by processing a vector of four 2x2 pixel footprints, A total of 16 pixels. For vertex
processing each of the pixels is replaced with a vertex. The vertex program includes information of how many local
variables it will need. The rasterizer waits until that many local variables are free, (as each executing thread in the
shader pipeline terminates it frees its local variables). Vvith the proposed shader datapath the maximum number of
local variables per vertex is 256. However this leaves no ability to hide latency, 16 to 32 local variables will probably
maximize latency hiding and therefore performance. The vertex shader program can use all the capabilities of the
shaderpipeline including texture fetches and dependent lookups. At the end of the vertex program, the transformed
coordinates must be output. One output will be the x,y,z,w position which we be stored in the position cache of the
vertex cache. The vertex program may also output a number of parameter values (colors, texture coordinates, other

Exhibit 2040.doc 26858 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***996.;45 04-43 pm

AMD1044_0257985

ATI Ex. 2109

IPR2023-00922

Page 275 of 326

ATI Ex. 2109
IPR2023-00922

Page 276 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

13 November, 2000 4 September, 2015 Go to "File -> Properties -> 10 of 16a, rust! tee cuesk St

interpolated inputs into the pixel shader). The parameter values must be output as a multiple of four 128 bit words, as
the parameter cache is designedfor this.

The primitive assembly block reads the indices back out of the latency FIFO and accesses the position cache portion
of the vertex cache. It assembles the vertices into primitives (lines, triangles, rectangles, quads?, points, ?).
Baricentric values are assigned to the vertices, and will be used later in the rasterizer to interpolate the parameters.
The parameters are not accessed by the primitive assembly logic, which only works from the position data. The
primitive is clipped against both the viewing volume as well as userclip planes, with fractional baricentric coordinates
assigned to the clipped primitive sections. The primitive goes through the perspective divide and the viewport
transform. The resulting screen space primitive is setup (plane equations for 1/(W, Z, and the baricentric coordinates).
The resulting primitive data, including the indices back into the parameter portion of the vertex cache are broadcast to
the four pipes. The final time that an index is output that access the oldest vertex cacheline, a token is also sent.
Whenall of the four pipelines return the token the primitive assembly block can free that cacheline and allow it to be
used for a new vector of vertices. The performance goalin the primitive assembly blockis a triangle every two clocks.

Each pipe has a FIFO in front of the rasterize to load balance. Each pipe will handles 16x16 sections which are
interleaved between the pipes. To maximize the effective size of the FIFO wewill probably cull the triangle list before
the FIFO. The rasterizer will request the parameter data from the parameter cache for the primitives. A small latency
hiding FIFO will hide the latency of the access to the parameter cache. The parameter cacheis 512 bits wide, and the
interfaces from the parameter cacheto the rasterizer are 128 bits wide, this allows the parameter cache to output one
pipelines request per clock, which is serialized over four clocks, keeping all four interfaces busy. The rasterizer keeps
a small cacheof three to four vertices, this allow only the new parameter to be fetched when adjacenttriangles are
processed. The parameter cache interface imposes a second performance limits, in the worst case each polygon
covers all four pipelines and there are no vertices shared from triangle to triangle. In this case the peak performance
is (500 MHz / (4 pipelines * 3 vertices) = (500/12) = 41.6 million triangles per second. In the best case triangles are
perfectly stripped and never cross overpipeline boundaries. in this case the peak performance(If we ignore the setup
limit) is 500 million triangies per second. As a practical manner we should be able to approach the setup limit of 250
Million triangles per second.

The rasterizer also contains a portion of the hierarchical Z memory. We are looking into moving this into a cache
based approach, but thai is far for certain at this point. We would like to be able to do heirz culling at a speed in
excess of 64 pixel per clock per pipelines (256 pixels per clock total). We are also going to consider some of the
improved latency heriz options to improveculling efficiency.

The rasterizer will generate four pixels per clock if there are no more than eight interpolated parameters. The
rasterizer generates vectors of four 2x2 footprints (16 pixels). Each 2x2 footprint must be screen aligned and from
the sametriangle (with a single shared z slope). The four footprints only need to share the same state and shader
program.

Before starting the processing of a vector the rasterizer (which includes the sequencerfor the shader pipeline) checks
to make sure that there are enough free registers in the shader pipeline for the pixel shader program. If not, it stalls
until there are enough. The rasterizer also needs to arbitrate between the three streams of vectors to be shaded: the
vertex stream, the pixel stream, and the real time stream.| think it will be sufficient for the real time stream to have
priority over the vertex stream which haspriority over the pixel stream. This will meet the realtime demands, and keep
the vertex cachefilled.

The vector is then processed by the shader pipeline. We will probably support up to eight sequentially dependent
texture fetches. (to use the R300 terminology, eight clauses). 16 (87) textures are supported, but each texture can be
accessed multiple times by a single pixel shader which can provide a different address each time. This is especially
useful for complexfilters.

The output of the pixel shaderis the final color of the fragment. The pixel shader may also replace the Z vaiue. Fog
and stippling must be done in the pixel shader program.

The render backend does the z compare, stencil operation and color alpha blend.

The texture fetch path has a number of design options. One option is an approach where the local, multiported,
texture cache is smail (1 to 4 KB), and contains uncompressed color in a canonical format (32 bits per pixel) and uses
a 4x2 or 4x4 cacheline. This is backed up by a large (>16KB) L2 cache which also stored uncompressed 8x8
cachelines. The decompression logic lives between the memory controller and the L2 cache.

Exhibit 2040.dec 26858 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***po.44:45 04-43 om

AMD1044_0257986

ATI Ex. 2109

IPR2023-00922

Page 276 of 326

ATI Ex. 2109
IPR2023-00922

Page 277 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE |

18 November, 2000 4 September, 2015 GEN-CXXXXX-REVA 11 of |
An alternative design uses the L2 cache to contain data in memory format (compressed) which is decompressed as
neededto fulfill Li texture cache misses. This will increase the effective size of the L2. The L2 cacheis distributed,
with 1/4 of it residing in each memory controller. The Texture decompression logic can either be located in each
shader pipeline, or exist as a shared block(s) that receive data from all four memory controller and send the
decompressed 4x4 cachelines to each shader pipeline. The unified decompression block will result in better
performance, and possibly less area, at the cost of someof the scalability.

Assuming that we chose the L2 in memory controller and the unified decompression logic, the texture path would
work as follows:

In a four pipeline design there are two texture decompression blocks, one for the “left” texture units in each shader
pipeline, and the secondfor the “right” texture units. In the two pipeline, lower cost, version of the chip only a single
decompression pipeline is used, serving the left and right texture units.

The L1 texture cache receives a texture request from its shader pipeline. The usual tag and latency FIFO is used to
generate the misses. These are sent to the shared texture decompression block, which looks up the texture to find
the physical address and then sends the request to the L2 cache in the memory controller. The L2 also has a latency
FIFO and tag, and will return the data in order (but there is no order guaranteed between the data returning from each
L2). The decompression block has a buffer which is used to place the data from the memory controllers back in order.
The decompression logic decompresses the texture and returns, in order, the 4x4 cachelines that the L1 caches are
requesting. Most of the compression techniques we are considering are based on an 8x8 tile (or 4x4x4), when
necessary the decompression logic will decompress an entire 64 pixel tile and only return the requested 16 pixels to
the L1 cache. This will tend to increase the bandwidth between the decompression logic and the L2 cache as 8x8
blocks are repeatedly requested to provide different 4x4 subtiles to the L1. The L2 cachewill prevent the repeated
reads from going to memory, and we will probably implement an “LO” style cachein front of the L2 to also catch the
redundant requests.

Each memory controller will have two 64 bit read return buses, one to each of the two decompression blocks, each
decompression blocks drives a separate 128 bit bus to each of the four shaderpipelines. This will tend to have better
utilization and load balancing than having the memory controller drive a 32 bit bus to the decompression logic in each
shaderpipeline. While the total number of wires is similar (128 bits per memory controller, 128 bits into each texture
cache) wearelesslikely to leave the texture pipes starved whenthere is some imbalance.

6.3 2D Rendering

2D rendering is implemented in the 3D pipeline. The first reason for the change is performance; The current 2D
pipeline can render 128 bits per clock (16 8 bit pixels, 8 16 bit pixels, 4 32 bit pixels). The 3D pipe can render 16
pixels per clock, and the pixels can be & to 64 bits wide. Secondly routing the three busses needed by the 2D engine
(src read, dest read, dest write) has a certain cost, and complicated the design of the chip. If we attempt to improve
the performance of the 2D pipe these busseswill increase in size, further complicating the design. Another reason is
dual chip rendering, it would be nice if 2D as well as 3D operations increase in speed. (2D operations include things
like color clears and texture uploads that do show up in 3D benchmarks.

There are four issues currently knownthat will affect placing the 2D commandsinto the 3D pipelines:
1) Command compatibility
2) Hostpath blits
3) ROP3
4) Overlappingblits.

We wish to be as compatible as possible with the existing PM4 2D model. This will require that the CP be enhanced,
allowing it to translate 2D commands into commands understood by the 3D pipe. We will ad interfaces to the 3D pipe
to make this easier but there will still be significant amount of work that still needs to be done by the CP.

Host path blits can no longer work as they do now. Four pipelines will be attempting to execute the requested
command in parallel, walking the area to be drawn in some tightly tiled pattern to optimize memory and cache
performance. This bearslittle resemblance to the single linear stream of data from embedded into the PM4 command
stream. In addition the shader pipelines are heavily optimized for a pull, “reverse” mapping model, and not a push,
“forward” model. The basic solution to this problem is for the 3D pipes to pull the source data directly out of a

Exhibit 2040.doc 26858 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** 994:45 04-43 pm

AMD1044_0257987

ATI Ex. 2109

IPR2023-00922

Page 277 of 326

ATI Ex. 2109
IPR2023-00922

Page 278 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

13 November, 2000 4 September, 2015 Go to "File -> Properties -> 12 of 16S a 5S : [a2 paces tt temet BEESoy ERR

command/data buffer, in whatever order, and in whateverparallel streams exist. Whether we give the PM4 engine the
ability to skip over the hostpath data, or force the driver to move hostpath data into a second command ring still
needs to be decided. It is possible that one or more changes may be neededto the driver for this.

2D supports a ROP3 operation that requires the destination color as well as two sources: the source, and the pattern.
To support this the pattern color is output by the pixel shader on the Z output which is not used by 2D operations. The
render backend nowhasall three needed sources.

Overiapping blits is an ugly problem that | have not yet found an acceptable solution to. More work needed.

One benefit to these changes is the 2D operations will also be accelerated by the second chip in a dual chip board.

6.4 Real-time Rendering

7. Display operation

The display must be able to display from microtiled surfaces and overlays. This will generally force us to adoptline
buffers.

The display should support at least two outputs, ideally we will be able to support two high resolution outputs and a
low resolution output (TV out)

We will drop support for overlay scaling, and therefore supporting an overlay on ail displays becomes affordable,
fixing a “bug” that our current dual display products suffer from.

We will place the overlay line buffers in the memory controllers, this changes the interface from the memory
controllers to the display from a wide “bursty” interface to a narrow continuosinterface.

<this rest of this was copied out of another document and needs someediting to fit in this document. Bear with us as
construction of this document continues>

Video buffer operation:

At beginning of even scanline (scanline 0) 1/2 ofline bufferis filled.
The upper half of the buffer is read out, at the same time as the secondhalf of the bufferis filled. When the scanout
reaches the midpoint 3/4 of the bufferis filled. When the scanout reaches the end of the scan the bufferis filled. The
speed at which the bufferis filled must be greater than 1/2 of the rate at which the buffer is scanned out.

For the odd scanlines, the buffer is completely filled at the start of scanout (as a result of the even scaniine finishing
properly). As the lowerhalf is scanned out, reads are issued to fetch the data for the next pairs of scanlines. At the
end of the odd scanline, the buffer is expected to contain half of the data for the next scaniine.

Anotherway of looking at this is as follows:

At the beginning of the odd scanline the scan bufferis filled. As each word is read from the buffer and sent to the
display logic, a request is made to the memory controller to fill in the data. it is not necessary for all the data for the
next scanline pair to be fetched by the time that the scanline reaches the end, the real requirementis for the last word
in the scanline buffer to get there just before it is read, at the end of the next even scaniline.

We will support a single non-scaled overlay per each display.

Some bandwidth numbers

In reality we do not need to deal with quite as much bandwidth as the FIFO in the display can hide the horizontal
retrace.

350 MHz primary fetch, 32 bit data:
350 MHz primary display, 32 bits
350 MHz overlay fetch

Exhibit2040.doc 26868 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***jo.44/45 94-45 pm

AMD1044_0257988

ATI Ex. 2109

IPR2023-00922

Page 278 of 326

ATI Ex. 2109
IPR2023-00922

Page 279 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

13 November, 2000 4 September, 2015 GEN-CXXXXX-REVA 13 of
350 MHz overlay display
total: 350 MHz * 16 bytes (128bits)

Since we support dual monitor, this is doubled.

One design option is to split the display scaniine into pieces and move them into the memory controller. This greatly
reduces the exposed bandwidth in the system (reducing power and routing problems)

lf we assume that there are four memory controllers, each with 2GB/s of memory bandwidth then the following will
work:

core clock speed: >= 1x the memory clock
memcelk = 500 MHz
coreclk = 500 MHz

each memory interface is 32 bits ata DDR rate, and the fetch granularity is 256 bits.
Therefore if data was continuously received into the display FIFO 64 bits would be received every clock. A 256 bit
interface at the core clock rate is more than adequate..

the memory size needed for two 2048 displays is : 2048"4 bytes * 2 scanlines * 4 buffers is 64KB. So each buffer is
16KB (128 Kbit). With a 256 bit interface the memory is 256x512 single ported.

For writes into the write buffer as a result of memory fetches, a small buffer reorders data between pairs of 256 bit
words so that while what is read from memory is 256 bits containing two vertically stacked 128 bit words, what is
written is two 128 bit words that are on the same scanline.

The interface from the memory controller to the display only needs to be big enough for the sustained bandwidth, and
not the peak memory speed bandwidth. A 16 bit interface to each display seems like more than enough.
(comparethis to the rage 6 with two 128 bit busses between the memory controller and display)

A couple more notes:
for the most part the memory format is stored in the scanline buffer. The exception is 64 bit, which we would like to
convert to something like 11:11:10 or 8:8:8:8 This may mean somesort of gammacircuit in the memory controller.

A LUT would exist in the display for gamma de-correction and pailet support.

The interleave between the memory controllers would have to be compatible with the tiling and still give good
performance.

A big question is how does this work in a two chip board? | had been thinking about interleaving on a fine basis
between the chips with a display controller in one chip fetching from both, but this somewhat flips that around. We
need to route the video signals as an extra channel between the chips, this will add complexity, but it actually is less
bandwidth since the overiay is combinedfirst.

8. Block diagram

Exhibit 2040.doc 26858 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***4.44;45 54-43 pM

AMD1044_0257989

ATI Ex. 2109

IPR2023-00922

Page 279 of 326

ATI Ex. 2109
IPR2023-00922

Page 280 of 326

 PAGE

14 of 16

 DOCUMENT-REV. NUM.

Go to "File -> Properties ->

EDIT DATE

4 September, 2015

ORIGINATE DATE

13 November, 2000

Memory Costroller 1 Memory Controller 3

Reader
Backend 6

Texine ch
i .

oo"

Iextare 11
fod Bispd bid itps ta}

Pirextare ic "| .
4

9. Short Block descriptions

91 SYS

The system blocks support the chip, but are not graphics specific.

9.1.1 HBIV

The HBIU is the interface to the host bus. It implements four interfaces: register/read write, HDP for host access to
memory and the

Exhibit2040.doc 26856 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***jo.4)45 o4-43 pm

AMD1044_0257990

ATI Ex. 2109

IPR2023-00922

Page 280 of 326

ATI Ex. 2109
IPR2023-00922

Page 281 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

13 November, 2000 4 September, 2015 GEN-CXXXXX-REVA 15 ofie

9.1.2 HDP

9.1.3 MISC

9.1.4 Rom

91.5 VIP

9.1.6 12C

9.1.7 ?

9.1.8 ClockGen

9.1.9 CP

9.1.10 RBBM

9.1.11 MC

The memory controller is distributed, each of the four memory channels has a separate memory conttoller. Each
memory control contain a part of the L2/Line buffer memory. This large buffer serves a number of purposesin the
graphics chip, including L2 cache for textures and verticies.

9.2 Display

9.3 Grix

9.3.1 PrimitiveAssembly/vertex cache

9.3.2 Raster Engine

9.3.3 Sequencer

9.3.4 Datapath

9.3.5 TextureEngine

9.3.6 RenderBackend

10. Top Level Interconnections

10.1 First Level Sub Heading

10.1.1 Second Level Sub Heading’

Exhibit 2040.doc 26858 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***4.44;45 54-43 pM

AMD1044_0257991

ATI Ex. 2109

IPR2023-00922

Page 281 of 326

ATI Ex. 2109
IPR2023-00922

Page 282 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM.

13 November, 2000 4 September, 2015

PAGE

16 of 16 Go to "File -> Properties ->

Exhibit 2040.doc 26868 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***pon4j45 94-43 pm

AMD1044_0257992

ATI Ex. 2109

IPR2023-00922

Page 282 of 326

ATI Ex. 2109
IPR2023-00922

Page 283 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

11 March, 2001 4 September, 2015 GEN-CXXXXX-REVA 1 of 32

Author: Steve Morein

issue To: Copy No:

R400 Top Level Specification

ver 0.2

Overview: This replaces the R400 architecture specification.

AUTOMATICALLY UPDATED FIELDS:

Document Location: Documentt

Current Intranet Search Title : R400 Top Level Spec

“= Name/Dept. Signature/Date

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE

SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2000, ATi Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2000. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any means without the prior written permission of AT| Technologies Inc.”

Exhibit 2041.00C 48154 Bytes*** © AT! Confidential. Reference Copyright Notice on Cover Page © *** jojo4/45 12.43 om ATT 2041L£ &

LG v. ATI

IPR2015-00325

AMD1044_0257993

ATI Ex. 2109

IPR2023-00922

Page 283 of 326

ATI Ex. 2109
IPR2023-00922

Page 284 of 326

ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015 DOCUMENT-REV. NUM. PAGE

R400 Top Level Spec 2 of 32

Table Of Contents

1.-FEATURES 0.0... ccccssseessseseseesesssnessseenessentnassenenerenstasentessnenesseneresenueussenneueseateasnenssesesensenesssnssens 7

LD AGP Oxcececece c nn een n need cn EE EC DEERE CCE E EE Cree eC HEE Ctr Ee dC EEE CC Cte EE Cote de EC ceed er Cites etceeeeeer cites 7

12 256 Bit Memory Interface ooo.cece boned bebe eeescteeesesseeeeececeeeueeseeeueeeteeeueeeweeas 7
1.3 Unified ProceSSing DIDG..ciccc cece ce ccene ee eee eeeeeeceenencco ae eeeeeeeeeeecuenec coacenecresenesseeeenreceeanes 7
LA FROM Gd SCANcece cece cece ene e een n nn HE ERNE ee UH AeA GEHL EE DE RE ECOCECCEE CC CEG eEEceegeteEAHAROHN OE cee eS 7
LS Real-Time drawing COMMANC ADIIEY0cece cere cere eer e cece EEE cn eC EEL C cette receteteeceteneneaeaneas 7
16 BD Featuresieccceccc cece cecee cece eee cete ee eccsaaaaesaeeeeeeeeeesecc:itisseseeeeseeeeeeereeeeees &

1.6.1 Noise Textures oo.ceseecceeee css cesen sets ceesenescnntessserertrvsntnnsicrettinsertrnasinitenreenineys 8

1.6.2 Shadow buffers ooo.cececee ce tceeeeeeeeteeesesteensreeesseststeaneeeeesitiesieseeesritensiseeeetees 8

1.6.3 Sort Independent Transparency0....cccccccccscesesesceceeeevseetensetenerveneenvenieentestieeveneeen 8
1.6.4—ANt-AlaSING ooocccccc eee eersceeteernetetircrnttirrsivertrtitvietinitinsnttinrventtervenitineieen 8
1.6.5 Texture COMpreSSIONo.ooccc cece cess cece ters cecnerceterescstenventenereretersscntntevanittnreeninees 8
1.6.6—Z compressioncececcc ccc cette cette tenet ee te nes stnensutnttentetteneninennnineeees 8
1.6.7 Texture FIREPING o.ooccc cece ccceccececeeenseeeeeeeveveetevateveesventinivcstnterieaventevativerertieereneenes 8
1.6.8—Curved Surface SUpPOFocccece cece cscececeeceeeteesceesetecensenevenesseetvasevensvavenensnstentenss g
1.6.9 Displacement MAPS ooo...ccc ccc ccseeeeeesveeeeeesevteenscesenvevensvnvavenesstetvasevenstavenenitrteneenes 9

L7 HIQh Color CEpt occeee cccccec cece eee ee cece cc neneseeeeeeeeceeeeccceeeaaeeeeeeeneesesecccnaneneceeeeeecseecencueeeess g
2. PERFORMANCE o.oo. ccesessesessnenensnseeesecesneessenennecesonsesssnaeansunseneeaenensusaeeseseneasesenaaeesenneee 9

3.-SCHEDULE oo.e eee nessenensennensenenanecsesonenesnonanssensetscssensssonananeauvaensseenonssspeautevzenntnsaneness 9

A,§PROCESS... eecccesensccecnsnncecsncereessenessesececseusensecenseueeceneueresseneesscuescusteseeeeceneesesteaeensnennecersteace 9

5. GENERAL CHIP OPERATION.ccssssssescsssesrsssenrssssnisestescssonsesnenesrseseneussssennsconmenessenesene 9

SL Unified Sader ooo.cccccc cence cee ce cece ee eee cn necro cence cre ee sce ce anes ect ce ereencaeceeeececcsaeeeccenecreseneenes 9

§.2 BD ROEMGOPIGocccece eee e ence ee eee atte ee nee de beta ete dle eebsceeeeeseceeeeesceeeeeseeeanesseneaaeeaneaaatineees 10
es >|0<<<] 80-101018ee12
5.4 State MANaAGemenntt o.ooccc cece cee eee reece cence deen cree eee cede HEE C deca dec cede ec CceCeeFededieeeeeentecurtess 13
55 BaeteeeeeeEee eee teed ceeded ee ee eeece cece stds sentaeeeeeeeeneeeses 13

5.6 Display OPGrationi.ncecccccenccce ee ccs tee ec cunccrreeeecencreeesescreeeeeccnecrteredcaneteercesccteeeesenecreeerees 14
6. BLOCK DIAGRAM...cc cccsessecssesserenesssessneressinensseneetesssnnscsenetennerseneseseanerssseeeeessunnarsenene 15

Te. BLOCKSoeeset cennee sere neeeeenenee sees enennneeneaeee ianenenenennciennia ne aeesennenennaesenneeseneenetennenneeeenen 15

8 BLOCK DESCRIPTONG..............ceccecseoeseressuerssennensesetenseeneesceeseuonaesoatersneatssesaeeerssenaenonsees 16

8.1 HBIU — host bus interface Unitecece cence eee e eee c tess ae aeeeeeeeesectetntrtinees 16

S11 Deseriptionoccce eee cece cette etter erties vette cenintisvtnenstrtrtentvsttnenntnees 16
8.1.2 Major interfacesooocccccescseetecscetesveceteveevetrtensttertevevevertetitn tustreevenererenens 16
S.E.3—BlOCK diaQraIM. oo. occecececccccee cscs tess cece tessteeeetscnteviesetnterstatennicitversitientstresvnineranens 17

B.2 CR ~ COMPO POCSSK o.oo cccc cen cenee cece cn tees cence cece ence ee concent eesceccceeseeserenteeeeeeneerertess 18

S.2.1—De@Seription occcece cece veeeecsennenercettnevseentscitevrsinttinemtttevitinssnieinetmeanenes 18
8.2.2 Major interfaces...ccc cccce cee ces ceestecseeestscrteviessertensetentevivivertitisintittienniteranens 18
8.2.3 BOCK GiAQrAM.occcee es cs tetecsestensvetetevscetevevseeninstitetetitovavirseanetvesnnintinererseten 19

83 RBBM — register interface MANAGEoo...ccceee ceee cece cee eeebeceeeeececeeeesegeseeesceeaneseanenreuanes 19

B.3. 1 DeSCription occcece ce cceeeeseeetecsceseeevseseessestetinssonntenesmntnvnnnessrerereresnneneeenenss 19

Exhibit 2041.D0C 48154 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** jo4:45 42-49 om

AMD1044_0257994

ATI Ex. 2109

IPR2023-00922

Page 284 of 326

ATI Ex. 2109
IPR2023-00922

Page 285 of 326

 yay ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGEos 0 11 March, 2001 4 September, 2015 GEN-CXXXXX-REVA 3 of 32
8.3.2 Major interfaces...cece cceseecseseeeseseseevscseevevsettrnevenivetevavenevicitevevivivensneneteveceey 19
8.3.3 Block diagram.oooeecee tenet bebe et ee teteeetenetetetinstetetetininititinetetneees 20
8.3.4—RBBM operation o.oo. occ ceccccccceceeveeevesseveesveceveeerveveteeientivivevertititvertitieewvineervene, 20

84 CLK — Clock Generatorcecee eete eee beeen ce sett bee eeecctenteesnttenrteess 21

SAL Deseriptionccccececceeceecseeesesceveteeceeteevseetessvetetessttvenititetesvetitrttetrsstnervenes 21
8.4.2 Major interfaces... occccc cceeeeeseeesees ee erveveniservevenrssettasitvintsveniwistertniitmtenens 21
8.4.3 BlOCK diAQrAMo.ooccc cece cscs cece veer tees ee tevevenisersetentitntinititinervninintentniitmtenenn 22

8.5 TC = test COMICU]Lceccc ccce cece cence ce ec cn teed ecco ee cece ene ee regu neeeeeeecccesseesecenteeeecentereetees 22

SS. 1 De@SriPHONocccece eee necsesneescnvenercestretsestesiscitenerstnttinicntnttevititirsietintitnnersenes 22
8.5.2 Major interfaces...cece ces cseseecseseeeseseseevscseevevsettrtevenivetevavenevecitevevisivensvenenereceey 22
8.5.3 Block diagram.ciceee c ee ee ee ce eter et ee tetetetetenititinstetetetininitininetetieetey 22

8.6 VIP — Video INDUE DOPcece cece cern ae nese eeeeeeeenene te eaaaasaeeeeeeeseses er saaaaaaseeeeeeeenenerccgas 22

8.6.1 DeSCription concccccescesccsceseccesecevceeteeveveveveccevevesevusesecsseutsertisesenmsrsscesenerertess 22
8.6.2 Major interfaces00iccccc ccc ee eect ne een ne ee teteettetetetentestetetevetitetetenetenenetes 22
8.6.3 BOCK GIAQFAM o.oo.cece cece cscs ceer sete teeseneeevevensersetesstiettinitttrtrvniwinventenittenens 22

BF PROM = BOOT POInoice ccc cce cece cece ence reece ncn ee deer Coded ee code CEEE Cee Cadet ee EC ec cceeteedeneeeeeeeentecceties 22

S.7.1—De@SCription occcece ce ceeceecseeeecevcevevevveetevseeuevivsatevesstavensenveneevetivervitetntttnervene, 22
8.7.2 Major interfaces... occ ccccccec cc ceeeeeseeesees ee eeseveneersevevstettesitvintsvenitistsensniitenenn 22
8.7.3 BOCK GiAQFAM o.oo e cc cecec cece cscs este cseseeteesertevscneatevsertinevenitenivatevavetitevevinivensvenenerecetey 22

8.8 (202 MOTTACE oocece cece ce cee ence c cece ence ee en Cone e coco nedE ec seca dees deeccceeeeesenenieeeeeenterertees 22

8.8.1 DeSriPtONccccece eee ee cee eeesceveterceetrevresnessvitenerssnttinensnttevititnstetiettnersenss 22
8.8.2 Major interfacesooo. cccccecescsesceeccescevecevevsscetevesssustesivavnssivevensiesvevseteneeeseess 22
8.8.3 Block diaQrarm o.oo cccceccceceeccce cece vets teeseeeeevevenieervevetesciertititevertrvitetertsentenitmeervene 23

89 DU = DISDcececece nce te cece r tee rece n edt eeescevceeeeeconeqeecreeusercereenctescesseueutesrseenneccenees 20

S.9.1 Deseriptionocceee cece ee cee ee eee ce eete tiers ve entrsitttsvetetstrutntnsvsntnsntrntes 23
8.9.2—Major interfaces ooo... occ c cc ccccccecccccccec cscs cessevecevevevesscivesesseuvetisevstevevetesvivevevisuteteevenees 23
8.9.3 BIOCK GiAQPAM o.oo. cccccceeee cscs eeercetetenseeeeevevenisersetevstiettinitvirnrvnitisventniitenenns 24

8.10 MH = MGMOry HUDcece cece eee ee ree ee ree nn nen nE REECE E CE ED CDESC ECG CEtteCcgetteSeceteNeneeRenreenaas 24

SLO.) De@Seription ccceee ee ces ee ces cseetecseeteetscneesecstntersseennicnsiversititntirtisveninersenens 24
8.10.2 Major interfaces...ccccece ces ees eee eresveneeerseteseestentestventsvnvistertnttmernenn 24
S.10.3 Block di@gran... cece cece cseseecseseetsesertevscseatevsettinevenivitevatenevicitivevisivensvenetereceey 24

8.11 HDP ~ Host Data Path occccccccccece ccc eee cceceeecccnceereeeeeeeecuenencccnsaeecereneeecnenenecsaneeeeeess 24

S.1L1.1 Descriptionoccese esceestensvesenevscrtesesssevensenstetrsesverseiteniessenennereresetes 25
S.11.2 Major interfaces...cccccceccsceceseceecevevevevsscesevevssutevevavivissevevensvervevierveneeeseess 25
S.L1.3 Block diagram... cococcc ccceeee cece ceeseeeeveveneeervevevestsesvetiteventevitetestserteniitmernene 25

812 IDCT ~ Mpeg decoder...cececece cnc cece er cet ee eee caeeeecencieeeeeseetsseeeescsieeeeeenens 25

S12.) Description occececes cecesceeseecstteevscetetsvsertesstntertitetivervetitenvtuetisvvererveness 25
8.12.2 Major interfaces...ccccece ceesees eee eresveneer sevens vstttenitevintsveninistertnttmernenn 25
8.12.3 Block diaQgran. nn...ccccceeeee sete eens eeterevenieersevevttrettastevintsvenwistsentntitteenn 25

8.13 PA— Primitive ASSEMBLY oooccc cece cece eee ce ee eeeceeeceercneeeeteeeeeeeceddensseneeenseeeeneveneaeeeenens 20

Exhibit 2041.00C 48154 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***jo94:45 49-43 om

AMD1044_0257995

ATI Ex. 2109

IPR2023-00922

Page 285 of 326

ATI Ex. 2109
IPR2023-00922

Page 286 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

i. 11 March, 2001 4 September, 2015 R400 Top Level Spec 4 of 32

S.13.1 Description oooeseeeces tens vesenevscetesevseenensecnstetisesavereireniesssonenerereseees 25
8.13.2—Major interfaces ooo.ceceeee cent teens tebe te te vette tetetstetetinititititeneteninetes 25
8.13.3 Block dia@gramn enn... ccc ceccccceeeveeeveeseveeeveveveverveveveessetvetiveventevitversserteneitervene 26

814 TD — Texture DECOMPIESSION oooccccece eee b eed eect bbe b bbe t tibet ttetcettteatenenneanews 26

S141 Description ooocecccces cecescseseeestetesvscetesnsvsertesstneertititevertititentustisvnererseces 26
8.14.2 Major interfaces...ceestes eeeeresven seer setenersstttattvintsvnvis tenses 27
8.14.3 Block diagram...cccceeeee sete tees eeeevevenieersetenttettinitvintsvnitirtentniiternens 27

8.15 RE — Raster Engine... cece ccce cee cee ee ee nett ne ned OO EE Oe ED COE Cg EC GC EtG ec cgetteeeceteneneeeenreenaas af

S.LS.1 Description occececece secs cseetecseeteetscntesscstrnerssneenticnvversitisintstisvnitersanens 27
8.15.2—Major interfaces oooccc cceceecccseeesesesteescseetevsertrtevenstatensvenevecitetevininensvenenerecesey 28
B8.15.3 Block diagram...cece cece ccc eee cece ee cc tebe este te te tenetttetetenstetetetinitititinetetieetes 29

B16 SP —SNACEF PIOGcece cece ce ccenenetneneaeeeeeeee ses ee ee seaaeansesesesesceetitsssauauesseeeeetsentenetnens 30

BS. 16.1 Description occccc cee ccsceseccesscesecevesveveveveccrsevesevaversesisaveserteseuecinersseeveveresees 30
8.16.2 Major interfaces0.00ciccece cee cece ne eter tote neteteteetestetetevetenetenteeteneteses 30
S. 16.3 Block diagram... occccc ceeeee sete senses eereveneersetesssiettatittintsvniwirtertneitterenns 31

BLT TP = T@XUPE PIDcect eee ee teen nnn n ee een e ee EE DE EEEE EO CEE ELEC CEEOL ELC CeGtE te cette ne Cee RenE ate 32

S.L7.1 Description ooo ccc ccccccceceecseseecesceeetecseeveevecnvesvvsentesstventicivevervetiventirtrsveniervenee, 32
8.17.2 Major interfaces...occcece cesees ene eresventeersevenesvsetratitventsvninintertnttmenenn 32
S173 Block GiQgrare en... ccceccece cs cseseecseseetsesertevscneavevsettrnevenivetevatenevecitevevivivenivenetereceey 32

8.18 RB — Render BACKScece cceccce cee ee ee cceeececceeceereeeeeeeceeeencccecesecereneneceenenscreseseeeress 32

S. 18.1 D@SCription occececess ces ceeetesseetestscneetsvstitersseenticntiversititin sistent 32
8.18.2 Major interfaces... cececcc ccc ceecsceescstesescitesesssnstesisettessetetenisivinersnneeeieess 32
S.18.3 Block diagram...occ ceccceeeesceeeteeseeeeveveveeervevevestietvattvertsvenetestieteniitternenen 32

819 MC ~Memory Controileroccccc cece ee ceecccnee seen sete coreeeeceeetenisteettrecatieecsteeerenees 32

S.19.1 Descriptionoccceceeeee ee ee te teeter etna titi settetetetenttntntnetetsnenees 32
8.19.2 Major interfacesooo.ce ec cccceccecseees ee esevvevevervevevevssentetiteventrvitvestestwttmevene, 32
8.19.3 Block diagram... occccc ceeeee sees tenses eevsventersevevnsiettatitevintsvnitistsentntitmtenenns 32

9, COMMON FOUNDATIONSccccccccoeenesscvscesseesssesneseresseeeseecnueesceseususesenessussuenssesumenseeneeeaeeswes 32

G1 LOGIC DESIGoonnen nee een cette te cet tens ttetuestuetwursuunduti ide tetnteeetieenes 32
QL.1 Data formatsocccccescccseeeeceeeserceteseeseeetenstesentrtevitenvititensestitevintrersavneresenees 32

Qi1.2—Register BUS... .ciccccccccecescscececscsvesseeeeserveveveevetvenssatensvestinvsvevenstittesevineteneavenitsenees 32
9.1.3. Block Communication protocol... ccccceccee cece cesses ssertetreatenerventees sentiments 32

2 SOPWALE cece cece cee ccc n ene eee nee ne cece HEC EE Fed Ce CEO E EEE CCG EEOC CCH EGO CEC ence ted Ee eccceteerseceneeeeccnteesenees 32

Exhibit 2041.D0C
48154 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***y904:45 42-49 pw

AMD1044_0257996

ATI Ex. 2109

IPR2023-00922

Page 286 of 326

ATI Ex. 2109
IPR2023-00922

Page 287 of 326

ORIGINATE DATE

11 March, 2001

Revision Changes:

Rev 0.0 (Steve Morein)
Date: March 11, 2001
Initial revision.

Date March 14,2001

Exhibit 2041.D0C

EDIT DATE DOCUMENT-REV. NUM.

4 September, 2015 GEN-CXXXXX-REVA

PAGE

5 of 32

Document recreated from earlier documents

Finally got backto editing it.

48154 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***p94 12-49 py

AMD1044_0257997

ATI Ex. 2109

IPR2023-00922

Page 287of 326

ATI Ex. 2109
IPR2023-00922

Page 288 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

11 March, 2001 4 September, 2015 R400 Top Level Spec 6 of 32

Introduction

The R400 will be the high end standalone graphics chip product whenit is introduced.
lt will be followed very rapidly with two variants:
The RV400, aimed at the volume PC space
The R450, aimed at a volume high end market.
The targets for the three chips are:

Part Clock | pixels/cik|texture alu ops/clk|Memory Memory die size|Tapeout

Speed fetches/clk width speed
R400|400MHz | 8 16 32 | 256 400MHz 11.5 July,2002
RV40|500MHz 4 8 16 128 500 MHz|8.5 Nov 2002
0 |

R450|500MHz | 8 16 32 | 256? 800 MHz|9.5 Feb 2003

Exhibit 2041.00C 48154 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***joo4:45 49-43 om

AMD1044_0257998

ATI Ex. 2109

IPR2023-00922

Page 288 of 326

ATI Ex. 2109
IPR2023-00922

Page 289 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

11 March, 2001 4 September, 2015 GEN-CXOCOCREVA 7 of 32

1. Features

1.1 AGP 8x

The chip will support the 32 bit AGP interface at speeds up to 8x. | expect that we will need to support AGP 1x and 2x
which require 3.3 Volt 1/0 (AGP 4x is 1.5v and AGP 8x is 750mv). AGP fast writes are supported for access to the
frame buffer.

Openissue: 64 bit address space support.

1.2 256 Bit Memory Interface
The R400 and R450 support four memory channels, which can be 32 or 64 bits wide; the maximum memory bus
width is a total of 256 bits. The RV400 supports two memory channels and a maximum total width of 128 bits.

All channels need to be configured identically, 1, 2 or 4 channels can be configured.

Memory standards supported:

is) Voltage Memory type | Speed
| SSTL2.5 2.5 DDR 100 to 500 MHz
| SSTL1.8 1.8 DDR/infineon | 300 to 500 MHz

| Elpida 1.8 (1.5?) Elpida 300 to 400 MHz
| Infineon 1.2,1.0V infinion e-dram | 500 MHz

No support for SSTL3.3, or SDRAM (LVTTL — 3.3V) is planned.

1.3 Unified Processing pipe
The most ambitious feature in this design is the ‘truly unified pipe” : a single programmable pipeline is used for 2D,
Video, 3D vertex, and 3D pixel operations. The unified pipeline doesall of its calculations in 32 bit floating point, the
same as the existing vertex transform in previous chip, and the next step in the precision of the color/pixel
calculations which have increased from 8 bits (R100), through 16 bits (R200), to the 20 bits in the R300.

There is an area cost to the unified pipeline since we are forced to go to 32 bit precision for color, when application
requirements may need less (22 to 24 bits). However the unified pipeline results in a single math/register structure
compared to the separate structures in a more traditional design. It is hoped that by only needing to design the one
structure we can make the investment in design time and effort to really optimize the area.

Some of the benefits to merging the pipelines include allowing the vertex operations to do texture fetches, which we
could not afford add logic to the transform pipe to do, a single programming model for both operations, more precision
on color than we would normally provide, and the ability to support significantly more registers and instructions in
pixel shaders.

One important benefit is load balancing. In the current pipeline when the app it transform boundthe pixel pipeline is
idle some significant portion of the time, and when the app is raster bound the transform hardware idle. The unified
pipeline presented here dynamically allocates its processing power between transform and raster.

1.4 Front end scaling
We will remove the back end scaling capability from the display, and replace it with a non-scaling overlay. This will
require us to be able to implement scaling using the unified pipeline. Key features that will need to be supported are
large filter kernels, de-interlacing, frame rate conversion, and good support for YUV and color conversion.

1.5 Real-Time drawing command ability
To allow for the emulation of backend scaling as well as support new features we needto be abie to interrupt the 3D
pipe and be able to execute high priority commands with low latency. The point of interruption is in the primitive

Exhibit2041.D0c 48154 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***jo54545 42.48 py

AMD1044_0257999

ATI Ex. 2109

IPR2023-00922

Page 289 of 326

ATI Ex. 2109
IPR2023-00922

Page 290 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

11 March, 2001 4 September, 2015 R400 Top Level Spec 8 of 32
assembly, the maximum latency will be about the time it takes to render 4096 pixels. The real time commands are
inserted into the 3D pipeline after transform, clipping, and setup. Those function need to be performed by the driver.
There are also limits on the number of constant registers available.

1.6 3D Features

There are a number of new 3D features we are considering for inclusion. Additional features may be added, and
some of these may be cropped.

1.6.1 Noise Textures

Perlin style noise is useful for a number of applications. It is generated on chip and consumes no external memory
bandwidth. it also larger than any physical texture can be: 256x256x256 lattice points, and still has detail when the
resolution is 4Kx4Kx4K. There is an opportunity to get this adopted as part of dx9.

1.6.2 Shadow buffers

John Carmackis using shadowvolumes to generate shadow effects in doom3. Shadow volumes are very poor way
to use modern 3D pipelines. (will add more detail here later). Shadow buffers have two key limitations: very high
resolutions are required to avoid aliasing, and traditional shadow buffers can not be mip-mapped so filtering is real
problem. We are able to solve the first problem through a combination of our improved anti-aliasing Z compression,
and a new method of implementing the shadow map probe.

1.6.3 Sort Independent Transparency
We are currently looking into how best to support sort independent transparency. The two plans are either the dual Z
buffer approach, or the approach described in <need to decide where the email should be placed so others can see>

1.6.4 Anti-Aliasing
The changes from the R300 include an increased number of samples per pixel, probably eight, and support for an
allocated frame buffer size smaller than the worst case maximum.

1.6.5 Texture compression
To further reduce bandwidth we need to improve texture compression. We need to achieve both better compression
that S3TC, and have a high enough quality that textures that would lose too much detail with S3TC can be
compressed. Both of these goals do not need to be achieved simultaneously on all textures. We also need to look at
compression of non-traditional surfaces such as normal maps. Advances here are dependent on the availability of
resources to work on this. If we are unable to find resources we will support the s3te compression currenily in D3D.

1.6.6 Z compression
<larry needs to give me a paragraph here>

1.6.7 Texture Filtering
The texture pipes can fetch a 2x2 region from the texture map andfilterit.
The data per pixel can either be four eight bit values, two sixteen bit values, or one 32 value. All data needs to be
fixed point.
Linearfilters are completely built in, and it takes 1 cycle for bi-linear, 2 for tri-linear, four for quadra-linear(filtered mip-
mapping of volume textures). Variable depth anisotropy is supported in hardwarewith the texture pipe calculating the
number of samples needed. Optionally the pixel shader can calculate the number of samples, and how to increment
the texture address, and provide this to the texture pipe.

Exhibit2041.D0C 48154 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** oocan5 12-49 py

AMD1044_0258000

ATI Ex. 2109

IPR2023-00922

Page 290 of 326

ATI Ex. 2109
IPR2023-00922

Page 291 of 326

oe ORIGINATE DATE
A 6

i Ses 41 March, 2001

EDIT DATE

4 September, 2015

 DOCUMENT-REV. NUM.

GEN-CXOCOCREVA

PAGE

9 of 32

1.6.8 Curved Surface Support
We will support curved surfaces through combination of vertex shader code and a tessellation engine to generate
new vertices.

The tessellation engine generated new vertex indices from a input vertex index array. The new indices contain both
the coordinate in parametric space of the vertex, and the indices to the surface, or to data from which the surface can
be derived. More information is available in the programming guide.

1.6.9 Displacement maps
The tesseilation engine for curved surfaces can dice triangles into micropolygons, the vertex shaders for the vertices
can then access into a displacement map and changethe location of the points.

1.7 High color depth
We will support a 64 bit color buffer (16:16:16:16), we will support two formats: sRGB64 and a floating point format..
<need to insert format details.

2. Performance

The basic performanceis:

R400 MHz __fillrate bi-linear equiv peak tri/sec

MHz Fill rate Bi-linear texture Peak tri/sec
fetches

| R400 : 400 3.2 gigapixel 6.4 Billion 400 Million
| RV400 500 2.0 40 500 Million
| R450 : 500 40 8.0 500 Milliont

Under normal conditions, and when not further limited by memory bandwidth we expect to be > 75% efficient.

3. Schedule

| Tapeout Samples Production
| R400 | July, 2002 Oct, 2002 Dec, 2002
| RV400 Nov, 2002 Jan, 2003 March, 2003

_ R450 Jan, 2003 April 2003 May 2003

4. Process

At the momentthis looks like an easy choice: .13 will be in production for over a year, and .10 does not show up until
the very end of 2002 according to the TSMC and UMC roadmaps.

We will probably want to be in a flip chip packaging approach to meet powerdistribution goals. With the 256 bit bus
we will have at least 600 signal I/O’s (404 in memory). We may be as much as 10A at 1V for average power, which
will require very good power distribution, area bond flip chip is probably the only option.

5. General Chip operation

5.1 Unified Shader

The unified shader is a simd/vector engine that performs the same instructions on four sets of four (16 total)
elements. For pixel shader operations the elements are pixels with the sets of four required to be 2x2 footprints. For

Exhibit 2044.DOC
48154 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***099445 12.48 pm

AMD1044_0258001

ATI Ex. 2109

IPR2023-00922

Page 291 of 326

ATI Ex. 2109
IPR2023-00922

Page 292 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

11 March, 2001 4 September, 2015 R400 Top Level Spec 10 of 32

vertex shader operations the sixteen elements are sixteen vertices. The basic element is a 4 value vector — frequently
interpreted as x,y,Z,W orr,9,b,a.

The user model for the unified shader is composed of a variable number of general purpose registers, a subset of
which are usually initialized with data. An ALU can do simple math, conditional moves, and permutations on the
registers, and the ability to do a limited number of memory reads using the texture cache. The numberof registeris
variable, and the numberof registers required for an operation are specified when the task is submitted to the unified
shader. The unified shaderwill not start the task until there is enough free room for the task’s registers.

The unified shader is based on the R300 pixel shader.

5.2 3D Rendering

For 3D rendering data is passed twice through the unified shader- once to transform the vertices and a second time
to determine the color of the pixels.

The input to the 3D pipe is expected to be indexed vertex arrays. Linear vertex arrays can easily be supported by the
CP generating sequential indices. Inline vertex data is an open issue, | would prefer to write it to memory and then
fetch it as a vertex array rather than add a direct path.

The stream of indices is sent to the Primitive Assembly block by the CP. The front of the primitive assembly biock
maintains the tag for the vertex cache; The vertex cache stores transformed vertices. As misses are detected in the
tag, the indices that miss are placed into 16 entry vectors. Each vector contains a state pointer, a pointer to the vertex
shader to be used, and the 16 indices to vertices that need to be transformed. When either a vectoris filled with 16
entries or a state change happens (so that the next vertex does not share the state and vertex shader with the
previous vertex) the vector is issued to one of the “shader” pipelines for transformation. Which of the four shader
pipelines it is issued to determined either by some effort of load balancing or a simple round robin. All that is
submitted to the pixel pipeline is the state, the vertex program, and the indices. The shader pipeline will fetch the
vertex array data through the cache infrastructure that is also used for texture fetches. After the tag the indices
(actually nowtheindices into the vertex cache) are placed into a latency FIFO to hide the latency of transforming the
vertices.

The shader pipeline receives the vector of 16 indices from the primitive assembly block. The shader pipeline
operates, when rendering pixels, by processing a vector of four 2x2 pixel footprints, a total of 16 pixels. For vertex
processing each of the pixels is replaced with a vertex. The vertex program includes information of how manylocal
variables it will need. The rasterizer waits until that many local variables are free, (as each executing thread in the
shader pipeline terminates it frees its local variables). With the proposed shader data path the maximum numberof
local variables per vertex is 256. Howeverthis leaves no ability to hide latency, 16 to 32 local variables will probably
maximize latency hiding and therefore performance. The vertex shader program can use ail the capabilities of the
shaderpipeline including texture fetches and dependent lookups. At the end of the vertex program, the transformed
coordinates must be output. One output will be the x, y, Zz, w position which we bestored in the position cache of the
vertex cache. The vertex program may also output a number of parameter values (colors, texture coordinates, other
interpolated inputs into the pixel shader). The parameter values must be output as a multiple of four 128 bit words, as
the parameter cache is designed forthis.

The primitive assembly block reads the indices back out of the latency FIFO and accesses the position cache portion
of the vertex cache. It assembles the vertices into primitives (lines, triangles, rectangles, quads?, points, °).
Baricentric values are assigned to the vertices, and will be used later in the rasterizer to interpolate the parameters.
The parameters are not accessed by the primitive assembly logic, which only works from the position data. The
primitive is clipped against both the viewing volume as well as userclip planes, with fractional baricentric coordinates
assigned to the clipped primitive sections. The primitive goes through the perspective divide and the viewport
transform. The resulting screen space primitive is setup (plane equations for 1AW, Z, and the baricentric coordinates).
The resulting primitive data, including the indices back into the parameter portion of the vertex cache are broadcast to
the four pipes. The final time that an index is output that access the oldest vertex cache line, a token is also sent.
Whenall of the four pipelines return the token the primitive assembly block can free that cacheline and allow it to be
used for a new vector of vertices. The performance goal in the primitive assembly blockis a triangle every two clocks.
An alternative option is for the vertex shader to generate screen coordinates and clip codes. If a primitive needs to be
clipped, which can not be determined until primitive assembly, then the vertices are reverse transformed backinto clip
spacebylogic in the primitive assembly block, clipped, and then transformed back into screen space.

Exhibit2041.D0C 48154 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***,o¢4n45 12-49 py

AMD1044_0258002

ATI Ex. 2109

IPR2023-00922

Page 292 of 326

ATI Ex. 2109
IPR2023-00922

Page 293 of 326

 ORIGINATE DATE EDIT DATE

11 March, 2001 4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

To help meet marketing BS numbers we can look into doing backface culling at a rate of one triangle per clock. This
will boost us to peak bs numberof 500 million triangles per second.

 Each pipe has a FIFO in front of the rasterizer to load balance. Each pipe will handle 16x16 tiles of the screen which
are interleaved between the pipes. To maximize the effective size of the FIFO we will probably cull the triangle list
before the FIFO. The rasterizer will request the parameter data from the parameter cache for the primitives. A small
latency hiding FIFO will hide the latency of the access to the parameter cache. The parameter cache is 512 bits wide,
and the interfaces from the parameter cache to the rasterizer are 128 bits wide, this allows the parameter cache to
output one pipelines request per clock, which is serialized over four clocks, keeping all four interfaces busy. The
rasterizer keeps a small cache of three to four vertices, this allow only the new parameter fo be fetched when
adjacent triangles are processed. The parameter cache interface imposes a second performancelimits, in the worst
case each polygon coversall four pipelines and there are no vertices shared from triangle to triangle. in this case the
peak performance is (500 MHz / (4 pipelines * 3 vertices) = (500/12) = 41.6 million triangles per second. In the best
case triangles are perfectly stripped and never cross over pipeline boundaries. In this case the peak performance(If
we ignore the setup limit) is 500 million triangles per second. As a practical manner we should be able to approach
the setup limit of 250 Million triangles per second.

The rasterizer also contains a portion of the hierarchical Z memory. We are looking into moving this into a cache
based approach, but thatis far for certain at this point. We would like to be able to do hierarchical z culling at a speed
in excess of 64 pixel per clock per pipelines (256 pixels per clock total). We are also going to consider some of the
improved latency hierarchical Z options to improveculling efficiency.

The rasterizer will generate four pixels per clock if there are no more than eight interpolated parameters. The
rasterizer generates vectors of four 2x2 footprints (16 pixels). Each 2x2 footprint must be screen aligned and from
the sametriangle (with a single shared z slope). The four footprints only need to share the same state and shader
program.

Before starting the processing of a vector the rasterizer (which includes the sequencerfor the shaderpipeline) checks
to make sure that there are enough free registers in the shader pipeline for the pixel shader program. If not, it stalls
until there are enough. The rasterizer also needs to arbitrate between the three streams of vectors to be shaded: the
vertex stream, the pixel stream, and the real time stream. | think it will be sufficient for the real time stream to have
priority over the vertex stream which has priority over the pixel stream. This will meet the real-time demands, and
keep the vertex cachefilled.

The vector is then processed by the shader pipeline. We will probably support up to eight sequentially dependent
texture fetches. (to use the R300 terminology, eight clauses). 16 (8?) textures are supported, but each texture can be
accessed multiple times by a single pixel shader which can provide a different address each time. This is especially
useful for complexfilters.

The output of the pixel shaderis the final color of the fragment. The pixel shader may also replace the Z value. Fog
and stippling must be done in the pixel shader program.

The render backend does the z compare, stencil operation and color alpha blend.

The texture fetch path has a number of design options. One option is an approach where the local, multiported,
texture cache is small (1 to 4 KB), and contains uncompressedcolor in a canonical format (32 bits per pixel) and uses
a 4x2 or 4x4 cacheline. This is backed up by a large (>16KB) L2 cache which also stored uncompressed 8x8
cachelines. The decompression logic lives between the memory controller and the L2 cache.

An alternative design uses the L2 cache to contain data in memory format (compressed) which is decompressed as
neededto fulfill L1 texture cache misses. This will increase the effective size of the L2. The L2 cacheis distributed,
with 1/4 of it residing in each memory controller. The Texture decompression logic can either be located in each
shader pipeline, or exist as a shared block(s) that receive data from all four memory controller and send the
decompressed 4x4 cachelines to each shader pipeline. The unified decompression block will result in better
performance, and possibly less area, at the cost of someofthe scalability.

Assuming that we chose the L2 in memory controller and the unified decompression logic, the texture path would
work as follows:

Exhibit2041.D0C 48154 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***jo54/45 42-43 pm

AMD1044_0258003

ATI Ex. 2109

IPR2023-00922

Page 293 of 326

ATI Ex. 2109
IPR2023-00922

Page 294 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

11 March, 2001 4 September, 2015 R400 Top Level Spec 12 of 32
In a four pipeline design there are two texture decompression blocks, one for the “left” texture units in each shader
pipeline, and the second for the “right” texture units. In the two pipeline, lower cost, version of the chip only a single
decompression pipeline is used, serving the left and right texture units.

The Li texture cache receives a texture request from its shader pipeline. The usual tag and latency FIFO is used to
generate the misses. These are sent to the shared texture decompression block, which looks up the texture to find
the physical address and then sends the request to the L2 cache in the memory controller. The L2 also has a latency
FIFO and tag, and will return the data in order (but there is no order guaranteed between the data returning from each
L2). The decompression block has a buffer which is used to place the data from the memory controllers backin order.
The decompression logic decompressesthe texture and returns, in order, the 4x4 cachelines that the L1 caches are
requesting. Most of the compression techniques we are considering are based on an 8x8tile (or 4x4x4), when
necessary the decompression logic will decompress an entire 64 pixel tile and only return the requested 16 pixels to
the L1 cache. This will tend to increase the bandwidth between the decompression logic and the L2 cache as 8x8
blocks are repeatedly requested to provide different 4x4 subtiles to the L1. The L2 cache will prevent the repeated
reads from going to memory, and wewill probably implement an “LO” style cache in front of the L2 to also catch the
redundant requesis.

Each memory controller will have two 64 bit read return buses, one to each of the two decompression blocks, each
decompression blocks drives a separate 128 bit bus to each of the four shader pipelines. This will tend to have better
utilization and load balancing than having the memory controller drive a 32 bit bus to the decompression logic in each
shader pipeline. While the total number of wires is similar (128 bits per memory controller, 128 bits into each texture
cache) we arelesslikely to leave the texture pipes starved whenthere is some imbalance.

5.3 Real Time Rendering
The real time rendering interface allows primitives to be inserted into the rendering pipeline at a very late stage,
therefore providing very low latency. The expected useis for scale blits timed by the display refresh, this suggests a
small number of large primitives. We take advantage ofthis to simplify hardware by forcing the interface to be post
setup, a real-time primitive needs to be transformed and setup by software.

Real time primitives also do not have access to the state management hardware used by non-real-time 3D
commands. A single set of state registers, some constant registers, and one full parameter set is available. The real-
time command stream will generally need to wait for the current real-time drawing operation to complete before it can
start the next real-time command. The driver can statically allocate some of the physical constant registers to the real-
time stream, these are not available to the RBBM for renaming use, and are written by the real-time command
stream, and read by the 3D pipeat the direct physical addresses. There are two options for the parameter memory.
The parameter memory is not visible to non-real-time commands, for normal operation it is entirely managed by
hardware. For real time rendering there will be dedicated space for three vertices, each with sixteen 128 bit
interpolants. If the real-time primitive requires more than eight interpolants there will only be enough room for one
primitive at a time, even if they need the same state and constants, if less than eight interpolants are needed then
there is room to manually double buffer the interpolants, and allow pipelining of primitives. The real time command
stream will still need to manually checkthat the pipeline has finished with the previous primitive, before writing new
data to the parameter memory for the next primitive, while the pipeline works on the current primitive.

For example, the a drawing commandin a real-time command buffer might look likethis:

Wait_for_realtime_pipe_idle
Wri
Wri

ite state reg min context 7 with data
ite state reg m in context 7 with data

// make sure no real-time commandis in the pipeline
/iset rendering state for command
/iset rendering state for command

Write state reg min context 7 with data /iset rendering state for command
Write state reg min context 7 with data /iset rendering state for command
Write const reg at physical address k // write constantregister
Write const reg at physical address k+1 // write constantregister
Write const reg at physical address k+2 H ete.
Write vertex 0, parameter0, in real time parameter store
Write vertex 1, parameter0, in real time parameter store
Write vertex 2, parameter0, in real time parameter store
Write setup primitive to primitive assembly (scan converter)
Write initiator register, tag command with 0
Write vertex 0, parameter 8, in real time parameter store
Write vertex 1, parameter8, in real time parameter store

Exhibit2041.D0C 48154 Byes*** € ATI Confidential. Reference Copyright Notice on Cover Page © *** po¢4n5 12-49 py

AMD1044_0258004

ATI Ex. 2109

IPR2023-00922

Page 294 of 326

ATI Ex. 2109
IPR2023-00922

Page 295 of 326

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

PAGE

 Pat ORIGINATE DATE EDIT DATE° i 11 March, 2001 4 September, 2015
Write vertex 2, parameter8, in real time parameter store
Write setup primitive to primitive assembly (scan converter) // this assumes we double buffer the primitive registers
Write initiator register, tag command with 1
Wait_for_realtime_command_0_not_in_pipe
Write vertex 0, parameter 0, in real time parameter store
Write vertex 1, parameter0, in real time parameter store
Write vertex 2, parameter 0, in real time parameter store
Write setup primitive to primitive assembly (scan converter)
Write initiator register, tag command with 0
Wait_for_realtime_command_1_not_in_pipe
VWrite vertex 0, parameter8, in real time parameter store
Write vertex 1, parameter8, in real time parameter store
Write vertex 2, parameter8, in real time parameter store
Write setup primitive to primitive assembly (scan converter) // this assumes we double buffer the primitive registers
Write initiator register, tag command with 1
Wait_for_realtime_command_0_not_in_pipe

5.4 State Management
State managementdiffers from previous ATI chips.

There are eight sets of state registers in the chip. Each pixel or triangle is tagged with whichstate it is supposed to
use. Most of this is hidden from the programmer by the RBBM, which implements the in-order semantics that are
normally used. States 0 to 6 are managed by the RBBM for high performance 3D/2D/video rendering. State 7 is
reserved for real time commands, and the real time command stream must ensurethat the state is not changed while
the pipeline is active.

Each register is therefore mapped in to the register space nine times: once for the current state, plus eight additional
times to provide access to all existing state. This is only true for the normal pipeline state registers, the constant
registers used by the pixel/vertex shaders are handled by a separate, related mechanism.

There are two options for the update of the state registers. The first option is to implement a broadside state copy,
which copies the contents of the previous current state to the new current state before the first state write happens to
the new state. This is somewhat costly in hardware. The second option is for the state updates done by the driver to
be “complete”, write the minimum set of state registers that completely defines the new rendering state, this avoids
the need for the hw broadside copy.

The constant registers are implemented using a renaming schemethat avoids the need to do a broadside copy when
changing state. It also does not use storage for each state, when two state contexts have the same value in the same
register, the renaming logic points them at the same physical register.

Since the registers that are most frequently changed are located in the constant memory of the R400 (vertex array
pointers, and texture pointers) we may wish to separate updates to the constant registers from general state register
updates.

5.5 Bad Data

Bad data can exist for a number of reasons. When a vertex shader does an access to an address which is not

permitted (or does not exist) we need a way to avoid hanging, and make debugging possible; A similar issue exists
for pixel shaders that do bad texture accesses.

We currently handle a limited form of this: a triangle than contain a vertex which contains (or generates) a NaN or INF
is not drawn, itis simply culled at setup.

Wewill extend this as follows:

For a vertex fetch that goes out of range (or times out) a flag in the vertex is set which will cause that vertex to be
treated as if it contained a NaN. A debugging flag will also be set, and if we can find an easy wayto do it, the index of
the offending vertex will also be stored.

Exhibit2041.D0C 48154 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***jo54/45 42-43 pm

AMD1044_0258005

ATI Ex. 2109

IPR2023-00922

Page 295 of 326

ATI Ex. 2109
IPR2023-00922

Page 296 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

11 March, 2001 4 September, 2015 R400 Top Level Spec 14 of 32

 Car

For a texture fetch a similar strategy will apply: A bad access will set a flag that will cause the pixel to be dropped.
The debugging modewill force the pixel to pass the Z test, and override the color output from the pixelshader with an
ugly shade of green.

5.6 Display operation
The display must be able to display from microtiled surfaces and overlays. This will generally force us to adoptline
buffers.

The display should support at least two outputs, ideally we will be able to support two high resolution outputs and a
low resolution output (TV out)

We will drop support for overlay scaling, and therefore supporting an overlay on all displays becomes affordable,
fixing a “bug” that our current dual display products suffer from.

The memory for the line buffers is shared with the L2 texture cache. This allows use a memory size that is closer the
maximum requirementof either function, instead of the sum of the maximum requirement.

The maximum resolution color format is 64 bit color for the primary surface and 32 bit color for the overlay
For two 2560 pixel wideline buffers we need

2560 pixels 2560
twolines 2

two displays 2
96 bits of color 96 (32 overlay + 64 bits primary)
total bits 960K bits, 120 Kbytes

The L2 memory will probably be 128Kbytes, which will leave only 8KB for the texture L2 cache when driving the
above display. However, the above caseis driving two multi-megapixel displays with the worst case color depth. It
works, but 3D performance suffers.

A slightly more normal case might be two 1600x1200 displays, with the same color depth:
2560 pixels 1600
twolines 2

two displays 2
96 bits of color 96 (32 overlay + 64 bits primary)
total bits 600Kbits

which leaves >54Kbytes for the L2 Cache

A benchmark case,one display no overlay, 32 bit color:
2560 pixels 1280
twolines 2

two displays 1
96 bits of color 32 (32 overlay + 64 bits primary)
total bits 81K bits

which leaves >110Kbytes for the L2 cache.

The line buffers are two scan lines high:

At beginning of an even scanline (scan line 0) 1/2 of line bufferis filled.
The upper half of the buffer is read out, at the same time as the secondhalf of the buffer is filled. When the scanout
reaches the midpoint 3/4 of the buffer is filled. When the scanout reaches the end of the scan the bufferis filled. The
speed at which the buffer is filled must be greater than 1/2 of the rate at which the buffer is scanned out.

For the odd scanlines, the buffer is completely filled at the start of scanout (as a result of the even scanline finishing
properly). As the lower half is scanned out, reads are issued to fetch the data for the next pairs of scanlines. At the
end of the odd scanline, the buffer is expected to contain half of the data for the next scanline.

Another way of looking at this is as follows:

Exhibit2041.D0C 48154 Byes*** € ATI Confidential. Reference Copyright Notice on Cover Page © ***pcan 12-49 py

AMD1044_0258006

ATI Ex. 2109

IPR2023-00922

Page 296of 326

ATI Ex. 2109
IPR2023-00922

Page 297 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

11 March, 2001 4 September, 2015 GEN-CXXXAX-REVA 15 of42°

At the beginning of the odd scan line the scan buffer is filled. As each word is read from the buffer and sent to the
display logic, a request is made to the memory controller to fill in the data. itis not necessary for all the data for the
next scan line pair to be fetched by the time that the scan line reaches the end, the real requirementis for the last
word in the scan line buffer to get there just before it is read, at the end of the next even scan line.

 The display lives mostly in the core clock domain. There is a FIFO per pixel clock that crosses into the DAC/TMDS
clock domain.
If we are able to implementthe time interleaved display block then the display will merge and color convert twopixels
per clock in the core clock domain. Whicheverdisplay FIFO is closest to empty will get the priority to be filled in the
next time slot. The sum ofthe pixel clocks (display0, display 1, tvout) must be less than 2x the core clock. We should
be able to cheat slightly and use some of the horizontal retrace time to fill the display fifo's, this will relax slightly the
2x core clocklimit.

Since the 3D pipe is capable of real-time events, such as display triggered scale-blits, we may wish to reconsider the
location of several operations that are currently in the display. TV out scaling, and ratiometric scaling for LCD panels
may be more cheaply implemented using the 3D pipe instead of dedicated hardware.

6. Block Diagram
R400 Top Level Biock Diagram

CPRBEM

7. Blocks

HBIU — host bus interface unit

CP — control processor
RBBM — register interface manager
CLK — clock generator
TC — test controller

VIP — video input port

Exhibit2041.D0c 48154 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***po9445 12-43 py

AMD1044_0258007

ATI Ex. 2109

IPR2023-00922

Page 297of 326

ATI Ex. 2109
IPR2023-00922

Page 298 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

11 March, 2001 4 September, 2015 R400 Top Level Spec 16 of 32

ROM — boot rom
12— I2C interface

DU — Display
MH — Memory Hub
HDP — Host Data Path

IDCT — Mpeg decoder
PA — Primitive Assembly
TD — Texture Decompression
RE — Raster Engine
SP — ShaderPipe
TP — Texture Pipe
RB — Render Backend

McC — Memory Controller
The blocks are combinedinto a smaller numberof blocks for layout:

Layout block subblocks Instances|Instances|Notes
R400/450|RV400

HI | Hi 1 1
cP cP 1 1

RBBM

| CLK |
— Reset i
Misc VIP 1 1

ROM
2

| TC
DU | BU 1 1 Display
TD TD 1 1 L:2 Cache

| MH
_HDP

PA PA 1 1
RE LRE 4 2
SP SP 16 8
TP [TP | 4 2
RB RB 4 2

Mc | MC i 4 2

8. Block descriptions

8.1 HBIU — host bus interface unit

The HBIU interfaces the graphics chip to the system AGP bus.

8.1.1 Description
The HBIU implements the following buses:
PCI slave
PCI master
AGPfastwrites
AGPreads
AGP writes

64 bit support?

§.1.2 Major interfaces
The following busses connect the HBIU to the rest of the chip:

Bus | Chip client Bus client | Description

Exhibit 2041.D0C 48154 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** p9054;45 42-43 pm

AMD1044_0258008

ATI Ex. 2109

IPR2023-00922

Page 298 of 326

ATI Ex. 2109
IPR2023-00922

Page 299 of 326

ORIGINATE DAT EDIT DATE

ti March, 2001

4 September, 2015

 PAGE

17 of

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

Hostregister|CP/RBBM , rl siave _CPUreads andwrites to chipregisters
Host Data HDP PCI Slave CPU reads and writes to video memory
esee AGPfastwrite|OC
AIC Write MG | PCI Master (writes)|Primarily blits to system memory, and control semaphore|

| AGP writes writes

AIC Read TD/MH | PCi Master (reads)|CP PM4 reads
| AGP reads PA index reads

State/vertex program loading
Vertex loads
AGP texture

Oddites for VGA

8.1.3 Block diagram

BusCLE CoreCLEK

AGP Read

D/L2/MH PCI Bus Master Read

AGP Write

PCI Bus Master Write

AGP Fast Write

PCI Slave Write

PCT Slave Read

O pads

Exhibit2041.D0C 48154 Bytes*** © ATI Confidential. Reference

 Video memoryread/write

(HDP)

peRegister read/write
(RBBM)

Copyright Notice on Cover Page © ***9415 12.43 PM

AMD1044_0258009

ATI Ex. 2109

IPR2023-00922

Page 299 of 326

ATI Ex. 2109
IPR2023-00922

Page 300 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

11 March, 2001 4 September, 2015 R400 Top Level Spec 18 of 32

8.2 CP — control processor

8.2.1 Description
The control processor executes the pm4 display list from memory, driving the operation of the rest of the chip. It also
implements the real-time event commands.

Currently the CP is based on a custom processor, which hasa very limited instruction set and is really only capable of
executing the existing program. Itis not expected to be capable of doing the translation of 2D packets to the preferred
hardwareinterface, or be able to implement the real time commands.

An alternative is to base the CP on a more generic RISC processor. It appears that this will save area, and makeit
possible to write the CP control program in C. The ARC core, for example, is less than 20K gates.

One key change that enables us to consider a processor core instead of the custom PM4 engineis that data is no
longer embeddedin the command stream. In the R128 to R300 index, vertex, and host-blit data is embedded in the
primary ring buffer and the indirect buffer. In the R400 index data is fetched by a dedicated DMA engine in the PA
block, and vertex and hostblit data is fetched through the texture cache. This allows us to optimized a single path for
the data rather than need to optimize both the DMA and PMé4 paths. With the CP no longer needing to be able to
copy data at 32 bits per instruction (read and write), a less specialized processor can be used.

§.2.2 Majorinterfaces
Bus Description
RBBM->CP Register read write,

Used for reset and debugging of CP, and access to control registers
CP>RBBM Register writes, and reads

Register access that occur as a result of executing the control program
CP>MH Memory reads and writes.

Read PM4 buffers, write semaphores to communicate with driver
Display> CP Source of real time events to trigger real time commands, also delays in command queue based on

display status. Current scan line is most common typeof data
All block>CP|Blocks status.

Used for wait for idle and power down

Exhibit2041.00C 48154 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***o¢4n45 12-49 py

AMD1044_0258010

ATI Ex. 2109

IPR2023-00922

Page 300 of 326

ATI Ex. 2109
IPR2023-00922

Page 301 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM.

11 March, 2001 4 September, 2015 GEN-CXXXXX-REVA

8.2.3 Block diagram

REREM register reads/writes

 Data cache

(may be L2 Memory

BBM

Controlregisters

Processor core

reset/debue

 Instruction Cache

orinstruction memory

8.3 RBBM — register interface manager

8.3.1 Description
The RBBMof the R400 is vastly simplified compared to previous versions.
The key differences are:
1) Amuch simpler register decoding scheme that does not need the RBBM to be awareof autoregfiles.
2) Asimpler register bus protocol that (for most registers) does not involve any feedbacksignals to the RBBM
3) Support for simple pipelining of the register bus to meet timing goals.
4) Much of the synchronization logic that was in the RBBM is now the domain of the CP, this means that bypassing

the CPis not a viable production driver mode, butit really is not viable now.
5) Power Saving needs some adjustment(since the RBBM is no longer aware of when a blockis activated.
6) All register bus connections are now single cycle, register to register which will simplify timing.

PAGE

19 of |

However the managementof state changes has been moved from the blocksin the 3D pipe to the RBBM. The RBBM
detects when a state block is no longer in use, tracks the blocks that are not is use, and allocates them to new
primitives as needed.

8.3.2 Major interfaces

| Bus Description
| HBIUD>RBBM|Register read/write
| CP>RBBM Register writes resulting from interpretation of command packets

| RBBM-register
| bus

The purpose ofthe block

"RBBMSCLK Power management

Soft/hard reset
 RBBMall

Exhibit 2041.DOC
48154 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***po4/45 42-43 pm

AMD1044_0258011

ATI Ex. 2109

IPR2023-00922

Page 301 of 326

ATI Ex. 2109
IPR2023-00922

Page 302 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

11 March, 2001 4 September, 2015 R400 Top Level Spec 20 of 32

8.3.3 Block diagram

Queued WriteFifo
data end address on-queaed write

Por 4
[“Arbitrator

Queaed WriteFifo
data and address Jon-queued writepid data

Register Bus Read return

RTR’s from queuedregister clients

§.3.4 RBBM operation
This is copied from the current RBBM spec, at somepoint mostofit will be moved backthere.

The RBBM has merges register writes and reads from the HBIU and the CP and broadcasts them to the rest of the
biocks in the chip. Thatis all it needs to do.

Registers can either be queued or un-queued. In general queued register writes are initiator registers, or order
critical state registers. The RBBM distinguishes between the two typesof registers by their address only. The upper
?Kbytes of the register space are queued registers, the remainder is un-queued.

Both the CP and the host can generate both types of register writes.

Un-queued register writes can and will pass queued registers writes. If it is important for un-queued register writes to
be held off by a queued register write the host or cp must not send the un-queued register write until the hast or cp
has determined that the queued register write has completed (usually by a spin lock on a semaphore).

Queued registers are maintained in order from the viewpoint of each originator. |.e. all of the CP’s queued writes will
complete in order, and all of the hosts will complete in order. There is no ordering between the CP and host- the
writes from both clients may becomeinterleaved.

The global register bus is as follows:

 Name | Direction | bits | Description

Exhibit 2041.D0C 48154 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***jo9445 42-43 pm

AMD1044_0258012

ATI Ex. 2109

IPR2023-00922

Page 302 of 326

ATI Ex. 2109
IPR2023-00922

Page 303 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM.

11 March, 2001 4 September, 2015 GEN-CXXXXX-REVA

(WE -RBBM>|1 |Write enable, address and data are valid
Addr[i9:2]) RBBM> 18 | Register address / -
Wim{3:0] RBBM~> 4 | Register write mask, should be ignored by most clients
Wa[31:0] RBBM> 32 | Data
RE RBBM> 1 | Read Enable, addressis valid

Rd[31:0) >RBBM 32 | Read data returned ;
RRn >RBBM 1 | Read return strobe (active low)

The protocol for a write is simple:
On a rising edge, if WE is high then the data and addressis valid.

There are no completion signals, there is no way to abort a write.
Handshakesignals for queued registers will be described later and are separate from the register bus.

The read protocol is somewhat more complex.
A read requestis sent out when RE is high. The address holds the addressof the read request.
RE and addrwill only be valid for one clock cycle.

Some numberof clock cycles later the RBBM will receive the return data back, when RRis low.
The read return “bus” (Rd and RRn)is the logical AND ofall the clients that can respond to a read request.
All clients but the client that is responding to the read request drive a logical 1 on the bus. The wiring of the read
return bus is a tree of point to point connections, and each node one or more sub-busses are AND’d together,
registered, and driven on to the RBBM. This is the same as an ORtree, but the signal is inverted. Since a read
return cycle is surrounded by idle cycles the only critical transition is high to low for the Rd signals (possible timing
help, at the cost of needingto tell static timing to ignore low to high transitions).

Only one read is outstanding at any time. Reads will pass queued writes, (should/can they passall writes?)
The RBBM will timeout on a read after 64? clocks. itis critical that no client respond latter than 64 clock as the RBBM
may timeout on the read, issue another and interpret the very late responseofthefirst read as the second read.

lf a read times out the RBBM will return dummy data (such as ‘OxDEADBEEF’) to the requestor and mark in a debug
register than an error happened.

Both queued and non-queued register writes are broadcast on the same bus. To impiement the queued registers the
RBBM looksat the status of all of the RTR signals from the clients that contain queued registers. Only if all are high
will any queued register be allowed to issue from the RBBM. Note that these signals are registered on the boundary
of the RBBM, and the register bus is also registered. This means that there is at least a two clock latency responding
to a RTR signal deasserting. Since the clients will also be registered this means that a client will receive four or more
queued register writes after asking them to stop. It is the clients responsibility to have enough buffering so that no
register writes are lost.

8.4 CLK — clock generator

8.4.1 Description
The clock generator block generates the many clocks used by the R400:

Clock speedrange|
AGP | 133 to 533. AGP clock eeesesesa—(i(‘i‘és
Scik 33to0 500 Mhz| core clock
Mclk 33 to 500 memory clock
POclk | 10 to 450 pixel clock for primary display (5x faster for TMDS//LVDS)
Piclk 10 to 450 pixel clock for secondary display (5x faster for TMDS//LVDS)
Tyelk | pixel clock for tvout

8.4.2 Major interfaces
Bus | Description

Exhibit 2041.D0C 48154 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***jo9445 42-43 pm

AMD1044_0258013

ATI Ex. 2109

IPR2023-00922

Page 303 of 326

ATI Ex. 2109
IPR2023-00922

Page 304 of 326

 ORIGINATE DATE

11 March, 2001

control

EDIT DATE

4 September, 2015

 DOCUMENT-REV. NUM. PAGE

R400 Top Level Spec | 22 of 32

 RBBM~?CLK

8.4.3 Block diagram

8.

8.

8.

TC — test controllerLAY

A .| Description

A .2 Major interfaces

ve§.5.3 Block diagram

8.6 VIP ~ Video input port

8.6.1 Description

8.6.2 Major interfaces
Bus Description
VIPSMH DMAtransfers
RBBM>VIP Control

8.6.3 Block diagram

8.7 ROM — boot rom

On powerup the graphics chip reads the straps from the rom. The rom is then used for responding to boot rom read
requests from the PCI bus.
Wewill only support serial roms.
The list of supported roms is TBD.

8.7.1 Description

8.7.2 Major interfaces

Bus Description
ROM ?HBIU Boot rom readinterface |
RBBM>ROM|Flash/eeprom boot rom write interface |
ROM->chip Decoded straps |

8.7.3 Block diagram

8.8 |2C - 12C interface

8.8.1 Description
The |2C bus is a 2 wire bus used to communicate with other multimedia devices (such astv tuners)

8.8.2 Major interfaces
Bus Description
RBBM->12C Read/write interface |

Exhibit2041.D0C 48154 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***pcan 12-49 py

AMD1044_0258014

ATI Ex. 2109

IPR2023-00922

Page 304 of 326

ATI Ex. 2109
IPR2023-00922

Page 305 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE |
11 March, 2001 4 September, 2015 GEN-CX0OOX-REVA 23 of |

8.8.3 Block diagram ~

8.9 DU — Display
The R400 display drives up to three displays: two monitors and a TVOUT.

The chip can have as much as two analog RGB DAC’s, two dual channel TMDS outputs, and one duai channel LVDS
output.

All support for the scaling overlay is removed. The display supports a non-scaling overlay on each display.

See display operation section above for more details.

8.9.1 Description
Hopefully we have the resources to moveto the time interleaved display design.
The foliowing frame buffer formats are supported:
Primary surface:
8bpp index
16bpp 4444 565.555 RGB
32bpp 8888 RGB
64bpp 16:16:16:16, either sRGB or the R400 floating point format

Overlay:
32bpp 8888 RGB
4:2:2 YUYV

the color conversion for the overlay is controlled by a programmable matrix, so the choice of color spaceis arbitrary.

The maximum display pixel clock is greater than 400 MHz.
If we build the time interleaved design, then the maximum numberof display pixels will be 2x the core clock speed.
This will be divided among the two displays and tvout.

8.9.2 Major interfaces

| Bus Description
| TDSDU Memory read interface
_RBBM>DU __|Register writesfreads
| DUDCP Synchronization information

Exhibit2041.D0C 48154 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***jo54/45 42-43 pm

AMD1044_0258015

ATI Ex. 2109

IPR2023-00922

Page 305of 326

ATI Ex. 2109
IPR2023-00922

Page 306 of 326

 a ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
»/ 0 11 March, 2001 4 September, 2015 R400 Top Level Spec | 24 of 32
8.9.3 Block diagram

dispclk

display0
fifo

Overlay input buffer
conversion .

Overlay
blend

 display 1

fifo
primary input buffer Color format

conversion

chut ramf

vvVV
tvout
fifo

 \/

8.10 MH — Memory Hub

8.10.1 Description
The memory hub acts as a switch between the many small clients of the memory controllers, and the two or four
memory controllers. This allows most blocks to not have any dependencies on the number of memorycontrollers.

8.10.2 Major interfaces
The memory hub has a 32 bit read and a 32 bit write bus to each of the memory controllers. If we co-locate the MH
and the L2 cachein the texture decompression block, then the 128 bit read return bus from the MC to the L2 cache
can be usedto return read data to the MH instead of a private bus.

The clients of the MH:

HDP
cP
VIP

PA- index buffer reading
RE- Vertex/pixel program loads, hierarchical Z
IDCT
?

8.10.3 Block diagram

8.11 HDP — Host Data Path

The host data path allow the host cpu to access video memory.It provides eight “surfaces” that provide endian and
tiling translation, making the target area of memorylooklike a linear surface in the processors native endian.

The HDP also implements most of the legacy VGA functionality.

Exhibit2041.D0C 48154 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***occ12-49 pu

AMD1044_0258016

ATI Ex. 2109

IPR2023-00922

Page 306 of 326

ATI Ex. 2109
IPR2023-00922

Page 307 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE |

11 March, 2001 4 September, 2015 GEN-CXXXXX-REVA 25 of |27 |

8.11.1 Description

8.11.2 Major interfaces

_ Bus Description |
| HIDHDP Memory read/write requests to HDP
| HDPSMH HDP reads/writes to local memory

8.11.3 Block diagram

8.12 IDCT — Mpeg decoder

8.12.1 Description
The R400 uses the same implementation of IDCT/MPEG as the R300. This block decodes the compressed stream,
placing the resulting IDCT data in one buffer in memory, and the motion vectors in another. The 3D pipe is then
programmedto read the motion vectors and IDCT data and complete the decoding operation

8.12.2 Major interfaces
| Bus Description
| IDCT>MH Read command stream, write IDCT results and motion vectors

8.12.3 Block diagram

8.13 PA — Primitive Assembly

8.13.1 Description
The primitive assembly block fetches or creates the indices to vertices, possibly creating extra vertices with the
tesselation engine. it determines which vertices have not been recently seen (and will therefore not be located in the
post transform vertex cache), assembles vectors of sixteen vertices than need to be transformed, and submits them
to a raster engine/shaderpipe set to be transformed.It then receives the transformed vertex position data from the
shader pipes. The vertex cache tag also outputs the sequence of cache addresses generated from the incoming
indices. The primitive assembly subblock then creates primitives (lines, points, rectangles, triangles) from the
vertices. It also implements the line counter for styled lines. The primitives are setup in the setup/clip block, butfirst
clipped to the view frustum and optionally the user clip planes. The scan converted does a course walk of the
primitive using an 8x8 grid. The scan converted also determines when the hierarchical Z data needed for culling will
not be in the local hierarchical z cache in each rasterizer and makes the needed memory read requests. An arbitrator,
centrally located in the PA block arbitrates each rasterizers reads from the post transform vertex parameter cache,
which is distributed among the shaderpipes.

8.13.2 Major interfaces

| Bus Description
| RBBMSPA State changes, and initiator register writes
| PASMH Index fetch path
| PADRE Vertex transform packets
| PASMH Hierarchical Z read request
| PADRBn Coverage mask, position, and Z slope
| PASSPn 8x68 tiles to be rasterized

Exhibit2041.D0C 48154 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***jo54/45 42-43 pm

AMD1044_0258017

ATI Ex. 2109

IPR2023-00922

Page 307 of 326

ATI Ex. 2109
IPR2023-00922

Page 308 of 326

Air ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE: »i ¢ 11 March, 2001 4 September, 2015 R400 Top Level Spec 26 of 32
8.13.3 Block diagram

Index array fetcher

Tesselation engine

Vertex cache tag

/ts parameter
vache arbitratorshader pipe vtx distributor

to raster cngines for vtx transform

Vertex position cache

Primtive assembly Real time command interface

Clip/Setup

Scan converter heirZ cache tag

broadvast to render broadcast to raster
backends engines for pixel shading

8.14 TD — Texture Decompression

8.14.1 Description
The texture decompression block converts the memory texture formats into the uncompressed texture formats
supported by the texture pipes. It consists of the L2 texture cache, the texture decompression logic, a set of output
buffers, and the texture addressing logic.

The decompressed formats supported are:

32 bpp (8888) unsigned
32 bpp (8888) signed
32 bpp (16,16) unsigned and signed
32 bpp (32) unsigned and signed

we may also support a 8bpp mono format to improve the performance of shadow buffering.

Exhibit2041.D0C 48154 Bytes*** € ATI Confidential. Reference Copyright Notice on Cover Page © ***,o¢445 12-49 py

AMD1044_0258018

ATI Ex. 2109

IPR2023-00922

Page 308of 326

ATI Ex. 2109
IPR2023-00922

Page 309 of 326

 om ORIGINATE DATE
e a

: 41 March, 2001

8.14.2 Major interfaces

 EDIT DATE

4 September, 2015

DOCUM

GEN-CX0000CR|

ENT-REV. NUM.

EVA

| Bus Description
| TPSTD Texture requests and returned data
| TD>MCn Memory read requests
| TDDisplay Data path for display which uses the L2 cacheasits line buffers
| MCn3>TD invalidate snoop bus for cache coherency

§.14.3 Block diagram

Output buffer Output buffer Output buffer
Output buffer

L Texture decompression

display interface
be

L2 Cache

section
L2 Cache

section
L2 Cache

section
L2 Cache

section

L2 tag
8.15 RE — Raster Engine

8.15.1 Description

The raster engine performs two duties: it does the detail walk of 8x8 tiles of primitives, and it contains the sequencer
for the shaderpipe.

The shader pipe has the FIFO to allow for balance between the pipelines in the chip, it appears that this FIFO is 64
8x8 tiles deep. Only tiles that are owned by this pipeline are stored in the FIFO, others are immediately rejected.
When an 8x8tile is read out of the FIFO, itis checked against the heir-Z fail data that has arrived in the local heir-Z
cache.If the primitive fails, itis rejected and the R

Exhibit 2041.D0C 48154 Bytes*** © ATI Confidential.

 B is informed thatthe tile has beenkilled.

Reference Copyright Notice on Cover Page © ***9445 12.48 pm

AMD1044_0258019

ATI Ex. 2109

IPR2023-00922

Page 309 of 326

ATI Ex. 2109
IPR2023-00922

Page 310 of 326

 EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

R400 Top Level Spec

PAGE

28 of 32

 ff ORIGINATE DATE
Oi |

Foods 44 March, 2001

We are going to support hierarchical Z object culling within the command stream. To support this we havethe ability
to draw a bounding object, heir-Z test it, but kill it before we rasterize it. The raster engine will receive tiles that are
markedindicating that iney are part of an occlusion query, and test them against the heir-z memory.All the tiles are
rejected, but if any of them pass the heir-Z test then id then a flag is set. When the marker (which is an id) changes,
indicating the end of this occlusion query, the RE will signal back to the primitive assemblyif the flag was set or not.

If the tile passes the heir-z test we need to ensure that the parameter data neededto interpolate the triangle is either
in the local 10 parameter cache,or on its way there. If not a request needs to be madeto the arbitrator in the PA to
get the needed data/

A FIFO on the output of the HZ cull and parameter cache tag buffers the passing tiles while waiting for the parameter
data to arrive at the cache. It also provides buffering so that the rest of the pipeline can stay busy during a long string
of tiles that fail the hierarchical Z test.

The next step is a detail walker that generates the coverage mask for each potentially covered 2x2 quad in the 8x8.
We may need a path from this result to the render backend to aid in its determination as to what to fetch. The
parametric coordinates are calculated, and used to driver the interpolator. We need to be able to do both perspectivly
correction interpolation and non-corrected interpolation.

The raster engine breaks the stream of pixels into 4 guad vectors (16 pixels) and will wait until the needed spaceis
available in the shader pipe, and then start the sequencer running the pixel shader program.

The secondpart of the raster engine is the sequencer.
The sequencerfirst arbitrates between vectors of 16 vertices that arrive directly from primitive assembly and vectors
of 4 quads (16 pixels) that are generatedin the raster engine.

The vertex or pixel program specifies how many GPR’s it needs to execute. The sequencer will not start the next
vector until the needed spaceis available.

The sequencer is based on the R300 design. It chooses an ALU clause and a texture clause to execute, and execute
all of the instructions in a clause before looking for a new clause of the same type. Each vector will have eight texture
and eight alu clauses, but clauses do not need to contain instructions. A vector of pixels or vertices ping-pongs along
the sequencer FIFO, bouncing from texture reservation station to alu reservation station. A FIFO exists between each
reservation stage, holding up vectors until the vector currently occupying a reservation station has left.. A vector at a
reservation station can be chosen to execute. The sequencer looks atall eight alu reservation stations to chose a alu
clause to execute and all eight texture stations to chose a texture clause to execute. The arbitrator will give priority to
clauses/reservation stations closer to the top of the pipeline. it will not execute an alu clause until the texture fetches
initiated by the previous texture clause have completed.

To support the shader pipe the raster engine also contains the shaderinstruction cache and constantstore.

8.15.2 Major interfaces

Bus Description
PA(sc)>RE Broadcast bus for &x8 slices of primitives. |,J,K plane equations, front most Z for heir-Z culling,

pointer for location of parameter data in vertex parameter cache
MRRE Returned hierarchical Z data for local cache.

PADRE Parameter request port
SCRE Returned parameter data
PA>RE Requests to transform packets of vertices
RBBM>RE State register reads/writes
RE>SC Interpolated parameter data
RE>SC instructions, constants, register file addresses
RE>RB Heir-Z pass/fail information

.REDRB__|Sequencing informationforavailabilityof pixels, .
RE>PA _Sequencinginterface forreturningtransformedvertic
RE>PA Occlusion query results
MH->RE Shader | Cachefills

Exhibit2041.D0C 48154 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***,o¢4n45 12-49 py

AMD1044_0258020

ATI Ex. 2109

IPR2023-00922

Page 310 of 326

ATI Ex. 2109
IPR2023-00922

Page 311 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE | | 41 March, 2001 4 September, 2015 GEN-CXXXXX-REVA 29 of

8.15.3 Block diagram

8.15.3.1 RE Block diagram

Parameter
Store

arbitrator

(PA) Vertex Transform
Region Cull

Primitive Fifo
(64 8x8

Deep)

HZ Cache HZ Cull

Ju } |

Detail Walker |

4

|

¥

Coverage |
Mask

Parameter

 Reciprocal
(IAN+JANKAW

= 1A)

CacheLAN JAW KAN

interpolators

__¥..

C 7 () 6

a . Interpolators Fifo: : i
N XX 4

aoe

ALU commands/reg
addr Arbitrator/

Texture commands/ : |
register register mngr|

C Shader)
8.15.3.2 REsequencer
8.15.3.3 RE sequencer arbitrator

Exhibit2041.D0C 48154 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***jo54/45 42-43 pm

AMD1044_0258021

ATI Ex. 2109

IPR2023-00922

Page 311 of 326

ATI Ex. 2109
IPR2023-00922

Page 312 of 326

ORIGINATE DATE

11 March, 2001 EDIT DATE

4 September, 2015

 DOCUMENT-REV. NUM.

R400 Top Level Spec

PAGE

30 of 32

vertex/pixel vector arbitrator

ALU clause 0
eservation station

ALU clause 1
reservationstation

exture arbitrator

eservation station

ALUclause 3
eservation station

reservationstation

Possible delay for availabic GPR’s ‘exture clause 0
eservation station

‘exture clause 1
eservation station

ex lure clause 2
eservation station

‘oxture clause 3
eservation station

‘exture clause 4
eservation station

‘exture clause 5
eservation station

 ALU clause §

eservation station

ALU clause 6
eservation station

‘oxturc clause 6
eservation station

ALU clause 7
eservationstation.

‘exture clause 7

exture arbitrator

8.16 SP ~ Shader Pipe

8.16.1 Description
The shader pipe implements the math pipeline of the R400. It has no sequencing/control logic: the control is located
in the raster engine.
The shader pipe contains four floating point MAC’s, and an

8.16.2 Major interfaces

 Bus | Description
RE>SP Interpolated data
RESP | Control

Exhibit 2041.DOC
46154 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***og94:45 12:43 py

AMD1044_0258022

ATI Ex. 2109

IPR2023-00922

Page 312 of 326

ATI Ex. 2109
IPR2023-00922

Page 313 of 326

 ORIGINATE DATE

11 March, 2001

EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

 PAGE |

 _SPDTX___|Texture requests +vertexparameters+pixelstorenderbackend_
| TX>SP Returned texture data
| RESSP Constants

| SP-35P Local w bus for derivative opcode

8.16.3 Block diagram

 interpolated data from RE

Register File
$12x128 (built as 4 128x128 or 16 128x32

 Address to texure
or vertex parameter data to RE through texture block
ov pixel data to RB through texture block

32

28 bit data|po

erand mux

aE, ‘a
432 bit MAC units

128bit scalar‘vector
ALU

control from RE

constants from RE

control from RE

Exhibit2041.D0C 48154 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***jo54/45 42-43 pm

AMD1044_0258023

ATI Ex. 2109

IPR2023-00922

Page 313 of 326

ATI Ex. 2109
IPR2023-00922

Page 314 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

11 March, 2001 4 September, 2015 R400 Top Level Spec 32 of 32

: 8.17 TP — Texture Pipe
8.17.1 Description

8.17.2 Major interfaces

8.17.3 Block diagram

8.18 RB — Render Backend

8.18.1 Description

8.18.2 Major interfaces

8.18.3 Block diagram

8.19 MC ~ Memory Controller

8.19.1 Description

8.19.2 Major interfaces

8.19.3 Block diagram

9. Common Foundations

9.1 Logic Design

9.1.1 Data formats

As much as possible, data should be stored and processed identically to x86 (or sparc) conventions. This will, for
example, allow the emulator to use normal 32 bit floats and the processors native multiply, add and other operations.
This will have a significant effect on the achieved simulation performance compared to being “almost” identical which
requires the emulator take several operations to match the hardware bit-exact.

9.1.2 Register Bus
Issues:

32 vs. 64 bit

Do rendering state updates happen on this bus or over a dedicated path from memory?
Flow control

9.1.3 Block Communication protocol!
We want to specify a limited number (one is probably not possible) number of different ways that blocks are
interconnected to simplify verification and emulation.

9.2 Software

Exhibit2041.D0C 48154 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** jo,4j45 42-48 pm

AMD1044_0258024

ATI Ex. 2109

IPR2023-00922

Page 314 of 326

ATI Ex. 2109
IPR2023-00922

Page 315 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

23 January, 2001 4 September, 2015 GEN-CXXXXX-REVA tof 12

Author: Andrew Gruber, Andi Skende

Issue To: Copy No:

Shader Processor

ver 0.7

Overview: This document describes the overall architecture of the Shaders, interfaces, partitioning into functional blocks

as well as the timing of the shader pipeline. its intended for use by hadware designers.

AUTOMATICALLY UPDATED FIELDS:
Document Location HD PC
Current Intranet Search Title: Shader Processor

___ APPROVALS _
- “Name/Dept ee Signature/Date.

 Ee

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE

SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES

INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyrightin this
unpublished work. The copyright notice is not an admission that publication has occurred. This work contains
confidential, proprietary information and trade secrets of ATI. No part of this document may be used, reproduced, or
transmitted in any form or by any meanswithoutthe prior written permission of ATI Technologies Inc.”

Exhibit 2042.dec 16774 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** gogar5 04-44 py ATI 2042
LGv. ATI

TPR2015-00325

AMD1044_0258025

ATI Ex. 2109

IPR2023-00922

Page 315 of 326

ATI Ex. 2109
IPR2023-00922

Page 316 of 326

ORIGINATE DATE

23 January, 2001

EDIT DATE

4 September, 2015Ca
Table Of Contents

 DOCUMENT-REV. NUM. PAGE

R400 Shader Processor Model 2 of 12

DL.—STATE. we cessoovcnvecevsussvvnenssvevseuvsovensvevesnonsvensuvensenneavescussussnonaussususnsnoonansvevesnossensuvsnsenneayecuvenussussnns 5

Ld Shader State oocececece cece eeceeneee aes cueeeeeeeeaaaneseeeeeessaaegeeseeeeascenneeserevaaasennesesteneeees 5

Ll GPR ooo ccc cccccccccecccccnneceueeeeeccraucueeccegauverecuuretevauavaueetesscarauetseeesarsreaaeeceeevansraneeereiennaas 5

112 Constant REGISEELS ooocece ec cence te cece cn need tec cvee ee ee Cone ee cree cnc ceetesrcteeees Creceaeeeenenes 5
1.2 Te@xture/MEMOry State...ccccece cece cence cen nceeee ences eee cone ceecencuneteereeccceseeesenenneeesecnies 7
1.3 PPTIAL STAcccccecccnsaesccnennscenuaessesunasssauanssnnasasesuaasssunaaesasavaneassuaneanssaananesassansesnuaaes 7

1.3.1 Vertex SMAMGr ooocc cece cc cccececceneeeececeeeueuaeecesceeueareeeeeeeceeeaueessueeeerivaneseceeeees 7

1.3.2 Pixel SHACOrcece cccececeeeaneseeeeeeceeesnesanenevescnnaneaaeeeesssataneeseneesteraaaeevseennaveaaaees 8

1.3.3 ZO SIACSoooccccee ene eeecceeee senna eeseeteee as vengeeteteeaaneenneteesesaanneneteeeveannnnesineneas 8

1.3.4 RealTime SHA@GSE ooocece ccc ccascc ee ce ceausanecueveveuaueveeeueeessanaeceveetesserseveeieesaneneeeees &

2. PROGRAM FORMAT.....sccccscessvssssevnenssvsuseuvsoensevsvenonso0ensuenssennazesussssnsensnsesusunonosoaneusssunonszecusnen 8

3B. PLU) sennsuvovseenecnnonevevconopneusuunuuaunnauseususanaunnsaysauansancnuususuaunuaxssussusannunnonsenuunanaunussesauannasanannuauessass 8

3.1 ALU INStrUCHION TOFMIAL.ceeccc cccc ees ccscnccnn ase scnnae ss senannssauaaesssuaneassuuananssvananssaasenveensaans 8

3.2 ALU OpGodesootcece cent e cece tae eee tee cna cee ceecaaaeeecestaasaeeesesceeeceecstineesentntereerees 9
3.3 MACIO ODCOMESocccence ee ee eect eee r eee eH CEEEEEE CCE CE ED CCECCEEcCSeGeEE Cette NSCctaMeSeGeeNee bees agate aaaes 10
4, TERTURE/MEMORY, ..isscccceccsssasnseecessnsnsannnnessunasnnannuecescuaunaannuesassuaunsaseueussnaanaaueseunasnaanauennsenaa 40

4] IISTPUCTION FOPMGtcccccsececccnaneecenvaeesesuanessauanssseuasseuanasseunaausssuanennssunnanssannaner essa 10

4.2 OPCOES ooocece cc cee cece ee eee corte eee ceee caus cenceeeeeceseeccnsteeecieeeecoreeececesestererecieeeentreeeeeses 11

Exhibit 2042. doc 16774 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***954/45 94-44 pm

AMD1044_0258026

ATI Ex. 2109

IPR2023-00922

Page 316 of 326

ATI Ex. 2109
IPR2023-00922

Page 317 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

 23 January, 2007 4 September, 2015 GEN-CXX20OCREVA 3 of 12

Revision Changes:

Rev 0.0 (Andi Skende) Document started
Date: May 09, 2001
Initial revision.

Rev 0.1 (Andi Skende) Updated, added the instruction formant, initial block
Date: May 09, 2001 diagrams and preliminary interface description
Initial revision.

Rev 0.2 (Andi Skende) A more detailed description of the SP ->RB
Date: May 10, 2001 interface as well as RE/Sequencer->SPinterface.
Initial revision

Exhibit 2042.doc 16774 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © *** po4:45 04-44 om

AMD1044_0258027

ATI Ex. 2109

IPR2023-00922

Page 317 of 326

ATI Ex. 2109
IPR2023-00922

Page 318 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

23 January, 2001 4 September, 2015 R400 Shader Processor Model 4 of 12

Introduction

The shaderpipeline processes elements (pixels or vertices) in groups “vectors” of sixteen. R400 operates on tiles of
2x2 pixels or quad of pixels. There will be four sets of four shader pipes. For ease of reference and relative
positioning of pixels within the quad that each set of shader blocks operates on, we name this sets as UL (upper left),
Upper Right (upper right), LL (lower left) and LR (lower right). Please refer to the R400 Shader Processor Model
(architectural specification) for an overall functionality of the shaders from the programmer's view-point.

Exhibit2042.doc 16774 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***po54/45 94-44 pu

AMD1044_0258028

ATI Ex. 2109

IPR2023-00922

Page 318 of 326

ATI Ex. 2109
IPR2023-00922

Page 319 of 326

ORIGINATE DATE

23 January, 2001

EDIT DATE

4 September, 2015

 DOCUMENT-REV. NUM. PAGE

GEN-CXOCOCREVA 5 of 12
T. State

1.1 Shader State

L.1.1 GPR

The general purpose registers are 128 bits wide, composed of four 32 bit values. Depending on the operation these
values are interpreted at RGBA, or XYZW, or STQW, or UVQVV, or YUVA,or.. to simplify matters the only two aliases
used here are XYZW and RGBA.

To hide the latency of memory acceses the shaderpipe will switch betweendifferent vectors. This is the same as the
idea of “microthreading’ that some advanced CPU's are investigating. The large register file is split between the
vectors executing in the shader pipe. The mangment of the shader register file is automatic, and not visible to a
program executing on a vector, execept that a program is required to declare the number of GPRsit need to execute.
The hardware will not start a vector until the required number of registers is available. There is a direct tradeoff
between the number of registers each program/vector needs and the numberof vectors than can be simultainiously
resident. If there are too few vectors resident, then the latency of memory accesses can no longer be hidded and
performance suffers.

There are a total of 128 registers. We do not yet know how manyregisters per vector is too many, and performance
starts suffering.

It is possible for a single program/vector to request all 128 registers. This will make it impossible to hide memory
latency, but the program will still execute and generate the correct result.

Most pixel programs are expected to have less than eight registers, vertex programs are expected to have less than
sixteen registers.

The number of registers a program needs is the maximum numberof registers it needs at any instruction. If a
program needs only 3 instructions nearly all of the time, except for a short period when it needs 8, it still needs to
allocate eight. A significant performance optimization is for the compiler to reorder the instructions to minimize the
number of needed registers.

An openissueis if the pipeline will need GPRO to store pixel related information. (coverage mask, position, Z, W). If
we choseto do this (to avoid having a separate memory for this data) then GPR0Ois unavailble as a general register.

__ 95. 83 St 0 GPR
| Bz GY[RX| Ro

i RI

| [R127

Notation: RO.A refers to the bits 96 to 127 of register one. So does RO.W

1.1.2 Constant Registers
There are also (1927) constant registers:

127 95 63 31 0 Const
| AAN BIZ GY RIX co

| | Ct

eees| C191

These are ONLY available to vertex and pixel shader program in the primary commands stream. They should not be
used for real time stream pixel shaders, or 2D shaders.

Exhibit 2042.doc 16774 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***po6.;45 04-44 pm

AMD1044_0258029

ATI Ex. 2109

IPR2023-00922

Page 319 of 326

ATI Ex. 2109
IPR2023-00922

Page 320 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

23 January, 2001 4 September, 2015 R400 Shader Processor Model 6 of 12

The constant registers are shared between vertex shaders and pixel shaders, it is the drivers job to allocate one
section to pixel shaders and another to vertex shaders to match the D3D programming model, other API’s may allow
more freedom.

NEW Constant registers are also used to hold texture/memory fetch state. NEW
To be able to support multiple textures easily, and to save hardware area the texture registers are stored in constant
registers. A pair of constant registers hold 256 bits of texture state. Rather than have four or six sets of texture
registers as we do in the R100,R200, and R300 bystoring them in the constant memory we can save area by reusing
the logic already needed to update the constant registers in order. Since any single texture instruction will only fetch
from one texture we do not need the simultainous access we would get with implementing this as “normal” registers.
The driver will probably decide to allocate a fixed numberof the constant registers as texture registers.

The constant registers are backed up by control logic to ensure that a pixel sees the correct state, even when partial
state updates are completed. | want to save area in this logic by having the updates occur on a 256 bit granularity.
Here is how | expect the driver to work: The driver maintains a copy in cacheable system memory of the constant
registers. When the driver needs to upload a change of the constant to the chip (just before drawing) it needs to copy
two sequential aligned 128 bit words from the system memory version to the indirect buffer, even if only a 32 bit word
within the two constant values has changed. Since the CPU will read in at least the full 256 bits into its cache, the
only performance penalty will be the second 128 bit write

1.1.3. Previous Instruction

Within a alu clase the result of the previous operation is explicitly available, without requiring a register read.
(in fact due an exposed pipeline delay, the result of the previous operation can not be read from the registerfile
without a one instruction delay slot)

This register is not preserved between the end of one alu clause and the begining of another.

It can be used to avoid using another GPRif the result is not needed.

A127 95 63 31 0
| AW [Biz cov [RX | Prev

1.1.4 Texture Temporaries
There are two texture temporary registers:

They are used to implement higher order filters (tri-linear, tri-linear (from a volume texture), Bi-cubic, aniso, arbitrary
filters)

TtO can be viewed as an accumution buffer. The result of the bi-linear blend can be written into Tt0, after being
summed with the value that is already there.

A trilinear filter can be done with two instructions:

TiO = texture(address, and rest of state neeed, but with mipcnil set to “lower mip level”)
R = TiO + texture(address, and rest of state neeed, but with mipentl set to “upper mip level”)

Volume textures and mipmapped volume textures are implemented in the same way.

Tt is used for implementing filers of arbitrary size. For every four samplesin thefilter two acceses are made, the first
access fetchesthe filler weights, the second fetches the texture values and uses the contents of Tt1 as the weights
instead of a bi-linear filter.

We will have explicit support for bi-cubic filters, and seperable filters to avoid the doubled cycles of the previous
method.

Exhibit 2042.doc 16774 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***jo.44:45 04-44 om

AMD1044_0258030

ATI Ex. 2109

IPR2023-00922

Page 320 of 326

ATI Ex. 2109
IPR2023-00922

Page 321 of 326

 ORIGINATE DATE | EDIT DATE DOCUMENT-REV. NUM. PAGE
23 January, 2001 | 4 September, 2015 GEN-CXX0O0O-REVA 7 of 12

1.2 Texture/Memory State

Texture/memory fetch state is stored in the constant registers; each texture uses two sequential 128 bit registers to
hold the 256 bits of state per texture.

The contents of these constant registers were stored in normal registers in previous chips.

A very early version of the data stored in a texture/memory constant registeris:

Field size|Description
Min_MIP_level|4 || Clamp mip maplevel to this level
Max_MIPlevel|4 Clamp mip maplevelto this level
First_MIP_level|4 First mip map level in tree. (do we want/need this?)
Clamp_S 3 Ciamp/wrap/
Clamp_T 3
ClampW 3 Clamp control for volume textures
Border_mode 1
Tx_format 5
Non_power2 1 0- texure is in range 1 to 0 after clamp mirror, must be multiplied by txwidth/txheight

(power2)
1- texture has been multipled by the texture size in the pixel shader. (need to work out how

to deal with clamp modes)
TXAWIDTH 4 Texture width (or faceO width)
TXHEIGHT 4 Texture height (or faceO height)
TXDEPTH 4 Texture depth (volume textures)
TAWIDTH_ ft 4

TXHEIGHT_ft 4
TXWIDTH_f2 4 ;
TAXHEIGHTf2|4
TAWIDTH_f3 4

[TXHEIGHT_f8 [4
PTXWIDTH44

TXHEIGHTf4|4
TXWIDTH_f5 4
TXHEIGHT f|4

Alpha_mask? 1
Chroma_key? 1
Tex_coord_typ|3
e

LOD_BIAS 14
TX_PITCH 14 Numberofbits will decrease, used with non power2 textures
Offset 32 Texture offset (includes endian andtile control)

Limit 32 Any memory accesses > limit will be killed, and the pixel that made the request will also be
killed. If the access was from a vertex shader, then the vertex shaderwill for the x value of
the vertex to be NAN whichwill kill all triangles that attempt to use the vertex.

1.3 Initial state

[1.3.1 Vertex Shader

A vertex shader initially has the x value of RO set to the vertex index. No other registers are filled. The vertex shader
must use the index to fetch the vertex data from the vertex array(s), The pointers to the vertex arrays should be
placed in constant registers by the driver.

Exhibit 2042.doc 16774 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***g994/45 04-44 py

AMD1044_0258031

ATI Ex. 2109

IPR2023-00922

Page 321 of 326

ATI Ex. 2109
IPR2023-00922

Page 322 of 326

 ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

23 January, 2001 4 September, 2015 R400 Shader Processor Model 8 of 12

1.3.2 Pixel Shader

The pixel shader has the interpolated values generated from the values exported by the vertex shader.
If the vertex shader did expxy, and the appropriate control bit in the rasterizer is set, then the register 0 contains the
x,Y,.Z,w of the pixel (screen space). If the pixel shader wants a world space x,y,z,w the vertex shader should output
that.

1.3.3 2D Shader

to be defined

1.3.4 RealTime Shader

To be defined

2. Program Format

A pixel or vertex shader program consists of 16 clauses, eight texture and eight alu.
The instructions in a clause will be executed sequentially,

3. ALU instruction format and other instruction related issues

3.1 ALU instruction format

Field|SZ Description
|.VectorOpcode |8 _Opcode nn
Scalar/Alpha Opcode q Opcodefor the Scalar or Alpha channel instruction
Scalar Source Select 1 Selection the input for the scalar operation out of SRC B or SRC C when a

scalar instruction is coissued with a vector operation. The vector operation has
to be 2 sourceinstructions.

LSRCARGB Select2
-SRC BRGB Select| 2 |
SRC C RGB Select
SRC A Alpha Select

2

12
SRC B Alpha Select 2

2
8

SRC C Alpha Select
SRC A RGB

Location of Source A in the register file

Reg/Constant Pointer
SRC B RGB|8 Location of SourceBin the registerfile
Reg/Constant Pointer
SRC Cc RGB|8 Location of Source C in the registerfile

Reg/ConstantPointer|nnnnnernnnnnteneitnennneneenen
SRC A Alpha|& Location of Source A in the registerfile

-Reg/ConstantPointer| |
SRC B Alpha|8 Location of SourceBin the registerfile
Reg/Constant Pointer

SRC G Alpha|8 Location of SourceCin the registerfile |
Reg/Constant Pointer
SRC ARGB Arg Mod|2 Argument A modifier
SRC B RGB Arg Mod|2 | Argument B modifier

SRCC RGB ArgMod|2 “ArgumentC modifier_

SRC AAlpha Arg Mod|2 Argument A modifier on the alpha channel
SRC BAlphaArgMod |2 ArgumentB modifieronthe aphachannel —— —iss—i—‘il
SRC C Alpha Arg Mod_|2 Argument C modifier on the alpha channel
SRC A swizzle 12 3 bits for each component =
SRC B swizzie 12 3 bits for each component

Exhibit2042.doc 16774 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***jo,4)45 o4-44 pm

AMD1044_0258032

ATI Ex. 2109

IPR2023-00922

Page 322 of 326

ATI Ex. 2109
IPR2023-00922

Page 323 of 326

 ri ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE®ed ¢ 23 January, 2001 | 4 September, 2015 GEN-CAXXXX-REVA 9 of 12
SRCCswizzie 0 1}120|3 bits foreachcomponent
Scalar/Alpha Output|3 Output modifier for the result of the Scalar or Alpha channel operation
Mod

“Vector Output Modifier|3=|Output modifier on thevectorresult(RGB) when alphaoperationis being
; coissued or ARGB when scalar operation is being coissued

Scalar/Alpha Clamp
Vector Clamp

Defines which out of 32 bits words (four of them) in the result is written back
Mask in the registerfile

Vector WriteMask 7 _.|Defines whichoutof 32 bits words(four of them)in the resultis writtenback |
Scalar/Alpha result | Specifies the addressinto the registerfiles for result of scalar/alpha operation

 pointer

Mectorresult pointer| _—
ScalarExportflag(0BD

Vector Export flag TBD

3.2 ALU Opcodes
The following opcodes are native, core opcodes:

Name Function Notes

MACG|D=A*B+C {add is A*1.0 + C) (mul is AB + 0.0)
(nop/passthrough/move is A*1.0 + 0.0)

MSUB|D=A*B-C (sub is A*1.0 —-C)

MRSB|D=C-—A*B

DOT2 D = (Ax * B.x) + (Ay * B.y)
DOT3 D = (Ax * B.x) + (Ay * B.y) + (A.z * B.z)
DOT4 D = (Ax * B.x) + (Ay * By) + (A.z * B.z) + (Aw * Bw) |
RECP D= 1/A.w Use broadcast to select something other than w
CMxx D=AifC xx 0.0, else B Ax can be: gt,gte,eg (It,.lte,ne can be generated by

swaping a and b)
CLMP|D=Aif (B>A>C) else Bif(A> B) BelseC

ABSV D=AifA>Oelse B

CEIL D = A; the smallest integer D such thatD >A
FLOR D = A truncated

RndV D = A rounded to the nearest integer
FRAC D = A-floor(A) |
MINV D = min(A,B)
MAXV|D = max(A,B)
Area D = area(A) Possible opcode:

Sets D to A.w,A.w,A.w,A.w where each A is from
a different pixel in the quad. Can be used to
calculate area for LOD calculations, usefull for
antialiasing procedural shaders.

Exp D = Pow(a) a Possible opcode, otherwise texture lookup |
RSQR_|D= t/sgqrt(a) Possible opcode, otherwise texture lookup
Log2 D = Log(A, base = 2) Possible opcode, otherwise table lookup
Log D = Log(A, base = B) Possible opcode, otherwise table lookup
Pow D = A to the B’th power
SCLP D = ABC Concatinate clip code test results into a single

DWORD

CUBE D=A Find the largest of x,y,z, place the reciprocal of

that value in w, set x and y to the two remaining
values, and identify the face as the integer 0 to 5
in Z. Used to setup for a cube map.

Exhibit 2042.doc 16774 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***g994/45 04-44 py

AMD1044_0258033

ATI Ex. 2109

IPR2023-00922

Page 323 of 326

ATI Ex. 2109
IPR2023-00922

Page 324 of 326

 | The export opcodes mustbe in the last alu clause: |

ORIGINATE DATE PAGE

23 January, 2001

 EDIT DATE

4 September, 2015

DOCUMENT-REV. NUM.

R400 Shader Processor Model

 10 of i2

EXPP Export position: position = A, clipcodes = B xport position and clip codes of vertex, end

; ertex shader
EXP Export vertex component, {D} =A | Export vertex component to vertex cache, 16
es _ possibledestinations

EXPXY|Placeholder, {0} = 1,0,0,0 laceholder for the rasterizer toputpixel position |
_and Z into pixel shader.

EXPC |Exportcolor | Export color of pixel, end pixel shader

There are some extraction and data conversion opcodesto be added.

There wil also be a specialized opcode for cube maps.

The export opcodeswill be removed in a future version, and replaces with new destinations for general operations.
Exports muststill be the last operations executed.

Macro opcodes
These instructions are NOT implemented in the R400. But their functionality can be implemented with the shown
opcodes.

4. Texture/Memory

4.1 Instruction Format

Destination control:

Field Size|Description |
Initialize 1 if set, destination register is set to 1,0,0,0 before any writes are made (w,z,y,x) (a,b,g,)
Wimask 4 Write mask for result of lookup |
Channels 2 0: 1 channei, duplicate acrossall four channels

1: 2 channels d.x,d.y = a, d.z,d.w=b
2: 2 channels d.x,d.z = a, d.y,d.w = b
3: 4 channels

Data_Format 4 0: unsignedint
1: none- just write to destination register
others (Z, apple YUV, mpeg,etc.)

Bias 1? Do we want a bias other than ~128?

Scale >4 Result value is (range(s)+bias)*scale
Range 1 Oto 1 or 0 to 255/256 (or 65335/65336 etc..)
Texture 7 Which texture we want to fetch from |

Texture_t 1 Texture or linear memory array
(if linear array, then only offset and limit are noticed, point sampling is forced, format is |
32bpp) |

Dest f Destination address of texture/memory fetch
Sre 7 Source register for address
Swizzel 5 Which part of source register contains texture coordinate
MAGFilter 1 0- Nearest

1-_ Linear

Min_Filter 1 0- Nearest
1- Linear

Mip_filter 2 0- Disabled
1- Enabled

Volume_filter 1 Filtering betweeen volume texture levels

Exhibit 2042.dec
16774 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***jo.4)45 g4-44 pm

AMD1044_0258034

ATI Ex. 2109

IPR2023-00922

Page 324 of 326

ATI Ex. 2109
IPR2023-00922

Page 325 of 326

 ORIGINATE DATE

23 January, 2001

 DOCUMENT-REV. NUM.

GEN-CXXXXX-REVA

EDIT DATE

4 September, 2015

Q-
1-

Nearest
Linear

PAGE

MIP_enable Q-
1-

no mipmaping
mip-mapping

Filter_mode Q-
1-

treat input as four 8bit values
treat input as two 16bit values

2- treat input as one 32 bit value
3- input is not filtered

Scale Multiply the x (and y?) components by this value, used for vertex fetching

—Offset Add this integer to the x component, after the scale, used for vertex fetching.

Combine
mode

Ro) ‘-R=R
-R=R+ Tto
: Use Tt values as blend factors

Output mode : Do not store result of fetch (NOP)
: store resultin GPR
: store result in Tt0
: store resultin Ttt

Mip mode : normal

: lower mip filter and bias
: upper mip filter and bias

Tex3D mode ‘normal (non volume)
: lower z fetch

: upper z fetch

Sample_bias__
x

2's complementoffset for bi-linear sample.
0 will generate a normal fetch, a positive or negative numberwill fetch the 2x2 samples that
distance in 2x2s away. Used to impementbi-cubic and arbitrary sized fillers

Sample_bias_
y

2’s complementoffsetfor bi-linear sample.
0 will generate a normal fetch, a positive or negative numberwill fetch the 2x2 samples that
distance in 2x2s away. Used to impement bi-cubic and arbitrary sized filters

We can movefields between here and the constant register that hold the rest of the texture fetch state.

42 Opcodes

i Name Function | Notes
| TF Texture fetch

| CTE Cube texture fetch |
| AF Array fetch Used for vertex array fetches, ignores most of the
| state in the texture constant registers, allow driver

to only store offset+limit values in constant
register

4.3 Example
To do a vertex feich the instruction might be as follows:

| Field Size |Description eee
| Initialize 1 Setfor first fetch to each gpr.
| Wmask 4 Set to write to correct element of gpr- ie if fetching x, would be set to 1000

| Channels 2 0: 1 channel, duplicate acrossall four channels |
| Data_Format 4 1: none- just write to destination register

or 2? Color, unpack to rgba
| Bias 1? 0

Seale |mH10
Range1 Oto258256 _ a
| Texture 7 Which texture we wantto fetchfrom
| Texture t 1 linear memory array
| Dest 7 Destination address of texture/memory fetch

Exhibit 2042. doc
16774 Byes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***o9,.;45 04-44 pM

AMD1044_0258035

ATI Ex. 2109

IPR2023-00922

Page 325 of 326

ATI Ex. 2109
IPR2023-00922

Page 326 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. | PAGE

23 January, 2001 4 September, 2015 R400 Shader Processor Model | 12 of 12

Src7|Sourceregisterforaddress
Swizzel__ 5 Which part of source register contains texture coordinate
MAG Filter 1 2- Nearest
Min Filter 1 2- Nearest

Mip_filter 2 2- Disabled
Volume_filter 1 Filtering betweeen volume texture levels

2- Nearest

MIPenable 1 2- no mipmaping |
Filtermode 2 4- inputis not filtered
Scale 4 Multiply the x (and y?) components by this value, used for vertex fetching
Offset 4 Add this integer to the x component, after the scale, used for vertex fetching.
And the constant register pair that texture points to would contain:
Field | size|Description |
MinMIPlevel|4 NA
Max_MIP_level|4 NA
First_MIP_level | 4 NA
Clamp_$ 3 NA
Clamp_T 3 NA
Clamp_w .3 NA
Border_mode 1 NA
Tx_format 5 32bpp
Non_powerzZ 1 z- texture has been multipled by the texture size in the pixel shader. (need to work out how

to deal with clamp modes)
TAWIDTH | 4 Texture width(orfaceO width)eeeee
TXHEIGHT | 4 NA-
TXDEPTH 4 | NA

CTXWIDTHff[4TNA
CTXHEIGHTff4 NA

TXWIDTH_f2 4 | NA —“—i‘“‘“‘“i‘i‘ieee
TXHEIGHTf2 9 4 NA
TXWIDTH_ f3 4 NA

TAXHEIGHT®8 | 4 NA
TXWIDTH_f4 4 NA
TXHEIGHT #4 | 4 NA
TXWIDTH_f5 4 NA
TXHEIGHT 1|4 NA

Alpha_mask? | 1 NA
Chroma_key? 1 NA

Tex_coord_typ 3 ?:1D array |
e | [
LOD_BIAS 14 0
TX_PITCH | 14 Numberof bits will decrease, used with non power2 textures
Offset 32 Texture offset (includes endian and tile control)

Limit 32 Any memory accesses > limit will be killed, and the pixel that made the request will also be

killed. If the access was from a vertex shader, then the vertex shader will for the x value of |

the vertex to be NAN which will kill all triangles that attempt to use the vertex.

Exhibit 2042.doc 16774 Bytes*** © ATI Confidential. Reference Copyright Notice on Cover Page © ***94:45 54-44 om

AMD1044_0258036

ATI Ex. 2109

IPR2023-00922

Page 326 of 326

