ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201514 GEN-CXXXXK-REVA 1 of 51
i ke Talal
Author: Laurent Lefebvre
Issue To: Copy No:

R400 Sequencer Specification

SQ

Version 2.07

required capabilities and expected uses of the block. It also describes the block interfaces, internal sub-~
blocks, and provides internal state diagrams.

AUTOMATICALLY UPDATED FIELDS:
Document Location: Chperforcerd00doc_lib\designblocks\sg\R400_Sequencer.doc

Current Intranet Search Title: R400 Sequencer Specification

Overview: This is an architectural specification for the R400 Sequencer block (8EQ). It provides an overview of the |

APPROVALS.

Signature/Date

Name/Dept

Remarks:

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION THAT COULD BE
SUBSTANTIALLY DETRIMENTAL TO THE INTEREST OF ATI TECHNOLOGIES
INC. THROUGH UNAUTHORIZED USE OR DISCLOSURE.

transmitted in any form or by any means without the prior written permission of ATl Technologies Inc.”

“Copyright 2001, ATI Technologies Inc. All rights reserved. The material in this document constitutes an unpublished |
work created in 2001. The use of this copyright notice is intended to provide notice that ATI owns a copyright in this |

unpublished work. The copyright notice is not an admission that publication has occurred. This work contains | = =
confidential, proprietary information and trade secrets of ATl. No part of this document may be used, reproduced, or |

Exhibit 2035.docRa00_Sequencerdoc 73569 Bytes*** ® ATI Confidential. Reference Copyright Notice on Cover Page © ***

ATI 2035
LGv. ATI
IPR2015-00325

AMD1044_0257711

ATI Ex. 2109
IPR2023-00922
Page 1 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
. 24 September, 2001 4 September, 201544 2 of 51

Mymbpiame DONDA

Table Of Contents
T OVERWIEW Lottt e e e e s e et e £ ee £ £ e n £ £ e e aeeamb £ eab e £ ae £ e ame e nsemnnamnesaeanean
1.1 Top Level Block Diagram
1.2 Data FIow graph (OP). e
1.3 ConIrOl Graph. e
2. INTERPOLATED DATA BUS ot eceese e amease e et e s s sseeamease s snenameanessnes
3. INSTRUCTION STORE ...t ieieiieeceeteeeeceaseeareeaeea s esaneaaaseantnaantessseanensssessensnnsssnsesnes
4. SEQUENCER INSTRUCTIONS
5. CONSTANT STORES ... ccocicerreeenreaereeeneesneeseesneeseesneaese s s eesnsaseassenensanassssessnsessensneas
5.1 Memory OrganiZationS
52 Management of the Control Flow Constants ... 15 :
53 Management of the re-mapping tables ... 15
5.3.1 R400 Constant Management ...l B
53.2 Proposal for R400LE constant management ... s
533 DI DI oo v
534 Free LISt BIOCK ...ttt 17 &
53.5 De-allocate BIOCK ... 18
5.3.6 Operation of Incremental model............................ 18
5.4 Constant Store INAEXING. ... k..
5.5 Real TIme COMMENTS. ..ot 19 0 -
56 ConstantWaterfalling...........oo 19 @
6. LOOPING AND BRANCHES ..ot o ceeteie e se e csaseaeas e aeen e s emennses s e e snsnsensanen 2
6.1 The controlling STALE. ... 2
6.2 The Control FIOW PTOGram ... 20
6.2.1 Control flow instructions table ... 21
6.3 IMPIEMENTELION. ... 23
6.4 Data dependant predicate Instructions.............. 24
6.5 HW Detection of PV P S 25
6.6 Register file INBXING ... 2
| 6.7 Debugging the SRATEIS ... 2625
6.7.1 Method 1: Debugging regiSters ... 26
6.7.2 Method 2: Exporting the values inthe GPRS ..., 26
7. PIXEL KILL MASK oot aceaee e ree e s esesamt e e e e et e amt e sseamenassesaeeaemeesnsennns %
8. MULTIPASS VERTEX SHADERS (HOS) . i ceieeeeienceeneeasteescncee s st ses s ensnnss 26
| 9. REGISTER FILE ALLOCATION ...coitimtceeectesseseetentemssssesssssssassssasssssssassassssaneassassssassassncs 2726
10. FETCOH ARBITRATION ..o cieieceietececeanamaasessceeesanesasenaasessssassnasssssessnsasssssnsnssnssssssnsnsasssasesnn 28
11, ALU ARBITRATION e cteeeie e er e ceee s asesaseneas e e e aemenneaasesansaeas s ssnsamsessesnsnsssesssnsnn 28
120 HANDLING STALLS o s m e e ae e e me s e meam e s e e £ ek e nne e n e meamse e ean s 29
13. CONTENT OF THE RESERVATION STATION FIFOS .ot
14, THE OUTPUT FILE. .. oo nccees e ene s s aan e xene e s e nenneennennnean
F R I 0 147 PR
151 Interpolation of constant atiributes
16, STAGING REGISTERS ...ttt et as e ne st e ma e ms s e asnsanb e e nsannnnsasnnan
| Exhibit 2035 docRA00 73560 Bytes*** @ ATI Confidential. Reference Copyright Notice on Cover Page ® »=

AMD1044_0257712

ATI Ex. 2109
IPR2023-00922
Page 2 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 3 of 51

17. THE PARAMETER CACHE........... e T
171 EXport restriCtions ..o 2
17101 PIXEl @XPOMS, oo 2.
17102 VEHEX @XPOMS. oot 2.
17.1.3 Pass thrU @XPOrtS: ..o, 32
172 ArbIration res i NS 32 s
18, EXPORT TYPES .. it ccmrsmeaneesereasesessesesssassassnssssssssansssrssosasssaseessesssasnss st sssssnsssssnssnsssamasssssses vy
181 VerteX Shading.. ... 32 .
182 PIXEIShadiNg .o 33 0
19. SPECIAL INTERPOLATION MODES ..o ioiieieeicicm e s ana s s s ansssssssmssssssssss e 3
191 Real ime COMIMEBNGS ..o 3
192 Sprites/ XY screen coordinates/ FB information.................................... <<y
193 Auto generated COUNTBIS. ...t <
1931 Vertex shaders ... 34
1932 PIXEISNAUEIS ..oooooee oo 34 .
20, STATE MANAGEMENT ..ot ctarmsssssesassssssssesssmssesssss s s asassasssanssssssssssnssnassssssssmsssssssees 35
20,1 Parameter cache synchronization ... 3B
21, XY ADDRESS IMPORTS ...ccoiimresmaesmmssssmssssmssmsssssssssmsssssssssasssssessssassssssssssansassssnssssssssssesss 3B

21.1 Vertex indexes imports
22. REGISTERS

23. INTERFACES

231 EXternal INtErfACES.......oooooo oo B

232 SCHOSBP INEITACES......... e cs
23,21 SO _SPH oot 3
232,22 SC_SQ coiiiioiiioiveeee e 37
23.2.3 SQ1t0 SX(SP): INErPOIGLOT BUSoccc.coeereeveees e 39 ..
2324 SQtoSP: Staging Register Data.......co.oovvoveooeeeoee oo 39 ‘; L
2325 VGT1oSQ : Vertex INferface. ... 39 -
23.2.6 SQt0 SX: COMIOIBUS -.oooooooooooooooo oo 2 00
23.27 SX10 SQ 1 OULPUL File CONLOL..ccciiiccccceriiii e 25
23.2.8 SQ0 TP CONOI BUS ... 43 -
2329 TP to SQ: Texture stall...... ...\ 43 0
23210 SQ10 SPTEXIUIE STAll.....ooovooeeoeos oo, 4
23.2.11 SQ 10 SP: GPR and auto COUNLETooviiiviee 4
23212 SQ 10 SPX INSIUCHIONS .ov.v.ot oo ettt 45
23.2.13 SPto SQ: Constant address load/ Predicate Set/Kill set ... 8
23.2.14 SQ 1o SPx: constant broadCast ... 46 0
23.2.15 SQ10 CP: RBBM BUS.......oooooooooo oo 6
23.2.16 CP 10/ SQ: RBBM DUS....oooo1ooccooo oo 4
23.2.17 SQ10 CP: SEAE MEPOMo.oooeooeeoeeeeee oo 47 0

233 Example of control flow program eXeCUtion 47
Exhibit 2036 docRAG0_ y 73560 Bytes*** @ ATl Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257713

ATI Ex. 2109
IPR2023-00922
Page 3 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201544 4 of 51
TV NN JaTaisL]
| 24 OPEN ISSUES ...oouuunreecruuusnmssessussesesssssssssesssssssssssssssssssssessssssssssssssssssssssssssssssssssesssessoes 51
Exhibit 2035 docRA00 d 73560 Bytes*** @ ATl Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257714

ATI Ex. 2109
IPR2023-00922
Page 4 of 326

ORIGINATE DATE
24 September, 2001

EDIT DATE

4 September, 201544

5 aYatat

4

DOCUMENT-REV. NUM.
GEN-CXXXXX-REVA

PAGE
5 of 51

Revision Changes:

Rev 0.1 (Laurent Lefebvre)
Date: May 7, 2001

Rev 0.2 (Laurent Lefebvre)
Date : July 9, 2001

Rev 0.3 (Laurent Lefebvre)
Date : August 6, 2001

Rev 0.4 (Laurent Lefebvre)
Date : August 24, 2001

Rev 0.5 (Laurent Lefebvre)
Date : September 7, 2001
Rev 0.6 (Laurent Lefebvre)
Date : September 24, 2001
Rev 0.7 (Laurent Lefebvre)
Date : October 5, 2001

Rev 0.8 (Laurent Lefebvre)
Date : October 8, 2001
Rev 0.9 (Laurent Lefebvre)
Date : October 17, 2001

Rev 1.0 (Laurent Lefebvre)
Date : October 18, 2001
Rev 1.1 (Laurent Lefebvre)
Date : October 26, 2001

Rev 1.2 (Laurent Lefebvre)
Date : November 16, 2001
Rev 1.3 (Laurent Lefebvre)
Date : November 26, 2001
Rev 1.4 (Laurent Lefebvre)
Date : December 6, 2001

Rev 1.5 (Laurent Lefebvre)
Date : December 11, 2001

Rev 1.6 (Laurent Lefebvre)
Date : January 7, 2002

Rev 1.7 (Laurent Lefebvre)
Date : February 4, 2002
Rev 1.8 (Laurent Lefebvre)
Date : March 4, 2002

Rev 1.9 (Laurent Lefebvre)
Date : March 18, 2002

Rev 1.10 (Laurent Lefebvre)
Date : March 25, 2002

Rev 1.11 (Laurent Lefebvre)
Date : April 19, 2002

Rev 2.0 (Laurent Lefebvre)
Date : April 19, 2002

First draft.

Changed the interfaces to reflect the changes in the
SP. Added some details in the arbitration section.
Reviewed the Sequencer spec after the meeting on
August 3, 2001.

Added the dynamic allocation method for register
file and an example (written in part by Vic) of the
flow of pixels/vertices in the sequencer.

Added timing diagrams (Vic)

Changed the spec to reflect the new R400
architecture. Added interfaces.

Added constant store management, instruction
store management, control flow management and
data dependant predication.

Changed the control flow method to be more
flexible. Also updated the external interfaces.
Incorporated changes made in the 10/18/01 control
flow meeting. Added a NOP instruction, removed
the conditional_execute_or_jump. Added debug
registers.

Refined interfaces to RB. Added state registers.

Added SEQ-SPO interfaces. Changed delta
precision. Changed VGT—SPO interface. Debug
Methods added.

Interfaces greatly refined. Cleaned up the spec.

Added the different interpolation modes.

Added the auto incrementing counters. Changed
the VGT—S8Q interface. Added content on constant
management. Updated GPRs.

Removed from the spec all interfaces that weren't
directly tied to the SQ. Added explanations on
constant management. Added PA-SQ
synchronization fields and explanation.

Added more details on the staging register. Added
detail about the parameter caches. Changed the
call instruction to a Conditionnal_call instruction.
Added details on constant management and
updated the diagram.

Added Real Time parameter control in the SX
interface. Updated the control flow section.

New interfaces to the SX block. Added the end of
clause modifier, removed the end of clause
instructions.

Rearangement of the CF instruction bits in order to
ensure byte alignement.

Updated the interfaces and added a section on
exporting rules.

Added CP state report interface. Last version of the
spec with the old control flow scheme

New control flow scheme

Exhibit 2036 docR40_Sequencercoc 73569 Bytes™™* @ ATI Confidential. Reference Copyright Notice on Cover Page © »»+

AMD1044_0257715

ATI Ex. 2109
IPR2023-00922
Page 5 of 326

ORIGINATE DATE
24 September, 2001

EDIT DATE R400 Sequencer Specification PAGE
4 September, 201514 6 of 51
VX PN NS JaTaisL]

Rev 2.01 (Laurent Lefebvre)
Date : May 2, 2002

Rev 2.02 (Laurent Lefebvre)
Date : May 13, 2002

Rev 2.03 (Laurent Lefebvre)
Date : July 15, 2002

Rev 2.04 (Laurent Lefebvre)
Date :August 2, 2002

Rev 2.05 (Laurent Lefebvre)
Date : September 10, 2002
Rev 2.06 (Laurent Lefebvre)
Date : October 11, 2002
Rev 2.07 (Laurert Lefebyre
Date : October 14, 2002

Changed slightly the control flow instructions to
allow force jumps and calls.

Updated the Opcodes. Added type field to the
constant/pred interface. Added Last field to the
SQ-—S8P instruction load interface.

SP interface updated to include predication
optimizations. Added the predicate no stall
instructions,

Documented the new parameter generation scheme
for XY coordinates points and lines STs.

Some interface changes and an architectural
change to the auto-counter scheme.

Widened the event interface to 5 bits. Some other
little typos corrected.

Loops, jumps and calls are now using a 13 bit
address which allows fo jump and call and loop
around any conbrol flow addresses (does not
requires fo be even anymore).

Exhibit 2035 docRA00 . 73560 Bytes*** @ ATl Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257716

ATI Ex. 2109
IPR2023-00922
Page 6 of 326

ORIGINATE DATE
24 September, 2001

EDIT DATE
4 September, 201534

FEYNINN VYA A

DOCUMENT-REV. NUM.
GEN-CXXXXX-REVA

PAGE
7 of 51

1. Overview

The sequencer chooses two ALU threads and a fetch hread to execute, and executes all of the instructions in a block
before looking for a new clause of the same type. Two ALU threads are executed interieaved to hide the ALU latency.
The arbitrator will give priority to older threads. There are two separate reservation stations, one for pixel vectors and
one for vertices vectors. This way a pixel can pass a vertex and a vertex can pass a pixel.

To suppont the shader pipe the sequencer also contains the shader instruction cache, constant store, control flow
constants and texture state. The four shader pipes also execute the same instruction thus there is only one

sequencer for the whole chip.

The sequencer first arbitrates between vectors of 64 vertices that arrive directly from primitive assembly and vectors
of 16 quads (64 pixels) that are generated in the scan converter.

The vertex or pixel program specifies how many GPRs it needs to execute. The sequencer will not start the next
vector until the needed space is available in the GPRs.

Exhibit 2036 docRA00_Sequencerdoc 73869 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page ® »

AMD1044_0257717

ATI Ex. 2109
IPR2023-00922
Page 7 of 326

»x @ 9k 19A0D UO 39110N WBUAdOD BOUSIBISY “[RIUSPIUOD [LY @ »soVdsoses

vivd
WYdvd

Na L=
NOLLISGA

saepl

sepresusnbeg oo YHItH GEOZ AT

AIIAIIAO J9IUINDIS [BIIUIN) 1T INSL]
7 PE0T BB
5)= | J ay g .
Ja—
i i i
VLIYa I XL
~190/0d =—180/0d #— 90/0d |+ o
o ssaIppY
) i 3 ¥ INVISNOD S o dl e
N | | suainiod ,
” | | avaxod .
e le e v , L _
i U+ ALVYLIS HOL3d =
ds ds | ds ds JHOLSO |z
, LSNIXEL
“ u ™ Sagy | =
aivlsL
Ll
. e ke ey SELYOaRNd
)) T T
LisNiY U
v B e I W | » IMOLS ISNI |«
| W3LNI | ¥3LNI [HILNI [« . ,
i | iy
OHINOD 1T Loh
avon
w 7 w B 0S 16
e
Hygssouo i B! 7
! ’y y H peay mof_
Sl SQYAD Z——— TONINGD TOHLNOD o N
YOLRA | f 42
TOHINGD SINVLISNOD
X3LM3A
S 40
V1S
VLA
15408 PEGLOC equisiues L00Z ‘tequisides 2
I9vd uoeoyipads Jeousnbag ooy Jlva Lia3 31vA ALYNIDINO

IVIdHLVIN J4d™0 JAILOFLO™Ud

AMD1044_0257718

ATI Ex. 2109

IPR2023

00922

Page 8 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 9 of 51
VX TN DOV A A

1.1 Top Level Block Diagram

Input Arbiter j
|
L]
o VTX RS PIX RS
Exec Arbiter
ALU . Texture

Figure 2: Reservation stations and arbiters

Under this new scheme, the sequencer (8Q) will only use one global state management machine per vector type

(pixel, vertex) that we call the reservation station (RS).

Exhibit 2036 docRA00_Sequencerdoc 73869 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page ® »

AMD1044_0257719

ATI Ex. 2109
IPR2023-00922
Page 9 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
l 24 September, 2001 4 September, 201544 10 of 51
VXN PN la'alel K]
| 1.2 Data Flow graph (SP)
w
e &
5|8
I T 7]
- Register File A8]
3] 1 ! |
Al G
scalar inpub/output S 1
- 14
1 pipeline stage ! —\ te Jre requ ;\
s L
kel
E A
& |
£ Register File \
N E— 7’4 A
Sﬁscalar input/out put'\ | \] [
[= { 4 MAC] text] [Teques
pipeline stage | ™
=
<
-
L
< hy —
S @© A
kst Q
ES 2) L 1| \
@ A Register File [! o
L 3
MA fexturel< lquest % \
scalar input/output B o By N
4 2 =
‘ pipeline stage i & %
— ! e
m
W ===
o £ \|
2 o
k3 = Register File
2 2 —
g s] "J“L
\
g I lq A fexture ref pst \
~ 7\/[<sca!ar inpuboUtput ‘
el s Mux
W
mEnEE 8
% e g
«©
e
5
B
: < -
to Primitive Assembly Unit or RenderBackend
Figure 3: The shader Pipe
Exhibit 2035 docRAG0- d 73569 Bytes*** @ ATl Confidential. Reference Copyright Notice on Cover Page © »+

AMD1044_0257720

ATI Ex. 2109
IPR2023-00922
Page 10 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 11 of 51
VX TN Jalalel i
The gray area represents blocks that are replicated 4 times per shader pipe (16 times on the overall chip).
1.3 Control Graph
»
Clause # + Rﬂy
WrAddr IS SEQ csT WrAddr
CMD
csT
2
F1%° cMp CSTesTicstipx A B C Wrvec
RdAddr | . L WiScal \yoagar
v v v v ¥ ¥
e
w
FETCH SP M— OF
WrAddr &

Figure 4: Sequencer Control interfaces

In green is represented the Fetch control interface, in red the ALU control interface, in blue the Interpolated/Vector

control interface and in purple is the output file control interface.

2. Interpolated data bus

The interpolators contain an IJ buffer to pack the information as much as possible before writing it to the register file.

Exhibit 2036 docRA00_Sequencerdoc 73869 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page ® »

AMD1044_0257721

ATI Ex. 2109
IPR2023-00922
Page 11 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201544 12 of 51
VX PN NS JalalwL]
RE
i i
ToRB
e i Al
1Js CROSSBAR (4x100 bits) ’
[
1 AQ At A2 BO IJs buffer (ping-pong buffer)
(@5 bits *8 (1) ~4* 4 * 4 (quadruple-buffers Ag Al A2 BO
12800 bits
2 B1 co c1 c2
B1 co c1 c2
3 c3 C4 C5 bo XYs buffer (ping-pong buffer}
24 bits * 16 quads * 2 c3 c4 c5 DO
768 bits
32024
4 D1 D2 EO Et
D1 D2 EO Et
! i T T
INTERPOLATORS | ‘ ! L
! FIX-FLOAT + EXPANSION
N]
g —
512
M
Nt
jﬂﬂ i ﬁﬂﬁﬁ JT
UL | 2uL SUL“AUT‘ 1URHZUR‘ SUR}MURT‘HLL,EZLL‘MLL‘: 1LR“2LRM3LR | 4R X4
I i I | i I 1 1
Figure §: Interpolation buffers
Exhibit 2035 docRA00 . 73560 Bytes*** @ ATl Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257722

ATI Ex. 2109
IPR2023-00922
Page 12 of 326

»x @ 9bkd 19000 UO 301ION WBUAdOD 90UBIBISY [EIIUSPUUOD |LY @ »so¥a soses

wiriderp Sunun uonejodiouy :9 3N

90Ty

Sp°EE0E Waxy

A
XAN cd ld AX
€9|L¥ | 1E| Sl €9l v | 1€ | S1
-00H9¥ | -g2| -z1 L3 | 04| €0 | 0d 13 00| €0 04 -09 -v¥ |-92 | -2l €
AN AL A X AX | AX | Ax | &S
65 €V | LZ| L1 65 €V | L2 1L,
-oc-ov | -vz| -gl 03 10 o) zv| o3 o) %o) ev |95 -ov |-z | 8 | o
AN AL A AX| AX | AX | AX
ss |6¢ | €2, I
25 19e | 02|) 00 zal vo Y 00 zal vo W zs -9¢ -0z | | oo
AATA AX| AX | AX
1519 | 6} | oo 15158 6L [eq] 0
-8¥ ¢ | 91 A la| €0 19| oY La| 0| L8| oY | -9¥%|-2¢ | -9l ax | ds
AN A AX| AX | AX
E 0a GV 79) 04 t
& 13| 13| x| oaloa %20 | 20| x| 08| og A
03 +%9) K] v Z
03
ax | 02 AX |§O [S0 | ax |10 | 1O A | EY 1Y gs
za %) 00 A% P
Ax | €910 | xx 1 #0 [¥O | xx |00 | 0O Aax | Y s
Xa] %) Ig ov 0
x| ralia Ax €0 €0 ax | e | 18] ax| Y| Y] as
o emrertt
€zlizel lzl|ozL 6Ll 8bLl 21l 9Ll |ShL vl €bl|2hl|bbL|0obl 6L | 8L | 2L | 9L |SL | %L €L 2L | 1L |oL
1Gi0¢l YATHE-XOOOKDO-NID E‘m Ho,m squisideg ¥ 100z 1equieldes yZ . ° ‘
JOVd WNN AFH-LNIIWND04 31lva Lia3d F1vA FLVYNIDIHYO E

IVIdHLVIN J4d™0 JAILOFLO™Ud

AMD1044_0257723

ATI Ex. 2109
IPR2023-00922

Page 13 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201514 14 of 51

i TV s I
Above is an example of a tile the sequencer might receive from the SC. The write side is how the data get stacked
into the XY and IJ buifers, the read side is how the data is passed to the GPRs. The IJ information is packed in the IJ
buffer 4 quads at a time or two clocks. The sequencer allows at any given time as many as four quads to interpolate a
parameter. They all have to come from the same primitive. Then the sequencer controls the write mask to the GPRs
to write the valid data in.

3. Instruction Store

There is going to be only one instruction store for the whole chip. It will contain 4096 instructions of 96 bits each.

It is likely to be a 1 port memory; we use 1 clock to load the ALU instruction, 1 clocks to load the Fetch instruction, 1
clock to load 2 control flow instructions and 1 clock to write instructions.

The instruction store is loaded by the CP thru the register mapped registers.

The VS_BASE and PS_BASE context registers are used to specify for each context where its shader is in the
instruction memory.

For the Real time commands the story is quite the same but for some small differences. There are no wrap-around
points for real time so the driver must be careful not to overwrite regular shader data. The shared code (shared
subroutines) uses the same path as real time.

4. Sequencer Instructions

All conirol flow instructions and move instructions are handied by the sequencer only. The ALUs will perform NOPs
during this time (MOV PV PV, PS,PS) if they have nothing else to do.

5. Constant Stores

5.1 Memory organizations

A likely size for the ALU constant store is 1024x128 bits. The read BW from the ALU constant store is 128 bits/clock
and the write bandwidth is 32 bits/clock (directed by the CP bus size not by memory ports).

The maximum logical size of the constant store for a given shader is 256 constants. Or 512 for the pixel/vertex shader
pair. The size of the re-mapping table is 128 lines (each line addresses 4 constants). The write granularity is 4
constants or 512 bits. It takes 16 clocks to write the four constants. Real time requires 256 lines in the physical
memory (this is physically register mapped).

The texture state is also kept in a similar memory. The size of this memory is 320x96 bits (128 texture states for
regular mode, 32 states for RT). The memory thus holds 128 texture states (192 bits per state). The logical size
exposes 32 different states total, which are going to be shared between the pixel and the vertex shader. The size of
the re-mapping table to for the texture state memory is 32 lines (each line addresses 1 texture state lines in the real
memory). The CP write granularity is 1 texture state lines (or 192 bits). The driver sends 512 bits but the CP ignores
the top 320 bits. It thus takes 6 clocks to write the texture state. Real time requires 32 lines in the physical memory
(this is physically register mapped).

The control flow constant memory doesn't sit behind a renaming table. It is register mapped and thus the driver must
reload its content each time there is a change in the control flow constants. lts size is 32032 because it must hold 8
copies of the 32 dwords of control flow constants and the loop construct constants must be aligned.

The constant re-mapping tables for texture state and ALU constants are logically register mapped for regular mode
and physically register mapped for RT operation.

Exhibit 2035 docRAG0- d 73569 Bytes*** @ ATl Confidential. Reference Copyright Notice on Cover Page © »+

AMD1044_0257724

ATI Ex. 2109
IPR2023-00922
Page 14 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 15 of 51

AOIA A

5.2 Management of the Contrgl‘Flow Constants

The control flow constants are register mapped, thus the CP writes to the according register to set the constant, the
SQ decodes the address and writes to the block pointed by its current base pointer (CF_WR_BASE). On the read
side, one level of indirection is used. A register (SQ_CONTEXT_MISC.CF_RD_BASE) keeps the current base pointer
to the control flow block. This register is copied whenever there is a state change. Should the CP write to CF after the
state change, the base register is updated with the (current pointer number +1)% number of states. This way, if the
CP doesn't write to CF the state is going to use the previous CF constants.

5.3 Management of the re-mapping tables

5.3.1 R400 Constant management

The sequencer is responsible to manage two re-mapping tables (one for the constant store and one for the texture
state). On a state change (by the driver), the sequencer will broadside copy the contents of its re-mapping tables to a
new one. We have 8 different re-mapping tables we can use concurrently.

The constant memory update will be incremental, the driver only need to update the constants that actually changed
between the two state changes.

For this model to work in its simplest form, the requirement is that the physical memory MUST be at least twice as
large as the logical address space + the space allocated for Real Time. In our case, since the logical address space
is 512 and the reserved RT space can be up to 256 entries, the memory must be of sizes 1280 and above. Similarly
the size of the texture store must be of 32*2+32 = 96 entries and above.

532 Proposal for R400LE constant management

To make this scheme work with only 512+256 = 768 entries, upon reception of a CONTROL packet of state + 1, the
sequencer would check for SQ_IDLE and PA_IDLE and if both are idle will erase the content of state to replace it with
the new state (this is depicted in Figure 8: De-allocation mechanismFigure-8:-De-allocation-mechanismFigure 8:-De
allocation-mechanism). Note that in the case a state is cleared a value of 0 is written to the corresponding de-
allocation counter location so that when the 8Q is going to report a state change, nothing will be de-allocated upon
the first report.

The second path sets all context dirty bits that were used in the current state to 1 (thus allowing the new state to
reuse these physical addresses if needed).

Exhibit 2036 docRA00_Sequencerdoc 73869 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page ® »

AMD1044_0257725

ATI Ex. 2109
IPR2023-00922
Page 15 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201544 16 of 51

Mypbpiame DONDA

Free List
Free
Address 7!7
Free_ptr—»| Renaming Table
Context 0=> N
Current/Last
Context
(8 rows of 16- 8 .
bit physical => [~ Logical Address
128 entries copy o —
in eight clocks] | Context 1 & Context
[]
@
@
§ Context N Physical
: Address
displaced by that
Context
Address
to Allocats
Global Register
Data Bus
Staging Data
Constants Fres | Buffer Physical
location € "T° Memory
N list
available 3)
WRTR | Staging Write Addr
—
Dirty)
physical Dealloc
address Gounts next
o physical
schedule address
for ready 3
de-alloc for allocate
|
Logical address | Coﬁi?ant
Onthe ——p~
GlbRegBus & & L Request
when Isb are zero This |
first word of writs
twordofwrite | Table %(?iet Cg?rttext LAAT
for 1 Context Y Y i
Current/Last Lc?g?:;al Lopg?gal Context &
Physical | Logical
Address Address Address -~ Address
per {Only {If set |
Logical de- don't
allocate allocate
Address -
if set) | or de-
| allocate) | Renarming
table
N-Contexts
Copy Last held above to
Current Context on receipt
of Set Constant for a
new context (Hide loading B — e 1]
behind Set State load - 16 clocks)
all other Set States just write one
entry to current state.
Figure 7: Constant management
Exhibit 2035 docRA00 . 73560 Bytes*** @ ATl Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257726

ATI Ex. 2109
IPR2023-00922
Page 16 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201514 GEN-CXXXXX-REVA 17 of 51
Lk ok Talaie LK1
SQ_STATE#
ADDR
DEALOC

Free List e ONT VALUE | COUNTERS <—WRITE_E‘NABLE

i
‘

‘ i PREVIOUS
|

| NOT STATE
‘
NEW
} STATE
VALUE |
||
—_— =
VALID |
e E—
OR
le———SQ IDLE
AND &—PA_IDLE
k& CP_NEW_STATE_CNTL—
REMAPPING
TABLE e SETCTXBITS

Figure 8: De-allocation mechanism for R400LE

5.3.3 Dirty bits

Two sets of dirty bits will be maintained per logical address. The first one will be set to zero on reset and set when
the logical address is addressed. The second one will be set to zero whenever a new context is written and set for
each address written while in this context. The reset dirty is not set, then writing to that logical address will not
require de-allocation of whatever address stored in the renaming table. If it is set and the context dirty is not set, then
the physical address store needs to be de-allocated and a new physical address is necessary to store the incoming
data. If they are both set, then the data will be written into the physical address held in the renaming for the current
logical address. No de-allocation or allocation takes place. This will happen when the driver does a set constant
twice to the same logical address between context changes. NOTE: It is important to detect and prevent this, failure
to do it will allow multiple writes to allocate all physical memory and thus hang because a context will not fit for
rendering to start and thus free up space.

5.3.4 Free List Block

A free list block that would consist of a counter (called the IFC or Initial Free Counter) that would reset o zero and
incremented every time a chunk of physical memory is used until they have all been used once. This counter would
be checked each time a physical block is needed, and if the original ones have not been used up, us a new one, else
check the free list for an available physical block address. The count is the physical address for when getting a
chunk from the counter.

Storage of a free list big enough to store all physical block addresses.

Maintain three pointers for the free list that are reset to zero. The first one we will call write_ptr. This pointer will
identify the next location to write the physical address of a block to be de-allocated. Note: we can never free more
physical memory locations than we have. Once recording address the pointer will be incremented to walk the free list
like a ring.

The second pointer will be called stop_ptr. The stop_ptr pointer will be advanced by the number of address chunks
de-allocates when a context finishes. The address between the stop_ptr and write_ptr cannot be reused because
they are still in use. But as soon as the context using then is dismissed the stop_ptr will be advanced.

The third pointer will be called read_ptr. This pointer will point will point to the next address that can be used for
allocation as long as the read_ptr does not equal the stop_ptr and the IFC is at its maximum count.

Exhibit 2036 docRA00_Sequencerdoc 73869 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page ® »

AMD1044_0257727

ATI Ex. 2109
IPR2023-00922
Page 17 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

l 24 September, 2001 4 September, 201544 18 of 51
Jatate

' 5.3.5 De-allocate Block

This block will maintain a free physical address block count for each context. While in current context, a count shall
be maintained specifying how many blocks were written into the free list at the write_ptr pointer. This count will be
reset upon reset or when this context is active on the back and different than the previous context. It is actually a
count of blocks in the previous context that will no longer be used. This count will be used to advance the write_ptr
pointer to make available the set of physical blocks freed when the previous context was done. This allows the
discard or de-allocation of any number of blocks in one clock.

5.3.6 Operation of Incremental model

The basic operation of the model would start with the write_ptr, stop_ptr, read_ptr pointers in the free list set to zero
and the free list counter is set to zero. Also all the dirty bits and the previous context will be initialized to zero. When
the first set constants happen, the reset dirty bit will not be set, so we will allocate a physical location from the free list
counter because its not at the max value. The data will be written into physical address zero. Both the additional
copy of the renaming table and the context zeros of the big renaming table will be updated for the logical address that
was written by set start with physical address of 0. This process will be repeated for any logical address that are not
dirty until the context changes. [f a logical address is hit that has its dirty bits set while in the same context, both dirty
bits would be set, so the new data will be over-written to the last physical address assigned for this logical address.
When the first draw command of the context is detected, the previous context stored in the additional renaming table
will be copied to the larger renaming table in the current (new) context location. Then the set constant logical
address with be loaded with a new physical address during the copy and if the reset dirty was set, the physical
address it replaced in the renaming table would be entered at the write_ptr pointer location on the free list and the
write_ptr will be incremented. The de-allocation counter for the previous context (eight) will be incremented. This as
set states come in for this context one of the following will happen:

1.) No dirty bits are set for the logical address being updated. A line will be allocated of the free-list counter or
the free list at read_ptr pointer if read_ptr != to stop_ptr .

2.) Reset dirty set and Context dirty not set. A new physical address is allocated, the physical address in the
renaming table is put on the free list at write_ptr and it is incremented along with the de-allocate counter for
the last context.

3.) Context dirty is set then the data will be written into the physical address specified by the logical address.

This process will continue as long as set states arrive. This block will provide backpressure to the CP whenever he
has not free list entries available (counter at max and stop_ptr == read_ptr). The command stream will keep a count
of contexts of constants in use and prevent more than max constants contexts from being sent.

Whenever a draw packet arrives, the content of the re-mapping table is written to the correct re-mapping table for the
context number. Also if the next context uses less constants than the current one all exceeding lines are moved to the
free list to be de-allocated later. This happens in parallel with the writing of the re-mapping table to the correct
memory.

Now preferable when the constant context leaves the last ALU clause it will be sent to this block and compared with
the previous context that left. (Init to zero) If they differ than the older context will no longer be referenced and thus
can be de-allocated in the physical memory. This is accomplished by adding the number of blocks freed this context
to the stop_ptr pointer. This will make all the physical addresses used by this context available to the read_ptr
allocate pointer for future allocation.

This device allows representation of muitiple contexts of constants data with N copies of the logical address space. It
also allows the second context to be represented as the first set plus some new additional data by just storing the
delta’s. It allows memory to be efficiently used and when the constants updates are small it can store multiple
context. However, if the updates are large, less contexts will be stored and potentially performance will be degraded.
Although it will still perform as well as a ring could in this case.

5.4 Constant Store Indexing

In order to do constant store indexing, the sequencer must be loaded first with the indexes (that come from the
GPRs). There are 144 wires from the exit of the SP to the sequencer (9 bits pointers x 16 vertexes/clock). Since the
data must pass thru the Shader pipe for the float to fixed conversion, there is a latency of 4 clocks (1 instruction)

| Exchibit 2035 docRAG0- . 73569 Bytes*** @ ATl Confidential. Reference Copyright Notice on Cover Page © »+

AMD1044_0257728

ATI Ex. 2109
IPR2023-00922
Page 18 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201514 GEN-CXXXXX-REVA 19 of 51

4, Y A A
between the time the sequencer is loaded and the time one can index into the constant store. The assembly will look
like this

MOVA R1.X,R2.X /I Loads the sequencer with the content of R2.X, also copies the content of R2.X into R1.X
NOP /7 latency of the float to fixed conversion
ADD R3,R4,CO[R2.X}/ Uses the state from the sequencer to add R4 to CO[R2.X] into R3

Note that we don't really care about what is in the brackets because we use the state from the MOVA instruction.
R2.X is just written again for the sake of simplicity and coherency.

The storage needed in the sequencer in order to support this feature is 2*64*9 bits = 1152 bits.

5.5 Real Time Commands

The real time commands constants are written by the CP using the register mapped registers allocated for RT. It
works is the same way than when dealing with regular constant loads BUT in this case the CP is not sending a logical
address but rather a physical address and the reads are not passing thru the re-mapping table but are directly read
from the memory. The boundary between the two zones is defined by the CONST_EO_RT control register. Similarly,
for the fetch state, the boundary between the two zones is defined by the TSTATE_EO_RT control register.

5.6 Constant Waterfalling

In order to have a reasonable performance in the case of constant store indexing using the address register, we are
going to have the possibility of using the physical memory port for read only. This way we can read 1 constant per
clock and thus have a worst-case waterfall mode of 1 vertex per clock. There is a small synchronization issue related
with this as we need for the SQ to make sure that the constants where actually written to memory (not only sent to the
sequencer) before it can allow the first vector of pixels or vertices of the state to go thru the ALUs. To do so, the
sequencer keeps 8 bits (one per render state) and sets the bits whenever the last render state is written to memory
and clears the bit whenever a state is freed.

CONST_EO_RT

RT SECTCON
(Reads/Writes are direct)

REGULAR SECTION
(Reads/Writes are passing
thru a remaping table)

Figure 9: The Constant store

Exhibit 2036 docRA00_Sequencerdoc 73869 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page ® »

AMD1044_0257729

ATI Ex. 2109
IPR2023-00922
Page 19 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

l 24 September, 2001 4 September, 201544 20 of 51

| 6. Looping and Branches

Loops and branches are planned to be supported and will have to be dealt with at the sequencer level. We plan on
supporting constant loops and branches using a control program.

6.1 The controlling state.

The R400 controling state consists of:

Boolean[256:0]

Loop_count[7:0]{31:0]

Loop_Start[7:0][31:0]

Loop_Step[7:0][31:0]

That is 256 Booleans and 32 loops.

We have a stack of 4 elements for nested calls of subroutines and 4 loop counters to allow for nested loops.

This state is available on a per shader program basis.

6.2 The Control Flow Program

We'd like to be able to code up a program of the form:

1 Loop

2 Exec TexFetch
3 TexFetch
4: ALU

5: ALU

6: TexFetch
7 End Loop

8 ALU Export

But realize that 3: may be dependent on 2: and 4: is almost certainly dependent on 2: and 3.. Without clausing,
these dependencies need to be expressed in the Control Flow instructions. Additionally, without separate 'texture
clauses’ and 'ALU clauses' we need to know which instructions to dispatch to the Texture Unit and which to the ALU
unit. This information will be encapsulated in the flow control instructions.

Each control flow instruction will contain 2 bits of information for each (non-control flow) instruction:
a) ALU or Texture
b) Serialize Execution

(b) would force the thread to stop execution at this point (before the instruction is executed) and wait until all textures
have been fetched. Given the allocation of reserved bits, this would mean that the count of an 'Exec’ instruction
would be limited to about 8 (non-control-flow) instructions. If more than this were needed, a second Exec (with the
same conditions) wouid be issued.

Another function that relies upon ‘clauses’ is aliocation and order of execution. We need to assure that pixels and
vertices are exported in the correct order (even if not all execution is ordered) and that space in the output buffers are
allocated in order. Additionally data can't be exported until space is allocated. A new control flow instruction:

Alloc <buffer select -- position,parameter, pixel or vertex memory. And the size required>.

would be created to mark where such allocation needs to be done. To assure allocation is done in order, the actual
allocation for a given thread can not be performed unless the equivalent allocation for all previous threads is already
completed. The implementation would also assure that execution of instruction(s) following the serialization due to the
Alloc will oceur in order -- at least until the next serialization or change from ALU to Texture. In most cases this will
allow the exports to occur without any further synchronization. Only 'final' allocations or position allocations are

Exhibit 2035 docRAG0- d 73569 Bytes*** @ ATl Confidential. Reference Copyright Notice on Cover Page © »+

AMD1044_0257730

ATI Ex. 2109
IPR2023-00922
Page 20 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 21 of 51
DA A

Dimbendn
guaranteed to be ordered. Because strict ordering is required for pixels, parameters and positions, this implies only
a single alloc for these structures. Vertex exports to memory do not require ordering during allocation and so multiple
‘allocs’ may be done.

6.2.1 Control flow instructions table

Here is the revised control flow instruction set.

Note that whenever a field is marked as RESERVED, it is assumed that all the bits of the field are cleared (0).

NOP
47 ... 44 | 43 \ 42 ... 0
0000 | Addressing | RESERVED
This is & regular NOP.
Execute
47 ... 44 43 40...34 33..16 15...12 11...0
0001 Addressing RESERVED Instructions type + serialize (2 | Count Exec Address

instructions)

Execute_End

47 ... 44 43 40...34 33..16 15...12 11...0

0010 Addressing RESERVED Instructions type + serialize (9 | Count Exec Address
instructions)

Execute up to @ instructions at the specified address in the instruction memory. The Instruction type field tells the
sequencer the type of the instruction (LSB) (1 = Texture, 0 = ALU and whether to serialize or not the execution (MSB)
(1 = Serialize, 0 = Non-Serialized). If Execute_End this is the last execution block of the shader program.

Conditional_Execute

47 ... 44 43 42 41...34 33...16 15...12 11...0
0011 Addressing | Condition | Boolean | Instructions type + serialize (9 Count Exec Address
address instructions)

Conditional _Execute_End

47 ... 44 43 42 41...34 33...16 15...12 11..0
0100 Addressing | Condition | Boolean | Instructions type + serialize (8 Count Exec Address
address instructions)

If the specified Boolean (8 bits can address 256 Booleans) meets the specified condition then execute the specified
instructions (up to 9 instructions). If the condition is not met, we go on to the next control flow instruction. If
Conditional_Execute_End and the condition is met, this is the last execution block of the shader program.

Conditional_Execute_Predicates

47 ... 44 43 42 41...36 35..34 33...16 15...12 11...0

0101 Addressing | Condition RESERVED | Predicate Instructions Count Exec Address
vector type + serialize
(9 instructions)

Conditional_Execute_Predicates_End

47 ... 44 43 42 41...36 35..34 33...16 15...12 11...0

0110 Addressing | Condition RESERVED | Predicate Instructions Count Exec Address
vector type + serialize
(9 instructions)

Check the AND/OR of all current predicate bits. If AND/OR matches the condition execute the specified number of
instructions. We need to AND/OR this with the kill mask in order not to consider the pixels that aren't valid. If the

Exhibit 2036 docRA00_Sequencerdoc 73869 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page ® »

AMD1044_0257731

ATI Ex. 2109
IPR2023-00922
Page 21 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201544 22 of 51

EPN Y LN A
condition is not met, we go on to the next control flow instruction. If Conditional_Execute_Predicates_End and the
condition is met, this is the last execution block of the shader program.

Conditional_Execute_Predicates_No_Stall

47 ... 44 43 42 41...36 35..34 33...16 15...12 11..0

1101 Addressing | Condition RESERVED | Predicate Instructions Count Exec Address
vector type + serialize
(9 instructions)

Conditional_Execute_Predicates_No_Stall_End

47 ... 44 43 42 41...36 35..34 33...16 15...12 11..0

1110 Addressing | Condition RESERVED | Predicate Instructions Count Exec Address
vector type + serialize
(9 instructions)

Same as Conditionnal_Execute_Predicates but the SQ is not going to wait for the predicate vector to be updated.
You can only set this in the compiler if you know that the predicate set is only a refinement of the current one (like a
nested if) because the optimization would still work.

Loop_Start

47 .. 44 | 43 [42 .21 \ 20...16 | 15..128 | 124...0

0111 [Addressing | RESERVED \ loop ID | RESERVED [Jump address

Loop Start. Compares the loop iterator with the end value. If loop condition not met jump to the address. Forward
jump only. Also computes the index value. The loop id must match between the start to end, and also indicates which
control flow constants should be used with the loop.

Loop_End
47 ... 44 | 43 | 4224] 23... 21 i 20... 16 [15,4213 | 44+12..0
1000 | Addressing | RESERVED | Predicate break | loop 1D | RESERVED | start address

Loop end. Increments the counter by one, compares the loop count with the end value. If loop condition met,
continue, else, jump BACK to the start of the loop. If predicate break != 0, then compares predicate vector n
(specified by predicate break number). If all bits cleared then break the loop.

The way this is described does not prevent nested loops, and the inclusion of the loop id make this easy to do.

Conditionnal_Call

47 ... 44 43 42 41...34 33... 4314 4213 412...0

1001 Addressing Condition Boolean address | RESERVED Force Call Jump address

If the condition is met, jumps to the specified address and pushes the control flow program counter on the stack. If
force call is set the condition is ignored and the call is made always.

Return

47 .. 44 | 43 | 42...0

1010 | Addressing | RESERVED

Pops the topmost address from the stack and jumps to that address. If nothing is on the stack, the program will just
continue to the next instruction.

Conditionnal_Jump

47 .. 44 43 42 41...34 33 32...1314 4213 +12...0
1011 Addressing | Condition | Boolean | FWonly | RESERVED | Force Jump Jump address
address

If force jump is set the condition is ignored and the jump is made always. If FW only is set then only forward jumps
are allowed.

Exhibit 2035 docRA00 y 73560 Bytes*** @ ATl Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257732

ATI Ex. 2109
IPR2023-00922
Page 22 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-CXXOXXX-REVA 23 of 51
Fan VXN VY A A
Allocate
47 ... 44 | 43 \ 42..41 [40..3 \ 2.0
1100 | Debug | Buffer Select | RESERVED 1 Size

Buffer Select takes a value of the following:

01 - position export (ordered export)

10 — parameter cache or pixel export (ordered export)
11 - pass thru (out of order exports).

Size field is only used to reserve space in the export buffer for pass thru exports. Valid values are 1 (1 line) thru 9 (9
lines). It should be determined by the compiler/assembler by taking max index used +1.

If debug is set this is a debug alloc (ignore if debug DB_ON register is set to off).
6.3 Implementation

The envisioned implementation has a buffer that maintains the state of each thread. A thread lives in a given
location in the buffer during its entire life, but the buffer has FIFO qualities in that threads leave in the order that they
enter. Actually two buffers are maintained -- one for Vertices and one for Pixels. The intended implementation
would allow for:

16 entries for vertices
48 entries for pixels.

From each buffer, arbitration logic attempts to select 1 thread for the texture unit and 1 (interleaved) thread for the
ALU unit. Once a thread is selected it is read out of the buffer, marked as invalid, and submitted to appropriate
execution unit. It is returned to the buffer (at the same place) with its status updated once all possible sequential
instructions have been executed. A switch from ALU to TEX or visa-versa or a Serialize_Execution modifier forces
the thread to be returned to the buffer.

Each entry in the buffer will be stored across two physical pieces of memory - most bits will be stored in a 1 read port
device. Only bits needed for thread arbitration will be stored in a highly multi-ported structure. The bits kept in the 1
read port device will be termed 'state’. The bits kept in the multi-read ported device will be termed 'status’.

‘State Bits' needed include:
Control Flow Instruction Pointer (13 bits),

Execution Count Marker 4 bits),
Loop lterators (4x9 bits),

> ON =

4.5, Call return pointers (4x12-4x13 bits),
5.6, Predicate Bits (64 bits),

6.7, Export 1D (1 bif),

7-8. Parameter Cache base Ptr (7 bits),
8.9. GPR Base Plr (8 bits),

8:10. Context Ptr (3 bits).

1811, LOD corrections (6x16 bits)

12, Valid bits (64 bits)

12:13. RT (1 bit) Signifies that this thread is a Real Time thread. This bit must be sent to the Constant store

state machine when reading it.

Absent from this list are 'Index’ pointers. These are costly enough that I'm presuming that they are instead stored in
the GPRs. The first seven fields above (Control Flow Pir, Execution Count, Loop Counts, call return pirs, Predicate
bits, PC base ptr and export ID) are updated every time the thread is returned to the buffer based on how much
progress has been mode on thread execution. GPR Base Ptr, Context Ptr and LOD corrections are unchanged
throughout execution of the thread.

Exhibit 2036 docRA00_Sequencerdoc 73869 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page ® »

Loop Counters (4x9 bits), b b “-{ Formatted: Bullets and Numbering

AMD1044_0257733

ATI Ex. 2109
IPR2023-00922
Page 23 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201544 24 of 51

ray N NN

‘Status Bits' needed include:

Valid Thread

Texture/ALU engine needed

Texture Reads are outstanding

Waiting on Texture Read to Complete

Allocation Wait (2 bits)

00 - No allocation needed

01 — Position export allocation needed (ordered export)
10 — Parameter or pixel export needed (ordered export)
11 — pass thru (out of order export)

Allocation Size (4 bits)

Position Allocated

Mem/Color Allocated

First thread of a new context

Event thread (NULL thread that needs to trickle down the pipe)
Last (1 bit)

Pulse SX (1 bit)

All of the above fields from all of the entries go into the arbitration circuitry. The arbitration circuitry will select a
winner for both the Texture Engine and for the ALU engine. There are actually two sets of arbitration -- one for
pixels and one for vertices. A final selection is then done between the two. But the rest of this implementation
summary only considers the 'first' level selection which is similar for both pixels and vertices.

Texture arbitration requires no allocation or ordering so it is purely based on selecting the 'oldest’ thread that requires
the Texture Engine.

ALU arbitration is a little more complicated. First, only threads where either of Texture_Reads_outstanding or
Waiting_on_Texture_Read_to_Complete are ‘0" are considered. Then if Allocation_Wait is active, these threads are
further filtered based on whether space is available. If the allocation is position allocation, then the thread is only
considered if all 'older threads have already done their position allocation (position allocated bits set). If the
allocation is parameter or pixel allocation, then the thread is only considered if it is the oldest thread. Also a thread is
not considered if it is a parameter or pixel or position allocation, has its First_thread_of_a_new_context bit set and
would cause ALU interleaving with another thread performing the same parameter or pixel or position allocation.
Finally the 'oldest' of the threads that pass through the above filters is selected. If the thread needed to allocate, then
at this time the allocation is done, based on Allocation_Size. If a thread has its “last” bit set, then it is also removed
from the buffer, never to return.

If | now redefine 'clauses’ to mean 'how many times the thread is removed from the thread buffer for the purpose of
exection by either the ALU or Texture engine’, then the minimum number of clauses needed is 2 -- one to perform
the allocation for exports (execution automatically halts after an 'Alloc’ instruction) (but doesn't performs the actual
allocation) and one for the actual ALU/export instructions. As the 'Alloc’ instruction could be part of a texture clause
(presumably the final instruction in such a clause), a thread could still execute in this minimal number of 2 clauses,
even if it involved texture fetching.

The Texture_Reads_Outstanding bit must be updated by the sequencer, based on keeping track of how many
Texture Clauses have been executed by a given thread that have not yet had there data returned. Any number
above O results in this bit being set. We could consider forcing synchronization such that two texture clauses for a
given thread may not be outstanding at any time (that would be my preference for simplicity reasons and because it
would require only very little change in the texture pipe interface). This would allow the sequencer to set the bit on
execution of the texture clause, and allow the texture unit to return a pointer to the thread buffer on completion that
clears the bit.

6.4 Data dependant predicate instructions

Data dependant conditionals will be supported in the R400. The only way we plan to support those is by supporting
three vector/scalar predicate operations of the form:

Exhibit 2035 docRAG0- d 73569 Bytes*** @ ATl Confidential. Reference Copyright Notice on Cover Page © »+

AMD1044_0257734

ATI Ex. 2109
IPR2023-00922
Page 24 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 25 of 51

sk L TaYate¥]

PRED_SETE_# - similar to SETE except that the result is 'exported’ to the sequencer.
PRED_SETNE_# - similarto SETNE except that the result is ‘exported' to the sequencer.
PRED_SETGT_# - similar to SETGT except that the result is 'exported' to the sequencer
PRED_SETGTE_# - similar to SETGTE except that the result is 'exported’ to the sequencer

For the scalar operations only we will also support the two following instructions:
PRED_SETEO_# -~ SETEO
PRED_SETE1_# - SETE1

The export is a single bit - 1 or O that is sent using the same data path as the MOVA instruction. The sequencer will
maintain 4 sets of 64 bit predicate vectors (in fact 8 sets because we interleave two programs but only 4 will be
exposed) and use it to control the write masking. This predicate is not maintained across clause boundaries. The #
sign is used to specify which predicate set you want to use 0 thru 3.

Then we have two conditional execute bits. The first bit is a conditional execute “on” bit and the second bit tells us if
we execute on 1 or 0. For example, the instruction:

PO_ADD_# RO,R1,R2

Is only going to write the result of the ADD into those GPRs whose predicate bit is 0. Alternatively, P1_ADD_# would
only write the results to the GPRs whose predicate bit is set. The use of the PO or P1 without precharging the
sequencer with a PRED instruction is undefined.

{Issue: do we have to have a NOP between PRED and the first instruction that uses a predicate?}

6.5 HW Detection of PV,PS

Because of the control program, the compiler cannot detect statically dependant instructions. In the case of non-
masked writes and subsequent reads the sequencer will insert uses of PV,PS as needed. This will be done by
comparing the read address and the write address of consecutive instructions. For masked writes, the sequencer will
insert NOPs wherever there is a dependant read/write.

The sequencer will also have to insert NOPs between PRED_SET and MOVA instructions and their uses.

6.6 Register file indexing

Because we can have loops in fetch clause, we need to be able to index into the register file in order to retrieve the
data created in a fetch clause loop and use it into an ALU clause. The instruction will include the base address for
register indexing and the instruction will contain these controls:

Bit7 Bit 6

0 0 ‘absolute register'
0 1 ‘relative register’
1 0 ‘previous vector'
1 1 ‘previous scalar’

In the case of an absolute register we just take the address as is. In the case of a relative register read we take the
base address and we add to it the loop_index and this becomes our new address that we give to the shader pipe.

The sequencer is going to keep a loop index computed as such:

Index = Loop_iterator*Loop_step + Loop_start.
We loop until loop_iterator = loop_count. Loop_step is a signed value [-128...127]. The computed index value is a 10
bit counter that is also signed. Its real range is [-256,256]. The tenth bit is only there so that we can provide an out of

range value to the “indexing logic” so that it knows when the provided index is out of range and thus can make the
necessary arrangements.

Exhibit 2036 docRA00_Sequencerdoc 73869 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page ® »

AMD1044_0257735

ATI Ex. 2109
IPR2023-00922
Page 25 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

l 24 September, 2001 4 September, 201544 26 of 51

6.7 Debugging the Shaders

In order to be able to debug the pixelivertex shaders efficiently, we provide 2 methods.

6.7.1 Method 1: Debugging registers

Current plans are to expose 2 debugging, or error notification, registers:
1. address register where the first error occurred
2. count of the number of errors

The sequencer will detect the following groups of errors:
- count overflow

- constant indexing overflow

- register indexing overflow

Compiler recognizable errors:
- jump errors
relative jump address > size of the control flow program
- call stack
call with stack full
return with stack empty

A jump error will always cause the program to break. In this case, a break means that a clause will halt execution, but
allowing further clauses to be executed.

With all the other errors, program can continue to run, potentially to worst-case limits. The program will only break if
the DB_PROB_BREAK register is set.

If indexing outside of the constant or the register range, causing an overflow error, the hardware is specified to return
the value with an index of 0. This could be exploited to generate error tokens, by reserving and initializing the Oth
register (or constant) for errors.

{ISSUE : Interrupt to the driver or not?}
6.7.2 Method 2: Exporting the values in the GPRs

1) The sequencer will have a debug active, count register and an address register for this mode.
Under the normal mode execution follows the normal course.
Under the debug mode it is assumed that the program is always exporting n debug vectors and that ail other exports

to the SX block (position, color, z, ect) will been turned off (changed into NOPs) by the sequencer (even if they occur
before the address stated by the ADDR debug register).

7. Pixel Kill Mask

A vector of 64 bits is kept by the sequencer per group of pixels/vertices. Its purpose is to optimize the texture fetch
requests and allow the shader pipe to kill pixels using the following instructions:

MASK_SETE
MASK_SETNE
MASK_SETGT
MASK_SETGTE

8. Multipass vertex shaders (HOS)

Multipass vertex shaders are able to export from the 6 last clauses but to memory ONLY.

Exchibit 2035 docRAG0- . 73569 Bytes*** @ ATl Confidential. Reference Copyright Notice on Cover Page © »+

AMD1044_0257736

ATI Ex. 2109
IPR2023-00922
Page 26 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 27 of 51

9. Reqgister file allocation

The register file allocation for vertices and pixels can either be static or dynamic. In both cases, the register file in
managed using two round robins (one for pixels and one for vertices). In the dynamic case the boundary between

pixels and vertices is allowed to move, in the static case it is fixed to 128-VERTEX_REG_SIZE for vertices and
PIXEL_REG_SIZE for pixels.

Exhibit 2036 docRA00_Sequencerdoc 73869 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page ® »

AMD1044_0257737

ATI Ex. 2109
IPR2023-00922
Page 27 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

24 September, 2001 4 September, 201544 28 of 51

PPN PN Jata)

Above is an example of how the aigorithm works. Vertices come in from top to bottom; pixels come in from bottom to
top. Vertices are in orange and pixels in green. The blue line is the tail of the vertices and the green line is the tail of
the pixels. Thus anything between the two lines is shared. When pixels meets vertices the line turns white and the
boundary is static until both vertices and pixels share the same “unallocated bubble”. Then the boundary is allowed to
move again. The numbering of the GPRs starts from the bottom of the picture at index 0 and goes up to the top at
index 127.

10. Fetch Arbitration

The fetch arbitration logic chooses one of the n potentially pending fetch clauses to be executed. The choice is made
by looking at the Vs and Ps reservation stations and picking the first one ready to execute. Once chosen, the clause
state machine will send one 2x2 fetch per clock (or 4 fetches in one clock every 4 clocks) until all the fetch
instructions of the clause are sent. This means that there cannot be any dependencies between two fetches of the
same clause.

The arbitrator will not wait for the fetches to return prior to selecting another clause for execution. The fetch pipe will
be able to handle up to X(?) in flight fetches and thus there can be a fair number of active clauses waiting for their
fetch return data.

11. ALU Arbitration

ALU arbitration proceeds in almost the same way than fetch arbitration. The ALU arbitration logic chooses one of the
n potentially pending ALU clauses to be executed. The choice is made by looking at the Vs and Ps reservation
stations and picking the first one ready to execute. There are two ALU arbiters, one for the even clocks and one for
the odd clocks. For example, here is the sequencing of two interleaved ALU clauses (E and O stands for Even and
Odd sets of 4 clocks):

Einst0 Oinst0 Einst1 Oinst1 Einst2 Oinst2 Einst0 Oinst3 Einst1 Oinst4 Einst2 Oinst0...

Exhibit 2035 docRAG0- d 73569 Bytes*** @ ATl Confidential. Reference Copyright Notice on Cover Page © »+

AMD1044_0257738

ATI Ex. 2109
IPR2023-00922
Page 28 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 29 of 51

&, Tl X M 1
Proceeding this way hides the latency of 8 clocks of the ALUs. Also note that the interleaving also occurs across
clause boundaries.

12. Handling Stalls

When the output file is full, the sequencer prevents the ALU arbitration logic from selecting the last clause (this way
nothing can exit the shader pipe until there is place in the output file. If the packet is a vertex packet and the position
buffer is full (POS_FULL) then the sequencer also prevents a thread from entering an exporting clause. The
sequencer will set the OUT_FILE_FULL signal n clocks before the output file is actually full and thus the ALU arbiter
will be able read this signal and act accordingly by not preventing exporting clauses to proceed.

13. Content of the reservation station FIFOs

The reservation FIFOs contain the state of the vector of pixels and vertices. We have two sets of those: one for
pixels, and one for vertices. They contain 3 bits of Render State 7 bits for the base address of the GPRs, some bits
for LOD correction and coverage mask information in order to fetch fetch for only valid pixels, the quad address.

14. The Output File

The output file is where pixels are put before they go to the RBs. The write BW to this store is 256 bits/clock. Just
before this output file are staging registers with write BW 512 bits/clock and read BW 256 bits/clock. The staging
registers are 4x128 (and there are 16 of those on the whole chip).

15. 1J Format

The IJ information sent by the PA is of this format on a per quad basis:

We have a vector of IJ’s (one IJ per pixel at the centroid of the fragment or at the center of the pixel depending on the
mode bit). All pixel's parameters are always interpolated at full 20x24 mantissa precision.

PO=A+I0)*(B-A)+J(0)*(C —A4)
Pl=dA+I(W)*(B-A)+J1)*(C - 4) ko o1
P2=A+I()*(B-A)+J(2)*(C - 4)
P3=A+I)*B-A)+J3)*(C - 4)

P2 P3

Multiplies (Full Precision): 8
Subtracts 19x24 (Parameters): 2
Adds: 8

FORMAT OF P's IJ : Mantissa 20 Exp 4 for | + Sign
Mantissa 20 Exp 4 for J + Sign

Total number of bits : 20*8 + 4*8 + 4*2 = 200.

All numbers are kept using the un-normalized floating point convention: if exponent is different than O the number is
normalized if not, then the number is un-normalized. The maximum range for the IJs (Full precision) is +/- 1024.

15.1 Interpolation of constant attributes

Because of the floating point imprecision, we need to take special provisions if all the interpolated terms are the same
or if two of the terms are the same.

Exhibit 2036 docRA00_Sequencerdoc 73869 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page ® »

AMD1044_0257739

ATI Ex. 2109
IPR2023-00922
Page 29 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201544 30 of 51

ray N NN

16. Staging Registers

In order for the reuse of the vertices to be 14, the sequencer will have to re-order the data sent IN ORDER by the
VGT for it to be aligned with the parameter cache memory arrangement. Given the following group of vertices sent by
the VGT:

0123456789101112131415][1617 181920 212223 24 2526 27 28 29 30 31 || 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 || 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The sequencer will re-arrange them in this fashion:

0123161718193233343548495051(]4567202122233637383952535455([891011 24252627
404142435657 5859(| 1213 14 1528 29 30 31 44 45 46 47 60 61 62 63

The || markers show the SP divisions. In the event a shader pipe is broken, the SQ is responsible to insert padding to
account for the missing pipe. For example, if SP1 is broken, vertices 4 56 7 20 21 22 23 36 37 38 39 52 53 54 55 will
not be sent by the VGT to the 8Q AND the SQ is responsible to “‘jump” over these vertices in order for no valid
vertices to be sent to an invalid SP.

The most straightforward, non-compressed interface method would be to convert, in the VGT, the data to 32-bit
floating point prior to transmission to the VSISRs. In this scenario, the data would be transmitted to (and stored in) the
VSISRs in full 32-bit floating point. This method requires three 24-bit fixed-to-float converters in the VGT.
Unfortunately, it also requires and additional 3,072 bits of storage across the VSISRs. This interface is illustrated in
Figure 11Figure-11Figure-11, The area of the fixed-to-float converters and the VSISRs for this method is roughly
estimated as 0.759sgmm using the R300 process. The gate count estimate is shown in Figure 10Figure 10Figure 10,

Basis for 8-deep Latch Memory (from R300)
8x24-bit 11631 2 60.57813 i’ per bit

Area of 96x8-deep Latch Memory 46524
Area of 24-bit Fix-to-float Converter 4712 u* per converter

Method 1 Block Quantity Area
F2F 3 14136
8x96 Latch 16 744384

Figure 10:Area Estimate for VGT to Shader Interface

Exhibit 2035 docRAG0- d 73569 Bytes*** @ ATl Confidential. Reference Copyright Notice on Cover Page © »+

AMD1044_0257740

ATI Ex. 2109
IPR2023-00922
Page 30 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201514 GEN-CXXXXX-REVA 31 of 51

FaVRINN A4

w

VGT BLOCK
(IN PA)

L

FIX2FLOAT

SHADER
SEQUENCER

VECTOR ENGINE

4

VECTOR ENGINE

Figure 11:VGT to Shader Interface

17. The parameter cache

The parameter cache is where the vertex shaders export their data. It consists of 16 128x128 memories (1R/1W).
The reuse engine will make it so that all vertexes of a given primitive will hit different memories. The allocation
method for these memories is a simple round robin. The parameter cache pointers are mapped in the following way:
4MSBs are the memory number and the 7 LSBs are the address within this memory.

MEMORY NUMBER
4 bits

ADDRESS
7 bits

The PA generates the parameter cache addresses as the positions come from the SQ. All it needs to do is keep a
Current_Location pointer (7 bits only) and as the positions comes increment the memory number. When the memory
number field wraps around, the PA increments the Current_Location by VS_EXPORT_COUNT (a snooped register
from the SQ). As an example, say the memories are all empty to begin with and the vertex shader is exporting 8
parameters per vertex (VS_EXPORT_COUNT = 8). The first position received is going to have the PC address
00000000000 the second one 00010000000, third one 00100000000 and so on up to 11110000000. Then the next
position received (the 17“‘) is going to have the address 00000001000, the 18™ 00010001000, the 19" 00100001000
and so on. The Current_location is NEVER reset BUT on chip resets. The only thing to be careful about is that if the
SX doesn't send you a full group of positions (<64) then you need to fill the address space so that the next group
starts correctly aligned (for example if you receive only 33 positions then you need to add 2*VS_EXPORT_COUNT to
Current_Location and reset the memory count to 0 before the next vector begins).

Exhibit 2036 docRA00_Sequencerdoc 73869 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page ® »

AMD1044_0257741

ATI Ex. 2109
IPR2023-00922
Page 31 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

l 24 September, 2001 4 September, 201544 32 of 51

| 17.1 Export restrictions

17.1.1 Pixel exports:

Pixels can export 1,2,3 or 4 color buffers to the SX(+z). The exports will be done in order. The PRED_OPTIMIZE
function has to be turned of if the exports are done using interleaved predicated instructions. The exports will always
be ordered to the SX.

17.1.2 Vertex exports:

Position or parameter caches can be exported in any order in the shader program. It is always better to export
posistion as soon as possible. Position has to be exported in a single export block (no texture instructions can be
placed between the exports). Parameter cache exports can be done in any order with texture instructions interleaved.
The PRED_OPTIMIZE function has to be turned of if the exports are done using interleaved predicated instructions to
the Parameter cache (see Arbitration restrictions for details). The exports will always be allocated in order to the SX.

17.1.3 Pass thru exports:

Pass thru exports have to be done in groups of the form:

They cannot have texture instructions interleaved in the export block. These exports are not guaranteed to be
ordered.

Also, when doing a pass thru export, Position MUST be exported AFTER all pass thru exports. This position export is
used to synchronize the chip when doing a transition from pass thru shader to regular shader and vice versa.

17.2 Arbitration restrictions

Here are the Sequencer arbitration restrictions:

1) Cannot execute a serialized thread if the corresponding texture pending bit is set
2) Cannot allocate position if any older thread has not allocated position
3) |If last thread is marked as not valid AND marked as last and we are about to execute the second to oldest
thread also marked last then:
a. Both threads must be from the same context (cannot allow a first thread)
b. Must turn off the predicate optimization for the second thread
4) Cannot execute a texture clause if texture reads are pending
5) Cannot execute last if texture pending (even if not serial)

18. Export Types

The export type (or the location where the data should be put) is specified using the destination address field in the
ALU instruction. Here is a list of all possible export modes:

18.1 Vertex Shading

0:15 - 16 parameter cache
16:31 - Empty (Reserved?)
32 - Export Address
33:37 -5 vertex exports to the frame buffer and index
38:47 - Empty
48:52 -5 debug export (interpret as normal memory export)
60 - export addressing mode
61 - Empty
62 - position
Exhibit 2035 docRAG0- d 73569 Bytes*** @ ATl Confidential. Reference Copyright Notice on Cover Page © »+

AMD1044_0257742

ATI Ex. 2109
IPR2023-00922
Page 32 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE

24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 33 of 51
£k, Talase k]
63 - sprite size export that goes with position export

(X= point size, Y= edge flag is bit 0, Z= VixKill is bitwise OR of bits 30:0. Any bit other than
sign means VixKill.)

18.2 Pixel Shading

o} - Color for buffer O (primary)

1 - Color for buffer 1

2 - Color for buffer 2

3 - Color for buffer 3

4:15 - Empty

16 - Buffer 0 Color/Fog (primary)

17 - Buffer 1 Color/Fog

18 - Buffer 2 Color/Fog

19 - Buffer 3 Color/Fog

20:31 - Empty

32 - Export Address

33:37 - 5exports for multipass pixel shaders.

38:47 - Empty

48:52 - 5debug exports (interpret as normal memory export)
60 - export addressing mode

61 - Z for primary buffer (Z exported to ‘alpha’ component)
62:63 - Empty

19. Special Interpolation modes

19.1 Real time commands

We are unable to use the parameter memory since there is no way for a command stream to write into it. Instead we
need to add three 16x128 memories (one for each of three vertices x 16 interpolants). These will be mapped onto the
register bus and written by type 0 packets, and output to the the parameter busses (the sequencer and/or PA need to
be able to address the reatime parameter memory as well as the regular parameter store. For higher performance we
should be able able to view them as two banks of 16 and do double buffering allowing one to be loaded, while the
other is rasterized with. Most overlay shaders will need 2 or 4 scalar coordinates, one option might be to restrict the
memory to 16x64 or 32x64 allowing only two interpolated scalars per cycle, the only problem | see with this is, if we
view support for 16 vector-4 interpolants important (true only if we map Microsoft's high priority stream to the realtime
stream), then the PA/sequencer need to support a realtime-specific mode where we need to address 32 vectors of
parameters instead of 16. This mode is triggered by the primitive type: REAL TIME. The actual memories are in the in
the SX blocks. The parameter data memories are hooked on the RBBM bus and are loaded by the CP using register
mapped memory.

19.2 Sprites/ XY screen coordinates/ FB information

XY screen coordinates may be needed in the shader program. This functionality is controlled by the param_gen_l0
register (in SQ) in conjunction with the SND_XY register (in SC) and the param_gen_pos. Also it is possible to send
the faceness information (for OGL front/back special operations) to the shader using the same control register. Here
is a list of all the modes and how they interact together:

The Data is going to be written in the register specified by the param_gen_pos register.

Param_Gen_l0 disable, snd_xy disable = No modification
Param_Gen_lO disable, snd_xy enable = No modification
Param_Gen_l0 enable, snd_xy disable = Sign(faceness)garbage,(Sign Point)garbage,Sign(Line)s, t
Param_Gen_l0 enable, snd_xy enable = Sign(faceness)screenX,(Sign Point)screenY,Sign(Line)s, t

In other words,

The generated vector is (X in RED, Y in GREEN, S in BLUE and T in ALPHA):
XY, ST

Exhibit 2036 docRA00_Sequencerdoc 73869 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page ® »

AMD1044_0257743

ATI Ex. 2109
IPR2023-00922
Page 33 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201514 34 of 51

Lintak

LN A
These values are always supposed to be positive and any shader use of them should use the ABS function
(as their sign bits will now be used for flags).
SignX = BackFacing
SignY = Point Primitive
SignS = Line Primitive
SignT = currently unused as a flag.

If tPoint & iLine, then it is a Poly.

I would assume that one implementation which allows for generic texture lookup (using 3D maps) for poly
stipple and AA for the driver would be

if(Y<0) {

R = 0.0 (Point)
telseif (S <0){

R = 1.0 (Line)
}else {

R = 2.0 (Poly)

}
19.3 Auto generated counters

In the cases we are dealing with multipass shaders, the sequencer is going to generate a vector count to be able to
both use this count to write the 1% pass data to memory and then use the count to retrieve the data on the 2™ pass.
The count is always generated in the same way but it is passed to the shader in a slightly different way depending on
the shader type (pixel or vertex). This is toggled on and off using the GEN_INDEX_PIX/VTX register. The sequencer
is going to keep two counters, one for pixels and one for vertices. Every time a full vector of vertices or pixels is
written to the GPRs the counter is incremented. Every time a RST_PIX_COUNT or RST_VTX_COUNT events are
received, the corresponding counter is reset. While there is only one count broadcast to the GPRs, the LSB are
hardwired to specific values making the index different for all elements in the vector. Since the count must be different
for all pixels/vertices and the 4 LSBs (16 positions) are hardwired to the corresponding shader unit the SQ has two
choices:

1) Maintain a 19 bit counter that counts the vectors of 64. In this case the phase must be appended to the count
before the count is broadcast to the SPs:

[Counter (19 bits) [Phase (2 bits) | Hardwired (4 bits)

2) Maintain a 21 bits counter that counts sub-vectors of 16. In this case only the counter is sent to the Sps:

[Counter (21 bits) | Hardwired (4 bits) |

19.3.1 Vertex shaders

In the case of vertex shaders, if GEN_INDEX_VTX is set, the data will be put into the x field of the third register (it
means that the compiler must allocate 3 GPRs in all multipass vertex shader modes).

19.3.2 Pixel shaders

In the case of pixel shaders, if GEN_INDEX_PIX is set, the data will be put in the x field of the param_gen_pos+1
register.

Exhibit 2035 docRAG0- d 73569 Bytes*** @ ATl Confidential. Reference Copyright Notice on Cover Page © »+

AMD1044_0257744

ATI Ex. 2109
IPR2023-00922
Page 34 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201544 GEN-CXXXXX-REVA 35 of 51
B b A A
STG O
AUTO INTERPOLATORS
COUNT
STGH

¥
‘ AUTO COUNT | 000000 |

¥ k. The Auto Count Value is

MUX / broadcast to all GPRs. ltis
loaded into a register wich has

its LSBs hardwired to the
GPR number (0 thru 63). Then

if GEN_INDEX is high, the

mux selects the auto-count
value and it is loaded into the

GPRs to be either used to
retrieve data using the TP or
GPRO ‘ sent to the SX for the RB to
|
|
i
i
|

use it to write the data to
memory

Figure 12: GPR input mux Control

20. State management

Every clock, the sequencer will report to the CP the oldest states still in the pipe. These are the states of the
programs as they enter the last ALU clause.

20.1 Parameter cache synchronization

In order for the sequencer not to begin a group of pixels before the associated group of vertices has finished, the
sequencer will keep a 6 bit count per state (for a total of 8 counters). These counters are initialized to 0 and every
time a vertex shader exports its data TO THE PARAMETER CACHE, the corresponding pointer is incremented.
When the SC sends a new vector of pixels with the SC_SQ_new_vector bit asserted, the sequencer will first check if
the count is greater than O before accepting the transmission (it will in fact accept the transmission but then lower its
ready to receive). Then the sequencer waits for the count to go to one and decrements it. The sequencer can then
issue the group of pixels to the interpolators. Every time the state changes, the new state counter is initialized to 0.

21. XY Address imports

The SC will be able to send the XY addresses to the GPRs. It does so by interleaving the writes of the IJs (to the IJ
buffer) with XY writes (to the XY buffer). Then when writing the data to the GPRs, the sequencer is going to
interpolate the IJ data or pass the XY data thru a Fix—float converter and expander and write the converted values to
the GPRs. The Xys are currently SCREEN SPACE COORDINATES. The values in the XY buffers will wrap. See
section 19.2 for details on how to control the interpolation in this mode.

21.1 Vertex indexes imports

In order to import vertex indexes, we have 16 8x96 staging registers. These are loaded one line at a time by the VGT
block (96 bits). They are loaded in floating point format and can be transferred in 4 or 8 clocks to the GPRs.

22. Registers

Please see the auto-generated web pages for register definitions.

Exhibit 2036 docRA00_Sequencerdoc 73869 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page ® »

AMD1044_0257745

ATI Ex. 2109
IPR2023-00922
Page 35 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

l 24 September, 2001 4 September, 201544 36 of 51

| 23. Interfaces

23.1 External Interfaces

Whenever an x is used, it means that the bus is broadcast to all units of the same name. For example, if a bus is
named SQ—SPx it means that SQ is going to broadcast the same information to all SP instances.

232 SC to SP Interfaces

23.2.1 SC_SP#

There is one of these interfaces at front of each of the SP (buffer to stage pixel interpolators). This interface transmits
the 1,J data for pixel interpolation. For the entire system, two quads per clock are transferred to the 4 SPs, so each of
these 4 interfaces transmits one half of a quad per clock. The interface below describes a half of a quad worth of
data.
The actual data which is transferred per quad is

Ref Pix | => $4.20 Floating Point | value *4

Ref Pix J => 84.20 Floating Point J value *4

This equates to a total of 200 bits which transferred over 2 clocks
and therefor needs an interface 100 bits wide

Additionally, XY data (12-bit unsigned fixed) is conditionally sent across this data bus over the same wires in an
additional clock. The XY data is sent on the lower 24 bits of the data bus with faceness in the msb.
Transfers across these interfaces are synchronized with the SC_SQ IJ Control Bus transfers.

The data transfer across each of these busses is controlled by a IJ_BUF_INUSE_COUNT in the SC. Each time the
SC has sent a pixel vector's worth of data to the SPs, he will increment the IJ_BUF_INUSE_COUNT count. Prior to
sending the next pixel vectors data, he will check to make sure the count is less than MAX_BUFER_MINUS_2, if not
the SC will stall until the SQ retuns a pipelined pulse to decrement the count when he has scheduled a buffer free.
Note: We could/may optimize for the case of only sending only IJ to use all the buffers to pre-load more. Currently
it is planned for the SP to hold 2 double buffers of |,J data and two buffers of XY data, so if either X,Y or Centers and
Centroids are on, then the SC can send two Buffers.

In at least the initial version, the SC shall send 16 quads per pixel vector even if the vector is not full. This will
increment buffer write address pointers correctly all the time. (We may revisit this for both the SX,SP,SQ and add a
EndOfVector signal on all interfaces to quit early. We opted for the simple mode first with a belief that only the end of
packet and multiple new vector signals should cause a partial vector and that this would not really be significant
performance hit.)

Name Bits | Description

SC_SP# _data 100 | W information sent over 2 clocks (or X,Y in 24 LSBs with faceness in upper bit)
Type 0 or 1, First clock |, second clk J
Field ULC URC LLC LRC

Bits [63:39] [38:26] [25:13] [12:0]
Format SE4M20 SE4M20 SE4M20 SE4M20

Type 2
Field Face X Y
Bits [24) [23:12] [11:0]
Format Bit Unsigned Unsigned
SC_SP# valid 1 Valid
SC_SP# last_quad_data 1 This bit will be set on the last transfer of data per quad.
SC_SP# _type 2 0 -> Indicates centroids
1 -> Indicates centers
2 -> Indicates X,Y Data and faceness on data bus
The SC shall look at state data to determine how many types to send for the
Exhibit 2035 docRAG0- d 73569 Bytes*** @ ATl Confidential. Reference Copyright Notice on Cover Page © »+

AMD1044_0257746

ATI Ex. 2109
IPR2023-00922
Page 36 of 326

ORIGINATE DATE
24 September, 2001

EDIT DATE DOCUMENT-REV. NUM.
GEN-CXXXXX-REVA

4 September, 201544

Liabesis AODAA

PAGE
37 of 51

\ | interpolation process.

The # is included for clarity in the spec and will be replaced with a prefix of u#_ in the verilog module statement for
the SC and the SP block will have neither because the instantiation will insert the prefix.

2322 8C_SQ

This is the control information sent to the sequencer in order to synchronize and control the interpolation and/or
loading data into the GPRs needed to execute a shader program on the sent pixels. This data will be sent over two
clocks per transfer with 1 to 16 transfers. Therefore the bus (approx 108 bits) could be folded in half to approx 54

bits.

Name Bits | Description

SC_8SQ_data 46 Control Data sent to the SQ

1 clk transfers

Event - valid data consist of event_id and
state_id. Instruct SQ to postan
event vector o send state id and
event_id through request fifo
and onto the reservation stations
making sure state id and/or event_id
gets back to the CP. Events only
follow end of packets so no pixel
vectors will be in progress.

Empty Quad Mask — Transfer Control data
consisting of pc_dealloc
or new_vector. Receipt of this is to
transfer pc_dealloc or new_vector
without any valid quad data. New
vector will always be posted to
request fifo and pc_dealloc will be
attached to any pixel vector
outstanding or posted in request fifo
if no valid quad outstanding.

2 clk transfers

Quad Data Valid - Sending quad data with or
without new_vector or pc_dealloc.
New vector will be posted to request
fifo with or without a pixel vector and
pc_dealloc will be posted with a pixel
vector uniess none is in progress. In
this case the pc_dealloc will be
posted in the request queue.

Filler quads will be transferred with
The Quad mask set but the pixel
corresponding pixel mask set to
zero.

5C_50_vaid 1

SC sending valid data, 2™ clk could be all zeroes

SC_SQ_data - first clock and second clock transfers are shown in the table below.

Name BitField

Bits | Description

1% Clock Transfer

SC_SQ_event 0

1 This transfer is a 1 clock event vector Force quad_mask =

new_vector=pc_dealloc=0

SC_8Q_event_id [5:1]

4 This field identifies the event 0 => denotes an End Of State Event 1

Exhibit 2036 docRA00_Sequencerdoc 73869 Bytes®** @ ATI Confidential. Reference Copyright Notice on Cover Page ® »

AMD1044_0257747

ATI Ex. 2109
IPR2023-00922
Page 37 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE

t 24 September, 2001 4 September, 201544 38 of 51
oy Yoy TIAVIAA
' =>TBD
SC_SQ_state_id [8:6] 3 State/constant pointer (6*3+3)
SC_8Q_pc_dealloc [11:9] 3 Deallocation token for the Parameter Cache
SC_SQ_new_vector 12 1 The SQ must wait for Vertex shader done count > 0 and after
dispatching the Pixel Vector the SQ will decrement the count.
SC_8Q_quad_mask [16:13] | 4 Quad Write mask left to right SP0 => SP3
SC_S5Q_end_of_prim 17 1 End Of the primitive
SC_SQ_pix_mask [33:18] | 16 Valid bits for all pixels SP0=>SP3 (UL,UR,LL,LR)
SC_SQ_provok vix [35:34] | 2 Provoking vertex for flat shading
SC_8Q_lod_correct_0 [44:36] | 9 LOD correction for quad O (SPQ) (9 bits per quad)
SC_8Q_lod_correct_1 [53:45] | 9 LOD correction for quad 1 (8P1) (8 bits per quad)
2nd Clock Transfer
SC_5Q_lod_correct_2 [8:0] 9 LOD correction for quad 2 (SP2) (9 bits per quad)
SC_8Q_lod_correct_3 [17:9] 9 LOD correction for quad 3 (SP3) (9 bits per quad)
SC_SQ_pc_ptr0 [28:18] | 11 Parameter Cache pointer for vertex 0
SC_8Q_pc_ptrt [39:29] | 11 Parameter Cache pointer for vertex 1
SC_8Q_pc_ptr2 [50:40] | 11 Parameter Cache pointer for vertex 2
SC_SQ_prim_type [53:51] |3 Stippled line and Real time command need to load tex cords from
alternate buffer
000: Sprite (point)
001: Line
010: Tri_rect
100: Realtime Sprite (point)
101: Realtime Line
110: Realtime Tri_rect
Name Bits | Description
SQ_8C_free_buff 1 Pipelined bit that instructs SC to decrement count of buffers in use.
SQ_8C_dec_cnir_cnt 1 Pipelined bit that instructs SC to decrement count of new vector and/or event
sent to prevent SC from overflowing SQ interpolator/Reservation request fifo.

The scan converter will submit a partial vector whenever:

1.) He gets a primitive marked with an end of packet signal.

2.) A current pixel vector is being assembled with at least one or more valid quads and the vector has been
marked for deallocate when a primitive marked new_vector arrives. The Scan Converter will submit a partial
vector (up to 16quads with zero pixel mask to fill out the vector) prior to submitting the new_vector
marker\primitive.

(This will prevent a hang which can be demonstrated when all primitives in a packet three vectors are culled

except for a one quad primitive that gets marked pc_dealloc (vertices maximum size). In this case two

new_vectors are submitted and processed, but then one valid quad with the pc_dealloc creates a vector and then
the new would wait for another vertex vector to be processed, but the one being waited for could never export
until the pc_dealloc signal made it through and thus the hang.)

Exhibit 2035 docRA00 y 73560 Bytes*** @ ATl Confidential. Reference Copyright Notice on Cover Page © »=

AMD1044_0257748

ATI Ex. 2109
IPR2023-00922
Page 38 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201514 GEN-CXXXXX-REVA 39 of 51
PV X VNN Jalalek i
23.2.3 8Q to SX(SP): Interpolator bus

Name Direction Bits | Description

SQ_S8Px_interp_flat_vix SQ--8Px 2 Provoking vertex for flat shading
SQ_SPx_interp_flat_gouraud | SQ—-SPx 1 Flat or gouraud shading
SQ_SPx_interp_cyl_wrap SQ—SPx 4 Wich channel needs to be cylindrical wrapped
SQ_SPx_interp_param_gen SQ-->SPx 1 Generate Parameter
SQ_SPx_interp_prim_type SQ—-SPx 2 Bits [1:0] of primitive type sent by SC
SQ_S8Px_interp_buff_swap SQ-»>8Px 1 Swapp |J buffers

SQ_SPx_interp_IJ_line SQ—SPx 2 \J line number

SQ_S8Px_interp_mode SQ--»8Px 1 Center/Centroid sampling

SQ_SXx_pec_ptr0 SQ—-SXx 11 Parameter Cache Pointer

SQ_SXx_pc_ptr1 SQ--8Xx 1" Parameter Cache Pointer

SQ_SXx_pc_ptr2 SQ-»8SXx 11 Parameter Cache Pointer

SQ_SXx_rt_sel SQ—-8Xx 1 Selects between RT and Normal data (Bit 2 of prim type)
SQ_8SX0 _pc_wr_en SQ--SX0 8 Write enable for the PC memories
SQ_SX1_pc_wr_en SQ—-8X1 8 Wirite enable for the PC memories
SQ_SXx_pc_wr_addr SQ-»>8Xx 7 Wirite address for the PCs
SQ_SXx_pc_channel_mask SQ—->SXx 4 Channel mask

SQ_SXx_pec_ptr_valid SQ—-8Xx 1 Read pointers are valid.
8Q_SPx_interp_valid SQ-»>8SPx 1 Interpolation control valid

2324 5Q to SP: Staging Register Data

This is a broadcast bus that sends the VSISR information to the staging registers of the shader pipes.

Name Direction Bits | Description

SQ_S8Px_vsr_data SQ--8Px 96 Pointers of indexes or HOS surface information
SQ_SPx_vsr_double SQ—-SPx 1 0: Normal 96 bits per vert 1: double 192 bits per vert
SQ_SPO_ vsr_valid SQ--SP0 1 Data is valid

SQ_SP1_vsr_valid SQ—-SP1 1 Data is valid

SQ_SP2_vsr_ valid SQ—-8P2 1 Data is valid

SQ_SP3_ vsr_ valid SQ-8P3 1 Data is valid

SQ_8Px_vsr_read SQ--8Px 1 Increment the read pointers

23.2.5 VGT to 8Q : Vertex interface
23.2.5.1 Interface Signal Table

The area difference between the two methods is not sufficient to warrant complicating the interface or the state
requirements of the VSISRs. Therefore, the POR for this interface is that the VGT will transmit the data to the
VSISRs (via the Shader Sequencer) in full, 32-bit floating-point format. The VGT can transmit up to six 32-bit

floating-point values to each VSISR where four or more values require two transmission clocks. The data bus is 96
bits wide. In the case where an event is sent the 5 LSBs of VGT_SQ_vsisr_data contain the eventiD.

Name Bits Description

VGT_SQ_vsisr_data 96 Pointers of indexes or HOS surface information

VGT_SQ_event 1 VGT is sending an event

VGT_SQ_vsisr_continued 1 0: Normal 96 bits per vert 1: double 192 bits per vert

VGT_SQ_end_of_vix_vect 1 Indicates the last VSISR data set for the current process vector (for double vector
data, "end_of vector” is set on the first vector)

VGT_SQ_indx_valid 1 Vsisr data is valid

VGT_SQ_state 3 Render State (6*3+3 for constants). This signal is guaranteed to be correct when
“VGT_SQ_vgt end_of vector” is high.

VGT_SQ_send 1 Data on the VGT_SQ is valid receive (see write-up for standard R400 SEND/RTR
interface handshaking)

SQ_VGT_rir 1 Ready to receive (see wwite-up for standard R400 SEND/RTR interface

handshaking)

23.2.5.2 Interface Diagrams

Exhibit 2035 docRAG0_Sequencer.doc

73569 Bytes*** @ ATl Confidential. Reference Copyright Notice on Cover Page © »+

AMD1044_0257749

ATI Ex. 2109
IPR2023-00922
Page 39 of 326

xex @ 9Bd 19A0D U0 310N WBUAdOD 99UBIDITY “[RIIUDPLUOD [1Y @ wxxso%d soses

HIONIANDIS
HIAYHS

eepresusnbegonyEItE EE6E I

1948 1538
Mr 0 uad B oMW R e % B O3 = >
a = tf- = s .
b v oamas | 03 J pues 1ba G5 wa | Oo¥ 7 ands v
- AL mee
19A
i <l o
= < m——1 O3 & T o3y Z TES FIVES
EEEEE]
anmis
b b <l
i rX 1oL T p MOLOZA 30 ONE o3 <& T 1o30ea 3o pus 135A 08 wd o3 7 MOLDEA A0 (M3
il <t .
h & Tenod asiea | oo [i TTomep Tetea aEA B wq] O 2 TTE00A MSISA
il - <
i i b wovd d5tea | oo [k3 aep aeTEA 1ba O5 wa | O3Y 7 WLMI MSIEN
YO
f
LG io0F PEGLOZ Jequsidag ¥ 100z ‘lequisides #Z
39vd uofeoyioads ssousnbag 00y 31va Lia3 31VA 3LYNIDRO

IVIdHLVIN J4d™0 JAILOFLO™Ud

AMD1044_0257750

ATI Ex. 2109

IPR2023

00922

Page 40 of 326

»x @ 9bkd 19000 UO 301ION WBUAdOD 90UBIBISY [EIIUSPUUOD |LY @ »so¥a soses

BOB[IS1U| IbA DS Vd 10} WEIBEI([BoIb0] pejeloq | anbig

NOISSIWSNYIL SdOLS dHANHES

L

NOISSIWNSNYdL SLUYLS-Hd

[

HHATHEDHY

OYESER R AT

NOISSINSNYdL SdOLS dHATHDHY

T 0dTd
ALAWE OAId

IND OATd

INO YIVA OATd

v YIVd

v aNES
¢ YIVd

¢ aNds
Z YIvd

7 aNgs

SId IOA

Z 4Id 0s
T d1d 08

0 d1d 0s

NI1d 0S8

1§40 Ly
J0Vd

YAIH-XUXXXDO-NIO
NN AZY-LNIWND0A

¥ IAT

P1510C Jequisiaes ¢
41vd L1a3

L00Z ‘Uequildes vz 0l
31va ILYNIDINO k

IVIdHLVIN J4d™0 JAILOFLO™Ud

AMD1044_0257751

ATI Ex. 2109
IPR2023-00922

Page 41 of 326

ORIGINATE DATE EDIT DATE R400 Sequencer Specification PAGE
24 September, 2001 4 September, 201544 42 of 51
iy Ja'aleL]

23.2.6 5Q to SX: Control bus

Name Direction Bits | Description

SQ_SXx_exp_type S5Q—8Xx 2 00: Pixel without z (1 to 4 buffers)
01: Pixel with z (1 to 4 buffers)
10: Position (1 or 2 results)
11: Pass thru (4,8 or 12 results alighed)

SQ_SXx_exp_number SQ—->SXx 2 Number of locations needed in the export buffer
(encoding depends on the type see bellow).

8Q_8Xx_exp_alu_id SQ-»8Xx 1 ALU ID

SQ_SXx_exp_valid SQ—-8Xx 1 Valid bit

SQ_SXx_exp_state SQ—->8Xx 3 State Context

SQ_SXx_free_done SQ—-SXx 1 Pulse that indicates that the previous export is finished
from the point of view of the SP. This does not
necessarily mean that the data has been
transferred to RB or PA, or that the space in export
buffer for that particular vector thread has been
freed up.

SQ_8Xx_free_alu_id SQ-8Xx 1 ALUID

Depending on the type the number of export location changes:

Type 00 : Pixels without Z
o 00 =1 buffer
o 01 =2 buffers
o 10 =3 buffers
o 11 =4 buffer
Type 01: Pixels with Z
o 00 = 2 Buffers (color + Z)
o 01 =3 buffers (2 color + Z)
o 10 = 4 buffers (3 color + Z)
o 11 =5 buffers (4 color + 2Z)
Type 10 : Position export
o 00 = 1 position
o 01 =2 positions
o 11X = Undefined
Type 11: Pass Thru
o 00 =4 buffers
o 01 =8 buffers
o 10 =12 buffers
o 11 = Undefined

Below the thick black line is the end of transfer packet that tells the SX that a given export is finished. The report
packet will always arrive either before or at the same time than the next export to the same ALU id.

2327 SXto SQ : Output file control

Name Direction Bits | Description
SXx_SQ_exp_count_rdy SXx—-8Q 1 Raised by SXO0 to indicate that the following two fields
reflect the result of the most recent export
SXx_SQ_exp_pos_avail SXx—8Q 2 Specifies whether there is room for another position.
00 : 0 buffers ready
01 : 1 buffer ready
10 : 2 or more buffers ready
SXx_SQ_exp_buf_avail SXx—8Q 7 Specifies the space available in the output buffers.
0: buffers are full
1: 2K-bits available (32-bits for each of the 64

Exhibit 2035 docR400 el

73569 Bytes*** © ATI Confidential.

Reference Copyright Notice on Cover Page ® »

AMD1044_0257752

ATI Ex. 2109
IPR2023-00922
Page 42 of 326

ORIGINATE DATE EDIT DATE DOCUMENT-REV. NUM. PAGE
24 September, 2001 4 September, 201514 GEN-CXXXXX-REVA 43 of 51
Laoboks 00044

pixels in a clause)

64: 128K-bits available (16 128-bit entries for each of
64 pixels)
65-127: RESERVED

23.2.8 SQ to TP: Control bus

Once every clock, the fetch unit sends to the sequencer on which RS line it is now working and if the data in the
GPRs is ready or not. This way the sequencer can update the fetch valid bits flags for the reservation station. The
sequencer also provides the instruction and constants for the fetch to execute and the address in the register file

where to write the fetch return data.

Name Direction Bits Description
TPx_SQ_data_rdy TPx— 8Q 1 Data ready
TPx_SQ_rs_line_num TPx— SQ 6 Line number in the Reservation station
TPx_8Q_type TPx— 8Q 1 Type of data sent (O:PIXEL, 1.VERTEX)
SQ_TPx_send SQ—-TPx 1 Sending valid data
SQ_TPx_const SQ—-TPx 48 Fetch state sent over 4 clocks (192 bits total)
SQ_TPx_instr SQ—TPx 24 Fetch instruction sent ove